
Takanori Isobe
Santanu Sarkar (Eds.)

LN
CS

 1
37

74

Progress in Cryptology –
INDOCRYPT 2022
23rd International Conference on Cryptology in India
Kolkata, India, December 11–14, 2022
Proceedings

Lecture Notes in Computer Science 13774

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Takanori Isobe · Santanu Sarkar (Eds.)

Progress in Cryptology –
INDOCRYPT 2022
23rd International Conference on Cryptology in India
Kolkata, India, December 11–14, 2022
Proceedings

Editors
Takanori Isobe
University of Hyogo
Hyogo, Japan

Santanu Sarkar
Indian Institute of Technology Madras
Chennai, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-22911-4 ISBN 978-3-031-22912-1 (eBook)
https://doi.org/10.1007/978-3-031-22912-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-22912-1

Preface

With great pleasure, we present the proceedings of INDOCRYPT 2022, the 23rd
International Conference on Cryptology in India, organized by The Chatterjee Group -
Centers for Research and Education in Science and Technology (TCG CREST), the R.
C. Bose Centre for Cryptology and Security, Indian Statistical Institute, Kolkata, and
the Bose Institute, Kolkata, under the aegis of the Cryptology Research Society of India
(CRSI).

INDOCRYPT began in 2000 under the leadership of Bimal Roy at the Indian Sta-
tistical Institute, Kolkata, with an intention to target researchers and academicians in
the domain of cryptology. Since its inception, this annual conference has not only been
considered as the leading Indian venue on cryptology but also has gained recognition
among the prestigious cryptology conferences in the world. Over the last two decades,
the conference was held in various cities of India, such as Kolkata (2000, 2006, 2012,
2016), Chennai (2001, 2004, 2007, 2011, 2017), Hyderabad (2002, 2010, 2019), New
Delhi (2003, 2009, 2014, 2018), Bangalore (2005, 2015), Kharagpur (2008), Mumbai
(2013), and Jaipur (2021). Due to COVID-19 pandemic restrictions, INDOCRYPTwent
online in 2020. This year was the fifth time the conference was hosted in Kolkata, but
in a hybrid mode.

INDOCRYPT 2022 received 88 submissions from 30 different countries in total,
among which the papers that were withdrawn before the deadline, or the ones that didn’t
match the submission policy, were not considered for evaluation. Finally, 74 papers were
reviewed by three to four reviewers each. First, the papers went through a double-blind
review phase. Next, after a two week discussion phase, with additional comments from
the Program Committee members as well as the external reviewers, 31 papers by authors
from 17 different countries were finally accepted for presentation in the program and
inclusion in this proceedings.

We are immensely thankful to the 52 Program Committee members and the 64
external reviewers, who participated in the process of reviewing and subsequent discus-
sions. Without their tremendous effort, the conference would not have been successful.
We would also like to express our gratitude to Springer for their active cooperation
and timely production of the conference proceedings. We managed the submissions,
reviews, discussions, and proceedings very effectively using the online EasyChair con-
ference management software system and would like to acknowledge this with great
regard.

Our program also included three invited talks by V. Kamakoti from IIT Madras,
India, Gregor Leander from Ruhr University Bochum, Germany, and Alexander May
from Ruhr University Bochum, Germany. Moreover, there were three tutorial talks by
Patrick Derbez from University of Rennes 1, France, Mridul Nandi from ISI Kolkata,
India, and Santanu Sarkar from IIT Madras, India.

INDOCRYPT 2022 was organized by TCG CREST and the R. C. Bose Centre
for Cryptology and Security with the Bose Institute providing the conference venue.
We are extremely thankful to the General Co-chairs, Bimal Kumar Roy (ISI Kolkata)

vi Preface

and Joydeep Bhattacharya (TCG CREST), for coordinating all the issues related to
the organization of the event. We would also like to take this opportunity to thank the
Organizing Chair, Organizing Co-chairs, and all members of the Organizing Committee,
for their relentless support in successfully hosting the conference.

We are also immensely thankful to the Government of India, the Government of
West Bengal, and our sponsors Google, HDFCBank, Vehere Interactive Pvt. Ltd., AON,
KEWAUNEE International Group, TwoPiRadian Infotech Private Limited, and Bosch
Global Software Technologies Private Limited, for their generous financial support
towards the conference.

Last but not the least, we are extremely thankful to each of the 220 authors who
submitted their articles to the conference and those who attended INDOCRYPT 2022.

October 2022 Takanori Isobe
Santanu Sarkar

Organization

General Chairs

Bimal Kumar Roy ISI Kolkata, India
Joydeep Bhattacharya TCG CREST, India

Program Co-chairs

Takanori Isobe University of Hyogo, Japan
Santanu Sarkar IIT Madras, India

Organizing Chair

Subhamoy Maitra ISI Kolkata, India

Organizing Co-chairs

Somshubhro Bandyopadhyay Bose Institute, India
Soumyajit Biswas TCG CREST, India
Nilanjan Datta TCG CREST, India

Sponsorship Chair

Rakesh Kumar ISI Kolkata, India

Accommodation Chair

Bibhas Chandra Das TCG CREST, India

Organizing Committee

Avik Chakraborti TCG CREST, India
Shreya Dey TCG CREST, India
Avijit Dutta TCG CREST, India
Arpita Maitra TCG CREST, India
Sougata Mandal TCG CREST, India
Payel Sadhukhan TCG CREST, India
Soumya Kanti Saha TCG CREST, India

viii Organization

Laltu Sardar TCG CREST, India
Bishakha Sarkar TCG CREST, India

Program Committee

Avishek Adhakari Presidency University, India
Shi Bai Florida Atlantic University, USA
Christof Beierle Ruhr University Bochum, Bochum, Germany
Rishiraj Bhattacharyya NISER, India
Christina Boura University of Versailles, France
Suvradip Chakraborty ETH Zurich, Switzerland
Anupam Chattopadhyay NTU, Singapore
Sherman Chow Chinese University of Hong Kong, Hong Kong
Prem Laxman Das SETS Chennai, India
Nilanjan Datta TCG CREST, India
Avijit Dutta TCG CREST, India
Ratna Dutta IIT Kharagpur, India
Keita Emura National Institute of Information and

Communications Technology, Japan
Andre Esser Technology Innovation Institute, Abu Dhabi, UAE
Indivar Gupta DRDO, Delhi, India
Akinori Hosoyamada NTT Social Informatics Laboratories, Japan
Mahavir Jhanwar Ashoka University, India
Selcuk Kavut Balikesir University, Turkey
Sumit Kumar Pandey IIT Jammu, India
Jason LeGrow Verginia Polytechnic Institute and State

University, USA
Chaoyun Li KU Leuven, Belgium
Fukang Liu University of Hyogo, Japan
Arpita Maitra TCG CREST, India
Takahiro Matsuda National Institute of Advanced Industrial Science

and Technology, Japan
Willi Meier FHNW, Brugg-Windisch, Switzerland
Alfred Menezes University of Waterloo, Canada
Sihem Mesnager Universities of Paris VIII and XIII, LAGA Lab,

France
Kazuhiko Minematsu NEC, Kawasaki, Japan
Marine Minier Loria, France
Pratyay Mukherjee Swirlds Labs/Hedera, USA
Debdeep Mukhopadhyay IIT Kharagpur, India
Mridul Nandi ISI, India
David Oswald University of Birmingham, UK
Saibal Pal DRDO, Delhi, India

Organization ix

Chester Rebeiro IIT Madras, Chennai, India
Francesco Regazzoni University of Amsterdam, Netherlands
Raghavendra Rohit Technology Innovation Institute, Abu Dhabi, UAE
Sushmita Ruj University of New South Wales, Sydney, Australia
Somitra Sanadhya IIT Jodhpur, India
Sourav Sen Gupta NTU, Singapore
Nicolas Sendrier Inria, France
Yixin Shen Royal Holloway, University of London, UK
Bhupendra Singh DRDO, Bangalore, India
Sujoy Sinha Roy TU Graz, Austria
Pantelimon Stanica Naval Postgraduate School, Monterey, USA
Ron Steinfeld Monash University, Clayton, Australia
Atsushi Takayasu The University of Tokyo, Japan
Meltem Turan National Institute of Standards and Technology,

USA
Rei Ueno Tohoku University, Japan
Alexandre Wallet Inria, France
Yuyu Wang University of Electronic Science and Technology

of China, China
Jun Xu Institute of Information Engineering, Chinese

Academy of Sciences, China

Additional Reviewers

Aikata Aikata
Anubhab Baksi
Pierre Briaud
Bin-Bin Cai
Anirban Chakraborty
Bishwajit Chakraborty
Donghoon Chang
Haokai Changmit Kumar Chauhan
Jorge Chavez-Saab
Pratish Datta
Sabyasachi Dutta
Paul Frixons
David Gerault
Chun Guo
Guifang Huang
Mitsugu Iwamoto
David Jacquemin
Floyd Johnson
Meenakshi Kansal
Hamidreza Khoshakhlagh

Fuyuki Kitagawa
Abhishek Kumar
Kaoru Kurosawa
Virginie Lallemand
Roman Langrehr
Jack P. K. Ma
Gilles Macario-Rat
Monosij Maitra
Siva Kumar Maradana
Subhra Mazumdar
Prasanna Mishra
Girish Mishra
Sayantan Mukherjee
Yusuke Naito
Lucien K. L. Ng
Tran Ngo
Ying-Yu Pan
Tapas Pandit
Amaury Pouly
Mayank Raikwar

x Organization

Prasanna Ravi
Divya Ravi
Maxime Remaud
Yann Rotella
Debapriya Basu Roy
Partha Sarathi Roy
Rajat Sadhukhan
Yu Sasaki
AndrÃ© Schrottenloher
Jacob Schuldt
Xiangyu Su
Masayuki Tezuka

Toi Tomita
Hikaru Tsuchida
Natarajan Venkatachalam
Javier Verbel
Sulani Kottal Baddhe Vidhanalage
Deepak Vishwakarma
Xiuhua Wang
Harry W.H. Wong
Qianqian Yang
Rui Zhang
Liang Zhao
Lukas Zobernig

Contents

Foundation

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 3
Behzad Abdolmaleki and Daniel Slamanig

ParaDiSE: Efficient Threshold Authenticated Encryption in Fully
Malicious Model . 26
Shashank Agrawal, Wei Dai, Atul Luykx, Pratyay Mukherjee,
and Peter Rindal

Stronger Security and Generic Constructions for Adaptor Signatures 52
Wei Dai, Tatsuaki Okamoto, and Go Yamamoto

Entropic Hardness of Module-LWE from Module-NTRU . 78
Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois,
and Weiqiang Wen

Symmetric Key Cryptology

New Algorithm for Exhausting Optimal Permutations for Generalized
Feistel Networks . 103
Stéphanie Delaune, Patrick Derbez, Arthur Gontier,
and Charles Prud’homme

Minimizing Even-Mansour Ciphers for Sequential Indifferentiability
(Without Key Schedules) . 125
Shanjie Xu, Qi Da, and Chun Guo

INT-RUP Security of SAEB and TinyJAMBU . 146
Nilanjan Datta, Avijit Dutta, and Shibam Ghosh

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable
Caches . 171
Arghya Bhattacharjee, Ritam Bhaumik, and Mridul Nandi

ISAP+: ISAP with Fast Authentication . 195
Arghya Bhattacharjee, Avik Chakraborti, Nilanjan Datta,
Cuauhtemoc Mancillas-López, and Mridul Nandi

xii Contents

Protocols and Implementation

Revisiting the Efficiency of Perfectly Secure Asynchronous Multi-party
Computation Against General Adversaries . 223
Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury

Protego: Efficient, Revocable and Auditable Anonymous Credentials
with Applications to Hyperledger Fabric . 249
Aisling Connolly, Jérôme Deschamps, Pascal Lafourcade,
and Octavio Perez Kempner

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+
on AArch64 . 272
Hanno Becker and Matthias J. Kannwischer

Parallel Isogeny Path Finding with Limited Memory . 294
Emanuele Bellini, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez,
Andre Esser, Sorina Ionica, Luis Rivera-Zamarripa,
Francisco Rodríguez-Henríquez, Monika Trimoska,
and Floyd Zweydinger

Cryptanalysis

Distinguishing Error of Nonlinear Invariant Attacks . 319
Subhabrata Samajder and Palash Sarkar

Weak Subtweakeys in SKINNY . 336
Daniël Kuijsters, Denise Verbakel, and Joan Daemen

Full Round Zero-Sum Distinguishers on TinyJAMBU-128
and TinyJAMBU-192 Keyed-Permutation in the Known-Key Setting 349
Orr Dunkelman, Shibam Ghosh, and Eran Lambooij

Monte Carlo Tree Search for Automatic Differential Characteristics
Search: Application to SPECK . 373
Emanuele Bellini, David Gerault, Matteo Protopapa, and Matteo Rossi

Finding Three-Subset Division Property for Ciphers with Complex Linear
Layers . 398
Debasmita Chakraborty

Improved Truncated Differential Distinguishers of AES with Concrete
S-Box . 422
Chengcheng Chang, Meiqin Wang, Ling Sun, and Wei Wang

Contents xiii

Boolean Functions

Modifying Bent Functions to Obtain the Balanced Ones with High
Nonlinearity . 449
Subhamoy Maitra, Bimal Mandal, and Manmatha Roy

Revisiting BoolTest – On Randomness Testing Using Boolean Functions 471
Bikshan Chatterjee, Rachit Parikh, Arpita Maitra, Subhamoy Maitra,
and Animesh Roy

Weightwise Almost Perfectly Balanced Functions: Secondary
Constructions for All n and Better Weightwise Nonlinearities 492
Agnese Gini and Pierrick Méaux

Quantum Cryptography and Cryptanalysis

Improved Quantum Analysis of SPECK and LowMC . 517
Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Hwajeong Seo,
and Anupam Chattopadhyay

A Proposal for Device Independent Probabilistic Quantum Oblivious
Transfer . 541
Jyotirmoy Basak, Kaushik Chakraborty, Arpita Maitra,
and Subhamoy Maitra

Quantum Attacks on PRFs Based on Public Random Permutations 566
Tingting Guo, Peng Wang, Lei Hu, and Dingfeng Ye

On Security Notions for Encryption in a Quantum World . 592
Céline Chevalier, Ehsan Ebrahimi, and Quoc-Huy Vu

Post Quantum Cryptography

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session
Keys to a Chosen-Ciphertext Attack . 617
Daniel J. Bernstein

An Efficient Key Recovery Attack Against NTRUReEncrypt
from AsiaCCS 2015 . 644
Zijian Song, Jun Xu, Zhiwei Li, and Dingfeng Ye

Two Remarks on the Vectorization Problem . 658
Wouter Castryck and Natan Vander Meeren

xiv Contents

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting . . . 679
Sanjit Chatterjee and Tapas Pandit

Revisiting the Security of Salted UOV Signature . 697
Sanjit Chatterjee, M. Prem Laxman Das, and Tapas Pandit

Author Index . 721

Foundation

CRS-Updatable Asymmetric
Quasi-Adaptive NIZK Arguments

Behzad Abdolmaleki1(B) and Daniel Slamanig2

1 Max Planck Institute for Security and Privacy, Bochum, Germany
behzad.abdolmaleki@mpi-sp.org

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. A critical aspect for the practical use of non-interactive zero-
knowledge (NIZK) arguments in the common reference string (CRS)
model is the demand for a trusted setup, i.e., a trusted generation of the
CRS. Recently, motivated by its increased use in real-world applications,
there has been a growing interest in concepts that allow to reduce the
trust in this setup. In particular one demands that the zero-knowledge
and ideally also the soundness property hold even when the CRS gen-
eration is subverted. One important line of work in this direction is the
so-called updatable CRS for NIZK by Groth et al. (CRYPTO’18). The
basic idea is that everyone can update a CRS and there is a way to
check the correctness of an update. This guarantees that if at least one
operation (the generation or one update) have been performed honestly,
the zero-knowledge and the soundness properties hold. Later, Lipmaa
(SCN’20) adopted this notion of updatable CRS to quasi-adaptive NIZK
(QA-NIZK) arguments.

In this work, we continue the study of CRS-updatable QA-NIZK and
analyse the most efficient asymmetric QA-NIZKs by González et al.
(ASIACRYPT’15) in a setting where the CRS is fully subverted and
propose an updatable version of it. In contrast to the updatable QA-
NIZK by Lipmaa (SCN’20) which represents a symmetric QA-NIZK and
requires a new non-standard knowledge assumption for the subversion
zero-knowledge property, our technique to construct updatable asym-
metric QA-NIZK is under a well-known standard knowledge assump-
tion, i.e., the Bilinear Diffie-Hellman Knowledge of Exponents assump-
tion. Furthermore, we show the knowledge soundness of the (updatable)
asymmetric QA-NIZKs, an open problem posed by Lipmaa, which makes
them compatible with modular zk-SNARK frameworks such as LegoS-
NARK by Campanelli et al. (ACM CCS’19).

1 Introduction

Zero-knowledge proofs [24] are a fundamental concept which allows one party
(the prover) by interacting with another party (the verifier) to convince the lat-
ter that a statement in any NP language is true without revealing any additional
information (the zero-knowledge property). At the same time, the prover is not
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 3–25, 2022.
https://doi.org/10.1007/978-3-031-22912-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_1

4 B. Abdolmaleki and D. Slamanig

able to make the verifier accept proofs about false statements (the soundness
property). In many of its practical applications it is important to remove inter-
action in that the prover only needs to compute a single message (a proof), which
can then be verified by everyone. These so called non-interactive zero-knowledge
(NIZK) proofs, especially for algebraic languages in bilinear groups [26,30,31],
play an important role in the design of cryptographic primitives and protocols.
The non-interactivity, however, comes at a price and in particular (apart from
NIZK secure in the random oracle model) demands a trusted setup that gener-
ates a so called common reference string (CRS). This CRS is an input to the
prover and all potential verifiers. The critical issue is that if this setup is not
performed honestly, i.e., the underlying trapdoor is known to some party, then
all security is lost.

A long line of research has focused on obtaining very efficient NIZK proofs
in this CRS model [23,27,28,30–35,39], covering efficient pairing-based zero-
knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) for
any NP language and succinct Quasi-Adaptive Non-Interactive Zero-Knowledge
arguments (QA-NIZKs) for restricted languages, i.e., membership in linear sub-
spaces. QA-NIZKs are a relaxation of NIZK arguments, where the CRS is spe-
cialized to the linear space for which membership should be proven [7,8,25,32,33,
35,37,38]. This specialized part is called the language parameter. In this paper
our focus will be on QA-NIZK arguments.

1.1 Motivation

For the practical application of NIZK primitives in general, a crucial question
is how the CRS generation should be performed. While in theory it is simply
assumed that some universally trusted party will perform the CRS generation,
such a party is challenging to impossible to find in the real world.

Consequently, this is typically a too strong assumption.
Now there are different approaches to reduce the required trust that needs to

be put in the CRS generation. First, the CRS can be generated by a potentially
huge set of parties via the use of secure multi-party computation (MPC), so
called ceremonies, [1,10,11,36]. And while this approach has seen use in the
real world1, such ceremonies are cumbersome and require significant effort even
beyond the technical realisation. Despite the required efforts, however, it can give
very strong guarantees, i.e., if at least as one party behaves honest then security
is preserved. Second, to remove this additional effort, one can rely on so called
subversion NIZKs [9], subversion zk-SNARKS [2,20] and subversion QA-NIZKs
[3,6]. In this subversion zero-knowledge model, one introduces a way to check the
CRS and the prover does not require to trust the CRS, i.e., the zero-knowledge
property (so-called subversion zero-knowledge) is still maintained even if the
CRS generation is malicious. Unfortunately, the verifier is still required to trust
the CRS generation and it is actually impossible to obtain subversion soundness
when at the same time requiring zero-knowledge to hold [9]. Third, an interesting

1 The “powers of tau” ceremony of Zcash: https://z.cash/technology/paramgen/.

https://z.cash/technology/paramgen/

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 5

middle ground is the recent technique of a so called updatable CRS introduced
by Groth et al. [29], which is an increasingly popular model [5,12,14,18,22,40–
43,46]. In this updatable CRS model, everyone can update a CRS along with
providing update proofs such that the correctness of updates can be verified
by everyone. This guarantees that zero-knowledge for the prover holds in the
presence of an adversarial CRS generator. Moreover, the verifier can trust the
CRS, i.e., soundness holds, as long as one operation, either the CRS generation
itself or one of the updates of the CRS have been performed honestly. Thus, to
be certain that soundness holds, a verifier could do a CRS update on its own
and then send the updated CRS to the prover.

Initially, Groth et al. [29] defined CRS updates with a focus on zk-SNARKs,
and then Lipmaa [40] proposed an updatable CRS version of the QA-NIZK con-
struction of [3,35]. While Lipmaa considers so called symmetric QA-NIZK, i.e.,
where the language is defined in one of the source groups of a bilinear group, it
is not known how this applies to asymmetric QA-NIZK [25], i.e., where the lan-
guage is defined over both source groups (also called bilateral linear subspaces).2
Asymmetric QA-NIZKs [17,25,45], however, are useful for many applications
where commitments to the same value are available in both source groups of
a bilinear group (e.g., proof aggregation, ring signatures, range proofs). As we
will discuss soon, despite not being known how to construct it, having what we
call an updatable asymmetric QA-NIZK does have interesting implications for
concrete applications discussed below.

Applications. zk-SNARKs and QA-NIZKs are appealing as they are succinct,
i.e., they allow proving circuits of arbitrary size and linear subspace languages
respectively, with a compact proof. They are also concretely very efficient and
in particular in bilinear groups we have constructions with proofs represented
by three group elements for zk-SNARKs for arithmetic circuits [28], one group
element for symmetric QA-NIZK for linear subspace languages [35], and two
group elements for asymmetric QA-NIZK for bilateral linear subspace lan-
guages [25]. While (asymmetric) QA-NIZKs have many interesting applications
(cf. [25,32,33]), our focus will be on their application in the modular design of
zk-SNARKs and in particular on LegoSNARK [13].

LegoSNARK is a toolbox for commit-and-prove zk-SNARKs with the aim
of constructing a global zk-SNARK for some computation C via the linking
of smaller specialized zk-SNARKs for various subroutines that overall com-
pose to C. The central idea is that by allowing each subroutine of C to be
handled by a different proof system, one can select the one that maximizes
a metric (e.g., efficiency) that is important for the concrete application. Now
LegoSNARK uses succinct QA-NIZKs as efficient zk-SNARKs for linear sub-
space languages. Abdolmaleki and Slamanig [6] recently showed how one can
construct a subversion zero-knowledge variant of symmetric [35] as well as asym-

2 To avoid confusion we intentionally do not call them QA-NIZK for symmetric or
asymmetric groups as done in [25], as both types are instantiated in asymmetric,
i.e., type-3, bilinear groups.

6 B. Abdolmaleki and D. Slamanig

metric QA-NIZK [25] in a setting where the CRS is subverted but the language
parameters are generated honestly. As they mention, the honest language param-
eters do not represent a problem for practical applications, as they can typically
be obtained in a transparent way without trust in their generation (e.g., by
deriving them using a random oracle). Furthermore, they show how to integrate
a knowledge-sound version of their subversion zero-knowledge symmetric QA-
NIZK into LegoSNARK. This represents a step towards a subversion variant of
the LegoSNARK toolbox and thus a way to use LegoSNARK with a reduced
trust in the required setup.

As most of the recent zk-SNARK constructions focus on the updatable-CRS
setting [5,12,14,18,22,41–43,46], it is desirable to enable composable zk-SNARK
frameworks such as LegoSNARK also in the updatable CRS setting. If one
thereby wants still to take advantage of using QA-NIZK as one of its build-
ing blocks, then updatable QA-NIZK are required. While, as mentioned above,
there are numerous constructions of zk-SNARKs with an updatable CRS, to date
there is only an updatable symmetric QA-NIZK by Lipmaa [40] available. To
prove the zero-knowledge property, it requires a new and non-standard knowl-
edge assumption (KW-KE). Adaptive soundness can be shown under a stan-
dard assumption, but achieving knowledge soundness, a property that would be
required for composable zk-SNARKs, is left as an open problem in [40]. Lipmaa
works in a model where the complete CRS including the language parameter
(what he calls key) can be generated maliciously. Additionally proofs (what he
calls arguments) under previous versions of the CRS can be updated to newer
versions of the CRS. While latter extends potential applications, in the context
of composable zk-SNARK frameworks, this feature is not required.

Now, apart from the missing knowledge-soundness property in [40], it could
be tempting to think that two parallel symmetric QA-NIZK can be used to
emulate what is provided by asymmetric QA-NIZK. However, the problem is that
one would require an additional “linking proof” that would guarantee that both
proofs use the same witness. And exactly this issue, which would increase the
proof size and decrease efficiency, is what one can avoid when using asymmetric
QA-NIZK in LegoSNARK, whenever the respective commitments are available
in both source groups.

Consequently, when having updatable asymmetric QA-NIZKs, which avoid
the aforementioned issue, this is another step towards an updatable variant of
the LegoSNARK toolbox.

1.2 Our Results

We investigate the most efficient asymmetric QA-NIZK (denoted as Π ′
asy) by

González et al. (GHR) [25] in an updatable CRS setting. We show that for Π ′
asy

we can construct updatable asymmetric QA-NIZK arguments (which requires a
witness samplable distribution [32]) by extending the CRS suitably and adding
two new algorithms for updating the CRS and verify CRS updates. Compared to
the recent updatable symmetric QA-NIZK in [40], we consider a variant where
the CRS is subverted and can be updated, but the language parameter is chosen
honestly. As already mentioned above that latter does not represent a problem

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 7

for practical applications and in particular composable zk-SNARK frameworks
such as LegoSNARK [13].

In contrast to the updatable symmetric QA-NIZK in [40], which relies on
a new non-standard knowledge assumption for their subversion zero-knowledge
property (KW-KE), our construction of updatable QA-NIZK can be shown to
have this property under the Bilinear Diffie-Hellman Knowledge of Exponents
(BDH-KE) assumption [2,4] and is asymmetric. Furthermore, under the discrete
logarithm assumption in the Algebraic Group Model (AGM) due to Fuchsbauer
et al. [21], we prove the knowledge soundness property of the proposed updat-
able asymmetric QA-NIZK. We also show that this also yields the knowledge
soundness property of the original GHR asymmetric QA-NIZK.

Technical Overview. In Sect. 3, we give constructions of succinct updatable
asymmetric QA-NIZK arguments of membership in bilateral linear subspaces.
Using implicit notation, we represent the elements of G1 (respectively of G2) as
[z]1 ∈ G1 (respectively, as [z]2 ∈ G2). Given the language parameters [M]1 ∈
G

n1×m
1 and [N]2 ∈ G

n2×m
2 , we consider QA-NIZK arguments of membership of

the statements ([y]1, [x]2) in the language

L[M]1,[N]2 =
{
([y]1, [x]2) ∈ G

n1
1 × G

n2
2 : ∃w ∈ Z

m
p s.t. y = Mw,x = Nw

}
.

As mentioned, to construct our updatable asymmetric QA-NIZK arguments we
start from the asymmetric QA-NIZK by González et al. (GHR) [25] (cf. Fig. 1)
and change GHR’s QA-NIZK by adding extra elements to the CRS so that the
CRS becomes publicly verifiable and trapdoor extractable. Importantly, our aim
for the updatable asymmetric QA-NIZK, is to keep the prover and the verifier
unchanged compared to GHR’s QA-NIZK.

More precisely, the CRS of GHR’s QA-NIZK contains crs = ([A,C2,P 2]2,
[A,C1,P 1]1) where [A]i ∈ G

k×k
i , Ci ∈ Z

ni×k
p , and P i ∈ Z

m×k
p for i ∈ {1, 2}

and integers ni, m and k. The prover uses [P 2]2 and [P 1]1 to generate a proof and
the verifier uses the rest of the CRS to verify the proof. We add two new elements
[C1]2 and [C2]1 to the CRS of the GHR scheme to make the CRS publicly verifi-
able. The trapdoor extractability is guaranteed using the new elements [C1]2 and
[C2]1 and under the Bilinear Diffie-Hellman Knowledge of Exponents assump-
tion (the extracted trapdoor will be used to prove subversion zero-knowledge).
To achieve the updatability property, we design two new algorithms Ucrs and
Vcrs. The Ucrs algorithm takes the crs and updates it to a new crsup so that
the update is publicly verifiable. More precisely, given the crsup, the language
parameters [M]1, and [N]2, the Vcrs algorithm checks the well-formedness of
crsup. The latter checking guarantees the existence of a trapdoor tc for the crsup,
which will be required to prove the zero-knowledge property (cf. Sect. 3.2).

This step is necessary and will be sufficient for subversion zero-knowledge
(as the prover can check the well-formedness of the CRS) and updatable sound-
ness (as the verifier can check and update the CRS) in the updatable set-
ting. However, choosing which elements to add to the CRS is not straightfor-
ward since the QA-NIZK must remain secure even given this extended CRS as

8 B. Abdolmaleki and D. Slamanig

adding too much information into the CRS can easily break the security, i.e.,
zero-knowledge and/or soundness. For instance, one may achieve the aforemen-
tioned properties by adding [P 1]2 and [P 2]1 to the CRS of GHR’s QA-NIZK.
But adding such elements bring a fundamental issue that under the Bilinear
Diffie-Hellman Knowledge of Exponents assumption, the simulator in the zero-
knowledge proof can also extract the language parameters M and N . Given
statements ([y]1, [x]2), the simulator obtains more information of the witness w
of the language L[M]1,[N]2 , which would violate the zero-knowledge property.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let n ∈ N be the security param-
eter. By x←$ D we denote that x is sampled according to distribution D or
uniformly randomly if D is a set. We denote by negl(λ) an arbitrary negligi-
ble function. We write a ≈n b if |a − b| ≤ negl(λ). Algorithm Pgen(1n) returns
BG = (p,G1,G2,GT , ê), where G1, G2, and GT are three additive cyclic groups
of prime order p, and ê : G1 × G2 → GT is a non-degenerate efficiently com-
putable bilinear map (pairing). We use the implicit bracket notation of [19], that
is, we write [a]ι to denote agι where gι is a fixed generator of Gι. We denote
ê([a]1, [b]2) as [a]1[b]2. Thus, [a]1[b]2 = [ab]T . By y ← A(x;ω) we denote the fact
that A, given an input x and random coins ω, outputs y. Let RND(A) denote
the random tape of A, and let ω ←$RND(A) denote the random choice of the
random coins ω from RND(A).

Computational Assumptions. We require the following assumptions.

Definition 1 (BDH-KE Assumption [2,4]). We say that BDH-KE holds rela-
tive to K0, if for any PPT adversary A there exists a PPT extractor ExtBDH-KE

A ,
such that

Pr

[
p←$K0(1

n);ωA ←$RND(A),

([α1]1, [α2]2||a)←(A||ExtBDH-KE
A)(p, ωA)

: [α1]1[1]2=[1]1[α2]2 ∧ a �= α1

]
≈n 0 .

Here auxR is the auxiliary information related to the relation generator of
R. Note that the BDH-KE assumption can be considered as a simple case of the
PKE assumption of [16]. Also, BDH-KE can be seen as an asymmetric-pairing
version of the original KoE assumption [15].
In the following definitions let Dk be a matrix distribution in Z

(k+1)×k
p .

Definition 2 (Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption [44]).
The Dk-MDDH assumption for ι ∈ {1, 2} holds relative to K0, if for any PPT
adversary A, |ExpMDDH

A (p) − 1/2| ≈n 0, where ExpMDDH
A (p) :=

Pr

⎡
⎣
p←$K0(1n);A ←$ Dk;v ←$Z

k
p;

u ←$Z
k+1
p ; b ←$ {0, 1};

b∗ ← A(p, [A]ι, [b · Av + (1 − b) · u]ι)
: b = b∗

⎤
⎦ .

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 9

Definition 3 (Dk-SKerMDH Assumption [25]). The Dk-SKerMDH assump-
tion holds relative to K0, if for any PPT A,

Pr

[
p ← K0(1n);A ←$ Dk; ([s1]1, [s2]2) ← A(p, [A]1, [A]2) :

s1 − s2 �= 0 ∧ A�(s1 − s2) = 0k

]
≈n 0 .

Let D�k be a probability distribution over matrices in Z
�×k
p , where � > k.

Next, we define five commonly used distributions (see [19] for references), where
a, ai, aij ←$Z

∗
p: Uk (uniform), Lk (linear), ILk (incremental linear), Ck (cascade),

SCk (symmetric cascade):

Uk: A =
(a11 ... a1k

...
ak1 ... akk

ak+1,1 ... ak+1,k

)
, Lk: A =

⎛
⎝

a1 0 ... 0 0
0 a2 ... 0 0
0 0 ... 0 0
...
0 0 ... 0 ak
1 1 ... 1 1

⎞
⎠,

ILk: A =

⎛
⎝

a 0 ... 0 0
0 a+1 ... 0 0
0 0 ... 0 0
...
0 0 ... 0 a+k−1
1 1 ... 1 1

⎞
⎠, Ck: A =

⎛
⎝

a1 0 ... 0 0
1 a2 ... 0 0
0 1 ... 0 0
...
0 0 ... 1 ak
0 0 ... 0 1

⎞
⎠,

SCk: A =

⎛
⎝

a 0 ... 0 0
1 a ... 0 0
0 1 ... 0 0
...
0 0 ... 1 a
0 0 ... 0 1

⎞
⎠.

Assume that D�k outputs matrices A where the upper k × k submatrix Ā is
always invertible, i.e., D�k is robust [32].

QA-NIZK Arguments. Let a language L� defined by a relation R� which
is parametrized by some parameter �, called the language parameter, chosen
from a distribution Dp. We recall the definition of QA-NIZK arguments from
Jutla and Roy [32]. A QA-NIZK argument provides a proof for membership of
words x with according witnesses w in the language L�. The distribution Dp

is witness samplable if there exist an efficient algorithm that samples (�, tc�)
so that the parameter � is distributed according to Dp and membership of the
language parameter � can be efficiently verified with tc�. The CRS of a QA-
NIZK depends on a language parameter � and as mentioned in [32], it has to be
chosen from a correct distribution Dp.

Let � be sampled from a distribution Dp over associated parameter language
Lp. A QA-NIZK argument in the CRS model contains four PPT algorithms
Π = (Pgen,P,V,Sim) for a set of witness-relations Rp = {R�}�∈Supp(D)p , if
the following properties (i-iii) hold. We call the QA-NIZK knowledge sound if
instead of (iii) the property (iv) holds. Here, Pgen is the parameter and the
CRS generation algorithm, more precisely, Pgen consists of two algorithms K0

(generates the parameter p) and K (generates the CRS), P is the prover, V is
the verifier, and Sim is the simulator.

(i) Completeness. For any n, and (x,w) ∈ R�,

Pr

[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�);π ← P(�, crs, x,w) :
V(�, crs, x, π) = 1

]
= 1 .

10 B. Abdolmaleki and D. Slamanig

(ii) Statistical Zero-Knowledge. For any computationally unbounded adver-
sary A, |εzk

0 − εzk
1 | ≈n 0, where εzk

b :=

Pr
[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�); b ←$ {0, 1} : AOb(·)(�, crs) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and otherwise it
returns P(�, crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R�,
and otherwise it returns Sim(�, crs, tc, x).

(iii) Adaptive Soundness. For any PPT A,

Pr
[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�); (x, π) ← A(�, crs) :
V(�, crs, x, π) = 1 ∧ ¬(∃w : (x,w) ∈ R�)

]
≈n 0 .

Fig. 1. Asymmetric QA-NIZK Πasy (D̂k = Dk and k̂ = k + 1) and Π ′
asy (D̂k = D̄k and

k̂ = k) from [25].

(vi) Adaptive Knowledge Soundness. For any PPT A there exists a non-
uniform PPT extractor ExtA,

Pr

⎡
⎢⎣
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�);ωA ←$RND(A);
(x, π) ← A(ωA; �, crs);w ← ExtA(ωA; �, crs) : (x,w) �∈ R�

∧ V(�, crs, x, π) = 1

⎤
⎥⎦ ≈n 0 .

Asymmetric QA-NIZK for Concatenation Languages. We recall the
asymmetric QA-NIZK arguments of membership in bilateral linear subspaces
of Gn1

1 × G
n2
2 given by González et al. [25] for the language

L[M]1,[N]2 =
{
([y]1, [x]2) ∈ G

n1
1 × G

n2
2 : ∃w ∈ Z

m
p s.t. y = Mw,x = Nw

}
.

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 11

This language is also known as the concatenation language, since one can
define R as a concatenation of language parameters [M]1 and [N]2 so that
R =

(
[M]1
[N]2

)
. In other words ([y]1, [x]2) ∈ L[M]1,[N]2 iff

(
[y]1
[x]2

)
is in the span

of R. We recall the full construction of asymmetric QA-NIZK arguments in the
CRS model in Fig. 1.

Notice that the QA-NIZK in Fig. 1 for L[M]1,[N]2 is a generalization of Πas

of [35] in two groups when we set D̂k = Dk and k̂ = k + 1 (denoted as Πasy).
Also it is a generalization of Π ′

as of [35] in two groups when we set D̂k = D̄k and
k̂ = k (denoted as Π ′

asy).

Theorem 1 [Theorem 3 of [25]]. If D̂k = Dk and k̂ = k+1, the QA-NIZK proof
system in Fig. 1 is perfect complete, computational adaptive soundness based on
the Dk-SKerMDH assumption, perfect zero-knowledge.

Theorem 2 [Theorem 4 of [25]]. If D̂k = D̄k, k̂ = k and Dp is a witness sam-
plable distribution, Fig. 1 describes a QA-NIZK proof system with perfect com-
pleteness, computational adaptive soundness based on the Dk-KerMDH assump-
tion, perfect zero-knowledge.

3 Updatable Asymmetric QA-NIZK

In this section, we investigate asymmetric QA-NIZK arguments when the CRS
can be maliciously generated and propose corresponding updatable asymmetric
QA-NIZK arguments. Formally, we prove the following theorem:

Theorem 3 Let Πasy-up be an updatable asymmetric QA-NIZK argument for
linear subspaces from Fig. 4. (i) Πasy-up is crs-update correct, crs-update hiding,
and complete, (ii) if the BDH-KE assumption hold, then Πasy-up is statistically
subversion zero-knowledge, and (iii) if the Dk-SKerMDH, (for the case D̂k = D̄k,
the distribution Dp should be witness samplable) then Πasy-up is computationally
updatable sound.

First, we discuss subversion security of QA-NIZKs in the updatable CRS
setting, then propose an updatable version of the most efficient asymetric QA-
NIZK construction Π ′

as in [25] (cf. Fig. 1).

3.1 Security Definitions for Updatable QA-NIZK Arguments

As already mentioned, the notion of updatability to achieve subversion security
for NIZKs in the CRS model with respect to zero-knowledge and soundness was
introduced by Groth et al. in [29] with a focus on zk-SNARKs. Later, Lipma [40]
applied the underlying ideas to the setting of QA-NIZKs and in particular when
both the language parameter � and the CRS can be subverted. More precisely,
Lipmaa obtains a version of the Kiltz-Wee QA-NIZK [35] (in the bare public-key
(BPK) model) in the aforementioned setting under a new non-falsifiable KW-KE

12 B. Abdolmaleki and D. Slamanig

knowledge assumption. In this work, motivated by [6] and their application to
composable zk-SNARK frameworks such as LegoSNARK [13], we investigate the
security of QA-NIZKs in the CRS model when the CRS is subverted and can be
updated but with honestly chosen �3. Our security definition thus then enables
us to construct an updatable asymmetric QA-NIZK that can be used to extend
the LegoSANRK [13] with updatable CRS. More precisely such schemes can
be used as the updatable zk-SNARKs for bilateral subspace languages as they
provide better efficiency than general updatable zk-SNARKs for these types of
languages.

Concretely, we define updatable QA-NIZKs security with some changes in the
updatable CRS model. A tuple of PPT algorithms Π = (Pgen,Ucrs,Vcrs,P,V,
Sim) is an updatable QA-NIZK if properties (i-v) hold. We call an updatable
QA-NIZK updatable knowledge sound if instead of (v) property (vi) holds. Here,
Ucrs(�, crs) is an algorithm to update the CRS that takes the language parameter
� and a CRS crs and outputs an updated CRS crsup and corresponding trapdoor
tcup. Vcrs(�, crs, crsup) is an algorithm to verify the correctness of a CRS update
and takes an old crs to a new CRS crsup and checks the well-formedness of the
updated CRS.

(i) CRS-update Correctness. For any n,

Pr
[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�);
(crsup, tcup) ← Ucrs(�, crs) : Vcrs(�, crs, crsup) = 1

]
= 1 .

(ii) CRS-update Hiding. For any n,

Pr
[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�); (crsup, tcup) ← Ucrs(�, crs)
Vcrs(�, crs, crsup) = 1 : crsup ≈n crs

]
= 1 .

Note that this property holds the initial crs is maliciously generated and an
honest updater Ucrs updates it.

(iii) Completeness. For any n, and (x,w) ∈ R�,

Pr
[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�); (crsup, tcup) ← Ucrs(�, crs);
π ← P(�, crsup, x,w) : Vcrs(�, crs, crsup) = 1 ∧ V(�, crsup, x, π) = 1

]
= 1 .

(iv) Statistical Subversion Zero-Knowledge. For any PPT subverter Z
there exists a PPT extractor ExtZ, such that for any computationally unbounded
adversary A, |εzk

0 − εzk
1 | ≈n 0, where εzk

b :=

Pr

[
p ← K0(1n); �←$ Dp;ωZ ←$RND(Z); (crs, auxZ) ← Z(�;ωZ);

tc ← ExtZ(�;ωZ); b ←$ {0, 1} : Vcrs(�, crs) = 1 ∧ AOb(·,·)(�, crs, auxZ) = 1

]
.

3 We recall that in such applications � represents public keys of the commitment
scheme and can typically derived in a way (e.g., via a random oracle) such that
subversion is not possible.

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 13

The oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and otherwise it returns
P(�, crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and other-
wise it returns Sim(�, crs, tc, x).

(v) Updatable Adaptive Soundness. For any PPT A,

Pr
[
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�); (x, π, crs′) ← A(�, crs)
: (x,w) �∈ R� ∧ Vcrs(�, crs, crs′) = 1 ∧ V(�, crs′, x, π) = 1

]
≈n 0 .

(vi) Updatable Adaptive Knowledge Soundness. For any PPT A there
exists a non-uniform PPT extractor ExtA,

Pr

⎡
⎢⎣
p ← K0(1n); �←$ Dp; (crs, tc) ← K(�);ωA ←$RND(A);
(x, π, crs′) ← A(ωA; �, crs);w ← ExtA(ωA; �, crs, crs′) : (x,w) �∈ R�

∧ Vcrs(�, crs, crs′) = 1 ∧ V(�, crs′, x, π) = 1

⎤
⎥⎦ ≈n 0 .

3.2 Construction of Updatable Asymmetric QA-NIZKs

In this section we describe our updatable QA-NIZK for bilateral subspace lan-
guages. We first recall some notation and the primitives used in the construction.

Ingredients and Notation. Our updatable asymmetric QA-NIZK uses the
following assumption and primitives:

– Asymmetric QA-NIZK in the CRS model, i.e., the asymmetric QA-NIZK Π ′
asy

of [25] (cf. Theorem 2).
– The knowledge assumption BDH-KE [2,4]. (cf. Definition 1).
– The algorithm MATV([A]2) of [3] that checks if a matrix [A]2 from Dk ∈

{Lk, ILk, Ck,SCk} is efficiently verifiable (cf. Figure 2).
– The algorithm isinvertible([A]2, [A]1) of [3] that checks the invertibility of a

square matrix A ←$ Dk = Uk for k ∈ {1, 2} given in both source groups (cf.
Figure 3).

Construction. We start with the asymmetric QA-NIZK argument Π ′
asy from

Fig. 1 and show how to obtain an updatable asymmetric QA-NIZK Π ′
asy-up. To

this goal, similar as in previous work on updatable NIZK variants [29,40], we
design two new algorithms Ucrs and Vcrs. The Ucrs algorithm takes the original
crs and updates it to a new crsup such that this update is publicly verifiable. Given
the crsup, the language parameters [M]1, and [N]2, the Vcrs algorithm checks
the well-formedness of the crsup. The latter checking guarantees the existence of
a trapdoor tc for the crsup, which will be required to prove the zero-knowledge
property. Now, we take a closer look at the design of the update procedure.

Updating procedure. The updating phase is tricky as the updated elements need
to be publicly verifiable via the Vcrs algorithm. Inspired by [40], we use both
multiplicative and additive updating approaches. We let Ucrs adaptively update

14 B. Abdolmaleki and D. Slamanig

Fig. 2. Auxiliary procedure MATV from [3] for Dk ∈ {Lk, ILk, Ck, SCk}.

Fig. 3. Auxiliary procedure isinvertible for A ∈ Z
k×k
p and k ∈ {1, 2}.

the element P i for i ∈ {1, 2}, since due to the structure of crs of our updat-
able asymmetric QA-NIZK in Fig. 4, by using the crs, crsint, and crsup, the Vcrs
algorithm can publicly verify them. But updating the element A is more tricky.
In particular, if one updates it additively then in order to be able to verify the
elements Ci, which are needed to make trapdoor extraction possible, one would
need to have [Ki]i for i ∈ {1, 2}. More precisely, with additively updating A,
we would have Aup = A+Aint and the updating procedure of elements Ci is as
follows:

[Ci,up]i = [Ki,upAup]i = [(K int + Ki)(Aint + A)]i
= [C int]i + [Ci]i + [K intA]i + [KiAint]i,

where for verifying [K intA]i and [KiAint]i one needs to have [Ki]i. However,
having these elements in the crs would leak information about the trapdoor.
Thus, we need to update A multiplicatively as Aup = AAint.

Zero-knowledge property. In the zero-knowledge proof, we use the well-known
BDH-KE knowledge assumption and show that if the possibly maliciously gen-
erated crsup passes the Vcrs algorithm, then under the knowledge assumptions
there exists an extractor that extracts the trapdoor tc of crsup. Using such a
trapdoor tc, the simulator can simulate proofs.

Soundness property. Since to achieve publicly verifiability of the crsup, we add
some new elements [C2]1 and [C1]2 in the CRS, we need to show that the

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 15

soundness of the updatable asymmetric QA-NIZKs still holds. We prove the
soundness under the standard SKerMDH assumption.

We depict the full construction of the updatable asymmetric QA-NIZK argu-
ments in Fig. 4. Here, the elements with index int are intermediate elements gen-
erated by the algorithm Ucrs and can be viewed as update proofs, i.e., enabling
to verify consistency of the old and updated crs. The elements with index up are
the updated elements, i.e., the new crs. We note that our updatable asymmet-
ric QA-NIZK in Fig. 4, the prover and the verifier are unchanged compared to
GHR’s QA-NIZK [25].

Remark 1. We note that, one can adapt the updatable asymmetric QA-NIZKs
construction in Fig. 4 to other languages like as the sum in subspace language
and obtain the updatable version of the argument of sum in subspace of [25].

3.3 Security Proof for Our Construction

In this section we prove Theorem 3.

Proof. The security properties (i-iii), crs-update correctness and completeness
are straightforward from the construction. The crs-update hiding proof is simi-
lar [40] (see Appendix A for more details).

(iv: Subversion Zero-Knowledge:) For proving the zero-knowledge property,
we need to construct a simulator that can construct proofs without knowing the
witness but a trapdoor tc. To this aim, in Lemma 1 (in the extraction phase), we
show that from any adversary producing a valid crs from scratch it is possible
to extract the trapdoors (K1,K2). Then in the simulation phase, given the
trapdoor tc, we show how the zero-knowledge simulator can simulate proofs.

Extraction phase. Let the BDH-KE assumption hold. Let A be an adversary
that computes crs so as to break the subversion zero-knowledge property of the
updatable asymmetric QA-NIZK in Fig. 4. That is, A([M]1, [N]2;ωA) outputs
(crs, auxA). In Lemma 1, based on the BDH-KE assumption, we show how one
can construct an extractor to extract the trapdoor tc of a possibly maliciously
generated crs.

Lemma 1. Let the BDH-KE assumption hold and let [M]1, [N]2 ←$ Dp. Then
for any PPT adversary A there exists extractor ExtA such that the probability
that A on input ([M]1, [N]2) and randomness ω outputs crs such that Vcrs([M]1,
[N]2, crs) = 1 and that ExtA on the same input, outputs tc = (K1,K1), is
overwhelming.

Proof. Let adversary A output crs such that Vcrs([M]1, [N]2, crs) = 1, which
guarantees that elements from P i, A and Ci for i ∈ {1, 2} are consistent and in
particular that [P 1]1[A]2 − [A]1[P 2]2 = [M]1[C2]2 − [N]2[C1]1and A is invert-
ible. Assume an internal subverter ABDH-KE against the BDH-KE assumption. We

16 B. Abdolmaleki and D. Slamanig

Fig. 4. Updatable Asymmetric QA-NIZK Π ′
asy-up. Here k is an arbitrary value if Dk ∈

{Lk, ILk, Ck, SCk} and k ∈ {1, 2} in Dk = Uk.

note that both the subverter and the adversary are in connection and separating
them is just for readability of the proof. Let ωA = ωABDH-KE . Let ABDH-KE run A
and output ([A]1, [A]2, [C1,C2]1, [C1,C2]2). Then under the BDH-KE assump-
tion, there exists an extractor ExtBDH-KE

ABDH-KE
, such that if Vcrs([M]1, [N]2, crs) = 1

then ExtBDH-KE
ABDH-KE

([M]1, [N]2;ωA) outputs (A,C1,C2).
Let ExtA be an extractor that with input ([M]1, [N]2;ωA) and running

ExtBDH-KE
ABDH-KE

as subroutine, extracts tc = (K1,K2). For the sake of simplicity,
the full description of the algorithms is depicted in Fig. 5. More precisely, the
extractor ExtA first runs ExtBDH-KE

ABDH-KE
([M]1, [N]2;ωA) which outputs (A,C1,C2).

Then, ExtA computes (K1,K2). Indeed, by having A, Ci, and the fact that A
is invertible, the extractor ExtA can compute Ki = CiA

−1 for i ∈ {1, 2}. ��

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 17

Fig. 5. The extractors and the constructed adversary A for Lemma 1.

Simulation phase. In the second step, given the trapdoor tc, we show how a
simulator Sim can simulate proofs. Fix concrete values of n, p ∈ im(Pgen(1n)),
([y]1, [x]2,w) ∈ R[M]1,[N]2 , ωA ∈ RND(A), and run ExtA([M]1, [N]2;ωA) to
obtain (K1,K2). Thus, it suffices to show that if Vcrs([M]1, [N]2, crs) = 1 and
([y]1, [x]2,w) ∈ R[M]1,[N]2 then

O0([y]1, [x]2,w) =P([M]1, [N]2, crs, [y]1, [x]2,w) ,

O1([y]1, [x]2,w) =Sim([M]1, [N]2, crs, [y]1, [x]2,K1,K2)

have the same distribution. Since O0 and O1 have the same distribution, Π ′
asy-up

is zero-knowledge under the BDH-KE assumption.

(v: Updatable Adaptive Soundness:) The proof is similar to the adaptive
soundness proof of Π ′

as in [25] but with some modifications. Let m′ := n1 + n2

and W := (M
N). Let an adversary B against Dk-SKerMDH assumption be given

a challenge ([A]1, [A]2), A ← Dk.
B samples ([M]1, [N]2,M ,N) ∈ Rp and computes W ⊥ ∈ Z

m′×(m′−r)
p ,

where r = rank(W), a basis of the kernel of W �. By definition, W � =
(M�||N�) and W �W ⊥ = 0 and thus we can write W ⊥ = (W 1,W 2), for
some matrices such that M�W 1 = −N�W 2.

Adversary B samples R ∈ Z
(m′−r−1)×(k+1)
p and for i ∈ {1, 2} defines,

[A′]i ←
(

[A]i
R·[A]i

)
∈ Z

(k+m′−r)×k
p .

Then B samples (K ′
1,K

′
2) ← Z

m′×k
p . Let A0 be the first k rows of A′ (or A) and

A′ rows, and T A ′ = A′
1A

−1
0 . Then B implicitly sets (K1,K2) := (K ′

1,K
′
2) +

T A ′(W 1||W 2), and for i ∈ {1, 2} and computes:

[C1]i := K2[A0]i = (K ′
2 + T A ′W 2)[A0]i = (K ′

2||W 2)[A′]i,

18 B. Abdolmaleki and D. Slamanig

and

[C2]i := K1[A0]i = (K ′
1 + T A ′W 1)[A0]i = (K ′

1||W 1)[A′]i.

Adversary B also needs to compute [M]�1 K2 + [Z]1 and [N]�2 K1 − [Z]2.
The adversary B does not know how to compute N�K1 or M�K2, but she
can compute their sum in Zp as:

N�K1+M�K2 =
(

M �

N �

)
(K ′

1,K
′
2)+T A ′(W 1||W 2) = N�K ′

1+M�K ′
2 := T ,

due to the fact that M�W 1 = −N�W 2.
Thus, B picks Z ←$Z

m×k
p and outputs [P]2 := [T]2 − [Z]2 and [P]1 := [Z]1.

Now, when the adversary outputs a valid proof for some ([y]1, [x]2) /∈ L[M]1,[N]2 ,
it holds that:

[y]�1 [C2]2 − [π1]�1 [A0]2 = [π2]�2 [A0]1 − [x]�2 [C1]1.

In which both the RHS and LHS of the last equation are:

LHS = [y]�1 (K
′
2||W 1)[A′]2 − ([π1]�1 ||[01×(m′−r)]1)�[A

′]2 = [s�
1]1[A

′]2,

RHS = ([π2]�2 ||[01×(m′−r)]2)[A
′]1 − [x]�2 (K

′
1||W 2)[A′]1 = [s�

2]2[A
′]1.

Here [s�
1]1 := ([y]�1 K ′

2 − [π1]�1 ||[y]�1 W 1) and [s�
2]2 := ([x]�2 K ′

1 − [π2]�2 || −
[x]�2 W 2).

This concludes that (s1 −s2) is in the kernel space of (A′)�. In other words,
we have that (s1 −s2)�A′ = 0, and by definition, s1 −s2 = c1+R�c2 and thus

(s�
1 − s�

2)A = (c�
1 + c�

2 R)A = c�A′ = 01×k .

Since c �= 0 and R leaks only through A′ (in the definition of Ci for i ∈ 1, 2)
as RA,

Pr[c1 + R�c2 = 0 | RA] ≤ 1/p ,

where the probability is over R. This solves the Dk-SKerMDH. ��

4 Knowledge Soundness of (Updatable) Asymmetric
QA-NIZK Arguments

In the following we investigate a stronger soundness notion, i.e., the knowledge
soundness, of (updatable) asymmetric QA-NIZK. We recall that for a proof
system to be compatible with modular zk-SNARK frameworks such as LegoS-
NARK [13], it needs to provide knowledge soundness. Consequently, this guar-
antees that (updatable) asymmetric QA-NIZK can safely be used within such
frameworks.

Similar to as it is done in [6,13], we analyse the knowledge soundness in the
Algebraic Group Model (AGM) due to Fuchsbauer et al. [21]. In particular, we
first directly prove the knowledge soundness property of the updatable asymmet-
ric QA-NIZK in Fig. 4. Moreover, we show that this also yields the knowledge
sound property of the original asymmetric QA-NIZK [25] in Fig. 1.

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 19

Theorem 4. Let Π ′
asy-up be an asymmetric QA-NIZK argument for linear sub-

spaces from Fig. 1. Assume D̂k = D̄k and the distribution Dp is witness samplable
matrix distribution. If the discrete logarithm assumption in asymmetric bilinear
groups in the AGM holds, then the updatable asymmetric QA-NIZK Π ′

asy-up in
Fig. 4 is computationally updatable adaptive knowledge sound.

Proof. We show the theorem under the discrete logarithm assumption in asym-
metric bilinear groups in the AGM. Without loss of generality, we consider the
updatable asymmetric QA-NIZK scheme Π ′

asy-up for D̂k = D̄k, in the MDDH
setting where k = 1.

Without loss of generality, we assume an algebraic adversary A([M]1, [N]2,
aux) against the updatable knowledge soundness of Π ′

asy-up, where aux is an
associated auxiliary input, such that it first generates a crsA which verifies under
the algorithm Vcrs. Then an honest updator Ucrs([M]1, [N]2, crsA) outputs an
updated crs = ([A,C1,C2,P 2]2, [A,C1,C2,P 1]1).

Let [ζ]1 and [ζ′]2 be vectors that contain M (and the portion of aux that
has elements from the group G1) and N (and the portion of aux that has ele-
ments from the group G2). We assume that [ζ]1 and [ζ′]2 also contains the crsA’s
elements in G1 and G2, respectively. Due to the CRS-update hiding property,
the crsA’s elements are indistinguishable from the crs generated by an hon-
est Ucrs and so they will give no advantage to A. Also assume that [ζ]1 and
[ζ′]2 include [1]1 and [1]2, respectively. A([M]1, [N]2, crs, aux) returns a tuple
([y]1, [x]2, [π1]1, [π2]2) along with coefficients that explain these elements as lin-
ear combinations of its input in the groups G1 and G2. Let these coefficients
be:

[y]1 = Y 0[P 1]1 + Y 1[ζ]1 + Y 2[A]1 + Y 3[C1]1 + Y 4[C2]1
[π]1 = Z0[P 1]1 + Z1[ζ]1 + Z2[A]1 + Z3[C1]1 + Z4[C2]1
[x]2 = Y ′

0[P 2]2 + Y ′
1[ζ

′]2 + Y ′
2[A]2 + Y ′

3[C1]1 + Y ′
4[C2]2

[π]2 = Z′
0[P 2]2 + Z ′

1[ζ
′]2 + Z ′

2[A]2 + Z ′
3[C1]2 + Z′

4[C2]2

Let the extractor ExtA([M]1, [N]2, crs, aux) be the algorithm that runs A
and returns w = Z0 = Z′

0. Then, we have to show that the probability that
the output of (A,ExtA) satisfies verification while y �= Mw and x �= Nw are
negligible. In other words, assume that the output of A is such that [y]1 �=
[M]1Z0, [x]2 �= [N]2Z ′

0, and [y]�1 [K2a]2 − [π1]�1 [a]2 = [π2]�2 [a]1 − [x]�2 [K1a]1;
If it happens with non-negligible probability, we can construct an algorithm B
that on input ([K1,K2]1, [K1,K2]2) outputs nonzero elements α,α′ ∈ Z

�×�
p ,

β,β′ ∈ Z
�
p, and γ, γ′ ∈ Zp such that

[K�
1 αK1 + K�

1 β + γ]1[1]2 + [1]1[K�
2 α′K2 + K�

2 β′ + γ′]2 = [0]T .

Then we can construct an algorithm C against the discrete loga-
rithm assumption in asymmetric bilinear groups such that given elements
([t, t′]1, [t, t′]2) it returns the exponent t, t′ ∈ Zp. More precisely, the algorithm
B([K1,K2]1, [K1,K2]2) proceeds as follows:

20 B. Abdolmaleki and D. Slamanig

– Choose ([M]1, [N]2, aux) from Dp along with corresponding elements in G1

and G2 (i.e., vectors ζ, ζ′ of entries in Zp).
– Sample a←$Zp and run A([ζ′,C1,C2,P 1, a]1, [ζ′, a,P 2,C1,C2]2. We note

that A’s input can be efficiently simulated.
– Once received the output of A, it sets α := Y 0M

�, β := Y 1ζ + Y 2a +
Y 3C1 + Y 4C2 − MZ0 and γ := −Z1ζ − Z2a − Z3C1 − Z4C2.

– Also it sets α′ := Y ′
0N

�, β′ := Y ′
1ζ

′ + Y ′
2a + Y ′

3C1 + Y ′
4C2 − NZ ′

0 and
γ′ := −Z′

1ζ
′ − Z′

2a − Z′
3C1 − Z′

4C2.

Notice that,

K�
1 αK1 + K�

1 β + γ = K�
1 Y 0M

�K1 + K�
1 Y 1ζ + K�

1 Y 2a + K�
1 Y 3C1+

K�
1 Y 4C2 − K�

1 MZ0 − Z1ζ − Z2a − Z3C2 − Z4C2

=K�
1 Y 0M

�K1 + K�
1 Y 1ζ + K�

1 Y 2a + K�
1 Y 3C1 + K�

1 Y 4C2 − π1

=K�
1 y − π1,

and

K�
2 α′K2 + K�

2 β′ + γ′ = K�
2 Y ′

0N
�K2 + K�

2 Y ′
1ζ

′ + K�
2 Y ′

2a + K�
2 Y ′

3C1+

K�
2 Y ′

4C2 − K�
2 NZ ′

0 − Z′
1ζ

′ − Z ′
2a − Z ′

3C2 − Z ′
4C2

=K�
2 Y ′

0N
�K2 + K�

2 Y ′
1ζ

′ + K�
2 Y ′

2a + K�
2 Y ′

3C1 + K�
2 Y ′

4C2 − π2

=K�
2 x − π2.

From the verification equation, we have

(K�
1 αK1 + K�

1 β + γ) + (K�
2 α′K2 + K�

2 β′ + γ′)

= K�
1 y − π1 + K�

2 x − π2 = 0.

Note that, one among α, β, and γ (α′, β′, and γ′) must be nonzero. Indeed, if
they are all zero then Y 1ζ + Y 2a + Y 3C − MZ0 = 0 (Y ′

1ζ
′ + Y ′

2a + Y ′
3C −

NZ ′
0 = 0), that is y = MZ0 (x = NZ ′

0), which contradicts our assumption on
A’s output.

Finally we show how the above problem can be reduced to discrete logarithm
problem in asymmetric groups, i.e., the adversary C on input ([t, t′]1, [t, t′]2)
returns t′ and t′.

Indeed C samples r, s, r′, s′ ∈ Z
�
p and implicitly sets K1 = tr + s and

K2 = tr′ + s′. We see that ([K1,K2]1, [K1,K2]2) can be efficiently simulated
with a distribution identical to the one expected by B. Next, given a solution
(α,β, γ,α′,β′, γ′) such that K�

1 α + K�
1 β + γ + K�

2 α′ + K�
2 β′ + γ′ = 0, one

can find e1, e2, e3 ∈ Zp and e′
1, e

′
2, e

′
3 ∈ Zp such that:

0 =(tr + s)�α(tr + s) + (tr + s)�β + γ + (tr′ + s′)�α′(t′r′ + s′)+

(t′r′ + s′)�β′ + γ′

=t2(r�αr) + t(r�αs + s�αr + r�β) + t′2(r′�α′r′) + t′(r′�α′s′+

s′�α′r′ + r′�β′) + (s�αs + s�β + γ) + (s′�α′s′ + s′�β′ + γ′)

=e1t
2 + e2t + e3 + e′

1t
′2 + e′

2t
′ + e′

3.

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 21

In particular, with overwhelming probability (over the choice of s and s′ that are
information theoretically hidden from B’s view) e3, e

′
3 �= 0. From this solution,

C can solve the system and extract t and t′. ��
Theorem 5. Let Π ′

asy-up be an updatable knowledge sound asymmetric QA-
NIZK argument for linear subspaces from Theorem 4. Then the asymmetric
QA-NIZK Π ′

asy [25] in Fig. 1 is computationally knowledge sound.

Proof. We prove it by contradiction in a way that we assume that there is
an adversary AΠ′

asy
that breaks the knowledge soundness of the asymmetric

QA-NIZK Π ′
asy . Then, one can build an adversary BΠ′

asy-up
against the updat-

able asymmetric QA-NIZK Π ′
asy-up who runs AΠ′

asy
as a subroutine algorithm

and breaks the updatable knowledge soundness Π ′
asy-up. More precisely, given

([M]1, [N]2, crs) where crs = ([A,C1,C2,P 2]2, [A,C1,C2,P 1]1), the adver-
sary BΠ′

asy-up
sets crsΠ′

asy
:= ([A,C2,P 2]2, [A,C1,P 1]1) and sends it to AΠ′

asy
and

returns back a valid πΠ′
asy

for ([y]1, [x]2) �∈ L[M]1,[N]2 . This concludes the proof.
��

5 Discussion and Future Work

In this paper we investigate QA-NIZKs in the full subversion setting via the
updatable CRS model. In particular, we analyse the security of the most effi-
cient asymmetric QA-NIZK Π ′

asy by González et al. [25] for k = 1, 2 (when
Dk = Uk) and for arbitrary k (when Dk ∈ {Lk, ILk, Ck,SCk}), when the CRS
is full subverted and propose an updatable version of these QA-NIZKs. Since in
practice, due to increased efficiency, one is mostly interested in shorter proof size
(smaller k as proofs are of size 2k) and thus even when relying on Dk = Uk the
focus on schemes for k = 1, 2 is most reasonable. Especially as for these values
of k one obtains constructions from the most common standard assumptions.
But from a theoretical point of view, it is interesting to construct an updatable
version of asymmetric QA-NIZK (or even symmetric QA-NIZK) for arbitrary
k > 2 even in the case of Dk = Uk. Here, the main obstacle is to design a general
(efficient) version of the algorithm isinvertible(·, ·) [3] for checking the invertibility
of a matrix of group elements of size k (see Fig. 3).

We recall that our main motivation in this work was to fill the existing
gap towards obtaining an updatable version of LegoSNARK [13]. An interesting
question is to study how one can combine all the existing updatable CRS building
blocks, i.e., updatable CRS SNARKs and QA-NIZKs as well as our construction,
to construct an updatable LegoSNARK framework and investigate its efficiency.

Acknowledgements. This work was in part funded by the European Union’s Horizon
2020 research and innovation programme under grant agreement no. 871473 (Kraken)
and no890456 (SlotMachine), and by the Austrian Science Fund (FWF) and netidee
SCIENCE under grant agreement P31621-N38 (Profet). This work has received
funding by the German Federal Ministry of Education and Research BMBF (grant
16KISK038, project 6GEM).

22 B. Abdolmaleki and D. Slamanig

A CRS-update Hiding Proof

Lemma 2 ([40], Lemma 6.). Assume that K,K int ∈ DK and A,Aint ∈ DA ,
where DK and DA satisfy the following conditions for random variables Y1 and
Y2: (i) if Y1, Y2 ←$ DK then Y1+Y2 ∈ DK , and (ii) if Y1, Y2 ←$ DA then Y1 ·Y2 ∈
DA . Then, Π ′

asy-up is key-update hiding.

Proof. Since Vcrs(crs, lpar) = 1, thus, crs is honestly created, C = KA. So,
Cup = CAint + K intAAint = (K + K int)AAint = (K + K int)Aup = KupAup.
Similarly holds for P . Due to the assumption on DA and DK , crs and crsup
come from the same distribution.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: UC-secure CRS
generation for SNARKs. In: Buchmann, J., Nitaj, A., Eddine Rachidi, T. (eds.)
AFRICACRYPT 19. LNCS, vol. 11627, pp. 99–117. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-23696-0_6

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
319-70700-6_1

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On QA-NIZK in the BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I.
LNCS, vol. 12110, pp. 590–620. Springer, Heidelberg (2020). https://doi.org/10.
1007/978-3-030-45374-9_20

4. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On subversion-resistant snarks.
J. Cryptol. 34(3), 17 (2021)

5. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable SNARKs generically. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1987–2005. ACM Press (2020).
https://doi.org/10.1145/3372297.3417228

6. Abdolmaleki, B., Slamanig, D.: Subversion-resistant quasi-adaptive NIZK
and applications to modular zk-SNARKs. In: Conti, M., Stevens, M., Krenn, S.
(eds.) CANS 2021. LNCS, vol. 13099, pp. 492–512. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92548-2_26

7. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part III. LNCS, vol. 11923, pp. 669–699. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-34618-8_23

8. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-030-03326-2_21

9. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6_26

https://doi.org/10.1007/978-3-030-23696-0_6
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1007/978-3-030-92548-2_26
https://doi.org/10.1007/978-3-030-92548-2_26
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 23

10. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304. IEEE (2015)

11. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-snark. Cryptology ePrint Archive, Report
2017/602 (2017). https://eprint.iacr.org/2017/602

12. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS,
vol. 13092, pp. 3–33. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
030-92078-4_1

13. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and compo-
sition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, pp. 2075–2092. ACM Press (2019). https://doi.
org/10.1145/3319535.3339820

14. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-45721-1_26

15. Damgård, I.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

16. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8_28

17. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
314–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17253-
4_11

18. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with loga-
rithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 527–557. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-45374-9_18

19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1_8

20. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-76578-5_11

21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-
0_2

22. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

https://eprint.iacr.org/2017/602
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953

24 B. Abdolmaleki and D. Slamanig

23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

25. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6_25

26. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

28. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

29. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96878-0_24

30. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679_21

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

33. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1_17

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press (1992). https://doi.org/
10.1145/129712.129782

35. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

36. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 98–127.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92078-4_4

37. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_29

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments 25

38. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_28

39. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

40. Lipmaa, H.: Key-and-argument-updatable QA-NIZKs. In: Galdi, C., Kolesnikov,
V. (eds.) SCN 20. LNCS, vol. 12238, pp. 645–669. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-57990-6_32

41. Lipmaa, H.: A unified framework for non-universal snarks. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022–25th IACR
International Conference on Practice and Theory of Public-Key Cryptography, Vir-
tual Event, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13177,
pp. 553–583. Springer (2022)

42. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck
to updatable ZK-SNARK. Cryptology ePrint Archive, Report 2022/406 (2022).
https://eprint.iacr.org/2022/406

43. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128.
ACM Press (2019). https://doi.org/10.1145/3319535.3339817

44. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6_27

45. Ràfols, C., Silva, J.: QA-NIZK arguments of same opening for bilateral commit-
ments. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT 20. LNCS, vol. 12174,
pp. 3–23. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-51938-
4_1

46. Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable
SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol.
12825, pp. 774–804. Springer, Heidelberg, Virtual Event (2021). https://doi.org/
10.1007/978-3-030-84242-0_27

https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-030-57990-6_32
https://eprint.iacr.org/2022/406
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-030-51938-4_1
https://doi.org/10.1007/978-3-030-51938-4_1
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27

ParaDiSE: Efficient Threshold
Authenticated Encryption in Fully

Malicious Model

Shashank Agrawal1, Wei Dai2(B), Atul Luykx3, Pratyay Mukherjee4,
and Peter Rindal5

1 Coinbase, San Jose, USA
2 Bain Capital Crypto, Foster, USA

me@wdai.us
3 Google, Mountain View, USA

4 SupraOracles, San Francisco, USA
5 Visa Research, San Francisco, USA

Abstract. Threshold cryptographic algorithms achieve robustness
against key and access compromise by distributing secret keys among
multiple entities. Most prior work focuses on threshold public-key prim-
itives, despite extensive use of authenticated encryption in practice.
Though the latter can be deployed in a threshold manner using multi-
party computation (MPC), doing so incurs a high communication cost. In
contrast, dedicated constructions of threshold authenticated encryption
algorithms can achieve high performance. However to date, few such algo-
rithms are known, most notably DiSE (distributed symmetric encryp-
tion) by Agrawal et al. (ACM CCS 2018). To achieve threshold authen-
ticated encryption (TAE), prior work does not suffice, due to shortcom-
ings in definitions, analysis, and design, allowing for potentially insecure
schemes, an undesirable similarity between encryption and decryption,
and insufficient understanding of the impact of parameters due to lack of
concrete analysis. In response, we revisit the problem of designing secure
and efficient TAE schemes. (1) We give new TAE security definitions in
the fully malicious setting addressing the aforementioned concerns. (2)
We construct efficient schemes satisfying our definitions and perform con-
crete and more modular security analyses. (3) We conduct an extensive
performance evaluation of our constructions, against prior ones.

Keywords: Threshold crypto · Authenticated encryption · Provable
security

1 Introduction

Cryptography is increasingly deployed within and across organizations to secure
valuable data and enforce authorization. Due to regulations such as GDPR and
PCI, or via chip- and cryptocurrency-based payments, a monetary amount can

S. Agrawal, W. Dai and A. Luykx—Work done while at Visa Research.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 26–51, 2022.
https://doi.org/10.1007/978-3-031-22912-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_2

ParaDiSE: Efficient Threshold Authenticated Encryption 27

be attached to the theft, loss, or misuse of cryptographic keys. Securing crypto-
graphic keys is only becoming more important.

Underlining the significance of securing keys is the proliferation of trusted
hardware on a wide range of devices, with manufacturers installing secure
enclaves on mobile devices (Apple [4], Google [5]) and commodity processors
(ARM [6], Intel SGX [2]). In addition, organizations increasingly use hardware
security modules (HSMs) to generate and secure their cryptographic keys. How-
ever, such trusted hardware is expensive to build and deploy, often difficult to
use, offers limited flexibility in supported operations, and can be difficult to
secure at large scale—for example SGX attacks such as [38,39] or the recent
HSM attack [17]. As a result, many seek to reduce reliance on trusted hardware.

Threshold cryptography considers a different, and complementary approach
to using trusted hardware: instead of relying on the security of each individual
device, a threshold number of devices must be compromised, thereby complicat-
ing attacks. Furthermore, as threshold cryptography can be deployed in software,
it provides a method of securing keys that is cheaper, faster to deploy, and more
flexible. It also provides a way to cryptographically enforce business policies that
require a threshold number of stakeholders to sign off on decisions.

The benefits of threshold cryptography have caught the attention of practi-
tioners. For example, the U.S. National Institute of Standards and Technology
(NIST) has initiated an effort to standardize threshold cryptography [3]. Fur-
thermore, an increasing number of commercial products use the technology, such
as the data protection services offered by Vault [8], and Coinbase Custody [1],
and the HSM replacements by Unbound Tech [7] etc.

Threshold symmetric encryption is used in many of the commercial products
to protect stored data, generate tokens or randomness. The schemes used vary in
sophistication, choosing different trade-offs between security, performance, and
other deployment concerns.

1.1 Approaches to Threshold Symmetric Encryption

A naive way of deploying threshold symmetric encryption uses secret sharing.
One takes an algorithm, for example the authenticated encryption (AE) scheme
AES-GCM [50], and applies a secret sharing scheme to its key. The key shares are
sent to different parties so that one has to contact a threshold number of parties
to reconstruct the key, to then perform encryption or decryption. However, this
approach requires reconstructing the key at some point, thereby nearly negating
the benefits of splitting the secret among multiple parties in the first place.

Instead, a proper threshold cryptographic implementation of AES-GCM
would not require key reconstruction—even while encrypting or decrypting. One
could secret share the plaintext instead of the key, and send each share to dif-
ferent parties holding different keys. This avoids key reconstruction, but signif-
icantly increases communication and storage if applied to an AE scheme like
AES-GCM.

Secure multi-party computation (MPC) also enables implementations of
cryptographic algorithms such as AES-GCM in a way that keys remain split

28 S. Agrawal et al.

during operation. MPC works with any algorithm and therefore is used in appli-
cations where backwards compatibility is important, such as the drop-in replace-
ment for HSMs discussed by Archer et al. [15]. However, MPC has a significant
performance cost, often requiring multiple rounds of high bandwidth commu-
nication among the different parties. Keller et al. [37] present the best-known
performance results: per 128 bit AES block, they need anywhere from 2.9 to
8.4 MB of communication and at least 10 communication rounds for two-party
computation. For settings where backwards compatibility is not needed, using
MPC-friendly ciphers such as MiMC [12] and LowMC [13] instead of AES can
improve performance modestly.

Unlike MPC, Agrawal et al.’s threshold AE (TAE) schemes [11]—named
DiSE—operate in two communication rounds and require anywhere from 32
to 148 bytes per encryption in the two party setting. Furthermore, the DiSE
protocols output integrity-protected ciphertext like conventional authenticated
encryption schemes and communication complexity does not change with mes-
sage length. As a result, the DiSE protocols can outperform MPC implemen-
tations of authenticated encryption by orders of magnitude. DiSE’s efficiency
makes it a prime candidate for applications seeking threshold security, which
motivates the further study of dedicated TAE schemes.

1.2 Revisiting Threshold Authenticated Encryption

Agrawal et al. [11] (hereafter AMMR) initiate the study of TAE schemes to
achieve confidentiality and integrity in a threshold setting while ensuring the
underlying master secret key remains distributed during encryption and decryp-
tion. Security is defined relative to the threshold t, which is one more than the
number of malicious parties the protocols can tolerate. Confidentiality is defined
as a CPA-like game where adversaries engage in encryption sessions and the
goal is to break semantic security of a challenge ciphertext. Integrity is defined
as “one-more ciphertext integrity” where an adversary must provide one more
valid ciphertext than its “forgery budget”.

We note the following three shortcomings of AMMR’s formalization.

Confidentiality Does Not Prevent Key Reconstruction. We show that AMMR’s
confidentiality definition does not prevent participants from reconstructing mas-
ter secrets. We give a counter-example scheme that satisfies both confidentiality
and integrity as formalized by AMMR, yet allows adversaries to reconstruct the
master encryption key, which can then be used to perform encryption without
contacting other participants. (See [10] for details.) This is because AMMR’s
CPA-like confidentiality game does not let the adversary initiate decryption ses-
sions, so schemes can disseminate secret keys during decryption. Therefore, a
scheme that is proven secure under AMMR’s confidentiality notion may not
prevent key reconstruction. Their protocols, however, do prevent that.

Loose Notion of Integrity. Participants in the DiSE protocols cannot distinguish
whether they are participating in an encryption or a decryption, and adversaries

ParaDiSE: Efficient Threshold Authenticated Encryption 29

can generate a valid ciphertext while running a decryption session—something
that, ideally, should only be possible during encryption. In practice, this can
cause difficulties in logging or enforcing permissions and is generally an unde-
sirable property. The fact that participants cannot distinguish encryption from
decryption is not just a property of the DiSE protocols but allowed by AMMR’s
integrity definition (decryption sessions count towards the “forgery budget”).

In addition, AMMR’s integrity definition allows for “malleable” TAE
schemes, where adversaries can participate in an encryption session, make an
honest party output an invalid ciphertext, and then “patch” this ciphertext to
obtain the correct ciphertext that the honest party should have output (see [10]
for more details). As a result, ciphertext integrity is not maintained. In AMMR’s
integrity game (termed authenticity by the authors), ciphertexts generated by
an honest party are not returned to the adversary which deprives it of having a
ciphertext to patch in the first place.

Abstract and Non-concrete Treatment of Security. AMMR’s definitional frame-
work captures a wide class of protocols that could have parties arbitrarily inter-
acting with each other. Although general, this approach complicates the for-
malization of adversarial power. Moreover, the security analyses of the DiSE
protocols are asymptotic, providing little guidance on how to securely instanti-
ate parameters in practice.

1.3 Contributions

In light of AMMR’s shortcomings, we seek to advance the state-of-the-art in
the formalization, design and analysis of TAE schemes. In addition to a concrete
security analysis of our schemes, we give the first concrete analysis of distributed
pseudorandom functions (DPRFs) and its verifiable extension DVRF, which
might be of independent interest. Our analyses use a new modular technique
via formalizing a variant of Matrix-DDH assumption [30], called Tensor DDH,
which helps in a tighter security reduction to DDH than AMMR’s.

New Definitions. We introduce new TAE security definitions which fix the afore-
mentioned issues with AMMR’s definitions. To do so, we depart from a more
abstract description of TAE schemes, and instead only consider TAE schemes
which operate in two communication rounds. We present IND-CCA-type defi-
nitions capturing confidentiality and integrity, and preventing key reconstruc-
tion. Our definitions require that protocols enable participants to distinguish
encryption from decryption. Inspired by the definitions of the same name from
the public-key literature [25], we present two definitions—CCA and RCCA
(“Replayable” CCA)—which capture two different integrity guarantees: RCCA
guarantees plaintext integrity, whereas CCA guarantees ciphertext integrity. We
believe RCCA to be sufficient for many applications, and propose CCA for set-
tings where ciphertext integrity is important. Note that, as we show below,
achieving CCA security comes at a performance cost relative to RCCA security.

30 S. Agrawal et al.

New Constructions. We present new constructions satisfying our security defi-
nitions. To achieve RCCA we present

1. an approach which departs from DiSE’s design (Sect. 5), by using a type
of all-or-nothing transform [16,46] in combination with forward and inverse
block cipher calls during encryption and decryption, respectively, and

2. a new scheme inspired by DiSE combining DPRF and threshold signature.

To achieve CCA, we use a distributed verifiable PRF combined with threshold
signatures. For a more detailed overview and a comparison among our construc-
tions we refer to Sect. 2.

Performance Evaluation. We present an extensive performance study of our
constructions (Appendix A), as well as a comparison with the DiSE protocols.
In a three-party setting with threshold set to two, our RCCA-secure random
injection-based construction achieves over 777,000 encryptions per second and
a latency of 0.1 ms per encryption, and our CCA-secure construction achieves
about 350 encryptions per second and a latency of 4 ms per encryption. Although
these figures are about 0.7 times those of the comparable DiSE protocols, our
constructions guarantee stronger security by satisfying RCCA and CCA notions.

By combining practical considerations, new theoretical design, and concrete
analysis, we believe our TAE schemes—collectively named ParaDiSE—are suf-
ficiently performant and secure for use in practice, while presenting interesting,
novel designs of independent interest.

2 Technical Overview

2.1 Security Definitions

Fully Malicious Security Model. As with AMMR, in our model the adversary
obtains the secret keys of corrupt parties and can act on their behalf during
encryption or decryption. Moreover, the adversary can initiate the protocols via
these corrupt parties and receive the output of the honest parties.

AMMR’s message privacy definition does not give the adversary decryption
capability, which is what allows for the counter example scheme discussed in
[10]. In contrast, our model guarantees that even if the adversary can decrypt
honestly generated ciphertext, it still cannot decrypt the challenge ciphertexts.
Furthermore, AMMR’s authenticity definition assumes the decryption protocol is
executed honestly. Instead, we require authenticity even if the adversary deviates
from the honest decryption protocol.

Capturing Privacy via the Decryption Criteria. Our threshold IND-RCCA and
IND-CCA definitions follow the standard left-or-right indistinguishability model:
the adversary submits message pairs (m0,m1) to obtain challenge encryptions of
message mb for a hidden bit b, and it breaks privacy if it can guess b. If the adver-
sary asks for a challenge ciphertext and then honestly executes the decryption

ParaDiSE: Efficient Threshold Authenticated Encryption 31

protocol, it can trivially guess b seeing if decryption returns m0 or m1; as with
standard AE definitions, we need to prevent such “trivial wins”. However, how to
prevent such trivial wins in the threshold setting is much less clear. For example,
we cannot block the adversary from initiating decryption protocols associated
with challenge ciphertext c (the participating parties do not get access to the
input of the initiating party). Nevertheless, our security model should capture
when the adversary has effectively executed an honest decryption session. This
is done via the notion of decryption criteria. Informally, the decryption crite-
ria, Eval-MSet(c, CR), for ciphertext c and corrupt set of parties CR, captures
the exact set of messages that needs to be sent (and responded to) from the
adversary, in order for the adversary to know the decryption of c.

Capturing Authenticity. In standard AE, authenticity is captured via INT-
CTXT, which says that the only valid ciphertext that the adversary can generate
is what it receives from the encryption oracle. Similar to privacy, complications
arise when moving to our setting. First, the adversary could generate ciphertext
by initiating encryption sessions itself. Furthermore, an outside observer (even
while seeing all the protocol messages), might have no idea what messages the
adversary is trying to encrypt. Hence, to exclude trivial wins, we will give a
forgery budget to the adversary based on the amount of interactions it has with
the honest parties. Second, the notion of valid ciphertext requires the running
of a decryption session. But we allow the adversary to deviate arbitrarily in any
execution of all protocols. This means that an adversary could potentially deviate
from the protocol to make the decryption valid for some ciphertext c, while the
honest decryption of c would return ⊥. Note that the previous notion from DiSE
completely bypasses this difficulty by assuming that decryption is executed hon-
estly. We take a different approach. We first consider a relaxation of authentic-
ity of ciphertext to authenticity of plaintext (analogous to INT-PTXT). We ask
that valid decryptions to always decrypt to previous seen messages, even if the
adversary deviate arbitrarily during decryption (IND-RCCA). This notion still
admits fast symmetric-key based schemes. We also consider providing integrity
of ciphertext, while having malicious decryption (IND-CCA). Our model is given
in full detail in Sect. 4.3.

2.2 Constructions

We provide an overview for each of our three constructions. First we discuss the
random injection-based construction which utilizes a recent construction of indif-
ferentiable authenticated encryption [16]. Then, we describe the generic DPRF-
based approach which builds on the DiSE protocol and yields two constructions.
The first adds a threshold signature to ensure IND-RCCA. The second adds
verifiability to the DPRF to ensure IND-CCA.

Random Injection Based Approach. This approach is based on symmetric-key
primitives only and achieves our RCCA security notion. The key is distributed in
a t-out-of-n replicated format. In particular, d =

(
n

t−1

)
random keys are shared

32 S. Agrawal et al.

among the parties such that any t parties together have all d keys, but any
strictly smaller subset of them would fall short of at least one key. Let us call
this sharing scheme combinatorial secret sharing.

Our construction requires two primitives. A random injection I : X → Y and
inverse I−1 : Y → X ∪{⊥}. Intuitively, each call to I(x) outputs a uniformly ran-
dom element from Y where |Y| � |X |. The inverse function has an authenticity
property that it is computationally hard find a y such that I−1(y) �= ⊥ and y was
not computed as y = I(x) for some x. The second primitive is a keyed pseudo-
random permutation PRP : PRP.kl × {0, 1}k → {0, 1}k and inverse PRP−1.

Our construction has the encryptor compute (y1, y2, . . . , y�) ← y ←$ I(m)
where yi ∈ {0, 1}k and � ≥ d. The encryptor chooses a set of t − 1 other par-
ties and computes e1 = PRPk1(y1), . . . , ed = PRPkd

(yd) by sending yi to one of
them which possesses ki. This party returns ei = PRPk1(yi) back to the encryp-
tor. Importantly, the encryptor sends yi only to a party that knows ki. The final
ciphertext is defined to be c = (e1, . . . ed, yd+1, . . . , y�) ∈ {0, 1}k�. During decryp-
tion, the decryptor computes all the y1 = PRP−1

k1
(e1), . . . , yd = PRP−1

kd
(ed) again

by interacting with any other t − 1 helpers in a similar fashion and then locally
computes m = I−1(y1, . . . , y�) which could be ⊥ if decryption fails.

The security of this scheme crucially builds on the hiding and authenticity
properties of random injection. Suppose we have a ciphertext c = (e1, . . . , ed,
yd+1, . . . , y�) of either message m0 or m1. Since the adversary only gets to corrupt
t − 1 parties, there must be at least one key ki that it does not know. Hence, it
can only compute PRPki

via interaction with honest parties that holds this key.
Connecting this to our security definition, the decryption criteria for ciphertext c
is Eval-MSet(c, CR) = {(i, ei)}—meaning that the adversary can trivially decrypt
c if it queries ei to some other honest parties holding key ki. Hence, assuming that
this does not happen, then the adversary have no information about PRP−1(ei).
And, by the property of I−1, the adversary should gain no information about the
original message.

From a high-level, authenticity requires that given (m, y, c) computed as
above (recall y = (y1, . . . , y�)), one can not come up with another triple
(m′, y′, c′) without executing a legitimate encryption instance. Let us explore the
options for a forgery attack: first if m′ �= m then computing y′ ←$ I(m′) would
completely change y′ due to the property of I and hence either the attacker needs
to predict the PRP outputs, which is hard, or it queries the honest parties for
these PRPki

(y′
i) values, which we capture via the forgery budget. Also, keeping

m′ = m and trying with another correctly generated y� (since I is randomized)
would not help for the same reason. Another forgery strategy could be to mix
and match between several y’s for which the PRP values are known from prior
queries. This is where the property of I comes into play—since the ideal func-
tionality of I generate a uniformly random output each time for any input, there
cannot be should not be any collisions among any of the k-bit blocks. In other
words, each yi and ei value corresponds to at most one message m.

A crucial property of this scheme is a clear distinction between encryption
and decryption queries which, in particular, strengthen the security compared

ParaDiSE: Efficient Threshold Authenticated Encryption 33

to DiSE. During encryption, the (strong) PRP is used in the forward direction
while decryption corresponds to an inverse PRP operation. It is then a relatively
standard task to prove that mixing these operations would not aid the adversary
either in constructing or inverting the I.

DPRF-Based Approach I: Achieving IND-RCCA via Threshold Signature. Our
first DPRF-based construction is based on the DiSE construction. We first briefly
recall their construction. The DiSE constructions use a distributed pseudoran-
dom function (DPRF) to force those encrypting or decrypting to communicate
with sufficiently many participants. When encrypting a message m, a commit-
ment α = Com(m; r) is generated for m with commitment randomness r. The
DPRF output, β ← DP(j‖α), is used as an encryption key to encrypt (m, r)
into ciphertext c ← encβ(m‖r) with a symmetric-key encryption scheme. When
decrypting a ciphertext (α, c), one must recompute β ← DP(j‖α) and then com-
pute m ← decβ(c). enc, dec here is a one-time secure encryption scheme. Note
that in DiSE, the interactive part of both encryption and decryption protocols
are exactly the same, which is just a DPRF query on (j, α).

We want the protocol to reject decryption of ciphertext that was not legiti-
mately generated. We ensure this using a threshold signature scheme. In particu-
lar, while computing a β ← DP(j‖α) during encryption, one also gets a threshold
signature σ on j‖α. During decryption, each party verifies the signature before
responding, and aborts if the verification fails.

Even though adding a signature shouldn’t affect privacy, we are proving secu-
rity against a much stronger model than DiSE. In particular, we need to ensure
that privacy is ensured even when the adversary can interact arbitrarily with
other honest parties as well as deviate from the honest protocol. Intuitively,
we need to ensure that the ability to initiate adversarial decryption sessions
and the ability to initiate decryption sessions from honest parties with mali-
cious responses, do not give the adversary extra information about any chal-
lenge ciphertext. This is done via a sequence of game hops that “trivialize” the
corresponding oracles. Recall that in the standard setting, the decryption ora-
cle can be “trivialized” by simply returning ⊥ for all ciphertexts that were not
seen before. In our setting, we need to be much more careful. First, we move
to a game where α corresponds to at most one message m. For adversarially
started sessions, we compare the number of valid ciphertexts generated against
the forgery budget, �ctEval/(n − |CR|)�. By the unforgeability of threshold signa-
ture, the adversary would need to contact the gap number of parties, n−|CR|, to
obtain a fresh signature. Hence, we can ensure integrity for maliciously generated
ciphertext. But note that we only offer the integrity of j‖α, and in extension,
the underlying message.

For ciphertexts generated by sessions initiated by honest parties, we can
ensure that the number of valid signatures is the same as the number of sessions
that were executed. Moreover, the signature actually offers integrity of the value
of j‖α, hence we can achieve the notion of IND-RCCA. Using the above, we can
“trivialize” the decryption oracle. The rest of the proof is more straight forward.
The full detailed proof is given in [10]. Setting up for our next construction, we

34 S. Agrawal et al.

demonstrate why this scheme cannot achieve IND-CCA. Suppose an adversary
starts an encryption session and scrambles its DPRF responses so that the honest
party derives some β′ to encrypt with. After learning β′, the adversary would
have gained enough information to know also the correct β if everything was
executed honestly (this is because of the key-homomorphic properties [23] of the
DPRFs). Hence, it can change the ciphertext c′ = encβ′(m‖r) to c = encβ(m‖r),
which will decrypt correctly. Whereas for IND-CCA, we would need to ensure
that the generated ciphertext c′ is the valid one.

DPRF Based Approach II: Achieving IND-CCA using DVRF. We take a natural
approach to prevent the aforementioned IND-CCA attack by adding a verifia-
bility feature to the above construction. This is achieved by adding a simple
and efficient NIZK proof to each partial evaluation, similar to the strongly-
secure DDH-based DiSE construction. In particular, this prevents an adversary
from sending a wrong partial evaluation without breaching the soundness of
NIZK proofs, rendering the above attack infeasible. Notably, our formalization
of DVRF differs from that of AMMR’s and instead follows a recent formalization
of Galindo et al. [33]. This allows us to modularize the proof: just by using a
DVRF instead of DPRF in the above TAE construction, we upgrade the IND-
RCCA secure scheme to an IND-CCA secure one. So, the main task of proving
IND-CCA security of the upgraded construction boils down to arguing against
CCA only attacks like above which are not RCCA.

A New Analysis of DPRF. Finally, we provide a new simpler, modular and
tighter analysis of the DDH-based DPRF construction of Naor et al. [45]. Our
analysis uses a new variant of Matrix-DDH [30] assumption, that we call Tensor-
DDH assumption. This assumption captures the essence of the adversarial view
of the DPRF security game (pseudorandomness) into an algebraic framework
consisting of tensor products of two secret vectors (provided in the exponent).
We show that irrespective of the dimensions of the vectors, this assumption is as
hard as DDH with a minimal security loss of a factor 2. In a similar reduction
step, AMMR’s proof looses a factor that scales with the number of evaluation
and challenge queries. Our analysis provides better concrete security.

2.3 Related Work

Threshold Cryptography. Starting with the work of Desmedt [26], most work on
threshold cryptography has focused on public-key encryption and digital signa-
tures [22,27]. Starting from Micali and Sidney [42], some work has focused on
threshold and distributed PRFs [23,28,45]. However, the pseudo-randomness
requirements do not explicitly take into account several avenues of attacks.
Agrawal et al. [11] propose stronger notions for distributed DPRFs and build on
the constructions of Naor et al. [45] to achieve them.

Threshold Oblivious PRF. Another related notion is distributed/threshold obliv-
ious PRF (TOPRF) [32], which can be thought of as a DPRF, but with an addi-
tional requirement of hiding input from the servers. This requirement makes

ParaDiSE: Efficient Threshold Authenticated Encryption 35

TOPRF a stronger primitive, which is known to imply oblivious transfer [36].
Furthermore, despite the structural similarities between the DDH-based TOPRF
[35] and the DDH-based DVRF [35] we used here, the TOPRF is proven assum-
ing interactive variant of DDH, in contrast to the DVRF which can be reduced
to DDH. Therefore, the proof techniques are also quite different.

Authenticated Encryption. Authenticated encryption (AE) has seen a signifi-
cant amount research since being identified as a primitive worthy of study in its
own right [19]. AE research has increasingly addressed practical concerns from
a performance, security, and usability point-of-view. AE schemes evolved from a
generic composition of encryption and authentication schemes [19] to dedicated
schemes like GCM [41]. Initially the description of AE schemes did not match
with how they were used in practice, leading to the introduction of nonces [48]
and associated data [47]. Further security concerns with how AE schemes are
used in practice lead to formalization of different settings and properties, such as
varying degrees of nonce-misuse resistance and deterministic AE [49], blockwise
adaptive security [31], online authenticated encryption [18], leakage concerns
such as unverified plaintext and robustness against it [14,34], and multi-user
security [21]. Recently, Barbosa and Farshim proposed indifferentiable authen-
ticated encryption [16], which has many of the properties of the all-or-nothing
transform introduced by Rivest [46]. In Sect. 5.1 we discuss how we use these
primitives to create one of our TAE schemes.

Multi-party Computation. MPC allows a set of mutually distrustful parties to
evaluate a joint function of their inputs without revealing anything more than
the function’s output. The last 10–15 years have seen tremendous progress in
bringing MPC closer to practice.

General-purpose MPC protocols can help parties evaluate any function of
their choice but they work with a circuit representation of the function, which
leads to a large communication/computation complexity—typically, at least lin-
ear in the size of the circuit and the number of parties. Moreover, the parties
have to engage in several rounds of communication, with every party talking to
every other. (Some recent results reduce the round complexity but have sub-
stantially higher computational overhead.) So, general-purpose MPC protocols
are not ideal for making a standard AE scheme like AES-GCM distributed.
Nonetheless, such a solution would be fully compatible with the standards.

Adaptive DiSE. A recent work [43] defined and constructed stronger TAE
schemes that are secure against adaptive corruption, in contrast we only focus on
static corruption. Nevertheless, the definitions considered in that work is based
on the AMMR definitions and hence suffers from similar limitations. Our work
can be perceived as orthogonal to that. Augmenting our definitional framework
into adaptive setting and constructing secure scheme therein may be an inter-
esting future work.

36 S. Agrawal et al.

3 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. For a finite set S, we
use x ←$ S to denote the process of sampling an element uniformly from S and
assigning it to x. We to denote the union of multi-sets.

Let A be a randomized algorithm. We use y ←$ A(x1, x2, . . .) to denote run-
ning A with inputs x1, x2, . . . and assigning its output to variable y. We use the
notation �sk�n to denote the tuple (sk1, sk2, . . . , skn). We assume that variables
for strings, sets, numbers are initialized to the empty string, the empty set, and
zero, respectively. We identify 1 with True and 0 with False.

We borrow some notation from Agrawal et al. [11]. We use [j : x] to denote
that the value x is private to party j. For a protocol Π, we write (c′, [j : z′]) ←
Π(c, �k�n, [i : (x, y)], [j : z]) to denote that all parties have a common input c,
party � has private input k� (for all � ∈ [n], this is usually the secret key), party
i has two private inputs x and y, and party j has one private input z. After the
execution, all parties receive an output c′ and j additionally receives z′.

Security Games. Every security game is defined with respect to a protocol
Π and an adversary A. Adversary A gets access to several procedures in the
game. When Π is a threshold protocol, we assume that A consists of two stages
(A0,A1). The first stage adversary A0 takes input (pp, n, t) and produces some
set C ⊂ [n] with |C| < t. The second stage adversary A1 receives the list of
secret keys for parties in C, i.e. (ski)i∈C , and access to the procedures defined
by the security game. We write A〈Proc〉

1 to denote the execution of A1 where A1

has access to all the available game oracles.
For a game G with a protocol Π and an adversary A, we use Pr ∗GΠ(A)

to denote the probability that G outputs 1. Throughout the paper, n denotes
the total number of parties and t the threshold. We define ΔA (O1 ; O2) :=
|P[AO1 = 1

] − P
[AO2 = 1

]|, where AO denotes A’s output after interacting
with oracle O.

Threshold Signature. A threshold signature scheme allows for a signing key
to be secret shared among n parties such that any t parties can col-
lectively generate a signature. On a common message m, t parties call
PartSign(ski,m) → σi. The σi can then be collected and used to produce a sig-
nature CombSig(vk, {(i, σi)}i∈S) → σ. Signature verification is non-interactive
and is performed as VerSig(vk,m, σ).
For a detailed definition and security properties see [10].

4 Threshold Authenticated Encryption

4.1 Syntax

A threshold authenticated encryption scheme TAE consists of a setup algorithm
and protocols for encryption and decryption. Throughout, we let H denote a
random oracle that the algorithms can use. Parameter n denotes the number

ParaDiSE: Efficient Threshold Authenticated Encryption 37

of parties involved in the protocol and parameter t denotes the threshold of the
protocol. We use the shorthand Pi.E(x, y, . . .) to refer to party i running some
algorithm E(pp, ski, ·) and returning the result.

Setup: takes integers n, t with 1 ≤ t ≤ n, and generates n secret key shares
sk1, . . . , skn and public parameters pp, denoted (�sk�n, pp) ←$ Setup(n, t).

Encryption: a 2-round protocol, consisting of three algorithms (Splitenc, Evalenc,
Combineenc). For an initiating party j ∈ [n], input m, and set S ⊆ [n], the Enc
protocol is executed as follows:

Protocol Enc(pp, �sk�n, [j : m,S])

(L, st) ←$ Pj .Split
H
enc(m,S)

For (i, x) ∈ L do ri,x ←$ Pi.Eval
H
enc(j, x)

c ←$ CombineHenc({ri,x}(i,x)∈L, st)

Return c

Protocol Dec(pp, �sk�n, [j : c, S])

(L, st) ← Pj .Split
H
dec(c, S)

For (i, x) ∈ L do ri,x ← Pi.Eval
H
dec(j, x)

m ← CombineHdec({ri,x}(i,x)∈L, st)

Return m

The list L (i, x), indicating that message x should be sent to party i for eval-
uation. Since we assume all parties communicate over authenticated channels,
receivers will know the identity of the sender, hence the sending party index j
is an input to the evaluation for each receiving party i.

We assume that S always contains the index j. We note that the size of the
set L output by Splitenc (and by Splitdec below) does not have to match the size
of S. This allows multiple messages to be sent to the same party for evaluation.

Decryption: a 2-round protocol, consisting of three deterministic algorithms
(Splitdec, Evaldec, Combinedec). For an initiating party j ∈ [n], input c, and set
S ⊆ [n], the Dec protocol is executed shown above. We define the finite sets X,Y
as Pi.Evaldec : X → Y .

Basic Correctness. We say that TAE satisfies basic correctness if for all positive
integers n, t such that t ≤ n, all (�sk�n, pp) ←$ Setup(n, t), any m ∈ {0, 1}∗, any
S, S′ ⊆ [n] with |S|, |S′| ≥ t, and any i ∈ S, j ∈ S′, we have that m = m′ where

c ←$ Enc(pp, �sk�n, [i : m,S]) ,m′ ← Dec(pp, �sk�n, [j : c, S′]) .

4.2 Decryption Criteria

As is common with CCA-style security games, our games need to prevent the
“trivial win” where an adversary decrypts a challenge ciphertext simply by exe-
cuting decryption as specified by the TAE scheme. What complicates preventing
such trivial wins in our setting is the fact that there are many ways to decrypt
since basic correctness requires that any group of t out of n parties may decrypt.
Furthermore, not only can adversaries corrupt up to t − 1 parties and recover
their secret keys, but they can also ask honest parties to run Evaldec.

Given a ciphertext, our goal is to detect when an adversary has collected
Evaldec output from at least t parties, either through an Evaldec query to an honest
party or via a corrupted party’s key, so that it could decrypt the ciphertext as

38 S. Agrawal et al.

specified by the protocol. If we can detect such events, then we can rule out
trivial decryptions of challenge ciphertexts.

Let (�sk�n, pp) ←$ Setup(n, t), let S ⊆ [n] be a set of parties of size at least
t, and j ∈ S an initiator. When decrypting a ciphertext c, the initiator Pj first
splits c into inputs for the other parties in S: (L, st) ← Pj .Splitdec(c, S). Then,
Pj sends x to Pi for evaluation for every (i, x) ∈ L.

Although Splitdec(c, S) might assign x to Pi, depending on the TAE scheme,
there might be other parties with the key material to evaluate x. An adversary A
can ask any party—including corrupt ones—to evaluate x, and is not restricted
to the one prescribed in L. Although the corrupt parties can evaluate some of the
x in L, a secure TAE scheme will require the adversary to interact with honest
parties to evaluate what it cannot. If these x’s are queried to honest parties,
then A has enough information to execute the decryption protocol on c.

Without further details about how a given scheme TAE works, the only way
to know whether TAE allows Pi to evaluate x, is to find a set S with i ∈ S such
that (i, x) ∈ Pj .Splitdec(c, S). Instead, we approach this as follows:

1. We require that for all S and j ∈ S, Pj .Split
H
dec(c, S) always outputs the same

multiset of messages, Eval-MSetH(c) := {x}(i,x)∈L. In other words, although
the assignment to parties could change with S, the set of messages x and
their multiplicity stays the same.

2. We assume that a party i can evaluate x if its execution of Evaldec produces
any valid output. Formally, we define a relation RH ⊆ [n] × X where (i, x) ∈
RH ⇐⇒ Pi.Eval

H
dec(j, x) �= ⊥.

With the above two assumptions, given a ciphertext c and a party i, we can
determine the values that Pi can evaluate:

{
x ∈ Eval-MSetH(c) | RH(i, x)

}
. (1)

We are now ready to define the gap set of messages, i.e. the messages an
attacker cannot evaluate on its own. For a ciphertext c and a set of corrupt
parties CR,

Eval-MSetH(c, CR) = Eval-MSetH(c)
∖

(⊎

i∈CR

{
x ∈ Eval-MSetH(c) | RH(i, x)

})
,

(2)
where

⊎
and \ denote union and set-difference over multisets.

Let us take a simple example. Suppose we have a threshold of 3, S = {2, 5, 7},
and Pj .Split

H
dec(c, S) outputs L = {(2, “m1”), (5, “m1”), (7, “m1”), (2, “m2”), (5,

“m3”), (7, “m3”)}. Let us consider a rather peculiar Pi.Eval
H
dec(j, x) function which

has non-⊥ output if x ∈ {“m1”, “m2”, ..., “mi”}. This in turn similarly defines RH.
Suppose A corrupts parties CR = {1, 2}.

First of all, Eval-MSetH(c) = {“m1”, “m1”, “m1”, “m2”, “m3”, “m3”}. Party Pi

with i = 2 can evaluate {x ∈ Eval-MSetH(c) | RH(i, x)} = {“m1”} and i = 2 can
evaluate {“m1”, “m2”}. Thus, the set of messages that can not be evaluated by
the corrupt parties is Eval-MSetH(c, CR) = {“m1”, “m3”, “m3”} as per Eq. 2.

ParaDiSE: Efficient Threshold Authenticated Encryption 39

A could get a “m1” message evaluated by P1 even though L does not prescribe
to do so. On the other hand, L indicates that “m1” messages need to be evaluated
by three different parties (under their respective keys) while A has only two under
its control. Moreover, none of P1, P2 can evaluate “m3”. Thus, one can see that
Eval-MSetH(c, CR) captures the messages A cannot process on its own.

4.3 Security

We give two security notions for TAE. First is the IND-RCCA notion, which
mirrors the IND-RCCA security for PKE. This notion is relaxed from the stan-
dard IND-CCA by targeting the integrity of plaintext. Second is the IND-CCA
notion, which mirrors the standard IND-CCA notion for standard PKE.

Fig. 1. IND-RCCA & IND-CCA games for Threshold Authenticated Encryption.

40 S. Agrawal et al.

Consider the security game Gind−rcca
TAE,n,t , given in Fig. 1. The goal of the adver-

sary is to either predict the bit b, or generate enough valid decryptions so that
the flag forgery is set to True. Several global variables keep track of the winning
condition of the adversary: ctEval, EncCtxt, ChlCtxt, DecCtxt, and Qdec.

– The counter ctEval counts the number of times Evalenc is called. Note that
calling Evalenc on honest parties helps the adversary to generate ciphertexts.

– The set EncCtxt contains the ciphertexts generated by challenge encryption
processes where m0 = m1 which the adversary obtained via GetCtxt.

– The set ChlCtxt contains the ciphertexts generated by challenge encryption
processes where m0 �= m1 which the adversary obtained via GetCtxt.

– The set EncMsg contains the set of all encrypted messages (including the
challenge messages). This is only used in the RCCA game.

– The set DecSet contains the valid and fresh decryptions that the adversary
can generate. Valid means that the ciphertext c must decrypt correctly. For
IND-RCCA, fresh means that ciphertext c decrypts to message m �= ⊥ than
was not in the set EncMsg. For IND-CCA, fresh means that ciphertext c is
not a ciphertext in either EncCtxt or ChlCtxt.

– Qdec is a multiset containing all the queries to Evaldec made by the adversary.

We say that the adversary trivially breaks privacy if

∃c ∈ ChlCtxt : Eval-MSet(c, C) ⊆ Qdec . (3)

We also refer to the above check as the privacy condition. Intuitively, this cap-
tures when the adversary has enough information, through calling Evaldec, to
decrypt a challenge ciphertext c. In this case, the adversary is essentially guar-
anteed to be able to predict the bit b by correctness of the encryption scheme.
Similarly, for authenticity, we need to set aside a budget for the amount of
ciphertexts that the adversary can generate herself via invoking Evalenc of hon-
est parties. This is captured by the following authenticity condition

|DecCtxt| >
⌊ ctEval
n − |CR|

⌋
. (4)

We say that A breaks authenticity if the above line is true (which will set forgery
to True in the game). We now describe the interfaces exposed to A1.

Sessions Initiated by Adversary. The adversary can initiate encryption and
decryption sessions from corrupt parties. These are achieved via calling Evalenc
and Evaldec on honest parties. Note that the adversary can run Split and Combine
itself. Counters ctEval is incremented every time Evalenc is invoked. Multiset Qdec

contains the list of all queries made to Evaldec (with id, eid removed).

ParaDiSE: Efficient Threshold Authenticated Encryption 41

Challenge Encryptions. The adversary can initiate challenge encryptions by call-
ing Splitenc and Combineenc. This is done via keeping track of a session iden-
tifier u. The adversary first needs to ask the desired honest party to initiate a
session via calling Splitenc with some message m0 and m1 as well as set S ⊆ [n]
(we require that |m0| = |m1|). Oracle Splitenc will call Splitenc(id,mb, S) and
return a session id u, which the adversary needs to supply to Combineenc. Via
calling Combineenc with some session id, the adversary can supply a set of cor-
rupt eval responses, which are used instead of the honest ones for corrupt parties.
Any session id u can be input to Combineenc at most once.

Decryptions. The adversary is able to submit ciphertext to honest parties and
initiate decryptions sessions. The adversary’s goal here is to submit all the valid
ciphertext that it can generate. Similar to challenge encryption, the adversary
first needs to specify (to Splitdec oracle) an honest party id, a ciphertext c,
and a set S of parties that are chosen to participate in the decryption process.
The oracle shall return to the adversary the set of messages (k, x) designated to
the corrupt parties k. Next, the adversary can choose to reply with any corrupt
responses to these messages via the Combinedec oracle.

We define the IND-RCCA and IND-CCA advantage of an adversary A against
TAE to be Advind-cca

TAE,n,t(A) = 2 · P
[
Gind−rcca

TAE,n,t (A)
]

− 1, and Advind-rcca
TAE,n,t (A) = 2 ·

P
[
Gind−rcca

TAE,n,t (A)
]

− 1, respectively.

Comparison with Security Model of DiSE. First, the DiSE model allows the
adversary to generate valid ciphertext by engaging in the decryption protocol.
Our model prevents this by not including the queries to Evaldec in the defini-
tion of the authenticity condition Eq. 4. Second, our security notions allow for
malicious adversaries during decryption, whereas DiSE required all parties to
behave honestly during decryption. This is a significant strengthening of the
model. Third, DiSE targeted privacy and authenticity separately, which allowed
for schemes that reconstruct the (master) encryption scheme during decryption.
We give such an example (in [10]) which is secure in the model of DiSE but not
secure according to our IND-CCA notion.

Finally, there are some subtle differences around what is considered a forgery
and how they can be constructed. In DiSE, when an honest party initiates
an encryption the resulting ciphertext is not revealed to the adversary in the
authenticity game. However, it could be possible for the adversary to take such
a ciphertext and generate another which decrypts properly. In fact, [10] discusses
this exact scenario. Our definition prevents such attacks by explicitly providing
ciphertext generated by honest parties to the adversary.

42 S. Agrawal et al.

5 Construction from Indifferential AE

In this section we present our first construction TAE1, based on random injec-
tions. We first define random injections before presenting our construction TAE1
before presenting our construction which we prove secure against the threshold
IND-RCCA notion defined previously.

5.1 Random Injection

The core of our first construction is a random injection. There are two equivalent
ways to view and define this primitive. The first approach is to add authenticity
to the notion of All-or-Nothing Transform [29]. The second approach is to view a
random injection as an un-keyed indifferentiable Authenticated Encryption [16].

All-or-Nothing Transform. Consider oracles I : X ×R → Y and I−1 : Y → X . We
view I as a randomized transform (message space X and randomness space R),
with inverse I−1. Roughly, [29] required indistinguishability of I(x1), I(x2) given
that � bits of the transforms have been erased. An example of such a transform
is OAEP [20], which is defined for two random oracles G : {0, 1}k → {0, 1}nk

and H : {0, 1}nk → {0, 1}k as

OAEP(x; r) = (G(r) ⊕ x,H(G(r) ⊕ x) ⊕ r) , (5)

where r ←$ {0, 1}k. The inverse function is defined in the straightforward way.
Myers and Shull [44] prove adaptive security of OAEP as defined by [29] (extend-
ing prior work by Boyko [24]). The core idea of OAEP is to mask the input x
by a random value G(r). In turn, this masked x ⊕ G(r) is used to mask r as
r⊕H(x⊕G(r)). Missing any part of the output prevents the function from being
inverted efficiently.

Random Injection. We add authenticity to the all-or-nothing transform. Specif-
ically, we allow I−1 to output ⊥, meaning I−1 : Y → X ∪ {⊥}. Intuitively, we
would like that all calls to I−1(y), where y is not an output produced by I, to
return ⊥. This is formalized as follows. We define an ideal random injection,
I : X × R → Y with associated inverse I−1 : X → Y ∪ {⊥}, from input domain
X to output domain Y to be the following.

Proc I(x)
y ←$ Y ; T [y] ← x ; Return y

Proc I−1(y)
Return T [y]

Above, table T is initialized to ⊥ everywhere. Note that for I to be injective, it
should be the case that the number of queries to I, say q, should be much less than√|Y|. Formally, a random injection should be indifferentiable [40] from an ideal
random injection. Specifically, let A : X → Y be a randomized transform with

ParaDiSE: Efficient Threshold Authenticated Encryption 43

inverse A−1, both depending on some random oracle H. We say that A is a (q, ε)-
RInj if there exists simulator SH (which has access to I, I−1) such that the RInj-
advantage of any distinguisher D, Advrinj

A,A−1(D) := ΔD
(
A,A−1,H ; I, I−1, SH

)
,

is at most ε for distinguisher D making at most q queries to any oracle.

Indifferentiable Authenticated Encryption. The other approach to view our def-
inition of random injection is through indifferentialble authenticated encryption
[16]. Indifferentiable AE is essentially a key-ed version of random injection. [16]
present an extension of the OAEP construction which meets this definition.
Figure ?? shows the OAEP construction and the (un-keyed) construction of [16]
which we denote as Authenticated OAEP (AOAEP). The core difference from
OAEP is that the randomness used in OAEP is now chosen as r′ ← I(x‖r) where
I is a random oracle. When inverting OAEP, (x‖r) is reconstructed and checked
to see if the randomness used to construct the injection is consistent with r′.
They show that finding such a consistent OAEP output without querying the
oracles in the forward direction is infeasible.

Let OAEP be defined in Eq. 5, with input space {0, 1}nk+k and I :
{0, 1}nk+k → {0, 1}k be random oracle. AOAEP : {0, 1}nk → {0, 1}nk+2k is
defined as AOAEP(x; r) = OAEP(x‖r; I(x‖r)) , where r is chosen uniformly at
random from {0, 1}k. The inverse AOAEP−1 : {0, 1}nk+2k → {0, 1}nk is defined
as

AOAEP−1(y) =

{
x if y = OAEP(x‖r; I(x‖r)); (x‖r) ← OAEP−1(y),
⊥ otherwise

(6)

Theorem 1. Let AOAEP : {0, 1}nk+2k → {0, 1}nk be defined above. The proof
specifies a simulator S such that

Advrinj
AOAEP(D) ≤ 9q2 + q

2k
+

3q2

2nk+k
. (7)

where q is the maximum number of queries to any oracle that D make.

This follows from [16, Theorem 5]. We also provide a standalone proof in [10]
with the bound shown above.

Extension to Variable-Input-Length. Let d be some integer. Consider the fol-
lowing padding function Padk,d : {0, 1}∗ → ({0, 1}k)∗. Upon input x, Padk,d

first append a 1 at the end of x, then it append 0’s until the length � is some
m · k for some integer m ≥ d. Consider the variable-input-length transformation
RInjd := RInj ◦ Padk,d. It is not hard to show RInj ◦ Padk,d is indifferentiable to
variable-input-length random injections with the Eq. 7 bound for n set to d.

44 S. Agrawal et al.

Fig. 2. TAE construction based on random injection RInj and block cipher E :
{0, 1}E.kl × {0, 1}k → {0, 1}k. Recall that RInjd = RInj ◦ Padk,d.

5.2 The Construction

Our TAE construction in Fig. 2 builds on an random injection RInj as defined
above. We define the sets Dn,t(i) for integers i ∈ [d] where d =

(
n

n−t+1

)
, with

the following property: Dn,t(1), . . . , Dn,t(d) shall be all the subsets of [n] with
size exactly n − t + 1. Each party i ∈ [n] will hold secret key skj if and only
if i ∈ Dn,t(j). Together these secret keys form type of a t-out-of-n replicated
secret sharing of the master key ((sk1, . . . , skd)). To encrypt, the initiating party
computes e ←$ RInjd(m). e is then partitioned into at least d block e1, ..., ed, ..., e�

with each ei ∈ {0, 1}k. Each ei is sent to a single party which holds the key ski.
This party returns ci ← PRP(ski, ei). The final ciphertext is the comprised of
c1, ..., cd plus any additional blocks of e. An illustration of this is given in Fig.
??. Decryption is defined in the straightforward way where the RInj ensure that
the plaintext has not been modified.

5.3 Security

We show that given a secure block cipher E and a secure random injection RInj,
scheme TAE = TAE1[RInj,E] is IND-RCCA secure.

ParaDiSE: Efficient Threshold Authenticated Encryption 45

Theorem 2. Let RInj be a random injection. Let E : E.kl × {0, 1}k → {0, 1}k

be a block cipher. Let TAE = TAE1[RInj,E]. Let A be an adversary against TAE.
The proof gives adversaries B, C, whose running times are about that of A plus
some simulation overhead, such that

Advind-cca
TAE,n,t(A) ≤ 2 · Advd-prp

E (B) + 2 · Advrinj
RInj(C) +

(d + 2) · q2
2k−1

, (8)

where q ≥ 2 is the maximum number of queries to any oracle available to A,
and d =

(
n

n−t+1

)
is assumed to be larger than 2.

The proof of the above theorem is given in [10].

6 Constructions from Threshold PRF and Signature

In this section, we provide two TAE constructions. One of them achieves IND-
RCCA security, whereas the other one achieves IND-CCA security. The first
construction is based on a DPRF and a threshold signature scheme. The second
construction is achieved simply replacing the DPRF with a DVRF.

A DPRF is a threshold version of a PRF. It consists of an algorithm Setup
to generate shares of a key, Eval to generate partial PRF values, and Combine
to combine them. Informally, a DPRF is considered secure if an attacker under
control of less than t parties cannot predict the outcome (from Combine) on
any input unless it collaborates with enough parties (to reach the threshold). A
formal definition has to take several other things into account and is provided in
[10]. A DVRF, in addition to DPRF algorithms, has an algorithm called Verify
to check if the partial PRF values are legitimate, i.e., they can be combined to
produce the right output. We also compare with DiSE’s DPRF treatment in the
Appendix.

We provide our instantiations of DPRF/DVRF which are variants of the
DDH-based DPRFs introduced by Naor et al. [45] and used by Agrawal et al. [11]
to construct TAE schemes. We provide a new modular and concrete security
analysis for the instantiations [10].

Finally, we provide our TAE constructions that use DPRF/DVRF along with
threshold signatures achieving IND-RCCA (Sect. 6.1) and IND-CCA [10].

6.1 IND-RCCA TAE Using DPRF and Threshold Signature

The construction TAE2 is parameterized by a DPRF DP, a threshold signature
scheme SIG, and an integer k. The specification of the construction is given in
Fig. 3. We explain below the high-level ideas of the scheme.

Keys. Each party holds a key share of the DPRF key and a key share of the
threshold signature signing key.

Encryption. When initiator j is encrypting a message m, a commitment α =
H(m‖r) is generated for the message m by using hash function H (modeled as a

46 S. Agrawal et al.

Fig. 3. DPRF & threshold signature based TAE scheme.

random oracle with input space {0, 1}∗ and output space DP.In) and randomly
generated r. The DPRF output, β ← DP(j‖α), is used as an encryption key
to encrypt message m and randomness r into c ← G(β) ⊕ (m‖r), where G is a
random oracle with input space {0, 1}k and output space {0, 1}∞. Meanwhile, a
threshold signature σ on j‖α is also generated using SIG. The final ciphertext is
(j, α, σ, c).

Decryption. When an initiator j′ is decrypting a ciphertext (j, α, σ, c) (note that
j′ does not have to equal j), each party i receives (j‖α, σ) and first verifies if
σ is a valid signature on j‖α before returning the Eval output of DP. After
reconstructing the DPRF output β, the initiator can recover the message m and
randomness r. It checks if H(m‖r) = α. If the check succeeds, then plaintext m
is returned. Otherwise, decryption fails and ⊥ is returned.

Capturing the Decryption Criteria. In the scheme TAE2, for a ciphertext c =
(j, α, σ, e), Splitdec(c, S) returns a list ({(i, (j‖α, σ))}i∈S′ , where S′ is a t-sized
subset of S. The multiset Eval-MSet(c) just has the element (j‖α, σ) repeated t

ParaDiSE: Efficient Threshold Authenticated Encryption 47

times. Evaldec, with inputs ski and (j‖α, σ), outputs a non-⊥ value if σ is a valid
signature. Therefore, for a set CR, Eval-MSet(c, CR) is either Eval-MSet(c) (if σ
is invalid) or the set with (j‖α, σ) repeated t − |CR| times.

Theorem 3. Let TAE = TAE2[DP,SIG, k]. Let A be an adversary in the IND-
RCCA game against TAE (Fig. 1). Suppose A makes qH and qG queries to oracles
H and G, respectively. Further, it makes qenc, qEval and qdec queries to encryption
(Splitenc,Combineenc), evaluation (Evalenc,Evaldec) and decryption procedures
(Splitdec, Combinedec), respectively. Then there exist adversaries B and C such
that

Advind-rcca
TAE,n,t (A) ≤ (qenc + qdec)2

|DP.In| +
q2enc + 2 · qH · qenc

2k
+

2 · qG · qenc
|DP.Out|

+ 2 · Advsig
SIG,n,t(B) + 2 · Advdprf

DP,n,t(C) .

(9)

A proof of the above theorem is given in [10].

Appendix

A Performance Experiments

We implement our protocols TAE1 of Fig. 2 and TAE3 of Fig. ?? and report on
their performance. All performance results are obtained on a single laptop with

Table 1. Encryption performance metrics with various number of parties n and thresh-
old t. Throughput is computed by performing many encryptions concurrently (single
thread per party). Mbps denotes network bandwidth. Latency is computed by perform-
ing sequential encryptions.

t n Throughput Latency

(enc/s) (Mbps) (ms/enc)

TAE1 DiSE1 TAE3 DiSE2 TAE1 DiSE1 TAE3 DiSE2 TAE1 DiSE1 TAE3 DiSE2

n/3 6 730,627 1,123,555 346 444 88 111 0.3 0.4 0.1 0.1 4.0 3.3

12 86,588 326,193 145 172 581 97 0.4 0.5 0.4 0.3 7.9 6.7

18 2,179 13,464 91 105 633 8 0.5 0.5 1.0 0.7 12.1 10.5

n/2 4 745,486 1,123,555 346 452 77 111 0.3 0.4 0.1 0.1 4.0 3.3

6 561,777 722,285 222 259 333 143 0.4 0.5 0.2 0.2 5.6 4.8

12 24,543 131,324 91 106 988 78 0.5 0.5 0.5 0.5 12.0 10.4

18 311 3,351 58 68 738 3 0.6 0.5 2.7 1.0 17.9 15.8

2n/3 3 777,846 1,123,555 348 445 77 111 0.3 0.4 0.1 0.1 4.0 3.3

6 421,333 505,600 143 174 500 150 0.4 0.5 0.3 0.3 7.9 6.9

12 24,845 129,641 65 77 1,400 103 0.6 0.5 0.6 0.6 16.0 14.2

18 483 6,347 42 49 1,149 8 0.6 0.5 2.3 1.0 24.1 21.4

n − 2 12 81,548 297,411 51 60 1,637 324 0.6 0.5 0.6 0.6 19.9 17.5

18 23,905 219,826 30 36 1,983 391 0.6 0.5 1.0 1.0 32.5 28.6

2 12 674,133 1,011,200 337 445 67 100 0.3 0.4 0.2 0.2 4.1 3.4

18 594,823 919,272 345 441 59 91 0.3 0.4 0.2 0.2 4.1 3.5

48 S. Agrawal et al.

an Intel i7 9th Gen (9740H) CPU and 16GB of RAM. Network communica-
tion was routed over local host with a theoretical bandwidth of 10Gbps and a
measured latency of 0.1 milliseconds. Each party is run on a single thread.

Table 1 contains the results of two experiments. 1) peak encryptions per sec-
ond each scheme can perform. In particular, 32 byte messages are repeatedly
encrypted in an asynchronous manner, where a single party repeatedly initiates
10 batches of 128 encryptions which are processed concurrently. 2) latency of
one encryption by running multiple encryptions one at a time in a sequential
manner. We report the average time required to perform a single encryption.

We compare with the less secure DiSE schemes [11]. In particular, DiSE
was proven secure in an arguably weaker model and does not provide a way
to distinguish if the initiating party is performing an decryption or encryption
query. We consider the pure symmetric-key based DiSE protocol DiSE1 which
utilizes an AES/PRF based DPRF. Like our TAE1 Protocol, DiSE1 does not
guarantee that a ciphertext output by encryption is “well formed” if some of the
parties behave maliciously. We also consider the DDH-key based DiSE protocol
DiSE2 which utilizes ZK-proofs to ensure the correctness of any ciphertext output
by the encryption procedure.

Our protocols are very competitive given the added security guarantees.
Our symmetric-key based protocol TAE1 achieves a throughput of 778 thou-
sand encryptions per second for n = 3, t = 2 while our public-key based protocol
TAE3 achieves 346 encryptions per second. This is approximately 0.7 times the
throughput of the weaker DiSE protocol. We observe a similar relative per-
formance for other parameter choices when t is close to n or 2. The largest
differences occurs for our TAE1 protocol when n is large and t ≈ n/2. This
results in the largest relative communication overhead compared to DiSE1 due
to their protocol achieving O(t) communication while ours achieves O

(
n
t

)
which

is maximized for t = n/2.
With respect to encryption latency our protocols perform similarly well. Both

TAE1 and DiSE1 achieve a latency of 0.1 milliseconds for n = 3, t = 2 which is
effectively the network latency of just sending the messages. For the public-key
based protocol we again observe that the DiSE2 protocol achieves times 0.7 times
improvement in latency compared to our TAE3 protocol. This added overhead
consists of performing the additional threshold signature.

We argue that the presented performance evaluation shows that our protocols
achieve highly practical performance. In particular, the majority of the practical
applications of threshold authenticated encryption only require relatively small
n, e.g. n ∈ {3, 4, 5}. For this range of parameters both of our protocols are highly
competitive with the DiSE protocols while providing stronger security guaran-
tees. Our schemes also preserve the property that the network communication
overhead is independent of the length of the message being encryption. This
property is not enjoyed by generic MPC based approaches, e.g. [37].

ParaDiSE: Efficient Threshold Authenticated Encryption 49

References

1. Coinbase custody. custody.coinbase.com/. Use of secret sharing described in [9]
2. Intel Software Guard Extensions. software.intel.com/en-us/sgx
3. NIST tcg. csrc.nist.gov/Projects/threshold-cryptography
4. Secure Enclave overview - Apple Support.support.apple.com/guide/security/

secure-enclave-overview-sec59b0b31ff/1/web/1
5. Titan M makes Pixel 3 our most secure phone yet. www.blog.google/products/

pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
6. TrustZone. developer.arm.com/ip-products/security-ip/trustzone
7. Unbound Tech. www.unboundtech.com/. Use of MPC mentioned in [15]
8. Vault Seal. www.vaultproject.io/docs/concepts/seal.html
9. [Podcast] Institutional Cryptoasset Custody w/Sam McIngvale of Coinbase Cus-

tody - (Eps. 0028–0029), July 2019. blog.nomics.com/flippening/coinbase-custody-
sam-mcingvale/

10. Agrawal, S., Dai, W., Luykx, A., Mukerjee, P., Rindal., P.: ParaDiSE: efficient
threshold authenticated encryption in fully malicious model. Cryptology ePrint
Archive, Report 2022/1449 (2022). https://eprint.iacr.org/2022/1449

11. Agrawal, S., Mohassel, P., Mukherjee, P., Rindal, P.: DiSE: distributed symmetric-
key encryption. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS
2018, pp. 1993–2010. ACM Press, October 2018

12. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. Part I, volume 10031 of LNCS,
pp. 191–219. Springer, Heidelberg (2016)

13. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. Part
I, volume 9056 of LNCS, pp. 430–454. Springer, Heidelberg (2015)

14. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

15. Archer, D.W., et al.: From keys to databases - real-world applications of secure
multi-party computation. Comput. J. 61(12), 1749–1771 (2018)

16. Barbosa, M., Farshim, P.: Indifferentiable authenticated encryption. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. Part I, volume 10991 of LNCS, pp. 187–
220. Springer, Heidelberg (2018)

17. Bedrune, J.-B., Campana, G.: Everybody be cool, this is a robbery! www.sstic.
org/media/SSTIC2019/SSTIC-actes/hsm/SSTIC2019-Article-hsm-campana
bedrune neNSDyL.pdf

18. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: On-line ciphers and
the hash-CBC constructions. J. Cryptol. 25(4), 640–679 (2012)

19. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

20. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

http://www.ustody.coinbase.com/
http://www.software.intel.com/en-us/sgx
http://www.csrc.nist.gov/Projects/threshold-cryptography
http://www.Support.support.apple.com/guide/security/secure-enclave-overview-sec59b0b31ff/1/web/1
http://www.Support.support.apple.com/guide/security/secure-enclave-overview-sec59b0b31ff/1/web/1
www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
http://www.developer.arm.com/ip-products/security-ip/trustzone
www.unboundtech.com/
www.vaultproject.io/docs/concepts/seal.html
http://www.blog.nomics.com/flippening/coinbase-custody-sam-mcingvale/
http://www.blog.nomics.com/flippening/coinbase-custody-sam-mcingvale/
https://eprint.iacr.org/2022/1449
https://doi.org/10.1007/978-3-662-45611-8_6
www.sstic.org/media/SSTIC2019/SSTIC-actes/hsm/SSTIC2019-Article-hsm-campana_bedrune_neNSDyL.pdf
www.sstic.org/media/SSTIC2019/SSTIC-actes/hsm/SSTIC2019-Article-hsm-campana_bedrune_neNSDyL.pdf
www.sstic.org/media/SSTIC2019/SSTIC-actes/hsm/SSTIC2019-Article-hsm-campana_bedrune_neNSDyL.pdf
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/BFb0053428

50 S. Agrawal et al.

21. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 10

22. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Heidelberg (2010)

23. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

24. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 32

25. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

26. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

27. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

28. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 1

29. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 301–324. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 19

30. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

31. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated on-line encryp-
tion. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp.
145–159. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24654-
1 11

32. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

33. Galindo, D., Liu, J., Ordean, M., Wong, J.-M.: Fully distributed verifiable random
functions and their application to decentralised random beacons. Cryptology ePrint
Archive, Report 2020/096 (2020). https://eprint.iacr.org/2020/096

34. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/3-540-48405-1_32
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-540-24654-1_11
https://doi.org/10.1007/978-3-540-24654-1_11
https://doi.org/10.1007/978-3-540-30576-7_17
https://eprint.iacr.org/2020/096
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2

ParaDiSE: Efficient Threshold Authenticated Encryption 51

35. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 3

36. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

37. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: ACNS
(2017)

38. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE
Symposium on Security and Privacy (S&P’19) (2019)

39. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium (USENIX Security 18) (2018)

40. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

41. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: INDOCRYPT (2004)

42. Micali, S., Sidney, R.: A simple method for generating and sharing pseudo-random
functions, with applications to clipper-like key escrow systems. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 185–196. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-44750-4 15

43. Mukherjee, P.: Adaptively secure threshold symmetric-key encryption. In: Bhar-
gavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol.
12578, pp. 465–487. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65277-7 21

44. Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 157–178. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76953-0 9

45. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

46. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052348

47. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002

48. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4 22

49. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

50. Salowey, J.A., McGrew, D., Choudhury, A.: AES Galois Counter Mode (GCM)
Cipher Suites for TLS. RFC 5288, August 2008

https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/3-540-44750-4_15
https://doi.org/10.1007/978-3-030-65277-7_21
https://doi.org/10.1007/978-3-030-65277-7_21
https://doi.org/10.1007/978-3-319-76953-0_9
https://doi.org/10.1007/978-3-319-76953-0_9
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/BFb0052348
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23

Stronger Security and Generic
Constructions for Adaptor Signatures

Wei Dai1(B), Tatsuaki Okamoto2, and Go Yamamoto3

1 Bain Capital Crypto, Boston, USA
me@wdai.us

2 NTT, Koto City, Japan
3 NTT Research, Palo Alto, USA

Abstract. Adaptor signatures have seen wide applications in layer-2
and peer-to-peer blockchain applications such as atomic swaps and pay-
ment channels. We first identify two shortcomings of previous literature
on adaptor signatures. (1) Current aim of “script-less” adaptor signa-
tures restricts instantiability, limiting designs based on BLS or current
NIST PQC candidates. (2) We identify gaps in current formulations of
security. In particular, we show that current notions do not rule out a
class of insecure schemes. Moreover, a natural property concerning the
on-chain unlinkability of adaptor signatures has not been formalized. We
then address these shortcomings by providing new and stronger security
notions, as well as new generic constructions from any signature scheme
and hard relation. On definitions:
1. We develop security notions that strictly imply previous notions.
2. We formalize the notion of unlinkability for adaptor signatures.
3. We give modular proof frameworks that facilitate simpler proofs.

On constructions:
1. We give a generic construction of adaptor signature from any sig-

nature scheme and any hard relation, showing that theoretically,
(linkable) adaptor signatures can be constructed from any one-way
function.

2. We also give an unlinkable adaptor signature construction from any
signature scheme and any strongly random-self reducible relation,
which we show instantiations of using DL, RSA, and LWE.

1 Introduction

1.1 Background and Problems

The invention of Bitcoin has ignited a vast amount of research in the area of dis-
tributed ledger technologies in the past decade. Scalability and interoperability
are two crucial challenges for the mass adoption of blockchain technology. One
fruitful direction towards solving these challenges is the study of layer-2 and
peer-to-peer (P2P) protocols. For example, atomic swaps allow users to swap
asset across different chains without a trusted third party, payment channels

W. Dai and T. Okamoto—Work done while at NTT Research.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 52–77, 2022.
https://doi.org/10.1007/978-3-031-22912-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_3

Adaptor Signatures 53

allow a group of users to conduct many off-chain payments while only posting
a small number of transactions to the blockchain, while payment channel net-
works (PCNs) generalize payment channels to enable large-scale P2P payments.
One important functionality underlying these applications is that of atomic-
ity. Roughly, atomicity guarantees that a set of transactions should either all
be posted (to their respective ledgers) or none are. We briefly review the two
currently known techniques to achieve atomicity.

Atomicity in blockchains: scripting vs. adaptor signatures. One seminal tech-
nique put forth by the work of the Bitcoin Lightning Network is the so-called
“Hash Time Lock Contracts” (HTLC) [21]. Roughly, it is a Bitcoin spending
script that, in addition to verification of a signature, also checks the release of
a hash pre-image. Atomicity for a set of transactions is achieved by requiring
the release of the same pre-image. Hence, if one transaction is processed, then
the same pre-image can be used in other transactions. Such techniques are used
to build applications such as atomic swaps, payment channels, and payment
channel networks.

Aiming to eliminate the use of special scripts for the above applications,
Poelstra proposed a technique called “adaptor signatures” [19,20], which replaces
the role of “hash-locks”. Roughly, an adaptor signature for some underlying
signature scheme achieves the following: If Alice gives to Bob a “pre-signature” σ̂
on some message m and instance Y , then any signature on message m, that is
valid against public key of Alice, given by Bob will allow Alice to learn the
witness y for instance Y . Hence, adaptor signature is a “script-less” hash-lock,
in the sense that the release of the signature by Bob also releases the witness to
Alice. Following the work of Poelstra, there have been numerous work proposing
various forms of adaptor signatures [2,9,15,24] and applying them in applications
to payment channels [1,15].

Do we need script-less adaptor signatures? It is understood [8,19,20] that elim-
inating the need for scripts allows “applications” to blockchains that do not
support it. Indeed, adaptor signatures allow atomic swap between say Bitcoin
and Monero [11]. However, we point out that it is not clear if constructions of
more complex applications, e.g. payment channels, can be realized for script-
less blockchains such as Monero. Indeed, currently known techniques for pay-
ment channels crucially rely on the use of scripts [1,2,15]. Hence, we reconsider
the requirement of “script-less”—we consider adaptor signatures whose verifi-
cation requires minimal additions to the underlying signature supported by the
blockchain. This leads to the first shortcoming of the current approach.

Problem 1: Restricted design space and limited compatibility with post-quantum
signature candidates. Previous works on adaptor signatures have one common
theme—the adaptor signature scheme must work with a known underlying sig-
nature scheme, that is supported directly by the blockchain, e.g. ECDSA [14]
and Schnorr [23]. This is due to the desire to eliminate the use of more complex
spending scripts such as HTLC. However, one significant downside to such an

54 W. Dai et al.

approach is that adaptor signatures are not possible for all signature schemes.
Indeed, it is known [8] that adaptor signature schemes are impossible for unique
signatures such as BLS [5].

The problem of aiming for “script-less” adaptor signatures is even more pro-
nounced when considering post-quantum (PQ) adaptor signatures. Neither of
the two currently known post-quantum constructions, i.e. LAS [9] (based on
LWE), and IAS [24] (based on isogenies), are compatible with the NIST PQC
Round 3 PQ signature candidates [16]. The underlying signature scheme of LAS
is a (strict) variant of Dilithium [7]. The underlying signature scheme of IAS
is CSI-FiSh [4], which was proposed after the NIST PQC submission deadline.
This means that even if the community arrives at a consensus on PQ standard
signatures, further standardization and selection efforts might be required for
extensions to adaptor signatures.

Prior works also leave open some natural theoretical questions, which we
raise and answer in our work: What are the minimal assumptions required to
construct adaptor signatures? In particular, are adaptor signatures in Minicrypt
(i.e. can be constructed from one-way functions)?

Problem 2: Definitional gaps. The security definition for adaptor signatures, first
proposed by [2], is later adopted by all subsequent follow-up works [1,8,9,24].
However, there is a serious gap in this security definition. In particular, we
demonstrate that such notions do not guarantee security against multiple queries
to the pre-signature oracle with the same message and instance pair (m,Y).
Moreover, we show that such gap is not just theoretical—we give a counterex-
ample scheme that is secure against previous notions but renders many appli-
cations insecure if they are used in practice. The root cause of this gap is the
weak forms of attacks considered. Specifically, the security game (for notions
called aEUF-CMA and aWitExt) only allows a single challenge query to pre-
sign, and hence does not rule out attacks that access pre-sign more than once.1

Secondly, previous definitions fail to capture a natural property of adaptor signa-
ture schemes—on-chain unlinkability. For example, it is understood that atomic
swaps based on Schnorr signatures give more privacy guarantees than HTLC-
based solutions. Indeed, we show that such a property does not follow from prior
formalization.

1.2 Our Contributions

Our work addresses the problems outlined above. First, we give stronger defini-
tions for adaptor signatures, as well as new definitions of unlinkability. We also
give a modular proof framework to facilitate simpler proofs. Second, we give
generic constructions of adaptor signatures from any secure signature scheme
and any hard relation. The construction is unlinkable if the relation is assumed
to be strongly random-self-reducible (SRSR). Our constructions are compatible

1 We remark that this is not a weakness of previous constructions, but rather a gap
in the formal security guarantees and the security is expected for applications.

Adaptor Signatures 55

with any of the current NIST PQC candidates. Answering the theoretical ques-
tions, we show (linkable) adaptor signatures can be constructed from one-way
functions, and unlinkability can be achieved assuming additionally the existence
of SRSR relations.

New security notions and modular proof framework. A significant portion of our
technical contribution is regarding the security definition of adaptor signature.
First, we close the definitional gap by giving two security notions, called (strong)
full extractability, abbreviated as (S)FExt, that exposes rich sets of attack inter-
faces. We show that full extractability strictly implies previous notions. Next, we
formalize the notion of unlinkability for adaptor signatures. Lastly, we present
a modular proof framework, allowing the security of adaptor signatures to be
proved against much simpler notions than full extractability, which we call simple
and unique extractability.

Generic construction and unifying perspective. We revisit the main design con-
straint so far considered for adaptor signatures, namely that they should be
“script-less scripts.” We allow the use of minimal scripts and define “augmented”
signature scheme SigR, which is defined against any signature Sig and any rela-
tion R. Augmented scheme SigR additionally verifies the release of a witness
alongside a valid signature. We then give an adaptor signature scheme GAS1 for
SigR and prove it secure (Theorem 5). We remark that adaptor signature GAS1
is generic in the sense that it is constructed from any signature scheme and
any hard relation. However, we remark that implementing augmented signature
schemes for existing blockchains such as Bitcoin amounts to using scripts. Our
work can be seen as a formalization of HTLCs as adaptor signatures.

Achieving on-chain unlinkability. We formally define the notion of unlinkabil-
ity, which has not been formally studied previously. Unlinkability asks adapted
signatures to be indistinguishable from standard ones, even if one knows the
instance and witness pair used to derive the adapted signature. We show how
to add unlinkability to GAS1, assuming that relation R is strongly random-self-
reducible (SRSR), obtaining a new construction which we name GAS2, whose
security proofs are given in Theorem 7. We show how to instantiate SRSR from
standard number theoretical problems such as DL and RSA, as well as the learn-
ing with errors problem (LWE).

Flexible instantiations and minimal assumptions. We remark that our generic
constructions can work with any signature scheme and any hard relation. In
particular, our constructions can be instantiated with any of the NIST PQC
Round 3 candidate schemes. For example, we could use Rainbow, which is NIST
PQC round 3 [16] finalist based on multivariate polynomials, and with any
post-quantum-secure SRSR relation, which could be based on lattice problems.
More generally, our work shows that linkable adaptor signature is in Minicrypt
(Theorem 6), meaning it can be constructed assuming the existence of one-way
functions (GAS1). Our construction of GAS2 shows that the existence of strong

56 W. Dai et al.

random-self reducible relations implies the existence of unlinkable adaptor sig-
natures (Theorem 8). Moreover, we remark that the overhead of GAS1 and GAS2
are also minimal in terms of computational overhead and signature size. GAS1
has virtually no computational overhead and GAS2 requires re-randomization of
instances from the hard relation. An adapted signature for both schemes contains
a standard signature of the underlying signature scheme as well as an instance
and witness pair for the hard relation.

2 Preliminary

We use [n] for a positive integer n to denote the set {1, . . . , n}. Let S be a finite
set. We use x � S to denote sampling from set S uniformly at random and
assigning the result to variable x. “PT” denotes polynomial-time, also referred
to as efficient. We use λ ∈ N to denote the security parameter. We recall that
a function f : N → R is negligible if for every c ∈ N, there exists nc ∈ N such
that |f(n)| < n−c for all n > nc. Algorithms are probabilistic unless specified
otherwise. Suppose A is an algorithm expecting oracles O1, . . ., we use x �
AO1,...(· · ·) to denote an execution of algorithm A and assigning its output to
variable x. We use [AO1,...(· · ·)] to denote the set of all possible outputs of
algorithm A. We use S

∪← x to denote adding an element x to the set S. Integer
variables are initialized to 0 and set variables are initialized to the empty set.
We adopt the code-based game-playing framework of [3]. A game G is usually
parameterized by some cryptographic scheme S and an adversary A. A game
consists of list of named oracles. The execution of a game is the execution of the
Main procedure. Variables in game oracles are global by default. An “Assert”
statement inside an oracle call will immediately terminate the execution of the
oracle call and return False if the given expression evaluates to False. For an
example of a game, see Fig. 3.

Relations and random self-reducibility. We recall that a relation R ⊆ {0, 1}∗ ×
{0, 1}∗ is an NP relation if there exists PT algorithm R.Vf such that R.Vf(Y, y) =
True if and only if (Y, y) ∈ R. The language LR for relation R is defined as
the set {Y ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ : (Y, y) ∈ R}. A generator for R is a PT
algorithm R.Gen that on input 1λ returns a pair (Y, y) ∈ R. For any positive
integer q, we define the q-one-wayness advantage of an adversary A against R to
be Advq-ow

R,A (λ) := Pr[Gq-ow
R,q,A(λ)], where the one-wayness game is given below.

Game Gq-ow
R,A (λ):

1 For i ∈ [q] do (Yi, ·) � R.Gen(1λ)
2 (I, y′) � A(Y1, . . . , Yq) ; Return (YI , y′) ∈ R

Above, adversary A returns an index I ∈ {1, . . . , q} and a guess y′. We say
that R is a hard relation if for polynomial q and any PT A , Advq-ow

R,A (λ) is
negligible. We define the following unique-witness advantage of an adversary A
to be the Advuwit

R,A (λ) := Pr[(Y, y) ∈ R, (Y, y′) ∈ R, y �= y′ | (Y, y, y′) � A(1λ)].

Adaptor Signatures 57

We say that a hard relation R is random self-reducible (RSR) if there exists
sets R.Rλ and efficient deterministic algorithms R.A,R.B,R.C such that the
following holds for any (Y, y) ∈ [R.Gen(1λ)] and r � R.Rλ: (1) Y ′ ← R.A(Y, r)
is distributed identically to R.Gen(1λ). (2) For y′ ← R.B(y, r) it holds that
(Y ′, y′) ∈ R where Y ′ = R.A(Y, r). (3) For y ← R.C(y′, r), where y′ = R.B(y, r),
it holds that (Y, y) ∈ R.

Fig. 1. Left: Pictorial depiction of an honest execution of adaptor signing protocol
between Alice and Bob. Alice holds the secret key sk corresponding to her public key
pk. Bob holds the witness y corresponding to his public instance Y . We assume that
Alice and Bob have agreed on the message m to be signed before the execution of the
protocol. In this depiction, we have simplified the release of σ from Bob. In practical
settings, Alice could learn σ from an indirect channel, e.g. a public ledger. We also
remark that Bob does not need his private input y for lines 4 and 5, and his private
input y is only needed for line 6. Right: game defining the correctness of an adaptor
signature scheme.

Signature schemes. A signature scheme Sig consists of PT algorithms KeyGen,
Sign, and Vrf. Via (pk, sk) � KeyGen(1λ), the key generation algorithm generates
a public key pk and a secret key sk. Via σ � Sign(sk,m), the signing algorithms
generates a signature σ. Via b � Vrf(pk,m, σ), the verification algorithm returns
a boolean value b ∈ {True,False}, indicating the validity of the message signature
pair. Consider the game Guf-cma

Sig given below.

Game Guf-cma
Sig,A (λ), Gsuf-cma

Sig,A (λ)

1 (pk, sk) � KeyGen(1λ) ; (m, σ) � ASign(pk) ; Assert Vrf(pk, m, σ)
2 Guf-cma

Sig,A : Return (m �∈ S)

3 Gsuf-cma
Sig,A : Return ((m, σ) �∈ U)

Sign(m):

4 σ � Sign(sk, m) ; S ← S ∪ {m} ; U ← U ∪ {(m, σ)} ; Return σ

We define the (S)UF-CMA advantage of an adversary A against Sig to be
Advuf-cma

Sig,A (λ) (Advsuf-cma
Sig,A (λ)). We say that scheme Sig is (S)UF-CMA-secure

if Advuf-cma
Sig,A (λ) (Advsuf-cma

Sig,A (λ)) is negligible for any PT adversary A.

58 W. Dai et al.

3 Definitions and Relations

The inception of Adaptor signatures was due to the idea of “script-less scripts”
by Polstra, who proposed ways to construct applications of atomic swaps [20]
and atomic multi-hop payments [19] without the use of special spending scripts.
In a follow-up work, Malavolta el al. implicitly gave constructions of Schnorr
and ECDSA adaptor signatures in their work on anonymous multi-hop locks for
payment channel networks [15]. The notion of adaptor signature was formally
defined and studied by [2] and independently by [10]. Follow-up works have con-
structed two-party adaptor signatures [8] and post-quantum adaptor signatures
[9,24], as well as building other applications on top of adaptor signatures [1].
All follow-up works follow the security definitions of [2]. Our definitions align
with that of [2] in terms of syntax, correctness, and basic security (called pre-
signature adaptability). Our framework deviates from and significantly improves
upon the main security definitions of [2].

Fig. 2. Top: Guide to correctness and security notions. Bottom: Relations among
security notions for the secret-key holder (Alice). An arrow A → B means that if
an adaptor signature scheme is A-secure, then it is B-secure. Additional assumptions
are marked on top of arrows. All implications are tight, meaning reductions preserve
running time and success advantage up to small additive constants.

Syntax and correctness. Let Sig = (KeyGen,Sign,Vrf) be a signature scheme.
Let R be a hard relation with generator Gen. An adaptor signature scheme aSig
for signature scheme Sig and relation R specifies (probabilistic) algorithm pSign,
and deterministic algorithms pVrf, Adapt, and Ext. We assume that algorithms
of Sig, i.e. KeyGen,Sign,Vrf, are additionally defined to be algorithms of aSig.
Let (pk, sk) ∈ [Sig.KeyGen(1λ)] and (Y, y) ∈ [Gen(1λ)]. The adaptor signature
algorithms behave as follows.

Adaptor Signatures 59

– Via σ̂ � pSign(sk,m, Y) the pre-sign algorithm generates a pre-signature.
– Via b ← pVrf(pk,m, σ̂, Y), the pre-signature verification returns a boolean.
– Via σ ← Adapt(pk, σ̂, y), the adapt algorithm returns a signature σ.
– Via y ← Ext(σ, σ̂, Y), the extract algorithm extracts a witness y.

Fig. 3. Games defining (strong) full extractability notions.

To introduce correctness, let us first consider an example of honest execution
of adaptor signature between two parties Alice and Bob. Consider the protocol
given in Fig. 1. In typical usage of adaptor signatures, algorithms pSign and Ext
are executed by some party (Alice) holding sk, and pVrf and Adapt are executed
by a party (Bob) holding secret witness y. We note that Alice and Bob can
execute the protocol up to step 5 even if Bob does not know secret witness y; on
the other hand, execution of steps 6–9 requires Bob’s knowledge of the witness
y. We say that aSig is correctness if for all message m, Pr[Gcorrect

aSig,m (λ)] = 1.
We remark that inputs to extraction are all public, meaning that any external
observer can extract out a witness y. This is an intended property of adaptor
signatures which allows Alice to delegate witness extraction to third parties Figs
2 and 7.

Adaptor signatures with canonical signing. Any adaptor signature scheme aSig
gives an alternative way to generating signatures via pSign and Adapt. Specifi-
cally, we consider the following signing algorithm.

Algorithm Sign′(m)
1 (Y, y) � R.Gen(1λ) ; σ̂ � pSign(sk, m, Y) ; Return σ ← Adapt(pk, σ̂, y)

We say that an adaptor signature scheme has canonical signing if the above
signing algorithm gives signatures that are identically distributed to those given
by Sign for any secret-key sk and message m. Any adaptor signature scheme can
be turned into a canonical one by simply replacing the signing algorithm with
the one defined above. All schemes considered in this work are canonical without
modifications.

60 W. Dai et al.

Security of Bob: Adaptability. The first security notion we introduce is called
adaptability. Intuitively, it guarantees that if Bob is convinced of the validity of
the pre-signature σ̂ and knows a corresponding witness y, then Bob can generate
a valid signature σ. More specifically, we ask that for any pk, m, and σ̂, if
(Y, y) ∈ R and pVrf(pk,m, σ̂, Y) returns true, it must be that Adapt(pk, σ, y)
returns a valid signature σ on message m wrt to public key pk. Referring back
to Fig. 1, pre-signature adaptability guarantees the safety of Bob—he can always
turn a valid pre-signature into a signature if he learns a corresponding witness.
Formally, consider the following game.

Game Gadapt
aSig,A(λ)

1 (pk, sk) � KeyGen(1λ) ; (m, σ̂, (Y, y)) � A(pk)
2 Assert ((Y, y) ∈ R ∧ pVrf(pk, m, σ̂, Y))
3 Return Vrf(pk, m,Adapt(pk, σ̂, y))

We say that aSig satisfies pre-signature adaptability if 1 − Pr[Gadapt
aSig,A(λ)] is neg-

ligible for all PT adversary A. We say that aSig has perfect pre-signature adapt-
ability if for all adversary A, Pr[Gadapt

aSig,A(λ)] = 1. Our definition of pre-signature
adaptability aligns with that of [2].

Security of Alice: Full Extractability (FExt). The most involved part of the secu-
rity definition is for the secret-key holder of the signature scheme (Alice). This
is where previous definitions fall short. We give a unified definition of security
for the safety of the secret-key holder. Before we give the formal definition, we
give a high-level description of the available attack surfaces. A secret-key holder,
Alice, could potentially expose the following interfaces.

– Sign(sk,m) for adversarially chosen m. Exposing such signing oracle models
the applications in which honestly generated signatures of Alice are released.
Note that we cannot prevent previous honestly generated signatures from
being valid. This is similar to the signing oracle that is in UF-CMA and
SUF-CMA notions. In fact, we will consider two variants of security for Alice
as well.

– pSign(sk,m, Y) for adversarially chosen m and instance Y . This models all
interactions that Alice could have with external parties where Alice gives out
pre-signatures. Each query generates a tuple (m,Y, σ̂), and we store them in
a table indexed by message m, i.e. each query adds the pair (Y, σ̂) to the set
T [m], which is initialized to the empty set.

– Forgery guarantee: For Alice, after given out many signatures and pre-
signatures, the following guarantee is desired: if some forgery (m∗, σ∗) is given
by an adversary, then one of the following must hold: (1) (m∗, σ∗) must have
come from a signing query (2) There must be a corresponding tuple (Y, σ̂) in
table T [m] such that σ∗ gives a valid extraction, i.e. Ext(Y, σ̂, σ∗) gives some
y such that (Y, y) ∈ R.

Additionally, in the above scenario where Bob (the adversary) returns a sig-
nature that extracts, we would like to additionally restrict the instances with

Adaptor Signatures 61

respect to which extraction could happen. Specifically, we would like to separate
instances given to pSign into two categories: (1) those for which Bob knows a
witness and (2) those for which Bob does not know a witness. This is to ensure
that even if Bob learns a pre-signature on some instance Y for which it does not
know the witness, it cannot adapt it into a valid signature. This is achieved in
the formal security notion by introducing an oracle NewY that samples honest
instances for Bob.

To summarize, extractability guarantees that if Alice gives out signatures
and pre-signatures, then the only forgery that some adversary Bob can give is
(1) those already given by Alice as signatures (2) some forgery that leads to a
valid extraction of a witness. Formally, consider the games Gfext

aSig,A and Gsfext
aSig,A

given in Fig. 3. In either game, the adversary is given some honestly sampled
public key pk and has access to oracles NewY,Sign,pSign (line 2). Each query
to Sign is recorded as the allowed forgery budget (set S for the normal case
and U for the strong case). Each query m,Y to pSign derives some σ̂ (line 15)
and these values are recorded in table T [m] (line 14). In the end, to win the
game, the adversary needs to produce a valid forgery (line 2–3) which is fresh
(line 4 or 5) and does not produce any valid extraction (line 6) against instances
chosen by Bob (i.e. excluding those Y generated by NewY). Note that the full
extractability game only requires the forgery to be on a fresh message (line 4),
and the strong full extractability game requires the entire forgery to be fresh
(line 5). This differentiation is consistent with the difference between UF-CMA
and SUF-CMA security of signatures. We define the (S)FExt advantage of an
adversary A to be Advfext

aSig,A(λ) (Advsfext
aSig,A(λ)), and we say that scheme aSig is

(S)FExt-secure if the corresponding advantage function if negligible for efficient
adversaries.

Intuitively, if messages to be signed and pre-signed has high entropy and do
not repeat, then it suffices to only assume FExt. On the other hand, if applica-
tions expect messages to repeat, then it is crucial to additionally aim for SFExt.

Strict implications to notions given by [2]. We show that FExt implies previous
notions of unforgeability and extractability (Theorem 1), formally aEUF-CMA
and aWitExt as defined in [2]. Their notions have since been adopted in follow-
ing works [1,8,9,24]. Roughly, their security notion guarantees “unforgeability”
and “extractability” against a single challenge pre-sign query. Unlike our full
extractability notion, their notions specify an explicit phase for the challenge
message selection and forgery generation. This results in the adversary only
learning exactly one pre-signature σ̂∗ = pSign(sk,m∗, Y ∗) on challenge message
m∗ and instance Y ∗. It is not hard to see that our notion of FExt implies aEUF-
CMA and aWitExt. On the other hand, we give a counterexample scheme to
show that such implication is strict (Theorem 2), meaning there are schemes
which are aEUF-CMA- and aWitExt-secure that are not FExt-secure. We give
a sketch of the counterexample below and give the full analysis in Sect. 3.1.

Counterexample. We will modify a secure (in the sense of aEUF-CMA and aWi-
tExt) adaptor signature scheme aSig so that pSign leaks an additional signa-

62 W. Dai et al.

ture on message m if and only if pSign is called with the same message m and
instance Y more than once. In more detail, pSign will do the following: upon
a query pSign(sk,m, Y), we first compute a pre-signature σ̂ exactly as in aSig.
Additional to σ̂, pSign will return some string Cb for a random bit b where (1)
C0 is a random encryption pad and (2) C1 = C0 ⊕ σ is a one-time pad encryp-
tion of a signature σ = Sign(sk,m; r) under randomness r. To make these values
consistent across different runs of pSign, we derive values of (C0, r) via a PRF
F (with secret key sk) applied to the input (m,Y), i.e. (C0, r) ← F(sk, (m,Y)).
Hence, any single call to pSign(m,Y) does not reveal any information. Indeed,
We will show that the resulting scheme is secure in the sense of aEUF-CMA and
aWitExt. However, even two calls pSign(m,Y) reveals a fresh signature with half
probability, hence breaking FExt security.

Our counterexample scheme demonstrates that security guaranteed by
aEUF-CMA and aWitExt is weaker than expected for applications where many
protocols might be executed concurrently since both notions only guarantee secu-
rity against a single challenge instance. Moreover, aEUF-CMA is also a selective
notion, in that the honest instance Y1 is not known to the adversary until after
the adversary selects a challenge message m∗. This further weakens the security
guaranteed. In contrast, our security notion FE gives the challenge instance Y1

to the adversary and allows any number of challenge queries to pSign.

Modular proofs from simpler notions. Full extractability and strong full
extractability are fairly complex notions, where the adversary is given many
attack interfaces. To facilitate simpler proofs and better intuitive understand-
ing, we give a framework in Sect. 3.2 for proving FExt and SFExt security. In
particular, we show that proofs can be modularized if a simplified notion called
simple extractability is achieved (Theorem 3). Roughly, simple extractability
removes the interfaces of NewY and Sign. Furthermore, we show that if the
adaptor signature scheme is also uniquely extractable then it also satisfies strong
full extractability (Theorem 4). Roughly, unique extractability says that with
access to an oracle pSign, an adversary cannot find two valid signatures that
both extracts.

New privacy notion: unlinkability. Unlinkability requires adapted signatures,
using pSign and Adapt, to be indistinguishable from honestly generated signa-
tures from Sign, even with adversarial access to pre-signatures and signatures.
Formally, consider the following game Gunlink

aSig,A.

Game Gunlink
aSig,A(λ)

1 b � {0, 1}
2 (pk, sk) � KeyGen(1λ)
3 b′ � ASignChl,Sign,pSign(pk)
4 Return (b = b′)

SignChl(m, (Y, y)):

5 Assert ((Y, y) ∈ R)
6 σ̂ � pSign(sk, m, Y)
7 σ0 � Adapt(pk, σ̂, y)
8 σ1 � Sign(sk, m)
9 Return σb

Sign(m):

10 σ � Sign(sk, m)
11 Return σ

pSign(m, Y):

12 σ̂ � pSign(sk, m, Y)
13 Return σ̂

We define the unlink-advantage of an adversary A against adaptor signature
scheme aSig to be Advunlink

aSig,A(λ) = 2Pr[Gunlink
aSig,A(λ)]−1. We say that scheme aSig

Adaptor Signatures 63

is (1) unlinkable if Advunlink
aSig,A(λ) is negligible for efficient adversaries (2) perfectly

unlinkable if the unlink advantage is 0 for any adversary.
We briefly explain how unlinkability guarantees on-chain privacy for the

application of atomic swaps. In atomic swaps, Alice and Bob aim to atomi-
cally post signature σA (for some message mA) and σB (for some message mB)
to a public ledger. To do this, Bob would first generate a pair (Y, y) and gives
Alice his pre-signature σ̂B � pSign(skB ,mB , Y). Alice will verify the validity of
such pre-signature before giving her pre-signature σ̂A � pSign(skA,mA, Y) to
Bob. Now, Bob can adapt the pre-signature of Alice to a valid signature, via
σA ← Adapt(pkA, σ̂A, y), and post to the ledger. But if Bob does so, then Alice
can extract witness y via y ← Ext(Y, σ̂A, σA) and adapt the pre-signature of
Bob to a valid signature using witness y. Unlinkability of the adaptor signature
scheme ensures that the adapted signatures σA and σB to be indistinguishable
from honestly generated signatures. Hence, an outside observer cannot deduce
that σA and σB are “linked.”

Fig. 4. Games defining aEUF-CMA and aWitExt notions [2] for adaptor signature
scheme aSig.

3.1 Relations with Previous Notions

Restating aEUF-CMA and aWitExt notions of [2]. Their security notions are
defined as games where the adversary is run in two stages. We note that it is
not clear (in their pseudocode) if the first and second stage of the adversaries
are allowed to share any state. Hence, we take the stronger interpretation that
implicit state-sharing is allowed. To keep the presentation consistent, we slightly
rewrite their security games (while preserving the semantics, assuming the state

64 W. Dai et al.

of first stage adversary is passed to the second stage) so that there is only a
single stage. The functionality of the two stages is instead realized via a challenge
oracle that can only be called once2. Formally, we introduce the notions of [2]
by considering games GaEUFCMA and GaWitExt given in Fig. 4.

Full extractability implies previous notions. We first show that our notion of
full extractability implies both aEUF-CMA and aWitExt. Specifically, we show
that given any adversary attacking aEUF-CMA or aWitExt, then we can give
an adversary attacking FExt. Notice that an aEUF-CMA adversary or aWitExt
adversary specifies a message m∗ and eventually returns σ∗. We will construct
a FExt adversary that (1) forwards all Sign and pSign queries (2) simulates
pSignChl oracle with pSign while recording m∗ and (3) returns exactly m∗, σ∗

at the end. The proof below checks that these adversaries win the FExt game
whenever the starting adversary wins aEUF-CMA game or aWitExt game.

Theorem 1 (FExt =⇒ aEUF-CMA + aWitExt). Let AaEUFCMA and
AaWitExt be aEUF-CMA and aWitExt adversaries. The proof constructs adver-
saries Afext,1 and Afext,2, which have the same running time as the given adver-
saries, such that

Pr[GaEUFCMA
aSig,AaEUFCMA

(λ)] = Advfext
aSig,Afext,1

(λ) , (1)

Pr[GaWitExt
aSig,AaWitExt

(λ)] = Advfext
aSig,Afext,2

(λ) . (2)

Proof (of Theorem 1). Consider the following adversaries Afext,1 and Afext,2.

Adversary ANewY,Sign,pSign
fext,1 (pk):

1 σ∗ � ASign,pSign,pSignChl
aEUFCMA (pk)

2 Return (m∗, σ∗)

pSignChl(m):

3 m∗ ← m ; Y ∗ ← NewY()
4 Return σ̂∗ � pSign(m∗, Y ∗)

Adversary ANewY,Sign,pSign
fext,2 (pk):

1 σ∗ � ASign,pSign,pSignChl
aWitExt (pk)

2 Return (m∗, σ∗)

pSignChl(m, Y):

3 m∗ ← m ; Y ∗ ← Y
4 Return σ̂∗ � pSign(m∗, Y ∗)

We check that the given adversaries wins if the given reduction adversary does.
For aEUF-CMA, AaEUFCMA wins if m∗ has not been queried previously to either
Sign or pSign oracles of game GaEUFCMA. Furthermore, for the single pSignChl
query that AaEUFCMA makes, our reduction adversary Afext,1 uses an instance
Y ∗ from NewY to derive a presignature σ∗. Therefore, for Afext,1 the table at
m∗ is a singleton set, i.e. T [m∗] = {(Y ∗, σ̂∗)} for which Y ∗ is in the challenge
set of instances C. Hence, our adversary Afext,1 wins as long as signature σ∗ is
valid on m∗, which is exactly the condition that AaEUFCMA needs to satisfy to
win as well. This justifies (1).

A similar analysis holds for AaWitExt, namely that T [m∗] = {(Y ∗, σ̂∗)} at the
end of its execution. Notice that AaWitExt wins if Ext(Y ∗, σ̂∗, σ∗) is not a valid
2 One can think of the “first stage” as everything leading up to the challenge oracle

call and the “second stage” being everything following the challenge oracle call.

Adaptor Signatures 65

extraction, which is exactly what Afext,2 needs to satisfy as well to win. This
justifies (2).
�

Insufficiency of previous notions. To show that previous notions are insufficient,
we give a scheme that is secure against previous notions, namely aEUF-CMA
and aWitExt, but not FExt-secure. The informal intuition on our scheme is as
follows. We will modify a secure adaptor signature scheme aSig so that pSign
leaks (depending on a random coin flip) either (1) a one-time encryption pad C0

or (2) a one-time encryption C1 = C0⊕σ, where σ is a signature on m. We use a
PRF to derive C0 and the signing randomness for σ so that they are consistent
across different runs of pSign.

Formally, let aSig be any FE-secure adaptor signature for underlying signa-
ture scheme Sig and relation R. Suppose that Sig.KeyGen(1λ) returns secret keys
that are uniformly distributed over some set Sλ. Let Lλ = {Y | ∃y : (Y, y) ∈
[Gen(1λ)]}. Let (pk, ·) ∈ [Sig.KeyGen(1λ)]. Suppose Sig.Sign(pk, ·) uses random
coins of length at most rλ and that [Sig.Sign(pk, ·)] ⊆ {0, 1}nλ . Let F be a
pseudo-random function of the form Fλ : Sλ×({0, 1}∗×Lλ) → {0, 1}nλ×{0, 1}rλ ,
where Sλ is the key space and {0, 1}∗ × Lλ is the input space. Consider adaptor
signature scheme AS0 given below.

Scheme AS0
pSign(sk, m, Y):

1 b � {0, 1}
2 σ̂′ � aSig.pSign(sk, m, Y)
3 (C0, r) ← Fsk(m, Y)
4 σ ← Sig.Sign(sk, m; r)
5 C1 ← C0 ⊕ σ
6 Return (σ̂, Cb)

pVrf(pk, m, σ̂, Y):

7 (σ̂′, C) ← σ̂
8 Return aSig.pVrf(pk, m, σ̂′, Y)

Adapt(pk, σ̂, y):

9 (σ̂′, C) ← σ̂
10 σ ← Adapt(pk, σ̂′, y)
11 Return σ

Ext(σ̂, σ, Y):

12 (σ̂′, C) ← σ̂
13 y ← aSig.Ext(σ̂′, σ, Y)
14 Return y

We claim that AS0 satisfies aEUF-CMA and aWitExt (if aSig is FExt-secure
and F is a secure PRF), but AS0 is not FE-secure even if aSig is FE-secure.
Intuitively, any single run of pSign(sk,m, Y) only leaks a presignature, as the
second part of the output Cb is random. However, given any two evaluations
of (σ̂i, Ci) � pSign(sk,m, Y) for i ∈ {1, 2}, it holds with probability 1/2 that
σ = C1⊕C2 is a valid signature on m. This breaks extractability. Since in the FE
game, adversaries are allowed to query pSign any number of times for any given
Y , even for the challenge instance Y1. However, for aEUF-CMA and aWitExt,
the adversary is only allowed to call pSignChl exactly once. This means that
pSignChl does not leak an extra signature and the scheme can be shown to
satisfy aEUF-CMA and aWitExt.

Theorem 2 (aEUF-CMA+aWitExt �=⇒ FExt). Scheme AS0 satisfies
aEUF-CMA and aWitExt if aSig does and F is a secure PRF. In particular, for
any adversary AaEUFCMA and AaWitExt, the proof gives reduction adversaries

66 W. Dai et al.

A′
aEUFCMA, A′

aWitExt, Aprf,1, and Aprf,2, all about as efficient as the starting
adversaries, such that

Pr[GaEUFCMA
AS0,AaEUFCMA

(λ)] ≤ Pr[GaEUFCMA
aSig,A′

aEUFCMA
(λ)] + Advprf

F,Aprf,1
(λ) , (3)

Pr[GaWitExt
AS0,AaWitExt

(λ)] ≤ Pr[GaWitExt
aSig,A′

aWitExt
(λ)] + Advprf

F,Aprf,2
(λ) . (4)

However, scheme AS0 is not Ext-secure even if aSig is. In particular, the proof
gives efficient adversary Aext, that makes two queries to pSign, such that

Advfext
AS0,Afext

(λ) =
1
2

. (5)

3.2 Modular Proofs from Simple Notions

Full extractability and strong full extractability are fairly complex notions, where
the adversary is given many attack interfaces. To facilitate simpler proofs and
better intuitive understanding, we give a framework for proving FExt and SFExt
security. In particular, we show that proofs can be modularized if a simpler
extractability notion (Ext) is achieved.

Simple Extractability (Ext). We first define simple extractability (Ext). The
notion eliminates some of the attack surfaces considered in FExt without weak-
ening the security guaranteed. The formal definition is given in Fig. 5. The adver-
sary is given access to a pre-signature oracle pSign and, to win, must produce a
valid signature that does not extract against any previous queries to pSign. We
show that, assuming R is a hard relation, Ext implies FExt.

Theorem 3 (Ext + OW =⇒ FExt). Let aSig be an adaptor signature
scheme for a hard relation R. Suppose it satisfies Ext then it also satisfies FExt.
Formally, given any FExt-adversary Afext, we can construct Aext and Aow such
that

Advfext
aSig,Afext

(λ) ≤ Advext
aSig,Aext

(λ) + Advq-ow
R,Aow

(λ) . (6)

If Afext makes qSign and qpSign queries to Sign and pSign, respectively. Then
Aext makes qSign + qpSign queries to the pSign oracles. Furthermore, Aext and
Aow are about as efficient as Afext.

We give a high-level proof sketch here and a full proof in [6]. The reduction
adversary Aext will need to simulate NewY and Sign, since it only has access to
a pre-signature oracle. The adversary will simulate NewY itself and use pSign
to simulate queries to Sign. The latter is possible due to the requirement of aSig
to be canonical. In particular, each query to Sign is simulated by first sampling
a fresh pair (Y, y) ∈ R and a signature is then derived using oracle pSign and
Adapt algorithm. In doing so, table T for adversary Aext becomes larger than
that for Afext. However, it is not hard to see that for the forgery message m∗,
the set T [m∗] is the same for both Afext and Aext, assuming Afext wins. This is
because Afext can only win if the returned message m∗ is not in the set S, which

Adaptor Signatures 67

means that there were no previous queries of the form Sign(m∗). Finally, we need
to make sure that the forgery (m∗, σ∗) does not extract for a challenge instance
Y ∈ C (those Y that was returned by NewY). This event should not happen
with high probability since we have assumed that R is hard. Indeed, it is not
hard to give a OW adversary whose OW-advantage can be used to upper-bound
the probability of this event.

Next, we show that if aSig is shown to satisfy Ext, then we can also show that
it satisfies SFExt security if an additional security notion, which is conceptually
simple and easy to verify, is satisfied.

SFExt from unique extractability (uExt). Unique extractability requires that
an adversary, with access to a pre-signature oracle, cannot find (m,Y, σ̂, σ, σ′)
where σ, σ′ are two distinct valid signatures on message m that also both extracts
against instance Y and pre-signature σ̂. Formally, consider the game Guext given
in Fig. 5. The adversary has access to a pre-signature oracle returning honestly
generated pre-signatures. The adversary wins if it successfully finds two distinct
valid signatures σ, σ′ that both extracts. We define the uExt advantage of an
adversary A to be Advuext

aSig,A(λ). We say that aSig satisfies uExt if the advantage
of any efficient adversary is negligible. We show that if an adaptor signature for
a hard relation R satisfies Ext, and uExt, then it must also satisfy SFExt.

Fig. 5. Games defining extractability and unique extractability.

Theorem 4 (Ext + OW + uExt =⇒ SFExt). Let aSig be a canonical
adaptor signature scheme for a hard relation R. Suppose it satisfies Ext and
uExt, then it also satisfies SFExt. Formally, given any SFExt-adversary Asfext,
we can construct Aow, Aext, Auext such that

Advsfext
aSig,Asfext

(λ) ≤ Advext
aSig,Aext

(λ) + Advq-ow
R,Aow

(λ) + Advuext
aSig,Auext

(λ) . (7)

68 W. Dai et al.

If Asfext makes qSign and qpSign queries to Sign and pSign, respectively. Then
Aext and Auext makes qSign + qpSign queries to their pSign oracles. Furthermore,
all adversaries are about as efficient as Asfext.

We give a high-level proof sketch here and the full proof in [6]. Similar to
before, the reduction adversary Aext will need to simulate oracles NewY and
Sign, which is done exactly as in the proof of Theorem 3. However, for SFExt, we
can no longer assume that table T [m∗] is the same for our reduction adversary.
This is because Asfext can return a valid forgery message m∗ for which there
were previous queries of the form Sign(m∗). However, since for all simulated
Sign queries, the reduction adversary Aext already knows a valid signature that
extracts (the signature that is returned at the end of the Sign oracle call), we
can use the notion of unique extractability to upper bound the probability that
the forgery signature σ∗ also extracts. On the other hand, if the forgery does
not extract, then our reduction adversary Afext will win by simply forwarding
the forgery (m∗, σ∗). Finally, a reduction to one-wayness of R is done similarly
as before to bound the probability that extraction succeeds for some Y ∈ C.

Fig. 6. Table comparing constructions and their instantiations.

In upshot, to prove FExt or SFExt, we can first show that a scheme aSig
satisfies Ext, which implies FExt security. If aSig is shown to additionally satisfy
uExt, then we know that aSig is also SFExt-secure.

4 Generic Constructions

In this section, we give generic constructions of adaptor signatures from any sig-
nature scheme Sig and any hard relation R. The reason we use the word “from”
but not “for” is that the generated signature σ′ is not exactly a standard signa-
ture σ for Sig. However, the verification of σ′ will require minimal modification
to verification of σ, in that it only additionally perform a membership check of
relation R.

In more detail, our adaptor signature schemes generate signatures σ′ that are
a combination of a standard signature σ from Sig and a pair (Y, y) from R, i.e.
σ′ = (σ, Y, y). Additionally, the verification must perform checks of the standard
signature σ as well as a membership check that (Y, y) ∈ R. Hence, in terms of

Adaptor Signatures 69

applications, our adaptor signatures can be supported by the blockchain as only
as it supports signature Sig and relation R as well as basic scripting capabilities.
For example, if Sig is taken to be ECDSA over secp256k1 and R is taken to be
the relation induced by hashing 256-bit inputs with sha256, then SigR can be
realized via a Bitcoin script, which coincide with the construction of a “hash-
lock” contract. We first formalize such an “augmented” signature scheme.

Augmented signature schemes SigR. Let Sig be any signature scheme and R be
any hard relation. Roughly, the augmented signature scheme SigR is a signature
scheme whose signatures additionally (1) attest to an instance Y alongside a
message m and (2) releases a valid witness y of instance Y . Formally, the signing
and verification algorithms are given in Fig. 7 (key generation is unchanged).

Our constructions can be seen as a generalization to “hash-lock” contracts
(coined and used by the Bitcoin Lightning network [21]). We study the notion
of adaptor signatures in a general setting where there is no restriction on the
underlying signatures schemes. We remark that implementing augmented signa-
ture schemes for existing blockchains such as Bitcoin require usage of “scripts.”

Fig. 7. Top: Augmented signature scheme SigR for any signature scheme Sig and rela-
tion R. Bottom: adaptor signature schemes GAS1 and GAS2 for signature scheme SigR.

70 W. Dai et al.

We first present a construction GAS1 that achieves all security properties, but
unlinkability.

Generic Adaptor Signature (GAS) 1. Let Sig be any signature scheme and any
hard relation R. Consider construction GAS1 given in Fig. 7. We show that GAS1
satisfies FExt as long as Sig is Unforgeable, and additionally SFExt if Sig is
strongly unforgeable and R has unique witnesses.

Theorem 5. Adaptor signature scheme GAS1 satisfies correctness and pre-
signature adaptability. If Sig is UF-CMA-secure and R is one-way then GAS1 is
FExt-secure. Given adversary Afext, we can construct adversaries Auf-cma and
Aow, with running times similar to that of Afext such that

Advfext
GAS1,Afext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) + Advq-ow
R,Aow

(λ) . (8)

Furthermore, if Sig is SUF-CMA-secure and R has unique witnesses, then GAS1
is SFExt-secure. Formally, given adversary Asfext, we can construct adversaries
Asuf-cma, Aow, and Auwit with running times similar to that of Asfext such that

Advsfext
GAS1,Asfext

(λ) ≤ 2Advsuf-cma
Sig,Auf-cma

(λ) + Advq-ow
R,Aow

(λ) + Advuwit
R,Auwit

. (9)

We give a rough proof intuition here and full proof in Appendix A.1. Correct-
ness and adaptability are straightforward to check. We rely on Theorem 3 and
Theorem 4 so that we only need to verify Ext- and uExt-security of GAS1. It is
not hard to verify that extractability follows from the unforgeability of Sig. For
unique extractability, it is not hard to see that we at least need to assume strong
extractability of Sig and that R has unique witnesses, since otherwise SigR is not
strongly unforgeable. It turns out that these assumptions are also sufficient to
show unique extractability.

We observe the following theorem.

Theorem 6. If one-way functions exist then SFExt-secure adaptor signatures
exist.

The proof follows from the fact that one-way functions imply SUF-CMA-
secure signatures [12,17,22] as well as (e.g. length doubling) pseudo-random
generators (PRG) [13], which in turn imply hard relations with computationally
unique witnesses consisting of pairs (PRG(x), x).

Our second construction adds unlinkability to GAS1. To achieve this, we addi-
tionally need to assume that relation R is random-self-reducible. For example,
hash-preimage relation is not RSR while discrete-logarithm relation is.

Generic Adaptor Signature (GAS) 2. First, we assume that R is random-self-
reducible. The idea for adding unlinkability is simple: in pSign, we first derive a
random instance Y ′ from the input instance Y and then only use Y ′ in Sig.Sign;
furthermore, we need to return the randomness r for the derivation of Y ′ as part
of the pre-signature. To keep the scheme well specified, other parts of the scheme
are modified accordingly. Formally, consider construction GAS2 given in Fig. 7.

Adaptor Signatures 71

We will show that in addition to all the properties of GAS1, scheme GAS2 also
achieves perfect unlinkability.

We will however need a slightly stronger form of RSR called strong RSR,
which is captured via the following security game.

Game Gsrsr
R,A(λ):

1 b � {0, 1} ; b′ � ANew()

New(Y, y):

2 Assert (Y, y ∈ R) ; (Y ′, y′) � R.Gen(1λ) ; r � R.Rλ

3 Y0 ← R.A(Y ′, r) ; y0 ← R.B(y′, r)
4 Y1 ← R.A(Y, r) ; y1 ← R.B(y, r)
5 Return (Yb, yb)

We say that R is strongly random self-reducible (SRSR) if the advantage of any
PT adversary A, defined to be Advsrsr

R,A(λ) := 2Pr[Gsrsr
R,A(λ)] − 1, is negligible.

Theorem 7. Adaptor signature scheme GAS2 satisfies correctness and pre-
signature adaptability. If R is strongly random-self reducible, then GAS2 is unlink-
able. Specifically, given any adversary Aunlink, the proof gives an adversary Asrsr,
as efficient as Aunlink, such that

Advunlink
GAS2,Aunlink

(λ) ≤ Advsrsr
R,Asrsr

(λ) . (10)

Furthermore, if Sig is UF-CMA-secure and R is one-way then GAS2 is FExt-
secure. Given adversary Afext, we can construct adversaries Auf-cma and Aow,
with running times similar to that of Auf , such that

Advfext
GAS2,Afext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) + Advq-ow
R,Aow

(λ) . (11)

Lastly, if Sig is SUF-CMA-secure and R has unique witnesses, then GAS1 is
SFExt-secure. Formally, given adversary Asfext, we can construct adversaries
Asuf-cma, Aow, and Auwit with running times similar to that of Asfext such that

Advsfext
GAS1,Asfext

(λ) ≤ 2Advsuf-cma
Sig,Auf-cma

(λ) + Advq-ow
R,Aow

(λ) + Advuwit
R,Auwit

. (12)

Unlinkability follows from SRSR property in a straightforward manner and
the rest of the proofs are very similar to those for Theorem 5 and are given in
Appendix A.2. Note that any hard relation trivially implies one-way functions:
for example, the mapping fλ(r) := Y , where (Y, y) ← R.Gen(1λ; r) and r is
any element of the randomness space of R.Gen(1λ), is one-way. Hence, similar to
Theorem 6, we observe the following theorem.

Theorem 8. If SRSR relations exist then SFExt-secure and unlinkable adaptor
signatures exist.

Strong RSR relations from any epimorphic (homomorphic and onto) one-way
function. Suppose fλ : Dλ → Rλ is a homomorphic one-way function, where
Dλ and Rλ are both abelian groups (where Dλ has group operation + and Rλ

72 W. Dai et al.

has group operation ·). For example, two instantiations are fG,g(y) = gy and
f(N,e)(y) = ye mod N , where (G, g) is a group instance and (N, e) is an RSA
public key. Then it is clear that the relation containing pairs (f(y), y) can be
made strongly RSR. In particular, we consider R.A(Y, r) := Y · f(r), where r is
sampled uniformly randomly from Dλ. The corresponding algorithms B and C
are defined as R.B(y, r) = y + r and R.C(y′, r) = y′ − r. It is easy to check that
the relation is SRSR since (f(y +r), y +r) is uniformly random regardless of the
value of y, as long as f is homomorphic and onto.

Strong RSR relations from LWE. We sketch how LWE gives rise to a SRSR
relation. Recall that for LWE, the dimension n is the LWE security parameter.
Take any m that is polynomial in n. We fix3 a random matrix Aλ ∈ Z

m×n
q for

each security parameter λ. (We can take n = O(λ).) Let q be the modulus and αe

and αt be parameters that we shall fix at the end. Consider the following relation
R consisting of pairs (Y, y) with y � Z

n
q and Y = Ay +e, where each component

of e is sampled from a discrete Gaussian of width αeq. We define the rerandomize
algorithm R.A(Y, (r, t)) := Y +Aλr+t, where r is uniformly random in Z

n
q and t ∈

Z
m
q is such that each component of t is sampled from a discrete Gaussian of width

αtq. Lastly, we define R.B(y, (r, t)) := y + r and R.B(y, (r, t)) := y − r. Above,
components of e and t are from (discretized) Gaussian distributions of parameter
αeq and αtq, respectively, where αe = O(1/f2(n)), αt = O(1/f(n)), and q =
O(f3(n)) for a super-polynomial function f(n). For example, the parameter of
distribution e is O(nlog n), that of t is O(n2 log n), and modulus q is O(n3 log n).
Note that given some value of error e, one cannot distinguish between e + t and
e′ + t for freshly sampled e′ (i.i.d to e) and t. This is because t is “wider” than
e by a factor of nlog(n), which is super-polynomial. Finally, by [18, Theorem
4.2.4], the relation R is SRSR if GapSVPγ and SIVPγ are hard against quantum
adversaries, where γ = ˜O(n1−log(n)).

A Omitted Proofs

A.1 Proof of Theorem 5

Proof (of Theorem 5). First, correctness holds by construction. Next, we check
adaptability. Let (pk, sk) ∈ [KeyGen(1λ)] and m ∈ {0, 1}∗. Let σ̂, (Y, y) be such
that (Y, y) ∈ R and pVrf(pk,m, σ̂, Y) = True. This means that σ̂ = (σ, Y) and
Sig.Vrf(pk, (m,Y), σ) = True. Hence, by the verification of SigR, it must be that
SigR.Vrf(pk,m, (σ, Y, y)) = True.

We move on to FExt and SFExt. With the help of Theorem 3 and Theorem 4,
we simply need to show that for any adversary Aext and Auext,

Advext
GAS1,Aext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) , (13)

Advuext
GAS1,Auext

(λ) ≤ Advsuf-cma
Sig,Asuf-cma

(λ) + Advuwit
R,Auwit

(λ) , (14)

3 More formally, A should be sampled as a parameter for each security parameter, but
we fix such A here for simplicity.

Adaptor Signatures 73

where Auf-cma,Asuf-cma,Auwit are reduction adversaries to be constructed.
We first show (13). Consider the following game G0 and adversary Auf-cma.

Game G0

1 (pk, sk) � Sig.KeyGen(1λ)
2 (m∗, σ∗) � ASign,pSign

ext (pk)
3 (σ′, Y ∗, y∗) ← σ∗

4 Assert (Sig.Vrf(pk, (m∗, Y ∗), σ′)∧(Y ∗, y∗) ∈ R)
5 Return (∀Y ∈ T [m∗] : (Y, y∗) �∈ R)

pSign(m, Y):

6 σ � Sig.Sign(sk, (m, Y)) ; T [m]
∪← Y

7 Return (σ, Y)

Adversary ASign
uf-cma(pk):

1 (m∗, σ∗) � ApSign
ext (pk)

2 (σ′, Y ∗, y∗) ← σ∗

3 Return ((m∗, Y ∗), σ′)

pSign(m, Y):

4 σ � Sign((m, Y))
5 Return (σ, Y)

We claim that

Advext
Sig,Aext

(λ) = Pr[G0] ≤ Advuf-cma
Sig,Auf-cma

(λ) . (15)

This is straightforward, because if G0 returns true, then it must be that Y ∗

returned by the adversary is fresh, meaning it has not queried pSign(m∗, Y ∗) pre-
viously. Finally, we note that adversary Auf-cma also wins exactly when (m∗, Y ∗)
is fresh.

Next, we bound (14). Consider the following games G1,G2,G3. Game G1 is
Guext

GAS1,Auext
. Games G2 and G3 rewrites the winning condition of G1 depending

on disjoint events b1 and b2.

Game G1, G2, G3

1 (pk, sk) � Sig.KeyGen(1λ)
2 (m, Y, σ̂, σ, σ′) � ApSign

uext (pk)
3 (σ0, Y, y) ← σ ; (σ1, Y

′, y′) ← σ′

4 b1 ← (Y �= Y ′)
5 b2 ← (Y = Y ′) ∧ (y �= y′)
6 b3 ← Vrf(pk, (m, Y), σ0) ∧ Vrf(pk, (m, Y ′), σ1) ∧ (Y, y) ∈ R ∧ (Y, y′) ∈ R
7 G1: Return (b1 ∨ b2) ∧ b3
8 G2: Return b1 ∧ b3
9 G3: Return b2 ∧ b3

pSign(m, Y):

10 σ � Sig.Sign(sk, (m, Y)) ; Return (σ, Y)

Clearly, we have

Advuext
GAS1,Auext

(λ) = Pr[G1] = Pr[G2] + Pr[G3] . (16)

Next, we construct adversaries Asuf-cma and Auwit, such that

Pr[G2] ≤ Advsuf-cma
Sig,Asuf-cma

(λ) , (17)

Pr[G3] ≤ Advuwit
R,Auwit

(λ) . (18)

74 W. Dai et al.

This is straightforward, Asuf-cma can simulate pSign with its Sign oracle, and
Auwit can sample its own key pair to simulate game G3. The specifications of
these adversaries are given below.

Adversary ASign
suf-cma(pk):

1 (m, Y, σ̂, σ, σ′) � ApSign
uext (pk)

2 (σ0, Y0, y0) ← σ ; (σ1, Y1, y1) ← σ′

3 If ∃i ∈ {1, 2} : (m, Yi, σi) �∈ U then
4 Return ((m, Yi), σi)

pSign(m, Y):

5 σ � Sign((m, Y))

6 U
∪← (m, Y, σ)

7 Return (σ, Y)

Adversary Auwit():

1 (pk, sk) � Sig.KeyGen(1λ)
2 (m, Y, σ̂, σ, σ′) � ApSign

uext (pk)
3 (σ0, Y0, y0) ← σ ; (σ1, Y1, y1) ← σ′

4 Return (Y0, y0, y1)

pSign(m, Y):

5 σ � Sign(sk, (m, Y))
6 Return (σ, Y)

This concludes the proof of Theorem 5.
�

A.2 Proof of Theorem 7

Proof (of Theorem 7). First, correctness and adaptability holds similar to GAS1.
We give a reduction that turns any unlink adversary to a strong RSR adversary
for R. The reduction is very straightforward and we keep the descript at a high-
level here. The SRSR adversary sample a key pair (pk, sk) � Sig.KeyGen(1λ),
using which it can run pSign and Sign algorithms. It can simulate oracles Sign
and pSign honestly. It uses the New oracle given to it from the strong RSR
game to simulate SignChl, the pair (Y, y) that is in the input of SignChl is
simply forwarded to New.

We check extractability. Similar to GAS1, we need to show that for any adver-
sary Aext and Auext,

Advext
GAS2,Aext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) , (19)

Advuext
GAS2,Auext

(λ) ≤ Advsuf-cma
Sig,Asuf-cma

(λ) + Advuwit
R,Auwit

(λ) , (20)

where Auf-cma,Asuf-cma,Auwit are reduction adversaries to be constructed.
We first show (19). Consider the following game G0 and adversary Auf-cma.

Game G0

1 (pk, sk) � Sig.KeyGen(1λ)
2 (m∗, σ∗) � ApSign

ext (pk)
3 (σ′, Y ∗, y∗) ← σ∗

4 Assert (Sig.Vrf(pk, (m∗, Y ∗), σ′)∧(Y ∗, y∗) ∈ R)
5 Return (∀(Y, r) ∈ T [m∗] : (Y, R.C(y∗, r)) �∈ R)

pSign(m, Y):

6 r � R.Rλ ; Y ′ ← R.A(Y, r) ; T [m]
∪← (Y, r)

7 σ′ � Sig.Sign(sk, (m, Y ′)) ; Return (σ′, Y, r)

Adversary ASign
uf-cma(pk):

1 (m∗, σ∗) � ApSign
ext (pk)

2 (σ′, Y ∗, y∗) ← σ∗

3 Return ((m∗, Y ∗), σ′)

pSign(m, Y):

4 r � R.Rλ

5 Y ′ ← R.A(Y, r)
6 σ′ � Sign((m, Y ′))
7 Return (σ′, Y, r)

Adaptor Signatures 75

We claim that

Advext
Sig,Aext

(λ) = Pr[G0] ≤ Advuf-cma
Sig,Auf-cma

(λ) . (21)

We claim that if G0 returns true, it must be that Y ∗ returned by adversary is
fresh, meaning the adversary has not queried Sign((m∗, Y ∗)) previously. Seeking
a contradiction, suppose that adversary has incurred a query Sign(m∗, Y ∗), then
this query must have come from some query pSign(m∗, Y0), where the game
has sampled some r0 such that R.A(Y0, r0) = Y ∗. By line 4, (Y ∗, y∗) ∈ R. So,
R.C(y∗, r) must be a witness of Y0. This means that the game must return False
at line 5. Therefore, there was no signature on message (m∗, Y ∗) if the game
returns True. We note that adversary Auf-cma also wins exactly when (m∗, Y ∗)
is fresh. This verifies (19).

Next, we bound (20). Consider the following games G1,G2,G3. Game G1 is
Guext

GAS2,Auext
. Games G2 and G3 rewrites the winning condition of G1 depending

on disjoint events b1 and b2.

Game G1, G2, G3

1 (pk, sk) � Sig.KeyGen(1λ)
2 (m, Y, σ̂, σ, σ′) � ApSign

uext (pk)
3 (σ0, Y, y) ← σ ; (σ1, Y

′, y′) ← σ′

4 b1 ← (Y �= Y ′)
5 b2 ← (Y = Y ′) ∧ (y �= y′)
6 b3 ← Vrf(pk, (m, Y), σ0) ∧ Vrf(pk, (m, Y ′), σ1) ∧ (Y, y) ∈ R ∧ (Y, y′) ∈ R
7 G1: Return (b1 ∨ b2) ∧ b3
8 G2: Return b1 ∧ b3
9 G3: Return b2 ∧ b3

pSign(m, Y):

10 r � R.Rλ ; Y ′ ← R.A(Y, r) ; σ′ � Sign(sk, (m, Y ′)) ; Return (σ′, Y, r)

Clearly, we have

Advuext
GAS1,Auext

(λ) = Pr[G1] = Pr[G2] + Pr[G3] . (22)

Next, we construct adversaries Asuf-cma and Auwit, such that

Pr[G2] ≤ Advsuf-cma
Sig,Asuf-cma

(λ) , (23)

Pr[G3] ≤ Advuwit
R,Auwit

(λ) . (24)

This is straightforward, Asuf-cma can simulate pSign with its Sign oracle, and
Auwit can sample its own key pair to simulate game G3. The specifications of
these adversaries are given below.

76 W. Dai et al.

Adversary ASign
suf-cma(pk):

1 (m, Y, σ̂, σ, σ′) � ApSign
uext (pk)

2 (σ0, Y0, y0) ← σ ; (σ1, Y1, y1) ← σ′

3 If ∃i ∈ {1, 2} : (m, Yi, σi) �∈ U
then

4 Return ((m, Yi), σi)

pSign(m, Y):

5 r � R.Rλ ; Y ′ ← R.A(Y, r)
6 σ′ � Sign((m, Y ′))
7 U

∪← (m, Y ′, σ′) ; Return
(σ′, Y, r)

Adversary Auwit():

1 (pk, sk) � Sig.KeyGen(1λ)
2 (m, Y, σ̂, σ, σ′) � ApSign

uext (pk)
3 (σ0, Y0, y0) ← σ ; (σ1, Y1, y1) ← σ′

4 Return (Y0, y0, y1)

pSign(m, Y):

5 r � R.Rλ ; Y ′ ← R.A(Y, r)
6 σ′ � Sign(sk, (m, Y ′)) ; Return

(σ′, Y, r)

This concludes the proof of Theorem 7.
�

References

1. Aumayr, L., et al.: Bitcoin-compatible virtual channels. Cryptology ePrint Archive,
Report 2020/554 (2020). https://eprint.iacr.org/2020/554

2. Aumayr, L., et al.: Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476 (2020). https://eprint.iacr.org/2020/476

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology -
EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 25

4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019. Part I, volume 11921 of LNCS, pp. 227–247. Springer, Heidel-
berg (2019). https://doi.org/10.1007/978-3-030-34578-5 9

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/s00145-004-0314-9

6. Dai, W., Okamoto, T., Yamamoto, G.: Stronger security and generic constructions
for adaptor signatures. Cryptology ePrint Archive (2022)

7. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS - Dilithium: digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633 (2017). https://eprint.iacr.org/2017/633

8. Erwig, A., Faust, S., Hostáková, K., Maitra, M., Riahi, S.: Two-party adaptor
signatures from identification schemes. In: Garay, J. (ed.) PKC 2021. Part I, volume
12710 of LNCS, pp. 451–480. Springer, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-75245-3 17

9. Esgin, M.F., Ersoy, O., Erkin, Z.: Post-quantum adaptor signatures and payment
channel networks. Cryptology ePrint Archive, Report 2020/845 (2020). https://
eprint.iacr.org/2020/845

10. Fournier, L.: One-time verifiably encrypted signatures aka adaptor signatures
(2019)

11. Gugger, J.: Bitcoin-monero cross-chain atomic swap. Cryptology ePrint Archive,
Report 2020/1126 (2020). https://eprint.iacr.org/2020/1126

https://eprint.iacr.org/2020/554
https://eprint.iacr.org/2020/476
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/s00145-004-0314-9
https://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/978-3-030-75245-3_17
https://eprint.iacr.org/2020/845
https://eprint.iacr.org/2020/845
https://eprint.iacr.org/2020/1126

Adaptor Signatures 77

12. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 07. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 1

13. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press (1989)

14. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

15. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: NDSS 2019.
The Internet Society (2019)

16. Moody, D., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process (2020)

17. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press (1989)

18. Peikert, C.: How (not) to instantiate ring-LWE. Cryptology ePrint Archive, Report
2016/351 (2016). https://eprint.iacr.org/2016/351

19. Poelstra, A.: Lightning in scriptless scripts (2017). https://lists.launchpad.net/
mimblewimble/msg00086.html. Accessed Aug 2021

20. Poelstra, A.: Scriptless scripts (2017). https://download.wpsoftware.net/bitcoin/
wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf. Accessed Aug 2021

21. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf. Accessed:
Aug 2021

22. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press (1990)

23. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Crypt. 4(3), 161–
174 (1991)

24. Tairi, E., Moreno-Sanchez, P., Maffei, M.: Post-quantum adaptor signature
for privacy-preserving off-chain payments. Cryptology ePrint Archive, Report
2020/1345 (2020). https://eprint.iacr.org/2020/1345

https://doi.org/10.1007/978-3-540-72738-5_1
https://eprint.iacr.org/2016/351
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2020/1345

Entropic Hardness of Module-LWE
from Module-NTRU

Katharina Boudgoust1, Corentin Jeudy2,3(B), Adeline Roux-Langlois4,
and Weiqiang Wen5

1 Department Computer Science, Aarhus University, Aarhus, Denmark
katharina.boudgoust@cs.au.dk

2 Univ Rennes, CNRS, IRISA, Rennes, France
3 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France

corentin.jeudy@irisa.fr
4 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

adeline.roux-langlois@cnrs.fr
5 LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris, France

weiqiang.wen@telecom-paris.fr

Abstract. The Module Learning With Errors problem (M-LWE) has
gained popularity in recent years for its security-efficiency balance,and
its hardness has been established for a number of variants. In this paper,
we focus on proving the hardness of (search) M-LWE for general secret
distributions, provided they carry sufficient min-entropy. This is called
entropic hardness of M-LWE. First, we adapt the line of proof of Brak-
erski and Döttling on R-LWE (TCC’20) to prove that the existence of
certain distributions implies the entropic hardness of M-LWE. Then, we
provide one such distribution whose required properties rely on the hard-
ness of the decisional Module-NTRU problem.

Keywords: Lattice-based cryptography · Module learning with
errors · Entropic hardness · Module-NTRU

1 Introduction

The Learning With Errors (LWE) [27] and NTRU [17] problems are the most
widespread computational assumptions for designing lattice-based cryptosys-
tems. The LWE problem asks to find a secret s ∈ Z

d
q given the noisy sys-

tem (A,b = As + e mod q) for A ∈ Z
m×d
q uniformly random and e drawn

from ψm, where ψ is an error distribution over Z (or R). In the decisional variant,
one has to distinguish such b from a uniform vector u over Zq (or Tq = R/qZ).
Although the error distribution can be arbitrary, most theoretical proofs use
a Gaussian distribution. LWE benefits from strong hardness guarantees, as its
average-case formulation is proven to be at least as hard as worst-case lattice
problems. The parameter d is known as the LWE dimension and is often seen
as the security parameter of the problem as it is linked to the dimension of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 78–99, 2022.
https://doi.org/10.1007/978-3-031-22912-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_4

Entropic Hardness of Module-LWE from Module-NTRU 79

underlying lattice. The NTRU problem is defined over a more algebraic setting,
using algebraic integers instead of rational ones. In a number field K, consider R
to be the ring of algebraic integers in K. (Decisional) NTRU asks to distinguish
between gf−1

q mod q and u, where f and g are short elements of Rq = R/qR, f−1
q

is the Rq-inverse of f and u is uniform over Rq. The search version, consist-
ing in finding f and g given gf−1

q mod q, has recently been linked to standard
ideal lattice problems [26]. Although very few theoretical hardness results are
known for NTRU, it has been widely studied for more than two decades from
a cryptanalytic standpoint. Unless for overstretched parameter sets, e.g. [15], it
is believed to be a reliable hardness assumption to design public-key cryptosys-
tems, e.g., [2,11].

Although LWE allows for designing provably secure cryptosystems, the result-
ing schemes are usually not practical enough to be used in real-world systems.With
this perspective in mind, several algebraically structured variants of LWE [9,18,
20,29] were introduced to improve efficiency in terms of computation and stor-
age, while maintaining strong enough hardness guarantees from problems over
structured lattices. The underlying algebraic framework is the same as the one in
the NTRU problem. In this paper, we focus on the Module Learning With Errors
(M-LWE) problem which is similar to the original LWE formulation. The set of
integers Z is replaced by a ring of algebraic integers R, as above. The problem is
formulated over the free R-module Rd, where d is called the rank of the module.
Then, for a modulus q, and an error distribution ψ over R (or KR = K ⊗Q R),
and given (A,b = As + e mod q) with A uniform in Rm×d

q , s ∈ Rd
q and e

drawn from ψm, the goal is to recover s. The decisional version asks to distin-
guish such a b from a uniformly distributed vector u. When d = 1, we call it
Ring LWE (R-LWE). A module version of NTRU was also recently studied by
Chuengsatiansup et al. [12]. It consists in distinguishingGF−1

q mod q, with (F,G)
short matrices in Rd×d × Rm×d and F−1

q the Rq-inverse1 of F, from a uniform
matrix U ∈ Rm×d

q . The module versions M-LWE and M-NTRU give more flexi-
bility to adjust the balance between efficiency and security.

The average-case formulation of M-LWE is parameterized by a distribution S
on the secret s. The original definition uses S to be the uniform distribution
over Rd

q . Even though this choice is the most natural one for theoretical results,
practical schemes vary from it. For efficiency reasons, it is advantageous to choose
secret distributions that lead to small-norm secrets, as is done in the M-LWE-
based schemes Kyber [3] and Dilithium [13] which were chosen for standard-
ization by NIST. The study of LWE with small-norm secrets [10,16,21] has
recently been extended to the module setting by Boudgoust et al. [4,5]. The
second reason to deviate from the uniform distribution stems from the situa-
tion where the key is not sampled from the prescribed distribution but from an
imperfect one. Braskerski and Döttling conducted a study of LWE with general
entropic secret distributions [7], which they afterward extended to the ring set-
ting (d = 1) [8]. It was left open to thoroughly generalize this proof method to

1 As we use both the Rq-inverse and the K-inverse, we insist on differentiating them
as F−1

q and F−1 respectively.

80 K. Boudgoust et al.

larger ranks d > 1. Hardness results encapsulating imperfect distributions pro-
vide theoretical insights on the resistance to key leakage, like cold boot attacks
for instance. These attacks leverage the physical properties of the hardware to
recover remanent information from the memory. In the representative cold boot
attack on M-LWE based schemes [1], the adversary can manage to obtain a
faulty version of the (long-term) secret key s stored in memory. From the faulty
key s̃ = s + Δs, the adversary can now recover the full secret s by targeting a
new M-LWE instance (A,As̃−b mod q) = (A,AΔs−e mod q), where the new
secret Δs is only promised to have certain entropy. The motivation is therefore
to prove the hardness of M-LWE when some secret key information is leaked to
the attacker, i.e., the remaining entropy in Δs is smaller than that of s.

Our Contributions. In this paper, we extend the line of work of Brakerski and
Döttling on the entropic hardness to the module setting, i.e., d ≥ 1, which has
gained popularity over its preceding variants. Our main contribution is given in
the following informal theorem. For a complete statement, refer to Theorem 5.

Theorem 1 (Informal). Assuming decisional M-NTRU is hard, the problem
search M-LWE with secret distribution S is hard for a sufficiently large Gaussian
noise and provided that S has large enough min-entropy.

The first step of our proof is to translate the M-NTRU problem from its algebraic
form to a non-algebraic one, which we call Structured NTRU (S-NTRU). This
simply consists in embedding the algebraic setting into vectors and matrices
over the integers or the reals. We similarly define Structured LWE (S-LWE),
generalizing the notion given in [8]. The core of our work is then to prove the
hardness of S-LWE from that of S-NTRU.

To do so, we construct a sometimes lossy pseudorandom distribution, as
introduced in [8]. The pseudorandomness property, proven under the hard-
ness of S-NTRU, essentially allows us to replace the uniform matrix A from
the S-LWE instance by the S-NTRU matrix GF−1

q mod q, where F−1
q is the Rq-

inverse of F. Then, the sometimes lossiness property translates the fact that
going from s to GF−1

q s + e mod q loses enough information on s so that it is
hard to recover it. The sometimes lossiness thus entails the hardness of S-LWE
when A = GF−1

q mod q. By the pseudorandomness, it then yields the hardness
of S-LWE for a uniform A. Section 4 gives explicit conditions on the distributions
of F and G for the sometimes lossiness property to be satisfied. It requires F
and G to be somewhat well-behaved in terms of invertibility and spectral bounds.
More precisely, F must be invertible in Rq, the distributions on F and G should
both minimize their largest singular value, and the distribution of F should also
maximize its smallest singular value. These conditions are obtained by gener-
alizing the approach from [8] in the case of rings (d = 1), by introducing the
dimension d associated to the module rank.

We then exhibit in Sect. 5 a distribution on F and G that satisfies the required
conditions, which is our main contribution. The invertibility in Rq has been stud-
ied in [12], which naturally implies invertibility in K. The spectral analysis is
more tricky and is the object of Sects. 5.1 and 5.2. We give technical results on
the smallest (and largest) singular values of discrete Gaussian matrices over the

Entropic Hardness of Module-LWE from Module-NTRU 81

ring of integers of a number field, which might be of independent interest. In
addition to dealing with matrices, our techniques differ from that of [8] as we
adopt a different, and inherently simpler, distribution on F and G. This provides
another valid way to construct sometimes lossy pseudorandom distributions from
module-based assumptions. For our distribution, the pseudorandomness prop-
erty is obtained by assuming that GF−1

q mod q ∈ Rm×d
q is indistinguishable

from uniform, hence the M-NTRU assumption for a rectangular matrix G. The
approach in [8] requires the HNF-R-LWE assumption in addition to NTRU.
Also, our simpler approach leads to improved parameters both in our module
generalization but also in the ring setting when setting d = 1, using a multiple
public key version of NTRU instead of HNF-R-LWE and NTRU. The high-level
picture of the entire proof is summarized in Fig. 1.

Fig. 1. High-level summary of the contributions of this work, proving Theorem 1.

One advantage of removing the HNF-M-LWE assumption is that our proof
can be seen as a reduction from decisional M-NTRU to search M-LWE. This
generalizes the observation of Peikert [25] that decisional NTRU reduces to
search R-LWE. Another upside in only assuming M-NTRU is that we directly
recover the expected statistical hardness of M-LWE from that of M-NTRU when-
ever the parameters are large enough. We discuss briefly this statistical result in
Sect. 5.3 but note that it seems hard to build cryptosystems purely based on the
statistical hardness of M-LWE in these parameter regimes. Our reduction is also
rank-preserving between M-NTRU and M-LWE. Although it prevents us from
reaching unusually short secrets, it can still lead to better parameters compared
to (close to) rank-preserving reductions based on M-LWE assumptions, as dis-
cussed in Sect. 6. As explained, we rely on a rectangular formulation of M-NTRU
which is similar to the multiple public keys version in the case of NTRU. For
non-overstretched parameters, we have no reason to believe that this multiple
public keys version, or rectangular M-NTRU in our case, is a substantially weaker
assumption than square M-NTRU.

Lin et al. [19] recently adapted the proof method from [7] on LWE to mod-
ules, which uses a sensibly different approach from the one we described above.
Their proof is based on an M-LWE hardness assumption, while ours is based
on M-NTRU. This assumption allows them to tweak the starting rank k of the
module to reach smaller or larger secrets and noise, depending on which one
to optimize. However, their result does not provide a rank-preserving reduction

82 K. Boudgoust et al.

as k < d. Additionally, when k is close to d, our proof can lead to better param-
eters, at the expense of trading the underlying assumption. We discuss these
differences in Sect. 6.

Open Questions. Our proof only shows the entropic hardness of
search M-LWE, and we leave it as an open problem to extend it to the deci-
sional variant. One possibility (of more general interest) would be to find a
search-to-decision reduction for M-LWE that preserves the (non-uniform) secret
distribution. Additionally, it would be interesting to have a worst-case to average-
case reduction from module lattice problems to decision M-NTRU, which would
be of independent interest.

Organization. In Sect. 2, we introduce the notions and results that are needed
in our proof. In Sect. 3, we provide an equivalent formulation of M-LWE
and M-NTRU called Structured LWE and Structured NTRU, which general-
ize the notions defined in [8]. In Sect. 4, we adapt the line of proof from [8] to
our more general setting to give sufficient conditions for Structured LWE to be
(mildly) hard. Section 5 is then dedicated to instantiating this hardness result
for M-LWE parameters. Finally, in Sect. 6, we discuss how our contribution com-
pares to existing entropic hardness results of M-LWE.

2 Preliminaries

In this paper, q denotes a positive integer, Z the set of integers, and Zq the
quotient ring Z/qZ. We use Q and R to denote the fields of rationals and reals
respectively. For a positive integer n, we use [n] to denote {1, . . . , n}. The vectors
are written in bold lowercase letters a while the matrices are in bold uppercase
letters A. The transpose and Hermitian operators for vectors and matrices are
denoted with the superscript T and † respectively. The identity matrix of size n×
n is denoted by In. For a vector a ∈ C

n, we define its Euclidean norm as ‖a‖2 =
(
∑

i∈[n] |ai|2)1/2, and its infinity norm as ‖a‖∞ = maxi∈[n] |ai|. Further, we
denote by diag(a) the diagonal matrix whose diagonal entries are the entries
of a. For a matrix A = [aij]i∈[n],j∈[m] ∈ C

n×m, we define its spectral norm
as ‖A‖2 = maxx∈Cm\{0} ‖Ax‖2 / ‖x‖2, which corresponds to its largest singular
value. The smallest singular value of A is denoted by smin(A). For a ring R and
integers k, q, we denote GLk(R, q) the set of matrices of Rk×k that are invertible
in Rq = R/qR. The uniform distribution over a finite set S is denoted by U(S),
and the statistical distance between two discrete distributions P and Q over
a countable set S is defined as Δ(P,Q) = 1

2

∑

x∈S |P (x) − Q(x)|. Finally, the
action of sampling x ∈ S from a distribution P is denoted by x ←↩ P .

2.1 Algebraic Number Theory

Since we focus on the problem once embedded into the integers, we only give
the necessary notations related to algebraic number theory. The complete back-
ground is deferred to the full version [6, Sec. 2.1].

Entropic Hardness of Module-LWE from Module-NTRU 83

In this paper, we consider a number field K = Q(ζ) of degree n and its
ring of integers, which we denote by R. We also define the field tensor product
as KR = K ⊗Q R and the torus Tq = KR/qR for an integer q. The canonical
embedding is denoted by σ, while the coefficient embedding is denoted by τ . We
also consider the embedding σH defined by U†

Hσ where

UH =
1√
2

⎡

⎣

√
2It1 0 0
0 It2 iIt2

0 It2 −iIt2

⎤

⎦ ,

with t1 the number of real field embeddings of K, and t2 the number of pairs
of complex field embeddings. The embeddings σ and τ are also linked by the
Vandermonde matrix of the field denoted by V, i.e., σ = Vτ . Finally, the
multiplication of two elements x, y of K translate into a matrix multiplica-
tion of the embeddings. More precisely, for an embedding θ ∈ {σ, τ, σH}, there
exists a ring homomorphism Mθ from K to C

n×n such that for any x, y ∈ K,
it holds θ(xy) = Mθ(x) · θ(y). We have Mσ(x) = diag(σ(x)), MσH

(x) =
U†

HMσ(x)UH , and Mτ (x) =
∑n−1

k=0〈τ(x) ,ek〉Ck, where (ek)k is the canonical
basis of Cn, and C is the companion matrix of the defining polynomial of K. All
the embeddings and multiplication matrix maps extend to vectors and matrices
over K in the natural way. For an integer η, we define Sη = τ−1({−η, . . . , η}n).

2.2 Lattices

A full-rank lattice Λ of rank n can be defined by a basis B = [bi]i∈[n] ∈ R
n×n

as Λ =
∑

i∈[n] Z ·bi. We sometimes use Λ(B) to specify which basis of the lattice
we consider. The dual lattice of a lattice Λ is defined by Λ∗ = {x ∈ Span(Λ) :
∀y ∈ Λ, 〈x,y〉 ∈ Z}.

Structured Lattices. Any ideal I of R (resp. R-module M ⊆ Kd) embeds
into a lattice via τ or σH called ideal lattice (resp. module lattice). In the rest
of the paper, we denote by LR a basis of the lattice σH(R) and BR = L−1

R .
For every integer d, we also define LRd = Id ⊗ LR, which is a basis of σH(Rd),
and BRd = Id ⊗ LR = L−1

Rd . Since each element of the lattice σH(R) can be
represented as LRx for some x ∈ Z

n, we can map R to Z
n by BRσH . We denote

by MR(x) the associated multiplication matrix, i.e.,

MR(x) = BRMσH
(x)B−1

R = (BRU
†
H)diag(σ(x))(BRU

†
H)−1.

Notice that when the power basis is a Z-basis of R, e.g. cyclotomics, we can
choose LR = [σH(1) | . . . | σH(ζn−1)] = U†

HV. In that case, we have BRσH = τ
and also MR(·) = Mτ (·). We keep the notations without assuming how the
basis LR is chosen. We only use this specific choice of basis in Sect. 5. The
map MR(·) is extended coefficient-wise to vectors and matrices. It maps (matri-
ces of) ring elements to (block matrices of) structured matrices.

84 K. Boudgoust et al.

2.3 Probabilities

We first recall a trivial lemma that bounds the maximal singular value of a
random matrix Z by bounding the singular values of its blocks. The result can
be made deterministic for δ = 0. The proof is quite standard and provided in
the full version [6, Lem. 2.1] for completeness.

Lemma 1. Let a, b, c, d be integers. Let Z = [Zij](i,j)∈[a]×[b] ∈ R
ac×bd be a

random block matrix where each Zij ∈ R
c×d. Assume it holds for all (i, j)

that P[‖Zij‖2 ≥ γ] ≤ δ, for 0 ≤ δ ≤ 1. Then, we have P[‖Z‖2 ≥ √
ab · γ] ≤ ab · δ.

Gaussians. For a full-rank matrix S ∈ R
m×n (m ≥ n), and a center c ∈ R

n

we define the Gaussian function by ρc,S(x) = exp(−π(x − c)T (STS)−1(x − c)).
We can then define the continuous Gaussian distribution Dc,S whose density
is det(S)−1ρc,S. If S = sIn, then we simply write Dc,s, and we omit c if it is 0. We
then define the discrete Gaussian distribution DΛ,c,S over a lattice Λ by condi-
tioning on x being in the lattice, i.e., for all x ∈ Λ, DΛ,c,S(x) = Dc,S(x)/Dc,S(Λ),
where Dc,S(Λ) =

∑

y∈Λ Dc,S(y). We use the simplified notation DR,c,S to
denote DσH(R),c,S. Additionally, by abuse of notation, we also use Dc,S to denote
the distribution obtained by sampling x from Dc,S and outputting σ−1

H (x) ∈ KR.
For ε > 0, we denote by ηε(Λ) the smoothing parameter of a lattice Λ [23], which
is defined by ηε(Λ) = min{s > 0 : ρ1/s(Λ∗) ≤ 1 + ε}.

Min-Entropy. Let x follow a discrete distribution on a set X, and z follow a
(possibly continuous) distribution on a (measurable) set Z. The average condi-
tional min-entropy2 of x given z is ˜H∞(x|z) = − log2(Ez′ [max

x′∈X
P[x = x′|z = z′]]).

If z is deterministic, we obtain the definition of the min-entropy of x as H∞(x) =
− log2(maxx′∈X P[x = x′]). For ε > 0, we also define the ε-smooth average con-
ditional min-entropy by ˜Hε

∞(x|z) = max{ ˜H∞(x′|z′) : Δ((x′, z′), (x, z)) ≤ ε}.
For convenience, we simply refer to all these notions as min-entropy instead of
their full name when it is clear from the context or notations. But it should be
noted that the notions are distinct.

2.4 Noise Lossiness

We recall the notion of noise lossiness of a distribution S of secrets as introduced
in [7,8]. It quantifies how much information is lost about a secret from S when
perturbed by a Gaussian noise. As we are in the module setting, we highlight
the dimension as nd where n is the ring degree, and d the module rank.

Definition 1 (Noise Lossiness). Let n, d, q be integers and s > 0 be a Gaus-
sian parameter. Let B be a non-singular matrix in R

nd×nd. Let S be a distri-
bution of secrets over Z

nd
q . The noise lossiness νsB(S) is defined by νsB(S) =

˜H∞(s|s + e), where s ←↩ S, and e ←↩ DsB.
2 The (non-average) conditional min-entropy of x given z is denoted by H∞(x|z)

instead of ˜H∞(x|z), and given by H∞(x|z) = − log2

(

maxz′∈Z maxx′∈X

P[x = x′|z = z′]
)

.

Entropic Hardness of Module-LWE from Module-NTRU 85

We also recall the bounds on the noise lossiness derived in [7] in the case of
general distributions, as well as that of distributions over bounded secrets.

Lemma 2 ([7], Lem. 5.2 & 5.4). Let n, d, q be integers, and a Gaussian param-
eter s > 0. Let S be any distribution over Znd

q . If s ≤ q
√

π/ ln(4nd), then it holds
that νs(S) ≥ H∞(S)−nd · log2(q/s)−1. Alternatively, if S is r-bounded (for the
Euclidean norm), then it holds that νs(S) ≥ H∞(S)−√

2πnd log2(e) · r
s , with no

restriction on s.

2.5 Module Learning with Errors and Module NTRU

In this work, we deal with Module Learning With Errors (M-LWE) over the
(primal) ring of integers R of a number field K. Additionally, we do not limit
the secret distribution to be uniform, and we thus define M-LWE for an arbitrary
distribution of secrets S.

Definition 2. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers. Finally, let S be a secret distribution supported
on Rd

q , and ψ a distribution over KR. The search M-LWEn,d,q,m,ψ,S problem is to
find the secret s given (A,b) = (A,As+e mod qR) for A ←↩ U(Rm×d

q), s ←↩ S,
and e ←↩ ψm. The decisional version consists in deciding whether such (A,b) is
distributed as above or if it is uniform over Rm×d

q × T
m
q .

We sometimes use a discrete error distribution ψ over R instead of KR. The
standard form of M-LWE corresponds to S = U(Rd

q), for which we omit the S
in the notation. For arbitrary secret distributions S, we analyze the hardness of
the problem based on some requirement on the entropy of S. This is why these
cases are also referred to as entropic M-LWE or entropic hardness of M-LWE.
We also recall the Module-NTRU (M-NTRU) problem defined in [12].

Definition 3 (Module-NTRU (M-NTRU)). Let R be the ring of integers
of a number field K and let q be a modulus. Let m, d be positive integers, and ψ
be a distribution on R. Let G ←↩ ψm×d and F ←↩ ψd×d conditioned on F ∈
GLd(R, q). Let F−1

q be the Rq-inverse of F. The M-NTRUn,d,q,m,ψ problem asks
to distinguish between GF−1

q ∈ Rm×d
q and a uniformly random A ←↩ U(Rm×d

q).

In this paper, we consider ψ = DR,γ for some Gaussian parameter γ > 0. In this
case, we simply denote it as M-NTRUn,d,q,m,γ .

3 Structured LWE

In this section, we provide another formulation of LWE (resp. NTRU), which is
equivalent to M-LWE (resp. M-NTRU) in a specific setting. Finally, we detail
the notion of mild hardness presented in [8], and how it relates to the standard
definition of hardness.

86 K. Boudgoust et al.

3.1 Structured LWE and Structured NTRU

In the following, we define a version of LWE that generalizes the Structured
LWE problem from [8]. We also define the Structured NTRU problem which is a
generalization of the DSR problem from [8]. We use the name Structured NTRU
only because it is to M-NTRU what Structured LWE is to M-LWE. NTRU
already being a structured problem, it should not be interpreted as if there
exists an unstructured version of NTRU.

The difference stems in introducing the extra dimension of the module rank d.
Instead of considering vectors of m matrices of size n × n, we consider block
matrices of size m × d with n × n blocks. We only define the search variant
of Structured LWE and the decisional variant of Structured NTRU as they are
the only one needed in this paper, but one could define the other versions in the
natural way. The main motivation for working with these problems is the simpler
analysis due to its formulation over Z instead of R. Furthermore, both S-LWE
and S-NTRU can be instantiated with distributions that are not directly linked
to M-LWE and M-NTRU, and are therefore more general.

The technical difficulties of considering arbitrary ranks d, as opposed to
just d = 1 in [8], arise in Sects. 4 and 5 when dealing with matrices over R
rather than single ring elements.

Definition 4 (Structured LWE, [8, Def. 3.1] adapted). Let n, d, q, and m
be positive integers. Let M be a distribution of matrices on Z

n×n
q , and Υ

be a distribution of error-distributions on R
n. Furthermore, let S be a dis-

tribution on Z
nd
q . The goal of the S-LWEn,d,q,m,M,Υ,S problem is to find the

secret s ←↩ S given (A,y) = (A,As+e mod q), with A ←↩ Mm×d, and e ←↩ ψm

where ψ ←↩ Υ .

If m is not specified, it means we consider the samples one by one. A single sample
follows the same definition for m = 1. When Υ is the deterministic distribution
outputting some error distribution ψ, we simply use S-LWEn,d,q,m,M,ψ,S .

Definition 5 (Structured NTRU [8, Def. 5.1] adapted). Let n, d, q, and m
be positive integers. Let M be a distribution of matrices on Z

n×n
q , and Ψ a

distribution on GLnd(Z, q) × Z
nm×nd. The S-NTRUn,d,q,m,M,Ψ problem is to

distinguish the two following distributions (1) G·F−1
q mod q, where (F,G) ←↩ Ψ ,

and F−1
q is the Zq-inverse of F mod q, and (2) U ←↩ Mm×d.

Notice that these formulations are very similar to Definitions 2 and 3 but where
the ring R is embedded as Z

n.
The following states that they are equivalent up to carefully chosen mappings

between the different distributions, as done in [8] for the case of R-LWE. In
particular, the transformation consists in embedding the ring elements using MR

and BRσH . MR maps a ring element to a structured matrix, thus motivating
the names Structured LWE and Structured NTRU.

We provide the proof in the full version [6, Lem. 3.1] for completeness.

Entropic Hardness of Module-LWE from Module-NTRU 87

Lemma 3. Let K = Q(ζ) be a number field of degree n, and R its ring of inte-
gers. Let d, q,m be positive integers. We set M = MR(U(Rq)) the distribution
over Z

n×n
q , where MR is defined in Sect. 2.2.

LWE. Let ψ′ be a distribution over KR, and S ′ a distribution over Rd
q . Define ψ =

(BRσH)(ψ′), and S = (BRσH)(S ′), where BR is defined in Sect. 2.2. Then, the
two problems M-LWEn,d,q,m,ψ′,S′ and S-LWEn,d,q,m,M,ψ,S are equivalent.

NTRU. Now, let ψ′ be a distribution over R. We define Ψ to be the distribution
over GLnd(Z, q) × Z

nm×nd obtained by drawing F from (ψ′)d×d conditioned on
being in GLd(R, q), G from (ψ′)m×d and outputting (MR(F),MR(G)). Then,
the two problems M-NTRUn,d,q,m,ψ′ and S-NTRUn,d,q,m,M,Ψ are equivalent.

Recall that in cyclotomic fields for example, we can choose BR = (U†
HV)−1,

which leads to MR = Mτ and BRσH = τ . In this case, it simply uses
the coefficient embedding to embed M-LWE (resp. M-NTRU) into S-LWE
(resp. S-NTRU). Note that the hardness of S-NTRU can be established for other
distributions Ψ , but based on different assumptions than M-NTRU. We discuss
it in Sect. 5.2. The distribution of the blocks is chosen to be M = MR(U(Rq)).
The reader can keep this choice in mind, but we point out that the results of
Sects. 3.2 and 4 hold for arbitrary distributions M, S and ψ.

3.2 (Mild) Hardness

We consider the two notions of hardness for S-LWE as is done in [8], namely
standard hardness and the weaker notion of mild hardness. We show that stan-
dard hardness naturally implies mild hardness, while the converse requires an
a priori unbounded number of samples in order to use a success amplification
argument. All the proofs are provided in the full version [6, Lem. 3.2 & 3.3].

Definition 6 (Standard and Mild Hardness). Let n, d, and q be positive
integers. Let M be a distribution over Z

n×n
q , and Υ a distribution of distri-

butions over R
n. Finally, let S be a distribution on Z

nd
q . For any (s, ψ) sam-

pled from (S, Υ), we denote by Os,ψ the (randomized) oracle that, when called,
returns (Ai,Ais + ei mod q), where Ai ←↩ M1×d and ei ←↩ ψ.

The S-LWEn,d,q,M,Υ,S problem is standard hard, if for every PPT adver-
sary A and every non-negligible function ε, there exists a negligible function ν
such that P s←↩S

ψ←↩Υ
[PA,Os,ψ

[AOs,ψ (1λ) = s] ≥ ε(λ)] ≤ ν(λ), where AOs,ψ means that

the adversary has access to Os,ψ as a black-box and can thus query it as many
times as they want. The internal probability is over the random coins of A and
the random coins of Os,ψ (meaning over the randomness of the (Ai, ei)).

We now say that the S-LWEn,d,q,M,Υ,S problem is mildly hard, if for every
PPT adversary A and every negligible function μ, there exists a negligible func-
tion ν such that P s←↩S

ψ←↩Υ
[PA,Os,ψ

[AOs,ψ (1λ) = s] ≥ 1 − μ(λ)] ≤ ν(λ). When the

number of available samples m is fixed a priori, we use the same definitions
except that A is only allowed at most m queries to the oracle. The samples can
be written in matrix form as (A,As+e mod q) with A ←↩ Mm×d and e ←↩ ψm.

88 K. Boudgoust et al.

Lemma 4. Let n, d, q be positive integers. Let M be a distribution over Z
n×n
q ,

and Υ a distribution of distributions over R
n. Finally, let S be a distribution

on Z
nd
q . If S-LWEn,d,q,M,Υ,S is standard hard, then it is also mildly hard. The

same result holds when the number of available samples m is fixed.

Lemma 5 ([8, Lem. 3.4] adapted). Let n, d, q be positive integers. Let M be
a distribution over Z

n×n
q , and Υ a distribution of distributions over R

n. Finally,
let S be a distribution on Z

nd
q . If S-LWEn,d,q,M,Υ,S is mildly hard, then it is also

standard hard.

Lemma 5 only holds for an unbounded number of samples, which is not always
realistic. In order to generate new samples from a fixed number, one can use the
rerandomization lemma from [8, Lem. 3.5] which straightforwardly adapt to our
more general setting.

We defer it to the full version [6, Sec. 3.4] due to lack of space.

4 Entropic Hardness of Structured LWE

In this section, we adapt the notion of sometimes lossy pseudorandom distribu-
tion from [8] to our more general version of Structured LWE. They gather two
main properties, pseudorandomness and sometimes lossiness, which are essen-
tial in proving the entropic hardness of S-LWE. Section 4.1 formalizes this idea
that if there exists a sometimes lossy pseudorandom distribution, then S-LWE is
mildly hard. Then, Sect. 4.2 gives sufficient conditions to construct such distri-
butions. We defer the proofs of this section to the full version [6]. The matrices
in this section are over Z, Zq, Q or R, and not R, Rq, K or KR.

Definition 7 ([8, Def. 4.1] adapted). Let n, d, q, and m be positive integers.
Let X be a distribution on Z

nm×nd
q , M a distribution on Z

n×n
q , S a distribution

on Z
nd
q and ψ an error distribution on R

n. We say that X is a sometimes lossy
pseudorandom distribution for (S,M, ψ) if there exists a negligible function ε,
a κ = ω(log2 λ) and a δ ≥ 1/poly(λ) such that the following properties hold.

Pseudorandomness: X is computationally indistinguishable from Mm×d

Sometimes Lossiness: PA←↩X [˜Hε
∞(s|A,As+ e mod q) ≥ κ] ≥ δ, where s ←↩ S

and e ←↩ ψm.

4.1 From Sometimes Lossiness to the Entropic Hardness
of Structured LWE

The following theorem adapted from [8] states that the existence of a sometimes
lossy pseudorandom distribution implies the mild hardness of Structured LWE.
The proof can be found in the full version [6, Thm. 4.1]. The pseudorandomness
property essentially allows us to trade the uniform matrix A from the S-LWE
instance for the matrix GF−1

q mod q (where F−1
q is the Zq-inverse of a short

matrix F) as in Definition 3. Then, the sometimes lossiness property translates

Entropic Hardness of Module-LWE from Module-NTRU 89

the fact that going from s to GF−1
q s + e mod q loses enough information on s

(with non-negligible probability over the choice of F and G) so that it is hard to
recover s. The sometimes lossiness thus entails the hardness of S-LWE when A =
GF−1

q instead of being uniform. By the pseudorandomness, it then yields the
hardness of S-LWE.

Theorem 2 ([8, Thm. 4.2] adapted). Let n, d, q,m be positive integers. Let X
be a distribution on Z

nm×nd
q , M a distribution on Z

n×n
q , S a distribution on Z

nd
q

and ψ an error distribution on R
n. We assume that all the distributions are

efficiently sampleable. If the distribution X is a sometimes lossy pseudorandom
distribution for (M,S, ψ), then S-LWEn,d,q,m,M,ψ,S is mildly hard.

4.2 Construction of Sometimes Lossy Pseudorandom Distributions

We now provide the generalization of [8] to our new problem S-NTRU in order
to give sufficient conditions to construct sometimes lossy pseudorandom distri-
butions, and thus get the mild hardness of S-LWEn,d,q,m,M,ψ,S by Theorem 2.

Albeit more general, the proof follows the same structure as the one from [8],
which is why we defer it to the full version [6, Thm. 4.3]. The goal is to prove
that s has sufficient min-entropy left, even if GF−1

q s + e0 is known. Recall
that BR ∈ R

n×n and for � ≥ 1, BR� = I� ⊗ BR, as defined in Sect. 2.2. Note
that in the following, we need both the inverse modulo q (F−1

q) and the rational
inverse (F−1) of a matrix F ∈ Z

nd×nd
q . The invertibility modulo q implies that

the determinant of F is a unit in Zq, and is therefore non-zero when seen as an
element of Q, which in turns implies the rational invertibility.

Theorem 3 ([8, Thm. 5.8] adapted). Let n, d,m, and q be positive integers,
and β1, β2 > 0. Let Ψ be a distribution on GLnd(Z, q)×Z

nm×nd, M a distribution
on Z

n×n
q , and S a distribution on Z

nd
q . Assume S-NTRUn,d,q,m,M,Ψ is hard.

Additionally, assume that if (F,G) ←↩ Ψ then

–
∥

∥B−1
RmGF−1BRd

∥

∥

2
≤ β1 where F−1 is the rational inverse of F.

–
∥

∥B−1
RdFBRd

∥

∥

2
≤ β2

with probability at least δ ≥ 1/poly(λ) over the choice of (F,G). Define the
distribution X on Z

nm×nd
q by GF−1

q , where (F,G) ←↩ Ψ and F−1
q ∈ Z

nd×nd
q is

the Zq-inverse of F. Let s > β2ηε(Λ(B−1
Rd)) and s0 > 23/2β1s. Further assume

that νsB
Rd

(S) ≥ nd log2(β2) + ω(log2(λ)).

Then X is a sometimes lossy pseudorandom distribution for (S,M,Ds0BRm).

Therefore, Theorems 3 and 2 together yield the following immediate corollary.

Corollary 1. Assume that the conditions of Theorem 3 are satisfied. Then the
problem S-LWEn,d,q,m,M,ψ,S is mildly hard.

90 K. Boudgoust et al.

5 Instantiation for M-LWE

This section constitute our main contribution, which consists in concretely
exhibiting a sometimes lossy pseudorandom distribution that implies the
entropic hardness of M-LWE. We thus set the parameters so that it fits the
requirements of both Sects. 3.1 and 4. As seen in the latter in Theorem 3,
the S-NTRU problem must be hard for this distribution, and the distribution also
needs to be somewhat well behaved in terms of its spectral properties. Lemma 3
gives the equivalence between M-NTRU and S-NTRU, which allows for express-
ing the entire result in the more algebraic module setting. The more technical
aspect of this section comes from Sect. 5.1, in which we study the spectral prop-
erties that we need. In particular, we derive a lower bound on the smallest
singular value of discrete Gaussian matrices over R (once embedded via MσH

).
Then, in Sect. 5.2, we define this distribution and verify that it indeed leads to a
sometimes lossy pseudorandom distribution. Combining it with Corollary 1 and
the equivalence between M-LWE and S-LWE of Lemma 3, we then obtain the
entropic (mild) hardness of M-LWE. All the results in this section hold for arbi-
trary number fields at the exception of Corollary 3 which is stated for cyclotomic
fields.

5.1 Invertibility and Singular Values of Discrete Gaussian Matrices

We now recall [12, Thm. A.5] that gives the density of square discrete Gaussian
matrices over Rq that are invertible modulo qR. This theorem gives concrete
conditions so that DGLd(R,q),γ is efficiently sampleable. The proofs of [12, Thm.
A.5, Lem. A.6] depend on the embedding that is chosen to represent R as a lat-
tice. The paper uses Gaussian distributions in the coefficient embedding over the
lattice τ(R) which differ from our context. As such we need to adapt the proofs
for Gaussian distributions in the canonical embedding over the lattice σH(R).
The changes are mostly limited to volume arguments as the volume of the lat-
tice R depends on the embedding. Also, note that the proofs of [12, Thm. A.5,
Lem. A.6] still hold in any number field and for any splitting behaviour of q
provided that it is unramified, no matter the size of the norm of its prime ideal
factors.

Theorem 4 ([12, Thm. A.5] adapted). Let K be a number field of degree n
and R its ring of integers. Let d ≥ 1 and q > 2n be an unramified prime. We
define Nmax = maxp|qR,p prime N(p) and Nmin = minp|qR,p prime N(p). Assume
that γ ≥ 21/(2d−1) · (|ΔK | · N

(d−1)/(2d−1)
max)1/n. Then

ργ(Rd×d \ GLd(R, q)) ≤ 2r

Nmin
· γnd2

|ΔK |d2/2
· (1 + 8d22−n)

≤ 2r

Nmin
· (1 + 8d22−n) · ργ(Rd×d),

where r is the number of prime factors of qR, and ΔK the discriminant of K.

Entropic Hardness of Module-LWE from Module-NTRU 91

Remark 1. Consider q = 1 mod ν over the ν-th cyclotomic field. Then, qR fully
splits into n distinct prime ideals, each of norm q (Nmin = Nmax). Thus, if γ ≥
21/(2d−1)(|ΔK | · q(d−1)/(2d−1))1/n which is roughly Ω(n), then we have that

PF←↩Dd×d
R,γ

[F ∈ GLd(R, q)] ≤ 2n

q
+ negl(n) (1)

Note that if q ≤ 2n, the inequality is vacuous. However, in practice q is usu-
ally much larger. For example, Kyber [3] uses q ≥ 13 · n while the signature
Dilithium [13] uses q ≥ n5/2 � 2n. This yields a probability of invertibility that
is sufficient for this work, while allowing for reducing the parameter γ as much
as possible. More precisely, it allows for taking γ = Ω(n) with a constant close to
1. Also, as mentioned before, the invertibility in Rq implies that the determinant
is a unit of Rq. As such, it is a non-zero element when seen in K which implies
the K-invertibility.

Although it seems folklore, we weren’t able to find a Gaussian tail bound
on σ(x) in the infinity norm for x ←↩ DR,γ . We therefore provide the follow-
ing lemma, whose proof is mostly based on [24, Cor. 5.3], and which proves
that ‖σ(x)‖∞ ≤ γ log2 n with overwhelming probability. Most of the tail bounds
are with respect to the Euclidean norm and thus require an extra

√
n factor.

Here, we are only interested in the infinity norm. The proof is given in the full
version [6, Sec. B.5].

Lemma 6. Let R be a ring of integers of degree n. Then for any γ > 0 and
any t ≥ 0, it holds that Pf←↩DR,γ

[‖σ(f)‖∞ ≤ γt] ≥ 1 − 2ne−πt2 . Choosing t =
log2 n gives ‖σ(f)‖∞ ≤ γ log2 n with overwhelming probability.

The main challenge in instantiating Theorem 3 is to provide a decent bound
for

∥

∥G′(F′)−1
∥

∥

2
. It seems to require knowledge on the smallest singular value

of F′, which in our case is taken from a discrete Gaussian distribution. We
now provide a lower bound on the smallest singular value of discrete Gaussian
matrices. This automatically gives an upper bound on

∥

∥(F′)−1
∥

∥

2
, as

∥

∥(F′)−1
∥

∥

2
=

1/smin(F′).

Lemma 7. Let K = Q(ζ) be a number field of degree n, and R its ring of
integers. Let I be any fractional ideal of R. Let γ > 0 be a Gaussian parameter.
Then, for all δ ≥ 0, it holds that

PF←↩Dd×d
I,γ

[

smin(MσH
(F)) ≤ δ√

d

]

≤ nCγδ + ncd
γ ,

with Cγ > 0 and cγ ∈ (0, 1) parameters depending on γ.

Proof. Spectral analysis. For convenience, we define S(A) to be the set of
singular values of any complex matrix A. First of all, note that MσH

(F) = (Id ⊗
U†

H)Mσ(F)(Id ⊗ UH). Since UH is unitary, we have S(MσH
(F)) = S(Mσ(F)).

Recall that Mσ(F) is the block matrix of size nd × nd whose block (i, j) ∈ [d]2

92 K. Boudgoust et al.

is diag(σ(fij)). The matrix can therefore be seen as a d × d matrix with blocks
of size n × n. The idea is now to permute the rows and columns of Mσ(F) to
end up with a matrix of size n×n with blocks of size d×d only on the diagonal,
as noticed in e.g. [14]. For that, we define the following permutation π of [nd].
For all i ∈ [nd], write i − 1 = k

(i)
1 + nk

(i)
2 , with k

(i)
1 ∈ {0, . . . , n − 1} and k

(i)
2 ∈

{0, . . . , d − 1}. Then, define π(i) = 1 + k
(i)
2 + dk

(i)
1 . This is a well-defined permu-

tation based on the uniqueness of the Euclidean division. We can then define the
associated permutation matrix Pπ = [δi,π(j)](i,j)∈[nd]2 ∈ R

nd×nd. Then, it holds
that PπMσ(F)PT

π = diag(σ1(F), . . . , σn(F)). Since Pπ is a permutation matrix,
it is unitary and therefore S(Mσ(F)) = S(PπMσ(F)PT

π). As PπMσ(F)PT
π

is block-diagonal, we directly get the singular values by S(PπMσ(F)PT
π) =

∪k∈[n]S(σk(F)). This proves that S(MσH
(F)) = ∪k∈[n]S(σk(F)). In particular,

taking the minimum of the sets yields smin(MσH
(F)) = mink∈[n] smin(σk(F)).

Random matrix theory. By [22, Lem. 2.8], for all i, j ∈ [d] and unit vec-
tor u ∈ C

n, 〈σH(fij),u〉 is sub-Gaussian with sub-Gaussian moment γ. Hence,
since the rows of UH are unit vectors of C

n, it holds that for all k ∈ [n]
and i, j ∈ [d], σk(fij) is sub-Gaussian with moment γ. Thus, for all k ∈ [n], σk(F)
has independent and identically distributed sub-Gaussian entries. A result from
random matrix theory by Rudelson and Vershynin [28, Thm 1.2] yields

P

[

smin(σk(F)) ≤ δ√
d

]

≤ Cγ · δ + cd
γ , (2)

for some parameters Cγ > 0 and cγ ∈ (0, 1) that only depend on the sub-
Gaussian moment γ, for all k ∈ [n]. A union-bound gives that P[smin(MσH

(F)) ≤
δ/

√
d] ≤ nCγδ + ncd

γ , thus concluding the proof.

��
An immediate application of this lemma is for I = R, which gives a probabilistic
bound depending on the constants Cγ and cγ , which in turns depend on γ. Aside
from experimentally noticing that Cγ decreases polynomially with γ and that cγ

seems to decrease exponentially with γ, we do not have closed-form expression
of these constants. By scaling the distribution by γ and applying Lemma 7
for I = γ−1R, we obtain

PF←↩Dd×d
R,γ

[

smin(MσH
(F)) ≤ γδ√

d

]

≤ nCδ + ncd,

with C > 0 and c ∈ (0, 1) no longer depending on γ. In this case, we can
mitigate the union bound blow-up by choosing δ = n−3/2 for example, yield-
ing smin(MσH

(F)) ≥ γ/n
√

nd with non-negligible probability. In what follows,
we thus use the following corollary. We discuss in Sect. 6 how we can experimen-
tally expect a better bound.

Corollary 2. Let K = Q(ζ) be a number field of degree n, and R its ring of
integers. Let γ > 0 be a Gaussian parameter. It holds that

PF←↩Dd×d
R,γ

[

smin(MσH
(F)) ≤ γ

n
√

nd

]

≤ O(n−1/2).

Entropic Hardness of Module-LWE from Module-NTRU 93

5.2 Instantiation

We now define a distribution Ψ over GLnd(Z, q) × Z
nm×nd and prove it verifies

the conditions of Theorem 3 under a careful choice of parameters. This distribu-
tion is actually a direct application of Definition 3 for a Gaussian distribution ψ.
As opposed to what is done in [8], we no longer need to assume the hardness of
Hermite Normal Form M-LWE and we solely rely on the M-NTRU assumption
for rectangular matrices. Nonetheless, the distribution proposed in [8, Sec. 6]
can be adapted to the module setting. We defer the analysis to the full ver-
sion [6, App. A] due to lack of space. In this case, the hardness of S-NTRU is
proven under that of M-NTRU for square matrices and of HNF-M-LWE. It thus
uses a more standard formulation of M-NTRU but at the expense of an addi-
tional assumption, and also slightly worse parameters. This highlights a trade-off
between the underlying hardness assumptions and the parameters.

Definition 8. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers. Let γ > 0 be a Gaussian parameter. We define
the distribution Ψ as follows:

– Choose F ←↩ Dd×d
R,γ such that F ∈ GLd(R, q);

– Choose G ←↩ Dm×d
R,γ .

– Output (MR(F),MR(G)).

Note that by Theorem 4, Ψ is efficiently sampleable if γ is sufficiently large,
depending on the splitting behaviour of q. In particular, as stated in Remark 1,
one can choose γ = [Θ(n) and have a non-negligible probability that a sam-
ple from DRd×d,γ is also in GLd(R, q) for a fully splitted prime q in a cyclo-
tomic field. Also, since MR is a ring homomorphism, if F is invertible modulo q,
then so is MR(F), and vice-versa. By Lemma 3, M-NTRU and S-NTRU, are
equivalent for a specific connection between the distributions. We specifically
defined Ψ so that it matches with M-NTRUn,d,q,m,γ . Hence, assuming the hard-
ness of S-NTRU for this distribution Ψ is equivalent to assuming the hardness
of M-NTRUn,d,q,m,γ . We now show that the distribution Ψ leads to a sometimes
lossy pseudorandom distribution. By Theorem 3 it suffices to bound the maxi-
mal singular values of B−1

RdMR(F)BRd , and B−1
RmMR(G)MR(F)−1BRd , which is

the object of the following lemma.

Lemma 8. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers, and γ > 0. Let (MR(F),MR(G)) ←↩ Ψ . Then,
(1)

∥

∥B−1
RdMR(F)BRd

∥

∥

2
≤ dγ log2 n and (2)

∥

∥B−1
RmMR(G)MR(F)−1BRd

∥

∥

2
≤

nd
√

nm log2 n except with probability at most O(n−1/2) + 2d(d + m)ne−π log2
2 n

over the choice of (MR(F),MR(G)). When d,m = poly(n), this probability is
simply O(n−1/2).

Proof. 1. It holds that B−1
RdMR(F)BRd = MσH

(F). Let (i, j) be in [d]2. As UH

is unitary, we have ‖MσH
(fij)‖2 = ‖Mσ(fij)‖2 = ‖σ(fij)‖∞. As fij ←↩ DR,γ ,

Lemma 6 gives that ‖σ(fij)‖∞ ≤ γ log2 n except with a probability of at most

94 K. Boudgoust et al.

2ne−π log2
2 n. Lemma 1 yields

∥

∥B−1
RdMR(F)BRd

∥

∥

2
≤ dγ log2 n except with a prob-

ability of at most d2 · 2ne−π log2
2 n which is negligible for d = poly(n).

2. We now bound
∥

∥B−1
RmMR(G)MR(F)−1BRd

∥

∥

2
from above. Note that we have

B−1
RmMR(G)MR(F)−1BRd = MσH

(G)MσH
(F)−1.

As ‖.‖2 is sub-multiplicative, we simply bound ‖MσH
(G)‖2 and

∥

∥MσH
(F)−1

∥

∥

2

from above separately. Lemma 6 and 1 again yield ‖MσH
(G)‖2 ≤ √

mdγ log2 n,
except with probability at most md · 2ne−π log2

2 n. Finally, by Corollary 2 we have
that

∥

∥MσH
(F)−1

∥

∥

2
≤ n

√
nd/γ except with a probability of at most O(n−1/2).

Hence
∥

∥B−1
RmMR(G)MR(F)−1BRd

∥

∥

2
≤ nd

√
nm log2 n,

except with probability at most O(n−1/2) + md · 2ne−π log2
2 n.

��
We can now summarize the results of this section in our main theorem by com-
bining Lemma 8 with Corollary 1. Using the equivalence of Lemma 3 between
the module and structured formulations, we have the following.

Theorem 5. Let K be a number field of degree n, and R its ring of inte-
gers. Let m, d be positive integers. Let q be a positive integer and γ > 0
be such that DGLd(R,q),γ is efficiently sampleable. Let S be a distribution
on Rd

q and S ′ = BRσH(S). Assume the hardness of M-NTRUn,d,q,m,DR,γ
, and

that νs(S ′) ≥ nd log2(dγ log2 n)+ω(log2 λ) for some s > γd log2(n)·ηε(R). Then,
for s0 ≥ 23/2 ·s ·n√

nmd log2 n, we have that M-LWEn,d,q,m,Ds0 ,S is mildly hard.

What characterizes the secret distribution is the noise lossiness condition of
Theorem 5. By using Lemma 2, we can have concrete conditions on the entropy
of the secret distribution.

Corollary 3. Let K be the ν-th cyclotomic field of degree n = ϕ(ν), and R its
ring of integers. Let m, d be positive integers. Let q > 2n be a prime such that q =
1 mod ν, and γ > 21/(2d−1)nq(d−1)/(n(2d−1)). Let S be a distribution on Rd

q

and S ′ = τ(S) (see Sect. 3.1). Assume the hardness of M-NTRUn,d,q,m,DR,γ
.

Also, assume that for some γd log2(n) · ηε(R) < s < q
√

π ln(4nd) it holds that

H∞(S) ≥ nd log2(dγ log2 n) + nd log2(q/s) + ω(log2 λ).

Then, for s0 ≥ 23/2 ·s·n√
nmd log2 n, we have that M-LWEn,d,q,m,Ds0 ,S is mildly

hard.

If S is supported on Sd
η for some positive integer η ≥ 2, and for some s >

γd log2(n) · ηε(R) it holds that

H∞(S) ≥ nd log2(dγ log2 n) +
√

2π log2 e · nd · η/s + ω(log2 λ),

then the conclusion still holds.

Entropic Hardness of Module-LWE from Module-NTRU 95

Proof (of Corollary 3). Note that as τ is a bijection, S and S ′ have the same
entropy. Hence, the first statement is obtained simply by combining Theorem 5
with Lemma 2. For the second statement, we take a bounded distribution. In
practical uses of M-LWE, the bounds are considered on the coefficients of the
polynomials, which is why we consider a bound on the infinity norm of the
coefficient embedding of the secrets. To use Lemma 2, we simply have to translate
this bound into a bound on the secrets from S ′ in the Euclidean norm. Since K
is a cyclotomic field, we can choose BR = (U†

HV)−1 as discussed in Sect. 2.2,
which yields BRσH = τ . Hence, we indeed have S ′ = BRσH(S) as required by
Theorem 5. Now, as τ(S) = S ′ is supported on {−η, . . . , η}nd, for s ←↩ S it holds
that ‖s′‖2 = ‖BRσH(s)‖2 = ‖τ(s)‖2 ≤ η

√
nd. Applying Lemma 2 thus yields

the second statement.

��

5.3 On the Statistical Entropic Hardness of M-LWE

Chuengsatiansup et al. [12] show that if the Gaussian ψ = DR,γ is sufficiently
wide, and where q does not split too much, then the M-NTRUn,d,q,m,γ prob-
lem is statistically hard, as we restate below. Note that the original statement
requires d ≥ m, which is actually not needed in the proof. The final proof of
Theorem 6 uses Theorem 4, and also the volume of R but in a ratio, which does
not affect the result when changing the embedding.

Theorem 6 ([12, Thm. A.1] adapted). Let K be a number field of degree n
and R its ring of integers. Let m, d ≥ 1 and q be an unramified prime such
that minp|qR,p prime N(p) = 2Ω(n). We define Nmax = maxp|qR,p prime N(p).

Let γ ≥ max
(

2nqm/(d+m)+2/(n(d+m)), 21/(2d−1) |ΔK |1/n
N

(d−1)/(n(2d−1))
max

)

.

Then, let Xγ be the distribution of GF−1
q mod qR where (F,G) ←↩ Dd×d

R,γ ×Dm×d
R,γ

with F ∈ GLd(R, q), F−1
q the Rq-inverse of F. Then, Δ(Xγ ,U(Rm×d

q)) ≤ 2−Ω(n).

Our hardness assumption for the mild hardness of Entropic M-LWE is statisti-
cally thus proven by Theorem 6 for wide Gaussian distributions and a modulus q
that does not split into too many factors. In this case, our result introduces non-
trivial lower bounds on the entropy of the secret and the size of the noise such
that the M-LWE becomes statistically hard. By Theorem 5, this provides the
mild hardness of M-LWEn,d,q,m,Ds0 ,S with no computational assumption what-
soever. Nevertheless, the parameter γ required by Theorem 6 is roughly 2n

√
q

and hence makes the parameters of M-LWE not usable in practice. In particu-
lar, the entropy of the secret distribution must be very large. It then requires
that both the size of the secret and the size of the masking noise s must be of
the order of at least

√
q, making it hard to build usable cryptosystems purely

based on it. As such, the statistical result should only be seen as an interest-
ing byproduct of the theoretical proof, but not as a groundbreaking result for
practical applications.

96 K. Boudgoust et al.

6 Related Work

In this section, we detail our main result of Theorem 5 and how it places with
respect to existing hardness results for entropic M-LWE. To simplify the concrete
comparison of parameters, we use the case of power-of-two cyclotomic fields and
use the formulation of Corollary 3.

First, note that our reduction is rank-preserving in the sense that the
module rank from our M-NTRU assumption equals the final module rank for
entropic M-LWE. It can be advantageous for the concrete hardness analysis,
but it also gives less room to tweak the parameters in order to achieve small
secrets. In particular, it cannot achieve uniform binary secrets, a variant studied
by Boudgoust et al. [4,5], as it does not carry enough entropy when the rank is
preserved. Although the case of binary secret is not encompassed, it is still inter-
esting to see what we can achieve in terms of minimal bound η on the secret
coefficients (i.e., coefficients in {−η, . . . , η}). When looking at bounded secret
distributions we take the second statement of Corollary 3, and for a uniform
distribution to have maximal entropy.

Our reduction provides theoretical insights and gives confidence in the fact
that M-LWE-based cryptosystems are resilient even if the secret distribution
present a certain amount of leakage. We insist on the fact that our proof does
not encompass practical parameters, but can still be instantiated with concrete
parameters that satisfy all the conditions. We give for example one such set of
parameters in Table 1.

Table 1. Example parameter sets verifying the conditions of Corollary 3.

n d m q γ ε s η s0

256 4 4 1105625551361 297 2−100 11894537 4780 34450257913

The final noise s0 can be improved by a factor of roughly n experimen-
tally. Indeed, the bound on the smallest singular value of Lemma 7 can be
applied for I = R directly which introduces the constant Cγ . Experimentally,
it seems like Cγ = O(1/γδ) for δ ∈ (3/2, 2). Hence, for γ = Ω(n), it would
yield smin(Mσ(F)) ≥ γ/

√
nd with non-negligible probability. This would thus

save a factor of n in the expression of s0. We have studied the lower bound
with a heuristics for cyclotomic fields, and with γ under the condition of The-
orem 4. It yields a lower bound of γ/

√
nd on the smallest singular value with

(experimental) probability at least 3/4 (and going to 1 with polynomial speed
as n grows). A bound of γ/(10

√
nd) is verified with (experimental) probabil-

ity of at least 99/100. The bound seems coherent with the extensive research
around spectral estimations of random matrices. The smallest singular value of
random matrices has been widely studied in order to prove the Von Neumann &
Goldstine conjecture [30] that for a centered unit-variance random matrix A of
size N ×N , smin(A) is asymptotically equivalent to 1/

√
N with high probability.

Entropic Hardness of Module-LWE from Module-NTRU 97

This conjecture has been proven for specific distributions satisfying various con-
ditions on the entries, which our matrix MσH

(F) for F ←↩ Dd×d
R,γ unfortunately

does not verify. The bound seems however to hold heuristically.
As mentioned in the introduction, Lin et al. [19]3 adapted the lossy argument

approach of [7] to the module setting. In order to compare with our hardness
result, we need to make some modifications to their result to adapt it to the
primal ring. We also need to adjust it to our definition of M-LWE which differs
by a factor of q, i.e., considering As + e mod qR instead of q−1As + e′ mod R
with e′ having a Gaussian parameter in (0, 1).

We only summarize the comparison in Table 2 due to lack of space.
A detailed description of this table is given in the full version [6, Sec. 6]. It

essentially shows that we trade the underlying hardness assumption for differ-
ences in the parameters. In particular, the main difference comes from compar-
ing k log2 q with d log2(nd log2 n), as γ can be as low as n. In some parameter
regimes, our proof method thus leads to slightly improved parameters. For exam-
ple, for n = 256, q = n3, and k close to d (close to rank-preserving reduction),
we achieve better parameters in terms of noise and secret size.

Table 2. Comparison of [19] in the primal ring and Corollary 3 for the hardness
of M-LWEn,d,q,m,Ds0 ,S over power-of-two cyclotomic fields of degree n, with module

rank d and secret distribution S. For clarity, we have C′ =
√

2π log2 e. The ηmin and s0
are obtained by fixing a slack α = 1/n, which adds mild conditions on s.
a: The result for arbitrary number fields is that of Theorem 5, but Corollary 3 is stated
for cyclotomic fields.

[19] Corollary 3

Number fields Arbitrary Arbitrarya

Constant secrets Yes No

Rank-preserving No Yes

Hardness assumption M-LWEk,DR,s1
M-NTRUd,γ=Ω(n)

General Distribution S
Minimal Entropy H∞(S) − ω(log2 λ) nk log2 q +nd log2(

q
√

n
s

) nd log2(dγ log2 n) + nd log2(
q
s
)

Maximal Masking Noise s s < q
√

n
√

π
ln(4nd) dγ log2(n)ηε(R) < s < q

√
π

ln(4nd)

Bounded Distribution S (over Sd
η)

Minimal Entropy H∞(S) − ω(log2 λ) nk log2 q +
C′nd · nη

s
nd log2(dγ log2 n) +

C′ndη

s

Minimal secret bound ηmin
1
2 q

k+1/n
d 1

2 (nd log2 n)
1+ 1

nd

Minimal noise s0 s1 · O

(√
mn2d

log2 q
q

k+1/n
d

)
√

8(nd log2 n)2
√

nm · ηε(R)

3 Note that at the time of writing, the paper by Lin et al. is only accessible on ePrint
and has not yet been peer-reviewed.

98 K. Boudgoust et al.

Acknowledgments. This work was supported by the European Union PROMETH
EUS project (Horizon 2020 Research and Innovation Program, grant 780701), by the
PEPR quantique France 2030 programme (ANR-22-PETQ-0008), and further sup-
ported by the Danish Independent Research Council under project number 0165-
00107B (C3PO). We thank Alexandre Wallet and Damien Stehlé for helpful discus-
sions. We also thank our anonymous referees of Eurocrypt 2022 and Indocrypt 2022
for their thorough proof reading and constructive feedback.

References

1. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3),
173–213 (2018)

2. Bernstein, D. J., et al.: NTRU prime round-3 candidate to the NIST post-quantum
cryptography standardisation project (2020)

3. Bos, J. W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
In: Euro S and P, pp. 353–367. IEEE (2018)

4. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical hardness
of module-LWE: the linear rank case. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 289–317. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3 10

5. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-
LWE with binary secret. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704,
pp. 503–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-
3 21

6. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Entropic hardness of
module-LWE from module-NTRU. IACR Cryptol. ePrint Arch, p. 245 (2022)

7. Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 551–575.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 19

8. Brakerski, Z., Döttling, N.: Lossiness and entropic hardness for ring-LWE. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 1–27. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 1

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584. ACM (2013)

11. Chen, C., et al.: NTRU round-3 candidate to the NIST post-quantum cryptography
standardisation project (2020)

12. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: Modfalcon:
compact signatures based on module-NTRU lattices. In: AsiaCCS, pp. 853–866.
ACM (2020)

13. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

14. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 19

15. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 1

https://doi.org/10.1007/978-3-030-64834-3_10
https://doi.org/10.1007/978-3-030-64834-3_10
https://doi.org/10.1007/978-3-030-75539-3_21
https://doi.org/10.1007/978-3-030-75539-3_21
https://doi.org/10.1007/978-3-030-45724-2_19
https://doi.org/10.1007/978-3-030-64375-1_1
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-030-92068-5_1

Entropic Hardness of Module-LWE from Module-NTRU 99

16. Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: ICS, pp. 230–240. Tsinghua University
Press (2010)

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

18. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

19. Lin, H., Wang, Y., Wang, M.: Hardness of module-LWE and ring-LWE on general
entropic distributions. IACR Cryptol. ePrint Arch, p. 1238 (2020)

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

21. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory
Comput. 14(1), 1–17 (2018)

22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

24. Peikert, C.: Limits on the hardness of lattice problems in phlphp norms. Comput.
Complex. 17(2), 300–351 (2008)

25. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (2016)

26. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 3–35. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 1

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

28. Rudelson, M., Vershynin, R.: The littlewood-offord problem and invertibility of
random matrices. Adv. Math. 218, 600–633 (2008)

29. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

30. von Neumann, J., Goldstine, H.H.: Numerical inverting of matrices of high order.
Bull. Amer. Math. Soc. 53, 1021–1099 (1947)

https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-030-92062-3_1
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Symmetric Key Cryptology

New Algorithm for Exhausting Optimal
Permutations for Generalized Feistel

Networks

Stéphanie Delaune1, Patrick Derbez1, Arthur Gontier1(B),
and Charles Prud’homme2

1 Univ Rennes, CNRS, IRISA, Rennes, France
{stephanie.delaune,patrick.derbez,arthur.gontier}@irisa.fr

2 TASC, IMT-Atlantique, LS2N-CNRS, 44307 Nantes, France
charles.prudhomme@imt-atlantique.fr

Abstract. The Feistel construction is one of the most studied ways of
building block ciphers. Several generalizations were proposed in the lit-
erature, leading to the Generalized Feistel Network (GFN) construction,
in which the round function operates on each pair of blocks in paral-
lel until all branches are permuted. At FSE’10, Suzaki and Minematsu
studied the diffusion of such construction, raising the question of how
many rounds are required so that each block of the ciphertext depends
on all blocks of the plaintext. Exhausting all possible permutations up
to 16 blocks, they observed that there were always optimal permuta-
tions mapping even-number input blocks to odd-number output blocks
and vice versa. Recently, both Cauchois et al. and Derbez et al. pro-
posed new algorithms to build optimal even-odd permutations for up to
36 blocks. In this paper, we present a new algorithm based on iterative
path building to search for optimal Feistel permutation. This algorithm
is much faster in exhausting optimal non-even-odd permutations than all
the previous approaches. Our first result is a computational proof that no
non-even-odd permutation reaches a better diffusion round than optimal
even-odd permutations up to 32 blocks. Furthermore, it is well known
that permutations with an optimal diffusion round do not always lead to
optimal permutations against differential cryptanalysis. We investigate
several new criteria to build permutations leading to more secure GFN.

Keywords: Block cipher · Feistel network · Differential analysis

1 Introduction

The Feistel Network is a classical design of modern block ciphers, used for many
primitives as DES [6], TWINE [11] and SIMON [2]. The core idea of such a construc-
tion is to split the plaintext into two halves of equal length called blocks. At each
round, the second block is duplicated and one side goes through a function F
and is then xored to the first block. The two resulting blocks are then inverted.

The work presented in this article was funded by the French National Research Agency
as part of the DeCrypt project (ANR- 18-CE39-0007).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 103–124, 2022.
https://doi.org/10.1007/978-3-031-22912-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_5

104 S. Delaune et al.

One big advantage of this scheme is that the function F has not to be invertible
since the decryption function is the same as the encryption one in reverse order.
Since its introduction, several improvements have been proposed to the original
design. In particular, at ASIACRYPT’96, Nyberg defined the Generalized Feis-
tel Network (GFN) which splits the message into 2k blocks and uses a round
function of the form:

(x0, x1, . . . , x2k−1) −→ π(x0 ⊕ Fi,0, x1, . . . , x2k−2 ⊕ Fi,k−1, x2k−1)

where each Fi,j is a pseudorandom function, and π is a permutation of the
blocks [7]. This design was for instance used in both the block ciphers TWINE [11]
and PICCOLO [9]. It is a generalization of the more classical Type-2 Feistel con-
struction proposed by Zheng et al. at CRYPTO’89 [12], in which the permuta-
tion π is always the cyclic shift.

Cryptographic properties of GFN highly depend on the permutation used
for blocks. For instance, if the identity function was chosen as the permuta-
tion, the resulting block cipher would be very weak as the parallel application of
weak ciphers. Thus, selecting the optimal permutation is an interesting task for
designers. At FSE’10, Suzaki and Minematsu focused on finding the permuta-
tions reaching the lowest diffusion rounds [10]. More precisely, they searched for
the permutations minimizing the number of rounds required to achieve full block
diffusion: each block of the ciphertext depends on all blocks of the plaintext and
vice-versa. This criterion is tied to the resistance of the resulting cipher against
impossible differential attacks, a powerful cryptanalysis technique. Along with
a lower bound on the diffusion round of a GFN of 2k blocks, Suzaki and Mine-
matsu gave optimal permutations (w.r.t. the diffusion round) for 2 ≤ 2k ≤ 16. It
is worthy to note that such an optimal permutation was then used to design block
ciphers such as TWINE [11]. At FSE’19 Cauchois et al. identified new equivalence
classes regarding the diffusion rounds and, together with new algorithms, were
able to give optimal permutations up to 2k = 20 [3]. Furthermore, restricting the
search to even-odd permutations (i.e. permutations sending blocks of even index
to blocks of odd ones and vice-versa), they were able to find the best even-odd
permutations up to 2k = 24. Finally, few months later, Derbez et al. proposed
a new characterization of the problem restricted to even-odd permutations as
well as a clever algorithm to exhaust the search space. As a result they found
the best even-odd permutations up to 2k = 36 [5]. In particular, they solved the
problem opened by Suzaki and Minematsu regarding the case 2k = 32.

It is also possible to optimize GFN for other criteria than the diffusion round.
For instance in [8], Shi et al. searched for the permutations offering the best
resistance against Demirci-Selçuk meet-in-the-middle attacks [4].

Our contribution. Since the original work of Suzaki and Minematsu [10], most
of the new algorithms to find the permutations lowering the diffusion round
were dedicated to the even-odd case. There are two main reasons for that. First,
considering even-odd permutations only does highly reduce the search space,
making it possible to exhaust it. Second, it was shown that up to 2k = 20 at
least one of the optimal permutations is an even-odd permutation.

New Algorithm for Exhausting Optimal Permutations 105

In this paper, we focus on non-even-odd permutations and propose a new
algorithm to solve the general case. In previous approaches, the core part of
algorithms was somehow dedicated to answering the question: does block i dif-
fuse into all blocks after R rounds? In our new algorithm, we answer the question:
does block i diffuse to block j after R rounds? This more precise question allows
us to cut the search earlier than previous algorithms while exhausting the per-
mutations. Thus, our first result is a computational proof that, up to 2k = 32,
there is always at least one even-odd permutation which is optimal regarding the
diffusion round. The best known diffusion rounds for even-odd and non-even-odd
permutations are given in Table 1.

In the second part of the paper, we investigate more sophisticated criteria
than the diffusion round and study whether the optimal permutations lead to
optimal GFN regarding differential cryptanalysis.

Table 1. State of the art regarding optimal Diffusion Round. k is the number of Feistel
pairs and the references are : Suzaki et al. [10], Cauchois et al. [3], Derbez et al. [5]

2k Fibonacci Even-odd Non-even-odd

bound DR Ref DR Ref

6 5 5 [10] 6 [3,10]

8 6 6 6

10 6 7 7

12 7 8 8

14 7 8 8

16 7 8 8

18 8 8 [3] 9 [3]

20 8 9 9

22 8 8 9 new

24 8 9 ≥ 9

26 8 9 [5] ≥ 9

28 9 9 ≥ 9

30 9 9 ≥ 9

32 9 9 ≥ 9

2 Preliminaries

We recall in this section some notions and useful results that will be used
throughout this paper.

2.1 Generalized Feistel Networks

Generalized Feistel Networks have been introduced by [7] as a generalization
of Type-2 Feistel construction [12]. Roughly, the cycle shift performed at each
round in [12] is replaced by an arbitrary permutation leading to stronger schemes
with better diffusion if the permutation is chosen wisely.

106 S. Delaune et al.

Definition 1. A Generalised Feistel Network (GFN) is defined by a number k
of Feistel pairs, a word size n, a number of rounds r, a permutation π over 2k
elements (named blocks), and r · k cryptographic keyed functions F i

j from F
n
2 to

F
n
2 (with 1 ≤ i ≤ r, and 1 ≤ j ≤ k). The ciphertext of a message of size 2k · n

is given by Rr ◦ . . . ◦ R1, where Ri is the round function:

Ri : (X0, . . . , X2k−1) → π(X0 ⊕ F i
1(X1),X1, . . . , X2k−2 ⊕ F i

k(x2k−1),X2k−1)

In this paper, neither the word size n, nor the exact definition of the keyed
functions F j

i are relevant. Hence, we simply use F hereafter, and we denote
GFNk

π a GFN with k Feistel pairs using permutation π.

Fig. 1. Round function Ri of a GFN with k Feistel pairs

In the following, we denote by Xi = (Xi
0,X

i
1, . . . , X

i
2k−1) the input data of

the i + 1th round for i ≥ 0. We say that Xi
j is an even block when j is even, and

an odd one otherwise. An illustration for round Ri is given in Fig. 1.

2.2 Diffusion Round

In [10], it has been observed that the diffusion round of a permutation π (denoted
DR(π)) is closely related to the security of the corresponding GFN against some
of the attacks mentioned above. Intuitively, the diffusion round is the round at
which full diffusion is achieved. In other words, assuming good enough functions
Fi,j , the diffusion round is the round from which every bit of the ciphertext
depends on every bit of the plaintext. We now formally recall the definition of
this notion.

Given r > 0 and i, j ∈ {0, . . . , 2k − 1}, if Xr
i is expressed by a formal expres-

sion containing a non-zero term in X0
j , we say that X0

j diffuses to Xr
i , and

we say that X0
j fully diffuses after r rounds when X0

j diffuses to Xr
i for all

i ∈ {0, . . . , 2k − 1}. For instance, we have that X0
0 diffuses to X1

π(0) whereas X0
1

diffuses to both X1
π(0) and X1

π(1). In general, an even block Xr
i will only diffuse

to its successor Xr+1
π(i) , whereas an odd block Xr

i will diffuse to its successor Xr+1
π(i)

and the successor of its even neighbour Xr+1
π(i−1).

New Algorithm for Exhausting Optimal Permutations 107

Definition 2. Given a permutation π over 2k elements, we denote DRi(π) as
the minimum number of rounds r such that X0

i fully diffuses after r rounds.
Then, the diffusion round of a permutation π is given by
DR(π) = max0≤i<2k{DRi(π)}.

F F F F

X0
0

F F F F

F F F F

F F F F

F F F F

F F F F

Fig. 2. Diffusion of X0
0 after r = 6 successive rounds

Example 1. Let π = (3,0,5,6,1,2,7,4). This is an even-odd permutation. Figure 2
illustrates the diffusion of X0

0 after successive rounds. For instance, we have that
X0

0 diffuses to X2
5 and X2

6 , and full diffusion regarding X0
0 is reached after 6

rounds, thus DR0(π) = 6.

In GFN, decryption is made using π−1 and thus we want full diffusion to be
effective for π and π−1. We denote DR∗(π) = max(DR(π),DR(π−1)).

As recalled in introduction, finding permutations minimizing the diffusion
round has deserved a lot of attention during the past few years. To ease the
problem of finding optimal permutations, the focus has been made on even-odd
permutations as they seem to achieve better diffusion [3,5]. The belief that even-
odd permutations are better has only been formally established by exhausting
all the optimal permutations up to 2k = 20 [3]. In this paper, relying on a novel
algorithm based on iterative path building, we will show that this is true up to
2k = 32.

108 S. Delaune et al.

3 Path Building Algorithm

In this section, we first explain how to represent a permutation π over 2k elements
as a graph before describing our algorithm. This representation fits well the
understanding of our algorithm since its core idea is to build paths. This graph
will also be of great help to propose a new characterization of the notion of
diffusion round.

3.1 Graph Representation of a Feistel Permutation

Definition 3. Given a permutation π over 2k elements, the Feistel permutation
graph associated to π is the graph Gπ = (V,E) where:

– V = Ve ∪ Vo with Ve = {0, 2, . . . , 2k − 2}, and Vo = {1, 3, . . . , 2k − 1};
– E = Eε ∪ Eπ with Eε = {(1, 0), (3, 2), (5, 4), . . . , (2k − 1, 2k − 2)}, and Eπ =

{(u, v) | u, v ∈ V ∧ π(u) = v}.
The set V is the set of all nodes which is divided into two halves, the set of even
nodes Ve and the set of odd nodes Vo representing respectively the even blocks
and the odd ones. The set Eπ is the set of all the edges of the permutation π,
whereas Eε is the set of edges representing the S-Box passages from the odd to
the even nodes (also called epsilon-transitions).

Example 2. Let π = (2, 4, 5, 6, 9, 11, 7, 1, 3, 12, 15, 0, 13, 14, 8, 10). This is a non-
even-odd permutation whose associated Feistel permutation graph is as follows:

Legend :
Vo: odd blocks
Ve: even blocks

Eε: epsilon-transitions
(S-Boxes)

Eπ: permutation
transitions

0 2
5

11

1

4

9

12
1314

8

3

6

7

10

15

In the following, we will often refer to the Feistel permutation graph Gπ of a
permutation π. The sets Ve, Vo, Eπ, Eε will be used to represent the even blocks,
the odd blocks, the permutation transitions and the ε-transitions.

New Algorithm for Exhausting Optimal Permutations 109

Definition 4. A path p = (e1, . . . , en) is a finite sequence of edges from E
which joins two nodes from V . Moreover, when en ∈ Eπ, such a path is called a
diffusable path (or d-path for short).

We say that a path p is of length � if there are exactly � edges from Eπ in p.
Note that there can be multiple occurrences of the same edge in a path. We
sometimes need to consider d-paths since a Feistel round is composed of one
edge in Eε followed by one edge in Eπ. Based on this graph representation, we
propose a new characterization of DR(π).

Corollary 1. DR(π) is the smallest integer R such that:
∀ u, v ∈ V , there exists a d-path of length R from u to v in Gπ.

In order to compute the diffusion round of a permutation π, we can consider
the d-paths of a certain length between all pairs of nodes in the graph Gπ.
As already noticed in [5], in the specific setting of even-odd permutations, it
is actually sufficient to consider some specific sets of nodes, and only paths of
length R−1 to establish that the diffusion round is equal to R. In the following,
we formally define these specific paths for the general case (Proposition 1) and
the even-odd case (Proposition 2).

Proposition 1. Let π be a permutation, DR(π) is the smallest integer R such
that: ∀a ∈ Ve, ∀b ∈ Vo, there exists a path of length R − 1 from a to b in Gπ.

Proof. Let a ∈ Ve and b ∈ Vo we have that (a+1, a), (b, b−1) ∈ Eε with a+1 ∈ Vo

and b − 1 ∈ Ve. Furthermore, we have g, h ∈ V such that (b, g), (b − 1, h) ∈ Eπ

(see the graph below with i = a + 1 and j = b − 1).

a

i

. b

j h

g

1) From Corollary 1, we know that there is a d-path of length R from a to g,
thus there is a path of length R − 1 from a to b.

2) Now, suppose that there is a R′ < DR(π) such that ∀ a ∈ Ve, b ∈ Vo there
is a path of length R′ − 1 from a to b. We then have a d-path of length R′ from
i to g, from i to h and from a to h. Since we have these d-paths for each pair
a ∈ Ve, b ∈ Vo, we have full diffusion with R′ leading to a contradiction. ��
For any permutation π, the Proposition 1 reduces the number of paths we have
to consider when studying diffusion. In the case of an even-odd permutation, the
length of these paths can be further reduced.

Proposition 2. Let π be an even-odd permutation, DR(π) is the smallest inte-
ger R such that: ∀c ∈ Vo, ∀d ∈ Ve, there exists a path of length R− 3 from c to d
in Gπ.

110 S. Delaune et al.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a +
1, a), (b, b − 1) ∈ Eε with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have
g, h ∈ V such that (b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a+1 and
j = b − 1).

ca

i

. . . d b

j h

g

1) From Proposition 1, we know that there is a path of length R − 1 from a
to b, thus there is a path of length R − 3 from c to d.

2) Now suppose that there is R′ < DR(π) such that ∀ c ∈ Vo, d ∈ Ve there
is a path of length R′ − 3 from c to d. We then have a d-path of length R′ from
i to g, from i to h and from a to h. Since we have these d-paths for all pairs
a ∈ Ve, b ∈ Vo then we have full diffusion with R′ leading to a contradiction. ��

3.2 The MakePath Algorithm

We present a new algorithm to search for permutations with optimal diffusion
round. Our algorithm is based on path building to efficiently enumerate permu-
tations with full diffusion or any other path-based property. Thanks to Propo-
sitions 1 and 2, we will only consider paths of length R − 3 from odd to even
nodes in the even-odd case and paths of length R − 1 from even to odd nodes in
the general case. To obtain effective procedures, we enumerate the paths while
building a Feistel permutation graph. With this method, the more paths we add
to the graph, the fewer possibilities remain for the following ones. Thanks to this,
we can also define a strategy to cut the search as soon as possible by trying the
paths with the least possibilities first. Our algorithm is composed of the three
following functions:

– MakePath builds all the possible paths from a node a to a node b and is
described in Algorithm 1. Starting from node a, the function calls itself on
each possible next node for the path until all paths reach b with the length R.
More precisely, on a node x, there is only three possibilities. If x is odd, there
is one call to the even node x − 1. In this call, the length l does not decrease
because ε-transitions are not counted in the path length (line 2–3). If π[x]
has already been fixed, we have no choice, and thus we follow it (line 4–5). If
π[x] is free, we have to try all the remaining free nodes (line 7–9). On each
valid path, the function calls NextPath that will choose the next path to
build (line 13).

– HasProperty checks whether the property of interest is satisfied between
two nodes. For example, when considering the full diffusion property, we have
to check whether a path of length R exists between 2 nodes (more details in
Sect. 4).

New Algorithm for Exhausting Optimal Permutations 111

– NextPath chooses two nodes a and b that does not have the property
described in HasProperty. If such a pair of nodes exists, it calls MakePath
on it to link them with the next path. It is described in Algorithm 2. For the
choice of a and b, the strategy consists of starting by the paths with the least
possibilities. To do so, we can either count the remaining possible paths during
the search, or we can set a static path priority (more details in Sect. 4.1).

Algorithm 1: MakePath(x, π, b, l)
Data: x: current node, π: partial permutation, b: target node, l: remaining

length to reach R
1 if l > 0 then
2 if x is odd then
3 MakePath(x − 1, π, b, l);
4 if π[x] is fixed then
5 MakePath(π[x], π, b, l − 1);
6 else
7 for all y not used in π do
8 π[x] ← y;
9 MakePath(y, π, b, l − 1);

10 end
11 free π[x];

12 end

13 else if x = b then NextPath(π) ;

Algorithm 2: NextPath(π)
Data: π: partial permutation

1 for all (a, b) given by Strategy() do
2 if ¬HasProperty(a, π, b, R) then
3 MakePath(a, π, b, R);
4 return;

5 end
6 Add π to solution pool

Our algorithm starts by a call to NextPath with an undefined permutation
and a given global parameter R. It stops when one of the following conditions
holds:

1. There is no possible path from a to b, and thus there is no solution.
2. The permutation is complete, i.e. fully defined: it is a solution if HasProp-

erty is true for each pair of nodes.
3. The algorithm ends without fixing the whole permutation. In this case, any

completion of the permutation lead to a valid solution.

112 S. Delaune et al.

Once all the recursive branches of our algorithm have been explored, all the
paths of length R have been exhausted. Thus, at the end of the algorithm, we find
all the permutations achieving full diffusion at round R if any. The algorithm can
build these permutations from scratch, but it will find a lot of similar solutions.
Indeed, starting by a graph like the one given in Example 2, a similar graph can
be obtained by simply relabelling the Feistel pairs. To avoid these redundancies,
we need to break some symmetries before running the search. To do so, we will
rely on the notion of skeleton defined in the following section.

3.3 Skeletons

As explained in [3], in the even-odd case, the permutation can be split in two
parts, the odd to even edges and the even to odd edges. This makes the search
easier (k!)2. Moreover, half of the permutation can be further reduced to all
its possible cycle decompositions to break some symmetries. This reduces the
search to Nkk! where Nk is the number of partitions of k. In the following, we
propose a generalization of the cycle decompositions to consider non-even-odd
permutations as well, and we rely for that on our graph representation.

Definition 5 (ε-cycle). An ε-cycle is a path c = (e1, . . . , e2l) in which the first
and last nodes are equal and edges alternate between Eπ and Eε one by one.

We note a l-ε-cycle an ε-cycle of size l i.e. with l ε-transitions. Moreover, we
will only use one representative of c = (e1, . . . , e2l) and we will not consider all
the equivalent ε-cycles like (e2l, e1, . . . , e2l−1) or (e1, . . . , e2l, e1, . . . , e2l). Some
examples are given in Fig. 3.

Fig. 3. 1-ε-cycle, 2-ε-cycle, and 3-ε-cycle

Let P be a partition of the integer k. For each i ∈ P , we fix one representative
ε-cycle of the corresponding size. For example, there are three possible decom-
positions in ε-cycle for k = 3, i.e. {3}, {2, 1}, and {1, 1, 1}. This corresponds to
one 3-ε-cycle, or one 2-ε-cycle with one 1-ε-cycle, or three 1-ε-cycles. This holds
only for the even-odd case. To have a similar method in the general case, we rely
on ε-chains to handle the non-even-odd parts of the permutation.

Definition 6 (ε-chain). An ε-chain is a path ch = (e1, . . . , e2l+1) in which the
two first nodes are in Vo and the two last nodes are in Ve. The edges alternate
between Eπ and Eε one by one.

New Algorithm for Exhausting Optimal Permutations 113

We note an l-ε-chain an ε-chain of size l, i.e. with l ε-transitions. Except for the
first and the last node, all the nodes in an ε-chain are pairwise distinct. Indeed,
if a node appears two times in an ε-chain, then it is not an ε-chain but an ε-
cycle. However, the first and last node can be in an other structure, like an other
ε-cycle or an other ε-chain, or in the same ε-chain, making the ε-chain loops on
itself. This loop may occur at the beginning of the ε-chain, at its end, or on both
sides. Some examples of free and looping chains are given in respectively Figs. 4
and 5.

Fig. 4. A 3-ε-chain.

Fig. 5. Two 3-ε-chains looping on themselves.

Definition 7. A skeleton of size k is a set of ε-cycles and ε-chains whose sum
of sizes is k.

Example 3. The skeleton of the graph given in Example 2 is depicted below (see
Fig. 6). It is composed of three ε-cycles of size 3, 1, and 1, as well as two ε-chains
of size 2 and 1.

Fig. 6. Skeleton of Example 2

114 S. Delaune et al.

The skeleton of Fig. 6 is also valid for graphs similar to Example 2 but with
different node numbers. In fact we can permute two pairs of nodes to find a
different permutation having the same skeleton. This is why we will only use one
representative of each skeleton. The number of skeletons is given by the formula∑k

i=0 Ni × Nk−i with Ni the number of partitions of the integer i. The formula
has two parts, one for the ε-cycles with Ni and one for the ε-chains with Nk−i.
The formula then sums the skeletons with each possible division into ε-cycles and
ε-chains. For 2k = 16 there are 22 even-odd skeletons and 163 skeletons with at
least one ε-chain. For 2k = 32 there are 231 even-odd skeletons and 5591 non-
even-odd ones. Starting from a skeleton, we can complete it with edges to make a
Feistel permutation graph. These edges are {(a, b) | a ∈ Vo, b ∈ Ve}. Furthermore,
if there is one or more ε-chain in the skeleton, we also need to fix the first
and last node of the ε-chains. To do this, we use the MakePath algorithm on
each partial solution (skeleton). It is much faster than building the permutation
from scratch because some symmetries are broken. The algorithm can be run on
each skeleton independently to facilitate parallelization. Nevertheless, there are
some symmetries left in our algorithm. Indeed, a l-ε-cycle will produce l similar
solutions. Moreover, if there are m times the same ε-cycle or ε-chain, there will
be m! similar solutions. Breaking these symmetries in our algorithm increases its
running time, and it is left to future work to take them into account effectively.

4 Non-even-odd Case: Search for Optimal Permutations

The search for optimal permutation has been focused on even-odd permutation
because in practice, the non-even-odd ones where never better up to 2k = 20.
In this section, we first use our algorithm to show that this is true for up to 32
blocks. We then give a useful example that we found while looking for a general
proof.

4.1 Up to 2k = 32

To test whether a non-even-odd permutation can have a better diffusion round
than the even-odd ones, we used Algorithm 1 on all the skeletons having at least
one ε-chain. We fixed R to be one round less than the diffusion round known
for the best even-odd permutation, and ran our algorithm with the property
HasPath (described in Algorithm 3).

The running time of our algorithm is highly related to the strategy imple-
mented into the NextPath function (Algorithm 2). The best strategy we found
was to first build the paths that start and end on the smallest ε-chains. This
is because the paths starting by consecutive even nodes and ending by consec-
utive odd nodes have the least possibilities and therefore are most likely to be
impossible to build. The case 2k = 22 is quite small so we increased R to find
the optimal non-even-odd permutations. They are given in Table 2. These opti-
mal permutations have a diffusion round of 9 which is one round more than the
optimal even-odd permutations.

New Algorithm for Exhausting Optimal Permutations 115

Algorithm 3: HasPath(x, π, b, l)
Data: x: current node, π: partial permutation, b: target node, l: remaining

length
1 if l > 0 then
2 return (x is odd ∧ HasPath(x − 1, π, b, l))
3 ∨ (π[x] is fixed ∧ HasPath(π[x], π, b, l − 1));

4 else return x = b ;

Table 2. Optimal Non-even-odd permutations for 2k=22

π =(3, 18, 5, 16, 7, 12, 9, 10, 1, 14, 13, 2, 15, 8, 11, 21, 17, 4, 19, 6, 0, 20)

π =(3, 6, 5, 12, 7, 10, 9, 18, 1, 2, 13, 4, 15, 16, 17, 8, 11, 21, 19, 14, 0, 20)

π =(3, 12, 5, 0, 7, 10, 9, 18, 1, 2, 13, 4, 15, 16, 17, 21, 11, 8, 19, 14, 6, 20)

π =(3, 8, 5, 16, 7, 21, 9, 14, 1, 2, 13, 18, 15, 0, 17, 6, 11, 12, 19, 4, 10, 20)

π =(3, 21, 5, 10, 7, 0, 9, 14, 1, 2, 13, 18, 15, 8, 17, 6, 11, 12, 19, 4, 16, 20)

π =(3, 8, 5, 6, 7, 4, 1, 12, 11, 2, 9, 21, 15, 19, 13, 17, 10, 16, 14, 20, 0, 18)

π =(3, 4, 5, 14, 7, 0, 9, 16, 11, 2, 1, 12, 15, 21, 13, 6, 19, 10, 17, 8, 18, 20)

π =(3, 6, 5, 10, 7, 16, 9, 18, 11, 14, 1, 2, 15, 4, 13, 0, 19, 8, 17, 21, 12, 20)

For 2k = 24 to 2k = 32, our algorithm ended without finding any non-even-
odd permutations with a better diffusion round than the optimal even-odd ones.
As a result, we establish that the non-even-odd permutations do not achieve
a better diffusion round than the even-odd permutations up to 2k = 32. All
results are summarized in Table 1 and have been obtained on a 128 core CPU.
The hardest instance with 32 blocks and R = 8 takes around 8 h of computing
time. In Cauchois et al [3], it is mentioned that ”246.4 tests of diffusion rounds”
are needed when considering 20 blocks. Actually, our algorithm is faster and
tackles this instance in around 8 s on our supercomputer. The source code is
publicly available at https://gitlab.inria.fr/agontier/ANewAlgoForGFN.

4.2 Towards an Impossibility Result

Intuitively, a non-even-odd permutation should not reach a better diffusion round
than the optimal even-odd one. Indeed, every time there are two consecutive odd
nodes u, v ∈ Vo such that (u, v) ∈ Eπ, there are also somewhere in the graph
Gπ two consecutive even nodes x, y ∈ Ve such that (x, y) ∈ Eπ. We recall that
each odd node has two outgoing edges (one in Eπ and one in Eε) whereas each
even node has only one. Therefore, all the paths starting from the node x have
one edge less to achieve full diffusion and any path that passes through (u, v)
will gain one edge. Since the number of even to even edges is the same as the
number of odd to odd edges, one could think that they compensate.

One of our objective during this work was to provide a formal proof that
the diffusion round of the non-even-odd permutations are also bounded by the

https://gitlab.inria.fr/agontier/ANewAlgoForGFN

116 S. Delaune et al.

Fibonacci bound as for even-odd permutations. Thus we made the conjecture
that the total number of paths in a permutation graph and its inverse permuta-
tion graph could not exceed the sum of the Fibonacci bounds. However, we found
a non-even-odd permutation for which the number of odd nodes reached from
the even nodes was in total, and with redundancy, greater than the even-odd
Fibonacci bound, which suggests that an improvement of the diffusion round is
possible by considering non-even-odd permutations.

Example 4. We consider the permutation π =(3,2,1,5,0,6,7,4) depicted in the
leftmost graph of Fig. 7. The rightmost one represents π−1.

Fig. 7. Permutation graph of π and π−1

On these two graphs, we give in Table 3 the number of paths of length R = 5
that ends on an odd node from each even node. There are 22 paths for π, and
21 paths for π−1.

Table 3. Number of paths in π and π−1

start node 0 2 4 6

number of paths 5 8 5 4

start node 0 2 4 6

number of paths 4 5 5 7

When considering only the even-odd permutations, the maximum number
of paths given by the Fibonacci suite is 5 for each node and thus 4 × 5 = 20
in total. This example shows that the diffusion round in the general case (i.e.
considering both even-odd and non-even-odd permutations) cannot be bounded
by the Fibonacci suite if we consider the sum of all paths on π and π−1. However,
we may note that there is one node (e.g. node 6 for π) having less paths than the
Fibonacci suite. We always observe this phenomenon on the permutations we
considered. We think that to establish an impossibility result (a non-even-odd
permutation can not be better than the optimal even-odd one), we should focus
on these nodes.

New Algorithm for Exhausting Optimal Permutations 117

5 Even-odd Case: Search for New Properties

As studied in the literature, the diffusion round is a property that can be used
to find good Feistel permutations. This criteria is tied to the resistance of the
resulting ciphertext against e.g. impossible differentials, saturation attacks and
pseudorandomness analysis [10]. However, permutations with optimal diffusion
round can also be weak against other cryptanalysis techniques. For instance,
the designers of WARP [1] selected a permutation achieving full diffusion in 10
rounds while permutations with a diffusion round of 9 actually exist. The main
reason is that all optimal permutations for the diffusion round are much weaker
regarding truncated differential cryptanalysis than the one they selected. These
permutations require at least 32 rounds to reach 64 active S-Boxes, while the
permutation used in WARP (which is non optional w.r.t. the diffusion round) only
requires 19 rounds to reach the same resistance.

Therefore, it would be interesting to look for other properties which might
lead to stronger ciphers. With our algorithm it is quite simple to change the
property we are looking for as we only need to provide a new HasProperty
function. In this section, we thus propose several properties derived from the
diffusion round and study the quality of their solutions against truncated differ-
ential cryptanalysis. We consider two properties, the first one is a generalization
of the diffusion round where we consider not one but X paths between each pair
of blocks. The second one consists of counting the S-Boxes on each path instead
of the paths themselves.

5.1 Number of Paths

The diffusion round property ensures that each solution has at least one d-path of
length R between each pair of blocks. We propose a new property parameterized
by an integer X, namely X-DR, which extends the diffusion round to at least
X d-paths of length R between each pair of blocks.

Definition 8. X-DR(π) is the smallest integer R such that:
∀u, v ∈ V , there are X d-paths of length R from u to v in Gπ.

This new property introduces the parameter X denoting the minimum num-
ber of paths we want between each pair of nodes. When X = 1, this corresponds
to the full diffusion property. To use this new property in our algorithm, the call
to HasProperty line 2 of Algorithm 2 is replaced by a call to NumberOf-
Paths with the slight modification that this number of paths must be greater
or equal to the parameter X. This function counts the number of paths between
two nodes, it is given in Algorithm 4.

Since we want more than one path between two nodes, the function
MakePath may need to create multiple paths. Due to these multiple paths,
we must set an order between paths to prevent introducing new symmetries.
For example, we should not build a path p after a path q if we already tried to
build them in the other order. Proposition 2, stated and proved for the diffusion

118 S. Delaune et al.

Algorithm 4: NumberOfPath(x, π, b, l)
Data: x: current node, π: partial permutation, b: target node, l: remaining

length
1 if l > 0 then
2 if π[x] is fixed then
3 if x is odd then
4 return

NumberOfPath(x − 1, π, b, l) + NumberOfPath(π[x], π, b, l − 1);

5 else return NumberOfPath(π[x], π, b, l − 1) ;

6 else return 0 ;

7 else
8 if x = b then return 1 ;
9 else return 0 ;

round, is still valid when considering X-DR. It is stated in Proposition 3, and
for sake of completeness the proof is given in Appendix.

Proposition 3. Let π be an even-odd permutation, X-DR(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X paths of length R − 3 from c
to d in Gπ.

To compare this criterion w.r.t. truncated differential analysis, we computed
the minimal number of active S-Boxes for each possible permutation for k = 6,
k = 7, and k = 8. We give in Table 4 the best number (i.e. the minimum one)
we obtained from round 1 to round 16 :

Table 4. Best minimal number of active S-Boxes for each round

k Round

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 0 1 2 3 4 6 8 11 14 16 19 22 24 26 28 29

7 0 1 2 3 4 6 8 11 14 19 23 26 28 30 33 35

8 0 1 2 3 4 6 8 11 14 19 22 26 29 31 34 37

Then, we took the 500 first solutions given by our algorithm for the criterion.
We computed the minimal number of active S-Boxes for each of these solutions,
and we counted the number of solutions that reached the optimal value for each
round from 10 to 16. The results are given in Table 5. Note that to get 500
solutions, we sometimes needed to consider the criterion to a higher round than
the optimal one. For example the diffusion round for k = 6 is R = 8. However,
there are only 245 solutions with these parameters. Thus, we had to increase
R until we reached 500 solutions. This is summarized in the range column of
Table 5.

New Algorithm for Exhausting Optimal Permutations 119

Table 5. Number of solutions with an optimal number of active S-Boxes from round
10 to round 16 in the 500 first solutions considering k = 8

X-DR Round

10 11 12 13 14 15 16 Range

1 path 9 16 0 0 0 0 0 8

2 paths 24 37 0 0 0 0 0 9

3 paths 0 4 0 0 0 0 0 10

4 paths 15 15 0 0 0 0 0 10–11

5 paths 0 1 0 0 0 0 0 11

6 paths 9 9 0 0 0 0 0 11–12

7 paths 0 0 0 0 0 0 0 12

8 paths 0 0 0 0 0 0 0 12

For k = 8, we do not see a trend and we have similar results for k = 7 and
k = 6. In fact, the property seems uncorrelated to the optimal number of active
S-Boxes. We can see that increasing the parameter X increases the round R we
need to go to find 500 solutions. Indeed when we search for two paths instead of
one, the property is so strict that there are no solutions for R = 8. We also see
that few to none of the 500 solutions are optimal in general.

5.2 Number of S-Boxes

Having X paths between each pair of blocks does not ensure that these paths
are “good” from the differential analysis point of view. Instead of constraining
the number of paths, we propose to ensure that a minimum number of S-Boxes
are present in the d-paths between each pair of blocks.

Definition 9. X-SB(π) is the smallest integer R such that: ∀u, v ∈ V , there
are X S-Boxes traversed by d-paths of length R from u to v in Gπ. A S-Box
reached by two paths of the same length will be counted only once.

For example, in the two paths of length 5 from a to d depicted below, the S-Box
corresponding to the red edge (b, b′) will be counted twice (as it occurs at two
different lengths), whereas the S-Box corresponding to the red edges (a′, c) will
be counted only once (even if it occurs on both paths).

a b a b c d

b′ a′ b′ a′

To use this new property in our algorithm, the call to HasProperty line 2 of
Algorithm 2 is replaced by a call to DetectSBoxes with the slight modification
that the sum of detected S-Boxes must be greater or equal to the parameter X.

120 S. Delaune et al.

DetectSBoxes is described in Algorithm 5. Unlike paths, we cannot simply
count the S-Boxes because of the redundancy described in the previous example.
We have to use a Boolean matrix of dimension 2 or an equivalent structure to
remember at which path length l we encounter each S-Box.

Algorithm 5: DetectSBoxes(x, π, b, l,M)
Data: x: current node, π: partial permutation, b: target node, l: remaining

length, M : Boolean matrix of dimension 2
1 M0 ← Matrix filled with false values;
2 if l > 0 then
3 if π[x] is fixed then
4 if x is odd then
5 M2 ← copy(M);
6 M2[x, l] ← true;
7 M3 ← DetectSBoxes(π[x], π, b, l − 1, M);
8 M4 ← DetectSBoxes(x − 1, π, b, l, M2);
9 return Bit-wise OR(M3,M4);

10 else return DetectSBoxes(π[x], π, b, l − 1, M) ;

11 else return M0 ;

12 else
13 if x = b then return M ;
14 else return M0 ;

Proposition 2, stated and proved for the diffusion round, is also valid when
considering X-SB. It is stated in Proposition 4, and for sake of completeness,
the proof is given in Appendix.

Proposition 4. Let π be an even-odd permutation, X-SB(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X S-Boxes traversed by paths of
length R−3 from c to d in Gπ. A S-Box reached by two paths of the same length
will be counted only once.

As for the X-DR criteria, we looked at the quality of optimal permutations
for the X-SB criteria regarding truncated differential cryptanalysis for k = 6,
k = 7, and k = 8. The results are summarized in Table 6 for k = 8 and are
similar for lower k.

Overall, these two new properties did not bring better solutions for the trun-
cated differential analysis. For each criterion, the number of optimal solution in
the 500 first solutions is very low.

5.3 TWINE

Finally, we studied our criteria on the permutation used in TWINE [11]. The values
of our criteria for TWINE are given in Table 7. To see if these are good values, we

New Algorithm for Exhausting Optimal Permutations 121

Table 6. Number of solutions with an optimal number of active S-Boxes from round
10 to round 16 in the 500 first solutions considering k = 8

X-SB Round

10 11 12 13 14 15 16 Range

1 S-Box 25 44 0 0 0 0 0 8

2 S-Boxes 25 44 0 0 0 0 0 8

3 S-Boxes 0 1 0 0 0 0 0 9

4 S-Boxes 18 30 0 0 0 0 0 9

5 S-Boxes 4 12 0 0 0 0 0 9–10

6 S-Boxes 4 9 0 2 2 2 0 9–10

7 S-Boxes 0 6 0 0 0 0 0 10

8 S-Boxes 0 9 0 0 0 0 0 10–11

9 S-Boxes 0 1 0 1 15 1 0 11

10 S-Boxes 0 4 0 0 0 0 0 11

11 S-Boxes 0 6 0 0 0 0 0 11–12

12 S-Boxes 0 0 0 0 0 0 0 11–12

used our algorithm to enumerate permutations with strictly greater values for
our criteria. The algorithm concluded that there is no permutation with a better
X-SB than TWINE up to X = 22. The experimentation was not done beyond
due to its computational cost.

Table 7. X-DR and X-SB values for TWINE

1 to 2-SB 3 to 6-SB 7 to 8-SB 9 to 14-SB 15 to 22-SB

8 9 10 11 12

1-DR 2-DR 3-DR 4 to 5-DR 6 to 9-DR

8 9 10 11 12

However, TWINE is not optimal for 4-DR and 6-DR. There is only one permu-
tation that is optimal on 4-DR and 6-DR at the same time. This permutation is
π =(3, 4, 5, 8, 1, 12, 9, 10, 11, 2, 7, 14, 13, 6, 15, 0). To compare it with TWINE,
we computed the truncated differentials on both permutations in Table 8.

This new permutation π is better than TWINE and optimal at round 10.
However, it is worse for rounds 13 to 16. In fact, in all the k = 8 permutations,
none can reach the optimal number of active S-Boxes at every round.

122 S. Delaune et al.

Table 8. Truncated Differentials for TWINE and π

Round 8 9 10 11 12 13 14 15 16

TWINE 11 14 18 22 24 27 30 32 35

π 11 14 19 22 24 26 28 30 32

6 Conclusion

In this paper, we proposed a new generic algorithm based on path building
to enumerate permutations regarding a chosen property for Generalized Feistel
Networks. The main advantage of our algorithm is that it is not restricted to the
even-odd permutations nor the diffusion round property. Furthermore, it was
fast enough to prove that no non-even-odd permutation reaches a strictly better
diffusion round than optimal even-odd permutations up to 32 blocks. Thus we
fully solved the problem opened by Suzaki and Minematsu in [10] and partially
solved by Derbez et al. in [5].

However, in both [5] and [1], it was highlighted that optimal permutations
regarding the diffusion round might still lead to ciphers far from offering an
optimal resistance against differential cryptanalysis. We thus tried two more
complex properties derived from the diffusion round and studied the quality of
the solutions they provide against truncated differential cryptanalysis.

Future work. We believe that providing a formal proof that there is always
at least one even-odd permutation optimal with respect to the diffusion round
would be a great result which should lead to a better understanding of GFN. We
are confident that obtaining such a proof is possible and the particular example
described Sect. 4.2 seems to be a good starting point. Another interesting prob-
lem concerns properties that would ensure some level of resistance against differ-
ential cryptanalysis. Indeed, our work clearly shows that permutations ensuring
fast and strong diffusion are rarely optimal regarding this type of distinguishers.

Appendix A Proofs of Proposition 3 and 4

Proposition 3. Let π be an even-odd permutation π, X-DR(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X paths of length R − 3 from c
to d in Gπ.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a +
1, a), (b, b − 1) ∈ Eε with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have
g, h ∈ V such that (b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a+1 and
j = b − 1).

ca

i

. . . d b

j h

g

New Algorithm for Exhausting Optimal Permutations 123

1) From Definition 8, we know that there is X d-paths of length R from a to
g, thus there is X paths of length R − 3 from c to d.

2) Now suppose that there is R′ < X-DR(π) such that ∀ c ∈ Vo, d ∈ Ve

there is X paths of length R′ − 3 from c to d. We then have X d-paths of length
R′ from i to g, from i to h and from a to h. Since we have these d-paths for all
pairs a ∈ Ve, b ∈ Vo then we have full diffusion with X-DR(π) = R′ and thus
the contradiction X-DR(π) < X-DR(π). ��
Proposition 4. Let π be an even-odd permutation π, X-SB(π) is the smallest
integer R such that: ∀c ∈ Vo, d ∈ Ve, there are X S-Boxes traversed by paths of
length R − 3 from c to d in Gπ. A S-Box reached by two paths at the same time
will be counted only once.

Proof. Let b, c ∈ Vo and a, d ∈ Ve with (a, c), (d, b) ∈ Eπ. We have that (a +
1, a), (b, b − 1) ∈ Eε with a + 1 ∈ Vo and b − 1 ∈ Ve. Furthermore, we have
g, h ∈ V such that (b, g), (b− 1, h) ∈ Eπ (see the graph below with i = a+1 and
j = b − 1).

ca

i

. . . d b

j h

g

1) From Definition 9, we know that there is X S-Boxes in all the d-paths of
length R from a to g, thus there is X S-Boxes in all paths of length R − 3 from
c to d.

2) Now suppose that there is R′ < X-SB(π) such that ∀ c ∈ Vo, d ∈ Ve

there is X S-Boxes in all the paths of length R′ − 3 from c to d. We then have
X S-Boxes in all the d-paths of length R′ from i to g, from i to h and from a
to h. Since we have these d-paths for all pairs a ∈ Ve, b ∈ Vo then we have full
diffusion with X-SB(π) = R′ and thus the contradiction X-SB(π) < X-SB(π).

��

References

1. Banik, S.: WARP?: revisiting GFN for lightweight 128-bit block cipher. In: Dunkel-
man, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp.
535–564. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0 21

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013). http://eprint.iacr.org/2013/404

3. Cauchois, V., Gomez, C., Thomas, G.: General diffusion analysis: How to find
optimal permutations for generalized type-ii feistel schemes. IACR Trans. Sym-
metric Cryptol. 2019(1), 264–301 (2019). https://doi.org/10.13154/tosc.v2019.i1.
264-301, https://doi.org/10.13154/tosc.v2019.i1.264-301

4. Derbez, P., Fouque, P.-A.: Automatic search of meet-in-the-middle and impossible
differential attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 157–184. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 6

https://doi.org/10.1007/978-3-030-81652-0_21
http://eprint.iacr.org/2013/404
https://doi.org/10.13154/tosc.v2019.i1.264-301
https://doi.org/10.13154/tosc.v2019.i1.264-301
https://doi.org/10.13154/tosc.v2019.i1.264-301
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-662-53008-5_6

124 S. Delaune et al.

5. Derbez, P., Fouque, P., Lambin, B., Mollimard, V.: Efficient search for opti-
mal diffusion layers of generalized feistel networks. IACR Trans. Symmet-
ric Cryptol. 2019(2), 218–240 (2019). https://doi.org/10.13154/tosc.v2019.i2.
218-240 https://doi.org/10.13154/tosc.v2019.i2.218-240 https://doi.org/10.13154/
tosc.v2019.i2.218-240

6. DES: Data Encryption Standard. FIPS PUB 46, Federal information processing
standards publication 46 (1977)

7. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

8. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the demirci-
selçuk meet-in-the-middle attack with constraints. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 3–34. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 1

9. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

10. Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 2

11. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35999-6 22

12. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 42

https://doi.org/10.13154/tosc.v2019.i2.218-240
https://doi.org/10.13154/tosc.v2019.i2.218-240
https://doi.org/10.13154/tosc.v2019.i2.218-240
https://doi.org/10.13154/tosc.v2019.i2.218-240
https://doi.org/10.13154/tosc.v2019.i2.218-240
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/0-387-34805-0_42
https://doi.org/10.1007/0-387-34805-0_42

Minimizing Even-Mansour Ciphers
for Sequential Indifferentiability (Without

Key Schedules)

Shanjie Xu1,2, Qi Da1,2, and Chun Guo1,2,3(B)

1 Key Laboratory of Cryptologic Technology and Information Security of Ministry
of Education, Shandong University, Qingdao, Shandong 266237, China

{shanjie1997,daqi}@mail.sdu.edu.cn, chun.guo@sdu.edu.cn
2 School of Cyber Science and Technology, Shandong University,

Qingdao, Shandong, China
3 Shandong Research Institute of Industrial Technology, Jinan, Shandong, China

Abstract. Iterated Even-Mansour (IEM) schemes consist of a small
number of fixed permutations separated by round key additions. They
enjoy provable security, assuming the permutations are public and
random. In particular, regarding chosen-key security in the sense of
sequential indifferentiability (seq-indifferentiability), Cogliati and Seurin
(EUROCRYPT 2015) showed that without key schedule functions, the 4-
round Even-Mansour with Independent Permutations and no key sched-
ule EMIP4(k, u) = k⊕p4

(
k⊕p3

(
k⊕p2(k⊕p1(k⊕u))

))
is sequentially

indifferentiable.
Minimizing IEM variants for classical strong (tweakable) pseudoran-

dom security has stimulated an attractive line of research. In this paper,
we seek for minimizing the EMIP4 construction while retaining seq-
indifferentiability. We first consider EMSP, a natural variant of EMIP
using a single round permutation. Unfortunately, we exhibit a slide attack
against EMSP with any number of rounds. In light of this, we show that
the 4-round EM2Pp1,p2

4 (k, u) = k ⊕ p1

(
k ⊕ p2

(
k ⊕ p2(k ⊕ p1(k ⊕ u))

))

using 2 independent random permutations p1,p2 is seq-indifferentiable.
This provides the minimal seq-indifferentiable IEM without key schedule.

Keywords: Blockcipher · Sequential indifferentiability ·
Key-alternating cipher · Iterated even-mansour cipher

1 Introduction

A fundamental cryptographic problem is to construct secure blockciphers from
keyless permutations. A natural solution is the Iterated Even-Mansour (IEM)
scheme (a.k.a. key-alternating cipher) initiated in [19] and extended and popular-
ized in a series of works [1,4,17,24]. Given t permutations p1, ...,pt : {0, 1}n →
{0, 1}n and a key schedule −→ϕ = (ϕ0, ..., ϕt), ϕi : {0, 1}κ → {0, 1}n, and for
(k, u) ∈ {0, 1}κ × {0, 1}n, the scheme is defined as

EM[−→ϕ]t(k, u) := ϕt(k) ⊕ pt

(
...ϕ2(k) ⊕ p2

(
ϕ1(k) ⊕ p1(ϕ0(k) ⊕ u)

)
...

)
.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 125–145, 2022.
https://doi.org/10.1007/978-3-031-22912-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_6

126 S. Xu et al.

It abstracts substitution-permutation network that has been used by a num-
ber of standards [26,27,33]. Modeling p1, ...,pt as public random permutations,
variants of this scheme provably achieve various security notions, including indis-
tinguishability [4,6,7,19,25,28,32,36,37], related-key security [8,20], known-key
security [2,9], chosen-key security in the sense of correlation intractability [8,23],
and indifferentiability [1,13,29]. Despite the theoretical uninstantiatability of the
random oracle model [5], such arguments dismiss generic attacks and are typi-
cally viewed as evidences of the soundness of the design approaches.

Indifferentiability of IEM. The classical security definition for a blockci-
pher is indistinguishability from a (secret) random permutation. Though, reliable
blockciphers are broadly used as ideal ciphers, i.e., randomly chosen blockci-
phers. Motivated by this, the notion of indifferentiability [31] from ideal ciphers
was proposed [1,11,29] as the strongest security for blockcipher structures built
upon (public) random functions and random permutations. Briefly speaking, for
the IEM cipher EMP built upon random permutations P, if there exists an effi-
cient simulator SE that queries an ideal cipher E to mimic its (non-existent)
underlying permutations, such that (E,SE) is indistinguishable from (EMP ,P),
then EMP is indifferentiable from E [31]. This property implies that the cipher
EMP inherits all ideal cipher-properties defined by single-stage security games,
including security against (various forms of) related-key and chosen-key attacks.

As results, Andreeva et al. [1] proposed the IEM variant EMKDt(k, u) =
h(k)⊕pt(...h(k)⊕p2(h(k)⊕p1(h(k)⊕u))...) using a random oracle h : {0, 1}κ →
{0, 1}n to derive the round key h(k), and proved indifferentiability at 5 rounds.
Concurrently, Lampe and Seurin [29] proposed to consider the “single-key” Even-
Mansour variant EMIPt(k, u) = k ⊕ pt(...k ⊕ p2(k ⊕ p1(k ⊕ u))...) without any
non-trivial key schedule, and proved indifferentiability at 12 rounds. Both results
are tightened in subsequent works [13,22], showing that 3-round EMKD and 5-
round EMIP achieve indifferentiability.

Sequential Indifferentiability. Indifferentiable blockciphers [1,11,13,22,29]
typically require unnecessarily complicated constructions [35], and their prac-
tical influences are not as notable as the analogues for hash function [10,15].
To remedy, weaker security definitions have been proposed [2,9,30,34]. In par-
ticular, to formalize chosen-key security, Mandal et al. [30] and subsequently
Cogliati and Seurin [8] advocated the notion of sequential-indifferentiability (seq-
indifferentiability), which is a variant of indifferentiability concentrating on dis-
tinguishers that follow a strict restriction on the order of queries. The usefulness
of seq-indifferentiability lies in its implication towards correlation intractabil-
ity [5], meaning that no (chosen-key) adversary can find inputs/outputs of
the blockcipher that satisfies evasive relations. For the aforementioned Even-
Mansour variants, seq-indifferentiability (and CI) have been established for 3-
round EMKD [23] and 4-round EMIP [8], both of which are tight. The fact that
4-round EMIP is seq-indifferentiable/CI but not “fully” indifferentiable also sep-
arated the two security notions [13].

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 127

Our Question. Besides initial positive results on the general EM[−→ϕ]t model,
another attractive line of work has been set to seek for minimizing IEM cipher
for certain security properties. In detail, Dunkelman [17] was the first to mini-
mize the 1-round Even-Mansour cipher by halving the key size without affecting
its SPRP security. Following this and with significant technical novelty, Chen
et al. [6] proposed minimal 2-round IEM variants with beyond-birthday SPRP
security. Subsequently, Dutta [18] extended the discussion to tweakable Even-
Mansour (TEM) ciphers and proposed minimal 2-round and 4-round IEM vari-
ants, depending on the assumptions on tweak schedule functions.

Regarding (seq-)indifferentiability, we stress that all the aforementioned
results on IEM [1,8,13,22,23,29] requires using t independent random permu-
tations in the t rounds. As will be elaborated, this independence is crucial for
their (seq-)indifferentiability simulators. A natural next step is to investigate
whether (weaker) indifferentiability is achievable using a single permutation.
In particular, without key schedule, does the single-permutation Even-Mansour
variant EMSPt(k, u) = k ⊕ p(...k ⊕ p(k ⊕ p(k ⊕ u))...) suffice?

1.1 Our Contributions

We make the first step towards answering our question and analyze the IEM
cipher with identical permutation w.r.t. the seq-indifferentiability.

New Attack Against Seq-Indifferentiability. Our first observation is that,
even in the weaker model of seq-indifferentiability, the aforementioned “single-
key”, single-permutation Even-Mansour variant EMSP remains insecure, regard-
less of the number of rounds. Concretely, we exhibit a chosen-key attack that
makes just 1 permutation query and 1 encryption query. Our attack utilized a
sort of weakness that is related to slide attacks [3]. In detail, in the EMSP con-
struction, a single input/output pair p(x) = y of the permutation already yields
a full t-round EMSPt evaluation y → (x, y) → ... → (x, y)

︸ ︷︷ ︸
t times

→ x with k = x ⊕ y,

by acting as the involved evaluations in all the t rounds.

Minimal and Secure Construction. Given our negative result on EMSP, to
achieve security, one has to enhance 4-round EMSP by using at least 2 indepen-
dent random permutations. This consideration yields a minimal IEM solution
scheme EM2Pp1,p2

4 : {0, 1}n × {0, 1}n → {0, 1}n uses two random permutations
p1,p2 though no key schedule:

EM2Pp1,p2
4 (k, u) := k ⊕ p1

(
k ⊕ p2

(
k ⊕ p2(k ⊕ p1(k ⊕ u))

))
.

See Fig. 1 for an illustration. We established seq-indifferentiability for EM2Pp1,p2
4

with O(q2) simulator complexity and O(q4/2n) security which are comparable
with EMIP4 [8]. For ease of comparison, we summarize our results and the
existing in Table 1.

128 S. Xu et al.

Fig. 1. The minimal construction EM2Pp1,p2
4 using two independent random permu-

tations p1,p2 : {0, 1}n → {0, 1}n and no key schedule.

Table 1. Comparison of ours with existing seq-indifferentiable/CI IEM results. The
column Key sch. indicates the key schedule functions in the schemes. The column
Complex. indicates the simulator complexities.

Scheme �Rounds �Primitives Key sch. Complex. Bounds Ref.

EMIPp1,p2,p3,p4
4 4 4 no q2 q4/2n [8]

EMKDh,p1,p2,p3
3 3 4 random oracle h q2 q4/2n [23]

EMSPp t 1 no insecure insecure Sect. 3

EM2Pp1,p2
4 4 2 no q2 q4/2n Sect. 4

Proof Approach. Our proof for the seq-indifferentiability of EM2Pp1,p2
4 is

an extension of [8], with subtle changes addressing new collision events due to
permutation-reusing.

In general, to establish indifferentiability-type security, the first step is to
construct a simulator that resists obvious attack. Then, it remains to argue:

– The simulator is efficient, i.e., its complexity can be bounded;
– The simulator gives rise to an ideal world (E,SE) that is indistinguishable

from the real world (EMP ,P).

To design a simulator, we mostly follow the simulator strategy for EMIP4

(which uses independent permutations) [8], taking queries to the middle (2nd
and 3rd) rounds as “signals” for chain detection and the outer (1st and 4th)
rounds for adaptations.

For example, a distinguisher D may arbitrarily pick k, u ∈ {0, 1}n and eval-
uate x1 ← k ⊕ u, p1(x1) → y1, x2 ← k ⊕ y1, p2(x2) → y2, x3 ← k ⊕ y2,
p2(x3) → y3, x4 ← k ⊕ y4, p1(x4) → y4, x5 ← k ⊕ y4. This creates a sequence
of four (query) records

(
(1, x1, y1), (2, x2, y2), (2, x3, y3), (1, x4, y4)

)
that will be

called a computation chain (the number 1 or 2 indicates the index of the permu-
tation). When D is in the real world (EM2Pp1,p2

4 , (p1,p2)), it necessarily holds
EM2Pp1,p2

4 (k, u) = x5. To be consistent with this in the ideal world (E,SE), S
should “detect” such actions of D, “run ahead” of D and define some simulated
(query) records to “complete” a similar computation chain.

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 129

The crucial observation on EM2P4 is that permutations used in the middle
(2nd and 3rd) rounds and the outer (1st and 4th) rounds remain independent.
Consequently, upon D querying the permutation, the simulator can identify in
clear if D is evaluating in the middle (when D queries P2) or in the outer rounds
(when D queries P1). With these ideas, every time D queries P2 or P−1

2 , our
simulator completes all new pairs of records

(
(2, x, y), (2, x′, y′)

)
of P2.1

Concretely, facing the aforementioned attack, S pinpoints the key k = y2 ⊕
x3 and recognize the “partial chain”

(
(1, x1, y1), (2, x2, y2), (2, x3, y3)

)
upon the

third permutation query P2(x3) → y3. S then queries the ideal cipher E(k, k ⊕
x1) → x5 and adapts the simulated P1 by enforcing P1(k ⊕ y3) := k ⊕ x5.
As such, a simulated computation chain

(
(1, x1, y1), (2, x2, y2), (2, x3, y3), (1, k ⊕

y3, k ⊕ x5)
)

with E(k, k ⊕ x1) = x5 is completed. Worth noting, queries to P2

only function as “signals” for detection, while adaptations only create records
on P1 (such “adapted” records thus won’t trigger new detection). This idea of
assigning a unique role to every round/simulated primitive was initiated in [11],
and it indeed significantly simplifies arguments.

Of course, D may pick k′, y′
4 ∈ {0, 1}n and evaluate “conversely”. In this case,

our simulator detects the “partial chain”
(
(2, x′

2, y
′
2), (2, x′

3, y
′
3), (1, x′

4, y
′
4)

)
after

D’s third query P−1
2 (y′

2) → x′
2, queries E−1(k′, k′ ⊕ y′

4) → x′
0 and pre-enforces

P1(k′⊕x′
0) := k′⊕x′

5 to reach
(
(1, k′⊕x′

0, k
′⊕x′

5), (2, x′
2, y

′
2), (2, x′

3, y
′
3), (1, x′

4, y
′
4)

)

with E(k′, k′ ⊕x′
1) = x′

5. In the seq-indifferentiability setting, these have covered
all adversarial possibilities. In particular, the distinguisher D cannot pick k′, y′

1

and evaluate P−1
1 (y′

1) → x′
1, u′ ← k′⊕x′

1, E(k′, u′) → v′, and P−1
1 (k′⊕v′) → x′

4,
since this violates the query restriction. This greatly simplifies simulation [8,21,
23,30] compared with the “full” indifferentiability setting.

Compared with [8], our novelty lies in handling new collision events that
are harmless in the setting of EMIP4. E.g., consider the previous example of
enforcing P1(k ⊕ y3) := k ⊕ x5 to complete

(
(1, x1, y1), (2, x2, y2), (2, x3, y3)

)
.

Since the 1st and 4th rounds are using the same permutation P1, the collisions
k ⊕ y3 = x1 and k ⊕ x5 = y1 also incur inconsistency in the simulated P1

and prevent adaptation. But we do not need a paradigm-level shift: with all
such events characterized, the proof follows that for EMIP4. Clearly, the simula-
tor detects and completes O(q2) chains, and indistinguishability of (E,SE) and
(EM2Pp1,p2

4 ,P) follows a randomness mapping argument similar to [8].

1.2 Organization

Section 2 serves notations and definitions. Then, in Sect. 3 and 4, we provide
our attack on EMSPp

t and sequential indifferentiability of 4-round EM2Pp1,p2
4

respectively. We finally conclude in Sect. 5.

1 In comparison, Cogliati and Seurin’s simulator for EMIP4 completes all newly con-
stituted pairs

(
(2, x2, y2), (3, x3, y3)

)
of records of P2 and P3.

130 S. Xu et al.

2 Preliminaries

Notation. An n-bit random permutation p : {0, 1}n → {0, 1}n is a permutation
that is uniformly chosen from all (2n)! possible choices, and its inverse is denoted
by p−1. Denote by P a tuple of independent random permutations (p1, ...,pr),
where the number t depends on the concrete context (and will be made concrete
later). For integers κ and n, an ideal blockcipher E[κ, n] : {0, 1}κ × {0, 1}n →
{0, 1}n is chosen randomly from the set of all blockciphers with key space {0, 1}κ

and message and ciphertext space {0, 1}n. For each key k ∈ {0, 1}κ, the map
E(k, ·) is a random permutation with inversion oracle E−1(k, ·). Since we focus
on the case of κ = n, we will simply use E instead of E[n, n].

Sequential Indifferentiability. The notion of sequential indifferentiability
(seq-indifferentiability), introduced by Mandal et al. [30], is a weakened variant
of (full) indifferentiability of Maurer et al. [31] tailored to sequential distinguish-
ers [30], a class of restricted distinguishers. For concreteness, our formalism
concentrates on blockciphers. Consider the blockcipher construction CP built
upon several random permutations P. A distinguisher DCP ,P with oracle access
to both the cipher and the underlying permutations is trying to distinguish CP

from the ideal cipher E. Then, D is sequential, if it proceeds in the following
steps in a strict order: (1) queries the underlying permutations P in arbitrary;
(2) queries the cipher CP in arbitrary; (3) outputs, and cannot query P again in
this phase. This order of queries is illustrated by the numbers in Fig. 2.

In this setting, if there is a simulator SE that has access to E and can
mimic P such that in the view of any sequential distinguisher D, the system
(E,SE) is indistinguishable from the system (CP ,P), then CP is sequentially
indifferentiable (seq-indifferentiable) from E.

To characterize the adversarial power, we define a notion total oracle query
cost of D, which refers to the total number of queries received by P (from
D or CP) when D interacts with (CP ,P) [30]. Then, the definition of seq-
indifferentiability due to Cogliati and Seurin [8] is as follows.

Definition 1 (Seq-indifferentiability). A blockcipher construction CP with
oracle access to a tuple of random permutations P is statistically and strongly
(q, σ, t, ε)-seq-indifferentiable from an ideal cipher E, if there exists a simulator
SE such that for any sequential distinguisher D of total oracle query cost at most
q, SE issues at most σ queries to E and runs in time at most t, and it holds

∣
∣
∣PrP [DCP ,P = 1] − PrE [DE,SE

= 1]
∣
∣
∣ ≤ ε.

If D makes q queries, then its total oracle query cost is poly(q). As a concrete
example, the t-round EM cipher EMP

t makes t queries to P to answer any query
it receives, and if D makes qe queries to EMP

t and qp queries to P, then the total
oracle query cost of D is qp + tqe = poly(qp + qe) = poly(q).

Albeit being weaker than “full” indifferentiability [31] (which can be viewed
as seq-indifferentiability without restricting distinguishers to sequential), seq-
indifferentiability already implies correlation intractability in the ideal model [8,

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 131

30]. The notion of correlation intractability was introduced by Canetti et al. [5]
and adapted to ideal models by Mandal et al. [30] to formalize the hardness of find-
ing exploitable relation between the inputs and outputs of function ensembles. For
simplicity, we only present asymptotic definitions. Consider a relation R over pairs
of binary sequences.

– R is evasive with respect to an ideal cipher E, if no efficient ora-
cle Turing machine ME can output an m-tuple (x1, . . . , xm) such that(
(x1, . . . , xm), (E(x1), . . . , E(xm))

) ∈ R with a significant success probabil-
ity;

– An idealized blockcipher EMP is correlation intractable with respect to R, if
no efficient oracle Turing machine MP can output an m-tuple (x1, . . . , xm)
such that

(
(x1, . . . , xm), (EMP(x1), . . . ,EMP(xm))

) ∈ R with a significant
success probability.

With these, the implication [8,30] states that if EMP is seq-indifferentiable
from E, then for any m-ary relation R which is evasive with respect to E, EMP

is correlation intractable with respect to R.

Fig. 2. Setting for seq-indifferentiability. The numbers 1 and 2 indicate the query
order that D has to follow.

3 Slide Attack on the Single-Key, Single-Permutation
EMSP

The t-round EMSPp
t uses the same permutation in every round, and is defined

as
EMSPp

t (k, u) := k ⊕ p
(
...k ⊕ p

(
k ⊕ p(k ⊕ p(k ⊕ u))

)
...

)
.

Our attack proceeds as follows.

1. Picks x ∈ {0, 1}n in arbitrary and query p(x) → y.
2. Computes k ← x ⊕ y. Outputs 1 if and only if E(k, y) = x.

Clearly, it always outputs 1 when interacting with (EMSPp
t ,p) with any rounds t.

In the ideal world, the simulator has to find a triple (x⊕y, y, x) ∈ ({0, 1}n)3 such
that E(x⊕y, y) = x for the ideal cipher E. When the simulator makes qS queries,
it is easy to see: the probability that a forward ideal cipher query E(x ⊕ y, y)

132 S. Xu et al.

responds with x is at most 1/(2n − qS); the probability that a backward query
E−1(x⊕y, y) responds with x is at most 1/(2n − qS). Thus, the probability that
the simulator pinpoints E(x ⊕ y, y) = x is at most qS/(2n − qS), and the attack
advantage is at least 1 − qS/(2n − qS).

It is also easy to see that, the above attack essentially leverages a relation
that is evasive [8] w.r.t. an ideal cipher.

4 Seq-Indifferentiability of EM2P4

This section proves seq-indifferentiability for the 4-round EM2Pp1,p2
4 , the variant

of single-key IEM using two permutations p1,p2, as shown in Fig. 1.

Theorem 1. Assume that p1 and p2 are two independent random permutations.
Then, the 4-round single-key Even-Mansour scheme EM2Pp1,p2

4 defined as

EM2Pp1,p2
4 (k, u) := k ⊕ p1(k ⊕ p2(k ⊕ p2(k ⊕ p1(k ⊕ u))))

is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from an ideal cipher E,
where σ = q2, t = O(q2), and ε ≤ 20q3+29q4

2n = O(q4

2n) (assuming q+2q2 ≤ 2n/2).

To prove Theorem 1, we first describe our simulator in Sect. 4.1.

4.1 Simulator of EM2P4

Randomness and Interfaces. The simulator S offers four interfaces P1, P−1
1 ,

P2 and P−1
2 to the distinguisher for querying the internal permutations, and the

input of the query is any element in the set {0, 1}n.
To handily describe lazying sampling during simulation, we follow previous

works [1,11–14,16,21,29] and make the randomness used by S explicit through
two random permutations p1 and p2. Namely, S queries p1 and p2 (see below for
concreteness) to have a random value z rather than straightforwardly sampling
z

$← {0, 1}n. Let P = (p1,p2). We denote by SE,P the simulator that emulates
the primitives for E and queries p1 and p2 for necessary random values. As
argued in [1], explicit randomness is merely an equivalent formalism of lazying
sampling.

Maintaining Query Records. To keep track of previously answered permuta-
tion queries, S internally maintains two sets Π1 and Π2 that have entries in the
form of (i, x, y) ∈ {1, 2}×{0, 1}n ×{0, 1}n. S will ensure that for any x ∈ {0, 1}n

and i ∈ {1, 2}, there is at most one y ∈ {0, 1}n such that (i, x, y) ∈ Πi, and vice
versa. As will be elaborated later, S aborts whenever it fails to ensure such
consistency. By this, the sets Π1 and Π2 will define two partial permutations,
and we denote by domain(Πi) (range(Πi), resp.) the (time-dependent) set of all
n-bit values x (y, resp.) satisfying ∃z ∈ {0, 1}n s.t. (i, x, z) ∈ Πi ((i, z, y) ∈ Πi,
resp.). We further denote by Πi(x) (Π−1

i (y), resp.) the corresponding value of z.

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 133

Simulation Strategy. Upon the distinguisher D querying Pi(x) (P−1
i (y),

resp.), S checks if x ∈ Π1 (y ∈ Π−1
1 , resp.), and answers with Π1(x) (Π−1

1 (y),
resp.) when it is the case. Otherwise, the query is new, and S queries pi for
y ← pi(x) (x ← p−1

i (y), resp.). If y /∈ range(Πi), S adds the record (i, x, y)
to the set Πi; otherwise, S aborts to avoid inconsistency in Πi (as mentioned).
Then, when i = 1, S simply answers with x (y, resp.); when i = 2, S completes
the partial chains formed by this new record (2, x, y) and previously created
records in Π2 (as mentioned in the Introduction).

In detail, when the new adversarial query is to P2(x) and S adds a new
record (2, x, y) to Π2, S considers all pairs of triples

(
(2, x, y), (2, x′, y′)

) ∈ (Π2)2

(including the pair
(
(2, x, y), (2, x, y)

)
) and all

(
(2, x′, y′), (2, x, y)

) ∈ (Π2)2 (with
x′ �= x for distinction). Then,

– For every pair
(
(2, x, y), (2, x′, y′)

) ∈ (Π2)2, S computes k ← y ⊕ x′ and
x4 ← y′ ⊕ k. S then internally invokes P1 to have y4 ← P1(x4) and
v ← y4 ⊕ k. S then queries the ideal cipher to have u ← E−1(k, v), and
further computes x1 ← u ⊕ k and y1 ← x ⊕ k. Finally, if x1 /∈ domain(Π1)
and y1 /∈ range(Π1), S adds the record (i, x, y) to the set Πi, to complete
the 4-chain

(
(1, x1, y1), (2, x, y), (2, x′, y′), (1, x4, y4)

)
; otherwise, S aborts to

avoid inconsistency. The record (1, x1, y1) is called adapted, since it is cre-
ated to “link” the simulated computation. In our pseudocode, this process is
implemented as a procedure Complete−;

– For every pair
(
(2, x′, y′), (2, x, y)

) ∈ (Π2)2, S computes k ← y′ ⊕ x, y1 ←
x′ ⊕ k, x1 ← P−1

1 (y1), u ← x1 ⊕ k; v ← E(k, u), y4 ← v ⊕ k and x4 ← y ⊕ k.
S finally adds the adapted record (1, x4, y4) to Π1 when x4 /∈ domain(Π1)
and y4 /∈ range(Π1), to complete

(
(1, x1, y1), (2, x′, y′), (2, x, y), (1, x4, y4)

)
,

or aborts otherwise. In our pseudocode, this process is implemented as a
procedure Complete+.

Upon D querying P−1
2 (y), the simulator actions are similar to P2(x) by sym-

metry. Our strategy is formally described via pseudocode in the next paragraph.

Simulator in Pseudocode
1: Simulator SE,P

2: Variables: Sets Π1, Π2, XDom, and XRng, all initially empty

3: public procedure P1(x)
4: if x /∈ domain(Π1) then
5: y ← p1(x)
6: if Π−1

1 (y) �=⊥ then abort
7: if y ∈ XRng then abort
8: Π1 ← Π1 ∪ {(1, x, y)}
9: return Π1(x)

10: public procedure P−1
1 (y)

11: if y /∈ range(Π1) then
12: x ← p−1

1 (y)
13: if Π1(x) �=⊥ then abort
14: if x ∈ XDom then abort
15: Π1 ← Π1 ∪ {(1, x, y)}
16: return Π−1

1 (y)

134 S. Xu et al.

17: public procedure P2(x)
18: if x /∈ domain(Π2) then
19: y ← p2(x)
20: Π2 ← Π2 ∪ {(2, x, y)}
21: forall (2, x′, y′) ∈ Π2 do
22: // 3+ chain
23: k ← y′ ⊕ x
24: if y ⊕ k ∈ domain(Π1)
25: then abort
26: XDom ← XDom ∪ {y ⊕ k}
27: XRng ← XRng ∪ {x′ ⊕ k}
28: // 2+ chain
29: k ← y ⊕ x′

30: if x ⊕ k ∈ range(Π1)
31: then abort
32: if ∃(2, x′′, y′′) ∈ Π2 :

x′ ⊕ y′ ⊕ x = x ⊕ y ⊕ x′′

then abort
33: XDom ← XDom ∪ {y′ ⊕ k}
34: XRng ← XRng ∪ {x ⊕ k}
35: forall (2, x′, y′) ∈ Π2

s.t. x′ �= x do
36: k ← x ⊕ y′

37: Complete+(x′, k)
38: forall (2, x′, y′) ∈ Π2 do
39: k ← y ⊕ x′

40: Complete−(y′, k)
41: // Clear the pending sets
42: XDom ← ∅, XRng ← ∅
43: return Π2(x)

44: public procedure P−1
2 (y)

45: if y /∈ range(Π2) then
46: x ← p−1

2 (y)
47: Π2 ← Π2 ∪ {(2, x, y)}
48: forall (2, x′, y′) ∈ Π2 do
49: // 2− chain
50: k ← y ⊕ x′

51: if x ⊕ k ∈ range(Π1)
52: then abort
53: XDom ← XDom ∪ {y′ ⊕ k}
54: XRng ← XRng ∪ {x ⊕ k}
55: // 3− chain
56: k ← y′ ⊕ x
57: if y ⊕ k ∈ domain(Π1)
58: then abort
59: if ∃(2, x′′, y′′) ∈ Π2 :

y′ ⊕ x′ ⊕ y = y′′ ⊕ x ⊕ y
then abort

60: XDom ← XDom ∪ {y ⊕ k}
61: XRng ← XRng ∪ {x′ ⊕ k}
62: forall (2, x′, y′) ∈ Π2

s.t. x′ �= x do
63: k ← y ⊕ x′

64: Complete−(y′, k)
65: forall (2, x′, y′) ∈ Π2 do
66: k ← x ⊕ y′

67: Complete+(x′, k)
68: // Clear the pending sets
69: XDom ← ∅, XRng ← ∅
70: return Π−1

2 (y)

71: private procedure Complete+(x2, k)

72: y1 ← x2 ⊕ k, x1 ← P−1
1 (y1)

73: u ← x1 ⊕ k, v ← E(k, u)
74: y4 ← v ⊕ k
75: y2 ← P2(x)
76: x3 ← y2 ⊕ k, y3 ← P2(x3)
77: x4 ← y3 ⊕ k
78: if x4 ∈ domain(Π1) then abort
79: if y4 ∈ range(Π1) then abort
80: if y4 ∈ XRng then abort
81: Π1 ← Π1 ∪ {(1, x4, y4)}

82: private procedure Complete−(y3, k)

83: x4 ← y3 ⊕ k, y4 ← P1(x4)
84: v ← y4 ⊕ k, u ← E−1(k, v)
85: x1 ← u ⊕ k
86: x3 ← P−1

2 (y3)
87: y2 ← x3 ⊕ k, x2 ← P−1

2 (y2)
88: y1 ← x2 ⊕ k
89: if x1 ∈ domain(Π1) then abort
90: if y1 ∈ range(Π1) then abort
91: if x1 ∈ XDom then abort
92: Π1 ← Π1 ∪ {(1, x1, y1)}

We identify a number of bad events during the simulation and coded them in
S. The occurrence of such events indicates potential abortions due to adaptations
in future. In detail, before calling Complete+ and Complete−, S creates two sets
XRng and XDom for the values that will be used in subsequent adaptations: for
every x ∈ XDom, S will create an adapted record of the form (1, x, �); for every

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 135

y ∈ XRng, S will create an adapted record of the form (1, �, y). Therefore,
collisions among values in XDom and domain(Π1) (resp., XRng and range(Π1))
already indicate the failure of some future adaptations. Thus, once such events
occur, S also aborts to terminate the doomed execution.

4.2 The Indistinguishability Proof

It remains to establish two claims for any distinguisher D: (a) the simulator SE,P

has bounded complexity; (b) the real and ideal worlds are indistinguishable. To
this end, we introduce a helper intermediate system in the next paragraph. Then,
subsequent paragraphs establish claims (a) and (b) in turn.

Intermediate System. As shown in Fig. 3, we use three systems for the proof.
In detail, let Σ1(E,SE,P) be the system capturing the ideal world, where E
is an ideal cipher and p1, p2 are independent random permutations; and let
Σ3(EM2PP

4 ,P) be the real world.
We follow [8,30] and introduce Σ2(EM2PSE,P

4 ,SE,P) as an intermediate sys-
tem, which is modified from Σ1 by replacing E with an EM2P4 instance that
queries the simulator to evaluate.

Fig. 3. Systems used in the proof.

Then, consider a fixed sequential distinguisher D of total oracle query cost
at most q. The remaining key points are as follows.

Complexity of SE,P . As the key observation, SE,P never adds records to
Π2 internally. Thus, |Π2| increases by 1 after each adversarial query, and thus
|Π2| ≤ q. By this, the number of detected chains

(
(2, x2, y2), (2, x′

2, y
′
2)

) ∈ (Π2)2

136 S. Xu et al.

is at most q2. This also means SE,P makes at most q2 queries to E, since such a
query only appears during completing a detected chain. For each detected chain,
SE,P adds at most 2 records to Π1. Moreover, |Π1| may also increase by q due
to D straightforwardly querying P1 or P−1

1 . It thus holds |Π1| ≤ q+2q2. Finally,
the running time is dominated by completing chains, and is thus O(q2).

Indistinguishability of Σ1, Σ2 and Σ3. First, we need to show that the two
simulated permutations are consistent, which is of course necessary for indistin-
guishability. Note that the occurrence of such inconsistency would particularly
render SE,P abort. Therefore, via a fine-grained analysis of the various involved
values, we establish an upper bound on the probability that SE,P aborts.

4.3 Abort Probability of SE,P

As discussed in Sect. 4.2, when the total oracle query cost of D does not
exceed q, it holds |Π2| ≤ q, and the total number of detected chains(
(2, x2, y2), (2, x′

2, y
′
2)

) ∈ (Π2)2 is at most q2. The latter means:

(i) the number of adapted records in Π1 is at most q;
(ii) the number of calls to P1 and P−1

1 is at most q + q2 in total (which is the
number of detected chains plus the number of adversarial queries to P1 and
P−1

1);
(iii) |XDom| ≤ q2, |XRng| ≤ q2.

With the above bounds, we analyze the abort conditions in turn.

Lemma 1. The probability that SE,P aborts at lines 6, 7, 13 and 14 is at most
(2q3 + 2q4)/2n.

Proof. Consider lines 6 and 7 in P1 first. The value y ← p1(x) newly “down-
loaded” from p1 is uniformly distributed in 2n −|Π1| ≥ 2n −q−2q2 possibilities.
This value y is independent of the values in Π1 and XRng. Thus, the conditions
for lines 6 and 7 are fulfilled with probability at most |range(Π1)∪XRng|. How-
ever, it is easy to see that, the size of the union set range(Π1) ∪ XRng cannot
exceed the upper bound on the number of adapted records in Π1 at the end of
the execution, since every value y′ in XRng eventually becomes a correspond-
ing adapted record (1, x′, y′) in Π1 as long as SE,P does not abort. Therefore,
|range(Π1) ∪ XRng| ≤ q2, and thus each call to P1 aborts with probability at
most q2/(2n − q − 2q2). Similarly by symmetry, each call to P−1

1 aborts with
probability at most q2/(2n − q − 2q2). Since the number of calls to P1 and P−1

1

is at most q + q2 in total, the probability that SE,P aborts at lines 6, 7, 13 and
14 is at most

(q + q2) · q2

2n − (q + 2q2)
≤ 2q3 + 2q4

2n
,

assuming q + 2q2 ≤ 2n/2. ��
Next, we analyze the probability of the “early abort” conditions in P2 and

P−1
2 .

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 137

Lemma 2. The probability that SE,P aborts at lines 25, 31 and 32 in the
procedure P2 (resp., lines 52, 58 and 59 in the procedure P−1

2) is at most
(6q3 + 8q4)/2n.

Proof. Consider the conditions in P2 first. The value y ← p1(x) newly “down-
loaded” from p1 is uniformly distributed in 2n −|Π1| ≥ 2n −q−2q2 possibilities.
Moreover, this value y is independent of the values in Π1, Π2 and XRng.

With the above in mind, we analyze the conditions in turn. First, consider
line 25. For every detected partial chain

(
(2, x′, y′), (2, x, y)

)
, the condition y ⊕

k ∈ domain(Π1) translates into y ⊕ y′ ⊕ x ∈ domain(Π1), which holds with
probability at most |domain(Π1)|/(2n − q − 2q2) ≤ (q + 2q2)/(2n − q − 2q2)
(since |Π1| ≤ q + 2q2).

The arguments for the remaining conditions are similar: since y is uniform,

– for every detected partial chain
(
(2, x, y), (2, x′, y′)

)
, the condition x ⊕ k ∈

range(Π1) ⇔ x ⊕ y ⊕ x′ ∈ range(Π1) is fulfilled with probability at most
(q + 2q2)/(2n − q) (again using |Π1| ≤ q + 2q2);

– for every detected partial chain
(
(2, x′, y′), (2, x, y)

)
, the probability to have

x′⊕y′⊕x = x⊕y⊕x′′ for some (2, x′′, y′′) ∈ Π2 is at most q/(2n−q−2q2)(since
|Π2| ≤ q).

Since the number of detected partial chains
(
(2, x′, y′), (2, x, y)

)
is at most

|Π2| ≤ q, the probability that a single query or call to P2(x) aborts at lines 25,
31 and 32 is at most

q ×
(q + 2q2

2n − q − 2q2
+

q + 2q2

2n − q − 2q2
+

q

2n − q − 2q2

)
≤ 3q2 + 4q3

2n − q − 2q2
≤ 6q2 + 8q3

2n
,

assuming q + 2q2 ≤ 2n/2.
The above complete the analysis for P2. The analysis for lines 52, 58 and

59 in P−1
2 is similar by symmetry, yielding the same bound. Summing over

the at most q queries or calls to P2 and P−1
2 , we reach the claimed bound

q(6q2 + 8q3)/2n ≤ 6q3 + 8q4/2n. ��
For the subsequent argument, we introduce a bad event BadE� regarding

the ideal cipher queries made during S processing the �-th adversarial query to
P2(x(�)) or P−1

2 (y(�)). Formally, BadE� occurs if:

– In this period, during a call to Complete+(x2, k) in this period, a query
to v ← E(k, u) is made, and the response satisfies v ⊕ k ∈ range(Π1) or
v ⊕ k ∈ XRng; or

– In this period, during a call to Complete−(y3, k) in this period, a query to
u ← E−1(k, v) is made, and the response satisfies u ⊕ k ∈ domain(Π1) or
u ⊕ k ∈ XDom.

To analyze BadE�, we need a helper lemma as follows.

Lemma 3. Inside every call to Complete+, resp. Complete−, the ideal cipher
query E(k, u), resp. E−1(k, v), is fresh. Namely, the simulator SE,P never made
this query E(k, u), resp. E−1(k, v), before.

138 S. Xu et al.

Proof. Assume that this does not hold. Then this means that such a query pre-
viously occurred when completing another chain. By the construction of EM2P4

and our simulator, this means right after the call to Complete+ or Complete−

that queried E(k, u), all the four corresponding round inputs/outputs (1, x1, y1),
(2, x2, y2), (2, x3, y3) and (1, x4, y4) with k = u⊕x1 = y1⊕x2 = ... = y4⊕E(k, u)
have been in Π1 and Π2. This in particular includes the query to P2/P−1

2 that
was purported to incur the current call to Complete+/Complete−. But since the
query to P2/P−1

2 is not new, this contradicts the construction of our simulator.
Therefore, the ideal cipher query must be fresh. ��

The probability of BadE� is then bounded as follows.

Lemma 4. In each call to Complete+ or Complete−, the probability that BadE�

occurs is at most 2(q + 2q2)/2n.

Proof. We first analyze the abort probabilities of calls to Complete+ and
Complete−. Consider a call to Complete+(x2, k) first. By Lemma 3, the ideal
cipher query E(k, u) → v made inside this call is new. Since SE,P makes at
most q2 queries to E, the value v is uniform in at least 2n − q2 possibilities.
Furthermore, v is independent of the values in XRng and range(Π1). Therefore,

Pr[v ⊕ k ∈ (XRng ∪ range(Π1))] ≤ |XRng ∪ range(Π1)|
2n − q2

.

It is easy to see that |XRng ∪ range(Π1)| cannot exceed the upper bound q +2q2

on |Π1| at the end of the execution. Therefore, the probability to have BadE� in
a call to Complete+(x2, k) is at most (q + 2q2)/(2n − q2).

The analysis of Complete−(y3, k) is similar by symmetry, yielding the same
bound (q + 2q2)/(2n − q2). Assuming q2 ≤ 2n/2, we obtain the claim. ��

Then, we address the abort probability due to adaptations in Complete+

and Complete− call.

Lemma 5. The probability that SE,P aborts at lines 78, 79, and 80; 89, 90, and
91 is at most (2q3 + 4q4)/2n.

Proof. Noting that Complete+ and Complete− are only called during processing
adversarial queries to P2(x)/P−1

2 (y), we quickly sketch the process of the latter.
Wlog we focus on processing a query P2(x), as the case of P−1

2 (y) is similar by
symmetry.

Upon D making the �-th query to P2(x(�)), SE,P first “downloads” the
response y(�) ← p2(x) from p2 and then detects a number of partial chains
as follows:

2+chains :
(
(2, x(1), y(1)), (2, x(�), y(�))

)
, ...,

(
(2, x(�−1), y(�−1)), (2, x(�), y(�))

)
,

3+chains :
(
(2, x(�), y(�)), (2, x(1), y(1))

)
, ...,

(
(2, x(�), y(�)), (2, x(�−1), y(�−1))

)
,

(
(2, x(�), y(�)), (2, x(�), y(�))

)
,

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 139

where (2, x(1), y(1)), ..., (2, x(�−1), y(�−1)) ∈ Π2 are the triples created due to the
earlier � − 1 adversarial queries to P2 or P−1

2 . For conceptual convenience we
refer to the former type of chains as 2+chains and the latter as 3+chains. S
then proceeds in two steps:

– First, completes the 3+chains in turn, making a number of calls to Complete+;
– Second, completes the 2+chains in turn, making a number of calls to

Complete−.

We proceed to argue that, during processing the �-th query to P2(x(�)), the
above calls to Complete+/Complete− abort with probability at most

(
2(2� −

1)(q + 2q2)
)
/2n in total.

To this end, consider the j-th 3+chain
(
(2, x(j), y(j)), (2, x(�), y(�))

)
. Let k(j) =

y(j) ⊕ x(�) and x
(j)
4 = k(j) ⊕ y(�). Since S did not abort at line 25, it holds

x
(j)
4 /∈ domain(Π1) right after S “downloads” y(�) ← p2(x). We then show that

x
(j)
4 /∈ domain(Π1) is kept till the call to Complete+(x(j), k(j)) adapts by adding

(1, x
(j)
4 , y

(j)
4) to Π1, so that lines 78, 79 and 80 won’t cause abort.

– First, for any 3+chain
(
(2, x(j′), y(j′)), (2, x(�), y(�))

)
completed before the

chain
(
(2, x(j), y(j)), (2, x(�), y(�))

)
, its adaptation cannot add (1, x(j)

4 , �) to

Π1, since its adapted pair is of the form x
(j′)
4 = y(j′) ⊕ x(�) ⊕ y(�) �= x

(j)
4 ;

– Second, internal queries to P−1
1 (y1) → x1 (with x1 ← p−1

1 (y1)) during this
period cannot add (1, x(j)

4 , �) to Π1, since x
(j)
4 was added to XDom and since

x1 /∈ XDom (otherwise S has aborted at line 7).

Thus, line 78 won’t cause abort at all. On the other hand, with ¬BadE� as the
condition, y

(j)
4 /∈ (range(Π1) ∪ XRng) necessarily holds. Therefore, in the call to

Complete+(x(j), k(j)) adapts, lines 79 and 80 will not cause abort. The above
completes the argument for Complete+ calls due to 3+chains.

We then address 2+chains by considering the j-th
(
(2, x(�), y(�)),

(2, x(j), y(j))
)
. Let k(j) = y(j) ⊕x(�) and x

(j)
4 = k(j) ⊕ y(�). Since S did not abort

at line 25, it holds x
(j)
4 /∈ domain(Π1) right after S downloads y(�) ← p2(x). We

then show that x
(j)
4 /∈ domain(Π1) is kept till the call to Complete+(x(j), k(j))

adapts by adding (1, x(j)
4 , y

(j)
4) to Π1, so that lines 78, 79 and 80 won’t cause

abort.
Therefore, during processing the �-th query to P2(x(�)) or P−1

2 (y(�)), the
probability that S aborts in each call to Complete+ or Complete− is equal to
Pr[BadE�], which does not exceed 2(q + 2q2)/2n by Lemma 4.

To summarize, recall that the total number of detected partial chains/calls to
Complete+ or Complete− is bounded by |Π2|2 ≤ q2. Therefore, the probability
that SE,P aborts at lines 78, 79, and 80; 89, 90, and 91 is bounded by

q2 ×
(2(q + 2q2)

2n

)
≤ 2q3 + 4q4

2n
,

as claimed. ��

140 S. Xu et al.

Lemma 6. The probability that SE,P aborts in DΣ2 is at most (10q3+14q4)/2n.

Proof. Gathering Lemmas 1, 2 and 5 yields the bound.

4.4 Indistinguishability of Σ1 and Σ3

A random tuple (E,P) is good, if SE,P does not abort in DΣ2(E,P). It can be
proved that, for any good tuple (E,P), the transcript of the interaction of D
with Σ1(E,P) and Σ2(E,P) is exactly the same. This means the gap between
Σ1 and Σ2 is the abort probability.

Σ1 to Σ2.

Lemma 7. For any distinguisher D of total oracle query cost at most q, it holds

∣
∣
∣ Pr[DΣ1(E,SE,P) = 1] − Pr[DΣ2(EM2PSE,P

4 ,SE,P) = 1]
∣
∣
∣ ≤ 10q3 + 14q4

2n
.

Proof. Note that in Σ1 and Σ2, the sequential distinguisher D necessarily first
queries S and then E (in Σ1) or EM2P4 (in Σ2) only. Thus, the transcript
of the first phase of the interaction (i.e., for the queries of D to SE,P) are
clearly the same, since in both cases they are answered by S using the same
randomness (E,P). For the second phase of the interaction (i.e., queries of D
to its left oracle), it directly follows from the adaptation mechanism. Hence, the
transcripts of the interaction of D with Σ1(E,P) and Σ2(E,P) are the same for
any good tuple (E,P). Further using Lemma 6 yields

∣
∣
∣ Pr[DΣ1(E,SE,P) = 1] − Pr[DΣ2(EM2PSE,P

4 ,SE,P) = 1]
∣
∣
∣

≤ Pr[(E,P) is bad] ≤ 10q3 + 14q4

2n
,

as claimed. ��

Σ2 to Σ3: Randomness Mapping. We now bound the gap between Σ2 and
Σ3. Following [8,11], the technique is the randomness mapping argument.

We define a map Λ mapping pairs (E,P) either to the special symbol ⊥
when (E,P) is bad, or to a pair of partial permutations P ′ = (p′

1,p
′
2) when

(E,P) is good. A partial permutation is functions p′
i: {0, 1}n → {0, 1}n ∪ {∗}

and p′
i
−1: {0, 1}n → {0, 1}n ∪ {∗}, such that for all x, y ∈ {0, 1}n, p′

i(x) = y �=
∗ ⇔ p′

i
−1(y) = x �= ∗.

Then map Λ is defined for good pairs (E,P) as follows: run DΣ2(E,P), and
consider the tables Πi of the simulator at the end of the execution: then fill all
undefined entries of the Πi’s with the special symbol ∗. The result is exactly
Λ(E,P). Since for a good pair (E,P), the simulator never overwrite an entry in
its tables, it follows that Λ(E,P) is a pair of partial permutations as just defined
above. We say that a pair of partial permutations P ′ = (p′

1,p
′
2) is good if it has

a good preimage by Λ. Then, we say that a pair of permutations P extends a

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 141

pair of partial permutations P ′ = (p′
1,p

′
2), denoted P � P ′, if for each i = 1, 2,

pi and p′
i agree on all entries such that p′

i(x) �= ∗ and p′
i
−1(y) �= ∗.

By definition of the randomness mapping, for any good tuple of partial per-
mutations P ′, the outputs of DΣ2(E,P) and DΣ3(P) are equal for any pair (E,P)
such that Λ(E,P) = P ′ and any tuple of permutations P such that P � P ′. Let
Ω1 be the set of partial permutations P ′ such that DΣ2(E,P) output 1 for any
pair (E,P) such that Λ(E,P) = P ′. Then, we have the following ratio.

Lemma 8. Consider a fixed distinguisher D with total oracle query cost at most
q. Then, for any P ′ = (p′

1,p
′
2) ∈ Ω1, it holds

Pr
[P � P ′]

Pr
[
Λ(E,P) = P ′] ≥ 1 − q4

2n
.

Proof. Since the number of “non-empty” entries p′
1(x) �= ∗ and p′

2(x) �= ∗ are
|Π1| and |Π2| respectively, we have

Pr
[P � P ′] =

(|Π1|−1∏

j=0

1
2n − j

)(|Π2|−1∏

j=0

1
2n − j

)
.

Fix any good preimage (Ẽ, P̃) of P ′. One can check that for any tuple (E,P),
Λ(E,P) = P ′ iff the transcript of the interaction of S with (E,P) in DΣ2(E,P)

is the same as the transcript of the interaction of S with (Ẽ, P̃) in DΣ2(˜E, ˜P).

Assume that during the Σ2 execution DΣ2(EM2PSE,P
4 ,SE,P), S makes qe, q1

and q2 queries to E, p1 and p2 respectively. Then,

Pr
[
Λ(E,P) = P ′] ≤

(qe−1∏

j=0

1
2n − j

)(q1−1∏

j=0

1
2n − j

)(q2−1∏

j=0

1
2n − j

)
.

It is easy to see that, qe +q1 +q2 = |Π1|+ |Π2|: because q1 +q2 equal the number
of lazily sampled records in Π1 and Π2, while qe equal the number of adapted
records in Π1.

Furthermore, qe ≤ q2 by Sect. 4.2. It thus holds

Pr
[P � P ′]

Pr
[
Λ(E,P) = P ′] ≥

(∏|Π1|−1
j=0

1
2n−j

)(∏|Π2|−1
j=0

1
2n−j

)

(∏qe−1
j=0

1
2n−j

)(∏q1−1
j=0

1
2n−j

)(∏q2−1
j=0

1
2n−j

)

≥
q2−1∏

j=0

(
1 − j

2n

)

≥ 1 − (q2)2

2n
≥ 1 − q4

2n
,

as claimed. ��

142 S. Xu et al.

Lemma 9. For any distinguisher D with total oracle query cost at most q, it
holds

∣
∣
∣Pr

[
DΣ2(EM2PSE,P

4 ,SE,P) = 1
] − Pr

[
DΣ3(EM2PP

4 ,P) = 1
]∣∣
∣ ≤ 10q3 + 15q4

2n
.

Proof. Gathering Lemmas 6 and 8 yields
∣
∣
∣Pr

[
DΣ2(EM2PSE,P

4 ,SE,P) = 1
] − Pr

[
DΣ3(EM2PP

4 ,P) = 1
]∣∣
∣

≤Pr
[
(E,P) is bad

]
+

∑

P′∈Ω1

Pr
[
Λ(E,P) = P ′] −

∑

P′∈Ω1

Pr
[P � P ′]

≤Pr
[
(E,P) is bad

]
+

∑

P′∈Ω1

Pr
[
Λ(E,P) = P ′]

(
1 − Pr

[P � P ′]

Pr
[
Λ(E,P) = P ′]

)

≤10q3 + 14q4

2n
+

q4

2n

∑

P′∈Ω1

Pr
[
Λ(E,P) = P ′]

≤10q3 + 15q4

2n
,

as claimed. ��
Gathering Lemmas 7 and 9 yields the bound in Theorem 1.

5 Conclusion

We make a step towards minimizing the 4-round iterated Even-Mansour ciphers
while retaining sequential indifferentiability. On the negative side, we exhibit an
attack against single-key, single-permutation Even-Mansour with any rounds; on
the positive side, we prove sequential indifferentiability for 4-round single-key
Even-Mansour using 2 permutations. These provide the minimal Even-Mansour
variant that achieve sequential indifferentiability without key schedule functions.

Acknowledgements. We sincerely thank the anonymous reviewers for their helpful
comments. Chun Guo was partly supported by the National Natural Science Founda-
tion of China (Grant No. 62002202).

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 29

2. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 348–
366. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 18

https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/978-3-662-43933-3_18

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 143

3. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

4. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small
number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 5

5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004). https://doi.org/10.1145/1008731.1008734

6. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-
round even–mansour cipher. J. Cryptol. 31(4), 1064–1119 (2018). https://doi.org/
10.1007/s00145-018-9295-y

7. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-
5 19

8. Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 23

9. Cogliati, B., Seurin, Y.: Strengthening the known-key security notion for block
ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 494–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 25

10. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

11. Coron, J.-S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How
to build an ideal cipher: the indifferentiability of the feistel construction. J. Cryptol.
29(1), 61–114 (2014). https://doi.org/10.1007/s00145-014-9189-6

12. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 23

13. Dai, Y., Seurin, Y., Steinberger, J., Thiruvengadam, A.: Indifferentiability of iter-
ated even-mansour ciphers with non-idealized key-schedules: five rounds are nec-
essary and sufficient. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 524–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 18

14. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

15. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(in)differentiability results for H 2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 21

16. Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 24

https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/s00145-018-9295-y
https://doi.org/10.1007/s00145-018-9295-y
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/978-3-662-52993-5_25
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/s00145-014-9189-6
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24

144 S. Xu et al.

17. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 21

18. Dutta, A.: Minimizing the two-round tweakable even-mansour cipher. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 601–629. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 20

19. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–161 (1997). https://doi.org/10.1007/
s001459900025

20. Farshim, P., Procter, G.: The related-key security of iterated even–mansour ciphers.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342–363. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 17

21. Guo, C., Lin, D.: A synthetic indifferentiability analysis of interleaved double-key
even-mansour ciphers. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 389–410. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 16

22. Guo, C., Lin, D.: Indifferentiability of 3-round even-mansour with random oracle
key derivation. IACR Cryptol. ePrint Arch, p. 894 (2016). http://eprint.iacr.org/
2016/894

23. Guo, C., Lin, D.: Separating invertible key derivations from non-invertible ones:
sequential indifferentiability of 3-round even-mansour. Des. Codes Crypt. 81(1),
109–129 (2016)

24. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

25. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

26. ISO/IEC: Information technology — security techniques – lightweight cryptogra-
phy – part 2: Block ciphers. ISO/IEC 29192-2:2012 (2012). https://www.iso.org/
standard/56552.html

27. ISO/IEC: Information security – encryption algorithms – part 7: Tweakable block
ciphers. ISO/IEC FDIS 18033-7 (2021). https://www.iso.org/standard/80505.html

28. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of the
iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 18

29. Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of pub-
lic permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8269, pp. 444–463. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42033-7 23

30. Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correlation
intractability of the 6-round feistel construction. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 16

31. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-030-64837-4_20
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/978-3-662-48116-5_17
https://doi.org/10.1007/978-3-662-48800-3_16
https://doi.org/10.1007/978-3-662-48800-3_16
http://eprint.iacr.org/2016/894
http://eprint.iacr.org/2016/894
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/80505.html
https://doi.org/10.1007/978-3-642-34961-4_18
https://doi.org/10.1007/978-3-642-34961-4_18
https://doi.org/10.1007/978-3-642-42033-7_23
https://doi.org/10.1007/978-3-642-42033-7_23
https://doi.org/10.1007/978-3-642-28914-9_16
https://doi.org/10.1007/978-3-642-28914-9_16
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2

Minimizing Even-Mansour Ciphers for Sequential Indi Erentiability 145

32. Mouha, N., Luykx, A.: Multi-key security: the even-mansour construction revisited.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 209–223.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 10

33. Pub, N.F.: 197: Advanced encryption standard (aes). Federal Inf. Process. Stand.
Publication 197(441), 0311 (2001)

34. Soni, P., Tessaro, S.: Public-seed pseudorandom permutations. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 412–441. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 14

35. Soni, P., Tessaro, S.: Naor-reingold goes public: the complexity of known-key secu-
rity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
653–684. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 21

36. Tessaro, S., Zhang, X.: Tight security for key-alternating ciphers with correlated
sub-keys. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT
2021, Part III. Lecture Notes in Computer Science, vol. 13092, pp. 435–464.
Springer (2021). https://doi.org/10.1007/978-3-030-92078-4

37. Wu, Y., Yu, L., Cao, Z., Dong, X.: Tight security analysis of 3-round key-
alternating cipher with a single permutation. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12491, pp. 662–693. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64837-4 22

https://doi.org/10.1007/978-3-662-47989-6_10
https://doi.org/10.1007/978-3-319-56614-6_14
https://doi.org/10.1007/978-3-319-78372-7_21
https://doi.org/10.1007/978-3-030-92078-4
https://doi.org/10.1007/978-3-030-64837-4_22
https://doi.org/10.1007/978-3-030-64837-4_22

INT-RUP Security of SAEB
and TinyJAMBU

Nilanjan Datta1, Avijit Dutta1, and Shibam Ghosh2(B)

1 TCG Centres for Research and Education in Science and Technology,
Kolkata, India

{nilanjan.datta,avijit.dutta}@tcgcrest.org
2 Department of Computer Science, University of Haifa, Haifa, Israel

sghosh03@campus.haifa.ac.il

Abstract. The INT-RUP security of an authenticated encryption (AE)
scheme is a well studied problem which deals with the integrity security
of an AE scheme in the setting of releasing unverified plaintext model.
Popular INT-RUP secure constructions either require a large state (e.g.
GCM-RUP, LOCUS, Oribatida) or employ a two-pass mode (e.g. MON-
DAE) that does not allow on-the-fly data processing. This motivates us
to turn our attention to feedback type AE constructions that allow small
state implementation as well as on-the-fly computation capability. In CT-
RSA 2016, Chakraborti et al. have demonstrated a generic INT-RUP
attack on rate-1 block cipher based feedback type AE schemes. Their
results inspire us to study about feedback type AE constructions at a
reduced rate. In this paper, we consider two such recent designs, SAEB
and TinyJAMBU and we analyze their integrity security in the setting of
releasing unverified plaintext model. We found an INT-RUP attack on
SAEB with roughly 232 decryption queries. However, the concrete analy-
sis shows that if we reduce its rate to 32 bits, SAEB achieves the desired
INT-RUP security bound without any additional overhead. Moreover, we
have also analyzed TinyJAMBU, one of the finalists of the NIST LwC,
and found it to be INT-RUP secure. To the best of our knowledge, this
is the first work reporting the INT-RUP security analysis of the block
cipher based single state, single pass, on-the-fly, inverse-free authenti-
cated ciphers.

1 Introduction

In the last few years, the increasing growth of the Internet of Things (IoT) comes
with high demands on and constrictive conditions for cryptographic schemes.
Such constraints may come in various types, as these small interconnected
devices may have to operate with low power, low area, low memory, or oth-
erwise. Lightweight cryptography is about developing cryptographic solutions
for such constrained environments and partly ignited by the CAESAR [14] and
the ongoing NIST Lightweight Competition (LwC) [29]. As a result of these
competitions, the cryptographic community has witnessed the rise of various
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 146–170, 2022.
https://doi.org/10.1007/978-3-031-22912-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_7

INT-RUP Security of SAEB and TinyJAMBU 147

lightweight authenticated encryption schemes in recent years. These include
block cipher based constructions such as CLOC [27], JAMBU [38], COFB [19],
SAEB [33], SUNDAE [10], permutation based constructions such as ASCON [24],
ACORN [37], Beetle [18] and tweakable block cipher based constructions such as
Deoxys AEAD [28], Romulus and Remus [26], Skinny AEAD [11] etc. However, in
the paper, we confine our discussion only to block cipher and permutation based
AE schemes.

1.1 Designing Area-Efficient Authenticated Ciphers

Often Lightweight Authenticated Encryption (AE) schemes are sequential in
nature. This is primarily due to the fact that sequential modes consume less
state size (the memory needed for storing internal values), implying smaller hard-
ware footprint. In addition, sequential modes usually offer inverse-free property
(except a few construction such as CBC and its variants1) of the underlying
primitive, which also suits one of the very basic needs of implementing ciphers
in lightweight environments.

Block Cipher Based Designs. The design of almost every block cipher based
sequential AE schemes starts with a fixed initial state and processes each input
block in sequence by applying a feedback function on the previous block cipher
output, some secret auxiliary state, and the current input (message or associated
data). This feedback function derives the next block cipher input, updated secret
auxiliary state, and the current output (in case of message blocks). Thus, any
block cipher based sequential AE scheme can be described by the underlying
block cipher, the secret auxiliary state and the feedback function. Consequently,
the AE scheme’s efficiency and hardware footprint largely depend on the effi-
ciency and the hardware footprint of the underlying block cipher, feedback func-
tion, and the secret auxiliary state. Zhang et al. [40] have proposed one such
block cipher based sequential AE scheme called iFEED that uses plaintext feed-
back and achieves optimal rate2 (i.e. rate-1). However, it requires a state size of
(3n + k)-bits, where n and k are the block size and the key size of the underly-
ing block cipher respectively. CPFB, proposed by Montes and Penazzi [31], is a
notable scheme that reduces the state size to (2n + k)-bits, at the cost of reduc-
ing the rate to 3/4. In CHES’17, Chakraborti et al. proposed COFB [19], the
first feedback type AE scheme, achieves rate-1 with a state size of 1.5n + k-bits.
Recently, it has been proven in [16] that the state size for any feedback type
rate-1 AE scheme cannot be less than 1.5n + k-bits. In the same paper, authors
have also proposed a hybrid feedback type AE scheme called HyENA [16] that
achieves rate-1 with the state size 1.5n + k-bits but with a reduced XOR count.

1 Some inverse-free modes are not sequential, e.g., CTR, OTR, GCM etc.
2 rate is defined as the inverse of the number of block cipher calls required to process

a single block of message, where a block refers to the block size of the block cipher.

148 N. Datta et al.

Sponge Type Designs. An alternative way to avoid the generation of the
auxiliary states from the block cipher based designs is to use a public permu-
tation based sponge mode of operations. Since the selection of Ascon [24] in
the final portfolio of the CAESAR [14] competition, sponge based designs have
gained a huge momentum. In the ongoing NIST LwC competition [29], out of
57 submissions, 25 submissions are based on sponge type designs and out of 10
finalists, 5 candidates are sponge type designs [29]. The primary feature that
one can get out of sponge type designs is that unlike block cipher based con-
structions, it does not require any key scheduling algorithm to invoke. This
feature proves to be beneficial from the storage point of view when the data
size of the underlying permutation for any sponge type design is less than the
combination of the block size and key size of the underlying block cipher for
any block cipher based designs. In such cases, sponge type mode becomes an
excellent choice for area-efficient designs. Moreover, the additional feature of
having no inverse call to the underlying permutation at the time of executing
verified decryption algorithm, ensures an extremely low hardware footprint in
a combined encryption-decryption implementation of the mode. By leveraging
the advantages of sponge-type structure in block cipher based designs (albeit
block cipher based schemes are required to store extra k-bit state for storing the
keys), a few block cipher based sponge-type designs have recently been proposed.
This includes CAESAR candidate JAMBU [38], and two NIST LwC candidates
SAEAES [32] (which is an instantiation of SAEB [33] with AES-128 block cipher)
and TinyJAMBU [39], where all the three AE schemes use a block size of 128-bits
along with a block cipher key of 128-bits, employing an extremely small overall
state of size 256-bits.

1.2 Authenticated Ciphers Under Release of Unverified Plaintext
(RUP) Setting

In traditional authenticated ciphers, the verification must be done prior to release
of plaintexts to the user. However, in resource constrained environments with
limited memory, it may not be feasible to store the whole plaintext and one might
be forced to release the plaintext before verification. As a result, an attacker
can get hold of the insecure memory of the IoT devices to get access of the
unverified plaintext, which can leak significant informations about the cipher to
break its security. Moreover, real-time streaming protocols (e.g., SRTP, SSH, and
SRTCP) and Optical Transport Networks sometimes need to release plaintexts
in segments with intermediate tags on the fly to reduce end-to-end latency and
storage. Owing to these real-time applications, we require a security notion which
should ensure that when a cryptographic scheme satisfies the security notion,
releasing the unverified plaintext will not lead to any threat to the system.
Releasing Unverified Plaintext (RUP) security fulfills the above demand.

In [6], Andreeva et al. formalized the security notion of an authenticated
encryption scheme under the release of unverified plaintext setting. In this
model, the encryption functionality E remains, but it separates the decryp-
tion/verification functionality DV into a decryption functionality D and a ver-

INT-RUP Security of SAEB and TinyJAMBU 149

ification functionality V. Likewise the usual security notion of any AE scheme
that ensures both confidentiality and integrity, Andreeva et al. [6] have suggested
to achieve the confidentiality and integrity security for any AE scheme in the
RUP model using IND-CPA + PA1/PA2 notion and INT-RUP notion respec-
tively. For the confidentiality model in PA1 setting, i.e., IND-CPA + PA1, the
adversary is given access to E and to either D or a simulator. The purpose of
this notion is to complement the conventional confidentiality in the sense that it
measures the advantage an adversary can gain from actually having access to D.
The integrity notion of an authenticated encryption scheme under this model,
i.e., INT-RUP, allows an adversary to interact with E ,D, V; and asks it to forge a
valid ciphertext, i.e., make a new, valid query to V oracle. The adversary poten-
tially possesess significantly more power in this model due to the access to the
decryption oracle D.

Andreeva et al. [6] have shown that OCB [35], COPA [7] are insecure in the
RUP security model. In [23], Datta et al. mounted an INT-RUP attack on any
Encrypt-Linear mix-Encrypt type authenticated ciphers that includes the CAE-
SAR standard COLM [5]. In another direction, Chakraborti et al. [17] mounted
an INT-RUP attack on iFeed [40]. Adopting a similar attack strategy, they have
shown a generic INT-RUP attack [17] on rate-1 block cipher based feedback
type AEAD constructions. At the same time, they also proposed a scheme called
mCPFB [17] and claimed that the INT-RUP security could be achieved at the cost
of the rate of the construction. Similar approach have been used in OCBIC [41]
and LOCUS [15], which builds upon OCB [35], and LOTUS [15], which builds
upon OTR [30]. For both the constructions LOCUS and LOTUS, IND-CPA +
PA1 and INT-RUP both security notions have been achieved at the cost of
additional block cipher invocations, which halves the rate of the construction.
Note that these modes are parallel in structure, and all of them require a state
of size at least 3n + k-bits, where n is the block size and k is the key size of
the underlying block cipher. Ashur et al. [9] proposed an alternative notion of
RUP security, called RUPAE. This notion focuses on nonce-based authenticated
encryption, and proposed a RUP-variant of GCM [1], dubbed GCM-RUP [9],
in the described nonce-based model. On the other extreme, Chang et al. [20]
introduced the notion of AERUP which unifies the notions of RUP privacy (i.e.,
IND-CPA + PA1) and integrity (i.e., INT-RUP) for deterministic authenticated
ciphers. They also proposed a simple variant of SUNDAE [10], dubbed MON-
DAE [20], that achieves confidentiality and integrity security in RUP setting
under this newly introduced AERUP model. However, MONDAE is a two-pass
authenticated encryption mode. Hence, it does not have the on-the-fly decryp-
tion feature. In a nutshell, while looking at the ciphers with RUP security, either
the constructions lose on state size (e.g., LOCUS [15], mCPFB [17], GCM-RUP [9],
requires at least 3n + k-bits) or the construction does not have the on-the-fly
decryption feature (e.g., MONDAE [20]). The above discussion makes us raise
the question:

Can we have a block cipher based INT-RUP secure design with on-the-fly
decryption feature with a total of n + k-bits state?

150 N. Datta et al.

1.3 Towards RUP-Secure Single-state On-the-Fly Authenticated
Encryption

The above question turns our attention to study the INT-RUP security of sponge
based modes. In [13], Bhattacharjee et al. have studied the INT-RUP secu-
rity of permutation based sponge type designs. They have presented an INT-
RUP attack on generic duplex constructions, with attack complexity O(qdqp/2c),
where qd is the number of decryption queries, qp is the number of primitive
queries to the permutation, and c is the capacity part of the construction. They
have also shown that such attacks can be extended to other Sponge variants
such as Beetle [18] and SPoC [2]. The main idea of the attack is to exploit a
collision between an inner state of the construction and a primitive query. To
resist such attacks, the authors used the concept of masking the previous state
and proposed a new cipher called Oribatida [13] that achieves INT-RUP security
of O(q2

d/2c). However, this comes at the cost of an additional state.
When we move to block cipher based AEAD constructions, Chakraborti et

al. [17] have shown that any feedback type rate-1 block cipher based AEAD
construction is not INT-RUP secure. Adopting the idea used in iFeed, they
have shown a generic INT-RUP attack on rate-1 block cipher based feedback
type AEAD constructions. This result immediately rules out the popular area-
efficient block cipher based designs such as COFB and HyENA to have INT-RUP
security. Therefore, the focus goes to feedback type constructions with a lower
rate. This makes us look into block cipher based sponge type constructions such
as SAEB [33] and TinyJAMBU [39]. Due to the inverse-free implementation with
n+k-bits state, these constructions are incredibly lightweight and ideally suited
for resource constraint applications. At the same time, these constructions have
the capability of on-the-fly computation of plaintext/ciphertext blocks. Thus,
they are ideally suited for applications where RUP security would be of extreme
relevance. However, the current literature does not say anything about these
block cipher based constructions, and hence investigating their RUP security
seems an exciting research direction. In this regard, we would like to mention
that in a recent work, Andreeva et al. [4] have shown 2n/2 INT-RUP security
bound on a forkcipher [8] based construction, called SAEF [3]. The structure of
SAEF resembles to the CBC mode of operation, where one of the output blocks
of the forkcipher is used to XOR-mask the input and sometimes output of the
next primitive call.

1.4 Our Contribution and Significance of the Result

In this paper, we study the INT-RUP security of two constructions, namely
SAEB [33] by Naito et al. and TinyJAMBU [39] by Wu et al. Our contribution is
threefold:

(i) We have shown an INT-RUP attack on SAEB that uses a single encryption
query, and roughly 2c/2 decryption queries, where c is the capacity part
of the construction. The attack is applicable for any choices of rate and
capacity.

INT-RUP Security of SAEB and TinyJAMBU 151

(ii) We have investigated the INT-RUP security bound of SAEB. We have shown
that it offers roughly q2

d/2c INT-RUP security, where qd is the number of
decryption queries and c is the capacity part of the construction. Combining
the proven security bound of SAEB with its attack complexity establishes
the tightness of the security bound of SAEB. This result signifies that if we
instantiate SAEB with a standard 128-bit block cipher and put a restriction
that at a time 32-bits of the message will be injected to SAEB, the mode
achieves INT-RUP security up to 248 blocks, which satisfies the NIST crite-
ria of having 250 bytes of data complexity. However, for SAEAES, where we
inject 64-bits of message at a time to the construction, achieves INT-RUP
security up to 232 blocks.

(iii) Finally, we consider the INT-RUP security of TinyJAMBU, one of the final-
ists of the NIST LwC. Interestingly TinyJAMBU has a unique structure,
where message injection and ciphertext release occur from different parts of
the state. We have proved that TinyJAMBU offers roughly qvσd/2n−r INT-
RUP security, where σd is the total number of blocks in all the decryption
queries, r-bits of the message is injected at a time to the construction and
n is the block size of the underlying block cipher.

Thus, in this work, we have obtained the INT-RUP security bounds of SAEB
and TinyJAMBU. To the best of our knowledge, this is the first work that reports
two single-pass3, inverse-free AEAD constructions, achieving INT-RUP security,
while keeping the on-the-fly decryption property intact. We would like to point
here that both of these construction will not preserve confidentiality in the RUP
setting as these are not two-pass modes. This paper solely focuses on studying
the integrity security of the two constructions in the RUP setting.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, 2, . . . , n} and for a < b ∈ N, we write [a, b] to
denote the set {a, a + 1, . . . , b}. We write (a, b) < (a′, b′) to denote that either
a < a′ or (a = a′ and b < b′). For a finite set X , X ←$ X denotes the uniform at
random sampling of X from X . For n ∈ N, we write {0, 1}+ and {0, 1}n to denote
the set of all non-empty binary strings, and the set of all n-bit binary strings,
respectively. We write ∅ to denote the empty string, and {0, 1}∗ = {0, 1}+ ∪{∅}.
For any two strings X,Y ∈ {0, 1}∗, we write X‖Y to denote the concatenation
of the string X followed by the string Y . For X ∈ {0, 1}∗, |X| denotes the
length (number of the bits) of X. For any non-empty binary string X ∈ {0, 1}+,
(X[1], . . . ,X[k]) n← X denotes the n-bit parsing of X, where |X[i]| = n for 1 ≤
i ≤ k−1, and 1 ≤ |X[k]| ≤ n. We use the notation X[a . . . b] to denote bit string
X[a]‖X[a + 1]‖ · · · ‖X[b]. If a = 1, then we write X[. . . b] to denote X[1 . . . b]. In
this paper, we fix a positive integer n and define the function ozs over the set of
any binary string, as ozs(X) := X‖1‖0n−(|X| mod n)−1. Note that the function is

3 GCM-RUP [9] also achieves inverse-free, INT-RUP security and on-the-fly decryp-
tion property but it requires two pass.

152 N. Datta et al.

injective and maps all m-bit binary strings to a multiple of n-bit binary strings by
appropriately padding the string with 10∗. For any real number X, �X	 denotes
the smallest integer X ′ such that X ′ ≥ X. For any X ∈ {0, 1}+ and an integer
i ≤ |X|, �X�i (�X	i) returns the least significant (most significant, resp.) i-bits
of X. For any integer i, we denote the n-bit unsigned representation of i as 〈i〉n.

2.1 Authenticated Encryption

An authenticated encryption (AE) is an integrated scheme that provides both
privacy and integrity of a plaintext M ∈ {0, 1}∗ and integrity of an associ-
ated data A ∈ {0, 1}∗. Taking a nonce N ∈ N (which is a unique value
for each encryption), where N is the nonce space, together with the asso-
ciated data A and the plaintext M , the encryption function of AE, encK ,
produces a tagged-ciphertext (C, T) ∈ {0, 1}∗ × {0, 1}τ with |C| = |M |. We
denote the length in blocks of the associated data, message and ciphertext with
a,m and c, respectively. The corresponding decryption function, decK , takes
(N,A,C, T) ∈ N × {0, 1}∗ × {0, 1}∗ × {0, 1}τ and returns a decrypted plaintext
M ∈ {0, 1}∗ when the authentication on (N,A,C, T) is successful; otherwise, it
returns the atomic error symbol denoted by ⊥. Following Andreeva et al. [6], we
separate the decryption algorithm into plaintext computation and tag verifica-
tion. Formally, the decryption interface provides two algorithms, a decryption
function decK that takes (N,A,C) and returns a decrypted plaintext M irrespec-
tive of the authentication result (hence we drop the tag value), and a verification
function verK that takes (N,A,C, T) and returns � when the authentication
succeeds; otherwise, it returns ⊥.

2.2 Integrity Security in RUP Setting

Following the definition of Andreeva et al. [6], we define the integrity security of
an authenticated encryption scheme in the RUP setting. We consider an informa-
tion theoretic adversary A with access to a triplet of oracles of an authenticated
encryption scheme Θ - for a uniformly sampled secret key K, the encryption ora-
cle Θ.encK , decryption oracle Θ.decK and the verification oracle Θ.verK . We say
that A forges Θ under the RUP setting if A can compute a tuple (N,A,C, T)
satisfying Θ.verK(N,A,C, T) �= ⊥, without querying (N,A,M) to Θ.encK and
receiving (C, T) as a response, i.e. (N,A,C, T) is a non-trivial forgery. We assume
that A can make decryption queries of the form (N,A,C) to the oracle Θ.decK ,
with no restriction on nonce repetitions, and receive the corresponding response
M , whereas nonces should be distinct for every encryption queries to Θ.encK .
Then, the integrity security or equivalently the forging advantage of Θ for the
adversary A in the RUP setting is defined as

Pr[K ←$ {0, 1}k : A Θ.encK ,Θ.decK ,Θ.verK forges].

We assume that A does not make any query to the oracles for which it can
compute the corresponding response on its own. We call such an adversary a non-
trivial adversary. Following [6], we view the forging advantage of Θ in the RUP

INT-RUP Security of SAEB and TinyJAMBU 153

setting as an equivalent distinguishing game between two worlds. The real world
consists of (Θ.encK ,Θ.decK ,Θ.verK) for a uniformly chosen key K, whereas the
ideal world consists of (Θ.encK ,Θ.decK ,⊥), i.e., the verification oracle in the
real world is replaced by the reject symbol. This means all verification attempts
in the ideal world will lead to a rejection. Under this equivalent setting, the
integrity advantage for any distinguisher A is defined as

Advint-rup
Θ (A) :=

∣
∣
∣Pr[A (Θ.encK ,Θ.decK ,Θ.verK) = 1] − Pr[A (Θ.encK ,Θ.decK ,⊥) = 1]

∣
∣
∣ ,

where ⊥ denotes the degenerate oracle that always returns ⊥ symbol and the
probability is defined over the randomness of K. The integrity under RUP advan-
tage of Θ is defined as

Advint-rup
Θ (qe, qd, qv, σe, σd, σv) := max

A
Advint-rup

Θ (A),

where the maximum is taken over all distinguishers making qe encryption queries,
qd decryption queries and qv verification queries. Here σe, σd and σv denotes the
total number of block cipher calls with distinct inputs in encryption, decryp-
tion, and verification queries, respectively. Throughout this paper, we write
(qe, qd, qv, σe, σd, σv)-distinguisher to represent a distinguisher that makes qe

encryption queries with a total of σe many primitive calls with distinct inputs
in encryption queries, qd decryption queries with a total of σd many primitive
calls with distinct inputs in decryption queries and qv verification queries with
a total of σv many primitive calls with distinct inputs in verification queries.

Let Λ1 and Λ0 denote the random variable induced by the interaction of A
with the real oracle and the ideal oracle, respectively. The probability of realizing
a transcript ω in the ideal oracle (i.e., Pr[Λ0 = ω]) is called the ideal interpo-
lation probability. Similarly, one can define the real interpolation probability. A
transcript ω is said to be attainable with respect to A if the ideal interpolation
probability is non-zero (i.e., Pr[Λ0 = ω] > 0). We denote the set of all attainable
transcripts by Ω. Following these notations, we state the main result of the H-
Coefficient Technique in Theorem 1. The proof of this theorem can be found in
[34].

Theorem 1 (H-Coefficient Technique). Suppose for some Ωbad ⊆ Ω, which
we call the bad set of transcripts, the following conditions hold:

1. Pr[Λ0 ∈ Ωbad] ≤ ε1,
2. For any good transcript ω ∈ Ω \ Ωbad, Pr[Λ1 = ω] ≥ (1 − ε2) · Pr[Λ0 = ω].

Then, we have
Advint-rup

Θ (qe, qd, qv, σe, σd, σv) ≤ ε1 + ε2. (1)

We will apply the H-Coefficient technique to bound the integrity security of the
two block cipher based authenticated ciphers SAEB and TinyJAMBU in the RUP
model. To do this, we first replace the underlying primitive of the construction,
which is a block cipher, with a random permutation at the cost of the PRP
advantage of the block cipher. Then, we bound the distinguishing advantage of

154 N. Datta et al.

the resulting construction (whose underlying primitive is a random permutation)
from the ideal one. We bound this advantage against an adversary A that is
computationally unbounded (i.e., no bound on the time complexity, but bounded
on the number of queries that it can ask to the oracle) and hence deterministic.
We call them information-theoretic adversary. Therefore, from now onwards, we
skip the time parameter from their corresponding advantage definitions.

3 SAEB AEAD Mode and Its INT-RUP Security

SAEB [33] is a block cipher based AEAD scheme, proposed by Naito et al.
in TCHES’18. The design principle of SAEB follows the sponge duplex mode
based on block ciphers. Similar to permutation based sponge constructions,
SAEB injects r-bits of the message at a time to the construction, called the mes-
sage injection rate, c-bits capacity, and the overall block size is n = r + c-bits.
The algorithmic description of the encryption function of SAEB is presented
in Fig. 1, and its schematic diagram is depicted in Fig. 2. An instantiation of
SAEB with AES-128, called SAEAES [32], was submitted in NIST LwC and is
one of the second round candidates of the competition. In the original proposal
of the scheme, the recommended parameters of SAEAES are r = 64 and c = 64.
The pictorial representation of the encryption algorithm of SAEB is given in
Fig. 2. Naito et al. [33] have shown that SAEB achieves birthday bound security
with the dominating term being (σa + σd)/2c + (σe + σd)2/2n, where σa is the
number of associated data blocks across all the queries, σe is the total number of
block cipher calls with distinct inputs in encryption queries, and σd is the total
number of block cipher calls with distinct inputs in decryption queries. However,

Fig. 1. Encryption algorithm of SAEB authenticated encryption mode.

INT-RUP Security of SAEB and TinyJAMBU 155

the designers have not analyzed the construction in the RUP setting, and to the
best of our knowledge, no prior work has addressed the issue of analyzing the
security of this construction in the RUP setting. In the subsequent sections, we
analyze the INT-RUP security of SAEB. In particular, we show in Sect. 3.1 that
an adversary A with roughly 2c/2 decryption queries, can forge SAEB in the
release of unverified plaintext setting and in Sect. 4, we give an upper bound of
the order 2c/2 on the INT-RUP security of SAEB.

Fig. 2. Encryption algorithm of SAEB Authenticated Encryption for a block associated
data, and m block message. const1, const2, const3 are two-bit distinct constants used
for domain separation. const1 = 01/10 based on whether A[a] is a full or partial block.
const2 = 11 and const3 = 01/10 based on whether M [m] is a full or partial block.

3.1 INT-RUP Attack on SAEB

In this section, we show a forging attack on SAEB in the INT-RUP setting
with 2c/2 decryption queries and a single encryption query. Here we describe the
adversary A that primarily exploits the fact that during a decryption call, an
adversary can control the rate part of the input of the block cipher by directly
injecting the ciphertext into the rate part of the block cipher to mount the
attack: First, we describe the attack when r ≥ c/2, then extend it for r < c/2.
Let r ≥ c/2. We describe an adversary A that mounts an INT-RUP attack
against SAEB with roughly 2c/2 decryption queries and a single encryption query
as follows:

1. A chooses an arbitrary r-bit nonce N , an arbitrary r-bit associated data A
and an arbitrary r-bit ciphertext data C, and then makes 2c/2+1 decryption
queries of the form (N, A, Ci[1] ‖ C[2] ‖ C[3] ‖ . . . ‖ C[� + 1])i=1,...,2c/2 ,

156 N. Datta et al.

with distinct r-bit Ci[1] values such that C[2] = C[3] = . . . = C[� +
1] = C and � = �c/r	 + 1. Let the unverified released plaintext be
Mi[1] ‖ Mi[2] ‖ Mi[3] ‖ . . . ‖ Mi[� + 1].

2. Assume there exist two indices j, k ∈ [2c/2] for which Mj [a] = Mk[a] for all
a ∈ [3, � + 1].

3. A makes an encryption query with (N, A, Mj [1] ‖ Mj [2] ‖ Mj [3] ‖ . . . ‖
Mj [� + 1]). Let the tagged ciphertext be (Cj [1] ‖ C[2] ‖ C[3] ‖ . . . ‖ C[� +
1], T), where C[2] = C[3] = . . . = C[� + 1] = C.

4. A forges with (N, A, (Ck[1] ‖ C[2] ‖ C[3] ‖ . . . ‖ C[� + 1]), T), where
C[2] = C[3] = . . . = C[� + 1] = C.

It is easy to see that A succeeds with probability 1/2. The technical details of
the analysis can be found in the Full version [22].

Attack when r < c/2. Now, we consider the case when r < c/2. Note that,
when r < c/2, then varying just one r-bit ciphertext string would result in at
most 2r different values. This would not ensure a collision in the capacity part
with high probability. To deal with this, one can vary multiple consecutive r-bit
ciphertext strings, say s many, which results in 2rs many different values. If we
appropriately choose s with rs ≥ c/2, we expect a collision in the capacity part.
Then a similar attack strategy, as described for r ≥ c/2, will hold. The concrete
attack can be found in the full version.

4 INT-RUP Security of SAEB

In this section, we show that SAEB is INT-RUP secure against all adversaries
that make roughly 2c/2 decryption queries, where c is the capacity of the con-
struction. We prove the security of the construction in the information-theoretic
setting, where a uniform random n-bit permutation P replaces the underlying
block cipher of the construction at the cost of the prp advantage of the block
cipher E and denote the resulting construction as SAEB∗[P]. In the following, we
state and prove the int-rup security result of SAEB∗[P].

Theorem 2. Let P ←$ Perm(n) be an uniformly sampled n-bit random permu-
tation. The INT-RUP advantage for any (qe, qd, qv, σe, σd, σv)-distinguisher A
against the construction SAEB∗[P] that makes at most qe encryption, qd decryp-
tion and qv verification queries with at most σe primitive calls with distinct
inputs in encryption queries, σd primitive calls with distinct inputs in decryp-
tion queries and σv primitive calls with distinct inputs in verification queries
having a total of σ = σe + σd + σv primitive calls with distinct inputs such that
ρ ≤ σe, where ρ is a parameter, is given by

Advint-rup
SAEB∗[P](A) ≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ + σd)
2c

+
qv

2τ
+

qv(σe + σd)
2c

.

INT-RUP Security of SAEB and TinyJAMBU 157

Proof. As the first step of the proof, we slightly modify the construction by
replacing the random permutation with a random function R ←$ Funcs({0, 1}n).
We denote the resulting construction as Θ. This modification comes at the cost
of birthday bound complexity due to the PRF-PRP switching lemma [12,21]. We
consider a computationally unbounded non-trivial deterministic distinguisher A
that interacts with a triplet of oracles in either of the two worlds: in the real
world, it interacts with (Θ.encR,Θ.decR,Θ.verR), and in the ideal world, it inter-
acts with (Θ.encR,Θ.decR,⊥), where ⊥ denotes the oracle that always rejects
the verification attempts. We summarize A ’s query-response in a transcript ω
which is segregated into a transcript of encryption queries, decryption queries,
verification queries. Basically, we segregate the transcript ω into three parts ω+,
ω−, and ω×, where ω+ = {(N+

1 , A+
1 ,M+

1 , C+
1 , T+

1), . . . , (N+
qe

, A+
qe

,M+
qe

, C+
qe

, T+
qe

)}
is a tuple of encryption queries, ω− = {(N−

1 , A−
1 , C−

1 ,M−
1), (N−

2 , A−
2 , C−

2 ,M−
2),

. . . , (N−
qd

, A−
qd

, C−
qd

,M−
qd

)} is a tuple of decryption queries, and a tuple of verifi-
cation queries ω× = {(N×

1 , A×
1 , C×

1 , T×
1 ,⊥1), . . . , (N×

qv
, A×

qv
, C×

qv
, T×

qv
,⊥qv

)} such
that ω = ω+ ∪ ω− ∪ ω×. We modify the experiment by releasing all internal
state values to adversary A after it makes all the encryption, decryption and
verification queries, and before it outputs the decision bit b. We denote the j-
th internal state value in the i-th encryption, decryption and verification query
as s+

i [j], s−
i [j] and s×

i [j] respectively. In general, we denote it as s�
i [j], where

� ∈ {+,−,×}. The length of associated data, message and ciphertext in the i-th
query is denoted as a�

i ,m
�
i and c�

i respectively where � ∈ {+,−,×}. In the real
world, these internal state variables for every encryption, decryption and verifi-
cation queries are computed by the corresponding oracles that faithfully evaluate
SAEB∗. Note that the sequence of internal state values, in the real world for the
i-th encryption query of length a+

i + m+
i + 1, are defined as follows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s+
i [1] = A+

i [1]‖〈0〉c1

s+
i [k] = A+

i [k]‖〈0〉c1 ⊕ R(s+
i [k − 1]), for 2 ≤ k < a+

i

s+
i [a+

i] = ozs(A+
i [a+

i])‖〈const1〉c ⊕ R(s+
i [a+

i − 1])
s+

i [a+
i + 1] = N+

i ‖〈const2〉c ⊕ R(s+
i [a+

i])
s+

i [a+
i + 1 + k] = M+

i [k]‖〈0〉c ⊕ R(s+
i [k − 1]), for 1 ≤ k < m+

i

s+
i [a+

i + 1 + m+
i] = ozs(M+

i [m+
i])‖〈const3〉c ⊕ R(s+

i [a+
i + m+

i])

(2)

Similarly, we define the internal state values in the real world for decryption and
verification queries. In the ideal world, as the encryption and decryption oracles
are identical to that of the real world, the intermediate state variables for every
encryption and decryption queries are faithfully evaluated by the correspond-
ing oracles, and hence the sequence of state values for i-th encryption query
is identically defined to Eq. (2). Similar to the real world, we also define the
internal state values in the ideal world for decryption queries. As the verification
oracle ⊥ in the ideal world always returns rejects and does not compute any-
thing, the internal state variables are not defined. Therefore, we have to define
the sampling of the intermediate state variables for every verification query in
the ideal world. To achieve this, for every verification query (N,A,C, T), the

158 N. Datta et al.

verification oracle for the ideal world invokes the decryption oracle Θ.decR with
input (N,A,C) ignoring the output of r-bit plaintext strings. Finally, the veri-
fication oracle ignores the checking of the computed tag T ∗ with the given tag
T . Thus, the sequence of internal state values is defined for verification queries.
Let the modified attack transcripts be ωnew = ω+

new ∪ ω−
new ∪ ω×

new, where
⎧

⎪⎨

⎪⎩

ω+
new = ω+ ∪ {s+

i [j] : i ∈ [qe], j ∈ [ai + mi + 1]}
ω−
new = ω− ∪ {s−

i [j] : i ∈ [qd], j ∈ [ai + mi + 1]}
ω×
new = ω× ∪ {s×

i [j] : i ∈ [qv], j ∈ [ai + mi + 1]}.

For a given transcript ωnew, we reorder the transcript so that all the encryption
queries appear first, followed by all the decryption queries and finally, all the
verification queries. It is easy to see that a state collision occurs in s�

i [j] and
s�

i′ [j] with probability 1, where �,� ∈ {+,−,×}, if

• A�
i [. . . j] = A�

i′ [. . . j], when j ≤ a�
i ,

• A�
i = A�

i′ , N�
i = N�

i′ , when j = a�
i + 1,

• N�
i = N�

i′ , A�
i = A�

i , M�
i [. . . (j − a�

i − 1)] = M�
i′ [. . . (j − a�

i − 1)], when
a�

i + 1 < j ≤ a�
i + 1 + m�

i .

A state collision that happens with probability 1 is called a trivial collision, and
any other state collision is non-trivial. For j > 1, we write ancestor(s�

i [j]) to
denote the sequence of state values (s�

i [1], . . . , s�
i [j − 1]) that leads to s�

i [j] in
the i-th query and ancestor(s�

i [1]) = φ, where � ∈ {+,−,×}. Using this notion,
we say that a trivial state collision between s�

i [j] and s�
i′ [j] occurs if and only if

ancestor(s�
i [j]) = ancestor(s�

i′ [j]) for some j. Let D�
i := A�

i ‖N�
i and d�

i := a�
i + 1

where � ∈ {+,−,×}. Let us consider two queries �,� ∈ {+,−,×} with distinct
query indices i and i′, where i, i′ ∈ [qe + qd + qv]. We define the longest common
prefix of (i, i′), denoted as LCP(i, i′)
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

j, if j ∈ [d�
i],D

�
i [1..j] = D�

i′ [1..j],D�
i [j + 1] �= D�

i′ [j + 1]
d�

i , if D�
i = D�

i′ ,M
�
i [1] �= M�

i′ [1]
j, if j ∈ [d�

i , d
�
i + m�

i],D
�
i = D�

i′ ,M
�
i [1..j] = M�

i′ [1..j],M�
i [j + 1] �= M�

i′ [j + 1]
d�

i + m�
i , if D�

i = D�
i′ ,M

�
i = M�

i′ [1..m�
i]

Consequently, we define LLCP(i) Δ= maxi′<i{LCP(i, i′)}, that denotes the longest
common prefix of query index i ∈ [qe + qd + qv].

4.1 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the
ideal world. Let Ω be the set of all attainable transcripts and ωnew ∈ Ω be one
such attainable transcript. We say that transcript ωnew is bad, i.e., ωnew ∈ Ωbad,
if at least one of the following holds:

1. Coll: there exists i, j, i′, j′ with (i′, j′) < (i, j) with LLCP(i) < j ≤ ai +mi +1
and i ≤ [qe + qd + qv] such that s�

i [j] = s�
i′ [j′], where �,� ∈ {+,−,×}.

INT-RUP Security of SAEB and TinyJAMBU 159

2. mColl: ∃i1, j1, . . . , iρ, jρ with {i1, . . . , iρ} ⊆ [qe] and for all 1 ≤ k ≤ ρ, jk ∈
[mik

], such that C+
i1

[j1] = · · · = C+
iρ

[jρ].
3. Forge: This event happens if for some verification query, all its interme-

diate states prior to the final state matches with intermediate state from
some encryption or decryption queries; and the final state of the verification
query matches with the final state of an encryption query for which the tag
matches. In other words, ∃i ∈ [qv] such that for the i-th verification query
(N×

i , A×
i , C×

i , T+
i), the following two events hold:

{

∀j ∈ [a×
i + 1, (a×

i + c×
i)],∃i′, j′ such that s×

i [j] = s+
i′ [j′] or s×

i [j] = s−
i′ [j′],

∃f ∈ [qe] such that s×
i [a×

i + c×
i + 1] = s+

f [a+
f + c+

f + 1] with T+
i = T+

f .

We now compute the probability of a transcript being bad in the ideal world.
Using the union bound, we have

Pr[Λ0 ∈ Ωbad] = Pr[Coll ∨ mColl ∨ Forge]. (3)

Bounding Coll: For this event to happen, we know that there exists at least
one pair of indices (i′, j′) < (i, j) such that LLCP(i) < j ≤ ai + mi + 1 and
s�

i [j] = s�
i′ [j′]. For any value of j ∈ [1, ai + mi + 1], we have,

s�
i [j] = s�

i′ [j] ⇔ R(s�
i [j − 1]) ⊕ R(s�

i′ [j − 1]) = x�
i [j] ⊕ x�

i′ [j] (4)

where x�
i [j] and x�

i′ [j] are two n-bit strings. Note that if j > ai + 1, the first
r-bits of x�

i [j] is xored with message block if � = + or the first r-bits of x�
i [j] is

replaced by the ciphertext block if � ∈ {−,×}. Similarly, if j > ai + 1 the first
r-bits of x�

i′ [j] is xored with message block if � = + or the first r-bits of x�
i′ [j] is

replaced by a ciphertext block if � ∈ {−,×}. On the other hand, if j ≤ ai + 1,
then first r-bits of x�

i [j] and x�
i′ [j] is xored with associated data or nonce for

�,� ∈ {+,−,×}. First, let us consider the case when j = j′ = LLCP(i) + 1 and
j > 1. Then there exists some i′ such that i′ < i and LLCP(i) holds for i′. Now
we consider the values of s�

i [j − 1] and s�
i′ [j′ − 1]. Based on the values of j, we

get following cases.

1. Case j < a�
i + 1. In this case, we have D�

i [1..j − 1] = D�
i′ [1..j − 1] i.e.,

A�
i [1..j] = A�

i′ [1..j] Then from the Equation (2), we have s�
i [j−1] = s�

i′ [j′−1].
2. Case j = a�

i + 1. In this case, LLCP(i) = a�
i . Thus, D�

i [1..a�
i] = D�

i′ [1..a�
i]

i.e., A�
i = A�

i′ . Then from the Eq. (2), we have s�
i [j − 1] = s�

i′ [j′ − 1].
3. Case j = a�

i + 2. In this case, the associated date and nonce in i-th and i′-th
query matches. So, we have s�

i [j − 1] = s�
i′ [j′ − 1].

4. Case a�
i + 2 ≤ j ≤ a�

i + m�
i + 1. In this case, the nonce and associated data

in the i-th and i′-th query matches. Also, the message/ciphertext in i-th and
i′-th query matches up to (j − a�

i − 2)-th block. Thus from the Eq. (10), we
have s�

i [j − 1] = s�
i′ [j′ − 1].

160 N. Datta et al.

Therefore, for any value of j ∈ [2, ai + mi + 1], s�
i [j − 1] = s�

i′ [j′ − 1]. Thus, the
probability of the event,

s�
i [j] = s�

i′ [j] ⇔ R(s�
i [j − 1]) ⊕ R(s�

i′ [j − 1]) = x�
i [j] ⊕ x�

i′ [j] ⇔ x�
i [j] ⊕ x�

i′ [j] = 0

is zero. On the other hand, for all i′ ≤ i and j′ �= j or j �= LLCP(i) + 1,
R(s�

i [j − 1]) ⊕ R(s�
i′ [j − 1]) = x�

i [j] ⊕ x�
i′ [j] holds with probability at most 2−n.

Thus, the probability that two states collide is 2−n. Note that there are σ possible
values of (i, j) in a transcript, each having no more than σ possible values of
(i′, j′), where σ is the total number of permutation calls including all encryption,
decryption and verification queries, such that s�

i [j] = s�
i′ [j′] holds. Therefore, we

have

Pr[Coll] ≤
(

σ

2

)
1
2n

≤ σ2

2n+1
. (5)

Bounding mColl: We bound this event by conditioning the event that
Coll does not occur. As there are no non-trivial collisions, ancestor(s+

i1
[j1]),

ancestor(s+
i2

[j2]), ..., ancestor(s+
iρ

[jρ]) are all distinct and fresh. Therefore, all
the outputs R(s+

i1
[j1]), R(s+

i2
[j2]), ..., R(s+

iρ
[jρ]) are all uniformly sampled over

{0, 1}n. Thus, from the randomness of R, we can view this event as throwing
σe balls into 2r bins (as we are seeking collisions in the rate part) uniformly
at random, where σe denotes the total number of primitive calls including all
encryption queries and we want to find the probability that there is a bin that
contains ρ or more balls. In other words, ρ or more outputs take some constant
value c. This event occurs with probability at most (1

2r)ρ. Again, we have 2r

choices for the constant value c. Therefore, by varying the choices of all encryp-
tion queries, we have

Pr[mColl | Coll] ≤
(

σe

ρ

)

× 2r(
1
2r

)ρ ≤ σρ
e

(2r)ρ−1
, (6)

where the last inequality follows from Stirling’s approximation ignoring the con-
stant term.

Bounding Forge: We fix a verification query (N×
i , A×

i , C×
i , T×

i) with associ-
ated data length a×

i and ciphertext length c×
i such that ∀a×

i + 1 ≤ j ≤
(a×

i + c×
i),∃i′, j′ s.t s×

i [j] = s�
i′ [j′] where � ∈ {+,−}. Let j be the largest index

for which s×
i [j] does have a trivial collision with s�

i′ [j]. We bound the probability
of Forge when Coll and mColl do not occur. Now, we consider the following two
cases based on the values of j.

(a) Consider a×
i + 1 ≤ j < a×

i + c×
i . In this case the associated data, nonce

and some parts of the message match with some previous query. Here, the
adversary can control the rate part and so s×

i [j + 1] matches with some
encryption or decryption query with probability at most ρ+σd

2c .
(b) Finally, consider the case j = a×

i + c×
i . So the final state matches with some

previous encryption query with probability at most ρ
2c .

INT-RUP Security of SAEB and TinyJAMBU 161

Combining everything together and by varying over the choices of all the verifi-
cation queries,

Pr[Forge | Coll ∧ mColl] ≤ qv(2ρ + σd)
2c

. (7)

From Eq. (3)–Eq. (7), we obtain the probability of a transcript being bad as,

Pr[Λ0 ∈ Ωbad] ≤ Pr[Coll] + Pr[mColl | Coll] + Pr[Forge | Coll ∧ mColl]

≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ + σd)
2c

. (8)

4.2 Analysis of the Good Transcripts

In this section, we show that for a good transcript ωnew ∈ Ωnew, the probability
of realizing ωnew in the real world is as likely as in the ideal world. It is easy to
see that for a good transcript ωnew, we have that Pr[Λ+

1 = ω+
new,Λ

−
1 = ω−

new] =
Pr[Λ+

0 = ω+
new,Λ

−
0 = ω−

new]. Thus, the ratio of interpolation probabilities is given
by

Pr[Λ1 = ωnew]
Pr[Λ0 = ωnew]

= Pr[Λ×
1 = ω×

new|Λ+
1 = ω+

new,Λ
+
1 = ω+

new]

≥ 1 − Pr[Λ×
1 �= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new],

where we have used the fact that Pr[Λ×
0 = ω×

new | Λ+
0 = ω+

new,Λ
−
0 = ω−

new] = 1,
because in the ideal world, the response to any verification query is ⊥. For

i ∈ [qv], let Ei denote the event Ei
Δ=

(

λ̄i �= ⊥ ∣
∣ Λ+

1 = ω+
new,Λ

−
1 = ω−

new

)

, where

λ̄i be the random variable that denotes the response to the i-th verification query
in the real world. Then, we have

Pr[Λ×
1 �= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤
∑

i∈[qv]

Pr[Ei].

We fix i ∈ [qv] and let the i-th verification query be (N×
i , A×

i , C×
i , T×

i), of asso-
ciated data length a×

i and ciphertext length c×
i . We want to bound Pr[Ei].

This probability is non-zero only if Θ.verR returns anything other than ⊥. If
s×

i [a×
i + c×

i + 1] does not match with the final state of any encryption query,
Pr[Ei] ≤ 1

2τ holds trivially. Suppose, there exists some encryption query such
that the final state matches with s×

i [a×
i + c×

i + 1]. In this case, there must exist
some j such that s×

i [j] is fresh, otherwise Forge is true. Let j∗ be the maximum
of such j. Then, s×

i [j∗ +1] matches with some previous encryption or decryption
state with probability at most (σe+σd)

2c , as the adversary can control only the
rate-part of these states. Putting everything together we get:

Pr[Ei] ≤ 1
2τ

+
(σe + σd)

2c
.

162 N. Datta et al.

Therefore, we have

Pr[Λ×
1 �= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤ qv

2τ
+

qv(σe + σd)
2c

. (9)

The result follows as we combine Eq. (8), Eq. (9) and Theorem 1. ��
Significance of INT-RUP Security of SAEB: If we instantiate SAEB with
AES-128 block cipher and restrict its message injection rate to r = 32-bits,
then the capacity c will be of 96-bits, and hence SAEB-32 will provide INT-
RUP security up to 248 decryption/verification blocks4, which satisfies the NIST
criteria of having 250 byte of data-complexity. However, for SAEAES, where the
message injection rate is r = 64-bits, we only achieve 232 block of INT-RUP
security. This result signifies that if we wish to have an INT-RUP secure variant
of SAEB, we can simply use the same construction as SAEAES but with a lower
message injection rate.

5 TinyJAMBU and Its INT-RUP Security

TinyJAMBU is one of the finalists of the NIST lightweight competition. The
design principle of TinyJAMBU follows the sponge duplex mode based on keyed
permutations derived from lightweight LFSRs. Unlike SAEB, TinyJAMBU injects
the message in a specific part of the state and squeeze from a different part of
the state to output the ciphertext. Therefore, we have a r-bit message injection
part, r-bit squeezing part, and a c-bit unaltered capacity part, which is xored
with the frame constants. Together, we have a total state size of n = c + 2r-
bits. TinyJAMBU uses two different keyed permutations with the same key K.
These two keyed permutations are similar in structure but differs only in the
number of rounds. One permutation consists of 384 rounds of a LFSR, which we
denote as P

(1)
K and the another permutation consists of 1024 rounds of the same

LFSR, which we denote as P
(2)
K . The encryption and the decryption algorithm

of TinyJAMBU starts with the Init function that mixes the key K and the nonce
N to produce a pseudorandom state. In particular, the Init function consists of
two steps: key set up phase and nonce set up phase. In the key setup phase,
an 128-bit register is initialized with all 0 and update the state by the keyed
permutation P

(2)
K . In the nonce setup phase, an 96-bits nonce N is splitted up

into three 32-bits nonces N [1]‖N [2]‖N [3]. Followed by it, for each i ∈ {1, 2, 3},
it updates the intermediate state s by xoring 0‖consti‖0 with the current value
of s. Then, invoke P

(1)
K on s and finally xor the output with N [i] to update the

intermediate state s.
The algorithmic description of the encryption function of TinyJAMBU is given
in Fig. 3, and its schematic diagram is depicted in Fig. 4. In the original proposal
of the scheme [39], the recommended parameters of TinyJAMBU are r = 32,
c = 64. consti denotes 3-bits frame constants for i ∈ {1, 2, 3, 4}, where const1 =
001, const2 = 011, const3 = 101, const4 = 111.
4 Security bound of the SAEB is moot if the number of encryption blocks exceeds 232.

INT-RUP Security of SAEB and TinyJAMBU 163

Fig. 3. Formal specification of TinyJAMBU authenticated encryption mode. The func-
tion lp(X) := �|X|/8� denotes the binary representation of the number of bytes present
in a binary string X.

TinyJAMBU achieves birthday bound security with dominant terms being
(eσe/ρ2r)ρ(2r/

√
ρ) + (σa + σd)(ρ − 1)/2c+(r/2)+1, where ρ is a properly chosen

constant. In the following, we state and prove the INT-RUP security result of
TinyJAMBU∗[P].

Theorem 3. Let P ←$ Perm(n) be an n-bit uniform random permutation. Let
r, c and ρ be three parameters such that n = c + 2r and let τ be the
bit size of the tag output by TinyJAMBU. The INT-RUP advantage for any
(qe, qd, qv, σe, σd, σv)-distinguisher A against the construction TinyJAMBU∗[P]
that makes at most qe encryption, qd decryption and qv verification queries with
at most σe primitive calls with distinct inputs in encryption queries, σd primi-
tive calls with distinct inputs in decryption queries and σv primitive calls with
distinct inputs in verification queries having a total of σ = σe +σd +σv primitive
calls with distinct inputs such that ρ ≤ σe is given by

164 N. Datta et al.

Fig. 4. TinyJAMBU Authenticated Encryption for a block associated data, and m block
message. const2 = 011, const3 = 101, const3 = 111 are small distinct constants used
for domain separation. 32-bits of the message and associated data are injected to the
construction.

Advint-rup
TinyJAMBU∗(A) ≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ + σd)
2n−r

+
qv

2τ
+

qv(σe + σd)
2n−r

.

Remark 1. Recently two independent works by Sibleyras et al. [36] and Dunkel-
man et al. [25] have shown some vulnerabilities on the underlying permutation
of TinyJAMBU. Note that these results do not imply any insecurity of the mode
TinyJAMBU per se. In this paper, we prove the INT-RUP security of TinyJAMBU
by viewing it as a mode which is build on top of some secure keyed permuta-
tions. Note that the construction uses two different keyed permutations with
the same key but differs only in the number of rounds, we model the security
proof of the construction in the standard setting, where we replace these two
keyed permutations with an n-bit uniform random permutation and denote the
resulting construction as TinyJAMBU∗[P].

Proof. We proceed similar to the proof of Theorem2. We modify the construc-
tion by replacing the permutations with random function R ←$ Funcs({0, 1}n)
and denoting the resulting construction as Θ. We consider a distinguisher A ,
that interacts with a triplet of oracles in either of the worlds: in the real world, it
interacts with (Θ.encR,Θ.decR,Θ.verR) and in the ideal world it interacts with
(Θ.encR,Θ.decR,⊥). We summarize the queries in a transcript ω and segregate
the transcript ω into three parts ω+, ω−, and ω× as described for the analysis of
SAEB and we have ω = ω+ ∪ ω− ∪ ω×. The length of associated data, message
and ciphertext in the i-th query is denoted as a�

i ,m
�
i and c�

i respectively where
� ∈ {+,−,×}. We denote the j-th input to R in the i-th encryption, decryption

INT-RUP Security of SAEB and TinyJAMBU 165

and verification query as s+
i [j], s−

i [j] and s×
i [j] respectively and in general s�

i [j]
where � ∈ {+,−,×}. The sequence of internal state values in the real world for
i-th encryption query of length ai+mi are defined according to the construction.
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s+i [0] = R(0)

s+i [1] = R(s+i [0] ⊕ 0‖〈const1〉2‖0) ⊕ N+
i [1]

s+i [2] = R(s+i [1] ⊕ 0‖〈const1〉2‖0) ⊕ N+
i [2]

s+i [3] = R(s+i [2] ⊕ 0‖〈const1〉2‖0) ⊕ N+
i [3]

s+i [k + 3] = R(s+i [k − 1] ⊕ 0‖〈const2〉2‖0) ⊕ A+
i [k], for 1 ≤ k < a+i

s+i [ai + 3] = R(s+i [a+i − 1] ⊕ 0‖〈const2〉2‖0) ⊕ lp(A+
i [ai])

s+i [ai + 3 + k] = R(s+i [k − 1] ⊕ 0‖〈const3〉2‖0) ⊕ M+
i [k], for 1 ≤ k < mi

s+i [ai + 3 +mi] = R(s+i [a+i +m+
i] ⊕ 0‖〈const3〉2‖0) ⊕ lp(M+

i [mi]) ⊕ 0‖〈const4〉2‖0
(10)

In the above description, the nonce in the i-th encryption query is N+
i =

N+
i [1]‖N+

i [2]‖N+
i [3] is processed in three steps. We modify the experiment by

releasing all internal state values to the adversary A before it outputs the deci-
sion bit b, but after it makes all the queries. As the verification oracle ⊥ in
the ideal world always returns reject and does not compute anything, the inter-
nal state variables are not defined. Thus, similar to the proof of Theorem2, we
have to define the sampling of the intermediate state variables for every veri-
fication query in the ideal world. To achieve this, for every verification query
(N,A,C, T) made by adversary A, the verification oracle for the ideal world
invokes the decryption oracle Θ.decR with input (N,A,C) ignoring the output
of r-bit plaintext strings. Finally, the verification oracle ignores the checking of
the computed tag T ∗ with the given tag T . Hence, the sequence of internal state
values is defined for verification queries. Let the modified attack transcripts be
ωnew = ω+

new ∪ ω−
new ∪ ω×

new. For a given transcript ωnew, we reorder the transcript
in such a way that all the encryption queries appear first, followed by all the
decryption queries and finally, all the verification queries. Now, it is easy to see
that a state collision in s�

i [j] and s�
i′ [j] occurs with probability 1 if

• N�
i = N�

i′ , A�
i [. . . j] = A�

i′ [. . . j], when j ≤ a�
i ,

• N�
i = N�

i′ , A�
i = A�

i , M�
i [. . . (j − a�

i)] = M�
i′ [. . . (j − a�

i)], when a�
i < j ≤

a�
i + m�

i .

A state collision with probability 1 is called trivial, and any other state collision is
called non-trivial. We denote D�

i = N�
i ‖A�

i and d�
i = a�

i +3 where � ∈ {+,−,×}.
Let us consider two query �,� ∈ {+,−,×} with distinct query indices i and i′,
where i, i′ ∈ [qe+qd+qv]. Similar to the proof of Theorem2, we use the notations
ancestor, LCP(i, i′) and LLCP(i).

5.1 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the ideal
world. The idea of this proof is almost similar to that of Theorem2. However,

166 N. Datta et al.

the bounds are different because the adversary cannot control the rate part from
where the squeezing occurs. Let Ω be the set of all attainable transcripts and
ωnew ∈ Ω be one such attainable transcript. We say that transcript ωnew is bad,
i.e., ωnew ∈ Ωbad, if at least one of the following holds:

1. Coll: there exists i, j, i′, j′ with (i′, j′) < (i, j) with LLCP(i) < j ≤ ai +mi +3
and i ≤ [qe + qd + qv] such that s�

i [j] = s�
i′ [j′], where �,� ∈ {+,−,×}.

2. mColl: ∃i1, j1, . . . , iρ, jρ with {i1, . . . , iρ} ⊆ [qe] and for all 1 ≤ k ≤ ρ, jk ∈
[mik

], such that C+
i1

[j1] = · · · = C+
iρ

[jρ].
3. Forge: This event happens, if for some verification query, all its intermedi-

ate states prior to the final state match with the intermediate state from
some encryption or decryption queries, and the final state of the verification
query matches with the final state of the encryption query for which the tag
matches. In other words, ∃i ∈ [qv] such that for the i-th verification query
(N×

i , A×
i , C×

i , T+
i), the following two events hold:

{

∀j ∈ [a×
i , (a×

i + c×
i − 1)],∃i′, j′ such that s×

i [j] = s+
i′ [j′] or s×

i [j] = s−
i′ [j′],

∃f ∈ [qe] such that s×
i [a×

i + c×
i] = s+

f [a+
f + c+

f] with T+
i = T+

f .

We now compute the probability of a transcript being bad in the ideal world.
If ωnew is a transcript observed in the ideal world, we want to calculate the
probability of ωnew to satisfy one of the above conditions. By applying the union
bound, we have

Pr[Λ0 ∈ Ωbad] = Pr[Coll ∨ mColl ∨ Forge]

≤ Pr[Coll] + Pr[mColl | Coll] + Pr[Forge | Coll ∧ mColl]

≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ + σd)
2n−r

. (11)

The calculation for the bounds for each of the above terms are similar to the
one used for SAEB, and the details can be found in the full version [22].

5.2 Analysis of the Good Transcripts

In this section, we show that for a good transcript ωnew ∈ Ωnew, the probability
of realizing ωnew in the real world is as likely as in the ideal world. It is easy to
see that for a good transcript ωnew, we have Pr[Λ+

1 = ω+
new,Λ

−
1 = ω−

new] = Pr[Λ+
0 =

ω+
new,Λ

−
0 = ω−

new]. Thus, the ratio of interpolation probabilities is given by

Pr[Λ1 = ωnew]
Pr[Λ0 = ωnew]

= Pr[Λ×
1 = ω×

new|Λ+
1 = ω+

new,Λ
+
1 = ω+

new]

≥ 1 − Pr[Λ×
1 �= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new]. (12)

Now let us bound the term in the right hand side of the equation. For i ∈ [qv],
let Ei denote the following event

Ei
Δ=

(

λ̄i �= ⊥ ∣
∣ Λ+

1 = ω+
new,Λ

−
1 = ω−

new

)

,

INT-RUP Security of SAEB and TinyJAMBU 167

where λ̄i be the random variable that denotes the response to the i-th verification
query in the real world. Then, we have

Pr[Λ×
1 �= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤
∑

i∈[qv]

Pr[Ei].

We fix i ∈ [qv] and let the i-th verification query be (N×
i , A×

i , C×
i , T×

i). Assume
that the associated data length is a×

i , and the ciphertext length is c×
i . We want

to bound Pr[Ei]. This probability is non-zero only if Θ.verR1,R2 returns anything
other than ⊥. If s×

i [a×
i +c×

i] does not match with the final state of any encryption
query, we have Pr[Ei] ≤ 1

2τ . Suppose there is some encryption query such that
the final state matches with s×

i [a×
i + c×

i]. In this case, there must be some j
such that s×

i [j] is fresh; otherwise Forge is true. Let j∗ be the maximum of such
j. Then, s×

i [j∗ + 1] matches with some previous encryption or decryption states
with probability at most (σe+σd)

2n−r . Note that the adversary can control only the
first r-bits of the state. Putting everything together we get:

Pr[Ei] ≤ 1
2τ

+
(σe + σd)

2n−r
.

Therefore, we have

Pr[Λ1 = ωnew]
Pr[Λ0 = ωnew]

≥ 1 − (
∑

i∈[qv]

1
2τ

+
(σe + σd)

2n−r
)

≥ 1 − (
qv

2τ
+

qv(σe + σd)
2n−r

). (13)

Finally, we obtain the result combining Eq. (11), Eq. (13) and using Theorem1.
��

6 Conclusion and Future Works

In this paper, we have analyzed the INT-RUP security of SAEB and TinyJAMBU.
Our analysis on TinyJAMBU is particularly relevant from the NIST lightweight
competition perspective, and we believe that our result may positively impact
TinyJAMBU during the final portfolio selection. Our result on SAEB depicts that
the INT-RUP security can be achieved by controlling the message injection rate
without incurring any additional overheads. A similar analysis for the permu-
tation based constructions may be considered as a future research direction.
However, we would like to mention that the trick, similar to SAEB, cannot be
applied on TinyJAMBU as message injection and ciphertext release occur from
different parts of its state. It would be interesting to come up with a matching
INT-RUP attack on TinyJAMBU. Note that Oribatida achieves INT-RUP secu-
rity, but at the cost of maintaining an additional state. Investigating INT-RUP
secure permutation based sponge constructions without any additional overhead
seems a challenging open problem.

168 N. Datta et al.

References

1. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D. National Institute of Stan-
dards and Technology (2007)

2. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.; SpoC:
an authenticated cipher submission to the NIST LWC competition (2019). https://
csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

3. Andreeva, E., Bhati, A.S., Vizar, D.: Nonce-misuse security of the SAEF authen-
ticated encryption mode. Cryptology ePrint Archive, Report 2020/1524 (2020)

4. Andreeva, E., Bhati, A.S., Vizar, D.: Rup security of the SAEF authenticated
encryption mode. Cryptology ePrint Archive, Report 2021/103 (2021)

5. Andreeva, E., et al.: COLM v1. CAESAR Competition
6. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How

to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

7. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA, vol 2. Submission to CAESAR (2015). https://competitions.cr.
yp.to/round2/aescopav2.pdf

8. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: a new primitive for authenticated encryption of very short messages.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
153–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 6

9. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 1

10. Banik, S., Bogdanov, A., Luykx, A., Tischhauser, E.: Sundae: small universal deter-
ministic authenticated encryption for the internet of things. IACR Trans. Symmet-
ric Cryptol. 3, 2018 (2018)

11. Beierle, C., et al.: SKINNY-AEAD and skinny-hash. IACR Trans. Symmetric
Cryptol. 2020(S1), 88–131 (2020)

12. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

13. Bhattacharjee, A., López, C.M., List, E., Nandi, M.: The oribatida v1.3 family of
lightweight authenticated encryption schemes. J. Math. Cryptol. 15(1) (2021)

14. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (2014). http://competitions.cr.yp.to/caesar.html

15. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Yu.:
INT-RUP secure lightweight parallel AE modes. IACR Trans. Symmetric Cryptol.
2019(4), 81–118 (2019)

16. Chakraborti, A., Datta, N., Jha, A., Mitragotri, S., Nandi, M.: From combined to
hybrid: Making feedback-based AE even smaller. IACR Trans. Symmetric Cryptol.
2020(S1), 417–445 (2020)

17. Chakraborti, A., Datta, N., Nandi, M.: INT-RUP analysis of block-cipher based
authenticated encryption schemes. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 39–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 3

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1007/978-3-662-45611-8_6
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-319-29485-8_3
https://doi.org/10.1007/978-3-319-29485-8_3

INT-RUP Security of SAEB and TinyJAMBU 169

18. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

19. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: how small can we go? In: CHES 2017, Proceedings, pp. 277–298
(2017)

20. Chang, D., et al.: Release of unverified plaintext: tight unified model and applica-
tion to ANYDAE. IACR Trans. Symmetric Cryptol. 2019(4), 119–146 (2019)

21. Chang, D., Nandi, M.: A short proof of the PRP/PRF switching lemma. IACR
Cryptol. ePrint Arch. 2008, 78 (2008)

22. Datta, N., Dutta, A., Ghosh, S.: INT-RUP security of SAEB and tinyjambu. Cryp-
tology ePrint Archive, Paper 2022/1414 (2022). https://eprint.iacr.org/2022/1414

23. Datta, N., Luykx, A., Mennink, B., Nandi, M.: Understanding RUP integrity of
COLM. IACR Trans. Symmetric Cryptol. 2017(2), 143–161 (2017)

24. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to CAESAR (2016). https://competitions.cr.yp.to/round3/asconv12.pdf

25. Dunkelman, O., Lambooij, E., Ghosh, S.: Practical related-key forgery attacks on
the full tinyjambu-192/256. Cryptology ePrint Archive, Paper 2022/1122 (2022)

26. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: the romu-
lus and remus families of lightweight AEAD algorithms. IACR Trans. Symmetric
Cryptol. 2020(1), 43–120 (2020)

27. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CAESAR Candi-
date CLOC. DIAC (2014)

28. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: The deoxys AEAD family. J. Cryptol.
34(3), 31 (2021)

29. McKay, K.A., Bassham, L., Turan, M.S., Mouha, N.: Report on lightweight cryp-
tography (2017). http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

30. Minematsu, K.: AES-OTR v3.1. Submission to CAESAR (2016). https://
competitions.cr.yp.to/round3/aesotrv31.pdf

31. Montes, M., Penazzi, D.: AES-CPFB v1. Submission to CAESAR (2015). https://
competitions.cr.yp.to/round1/aescpfbv1.pdf

32. Naito, Y., Matsui, M., Sakai, Y., Suzuki, D., Sakiyama, K., Sugawara, T.: SAEAES:
submission to NIST LwC (2019). https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-
round2.pdf

33. Naito, Y., Matsui, M., Sugawara, T., Suzuki, D.: SAEB: A lightweight blockcipher-
based AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(2), 192–217 (2018)

34. Patarin, J.: The “coefficients h” technique. In: Selected Areas in Cryptography,
pp. 328–345 (2008)

35. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

36. Sibleyras, F., Sasaki, Y., Todo, Y., Hosoyamada, A., Yasuda, K.: Birthday-bound
slide attacks on TinyJAMBU’s keyed-permutations for all key sizes. In: Cheng,
C.M., Akiyama, M. (eds.) IWSEC 2022. LNCS, vol. 13504, pp. 107–127. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15255-9 6

37. Wu, H.: ACORN: a lightweight authenticated cipher (v3). Submission to CAESAR
(2016). https://competitions.cr.yp.to/round3/acornv3.pdf

https://eprint.iacr.org/2022/1414
https://competitions.cr.yp.to/round3/asconv12.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round1/aescpfbv1.pdf
https://competitions.cr.yp.to/round1/aescpfbv1.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-031-15255-9_6
https://competitions.cr.yp.to/round3/acornv3.pdf

170 N. Datta et al.

38. Wu, H., Huang, T.: The JAMBU lightweight authentication encryption mode
(v2.1). Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/
jambuv21.pdf

39. Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption
algorithms: submission to NIST LwC (2019). https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/
tinyjambu-spec-final.pdf

40. Zhang, L., Wu, W., Sui, H., Wang, P.: iFeed[AES] v1. Submission to CAESAR
(2014). https://competitions.cr.yp.to/round1/ifeedaesv1.pdf

41. Zhang, P., Wang, P., Hu, H.: The INT-RUP security of OCB with intermediate
(parity) checksum. IACR Cryptology ePrint Archive (2017). https://eprint.iacr.
org/2016/1059.pdf

https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf
https://eprint.iacr.org/2016/1059.pdf
https://eprint.iacr.org/2016/1059.pdf

Offset-Based BBB-Secure Tweakable
Block-ciphers with Updatable Caches

Arghya Bhattacharjee1, Ritam Bhaumik2(B), and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India
2 Inria, Paris, France

bhaumik.ritam@gmail.com

Abstract. A nonce-respecting tweakable blockcipher is the building-
block for the OCB authenticated encryption mode. An XEX-based TBC
is used to process each block in OCB. However, XEX can provide at most
birthday bound privacy security, whereas in Asiacrypt 2017, beyond-
birthday-bound (BBB) forging security of OCB3 was shown in [14]. In
this paper we study how at a small cost we can construct a nonce-
respecting BBB-secure tweakable blockcipher. We propose the OTBC-3
construction, which maintains a cache that can be easily updated when
used in an OCB-like mode. We show how this can be used in a BBB-secure
variant of OCB with some additional keys and a few extra blockcipher
calls but roughly the same amortised rate.

Keywords: OCB · tweakable block-cipher · Authenticated
encryption · Updatable offsets · Beyond-birthday-bound security

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic function for
providing a combined guarantee of privacy (or confidentiality) and authenticity
(or integrity) of plaintexts. Beginning with the formalisation by Katz and Yung
[35] and Bellare and Namprempre [11,12], and the constructions by Jutla [33,34],
the practical significance of AE has been accepted in the community, and over
the last decade or so the design and analysis of AE modes has been a very active
area of research in symmetric-key cryptography.

Associated data (AD) is the data that is not confidential but contributes
to the authentication of the message, and AE with associated data (AEAD),
formalised by Rogaway [44], takes both a plaintext and some AD as input. AEAD
ensures confidentiality of plaintexts and authenticity of both plaintexts and AD.
The most popular form of AEAD is based on a nonce, and is called nonce-based
AEAD (NAEAD). A nonce is a non-repeating value for each encryption, and can

R. Bhaumik—This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no. 714294 - acronym QUASYModo).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 171–195, 2022.
https://doi.org/10.1007/978-3-031-22912-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_8

172 A. Bhattacharjee et al.

be realised for instance with a counter. NAEAD is commonly built as a mode
of operation of a blockcipher. However, there is often an inherent limitation
on the security caused by the birthday paradox on the input or output of a
blockcipher, which ensures only (n/2)-bit security of NAEAD if a blockcipher
with n-bit blocks is used. The (n/2)-bit security is commonly referred to as
birthday-bound (BB) security. Possible solutions to break this barrier exist, i.e.,
NAEAD with beyond-birthday-bound (BBB) security. However, they come with
an extra computational cost.

One way to get around this obstacle is to use a tweakable blockcipher (TBC)
as the underlying primitive instead of classical blockciphers. A TBC was for-
malised by Liskov, Rivest and Wagner [38,39], and it has an extra t-bit tweak
input to provide variability, i.e., it provides a family of 2t independent block-
ciphers indexed by the tweak. Starting from the early Hasty Pudding Cipher
[49], many TBC designs have been proposed, including Threefish (in Skein [20]),
Deoxys-BC [32], Joltik-BC [31], and KIASU-BC from the TWEAKEY framework
[30], and Scream [22], where the last four schemes were submitted to CAE-
SAR (Competition for Authenticated Encryption: Security, Applicability, and
Robustness) [1]. We also see other examples including SKINNY [8,9], QARMA
[6], CRAFT [10], the TBCs in the proposals for the NIST Lightweight Cryptog-
raphy project [3], OPP [21] for permutation-based instantiations of OCB3 that
uses a (tweakable) Even-Mansour construction, and a construction by Naito [41].

One of the most popular TBC-based NAEAD schemes is OCB. There are
three main variants of OCB. The first, now called OCB1 (2001) [47], was moti-
vated by Charanjit Jutla’s IAPM [33,34]. A second version, now called OCB2
(2004) [2,45], added support for associated data (AD) and redeveloped the mode
using the idea of a tweakable blockcipher. Later OCB2 was found to have a dis-
astrous bug [26,27]. The final version of OCB, called OCB3 (2011) [37], corrected
some missteps taken with OCB2 and achieved the best performance yet. OCB3 is
simple, parallelisable, efficient, provably secure with BB security, and its security
is well analysed [4,5,46]. It is specified in RFC 7253 [36] and was selected for
the CAESAR final portfolio.

In recent times, OCB has been analysed in much detail from various perspec-
tives. A blockcipher-based NAEAD scheme OTR and its TBC-based counterpart
OTR were designed by Minematsu [40] which improve OCB by removing the
necessity of the decryption routine of the underlying blockcipher or TBC (this
property is often called as the inverse-freeness). Bhaumik and Nandi [14] showed
that when the number of encryption query blocks is not more than birthday-
bound (an assumption without which the privacy guarantee of OCB3 disap-
pears), even an adversary making forging attempts with the number of blocks
in the order of 2n/�MAX (n being the block-size and �MAX being the length of
the longest block) may fail to break the integrity of OCB3. Zhang et al. [51,52]
described a new notion, called plaintext or ciphertext checksum (PCC), which
is a generalisation of plaintext checksum (used to generate the tag of OCB), and
proved that all authenticated encryption schemes with PCC are insecure in the
INT-RUP security model. Then they fixed the weakness of PCC, and described

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 173

a new approach called intermediate (parity) checksum (I(P)C for short). Based
on the I(P)C approach, they provided two modified schemes OCB-IC and OCB-
IPC to settle the INT-RUP of OCB in the nonce-misuse setting. They proved
that OCB-IC and OCB-IPC are INT-RUP up to the birthday bound in the nonce-
misuse setting if the underlying tweakable blockcipher is a secure mixed tweak-
able pseudorandom permutation (MTPRP). The security bound of OCB-IPC
is proved to be tighter than OCB-IC. To improve their speed, they utilised a
“prove-then-prune” approach: prove security and instantiate with a scaled-down
primitive (e.g., reducing rounds for the underlying primitive invocations). Bao
et al. [7] introduced a scheme called XTX∗, based on previous tweak extension
schemes for TBCs, and defined ZOCB and ZOTR for nonce-based authenticated
encryption with associated data. While ΘCB and OTR have an independent
part to process AD, their schemes integrated this process into the encryption
part of a plaintext by using the tweak input of the TBC, and thus achieved full
absorption and full parallelisability simultaneously.

OCB has also found its place in other domains of cryptology like lightweight
cryptology and quantum cryptology. Chakraborti et al. [15] proposed a light-
weight authenticated encryption (AE) scheme, called Light-OCB, which can be
viewed as a lighter variant of OCB as well as a faster variant of LOCUS-AEAD
[16] which has been a Round 2 candidate of the NIST Lightweight Cryptogra-
phy project. Bhaumik et al. [13] proposed a new rate-one parallelisable mode
named QCB inspired by TAE and OCB and prove its security against quantum
superposition queries.

There are two limitations on OCB that we would like to emphasise. The first
is that OCB’s security crucially depends on the encrypting party not repeating a
nonce. The mode should never be used in situations where that can’t be assured;
one should instead employ a misuse-resistant AE scheme [48]. These include
AES-GCM-SIV [23,24], COLM, and Deoxys-II. A second limitation of OCB is its
birthday-bound degradation in provable security. This limitation implies that,
given OCB’s 128-bit block-size, one must avoid operating on anything near 264

blocks of data. The RFC on OCB [36] asserts that a given key should be used to
encrypt at most 248 blocks (4 petabytes), including the associated data. Practical
AE modes that avoid the birthday-bound degradation in security are now known
[1,24,28,29,43].

1.1 Our Contributions

In this paper we explore ways of designing an offset-based tweakable block-
cipher that can be used to obtain an OCB-like authenticated encryption mode
with better security guarantees. First we show that when using an n-bit nonce
(where n is the width of the block-cipher) it is difficult to go beyond the birthday-
bound if we use the same offset to mask the input and the output (OTBC-0).
Next we show that if we take fully independent offsets for masking inputs and
outputs for each message, we get full security in the nonce-respecting scenario
(OTBC-1); however, this does not fit well in the OCB-like mode, because new
additional random-function calls are needed to process each message block.

174 A. Bhattacharjee et al.

We proceed to introduce the notion of updatable offsets, and explain why
TBCs with updatable offsets are well-suited to build an OCB-like mode. Then we
build a simple TBC with updatable offsets (OTBC-2), and give a birthday-attack
on it that demonstrates that such a construction is not sufficient to get beyond-
birthday security for the OCB. Finally, we introduce the notion of offsets that
are not updatable by themselves, but are efficiently computable from updatable
caches. As the most important technical contribution of the paper, we instantiate
a TBC with this property (OTBC-3) and show that it achieves a beyond-birthday
TPRP security in the number of nonces queried, as long as the maximum length
of each message (i.e., the maximum number of times each block is used) is not
very high. Additionally, we also show that OTBC-3 achieves at least security
up to the birthday-bound even when nonce is misused and inverse queries are
allowed.

Finally, we use OTBC-3 to design an authenticated encryption mode called
OCB+, which is beyond-birthday secure in both privacy and authenticity. We
argue how the privacy bound follows from our security proof of OTBC-3, while
the authenticity can be proved in the exact same way as in [14]. OCB+ uses nine
random function calls for processing each nonce, so its rate is approximately
σ/(σ + 9q), where σ is the total number of blocks including messages and asso-
ciated data, and q is the number of distinct nonces. When the messages are
sufficiently long, this rate comes close to 1, making this as efficient as OCB3, but
with a BBB security guarantee.

2 Preliminaries

Throughout the paper N will mean 2n. For any positive integer m, [m] will
denote the set {1, . . . , m}. Matrices will be denoted with boldface letters, and
for a matrix H, |H| will denote its determinant. We’ll use the Pochhammer
falling factorial power notation

(a)b := a(a − 1) . . . (a − b + 1).

For ease of notation we write + to denote field addition (bitwise XOR) when used
between two or more field elements. Field multiplication in GF(2n) is denoted
with a bold dot (•).

2.1 Distinguishing Advantage

For two oracles O0 and O1, an algorithm A which tries to distinguish between
O0 and O1 is called a distinguishing adversary. A plays an interactive game with
Ob where b is unknown to A, and then outputs a guess for b; A wins when the
guessed bit matches b. The distinguishing advantage of A is defined as

AdvO1,O0(A) :=
∣
∣
∣ Pr

O0
[A ⇒ 1] − Pr

O1
[A ⇒ 1]

∣
∣
∣,

where the subscript of Pr denotes the oracle with which A is playing.

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 175

O0 conventionally represents an ideal primitive, while O1 represents either
an actual construction or a mode of operation built using some other ideal prim-
itives. We use the standard terms real oracle and ideal oracle for O1 and O0

respectively. Typically the goal of the function F represented by O1 is to emu-
late the ideal primitive F ∗ represented by O0. A security game is a distinguish-
ing game with an optional set of additional restrictions, chosen to reflect the
desired security goal. When we talk of distinguishing advantage between F and
F ∗ with a specific security game G in mind, we include G in the subscript, e.g.,
AdvF,F ∗

G (A). (We note that this notation is general enough to capture games
where each oracle implements multiple functions, e.g., F can handle both encryp-
tion and decryption queries by accepting an extra bit to indicate the direction of
queries.) Also we sometimes drop the ideal primitive and simply write AdvF

G (A)
when the ideal primitive is clear from the context.

2.2 TPRP, TPRP* and TSPRP Security Notions

Given a tweak-space W, let Perm(W, n) be the set of all functions π̃ : W ×
{0, 1}n → {0, 1}n such that for any tweak W ∈ W, π̃(W, ·) is a permutation
over {0, 1}n. Then a π̃∗ distributed uniformly at random over Perm(W, n) will
be called a tweakable random permutation (TRP).

Let K denote a key-space. Then Ẽ : K × W × {0, 1}n → {0, 1}n will be
called a tweakable pseudorandom permutation (TPRP) if for a key K distributed
uniformly at random over K and for any adversary A trying to distinguish ẼK :=
Ẽ(K, ·, ·) from π̃∗, AdvẼK ,π̃∗

(A) is small. We call this game the TPRP game
and denote the advantage of A as AdvẼ

TPRP(A) in short.
We will be more interested in a modified version of the TPRP game, where

A is under the added restriction that no two queries can be made with the same
tweak. We call this the tweak respecting pseudorandom permutation (TPRP*)
game, and denote the corresponding advantage of A as AdvẼ

TPRP*(A).
Finally, the tweakable strong pseudorandom permutation (TSPRP) game

allows A to make both encryption and decryption queries to the oracle. The
advantage term of A in a TSPRP game will be denoted AdvẼ

TSPRP(A).

2.3 Authenticated Encryption and Its Security Notion

A nonce-based Authenticated Encryption with associated data (NAEAD) involves
a key-space K, a nonce-space N , an associated-data-space AD, a message space
M and a tag space T along with two functions Enc : K×N ×AD×M → M×T
(called the Encryption Function) and Dec : K × N × AD × M × T → M ∪ {⊥}
(called the Decryption Function) with the correctness condition that for any
K ∈ K, N ∈ N , A ∈ AD and M ∈ M, it holds that

Dec(K,N,A,Enc(K,N,A,M)) = M .

The NAEAD security game is played between the (Enc,Dec) scheme
described above and an ideal oracle (Enc∗,Dec∗) where Enc∗ : K×N×AD×M →

176 A. Bhattacharjee et al.

M×T is an ideal random function and Dec∗ : K×N ×AD×M×T → {⊥} is a
constant function. The adversary A can make encryption or decryption queries
to the oracle. In addition we assume the following restrictions:

1. A should be once-respecting, i.e., should not repeat a nonce in more than one
encryption queries; and

2. A should not make pointless queries, i.e., should not repeat the same query
multiple times or should not make the decryption query (N,A,C, T) if it has
already made an encryption query (N,A,M) and received (C, T) in response.

The distinguishing advantage of A for an NAEAD scheme E will be denoted
by AdvE

NAEAD(A). The following two security notions are captured in this
advantage.

1. Privacy or Confidentiality, i.e., A should not be able to distinguish the real
oracle from the ideal oracle.

2. Authenticity or Integrity, i.e., A should not be able to forge the real oracle.
In other words, A should not be able to make a decryption query to the real
oracle to which the response isn’t ⊥.

2.4 Coefficients H Technique

The H-coefficient technique is a proof method by Patarin [42] that was modern-
ized by Chen and Steinberger [17,50]. A distinguisher A interacts with oracles O
(The oracle O could be a sequence of multiple oracles.) and obtains outputs from
a real world O1 or an ideal world O0. The results of its interaction are collected
in a transcript τ . The oracles can sample random coins before the experiment
(often a key or an ideal primitive that is sampled beforehand) and are then deter-
ministic. A transcript τ is attainable if A can observe τ with non-zero probability
in the ideal world.

The Fundamental Theorem of the H-coefficients technique, whose proof can
be found, e.g., in [17,42,50], states the following:

Theorem 1 ([42]). Assume, there exist ε1, ε2 ≥ 0 such that

Pr
O0

[bad] ≤ ε1,

and for any attainable transcript τ obtained without encountering bad,

PrO1 [τ]
PrO0 [τ]

≥ 1 − ε2.

Then, for all adversaries A, it holds that AdvO0,O1(A) ≤ ε1 + ε2.

The technique has been generalized by Hoang and Tessaro [25] in their expec-
tation method, which allowed them to derive the Fundamental Theorem as a
corollary. Since we only consider bad events in the ideal world, we will write
PrO0 [bad] simply as Pr[bad] when there is no scope for confusion; the same
notation is used when the event bad is broken down into further sub-events.

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 177

2.5 Mirror Theory

Consider a sequence of n-bit variables W1, . . . , Wt, subject to r bi-variate equa-
tions of the form

Wi + Wj = δij .

Consider the graph with W1, . . . , Wt as vertices and the bi-variate equations as
weighted edges with δij the weight between Wi and Wj . Suppose we can show
that the graph is cycle-free, and that each path has a non-zero sum of weights.
Let ξmax be the size of the largest component of this graph. Then Mirror Theory
tells us that as long as ξ2max ≤

√
N/ log2 N and t ≤ N/12ξ2max, the number of

solutions to the system of equations such that Wi’s are all distinct is at least
(N)t/N

r. [18,19]

3 Finding a Suitable Tweakable Block-cipher

We set out to find an offset-based Tweakable Block-cipher that could give us a
beyond-birthday security bound for OCB+. The general structure of this is as
follows:

C = π(M + T) + T̂ ,

where the offsets T and T̂ are functions of the nonce N and the block-number i.

3.1 Attempt with Same Offset

The first question we asked is whether it is possible to achieve this by having
T = T̂ , i.e., adding the same offset before and after the blockcipher call, like in
OCB. The most powerful version of this is to have

T = T̂ = f(N , i)

for some 2n-bit-to-n-bit random function f . This we call OTBC-0, defined as

OTBC-0(N , i,M) := π(M + f(N , i)) + f(N , i).

This construction is shown in Fig. 1.

Fig. 1. OTBC-0: Same offset.

178 A. Bhattacharjee et al.

Birthday Attack on OTBC-0. Unfortunately, OTBC-0 fails to give us beyond
birthday-bound security. This is because for two queries with the same message,
there is a collision in the ciphertext whenever there is a collision in the output of
f ; in addition the ciphertext-collision can also happen if the sum of the outputs
of π and f collide. This shows that the collision probability at C is roughly
double the collision probability in an ideal tweakable block-cipher, which can be
detected in the birthday-bound. A more formal description of the attack is given
in Appendix ??.

3.2 Independent Offsets

We deduce from the preceding subsection that using the same offset above and
below can never give us beyond-birthday TPRP∗ security for the tweakable
block-cipher. We next examine the most powerful version of this possible, where
the two offsets on either side of π come from two completely independent 2n-
bit-to-n-bit random functions f1 and f2. This we call OTBC-1, defined as

OTBC-1(N , i,M) := π(M + f1(N , i)) + f2(N , i).

This construction is shown in Fig. 2.

Fig. 2. OTBC-1: Different random offsets.

Security of OTBC-1. As it turns out, OTBC-1 trivially achieves full TPRP∗

security. This is because in a tweak-respecting game, the offsets are always ran-
dom and independent of all other offsets in the game, making it impossible to
glean any information from the oracle responses. We formally state this as the
following theorem, the proof of which is given in Appendix ??.

Theorem 2. For any TPRP* adversary A making q queries, we have

AdvOTBC-1
TPRP*(A) = 0.

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 179

3.3 Updatable Offsets

While OTBC-1 is a fully secure tweakable blockcipher, it’s not very interesting
to us in the context of OCB+. This is because when the same nonce is used with
different block-numbers (as we need for OCB+), new calls to f1 and f2 are needed
for each new block-number. Thus we need three primitive calls to process every
block of message, which robs us of the main advantage of an OCB-like design.

This points us to the next desirable feature we need in the offsets: they should
be efficiently updatable when we keep the nonce same and increment the block-
number. We call a 2n-bit-to-n-bit function h efficiently updatable on the second
input if there is an efficiently computable function g (called the update function)
such that for each i we have

h(N , i + 1) = g(i, h(N , i)).

In other words, given h(N , i) has already been computed, h(N , i + 1) can be
computed through the update function g while bypassing a fresh call to h. (For
this to make sense, of course, h should be computationally heavy and g should
be much faster than h.) Note that the update function may or may not use i as
an additional argument; while in this work we’ll only consider update functions
that are stationary (i.e., ignore the block-number i, and apply the same function
at each block to get the offset for the next block), it is possible to have an update
function that varies with i but still satisfies the above-discussed criteria.

The Simplest Updatable Design. The simplest way to design an updatable
function is to call a random function f on the nonce N once, and then use a
stationary update function to obtain the offset for each successive block-number.
This can be formally defined as follows:

h(N , 1) = g(f(N)),

h(N , i) = g(h(N , i − 1)) = gi(f(N)), i ≥ 2.

Using these updatable offsets with two independent random functions f1 and f2
for input-masking and output-masking respectively, we can define a tweakable
block-cipher OTBC-g as

OTBC-g(N , i,M) = π
(

M + gi(f1(N))
)

+ gi(f2(N)).

Instantiating OTBC-g. In commonly used finite fields, there generally exist
primitive elements that allow very fast multiplication. As an instantiation of g,
we use multiplication with one such fixed primitive α. Concretely, we define the
update function as

g(f(N)) = α • f(N).

Thus, we use as the updatable offsets

T = αi • f1(N), T̂ = αi • f2(N).

180 A. Bhattacharjee et al.

This gives us the construction OTBC-2, defined as

OTBC-2(N , i,M) = π
(

M + αi • f1(N)
)

+ αi • f2(N).

This construction is shown in Fig. 3.

Fig. 3. OTBC-2: Updatable offsets with two independent random-function calls.

Attack on OTBC-2. Unfortunately, this simple updatable function is not suffi-
cient to give us beyond-birthday-bound security. This is because since the update
function is linear and publicly known, we can make queries such that successive
message blocks under the same nonce follow the update relation, which forces
the successive S blocks to also conform to the update relation. Thus, one colli-
sion on S between two different nonces ensures that successive blocks also see
an S-collision, which can be exploited in a distinguishing attack. This we state
as the following theorem, the proof of which is given in Appendix ??.

Theorem 3. There exists a distinguisher A querying with q nonces and L blocks
under each nonce with L ≥ 12 in a TPRP* game against OTBC-2 such that

AdvOTBC-2
TPRP*(A) ≥ Ω

(
q2 L2

N

)

.

3.4 Offsets with Updatable Caches

To get around this problem, we observe that in order to use an offset-based
tweakable block-cipher in OCB+, we don’t really need it to be updatable; it is
enough for it to maintain a small and updatable hidden state or cache, such
that the offsets are efficiently computable from the cache. Letting ψ denote
the caching function, g the update function as before, h the offset-generating
function, and ϕ the cache-to-offset function, we have

ψ(N , i + 1) = g(i, ψ(N , i)), h(N , i) = ϕ(ψ(N , i)).

Again, for this to make sense, g and ψ should be computationally heavy when
computed from scratch, while g and ϕ should be much faster.

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 181

Updatable Caches, Non-updatable Offsets. To avoid the kind of attack
that we found on OTBC-2, we want to design a tweakable block-cipher with
offsets which are not themselves updatable, but are efficiently computable from
updatable caches. This makes the offsets more independent, while still giving us
a means of updating them efficiently at a small additional cost.

One simple way to achieve this is to use two independent random functions
f1 and f2 on the nonce, put the outputs in the cache as two different branches,
and use two different update functions g and g′ on the two branches; the offset
can then be generated as the sum of the two branches. This can be formally
defined as follows:

ψ(N , 1) = (g(f1(N)), g′(f2(N))),

ψ(N , i) = [g, g′](ψ(N , i − 1)) = (gi(f1(N)), g′i(f2(N))), i ≥ 2,

ϕ(x, y) = x + y,

h(N , i) = gi(f1(N)) + g′i(f2(N)) = ϕ(ψ(N , i)),

where [g, g′] denotes the two-input function that applies g to the first input
and g′ to the second input. Note that h(N , i) is not efficiently computable from
h(N , i − 1) without accessing the cache ψ(N , i − 1), which makes the offsets
themselves non-updatable in the absence of the cache. Using these offsets we
can define a tweakable block-cipher OTBC-gg’ as

OTBC-gg’(N , i,M) = π
(

M + gi(f1(N)) + g′i(f2(N))
)

+ f3(N) + gi(π(0n)).

where f3 is a third independent random-function. Note that we do not bother to
use the non-updatable updates for masking the output, because A can make only
encryption queries, and thus cannot exploit the same weakness in the output-
masking.

Instantiating OTBC-gg’. As the main contribution of this section, we propose
a concrete instantiation of OTBC-gg’ and analyse its security. As before we keep
the field-multiplication by α as g, and for g′ we use field-multiplication by α2.
The resulting tweakable block-cipher, called OTBC-3, is defined as

OTBC-3(N , i,M) = π
(

M + αi • f1(N) + α2i • f2(N)
)

+ f3(N) + αi • π(0n).

This construction is shown in Fig. 4.

3.5 TPRP* Security Analysis of OTBC-3

Consider a distinguisher A making σ encryption queries to OTBC-3 with q dis-
tinct nonces and �(j) ≤ L block-numbers 1, . . . , �(j) for the j-th nonce for each
j ∈ [q]. Then we have the following result.

Theorem 4. As long as σ ≤ N/n2L2, we have

AdvOTBC-3
TPRP*(A) ≤ nσL

N
.

182 A. Bhattacharjee et al.

Fig. 4. OTBC-3: Offsets with updatable caches using three independent random-
function calls.

Algorithm 1. OTBC-3f1,f2,f3,π(N , i,M)
1: T ← αif1(N) ⊕ α2if2(N)

2: ̂T ← f3(N) ⊕ αiπ(0n)
3: S ← M ⊕ T
4: ̂S ← π(S)

5: C ← ̂S ⊕ ̂T
6: return C

Proof. In this proof, we’ll use the following lemma, the proof of which is deferred
to Appendix ??.

Lemma 1. For some r ≥ 2 and 2r numbers i1, i
′
1, . . . , ir, i

′
r < N such that

ij
= i′j for each j ∈ [r], define

Br =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αi1 α2i1 αi′
2 α2i′

2 0 0 0 0 · · · 0 0 0 0
0 0 αi2 α2i2 αi′

3 α2i′
3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′
4 α2i′

4 · · · 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′
r α2i′

r

αi′
1 α2i′

1 0 0 0 0 0 0 · · · 0 0 αir α2ir

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then Br is at least of rank r.

Label the q nonces N (1), . . . ,N (q). For the j-th nonce, there are �(j) queries
(N (j), 1,M

(j)
1), . . . , (N (j), �(j),M

(j)

�(j)
), with outputs (C(j)

1 , . . . C
(j)

�(j)
) respectively.

For the internal transcript, we have L, the encryption of 0 with π, and for the j-
th nonce, we have the three random-function outputs X(j), Y (j), Z(j); finally, we
have the (input, output) pairs (S(j)

1 , Ŝ
(j)
1), . . . , (S(j)

�(j)
, Ŝ

(j)

�(j)
) to π, and the (input-

offset, output-offset) pairs (T (j)
1 , T̂

(j)
1), . . . , (T (j)

�(j)
, T̂

(j)

�(j)
). Then this extended tran-

script satisfies the following equations for each j ∈ [q] and each i ∈ [�(j)]:

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 183

S
(j)
i = M

(j)
i + T

(j)
i , Ŝ

(j)
i = C

(j)
i + T̂

(j)
i ,

T
(j)
i = αi • X(j) + α2i • Y (j), T̂

(j)
i = Z(j) + αi • L.

Internal Sampling. Following the query phase of the game, in the ideal world
we sample the internal transcript as follows (subject to certain bad events to be
defined subsequently):

– Sample X(j), Y (j) uniformly at random for each j ∈ [q];
– Check for bad1, bad2, bad3, bad4;
– Sample L uniformly at random;
– Check for bad5, bad6;
– Let S1, . . . , St be a labeling of the unique values in {S

(j)
i | j ∈ [q], i ∈ [�(j)]};

– Sample {Ŝk | k ∈ [t]} directly from good set, subject to the equations Ŝ
(j)
i +

Ŝ
(j)
i′ = C

(j)
i + C

(j)
i′ + (αi + αi′

) • L for each j ∈ [q] and each i, i′ ∈ [�(j)].

Before describing the bad events bad1, . . . , bad6, we define two graphs on the
extended transcript.

Transcript Graph. For distinct j1, j2 ∈ [q], there is an edge (j1, j2) in G if we
have some i1 ∈ [�(j1)] and some i2 ∈ [�(j2)] such that S

(j1)
i1

= S
(j2)
i2

.
We will refer to paths of length 2 in G as links. A link (j1, j2, j3) formed with

the collisions S
(j1)
i1

= S
(j2)
i2

and S
(j2)
i′
2

= S
(j3)
i3

for some i1 ∈ [�(j1)], i2, i
′
2 ∈ [�(j2)]

and i3 ∈ [�(j3)] is called degenerate if i2 = i′2 and non-degenerate otherwise. We
observe that the above link being degenerate implies S

(j1)
i1

= S
(j3)
i3

, so (j1, j3) is
also an edge in G. By short-circuiting a degenerate link (j1, j2, j3) we will refer
to the operation of replacing it with the edge (j1, j3).

A path of length ≥ 3 is called non-degenerate if at least one of its sublinks
is non-degenerate. When a non-degenerate path contains a degenerate sublink,
we can short-circuit it to obtain a shorter non-degenerate path. We can repeat
this operation as long as the path contains degenerate sublinks to end up with a
minimal non-degenerate path. When the initial path is a cycle, we end up with
either a minimal non-degenerate cycle or a double-collision edge, i.e., an edge
(j1, j2) in G such that for distinct i1, i

′
1 ∈ [�(j1)] and distinct i2, i

′
2 ∈ [�(j2)] we

have S
(j1)
i1

= S
(j2)
i2

, and S
(j1)
i′
1

= S
(j2)
i′
2

.

Dual Graph (for Mirror Theory). We also define a second graph H on the
transcript, which is something of a dual of the first. This is the graph we need
to check for the conditions necessary to apply mirror theory. First consider the
graph H ′ such that the vertices of H ′ are the distinct values S1, . . . , St, and there
is an edge between Si and Si′ in H if they appear in the same nonce, i.e., if there
is some j ∈ [q], i, i′ ∈ [�(j)] such that Ŝ

(j)
i + Ŝ

(j)
i′ = C

(j)
i + C

(j)
i′ + (αi + αi′

) • L;
further, the weight of this edge is then C

(j)
i + C

(j)
i′ + (αi + αi′

) • L.

184 A. Bhattacharjee et al.

From H ′ we get H by dropping all redundant edges—for each j ∈ [�(j)], out
of the fully connected subgraph of G with

(
�(j)

2

)

edges, we only keep a spanning
tree of �(j) − 1 edges, and drop the rest. For instance, one way of choosing H

could be to just keep the edge between Ŝ
(j)
i and Ŝ

(j)
i+1 for each i ∈ [�(j) − 1].

(Note that we assume here that all Ŝ
(j)
i are distinct within any j, because that

is the only use-case we’ll need; the notions however easily generalise to graphs
with intra-nonce collisions.)

We observe that H is cycle-free as long as G is cycle-free, and that the size
ξmax of the largest component of H is at most LM when M is the size of the
largest component of G.

Bad Events. Based on the graphs G and H defined above, we can describe our
bad events.

bad1: We have j ∈ [q] and distinct i, i′ ∈ [�(j)] such that S
(j)
i = S

(j)
i′ .

bad2: There is a double-collision edge in G.
bad3: There is a minimal non-degenerate cycle in G.
bad4: G has a component of size > n.
bad5: We have j ∈ [q] and distinct i, i′ ∈ [�(j)] such that C

(j)
i + C

(j)
i′ = (αi +

αi′
) · L.

bad6: We have a path in H on which the edge-weights sum to 0.

Next we give an upper bound on the probability of at least one bad event hap-
pening in the ideal world. Define

bad :=
6⋃

p=1

bad[p].

Then we have the following lemma.

Lemma 2. In the ideal world,

Pr[bad] ≤ nσL

N
.

Proof (of Lemma 1). We bound the probability of each of the six bad events one
by one below.

bad1: We have j ∈ [q] and distinct i, i′ ∈ [�(j)] such that S
(j)
i = S

(j)
i′ .

For a fixed choice of indices j, i and i′, the probability of the event comes
out to be 1/N due to the randomness of T

(j)
i or T

(j)
i′ . From union bound

over all possible choices of indices, we obtain

Pr[bad1] ≤ 1
N

q
∑

j=1

�(j)2 ≤ L

N

q
∑

j=1

�(j) ≤ σL

N
.

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 185

bad2: There is a double-collision edge in G.
This implies that we have distinct j1, j2 ∈ [q], distinct i1, i

′
1 ∈ [�(j1)], and

distinct i2, i
′
2 ∈ [�(j2)] such that S

(j1)
i1

= S
(j2)
i2

, and S
(j1)
i′
1

= S
(j2)
i′
2

. This can
be written as B2v = c, where

B2 =
[
αi1 α2i1 αi2 α2i2

αi′
1 α2i′

1 αi′
2 α2i′

2

]

,v =

⎡

⎢
⎢
⎣

X(j1)

Y (j1)

X(j2)

Y (j2)

⎤

⎥
⎥
⎦

, c =

[

M
(j1)
i1

+ M
(j2)
i2

M
(j1)
i′
1

+ M
(j2)
i′
2

]

.

B2 is of rank 2 by Lemma 1. Thus, when we fix j1, j2, i1, i
′
1, i2, i

′
2, we have

Pr[B2v = c] ≤ 1
N2

.

Thus,

Pr[bad2] ≤ 1
N2

q
∑

j1=1

q
∑

j2=1

�(j1)2�(j2)2 ≤ L2

N2

q
∑

j1=1

q
∑

j2=1

�(j1)�(j2) ≤ σ2 L2

N2
.

bad3: There is a minimal non-degenerate cycle in the transcript graph.
First, suppose there is a minimal non-degenerate cycle of length 3. Thus,
we have distinct j1, j2, j3 ∈ [q], distinct i1, i

′
1 ∈ [�(j1)], distinct i2, i

′
2 ∈

[�(j2)], and distinct i3, i
′
3 ∈ [�(j3)] such that S

(j1)
i1

= S
(j2)
i′
2

, S
(j2)
i2

= S
(j3)
i′
3

,

and S
(j3)
i3

= S
(j1)
i′
1

. (We name the indices like this for symmetry.) As before,
this can be written as B3v = c, where

B3 =

⎡

⎣

αi1 α2i1 αi′
2 α2i′

2 0 0
0 0 αi2 α2i2 αi′

3 α2i′
3

αi′
1 α2i′

1 0 0 αi3 α2i3

⎤

⎦ ,v =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X(j1)

Y (j1)

X(j2)

Y (j2)

X(j3)

Y (j3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c =

⎡

⎢
⎢
⎣

M
(j1)
i1

+ M
(j2)
i′
2

M
(j2)
i2

+ M
(j3)
i′
3

M
(j3)
i3

+ M
(j1)
i′
1

⎤

⎥
⎥
⎦

.

B3 is of rank 3 by Lemma 1. Thus, when we fix j1, j2, j3, i1, i
′
1, i2, i

′
2, i3, i

′
3,

we have
Pr[B3v = c] ≤ 1

N3
.

Next, suppose there is a minimal non-degenerate cycle of length r ≥ 4.
Thus we have distinct j1, . . . , jr ∈ [q]; for u ∈ [r−1] we have iu ∈ [�(ju)] and
i′u+1 ∈ [�(ju+1)] such that S

(ju)
iu

= S
(ju+1)
i′
u+1

; and finally, we have ir ∈ [�(jr)]

and i′1 ∈ [�(j1)] such that S
(jr)
ir

= S
(j1)
i′
1

; the cycle being minimal non-
degenerate implies that for each u ∈ [r], iu
= i′u. This can be written as
Brv = c, where

186 A. Bhattacharjee et al.

Br =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αi1 α2i1 αi′
2 α2i′

2 0 0 0 0 · · · 0 0 0 0
0 0 αi2 α2i2 αi′

3 α2i′
3 0 0 · · · 0 0 0 0

0 0 0 0 αi3 α2i3 αi′
4 α2i′

4 · · · 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 · · · αir−1 α2ir−1 αi′
r α2i′

r

αi′
1 α2i′

1 0 0 0 0 0 0 · · · 0 0 αir α2ir

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

v =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X(j1)

Y (j1)

X(j2)

Y (j2)

...
X(jr)

Y (jr)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
(j1)
i1

+ M
(j2)
i′
2

M
(j2)
i2

+ M
(j3)
i′
3

M
(j3)
i3

+ M
(j4)
i′
4

...
M

(jr−1)
ir−1

+ M
(jr)
i′
r

M
(jr)
ir

+ M
(j1)
i′
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Br is of rank r by Lemma 1. Thus, for each r ≥ 3, when we fix
j1, . . . , jr, i1, i

′
1, . . . , ir, i

′
r, we have

Pr[Brv = c] ≤ 1
Nr

.

Assuming 2σL ≤ N , we have

Pr[bad3] ≤
q

∑

r=3

∏r
u=1 �(ju)2

Nr

≤
q

∑

r=3

((
L

N

)r r∏

u=1

�(ju)

)

≤
q

∑

r=3

(
σL

N

)r

≤ 2σ3 L3

N3
.

bad4: G has a component of size > n.
For a component of size M , the minimum number of nonces in that com-
ponent should be p + 1 where p = �M/L� − 1 with p collisions among
themselves. In other words, ∃ distinct j1, j2, · · · , jp+1 ∈ [q] and i1 ∈ �(j1),
i2, i

′
2 ∈ �(j2), i3, i

′
3 ∈ �(j3), · · · , ip, i

′
p ∈ �(jp), ip+1 ∈ �(jp+1) such that

S
(j1)
i1

= S
(j2)
i2

, S
(j2)
i′
2

= S
(j3)
i3

, . . . , S
(jp)
i′
p

= S
(jp+1)
ip+1

.

For a fixed choice of indices, the probability of the event comes out to
be 1/Np. The independence assumption comes from the fact that every
equation from the system of equations mentioned above introduces a fresh

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 187

nonce. From union bound over all the possible choices of indices, we obtain

Pr[bad4] ≤ 1
Np

q
∑

j1=1

q
∑

j2=1

· · ·
q

∑

jp+1=1

�(j1)2�(j2)2 · · · �(jp+1)2

≤ Lp+1

Np

q
∑

j1=1

q
∑

j2=1

· · ·
q

∑

jp+1=1

�(j1)�(j2) · · · �(jp+1)

≤ σp+1Lp+1

Np
=

σL

N

(
σpLp

Np−1

)

.

Assuming σL ≤ N/2 and p = n, we get

Pr[bad4] ≤ σL

N
.

bad5: We have j ∈ [q] and distinct i, i′ ∈ [�j] such that C
(j)
i +C

(j)
i′ = (αi+αi′

)•L.
For a fixed choice of indices j, i and i′, the probability of the event comes
out to be 1/N due to the randomness of L. From union bound over all
possible choices of indices, we obtain

Pr[bad5] ≤ 1
N

q
∑

j=1

�(j)2 ≤ L

N

q
∑

j=1

�(j) ≤ σL

N
.

bad6: Suppose the first and last vertices on a path inside some component are
Ŝ
(j)
i and Ŝ

(j′)
i′ . Also suppose that the path goes through x1, x2, · · · , xy

vertices of position i1, i2, · · · , iy respectively. Then this bad event implies

C
(j)
i + C

(j′)
i′ + (αi + x1α

i1 + · · · + xyαiy + αi′
) • L = 0 .

For a fixed choice of the vertex pair (Ŝ(j)
i , Ŝ

(j′)
i′), the probability of the

event comes out to be 1/N due to the randomness of L. Applying union
bound over all possible vertex pairs, and summing over all components C
of G, we get

Pr[bad6] ≤
∑

C

1
2N

·

⎛

⎝
∑

j∈C
�(j)

⎞

⎠

2

≤
∑

C

1
2N

· ξmax ·
∑

j∈C
�(j) =

ξmaxσ

2N
≤ nσL

2N
.

Thus, by union-bound, we have

Pr[bad] ≤ 4σL

N
+

σ2 L2

N2
+

2σ3 L3

N3
+

nσL

2N
≤ nσL

N
,

which completes the proof of the lemma. ��

188 A. Bhattacharjee et al.

Bounding the Ratio of Good Probabilities. Let τ be a good transcript. In
the real world, there are q distinct inputs to f1, q distinct inputs to f2, and t
distinct inputs to π. Thus,

Pr
O1

[τ] =
1

N2q(N)t
.

In the ideal world, in the online stage, there are σ outputs that are sampled
uniformly at random. In the offline stage, q more values are sampled uniformly,
and finally t variables are sampled from the good set subject to r non-redundant
equations (we calculate r later). Since σ < N/n2L2, and none of the bad events
has happened, the conditions for applying mirror theory are fulfilled. Thus, using
mirror theory,

Pr
O0

[τ] ≤ 1
Nσ+q

· Nr

(N)t
≤ 1

Nσ+q−r(N)t
.

To calculate r, we note that every repeated use of a nonce adds a non-redundant
equation to the system. Thus, r = σ − q, giving us

Pr
O0

[τ] ≤ 1
N2q(N)t

.

Thus, we have
PrO1 [τ]
PrO0 [τ]

≥ 1,

Applying the H-Coefficient Technique with ε1 = nσL/N and ε2 = 0 completes
the proof. ��

Appendix ?? gives a birthday-bound TSPRP proof for OTBC-3.

4 An Application of OTBC-3

Using the tweakable block-cipher OTBC-3, we define an authenticated encryption
scheme OCB+ that is about as efficient as OCB3 while providing a higher degree
of privacy guarantee without affecting the authenticity guarantee of OCB3. This
is shown in Fig. 5.

4.1 Nonce Handling

OCB+ uses a nonce N of n − 2 bits, with the final two bits reserved for domain
separation. N‖00 is used for processing the message blocks, N‖01 is used for
processing the tag, and N‖10 is used for handling the associated data.

4.2 Handling Incomplete Blocks

Incomplete blocks can be handled in the same way as in OCB3, modifying the
masking constants for the incomplete blocks. This does not affect the privacy
bound significantly, and since the focus of this work is to improve the privacy
guarantee of OCB3, we skip giving specific details on how to handle incomplete
blocks in OCB+.

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 189

Fig. 5. The OCB+ construction. α is a primitive field-element that allows efficient
multiplication.

4.3 Security Claims

We claim that as long as the maximum length L permitted for each message
(i.e., the maximum number of blocks encrypted using the same nonce) is small,
OCB+ provides both beyond-birthday privacy and beyond-birthday authenticity.
Formally we claim the following.

Theorem 5. Consider a distinguisher A of OCB+ which can make q encryp-
tion queries with distinct nonces with σ blocks and q′ decryption queries to its
challenger. Suppose the length of the i-th message and the i-th associated data
are �i and ki respectively, where �i, ki ≤ L∀i ∈ [qe]. As long as σ ≤ N/n2L2, we
have

AdvOCB+
NAEAD(A) ≤ nσL

N
+ O

(
q′L
N

)

.

190 A. Bhattacharjee et al.

Algorithm 2. OCB+f1,f2,f3,π(N , A,M)
1: Mtag ← 0n

2: auth ← 0n

3: for i ← 1 to � do
4: Mtag ← Mtag ⊕ Mi

5: Ci ← OTBC-3f1,f2,f3,π(N‖00, i, Mi)
6: end for
7: C ← C1‖ · · · ‖C�

8: Ctag ← OTBC-3f1,f2,f3,π(N‖01, 0, Mtag)
9: for i ← 1 to k do

10: Bi ← OTBC-3f1,f2,f3,π(N‖10, i, Ai)
11: auth ← auth ⊕ Bi

12: end for
13: tag ← Ctag ⊕ auth
14: T ← chopτ (tag)
15: return (C, T)

Proof. Suppose there is a distinguisher B of OTBC-3 which can make σ + q
queries to its challenger and which works in the following way. It runs A to start
the game. Whenever A makes the i-th encryption query (N i, Ai,M i), B does
the following.

– For the j-th message block M i
j , it makes the encryption query(N i‖00, j,M i

j)
to its challenger. Suppose it receives Ci

j as the response.
– Suppose the length of M i is �i blocks. It makes and encryption query

(N i‖01, 0,M i
1 + · · · + M i

�i
) to its challenger. Suppose it receives Ci

tag as
response.

– For the j-th associated data block Ai
j , it makes the encryption query

(N i‖10, j, Ai
j) to its challenger. Suppose it receives Bi

j as response.
– Suppose the length of Ai is ki blocks. It calculates authi = Bi

1 + · · · + Bi
ki

.
– Finally it returns (Ci

1‖ · · · ‖Ci
�i

, chopτ (Ci
tag + authi)) to A.

Once A submits its decision bit, B carries it forward to its challenger as its
own decision bit as well. Then we obtain the following privacy advantage of A:

AdvOCB+
priv (A) = AdvOTBC-3

TPRP*(B).

Combining this result with Theorem 4, we obtain

AdvOCB+
priv (A) ≤ nσL

N
. (1)

From the security analysis in Section 4 of [14], we obtain the following authen-
ticity advantage of A.

AdvOCB+
auth (A) ≤ O

(
q′L
N

)

. (2)

The result of Theorem 5 follows directly from (1) and (2). ��

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 191

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. https://competitions.cr.yp.to/caesar-submissions.html

2. Information technology - Security techniques - Authenticated encryption. ISO/IEC
19772:2009 (2009)

3. NIST Lightweight Cryptography. https://csrc.nist.gov/Projects/lightweight-
cryptography

4. Aoki, K., Yasuda, K.: The security of the OCB mode of operation without the
SPRP assumption. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS,
vol. 8209, pp. 202–220. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41227-1 12

5. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 1

6. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

7. Bao, Z., Guo, J., Iwata, T., Minematsu, K.: ZOCB and ZOTR: tweakable blockci-
pher modes for authenticated encryption with full absorption. IACR Trans. Sym-
metric Cryptol. 2019(2), 1–54 (2019)

8. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

9. Beierle, C., et al.: SKINNY-AEAD and SKINNY-Hash. IACR Trans. Symmetric
Cryptol. 2020(S1), 88–131 (2020)

10. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: Craft: lightweight tweakable
block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric
Cryptol. 2019(1), 5–45 (2019)

11. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

12. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

13. Bhaumik, R., et al.: QCB: efficient quantum-secure authenticated encryption. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 668–698.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 23

14. Bhaumik, R., Nandi, M.: Improved security for OCB3. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 638–666. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 22

15. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M.: Light-OCB:
parallel lightweight authenticated cipher with full security. In: Batina, L., Picek,
S., Mondal, M. (eds.) SPACE 2021. LNCS, vol. 13162, pp. 22–41. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-95085-9 2

https://competitions.cr.yp.to/caesar-submissions.html
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://doi.org/10.1007/978-3-642-41227-1_12
https://doi.org/10.1007/978-3-642-41227-1_12
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-92062-3_23
https://doi.org/10.1007/978-3-319-70697-9_22
https://doi.org/10.1007/978-3-030-95085-9_2

192 A. Bhattacharjee et al.

16. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Yu.:
Int-rup secure lightweight parallel ae modes. IACR Trans. Symmetric Cryptol.
2019(4), 81–118 (2020)

17. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

18. Cogliati, B., Dutta, A., Nandi, M., Patarin, J., Saha, A.: Proof of mirror theory
for any ξmax . IACR Cryptol. ePrint Arch., 686 (2022)

19. Dutta, A., Nandi, M., Saha, A.: Proof of mirror theory for ξmax = 2. IEEE Trans.
Inf. Theory 68(9), 6218–6232 (2022)

20. Ferguson, N., et al.: The Skein Hash Function Family. SHA3 submission to NIST
(Round 3) (2010)

21. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 11

22. Grosso, V., et al.: SCREAM v3. Submission to CAESAR competition (2015)
23. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: nonce misuse-resistant

authenticated encryption. RFC 8452 April 2019. https://doi.org/10.17487/
RFC8452, https://www.rfc-editor.org/info/rfc8452

24. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, New York, NY,
USA, pp. 109–119. Association for Computing Machinery (2015)

25. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

26. Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2:
attacks on authenticity and confidentiality. J. Cryptol. 33(4), 1871–1913 (2020).
https://doi.org/10.1007/s00145-020-09359-8

27. Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2:
attacks on authenticity and confidentiality. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 3–31. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 1

28. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 20

29. Iwata, T.: Authenticated encryption mode for beyond the birthday bound secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 9

30. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

31. Jean, J., Nikolic, I., Peyrin, T.: Joltik v1.3. CAESAR Round, 2 (2015)
32. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: The Deoxys AEAD family. J. Cryptol.

34(3), 31 (2021)
33. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,

B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 32

https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-49890-3_11
https://doi.org/10.17487/RFC8452
https://doi.org/10.17487/RFC8452
https://www.rfc-editor.org/info/rfc8452
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/s00145-020-09359-8
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/978-3-540-68164-9_9
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-44987-6_32

Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches 193

34. Jutla, C.S.: Encryption modes with almost free message integrity. J. Cryptol. 21(4),
547–578 (2008). https://doi.org/10.1007/s00145-008-9024-z

35. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

36. Krovetz, T., Rogaway, P.: The OCB Authenticated-Encryption Algorithm. RFC
7253, May 2014. https://doi.org/10.17487/RFC7253, https://www.rfc-editor.org/
info/rfc7253

37. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

38. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24,
588–613 (2011). https://doi.org/10.1007/s00145-010-9073-y

39. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

40. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275–292. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 16

41. Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with
beyond the birthday-bound security. IACR Trans. Symmetric Cryptol. 2017(2),
1–26 (2017)

42. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

43. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 2

44. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
New York, NY, USA, pp. 98–107. Association for Computing Machinery (2002)

45. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

46. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

47. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Proceedings of the 8th ACM
Conference on Computer and Communications Security, CCS 2001, New York, NY,
USA, pp. 196–205. Association for Computing Machinery (2001)

48. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

49. Schroeppel, R.: The Hasty Pudding Cipher. AES submission to NIST (1998)
50. John Steinberger Shan Chen. Tight security bounds for key-alternating ciphers.

Cryptology ePrint Archive, Report 2013/222 (2013). https://ia.cr/2013/222

https://doi.org/10.1007/s00145-008-9024-z
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.17487/RFC7253
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc7253
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/11761679_23
https://ia.cr/2013/222

194 A. Bhattacharjee et al.

51. Ping Zhang, Peng Wang, and Honggang Hu. The int-rup security of ocb with
intermediate (parity) checksum. Cryptology ePrint Archive, Report 2016/1059,
2016. https://ia.cr/2016/1059

52. Zhang, P., Wang, P., Hu, H., Cheng, C., Kuai, W.: INT-RUP security of checksum-
based authenticated encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 147–166. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68637-0 9

https://ia.cr/2016/1059
https://doi.org/10.1007/978-3-319-68637-0_9
https://doi.org/10.1007/978-3-319-68637-0_9

ISAP+: ISAP with Fast Authentication

Arghya Bhattacharjee1, Avik Chakraborti2, Nilanjan Datta2(B),
Cuauhtemoc Mancillas-López3, and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India
2 TCG Centres for Research and Education in Science and Technology,

Kolkata, India
nilanjan.datta@tcgcrest.org

3 Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico
cuauhtemoc.mancillas@cinvestav.mx

Abstract. This paper analyses the lightweight, sponge-based NAEAD
mode ISAP, one of the finalists of the NIST Lightweight Cryptog-
raphy (LWC) standardisation project, that achieves high-throughput
with inherent protection against differential power analysis (DPA). We
observe that ISAP requires 256-bit capacity in the authentication module
to satisfy the NIST LWC security criteria. In this paper, we study the
analysis carefully and observe that this is primarily due to the collision
in the associated data part of the hash function which can be used in the
forgery of the mode. However, the same is not applicable to the cipher-
text part of the hash function because a collision in the ciphertext part
does not always lead to a forgery. In this context, we define a new security
notion, named 2PI+ security, which is a strictly stronger notion than the
collision security, and show that the security of a class of encrypt-then-
hash based MAC type of authenticated encryptions, that includes ISAP,
reduces to the 2PI+ security of the underlying hash function used in
the authentication module. Next we investigate and observe that a feed-
forward variant of the generic sponge hash achieves better 2PI+ security
as compared to the generic sponge hash. We use this fact to present
a close variant of ISAP, named ISAP+, which is structurally similar to
ISAP, except that it uses the feed-forward variant of the generic sponge
hash in the authentication module. This improves the overall security of
the mode, and hence we can set the capacity of the ciphertext part to
192 bits (to achieve a higher throughput) and yet satisfy the NIST LWC
security criteria.

Keywords: Authenticated encryption · ISAP · ISAP+ · Re-keying ·
Side channel resistant · 2PI+ · Sponge

1 Introduction

The emergence of side-channel and fault attacks [10,11,27,28] has made it clear
that cryptographic implementations may not always behave like a black box.
Instead, they might behave like a grey box where the attacker has physical access
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 195–219, 2022.
https://doi.org/10.1007/978-3-031-22912-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_9

196 A. Bhattacharjee et al.

to the device executing a cryptographic task. As a result, designers have started
to design side-channel countermeasures such as masking [12,23]. However, cryp-
tographic primitives like block ciphers (for example, AES [16] and ARX-based
designs [6]) are costly to be mask-protected against side-channel attacks. Con-
sequently, designing primitives or modes with inherent side-channel protection
is becoming an essential and popular design goal. In this line of design, several
block ciphers (e.g., Noekeon [26], PICARO [33], Zorro [21]) and permutations
(e.g., ASCON-p [20], KECCAK-p [1,25]) have been proposed with dedicated struc-
tures to reduce the resource requirements for masking. In addition, a few NAEAD
(Nonce based Authenticated Encryption with Associated Data) modes, such as
ASCON [13,20], PRIMATES [2], SCREAM [24], KETJE/KEYAK [9] have been
proposed and submitted to the CAESAR [15] competition with the same goal
in mind. However, they still lead to significant overheads.

In [30], Medwed et al. have proposed a new technique called fresh re-keying
to have inherent side-channel protection. Following their work, a series of works
[4,4,29] have been proposed that use this novel concept. This technique requires
a side-channel resistant fresh key computation function with the nonce and the
master key as the inputs. The main idea behind these designs is to ensure that
different session keys are used for different nonces. Hence, a new nonce should
be used to generate a fresh session key.

1.1 ISAP and Its Variants

In [19], Dobraunig et al. proposed a new authenticated encryption, dubbed ISAP
v1, following the re-keying strategy. It is a sponge-based design [7,8] that follows
the Encrypt-then-MAC paradigm [5]. We’ll traditionally use the terms rate and
capacity to represent the exposed part and the hidden part of the state of the
sponge construction respectively. ISAP v1 claims to offer higher-order differential
power analysis (DPA) protection provided by an inherent design strategy that
combines a sponge-based stream cipher for the encryption module with a sponge-
based MAC (suffix keyed) for the authentication module. Both the modules
compute fresh session keys using a GGM [22] tree-like function to strengthen
the key computation against side-channel attacks.

Later, ISAP v1 was improved to ISAP v2 [14,18], and was submitted to the
NIST Lightweight Cryptography (LWC) standardization project [31] and cur-
rently one of the finalists. ISAP v2 is equipped with several promising features
and currently is considered to be a strong candidate for the competition. It rec-
ommends two variants, instantiated with the lightweight permutations ASCON-p
and KECCAK-p[400]. Precisely, ISAP v2 retains all the inherent DPA resistance
properties of ISAP v1 along with a better resistance against other implemen-
tation based attacks. In addition, ISAP v2 is even more efficient in hardware
resources than the first version. ISAP v2 has been highly praised by the cryp-
tography community, and to the best of our knowledge, it is the only inherently
DPA protected NAEAD mode that aims to be implemented on lightweight plat-
forms. The ISAP mode is flexible and can be instantiated with any sufficiently
large permutation. Precisely, the security claims made by the designers depict

ISAP+: ISAP with Fast Authentication 197

that ISAP needs around 256-bit capacity to satisfy the NIST security criteria
and hence needs a permutation with the state size larger than 256-bits. Thus it
is highly desirable to analyze the mode further to understand whether it can be
designed with a smaller capacity and hence a higher rate, that directly impacts
the throughput.

1.2 Improving the Throughput of ISAP

ISAP v2 proposes four instances with the ASCON-p and the KECCAK-p permuta-
tions. ISAP v2 with ASCON-p (a 320-bit permutation) is designed with a 64 bit
rate. However, it is better to achieve a higher rate design for a higher throughput.
The observation is similar for the other instances as well. A potential direction
can be to design an algorithm with an improved security bound over the capac-
ity to increase the rate without compromise in the security level. An increased
security bound can also help the designers to achieve the same security with a
lower state size. This in turn may reduce the register size by using a permutation
with a smaller state. A potential choice can be to analyze ISAP with a focus on
the BBB (Beyond Birthday Bound) NAEAD security.

We observe that ISAP adopts an efficient approach of applying an unkeyed
hash function on the nonce, the associated data, and the ciphertext, and then
uses a PRF (Pseudo Random Function) on the hash value. In this case, the secu-
rity of the NAEAD mode boils down to the collision security of the underlying
hash function. This mode can bypass the requirement of storing the master key
and can get rid of the key register. However, the hash collision results in a rela-
tively low security bound that may not always be acceptable in ultra-lightweight
applications as low security bound forces the designs to adopt primitives with
high state size. Thus, an increase in the security bound has the full potential
to increase the hardware performance of the design significantly. Motivated by
this issue, we aim to study the tightness of the security bound to optimize the
throughput and the hardware footprint. Note that, ISAP is already an efficient
construction and has been reviewed rigorously by various research groups. Hence,
a more detailed mode analysis and any possible mode optimization can further
strengthen the construction.

The security proof in [19] by Dobraunig et al. showed that ISAP achieves
security up to the birthday bound on the capacity, i.e. of O(T 2/2c), where T
is the time complexity, and c is the capacity size (in bits). We observe that
this factor arises due to the simple sponge-type hash applied on the nonce, the
associated data, and the random ciphertext. It is obvious to get a collision in
the nonce and the associated data that can be trivially used by an adversary
to mount a forgery. However, it is not evident how a collision in the random
ciphertexts can lead to such an attack. In this regard we investigate the amount
of the ciphertext-bit that can be injected per permutation call during the hash
and ask the question:

“Can we increase the rate of absorption of the ciphertext blocks in the hash?”

198 A. Bhattacharjee et al.

We believe that a positive answer to this question will not only result in a
more efficient construction, but more importantly contribute significantly in the
direction of NAEAD mode analysis.

1.3 Our Contributions

In this paper, we study a simple variant of ISAP that achieves higher throughput
keeping all the primary features of ISAP intact. Our contribution is three-fold:

1. First, in Sect. 3, we propose a permutation-based generic EtHM (Encrypt then
Hash based MAC) type NAEAD mode using a PRF and an unkeyed hash
function. This is essentially a generalisation of ISAP type constructions.
Note that this generic mode does not guarantee any side-channel resistance;
only proper instantiation of the PRF ensures that. In Sect. 3.2, we have shown
that the NAEAD security of EtHM can be expressed in terms of the PRF
security of a fixed input length, variable output length keyed function F ,
the 2PI+ security of H. Intuitively, the 2PI+ notion demands that given
a challenge random message of some length chosen by the adversary, it is
difficult for an adversary to compute the second pre-image of the random
message. We have introduced the notion in Sect. 2.6. This is in contrast with
the traditional collision security that was used for the analysis of ISAP.

2. Next, in Sect. 4, we first show that for generic sponge hash, a collision attack
can be extended to a 2PI+attack. Thus, the generic sponge hash achieves
2PI+ security of Ω(T 2/2c), where c is the capacity of the sponge hash. Next,
we consider a feed-forward variant of the sponge hash that uses (i) generic
sponge hash to process the nonce and the associated data and (ii) a feed-
forward variant of the sponge hash to process the message. We show that
the feed-forward property ensures that a collsion attack can not be extended
to mount a 2PI+ attack. In fact, we prove that this variant of sponge hash
obtains an improved security of O(DT/2c). Note that D and T are data and
time complexity respectively, and we typically allow T ≈ D2. Hence, feed-
forward based sponge archives a better 2PI+security as we consider security
in terms of D and T instead of traditional one parameter security.

3. Finally, in Sect. 5, we have considered a simple variant of ISAP with minimal
changes, named ISAP+, which is a particular instantiation of the generic
EtHM mode. To be specific, the differences between ISAP+ and ISAP are as
follows:
(a) Instead of using the generic sponge hash as used in ISAP, we use the

feed-forward variant of sponge hash as discussed above.
(b) In the authentication module of ISAP+, we use the capacity of c′ bits for

nonce, associated data and first block of ciphertext processing. For rest
of the ciphertext blocks, we use capacity of c bits.

(c) We make a separation among the messages depending on whether its
length is less than r′ bits or not. The domain separation is performed by
adding 0 or 1 to the capacity part before the final permutation call.

ISAP+: ISAP with Fast Authentication 199

This modification ensures that ISAP+ achieves improved security of O(T 2/2c′

+DT/2c), where n is the state-size or the size of the permutation (in bits),
c′ = n − r, c′ = n − r′). This security boost allows the designer to choose c′

and c (< c′) effectively to obtain better throughput.

1.4 Relevance of the Work

To understand the relevance of the improved security, let us consider the instan-
tiation of ISAP with ASCON and KECCAK and compare them with ISAP+. To
satisfy the NIST requirements, ISAP+ can use c = 192, c′ = 256, and hence,
it has a injection rate of r = 128-bits for the ciphertexts and an injection rate
of r = 64 bits for associated data. Table 1 demonstrate a comparative study of
ISAP and ISAP+ in terms of the number of permutation calls required for the
authentication module.

Table 1. Comparative Study of ISAP+ and ISAP on the no. of permutation calls in
the authentication module for associated data of length a bits, message of length m
bits.

Mode Permutation Parameters # permutation calls

ISAP ASCON r = 64 �a+m+1
64

�
ISAP+ ASCON r = 128, r′ = 64 �a+1

64
� + � m

128
�

ISAP KECCAK r = 144 �a+m+1
144

�
ISAP+ KECCAK r = 208, r′ = 144 �a+1

144
� + � m

208
�

This result demonstrates that for applications that require long message pro-
cessing, ISAP+ performs better than ISAP in terms of throughput and speed.
Let us consider a concrete example. Consider encrypting a message of length
1 MB with an associate data of length 1 KB using ASCON permutation. With
ISAP, the authentication module requires around 1, 31, 201 many primitive calls.
On the other hand, with ISAP+ this requires only 65, 665 many primitive calls,
which is almost half as compared to ISAP.

This paper depicts the robustness of the mode ISAP, and how one can increase
the throughtput of the mode at the cost of some hardware area preserving all
the inherent security features. This result seems relevant to the cryptography
community in the sense that ISAP is also a finalist of the NIST LWC project for
standardization.

200 A. Bhattacharjee et al.

2 Preliminaries

2.1 Notations

We’ll usually use lowercase letters (e.g., x, y) for integers and indices, uppercase
letters (e.g., X, Y) for binary strings and functions, and calligraphic uppercase
letters (e.g., X , Y) for sets and spaces. N and Z will be used to denote the set of
natural numbers and the set of integers respectively. 0x and 1y will denote the
sequence of x 0’s and y 1’s respectively. {0, 1}x and {0, 1}∗ will denote the set
of binary strings of length x and the set of all binary strings respectively. For
any X ∈ {0, 1}∗, |X| and ‖X‖ will denote the number of bits, and the number
of blocks of the binary string X respectively, where the size of the blocks should
be clear from the context. For two binary strings X and Y , X‖Y will denote
the concatenation of X and Y . For any X ∈ {0, 1}∗, we define the parsing
of X into r-bit blocks as X1 · · · Xx ←r X, where |Xi| = r for all i < x and
1 ≤ |Xx| ≤ r such that X = X1‖ · · · ‖Xx. For any X ∈ {0, 1}∗, X1 · · · Xx �r X
does the work of X1 · · · Xx ←r X, and follows it by the compulsory 10∗ padding.
Given any sequence X = X1 · · · Xx and 1 ≤ a ≤ b ≤ x, we’ll represent the
subsequence Xa . . . Xb by X[a · · · b]. For integers a ≤ b, we’ll write [a · · · b] for
the set {a, . . . , b}, and for integers 1 ≤ a, we’ll write [a] for the set {1, . . . , a}.
We’ll use the notations �x�r and 	x
r to denote the decimal ceiling and floor
function on the integer x respectively, and similarly, �X�r and 	X
r, to denote
the most significant x bits and the least significant x bits of the binary string
X respectively. By X

$← X , we’ll denote that X is chosen uniformly at random
from the set X .

2.2 Distinguishing Advantage

For two oracles O0 and O1, an algorithm A which tries to distinguish between
O0 and O1 is called a distinguishing adversary. A plays an interactive game with
Ob where b is unknown to A, and then outputs a bit bA. The winning event is
[bA = b]. The distinguishing advantage of A is defined as

AdvO1,O0(A) := |Pr[bA = 1|b = 1] − Pr[bA = 1|b = 0]| .
Let A[q, t] be the class of all distinguishing adversaries limited to q oracle

queries and t computations. We define

AdvO1,O0 [q, t] := max
A[q,t]

AdvO1,O0(A) .

When the adversaries in A[q, t] are allowed to make both encryption queries and
decryption queries to the oracle, this is written as Adv±O1,±O0 [q, q

′, t], where q
is the maximum number of encryption queries allowed and q′ is the maximum
number of decryption queries allowed. Encb and Decb denote the encryption
and the decryption function associated with Ob respectively. O0 conventionally
represents an ideal primitive, while O1 represents either an actual construction

ISAP+: ISAP with Fast Authentication 201

or a mode of operation built of some other ideal primitives. Typically the goal
of the function represented by O1 is to emulate the ideal primitive represented
by O0. We use the standard terms real oracle and ideal oracle for O1 and O0

respectively. A security game is a distinguishing game with an optional set of
additional restrictions, chosen to reflect the desired security goal. When we talk
of distinguishing advantage with a specific security game G in mind, we include
G in the superscript, e.g., AdvG

O1,O0
(A). Also we sometimes drop the ideal oracle

and simply write AdvG
O1

(A) when the ideal oracle is clear from the context.

2.3 Authenticated Encryption and Its Security Notion

A Nonce based Authenticated Encryption with Associated Data (NAEAD)
involves a key space K, a nonce space N , an associated data space AD, a message
space M and a tag space T along with two functions Enc : K×N ×AD ×M →
M × T (called the Encryption Function) and Dec : K × N × AD × M × T →
M ∪ {⊥} (called the Decryption Function) with the correctness condition that
for any K ∈ K, N ∈ N , A ∈ AD and M ∈ M, it holds that

Dec(K,N,A,Enc(K,N,A,M)) = M .

In the NAEAD security game, the real oracle involves such a pair of functions
Enc1 and Dec1 with K

$← K. On the other hand, the ideal oracle involves an ideal
random function Enc0 : K × N × AD × M → M × T and a constant function
Dec0 : K × N × AD × M × T → {⊥}. The adversary (A) which interacts with
one of the two oracles is supposed to be:

1. Nonce-respecting, i.e., A should not repeat a nonce in more than one encryp-
tion queries, and

2. Non-repeating, i.e., A should not make the decryption query (N,A,C, T) if
it has already made the encryption query (N,A,M) and received (C, T) in
response.

The distinguishing advantage of A will be denoted by AdvNAEAD
(Enc1,Dec1)(A). The

following two security notions are captured in this advantage.

1. Privacy or Confidentiality, i.e., A should not be able to distinguish the real
oracle from the ideal oracle.

2. Authenticity or Integrity, i.e., A should not be able to forge the real oracle.
In other words, A should not be able to make a decryption query to the real
oracle to which the response isn’t ⊥.

2.4 The Coefficients H Technique

The Coefficients H Technique is a proof method by Patarin [32]. Consider two
oracles O0 (the ideal oracle) and O1 (the real oracle). Let T denote the set of all
possible transcripts (i.e., the set of all query-response pairs) an adversary can
obtain. For any transcript τ ∈ T , we will denote the probability to realize the

202 A. Bhattacharjee et al.

transcript as ipreal(τ) or ipideal(τ) when it is interacting with the real or the ideal
oracle respectively. We call them the interpolation probabilities. W.l.o.g., we
assume that the adversary is deterministic. Hence, the interpolation probabilities
are the properties of the oracles only. As we deal with stateless oracles, these
probabilities are independent of the order of the query-response pairs in the
transcript.

Theorem 1. Suppose for a set Tgood ⊆ T of transcripts (called the good tran-
scripts) the following holds:

1. For any adversary A interacting with O0 (the ideal oracle), the probability
of getting a transcript in Tgood is at least 1 − εbad. We may denote the set
T \ Tgood by Tbad. Hence, the probability of getting a transcript in Tbad is at
most εbad.

2. For any adversary A and for any transcript τ ∈ Tgood,

ipreal(τ) ≥ (1 − εratio) · ipideal(τ).

For an oracle O1 (the real oracle) satisfying (1) and (2), we have

AdvO0,O1(A) ≤ εbad + εratio.

2.5 Fixed Input - Variable Output PRFs with Prefix Property

A fixed input variable output function (FIL-VOL) is a keyed function FK :
{0, 1}� ×{0, 1}×N → {0, 1}� that takes as input an input a string I ∈ {0, 1}�, a
flag b ∈ {0, 1} as input, a positive integer � ∈ N, and outputs a string O ∈ {0, 1}�,
i.e., O := FK(I, b; �). We call such a keyed function a FIL-VOL pseudo random
function maintaining the prefix-property if

– for all inputs (I, b; �), (I ′, b′; �′) with (I, b) �= (I ′, b′), FK(I, b; �), FK(I ′, b′; �)
are distributed uniformly at random, and

– for all inputs (I, b; �), (I, b; �′), with �′ > �, �FK(I ′, b′; �′)�� = FK(I ′, b′; �).

More formally,

AdvPRF
F (A) := |Pr[AFK = 1] − Pr[Af = 1]|,

where f is a random function from same domain and range maintaining the
prefix property.

2.6 Multi-target 2nd Pre-image with Associated Data

In this section, we discuss the notion of multi-target 2nd pre-image security of
permutation-based hash functions.

In this setting, an adversary (say A) chooses q (nonce, associated data,
length)-tuples to the challenger C, say (Ni, Ai, �i)i=1..q. The challenger in turn
returns q uniformly random messages of specified lengths respectively, say

ISAP+: ISAP with Fast Authentication 203

C1, . . . , Cq. The queries (Ni, Ai, Ci)i=1..q are called challenge queries. The goal
of A is to return q′ many (N ′

j , A
′
j , C

′
j)j=1..q′ (called response queries) tuples such

that at least one of the hash values of (N ′
j , A

′
j , C

′
j) matches with the hash value

of any one of the (Ni, Ai, Ci). Note that the adversaries are allowed to set some
challenge queries as response queries: (N ′

j , A
′
j , C

′
j) = (Ni, Ai, Ci), for some i, j.

However, for the winning event the challenge and response queries should be
distinct. The adversary can make up to qp queries to p or p−1. Formally, the
advantage of A is defined as

Adv2PI+
H (A) := Pr[∃i, j, Hp(N ′

j , A
′
j , C

′
j) = Hp(Ni, Ai, Ci),

(N ′
j , A

′
j , C

′
j) �= (Ni, Ai, Ci)].

where H is an IV-based hash function. Note that the adversary is allowed to
make hash queries before, after, or in between its interaction with the challenger
to obtain the challenge message(s). Also, note that the 2PI+ security does not
depend on the message length. The fact that the adversary submits a length �i

to the challenger to obtain each message before the submission of the challenge
message is merely because the 2PI+ security notion enables its adversary to
obtain messages of whatever lengths it pleases.

3 An EtHM Paradigm for NAEAD

This section introduces an efficient generalized Encrypt-then-Hash based MAC
(EtHM) paradigm for NAEAD modes. This is a generalized paradigm for con-
structing side-channel resilient modes such as ISAP.

3.1 Specification

Let n, k and τ be positive integers such that n > τ . The construction takes as
input a plaintext M , a nonce N , an associated data A, and outputs a ciphertext
C and a tag T . Given a permutation based FIL-VOL keyed-function with prefix
property F p

K , and a permutation based un-keyed hash function Hp : {0, 1}∗ →
{0, 1}n the mode works as follows.

C = M ⊕ F p
K(N, 0; |M |),

T‖D = p(F p
K(X, 1; |X|)‖Z), where X‖Z = Hp(N,A,C) .

The authenticated encryption module is pictorially depicted in Fig. 1. Note
that T denotes the most significant τ bits of the output of the permutation
call. The least significant (n − τ) bits is denoted by D. Note that we do not
need D from the construction point of view, however, we require it during the
security analysis. Notations F , H and F p

K , Hp have been used in this paper
interchangeably for convenience, and aren’t supposed to create any confusion.
From time to time, we’ll address this paradigm as EtHM only.

204 A. Bhattacharjee et al.

Fig. 1. Authenticated encryption module of the EtHM paradigm.

3.2 Security of EtHM

In this subsection, we analyse the NAEAD security of EtHM with F as the
underlying function and H as the multi-target IV-respecting second pre-image
resistant hash function. Formally, we prove the following theorem.

Theorem 2 (NAEAD Security of EtHM). Consider EtHM based on a
function F and a hash function H. For all deterministic nonce-respecting non-
repeating query making adversary A which can make at most qe encryption
queries, qv decryption queries and qp primitive queries to p and its inverse and
assuming q = qe + qv, there exists two adversaries B1 and B2 such that the
NAEAD advantage of A can be bounded by

AdvNAEAD
EtHM (A) ≤ AdvPRF

F (B1) + 2Adv2PI+
�H�n−k

(B2) +
qqp

2n
+

2kqv

2k
+

qv

2τ

+

(
qp
k

)

2τ(k−1)
+

(
qp
k

)

2(n−k)(k−1)
,

where B1 can make 2q PRF queries and B2 can make q challenge queries, q
response queries and qp primitive queries to p and its inverse.

Proof. Let EncFp
K ,p and DecFp

K ,p be the encryption and the decryption function
of EtHM respectively. Let us call its oracle O1 = (EncFp

K ,p,DecFp
K ,p, p). We

have to upper-bound the distinguishing advantage of A interacting with O1 or
O3 = ($,⊥, p). For our purpose, we define an intermediate oracle by replacing
F p

K in O1 by a random functions $. Let us call this new intermediate oracle
O2 = (Enc$,p,Dec$,p, p). We will employ a standard reduction proof. We break
down the distinguishing game of A using the triangle inequality as follows.

AdvNAEAD
EtHM (A) = |Pr[AO1 = 1] − Pr[AO3 = 1]|

≤ |Pr[AO1 = 1] − Pr[AO2 = 1]|
+ |Pr[AO2 = 1] − Pr[AO3 = 1]| . (1)

ISAP+: ISAP with Fast Authentication 205

Now, we bound each of the two terms.
� Bounding |Pr[AO1 = 1] − Pr[AO2 = 1]|. We bound this term by the PRF

advantage of F . For that, let us consider the following adversary B1 that runs
A (any distinguisher of O1 and O2) as follows.

– Whenever A submits an encryption query (N,A,M), B1 submits (N, |M |, 0)
to its challenger. Suppose the challenger returns C. B1 calculates X‖Z =
Hp(N,A,C) with |X| = k and |Z| = n − k and submits (X, 1; k) to its
challenger. Suppose the challenger returns Y . B1 returns (C, p(Y ‖Z)) to A.

– Similarly, whenever A submits a decryption query (N̂ , Â, Ĉ, T̂), B1 submits
(N̂ , 0; |Ĉ|) to its challenger. Suppose the challenger returns M̂ . B1 calculates
X̂‖Ẑ = Hp(N̂ , Â, Ĉ) with |X̂| = k and |Ẑ| = n − k and submits (X̂, 1; k) to
its challenger. Suppose the challenger returns Ŷ . B1 calculates �p(Ŷ ‖Ẑ)�τ If
T = T̂ , then B1 returns M̂ to A. Otherwise it returns ⊥.

– At the end of the game, A submits the decision bit to B1 which it forwards
to its challenger. Note that when A supposedly interacts with O1 or B1 sup-
posedly interacts with F p

K , they submit b = 1. Otherwise, they submit b = 0.

It is easy to see Pr[AO1 = 1] = Pr[BFp
K

1 = 1] and Pr[AO2 = 1] = Pr[B$
1 = 1],

and hence we obtain the following.

|Pr[AO1 = 1] − Pr[AO2 = 1]| = AdvPRF
F (B1). (2)

� Bounding |Pr[AO2 = 1] − Pr[AO3 = 1]|. This bound follows from the lemma
given below, the proof of which is deferred to the next section.

Lemma 1. Let A be a deterministic nonce-respecting non-repeating query mak-
ing adversary interacting with oracle O2 or O3 which can make at most qe

encryption queries, qv decryption queries and qp primitive queries to p and its
inverse. Assuming q = qe+qv, there exists an adversary B2 such that the NAEAD
advantage of A can be bounded by

|Pr[AO2 = 1] − Pr[AO3 = 1]| ≤ 2Adv2PI+
�H�n−k

(B2) +
qqp

2n
+

2kqv

2k
+

qv

2τ

+

(
qp
k

)

2τ(k−1)
+

(
qp
k

)

2(n−k)(k−1)
,

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

The proof of the theorem follows from Eq. 1, Eq. 2 and Lemma 1.

3.3 Proof of Lemma 1

Now we’ll prove Lemma 1 using Coefficients H Technique step by step.

Step I: Sampling of the Ideal Oracle and Defining the Bad Events.
We start with sampling of the ideal oracle and go on mentioning the bad events

206 A. Bhattacharjee et al.

whenever they occur. Note that whenever we mention a bad event, even if it’s
not explicitly mentioned, it’s implicitly understood that the previous bad events
haven’t occurred.

In the online phase, the adversary interacts with the oracles and receives
the corresponding responses. In this phase, it can make any construction or
permutation query. The i-th encryption query is (N i, Ai,M i), the i-th decryption
query is (N̂ i, Âi, Ĉi, T̂ i), H(N̂ i, Âi, Ĉi) = X̂i‖Ẑi with |X̂i| = k and |Ẑi| = n−k,
the i-th permutation query is U i if it’s a forward query (i.e., p query), and V i if
it’s a backward query (i.e., p−1 query).

1. Return (Ci, T i), ∀i ∈ [qe], where Ci $← {0, 1}|Mi|, T i $← {0, 1}τ .
2. Return ⊥,∀i ∈ [qv].
3. Return the true output values of the permutation queries.
4. Set Xi := �H(N i, Ai, Ci)�k, X̂i := �H(N̂ i, Âi, Ĉi)�k,

Zi := 	H(N i, Ai, Ci)
n−k, Ẑi := 	H(N̂ i, Âi, Ĉi)
n−k

The adversary aborts if the following (bad) event occurs.

– bad1: ∃i ∈ [qe] and j ∈ [qv] with i �= j and (N i, Ai, Ci) �= (N̂ j , Âj , Ĉj) such
that Zi = Ẑj .

– bad2: ∃i, j ∈ [qe] with i �= j such that Zi = Zj .

In the offline phase, the adversary can no longer interact with any oracle, but
the challenger may release some additional information to the adversary before
it submits its decision.

1. Y i $← {0, 1}k , ∀i ∈ [qe] and j ∈ [i − 1] with Xi �= Xj .

2. Ŷ i $← {0, 1}k , ∀i ∈ [qv], j ∈ [i − 1] and � ∈ [qe] with X̂i �= X̂j and X̂i �= X�.

Again, the adversary aborts if any of the following (bad) events occur.

– bad3: ∃i ∈ [qe] and j ∈ [qp] such that Y i‖Zi = U j .
– bad4: There is a k-multi-collision at the τ most significant bits of the output

of the forward permutation queries.
– bad5: There is a k-multi-collision at the (n − k) least significant bits of the

output of the backward permutation queries.
– bad6: ∃i ∈ [qv] and j ∈ [qp] such that Ŷ i‖Ẑi = U j .

If none of the bad events occur, then

1. Di $← {0, 1}n−τ , ∀i ∈ [qe],

2. T̂ ′i‖D̂i $← {0, 1}n , ∀i ∈ [qv].

Again, the adversary aborts if any of the following (bad) event occurs.

– bad7: ∃i ∈ [qv] such that T̂ i = T̂ ′i.

ISAP+: ISAP with Fast Authentication 207

Step II: Bounding the Probability of the Bad Events. Now we’ll upper
bound the probabilities of the bad events.

– bad1: This event says that the capacity part of the hash of an encryption
query matches with the capacity part of the hash of a forging query. This
is nothing but computing a second pre-image corresponding to a challenge
(N,A,C), where C is chosen uniformly at random. Thus, the probability of
this event is bounded by the 2PI+ security of H.

Pr[bad1] ≤ Adv2PI+
�H�n−k

(B2),

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

– bad2: This event says that the capacity part of the hash of an encryption
query matches with the capacity part of the hash of another encryption query.
This is again nothing but computing a second pre-image corresponding to
a challenge (N,A,C), where C is chosen uniformly at random. Thus, the
probability of this event is bounded by the 2PI+ security of H.

Pr[bad2] ≤ Adv2PI+
�H�n−k

(B2),

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

– bad3: For a fixed encryption query and a fixed permutation query, the prob-
ability of this event comes out to be equal to 1/2n due to the randomness of
U j . Applying union bound over all possible choices, we obtain

Pr[bad3] ≤ qeqp

2n
.

– bad4: For a fixed k-tuple of forward permutation queries, the probability
of this event comes out to be equal to 1/2τ(k−1) due to the randomness of
the permutation output. Applying union bound over all possible choices, we
obtain

Pr[bad4] ≤
(
qp
k

)

2τ(k−1)
.

– bad5: For a fixed k-tuple of backward permutation queries, the probability of
this event comes out to be equal to 1/2(n−k)(k−1) due to the randomness of
the permutation output. Applying union bound over all possible choices, we
obtain

Pr[bad5] ≤
(
qp
k

)

2(n−k)(k−1)
.

– bad6: We analyse this bad event in the three following sub-cases.
• In this case, the number of multi-collision at the τ most significant bits

of the output of the forward permutation queries is at most k. So the
adversary can make a hash query (N,A,C) to obtain X‖Z, fix Z as the

208 A. Bhattacharjee et al.

least significant bits and vary the rest of the bits to obtain the multi-
collision. Suppose the multi-collision happens at the value T . In that
case, if the adversary makes the decryption query (N,A,C, T), then the
probability of bad6 comes out to be equal to k/2k. For qv decryption
queries, this probability comes out to be equal to kqv/2k.

• In this case, the number of multi-collision at the (n − k) least significant
bits of the output of the backward permutation queries is at most k. So
the adversary can fix the τ most significant bits (say T) and vary the
rest of the bits to obtain the multi-collisions. Suppose the multi collisions
happen at the values Z1, Z2, · · · , Zm. Also suppose that the adversary
has q1 hash pre-images of Z1, q2 hash pre-images of Z2, · · · , qm hash
pre-images of Zm, where q1 + q2 + · · · + qm = qv. For i ∈ [r], suppose the
adversary has a pre-image (N,A,C) of Zi. In that case, if the adversary
makes the decryption query (N,A,C, T), then the probability of bad6
comes out to be equal to k/2k. For qv pre-images, this probability comes
out to be equal to kqv/2k.

• If the previous two cases don’t occur, i.e., there is no multi-collision, then
for a fixed decryption query and a fixed permutation query, he probability
of bad6 comes out to be equal to 1/2n due to the randomness of U j . For
qv decryption queries and qp permutation queries, this probability comes
out to be equal to qvqp/2n.

Combining all the three cases, we obtain

Pr[bad6|(bad3 ∧ bad4 ∧ bad5)] ≤ 2kqv

2k
+

qvqp

2n
.

– bad7: For a fixed decryption query, the probability of this event comes out to
be equal to 1/2τ due to the randomness of T̂ ′i. Applying union bound over
all possible choices, we obtain

Pr[bad7] ≤ qv

2τ
.

Combining everything, we obtain

εbad := Pr[bad] ≤ Pr[bad1 ∨ bad2 ∨ · · · ∨ bad7]

≤ 2Adv2PI+
�H�n−k

(B2) +
qqp

2n
+

2kqv

2k
+

qv

2τ

+

(
qp
k

)

2τ(k−1)
+

(
qp
k

)

2(n−k)(k−1)
. (3)

Step III: Ratio of Good Interpolation Probabilities. We recall that to
obtain oracle O2, we replace the function F of O1 with a random function $.
All the remaining specification of O2 are similar to O1 (see Sect. 3.1). Let qx be
the number of construction queries with distinct Xi’s and X̂i’s and q′ be the
number of construction queries with distinct (N i, Ai, Ci)’s and (N̂ i, Âi, Ĉi)’s.
For any good transcript τ , we get

ISAP+: ISAP with Fast Authentication 209

Pr
O2

[τ] =
1

2nσe

1
2kqx

1
(2n)q′+qp

.

The first term corresponds to the number of choices for W i. The second term
corresponds to the number of choices for Y i. The third term corresponds to the
number of choices for the outputs of the distinct permutation calls. We also get

Pr
O3

[τ] =
1

2nσe

1
2nq′

1
2kqx

1
(2n)qp

.

The first term corresponds to the number of choices for Ci. The second term
corresponds to the number of choices for T i‖Di. The third term corresponds to
the number of choices for Y i. The fourth term corresponds to the number of
choices for the outputs of the distinct permutation calls. Thus we finally obtain

PrO2 [τ]
PrO3 [τ]

≥ 1 , i.e., εgood = 0. (4)

Step IV: Final Calculation. The Lemma follows as we use Eq. 3 and Eq. 4 in
Theorem 1.

4 Multi-target 2nd Pre-image Security of Sponge Based
Hashes

This section analyses the 2PI+ security of the sponge hash and some of it’s
variants.

4.1 Sponge Hash and Its 2PI+ Security

First we briefly revisit the sponge hash. Consider the initial state to be N‖IV
for some fixed IV . Let p ∈ Perm where Perm is the set of all permutations on
{0, 1}n. We call the r most significant bits of the state as rate and the c′ least
significant bits of the state as capacity. The associated data A and the message
C is absorbed in r′-bit blocks by subsequent p-calls, and the output of the last
p-call is the hash output T . Figure 2 illustrates the sponge hash. Now let us look
at its 2PI+ security.

The following attack demonstrates that the sponge hash is vulnerable to a
meet-in-the-middle attack as follows.

– Suppose an adversary (say A) submits (N,A, 2) and receives the random
message C1‖C2 from its challenger where |C1| = |C2| = r′.

– A computes the hash as H = p(p(S1 ⊕ C1‖S2 ⊕ 0�1) ⊕ (C2‖0c)). Suppose
H = p(Y2‖Z2) where |Y2| = r′ and |Z2| = c.

– A makes some p-queries of the form �‖IV and some p−1-queries of the form
�‖Z2, and stores the p-query outputs in the list L1 and the p−1-query outputs
in the list L2.

210 A. Bhattacharjee et al.

Fig. 2. Sponge hash with � message blocks.

– Suppose the capacity of one entry in L1 (say Y1‖Z1 where |Y1| = r′ and
|Z1| = c′) matches with the capacity of one entry in L2 (say Y �

1 ‖Z1). Suppose
p(N ′‖IV) = Y1‖Z1 and p−1(Y �

2 ‖Z2) = Y �
1 ‖Z1.

– A returns (N ′, ε, (Y1⊕Y �
1)‖(Y2⊕Y �

2)) to its challenger as the second pre-image
of the random message (N,C1‖C2).

It is easy to see that the attack succeeds with probability |L1‖L2|
2c′ . In other

words, if the adversary is able to make around 2c′/2 p-queries and p−1-queries
each, it would be able to mount this 2PI+ attack with very high probability.
Thus, for the sponge hash, the 2PI+ security reduces to the collision security
due to the above meet-in-the-middle attack, and the 2PI+ security for sponge
hash is Ω(q2p/2c′

). Now, we are more interested in some other hash functions
where a such collision attack doesn’t induce a 2PI+ attack.

4.2 Feed Forward Based Sponge Hash and Its 2PI+ Security

Now, we consider a feed forward variant of the sponge hash. The nonce and
associated data processing remains as it is. However, the following modifications
during the random message processing:

– The capacity part of the output of the i-th permutation is xored with the
previous state capacity to obtain the updated i-th state capacity.

– The message injection rate for the first block of random ciphertext remains
r′ bits, and for all successive blocks the rate is r bits, where r ≥ r′. To make
things compatible, the capacity part before the first p-call is chopped to the
least significant c-bits while feed-forwarding.

– We use a domain separation before the final permutation call depending on
the size of the random message. If the size is less than or equal to r′, we xor
1 in the capacity.

ISAP+: ISAP with Fast Authentication 211

Fig. 3. The feed forward variant of the sponge hash. The initial state ISN,A is generated
identically as in the sponge hash, depicted in Fig. 2.

Figure 3 illustrates the feed forward variant of the sponge hash with n-bit
hash value H1‖H2. It is easy to see that the attack on the sponge hash can not
be extended to this hash due to the feed-forward functionality of this hash. Now
let us look at its 2PI+ security. Formally, we state the following lemma:

Lemma 2. Let H be the feed-forward based sponge hash as defined as above.
The 2PI+ security of the construction is given by

Adv2PI+
�H�n−k

(A) ≤
q2p
2c′ +

(qp + σv)σe

2c
+

σ2
e

2c
+

qv

2n−k
,

where A makes at most qe challenge queries with an aggregate of σe blocks, qv

forging attempt queries with an aggregate of σv blocks, and qp many permutation
queries.

Proof. First let us consider the scenario for all challenge queries with � ≥ r′.
Suppose at the i-th step, the adversary (say A) submits the i-th message length
and receives the random message Ci from its challenger. A makes successive
queries to p to derive the hash value corresponding to the fixed IV and Ci.
Moreover, the adversary makes several additional queries to p or p−1.

Graph Based Representation. Now we draw a graph corresponding to all
the challenge, permutation queries and forging attempts made by the adversary
A. A node of the graph is an n-bit state value. For a challenge or response query,
we consider all the permutation inputs as nodes. Suppose the (i − 1)th and ith

permutation inputs are Xi−1, and Xi respectively, then we draw an edge from
node Xi−1 to Xi with edge labelled as Ci, where Ci is ith message injected. The
starting vertex for each query (N,A,C) is defined as ISN,A ⊕ (C1‖0). Now we
consider the direct permutation queries. suppose A makes a p query with the
input X, and the output is Y (i.e., Y = p(X)), then we draw an edge from
vertex X to vertex Y ⊕ (0‖	X
c). Similarly, if A makes a p−1 query with input
Y �, and the output is X� (i.e., p−1(Y �) = X�), we draw an edge from X�

to Y � ⊕ (0‖	X�
c) with label 0. Essentially, the p−1 queries behave similar to
the p queries, and we obtain a directed edge-labelled graph. This is depicted in
Fig. 4. Thus, overall we have a graph corresponding to all the queries. All the
nodes computed during the hash computation (corresponding to the challenge

212 A. Bhattacharjee et al.

queries) are called “H”-nodes and all the other nodes are called “P”-nodes.
So, by definition, the number of H-nodes is σe, the total number of primitive
calls required for the hash computation of all the challenge messages. The total
number of P-nodes are bounded by (qp +σv), qp being the total number of direct
p and p−1 calls, and σv being the number of p calls used in the hash computation
for the verification queries.

Fig. 4. The graph representation: challenge and forging queries (top), direct permuta-
tion queries (bottom).

Definition and Bounding the Probability of a Bad Graph. We call a
collision occurs in two nodes if there capacity values are same. Now we call such
a graph bad if there is a collision (i) among two starting “H” nodes, or (ii) due
to a “H” node and a “P” node, (iii) between two “H” nodes. Now let us try to
bound the probability that a graph is bad. For the first case, the initial state
collision will reduce to a simple collision attack. This is due to the fact that the
nonce and associated data are chosen by the adversary. Hence, this probability
can be bounded by q2p/2c′

. For case (ii) and (iii), such a collision will occur with
probability at most 1

2c−qp
, and the number of possible choice of H nodes and P

nodes are σe and (qp + σv) respectively. Thus, the probability that a graph is

bad can be bounded by (q2
p

2c′ + (qp+σv)σe

2c + σ2
e

2c).

Bounding 2PI+ Security for A Good Graph. It is easy to see that if a
graph is not bad, then we do not have any forgeries, except for random hash
value matching, which can be bounded by qv

2n−k .

Combining everything together, the lemma follows. ��

Note that to extend the analysis for shorter challenge queries with � ≥ r′ we
need a domain separator at the end (adding 1 at the capacity). This is to resist
an attack by guessing the random ciphertext and transferring a collision attack
into a 2PI+attack.

ISAP+: ISAP with Fast Authentication 213

5 ISAP+: A Throughput-Efficient Variant of ISAP

In this section, we describe the ISAP+ family of NAEAD mode by instantiating
EtHM with a sponge based PRF and the hybrid sponge hash and ultimately
come up with the complete specification details of ISAP+.

5.1 Specification of ISAP+

Let n, k, r, r′ and r0 be five positive integers satisfying 1 < r, r′, r0 < n, and
IVKE , IVKA and IVA be three (n − k)-bit binary numbers. We call the last
three numbers as the initialization vectors. Let c = n − r, c′ = n − r′ and
c0 = n−r0. Let p be an n-bit public permutation. The authenticated encryption
module of ISAP+ uses a secret key K ∈ {0, 1}k, receives a nonce N ∈ {0, 1}k, an
associated data A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ as inputs, and returns a
ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. The verified decryption module
uses the same secret key K and receives a nonce N ∈ {0, 1}k, an associated
data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}τ as inputs. In
case of successful verification, it returns a message M ∈ {0, 1}|C|. In case the
verification fails, it returns ⊥. Both the modules use a sub-module named re-
keying. The complete specification of ISAP+ is provided in Fig. 5. The pictorial
representation of the same is provided in Figs. 6, 7, and 8.

Viewing ISAP+ as an Instantiation of EtHM: It is easy to that ISAP+ can
be viewed as an instantiation of EtHM where the hash function Hp is given by
the feed-forward variant of sponge hash as depicted in Fig. 8 and the FIL-VOL
keyed function F p

k is described as follows:

– When flag = 1 (i.e., inside encryption module), F p
k involves the rekeying

function with (n− k)-bit output followed by p calls as depicted in Figs. 6 and
7. The inputs are the nonce N , flag = 1 and a parameter � which represents
the message length. The number of p calls is equal to the number of r-bit
message blocks.

– When flag = 0 (i.e., inside authentication module), F p
k involves only the

rekeying function with k-bit output as depicted in Fig. 6. The inputs are the
k most significant bits of the hash output, flag = 0 and a parameter � = k.

5.2 Design Rationale

In this section, we’ll try to highlight and explain the main points regarding what
motivated the design of EtHM, and in particular, ISAP+.

� Improved Rate for Ciphertext Processing in the Hash: As we move
from collision security to 2PI+ security at the ciphertext absorption phase of
the authentication module, we achieve the same security with a smaller capacity
size, which allows us to use a larger rate size for ciphertext absorption.
� Last Domain Separator: The last domain separator is crucial to domain
separate the short and long messages. Without this domain separator, we can

214 A. Bhattacharjee et al.

Fig. 5. Formal specification of the authenticated encryption and the verified decryption
algorithms of ISAP+.

Fig. 6. Re-keying module of ISAP+ on a w-bit input Y .

ISAP+: ISAP with Fast Authentication 215

Fig. 7. Encryption module of ISAP+ for � block message.

Fig. 8. Authentication module of ISAP+ for a block associated data and � block
message.

have a forgery with one encryption query which consists of a message that is less
than one block in length and the corresponding forging attempt which consists
of more than one ciphertext blocks. As a result, a separator bit, applied to the
capacity just before the last permutation call, allows us to differentiate these
two cases, and ensure that the input to the last permutation is distinct for each
of the two queries, which in turn prevents the attack.

216 A. Bhattacharjee et al.

5.3 Security of ISAP+

In this subsection, we analyse the NAEAD security of ISAP+. We show that our
design follows that paradigm, and hence we can adapt its security result, and
the security of ISAP+ follows. Formally, we prove the following theorem.

Theorem 3 (NAEAD Security of ISAP+). For all deterministic nonce-
respecting non-repeating query making adversary A of ISAP+ which can make at
most qe encryption queries of a total of maximum σe blocks, qv forging queries
and qp primitive queries to p and its inverse, the NAEAD advantage of A can
be bounded by

AdvNAEAD
ISAP+ (A) ≤

σ2
e + σeqp + q2p

2c′ +
σ2

e + σeqp + σeσv

2c

+

(
qp
k

)

2τ(k−1)
+

(
qp
k

)

2(n−k)(k−1)
+

qqp

2n
+

2kqv + qp

2k
+

qp + qv

2n−k
+

qv

2τ
.

Proof. The proof follows directly from Theorem2, as we bound the two terms
AdvPRF

F (B1) and Adv2PI+
�H�c(B2) for ISAP+.

– To bound the first term, we observe that the key can be randomly guesses
with probability qp

2k
. Also, the state after re-keying might match with an

offline query with probability qp
2n−k , as the capacity part can be controlled.

Otherwise the inputs of the outer sponge construction are fresh, and a collision
can happen at some stage only if two construction queries have a full state
collision, or a construction query has a full state collision with a primitive
query. The probability of the first case can be bounded by σ2

e/2c′
and the

probability of the second case can be bounded by σeqp/2c′
. Hence we achieve

the overall PRF security of F as
(

σeqp+σ2
e

2c′ + qp
2k

+ qp
2n−k

)
. Further details can

be found in [3].
– The second term, i.e., the 2PI+ security of the feed-forward based sponge hash

can be bounded by
(

q2
p

2c′ + (qp+σv)σe

2c + σ2
e

2c + qv
2n−k

)
(See Lemma 2, Sect. 4.2).

��
Side-Channel Resistance. ISAP+ inherits its security against side-channel
leakage directly from ISAP. In [17], the author have clearly mentioned that
“There are no requirements on the implementation of the hash function H,
since it processes only publicly known data.” Following their argument, ISAP+
achieves same leakage resilience as it modifies only the hash function of ISAP
and retains the rest of the design as it is. Accordingly, ISAP+ will provide a
similar result on the leakage resilience bound as given in [18, Theorem 1].

ISAP+: ISAP with Fast Authentication 217

6 Conclusion

In this paper, we have proposed a generic framework for a permutation-based
EtHM type NAEAD mode using a PRF and an unkeyed hash function with
2PI+ security. We have shown that ISAP follows the framework EtHM and hence
it’s security boils down to the 2PI+ security of the underlying hash function.
We propose a feed-forward variant of the sponge hash function with improved
security and use it to design a new variant of ISAP that achieves improved
security, and that in turn improves the throughput of the construction. Designing
some new hash functions with better 2PI+ security and improving the security
or throughput of the mode instantiated with the newly designed hash seems to
be a challenging open problem.

Acknowledgement. The authors would like to thank all the anonymous reviewers
for their valuable comments and suggestions. Cuauhtemoc Mancillas López is partially
supported by the Cryptography Research Center of the Technology Innovation Institute
(TII), Abu Dhabi (UAE), under the TII- Cuauhtemoc project.

References

1. National Institute of Standards and Technology: FIPS PUB 202: SHA-3Standard:
Permutation-based hash and extendable-output functions. Federal Information
Processing Standards Publication 202, U.S. Department of Commerce, August
2015

2. Andreeva, E., et al.: PRIMATEs v1.02. Submission to CAESAR (2016). https://
competitions.cr.yp.to/round2/primatesv102.pdf

3. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48116-5 18

4. Beläıd, S., et al.: Towards fresh re-keying with leakage-resilient PRFs: cipher design
principles and analysis. J. Cryptogr. Eng. 4(3), 157–171 (2014)

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

6. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008)
7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions, 2007. In:

Ecrypt Hash Workshop (2007)
8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability

of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

9. Bertoni, G., Daemen, M.P.J., Van Assche, G., Van Keer, R.: Ketje v2. Submission
to CAESAR (2016). https://competitions.cr.yp.to/round3/ketjev2.pdf

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://doi.org/10.1007/BFb0052259

218 A. Bhattacharjee et al.

11. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

13. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to NIST Lightweight Cryptography, 2019 (2019). https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/finalist-round/updated-
spec-doc/ascon-spec-final.pdf

14. Dobraunig, C., et al.: ISAP v2.0. Submission to NIST (2019). https://csrc.
nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/
spec-doc/ISAP-spec.pdf

15. CAESAR Committee: CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html/

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

17. Dobraunig, C., et al.: ISAP v2.0. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-
final.pdf

18. Dobraunig, C., et al.: ISAP v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–
416 (2020)

19. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

20. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M., Ascon v1.2. Submission
to CAESAR (2016). https://competitions.cr.yp.to/round3/asconv12.pdf

21. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

22. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

23. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

24. Grosso, V., et al.: SCREAM side-channel resistant authenticated encryption with
masking. Submission to CAESAR (2015). https://competitions.cr.yp.to/round2/
screamv3.pdf

25. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (ver-
sion 3.0) (2011). https://keccak.team/files/Keccak-reference-3.0.pdf

26. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher,
2000. Nessie Proposal (2020). https://competitions.cr.yp.to/round3/acornv3.pdf

27. Kocher, P.C.: Timing Attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
http://competitions.cr.yp.to/caesar.html/
https://doi.org/10.1007/978-3-662-04722-4
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/3-540-48059-5_15
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://doi.org/10.1007/3-540-68697-5_9

ISAP+: ISAP with Fast Authentication 219

28. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

29. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh re-
keying II: securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-27257-8 8

30. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9 17

31. NIST: Lightweight cryptography. https://csrc.nist.gov/Projects/Lightweight-
Cryptography

32. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

33. Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31284-7 19

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-642-12678-9_17
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-31284-7_19
https://doi.org/10.1007/978-3-642-31284-7_19

Protocols and Implementation

Revisiting the Efficiency of Perfectly
Secure Asynchronous Multi-party

Computation Against General
Adversaries

Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury(B)

International Institute of Information Technology, Bangalore, India
ashish.choudhury@iiitb.ac.in

Abstract. In this paper, we present a perfectly-secure multi-party com-
putation (MPC) protocol in the asynchronous communication setting
with optimal resilience. Our protocol is secure against a computationally-
unbounded malicious adversary characterized by an adversary structure
Z, which enumerates all possible subsets of potentially corrupt parties.
The protocol incurs an amortized communication of O(|Z|2) bits per mul-
tiplication. This improves upon the previous best protocol of Choudhury
and Pappu (INDOCRYPT 2020), which requires an amortized commu-
nication of O(|Z|3) bits per multiplication. Previously, perfectly-secure
MPC with amortized communication of O(|Z|2) bits per multiplication
was known only in the relatively simpler synchronous communication
setting (Hirt and Tschudi, ASIACRYPT 2013).

Keywords: Byzantine faults · Secret-sharing ·
Unconditional-security · Byzantine agreement · Privacy · Multi-party
computation · Non-threshold adversary

1 Introduction

Secure multi-party computation (MPC) [5,17,26,28] is a fundamental prob-
lem in secure distributed computing. Consider a set of n mutually-distrusting
parties P = {P1, . . . , Pn}, where a subset of parties can be corrupted by a
computationally-unbounded malicious (Byzantine) adversary Adv. Informally, an

A. Appan and A. Chandramouli—Work done when the author was a student at Inter-
national Institute of Information Technology, Bangalore
The full version of the article is available at [1]
A. Choudhury—This research is an outcome of the R&D work undertaken in the project
under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technol-
ogy, Government of India, being implemented by Digital India Corporation (formerly
Media Lab Asia). The author is also thankful to the Electronics, IT & BT Government
of Karnataka for supporting this work under the CIET project.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 223–248, 2022.
https://doi.org/10.1007/978-3-031-22912-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_10

224 A. Appan et al.

MPC protocol allows the parties to securely compute any function f of their
private inputs, while ensuring that their respective inputs remain private. The
most popular way of characterizing Adv is through a threshold, by assuming that
it can corrupt any subset of up to t parties. In this setting, MPC with perfect
security (where no error is allowed in the outcome) is achievable iff t < n/3 [5].
Hirt and Maurer [18] generalized the threshold model by introducing the general-
adversary model (also known as the non-threshold setting). In this setting, Adv is
characterized by a monotone adversary structure Z = {Z1, . . . , Zh} ⊂ 2P which
enumerates all possible subsets of potentially corrupt parties, where Adv can
select any subset of parties Z� ∈ Z for corruption. Modelling the distrust in the
system through Z allows for more flexibility (compared to the threshold model),
especially when P is not too large. In the general-adversary model, MPC with
perfect security is achievable iff Z satisfies the Q

(3)(P,Z) condition.1

Following the seminal work of [5] all generic perfectly-secure MPC protocols
follow the paradigm of shared circuit-evaluation. In this paradigm, it is assumed
that f is abstracted as a publicly-known arithmetic circuit ckt over some finite
field F. The problem of securely computing f then boils down to “securely eval-
uating” the circuit ckt. To achieve this goal, the parties jointly and securely
evaluate each gate in ckt in a secret-shared fashion, where each value during the
circuit-evaluation remains secret-shared. In more detail, each party first secret-
shares its input for f , with every party holding a share for each input, such
that the shares of the corrupt parties reveal no additional information about the
underlying shared values. The parties then maintain the following gate-invariant
for each gate in ckt: given the gate-inputs in a secret-shared fashion, the parties
get the gate-output in a secret-shared fashion without revealing any additional
information about the gate-inputs and gate-output. Finally, the function-output
(which is secret-shared) is publicly reconstructed. Intuitively, security follows
because the adversary does not learn any additional information beyond the
inputs of the corrupt parties and the function output, since the shares learnt by
Adv are independent of the underlying values.

How the above gate-invariant is maintained depends on the type of gate
and the type of secret-sharing deployed. Typically, the underlying secret-sharing
is linear, such as Shamir’s [27] for the case of threshold adversaries, and the
replicated secret-sharing [20,24] for the case of general adversaries.2 Conse-
quently, maintaining the invariant for linear gates in ckt is “free” (completely
non-interactive). However, to maintain the gate-invariant for non-linear (multi-
plication) gates, the parties need to interact. Consequently, the communication
complexity (namely, the total number of bits communicated by uncorrupted par-
ties) of any generic MPC protocol is dominated by the communication complex-
ity of evaluating the multiplication gates in ckt. Hence, the focus is to improve
the amortized communication complexity per multiplication gate. The amortized

1 Z satisfies the Q
(k)(P,Z) condition [18], if the union of no k sets from Z covers P.

2 A secret-sharing scheme is called linear, if the shares are computed as a linear func-
tion of the secret and the underlying randomness used in the scheme.

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 225

complexity is derived under the assumption that the circuit is “large enough”,
so that the terms that are independent of the circuit size can be ignored.

In terms of communication efficiency, MPC protocols against general adver-
saries are inherently less efficient than those against threshold adversaries, by
several orders of magnitude. Protocols against threshold adversaries typically
incur an amortized communication of nO(1) bits per multiplication, compared
to |Z|O(1) bits per multiplication required against general adversaries. Since |Z|
could be exponentially large in n, the exact exponent is very important. For
instance, as noted in [19], if n = 25, then |Z| is around one million. Conse-
quently, a protocol with an amortized communication complexity of O(|Z|2)
bits per multiplication is preferred over a protocol with an amortized commu-
nication complexity of O(|Z|3) bits. The most efficient perfectly-secure MPC
protocol against general adversaries is due to [19], which incurs an amortized
communication of O(|Z|2 · (n5 log |F|+n6)+ |Z| · (n7 log |F|+n8)) bits per multi-
plication. The complexity is derived by substituting the broadcasts done in their
protocol through the reliable broadcast protocol of [15], as referred in [19].

Our Motivation and Results: All the above results hold in the synchronous
setting, where the parties are assumed to be globally synchronized, with strict
upper bounds on the message delay. Hence, any “late” message is attributed to
a corrupt sender party. Such strict time-outs are, however, extremely difficult to
maintain in real-world networks like the Internet, which are better modelled by
the asynchronous communication setting [7]. Here, no timing assumptions are
made and messages can be arbitrarily (but finitely) delayed, with every mes-
sage sent being delivered eventually, but need not be in the same order in which
they were sent. Asynchronous protocols are inherently more complex and less
efficient by several orders of magnitude when compared to their synchronous
counterparts. This is because in any asynchronous protocol, a slow (but uncor-
rupted) sender party cannot be distinguished from a corrupt sender party who
does not send any message. Consequently, to avoid an endless wait, the par-
ties cannot afford to wait to receive messages from all the parties, which results
in unknowingly ignoring messages from a subset of potentially honest parties.
The resilience (fault-tolerance) of asynchronous MPC (AMPC) protocols is poor
compared to synchronous MPC protocols. For instance, perfectly-secure AMPC
against threshold adversaries is achievable iff t < n/4. Against general adver-
saries, perfectly secure AMPC requires Z to satisfy the Q

(4)(P,Z) [22].
Compared to synchronous MPC protocols, AMPC protocols are not very

well-studied [3,4,6,11,25], especially against general adversaries. The most effi-
cient perfectly-secure AMPC protocol against general adversaries is due to [10].
In this work, we design a new communication efficient perfectly-secure AMPC
protocol against general adversaries. The amortized efficiency of our protocol is
comparable with the most efficient perfectly-secure MPC protocol against gen-
eral adversaries in the synchronous communication setting [19], especially if we
focus on the exponent of |Z|. Our result compared with relevant existing results
is presented in Table 1.

226 A. Appan et al.

Table 1. Amortized communication complexity per multiplication of different
perfectly-secure MPC protocols against general adversaries

Setting Reference Condition Communication complexity

Synchronous [19] Q
(3)(P, Z) O(|Z|2 · (n5 log |F| + n6) + |Z| · (n7 log |F| + n8))

Asynchronous [10] Q
(4)(P, Z) O(|Z|3 · (n7 log |F| + n9 · (log n + log |Z|)))

Asynchronous This work Q
(4)(P, Z) O(|Z|2 · n7 log |F| + |Z| · n9 log n)

1.1 Technical Overview

Our protocol is designed in the pre-processing model, where the parties first
generate secret-shared random multiplication-triples of the form (a, b, c), where
c = ab. These are used later to efficiently evaluate the multiplication gates
using Beaver’s method [2]. At the heart of our pre-processing phase protocol
lies an efficient asynchronous multiplication protocol to securely multiply two
secret-shared values. The protocol closely follows the synchronous multiplication
protocol of [19]. However, there are several non-trivial challenges (discussed in
the sequel) while adapting the protocol to the asynchronous setting.

The MPC protocol of [19] as well as ours are based on the secret-sharing used

in [24], which considers a sharing specification S
def
= {P\Z|Z ∈ Z}. A value s ∈ F

is said to be secret-shared with respect to S if there exist shares s1, . . . , s|S| such
that s = s1+ . . .+s|S|. Additionally, for each q = 1, . . . , |S|, the share sq is known
to every (honest) party in Sq. A sharing of s is denoted by [s], where [s]q denotes
the qth share. The synchronous multiplication protocol of [19], which assumes
the Q

(3)(P,Z) condition takes as input [a], [b] and securely generates a random
sharing [ab]. Note that the following hold: ab =

∑

(p,q)∈{1,...,|S|}×{1,...,|S|}
[a]p[b]q.

The main idea is that since Sp ∩ Sq �= ∅, a publicly-known party from Sp ∩ Sq

can be designated to secret-share the summand [a]p[b]q. For efficiency, every
designated “summand-sharing party” can sum up all the summands assigned to
it and share the sum instead. If no summand-sharing party behaves maliciously,
then the sum of all secret-shared sums leads to a secret-sharing of ab.

To deal with cheating, [19] first designed an optimistic multiplication pro-
tocol ΠOptMult, which takes an additional parameter Z ∈ Z and generates a
secret-sharing of ab, provided Adv corrupts a set of parties Z� ⊆ Z. The idea
used in ΠOptMult is the same as above, except that the summand-sharing parties
are now “restricted” to the subset P \ Z. Since (Sp ∩ Sq) \ Z will be non-empty
(as otherwise Z does not satisfy the Q

(3)(P,Z) condition), it is guaranteed that
each summand [a]p[b]q can be assigned to a designated party in P \ Z. Since
the parties will not know the exact set of corrupt parties, they run an instance
of ΠOptMult, once for each Z ∈ Z. This guarantees that at least one of these
instances generates a secret-sharing of ab. By comparing the output sharings
generated in all the instances of ΠOptMult, the parties can detect whether any
cheating has occurred. If no cheating is detected, then any of the output shar-
ings can serve as the sharing of ab. Else, the parties consider a pair of conflicting

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 227

ΠOptMult instances (whose resultant output sharings are different) and proceed to
a cheater-identification phase. In this phase, based on the values shared by the
summand-sharing parties in the conflicting ΠOptMult instances, the parties iden-
tify at least one corrupt summand-sharing party. This phase necessarily requires
the participation of all the summand-sharing parties from the conflicting ΠOptMult

instances. Once a corrupt summand-sharing party is identified, the parties disre-
gard all output sharings of ΠOptMult instances involving that party. This process
of comparing the output sharings of ΠOptMult instances and identifying corrupt
parties continues, until all the remaining output sharings are for the same value.

Challenges in the Asynchronous Setting: There are two main non-trivial
challenges while applying the above ideas in an asynchronous setting. First, in
ΠOptMult, a potentially corrupt party may never share the sum of the summands
designated to that party, leading to an indefinite wait. To deal with this, we
notice that since Z satisfies the Q

(4)(P,Z) condition [22] (as we consider the
asynchronous setting), each (Sp ∩ Sq) \ Z contains at least one honest party. So
instead of designating a single party for the summand [a]p[b]q, each party in P\Z
shares the sum of all the summands it is “capable” of, thus guaranteeing that
each [a]p[b]q is considered for sharing by at least one (honest) party. However,
we have to ensure that a summand is not shared multiple times.

The second challenge is that if there is a pair of conflicting ΠOptMult instances,
the potentially corrupt summand-sharing parties from these instances may not
participate further in the cheater-identification phase. To get around this, the
multiplication protocol now proceeds in iterations, where in each iteration, the
parties run an instance of the asynchronous ΠOptMult (outlined above) for each
Z ∈ Z and compare the outputs from each instance. They then proceed to the
respective cheater-identification phase if the outputs are not the same. However,
the summand-sharing parties from previous iterations are not allowed to par-
ticipate in future iterations until they participate in the cheater-identification
phase of all the previous iterations. This prevents the corrupt summand-sharing
parties in previous iterations from acting as summand-sharing parties in future
iterations, until they clear their “pending tasks”, in which case they are caught
and discarded. We stress that the honest parties are eventually “released” to
act as summand-sharing parties in future iterations. Once the parties reach an
iteration where the outputs of all the ΠOptMult instances are the same (which
happens eventually), the protocol stops.

2 Preliminaries and Existing Asynchronous Primitives

We assume that the parties are connected by pair-wise secure channels. The
adversary Adv is malicious and static, and decides the set of corrupt parties at
the beginning of the protocol execution. Parties not under the control of Adv are
called honest. Given P ′ ⊆ P, we say that Z satisfies the Q

(k)(P ′,Z) condition
if, for every Zi1 , . . . , Zik

∈ Z, the condition P ′ �⊆ Zi1 ∪ . . . ∪ Zik
holds.

We assume that the parties want to compute a function f represented by a
publicly known arithmetic circuit ckt over a finite field F consisting of linear and

228 A. Appan et al.

non-linear gates, with M being the number of multiplication gates. Without loss
of generality, we assume that each Pi ∈ P has an input x(i) for f , and that all
the parties want to learn the single output y = f(x(1), . . . , x(n)).

In our protocols, we use a secret-sharing based on the one from [24], defined

with respect to a sharing specification S = {S1, . . . , Sh} def
= {P \ Z|Z ∈ Z},

where h = |S| = |Z|. This sharing specification S is Z-private, meaning that for
every Z ∈ Z, there is an S ∈ S such that Z ∩ S = ∅. Moreover, if Z satisfies
the Q

(4)(P,Z) condition, then S satisfies the Q
(3)(S,Z) condition, meaning that

for every Zi1 , Zi2 , Zi3 ∈ Z and every S ∈ S, the condition S �⊆ Zi1 ∪ Zi2 ∪ Zi3

holds. In general, we say that S satisfies the Q
(k)(S,Z) condition if for every

Zi1 , . . . , Zik
∈ Z and every S ∈ S, the condition S �⊆ Zi1 ∪ . . . ∪ Zik

holds.

Definition 1 ([24]). A value s ∈ F is said to be secret-shared with respect to S,
if there exist shares s1, . . . , s|S| such that s = s1+ . . .+s|S|, and for q = 1, . . . , |S|,
the share sq is known to every (honest) party in Sq.

A sharing of s is denoted by [s], where [s]q denotes the qth share. Note that Pi will
hold the shares {[s]q}Pi∈Sq

. The above secret-sharing is linear, as [c1s1 + c2s2] =
c1[s1] + c2[s2] for any publicly-known c1, c2 ∈ F.

2.1 The Asynchronous Universal Composability (UC) Framework

Unlike the previous unconditionally-secure AMPC protocols [3,6,10,11,25], we
prove the security of our protocols using the UC framework [8,9,16], based on the
real-world/ideal-world paradigm, which we discuss next. The discussion is based
on the description of the framework against threshold adversaries as provided
in [12] (which is further based on [13,21]). We adapt the framework for the
case of general adversaries. Informally, the security of a protocol is argued by
“comparing” the capabilities of the adversary in two separate worlds. In the
real-world, the parties exchange messages among themselves, computed as per a
given protocol. In the ideal-world, the parties do not interact with each other, but
with a trusted third-party (an ideal functionality), which enables the parties to
obtain the result of the computation based on the inputs provided by the parties.
Informally, a protocol is considered to be secure if whatever an adversary can
do in the real protocol can be also done in the ideal-world.

The Asynchronous Real-World: An execution of a protocol Π in the real-
world consists of n interactive Turing machines (ITMs) representing the parties
in P. Additionally, there is an ITM for representing the adversary Adv. Each
ITM is initialized with its random coins and possible inputs. Additionally, Adv
may have some auxiliary input z. Following the convention of [7], the protocol
operates asynchronously by a sequence of activations, where at each point, a sin-
gle ITM is active. Once activated, a party can perform some local computation,
write on its output tape, or send messages to other parties. On the other hand, if
the adversary is activated, it can send messages on the behalf of corrupt parties.
The protocol execution is complete once all honest parties obtain their respec-
tive outputs. We let REALΠ,Adv(z),Z�(�x) denote the random variable consisting

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 229

of the output of the honest parties and the view of the adversary Adv during the
execution of a protocol Π. Here, Adv controls parties in Z� during the execution
of protocol Π with inputs �x = (x(1), . . . , x(n)) for the parties (where party Pi

has input x(i)), and auxiliary input z for Adv.

The Asynchronous Ideal-World: A protocol in the ideal-world consists of
dummy parties P1, . . . , Pn, an ideal-world adversary S (also called simulator) and
an ideal functionality FAMPC. We consider static corruptions such that the set
of corrupt parties Z� is fixed at the beginning of the computation and is known
to S. FAMPC receives the inputs from the respective dummy parties, performs
the desired computation f on the received inputs, and sends the outputs to the
respective parties. The ideal-world adversary does not see and cannot delay the
communication between the parties and FAMPC. However, it can communicate
with FAMPC on the behalf of corrupt parties.

Since FAMPC models a real-world protocol asynchronous protocol, ideal func-
tionalities must consider some inherent limitations to model the asynchronous
communication model with eventual delivery. For example, in a real-world pro-
tocol, the adversary can decide when each honest party learns the output since
it has full control over message scheduling. To model the notion of time in
the ideal-world, [21] uses the concept of number of activations. Namely, once
FAMPC has computed the output for some party, it does not ask “permission”
from S to deliver it to the respective party. Instead, the corresponding party
must “request” FAMPC for the output, which can be done only when the con-
cerned party is active. Moreover, the adversary can “instruct” FAMPC to delay
the output for each party by ignoring the corresponding requests, but only for a
polynomial number of activations. If a party is activated sufficiently many times,
the party will eventually receive the output from FAMPC and hence, ideal com-
putation eventually completes. That is, each honest party eventually obtains its
desired output. As in [12], we use the term “FAMPC sends a request-based delayed
output to Pi”, to describe the above interaction.

Another limitation is that in a real-world AMPC protocol, the (honest) par-
ties cannot afford for all the parties to provide their input for the computation
to avoid an endless wait, as the corrupt parties may decide not to provide their
inputs. Hence, every AMPC protocol suffers from input deprivation, where inputs
of a subset of potentially honest parties (which is decided by the choice of adver-
sarial message scheduling) may get ignored during computation. Consequently,
once a “core set” of parties CS provide their inputs for the computation, where
P \ CS ∈ Z, the parties have to start computing the function by assuming some
default input for the left-over parties. To model this in the ideal-world, S is given
the provision to decide the set CS of parties whose inputs should be taken into
consideration by FAMPC. We stress that S cannot delay sending CS to FAMPC

indefinitely. This is because in the real-world protocol, Adv cannot prevent the
honest parties from providing their inputs indefinitely (Fig. 1).

230 A. Appan et al.

Fig. 1. Ideal functionality for asynchronous MPC for session id sid.

We let IDEALFAMPC,S(z),Z�(�x) denote the random variable consisting of the
output of the honest parties and the view of the adversary S, controlling the
parties in Z�, with the parties having inputs �x = (x(1), . . . , x(n)) (where party
Pi has input xi), and auxiliary input z for S.

We say that a real-world protocol Π securely realizes FAMPC with perfectly-
security if and only if for every Adv, there exists an S whose running time is
polynomial in the running time of Adv, such that for every possible Z�, every
possible �x ∈ F

n and every possible z ∈ {0, 1}�, it holds that the random variables
{
REALΠ,Adv(z),Z�(�x)

}
and

{
IDEALFAMPC,S(z),Z�(�x)

}

are identically distributed.

The Universal-Composability (UC) Framework: While the real-
world/ideal-world based security paradigm is used to define the security of a
protocol in the “stand-alone” setting, the more powerful UC framework [8,9] is
used to define the security of a protocol when multiple instances of the protocol
might be running in parallel, possibly along with other protocols. Informally, the
security in the UC-framework is still argued by comparing the real-world and

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 231

the ideal-world. However, now, in both worlds, the computation takes place in
the presence of an additional interactive process (modelled as an ITM) called the
environment and denoted by Env. Roughly speaking, Env models the “external
environment” in which protocol execution takes place. The interaction between
Env and the various entities takes place as follows in the two worlds.

In the real-world, the environment gives inputs to the honest parties, receives
their outputs, and can communicate with the adversary at any point during
the execution. During the protocol execution, the environment gets activated
first. Once activated, the environment can either activate one of the parties by
providing some input or activate Adv by sending it a message. Once a party
completes its operations upon getting activated, the control is returned to the
environment. Once Adv gets activated, it can communicate with the environment
(apart from sending messages to the honest parties). The environment also fully
controls the corrupt parties that send all the messages they receive to Env, and
follow the orders of Env. The protocol execution is completed once Env stops
activating other parties, and outputs a single bit.

In the ideal-model, Env gives inputs to the (dummy) honest parties, receives
their outputs, and can communicate with S at any point during the execution.
The dummy parties act as channels between Env and the functionality. That is,
they send the inputs received from Env to functionality and transfer the output
they receive from the functionality to Env. The activation sequence in this world
is similar to the one in the real-world. The protocol execution is completed once
Env stops activating other parties and outputs a single bit.

A protocol is said to be UC-secure with perfect-security, if for every real-
world adversary Adv there exists a simulator S, such that for any environment
Env, the environment cannot distinguish the real-world from the ideal-world.

The Hybrid Model: In a G-hybrid model, a protocol execution proceeds as in
the real-world. However, the parties have access to an ideal functionality G for
some specific task. During the protocol execution, the parties communicate with
G as in the ideal-world. The UC framework guarantees that an ideal functionality
in a hybrid model can be replaced with a protocol that UC-securely realizes G.
This is specifically due to the following composition theorem from [8,9].

Theorem 1 ([8,9]). Let Π be a protocol that UC-securely realizes some func-
tionality F in the G-hybrid model and let ρ be a protocol that UC-securely
realizes G. Moreover, let Πρ denote the protocol that is obtained from Π by
replacing every ideal call to G with the protocol ρ. Then Πρ UC-securely real-
izes F in the model where the parties do not have access to the functionality G.

2.2 Existing Asynchronous Primitives

Asynchronous Reliable Broadcast (Acast): Acast allows a designated
sender PS ∈ P to identically send a message m ∈ {0, 1}� to all the parties.
If PS is honest, then all honest parties eventually output m. If PS is corrupt and
some honest party outputs m�, then every other honest party eventually outputs
m�. The above requirements are formalized by an ideal functionality FAcast (see

232 A. Appan et al.

[1]). In [23], a perfectly-secure Acast protocol is presented with a communication
complexity of O(n2�) bits, provided Z satisfies the Q

(3)(P,Z) condition.

Asynchronous Byzantine Agreement (ABA): The ideal ABA functionality
is presented in Fig. 2, which is a generalization of the corresponding functionality
against threshold adversaries, as presented in [13]. It can be considered as a
special case of the AMPC functionality, which looks at the set of inputs provided
by the set of parties in CS, where CS is decided by the ideal-world adversary. If
the input bits provided by all the honest parties in CS are the same, then it is
set as the output bit. Else, the output bit is set to be the input bit provided by
some corrupt party in CS (for example, the first corrupt party in CS according to
lexicographic ordering). In the functionality, the input bits provided by various
parties are considered to be the “votes” of the respective parties.

Fig. 2. The ideal functionality for asynchronous Byzantine agreement for session id
sid.

In [10], a perfectly-secure ABA protocol ΠABA is presented, provided Z
satisfies the Q

(4)(P,Z) condition, which holds for our case. In the protocol,
all honest parties eventually compute their output with probability 1 and the

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 233

protocol incurs an expected communication of O(|Z| · (n6 log |F| + n8(log n +
log |Z|))) bits.3

Verifiable Secret-Sharing (VSS): A VSS protocol allows a designated dealer
PD ∈ P to verifiably secret-share its input s ∈ F. If PD is honest, then the hon-
est parties eventually complete the protocol with [s]. The verifiability property
guarantees that if PD is corrupt and some honest party completes the protocol,
then all honest parties eventually complete the protocol with a secret-sharing of
some value. These requirements are formalized through the functionality FVSS

(Fig. 3). The functionality, upon receiving a vector of shares from PD, distributes
the appropriate shares to the respective parties. The dealer’s input is defined
implicitly as the sum of provided shares. We will use FVSS in our protocols as
follows: PD on having the input s, sends a random vector of shares (s1, . . . , s|S|)
to FVSS where s1 + . . . + s|S| = s. If PD is honest, then the view of Adv will be
independent of s and the probability distribution of the shares learnt by Adv
will be independent of the dealer’s input, since S is Z-private.

Fig. 3. The ideal functionality for VSS for session id sid.

In [10], a perfectly-secure VSS protocol ΠPVSS is presented, to securely real-
ize FVSS, provided Z satisfies the Q

(4)(P,Z) condition. The protocol incurs a
communication of O(|Z| · n2 log |F| + n4 log n) bits (see [1] for the full details).

Default Secret-Sharing: The perfectly-secure protocol ΠPerDefSh takes a public
input s ∈ F and S to non-interactively generate [s], where the parties collectively
set [s]1 = s and [s]2 = . . . = [s]|S| = 0.

Reconstruction Protocols: Let the parties hold [s]. Then, [10] presents
a perfectly-secure protocol ΠPerRecShare to reconstruct [s]q for any given q ∈
{1, . . . , |S|} and a perfectly-secure protocol ΠPerRec to reconstruct s, provided
S satisfies the Q

(2)(S,Z) condition. The protocols incur a communication of
O(n2 log |F|) and O(|Z| · n2 log |F|) bits respectively.
3 From [14], every deterministic ABA protocol must have non-terminating runs, where

the parties may run the protocol forever, without obtaining any output. To circum-
vent this result, randomized ABA protocols are considered and the best we can hope
for from such protocols is that the parties eventually obtain an output, asymptoti-
cally with probability 1 (this property is called almost-surely termination property).

234 A. Appan et al.

3 Perfectly-Secure Pre-processing Phase Protocol

We present a perfectly-secure protocol which generates a secret-sharing of M
random multiplication-triples unknown to the adversary. The protocol realizes
the ideal functionality FTriples (Fig. 4) which allows the ideal-world adversary to
specify the shares for each of the output triples on the behalf of corrupt parties.
The functionality then “completes” the sharing of all the triples randomly, while
keeping them “consistent” with the shares specified by the adversary.

Fig. 4. Ideal functionality for asynchronous pre-processing phase with session id sid.

This provision is made because in our pre-processing phase protocol, the
real-world adversary will have full control over the shares of the corrupt par-
ties corresponding to the random multiplication-triples generated in the pro-
tocol. We present a protocol for securely realizing FTriples. For this, we need a
multiplication protocol which takes as input {([a(�)], [b(�)])}�=1,...,M and outputs
{[c(�)]}�=1,...,M , where c(�) = a(�)b(�), without revealing any additional informa-
tion about a(�), b(�). We first explain and present the protocol assuming M = 1,

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 235

where the inputs are [a] and [b]. The goal is to securely generate a random
sharing [ab]. The modifications to handle M pairs of inputs are straightforward.

We briefly recall the high-level idea behind our multiplication protocol which
had been discussed in detail in Sect. 1.1. We first design an asynchronous opti-
mistic multiplication protocol ΠOptMult which takes as input a set Z ∈ Z and
generates a secret-sharing of ab, provided Adv corrupts a set of parties Z� ⊆ Z.
Using protocol ΠOptMult, the parties then proceed in iterations, where in each iter-
ation, the parties run an instance of the asynchronous ΠOptMult for each Z ∈ Z.
They then compare the outputs from each instance to detect if the corrupt
parties cheated in any of the instances, and proceed to the respective cheater-
identification phase, if any cheating is detected. If an iteration “fails” (meaning
that cheating is detected in the form of a pair of “conflicting” ΠOptMult instances
where the resultant secret-shared outputs are different), then the parties tem-
porarily “wait-list” all the parties who have shared any summand during the
conflicting instances of ΠOptMult for that iteration. The summand-sharing par-
ties stay on the waiting-list till they complete all their supposed tasks in the
corresponding cheater-identification phase, after which they are “released” to
participate in instances of ΠOptMult in future iterations. This mechanism ensures
that if an iteration fails, then the cheating parties from that iteration cannot
participate in future iterations till they participate in the pending cheater iden-
tification phase of the failed iteration, in which case they are eventually discarded
by all honest parties. This process is repeated till the parties reach a “successful”
iteration where no cheating is detected (where the outputs of all the ΠOptMult

instances are the same). We will show that there will be at most t(tn + 1) + 1
iterations within which a successful iteration is reached, where t is the cardinality
of the maximum-sized subset in Z.

Based on the above discussion, we next present protocols ΠOptMult,ΠMultCI

and ΠMult. Protocol ΠMultCI (multiplication with cheater-identification) repre-
sents an iteration as discussed above. In the protocol, the parties run an instance
of ΠOptMult for each Z ∈ Z. If a pair of conflicting ΠOptMult instances with differ-
ent outputs are identified, then the parties proceed to execute the correspond-
ing cheater-identification phase. Protocol ΠMult iteratively calls ΠMultCI multiple
times till it reaches a “successful” instance of ΠMultCI (where the outputs of all the
instances of ΠOptMult are the same). Across all the instances of these protocols,
the parties maintain the following dynamic sets:

– W(i)
iter: Denotes the parties wait-listed by Pi corresponding to instance number

iter of ΠMultCI during ΠMult. If Pi detects any cheating during the instance
number iter of ΠMultCI with a pair of conflicting ΠOptMult instances, then all the
summand-sharing parties from the conflicting instances are included in W(i)

iter.
These parties are removed from W(i)

iter only if they execute their respective
steps of the corresponding cheater-identification phase.

236 A. Appan et al.

– LD(i)
iter: The set of parties from W(i)

iter which are locally discarded by Pi during
the cheater-identification phase of instance number iter of ΠMultCI in ΠMult.

– GD: Denotes the set of parties, globally discarded by all (honest) parties across
various instances of ΠMultCI in protocol ΠMult.4

Looking ahead, these sets will be maintained such that no honest party is ever
included in the GD and LD(i)

iter sets of any honest Pi. Moreover, any honest party
which is included in the W(i)

iter set of any honest Pi will eventually be removed.

3.1 Optimistic Multiplication Protocol

Protocol ΠOptMult is executed with respect to a given Z ∈ Z and iteration number
iter. The inputs of the protocol are [a] and [b]. The protocol is guaranteed to
eventually generate an output, which will be [ab] if no party outside the set
Z behaves maliciously. The idea behind the protocol is as follows. Since ab =∑

(p,q)∈S×S
[a]p[b]q, a secret-sharing of ab can be computed locally from the shares

of the summands [a]p[b]q, owing to the linearity property of the secret-sharing.
As Z satisfies the Q

(4)(P,Z) condition, each (Sp ∩ Sq) \ Z contains at least one
honest party. Since the parties may not know the identity of the honest parties
in the set (Sp ∩ Sq) \ Z, every party in (Sp ∩ Sq) \ Z tries to secret-share the
summand [a]p[b]q. For the sake of efficiency, instead of sharing a single summand,
each party in P \Z tries to act as a summand-sharing party and shares the sum
of all the summands it is “capable” of. To avoid “repetition” of summands, the
parties select distinct summand-sharing parties in hops. The summands which
the selected party is capable of sharing are “marked” as shared, ensuring that
they are not considered in future hops. To agree on the summand-sharing party
of each hop, the parties execute an instance of the agreement on common subset
(ACS) primitive [4], where one instance of ABA is invoked on the behalf of each
candidate summand-sharing party. While voting for a candidate party in P \ Z
during a hop, the parties ensure that the candidate has indeed secret-shared
some sum and satisfies the following conditions:

– The candidate party has not been selected in an earlier hop.
– The candidate party does not belong to the waiting list or the list of locally-

discarded parties of any previous iteration.
– The candidate does not belong to the list of globally-discarded parties (Fig. 5).

We next formally prove the properties of the protocol ΠOptMult. While proving
these properties, we assume that for every iter, no honest party is ever included in
the set GD and all honest parties are eventually removed from the W(i)

iter′ ,LD(i)
iter′

sets of every honest Pi for every iter′ < iter. Looking ahead, these conditions are
guaranteed in the protocols ΠMultCI and ΠMult (where these sets are constructed
and managed), where ΠOptMult is used as a subprotocol.

4 The reason for two different discarded sets is that the various instances of cheater-
identification are executed asynchronously, thus resulting in a corrupt party to be
identified by different honest parties during different iterations.

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 237

Fig. 5. Optimistic multiplication in (FVSS,FABA)-hybrid for iteration iter and session id
sid, assuming Z to be corrupt. The above code is executed by each Pi, who implicitly
uses the dynamic sets GD, W(i)

iter′ and LD(i)

iter′ for iter′ < iter

238 A. Appan et al.

Claim 1. For every Z ∈ Z and every ordered pair (p, q) ∈ {1, . . . , |S|} ×
{1, . . . , |S|}, the set (Sp ∩ Sq) \ Z contains at least one honest party.

Proof. From the definition of S, we have Sp = P \ Zp and Sq = P \ Zq, where
Zp, Zq ∈ Z. Let Z� ∈ Z be the set of corrupt parties during the protocol
ΠOptMult. If (Sp ∩ Sq) \ Z does not contain any honest party, then it implies that
((Sp ∩ Sq) \ Z) ⊆ Z�. This further implies that P ⊆ Zp ∪ Zq ∪ Z ∪ Z�, implying
that Z does not satisfy the Q

(4)(P,Z) condition, which is a contradiction.

Claim 2. For every Z ∈ Z, if all honest parties participate during the hop
number hop in the protocol ΠOptMult, then all honest parties eventually obtain
a common summand-sharing party, say Pj , for this hop, such that the honest
parties will eventually hold [c(j)(Z,iter)]. Moreover, party Pj will be distinct from
the summand-sharing party selected for any hop number hop′ < hop.

Proof. Since all honest parties participate in hop number hop, it follows that
Summands(Z,iter) �= ∅ at the beginning of hop number hop. This implies that
there exists at least one ordered pair (p, q) ∈ Summands(Z,iter). From Claim 1,
there exists at least one honest party in (Sp ∩Sq)\Z, say Pk, who will have both
the shares [a]p as well as [b]q (and hence the summand [a]p[b]q). We also note
that Pk would not have been selected as the common summand-sharing party
in any previous hop′ < hop, as otherwise, Pk would have already included the
summand [a]p[b]q in the sum c

(k)
(Z,iter) shared by Pk during hop hop′, implying

that (p, q) �∈ Summands(Z,iter). Now, during the hop number hop, party Pk will
randomly secret-share the sum c

(k)
(Z,iter) by making a call to FVSS, and every hon-

est Pi will eventually receive an output (share, sidhop,k,iter,Z , Pk, {[c(k)(Z,iter)]q}Pi∈Sq
)

from FVSS with sidhop,k,iter,Z . Moreover, Pk will not be present in the set GD and
if Pk is present in the sets W(i)

iter′ ,LD(i)
iter′ of any honest Pi for any iter′ < iter,

then will eventually be removed from these sets.
We next claim that during the hop number hop, there will be at least one

instance of FABA corresponding to which all honest parties eventually receive
the output 1. For this, we consider two possible cases:

– At least one honest party participates with input 0 in the FABA instance cor-
responding to Pk: Let Pi be an honest party, who sends (vote, sidhop,k,iter,Z , 0)
to FABA with sidhop,k,iter,Z . Then it follows that there exists some Pj ∈ P,
such that Pi has received (decide, sidhop,j,iter,Z , 1) as the output from FABA

with sidhop,j,iter,Z . Hence, every honest party will eventually receive the out-
put (decide, sidhop,j,iter,Z , 1) as the output from FABA with sidhop,j,iter,Z .

– No honest party participates with input 0 in the FABA instance corre-
sponding to Pk: In this case, every honest party will eventually send
(vote, sidhop,k,iter,Z , 1) to FABA with sidhop,k,iter,Z and eventually receives the
output (decide, sidhop,k,iter,Z , 1) from FABA.

Now, based on the above claim, we can further claim that all honest parties will
eventually participate with some input in all the n instances of FABA invoked

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 239

during the hop number hop and hence, all the n instances of FABA during the hop
number hop will eventually produce an output. Since the summand-sharing party
for hop number hop corresponds to the least indexed FABA instance in which all
the honest parties obtain 1 as the output, it follows that eventually, the honest
parties will select a summand-sharing party. Moreover, this summand-sharing
party will be common, as it is based on the outcome of FABA instances.

Let Pj be the summand-sharing party for the hop number hop. We next
show that the honest parties will eventually hold [c(j)(Z,iter)]. For this, we
note that since Pj has been selected as the summand-sharing party, at least
one honest party, say Pi, must have sent (vote, sidhop,j,iter,Z , 1) to FABA with
sidhop,j,iter,Z . If not, then FABA with sidhop,j,iter,Z will never produce the output
(decide, sidhop,j,iter,Z , 1) and hence, Pj will not be the summand-sharing party
for the hop number hop. Now since Pi sent (vote, sidhop,j,iter,Z , 1) to FABA, it
follows that Pi has received an output (share, sidhop,j,iter,Z , Pj , {[c(j)(Z,iter)]q}Pi∈Sq

)
from FVSS with sidhop,j,iter,Z . This implies that Pj must have sent the message
(dealer, sidhop,j,iter,Z , (c(j)(iter,Z)1

, . . . , c
(j)
(iter,Z)h

)) to FVSS with sidhop,j,iter,Z . Conse-
quently, every honest party will eventually receive their respective outputs from
FVSS with sidhop,j,iter,Z and hence, the honest parties will eventually hold [c(j)(Z,iter)].

Finally, to complete the proof of the claim, we need to show that party Pj is
different from the summand-sharing parties selected during the hops 1, . . . , hop−
1. If Pj has been selected as a summand-sharing party for any hop number
hop′ < hop, then no honest party ever sends (vote, sidhop,j,iter,Z , 1) to FABA with
sidhop,j,iter,Z . Consequently, FABA with sidhop,j,iter,Z will never send the output
(decide, sidhop,j,iter,Z , 1) to any honest party and hence Pj will not be selected as
the summand-sharing party for hop number hop, which is a contradiction.

Claim 3. In protocol ΠOptMult, all honest parties eventually obtain an output.
The protocol makes O(n2) calls to FVSS and FABA.

Proof. From Claim 1 and 2, it follows that the number of hops in the protocol is
O(n), as in each hop a new summand-sharing party is selected and if all honest
parties are included in the set of summand-sharing parties Selected(Z,iter), then
Summands(Z,iter) becomes ∅. The proof now follows from the fact that in each
hop, there are O(n) calls to FVSS and FABA.

Claim 4. In ΠOptMult, if no party in P \ Z behaves maliciously, then for each
Pi ∈ Selected(Z,iter), c

(i)
(Z,iter) =

∑
(p,q)∈Summands

(i)
(Z,iter)

[a]p[b]q holds and c(Z,iter) = ab.

Proof. From the protocol steps, it follows that Selected(Z,iter) ∩ Z = ∅, as no
honest part ever votes for any party from Z as a candidate summand-sharing
party during any hop in the protocol. Now since Selected(Z,iter) ⊆ (P \ Z),
if no party in P \ Z behaves maliciously, then it implies that every party
Pi ∈ Selected(Z,iter) behaves honestly and secret-shares c

(i)
(Z,iter) by calling FVSS,

where c
(i)
(Z,iter) =

∑
(p,q)∈Summands

(i)
(Z,iter)

[a]p[b]q. Moreover, from the protocol steps,

240 A. Appan et al.

it follows that for every Pj , Pk ∈ Selected(Z,iter):

Summands
(j)
(Z,iter) ∩ Summands

(k)
(Z,iter) = ∅.

To prove this, suppose Pj and Pk are included in Selected(Z,iter) during
hop number hopj and hopk respectively, where without loss of generality,
hopj < hopk. Then from the protocol steps, during hopj , the parties would set

Summands
(k)
(Z,iter) = Summands

(k)
(Z,iter) \ Summands

(j)
(Z,iter). This ensures that during

hopk, there exists no ordered pair (p, q) ∈ {1, . . . , |S|} × {1, . . . , |S|}, such that
(p, q) ∈ Summands

(j)
(Z,iter) ∩ Summands

(k)
(Z,iter).

Since all the parties Pi ∈ Selected(Z,iter) have behaved honestly, from the
protocol steps, it also follows that :

⋃

Pi∈Selected(Z,iter)

Summands
(i)
(Z,iter) = {(p, q)}p,q=1,...,|S|.

Finally, from the protocol steps, it follows that ∀Pj ∈ P \ Selected(Z,iter), the
condition c

(j)
(Z,iter) = 0 holds. Now since c(Z,iter) = c

(1)
(Z,iter) + . . .+c

(n)
(Z,iter), it follows

that if no party in P \ Z behaves maliciously, then c(Z,iter) = ab holds.

Claim 5. In ΠOptMult, no additional information about a and b is leaked to Adv.

Proof. Let Z� ∈ Z be the set of corrupt parties. To prove the claim, we argue
that in the protocol, Adv does not learn any additional information about the
shares {[a]p, [b]p}Sp∩Z�=∅. For this, consider an arbitrary summand [a]p[b]q where
Sp ∩ Z� = ∅ and where q ∈ {1, . . . , h}. Clearly, the summand [a]p[b]q will not
be available with any party in Z�. Let Pj be the party from Selected(Z,iter),
such that (p, q) ∈ Summands

(j)
(Z,iter); i.e. the summand [a]p[b]q is included by Pj

while computing the summand-sum c
(j)
(Z,iter). Clearly Pj is honest, since Pj �∈ Z�.

In the protocol, party Pj randomly secret-shares the summand-sum c
(j)
(Z,iter) by

supplying a random vector of shares for c
(j)
(Z,iter) to the corresponding FVSS. Now,

since S is Z-private, it follows that the shares {[c(j)(Z,iter)]r}Sr∩Z� �=∅ learnt by
Adv in the protocol will be independent of the summand [a]p[b]q and hence,
independent of [a]p. Using a similar argument, we can conclude that the shares
learnt by Adv in the protocol will be independent of the summands [a]q[b]p (and
hence independent of [b]p), where Sp ∩ Z� = ∅, and where q ∈ {1, . . . , h}.

The proof of Lemma 1 now follows from Claims 1–5.

Lemma 1. Let Z satisfy the Q
(4)(P,Z) condition, S = {P \ Z|Z ∈ Z} and

let all honest parties participate in the instance ΠOptMult(P,Z,S, [a], [b], Z, iter).
Then all honest parties eventually compute [c(Z,iter)], [c

(1)
(Z,iter)], . . . , [c

(n)
(Z,iter)] where

c(Z,iter) = c
(1)
(Z,iter) + . . . + c

(n)
(Z,iter), provided no honest party is included in the GD

and LD(i)
iter′ sets and each honest party in the W(i)

iter′ sets of every honest Pi is

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 241

eventually removed, for all iter′ < iter. If no party in P \Z acts maliciously, then
c(Z,iter) = ab. In the protocol, Adv does not learn anything additional about a
and b. The protocol makes O(n2) calls to FVSS and FABA.

Protocol ΠOptMult for M Pairs of Inputs: Now in each hop, every Pi calls
FVSS M times to share M summations. While voting for a candidate summand-
sharing party in a hop, the parties check whether it has shared M values. Hence,
there will be O(n2M) calls to FVSS, but only O(n2) calls to FABA.

3.2 Multiplication Protocol with Cheater Identification

Based on protocol ΠOptMult, we next present the protocol ΠMultCI with cheater
identification (Fig. 6). The protocol takes as input an iteration number iter and
[a], [b]. If no party behaves maliciously, then the protocol securely outputs [ab]. In
the protocol, parties execute an instance of ΠOptMult for each Z ∈ Z and compare
the outputs. Since at least one of the ΠOptMult instances is guaranteed to output
[ab], if all the outputs are the same, then no cheating has occurred. Otherwise,
the parties identify a pair of conflicting ΠOptMult instances with different out-
puts, executed with respect to Z and Z ′, and flag the iteration as “failed”. Let
Selected(Z,iter) and Selected(Z′,iter) be the summand-sharing parties in the con-
flicting ΠOptMult instances. The parties next proceed to a cheater-identification
phase to identify at least one corrupt party in Selected(Z,iter) ∪ Selected(Z′,iter).

Each Pj ∈ Selected(Z,iter) is made to share the sum of the summands from its
summand-list5 overlapping with the summand-list of each Pk ∈ Selected(Z′,iter)
and vice-versa. Next, these “partitions” are compared, based on which at least
one corrupt party in Selected(Z,iter) ∪ Selected(Z′,iter) is guaranteed to be identi-
fied provided all the parties in Selected(Z,iter) ∪ Selected(Z′,iter) secret-share the

Fig. 6. Code for Pi for multiplication with cheater identification for iteration iter and
session id sid, in the FVSS-hybrid

5 Here, the summand-list of a selected party refers to the summands it was supposed
to share during the respective ΠOptMult instance of that iteration.

242 A. Appan et al.

Fig. 6. (continued)

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 243

Fig. 6. (continued)

required partitions. The cheater-identification phase will be “stuck” if the cor-
rupt parties in Selected(Z,iter) ∪ Selected(Z′,iter) do not participate. To prevent
such corrupt parties from causing future instances of ΠMultCI to fail, the par-
ties wait-list all the parties in Selected(Z,iter) ∪ Selected(Z′,iter). A party is then
“released” only after it has shared all the required values as part of the cheater-
identification phase. Every honest party is eventually released from the waiting-
list. This wait-listing guarantees that corrupt parties will be barred from acting
as summand-sharing parties as part of the ΠOptMult instances of future invo-
cations of ΠMultCI, until they participate in the cheater-identification phase of
previously failed instances of ΠMultCI. Since the cheater-identification phase is
executed asynchronously, each party maintains its own set of locally-discarded
parties, where corrupt parties are included as and when identified.

In Lemma 2 (see [1] for the proof), we say that an instance of ΠMultCI is
successful, if c(Z,curr) − c(Z′,curr) = 0 for all Z ∈ Z with respect to the publicly-
known Z ′ ∈ Z fixed in the protocol, else the instance fails.

Lemma 2. Let Z satisfy the Q(4)(P,Z) condition and let all honest parties par-
ticipate in ΠMultCI(P,Z,S, [a], [b], iter). Then, Adv does not learn any additional
information about a and b. Moreover, the following hold.

– The instance will eventually be deemed to succeed or fail by the honest par-
ties, where for a successful instance, the parties output a sharing of ab.

– If the instance is not successful, then the honest parties will agree on a pair
Z,Z ′ ∈ Z such that c(Z,iter)−c(Z′,iter) �= 0. Moreover, all honest parties present
in the W(i)

iter set of any honest party Pi will eventually be removed and no
honest party is ever included in the LD(i)

iter set of any honest Pi. Furthermore,
there will be a pair of parties Pj , Pk from Selected(Z,iter)∪Selected(Z′,iter), with
at least one of them being maliciously-corrupt, such that if both Pj and Pk

are removed from the set W(h)
iter of any honest party Ph, then eventually the

corrupt party(ies) among Pj , Pk will be included in the set LD(i)
iter of every

honest Pi.

244 A. Appan et al.

– The protocol makes O(|Z|n2) calls to FVSS and FABA and communicates
O((|Z|2n2 + |Z|n4) log |F|) bits.

Protocol ΠMultCI for M Pairs of Inputs: The parties now run instances of
ΠOptMult with M pairs of inputs (see [1] for the details). The protocol will make
O(M ·|Z|·n2) calls to FVSS, O(|Z|·n2) calls to FABA and incurs a communication
of O((M · |Z|2 · n2 + |Z| · n4) log |F|) bits.

3.3 Multiplication Protocol

Protocol ΠMult (Fig. 7) takes inputs [a], [b] and securely generates [ab]. The pro-
tocol proceeds in iterations, where in each iteration, an instance of ΠMultCI is
invoked. If the iteration is successful, then the parties take the output of the
corresponding ΠMultCI instance. Else, they proceed to the next iteration, with
the cheater-identification phase of failed ΠMultCI instances running in the back-
ground. Let t be the cardinality of maximum-sized subset from Z. To upper

Fig. 7. Multiplication protocol in the (FVSS,FABA)-hybrid for sid. The above code is
executed by every party Pi

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 245

bound the number of failed iterations, the parties run ACS after every tn + 1
failed iterations to “globally” discard a new corrupt party. This is done through
calls to FABA, where the parties vote for a candidate corrupt party, based on the
LD sets of all failed iterations. The idea is that during these tn + 1 failed itera-
tions, there will be at least one corrupt party who is eventually included in the
LD set of every honest party. This is because there can be at most tn distinct
pairs of “conflicting-parties” across the tn + 1 failed iterations (follows from
Lemma 2). At least one conflicting pair, say (Pj , Pk), is guaranteed to repeat
among the tn + 1 failed instances, with both Pj and Pk being removed from
the previous waiting-lists. Thus, the corrupt party(ies) among Pj , Pk is eventu-
ally included to the LD sets. There can be at most t(tn + 1) failed iterations
after which all the corrupt parties will be discarded and the next iteration is
guaranteed to be successful, with only honest parties acting as the candidate
summand-sharing parties in the underlying instances of ΠOptMult.

Lemma 3. Let Z satisfy the Q
(4)(P,Z) condition and let S = {P \ Z|Z ∈ Z}.

Then ΠMult takes at most t(tn + 1) iterations and all honest parties eventually
output a secret-sharing of [ab], where t = max{|Z| : Z ∈ Z}. In the protocol,
Adv does not learn anything additional about a and b. The protocol makes
O(|Z| · n5) calls to FVSS and FABA and additionally incurs a communication of
O(|Z|2 · n5 log |F| + |Z| · n7 log |F|) bits (see [1] for the proof).

Protocol ΠMult for M Pairs of Inputs: To handle M pairs of inputs, the
instances of ΠMultCI are now executed with M pairs of inputs in each iteration.
This requires O(M · |Z| · n5) calls to FVSS, O(|Z| · n5) calls to FABA and com-
munication of O((M · |Z|2 · n5 + |Z| · n7) log |F|) bits.

3.4 The Pre-processing Phase Protocol

In protocol ΠPerTriples, the parties first jointly generate secret-sharing of M ran-
dom pairs of values, followed by running an instance of ΠMult to securely compute
the product of these pairs; see [1] for the full details and proof of Theorem2.

Theorem 2. If Z satisfies Q
(4)(P,Z) condition, then ΠPerTriples is a perfectly-

secure protocol for realizing FTriples with UC-security in the (FVSS,FABA)-hybrid
model. The protocol makes O(M · |Z| ·n5) calls to FVSS, O(|Z| ·n5) calls to FABA

and incurs a communication of O(M · |Z|2 · n5 log |F| + |Z| · n7 log |F|) bits.

4 MPC Protocol in the Pre-processing Model

In the MPC protocol ΠAMPC, the parties first generate secret-shared random
multiplication-triples through FTriples. Each party then randomly secret-shares
its input for ckt through FVSS. To avoid an indefinite wait, the parties agree on
a common subset of parties, whose inputs are eventually secret-shared, through
ACS. The parties then jointly evaluate each gate in ckt in a secret-shared fashion
by generating a secret-sharing of the gate-output from a secret-sharing of the

246 A. Appan et al.

gate-input(s). Linear gates are evaluated non-interactively due to the linearity
of secret-sharing. To evaluate multiplication gates, the parties deploy Beaver’s
method [2], using the secret-shared multiplication-triples generated by FTriples.
Finally, the parties publicly reconstruct the secret-shared function output (see
[1] for the description of the protocol and proof of Theorem 3).

Theorem 3. Protocol ΠAMPC UC-securely realizes the functionality FAMPC for
securely computing f with perfect security in the (FTriples,FVSS,FABA)-hybrid
model, in the presence of a static malicious adversary characterized by an
adversary-structure Z satisfying the Q

(3)(P,Z) condition. The protocol makes
one call to FTriples and O(n) calls to FVSS and FABA and additionally incurs a
communication of O(M · |Z| · n2 log |F|) bits, where M is the number of multi-
plication gates in the circuit ckt representing f .

By replacing the calls to FTriples and FVSS in ΠAMPC with perfectly-secure
protocol ΠPerTriples and ΠPVSS respectively and by replacing the calls to FABA in
ΠAMPC with the almost-surely terminating ABA protocol ΠABA of [10], we get
the following corollary of Theorem3.

Corollary 3. If Z satisfies the Q
(4)(P,Z) condition, then ΠAMPC UC-securely

realizes FAMPC in plain model. The protocol incurs a total communication of
O(M · (|Z|2 · n7 log |F| + |Z| · n9 log n) + |Z|2(n11 log |F| + n13(log n + log |Z|)))
bits, where M is the number of multiplication gates in ckt.

References

1. Appan, A., Chandramouli, A., Choudhury, A.: Revisiting the efficiency of asyn-
chronous multi party computation against general adversaries. IACR Cryptology
ePrint Archive, p. 651 (2022)

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

3. Beerliová-Trub́ıniová, Z., Hirt, M.: Simple and efficient perfectly-secure asyn-
chronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
376–392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 23

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC, pp. 52–61. ACM (1993). https://doi.org/10.1145/167088.167109

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM (1988). https://doi.org/10.1145/62212.62213

6. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: PODC, pp. 183–192. ACM (1994). https://
doi.org/10.1145/197917.198088

7. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Weizmann Institute, Israel (1995)

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001). https://doi.
org/10.1109/SFCS.2001.959888

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-76900-2_23
https://doi.org/10.1007/978-3-540-76900-2_23
https://doi.org/10.1145/167088.167109
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/197917.198088
https://doi.org/10.1145/197917.198088
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888

Revisiting the Efficiency of Perfectly Secure Asynchronous MPC 247

9. Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020).
https://doi.org/10.1145/3402457

10. Choudhury, A., Pappu, N.: Perfectly-secure asynchronous MPC for general adver-
saries (extended abstract). In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578, pp. 786–809. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65277-7 35

11. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure mul-
tiparty computation. IEEE Trans. Inf. Theory 63(1), 428–468 (2017). https://doi.
org/10.1109/TIT.2016.2614685

12. Cohen, R.: Asynchronous secure multiparty computation in constant time. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 8

13. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 33

14. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of Distributed Consensus
with One Faulty Process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/
3149.214121

15. Fitzi, M., Maurer, U.: Efficient Byzantine agreement secure against general adver-
saries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134–148. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0056479

16. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004). https://doi.org/10.5555/1804390

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987). https://doi.org/10.1145/28395.28420

18. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect
multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/10.1007/
s001459910003

19. Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 181–200.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 10

20. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structures). In: Global Telecommunication Conference, Globecom, pp. 99–102.
IEEE Computer Society (1987). https://doi.org/10.1002/ecjc.4430720906

21. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

22. Kumar, M.V.N.A., Srinathan, K., Rangan, C.P.: Asynchronous perfectly secure
computation tolerating generalized adversaries. In: Batten, L., Seberry, J. (eds.)
ACISP 2002. LNCS, vol. 2384, pp. 497–511. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45450-0 37

23. Kursawe, K., Freiling, F.C.: Byzantine fault tolerance on general hybrid adversary
structures. Technical report, RWTH Aachen (2005)

24. Maurer, U.: Secure multi-party computation made simple. In: Cimato, S., Persiano,
G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36413-7 2

https://doi.org/10.1145/3402457
https://doi.org/10.1007/978-3-030-65277-7_35
https://doi.org/10.1109/TIT.2016.2614685
https://doi.org/10.1109/TIT.2016.2614685
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/BFb0056479
https://doi.org/10.5555/1804390
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/978-3-642-42045-0_10
https://doi.org/10.1002/ecjc.4430720906
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/3-540-45450-0_37
https://doi.org/10.1007/3-540-45450-0_37
https://doi.org/10.1007/3-540-36413-7_2

248 A. Appan et al.

25. Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient asynchronous verifiable
secret sharing and multiparty computation. J. Cryptol. 28(1), 49–109 (2013).
https://doi.org/10.1007/s00145-013-9172-7

26. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85. ACM (1989). https://
doi.org/10.1145/73007.73014

27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

28. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp.
160–164. IEEE Computer Society (1982). https://doi.org/10.1109/SFCS.1982.38

https://doi.org/10.1007/s00145-013-9172-7
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/SFCS.1982.38

Protego: Efficient, Revocable
and Auditable Anonymous Credentials

with Applications to Hyperledger Fabric

Aisling Connolly1 , Jérôme Deschamps2, Pascal Lafourcade2 ,
and Octavio Perez Kempner3,4(B)

1 DFINITY, Zürich, Switzerland
2 LIMOS, University Clermont Auvergne, Aubière, France

jerome.deschamps@etu.uca.fr, pascal.lafourcade@uca.fr
3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

octavio.perez.kempner@ens.fr
4 be-ys Research, Clermont-Ferrand, France

Abstract. Recent works to improve privacy in permissioned blockchains
like Hyperledger Fabric rely on Idemix, the only anonymous credential
system that has been integrated to date. The current Idemix implementa-
tion in Hyperledger Fabric (v2.4) only supports a fixed set of attributes;
it does not support revocation features, nor does it support anonymous
endorsement of transactions (in Fabric, transactions need to be approved
by a subset of peers before consensus). A prototype Idemix extension
by Bogatov et al. (CANS, 2021) was proposed to include revocation,
auditability, and to gain privacy for users. In this work, we explore how to
gain efficiency, functionality, and further privacy, departing from recent
works on anonymous credentials based on Structure-Preserving Signa-
tures on Equivalence Classes. As a result, we extend previous works to
build a new anonymous credential scheme called Protego. We also present
a variant of it (Protego Duo) based on a different approach to hiding the
identity of an issuer during showings. We also discuss how both can be
integrated into Hyperledger Fabric and provide a prototype implemen-
tation. Finally, our results show that Protego and Protego Duo are at
least twice as fast as state-of-the-art approaches based on Idemix.

Keywords: Anonymous credentials · Auditability · Hyperledger
fabric · Mercurial signatures · Permissioned blockchains

1 Introduction

When first introduced, the core use of blockchains was in the permissionless
setting; anyone could join and participate. Over the years, blockchains have

A. Connolly—Work done while the author was at Wordline Global.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 249–271, 2022.
https://doi.org/10.1007/978-3-031-22912-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_11&domain=pdf
http://orcid.org/0000-0002-7485-387X
http://orcid.org/0000-0002-4459-511X
http://orcid.org/0000-0002-3377-9802
https://doi.org/10.1007/978-3-031-22912-1_11

250 A. Connolly et al.

also found use within consortiums, where several authorized organizations wish
to share information among the group, but not necessarily to the public as
a whole. This need gave rise to permissioned blockchains whereby authorities
are established to define a set of participants. When a federation of authorities
(consortium), each in control of a subset of participants, shares the blockchain’s
governance, the term federated is also used to describe such blockchains.

The use of federated blockchains increased to address the need to run a
common business logic within a closed environment. As an example, one can
consider pharmaceutical companies that would like to trade sensitive information
about product developments and agree on supplies or prices in a consortium with
partial trust. A recurrent problem in such scenarios is that of privacy while being
compliant with regulations and Know Your Customer practices. Agreeing with
other entities to run a shared business logic should not imply that everything
needs be public within the consortium. Privacy still needs to be provided without
affecting existing regulations, e.g., when considering bilateral agreements.

The most developed permissioned platform is Hyperledger Fabric (or simply
Fabric). In Fabric, users submit transaction proposals to a subset of peers (called
endorsers) that vouch for their execution. By default, it provides no privacy fea-
tures as everything (users and transactions) is public. Reading the blockchain
anyone can know (1) who triggered a smart contract using which arguments
(transaction proposals are signed by the clients), (2) who vouched for its exe-
cution (endorsers also sign their responses) concerning reading and writing sets;
and (3) why a given transaction was marked as invalid (either because of invalid
read/write sets or because the endorsement policy check failed). Furthermore,
checking access control and endorsement policies links different organizations,
users and their attributes to concrete actions on the system.

Such limitations severely restrict the use of Fabric. From the user perspective
this impacts the enforcement of different regulations. For organizations, the case
is similar. Consider a consortium of pharmaceuticals that run a common business
logic to exchange information on medical research. If the entity behind a request
is known, other organizations can infer (based on the request) which drug the
entity in question is trying to develop. If the endorsers are known, information
about who executes what can disclose business relations.

Motivated by the need to protect business interests and to meet regulatory
requirements, some privacy features were integrated using the Identity Mixer
[11,21] (or Idemix for short). This anonymous attribute-based credential (ABC)
scheme gave the first glimpse of privacy for users within a consortium. Idemix
allows a Membership Service Provider (MSP) to issue credentials enabling users
to sign transactions anonymously. In brief, users generate a zero-knowledge proof
attesting that the MSP issued them a credential on its attributes to sign a
transaction. Fabric’s support for Idemix was added in v1.3, providing the first
solution to tackle the problem of participant privacy. Unfortunately, as for v2.4
the Idemix implementation still suffers severe limitations:

1. It supports a fixed set of only four attributes.
2. It does not support revocation features.

Protego: Efficient, Revocable and Auditable Anonymous Credentials 251

3. Credentials leak the MSP ID, meaning that anonymity is local to users within
an organization. For this reason, current deployments can only use a single
MSP for the whole network, introducing a single point of failure.

4. It does not support the issuance of Idemix credentials for the endorsing peers,
meaning that the identity of endorsers is always leaked.

The most promising effort to extend the functionality of Idemix appeared in
[7]. Their aim was to extend the original credential system to support delegatable
credentials [9], while integrating revocation and auditability features (solving
three of the four limitations). Below we outline the main ideas introduced in [7].

Delegatable Credentials. In a bid to overcome the issue of Idemix credentials
leaking the MSP ID and thus the affiliation of the user, a trusted root author-
ity provides credentials to intermediate authorities. This way users can obtain
credentials from intermediate authorities. To sign a transaction, the user must
generate a zero-knowledge proof attesting that (1) the signer owns the creden-
tial; (2) the signature is valid; (3) all adjacent delegation levels are legitimate;
and (4) that the top-level public key belongs to the root authority.

Revocation and Auditability. To generate efficient proofs of non-revocation,
the system timeline is divided into epochs. Issued credentials are only valid for
a given epoch, and must be reissued as the timeline advances. For each epoch,
a user requests a revocation handle that binds their public key to the epoch.
When presenting a credential, the user also provides a proof of non-revocation.
To enable auditing of a transaction, users verifiably encrypt their public key
under an authorized auditor’s public key.

To date, some functionalities remain limited. (1) There is still no notion of
privacy for endorsers. (2) Delegatable credentials require proving knowledge of
a list of keys. (3) The root authority is still a single point of failure. (4) Selective
disclosure of attributes requires computation linear in the size of all the attributes
encoded in the credential. (5) Many zero-knowledge proofs need to be generated
for each transaction. (6) Many pairings need to be computed for verification.

Recent results [12,14,15] introduced newer models based on Structure-
Preserving Signatures on Equivalence Classes (SPS-EQ) to build ABC’s, pro-
viding a host of extra functionalities and more efficient constructions. The main
goal of this work is to leverage such results, position them in the blockchain
scenario and provide an alternative to Idemix (and its extension) to overcome
existing privacy and functional limitations while also improving efficiency.

Contributions. To build an ABC scheme that overcomes the inherent limita-
tions from Idemix and its extension, we argue that changing some of the under-
lying building blocks is necessary. Therefore, we take the framework from [15] as
our starting point, incorporate the recent improvements from [12], and include
the revocation extension originally proposed in [14]. From there, we extend the
ABC model to support auditability features and adapt it to non-interactive
showings. To do so, we rely on the random oracle model (already present in the
blockchain setting). We also present and discuss two alternatives to the use of

252 A. Connolly et al.

delegatable credentials (as used in [7]) to hide the identity of credential issuers,
following the formalizations from [12] and [6] but using new approaches.

When compared to [12], the modifications are: (1) we adapt the ABC model
to non-interactive showings, (2) we extend the model defining a revocation
authority as in [14], and an auditing authority (not considered in the previous
works), (3) we keep the SCDS scheme from [12] as it is but replace the signature
scheme with the one given in [13], and (4) we build a malleable NIZK argument
that can be pre-computed to obtain a more efficient issuer-hiding feature.

As a result, we build Protego, an ABC suitable for permissioned blockchains.
We also present Protego Duo, a variant based on a different approach to hide
the identity of credential issuers. Both support revocation and auditing fea-
tures, which are important to enable a broader variety of use cases for permis-
sioned blockchains. We discuss how to integrate our work with Fabric, compare it
with Idemix and its recent extensions, and provide a prototype implementation
showing that Protego and Protego Duo are faster than the most recent Idemix
extension (see Sect. 5 for a detailed evaluation and benchmarks). Furthermore,
a showing proof in Protego Duo is constant-size (8.3 kB), surpassing [7] in which
the proof size grows linearly with the number of attributes and delegation levels.

Related Work. We describe the related work following two main streams; the
results addressing privacy concerns in Fabric, and parallel research developments.

Privacy Concerns in Fabric. The most closely related work appears with the
introduction of Idemix [11,21] and its extension to include revocation and
auditability [7]. Adding auditability is crucial for permissioned blockchains as
they are often used in heavily regulated industries. Privacy-preserving audit-
ing for distributed ledgers was introduced in [18] under the guise of zkLedger.
This general solution offered great functionality in that it provided confiden-
tiality of transactions, and privacy of the users within the transaction. How-
ever, it assumed low transaction volume between few participants and as such is
quite limited in scalability. Fabric-friendly auditable token payments were intro-
duced in [2] and were based on threshold blind signatures. The core idea to
achieve auditability was to encrypt the user’s public key under the public key
of an auditor. This is the same approach in [7], which we also use in this work.
Although the auditing ideas are similar, the construction pertains solely to trans-
action privacy and offers no identity privacy for a user. Following the approach
of gaining auditability of transactions, auditable smart contracts were captured
by FabZK [16] which is based on Pedersen commitments and zero-knowledge
proofs. To achieve auditability, the structure of the ledger is modified, and as
such, would need to make considerable changes to existing used permissioned
blockchain platforms.

One of the limitations in Idemix and its extension is the lack of privacy or
anonymity for endorsing peers. A potential solution to this was proposed in [17],
where the endorsement policy is based on a ring signature scheme such that the
endorsement set itself is not revealed, but only that sufficiently many endorse-
ment signatures were obtained. Another approach to obtain privacy-preserving
endorsements was described in [3], leveraging Idemix credentials to gain endorser-

Protego: Efficient, Revocable and Auditable Anonymous Credentials 253

privacy, and as such, inherits the limitations (notably leaking the endorser’s
organization) that come with Idemix.

Attribute-Based Credentials. Early anonymous credential schemes were built
from blind signatures, whereby a user obtained a blind signature from an issuer
on the user’s commitment to its attributes. When the user later authenticates,
they provide the signature, the shown attributes, and a proof of knowledge of all
unshown attributes. These schemes are limited as they can only be shown once.
Subsequent work like the one underlying Idemix [10] allowed for an arbitrary
number of unlinkable showings. A user obtains a signature on a commitment
on attributes, randomizes the signature, and proves in zero-knowledge that the
randomized signature corresponds to the shown and unshown attributes.

Recent work from [15] circumvented inefficiencies in the above ideas by coin-
ing two new primitives: set-commitment schemes, and SPS-EQ. As a result,
authors obtained a scheme allowing to randomize both the signature and the
commitment on a set of attributes. Furthermore, a subset-opening of the set-
commitment yielded constant-size selective showing of attributes.

New work from [12] extended [15], improving the expressivity, efficiency
trade-offs and introducing the notion of signer-hiding (also known as issuer-
hiding [6]) to allow users to easily randomize the public key used to generate
a signature to hide the identity of credential issuers. Authors achieve the pre-
vious points using a Set-Commitment scheme supporting Disjoint Sets (SCDS)
and mercurial signatures [13]. The latter primitive extends SPS-EQ to consider
equivalence classes not only on the message space but also on the key space.

We build on top of the above-mentioned works but unlike [12], we work with
the generic group model [20] as our main motivation is the proposal of efficient
alternatives. For this reason, we use the mercurial signature scheme from [13].

2 Cryptographic Background

Below, we walk through the different building blocks mentioning how and why
these components yield greater functionality and efficiency for a credential sys-
tem in the permissioned blockchain setting like Fabric. Subsequently, we intro-
duce the necessary notation and syntax for the following sections.

SCDS. Using commitment schemes that allow to commit to sets of attributes
enables constant-size openings of subsets (selective disclosure) of the committed
sets. These schemes support commitment randomization without the need to rely
on zero-knowledge proofs of correct randomization, as the corresponding witness
for openings can be adapted accordingly with respect to the randomization of
the committed set. The set-commitment scheme presented in [12] extends [15]
to support openings of attribute sets disjoint from the committed set. This is
particularly useful in the permissioned blockchain setting, e.g., to model access
control policies. Furthermore, the scheme from [12] also supports the use of proof
of exponentiations to outsource some of the computational cost from the verifier
to the prover. In the case of Fabric, this is a particularly interesting feature to
make the endorser’s verification faster when validating a transaction proposal.

254 A. Connolly et al.

Mercurial Signatures. The introduction of SPS-EQ in [15] allowed to adapt a
signature on a representative message to a signature on a different representative
(in a given equivalence class) without knowledge of the secret key. If the adapted
signature is indistinguishable from a fresh signature on a random message, the
scheme satisfies the notion of perfect adaption. This, together with the random-
izability of the set-commitment scheme, allows to consistently and efficiently
update the signature of a credential, bypassing the need to generate and keep
account of pseudonyms and NIZK proofs that are required in all previous works
based on Idemix. Using mercurial signatures as in [12] allows to easily randomize
the corresponding public keys while consistently adapting the signatures.

Issuer-Hiding. In [12], since users can consistently randomize the signature on
their credential and the issuer’s public key (as previously mentioned), a fully
adaptive NIZK argument is used to prove that a randomized issuer key belongs
to the equivalence class of one of the keys contained in a list of issuers keys. This
way, the randomized issuer key can be used to verify the credential while hiding
the issuer’s identity (like in a ring signature). In permissioned blockchains where
there are multiple organizations that issue credentials, such a NIZK allows users
holding valid signatures to pick any subset of issuer’s public keys to generate a
proof. Another approach following the work from [6] (briefly discussed in [12]) is
to consider issuer-policies. An issuer-policy is a set {(σi, opki)i∈[n]} of signatures
on issuer’s public keys generated by some verification secret key vsk. To hide the
identity of an issuer j, a user consistently randomizes the pair (σj , opkj) to obtain
a randomized public key opk′

j . It then adapts the signature σ on its credential the
same way, and presents opk′

j to the verifier. If the verifier accepts the signature
σj on opk′

j (using vpk), it proceeds to verify σ using opk′
j . Issuer-policies can be

specified by the entity that created the smart contract and defined within using
the entity’s verification key pair. Unlike the first approach where users choose
the issuer’s anonymity set, here it is determined by the policy maker.

2.1 Notation

Let BGGen be a p.p.t algorithm that on input 1λ with λ the security parameter,
returns a description BG= (p, G1, G2, GT , P1, P2, e) of an asymmetric (Type-3)
bilinear group where G1,G2,GT are cyclic groups of prime order p with �log2
p� = λ, P1 and P2 are generators of G1 and G2, and e : G1 × G2 → GT is
an efficiently computable (non-degenerate) bilinear map. For all a ∈ Zp, [a]s =
aPs ∈ Gs denotes the implicit representation of a in Gs for s ∈ {1, 2}. For vectors
a,b we extend the pairing notation to e([a]1, [b]2) := [ab]T ∈ GT . r

$← S denotes
sampling r from set S uniformly at random. A(x; y) indicates that y is passed
directly to A on input x. Hash functions are denoted by H.

2.2 Set-Commitment Scheme Supporting Disjoint Sets [12]

Syntax. A set-commitment scheme supporting disjoint sets (SCDS) consists of
the following p.p.t algorithms:

Protego: Efficient, Revocable and Auditable Anonymous Credentials 255

Setup(1λ, 1q) is a probabilistic algorithm which takes as input a security param-
eter λ and an upper bound q for the cardinality of committed sets, both in
unary form. It outputs public parameters pp (including an evaluation key ek),
and discards the trapdoor key s used to generate them. Z∗

p \ {s} defines the
domain of set elements for sets of maximum cardinality q.

TSetup(1λ, 1q) is equivalent to Setup but also returns the trapdoor key s.
Commit(pp,X) is a probabilistic algorithm which takes as input pp and a set

X with 1 ≤ |X | ≤ q. It outputs a commitment C on set X and opening
information O.

Open(pp, C,X , O) is a deterministic algorithm which takes as input pp, a com-
mitment C, a set X , and opening information O. It outputs 1 if and only if
O is a valid opening of C on X .

OpenSS(pp, C,X , O,S) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set S. If
S is a subset of X committed to in C, OpenSS outputs a witness wss that
attests to it. Otherwise, outputs ⊥.

OpenDS(pp, C,X , O,D) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set D. If
D is disjoint from X committed to in C, OpenDS outputs a witness wds that
attests to it. Otherwise, outputs ⊥.

VerifySS(pp, C,S,wss) is a deterministic algorithm which takes as input pp, a
commitment C, a non-empty set S, and a witness wss. If wss is a valid witness
for S a subset of the set committed to in C, it outputs 1 and otherwise ⊥.

VerifyDS(pp, C,D,wds) takes as input pp, a commitment C, a non-empty set D,
and a witness wss. If wds is a valid witness for D being disjoint from the set
committed to in C, it outputs 1 and otherwise ⊥.

PoE(pp,X , α) takes as input pp, a non-empty set X , and a randomly-chosen value
α. It computes a proof of exponentiation for the characteristic polynomial of
X and outputs a proof πQ and a witness Q.

Security Properties. Correctness requires that (1) for a set X ,
Open(Commit (pp,X),X) = 1, (2) for S a subset of X , VerifySS(S,
OpenSS(Commit(pp, X))) = 1, and (3) for all possible sets D disjoint from X ,
VerifyDS(D,OpenDS(Commit(pp, X))) = 1. The scheme should also be (1) bind-
ing whereby each commitment overwhelmingly pertains to one particular set
of attributes, (2) hiding whereby an adversary, given access to opening oracles,
should not be able to distinguish which of two sets a commitment was generated
on, and (3) sound in that sets which are not subsets of the committed set do
not verify under VerifySS, and sets that are not disjoint from the committed set
do not verify under VerifyDS.

2.3 Structure-Preserving Signatures on Equivalence Classes [12]

Syntax. A Structure-Preserving Signature on Equivalence Classes (SPS-EQ)
consists of the following algorithms:

256 A. Connolly et al.

ParGen(1λ) is a p.p.t algorithm that, given a security parameter λ, outputs public
parameters pp.

TParGen(1λ) is like ParGen but it also returns a trapdoor td (if any).
KGen(pp, �) is a p.p.t algorithm that, given pp and a vector length � > 1, outputs

a key pair (sk, pk).
Sign(pp, sk,m) is a p.p.t algorithm that, given pp, a representative m ∈ (G∗

i)
�

for class [m]R, a secret key sk, outputs a signature σ′ = (σ, τ) (potentially
including a tag τ) on the message m.

ChgRep(pp,m, (σ, τ), μ, pk) is a p.p.t algorithm that takes as input pp, a rep-
resentative message m ∈ (G∗

i)
�, a signature σ (and potentially a tag τ), a

scalar μ, and a public key pk. It computes an updated signature σ′ on new
representative m∗ = μm and outputs (m∗, σ′).

Verify(pp,m, (σ, τ), pk) is a deterministic algorithm that takes as input pp, a
representative message m, a signature σ (potentially including a tag τ), and
public key pk. If σ is a valid signature on m it outputs 1 and 0 otherwise.

For mercurial signatures, the algorithms ConvertPK(pk, ρ) and ConvertSK(sk,
ρ) are included to compute new representatives for public and secret keys. ChgRep
is extended to adapt signatures with respect to new key representatives as well.

Security Properties. SPS-EQ should be correct, existentially unforgeable
against chosen-message attacks and have perfect adaption (in the vein of [12]).

3 Our ABC Model

We can rely on the random oracle model and apply the Fiat-Shamir transform
to the ABC scheme from [12] (the showing protocol is a three move public
coin one). However, in the previous ABC, interaction is required in the show-
ing protocol to provide freshness (i.e., to avoid replay attacks). To overcome
this issue, we require the user to send the transaction proposal during the first
move. Thus, applying the Fiat-Shamir transform to the first move bounds the
credential showing to that particular transaction so that it cannot be replayed.
Security is defined following the usual properties from [12,14,15]. In addition,
we also consider the issuer-hiding notion from [12] and introduce a new one
for auditability. However, we do not consider replay-attacks as in the previous
models since they can be trivially detected for the same transaction.

ABC Syntax. An ABC consists of the following p.p.t algorithms:

Setup(1λ, aux) takes a security parameter λ and some optional auxiliary informa-
tion aux (which may fix an universe of attributes, attribute values and other
parameters) and outputs public parameters pp discarding any trapdoor.

TSetup(1λ, aux) like Setup but returns a trapdoor.
OKGen(pp) takes pp and outputs an organization key pair (osk, opk).
UKGen(pp) takes pp and outputs a user key pair (usk, upk).
AAKGen(pp) takes pp and outputs an auditor key pair (ask, apk).
RAKGen(pp) takes pp and outputs a revocation key pair (rsk, rpk).

Protego: Efficient, Revocable and Auditable Anonymous Credentials 257

Obtain(pp, usk, opk, apk,X , nym)and Issue(pp,upk,osk,apk,X ,nym) are run by a
user and the organization respectively, who interact during execution. Obtain
takes pp, the user’s secret key usk, an organization’s public key opk, an audi-
tor’s public key apk, an attribute set X of size |X | < q, and a pseudonym
nym used for revocation. Issue takes pp, a public key upk, a secret key osk, an
auditor’s public key apk, an attribute set X of size |X | < q, and a pseudonym
nym. At the end of this protocol, Obtain outputs a credential cred on X for
the user or ⊥ if the execution failed.

Show(pp, opk, upk, usk, cred,X ,S,D, aux) takes pp, a public key opk, a key pair
(usk, upk), a credential cred for the attribute set X , potentially non-empty
sets S ⊆ X , D
⊆ X representing attributes sets being a subset (S) or dis-
joint (D) to the attribute set (X) committed in the credential, and auxiliary
information aux. It outputs a proof π.

Verify(pp, opk,X ,S,D, π, aux) takes pp, the (potentially empty) sets S and D, a
proof π and auxiliary information aux. It outputs 1 or 0 indicating whether
the credential showing proof π was accepted or not.

RSetup(pp, (rsk, rpk),NYM,RNYM) takes pp, a revocation key pair (rsk, rpk) and
two disjoint lists NYM and RNYM (holding valid and revoked pseudonyms).
It outputs auxiliary information auxrev for the revocation authority and revo-
cation information R = (RV ,RS). RV is needed for verifying the revocation
status and RS is a list holding the revocation information per nym.

Revoke(pp, (rsk, rpk), auxrev,R, b) takes pp, (rsk, rpk), auxrev, R and a bit b indi-
cating revoked/unrevoked. It outputs information R

′ and aux′
rev.

AuditEnc(upk, apk) takes upk and apk. It outputs an encryption enc of upk under
apk and auxiliary information α.

AuditDec(enc, ask) takes enc and ask. It outputs a decryption of enc using ask.
AuditPrv(enc, α, usk, apk) takes enc, α, usk, and apk. It generates a proof for enc

being the encryption of upk under apk and outputs a proof π.
AuditVerify(apk, π) takes apk and a proof π for the correct encryption of a user’s

public key under apk and outputs 1 if and only if the proof verifies.

To introduce the formal security model, we consider a single revocation, issu-
ing and auditability authority. Extension to the multi-issuing and multi-auditing
setting is straightforward as each key can be generated independently. For mul-
tiple revocation authorities, one needs to consider multiple revocation accumu-
lators and thus adapt the scheme accordingly. Issuer-hiding and auditability
properties are considered independently as extensions. Let us denote by Tx the
universe of transactions tx represented as bitstrings. We also use the following
auxiliary lists, sets and global variables in oracles and formal definitions. N rep-
resents the set of all pseudonyms nym while the sets NYM and RNYM represent
the subsets of unrevoked and revoked pseudonyms respectively. Therefore, we
have that NYM ∩ RNYM = ∅ ∧ NYM ∪ RNYM = N. NYM, HU and CU are lists
that keep track of which nym is assigned to which user, honest users and cor-
rupt users, respectively. The global variables RI and NYMLoR (initially set to ⊥)
store the revocation information (RS ,RV) and the pseudonyms used in OLoR

respectively. The oracles are defined as follows:

258 A. Connolly et al.

OHU(i) takes as input a user identity i. If i ∈ HU∪ CU, it returns ⊥. Otherwise, it
creates a new honest user i by running (USK[i], UPK[i]) $← UKGen(opk), adding
i to the honest user list HU and returning UPK[i].

OCU(i, upk) takes as input a user identity i and (optionally) upk; if user i does
not exist, a new corrupt user with public key upk is registered, while if i is
honest, its secret key and all credentials are leaked. If i ∈ CU, i ∈ ILoR (that
is, i is a challenge user in the anonymity game) or if NYMLoR ∩N[i]
= ∅ then
the oracle returns ⊥. If i ∈ HU then the oracle removes i from HU and adds it
to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i. Otherwise (i.e.,
i /∈ HU ∪ CU), it adds i to CU and sets UPK[i] ← upk.

ORN(rsk, rpk,REV) takes as input the revocation secret key rsk, the revocation
public key rpk and a list REV of pseudonyms to be revoked. If REV∩RNYM
= ∅
or REV
⊆ N return ⊥. Otherwise, set RNYM ← RNYM ∪ REV and RI ←
Revoke(pp, (rsk, rpk),RNYM,RI, 1).

OObtIss(i,X) takes as input a user identity i, a pseudonym nym and a set of
attributes X . If i /∈ HU or ∃ j : NYM[j] = nym, it returns ⊥. Otherwise, it issues
a credential to i by running (cred,�) $← Obtain(pp, USK[i], opk, apk,X , nym),
Issue(pp, UPK[i], osk, apk,X , nym). If cred = ⊥, it returns ⊥. Else, it appends
(i, cred,X , nym) to (OWNR, CRED, ATTR, NYM) and returns �.

OObtain(i,X) lets the adversary A, who impersonates a malicious organization,
issue a credential to an honest user. It takes as input a user identity i, a
pseudonym nym and a set of attributes X . If i /∈ HU, it returns ⊥. Otherwise,
it runs (cred, ·) $← Obtain(pp, USK[i], opk, apk,X , nym), ·), where the Issue part
is executed by A. If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X , nym)
to (OWNR, CRED, ATTR, NYM) and returns �.

OIssue(i,X) lets the adversary A, who impersonates a malicious user, obtain a
credential from an honest organization. It takes as input a user identity i, a
pseudonym nym and a set of attributes X . If i /∈ CU, it returns ⊥. Otherwise,
it runs (·, I) $← (·, Issue(pp, UPK[i], osk, apk,X , nym)), where the Obtain part
is executed by A. If I = ⊥, it returns ⊥. Else, it appends (i,⊥,X , nym) to
(OWNR, CRED, ATTR, NYM) and returns �.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing
by an honest user. It takes as input an index of an issuance j and attributes
sets S and D. Let i

$← OWNR[j]. If i /∈ HU, it returns ⊥. Otherwise, it runs
(S, ·) $← Show(pp, USK[i], UPK[i], opk, ATTR[j], S,D, CRED[j],RI, apk, tx), ·)

OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A runs
Verify and must distinguish (multiple) showings of two credentials CRED[j0]
and CRED[j1]. The oracle takes two issuance indices j0 and j1 and attribute
sets S and D. If JLoR
= ∅ and JLoR
= {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0]
and i1

$← OWNR[j1]. If JLoR
= ∅ then it sets JLoR
$← {j0, j1} and ILoR

$← {i0, i1}.
If i0, i1
= HU ∨ N[i0] = ⊥ ∨ N[i1] = ⊥ ∨ N[i0] ∈ RNYM ∨ N[i1] ∈ RNYM ∨
S
⊆ ATTR[j0] ∩ ATTR[j1] ∨ D ∩ {ATTR[j0] ∪ ATTR[j1]}
= ∅, it returns ⊥. Else,
it adds N[ib] to NYMLoR and runs (S, ·) $← (Show(pp, USK[jb], UPK[jb], opk,
ATTR[jb], S,D, CRED[jb],RI, apk, tx), ·) (with b set by the experiment)

Protego: Efficient, Revocable and Auditable Anonymous Credentials 259

Intuitively, correctness requires that a credential showing with respect to a
non-empty sets S and D of attributes always verifies if it was issued honestly on
some attribute set X with S ⊂ X and D ∩ X
= ∅.

Definition 1 (Correctness). An ABC system is correct if ∀ λ > 0, ∀ q, q′ > 0,
∀ X : 0 < |X | ≤ q, ∀ ∅
= S ⊂ X , ∀ ∅
= D
⊆ X : 0 < |D| ≤ q, ∀ NYM,RNYM ⊆
N : 0 < |N| ≤ q′ ∧ NYM ∩ RNYM = ∅, ∀ nym ∈ NYM, ∀ nym′ ∈ RNYM it holds
that:
pp

$← Setup(1λ, (1q, 1q′
)); (rsk, rpk) $← RAKGen(pp); (ask, apk) $← AAKGen(pp);

(R, auxrev) ← RSetup(pp, rpk, NYM,RNYM); (osk, opk) $← OKGen(pp); (usk, upk)
$← UKGen(pp); (cred,�) $← (Obtain(pp, usk, opk, apk,X , nym), Issue(pp, upk, osk,
apk, X , nym)); (RS ,RV) ← Revoke(pp,R, auxrev, nym

′, 1);Ω ← Show(pp, usk, upk,
opk, cred,S,D,R, apk, tx); 1 ← Verify(pp,S,D, opk,RV , rpk, apk, tx, Ω)

We now provide a formal definition for unforgeablility . Given at least one
non-empty set S ⊂ X or D
⊆ X , a user in possession of a credential for the
attribute set X cannot perform a valid showing for D ⊂ X nor for S
⊆ X .
Moreover, revocated users cannot perform valid showings and no coalition of
malicious users can combine their credentials and prove possession of a set of
attributes which no single member has. This holds even after seeing showings of
arbitrary credentials by honest users.

Definition 2 (Unforgeability). An ABC system is unforgeable, if ∀ λ, q, q′ >
0 and p.p.t adversaries A having oracle access to O := {OHU, OCU, ORN, OObtIss,
OIssue, OShow} the following probability is negligible.

Pr

⎡
⎢⎢⎢⎢⎢⎣

pp
$← Setup(1λ, (1q , 1q′

)); (rsk, rpk)
$← RAKGen(pp); (ask, apk)

$← AAKGen(pp);

(osk, opk)
$← OKGen(pp); (S, D, st)

$← AO(pp, opk, rpk, apk);

(·, b∗) $← (A(st),Verify(pp, S, D, opk, rpk, apk,RI, tx, Ω)) :
b∗ = 1 ∧ ∀ j : OWNR[j] ∈ CU =⇒ (N[j] = ⊥ ∨ (N[j] 	= ⊥ ∧ (S 	⊆ ATTR[j] ∨
D ⊆ ATTR[j] ∨ N[j] ∈ RNYM))

⎤
⎥⎥⎥⎥⎥⎦

For anonymity , during a showing, no verifier and no (malicious) organiza-
tion (even if they collude) should be able to identify the user or learn anything
about the user, except that she owns a valid credential for the shown attributes.
Furthermore, different showings of the same credential are unlinkable.

Definition 3 (Anonymity). An ABC system is anonymous, if ∀ λ, q, q′ > 0
and all p.p.t adversaries A having oracle access to O := {OHU, OCU, ORN, OObtain,
OShow, OLoR} the following probability is negligible.

Pr

[
pp

$← Setup(1λ, (1q, 1q′
)); (ask, apk) $← AAKGen(pp);

b
$← {0, 1}; (opk, rpk, st) $← A(pp); b∗ $← AO(st)

: b∗ = b

]
− 1

2

Issuer-hiding states that no adversary (i.e., a malicious verifier) cannot tell
with high probability who is the issuer of a credential issued to an honest user.

260 A. Connolly et al.

Definition 4 (Issuer-hiding). An ABC system supports issuer-hiding if for
all λ > 0, all q > 0, all n > 0, all t > 0, all X with 0 < |X | ≤ t, all ∅
= S ⊂ X
and ∅
= D
⊆ X with 0 < |D| ≤ t, and p.p.t adversaries A, the following holds.

Pr

⎡
⎢⎢⎢⎣
pp

$← Setup(1λ, 1q);∀ i ∈ [n] : (oski, opki)
$← OKGen(pp);

(usk, upk) $← UKGen(pp); j $← [n];
(cred,�) $← (Obtain(usk, opkj ,X), Issue(upk, oskj ,X));
j∗ $← AOShow(pp,S,D, (opki)i∈[n])

: j∗ = j

⎤
⎥⎥⎥⎦ ≤ 1

n

Finally, auditability requires that showings correctly encrypt users’ keys.

Definition 5 (Auditability). An ABC scheme is auditable, if ∀ λ, q, q′ >
0, tx, nym ∈ NYM,R,RV and all p.p.t adversaries A having oracle access to
OIssue, the following probability is negligible.

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pp
$← Setup(1λ, (1q, 1q′

)); (rsk, rpk) $← RAKGen(pp);
(ask, apk) $← AAKGen(pp); (osk, opk) $← OKGen(pp);
(usk, upk) $← UKGen(pp);
(S,D, enc, Ω, st) $← AO(pp, opk, rpk, apk, usk, upk, nym);
(·, b∗) $← (A(st),Verify(pp,S,D, opk,RV , rpk, apk,RI, tx, Ω)) :
b∗ = 1 ∧ upk
= AuditDec(enc, ask)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4 Protego

We elaborate on the decisions that led to the design of our ABC scheme Protego.
Subsequently, we discuss our construction and the integration with Fabric.

Revocation. We opt to integrate the work from [14] as pointed out in [12].
The revocation system from [14] defines a revocation authority responsible for
managing an allow and deny list of revocation handlers. The authority publishes
an accumulator RevAcc representing the deny list, and maintains a public list
of non-membership witnesses for unrevoked users. During the issuing protocol,
users are given a revocation handle that is encoded in the credential. To prove
that they are not revoked during a showing, the user consistently randomizes its
credential with the accumulator and the corresponding non-membership witness.
Then the verifier checks that the (randomized) witness is valid for the revoca-
tion handle (encoded in the user credential), and with respect to the (random-
ized) accumulator. To work, the user must compute a Zero-Knowledge Proof of
Knowledge (ZKPoK) on the correct randomization of the non-membership wit-
ness and the accumulator. As explained in [14], the revocation handle encoded
in the user’s credential is of the form usk2(b + nym)P1, where usk2 is an addi-
tional user secret key required for anonymity and nym is the pseudonym used for
revocation. For this reason, users are required to manage augmented keys of the
form upk = (upk1, upk2), usk = (usk1, usk2). Furthermore, for technical reasons,
another component usk2Q, where Q is a random element in G1 with unknown
discrete logarithm, must be included in the credential.

Protego: Efficient, Revocable and Auditable Anonymous Credentials 261

Auditability. A credential in [12,15] and [14] contains a tuple (C, rC, P1) where
C is the set commitment on the user attributes, r is a random value used for
technical purposes and P1 is used to compute a ZKPoK of the randomizer μ in
(μC, μrC, μP1) during a showing. We borrow the idea of using a verifiable vari-
ant of ElGamal from [7] to prove the well-formedness of a ciphertext (encrypting
the user’s public key) with respect to the auditor’s key. Therefore, we add the
user’s public key upk1 and the auditor’s public key apk as the sixth and seventh
components to the credential. Thus, we now have revocable credentials of the
form (C, rC, P1, usk2(b + nym)P1, usk2Q, upk1, apk), which can be randomized
to obtain a tuple (μC, μrC, μP1, μusk2(b + nym)P1, μusk2Q, μusk1P1, μapk).
We exploit this fact to allow the user to generate an audit proof that can be
publicly verified without leaking information about the user’s public key. This
way, verifiers can check a proof using the sixth and seventh component in the
credential to be sure that (1) the user encrypted a public key for which it has the
corresponding secret key, and (2) using the correct one. Since the issuing author-
ity signs the credential, the randomization needs to be consistent. Modifications
required to implement our auditability approach are as follows:

1. The user randomizes its credential as usual to obtain a new one of the form
(C ′

1, C ′
2, C ′

3, C ′
4, C ′

5, C ′
6, C ′

7)=(μC1, μC2, μP1, μC4, μC5, μupk1, μapk). Since
only the user knows the randomizer μ, its public key remains hidden.

2. The user picks α ∈ Zp and encrypts its own public key using ElGamal encryp-
tion with auditor’s public key apk and randomness α to obtain a ciphertext
enc = (enc1, enc2) = (upk1 + αapk, αP1).

3. The user runs the algorithm AuditPrv (Fig. 1) with input (enc, α, usk1, apk) to
obtain c, z1 and z2.

4. Then, the user picks β ← Zp, computes t1 = βP2, t2 = βμP2, t3 = αβP2 and
sends (enc, c, z1, z2, t1, t2, t3) to the verifier alongside the randomized creden-
tial from step 1.

5. The verifier checks the well-formedness of the ElGamal encryption pair run-
ning the algorithm AuditVerify (Fig. 1) with input (c, enc, z1, z2). If the check
succeeds, it checks the following pairing equations to verify that the encrypted
public key is the one in the credential:
e(enc2, t2)=e(C ′

3, t3) ∧ e(enc2, t1)=e(P1, t3) ∧ e(enc1, t2)=e(C ′
6, t1)+e(C ′

7, t3)

Observe that the verifier knows μP1 = C ′
3, μusk1P1 = C ′

6, μaskP1 = C ′
7, (usk1 +

αask)P1 = enc1, αP1 = enc2, βP2 = t1, βμP2 = t2 and αβP2 = t3. With
β the user is able to randomize the other values so that the pairing equation
can be checked to verify the relation between the ElGamal ciphertext and the
randomized public key in C ′

6, without leaking information about the user’s public
key. Furthermore, the first two pairing equations verify the well-formedness of
t1, t2 and t3 with respect to the user’s credential and the ciphertext. Hence, the
verifier will not be able to recover the user’s public key nor the user cheat.

The proposed solution only adds two elements to the credential, while requir-
ing the user to send two more elements in G1, three in Zp and three in G2, for
a total of eight. Computational cost remains low as it just involves the compu-
tation of seven pairings, the ElGamal encryption and two Schnorr proofs [19].

262 A. Connolly et al.

Issuer-Hiding. We incorporate the issuer-hiding approaches discussed in
Sect. 2. The work from [12] relies on a NIZK argument to prove that a ran-
domized public key belongs to the equivalence class of one of the public keys
contained in a list of issuer keys. We adapt the proof system to the signature
used in this work, and extend it to make it malleable (see Appendix A) so that
users can compute the proof once and then adapt it during showings with little
computational cost (instead of having to compute it from scratch). This efficiency
improvement is very useful in permissioned blockchains as the set of authorities
tends to stay the same over time. For both approaches we observe that the mer-
curial signature used in this work only provides a weak form of issuer-hiding.
Given a signature that has been adapted to verify under a randomized public key
pk′ in the equivalence class of pk, the owner of pk can recognize it. Thus, issuers
can know which transactions belong to users from their organizations (but not
to which particular user) and which ones don’t by reading the non-interactive
showing proof (it contains the issuer’s randomized public key). However, we
argue that in the permissioned blockchain setting this provides a fair trade-off
as a minimum traceability level is important for compliance and auditability
purposes.

Our Construction. Compared to [12], we make use of a hash function to
apply the (strong) Fiat-Shamir transform while adding the previously discussed
auditability and revocation features. Therefore we implement the ZKPoK’s as
Schnorr proofs (unlike [12] which followed Remark 1 from [15]).

In Fig. 1 we present the setup, key generation, revocation and auditing algo-
rithms. The setup algorithm also takes a bound q′ on the maximun number of
revocated pseudonyms for the revocation accumulator. The revocation authority
is responsible for running the Revoke algorithm and updating the accumulator.

Obtain and Issue have constant-size communication and are given in Fig. 2.
For Show and Verify we present Protego and Protego Duo, depending on the
issuer-hiding approach. Protego is given in Fig. 3 and produces a variable-length
proof as it relies on the (mallable) NIZK proof. Protego Duo produces a constant-
size proof and is depicted in Fig. 4. The differences are highlighted with grey.
For both, after the credential is updated, the user randomizes the revocation
accumulator, witnesses, and generates the Schnorr proofs. Following the audit-
ing proof, the Fiat-Shamir transform is applied, the ZKPoK’s and PoE’s are
computed, returning the showing proof. Verify takes a proof (depending on the
case), computes the challenge and verifies each of the statements.

Integration with Fabric. A multi-party computation ceremony can be run
for the CRS generation of the Setup algorithm to ensure that no organization
knows the trapdoors of the different components. As we are in the permissioned
setting it is plausible to assume that at least one of the organizations is hon-
est. By allowing users and endorsers to obtain credentials, both can produce
showing proofs. Users can generate showing proofs to prove that they satisfy the
access policy for the execution of a particular transaction proposal. Furthermore,
by computing the PoE’s, the verification time for endorsers improves substan-
tially. Similarly, endorsers can prove that they satisfy a given endorsement policy

Protego: Efficient, Revocable and Auditable Anonymous Credentials 263

Fig. 1. Protego: setup, key generation, revocation and auditing algorithms.

264 A. Connolly et al.

Fig. 2. Protego: obtain and issue algorithms.

attaching a showing proof to their endorements. Even if the endorsement poli-
cies are defined in a privacy-preserving way as suggested in [3], endorsers can
still compute selective AND and NAND clauses for the respective pseudonyms
defined by the policy using their credentials. Endorsers should also use the read
and write sets to from the transaction proposals to generate showing proofs.

Security Proofs. We present the main theorems and proofs for Protego (which
are analogous for Protego Duo). Correctness and issuer-hiding follow from [12].

Theorem 1. If the q-co-DL assumption holds, the ZKPoK’s have perfect ZK,
SCDS is sound, SPS-EQ is EUF-CMA secure, and RevAcc is collision-free then
Protego is unforgeable.

Proof Sketch. The proof follows from [12] (Th. 6) and [14] (Th. 3) whereby we
assume there is an efficient adversary A winning the unforgeability game with
non-negligible probability. We use A considering the following types of attacks:

Type 1. Adversary A conducts a valid showing so that nym∗ =⊥. Then we
construct an adversary B that uses A to break the EUF-CMA security.

Type 2. Adversary A manages to conduct a showing accepted by the verifier
using the credential of user i∗ under nym∗ with respect to S∗ such that S∗
⊆
ATTR[nym] or with respect to D∗ such that D∗ ⊆ ATTR[nym] holds. Then we
construct an adversary B that uses A to break the soundness of the set-
commitment scheme SCDS.

Type 3. Adversary A manages to conduct a showing accepted by the verifier
reusing a showing based on the credential of a user i∗ under nym∗ with i∗ ∈ HU,
whose secret uski∗ and credentials it does not know.

Protego: Efficient, Revocable and Auditable Anonymous Credentials 265

Fig. 3. Protego: show and verify algorithms.

Type 4. Adversary A manages to conduct a showing accepted by the verifier
using some credential corresponding to a revoked pseudonym nym∗ ∈ RNYM.
Then, we construct an adversary B that uses A to break the binding property
of the revocation accumulator RevAcc.

Types 1 and 2 follow the proofs of [12] (Th. 6) as the underlying primitives
remain unchanged. For Type 3, we leverage the fact that reusing a showing
would only allow the adversary to generate a valid showing for the same original
transaction tx (that is timestamped), and hence, we do not consider it as an
attack. Observe that any modification done to the original tx will lead to a
different challenge and thus the rest of the proofs (showing, revocation and
auditing) will not pass. Finally, Type 4 follows from [14] (Th. 3). �
Theorem 2. If the DDH assumption holds, the SPS-EQ perfectly adapts signa-
tures, and H is assumed to be a random oracle, then Protego is anonymous.

Proof Sketch. The proof follows from [12] (Th. 7) and [14] (Th. 4). However, we
must also to take into account the RO model and the addition of the auditing

266 A. Connolly et al.

Fig. 4. Protego Duo: show and verify algorithms.

features. The extra credential components for the auditing are randomized dur-
ing every credential showing like the rest of the components. Similarly, the user
generates a new encryption of the auditor’s public key with a fresh α, while a fresh
β is used to randomize the values ti. Since ElGamal encryption is IND-CPA secure
and key-private [5], the ciphertexts produced by the user are indistinguishable and
do not leak information about the user’s public key nor the auditor’s. �

Theorem 3. If the algorithms AuditPrv and AuditVerify are a NIZK proof sys-
tem and the SPS-EQ is EUF-CMA secure then Protego is auditable.

Proof. If the verification returns true, we have that ∃ (enc∗
1, enc

∗
2) = ((δ∗ +

α∗ask)P1, α
∗P1) for some δ∗ and α∗ chosen by the adversary. Moreover, because

of the unforgeability of the signature scheme, the verification implies that C3 =
μ∗P1, C6 = μ∗usk1P1 and C7 = μ∗askP1 for some μ∗ chosen by the adversary.

Protego: Efficient, Revocable and Auditable Anonymous Credentials 267

Table 1. Running time for the different algorithms in milliseconds.

Revocation Signature Issuer-hiding NIZK
n = 10 n = 100 � = 7 (for Protego) n = 5

Scheme Prove Verify Prove Verify Sign Verify ChgRep Prove Verify ZKEval
[7] 28 64 28 64 23 59 N/A N/A N/A N/A
Protego 7.7 4.2 77.4 4.2 3.4 11 8.8 103 118 59

As a result, we can re-write the pairing equations for the audit proof as:

e(α∗P1, t
∗
2) = e(μ∗P1, t

∗
3)

e(α∗P1, t
∗
1) = e(P1, t

∗
3)

e((δ∗ + α∗ask)P1, t
∗
2) = e(μ∗usk1P1, t

∗
1) + e(μ∗askP1, t

∗
3)

where t∗1, t∗2 and t∗3 are also chosen by the adversary. We show that δ∗ = usk1,
which implies that upk1 = AuditDec(enc, ask). Looking at the first two equations
in the target group, we have that α∗t∗2 = μ∗t∗3 and α∗t∗1 = t∗3, concluding that
t∗2 = μ∗t∗1. Replacing t∗2 and t∗3 in third one and simplyfing we obtain (δ∗ +
α∗ask)μ∗t∗1 = μ∗usk1t∗1 + μaskα∗t∗1. Therefore, we have μ∗δ∗t∗1 + μ∗α∗askt∗1 =
μ∗usk1t∗1 + μ∗α∗askt∗1, deducing that δ∗ = usk1. �

5 Evaluation

We implemented a prototype of Protego and Protego Duo (available in [1]), using
Rust with the bls12-381 curve and the BLAKE3 hash function. Our signature
implementation is based on the one from [8] but using the bls12-381 curve instead
of BN curves [4]. As a result, we obtain times up to 67% faster when compared
to [8]. To run the benchmarks a Macbook Air (Chip M2 & 16GB RAM) was
used with no extra optimizations, using the nightly compiler, and the Criterion
library. For all values, the standard deviation was at most 1 millisecond.

Issue and Obtain take roughly 20 ms each when issuing a credential for 10
attributes. Both scale linearly on the number of attributes. To evaluate show-
ing and verification, we considered the PoE in the showing protocol. Therefore,
verification running time remains (almost) constant1 regardless the number of
shown attributes, credential size, and issuer-hiding approach. If the PoE is dis-
abled, showing running time would be smaller while verification would increase
linearly with the number of shown attributes. An auditing proof in Protego takes
roughly 1 and 1.5 ms for proof generation and verification, surpassing the values
from [7]. In Table 1 we report the revocation and signing algorithms, including
our issuer-hiding NIZK with n = 5. For Protego, we consider a signature for
vectors of length seven (the size of a credential). In our case, the revocation
1 Asymptotic complexity is O(1) (considering exponentiations and pairings) but some

multiplications depending on the shown attributes are required, hence the difference.

268 A. Connolly et al.

Fig. 5. From left to right, showing and verification times (in seconds) for the different
schemes considering credential showings for 2, 4, 6 and 8 attributes.

Table 2. Protocols’ comparison showing the running times in milliseconds.

k = 2 k = 4 k = 6 k = 8 k = 10

Scheme Show Verify Show Verify Show Verify Show Verify Show Verify
[7] 141 106 220 170 309 266 388 356 – –
Protego 86 142 89 140 92 141 93 145 96 145
Protego Duo 29 35 32 35 34 36 37 36 39 38

witnesses are computed by the authority (in linear time) and then randomized
by the users (in constant time). For this reason we consider the generation of a
single witness for a revocation lists of 10 and a hundred elements (although in
practice one would expect it to be closer to 10). For [7], we consider the total
time to generate and verify a signature in a user level L = 2 (involving two
delegations), with revocation times in G2.

Comparison with the Idemix Extension from [7]. The computational cost
for the prover and verifier grows linearly with the number of attributes in the
credential and delegation levels for [7]. In Protego Duo, the prover computational
cost is O(n − k) for showings involving k-attributes out of n, which in practice
is much better. Verification cost in Protego and Protego Duo is almost constant
(or O(k) if the PoE is disabled). The two works are compared in Fig. 5 using
the same hardware (exact times are also given in Table 2). For [7], we consider
a delegation level L = 2, which corresponds to a user level given that the root
authority is at L = 0 and organizations start at L = 1. Regarding the attributes,
[7] we could only retrieve information considering proofs for credential possesion
below ten attributes (assuming a minimal overhead when all attributes are shown
as authors suggest). Therefore, we report credential possesions for [7] considering
up to 8 attributes, and selective disclosures of k-out-of-10 attributes in ours. For
Protego, we consider five authorities for the NIZK proof, which would suffice for
practical scenarios like a consortium of pharmaceuticals.

6 Conclusions and Future Work

We presented here the first SPS-EQ credential scheme modified to work with per-
missioned blockchains. The versatility of Protego alongside the efficiency gains

Protego: Efficient, Revocable and Auditable Anonymous Credentials 269

(at least twice as fast as the most recent Idemix extension), enables a broader
scope of applications in such a setting. Depending on the context, the PoE’s can
be computed or not, the credential issuer can be hidden or not, and one can
select only subsets or disjoint sets to generate the proofs. Similarly, auditability
and revocation features can be considered as optional, showing its flexibility.

As future directions to explore, we consider the following points: (1) adding
confidentiality of transactions to a Protego-like credential scheme, (2) adding
more power to the users (i.e., how to define precise notions of user-invoked
regulatory measures), and (3) extend our results to the multi-authority setting,
where users can get attributes from multiple authorities instead of a single one.

Acknowledgements. We thank the anonymous reviewers for their valuable feed-
back. The European Commission partially supported Octavio Perez Kempner’s work
as part of the CUREX project (H2020-SC1-FA-DTS-2018-1 under grant agreement No
826404).

A Our NIZK Argument for Issuer-hiding

We refer the reader to [12] (Sect. 3.1) for the basic syntax and security properties
of malleable NIZK proof systems. In Fig. 6 we build a fully adaptive malleable
NIZK argument following the construction from [12]. The main idea is that given
two proofs π1 and π2 for statements x1 = w1vi and x2 = w2vi, one can compute

Fig. 6. Our fully adaptive malleable NIZK argument

270 A. Connolly et al.

a valid proof π for the statement x = (αw1 + βw2)vi with fresh α and β. The
derivation privacy property of the proof system ensures that π looks like a freshly
computed proof. Security follows from theorems 2 and 8 from [12].

References

1. Implementation. https://github.com/octaviopk9/indocrypt_protego
2. Androulaki, E., Camenisch, J., Caro, A.D., Dubovitskaya, M., Elkhiyaoui, K.,

Tackmann, B.: Privacy-preserving auditable token payments in a permissioned
blockchain system. In: Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. AFT 2020, pp. 255–267. Association for Computing
Machinery, New York (2020)

3. Androulaki, E., De Caro, A., Neugschwandtner, M., Sorniotti, A.: Endorsement
in hyperledger fabric. In: 2019 IEEE International Conference on Blockchain
(Blockchain), pp. 510–519 (2019)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order, pp.
319–331 (2006). https://doi.org/10.1007/11693383_22

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption, pp. 566–582 (2001). https://doi.org/10.1007/3-540-45682-1_33

6. Bobolz, J., Eidens, F., Krenn, S., Ramacher, S., Samelin, K.: Issuer-hiding
attribute-based credentials. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS
2021. LNCS, vol. 13099, pp. 158–178. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92548-2_9

7. Bogatov, D., De Caro, A., Elkhiyaoui, K., Tackmann, B.: Anonymous transactions
with revocation and auditing in hyperledger fabric. In: Conti, M., Stevens, M.,
Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 435–459. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-92548-2_23

8. Burkhart, M.: Mercurial signatures implementation. Github (2020). https://
github.com/burkh4rt/Mercurial-Signatures

9. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain, pp. 683–699 (2017).
https://doi.org/10.1145/3133956.3134025

10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps, pp. 56–72 (2004). https://doi.org/10.1007/978-3-540-28628-
8_4

11. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system, pp. 21–30 (2002). https://doi.org/10.1145/586110.
586114

12. Connolly, A., Lafourcade, P., Perez Kempner, O.: Improved Constructions of
Anonymous Credentials from Structure-Preserving Signatures on Equivalence
Classes. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol.
13177, pp. 409–438. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
97121-2_15

13. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures, pp. 535–555 (2019). https://doi.org/10.1007/978-3-030-12612-4_27

14. Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable
attribute-based anonymous credentials, pp. 57–74 (2015). https://doi.org/10.1007/
978-3-319-27239-9_4

https://github.com/octaviopk9/indocrypt_protego
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-030-92548-2_9
https://doi.org/10.1007/978-3-030-92548-2_9
https://doi.org/10.1007/978-3-030-92548-2_23
https://github.com/burkh4rt/Mercurial-Signatures
https://github.com/burkh4rt/Mercurial-Signatures
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-319-27239-9_4
https://doi.org/10.1007/978-3-319-27239-9_4

Protego: Efficient, Revocable and Auditable Anonymous Credentials 271

15. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2018). https://doi.org/10.1007/s00145-018-9281-4

16. Kang, H., Dai, T., Jean-Louis, N., Tao, S., Gu, X.: Fabzk: supporting privacy-
preserving, auditable smart contracts in hyperledger fabric. In: 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 543–555 (2019)

17. Mazumdar, S., Ruj, S.: Design of anonymous endorsement system in hyperledger
fabric. IEEE Trans. Emerg. Top. Comput. 1 (2019)

18. Narula, N., Vasquez, W., Virza, M.: Zkledger: privacy-preserving auditing for dis-
tributed ledgers. In: Proceedings of the 15th USENIX Conference on Networked
Systems Design and Implementation. NSDI 2018, pp. 65–80. USENIX Association,
USA (2018)

19. Schnorr, C.P.: Efficient identification and signatures for smart cards, pp. 239–252
(1990). https://doi.org/10.1007/0-387-34805-0_22

20. Shoup, V.: Lower bounds for discrete logarithms and related problems, pp. 256–266
(1997). https://doi.org/10.1007/3-540-69053-0_18

21. Zurich, I.R.: Specification of the identity mixer cryptographic library v2.3.0 (2013)

https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-69053-0_18

Hybrid Scalar/Vector Implementations
of Keccak and SPHINCS+ on AArch64

Hanno Becker1(B) and Matthias J. Kannwischer2(B)

1 Arm Limited, Cambridge, UK
hanno.becker@arm.com

2 Academia Sinica, Taipei, Taiwan
matthias@kannwischer.eu

Abstract. This paper presents two new techniques for the fast imple-
mentation of the Keccak permutation on the A-profile of the Armarchi-
tecture: First, the elimination of explicit rotations in the Keccak permu-
tation through Barrel shifting, applicable to scalar AArch64 implemen-
tations of Keccak-f1600. Second, the construction of hybrid implemen-
tations concurrently leveraging both the scalar and the Neon instruction
sets of AArch64. The resulting performance improvements are demon-
strated in the example of the hash-based signature scheme SPHINCS+,
one of the recently announced winners of the NIST post-quantum cryp-
tography project: We achieve up to 1.89× performance improvements
compared to the state of the art. Our implementations target the
Arm Cortex-{A55,A510,A78,A710,X1,X2} processors common in client
devices such as mobile phones.

Keywords: Arm · AArch64 · Armv8-A · Keccak · SIMD · Neon ·
Post-quantum cryptography · SPHINCS+

1 Introduction

Hash functions and extendable-output functions based on the Keccak-
ppermutations have gained popularity since their standardization as SHA-3 and
SHAKE in FIPS202 [Dwo15] through the US National Institute for Standards
and Technology (NIST) in 2012. Post-quantum cryptography (PQC) in particu-
lar makes extensive use of SHA-3 and SHAKE as building blocks: In July 2022,
NIST announced [ACD+22] the four schemes it intends to include in its first
PQC standard – updating the standards for key-establishment [Nat18,Nat19]
and digital signatures [Nat13] – and all four selected schemes make use of SHA-
3. Among them is the hash-based signature scheme SPHINCS+ [HBD+22], and
three lattice-based schemes: the key-encapsulation scheme Kyber [SAB+22], and
the digital signature schemes Dilithium [LDK+22] and Falcon [PFH+22].

While the selected lattice-based schemes provide very good performance and
often outperform classical public-key cryptography, hash-based signatures come
at a much higher cost. For example, pqm4 [KPR+] – a benchmarking project
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 272–293, 2022.
https://doi.org/10.1007/978-3-031-22912-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_12

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 273

for post-quantum cryptography on the Arm Cortex-M4 – reports 4 million clock
cycles for signing of dilithium2, 18 million clock cycles for falcon512-tree,
and 400 million clock cycles for sphincs-sha256-128f-simple – the fastest
SPHINCS+ parameter set. While signing performance appears to favour lattice-
based signatures, hash-based signatures come with two important advantages:
Firstly, they only rely on the collision-resistance and pre-image resistance of the
underlying hash function, while lattice-based signatures rely on computation
problems (M-LWE, M-SIS, and NTRU). Secondly, hash-based signatures have
much smaller public keys of just 32 to 64 bytes, while Dilithium requires at least
1 312 bytes and Falcon requires at least 897 bytes.

Due to the expected upcoming deployment of SPHINCS+, it is essential to
understand the performance of SPHINCS+ on a variety of platforms. Unsurpris-
ingly, the computational bottleneck of hash-based signatures are the invocations
of the used hash function and, consequently, having a fast hash implementation
results in a fast SPHINCS+ implementation. Furthermore, SPHINCS+ can make
use of parallel hash implementations which is particularly useful on platforms
providing SIMD instructions allowing to compute multiple hashes at once.

In this work, we study scalar and SIMD implementations of Keccak-f1600
on the AArch64 instruction set of the Arm architecture, and showcase their
performance by integrating them into implementations of SPHINCS+. We tar-
get the Arm Cortex-{A55,A510,A78,A710,X1,X2} processors common in client
devices such as mobile phones, and which are representative of the breadth
of implementations of the A-profile of the Arm architecture across the perfor-
mance/power/area spectrum.

Contributions. We make the following contributions:

1. We shorten scalar AArch64 implementations of Keccak-f1600 by trading
standalone rotations for extensive use of the Barrel shifter. On our target
CPUs, this technique leads to a significant performance improvement.

2. We show that 2-way parallel implementations of Keccak-f1600 using the
Armv8.4-A SHA-3 Neon instructions can sometimes be sped up by also mixing
in regular Neon instructions, leading to better hardware utilization.

3. We present Scalar/Neon hybrid implementations for 3-, 4- and 5-way parallel
Keccak-f1600. They compute a 2-way parallel Keccak on the Neon units in
parallel with further permutation(s) on the scalar execution units. We inves-
tigate such Scalar/Neon hybrids with and without the SHA-3 instructions.

4. We showcase our Keccak-f1600 implementations by plugging them into
SPHINCS+ and achieve signing speed-ups of up to 1.89× over the state of
the art.

5. We present detailed analyses of the relation between our target microarchi-
tectures and optimization potentials for our Keccak-f1600 implementations.

Source Code. Our implementations are available at https://gitlab.com/arm-
research/security/pqax.

https://gitlab.com/arm-research/security/pqax
https://gitlab.com/arm-research/security/pqax

274 H. Becker and M. J. Kannwischer

Related Work. Kölbl [Köl18] studies the implementations of SPHINCS (the
predecessor of SPHINCS+) for AArch64, targeting the Cortex-A57 and Cortex-
A72 CPUs. For Keccak, Kölbl makes use of a two-way parallel Neon imple-
mentation from the eXtended Keccak code package (XKCP) [DHP+]. Wester-
baan [Wes] presents a two-way parallel Neon implementation of Keccak using
the Armv8.4-A SHA-3 instructions. This implementation is also used in the
SPHINCS+ NIST PQC submission [HBD+22]. Lattice-based cryptography on
AArch64 has been studied by Nguyen and Gaj [NG21] as well as Becker, Hwang,
Kannwischer, Yang, and Yang [BHK+21]. Hybrid implementations have previ-
ously been applied in other contexts: Bernstein and Schwabe [BS12] present a
scalar/vector hybrid implementation of the Salsa20 cipher for Armv7-A, and
Lenngren [Len19] presents a scalar/vector hybrid implementation of the key-
exchange mechanism X25519 for Armv8-A.

Applicability Beyond This Work. Our work has application beyond what
is presented in this paper. In particular, it can be useful for the following:

– Stateful hash-based signatures. Stateful hash-based signature schemes
like XMSS [HBG+18] or LMS [MCF19] can also be implemented in a parallel
fashion. Hence, our implementations can be integrated into XMSS or LMS.

– Other post-quantum candidates. Other post-quantum schemes also ben-
efit from faster hashing. Notably, Kyber and Dilithium are designed to lever-
age fast parallel hashing. We therefore believe that our implementations will
enable speed-ups for those schemes, but leave a detailed evaluation to future
work.

– KangarooTwelve. Closely related to SHA-3 is KangarooTwelve [BDP+18]
which also builds on the Keccak-ppermutation but uses 12 rounds instead of
24. The techniques presented here apply to KangorooTwelve as well.

Structure. Section 2 provides background on Keccak, SPHINCS+ and the Arm
architecture. Section 3 and Sect. 4 present our novel implementation techniques
for Keccak-f1600, including improvements to scalar implementations, paral-
lel Neon implementations, and as the main novelty, hybrid implementations.
Finally, in Sect. 5 we present the performance results for our Keccak-f1600 and
SPHINCS+ implementations on the Cortex-{A55,A510,A78,A710,X1,X2}.

2 Preliminaries

2.1 Keccak

Keccak [BDH+] is a family of permutations, instances of which form the basis
of the SHA-3 standard [Dwo15] including the SHA-3 hash functions and the
SHAKE extendable output functions (XOF); the reader unfamiliar with the
notion of a XOF may think of it as a cryptographic hash function with flexible
output size, generalizing the classical use case of hashing arbitrary-size inputs

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 275

Fig. 1. Pseudocode for Keccak-f1600

into a fixed-size output. The reverse use case – expanding a fixed-sized input
into a variable-size output – is useful, for example, for randomness expansion,
and is being used for that purpose in the various NIST PQC schemes.

The core of Keccak within SHA-3 is the Keccak permutation Keccak-f1600,
operating on a 1600-bit state viewed as a 5 × 5 matrix A[x, y] of 64-bit values.
It consists of 24 rounds of 5 operations (θ, ρ, π, χ, ι) each. χ is the only non-
linear operation, while ρ and π are mere bit-permutations, and θ and ι are linear
operations. The pseudocode specification of Keccak-f1600 is given in Fig. 1.

2.2 SPHINCS+

Based on SPHINCS [BHH+15], SPHINCS+ [HBD+22] is a stateless hash-based
signature scheme that was selected as one of the winners of the NIST PQC
project [NIS16]. At the core, SPHINCS+ relies on three building blocks: An
improved version of Winternitz One-Time Signatures (WOTS+), the multi-tree
version of the eXtended Merkle Signature Scheme (XMSSMT), and the Forest
Of Random Subsets (FORS) few time signature scheme. We briefly recall the
main concepts and refer to the SPHINCS+ specification [HBD+22] for details.

WOTS+. WOTS+ [Hül13] is a hash-based one-time signature scheme, working
roughly as follows: The secret key is a tuple of random values s0, s1, . . . , s�−1

in the domain of an underlying hash function h, and the public key consists of
the repeated hash h2k−1(si), where k is a fixed parameter. Signing works by
splitting a message in k-bit blocks mi < 2k and revealing the partial preimages
hmi(si) of the public keys. Verification checks that they are, in fact, preimages.
As stated, this is flawed since knowing the signature for a block mi allows forging
a signature for any m′

i > mi, but this can be fixed through a checksum. We refer
the interested reader to [Hül13] for further details.

XMSSMT . The idea of XMSS [BDH11] is to combine multiple one-time public
keys into a single many-time public key by means of a hash tree. The leaves of
the hash tree correspond to hashes of the one-time public keys, and the root of
the hash tree is the XMSS public key. Signing means signing with one of the
one-time keys at the leaves, and providing an authentication path to the root

276 H. Becker and M. J. Kannwischer

of the hash tree. The signer must carefully track which leaf keys have already
been used, and never use the same leaf key twice. XMSSMT builds on XMSS,
replacing the single hash tree by a hyper-tree, i.e., multiple layers of XMSSwhere
the WOTS+ keys on upper layers are used to sign the XMSSroots of the lower
layers. By doing so, key generation is limited to the upmost tree and signing
only needs to compute relatively small trees. However, this comes at the cost of
inflated signature sizes as one XMSSMT consists of multiple XMSSsignatures.

Eliminating the State. SPHINCS+ eliminates the state from XMSSMT by
using a very large hyper-tree and pseudo-randomly selecting leaves for signing.
As collisions may still occur, it uses FORS on the lowest layer.

SPHINCS+ Parameters. SPHINCS+ specifies 36 parameter sets consisting
of all possible combinations of (a) a hash function (SHAKE, SHA-2, or Haraka),
(b) a security level (128, 192 or 256 bits), (c) an optimization target (s for small
signature, or f for fast signing), and (d) a tweakable hash function (“simple”, com-
parable to LMS [MCF19], or “robust”, comparable to XMSS [BDH11,HBG+18]).
Parameter sets are named accordingly, e.g., sphincs-shake-128f-simple. In
this work, we focus on the SHAKE parameter sets.

(Parallel) Hashing in SPHINCS+. Key generation, signing, and verification
in SPHINCS+ are dominated by hashing and benefit from parallelization.

We begin with WOTS+-based XMSS, which offers three independent poten-
tials for parallelization: First, it is straightforward to extend WOTS+ key gener-
ation to compute multiple hash chains in parallel. This works for any paralleliza-
tion degree and benefits XMSS key generation, signing and verification. Second,
XMSS key generation and signing require the computation of a large hash tree
where the leaves are the hashes of freshly generated WOTS+ public keys. This is
dominated by the leaf computations and can be sped up by parallelizing multi-
ple WOTS+ key generations. Again, the approach works for any parallelization
degree. Third, for 2/4-fold parallelization, a single hash-tree computation may be
further parallelized as demonstrated in [HBD+22], though for a WOTS+-based
hash tree, this offers only a negligible performance improvement.

We parallelize XMSS verification via the first approach for parallelization,
and XMSS key generation and signing via the second. For 2/4-fold paralleliza-
tion, we also apply the third approach, but mainly for uniformity with FORS:
FORS also relies on tree hashing and benefits from the second and third paral-
lelization approaches – moreover, parallelized tree hashing is much more impact-
ful for FORS due to the cheaper leaf computations. For FORS only, which
involves multiple hash trees, there is also the potential of performing an N -way
parallel hash tree computation, but we leave exploring this for future work.

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 277

It should be noted that for degrees of parallelization which are not aligned to
the total number of invocations, an overhead occurs. For example, the hypertrees
in sphincs-shake-128f-simple have only 8 leaves, which does not suit 5-way
parallelization. We believe that further study in the best use of the parallelization
potentials would be beneficial, and encourage research.

2.3 ArmArchitecture

Computing based on the Armarchitecture is ubiquitous. At the coarsest level,
one can distinguish three profiles: The application (A) profile targeting high
performance markets, such as PC, mobile, and server; the real-time (R) profile
for timing-sensitive and safety-critical systems; and the embedded (M) profile
for secure, low-power, and low-cost microprocessors.

In this article, we focus on the A-profile of the Arm architecture. Numerous
iterations of the A-profile exists, such as Armv7-A, Armv8-A and, as of late,
Armv9-A, each including a respective set of extensions. We specifically focus on
the AArch64 64-bit instruction set architecture introduced with Armv8-A, as
well as the SHA-3 extension which is part of Armv8.4-A.

Implementations of the A-profile of the Armarchitecture form a spec-
trum in itself: To name some, it includes power-efficient CPUs like the
Cortex-A7 for Linux-based embedded IoT devices, cores like Cortex-A710
and Cortex-X2 for client devices such as desktops or mobile phones, as well
as the Arm R© Neoverse

TM
IP for infrastructure applications. In this article,

we focus on two recent generations of cores for the client market, Cortex-
{A55,A510,A78,A710,X1,X2}. However, we expect that our optimizations do
also apply to the Neoverse N1 and Neoverse V1 infrastructure cores.

It is common for Arm-based SoCs, particularly in the client market, to host
multiple CPUs targeting different power/performance profiles, and to dynami-
cally switch between them depending on demand. Originally, this was known as
Arm R©big.LITTLE

TM
, distinguishing between a high-efficiency “LITTLE” CPU

and a high-performance “big” CPU. Nowadays, Arm R©DynamIQ
TM

allows for
more flexibility in the configuration of CPUs on a SoC, and DynamIQ-based SoCs
often host three different ArmCPUs targeting different performance/power pro-
files. Two such triples are Cortex-{A55,A78,X1} and Cortex-{A510,A710,X2}.

On a microarchitectural level, “LITTLE” cores are typically based on an in-
order pipeline with some support for superscalar execution. For example, the
Cortex-A53 and Cortex-A55 CPUs support dual-issuing of scalar instructions,
while the Cortex-A510 CPU is even capable of triple-issuing scalar instructions.
In terms of SIMD capabilities, Cortex-A53 and Cortex-A55 can single-issue 128-
bit Neon instructions, while Cortex-A510 offers an interesting novelty: Pairs of
Cortex-A510 CPUs are joined to a Cortex-A510 complex, sharing up to two 128-
bit SIMD units. That is, if only one of the cores uses the SIMD units, dual-issuing
of 128-bit Neon instructions is possible.

The “medium” Cortex-A7x and “big” Cortex-X cores are based on out-of-
order pipelines with multiple scalar and SIMD execution units. For example, all

278 H. Becker and M. J. Kannwischer

Fig. 2. ‘Canonical’ scalar AArch64 implementation of one Keccak-f1600 round.

of Cortex-{A78,A710,X1,X2} have four scalar execution units. In terms of their
SIMD capabilities, Cortex-A7x cores typically have two Neon execution units,
while Cortex-X CPUs have four. Such information, as well as detailed listings of
latencies and throughput per instructions, are provided in the publicly available
software optimization guides [Armb,Arma,Armd,Armc,Arme,Armf].

3 Keccak on AArch64 –Architecture

This is the first of two section presenting our implementations of Keccak-f1600
on the AArch64 instruction set architecture, the second being Sect. 4. Here, we
focus on architectural considerations: We exhibit ways to express Keccak-f1600
through the AArch64 instruction set and its extensions. We discuss three
approaches: A scalar implementation, an Armv8-ANeonSIMD implementations,
and an Armv8.4-A Neon SIMD implementation leveraging the SHA-3 extension.

It is difficult to define meaningful metrics for performance at the architectural
level: The number of instructions, the depth and the width (i.e., the amount of
instruction level parallelism) of a computation are first approximations, but the
actual performance will typically also heavily depend on the target microarchi-
tecture – which is to be expected considering wide range of implementations of
the Armarchitecture across the performance/power spectrum.

In light of the above, the goal of this section is merely to provide us with
a ‘pool’ of implementation approaches for Keccak-f1600. The study of their
suitability for our target microarchitectures, as well as further microarchitecture
specific optimizations, are the subject of Sect. 4.

3.1 Scalar Implementation

The description of Keccak-f1600 from Sect. 2.1 admits a straightforward map-
ping to the AArch64 instruction set architecture: The 1600-bit state can be
maintained in 25 general purpose registers of 64 bits each, and the bitwise oper-
ations performed in the θ, ρ, χ and τ steps can be implemented using the XOR,
ROR, BIC instructions. This ‘canonical’ implementation is presented in Fig. 2.

Eliminating Rotations. The canonical implementation can be shortened by
eliminating explicit rotations as follows. For any bitwise operation OP such as

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 279

Fig. 3. Keccak-f1600 round without explicit rotations.

XOR or BIC, it holds that (x OP y) ≪ imm = (x ≪ imm) OP (y ≪ imm), so

(x ≪ imm0) OP (y ≪ imm1) = (x OP (y ≪ imm1 − imm0)) ≪ imm0 (1)

This trivial identity replaces the explicit rotations x ≪ imm0 and y ≪ imm1
with the combination of a shifted application of OP and an explicit rotation of its
result. Since AArch64 offers shifted variants of logical operations as discussed in
Sect. 2.3, this eliminates one explicit rotation. Moreover, if imm0 = 0 or imm1 = 0,
no explicit rotation remains. Finally, if the result is used in another bitwise
operation, the process can be repeated, deferring all explicit rotations to the
very end of the computation, where only one rotation per output has to be
performed. We call this process “lazy rotation” in the following.

The idea of lazy rotations can be applied to Keccak-f1600 in order to defer
the explicit rotations in the π-step. At first, however, it would seem that the
entire Keccak-f1600 loop would need to be unrolled to benefit from the idea, as
performing rotations at a later stage in the loop is still as expensive as performing
them at the π-step. Luckily, this is not the case, as we explain now.

Assume we have deferred explicit rotations in the π-step to the end of the first
Keccak-f1600 iteration, so that the true state A[x, y] can be obtained form the
software state A′[x, y] via A[x, y] = A′[x, y] ≪ s[x, y] for some constants s[x, y].
In the θ-step for the next iteration, we can then compute D[x] via lazy rotations,
obtaining a value D′[x] so that the true D[x] is again given by D[x] = D′[x] ⊕ t[x]
for suitable constants t[x]. If we then explicitly rotate D′[x] to obtain the true
D[x], the final part A[x, y] ← A[x, y] ⊕ D[x] = (A′[x, y] ≪ s[x, y]) ⊕ D[x]
can be computed using a shifted XOR without any deferred rotation. By breaking
the chain of deferred rotations at D[x], we prevent an accumulation of deferred
rotations which would otherwise force us to unroll the loop.

The above explains how to trade 25 explicit rotations in the π-step for 5
explicit rotations in the θ-step. In fact, it turns out that 2 of the 5 deferred
rotations for D[x] are 0, so that only 3 explicit rotations are necessary. The final
result is presented in Fig. 3.

280 H. Becker and M. J. Kannwischer

Register Allocation. We aim to keep most operations in-place to reduce the
number of MOV operations. In the notation of Fig. 1, we’d like loc B[x, y] =
loc A[x, y] for most (x, y), where loc X is the register location used by X. With-
out backup MOVs, however, we cannot have loc B[x, y] = loc A[x, y] for all x, y:
Otherwise, there’d be cyclic dependencies in the computation of both

B[x′, y′] = A[x, y] ⊕ D[x] and (θπ)
A[x, y] = B[x, y] ⊕ (¬B[x + 1, y] & B[x + 2, y]) (χ)

preventing in-place computation – we use the shorthand (x′, y′) := (y, 2x +
3y) here and below. The goal is to slightly offset {loc B[]} from {loc A[]} for
the computation of (θπ), and to move entries back to their original place in
(χ). Concretely, we set loc B[x, y] = loc A[x, y] for x �∈ {0, 1} and loc B[x, y] =
loc A[x, (y + 1)%5] for x ∈ {0, 1} and y ∈ {1, 2, 3, 4}, while using fresh registers
for B[0, 0] and B[1, 0] – this choice will become clear soon.

The computation of (θπ) then proceeds in a chained fashion: After computing
B[x′

0, y
′
0] from A[x0, y0], we continue with B[x′

1, y
′
1] s.t. loc B[x′

1, y
′
1] = loc A[x0, y0]

– that is, once we have used some A[] to compute the corresponding B[], we over-
write its location next. Starting with B[0, 0] or B[1, 0] (which use fresh registers),
it terminates once we reach the computation of B[0′, 0′] or B[1′, 0′] from A[0, 1] or
A[1, 1], because loc A[0, 1] and loc A[1, 1] aren’t used by B[].

In principle, the chained computation of (θπ) just described does not depend
on the particular choice of loc B[], but the lengths of the resulting chains do: Our
specific choice leads to a length-24 chain from B[0, 0] to A[0, 1], and a length-1
chain from B[1, 0] to A[1, 1]. This matters for register allocation: At the time of
(θπ), we are already using 30 registers – 25 for the state A[] and 5 for D[] – so only
one remains, yet we need two fresh locations for B[0, 0] and B[1, 0]. We solve this
by using the single free location for B[0, 0], while after computing its length-24
chain, all but one D[] are no longer needed, so B[1, 0] can use any of those.

Finally, we compute (χ), where the special role of x = 0, 1 in the definition of
loc B[] becomes important: Namely, when we compute A[0, y], A[1, y] from B[∗, y],
we cannot yet overwrite any loc B[∗, y] as they’re still needed for subsequent (χ)
steps. We thus require loc A[0, y], loc A[1, y] �∈ {loc B[∗, y]}. On the other hand,
after computing A[0, y], A[1, y] out-of-place, we may compute A[2, y], A[3, y], A[4, y]
in-place since they’re no longer used as input for (χ). This motivates our choice
of loc B[x, y] = loc A[x, y] for x �= 0, 1, while offsetting loc B[0, y], loc B[1, y].

Overall, the above yields an in-place implementation of a single
Keccak-f1600 round using 31 registers, and without using any MOV instructions
or stack spilling.

Statistics. Each round in our scalar Keccak-f1600 implementation uses 76×
EOR, 25× BIC and 3× ROR instructions, totalling 104 arithmetic instructions. In
fact, the first round does not require RORs, but we need 23 RORs after the last
round. Overall, we get to 24×104−3+23 = 2516 arithmetic instructions for the
core of Keccak-f1600. Taking into account function preamble and postamble,
we get to 2747 instructions executed per Keccak-f1600 invocation.

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 281

3.2 Armv8.4-A Neon Implementation

The Armv8.4-A architecture introduces the SHA-3 extension adding the fol-
lowing instructions: EOR3 for the computation of three-fold XORs; RAX1 for the
combination of a rotation-by-1 and a XOR; XAR for the combination of a XOR and
a rotation; and finally BCAX for the combination of a BIC and XOR. Those instruc-
tions enable a straightforward implementation of Keccak-f1600 on Armv8.4-A,
with EOR3 and RAX1 handling the first part of the θ-step, XAR handling the second
part of the θ-step merged with the ρ-step, and BCAX handling the τ -step. The
first public implementation along those lines was [Wes]. We slightly refine it by
removing explicit MOV instructions as detailed in Sect. 3.1.

Statistics. Each round requires 10× EOR3 instructions, 5× RAX1 instructions,
24× XAR, 2× EOR and 25× BCAX. Overall, it thus uses 24 × 66 = 1584 vector
instructions, 24 × 64 = 1536 of which from the Armv8.4-A SHA-3 extension.

3.3 Armv8-A Neon Implementation

To implement Keccak-f1600 on Armv8-A Neon instructions, the structure of
the Armv8.4-A code can be retained, while implementing EOR3, RAX1, XAR, and
BCAX as macros based on Armv8-A Neon instructions. Rotations are constructed
from a left shift (SHL) and a right shift with insert (SRI). An implementation
along those lines was first developed in [Ngu] based on intrinsics; here, we use a
version in handwritten assembly, minimizing vector moves and stack spills.

Statistics. When implementing EOR3 via 2× EOR, RAX1 and XAR via
EOR+SHL+SRI, and BCAX via BIC+EOR, each Keccak-f1600 round consists of 76×
EOR, 29× SRI, 30× SHL and 25× BIC instructions totalling 160 Neon instructions
per round, and 24 × 160 = 3840 Neon instructions for all of Keccak-f1600.

4 Keccak-f1600 on AArch64 –Microarchitecture

Here, we study the implementations presented in Sect. 3 from a microarchi-
tectural perspective. We first comment on each approach separately, and then
present Scalar/Neon hybrid implementations, the main novelty of this paper.

4.1 Scalar Implementation

Recall from Sect. 3.1 the main ideas of our scalar Keccak-f1600 implementation:
Eliminating explicit rotations through extensive use of shifted instructions, and
eliminating explicit MOVs through careful register management.

282 H. Becker and M. J. Kannwischer

Fig. 4. θ-step optimized for dual-issuing capability of the A55 (middle) and triple-
issuing capability of the A510 (right) compared to the naïve approach (left)

The Cost of Shifted Instructions. Our rotation-elimination implemen-
tation is only useful if shifted instructions have the same throughput
as unshifted instructions, which is the case for all our targets Cortex-
{A55,A510,A78,A710,X1,X2}. However, there are exceptions, such as the
Cortex-A72, and for such CPUs, rotation-elimination may lead to worse per-
formance despite having a lower instruction count. However, as we see below for
Cortex-A55 and Cortex-A510, an increased latency for shifted instructions need
not be problematic.

The Cost of MOVs. Eliminating MOVs for general purpose registers is a microop-
timization primarily useful for LITTLE CPUs. High-end out-of-order CPUs,
in turn, can sometimes implement such MOVs with zero latency (e.g. [Arme,
Section 4.14]) and therefore show little benefit from reduced register movement.

Optimization for In-Order Execution. Optimizing code for in-order execu-
tion requires careful scheduling of instructions for latency, throughput, and the
width of the superscalar pipeline. We now make this concrete for Keccak-f1600
and our in-order target microarchitectures Cortex-A55 and Cortex-A510.

We begin by discussing Cortex-A55. As detailed in the Software Optimization
Guide [Armb], Cortex-A55 is capable of issuing logical instructions with shift at
a rate of 2 IPC and a latency of 2 cycles. This is sufficient for a stall-free execution
of the column-wise 5-fold XORs in the θ-step, provided one alternates between the
columns; Fig. 4 shows both the naïve and slow approach (left column), as well
as an interleaved implementation suitable for Cortex-A55 (middle column).

We next consider the χ-step: Looking at the naïve implementation in Fig. 5
(left column), it would seem that with a dual-issuing core and a latency of 2-
cycles per shifted instruction, it should stall. However, as explained in [Armb,
Figure 1 and Sect. 3.1.1], the execution of shifted instructions is pipelined, and

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 283

Fig. 5. χ-step optimized for triple-issuing on the A510 (right) compared to the naïve
implementation (left)

appropriate forwarding paths provide an effective 1-cycle latency between shifted
instructions in case the output of a shifted instruction is used as an unshifted
input in the consuming instruction; luckily, we are in such a special case.

We now turn to Cortex-A510. As can be seen in the software optimiza-
tion guide [Arma], Cortex-A510 can issue shifted instructions at a rate of three
instructions per cycle (the first “LITTLE” core with such capabilities) and 2-
cycle latency. Moreover, our experiments suggest that we again have a 1-cycle
effective latency for outputs of shifted instructions being used as non-shifted
inputs.

To leverage the triple-issuing capability of Cortex-A510, the following adjust-
ments have to be made: Firstly, for the columnwise XORs in the θ-step, use the
accumulator as a non-shifted input only. The right column in Fig. 4 shows an
adjusted version suitable for triple-issuing on Cortex-A510. Secondly, the χ-step
cannot be triple-issued when written as in Fig. 5 (left column); instead, one has
to manually interleave the computation as in Fig. 5 (right column). With those
adjustments in place, the Keccak-f1600 code is mostly triple-issuable, as the
performance numbers in Sect. 5 will confirm.

4.2 Armv8-A Neon Implementation

Recall that our Armv8-A implementation replaces the SHA-3 instructions RAX1,
XAR, BCAX, and EOR3 by macros based on Armv8-A Neon instructions.

Suitability for In-Order Microarchitectures. Generally, implementations
based on defining high-level operations such as the SHA-3 operations as assembly
macros tend to be unsuitable for in-order execution, as they cannot exploit
parallelism at the macro-level and are thus unlikely to obey instruction latencies.
For example, on Cortex-A510, EOR, SRI, and SHL have a latency of 3 cycles, so
an implementation of XAR as EOR+SHL+SRI will have a total latency of 9 cycles.

284 H. Becker and M. J. Kannwischer

On Cortex-A55, however, we are lucky that logical SIMD instructions have a
1-cycle latency. Moreover, we observe experimentally that SHL+SRI pairs synthe-
sizing a rotation do also run without stalls – the implementations of the SHA-3
macros EOR3, BCAX, RAX1, XAR can therefore run stall-free. We should expect a
performance not far off the optimum of 1 Neon instruction per cycle, and we do
not see significant further optimization potential in this approach.

Improving performance of our Armv8-A Neon code on Cortex-A510 requires
instruction level parallelism through the interleaving of the SHA-3 macros. Due
to the very high register pressure, however, this requires a lot of stack spilling,
which is tedious to do by hand. Instead, it makes more sense in this case to work
with intrinsics as done in [Ngu], and leave register allocation and stack spilling
to the compiler. However, as we shall see in Sect. 5, both scalar and Armv8.4-A-
based Keccak-f1600 implementations perform better than the Armv8-A based
implementation anyway, so the point is moot and we do not explore it further.

Suitability for Out-of-Order Microarchitectures. Generally speaking, the
fact that the SHA-3 macros are not scheduled for latency is less problematic for
out-of-order cores than for in-order cores, as the microarchitecture will leverage
out-of-order execution and register renaming to create the required instruction
level parallelism. Still, there is room for further optimization, as we now explain.

The first optimization concerns the availability of functionality on the differ-
ent SIMD units. For our out-of-order target microarchitectures, the EOR and BIC
instructions can run on all SIMD units. However, the SHL and SRI instructions,
which we use heavily to synthesize 64-bit rotations, are only supported by 50%
of the SIMD units – one in the case of Cortex-A78 and Cortex-A710, and two
in the case of Cortex-X1 and Cortex-X2. This limits the maximum throughput
of the XAR and RAX blocks, at least when looked at in isolation. In the context
of an entire Keccak-f1600 round, however, SHL+SRI make up for less than 50%
of SIMD instructions, so that manual interleaving of the XAR and RAX blocks
with surrounding code mitigates the throughput loss. Additionally, we replace
instances of SHL X, A, #1 by ADD X, A, A (this applies to all RAX1 blocks and
one XAR invocation), reducing the pressure on the SHL/SRI-capable SIMD units,
since (like EOR and BIC) ADD can run on all SIMD units.

The second optimization concerns the θ step: We found that by moving the
5-fold EORs into the previous iteration, we can alleviate a performance bottleneck
at the θ step resulting from the lack of instruction level parallelism. For example,
with EOR having a latency of 2 cycles, one would need at least 8 independent
data streams to keep all 4 SIMD units on the Cortex-X1 and Cortex-X2 busy.

4.3 Armv8.4-A Neon Implementation

Suitability for In-Order Cores. As for the scalar implementation, we sched-
ule code for latency to ensure fast execution on Cortex-A510, the basis being
the latencies of the SHA-3 instructions as documented in the SWOG [Arma],
and the fact each core in a Cortex-A510 complex has up to two SIMD units,

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 285

depending on whether the other core in the complex is also performing SIMD
operations. It is noteworthy that in such a configuration, Cortex-A510 has more
throughput for SHA-3 operations than Cortex-A710 and Cortex-X2.

We found that scheduling the code for latency was mostly straightforward,
one exception being the RAX1 instruction, which on Cortex-A510 has a latency of
8 cycles: Here, it seems preferable to express the operation through other Neon
instructions of lower latencies.

Suitability for Out-of-Order Cores. For our out-of-order Armv8.4-A targets
Cortex-A710 and Cortex-X2, we believe that a “standard” Armv8.4-A implemen-
tation along the lines of [Wes] does not have significant microarchitecture-specific
optimization potential: As explained in [Armc,Armf], both cores have a single
SIMD unit supporting the SHA-3 instructions, limiting a pure Armv8.4-A imple-
mentation to 1536 cycles at best, which our implementations already come very
close to both for Cortex-A710 and Cortex-X2 – see Sect. 5.

4.4 Hybrid Implementations

The idea for hybrid implementations is simple and general: Given code paths
A and B exercising different execution resources, interleave them to facilitate
parallel execution by the underlying microarchitecture. Ideally, if the runtimes of
A and B are tA and tB, respectively, one hopes to achieve the joint functionality
of A,B in runtime max{tA, tB}, instead of the sequential tA + tB.

When constructing a hybrid, one has to consider the individual performance
of the code paths to be interleaved, and balance them accordingly to maximize
the gain (tA + tB) − max{tA, tB} = min{tA, tB}: For example, if path A is 2×
as fast as path B, one should interleave 2 copies of A with a single copy of B.

Hybrid implementations have previously been applied in other contexts:
Bernstein and Schwabe [BS12] present a scalar/Neon hybrid implementation of
the Salsa20 cipher for Armv7-A, and Lenngren [Len19] presents a scalar/Neon
hybrid implementation of the key-exchange mechanism X25519 for Armv8-A.

Suitability for Different Microarchitectures. A hybrid can reach ideal
performance max{tA, tB} only if the target has the bandwidth to process A and
B in parallel. Otherwise, there will be arbitration, with full arbitration leading
to sequential performance tA + tB. It is therefore important to understand the
target’s maximum wmax of instructions per cycle (IPC), as well as the IPCs wA

ad wB targetted by A and B. Only if wA + wB ≤ wmax there is a chance to
unlock performance max{tA, tB} through a hybrid.

For example, Lenngren [Len19] constructs a Scalar/Neon hybrid for X25519
on Cortex-A53, leveraging that (a) generally, Cortex-A53 can achieve up to 2
IPC, but (b) scalar multiplication and SIMD instructions are limited to 1 IPC.
Manual interleaving of scalar and SIMD implementations unlocks an IPC of ≈2.

For out-of-order CPUs, the necessity for manual interleaving depends on the
target microarchitecture: If the paths to be interleaved are loops of the same size

286 H. Becker and M. J. Kannwischer

and the out-of-order execution window exceeds the loop body, an alternation of
iterations from the two paths may eventually execute in parallel even without
manual interleaving. For Keccak-f1600, however, each round is large, so we
manually interleave scalar and Neon iterations to facilitate parallel execution.

Scalar/Neon Hybrid. We apply the idea of hybrid implementations to
our scalar and Neon implementations of Keccak-f1600: Concretely, we con-
struct implementations of N -way parallel Keccak-f1600 by interleaving N −
2 scalar computations of Keccak-f1600 with a Neon-based computation of
Keccak-f1600-x2.

Interleaving the scalar and Neon Keccak-f1600 implementations was
straightforward since the only shared architectural resource is the loop counter.
Practically, we wrote code side by side to facilitate readability, as shown in Fig. 6.

The choice of N depends on the relative speed of the scalar and Neon code.
For example, on Cortex-X1 and Cortex-X2, we chose N = 3 and N = 4, imple-
menting Keccak-f1600-xN from one or two scalar Keccak-f1600 and one Neon
Keccak-f1600-x2. On Cortex-A78, we found that N = 5 was more suitable.

We comment on the feasibility of hybrids on our targets: For Cortex-A55 and
Cortex-A510, our scalar code come close to the issue limit of 2 and 3 IPC, while
the SIMD code reaches less than 1 IPC on Cortex-A55 and close to 2 IPC on
Cortex-A510. We don’t see meaningful speedup through hybrids.

For Cortex-A78 and Cortex-A710, the scalar and Neon implementations tar-
get an IPC of 4 and 2, respectively. Since Cortex-A710 has a maximum IPC of
5, they cannot be interleaved without penalty. Cortex-A78, in turn, has a max-
imum IPC of 6, so a scalar/Neon appears feasible. However, our initial attempt
of constructing Keccak-f1600-x5 on Cortex-A78 fell > 20% short of our expec-
tations, and only after a significant code-size reduction, we achieved the desired
performance. We explain this as follows: While Cortex-A78 has a maximum IPC
of 6, the instruction decoder has a maximum IPC of 4. An IPC > 4 can only be
unlocked through the use of the “MOP-cache”, hosting decoded instructions, but
our unrolled code failed to achieve a good hitrate. Once the code was shortened
to fit in the MOP-cache, performance reached the expected level.

Neon/Neon Hybrid. An implementation based purely on the Armv8.4-A
SHA-3 instructions will only exercise those Neon units implementing the SHA-3
extension. In the case of our targets Cortex-A710 and Cortex-X2, these are 50%
and 25% of all Neon units, respectively – the remaining units stay idle.

We have therefore developed hybrid Armv8-A/Armv8.4-A implementations
of Keccak-f1600-x2, mixing SHA-3 instructions with regular Neon instructions,
to achieve better utilization of the SIMD units. This is a different kind of hybrid
than the Scalar/Neon one, as we’re alternating between different implementation
strategies rather than interleaving them. The balance between SHA-3 and regular
Neon instructions depends on the share of SIMD execution units implementing
the SHA-3 instructions. For example, on Cortex-X2, we strive for 3 regular Neon

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 287

Fig. 6. Interleaving of scalar and Armv8.4-A Keccak-f1600 code

instructions for 1× SHA-3 instruction, keeping all four SIMD units busy, while
on Cortex-A710, the balance should be 1/1.

Scalar/Neon/Neon Hybrid. Finally, we have also experimented with
“triple” hybrid implementations interleaving a scalar implementation with
the Neon/Neon hybrid described in the previous section. In addition to
Keccak-f1600-x4, we also considered an implementation Keccak-f1600-x3
interleaving one scalar computation with one hybrid Neon/Neon implementa-
tion of Keccak-f1600-x2.

5 Results

5.1 Benchmarking Environments

Cortex-{X1,A78,A55}. Our first benchmarking platform is a Lantronix Snap-
dragon 888 hardware development kit with a Qualcomm Snapdragon SM8350P
SoC. It is an Arm DynamIQ SoC featuring one high-performance Arm Cortex-X1
core, three Arm Cortex-A78 cores, and four energy-efficient in-order Cortex-A55
cores. The SoC implements the Armv8.2-A instruction set. It also implements
the Armv8.4-A dot product instructions, but not the Armv8.4-A SHA-3 instruc-
tions. The hardware development kit comes with a rooted Android 11 which
allows us to run cross-compiled static executables.

Cortex-{X2,A710,A510}. Our second benchmarking platform is a Samsung
S22 smartphone with a Samsung Exynos 2200 (S5E9925) SoC. It is an Arm
DynamIQ SoC consisting of one high-performance Cortex-X2 core, three Cortex-
A710 cores, and 4 energy-efficient in-order Cortex-A510 cores – the first gener-
ation of cores implementing the Armv9-A architecture. The Armv8.4-A SHA-3
extension is also implemented. The SoC is running a rooted Android 12. Our
benchmarks suggest that the four Cortex-A510 cores are paired in two Cortex-
A510 complexes with shared SIMD units; our benchmarks only use one Cortex-
A510 a time, therefore allowing it to leverage 2 SIMD units.

288 H. Becker and M. J. Kannwischer

Compiler and Benchmarking. We cross-compile our software using the Arm
GNU toolchain1 version 11.3.Rel1. We then copy the executable to the device
and run it on a specific core via taskset. If we find the desired core disabled for
power-saving, we first create artifical load on the system to re-enable it. We use
the perf_events syscalls for cycle counting. For benchmarking our individual
Keccak-f1600 functions, we warm the cache by running the function 1 000 times,
and then report the median of 100 samples of the average performance of 100
function invocations (the averaging amortizes the cost of the perf syscalls).

5.2 Keccak-f1600 Performance

The results of our performance measurements for Keccak-f1600 are shown
in Table 1. As reference points, we use the crypto_hash/keccakc512/simple
scalar C implementation from SUPERCOP [Kee], the Armv8-A implementa-
tion from [Ngu], and the Armv8.4-A implementation from [Wes]. We will now
comment and interpret results for each CPU separately.

Table 1. Cycle counts for various implementations of Keccak-f1600. “Neon+SHA-
3” indicates implementations using the SHA-3 instructions. Numbers in brackets are
normalized with respect to the amount of parallelization.

Approach Cortex-X1 Cortex-A78 Cortex-A55

C [Kee] 1x 811 (811) 819 (819) 1 935 (1935)
Scalar Ours 1x 690 (690) 709 (709) 1 418 (1418)
Neon [Ngu] 2x 1 370 (685) 2 409 (1204) 5 222 (2611)
Neon Ours 2x 1 317 (658) 2 197 (1098) 4 560 (2280)
Scalar/Neon Ours 4x 1 524 (381) 2 201 (550) 7 288 (1822)
Scalar/Neon Ours 5x 2 161 (432) 2 191 (438) 8 960 (1792)
Approach Cortex-X2 Cortex-A710 Cortex-A510
C [Kee] 1x 817 (817) 820 (820) 1 375 (1375)
Scalar Ours 1x 687 (687) 701 (701) 968 (968)
Neon [Ngu] 2x 1 325 (662) 2 391 (1195) 3 397 (1698)
Neon Ours 2x 1 274 (637) 2 044 (1022) 6 970 (3485)
Neon+SHA-3 [Wes] 2x 1 547 (773) 1 550 (775) 2 268 (1134)
Neon+SHA-3 Ours 2x 1 547 (773) 1 549 (774) 1 144 (572)
Neon/Neon+SHA-3 Ours 2x 944 (472) 1 502 (751) 4 449 (2224)
Scalar/Neon/Neon+SHA-3 Ours 3x 985 (328) 1 532 (510) 4 534 (1511)
Scalar/Neon Ours 4x 1 469 (367) 2 229 (557) 7 384 (1846)
Scalar/Neon+SHA-3 Ours 4x 1 551 (387) 1 608 (402) 3 545 (886)
Scalar/Neon Ours 5x 2 152 (430) 2 535 (507) 7 169 (1433)
Scalar/Neon/Neon+SHA-3 Ours 4x 1 439 (359) 1 755 (438) 4 487 (1121)

1 https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads.

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 289

Cortex-A55 and Cortex-A510. We observe a significant speedup from the C
scalar implementation to our hand-optimized assembly implementation: 1.36×
for Cortex-A55 and 1.42× for Cortex-A510. We further note that the scalar
performance is close to the theoretical optimum: With ≈ 2750 instructions in
total (see Sect. 3.1) and a maximum issue rate of 2 instructions per cycle on
Cortex-A55, the theoretical performance limits on Cortex-A55 are ≈ 1375 cycles.
Similar, the maximum issue rate of 3 instructions per cycle on Cortex-A510 leads
to a theoretical performance limit of ≈ 917 cycles.

As expected (see Sect. 4.2), the pure Neon implementation is not competi-
tive for neither Cortex-A55 nor Cortex-A510. In particular, we confirm that the
macro-based implementation performs very poorly on Cortex-A510 since laten-
cies are not obeyed, while the intrinics-based implementation from [Ngu] does
better at scheduling the code for latency.

For Cortex-A510, we observe a significant speedup from the Armv8.4-A
implementation, explained by the presence of 2 SIMD units capable of exe-
cuting the SHA-3 Neon instructions. The very large performance gap between
our implementation and that of [Wes] is largely due to the high latency of RAX1,
which we have circumvented as described in Sect. 4.3.

Finally, we observe that hybrid implementations are not beneficial on in-order
cores, as we expected in Sect. 4.4.

We take away that Cortex-A55 and Cortex-A510 have very efficient scalar
implementations which fully leverage the potential for superscalar execution. On
Cortex-A55, the scalar implementation should even be used for batched applica-
tions of Keccak-f1600. On Cortex-A510, batched applications of Keccak-f1600
should use the Armv8.4-A based implementation.

Cortex-A78 and Cortex-A710. We observe a speedup of 1.15× for our scalar
implementation compared to the baseline C implementation. We don’t gain as
much as for Cortex-A55 and Cortex-A510, which is expected since scheduling for
latency is less important for out-of-order cores. Moreover, our scalar implemen-
tation is close to the theoretical optimum: With 2516 arithmetic instructions in
the core of Keccak-f1600, and 4 scalar units, performance is bounded by ≈ 629
cycles, ignoring preamble and postamble.

Next, we comment at the Armv8-A Neon performance. Recalling that the core
of the implementation performs 3840 Neon arithmetic instructions, and Cortex-
A78 and Cortex-A710 have maximum Neon IPC of 2, our implementations are
reasonably close to the theoretical optimum, yet around 1.5× slower than the
scalar implementation. For Cortex-A78, the Keccak-f1600-x5 hybrid achieves
near optimal performance, leveraging up to 6 IPC on Cortex-A78. For Cortex-
A710 in turn, we confirm that the 5-way hybrid cannot work due to the maximum
of 5 IPC on Cortex-A710.

Finally, we look at the Armv8.4-A Neon performance. With a single Neon unit
implementing the SHA-3 instructions, we cannot do better than 1536 cycles, and
our implementation comes very close to that, providing a meaningful speedup of
1.32× over the Armv8-A Neon implementation. Yet, it is still slightly slower than

290 H. Becker and M. J. Kannwischer

the scalar implementation, but a Keccak-f1600-x4 scalar/Armv8.4-A Neon
hybrid gets the best of the fast scalar implementation and the SHA-3 instruc-
tions. This implementation leverages the maximum throughput of 5 IPC for
Cortex-A710: 4 IPC for the scalar implementation, and 1 IPC for the Neon
implementation. This also explains why the Scalar/Neon/Neon hybrid is worse
than the Scalar/Neon hybrid: There is no bandwidth to leverage all four scalar
units and both Neon units in every cycle.

Cortex-X1 and Cortex-X2. For scalar Keccak-f1600, we get essentially the
same performance as for Cortex-A78 and Cortex-A710, and the same comments
apply – this is unsurprising given that Cortex-{A78,A710,X1,X2} all have the
same throughput and latency for the relevant scalar instructions.

Next, we look at the performance of the Armv8-A Neon implementations. We
observe that it is 5%–10% faster than 2× the scalar implementation – i.e., for
batched computations of Keccak-f1600, scalar and Armv8-A Neon implemen-
tation are roughly on par. We also note that the performance is lower than what
the theoretical maximum of 4 Neon IPC for Cortex-X1 and Cortex-X2 would
suggest: With 3840 Neon arithmetic instructions, one could hope for ≈ 1000
cycles. We believe that the difficulty in going significantly beyond 3 IPC lies in
the Keccak-f1600 computation “narrowing” at the θ step, and in the SHL+SRI-
based rotations having a maximum IPC of 2 (see Sect. 4.2). Nonetheless, we
cannot exclude further optimization potential, and encourage research.

The roughly equal performance of scalar and Armv8-A Neon implementation
motivates why we pair 2× and 1× Keccak-f1600-x2 when constructing the
Scalar/Neon-Armv8-A hybrid for Keccak-f1600-x4. We observe that the hybrid
is only slightly above the theoretical optimum, confirming that the frontends of
Cortex-X1 and Cortex-X2 are wide enough to process both implementations.

Next, we comment on the performance of the Armv8.4-A Neon implementa-
tion on Cortex-X2. First, one observes that the pure Armv8.4-A implementation
is slower than the Armv8-A implementation. While this may come as a sur-
prise, the reason is clear: The SHA-3 instructions are implemented on 1 out of
4 Neon units, while the logical operations underlying the Armv8-A implemen-
tation are available on all units. Accordingly, we observe a significant speedup
for the Neon/Neon hybrid, since it puts all Neon units to use. In fact, this
hybrid is sufficiently fast to make a 3-way batched Scalar/Neon/Neon hybrid
useful, and this implementation yields the best batched performance. A 4-way
batched Scalar/Neon/Neon implementation brings little benefit compared to a
Scalar/Armv8-A Neon hybrid: that’s because the bottleneck is the scalar code
anyway.

5.3 SPHINCS+ Performance

Table 2 shows the performance of SPHINCS+ (v3.1) based on our Keccak-f1600
implementations, in comparison to previous implementations. We only display

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 291

Table 2. Performance results for SPHINCS+. For each platform, we pick the
Keccak-f1600 implementation that achieves the best performance.

Parameter set Impl. Key generation Signing Verification

Cortex-X1

128f-robust C [Kee] 7 358k 170 826k 11 503k

[Ngu] 6 112k (1.00 ×) 141 857k (1.00 ×) 9 835k (1.00 ×)

Ours 3 491k (1.75 ×) 81 198k (1.75 ×) 5 881k (1.67 ×)

128s-robust C [Kee] 470 976k 3 546 272k 4 168k

[Ngu] 391 075k (1.00 ×) 2 937 624k (1.00 ×) 3 634k (1.00 ×)

Ours 223 778k (1.75 ×) 1 681 496k (1.75 ×) 2 139k (1.70 ×)

Cortex-A78

128f-robust C [Kee] 7 507k (1.00 ×) 174 285k (1.00 ×) 11 912k (1.00 ×)

[Ngu] 10 731k 249 061k 16 939k

Ours 5 043k (1.49 ×) 117 280k (1.49 ×) 7 949k (1.50 ×)

128s-robust C [Kee] 479 608k (1.00 ×) 3 603 102k (1.00 ×) 4 277k (1.00 ×)

[Ngu] 686 059k 5 153 452k 6 359k

Ours 262 264k (1.83 ×) 2 029 133k (1.78 ×) 2 534k (1.69 ×)

Cortex-A55

128f-robust C [Kee] 18 035k (1.00 ×) 418 555k (1.00 ×) 27 322k (1.00 ×)

[Ngu] 23 444k 544 203k 37 017k

Ours 13 078k (1.38 ×) 304 188k (1.38 ×) 21 855k (1.25 ×)

128s-robust C [Kee] 1 153 927k (1.00 ×) 8 667 372k (1.00 ×) 10 415k (1.00 ×)

[Ngu] 1 500 186k 11 269 260k 13 301k

Ours 835 847k (1.38 ×) 6 278 826k (1.38 ×) 6 916k (1.51 ×)

Cortex-X2

128f-robust C [Kee] 7 481k 173 680k 11 409k

[Ngu] 5 946k (1.00 ×) 138 094k (1.00 ×) 9 400k (1.00 ×)

[Wes] 6 930k 160 942k 11 298k

Ours 3 315k (1.79 ×) 77 038k (1.79 ×) 5 544k (1.70 ×)

128s-robust C [Kee] 479 373k 3 601 405k 4 374k

[Ngu] 381 170k (1.00 ×) 2 863 365k (1.00 ×) 3 312k (1.00 ×)

[Wes] 443 343k 3 330 902k 3 937k

Ours 194 295k (1.96 ×) 1 517 988k (1.89 ×) 1 849k (1.79 ×)

Cortex-A710

128f-robust C [Kee] 7 571k 175 706k 11 796k

[Ngu] 10 641k 247 082k 17 210k

[Wes] 6 980k (1.00 ×) 162 090k (1.00 ×) 11 338k (1.00 ×)

Ours 3 743k (1.86 ×) 87 052k (1.86 ×) 6 071k (1.87 ×)

128s-robust C [Kee] 483 664k 3 633 790k 4 194k

[Ngu] 681 006k 5 118 302k 6 188k

[Wes] 446 644k (1.00 ×) 3 356 044k (1.00 ×) 3 850k (1.00 ×)

Ours 239 634k (1.86 ×) 1 800 720k (1.86 ×) 2 147k (1.79 ×)

Cortex-A510

128f-robust C [Kee] 13 787k 315 780k 21 640k

[Ngu] 15 270k 354 191k 24 771k

[Wes] 10 600k (1.00 ×) 245 623k (1.00 ×) 16 866k (1.00 ×)

Ours 5 428k (1.95 ×) 125 818k (1.95 ×) 8 920k (1.89 ×)

128s-robust C [Kee] 871 396k 6 548 093k 7 969k

[Ngu] 974 307k 7 322 458k 8 397k

[Wes] 661 699k (1.00 ×) 4 991 715k (1.00 ×) 5 791k (1.00 ×)

Ours 347 614k (1.90 ×) 2 610 123k (1.91 ×) 3 322k (1.74 ×)

292 H. Becker and M. J. Kannwischer

results for the “robust” 128-bit parameter sets, but note that our implementations
work for all other parameter sets, too, and show similar speedups. Full results
are available alongside the code. We see significant performance improvements
of up to 1.89× compared to the state of the art.

Acknowledgments. Matthias J. Kannwischer was supported by the Taiwan Ministry
of Science and Technology through Academia Sinica Investigator Award AS-IA-109-
M01 and the Executive Yuan Data Safety and Talent Cultivation Project (AS-KPQ-
109-DSTCP).

References

[ACD+22] Alagic, G., et al.: Status report on the third round of the NIST
post-quantum cryptography standardization process, 2022-07-05 04:07:00
(2022)

[Arma] Arm Limited: Cortex-A510 Software Optimization Guide
[Armb] Arm Limited: Cortex-A55 Software Optimization Guide
[Armc] Arm Limited: Cortex-A710 Software Optimization Guide
[Armd] Arm Limited: Cortex-A78 Software Optimization Guide
[Arme] Arm Limited: Cortex-X1 Software Optimization Guide
[Armf] Arm Limited: Cortex-X2 Software Optimization Guide

[BDH+] Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van
Keer, R.: Keccak. https://keccak.team/keccak.html

[BDH11] Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward
secure signature scheme based on minimal security assumptions. In: Yang,
B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8

[BDP+18] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R., Vigu-
ier, B.: KangarooTwelve: Fast Hashing Based on Keccak-p. In: Pre-
neel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 400–
418. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-
0_21

[BHH+15] Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signa-
tures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5_15

[BHK+21] Becker, H., Hwang, V., Kannwischer, M.J., Yang, B.-Y., Yang, S.-Y.: Neon
NTT: faster Dilithium, Kyber, and saber on Cortex-A72 and Apple M1.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 221–244 (2021)

[BS12] Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33027-8_19

[DHP+] Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
eXtended Keccak Code Package. https://github.com/XKCP/XKCP

[Dwo15] Dworkin, M.: SHA-3 standard: permutation-based hash and extendable-
output functions, 2015-08-04 (2015)

[HBD+22] Hülsing, A., et al.: SPHINCS+. Technical report (2022). https://sphincs.
org/

https://keccak.team/keccak.html
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-33027-8_19
https://github.com/XKCP/XKCP
https://sphincs.org/
https://sphincs.org/

Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ 293

[HBG+18] Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS:
eXtended merkle signature scheme. RFC 8391, May 2018. https://rfc-
editor.org/rfc/rfc8391.txt

[Hül13] Hülsing, A.: W-OTS+ – shorter signatures for hash-based signa-
ture schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.)
AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38553-7_10

[Kee] Van Keer, R.: “simple” Keccak C implementation in SUPERCOP
(crypto_hash/keccakc512/simple). https://bench.cr.yp.to/supercop.html

[Köl18] Kölbl, S.: Putting wings on SPHINCS. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 205–226. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3_10

[KPR+] Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.:
PQM4: post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4

[LDK+22] Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report
(2022). https://pq-crystals.org/dilithium/

[Len19] Lenngren, E.: AArch64 optimized implementation for X25519 (2019).
https://github.com/Emill/X25519-AArch64

[MCF19] McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali hash-based signa-
tures. RFC 8554, April 2019. https://rfc-editor.org/rfc/rfc8554.txt

[Nat13] National Institute of Standards and Technology: FIPS186-4: Digital Sig-
nature Standard (DSS) (2013). https://doi.org/10.6028/NIST.FIPS.186-
4

[Nat18] National Institute of Standards and Technology: NIST SP 800-56A Rev.
3: Recommendation for Pair-Wise Key-Establishment Schemes Using Dis-
crete Logarithm Cryptography (2018). https://doi.org/10.6028/NIST.SP.
800-56Ar3

[Nat19] National Institute of Standards and Technology: NIST SP 800-56B Rev.
2: Recommendation for Pair-Wise Key-Establishment Using Integer Fac-
torization Cryptography (2019). https://doi.org/10.6028/NIST.SP.800-
56Br2

[NG21] Nguyen, D.T., Gaj, K.: Fast NEON-based multiplication for lattice-based
NIST post-quantum cryptography finalists. In: Cheon, J.H., Tillich, J.-
P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 234–254. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_13

[Ngu] Nguyen, D.T.: Armv8-A Neon implementation for Keccak-f1600. https://
github.com/cothan/NEON-SHA3_2x

[NIS16] NIST Computer Security Division. Post-Quantum Cryptography
Standardization (2016). https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

[PFH+22] Prest, T., et al.: FALCON. Technical report (2022). https://falcon-sign.
info/

[SAB+22] Schwabe, P., et al.: CRYSTALS-KYBER. Technical report (2022).
https://pq-crystals.org/kyber/

[Wes] Westerbaan, B.: ARMV8.4-A implementation for Keccak-f1600. https://
github.com/bwesterb/armed-keccak

https://rfc-editor.org/rfc/rfc8391.txt
https://rfc-editor.org/rfc/rfc8391.txt
https://doi.org/10.1007/978-3-642-38553-7_10
https://bench.cr.yp.to/supercop.html
https://doi.org/10.1007/978-3-319-79063-3_10
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://pq-crystals.org/dilithium/
https://github.com/Emill/X25519-AArch64
https://rfc-editor.org/rfc/rfc8554.txt
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.1007/978-3-030-81293-5_13
https://github.com/cothan/NEON-SHA3_2x
https://github.com/cothan/NEON-SHA3_2x
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://falcon-sign.info/
https://falcon-sign.info/
https://pq-crystals.org/kyber/
https://github.com/bwesterb/armed-keccak
https://github.com/bwesterb/armed-keccak

Parallel Isogeny Path Finding
with Limited Memory

Emanuele Bellini1 , Jorge Chavez-Saab1,3(B), Jesús-Javier Chi-Domı́nguez1 ,
Andre Esser1 , Sorina Ionica2 , Luis Rivera-Zamarripa1 ,

Francisco Rodŕıguez-Henŕıquez1,3, Monika Trimoska4, and Floyd Zweydinger5

1 Technology Innovation Institute, Abu Dhabi, United Arab Emirates
{emanuele.bellini,jorge.saab,jesus.dominguez,andre.esser,

luis.zamarripa,francisco.rodriguez}@tii.ae
2 Université de Picardie Jules Verne, Amiens, France

sorina.ionica@u-picardie.fr
3 CINVESTAV-IPN, Mexico City, Mexico

francisco@cs.cinvestav.mx
4 Radboud University, Nijmegen, The Netherlands

monika.trimoska@ru.nl
5 Ruhr University Bochum, Bochum, Germany

floyd.zweydinger@rub.de

Abstract. The security guarantees of most isogeny-based protocols rely
on the computational hardness of finding an isogeny between two super-
singular isogenous curves defined over a prime field Fq with q a power
of a large prime p. In most scenarios, the isogeny is known to be of
degree �e for some small prime �. We call this problem the Supersingu-
lar Fixed-Degree Isogeny Path (SIPFD) problem. It is believed that the
most general version of SIPFD is not solvable faster than in exponential
time by classical as well as quantum attackers.

In a classical setting, a meet-in-the-middle algorithm is the fastest
known strategy for solving the SIPFD . However, due to its stringent
memory requirements, it quickly becomes infeasible for moderately large
SIPFD instances. In a practical setting, one has therefore to resort to
time-memory trade-offs to instantiate attacks on the SIPFD . This is
particularly true for GPU platforms, which are inherently more memory-
constrained than CPU architectures. In such a setting, a van Oorschot-
Wiener-based collision finding algorithm offers a better asymptotic scal-
ing. Finding the best algorithmic choice for solving instances under a
fixed prime size, memory budget and computational platform remains
so far an open problem.

To answer this question, we present a precise estimation of the costs
of both strategies considering most recent algorithmic improvements.
As a second main contribution, we substantiate our estimations via
optimized software implementations of both algorithms. In this con-
text, we provide the first optimized GPU implementation of the van
Oorschot-Wiener approach for solving the SIPFD . Based on practical
measurements we extrapolate the running times for solving different-
sized instances. Finally, we give estimates of the costs of computing

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 294–316, 2022.
https://doi.org/10.1007/978-3-031-22912-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_13&domain=pdf
http://orcid.org/0000-0002-2349-0247
http://orcid.org/0000-0002-9753-7263
http://orcid.org/0000-0001-5806-3600
http://orcid.org/0000-0003-4038-454X
http://orcid.org/0000-0002-1779-421X
https://doi.org/10.1007/978-3-031-22912-1_13

Parallel Isogeny Path Finding with Limited Memory 295

a degree-288 isogeny using our CUDA software library running on an
NVIDIA A100 GPU server.

Keywords: Isogenies · Cryptanalysis · GPU · Golden collision
search · Meet-in-the-middle · Time-memory trade-offs · Efficient
implementation

1 Introduction

Let E0 and E1 be two supersingular isogenous elliptic curves defined over a finite
field Fq, with q a power of a large prime p. Computing an isogeny φ : E0 → E1 is
believed to be hard in the classical as well as the quantum setting and is known as
the Supersingular Isogeny Path (SIP) problem. In many scenarios, the isogeny is
of known degree �e for some small prime � and we refer to this variant as the Super-
singular Fixed-Degree Isogeny Path (SIPFD) problem. Investigating the concrete
computational hardness of SIPFD and the best approaches to tackle it in multi-
and many-core CPU and GPU platforms, is the main focus of this work.

In the context of cryptographic protocols, SIP was first studied by Charles,
Goren and Lauter [6]. They reduced the collision resistance of a provably secure
hash function to the problem of finding two isogenies of equal degree �n for a
small prime � and n ∈ Z between any two supersingular elliptic curves. This in
turn may also be tackled as a SIPFD problem.

Variants of the SIPFD problem form the basis of several isogeny-based signa-
tures [17,33]. Further, SIPFD has been used as foundation of recently proposed
cryptographic primitives such as Verifiable Delay Functions [7,11]. Based on the
intractability of the SIPFD problem, Jao and De Feo proposed the Supersingu-
lar Isogeny-based Diffie-Hellman key exchange protocol (SIDH) [10,18]. Apart
from revealing the isogeny degree, SIDH also reveals the evaluation of its secret
isogenies at a large torsion subgroup. This weaker variant of SIPFD was dubbed
as the Computational Supersingular Isogeny (CSSI) problem [10]. SIKE [2], a
variant of SIDH equipped with a key encapsulation mechanism, was one of the
few schemes that made it to the fourth round of the NIST standardization effort
as a KEM candidate [25]. Until recently, the best-known algorithms for break-
ing SIDH or SIKE had an exponential time complexity in both, classical and
quantum settings.

However, in July 2022, Castryck and Decru [5] proposed a surprising attack
that (heuristically) solves the CSSI problem in polynomial-time. This attack
relies on the knowledge of three crucial pieces of information, namely, (i) the
degree of the isogeny φ; (ii) the endomorphism ring of the starting curve E0;
and (iii) the images φ(P0), φ(Q0) of Alice’s generator points 〈P0, Q0〉 = E[2a],
where the prime p = 2a3b − 1 is the underlying prime used by SIKE instantia-
tions. Recall that (ii) and (iii) are only known in the specific case of the CSSI
problem, but not in the more general case of the SIPFD problem. Furthermore,
another attack by Maino and Martindale [21] and yet another one by Robert [27]
quickly followed. Maino and Martindale’s attack relies on several crucial steps

296 E. Bellini et al.

used in [5], but does not require knowledge of the endomorphism ring associated
to the base curve. Robert’s attack can also break SIDH for any random starting
supersingular elliptic curve.

Despite the short time elapsed since the publication of Castryck and Decru’s
attack, several countermeasures have already been proposed by trying to hide
the degree of the isogeny [24], the endomorphism ring of the base curve [4],
or the images of the torsion points [15]. At this point, only time will tell if
SIDH/SIKE will ever recover from the attacks on the CSSI problem. But even
if this never happens, the theoretical and practical importance of the SIPFD
problem still stands. For instance, the constructions from [17, Section 4], [7],
and [20, Section 5.3] do not append images of auxiliary points to their public
keys. In turn the Castryck-Decru family of attacks does not apply, making the
security of those applications entirely based on the SIPFD problem.

Known Attacks on the SIPFD Problem. Even before the publication of
the attack in [5], it was wildly believed that the best approaches for solving
the CSSI problem are classical and not quantum [19]. Here we present a brief
summary of the different assumptions made across the last decade about the
cost of solving the SIPFD problem. We stress that while all these advances were
made with SIKE as main motivation, the fact that they did not make use of
the torsion point images means that they still represent the state-of-the-art for
attacks against the general SIPFD problem. The fastest known algorithm for
solving SIP has computational complexity Õ(

√
p) [13,16,22]. However, if the

secret isogeny is of known degree �e, there might exist more efficient algorithms
for solving the SIPFD . Indeed, in their NIST first round submission, the SIKE
team [2] argued that the best classical attack against the CSSI problem was
to treat it as an SIPFD problem and use a MitM approach with a time and
memory cost of O(�

e
2), which is more efficient for SIKE and all instantiations of

the SIPFD where �e ≤ p.
By assuming an unlimited memory budget and memory queries with zero

time cost, the MitM attack is indeed the best attack against the SIPFD problem.
Nevertheless, in [1], the authors argued that the van Oorschot-Wiener (vOW)
golden collision search, which yields a better time-memory trade-off curve, is
the best classical approach for large instances. The rationale used is that the
O(�

e
2) memory requirement for launching the MitM attack is infeasible for the

cryptographic parameter sizes. Since the best known generic attacks against
AES use a negligible amount of memory, it is just natural to set an upper bound
on the available classical memory when evaluating the cost of solving SIPFD
instantiations in the context of NIST security levels 1 to 5.

To increase interest in studying the CSSI problem Costello published in [8]
two Microsoft $IKE challenges, a small and a large one using a 182- and a 217-bit
prime number, respectively. These two CSSI instances are known as $IKEp182
and $IKEp217 challenges.1 A few months later, the solution of $IKEp182 was
1 The precise specifications can be found in https://github.com/microsoft/SIKE-

challenges.

https://github.com/microsoft/SIKE-challenges
https://github.com/microsoft/SIKE-challenges

Parallel Isogeny Path Finding with Limited Memory 297

announced by Udovenko and Vitto in [30]. The authors treated this challenge
as an instance of SIPFD , and then used a MitM approach largely following
the description given in [9] along with several clever sorting and sieving tricks
for optimizing data queries for their disk-based storage solution. The authors
reported that their attack had a timing cost of less than 10 core-years, but at
the price of using 256 TiB of high-performance network storage memory.

It is obvious that this memory requirements quickly render the strategy
unfeasible for larger non-toy instances. As mentioned in [1], there exists a
time-memory trade-off variant of the MitM algorithm (cf. Sect. 2.2), which was
adopted by Udovenko and Vitto to bring the storage requirements of their attack
down to about 70 TiB.

However, determining the best algorithmic choice for solving instances of
given size under a certain memory budget and computational platform remains
so far an open problem. In this work we present a framework predicting that
both MitM variants are outperformed by the vOW golden collision approach
even for moderately large SIPFD instances. We then substantiate our claims
by extrapolating results of our implementations, accounting for practical effects
such as memory access costs.

Our Contributions. In [1] it was found that vOW is a better approach than
MitM to tackle large SIPFD instances. However, the small Microsoft challenge
$IKEp182 was broken, before the Castryck-Decru attack was known, using a MitM
strategy [30]. As discussed in [30], it remains unclear for which instance sizes and
memory availability, vOWoutperformsMitM. In thisworkwe answer this question
from a theoretical and practical perspective. Theoretically, we give a precise esti-
mation of the costs of both strategies including most recent algorithmic improve-
ments. Practically we substantiate our estimations via optimized implementations
and extensive benchmarking performed in CPU and GPU platforms.

Moreover, in the case of CPU platforms, we present a detailed framework
that for a fixed memory budget and prime size, predicts when a pure MitM app-
roach, batched (limited memory) MitM or vOW approach becomes the optimal
design choice for attacking SIPFD (see Sect. 3 and Fig. 2). The predictions of our
model are backed up by practical experiments on small SIPFD instances and
extrapolations based on the obtained practical timings of our implementations.

We additionally provide the first optimized GPU implementation of the vOW
attack on SIPFD , outperforming a CPU based implementation by a factor of
almost two magnitudes. We provide medium sized experimental data points
using our GPU implementation including extrapolations to larger instances.
More concretely, our implementation solves SIPFD instances with isogeny degree
288 with primes of bit size 180 (comparable to the instance solved in [30]) using
16 GPUs each equipped with only 80 GiB of memory in about 4 months. Based
on our experimental results we conclude that vOW is the preferred choice for
any larger SIPFD instances on reasonable hardware.

Our CPU and GPU software libraries are open-source and available at
https://github.com/TheSIPFDTeam/SIPFD.

https://github.com/TheSIPFDTeam/SIPFD

298 E. Bellini et al.

Outline. The remainder of this work is organized as follows. In Sect. 2 we
present a formal definition of SIPFD and relevant mathematical background.
We also give a detailed explanation of the MitM and vOW strategies. In Sect. 3
we present a careful estimation of the cost of the MitM and vOW strategies and
their corresponding trade-offs in the context of the SIPFD . In Sect. 4 we present
our implementation of the CPU-based MitM attack and the vOW strategy on a
multi-core GPU platform.

2 Preliminaries

2.1 Elliptic Curves and Isogenies

Let Fp be the prime field with p elements and let E be a supersingular elliptic
curve defined over Fp2 . A common choice, convenient for implementations, is to
choose p such that p ≡ 3 mod 4, and take Fp2 = Fp[i]/(i2 + 1) the quadratic
extension of Fp. Moreover, we will assume that E is given by a Montgomery
equation:

E : y2 = x3 + Ax2 + x, A ∈ Fp2 \ {±2}.

The set of points satisfying this equation along with a point at infinity OE

form an abelian group. The point OE plays the role of the neutral element. In
general, we write the sum of d copies of P as [d]P and if k is the smallest scalar
such that [k]P = OE , we say that P is an order-k elliptic curve point. The d-
torsion subgroup, denoted by E[d], is the set of points {P ∈ E(Fp) | [d]P = OE}.
If gcd(p, d) = 1, then E[d], as a subgroup of E, is isomorphic to Z/nZ × Z/nZ.

The j-invariant of the curve E is given by j(E) := 256(A2−3)
3

A2−4 . It has the useful
property that two curves are isomorphic if and only if they have the same j-
invariant.

An isogeny φ : E → E′ is a rational map (roughly speaking a pair of quo-
tient of polynomials) such that φ(OE) = OE′ . This implies that φ is a group
homomorphism (see for instance [32]). By a theorem of Tate [28], an isogeny
defined over Fp2 exists if and only if #E(Fp2) = #E′(Fp2). If there is an isogeny
φ between E and E′, then we say that the two curves are isogenous. The kernel
ker φ is the set of points in the domain curve E which are mapped to the iden-
tity point OE′ . If we restrict to separable maps only, any isogeny φ is uniquely
determined by its kernel up to an isomorphism. We say φ is a d-isogeny or an
isogeny of degree d whenever #ker φ = d. Any isogeny can be written as a com-
position of prime-degree isogenies and the degree is multiplicative, in the sense
that deg(φ1 ◦ φ2) = deg(φ1) deg(φ2).

For each isogeny φ : E → E′ there also exists a dual d-isogeny φ̂ : E′ → E
satisfying φ ◦ φ̂ = [d] and φ̂ ◦ φ = [d], where [d] is the isogeny P → [d]P on E
and E′ respectively. Isogenies of degree d are computed in time O(d) by using
Vélu’s formulas, or for sufficiently large d in O(

√
d), using the more recent

√
élu’s

formulas [3]. In practice, if the degree is de with d small, one splits a de-isogeny
as the composition of e d-isogenies each computed with Vélu’s formula.

We are now ready to state a formal definition of the SIPFD problem.

Parallel Isogeny Path Finding with Limited Memory 299

Definition 1 (SIPFD problem). Let p, � be two prime numbers. Consider E
and E′ two supersingular elliptic curves defined over Fp2 such that #E(Fp2) =
#E′(Fp2). Given e ∈ N find an isogeny of degree �e from E to E′, if it exists.

Concretely, in the remainder of this work we assume that the secret isogeny
is of degree 2e i.e., we fix � = 2, and define it over Fp2 . Moreover, we assume
p = f ·2e−1 for some odd cofactor f and that #E(Fp2) = (p + 1)2. This allows us
to have the 2e-torsion subgroup defined over Fp2 . Finally, we work with instances
where e is half the bitlength of the prime p. While all these conditions are more
specific than the general SIPFD problem, they are efficiency-oriented decisions
that are common practice in isogeny-based protocols and we do not exploit them
beyond that.

Let P,Q be a basis of E[2e]. Then the kernel of any 2e-isogeny can be written
as either 〈P + [sk]Q〉, with sk ∈ {0, . . . , 2e − 1} or 〈[sk][2]P + Q〉, with sk ∈
{0, . . . , 2e−1 − 1}. For simplicity, in our implementation we work with isogeny
kernels are always of the form 〈P +[sk]Q〉. There is little loss of generality, since
attacking the remaining kernels would only require re-labelling the basis and
re-running the algorithm.

An isogeny φ : E0 → E1 of degree �e can be written as a composition
φ = φ1 ◦ φ0 of two isogenies of degree �e/2 (assuming an even e for simplicity),
where φ0 : E0 → Em and φ1 : Em → E1 for some middle curve Em. Since there
exists a dual isogeny φ̂1 : E1 → Em, one can conduct a Meet in the Middle
(MitM) attack by exploring all the possible �e/2-isogenies emanating from E0

and E1, and finding the pair of isogenies that arrive to the same curve Em (up
to isomorphism). The largest attack recorded on the SIPFD problem, conducted
by Udovenko and Vitto2 [30], used this strategy to break an instance with � = 2
and e = 88.

2.2 Meet in the Middle (MitM)

Let us briefly recall the MitM procedure to solve the SIPFD for � = 2. We first
compute and store all 2e/2-isogenous curves to E0 in a table T (identified via
their j-invariants). Then we proceed by computing each 2e/2-isogenous curve to
E1 and check if its j-invariant is present in table T . Any matching pair then
allows to recover the secret isogeny as outlined in the previous section.

Complexity. Let N := 2e/2. The worst-case time complexity of the MitM attack
is 2N evaluations of degree-2e/2 isogenies, while in the average case 1.5N such
evaluations are necessary. The space complexity is dominated by the size of the
table to store the N j-invariants and scalars.

In a memory restricted setting, where the table size is limited to W entries,
the MitM attack is performed in batches. In each batch, we compute and store
the output of W isogenies from E0, then compute and compare against each

2 This work was realized as an attack on SIKE, but does not exploit the torsion point
images and can be regarded as an attack on SIPFD in general.

300 E. Bellini et al.

of the N isogenies from E1 without storing them. The number of batches is
N/W where each batch performs W isogenies from E0 and N isogenies from E1,
yielding a total of N

W (N + W) evaluations of 2e/2-isogenies.

Depth-First Search Methodology. In 2018, Adj et al. [1, §3.2] showed that
computing the isogenies from each side in a depth-first tree fashion yields perfor-
mance improvements. The improvement stems from the iterative construction of
the 2e/2-isogenies as e/2 degree-2 isogenies. Here, whenever two isogenies share
the same initial path, the depth-first approach avoids re-computation of those
steps.

In order to adapt to the limited-memory scenario, let us assume that the
available memory can hold W = 2ω entries. Then each batch of isogenies from
E0 can be obtained by following a fixed path for the first e/2−ω steps, and then
computing the whole subtree of depth ω from this node.

Also, the attack is easy to parallelize. Assuming 2c threads are used, all trees
can be branched sequentially for c steps to obtain 2c subtrees, each of which is
assigned to a different core. This methodology for evaluating trees in batches
and with multiple cores is summarized in Fig. 1.

Fig. 1. The batched Meet-in-the-Middle depth-first approach: finding a 2e-isogeny
between E0 and E1 with 2c cores and 2ω memory. In this example, e = 12, c = 2,
and ω = 4.

Since a binary tree of depth ω has 2ω+1 − 2 edges, each batch is computing
e/2 − ω + 2ω+1 − 2 isogenies of degree 2 for the side corresponding to E0, and
the whole tree with 2e/2+1 − 2 isogenies for the side corresponding to E1. The
expected cost corresponding to half of the batches is then

Parallel Isogeny Path Finding with Limited Memory 301

1
2
2e/2−ω

(
2e/2+1 + 2ω+1 + e/2 − ω − 4

)
≈ 2e−ω

computations of 2-isogenies.

2.3 Parallel Collision Search

Given a random function f : S → S, van Oorschot and Wiener’s method [26]
is a parallel procedure to find collisions in f . The main idea of the algorithm
is to construct in parallel several chains of evaluations xi = f(xi−1), starting
from random seeds x0. Further, a small fraction of the points in S is called
distinguished based on an arbitrary criterion (e.g. that the binary representation
of x ∈ S ends with a certain number of zeros). A chain continues until it reaches
a distinguished point. Then this point is compared against a hash table including
all previously found distinguished points. Further, to avoid infinite loops, chains
are aborted after their length exceeds a specified threshold.

Two chains ending in the same distinguished point indicate a collision
between those chains. This collision can be efficiently reconstructed if the seeds
x0, x

′
0 and the lengths d, d′ of the colliding chains are known. Therefore, assum-

ing d > d′ we take d−d′ steps on the longer chain (starting from x0). From there
on we take simultaneous steps on both chains, checking after each step if the
collision has occurred. Hence, the hash table stores for each found distinguished
point the triplet (x0, xd, d) indexed by xd.

Complexity. Let N be the size of the set S, θ the proportion of points that are
distinguished, and W the amount of distinguished triplets that we can store.
Since each chain has an average length of 1/θ, the chains represented by the
stored triplets (once the hash table is completely filled) include an average of
W/θ points. Therefore the probability that a given evaluation of f collides with
any of these points is W/Nθ. After a collision takes place, the chain needs to
continue for an additional 1/θ steps on average before it reaches a distinguished
point and the collision is detected. At this point, the two involved chains must be
reconstructed from the start to find the exact step at which the collision occurred,
yielding a total of Nθ/W + 3/θ evaluations of f to find a collision. The optimal
choice for θ is

√
3W/N yielding a cost of 2

√
3N/W per collision. Note, however

that this analysis assumes a table that already contains W triplets. To capture
the transition effect of the table filling up, van Oorschot and Wiener [26] model
θ = α

√
W/N for a parameter α that is experimentally measured to be optimal

at α = 2.25. The resulting cost per collision is found to be linear in
√

N/W as
long as 210 < W < N/210.

Note that any random function from S to itself is expected to have N/2
collisions, however, many applications, including the SIPFD , require looking for
one specific collision that we refer to as the “golden collision” [12,14,23,31].
This means that the attack has to find N/4 different collisions on average before
stumbling upon the golden collision, bringing the total cost to O(

√
N3/W)

function evaluations.

302 E. Bellini et al.

Application to the SIPFD Problem. To attack the SIPFD problem and
find the kernel of a degree-2e isogeny between E0 and E1, we assume for simplic-
ity that e is even and define S = {0, 1} × {0, . . . , 2e/2 − 1} so that N = 2e/2+1.
We also define the map g : S → Fp2 , (c, k) �→ j(Ec/〈Pc +[k]Qc〉), where (Pc, Qc)
are a predefined basis of the 2e/2-torsion on either side as before. As explained
in Sect. 2.1, the function g yields a bijection between S and the set of 2e/2-
isogenies with kernel 〈Pc + [k]Qc〉 from the curves on either side. A collision
g(c, k) = g(c′, k′) with c �= c′ implies two isogenous curves starting on opposite
sides and meeting at a middle curve (up to isomorphism).

To apply the parallel collision search, we need a function f that maps S back
to itself. Hence, we have to work with the composition f = h ◦ g where h is an
arbitrary function mapping j-invariants back to S. This composition introduces
several fake collisions that are produced by the underlying hash function while
there is still only one (golden) collision that leads to the secret isogeny.

Note that for a certain (unlucky) choice of hash function h the golden collision
might not be detectable.3 Therefore, we have to periodically switch the hash
function h. More precisely, we switch the function whenever we found a certain
amount C of distinguished points. If we model C = β · W for some constant
β, then each hash function will have a probability of 2βW/N for finding the
golden collision. Experimentally, van Oorschot and Wiener [26] found β = 10
to perform best, and the average running time of the attack is measured to
be (2.5

√
N3/W)/m, where m is the number of processors computing paths in

parallel.

3 Accurate Formulas for vOW and MitM

So far, we have provided theoretical cost functions for the golden collision search
in terms of the number of evaluations of the function f , and for the batched
depth-first MitM in terms of the number of 2-isogeny evaluations. We now pro-
vide a more detailed cost model in terms of elliptic curve operations to make
these costs directly comparable. These formulas give a first indication of which
memory regime favors which algorithm and, further, they form the starting point
for parameter selection in our implementation.

3.1 Meet in the Middle

For the depth-first MitM, we have counted only the 2-isogeny evaluations but
the total cost involves also obtaining the kernel points of each isogeny and push-
ing the basis points through the isogeny. As described in [1], the total cost of
processing a node at depth d can be summarized as:

– 2e/2−d point doublings to compute the kernel points
– 2 isogeny constructions to compute the children nodes
3 For instance, one of the points that leads to the golden collision might be part of a

cycle that does not reach a distinguished point.

Parallel Isogeny Path Finding with Limited Memory 303

– 1 point doubling, 1 point addition, and 6 isogeny evaluations to push the basis
through the isogenies.

Nodes at the second-to-last level represent an exception since once we obtain the
leaves, we no longer require pushing the bases and instead we need to compute
the j-invariant.

Let us refer by ADD, DBL, ISOG, EVAL, JINV to the cost of a point addition,
point doubling, 2-isogeny construction, 2-isogeny evaluation at a point, and j-
invariant computation, respectively. The total cost of computing a tree of depth
e/2 is then

DFS(e/2) =
e/2−2∑
d=0

2d
(
(2e/2−d + 1)DBL + 2ISOG + 1ADD + 6EVAL

)

+ 2e/2−1 (2DBL + 2ISOG + 2JINV)

= 2e/2−1 ((e + 1)DBL + 4ISOG + 1ADD + 6EVAL + 2JINV) + O(1).

The expected time of the whole MitM attack using 2ω memory entries, which
computes a tree of depth ω on one side and a tree of depth e/2 on the other side
for each batch, is then

MitM(e, ω) =
2e/2

2 · 2ω
(DFS(ω) + DFS(e/2))

≈ (2e−ω−2 + 2e/2−2) (DBL + 4ISOG + 1ADD + 6EVAL + 2JINV)

+ (2e−ω−2e/2 + 2e/2−2ω)DBL.

3.2 Golden Collision Search

For the golden collision search, the cost of an evaluation of the random function,
given a scalar k ∈ Z2e/2 and a bit c ∈ {0, 1}, consists of

– computing the kernel point Pi + [k]Qi,
– constructing a single 2e/2-isogeny with said kernel and
– computing the j-invariant of the output curve.

The first step is usually done with a three-point Montgomery ladder which
has an average cost of e

2 (DBL+ADD). For the second step, it is shown in [10] that
a “balanced” strategy for computing a 2e/2-isogeny costs about e

4 log(e/2)DBL+
e
4 log(e/2)EVAL+ e

2ISOG. Hence, the total expected sequential time of the golden
collision search is

GCS(e, ω) = 2.5 · 23(e/2+1)/2−ω/2

×
(e

4
log(e/2)(DBL + EVAL) +

e

2
ISOG + JINV +

e

2
(DBL + ADD)

)
.

304 E. Bellini et al.

3.3 Simplified Cost Models for Montgomery Curves

Assuming that we use Montgomery curve arithmetic, then the cost of curve
operations can be expressed in terms of field additions, multiplications, squares
and inverses (A, M, S, I, respectively) as follows (compare to [2])

DBL = 4A + 4M + 2S, ADD = 6A + 4M + 2S, ISOG = A + 2S and
EVAL = 6A + 4M, JINV = 8A + 3M + 4S + I.

Moreover, we assume M = 1.5S = 100A = 0.02I which we have obtained exper-
imentally from our quadratic field arithmetic implementation. The cost models
can then be written in units of M as

MitM(e, ω)/M ≈ 22799
600

(
2e−ω + 2e/2

)
+

403
300

(
2e−ω · e/2 + 2e/2 · ω

)
(1)

and

GCS(e, ω)/M ≈ 2.5 · 23(e/2+1)/2−ω/2

(
4181
75

+
1211
200

e +
283
120

e log(e/2)
)

(2)

For a given value of e and a memory budget ω, we can now determine which
algorithm is favorable. Figure 2 visualizes three different regions. For ω ≥ e/2
the full MitM attack without batching can be applied. The batched MitM attack
is found to have a narrow area of application at the border of the region where
the golden collision search is optimal, which dominates the largest part of the
limited-memory area.

Fig. 2. Regions in the (e, ω) space where each attack is optimal for solving a SIPFD
problem of size 2e with memory limited to 2w entries.

We would like to stress, that this comparison is based on idealized models
involving only underlying field arithmetic operations. They do not take into
account any practical effects, as e.g. memory access timings or parallelization
issues. Nevertheless, it gives a first indication of the superiority of the golden
collision search in the limited memory setting.

Parallel Isogeny Path Finding with Limited Memory 305

4 Practical Results on Solving the SIPFD

In this section we present our experimental results with a focus on our GPU
implementation of the van Oorschot and Wiener golden collision search. But
first, let us start with an experimental validation of our theoretical estimates of
the MitM algorithm and its batched version from Sect. 3.1.

4.1 Practical Results of Our MitM CPU Implementation

We have implemented the batched depth-first MitM attack and run experiments
on an AMD EPYC 7763 64-Core processor at 2.45 GHz, running 32 threads in
parallel.

The j-invariants in each batch are stored in RAM, along with the correspond-
ing scalar sk. Each processor maintains an array with j-invariants that have been
calculated and sort lexicographically, to reduce the number of memory accesses
when searching for the collision.

For measuring the performance of the batched depth-first MitM with the
memory parameter ω, we fix a small instance with exponent e = 50 and bench-
mark the attack for ω with 18 ≤ ω ≤ 25. These timings are compared to Eq. 1,
using a separate benchmark for the cost of M, i.e. a multiplication operation of our
implementation. As shown in Fig. 3, the experimental measurements are found
to adhere to the model up to an overhead factor of about 2, which is explained
by the memory access times and sorting overheads that are not accounted for in
Eq. 1.

Fig. 3. Completion time of the MitM attack for an exponent e = 50 using 32 physical
processors and different memory bounds compared to the prediction in Eq. 1.

We then tested the attack for increasing values of e while limiting the memory
to ω ≤ 28. For e > 56, the batched MitM must be used and we have estimated
the complexity of the whole attack by completing a single batch. As expected,
Fig. 4 shows that the slope of the cost changes drastically once we enter the
limited-memory region. The overhead factor between the experimental results
and the theoretical model is always found to be less than 2.6. We conclude that

306 E. Bellini et al.

Eq. 1 can be used to estimate the cost of the attack for larger parameters without
significant overhead.

Fig. 4. Completion time of the MitM attack for various exponent sizes.

For comparison, the instance solved by Udovenko and Vitto in [30] was in
the unlimited-memory setting using e = 88 and ω = 44. Based on our model
and adjusting to their clock frequency, we obtain an estimate of 9.47 core-years
for the attack. This is close to Udovenko and Vitto’s experimental result of 8.5
core-years, despite the fact that they used network storage.

4.2 Practical Considerations for Our vOW GPU Implementation

Let us give a brief explanation of the GPU architecture we used, followed by a
summary of practical features of our implementation.

GPU Architecture. An NVIDIA CUDA device allows to execute thousands
of threads in parallel. Following the Single Instructions Multiple Thread (SIMT)
paradigm, a collection of 32 threads is bundled in warps that can only perform
the same instruction on different data. One of the main challenges when pro-
gramming CUDA devices is to decrease the memory latency, i.e., the time the
threads are waiting for the data to be loaded into the corresponding registers.
Therefore all CUDA devices have a multiple-level memory hierarchy incorporat-
ing memory and caches of different size and speed.

The NVIDIA A100 has an 80 GB sized main memory, connected to other
GPUs in the same cluster via a high throughput bus called NVLINK. However,
for performing computations, data must be propagated through the two levels of
caches down to the registers. Each thread has only a very limited amount of these
registers. Whenever more registers are addressed than physically available, the
memory must be outsourced to other memory levels, causing latency and stalls.
Further, whenever more threads are requested than the hardware can handle con-
currently, a scheduling is performed, by swapping active threads against queued
ones. As a consequence, caches must be invalided, which leads to further memory
latency. However, there is usually an optimal number of concurrent threads such
that memory latency can be minimized by an optimal scheduling.

Parallel Isogeny Path Finding with Limited Memory 307

GPU Potential of vOW. Note that the major task performed inside the vOW
algorithm is the computation of chains of evaluations of the given function on
different inputs. Therefore, it fits into the SIMT paradigm and can effectively
be parallelized on the GPU. Further, since the devices are inherently memory-
constrained, they profit from the good asymptotic trade-off curve of the vOW
collision search.

Practical Features

Hash Function. For performance improvements, we heuristically model hash
functions with �-bit output as the projection to the first � bits of the input.
To obtain a randomized version we xor a fixed random nonce to the output.
That is, for a given nonce r ∈ F

�
2 the hash function hr : F∗

2 �→ F
�
2 is defined as

hr(x) := (x1, . . . , x�) + r. This is justified by the fact that the inputs usually
inherit already enough randomness, which is confirmed in our experiments.

Memory Optimizations. The bit-size of every triplet (x0, xd, d) is roughly e +
log(20/θ), since x0, xd encode 2e/2-isogenies and the length of each chain is
d < 20/θ. However, due to our hash function choice, we can omit log W bits of
xd referring to its address in the table, plus another log(1/θ) bits from the fact
that it is a distinguished point, giving a size of roughly e + log(20) − log W bits
per triplet.

PTX Assembly. We provide core functionalities of our GPU implementation in
PTX (Parallel Thread eXecution) assembly, which is the low level instruction set
of NVIDIA CUDA GPUs. This includes our own optimized Fp arithmetic. In this
context, we provide optimized version of both the schoolbook and the Karatsuba
algorithm for integer multiplication, as well as the Montgomery reduction.

Data Structure. For storing distinguished points we compare the performance
of a standard hash table against the Packed Radix-Tree-List (PRTL) proposed
in [29]. The PRTL is a hash table that stores a linked list at each address, instead
of single elements. This avoids the need for element replacement in case of hash
collisions. Further it identifies the address of an element via its prefix (radix)
and stores only the prefix-truncated element. The packed property of the PRTL
relates to distinguished point triplets being stored as a single bit-vector, thus,
avoiding the waste of space due to alignment. We ran CPU experiments with
both data structures to identify the optimal choice prior to translating the code
to the GPU setting. Eventually, we adopted the packed property and the use of
prefixes, while we found no improvement in performance from using linked lists.

Precomputation. As discussed in [9], the time Tf required for a function evalu-
ation can be decreased via precomputation. For a depth parameter d, one can
precompute the 2d curves corresponding to all the 2d−isogenies from E0 and
E1. When computing a 2e/2-isogeny, the initial d steps are replaced by a table

308 E. Bellini et al.

lookup and we end up computing only a 2e/2−d-isogeny. Note that the memory
needed for precomputation grows exponentially with d and so asymptotically
it does not play a relevant role. However, for relatively small parameters it can
provide valuable savings and speed up our experiments without affecting metrics
such as the number of calls to f .

4.3 Practical Results of Our vOW GPU Implementation

In the following we use the practical performance of our implementation together
with the known theoretical behavior to extrapolate the time to solve larger
instances. In the original work of van Oorschodt-Wiener the time complexity of
the procedure was found to be well approximated by

1
m

(2.5
√

N3/W) · Tf , (3)

where Tf is the cost per function evaluation. Therefore, we measure the cost Tf

of our implementation which then allows us to derive an estimate for arbitrary
instances. Further, we compare this estimate against the theoretical estimate
via Eq. 2 and an estimate based on collecting a certain amount of distinguished
points.

Additionally, we verify that our GPU implementation using the functions
specified in Sect. 2.3 has a similar behavior as the CPU implementation using
random functions of [26]. This increases the reliability in our estimates, as it
shows that the time complexity of our implementation is still well approximated
by Eq. 3. Let us start with this verification.

Verifying the Theoretical Behavior. In [26] van Oorschot and Wiener find
that on average it takes 0.45N

W randomized versions of the function to find the
solution, which in our case corresponds to random choices of the hash function
(compare to Sect. 2.3). In their experiments, the function is changed after β · W
distinguished points have been discovered, where a value of β = 10 is found to
be optimal. Further, chains are aborted after they reach a length of 20θ−1, i.e.,
20 times their expected length.

Optimal Value of β. Let us first verify that an amount of 10 · W distinguished
points until we abort the collision search for the current version of the function is
still a suitable choice for our implementation. Table 1 shows the average running
time of our vOW implementation using different values of β. We conclude that
the values around β = 10 give comparable performance, with β = 10 being
optimal in most of the experiments. The results are averaged over 100 (e = 34)
and 50 (e = 36) runs respectively.

Parallel Isogeny Path Finding with Limited Memory 309

Table 1. Running time in seconds for different values of β.

e ω β = 5 β = 10 β = 15 β = 20

34 8 405.08 384.74 371.67 335.88

9 244.30 198.86 238.60 285.97

10 173.73 207.37 136.80 179.93

36 9 704.65 567.89 654.15 599.61

10 419.87 373.16 489.71 542.00

11 398.72 365.62 314.26 290.49

Expected Number of Randomized Versions of the Function. Now that we con-
firmed the optimal choice of β, we expect that the required amount of random
functions until success also matches the one from [26]. In this case, the number
of required randomizations of the function until the golden collision is found
should follow a geometric distribution with parameter close to W

0.45N .
We confirm this distribution in an experiment for e = 30, in which case we

have N = 2e/2+1 = 216 and use a hash table that can store up to W = 27 dis-
tinguished points. We then solved 1000 such instances and recorded for each the
number of randomized versions of the function until the solution was found. On
average, it took 208.28 versions compared to the approximation of 0.45N

W = 230.4,
despite slightly surpassing the W ≤ N/210 limit where the vOW experiments
took place. In Fig. 5 we visualize the obtained frequencies (triangles) and give as
comparison the probabilities of the geometric distribution with parameter 1

208.27
(diamonds). In this figure we accumulated the frequencies in each interval of size
20 to allow for a better visualization.

Measuring the Time per Function Evaluation. Next we measured the time
per function evaluation that the GPU implementation requires on our hardware
for different values of e. To pick our parameters, we first set W to the largest
power of 2 such that the memory would not surpass our GPU’s 80 GB budget,

Fig. 5. Number of used randomizations to find the solution for e = 30, W = 27.

310 E. Bellini et al.

then chose the largest precomputation depth that would fit in the remaining
memory. In the smaller instances, the memory and precomputation depth were
additionally subject to a cap of W ≤ N/28 and d ≤ e/4 in the smaller instances.
After performing the precomputation, we measured the time per function evalu-
ation as illustrated in Fig. 6. The jumps in the graph indicate that the bitsize of
the used prime, which is roughly 2e, exceeds the next 64-bit boundary. In those
cases the prime occupies an additional register, which leads to a slowdown of
the Fp2 -arithmetic.

Fig. 6. Cost per function evaluation using 6912 threads in parallel. Each data point is
averaged over 4096 evaluations.

Performance Estimation Using a Single GPU. Now, the measured timings
allow us to estimate the time required by our implementation to solve larger
instances. To compute this estimate we use Eq. 3 with the measured value for
Tf and the number of concurrent threads m used on the GPU. The resulting
estimate is shown in Fig. 7 (diamonds).

Note that the steeper incline in the estimation for e > 62 stems from the
fact that for e = 62 we reach the maximum number of concurrent threads for
our implementation, which we find to be 27, 648 threads. Further, from e = 80
onwards we additionally hit our hash table memory limit of W = 233 elements.
We summarize in Table 2 optimal configurations for the SIPFD instances exe-
cuted on our single GPU platform.

Table 2. Optimal configurations for vOW on single GPU with 80 GB memory. Con-
figurations for e > 80 match the one of e = 80.

e 30 32 34 36 38 40 42 48 50 52 56 62 68 74 80

d 9 9 10 11 11 12 12 14 14 15 16 17 19 21 22

log W 8 9 10 11 12 13 14 17 18 19 21 24 27 30 33

Parallel Isogeny Path Finding with Limited Memory 311

Fig. 7. Estimated time to solve instances of SIPFD on a single GPU.

We also obtain an alternative estimate based on the time to finish one ver-
sion of the random function in the full implementation of the attack. That is,
we measure the time to obtain 10 · W distinguished points and then multiply
by the average number 0.45N

W of random functions needed. This method should
capture the performance more accurately as it includes practical effects such as
the memory access costs. For e ≤ 62 we averaged 100 experiments of completing
a random function, while for larger instances we decreased the number of exper-
iments and for e ≥ 76 we only computed a 1/210 fraction of the needed points
and scaled the resulting time accordingly. The results of this second estimation
are also shown in Fig. 7 (circles) and present an overhead factor of about 8. This
overhead is likely the result of imperfect parallelization speedups in GPUs, as
well as the cost of memory accesses, but it is observed to decrease towards larger
instances.

Finally, we benchmarked the average cost of field multiplications in our GPU
setup to obtain a third estimate based on Eq. 2, which is also presented in Fig. 7
(triangles). This estimate closely matches the estimate via the full algorithm,
especially for larger instances where distinguished points are rare and memory
accesses are more sporadic.

Overall, our measurements support the use of any of the three methods
described to obtain accurate extrapolations of the algorithm’s running time.
For a concrete example, we estimate that a problem with e = 88 which corre-
sponds to the instance solved by Udovenko and Vitto in [30], would take about
44 years on a single GPU with 80 GB memory limit. While this is not yet very
impressive, compared to the 10 CPU years reported in [30], a single GPU is far
less expensive and powerful than the 128 TB network storage cluster used for
that record. Therefore in the following section we give an estimate of the attack
when scaling to a multiple GPU architecture.

Multiple GPU Estimation. We explored different strategies for paralleliz-
ing the vOW algorithm across multiple GPUs. In the first strategy, every GPU
independently runs its own instantiation of the algorithm. The advantage of this
approach lies its simplicity, which minimizes overhead since no communication

312 E. Bellini et al.

between GPUs is necessary. On the downside, it provides only a linear speedup
in the number of GPUs, since additional memory resources are not shared. In
our second approach, GPUs report distinguished points to the same hash table,
which is stored distributed over the global memory of all GPUs. The advantage
here clearly lies in the increase of the overall memory, which allows to make use
of the good time-memory trade-off behavior inherent to the vOW algorithm.
However, this approach introduces a communication overhead due to the dis-
tributed memory access. On top of that, the data needs to be send over the
slower NVLINK instead of the internal memory bus of the GPU.

We performed an extrapolation of the time to solve different sized instances in
the distributed setting, similar to the extrapolation via the full algorithm in the
single GPU setting. In this experiment, we allocated a hash table able to store up
to W = 234 distinguished triplets, which for large instances corresponds to about
200 GB, across the memory of four GPUs connected via an NVLINK bus. We
then measured the time to collect and store a certain amount X of distinguished
points. Multiplying this time by 10·W

X · 0.45 · 2e/2+1

W = 4.5 · 2e/2+1/X, gives an
extrapolation of the running time of completing the whole attack.

Fig. 8. Estimated time to solve instances of SIPFD on 4 GPUs connected via an
NVLINK bus.

Figure 8 visualizes the obtained extrapolations (circles) in comparison to
the estimate via the multiplication benchmark (triangles), i.e., using Eq. 2. We
observe, similar to the single GPU case, a slight underestimation by using Eq. 2,
which for larger instances vanishes. For the larger instances we obtain an under-
estimation by a factor of roughly two, which corresponds to the performance
difference of the NVLINK bus in comparison to the internal memory bus. How-
ever, since for larger instances with fixed memory budget the time to compute
distinguished points dominates, the factor is expected to vanish. Hence, we finally
conclude that using the distributed memory architecture does not lead to unex-
pected performance slowdowns.

Comparing Both Strategies. Let us determine, which of the parallelization strate-
gies is preferable for a specific amount of GPUs. For large instances, the com-
putational cost of the multi-GPU as well as the single-GPU setting, are well

Parallel Isogeny Path Finding with Limited Memory 313

approximated by Eq. 2. Therefore the speedup when parallelizing via distributed
memory using X GPUs is

GCS(e, ω)
GCS(e, ω + log X)/X

= X3/2,

and, hence, preferable over the strategy via independent executions with a
speedup of only X. Also, if comparing the exact numbers obtained from the
estimate via the full algorithm in the distributed memory setting and the sin-
gle GPU setting, we find that the distributed setting offers a better practical
performance already for e ≥ 62.

Extrapolating e = 88 and the Way Forward. Based on our practical timings we
estimate the time to solve an instance with e = 88 on 4 GPUs to about 32
GPU years in comparison to roughly 44 GPU years in the single GPU setting.
Moreover, if we scale the attack to 16 GPUs, which is the maximum that the
NVLINK bus currently supports, we estimate the time to only 5.6 GPU years,
which means the experiment would finish in about 4 months. We therefore con-
clude from our experiments that for larger instances, with a memory budget
of 128 TB in the MitM case and 80 GB per device in the GPU case, the vOW
algorithm is the preferred choice.

Fig. 9. Estimated time to solve instances of SIPFD on 16 NVIDIA Ampere GPUs with
80GB each connected via an NVLINK bus in comparison to a cluster with 128TB
storage and 256 cores.

In Fig. 9 we visualize the result of the estimation via Eq. 1 and 2 in both
settings assuming 256 cores with 128 TB of memory in the CPU case and 16
NVIDIA A100s connected via an NVLINK bus in the GPU case. This figure
illustrates the estimate for running the MitM on the CPU (solid line) and the
vOW on the GPU system (dashed line). We find that under these fixed resources,
the break-even point from where vOW offers a better performance lies at e = 96.
Additionally, we provide the estimate if we instead execute vOW on the corre-
sponding CPU system (dash dotted line). Observe, that even under the unre-
alistic assumption that the 128 TB of memory would allow for efficient random

314 E. Bellini et al.

access (for the vOW hash table), it does not outperform the GPU based app-
roach for any instance size. Moreover, even under this memory advantage in case
of e = 96, the GPU implementation offers a speedup of almost two magnitudes
(82x). We conclude that the way forward when tackling larger instances of the
SIPFD clearly favors vOW implementations on GPU platforms.

Acknowledgements. This project has received funding from the European Commis-
sion through the ERC Starting Grant 805031 (EPOQUE) and from BMBF Industrial
Blockchain - iBlockchain.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J.J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp.
322–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 15

2. Azarderakhsh, R., et al.: Supersingular Isogeny Key Encapsulation. Third Round
Candidate of the NIST’s post-quantum cryptography standardization process
(2020), available at: https://sike.org/

3. Bernstein, D.J., Feo, L.D., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. ANTS XIV, Open Book Ser. 4, 39–55 (2020)

4. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 11

5. Castryck, W., Decru, T.: An efficient key recovery attack on sidh (preliminary
version). Cryptology ePrint Archive, Paper 2022/975 (2022). https://eprint.iacr.
org/2022/975

6. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

7. Chavez-Saab, J., Rodŕıguez-Henŕıquez, F., Tibouchi, M.: Verifiable isogeny walks:
towards an isogeny-based postquantum VDF. In: AlTawy, R., Hülsing, A. (eds.)
SAC 2021. LNCS, vol. 13203, pp. 441–460. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99277-4 21

8. Costello, C.: The case for SIKE: a decade of the supersingular isogeny problem.
IACR Cryptology ePrint Archive, p. 543 (2021). https://eprint.iacr.org/2021/543

9. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of SIKE in practice. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 505–534. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 18

10. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

11. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5 10

12. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN
algorithms via multiple collisions. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol.
11929, pp. 178–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35199-1 9

https://doi.org/10.1007/978-3-030-10970-7_15
https://sike.org/
https://doi.org/10.1007/978-3-030-77870-5_11
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-99277-4_21
https://doi.org/10.1007/978-3-030-99277-4_21
https://eprint.iacr.org/2021/543
https://doi.org/10.1007/978-3-030-45388-6_18
https://doi.org/10.1007/978-3-030-45388-6_18
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-35199-1_9
https://doi.org/10.1007/978-3-030-35199-1_9

Parallel Isogeny Path Finding with Limited Memory 315

13. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016)

14. Esser, A., May, A.: Low weight discrete logarithm and subset sum in 20.65n

with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 4

15. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint Archive,
Paper 2022/1054 (2022). https://eprint.iacr.org/2022/1054

16. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite fields.
LMS J. Comput. Math. 2, 118–138 (1999)

17. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 1

18. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

19. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

20. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
IACR Cryptology ePrint Archive, p. 1023 (2021), https://eprint.iacr.org/2021/
1023, to appear in ASIACRYPT 2022

21. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Paper 2022/1026 (2022). https://eprint.iacr.org/2022/1026

22. Corte-Real Santos, M., Costello, C., Shi, J.: Accelerating the Delfs-Galbraith
algorithm with fast subfield root detection. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022. LNCS, vol. 13509, pp. 285–314. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-15982-4 10

23. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1 24

24. Moriya, T.: Masked-degree SIDH. Cryptology ePrint Archive, Paper 2022/1019
(2022). https://eprint.iacr.org/2022/1019

25. NIST: NIST Post-Quantum Cryptography Standardization Process. Second Round
Candidates (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

26. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

27. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Paper
2022/1038 (2022). https://eprint.iacr.org/2022/1038

28. TATE, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math-
ematicae 2, 134–144 (1966)

29. Trimoska, M., Ionica, S., Dequen, G.: Time-memory analysis of parallel collision
search algorithms. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 254–274
(2021)

30. Udovenko, A., Vitto, G.: Breaking the SIKEp182 challenge. Cryptology ePrint
Archive, Paper 2021/1421. Accepted to the SAC 2022 Conference (2021). https://
eprint.iacr.org/2021/1421

https://doi.org/10.1007/978-3-030-45727-3_4
https://doi.org/10.1007/978-3-030-45727-3_4
https://eprint.iacr.org/2022/1054
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://eprint.iacr.org/2021/1023
https://eprint.iacr.org/2021/1023
https://eprint.iacr.org/2022/1026
https://doi.org/10.1007/978-3-031-15982-4_10
https://doi.org/10.1007/978-3-031-15982-4_10
https://doi.org/10.1007/978-3-030-84245-1_24
https://doi.org/10.1007/978-3-030-84245-1_24
https://eprint.iacr.org/2022/1019
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2021/1421
https://eprint.iacr.org/2021/1421

316 E. Bellini et al.

31. van Vredendaal, C.: Reduced memory meet-in-the-middle attack against the NTRU
private key. LMS J. Comput. Math. 19(A), 43–57 (2016)

32. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn.
Chapman & Hall/CRC, Hoboken (2008)

33. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7 9

https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70972-7_9

Cryptanalysis

Distinguishing Error of Nonlinear
Invariant Attacks

Subhabrata Samajder(B) and Palash Sarkar

Applied Statistics Unit, Indian Statistical Institute, 203, B.T.Road,
Kolkata 700108, India

subhabrata.samajder@gmail.com, palash@isical.ac.in

Abstract. Todo et al. (2018) have proposed nonlinear invariant attacks
which consider correlations between nonlinear input and output com-
biners for a key alternating block cipher. In its basic form, a nonlinear
invariant attack is a distinguishing attack. In this paper we obtain precise
expressions for the errors of nonlinear invariant attacks in distinguish-
ing a key alternating cipher from either a uniform random function or a
uniform random permutation.

Keywords: Block cipher · Nonlinear invariant attack · Distinguishing
error

Mathematics Subject Classification (2010): 94A60 · 68P25 ·
62P99

1 Introduction

Let E : K×{0, 1}n → {0, 1}n be an r-round block cipher, where K is the key space
of the block cipher. For K ∈ K, we write EK(·) to denote E(K, ·). A distinguishing
attack based on correlation between input and output combiners of a block cipher
proceeds as follows. Let g0 : {0, 1}n → {0, 1} and gr : {0, 1}n → {0, 1} be two
n-variable Boolean functions. The function g0 serves as a combiner of the input of
EK while the function gr serves as a combiner of the output of EK . The correlation
between the input and output combiners is the correlation between g0 and gr ◦
EK . This correlation is captured by considering the weight of the function fEK

:
{0, 1}n → {0, 1} defined by fEK

(α) = g0(α) ⊕ gr(EK(α)). Suppose it is possible
to find some property of E such that fEK

has a nature which is different from that
of fπ (resp. fρ) where π is a uniform random permutation of {0, 1}n (resp. ρ is a
uniform random function from {0, 1}n to {0, 1}n) for a large class of keys, called
weak keys. Then for any weak key K, this property forms the basis of distinguishing
EK from π (resp. ρ).

Distinguishing attacks based on linear cryptanalysis [15] is the classical exam-
ple of the above scenario. For such an attack, the functions g0 and gr are linear
functions. Linear cryptanalysis has an extensive history and has been successfully
applied to both block and stream ciphers. Though linear cryptanalysis has been
studied as a distinguishing attack, in its most potent form, linear cryptanalysis
can be a key recovery attack [15].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 319–335, 2022.
https://doi.org/10.1007/978-3-031-22912-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_14

320 S. Samajder and P. Sarkar

Considering g0 and gr to be nonlinear functions makes the analysis compli-
cated. This was first discussed by Harpes et al. [7] and later by Knudsen and
Robshaw [13]. Todo et al. [16] introduced an interesting nonlinear attack, i.e.,
g0 and gr are nonlinear functions. Consider EK to be a key alternating block
cipher. Suppose there are Boolean functions g0 and gr and a weak key K such
that g0(P) ⊕ gr(EK(P)) takes the same value for all possible choices of the
plaintext P . This property can be exploited to obtain a distinguishing attack
on the block cipher EK . Such an attack is called a nonlinear invariant attack
and the functions g0 and gr are called nonlinear invariants1. For the practical
block ciphers SCREAM, iSCREAM and Midori64, the existence of nonlinear
invariants (with g0 = gr) and related weak keys were described in [16].

Formally, let DO be a distinguisher which has access to an oracle O. The dis-
tinguisher chooses distinct plaintexts P1, . . . , PN and queries the oracle, receiving
in response the values O(P1), . . . ,O(PN). D outputs 1 if g0(P1) ⊕ gr(O(P1)) =
· · · = g0(PN)⊕gr(O(PN)), otherwise, it outputs 0. Let DO ⇒ 1 denote the event
that D outputs 1 after interacting with the oracle O. Then the advantage of the
distinguisher D in distinguishing EK from a uniform random permutation π is

Adv(D) =
∣
∣Pr[DEK ⇒ 1] − Pr[Dπ ⇒ 1]

∣
∣ . (1)

If g0 and gr are non-linear invariants and K is a weak key, then Pr[DEK ⇒ 1] = 1
and so Adv(D) = 1 − ε, where

ε = Pr[g0(P1) ⊕ gr(π(P1)) = · · · = g0(PN) ⊕ gr(π(PN))]. (2)

If ε = 0, then D has the maximum possible advantage which is 1. The quantity ε
denotes the distinguishing error. A higher value of ε lowers the advantage of D.
The efficacy of the distinguisher D is determined by its advantage which in turn
is determined by the value of ε. So, to know how good D is at distinguishing EK

from π, it is required to determine the value of ε.

Our Contributions

This work performs an analysis of the distinguishing error of nonlinear invariant
attacks. We determine the probability that g0(P1)⊕gr(π(P1)) = · · · = g0(PN)⊕
gr(π(PN)). This is done in two cases, namely, when P1, . . . , PN are chosen under
uniform random sampling without replacement and when P1, . . . , PN are some
fixed distinct n-bit values. Further, these probabilities are also computed when π
is replaced by a uniform random function ρ. Our analysis provides expressions for
the error probabilities of the corresponding distinguishers. Such an analysis was
not performed in [16]. Some of the consequences of our analysis are as follows.

1. It turns out that the error probability considered in [16] is that of distin-
guishing EK from a uniform random function. The error probability of dis-
tinguishing EK from a uniform random permutation is obtained here for the
first time.

1 While g0 and gr can be linear, the scenario that is relevant for the present work is
when they are nonlinear.

Distinguishing Error of Nonlinear Invariant Attacks 321

2. The general form of the error probabilities are derived without any restriction
on g0 and gr. When g0 and gr are balanced functions, we prove the following
two results.
(a) The error in distinguishing from a uniform random function is 1/2N−1.
(b) The error in distinguishing from a uniform random permutation is at least

as large as the error in distinguishing from a uniform random function.
This is a consequence of Jensen’s inequality. For moderate values of N ,
the error in distinguishing from a uniform random permutation is almost
the same as the error in distinguishing from a uniform random function.

Distinguishers in Symmetric Key Cryptanalysis

There is a long history of distinguishing attacks on various kinds of symmetric
key ciphers. A comprehensive discussion of this literature is beyond the scope of
this work. To highlight the enduring interest in distinguishing attacks, we men-
tion a few works. The notion of optimal distinguishers for linear cryptanalysis of
block ciphers has been studied in [2]. A number of works have explored distin-
guishers for the AES [4–6,10,12]. Distinguishing attacks are also applicable to
stream ciphers. We refer to [8] for an overview. This line of work continue to be of
interest as is evidenced by [9,11]. Distinguishing attacks have also been proposed
on hash functions [1,3] and T-functions [14]. In general, whenever a distinguisher
is proposed, its effectiveness needs to be justified by a mathematical analysis of
its advantage. The present work provides such mathematical justification of the
effectiveness of distinguishers for nonlinear invariant attacks.

2 Nonlinear Invariant Attack

We provide a brief description of the nonlinear invariant attack for key alternat-
ing ciphers. Our description follows the suggestion in Sect. 7 of [16] where the
nonlinear invariants are allowed to be different for the different rounds.

Let E : K×{0, 1}n → {0, 1}n be a key alternating block cipher which iterates
a round function R : {0, 1}n → {0, 1}n over r rounds. For an n-bit string L, define
RL : {0, 1}n → {0, 1}n as RL(α) = R(α ⊕ L). Let K ∈ K. For a plaintext P , let
the ciphertext C be C = EK(P) which is obtained in the following manner. The
secret key K is used to obtain the round keys K0, . . . ,Kr−1. Then

C = (RKr−1 ◦ RKr−2 ◦ · · · ◦ RK0)(P).

Suppose there are functions g0, . . . , gr : {0, 1}n → {0, 1} and constants
c0, . . . , cr−1 ∈ {0, 1}, such that there are round keys K0, . . . ,Kr−1 for which

gi+1(R(α ⊕ Ki)) = gi(α ⊕ Ki) ⊕ ci = gi(α) ⊕ gi(Ki) ⊕ ci (3)

for all α ∈ {0, 1}n. Then g0, . . . , gr are called nonlinear invariants with associ-
ated constants c0, . . . , cr−1. The key K as well as the round keys K0, . . . ,Kr−1

obtained from K are called weak keys.

322 S. Samajder and P. Sarkar

Before proceeding, we introduce a notation. Let S : {0, 1}n → {0, 1}n and
φ, ψ : {0, 1}n → {0, 1}. We define the function fS [φ, ψ] : {0, 1}n → {0, 1} as
follows:

fS [φ, ψ](α) = φ(α) ⊕ ψ(S(α)). (4)

The primary requirement in a weak key nonlinear invariant attack is the prop-
erty given in the following proposition. This property has been derived in [16]
for the case where the functions g0, . . . , gr are all equal.

Proposition 1. Let E : K × {0, 1}n → {0, 1}n be an r-round key alternat-
ing cipher. Suppose g0, . . . , gr are nonlinear invariants with associated constants
c0, . . . , cr−1 such that there are weak round keys K0, . . . ,Kr−1 obtained from a
key K. Then for any α ∈ {0, 1}n, fEK

[g0, gr](α) is a constant which is indepen-
dent of α.

Proof. There are n-bit strings α1, . . . , αr−1 such that α0 = α; αi+1 = RKi
(αi) =

R(αi ⊕ Ki) for i = 0, . . . , r − 1; and β = αr = EK(α). The following holds.

gr(β) = gr(R(αr−1 ⊕ Kr−1))
= gr−1(αr−1) ⊕ gr−1(Kr−1) ⊕ cr−1

= (gr−1(R(αr−2 ⊕ Kr−2))) ⊕ gr−1(Kr−1) ⊕ cr−1

= gr−2(αr−2) ⊕ (gr−2(Kr−2) ⊕ gr−1(Kr−1)) ⊕ (cr−2 ⊕ cr−1)
...

= g0(α) ⊕
(

r−1⊕

i=0

gi(Ki)

)

⊕
(

r−1⊕

i=0

ci

)

.

So,

g0(α) ⊕ gr(β) =

(
r−1⊕

i=0

gi(Ki)

)

⊕
(

r−1⊕

i=0

ci

)

. (5)

The right hand side of (5) is determined by the functions g0, . . . , gr−1, the con-
stants c0, . . . , cr−1 and the round keys K0, . . . ,Kr−1. In particular, it is inde-
pendent of α (and also β = EK(α)). ��
Proposition 1 shows that if g0, . . . , gr are nonlinear invariants for some weak keys
K0, . . . ,Kr−1, then for all 2n n-bit strings α, g0(α)⊕gr(EK(α)) is a constant. We
next consider the following question. Suppose g0 and gr are any two n-variable
Boolean functions, α1, . . . , αN and β1, . . . , βN are arbitrary n-bit strings, what
is the maximum value of N such that g0(α1) ⊕ gr(β1) = · · · = g0(αN) ⊕ gr(βN)
holds? This question is answered in the next proposition. For a Boolean function
f , by wt(f) we denote the Hamming weight of f .

Proposition 2. Let g0, gr : {0, 1}n → {0, 1}. Let α1, . . . , αN and β1, . . . , βN be
arbitrary n-bit strings such that

g0(α1) ⊕ gr(β1) = · · · = g0(αN) ⊕ gr(βN).

Distinguishing Error of Nonlinear Invariant Attacks 323

Then N ≤ N, where

N = max
(

min(2n + w0 − wr, 2n − w0 + wr),min(w0 + wr, 2n+1 − w0−
wr)) . (6)

Here w0 = wt(g0) and wr = wt(gr). If w0 = wr, then the right hand side of (6)
is equal to 2n.

Proof. The condition g0(α1) ⊕ gr(β1) = · · · = g0(αN) ⊕ gr(βN) can occur in two
ways, namely that all of the individual expressions are equal to 0 or, all of these
are equal to 1.

Consider the maximum possible value of N such that g0(α1) ⊕ gr(β1) =
· · · = g0(αN) ⊕ gr(βN) = 0. An individual relation g0(αi) ⊕ gr(βi) can be 0 in
two possible ways, either g0(αi) = gr(βi) = 0 or g0(αi) = gr(βi) = 1. Suppose
there are N0 αi’s such that g0(αi) = gr(βi) = 0 and there are N1 αi’s such that
g0(αi) = gr(βi) = 1. Since g0(αi) = 1 for N1 i’s, it follows that N1 ≤ w0 and
similarly, N1 ≤ wr so that N1 ≤ min(w0, wr). A similar argument shows that
N0 ≤ min(2n − w0, 2n − wr). Since N = N0 + N1, we have N ≤ min(w0, wr) +
min(2n − w0, 2n − wr).

Now consider the maximum possible value of N such that g0(α1) ⊕ gr(β1) =
· · · = g0(αN) ⊕ gr(βN) = 1. An argument similar to the above shows that
N ≤ min(2n − w0, wr) + min(w0, 2n − wr).

The maximum value of N such that g0(α1)⊕gr(β1) = · · · = g0(αN)⊕gr(βN)
is either the maximum value of N such that g0(α1) ⊕ gr(β1) = · · · = g0(αN) ⊕
gr(βN) = 0 or the maximum value of N such that g0(α1) ⊕ gr(β1) = · · · =
g0(αN) ⊕ gr(βN) = 1. This shows that

N ≤ max (min(w0, wr) + min(2n − w0, 2n − wr),min(w0, 2n − wr)+
min(2n − w0, wr)) . (7)

A simple and routine argument shows that the right hand side of (7) is equal to
the right hand side of (6). There are four cases to consider, namely (w0 ≤ wr

and w0 ≤ 2n − wr), (w0 ≤ wr and w0 > 2n − wr), (w0 > wr and w0 ≤ 2n − wr),
and (w0 > wr and w0 > 2n − wr), and in each case it is required to argue that
the right hand sides of (7) and (6) are equal. We provide the argument for the
case w0 ≤ wr and w0 > 2n − wr, the other cases being similar. The inequality
w0 > 2n−wr is equivalent to w0+wr > 2n+1−(w0+wr). So under the condition
w0 ≤ wr and w0 > 2n − wr, the right hand sides of both (7) and (6) are equal
to max(w0 + 2n − wr, 2n+1 − w0 − wr). ��

Remark: Consider Propositions 1 and 2 together. If g0, . . . , gr are nonlinear
invariants, then for all 2n n-bit strings α, g0(α) ⊕ gr(EK(α)) is a constant. So,
if N < 2n, then there are no choices of Boolean functions g1, . . . , gr−1, such that
g0, g1, . . . , gr−1, gr are nonlinear invariants.

Notation: For the convenience of the ensuing description, we introduce some
notation.

324 S. Samajder and P. Sarkar

– For a Boolean function f and α = (α1, . . . , αN) where αi ∈ {0, 1}n for i =
1, . . . , N , define Ψ(f, α) = (f(α1), . . . , f(αN)).

– For 0 ≤ w ≤ 2n, let Fw be the set of all n-variable Boolean functions having
weight w.

– Given g0, for 0 ≤
 ≤ N , let P�[g0] be the set of all α = (α1, . . . , αN), where
α1, . . . , αN are distinct n-bit strings, such that g0(αi) = 1 for exactly
 of the
αi’s, i.e., P�[g0] = {α = (α1, . . . , αN) : #{i : g0(αi) = 1} =
}. When g0 is
clear from the context we will simply write P� instead of P�[g0].

Lemma 1. Let P = (P1, . . . , PN) where P1, . . . , PN are chosen from {0, 1}n

under uniform random sampling without replacement. Then

Pr[P ∈ P�[g0]] =

(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) , (8)

where w0 = wt(g0).

Proof. The event P ∈ P�[g0] occurs if exactly
 of the Pi’s fall in the support of
g0 while the other N −
 of the Pi’s fall outside the support of g0. Let us call
strings in the support of g0 to be red and the strings outside the support of g0
to be black. So, there are w0 red strings and 2n − w0 black strings. The random
experiment consists of choosing N distinct strings from 2n strings such that

are red and N −
 are black. This is the setting of hypergeometric distribution
and the required probability is given by the right hand side of (8). ��

2.1 Building Distinguishers

Proposition 1 provides a structural property for a key alternating cipher E.
Suppose g0, . . . , gr are nonlinear invariants (with associated constants c0, . . . ,
cr−1) and K is such that K0, . . . ,Kr−1 are weak keys, then for any plaintext
P , g0(P) ⊕ gr(EK(P)) is a constant. To be able to distinguish EK from a uni-
form random permutation π (resp. a uniform random function ρ), it is required
to obtain the probability that g0(P) ⊕ gr(π(P)) (resp. g0(P) ⊕ gr(ρ(P))) is a
constant.

The availability of a single plaintext is not sufficient to construct a meaningful
distinguisher. So, suppose plaintexts P1, . . . , PN are used by the distinguishing
algorithm. Since it is not useful to repeat plaintexts, without loss of generality,
we may assume P1, . . . , PN to be distinct. From Proposition 1, we have that

fEK
[g0, gr](P1) = fEK

[g0, gr](P2) = · · · = fEK
[g0, gr](PN). (9)

Distinguishing from a Uniform Random Permutation: Since for each K, EK is a
bijective map, the appropriate goal would be to distinguish EK from a uniform
random permutation π of {0, 1}n. To build a distinguisher, it is required to know
the probability of the following event.

Eπ : fπ[g0, gr](P1) = fπ[g0, gr](P2) = · · · = fπ[g0, gr](PN).

Distinguishing Error of Nonlinear Invariant Attacks 325

The event Eπ can be written as the disjoint union of two events Eπ
0 and Eπ

1 , i.e.,
Eπ = Eπ

0 ∪ Eπ
1 , where

Eπ
0 : fπ[g0, gr](P1) = 0, fπ[g0, gr](P2) = 0, . . . , fπ[g0, gr](PN) = 0;

Eπ
1 : fπ[g0, gr](P1) = 1, fπ[g0, gr](P2) = 1, . . . , fπ[g0, gr](PN) = 1. (10)

So,

Pr[Eπ] = Pr[Eπ
0] + Pr[Eπ

1]. (11)

The distinguisher DO which distinguishes EK from π using a nonlinear invari-
ant attack has been defined in Sect. 1. Note that the distinguishing error ε defined
in (2) is exactly Pr[Eπ].

Uniform Random Function: Considering a block cipher to be a map from n-bit
strings to n-bit strings, a weaker goal would be to distinguish EK from a uniform
random function ρ from {0, 1}n to {0, 1}n. The events Eρ, Eρ

0 and Eρ
1 are defined

in a manner similar to Eπ, Eπ
0 and Eπ

1 respectively with π replaced by ρ. To build
a distinguisher, it is required to obtain the probability of Eρ. As in the case
of uniform random permutation, a distinguisher can make only one-sided error
when the oracle uses ρ and the probability of this error is Pr[Eρ].

Choice of Plaintexts: On being provided with distinct plaintexts P1, . . . , PN , the
distinguisher can make an error. The error probability depends on the manner
in which P1, . . . , PN are chosen. We will analyse the error probability under the
following two possible scenarios.

Uniform random sampling without replacement: In this analysis, we
assume that P1, . . . , PN are chosen from {0, 1}n using uniform random sam-
pling without replacement.

Fixed values: In this analysis, it is assumed that P1, . . . , PN are distinct
fixed n-bit strings, i.e., there is no randomness in the plaintexts. Suppose
(P1, . . . , PN) ∈ P�[g0], i.e., there are exactly
 Pi’s such that g0(Pi) = 1. We
show that the probability of error depends on
.

We introduce the following notation to denote the four different kinds of error
probabilities that can occur.

– επ,$ is the error probability of distinguishing EK from a uniform random
permutation π when P1, . . . , PN are chosen under uniform random sampling
without replacement, i.e., επ,$ = Pr[Eπ] when P1, . . . , PN are chosen under
uniform random sampling without replacement.

– επ,� is the error probability of distinguishing EK from a uniform random per-
mutation π when (P1, . . . , PN) ∈ P�, i.e., επ,� = Pr[Eπ] when (P1, . . . , PN) ∈
P�.

– ερ,$ is the error probability of distinguishing EK from a uniform random func-
tion ρ when P1, . . . , PN are chosen under uniform random sampling without
replacement, i.e., ερ,$ = Pr[Eρ] when P1, . . . , PN are chosen under uniform
random sampling without replacement.

326 S. Samajder and P. Sarkar

– ερ,� is the error probability of distinguishing EK from a uniform random
function ρ when (P1, . . . , PN) ∈ P�, i.e., ερ,� = Pr[Eρ] when (P1, . . . , PN) ∈
P�.

3 Error Probability for Uniform Random Function

In this section, we obtain expressions for ερ,$ and ερ,�. The expression for ερ,$ is
given in Theorem 1. Corollary 1 to Lemma 2 provides the expression for ερ,�.

Lemma 2. Let g0 and gr be two n-variable Boolean functions. Let ρ be a uni-
form random function and F = fρ[g0, gr] = g0 ⊕ (gr ◦ ρ). Let α = (α1, . . . , αN)
where α1, . . . , αN are distinct n-bit strings. Then

Pr[Ψ(F, α) = (0, . . . , 0)] =
N∏

i=1

(
wr

2n
g0(αi) +

2n − wr

2n
(1 − g0(αi))

)

=
(wr

2n

)�
(

2n − wr

2n

)N−�

; (12)

Pr[Ψ(F, α) = (1, . . . , 1)] =
N∏

i=1

(
2n − wr

2n
g0(αi) +

wr

2n
(1 − g0(αi))

)

=
(wr

2n

)N−�
(

2n − wr

2n

)�

. (13)

where wr = wt(gr) and
 is such that α ∈ P�.
Further, if gr is balanced, then Pr[Ψ(F, α) = (0, . . . , 0)] = Pr[Ψ(F, α) =

(1, . . . , 1)] = 1/2N .

Proof. Consider Ψ(F, α) = (0, . . . , 0) which is the following event:

gr(ρ(α1)) = g0(α1), . . . , gr(ρ(αN)) = g0(αN).

Since α1, . . . , αN are distinct and ρ is a uniform random function, the n-bit
strings X1 = ρ(α1), . . . , XN = ρ(αN) are independent and uniformly distributed
over {0, 1}n. Let pi = Pr[gr(ρ(αi)) = g0(αi)] = Pr[gr(Xi) = g0(αi)] for i =
1, . . . , N . Since X1, . . . , XN are independent, so are the events gr(X1) = g0(α1),
. . . , gr(XN) = g0(αN). Consequently,

Pr[Ψ(F, α) = (0, . . . , 0)] = Pr[gr(X1) = g0(α1), . . . , gr(XN) = g0(αN)]
= p1 · · · pN .

Since Xi is uniformly distributed over {0, 1}n, the event gr(Xi) = 1 occurs if
and only if Xi falls within the support of gr and the probability of this is wr/2n.
Similarly, the event gr(Xi) = 0 occurs with probability (2n − wr)/2n.

pi = Pr[gr(Xi) = g0(αi)] =
{

Pr[gr(Xi) = 1] = wr

2n if g0(αi) = 1;
Pr[gr(Xi) = 0] = 2n−wr

2n if g0(αi) = 0.

Distinguishing Error of Nonlinear Invariant Attacks 327

This can be compactly written as

pi =
wr

2n
g0(αi) +

2n − wr

2n
(1 − g0(αi)).

Let α ∈ P�. Then for exactly
 of the αi’s we have g0(αi) = 1 while for the other
N −
 of the αi’s, we have g0(αi) = 0. This consideration leads to (12).

The proof for (13) is similar. If gr is balanced, then wr = 2n−1 which shows
the last part of the theorem. ��
Corollary 1. Let g0 and gr be two n-variable Boolean functions. Let ρ be a uni-
form random function and F = fρ[g0, gr] = g0⊕(gr ◦ρ). Let P = (P1, . . . , PN) ∈
P�. Then

ερ,� = Pr[Eρ] =
(wr

2n

)�
(

2n − wr

2n

)N−�

+
(wr

2n

)N−�
(

2n − wr

2n

)�

. (14)

Further, if gr is balanced, then ερ,� = 1/2N−1.

Corollary 1 raises the relevant question that when gr is not balanced (i.e.,
wr �= 2n−1) how should
 be chosen such that ερ,� is minimum. To answer this,
consider ερ,� as a function of
. Let p = wr

2n . Since wr �= 2n−1, p �= 1/2. Then,

ερ,� = p�(1 − p)N−� + pN−�(1 − p)�

⇒ dερ,�

d

= p�(1 − p)N−� {ln p − ln(1 − p)}

+pN−�(1 − p)� {− ln p + ln(1 − p)}
= {ln p − ln(1 − p)} {

p�(1 − p)N−� − pN−�(1 − p)�
}

.

If
 = N/2, then dερ,�/d
 = 0. A routine analysis now shows that dερ,�/d
 < 0
for
 < N/2 and dερ,�/d
 > 0 for
 > N/2 irrespective of whether p > 1/2 or
p < 1/2. So, for p �= 1/2, ερ,� takes the minimum value for
 = N/2.

Theorem 1. Let g0 and gr be two n-variable Boolean functions. Let ρ be a uni-
form random function from {0, 1}n to {0, 1}n and F = fρ[g0, gr] = g0 ⊕ (gr ◦ ρ).
Let P = (P1, . . . , PN) where P1, . . . , PN are chosen from {0, 1}n under uniform
random sampling without replacement and independently of F (i.e. P1, . . . , PN

and F are statistically independent). Then

Pr[Eρ
0] = Pr[Ψ(F, P) = (0, . . . , 0)]

=
N∑

�=0

(wr

2n

)�
(

2n − wr

2n

)N−�

·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) ;

Pr[Eρ
1] = Pr[Ψ(F, P) = (1, . . . , 1)]

=
N∑

�=0

(
2n − wr

2n

)� (wr

2n

)N−�

·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) .

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Here w0 = wt(g0) and wr = wt(gr).

328 S. Samajder and P. Sarkar

Consequently,

ερ,$ = Pr[Eρ]

=
N∑

�=0

(
(wr

2n

)�
(

2n − wr

2n

)N−�

+
(

2n − wr

2n

)� (wr

2n

)N−�
)

·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) .

(16)

Further, if gr is balanced, then ερ,$ = 1/2N−1.

Proof. Consider the event Eρ
0 .

Pr[Eρ
0] = Pr[Ψ(F, P) = (0, . . . , 0)]

=
N∑

�=0

Pr[Ψ(F, P) = (0, . . . , 0), P ∈ P�]

=
N∑

�=0

∑

α∈P�

Pr[Ψ(F, P) = (0, . . . , 0), P = α]

=
N∑

�=0

∑

α∈P�

Pr[Ψ(F, α) = (0, . . . , 0), P = α]

=
N∑

�=0

∑

α∈P�

Pr[Ψ(F, α) = (0, . . . , 0)] · Pr[P = α]

(since F and P are independent)

=
N∑

�=0

∑

α∈P�

(wr

2n

)�
(

2n − wr

2n

)N−�

· Pr[P = α] (from Lemma 2)

=
N∑

�=0

(wr

2n

)�
(

2n − wr

2n

)N−� ∑

α∈P�

Pr[P = α]

=
N∑

�=0

(wr

2n

)�
(

2n − wr

2n

)N−�

Pr[P ∈ P�]

=
N∑

�=0

(wr

2n

)�
(

2n − wr

2n

)N−�

·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) (from Lemma 1).

The probability of the event Eρ
1 is similarly obtained. Since Eρ is the disjoint

union of Eρ
0 and Eρ

1 , we obtain (16).
If gr is balanced, wr = 2n−1 and we have

ερ,$ =
1

2N−1

N∑

�=0

(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) =
1

2N−1
.

Distinguishing Error of Nonlinear Invariant Attacks 329

The last equality holds since
(
w0
�

)(
2n−w0
N−�

)

/
(
2n

N

)

is the probability that a random
variable X equals
 where X follows the hypergeometric distribution HG(2n, w0,

N) and so
∑N

�=0 Pr[X =
] = 1. ��

Remarks:

1. From Corollary 1 and Theorem 1, we have that if gr is balanced, then
ερ,� = ερ,$ = 1/2N−1, i.e., the error probability of the distinguisher is deter-
mined only by the number of distinct plaintexts that are used and not on
whether these are fixed or chosen using uniform random sampling without
replacement.

2. It has been mentioned in [16] that the distinguishing error of a nonlinear
invariant attack is 1/2N−1. The above analysis shows that this is the error in
distinguishing from a uniform random function.

4 Error Probability for Uniform Random Permutation

In this section, we obtain expressions for επ,$ and επ,�. The expression for επ,$

is given in Theorem 2. Lemmas 3 and 1 are intermediate steps to proving the
theorem. Corollary 2 provides the expression for επ,�.

Lemma 3. Let g0 and gr be n-variable Boolean functions. Let π be a uniform
random permutation and F = fπ[g0, gr] = g0⊕(gr◦π). Let α1, . . . , αN be distinct
n-bit strings such that #{i : g0(αi) = 1} =
. Denote α = (α1, . . . , αN). Then

Pr[Ψ(F, α) = (0, . . . , 0)] =

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) and

Pr[Ψ(F, α) = (1, . . . , 1)] =

(
wr

N−�

)(
2n−wr

�

)

(
2n

N

)(
N
�

) ,

(17)

where wr = wt(gr).

Proof. Consider the first statement. It is given that g0(αi) = 1 for exactly
 of
the αi’s.

Let us start with the special case where g0(α1) = · · · = g0(α�) = 1 and
g0(α�+1) = · · · = g0(αN) = 0. Then the event Ψ(F, α) = (0, . . . , 0) holds if and
only if gr(π(α1)) = · · · = gr(π(α�)) = 1 and gr(π(α�+1)) = · · · = gr(π(αN)) = 0.
Since α1, . . . , αN are distinct n-bit strings and π is a uniform random permu-
tation of {0, 1}n, the random quantities π(α1), . . . , π(αN) can be thought of as
being chosen from {0, 1}n using uniform random sampling without replacement.
Further, gr(π(αi)) = 1 (resp. 0) if and only if π(αi) falls within (resp. outside)
the support of gr.

From the above considerations, the probability that gr(π(α1)) = 1 is wr/2n;
the probability that gr(π(α2)) = 1 given that gr(π(α1)) = 1 is (wr − 1)/(2n − 1);
continuing, the probability that gr(π(α�)) = 1 given that gr(π(α1)) = 1, . . . ,

330 S. Samajder and P. Sarkar

gr(π(α�−1)) = 1 is (wr −
+1)/(2n −
+1); the probability that gr(π(α�+1)) = 0
given that gr(π(α1)) = 1, . . . , gr(π(α�)) = 1 is (2n − wr)/(2n −
); the prob-
ability that gr(π(α�+2)) = 0 given that gr(π(α1)) = 1, . . . , gr(π(α�)) = 1 and
gr(π(α�+1)) = 0 is (2n − wr − 1)/(2n −
 − 1); continuing, the probability that
gr(π(αN)) = 0 given that gr(π(α1)) = 1, . . . , gr(π(α�)) = 1 and gr(π(α�+1)) =
0, . . . , gr(π(αN−1)) = 0 is (2n − wr − (N −
) + 1)/(2n − (N − 1)). So,

Pr[Ψ(F, α) = (0, . . . , 0)]

=
wr(wr − 1) · · · (wr − � + 1)(2n − wr)(2

n − wr − 1) · · · (2n − wr − (N − �) + 1)

2n(2n − 1) · · · (2n − N + 1)
.

(18)

Consider now the general case where there are exactly
 values of i such that
g0(αi) = 1 and these are not necessarily the first
 αi’s. Following the argument
given above for the special case, it is not difficult to see that the probability of
Ψ(F, α) = (0, . . . , 0) in the general case is also given by (18). In particular, the
argument shows that the numerator of the probability in the general case is a
reordering of the numerator of (18) while the denominator remains the same.
So, in all cases the probability of Ψ(F, α) = (0, . . . , 0) is given by (18). The right
hand side of (18) simplifies to the following expression

wr!(2n − wr)!
2n!

· (2n − N)!
(wr −
)!(2n − wr − (N −
))!

. (19)

Multiplying the numerator and denominator of (19) by N !
!(N −
)!, we obtain

wr!

!(wr −
)!

· (2n − wr)!
(N −
)!(2n − wr − (N −
))!

· N !(2n − N)!
2n!

·
!(N −
)!
N !

. (20)

So finally we obtain (18) to be equal to

Pr[Ψ(F, α) = (0, . . . , 0)] =

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) .

This shows the first statement. The other statement is obtained similarly. ��

Corollary 2. Let g0 and gr be two n-variable Boolean functions. Let π be a
uniform random permutation and F = fπ[g0, gr] = g0 ⊕ (gr ◦ π). Let P =
(P1, . . . , PN) ∈ P�. Then

επ,� = Pr[Eπ] =

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) +

(
wr

N−�

)(
2n−wr

�

)

(
2n

N

)(
N
�

) , (21)

where wr = wt(gr).

As in the case for uniform random function, a relevant issue is the choice
of
 such that επ,� is minimum. Unlike the case for uniform random function,
it is difficult to analytically tackle this point for επ,�. We have run numerical

Distinguishing Error of Nonlinear Invariant Attacks 331

experiments to explore the nature of
 for which επ,� is the minimum. There
does not seem to be any clear indication of what should be the value of
. Also,
we have observed that the minimum value of επ,� is not much lesser than that
obtained by evaluating the expression for επ,$ as obtained in the following result.

Theorem 2. Let g0 and gr be two n-variable Boolean functions. Let π be a
uniform random permutation of {0, 1}n and F = fπ[g0, gr] = g0 ⊕ (gr ◦ π).
Let P = (P1, . . . , PN) where P1, . . . , PN are chosen from {0, 1}n under uniform
random sampling without replacement and independently of F (i.e. P1, . . . , PN

and F are statistically independent). Then

Pr[Eπ
0] = Pr[Ψ(F, P) = (0, . . . , 0)] =

N∑

�=0

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) ·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) ;

Pr[Eπ
1] = Pr[Ψ(F, P) = (1, . . . , 1)] =

N∑

�=0

(
wr

N−�

)(
2n−wr

�

)

(
2n

N

)(
N
�

) ·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) .

(22)

Here w0 = wt(g0) and wr = wt(gr). Consequently,

επ,$ = Pr[Eπ] =
N∑

�=0

(
2n−wr

N−�

)(
wr

�

)

+
(

wr

N−�

)(
2n−wr

�

)

(
2n

N

)(
N
�

) ·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) . (23)

If both g0 and gr are balanced, then επ,$ is the expectation of 2p(X)/
(
N
X

)

, i.e.,

επ,$ = E

[

2p(X)
(
N
X

)

]

(24)

where X follows HG(2n, 2n−1, N) and for
 = 0, . . . , N , p(
) is the probability
that X =
.

Proof. Consider Pr[Eπ
0].

Pr[Ψ(F, P) = (0, . . . , 0)]

=
N∑

�=0

∑

α∈P�

Pr[Ψ(F, P) = (0, . . . , 0), P = α]

=
N∑

�=0

∑

α∈P�

Pr[Ψ(F, α) = (0, . . . , 0), P = α]

=
N∑

�=0

∑

α∈P�

Pr[Ψ(F, α) = (0, . . . , 0)] · Pr[P = α]

(since F and P are independent)

=
N∑

�=0

∑

α∈P�

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) · Pr[P = α] (from Lemma 3)

332 S. Samajder and P. Sarkar

=
N∑

�=0

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

)

∑

α∈P�

Pr[P = α]

=
N∑

�=0

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) Pr[P ∈ P�]

=
N∑

�=0

(
2n−wr

N−�

)(
wr

�

)

(
2n

N

)(
N
�

) ·
(
w0
�

)(
2n−w0
N−�

)

(
2n

N

) (from Lemma 1).

Pr[Eπ
1] is obtained similarly. Further, the probability of Eπ is obtained

from (11).
If both g0 and gr are balanced, then w0 = wr = 2n−1 and we have

επ,$ =
N∑

�=0

2
(
2n−1

N−�

)(
2n−1

�

)

(
2n

N

)(
N
�

) ·
(
2n−1

�

)(
2n−1

N−�

)

(
2n

N

) =
N∑

�=0

2p(
)
(
N
�

) ·
(
2n−1

�

)(
2n−1

N−�

)

(
2n

N

)

= E

[

2p(X)
(
N
X

)

]

.

��
The next result shows that when g0 and gr are balanced, the distinguishing

error for uniform random permutations is at least as large as that for uniform
random functions.

Theorem 3. Let g0 and gr be two balanced n-variable Boolean functions. Let
π be a uniform random permutation of {0, 1}n and ρ be a uniform random
function from {0, 1}n to {0, 1}n. Define Fπ = fπ[g0, gr] = g0 ⊕ (gr ◦ π) and
Fρ = fρ[g0, gr] = g0 ⊕ (gr ◦ ρ). Let P = (P1, . . . , PN) where P1, . . . , PN are cho-
sen from {0, 1}n under uniform random sampling without replacement and these
are independent of Fρ or Fπ. Let

επ,$ = Pr[Eπ] = Pr[Eπ] + Pr[Eπ
0]

= Pr[Ψ(Fπ, P) = (0, . . . , 0)] + Pr[Ψ(Fπ, P) = (1, . . . , 1)];
ερ,$ = Pr[Eρ] = Pr[Eρ] + Pr[Eρ

0]
= Pr[Ψ(Fρ, P) = (0, . . . , 0)] + Pr[Ψ(Fρ, P) = (1, . . . , 1)].

Then επ,$ ≥ ερ,$.

Proof. It is given that g0 and gr are both balanced. From Theorem 1, it follows
that ερ,$ = 1/2N−1. From Theorem 2, we have that επ,$ is the expectation of
2p(X)/

(
N
X

)

, i.e., επ,$ = E[2p(X)/
(
N
X

)

], where X follows HG(2n, 2n−1, N) and for

 = 0, . . . , N , p(
) is the probability that X =
.

Distinguishing Error of Nonlinear Invariant Attacks 333

Let Y = 2p(X)/
(
N
X

)

. Using Jensen’s inequality, we obtain

1
E[Y]

≤ E
[

1
Y

]

= E

[(
N
X

)

2p(X)

]

=
N∑

�=0

(
N
�

)

2p(
)
· Pr[X =
]

=
N∑

�=0

(
N
�

)

2p(
)
· p(
)

= 2N−1.

Noting επ,$ = E[Y] and ερ,$ = 1/2N−1 gives the desired result. ��

5 Computational Results

This section gives a summary of the computations done with the expressions of
the error probabilities of nonlinear invariant attack presented in Sects. 3 and 4.

In our computations we have used the following Stirling’s approximation to
compute the binomial coefficients.

(
k

i

)

≈ 1√
2πk(i/k)i+ 1

2 (1 − i/k)k−i+ 1
2
.

The computations were done for n = 16, 32, 48 and 64; and N = 2n for n = 2, 4, 8
and 16, except that the case N = 216 was not considered when n = 16. Further,
we have considered balanced g0 and gr, i.e., wt(g0) = wt(gr) = 2n−1. As a result,
ερ,$, which is the error probability of distinguishing from a uniform random
function, is equal to 1/2N−1.

Comparison Between επ,$ and ερ,$. Table 1 gives the value of επ,$ and the
ratio επ,$/ερ,$ = 2N−1επ,$ for different values of n and n. It may be noted that
the last column of the table confirms Theorem 3 which shows that for balanced
g0 and gr, επ,$ ≥ ερ,$ = 1/2N−1. Further, the ratio is close to 1. This may be
explained by referring to the proof of Theorem 3. The result επ,$ ≥ 1/2N−1

is obtained using Jensen’s inequality to the convex function f(x) = 1/x. In the
case that the convex function is a straight line Jensen’s inequality is tight. In the
range of x where Jensen’s inequality is applied, it turns out that f(x) behaves
almost like a straight line. Consequently, the inequality is almost tight in this
range of applicability.

334 S. Samajder and P. Sarkar

Table 1. Comparison between επ,$ and ερ,$ = 2−(N−1).

n n επ,$ 2N−1 × επ,$

16 2 0.133739 1.069910

4 0.000031 1.017414

8 1.728943×10−77 1.000990

32 2 0.133739 1.069908

4 0.000031 1.017415

8 1.728930×10−77 1.000982

16 9.982420×10−19729 1.000004

48 2 0.133739 1.069908

4 0.000031 1.017415

8 1.728930×10−77 1.000982

16 9.982420×10−19729 1.000004

64 2 0.133739 1.069908

4 0.000031 1.017415

8 1.728930×10−77 1.000982

16 9.982420×10−19729 1.000004

6 Conclusion

In this paper, we have performed a detailed analysis of the distinguishing error of
nonlinear invariant attacks. We have obtained precise expressions for the error
of nonlinear invariant attacks in distinguishing a key alternating cipher from
either a uniform random function or a uniform random permutation. It has
been theoretically proven that the distinguishing error probability in the case of
uniform random permutation is greater than the distinguishing error probability
in the case of uniform random function.

Acknowledgement. We thank the reviewers for their helpful comments which have
helped in improving the paper.

References

1. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi (2009). https://131002.net/data/papers/
AM09.pdf. Accessed on 30 Jun 2020

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 31

3. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19574-7 1

https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-642-19574-7_1

Distinguishing Error of Nonlinear Invariant Attacks 335

4. Boura, C., Canteaut, A., Coggia, D.: A general proof framework for recent AES
distinguishers. IACR Trans. Symmetric Cryptol. 2019(1), 170–191 (2019)

5. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 11

6. Grassi, L., Rechberger, C.: Revisiting gilbert’s known-key distinguisher. Des. Codes
Cryptogr. 88(7), 1401–1445 (2020)

7. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis
and the applicability of Matsui’s Piling-up lemma. In: Guillou, L.C., Quisquater,
J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-49264-X 3

8. Hell, M., Johansson, T., Brynielsson, L.: An overview of distinguishing attacks on
stream ciphers. Cryptogr. Commun. 1(1), 71–94 (2009)

9. Hell, M., Johansson, T., Brynielsson, L., Englund, H.: Improved distinguishers on
stream ciphers with certain weak feedback polynomials. IEEE Trans. Inf. Theor.
58(9), 6183–6193 (2012)

10. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple limited-birthday distinguishers
and applications. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 533–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43414-7 27

11. Kesarwani, A., Roy, D., Sarkar, S., Meier, W.: New cube distinguishers on NFSR-
based stream ciphers. Des. Codes Cryptogr. 88(1), 173–199 (2020)

12. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 19

13. Knudsen, L.R., Robshaw, M.J.B.: Non-linear approximations in linear cryptanal-
ysis. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 20

14. Künzli, S., Junod, P., Meier, W.: Distinguishing attacks on T-functions. In: Daw-
son, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 2–15. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554868 2

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

16. Todo, Y., Leander, G., Sasaki, Yu.: Nonlinear invariant attack: practical attack
on full SCREAM, iSCREAM, and Midori64. J. Cryptol. 32(4), 1383–1422 (2018).
https://doi.org/10.1007/s00145-018-9285-0

https://doi.org/10.1007/978-3-662-45611-8_11
https://doi.org/10.1007/3-540-49264-X_3
https://doi.org/10.1007/978-3-662-43414-7_27
https://doi.org/10.1007/978-3-662-43414-7_27
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/3-540-68339-9_20
https://doi.org/10.1007/11554868_2
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/s00145-018-9285-0

Weak Subtweakeys in SKINNY

Daniël Kuijsters(B), Denise Verbakel, and Joan Daemen

Radboud University, Nijmegen, The Netherlands
{Daniel.Kuijsters,denise.verbakel,joan.daemen}@ru.nl

Abstract. Lightweight cryptography is characterized by the need for
low implementation cost, while still providing sufficient security. This
requires careful analysis of building blocks and their composition.

SKINNY is an ISO/IEC standardized family of tweakable block
ciphers and is used in the NIST lightweight cryptography standardization
process finalist Romulus. We present non-trivial linear approximations
of two-round SKINNY that have correlation one or minus one and that
hold for a large fraction of all round tweakeys. Moreover, we show how
these could have been avoided.

Keywords: Cryptanalysis · Lightweight symmetric cryptography ·
Block ciphers

1 Introduction

In 2018, NIST initiated a process for the standardization of lightweight cryptogra-
phy [14], i.e., cryptography that is suitable for use in constrained environments.
A typical cryptographic primitive is built by composing a relatively simple round
function with itself a number of times. To choose this number of rounds, a trade-
off is made between the security margin and the performance.

One of the finalists in this standardization process is the Romulus [8] scheme
for authenticated encryption with associated data. This scheme is based on
the ISO/IEC 18033-7:2022 [1] standardized lightweight tweakable block cipher
SKINNY [2].

Two of the most important techniques for the analysis of symmetric primi-
tives are differential [3] and linear cryptanalysis [12]. To reason about the security
against these attacks, the designers of SKINNY have computed lower bounds
on the number of active S-boxes in linear and differential trails. However, at the
end of Sect. 4.1 of [2] they write:

The above bounds are for single characteristic, thus it will be interesting
to take a look at differentials and linear hulls. Being a rather complex task,
we leave this as future work.

Building on the work of [4,15] investigated clustering of two-round trails in
SKINNY and in this paper we report and explain its most striking finding.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 336–348, 2022.
https://doi.org/10.1007/978-3-031-22912-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_15

Weak Subtweakeys in SKINNY 337

By examination of two rounds, we argue why it is sensible to look at the sub-
structure that consists of a double S-box with a subtweakey addition in between.
We study this double S-box structure both from an algebraic point of view and
a statistical point of view. We found that for some subtweakeys there are non-
trivial perfect linear approximations, i.e., that have correlation one or minus one.
We present them in this paper together with their constituent linear trails. For
both the version of SKINNY that uses the 4-bit S-box and the version that uses
the 8-bit S-box, we present one non-trivial perfect linear approximation of the
double S-box structure that holds for 1/4 of all subtweakeys and four non-trivial
perfect linear approximations that each hold for 1/16 of all subtweakeys. In total,
1/4 of the subtweakeys is weak, i.e., it has an associated non-trivial perfect linear
approximation. The linear approximations of the double S-box structure can be
extended to linear approximations of the full two rounds of SKINNY. From the
fact that the double S-box structure appears in four different locations, it follows
that 1 − (3/4)4 ≈ 68% of the round tweakeys is weak, i.e., two rounds have a
non-trivial perfect linear approximation.

Despite requiring more resources to compute, this shows that for many round
tweakeys two rounds are weaker than a single round. Moreover, this also shows
that the bounds on the squared correlations of linear approximations that are
based on counting the number of active S-boxes in linear trails may not be readily
assumed.

We conclude by showing how this undesired property could have easily been
avoided by composing the S-box with a permutation of its output bits, which
has a negligible impact on the implementation cost.

1.1 Outline and Contributions

In Sect. 2 we remind the reader of the parts of the SKINNY block cipher speci-
fication that are relevant to our analysis. We argue why it is reasonable to study
the double S-box structure and explore its algebraic properties. Section 3 serves
as a reminder for the reader of the relevant statistical analysis tools of linear
cryptanalysis. Section 4 presents our findings from the study of the linear trails
of the double S-box structure. We show how the problem could have been avoided
in Sect. 5. Finally, we state the main message behind our findings in Sect. 6.

2 The SKINNY Family of Block Ciphers

SKINNY [2] is a family of tweakable block ciphers. A member of the SKINNY
family is denoted by SKINNY-b-t, where b denotes the block size and t denotes
the size of the tweakey [10]. The block size b is equal to 64 bits or 128 bits. The
tweakey t is b, 2b, or 3b bits.

The AES-like [7] data path of the SKINNY block cipher is the repeated
application of a round function on a representation of the state as a four by four
array of m-bit vectors, where m is either four or eight.

338 D. Kuijsters et al.

Pairs (i, j) comprising a row index i and column index j with 0 ≤ i, j ≤ 3
are used to index into the state array. For example, (0, 0) refers to the entry in
the top left and (3, 3) to the entry in the bottom right. The m-bit entries x(i,j)

are of the form (x(i,j)
m−1, . . . , x

(i,j)
0).

The round function consists of the following steps in sequence: SubCells,
AddConstants, AddRoundTweakey, ShiftRows, and MixColumns.

Fig. 1. Circuit-level representation of S4 and S8. (Figure adapted from [9].)

Figure 1 shows the circuit-level view of the S-boxes that are used in the
SubCells step of SKINNY.

The block matrix that is used in the MixColumns step is equal to

M =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ ,

where 0 denotes the zero matrix of size m×m and 1 denotes the identity matrix
of size m. Each of the four columns of the state is multiplied by M in parallel.

The composition of two rounds is depicted in Fig. 2.

Fig. 2. Two-round SKINNY. (Figure adapted from [9].)

Consider the entry of the state at position (0, 1) in Fig. 2. It is of the form
Y0 = x(0,1). This expression propagates through the step functions of two rounds
and leads to the following intermediate expressions:

Weak Subtweakeys in SKINNY 339

Y1 = Sm(x(0,1))

Y2 = Sm(x(0,1)) + k(0)

Y3 = Sm(Sm(x(0,1)) + k(0))

Y4 = Sm(Sm(x(0,1)) + k(0)) + k(1)

Y5 + Y6 + Y7 = Sm(Sm(x(0,1)) + k(0)) + k(1) ,

Here, k(0) and k(1) are subtweakeys, which are linear expressions in the cipher
key and tweak bits (assuming that the tweakey does not consist entirely of cipher
key bits). These linear expressions depend on the round number, but they are
known to the attacker. The tweak can be chosen by the attacker and the cipher
key is unknown to the attacker. By choosing the tweak, the attacker can attain
all values of k(0) and k(1) for a given cipher key.

The final expression shows that the sum of certain triples of state entries at
the output of the second round is equal to the application of two S-boxes and
subtweakey additions to a single entry of the input to the first round. The second
subtweakey addition does not have an important influence on the statistical
properties of this expression, so we remove it and turn our attention to the
properties of the function

Dm,k = Sm ◦Tm,k ◦Sm ,

where Tm,k is defined by x �→ x + k for x ∈ F
m
2 . We will refer to Dm,k as the

double S-box structure.
For reasons of simplicity, we study SKINNY-64-t, i.e., the version with 4-bit

S-boxes. However, our results can be extended to the case of 8-bit S-boxes as
well.

By concatenating two copies of the 4-bit S-box circuit with a subtweakey
addition layer in between we obtain the circuit-level view of D4,k that is depicted
in Fig. 3. Consider the input x1. It passes through an XOR gate, the subtweakey
addition layer, and finally through a second XOR gate before being routed to
the third component of the output of D4,k. If k3 = k2 = 0, then the XOR gates
cancel each other out and the third component of D4,k is equal to x1 + k0. This
observation does not depend on the value of k1.

Let us now derive this same result in an algebraic way. Of course, we could
compute the algebraic expression for D4,k directly, but it is more insightful to
study the S-box and its inverse.

The 4-bit S-box is of the form

S4 = N4 ◦L4 ◦N4 ◦L4 ◦N4 ◦L4 ◦N4

where

N4(x3, x2, x1, x0) = (x3, x2, x1, x2x3 + x0 + x2 + x3 + 1) and
L4(x3, x2, x1, x0) = (x2, x1, x0, x3) .

340 D. Kuijsters et al.

Fig. 3. Circuit-level representation of D4,k. (Figure adapted from [9].)

It follows that S4 = (S(3)
4 ,S(2)

4 ,S(1)
4 ,S(0)

4) where

S(3)
4 = x2x3 + x0 + x2 + x3 + 1

S(2)
4 = x1x2 + x1 + x2 + x3 + 1

S(1)
4 = x1x2x3 + x0x1 + x1x2 + x1x3 + x2x3 + x0 + x3

S(0)
4 = x0x1x2 + x1x2x3 + x0x1 + x0x2 + x0x3 + x1x3 + x1 + x2 + x3

The S-box has a generalized Feistel structure [13]. Therefore, it is not difficult
to deduce that the inverse of T4,k ◦S4 is of the form

I4,k = (T4,k ◦S4)−1 = N4 ◦R4 ◦N4 ◦R4 ◦N4 ◦R4 ◦N4 ◦T4,k ,

where R4(x3, x2, x1, x0) = (x0, x3, x2, x1). It follows that I4,k is of the form
(I(3)4,k , I

(2)
4,k , I

(1)
4,k , I

(0)
4,k) where

Weak Subtweakeys in SKINNY 341

I
(3)
4,k = x1x2x3 + x0x1 + x0x3 + x1x2(k3 + 1) + x1x3(k2 + 1) + x2x3k1

+ x1(k2k3 + k0 + k2 + k3) + x2(k1k3 + k1 + 1) + x3(k1k2 + k0 + k1 + 1)

+ x0(k1 + k3) + k1k2k3 + k0k1 + k0k3 + k1k2 + k1k3 + k2 + k3 ,

I
(2)
4,k = x0x3 + x2x3 + x0(k3 + 1) + x2(k3 + 1) + x3(k0 + k2) + x1 + k0k3 + k2k3

+ k0 + k1 + k2 ,

I
(1)
4,k = x2x3 + x2(k3 + 1) + x3(k2 + 1) + x0 + k2k3 + k0 + k2 + k3 + 1 ,

I
(0)
4,k = x0x2x3 + x1x2x3 + x0x2(k3 + 1) + x0x3k2 + x1x2k3 + x1x3(k2 + 1)

+ x2x3(k0 + k1) + x0x1 + x0(k2k3 + k1 + k2 + 1) + x1(k2k3 + k0 + k3 + 1)

+ x2(k0k3 + k1k3 + k0 + 1) + x3(k0k2 + k1k2 + k1) + k0k2k3 + k1k2k3

+ k0k1 + k0k2 + k1k3 + k0 + k1 + k2 + 1 .

We observe that if k3 = k2 = 0, then the component I
(1)
4,k differs from S(3)

4 by

the constant k0 for any value of k1. This implies that D(3)
4,(0,0,k1,k0)

= x1 + k0.

3 Linear Cryptanalysis

To analyze Dm,k in more detail, we use the statistical framework of linear crypt-
analysis [6,12].

The important concept here is a linear approximation, i.e., an ordered pair
of linear masks (u, v) ∈ F

m
2 × F

m
2 that determine linear combinations of output

and input bits, respectively. A mask u defines a linear functional

x �→ u�x = u0x0 + · · · + um−1xm−1 .

We measure the quality of a linear approximation with the correlation between
the linear functionals defined by the masks.

Definition 1. The (signed) correlation between the linear functional defined by
the mask u ∈ F

m
2 at the output of a function G : Fm

2 → F
m
2 and the linear

functional defined by the mask v ∈ F
m
2 at its input is defined as

CG(u, v) =
1

2m

∑
x∈Fm

2

(−1)u� G(x)+v�x .

The 2m × 2m matrix CG with entries CG(u, v) is called the correlation matrix
of the function G. We call a linear approximation with a correlation of one or
minus one perfect.

In addition to specifying masks at the input and output of Dm,k, we may
also specify intermediate masks.

Definition 2. A sequence (u, v, w) ∈ F
m
2 × F

m
2 × F

m
2 is called a linear trail of

Dm,k if it satisfies the following conditions:

342 D. Kuijsters et al.

1. CSm(u, v) �= 0;
2. CSm(v, w) �= 0.

Each of the trails contributes to the correlation of the linear approximation.

Definition 3. The correlation contribution of a linear trail (u, v, w) over Dm,k

equals

CDm,k
(u, v, w) = (−1)v�k CSm

(u, v)CSm
(v, w) .

From the theory of correlation matrices [6], it follows that

CDm,k
(u, v) =

∑
v∈Fm

2

CDm,k
(u, v, w)

=
∑

v∈Fm
2

(−1)v�k CSm(u, v)CSm(v, w) .

4 Linear Trails of Sm ◦Tm,k ◦ Sm

We can now translate the observations from Sect. 2 into the language of linear
cryptanalysis. The observations state that the linear approximation (1000, 0010)
of D4,(0,0,k1,k0) is perfect for all k0, k1 ∈ F2.

One way of seeing this is directly from the fact that

(1000)� D4,(0,0,k1,k0) = D(3)
4,(0,0,k1,k0)

= x1 + k0

= (0010)�x + k0 .

Hence, the correlation is one if k0 is zero and minus one otherwise.
An alternative view is the following. Due to the equivalence of vectorial

Boolean functions and their correlation matrices [6], equality of S(3)
4 and I

(1)
4,k

implies equality of row 1000 of CS4 and row 0010 of CI4,k . The latter corre-
sponds to column 0010 of CT4,k ◦ S4 . These are exactly the two vectors that we
need to multiply in order to compute CD4,k(1000, 0010). Using the orthogonal-
ity relations [11], it is not difficult to show that this correlation is either one or
minus one, depending on the constant difference between S(3)

4 and I
(1)
4,k , which

only influences the sign.
In general, we have computed all the non-trivial perfect linear approximations

for each of the 2m subtweakeys. This was accomplished by considering all the
possible linear trails over D4,k. The results are found in Table 1 for the case
m = 4, i.e., for the 4-bit S-box, and in Table 2 for the case m = 8, i.e., for the
8-bit S-box. The first column lists the output masks and the third column lists
the input masks. An asterisk denotes that the linear approximation holds for
any subtweakey bit in that position. It turns out that in both cases such linear
approximations exist for a quarter of the subtweakeys. We call subtweakeys for
which this property holds weak.

Weak Subtweakeys in SKINNY 343

Consider a fixed subtweakey. If (u1, w1) and (u2, w2) are two perfect linear
approximations, then their sum (u1 + u2, w1 + w2) is again a perfect linear
approximation, as evidenced by the tables. Moreover, the pair (0, 0) is always a
perfect linear approximation. It follows that the perfect linear approximations
for a fixed subtweakey form a linear subspace of Fm

2 × F
m
2 .

5 Patching the Problem

To patch the problem, we search within a specific subset of S-boxes that are
permutation equivalent [5] to the original.

Definition 4. Two functions F: Fm
2 → F

m
2 and G: Fm

2 → F
m
2 are called per-

mutation equivalent if there exist bit permutations σ and τ such that

F = τ ◦ G ◦ σ .

A bit permutation τ is a permutation of {0, . . . , m − 1} that has been extended
to F

m
2 by

(xm−1, . . . , x0) �→ (xτ(m−1), . . . , xτ(0)) .

Many of the cryptographic properties of an S-box are preserved by permutation
equivalence, e.g., the algebraic degree, the differential uniformity, the linearity,
and the branch number. Moreover, the impact of a bit permutation on the imple-
mentation cost is negligible. For example, in hardware it amounts to rewiring
of the signals. We have restricted our search to those permutation equivalent
S-boxes for which σ is the identity.

Any bit permutation applied to the output bits of S4 permutes the columns
of its correlation matrix. Indeed, we have

CG(u, v) = CS4(u, τ−1(v)) .

Table 3 lists the bit permutations τ and the ratio of subtweakeys for which
there exist non-trivial perfect linear approximations. For example, the row
“(x2, x1, x0, x3) 0” corresponds to the bit permutation τ = L4 for which no
subtweakeys are weak. It turns out that there exist many permutation equiv-
alent S-boxes for which the double S-box structure does not have non-trivial
perfect linear approximations for any subtweakey.

Similarly, for the 8-bit S-box we found that there exist many permutation
equivalent S-boxes for which there exist no non-trivial perfect linear approxima-
tions. An example of such an S-box is obtained by applying the bit permutation
τ(x7, x6, x5, x4, x3, x2, x1, x0) = (x7, x5, x6, x4, x3, x2, x1, x0). Because the num-
ber of possible bit permutations is large, we did not include them all here.

344 D. Kuijsters et al.

Table 1. Perfect linear approximations of S4 ◦ T4,k ◦ S4 and their constituent linear
trails.

Output Intermediate Input Subtweakey CD4,k(u, w) CT4,k(v, v) CS(u, v) CS(v, w)

Mask Mask Mask k

u v w

1000 0001 0010 00∗k0 (−1)k0 (−1)k0 1/2 1/2

0101 (−1)k0 −1/2 −1/2

1001 (−1)k0 −1/2 −1/2

1101 (−1)k0 −1/2 −1/2

1010 0001 1110 0001 1 −1 −1/4 1/4

0011 −1 1/4 −1/4

0100 1 −1/2 −1/2

0101 −1 1/4 −1/4

0110 1 −1/2 −1/2

0111 −1 −1/4 1/4

1001 −1 −1/4 1/4

1011 −1 1/4 −1/4

1101 −1 −1/4 1/4

1111 −1 1/4 −1/4

0010 0001 1100 0001 −1 −1 1/4 1/4

0011 −1 1/4 1/4

0100 1 1/2 −1/2

0101 −1 −1/4 −1/4

0110 1 −1/2 1/2

0111 −1 −1/4 −1/4

1001 −1 1/4 1/4

1011 −1 1/4 1/4

1101 −1 1/4 1/4

1111 −1 1/4 1/4

0010 0001 1110 0011 −1 −1 1/4 1/4

0011 1 1/4 −1/4

0100 1 1/2 −1/2

0101 −1 −1/4 −1/4

0110 −1 −1/2 −1/2

0111 1 −1/4 1/4

1001 −1 1/4 1/4

1011 1 1/4 −1/4

1101 −1 1/4 1/4

1111 1 1/4 −1/4

1010 0001 1100 0011 1 −1 −1/4 1/4

0011 1 1/4 1/4

0100 1 −1/2 −1/2

0101 −1 1/4 −1/4

0110 −1 −1/2 1/2

0111 1 −1/4 −1/4

1001 −1 −1/4 1/4

1011 1 1/4 1/4

1101 −1 −1/4 1/4

1111 1 1/4 1/4

Weak Subtweakeys in SKINNY 345

Table 2. Perfect linear approximations of S8 ◦ T8,k ◦ S8 and their constituent linear
trails.

Output Intermediate Input Subtweakey CD8,k (u, w) CT8,k (v, v) CS(u, v) CS(v, w)

Mask Mask Mask k

u v w

01000000 00010000 00001000 00∗k4∗∗∗∗ (−1)k4 (−1)k4 1/2 1/2

01010000 (−1)k4 −1/2 −1/2

10010000 (−1)k4 −1/2 −1/2

11010000 (−1)k4 −1/2 −1/2

10010000 00001000 00000010 0001∗∗∗∗ −1 1 −1/2 1/2

00011000 −1 −1/4 −1/4

00101000 1 1/2 −1/2

00111000 −1 −1/4 −1/4

01011000 −1 1/4 1/4

01111000 −1 1/4 1/4

10011000 −1 1/4 1/4

10111000 −1 1/4 1/4

11011000 −1 1/4 1/4

11111000 −1 1/4 1/4

11010000 00001000 00001010 0001∗∗∗∗ 1 1 −1/2 −1/2

00011000 −1 −1/4 1/4

00101000 1 −1/2 −1/2

00111000 −1 1/4 −1/4

01011000 −1 1/4 −1/4

01111000 −1 −1/4 1/4

10011000 −1 1/4 −1/4

10111000 −1 −1/4 1/4

11011000 −1 1/4 −1/4

11111000 −1 −1/4 1/4

10010000 00001000 00001010 0011∗∗∗∗ 1 1 −1/2 −1/2

00011000 −1 −1/4 1/4

00101000 −1 1/2 −1/2

00111000 1 −1/4 −1/4

01011000 −1 1/4 −1/4

01111000 1 1/4 1/4

10011000 −1 1/4 −1/4

10111000 1 1/4 1/4

11011000 −1 1/4 −1/4

11111000 1 1/4 1/4

11010000 00001000 00000010 0011∗∗∗∗ −1 1 −1/2 1/2

00011000 −1 −1/4 −1/4

00101000 −1 −1/2 −1/2

00111000 1 1/4 −1/4

01011000 −1 1/4 1/4

01111000 1 −1/4 1/4

10011000 −1 1/4 1/4

10111000 1 −1/4 1/4

11011000 −1 1/4 1/4

11111000 1 −1/4 1/4

346 D. Kuijsters et al.

Table 3. Permutation equivalent S-boxes and their ratio of weak subtweakeys.

τ(x3, x2, x1, x0) Ratio of weak subtweakeys

(x3, x2, x1, x0) 4/16

(x2, x3, x1, x0) 6/16

(x3, x1, x2, x0) 0

(x2, x1, x3, x0) 0

(x1, x3, x2, x0) 0

(x1, x2, x3, x0) 2/16

(x3, x2, x0, x1) 0

(x2, x3, x0, x1) 0

(x3, x1, x0, x2) 0

(x2, x1, x0, x3) 0

(x1, x3, x0, x2) 5/16

(x1, x2, x0, x3) 0

(x3, x0, x2, x1) 7/16

(x2, x0, x3, x1) 0

(x3, x0, x1, x2) 0

(x2, x0, x1, x3) 0

(x1, x0, x3, x2) 6/16

(x1, x0, x2, x3) 0

(x0, x3, x2, x1) 10/16

(x0, x2, x3, x1) 8/16

(x0, x3, x1, x2) 0

(x0, x2, x1, x3) 0

(x0, x1, x3, x2) 0

(x0, x1, x2, x3) 0

6 Conclusion

The main message that we want to communicate is that the composition of
individually strong cryptographic functions may produce a weaker function for
a large subset of the round tweakey space. In SKINNY, this weakness holds for
any cipher key, because the subtweakeys are computed from the both the cipher
key and the tweak, the latter of which is chosen by the user. In small structures,
such undesired properties can be practically revealed through a combination
of algebraic and statistical analysis. This shows that counting the number of
active S-boxes in trails may have little meaning. Such properties could have been
avoided by moving to a slightly different function at a negligible implementation
cost.

Weak Subtweakeys in SKINNY 347

We did not expect this kind of problem to exist for the 8-bit version of the
SKINNY S-box. However, like the 4-bit S-box, in the composition of the two
8-bit S-boxes, the first stage of the second S-box and the final stage of the first
S-box are the same, leading to cancellation. If the matrix that is used in the
MixColumns step did not have a row with a single one, then this double S-box
structure would not exist. As a result, this particular problem would not be
there.

Acknowledgements. Joan Daemen and Daniël Kuijsters are supported by the Euro-
pean Research Council under the ERC advanced grant agreement under grant ERC-
2017-ADG Nr. 788980 ESCADA.

References

1. 27, I.J.S.: Information Security “Encryption Algorithms” Part 7: Tweakable Block
Ciphers, 1st edn. International Organization for Standardization, Vernier, Geneva,
Switzerland (2022). https://www.iso.org/standard/80505.html

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency Variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
CRYPTO 1990 (1990). https://doi.org/10.1007/3-540-38424-3 1

4. Bordes, N., Daemen, J., Kuijsters, D., Assche, G.V.: Thinking outside the super-
box. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021–
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
16–20 August 2021, Proceedings, Part III. LNCS, vol. 12827, pp. 337–367. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 12

5. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, Cambridge (2021)

6. Daemen, J.: Cipher and hash function design, strategies based on linear and dif-
ferential cryptanalysis, Ph.D. Thesis. K.U.Leuven (1995)

7. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Information Security and Cryptography. 2nd edn. Springer, Heidel-
berg (2020). https://doi.org/10.1007/978-3-662-04722-4

8. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: The
romulus and remus families of lightweight AEAD algorithms. IACR Trans. Sym-
met. Cryptol. 2020(1), 43–120 (2020), https://doi.org/10.13154/tosc.v2020.i1.43-
120

9. Jean, J.: TikZ for Cryptographers(2016). https://www.iacr.org/authors/tikz/
10. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

11. Lidl, R., Niederreiter, H.: Finite fields, Encyclopedia of Mathematics and its Appli-
cations, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997)

12. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
Proceedings of Advances in Cryptology - EUROCRYPT 1999 (1993)

https://www.iso.org/standard/80505.html
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-030-84252-9_12
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://www.iacr.org/authors/tikz/
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15

348 D. Kuijsters et al.

13. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

14. Turan, M.S., et al.: Status report on the second round of the NIST lightweight
cryptography standardization process (2021–07-20 04:07:00 2021). https://tsapps.
nist.gov/publication/get pdf.cfm?pub id=932630

15. Verbakel, D.: Influence of design on differential and linear propagation properties
of block cipher family skinny. Bachelor’s thesis, Radboud University, Nijmegen,
The Netherlands (2021)

https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
https://tsapps.nist.gov/publication/get
https://tsapps.nist.gov/publication/get

Full Round Zero-Sum Distinguishers
on TinyJAMBU-128 and TinyJAMBU-192
Keyed-Permutation in the Known-Key

Setting

Orr Dunkelman, Shibam Ghosh(B), and Eran Lambooij

Department of Computer Science, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il, sghosh03@campus.haifa.ac.il, eran@hideinplainsight.io

Abstract. TinyJAMBU is one of the finalists in the NIST lightweight
standardization competition. This paper presents full round practical
zero-sum distinguishers on the keyed permutation used in TinyJAMBU.

We propose a full round zero-sum distinguisher on the 128- and 192-bit
key variants and a reduced round zero-sum distinguisher for the 256-bit
key variant in the known-key settings. Our best known-key distinguisher
works with 216 data/time complexity on the full 128-bit version and with
223 data/time complexity on the full 192-bit version. For the 256-bit ver-
sion, we can distinguish 1152 rounds (out of 1280 rounds) in the known-
key settings. In addition, we present the best zero-sum distinguishers
in the secret-key settings: with complexity 223 we can distinguish 544
rounds in the forward direction or 576 rounds in the backward direction.

For finding the zero-sum distinguisher, we bound the algebraic degree
of the TinyJAMBU permutation using the monomial prediction technique
proposed by Hu et al. at ASIACRYPT 2020. We model the monomial
prediction rule on TinyJAMBU in MILP and find upper bounds on the
degree by computing the parity of the number of solutions.

1 Introduction

Lightweight cryptographic primitives are essential for providing security for
highly resource-constrained devices that transmit sensitive information. Thus,
recent years have seen a substantial increase in the development of lightweight
symmetric cryptographic primitives. As a response, NIST started the lightweight
cryptography competition [25] in 2018. The competition aims to standardize
lightweight authenticated encryption algorithms and lightweight hash functions.
In 2021, NIST announced ten finalists out of the initial 56 candidates.

TinyJAMBU [32,33], proposed by Wu et al., is one of the finalists of the NIST
lightweight competition. The design principle of TinyJAMBU follows the sponge
duplex mode using a keyed permutation. The core component of TinyJAMBU
is a keyed permutation derived from a lightweight NFSR that contains a single
NAND gate as the non-linear component.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 349–372, 2022.
https://doi.org/10.1007/978-3-031-22912-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_16

350 O. Dunkelman et al.

TinyJAMBU uses two different keyed permutations with the same key K.
These are similar in structure but differ only in the number of rounds. We denote
these two permutations Pa and Pb. The permutation Pa is used in steps where
no output is observed. Pb is used in the first initialization step and when an
internal state value is partially leaked. In the original submission of TinyJAMBU,
the round number of Pa was 384 for all variants. The round number of Pb was
1024, 1152, and 1280 for 128-, 192-, and 256-bit key variants, respectively.

1.1 Existing Analysis on TinyJAMBU Permutation

The designers of TinyJAMBU [32,33] provide a rigorous security analysis of the
underlying permutation against various attacks. From the differential and linear
attack perspectives, the designers [32] count the least number of active NAND
gates to claim security against those attacks. Later it was improved by Saha et
al. in [23] using (first order) correlated NAND gates. The authors in [23] propose
differential characteristics through 338 and 384 rounds of the keyed permutation
with probabilities of 2−62.68 and 2−70.68, respectively. These attacks lead to a
forgery attack in the TinyJAMBU mode. In response to this result, the designers
of TinyJAMBU increased the number of rounds of Pa from 384 to 640 [33].
More recently Dunkelman et al. reported related-key forgery attacks on the full
TinyJAMBU-192 and TinyJAMBU-256 (after the tweak) [11].

Sibleyras et al. [24] discuss slide attack on the full round TinyJAMBU per-
mutations. These reported attacks are key recovery attacks on TinyJAMBU per-
mutation with data/time complexities of 265, 266, and 269.5 for 128-, 192-, and
256-bit key variants, respectively.

Regarding algebraic attacks, the designers of TinyJAMBU [32,33] claim that
all the ciphertext bits are affected by the input bits after 598 rounds. This
statement was supported by a recent work by Dutta et al. [12], where the authors
bound the degree using the monomial prediction technique [17] and showed that
TinyJAMBU is secure against 32-sized cube attacks after 445 rounds. In addition,
they propose cube distinguishers in the weak-key setting for 451 rounds and 476
rounds of TinyJAMBU permutation and the size of the weak-key set is 2108.
Another cryptanalysis from an algebraic perspective was reported recently by
Teng et al. [26], where the authors propose cube attacks against TinyJAMBU.
The authors propose basic cube distinguisher on 438 rounds TinyJAMBU by
considering TinyJAMBU mode as a black-box.

1.2 Our Contributions

This paper aims to study the algebraic properties of TinyJAMBU permutation
as a standalone primitive. Notably, we construct zero-sum [2,3,5] distinguish-
ers that distinguish the TinyJAMBU keyed permutation in practical complexity.
Zero-sum distinguishers [2,3,5] can be used to distinguish permutations from a
random permutation by suggesting a subset of inputs whose corresponding out-
puts are summed to zero. One way to do so is to bound the algebraic degree of
the output bits, as a bit of degree d is balanced over any cube of degree d + 1.

Zero-Sum Distinguishers for TinyJAMBU-128 351

The most precise technique for upper bounding the degree of a Boolean function
is the Monomial prediction technique, proposed at ASIACRYPT 2020 [17]. The
Monomial prediction technique recursively predicts the existence of a monomial
in the polynomial representation of the output bits. One can model the rules of
monomial prediction using automatic tools like MILP [17] or CP/SAT [14].

We use zero-sum distinguishers both in the known-key [20] and the secret-
key settings [19,21]. We show that one can bound the degree of an output bit
after 544 rounds of the TinyJAMBU permutation by 22 by carefully choosing
the cube variables. Furthermore, we show that the degree of the inverse Tiny-
JAMBU permutation increases slower than in the forward direction. Using this,
we show that in the backwards direction, a bit can be represented as a degree 22
polynomial after 576 rounds. Combining these results, we then show full round
zero-sum distinguishers on 128- and 192-bit key versions and reduced round dis-
tinguisher on 256-bit key version in the known key settings. Our best zero-sum
distinguishers are summarized in Table 1, which are the best-known algebraic
distinguishers on TinyJAMBU permutation till date.

Table 1. Zero-sum (ZS) distinguishers on the full round TinyJAMBU permutation.

Key size #Rounds Complexity Model Type Section

All 480(/1024) 216 Secret Key ZS 5

All 544(/1024) 223 Secret Key ZS 5.1

128 1024 216 Known Key ZS 5.1

192 1152 223 Known Key ZS 5.2

256 1152(/1280) 223 Known Key ZS 5.2

1.3 Paper Structure

In Sect. 2, we define the notation for the paper as well as giving a short intro-
duction of the monomial prediction technique. We give a short overview of the
TinyJAMBU mode and keyed primitive in Sect. 3. Then, in Sect. 4, we show how
to build a zero-sum distinguisher on the full keyed permutation of TinyJAMBU-
128 and TinyJAMBU-192. In Sect. 5 we show how improve data/time complexity
of the zero-sum distinguisher on the full keyed permutation of TinyJAMBU-128
and TinyJAMBU-192 Finally, we conclude the paper in Sect. 6.

2 Preliminaries

2.1 Notations

The size of a set S is denoted as ‖S‖. The Hamming weight of a ∈ F
n
2 is defined as

wt(a) =
∑i=n

i=1 ai. We use bold lowercase letters to represent vectors in a binary
field. For any n-bit vector s ∈ F

n
2 , its i-th coordinate is denoted by si, thus we

352 O. Dunkelman et al.

have s = (sn−1, ..., s0). 0 represents the binary vector with all elements being 0.
For any vector u ∈ F

n
2 and x ∈ F

n
2 , we define the bit product as xu =

∏n
i=1 xi

ui .
Let Y ⊆ F

n
2 be a multi-set of vectors. A coordinate position 0 ≤ i < n is

called a balanced position if
⊕

y∈Y yi = 0.

2.2 Boolean Functions and Upper Bounds on the Degree

An n-variable Boolean function f is a function from F
n
2 to F2. If f is a Boolean

function then there exists a unique multivariate polynomial in

F2[x0, x1,, xn−1]/(x2
0 + x0, x

2
1 + x1,, x

2
n−1 + xn−1)

such that
f(x0, x1,, xn−1) =

⊕

u∈Fn
2

af
ux

u.

This multivariate polynomial is called the algebraic normal form (ANF) of f . In
this paper, we primarily look at the algebraic degree of a Boolean function. The
definition of the algebraic degree of a Boolean function is as follows

Definition 1. The algebraic degree of a function f : F
n
2 → F2 is d if d is the

degree of the monomial with the highest algebraic degree in the ANF of f , i.e.,

d = max
u∈Fn

2 ,af
u �=0

wt(u).

Many well-known attacks such as integral attacks [18], higher-order differ-
ential attacks [21], cube attacks [9], and zero sum distinguishers [4] exploit a
low degree of a Boolean function. Hence, the problem of finding the degree of
a cryptographic function is important in cryptanalysis. Numerous methods for
computing (or bounding) the degree of cryptographic Boolean functions have
been proposed in the literature. A study on various degree evaluation methods
can be found in [7].

Canteaut et al. proposed a method for upper bounding the algebraic degree
of composite functions at EUROCRYPT 2002 [6], which was improved by Boura
et al. [3] at FSE 2011 with applications to the Keccak-f function.

In CRYPTO 2017, Liu [22] proposed the numeric mapping technique, which
is an approach for upper bounding the algebraic degree of a non-linear feedback
shift register based stream ciphers. The main idea of this technique is to estimate
the degree of a monomial by computing the sum of degrees of all the variables
contained in this monomial. Thus, one can use the degree of previous states to
estimate the degree of the current state. Using the numeric mapping technique,
the author found several zero-sum distinguishers for round-reduced Trivium,
Kreyvium, and TriviA-SC.

Another approach for the degree evaluation is based on the division prop-
erty which was proposed as a generalization of the integral property by Todo
at Eurocrypt 2015 [27]. It is used in [28] to offer the first attack on the full

Zero-Sum Distinguishers for TinyJAMBU-128 353

MISTY1 cipher. The division property proposed by Todo is word-based, i.e., the
propagation of the division property captures information only at the word level.

In FSE 2016, Todo and Morii introduced the bit-based division property [29].
However, the accuracy of this approach is determined by the accuracy of the
“propagation rules” of the underlying detection algorithms for division proper-
ties. The monomial prediction technique, proposed at ASIACRYPT 2020 [17],
offers an exact method to do so. We use the monomial prediction technique in
this paper to find an upper bound on the degree of a Boolean function. In the
following subsection we briefly discuss how to use it to compute the algebraic
degree.

2.3 Monomial Prediction

Finding algebraic properties, such as the degree of the vectorial Boolean func-
tions corresponding to cryptographic primitives, is usually very hard regarding
computational complexity. One way to determine various algebraic properties of
a Boolean function is to determine the exact algebraic structure, i.e., predict the
presence of particular monomials in its ANF. Monomial prediction technique [17]
is an indirect way to determine the presence of a particular monomial in the bit
product function of the output bits. In this section, we discuss an overview of
monomial prediction technique and how to find the degree of a Boolean function
with this technique.

Let f : F
n
2 → F

m
2 be a vectorial Boolean function that maps x =

(xn−1, ..., x0) ∈ F
n
2 to y = (ym−1, ..., y0) with yi = fi(x), where fi : F

n
2 → F2

is a Boolean function called the i-th coordinate of f . The monomial prediction
problem is to identify if the monomial xu is present or absent as a monomial in
the polynomial representation of yv for some u ∈ F

n
2 and v ∈ F

m
2 . We denote

that the monomial xu is present in yv by xu → yv, likewise, xu
� yv denotes

that xu is not present in yv.
As most of the Boolean functions that appear in symmetric cryptographic

primitives are built as a composition of a sequence of vectorial Boolean functions,
the authors of [17] proposed a recursive prediction model. Naturally, the function
f can be written as a composition of round functions:

y = f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x)

and x(i+1) = f (i)(x(i)) for all 0 ≤ i < r. We can represent x(i) as a function of
x(j) for j < i as x(i) = f (i−1) ◦ · · · ◦ f (j)(x(j)).

Definition 2. (Monomial Trail [17]) Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r.
We call a sequence of monomials ((x(0))u

(0)
, (x(1))u

(1)
, ..., (x(r))u

(r)
) an r-round

monomial trail connecting (x(0))u
(0)

to (x(r))u
(r)

with respect to the composite
function f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x) if

(x(0))u
(0) → (x(1))u

(1) → · · · → (x(i))u
(i) → · · · → (x(r))u

(r)

If there is at least one monomial trail connecting (x(0))u
(0)

to (x(r))u
(r)
, we

denote it as (x(0))u
(0) � (x(r))u

(r)
.

354 O. Dunkelman et al.

It is important to note that there can be multiple monomial trails connecting
(x(0))u

(0)
to (x(r))u

(r)
. This leads to the definition of a monomial hull which

is the set of all trails connecting (x(0))u
(0)

and (x(r))u
(r)

, which is denoted as
{(x(0))u

(0) � (x(r))u
(r)}. The size of a monomial hull can be found recursively

as given in the following Lemma 1 from [17].

Lemma 1. ([17]) For r ≥ 1, (x(0))u
(0) � (x(r))u

(r)
, then

‖{(x(0))u
(0) � (x(r))u

(r)}‖ =
⎧
⎪⎨

⎪⎩

1, if r = 1
∑

(x(r−1))u
(r−1)→(x(r))u

(r)

‖{(x(0))u
(0) � (x(r−1))u

(r−1)}‖, otherwise

It is easy to observe that the presence or absence of a monomial in (x(r))u
(r)

,
depends on the parity of the size of the monomial hull, which is captured in
Proposition 1.

Proposition 1. ([17]) (x(0))u
(0) → (x(r))u

(r)
if and only if ‖{(x(0))u

(0) �
(x(r))u

(r)}‖ is odd.

To conclude, the problem of finding the degree of a polynomial is reduced
to finding the parity of the size of the monomial hull of the monomial with the
highest degree.

2.4 Computing the Algebraic Degree Using Monomial Prediction

To determine the algebraic degree d, of a Boolean function f , one can use the
monomial prediction technique [17]. To compute an upper bound on the degree
we only need to prove the existence of a monomial xu with wt(u) = d such that
xu → f and xu′

� f for all u′ with wt(u′) > wt(u).
To automate this task, the authors in [17] proposed a Mixed Integer Linear

Programming (MILP) approach. The core idea is to model the monomial trails
of a function with linear inequalities so that only the valid trails satisfy the
system. For more information on the MILP modeling, we refer to [15–17].

To find the existence of a specific monomial, one can choose a monomial (i.e.,
the exponent vector u) and check for the feasibility of the MILP model. On the
other hand, one can find the maximum degree by setting the objective function
of the MILP model to maximize wt(u) according to maxxu→f wt(u). Finally, to
confirm the presence of a monomial, we need to check if the number of solutions
is even or odd. To do this, PoolSearchMode of the Gurobi1 solver is used in [17].
The PoolSearchMode is implemented by Gurobi solver to systematically search
for multiple solutions.

1 https://www.gurobi.com.

https://www.gurobi.com

Zero-Sum Distinguishers for TinyJAMBU-128 355

3 The Specification of TinyJAMBU

The TinyJAMBU [32] family of authenticated encryption with associated data
(AEAD), is a small variant of JAMBU [31]. It is one of the finalists of the
NIST lightweight competition. The design principle of TinyJAMBU is based on
the sponge duplex mode using keyed permutations derived from a lightweight
NLFSR.

In this paper we call the internal keyed permutation the TinyJAMBU permu-
tation. The round function of the TinyJAMBU permutation is defined as follows:
Pk : F

128
2 → F

128
2 such that for a key bit k ∈ F2 and input x = (x127, ..., x0),

Pk(x) = (z127, ..., z0) where
{

z127 = 1 ⊕ k ⊕ x91 ⊕ x85x70 ⊕ x47 ⊕ x0

zi = xi+1, for 0 ≤ i ≤ 126.
(1)

We denote the r-round permutation by Pr
K. Given a key K = (kκ−1, ..., k0) of size

κ and a 128-bit input, Pr
K outputs a 128-bit state by calling the round function

r times as follows
Pr
K(x) = Pkκ−1 · · · ◦ Pk1 ◦ Pk0(x),

where each subscript i of the key bits are computed as ki = ki(mod κ). The round
function of the TinyJAMBU permutation is depicted in Fig. 1.

Fig. 1. Round function of the TinyJAMBU permutation.

We define the inverse of Pr
K as P−r

K , such that for any K and x, P−r
K (Pr

K)(x) =
x. We follow the convention that the input to the P−r

K is rotated, i.e., the i-
th input bit becomes 127 − i for all 0 ≤ i < 128. The round function of the
TinyJAMBU inverse permutation is defined as follows: P−1

k : F
128
2 → F

128
2 such

that for a key bit k ∈ F2 and input z = (z127, ..., z0), Pk(z) = (x127, ..., x0) where
{

x127 = 1 ⊕ k ⊕ x37 ⊕ x43x58 ⊕ x81 ⊕ x0

zi = xi+1, for 0 ≤ i ≤ 126.
(2)

356 O. Dunkelman et al.

Given a key K = (kκ−1, ..., k0), the TinyJAMBU inverse function is computed
as follows

P−r
K (x) = P−1

kκ−1
· · · ◦ P−1

k1
◦ P−1

k0
(x),

where each subscript i of the key bits are computed as ki = k(κ−i)(mod κ). The
round function of the inverse TinyJAMBU permutation is depicted in Fig. 2.

Fig. 2. Round function of the inverse TinyJAMBU permutation.

TinyJAMBU has a 32-bit message injection part (rate), a 32-bit squeezing
part, and a 96-bit unaltered capacity part. The capacity part of the state is
XORed with the 3-bit frame constants denoted by consti. TinyJAMBU uses two
different keyed permutations using the same key K in different phases of the
encryption. We denote them as Pa and Pb. The only differene between these
two permutation is the number of rounds.

TinyJAMBU has three variants based on key size used in the permutation,
whose parameters are listed in Table 2.

Table 2. Parameters of the tweaked TinyJAMBU [33].

Variant #Rounds Pa #Rounds Pb State Key Nonce Tag

TinyJAMBU-128 640 1024 128 128 96 64

TinyJAMBU-192 640 1152 128 192 96 64

TinyJAMBU-256 640 1280 128 256 96 64

We denote internal state as s. The encryption algorithm of TinyJAMBU can
be divided into the following four phases.

Initialization. In this step Pb is applied to the 128-bit initial state s =
(0, 0, ..., 0) to inject the key into the state. After that, in the nonce setup phase,
a 96-bit nonce N is split up into three 32-bit nonce parts N0‖N1‖N2 and for
each part of the nonce the state is updated with Pa after which the nonce is
added to the most significant part of the state. A depiction of the initialization
is given in Fig. 3.

Zero-Sum Distinguishers for TinyJAMBU-128 357

Fig. 3. TinyJAMBU initialization.

Associated Data Processing. The associated data is divided into 32-bit
blocks. For each block, the 3-bit frame constant of the associated data phase
is XORed with the state and then the state is updated with Pa, after which
the 32 bits of the associated data part is XORed with the state. The schematic
diagram associated data processing and finalization step is depicted in Fig. 4.

Fig. 4. TinyJAMBU Authenticated Encryption for a blocks of associated data, and m
blocks of message.

Encryption. The plaintext is divided into 32-bit blocks. For each block, the
frame bits for encryption are XORed into the state. Then the state is updated
with Pb, after which the plaintext block is XORed into the most significant
part of the state. Finally, we obtain the 32-bit ciphertext block by XORing bits
95 . . . 64 of the state with the plaintext block. Note that, the plaintext and nonce
are added to the 32 most significant bits of the state which are 127 . . . 96 and
the key stream used for encryption, is obtained from bits 95 . . . 64.

Finalization. After encrypting the plaintext, the 64-bit authentication tag
T0‖T1 is generated in two steps. First, the frame bits for the finalization are

358 O. Dunkelman et al.

XORed into the state which is followed by the application of Pa after which 32-
bit T0 is extracted from bit 95 . . . 64 of the state. Then, again the frame bits for
the finalization are XORed with the state followed by application of Pa and 32-
bit T1 is extracted. The schematic diagram plaintext processing and finalization
step is depicted in Fig. 5.

Fig. 5. TinyJAMBU Authenticated Encryption for a blocks of associated data, and m
blocks of message.

4 Zero-Sum Distinguishers on TinyJAMBU

In this section, we show how to construct a zero-sum distinguisher [2] for the
TinyJAMBU permutation. The idea of this distinguisher, as the name ‘zero-
sum’ suggests, is to find a set of inputs and corresponding outputs of an n-bit
permutation such that the bits in the inputs and outputs sum to 0 over F2.
In the case of TinyJAMBU we choose an affine vector space ν as a subspace of
F
128
2 of dimension d. We then show that the polynomial representation of all (or

some) of the targeted output bits of the TinyJAMBU permutation have a degree
less than d after r rounds. In such a case, the outputs corresponding to all the
elements in ν sum to 0 for the targeted bits as the dimension is greater than
the degree. In other words, if the algebraic degree of a Boolean function f is less
than d, there exists an affine vector space ν of dimension at least d for which⊕

x∈ν f(x) = 0. The time and data complexity of the attack is O(2d) and the
memory complexity is O(1).

The input set ν usually consists of inputs taking all possible combinations
in d input bits and the remaining bits take a fixed value. Thus the input set
forms an affine vector space of dimension d. So the resulting output sets are
the d-th derivative of the corresponding vectorial Boolean function with respect
to ν. Recall that this idea was first proposed as the higher order differential
attack [19,21].

In the following we discuss various zero-sum distinguishers on the Tiny-
JAMBU permutation. The basis for all the distinguishers is finding an upper
bound on the degree of the polynomial representation of input/output bits. This
is done using a MILP model of the monomial prediction trail of the TinyJAMBU
permutation.

Zero-Sum Distinguishers for TinyJAMBU-128 359

4.1 MILP Modeling

Let us consider a function f : F
m
2 → F

n
2 such that y = f(x). Every pair of (u,v)

is a valid monomial trail through f if and only if xu → yv. The main motivation
of MILP modeling is that it is easy to test validity of a monomial trail using the
MILP. Let us consider the following monomial trail

(x(0))u
(0) → (x(1))u

(1) → · · · → (x(i))u
(i) → · · · → (x(r))u

(r)

We consider the transition of the exponents (u(0)),u(1)), ...,u(r))) through the
round functions and construct a MILP model by modeling the propagation
of monomial trails. Any function can be decomposed into smaller operations,
namely, COPY, XOR, AND and NOT. We recall the MILP model from [15,16]
that supports the following operations.
COPY [15]. Consider the function COPY : F2 → F

m
2 such that COPY(a) =

(a, a, ..., a), i.e., one bit is copied to m bits. Let (u, (v1, v2, ..., vm)) denote the
monomial trail through the COPY function, then, it can be represented using
the following MILP constraints:

⎧
⎪⎨

⎪⎩

v1 + v2 + · · · + vm ≥ u

u ≥ vi,∀i ∈ {1, 2, ...,m}
u, v1, ..., vm are all binary variables.

XOR [15]. Consider the function XOR : F
m
2 → F2 such that XOR(a1, ..., am) =

a1⊕· · ·⊕am. Let ((u1, u2, ..., um), v) denote the monomial trail through the XOR
function, then, it can be represented using the following MILP constraints:

{
u1 + u2 + · · · + um − v = 0
u1, ..., um, v are all binary variables.

AND [15]. Consider the function AND : F
m
2 → F2 such that AND(a1, ..., am) =

a1a2 · · · am. Let ((u1, u2, ..., um), v) denote the monomial trail through the AND
function, then, it can be represented using the following MILP constraints:

{
v = ui,∀i ∈ {1, 2, ...,m}
u1, ..., um, v are all binary variables.

NOT [16]. Consider the function NOT : F2 → F2 such that NOT(a) = 1 ⊕ a.
Let (u, v) denote the monomial trail through the NOT function, then, it can be
represented using the following MILP constraint:

{
v ≥ u

u, v are binary variables.

360 O. Dunkelman et al.

4.2 MILP Model for the Monomial Trails of TinyJAMBU

We now discuss a MILP model to capture the valid monomial trails through
the TinyJAMBU permutation. We denote the i-th intermediate state of the
TinyJAMBU permutation and the TinyJAMBU inverse permutation as x(i) =
(xi

127, . . . , x
i
0) and x̄(i) = (x̄i

127, . . . , x̄
i
0) for 0 ≤ i ≤ r, respectively. Thus the

input (state) variables are x(0) = (x0
127, . . . , x

0
0), and the output (state) vari-

ables after r-rounds are x(r) = (xr
127, . . . , x

r
0). We let u(i) = (ui

127, . . . , u
i
0) and

ū(i) = (ūi
127, . . . , ū

i
0) denote the exponents of the i-th intermediate state of

the TinyJAMBU permutation and the TinyJAMBU inverse permutation, respec-
tively. Also the exponents corresponding to the key variables are denoted by
(u0

128+κ, . . . , u0
128).

To represent the feedback polynomial of TinyJAMBU permutation and its
inverse, we define the function CORE : F

5
2 → F

5
2 such that

CORE(x5, x4, x3, x2, x1, x0) = (y5, y4, y3, y2, y1, y0)

where

(y5, y4, y3, y2, y1, y0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y5 = x5

y4 = x4

y3 = x3

y2 = x2

y1 = x1

y0 = 1 ⊕ x0 ⊕ x1 ⊕ x2x3 ⊕ x4 ⊕ x5.

(3)

The way we model the i-th round works in two steps. At the first step the
CORE function is applied to (ki

i, x
i
91, x

i
85, x

i
70, x

i
47, x

i
0), i.e.,

(ki+1
i , xi+1

91 , xi+1
85 , xi+1

70 , xi+1
47 , xi+1

0) = CORE(ki
i, x

i
91, x

i
85, x

i
70, x

i
47, x

i
0).

In the second step all the state variables and key variables are rotated, i.e., xi+1
j =

xi+1
j+1 mod 128 and ki+1

j = ki+1
j+1 mod 128. To construct a monomial trail of the round

function of TinyJAMBU permutation, we decompose the CORE function given
in Eq. 3 into COPY, XOR, AND and NOT operations. Then we can model the
monomial trails through the CORE function as shown in Table 3, by introducing 7
intermediate variables wi for i = 0, 1, ..., 7. In Table 3, ui’s and vi’s represent the
MILP variables to denote exponents of xi’s and yi’s respectively. For the second
step we just rotate the indices. In Algorithm 1, we discuss how to generate
a complete MILP model for TinyJAMBU permutation, where L represents the
inequalities for the CORE function as given in Table 3.

The model for the inverse TinyJAMBU permutation works almost similarly.
The only difference is the input to the CORE function. In the case of the inverse
round, the CORE function is applied as follows

(ki+1
i , xi+1

81 , xi+1
58 , xi+1

43 , xi+1
37 , xi+1

0) = CORE(ki
i, x

i
81, x

i
58, x

i
43, x

i
37, x

i
0).

Zero-Sum Distinguishers for TinyJAMBU-128 361

Table 3. Inequalities to represent the CORE function.

Operation Trail MILP constraints

x1
COPY−−−−→ (z1, y1) (u1, (w1, v1)) u1 ≤ w1, u1 ≤ v1, w1 + v1 ≥ u1

x2
COPY−−−−→ (z2, y2) (u2, (w2, v2)) u2 ≤ w2, u2 ≤ v2, w2 + v2 ≥ u2

x3
COPY−−−−→ (z3, y3) (u3, (w3, v3)) u3 ≤ w3, u3 ≤ v3, w3 + v3 ≥ u3

x4
COPY−−−−→ (z4, y4) (u4, (w4, v4)) u4 ≤ w4, u4 ≤ v4, w4 + v4 ≥ u4

x5
COPY−−−−→ (z5, y5) (u5, (w5, v5)) u5 ≤ w5, u5 ≤ v5, w5 + v5 ≥ u5

(z2, z3)
AND−−−→ z6 ((w2, w3), w6) w6 == z2, w6 == z3

(x0, z1, z6, z4, z5)
XOR−−−→ z7 ((u0, w1, w6, w4, w5), w7) w7 == u0 + w1 + w6 + w4 + w5

z7
NOT−−−→ y0 (w7, v0) v0 ≥ w7

4.3 Degree Estimation of the TinyJAMBU Permutation

We now bound the degree of TinyJAMBU permutation using the MILP model
generated in Algorithm 1. In the following discussion, we consider the key K =
(kκ−1, ..., k0) as a constant. Thus, the j-th state bit after i rounds of PK, xi

j ,
is a polynomial on x(0) = (x0

127, . . . , x
0
0), and we need to determine the degree

of the polynomial over x(0) = (x0
127, . . . , x

0
0). In all of our attacks, we fix our

target output (state) bit to the 127-th bit and thus for an r-round permutation
u(r) = (ur

127, ..., u
r
0) is

ur
j =

{
1, if j = 127
0, otherwise.

(4)

We discuss the detailed procedures to find the degree of the TinyJAMBU per-
mutation in Algorithm 2, where we call Algorithm 1 to generate a MILP model
for the TinyJAMBU. Algorithm 2 works as follows: we first generate a MILP
model M and solve the model to get a possible monomial m in the polynomial
representation of the 127-th bit of the output state. Our next task is to confirm
the presence of the monomial m in the polynomial representation of the 127-th
bit of the output state. To do so we generate another MILP model M′ (line 11
in Algorithm 2). Here we set the initial variables (u′(0)) of M′ according to the
solution of M and solve it. In this case we count the number of solutions of M′.
If the number of solutions is odd, then we confirm that the obtained monomial
m exists (line 19 in Algorithm 2) in the polynomial representation of the 127-th
bit of the output state. Otherwise, if the number of solution is even, then the
number of trails from the monomial m is even. So, we remove the solution cor-
responding to m (line 22-26 in Algorithm 2) and solve the model M again. We
do this until we get a monomial with an odd number of trails.

362 O. Dunkelman et al.

Algorithm 1. TinyJAMBUMILP (Generating a MILP model)
1: Input: r, the targeted number of rounds
2: Output: The MILP model M for r-round TinyJAMBU permutation, MILP variable

representing initial and final states
3: Declare an empty MILP model M;
4: M.var ← u(0) = (u0

127+κ, . . . , u0
128, u

0
127, . . . , u

0
0);

5: M.var ← s = (s127+κ, . . . , s0);
6: s ← u(0);
7: for i = 0; i < r; i = i + 1 do
8: M.var ← (w7, . . . , w0);
9: M.var ← (v128, v91, v85, v70, v47, v0);

10: M.con ← L(s128, s91, s85, s70, s47, s0, v128, v91, v85, v70, v47, v0, w7, . . . , w0);
11: si = vi, i ∈ {0, 47, 70, 85, 91, 128};
12: for j = 0; j < 128; j = j + 1 do
13: sj ← sj+1 mod 128;

14: for j = 128; j < κ; j = j + 1 do
15: sj ← s128+{(j+1) mod κ};

16: ur ← s
17: return M,u0,ur;

We have listed our findings of degree for TinyJAMBU-128 permutation and
its inverse permutation in Table 7 and Table 8, respectively, in Appendix A. The
source code for MILP modeling can be found in

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git.

4.4 Basic Zero-Sum Distinguisher

We now discuss a basic zero-sum distinguisher on TinyJAMBU-128. To find this
we upper bound the degree of TinyJAMBU permutation using Algorithm 2. We
set the objective function to maximize the sum of initial variables, i.e.,

∑127
j=0 u0

j

and check for the parity of the number of solutions as in Algorithm 2. With the
help of Algorithm 2 we are able to evaluate an upper bound on the algebraic
degree of the TinyJAMBU-128 up to 333 rounds. The degree of all the bits in
x(333) is upper-bounded by 38 for 333 rounds. Thus, if we consider an affine
subspace ν of dimension 39 and consider the sum of the output states over all
the elements of ν, we get 0, i.e.,

⊕

x(0)∈ν

P333
K (x(0)) = 0.

Which gives us that all the state bits are balanced after 333 rounds.

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git

Zero-Sum Distinguishers for TinyJAMBU-128 363

Algorithm 2. Degree estimation of the TinyJAMBU permutation
1: Input: r, the targeted number of rounds
2: Output: The degree d of r-round TinyJAMBU permutation
3: (M,u(0),u(r)) ← TinyJAMBUMILP (r);
4: M.constraint ← {ur

127 = 1};
5: for i = 0; i < 127; i = i + 1 do
6: M.constraint ← {ur

i = 0};

7: M.objective ← max(u0
127 + . . . + u0

0);
8: while true do
9: M.update();

10: M.optimize();
11: if M.status is OPTIMAL then
12: d ← M.objvalue
13: (M′,u′(0),u′(r)) ← TinyJAMBUMILP (r);
14: ur

127 ← 1;
15: for i = 0; i < 127; i = i + 1 do
16: ur

i ← 0;

17: for i = 0; i < 128; i = i + 1 do
18: u′0

i ← u0
i .value;

19: M′.optimize();
20: if M′.status is OPTIMAL then
21: if Number of solution in M′ is odd then
22: return d;
23: else
24: for i = 0; i < 127 + κ; i = i + 1 do
25: if u0

i .value = 0 then
26: M.constraint ← {u0

i = 1};
27: else
28: M.constraint ← {u0

i = 0};

We can extend this distinguisher to cover more rounds due to the basic nature
of the shift register. From the design of the round function, we can observe that
each bit is shifted to its previous bit, i.e., xi

j = xi
j+1. Thus after 448 rounds the

following 12 bits are still balanced

(x(448)
11 , x

(448)
10 , . . . x

(448)
0).

The complexity of this distinguisher is 239. When the same affine subspace passes
through a random permutation, the outputs satisfy the above condition with
probability 2−12. Thus, the distinguishing advantage of this distinguisher 1 −
2−12.

We can increase the distinguishing advantage by considering � affine subspace
of dimension 39 instead of taking one affine subspace. This comes at the cost
of complexity. In this case the distinguishing advantage of this distinguisher is
1 − 2−12� and the complexity is �239. Let us take � = 4. Then the distinguishing
advantage increases to 1 − 2−48 and complexity of this distinguisher is 241.

364 O. Dunkelman et al.

We can increase the number of rounds up to 460 and still can use this zero-
sum property. However, the distinguishing advantage of the attack decreases. If
A is the distinguishing advantage, then the number of rounds r ∝ log(1 − A),
where 333 ≤ r ≤ 460.

Zero-Sum Distinguisher of the Inverse Permutation. We now discuss a
basic zero-sum distinguisher on the inverse permutation. Similar to the forward
direction, here also we set the objective function to maximize

∑127
j=0 ū0

j and to
check for the parity of the number of solutions. We noticed in our experiments
that in the inverse direction the degree increases significantly slower compared
to the forward direction. This is because the update function has only one non-
linear operation on bit number 70 and 85 and for the inverse permutation, the
first non-linear operation is after 70 rounds, while in the forward direction the
first non-linear operation occurs after 42 rounds.

With the help of monomial prediction, we are able to evaluate an upper
bound on the algebraic degree of the inverse TinyJAMBU-128 up to 502 rounds.
The degree of all the bits in x̄(502) is upper-bounded by 41 for 502 rounds. Thus
if we consider an affine subspace ν of dimension 42 and consider the sum of the
output states over all the elements of ν, we get 0, i.e.,

⊕

x(0)∈ν

P−502
K (x̄(0)) = 0.

As in the forward direction, we can extend this distinguisher for more rounds
using shifting property of the register. After 608 rounds the following 21 bits are
still balanced

(x̄(608)
20 , x̄

(608)
19 , ..., x̄

(608)
0).

The data and time complexity of this distinguisher is 242 and the distinguish-
ing advantage of this distinguisher 1 − 2−21. Similar to the forward direction,
we can increase the distinguishing advantage by considering few more subspaces
of dimension 41. If we consider 4 subspaces of dimension 41, the distinguishing
advantage increases to 1 − 2−84 and complexity of this distinguisher is 244.

4.5 Extending to Full Rounds Using Inside-Out Approach

We extend the above zero-sum distinguishers to a full round distinguisher using
the inside-out approach. We start in the middle of the permutation and compute
the degree outwards. We consider an affine subspace ν of dimension d and for
all 2d possible intermediate states we compute the outputs. Suppose that we
consider the state after r1 rounds for an r-round permutation where r1 + r2 = r.
For all these 2d intermediate states x(r1) ∈ F

128
2 , we compute Pr2(x(r1)) and

P−r1(x(r1)). If the degree of both functions Pr2 and P−r1 are less than d, we
get zero-sum on both outputs, i.e.,

⊕

x(r1)∈ν

Pr2(x(r1)) =
⊕

x(r1)∈ν

P−r1(x(r1)) = 0.

Zero-Sum Distinguishers for TinyJAMBU-128 365

The idea is depicted in Fig. 6.

Fig. 6. Zero-sum distinguisher from an intermediate vector space ν.

However, to use this distinguisher to distinguish the TinyJAMBU permutation
from a random permutation, we need to know the secret key K, i.e., this is a
known-key zero-sum distinguisher. This cryptographic model, distinguishing a
cryptographic permutation from a random permutation with the knowledge of
the key, was introduced by Knudsen et al. in [20] at ASIACRYPT 2007. The
authors in [20] found a distinguisher on the 7-round AES [8] using this model.
There are other examples of this approach in the literature, for example on
KECCAK and Luffa [3,5], PHOTON [30], Ascon [10] or MiMC [13].

To apply the technique to the TinyJAMBU-128 permutation, we bound the
degree of Pr2 and P−r1 using a MILP model of the monomial prediction rules.
We find that the degree of all the bits of x(332) is upper-bounded by 37 after
applying 332 rounds of P. On the other hand, the degree of all the bits of x̄(482)

is upper bounded by 37 for round number 482 of P−1. We set r1 = 448 and
r2 = 576 giving r = r1 + r2 = 1024. If we take P448(x(576)) = (z127, ..., z0),
then we get the zero-sum at the bit positions (z10, z9, ..., z0). Similarly, if
P−576(x(576)) = (y127, ..., y0), then we get the zero-sum at the following 33 bit
positions (y32, y31, ..., y0). Thus we consider an affine vector space ν of dimen-
sion 38 and compute outwards by setting the intermediate state to all possible
238 vectors from ν. We collect the outputs of P448 and the outputs of P−576.
Finally, we have a set of inputs X = {x = (x127, ..., x0)} with

⊕
x∈X xi = 0

for all 0 ≤ i ≤ 32. Also, a set of outputs Z = {P1024(x) : x ∈ X} such that⊕
x∈X zi =

⊕
x∈X(P1024(x))i = 0 for all 0 ≤ i ≤ 10. Combining the two results

we have a zero-sum distinguisher of full round TinyJAMBU-128 permutation with
time and data complexity O(238). See Fig. 7 for a depiction of the attack.

Fig. 7. Zero-sum distinguisher on full TinyJAMBU-128.

5 Improved Zero-Sum Distinguisher

In the previous section, we suggested a distinguisher on the full round Tiny-
JAMBU-128 permutation by considering degree of the TinyJAMBU permutation
and inverse permutation over all 128 state variables. In this section we improve
the time and data complexity of the distinguisher by choosing the proper vari-
ables (or in other words a proper affine subspace ν), i.e., we want to find the

366 O. Dunkelman et al.

degree of the TinyJAMBU permutation over some selected variables. This sce-
nario is also similar to the cube attack [9] or a cube tester [1].

Given a Boolean polynomial f in m variables, we choose a set of variables
(also called the cube variables in a cube attack) of size n and set the rest of the
m − n variables to a constant (typically they are set to zero). We reduced the
function f to a function on n-variables. If we can show that the reduced function
has degree lower than some value d, we have a zero-sum property.

Proper Choice of Variables. Let us consider the following subspace ν of
dimension 23 from F

128
2

x ∈ ν ⇐⇒

⎧
⎪⎨

⎪⎩

xi+47 = xi, if 0 ≤ i ≤ 22
0, if 23 ≤ i ≤ 46
0, if 70 ≤ i ≤ 127.

(5)

From the algebraic description of the round permutation we get that after one
round, the feedback polynomial is x(1)

127 = 1 ⊕ x
(0)
0 ⊕ x

(0)
47 ⊕ x

(0)
70 x

(0)
85 ⊕ x

(0)
91 ⊕ k0.

If we set x(0) to any vector from ν, we have x(1)
127 = 1 ⊕ k0. This is also true

for first 23 rounds. Therefore, for the first 23 rounds the degree of the feedback
polynomial is 0 in the cube variables. Then, from round 24 to 47, the degree of
the feedback polynomials is also 0 in the cube variables. It is now clear how the
locations of the fixed 0 bits were chosen - to ensure that as many forward rounds
with degree 0 as possible. We conclude the results with the following Lemma 2.

Lemma 2. If we choose the input state x(0) of the TinyJAMBU permutation
from the subspace ν as described in (5), we get deg(x(i)

127) = 0 for all 0 ≤ i ≤ 47.
More precisely, if P47

K (x(0)) = z, then the coordinates of z satisfies the following
conditions:

zi = x
(0)
i for 0 ≤ i ≤ 22

zi = 0 for 22 ≤ i ≤ 80
zi = 1 ⊕ k81−i, for 81 ≤ i ≤ 117
zi = k155−i ⊕ k118−i, for 118 ≤ i ≤ 127

After 47 rounds, the degree is upper bounded by 1 and state bits 23 to 128
do not contain any cube variables. So we do not consider these MILP variables
in the objective function.

After 388 rounds the degree in all bits of x(388) is upper bounded by 22.
Consequently, as we have started after 47 rounds, we can compute the degree
after 47 more rounds. The degree in all bits of x(435) after 435 rounds is upper
bounded by 22. Using the subspace ν mentioned in (5), after applying the per-
mutation for 544 rounds, i.e., P(544), we get a zero sum on the following 18 bit
positions

(x(544)
17 , x

(544)
16 , ..., x

(544)
0).

Similar distinguishers also works on TinyJAMBU-192. The results are summa-
rized in Table 4.

Zero-Sum Distinguishers for TinyJAMBU-128 367

Table 4. Secret-key zero-sum distinguishers TinyJAMBU permutation. ∗ implies the
basic distinguisher of sec Sect. 4.4.

Key size #rounds #balanced bits Complexity

128 480 16 16

128 480 38 18

128 512 9 18

128 544 18 23

128 448 12 39∗

192 490 6 16

192 555 8 23

256 490 6 16

256 555 8 23

5.1 Extending to Full Rounds Using Inside-Out Approach

Similar to the basic distinguisher, we can extend this distinguisher to the full
round TinyJAMBU-128 without increasing time or data complexity. The advan-
tage we get for forward direction from projecting degree for 47 rounds at the
starting, is not possible for the inverse permutation. However, as we discussed
earlier, the degree of the inverse permutation already increases slowly.

For the inverse permutation we set the MILP variable as follows ūi = 0 if
0 ≤ i ≤ 58 or 81 ≤ i ≤ 105. After 472 rounds we have that the degree in all the
bits of x̄(472) are upper bounded by 22. Thus, after 576 rounds of the inverse
permutation we get a zero sum on the following 23 bit positions

(x̄(576)
22 , x̄

(576)
21 , . . . x̄

(576)
0).

Similar distinguishers also works on TinyJAMBU-192. The results are summa-
rized in Table 5.

Table 5. Secret-key zero-sum distinguishers TinyJAMBU inverse permutation. ∗ implies
the basic distinguisher of sec Sect. 4.4.

Key size #rounds #balanced bits Complexity

128 544 6 16

128 544 16 18

128 576 23 23

128 592 7 23

128 608 21 42∗

192 544 6 16

192 597 4 23

256 544 6 16

256 597 4 23

368 O. Dunkelman et al.

To extend the above results to full rounds we set r1 = 512 and r2 = 512,
and we have a zero-sum distinguisher on full rounds with 50 balanced bits on
the output of the forward direction and 87 balanced bits on the output of the
inverse direction. Other combinations of r1 and r2 are possible with the trade-off
on data/time complexity to number of balanced bits. Our best distinguisher on
full TinyJAMBU-128 works with the time/data complexity of 216. For these we
set r1 = 480 and r2 = 544 such that r1 + r2 = 1024. We get 16 balanced bits in
the forward direction and 6 balanced bits in the backward direction. Results on
full round attack with various combinations of r1 and r2 are given in Table 6.
Also see Fig. 8 for a depiction of the attack.

Fig. 8. Improved zero-sum distinguisher on full TinyJAMBU-128.

5.2 Attack on TinyJAMBU-192 and TinyJAMBU-256

The improved distinguisher discussed in the previous of this section also works on
the full round TinyJAMBU-192 and reduced round TinyJAMBU-256 in a similar
manner. The results are summarized in Table 6.

5.3 Experimental Verification

We conducted experiments to verify the existence of the zero-sum distinguish-
ers. All of our distinguishers on TinyJAMBU-128 are verified with the reference
implementation of TinyJAMBU. The source codes of the verification can be found
in:

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git.

Table 6. Known-key zero-sum distinguishers on full round TinyJAMBU-128 and Tiny-
JAMBU-192 and reduced round TinyJAMBU-256. ∗ implies basic distinguisher of sec
Sect. 4.4. † implies reduced rounds.

Key size #rounds #balanced bits Complexity

Forward Inverse After P after P̄
128 480 544 16 6 16

128 480 544 38 16 18

128 512 512 50 87 23

128 448 576 11 33 38∗

192 555 597 8 4 23

256 555 597 8 4 23†

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git

Zero-Sum Distinguishers for TinyJAMBU-128 369

6 Conclusion

We discussed full round zero-sum distinguishers for the TinyJAMBU permuta-
tion, based on the algebraic properties of the permutation. All the distinguishers
have practical complexities, that allowed for complete experimental verification
of the attacks.

One important note is that the keyed permutation is the main contribution
of the TinyJAMBU submission to the NIST lightweight competition. Our attack
is not possible inside the mode. Nevertheless, as we have shown, the keyed per-
mutation used in TinyJAMBU is easily distinguished. Combining this with the
fact that the mode is proven to be secure under the assumption that the internal
keyed permutation is robust could lead to problems in the future.

A The Algebraic Degree of TinyJAMBU-128 Permutation
and Its Inverse

Table 7. Degree of the 127-th bit of TinyJAMBU-128 permutation up to 333 rounds.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0+ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

20+ 2

40+ 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

60+ 3

80+ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5

100+ 5

120+ 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7

140+ 7

160+ 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10

180+ 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12

200+ 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 15

220+ 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

240+ 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 19 19 19 20

260+ 20 20 21 22 22 22 22 22 22 22 23 24 24 24 24 24 24 25 25 25

280+ 25 25 25 26 26 26 26 26 26 26 26 27 27 27 27 27 28 28 28 29

300+ 29 29 30 30 30 31 31 31 31 31 31 32 33 33 34 34 34 35 35 35

320+ 36 36 36 36 36 36 36 36 36 37 37 37 37 38

370 O. Dunkelman et al.

Table 8. Degree of the 127-th bit of TinyJAMBU-128 inverse permutation up to 502
rounds.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0+ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

20+ 2

40+ 2

60+ 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3

80+ 3

100+ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4

120+ 4

140+ 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

160+ 5

180+ 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6

200+ 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7

220+ 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8

240+ 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 10 10

260+ 10

280+ 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12

300+ 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14

320+ 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15

340+ 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16

360+ 16 16 16 16 17 17 18 19 19 19 19 19 19 20 20 20 20 20 20 20

380+ 20 20 20 20 20 20 20 21 21 21 22 22 22 22 22 22 23 23 24 24

400+ 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25

420+ 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 27 28 29 29 29

440+ 29 29 29 30 30 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32

460+ 32 32 32 32 33 33 34 34 35 35 35 36 36 36 36 36 36 36 37 37

480+ 37 37 37 38 38 38 39 39 39 39 40 40 40 40 40 40 41 41 41 41

500+ 41 41 41

References

1. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recov-
ery attacks on reduced-round MD6 and Trivium. In: Symmetric Cryptography.
Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany (2009)

2. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. rump session of Cryptographic Hardware
and Embedded Systems-CHES 2009, 67 (2009)

Zero-Sum Distinguishers for TinyJAMBU-128 371

3. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and
application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19574-7 1

4. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with
18 rounds. In: ISIT, pp. 2488–2492. IEEE (2010)

5. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 15

6. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 34

7. Chen, S., Xiang, Z., Zeng, X., Zhang, S.: On the relationships between different
methods for degree evaluation. IACR Trans. Symmetric Cryptol. 2021(1), 411–442
(2021)

8. Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 108–109. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 7

9. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of Ascon.
In: Topics in Cryptology - CT-RSA, pp. 371–387 (2015)

11. Dunkelman, O., Lambooij, E., Ghosh, S.: Practical related-key forgery attacks on
the full tinyjambu-192/256. Cryptology ePrint Archive, Paper 2022/1122 (2022).
https://eprint.iacr.org/2022/1122

12. Dutta, P., Rajas, M., Sarkar, S.: Weak-keys and key-recovery attack for Tiny-
JAMBU, May 2022. https://doi.org/10.21203/rs.3.rs-1646044/v1

13. Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C.,
Schofnegger, M., Wang, Q.: An algebraic attack on ciphers with low-degree round
functions: application to full MiMC. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 477–506. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4 16

14. Hadipour, H., Eichlseder, M.: Integral cryptanalysis of WARP based on monomial
prediction. IACR Trans. Symmetric Cryptol. 2022(2), 92–112 (2022)

15. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 17

16. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree
of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64837-4 18

17. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 15

18. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

https://doi.org/10.1007/978-3-642-19574-7_1
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/3-540-46035-7_34
https://doi.org/10.1007/3-540-46035-7_7
https://doi.org/10.1007/978-3-642-01001-9_16
https://eprint.iacr.org/2022/1122
https://doi.org/10.21203/rs.3.rs-1646044/v1
https://doi.org/10.1007/978-3-030-64837-4_16
https://doi.org/10.1007/978-3-030-64837-4_16
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9

372 O. Dunkelman et al.

19. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

20. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 19

21. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography: Two Sides of One Tapestry, pp. 227–233. Springer (1994)

22. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 8

23. Saha, D., Sasaki, Y., Shi, D., Sibleyras, F., Sun, S., Zhang, Y.: On the security
margin of TinyJAMBU with refined differential and linear cryptanalysis. IACR
Trans. Symmetric Cryptol. 2020(3), 152–174 (2020)

24. Sibleyras, F., Sasaki, Y., Todo, Y., Hosoyamada, A., Yasuda, K.: Birthday-bound
slide attacks on TinyJAMBU’s keyed permutation for all key sizes. In: Fifth
Lightweight Cryptography Workshop (2022)

25. Technology, N.: Report on Lightweight Cryptography: NiSTIR 8114. CreateSpace
Independent Publishing Platform (2017)

26. Teng, W.L., Salam, M.I., Yau, W., Pieprzyk, J., Phan, R.C.: Cube attacks on
round-reduced TinyJAMBU. IACR Cryptol. ePrint Arch, p. 1164 (2021)

27. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

28. Todo, Y.: Integral cryptanalysis on full MISTY1. J. Cryptol. 30(3), 920–959 (2017)
29. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.

In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

30. Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permuta-
tions. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 279–299. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 15

31. Wu, H., Huang, T.: The JAMBU lightweight authentication encryption mode
(v2.1). Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/
jambuv21.pdf

32. Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption
algorithms: submission to NIST LwC (2019). https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/
tinyjambu-spec-final.pdf

33. Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated
encryption algorithms (version 2) (2021). https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/
tinyjambu-spec-final.pdf

https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/978-3-319-63697-9_8
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-76953-0_15
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

Monte Carlo Tree Search for Automatic
Differential Characteristics Search:

Application to SPECK

Emanuele Bellini1 , David Gerault1, Matteo Protopapa2,
and Matteo Rossi2(B)

1 Cryptography Research Centre, Technology Innovation Institute,
Abu Dhabi, United Arab Emirates

{emanuele.bellini,david.gerault}@tii.ae
2 Politecnico di Torino, Torino, Italy

matteo.rossi@polito.it

Abstract. The search for differential characteristics on block ciphers
is a difficult combinatorial problem. In this paper, we investigate the
performances of an AI-originated technique, Single Player Monte-Carlo
Tree Search (SP-MCTS), in finding good differential characteristics on
ARX ciphers, with an application to the block cipher SPECK. In order
to make this approach competitive, we include several heuristics, such as
the combination of forward and backward searches, and achieve signif-
icantly faster results than state-of-the-art works that are not based on
automatic solvers. We reach 9, 11, 13, 13 and 15 rounds for SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128 respectively. In order
to build our algorithm, we revisit Lipmaa and Moriai’s algorithm for
listing all optimal differential transitions through modular addition, and
propose a variant to enumerate all transitions with probability close (up
to a fixed threshold) to the optimal, while fixing a minor bug in the
original algorithm.

Keywords: Monte Carlo Tree Search · Differential cryptanalysis ·
ARX · Block ciphers · SPECK

1 Introduction

Block ciphers are a major building block for modern communications and every-
day applications. Assessing the security of these primitives is a difficult, yet essen-
tial task: in particular, thorough theoretical evaluation of block ciphers permits
to estimate their security margin, based on the highest number of rounds that can
be attacked by classical attacks, such as differential cryptanalysis [Mat94]. Dif-
ferential cryptanalysis studies the propagation of a perturbation of the plaintext
through the cipher, in the form of differential characteristics. This perturbation
represents the difference between the evaluation of two plaintexts throughout
the rounds of the cipher. The goal is to find differential characteristics with high
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 373–397, 2022.
https://doi.org/10.1007/978-3-031-22912-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_17&domain=pdf
http://orcid.org/0000-0002-2349-0247
https://doi.org/10.1007/978-3-031-22912-1_17

374 E. Bellini et al.

probability, since they can be used to attack the cipher. Finding such character-
istics rapidly is important, as a fast search enables designers to test vast sets of
parameters in a short amount of time when building new primitives.

Two main approaches coexist to find good differential characteristics: one
relies on manually implemented specialized graph-based search strategies, in the
line of Matsui’s algorithm [Mat94], while the other uses automatic tools, such
as SAT, CP, or MILP solvers. The main appeal of using solvers is that the user
only needs to implement a representation of the problem in a specific paradigm,
and the search itself is performed by an optimized solver, using dedicated prop-
agators. Therefore, using a solver often results in a more efficient implementa-
tion, and less chances of human error, as the solvers are typically battle-tested.
On the other hand, the generality of automatic solvers may come at the cost
of performance, as more efficient specialized algorithms may exist. While the
two approaches share the same final goal, the solver-based route mostly focuses
on finding efficient ways to model the problem, whereas the graph-based route
requires finding better ways to explore the search space.

Indeed, the difficulty in finding good differential characteristics stems from
the mere size of the search space, and the resulting combinatorial explosion.
However, games such as Go have comparably massive search spaces (over 10170

possible games), but are being dominated through AI-originated methods. In
particular, Monte-Carlo Tree Search (MCTS) [CBSS08] has proven to be a good
exploration strategy for multiplayer games. An extension to single-player games,
called single-player MCTS [SWvdH+08], enables similar performances for non-
adversarial scenarios.

In this paper, we focus on graph-based searches (as opposed to solver-based),
and explore new algorithms for the search of differential characteristics. Among
the three main families of block ciphers, Substitution Permutation Networks
(SPN), Feistel ciphers and Addition Rotation Xor (ARX), we focus on the lat-
ter. In ARX ciphers, modular addition is used to provide non-linearity; its dif-
ferential properties were extensively studied by Lipmaa and Moriai in [LM01].
Building on their work on efficient algorithms for the differential analysis of
modular addition, we propose new variations, as well as a minor correction. We
then propose a single-player MCTS based approach for finding differential char-
acteristics, exploiting new heuristics, and obtain promising results on the block
cipher SPECK.

Our contributions are the following:

1. We show an inaccuracy in Lipmaa-Moriai Alg. 3 for enumerating optimal tran-
sitions through modular addition, and propose a fix.

2. We propose an extension to Lipmaa-Moriai Alg. 3, to enumerate not only the
transitions with optimal probability 2−t, but also δ-optimal transitions, with
probability better than 2−t−δ, for a fixed offset δ. Besides being of theoretical
interest, this is useful in our techniques.

3. We propose an adaptation of single-player MCTS to the differential charac-
teristic search problem.

Monte Carlo Tree Search for Automatic Differential Characteristics Search 375

4. We propose a specialization of this algorithm for the block cipher SPECK,
using new dedicated heuristics. These heuristics allow our tool to be faster
than other graph-based techniques on all instances of SPECK, and sometimes
even solver-based ones.

1.1 Related Works

The search for good differential characteristics on SPECK has first been tackled
using a variant of Matsui’s algorithm. Matsui’s algorithm [Mat94] is a Depth-
First Search (DFS) algorithm which derives A∗-like heuristics from the knowl-
edge of previous rounds information. Initially proposed for Feistel ciphers, Mat-
sui’s algorithm was then extended to ARX ciphers in [BV14], using the concept
of threshold search. Threshold search relies on a partial Difference Distribution
Table (pDDT), containing all differential transitions up to a probability thresh-
old. The same authors later noted that sub-optimal results were returned by
threshold search, and proposed a new variant of Matsui’s algorithm, that main-
tains bit-level optimality through the search. In [LLJW21], a different variant
of Matsui’s algorithm is proposed, where the differential propagation through
modular addition is modeled as a chain of connected S-Boxes, using carry-bit-
dependent difference distribution tables (CDDT). A similar method is further
improved, both in the construction of the CDDT and in the search process,
in [HW19].

Finally, in 2018, Dwivedi et al. used for the first time a MCTS-related method
to find differential characteristics on the block cipher LEA [DS18] and, subse-
quently, on SPECK [DMS19]. Their work have some similarities with ours, espe-
cially the fact that we are both using single-player variants of MCTS (in their
case, the Nested MCTS). The main differences are:

– in [DMS19] the expansion step is missing. Moreover, when a difference is
not in the initial table, the XOR between the two words of SPECK is taken
deterministically as the output difference of the modular addition.

– A scoring function is missing, so the paths are completely randomized and
the results of the previous searches are not used for the new ones.

The results were sub-optimal, due to the fact that this interpretation of the
MCTS is equivalent to a search that optimizes the best differential transition
only locally rather than globally.

In addition to these Matsui-based approaches, the state-of-the-art solver-
based results are presented in Table 1 for completeness, although we do not
directly compare to them, as solver-based approaches, to this day, scale better
than Matsui-based techniques for the case of SPECK. In particular, the listed
results are an SMT model based on the combination of short trails by Song et
al. [SHY16], an MILP model by Fu et al. [FWG+16], and an SMT model by Liu
et al., integrating Matsui-like heuristics [LLJW21].

376 E. Bellini et al.

Table 1. Comparison between the different techniques found in literature, with timings
when reported. Solver-based works are indicated in italic.

SPECK
version

Reference of
the attack

Technique Number of
rounds reached

Weight Time

32 [DMS19] NMCTS 9 31 –

[FWG+16] MILP 9 30 –

[SHY16] SMT 9 30 –

[BRV14] Matsui-like 9 30 240 m

[BVLC16] Matsui-like 9 30 12 m

[LLJW21] Matsui-like (CarryDDT) 9 30 0.15 h

[SWW21] Matsui + SAT 9 30 7 m

[HW19] Matsui-like (CombinationalDDT) 9 30 3 m

This work SP-MCTS 9 30 55 s

48 [BVLC16] Matsui-like 9 33 7 d

[DMS19] NMCTS 10 43 –

[BRV14] Matsui-like 11 47 260 m

[SHY16] SMT 11 46 12.5 d

[FWG+16] MILP 11 45 –

[SWW21] Matsui + SAT 11 45 11 h

[LLJW21] Matsui-like (CarryDDT) 11 45 4.66 h

[HW19] Matsui-like (CombinationalDDT) 11 45 2 h

This work SP-MCTS 11 45 7m 18 s

64 [BVLC16] Matsui-like 8 27 22 h

[DMS19] NMCTS 12 63 –

This work SP-MCTS 13 55 48m 50 s

[BRV14] Matsui-like 14 60 207 m

[FWG+16] MILP 15 62 –

[SWW21] Matsui + SAT 15 62 5.3 h

[HW19] Matsui-like (CombinationalDDT) 15 62 1 h

[SHY16] SMT 15 62 0.9 h

[LLJW21] Matsui-like (CarryDDT) 15 62 0.24 h

96 [BVLC16] Matsui-like 7 21 5d

[HW19] Matsui-like (CombinationalDDT) 8 30 162 h

[LLJW21] Matsui-like (CarryDDT) 8 30 48.3 h

[SWW21] Matsui + SAT 10 49 515.5 h

This work SP-MCTS 10 49 1m 23 s

[DMS19] NMCTS 13 89 –

This work SP-MCTS 13 84 14m 21 s

[FWG+16] MILP 16 87 –

[SHY16] SMT 16 ≤87 ≤11.3 h

128 [BVLC16] Matsui-like 7 21 3 h

[HW19] Matsui-like (CombinationalDDT) 7 21 2 h

[LLJW21] Matsui-like (CarryDDT) 8 30 76.86 h

[SWW21] Matsui + SAT 9 39 40.1 h

This work SP-MCTS 9 39 1m 29 s

[DMS19] NMCTS 15 127 –

This work SP-MCTS 15 115 8m 34 s

[FWG+16] MILP 19 119 –

[SHY16] SMT 19 ≤119 ≤5.2 h

Monte Carlo Tree Search for Automatic Differential Characteristics Search 377

1.2 Structure of This Work

This work is structured as follows. In Sect. 2, we give reminders on relevant
background knowledge. In Sect. 3, we give an overview of Lipmaa and Moriai’s
algorithm, which we adapted to our needs; moreover, we address an inaccuracy
in the original version of the algorithm. In Sect. 4, we propose a general algo-
rithm to address the problem of searching differential characteristics with the
Monte Carlo Tree Search technique. In Sect. 5, we explain the weaknesses of
the aforementioned algorithm when it is applied specifically to SPECK and we
describe the solutions we adopted. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we present the main concepts on which our work is based. We
describe the Monte Carlo Tree Search algorithm, the concept of differential crypt-
analysis, the related structure called Difference Distribution Table, the SPECK
family of ciphers and, in conclusion, one key recovery attack strategy for SPECK.

2.1 Notation

In the paper, we use the following notation. We consider bit strings of size n,
indexed from 0 to n− 1, where xi denotes the ith bit of x, with 0 being the least

significant bit, i.e. x =
n−1∑

i=0

xi · 2i.

We respectively use �, ≪, ≫ and ⊕ to denote addition modulo 2n, left and
right bitwise rotations and bitwise XOR.

2.2 Monte Carlo Tree Search

Monte Carlo inspired methods are a very popular approach for intelligent playing
in board games. They usually extend classical tree-search methods in order to
solve the problem of not being able to search the full tree for the best move
(as in a BFS or a DFS, both described in [Koz92]) because the game is too
complex, or not being able to construct an heuristic evaluation function to apply
classical algorithms like A* or IDA*, introduced respectively in [HNR68] and in
[Kor85]. The general approach of using Monte Carlo methods for tree-search
related problems is referred as Monte Carlo Tree Search (MCTS). Monte Carlo
Tree Search was first described as such in 2006 by Coulom [Cou06] on two-player
games. Similar algorithms were however already known in the 1990s, for example
in Abramson’s PhD thesis of 1987 [Abr87]. MCTS for single-player games, or SP-
MCTS, was introduced in 2008 by Schadd et al. [SWvdH+08], on the SameGame
puzzle game.

The classical algorithm of MCTS has four main steps:

378 E. Bellini et al.

– Selection. In the selection phase, the tree representing the game at the current
state is traversed until a leaf node is reached. The root of the tree here is the
current state of the game (for example, the positions of the pieces in a chess
board), while a leaf is a point ahead in the game (not necessarily the end).
The tree is explored using the results of previous simulations.

– Simulation. In the simulation phase, the game is played from a leaf node
(reached by selection) until the end. Simulation usually uses completely ran-
dom choices or heuristics not depending on previous simulations or on the
game so far. A payout is given when the end is reached, that in two-player
games usually is win, draw or lose (represented as {1, 0,−1}). Usually for the
first runs, when there is no information on the goodness of the moves in the
selection phase, only the simulation is done.

– Expansion. In the expansion phase, the algorithm decides, based on the pay-
out, if one or more of the states explored in the simulation phase are worth to
be added to the tree. For each simulation a small number of nodes (possibly
zero) are added to the initial tree.

– Backpropagation. In the backpropagation phase, the results of the simulation
are propagated back to the root. In particular, for every node in the path
followed in the selection step, some information about the final payout of the
simulation is added, in order to make the following simulation phases more
accurate.

Single Player Monte Carlo Tree Search. Single Player MCTS [SWvdH+08] (SP-
MCTS), is an application of these techniques to single-player games. The struc-
ture of the algorithm is the same as the two-player version, with two major
differences:

– In the selection phase, there is no uncertainty linked to the opponent’s next
moves, so that the scores can be set in a more accurate way for each node.

– In the simulation phase, the space of the payout may be way bigger than
3 elements, leading to difficulties in the backpropagation of the final score.
In games where there is a theoretical minimum and maximum payout, it is
usually rescaled in the interval [0, 1].

The UCT Formula. For the selection phase, Schadd et al. [SWvdH+08] used
a modified version of the UCT (Upper Confidence bounds applied to Trees)
formula initially proposed by Kocsis and Szepesvári [KS06]. It computes the
score of an edge of the search tree as:

UCT (N, i) = X + C ·
√

ln t(N)
t(Ni)

+

√∑
x2

j − t(Ni) · X
2

+ D

t(Ni)

where N is the current node, Ni is the i-th child node of N (i ∈ {1, 2, . . . n} if
the node N has n children nodes), the xj are the scores of the runs started from
node Ni, X is the average of them, t(N) is the number of visits of the node N ,
and C, D are constants to be chosen.

Monte Carlo Tree Search for Automatic Differential Characteristics Search 379

2.3 Differential Cryptanalysis

Differential cryptanalysis is a technique introduced by Biham and Shamir in
[BS91] and used to analyze the security of cryptographic primitives. The basic
element used in this field is a difference, which is a perturbation of the input or
the output of the studied function. Usually the differences are defined as XOR
ones, so, given two plaintexts p0, p1 and the corresponding ciphertexts c0, c1,
we call an input difference a value Δp = p0 ⊕ p1 coming from the XOR of the
two plaintexts, and an output difference Δc = c0 ⊕ c1 the one coming from the
two ciphertexts. The pair of input and output differences (Δp,Δc) is called a
differential. For primitives divided in rounds, we call the sequence of differentials
for each round a differential characteristic.

Differentials and differential characteristics are (usually) not deterministic
due to non-linear components in the structure of cryptographic primitives, so
the main goal for the cryptanalyst is to calculate their probability for randomly
sampled plaintexts. More formally, for a function f we have

Pf (Δp → Δc) =

∑
p0∈P Id(f(p0) ⊕ f(p0 ⊕ Δp) = Δc)

|P | ,

where P is the space of possible plaintexts and Id is the identity function, assum-
ing value 1 if the condition is true and 0 otherwise.

For differential characteristics we can usually rely on the Markov assumption,
which is formalized in [LMM91], having

Pf (Δp → Δ1 → Δ2 → · · · → Δn → ΔC) =
= Pf (Δp → Δ1) · Pf (Δ1 → Δ2) · ... · Pf (Δn → Δc).

This assumption does not hold in general since it relies on particular condi-
tions. In the case of key-alternating ciphers, i.e., the round keys are added by
XOR as in SPECK, having independent and uniformly distributed round keys
is sufficient. However, the assumption is usually made for practical reasons.

The key point of differential cryptanalysis is usually to find differential char-
acteristics that propagate with a high probability through the largest possible
numbers of rounds.

2.4 Modular Addition and (Partial) DDTs

The source of branching in our search is the non-linear component, the modular
addition modulo 2n. Its differential properties were famously studied by Lipmaa
et al. [LM01] and Biryukov et al. [BV13].

Given a differential we can define the XOR differential probability of modular
addition xdp+ as

xdp+(α, β, γ) =
|{(a, b) : (a ⊕ α) � (b ⊕ β) = (a � b) ⊕ γ}|

22n
.

Similarly we can define xdp− for modular subtraction.

380 E. Bellini et al.

In this paper, we sometimes refer to the inverse base 2 logarithm of a differ-
ential probability, e.g., −log2(xdp+(α, β, γ)), as its weight.

Lipmaa et al. showed that xdp+(α, β, γ) > 0 if and only if α0 ⊕ β0 = γ0 and
for every position i such that αi = βi = γi we have γi+1 = αi+1 ⊕ βi+1 ⊕ βi.

The authors give then a closed formula for this probability, that is

xdp+(α, β, γ) = 2−(n−1)+w

where w is the number of indices i such that αi = βi = γi, excluding the most
significant bit.

Moreover, they give an efficient algorithm to find all values of γ such that
xdp+(α, β, γ) is maximum for fixed α and β. This algorithm is described in the
next section.

For some functions, such as SBoxes, a difference distribution table (DDT)
containing the possible differential transitions and their probabilities can be
built.

In the case of modular addition, as n grows, the size of the DDT makes it
impractical to compute and store, as it would need to store all 22·n possible
input differences, and up to 2n output differences for each input difference. To
address this issue, in [BV13], Biryukov et al. proposed the idea of a partial DDT
(pDDT), where only differential transitions with probability greater than a fixed
threshold are stored. The authors have shown that, for some families of functions,
an efficient algorithm to compute pDDT entries exists, and this is the case for
modular addition.

The algorithm relies on the fact that, calling

pk = xdp+(αk−1...α0, βk−1...β0, γk−1...γ0),

it holds 1 := p0 ≥ p1,≥ ... ≥ pn−1. From this fact, the algorithm constructs the
table bit-by-bit. The interested reader can find the details in the original work.

2.5 The SPECK Family of Block Ciphers

SPECK [BSS+15] is a family of ARX block ciphers proposed in 2013 by the
National Security Agency (NSA). SPECK comes in five versions, identified by
their block sizes (in bits) as SPECK32, SPECK48, SPECK64, SPECK96 and
SPECK128; each version has different options for the key size, which, together
with the block size, determines the number of rounds.

The state of the cipher is divided in two words of N/2 bits, where N is the
block size (for example, SPECK32 has two words of 16 bits); calling xi and yi

the input words at round i, the cipher can be described as

xi+1 = ((xi ≫ α) � yi) ⊕ ki,

yi+1 = (yi ≪ β) ⊕ xi+1,

where α and β are constants depending on the version of SPECK ((α, β) = (7, 2)
for SPECK32 and (α, β) = (8, 3) otherwise). The term ki refers to the round
key, obtained from the master key through the key schedule algorithm.

Monte Carlo Tree Search for Automatic Differential Characteristics Search 381

2.6 Differential Characteristics and Key Recovery in SPECK

In 2014, Dinur [Din14] proposed an attack on round-reduced versions of all the
variants of SPECK. Starting from an r round differential characteristic, the
attack recovers the last two subkeys of the r + 2 rounds cipher working with a
guess-and-determine strategy on the last two modular additions of the cipher.
The attack can be extended to r + 4 rounds by bruteforcing two more subkeys,
adding a complexity of 22n.

3 Lipmaa’s Algorithms: Known Facts and New Results

In [LM01], Lipmaa and Moriai present a set of algorithms for the study of the
differential behaviour of modular addition. The most widely used of these algo-
rithms is Algorithm 2, which, given α, β, γ, returns xdp+(α, β → γ); it is a
cornerstone in the differential cryptanalysis of ARX ciphers. A less known, yet
very useful result, is Algorithm 3 (Lipmaa-Moriai Alg. 3), which, given α, β, enu-
merates all output differences γ such that xdp+(α, β → γ) is maximal.

In this section, we present a generalization of Lipmaa-Moriai Alg. 3 to find
good but not optimal transitions, and a fix for an inaccuracy in the original algo-
rithm, leading to wrong results for some inputs. The final algorithm is reported
at the end of the section.

3.1 Overview of Algorithm 2

As a reminder, the output difference γ to a modular addition is equal to α⊕β⊕δc,
where δc denotes a difference in the carry.

Algorithm 2 first determines whether a transition from (α, β) to γ is valid,
before computing its probability. A transition is said to be valid iff

eq(α � 1, β � 1, γ � 1) ∧ (α ⊕ β ⊕ γ ⊕ (β � 1)) = 0 (1)

where x � 1 is the left shift, which append a 0 at the rightmost side of x’s bit
representation, and eq(x, y, z) is 1 in all positions where xi = yi = zi, and 0
elsewhere.

This condition stems from the observation that three carry patterns are deter-
ministic, whereas the other cases all have probability 1

2 :

1. γ0 = α0 ⊕ β0

2. If αi = βi = γi = 0, then γi+1 = αi+1 ⊕ βi+1 (because it implies that
δci+1 = 0)

3. If αi = βi = γi = 1, then γi+1 = αi+1 ⊕ βi+1 ⊕ 1 (because it implies that
δci+1 = 1)

Any transition violating these conditions is invalid; all other transitions are
possible. It is easy to verify that Eq. 1 eliminates the invalid transitions.

The probability of a valid transition is determined by the number of occur-
rences w of above mentioned deterministic carry propagation cases 2 and 3,
excluding the most significant bit, as 2−n+1+w.

382 E. Bellini et al.

3.2 High Level Overview of Lipmaa-Moriai Alg. 3

Following the notations of [LM01], let li be the length of the longest common
alternating bit chain: αi = βi �= αi+1 = βi+1 �= ... �= αi+li = βi+li , and let the
common alternation parity C(α, β) be a binary string with length n defined as:

– C(α, β)i = 1 if li is even and non-zero,
– C(α, β)i = 0 if li is odd,
– unspecified when li = 0 (can be both 0 and 1, not affecting subsequent algo-

rithms since there is no chain).

The interested reader can find an algorithm to retrieve C(x, y) in O(log n) in the
original work [LM01]. This tool is the main ingredient used by the authors to
construct Algorithm 3, an algorithm that, given in input two n-bit values α, β,
retrieves all the possible values γ such that the probability of modular addition
with respect to xor: xdp+(α, β → γ) is maximum.

Alternating chains are relevant to Lipmaa-Moriai Alg. 3, because in the case
of a chain of length 2, the carry propagation rules force at least one probabilistic
transition: if γi = αi = βi, then we have γi+1 = αi+1⊕βi+1⊕βi, and by definition
γi+1 �= αi+1, so that γi+2 is free. Conversely, if γi �= αi, then γi+1 is free; in both
cases, a probability is paid. Intuitively, the number if times a probability is paid
for an even length chain is li

2 , whereas for an odd length chain, it depends on
which value is chosen first.

In Lipmaa-Moriai Alg. 3, the list of optimal γ values is built bit-by-bit, starting
from position 1; position 0 is always set to α0 ⊕ β0, following rule 1.

For the remaining bits, 3 cases are to be distinguished:

(a) if αi−1 = βi−1 = γi−1, then the choice γi = αi−1 ⊕ αi ⊕ βi is the only valid
option, by transition rule 1.

(b) else if αi �= βi, then both choices of γi incur a probability of 1
2 (as none of the

deterministic transitions are available); this is equivalent to a chain of length
0. Similarly, if i = n − 1, then both choices are equivalent, as position i − 1
is not part of the total probability. Finally, if αi = βi but C(α, β)i = 1, then
both choices are equivalent again; in reality, this last case is not completely
true, but we will come back to it at the end of the section.

(c) Finally, when αi = βi and C(α, β)i = 0, choosing γi = αi results in a
probability cost equal to 2−� li

2 � for the next li positions, whereas the other
choice has cost 2−� li

2 +1�, so that the optimal choice is γi = αi.

For the remainder of this section, we refer to these as case or branch (a), (b),
(c) respectively.

3.3 A Fix for the Original Algorithm

Lipmaa-Moriai Alg. 3 presents an inconsistency. Consider for example the input
difference (α, β) = (10112, 10012); we have C(α, β) = 01002. Applying Algo-
rithm3, we find:

Monte Carlo Tree Search for Automatic Differential Characteristics Search 383

– γ0 = 0 (initialisation case)
– γ1 = {0, 1} (case (b), since α1 �= β1)
– γ2 = {0, 1} (case (b), since C(α, β)2 = 1)
– γ3 = 0 if γ2 = 0, {0, 1} otherwise.

Therefore, γ = 11102 is listed as optimal. However, we have
xdp+(10112, 10012 → 11102) = 2−3, while the optimal probability is 2−2

(reached, for instance, with γ = 00102). The discrepancy occurs when C(α, β)n−2

is equal to 1, and αn−3 �= βn−3. The proof given in [LM01] considers both choices
of γi equivalent in the (b) branch when C(α, β)i = 1, because the length of the
chain is l

2 , and choosing 0 or 1 only shifts the probability vector. This is however
incorrect when the chain ends at position n − 1, as this position does not count
in the probability, and can therefore not be counted as bad.

However, at position n−2, picking γn−2 = αn−2 implies that no probability is
paid (because eq(αn−2, βn−2, γn−2) = 1), and position n−1 is free by definition.
On the other hand, picking γn−2 �= αn−2 costs a probability, so that both choices
are not equivalent in this case.

To fix this issue, the bit string returned by the common alternation parity
algorithm can be modified so that all positions that are part of a chain ending
at position n−1 are set to 0. The new algorithm to compute C(α, β) is reported
in Algorithm 1.

Algorithm 1. Fix for the computation of C(α, β)
Require: a bit-size n ≥ 1, two n-bits input differences α, β.
Ensure: the corrected version of C(α, β) to make Lipmaa-Moriai Alg. 3 work.

p = CLM(α, β) � original version from Lipmaa and Moriai

for i = 0 to n − 1 do
j = n − 1 − i
if αj = βj and αj−1 = βj−1 and αj �= αj−1 then

pj = 0
else

break
return p

In addition, Lipmaa-Moriai Alg. 3 describes a solution by the values allowed for
γ only (rather than building an explicit list). Consider α = 0b0010, β = 0b1011:
for this example, C(α, β)1 = 1, so that the elif branch is chosen for bit 1, allowing
both 0 and 1 for γ1: the possible values for γ2 depends on the choice made for
γ1. Removing information on this dependency leads to invalid or sub-optimal
solutions being enumerated (such as 0b1101). This can be addressed either via
building an explicit list, or with a graph representation described further. The
final fixed algorithm is Algorithm2 with δ = 0.

384 E. Bellini et al.

3.4 Finding δ-Optimal Transitions

We propose a generalization of Lipmaa-Moriai Alg. 3 (see Algorithm 2), which
takes as input α, β, δ, where δ is an offset, such that the algorithm returns
all γ having xdp+(α, β → γ) ≥ maxγ(xdp+(α, β → γ)) · 2−δ; i.e., solutions
with probability within a distance 2−δ of the optimal. We call such solutions
δ-optimal.

Intuitively, the goal is to modify a branch to eliminate at most δ visits of
case (a) compared to an optimal difference, paying every time a cost of 1

2 .
Violating case (a) immediately leads to a transition with probability 0, per

rules 2 and 3. On the other hand, the values chosen in case (b) have no influence
on the final probability. Therefore, we focus on case (c).

Our algorithm works as follows: for at most δ times, when in branch (c), chose
γi = ¬αi. Therefore, at position i + 1, branch (a) cannot be chosen anymore.
Intuitively, this is equivalent to paying a probability cost at a position that

should be free. In order to list all solutions, we go through all
δ∑

i=0

(
t
i

)
possible

positions, where t is the number of visits to case (c) in Lipmaa-Moriai Alg. 3.
We now give arguments for the soundness and completeness of our algorithm;

i.e., show that our algorithm returns only δ-optimal solutions, and that it returns
all δ-optimal solutions.

Soundness. By Lemma 2 of [LM01], xdp+(α, β, γ) = 2−(n−1)+w, where w is
the number of visits to branch (a). In our algorithm, we change the outcome
of branch (c), effectively forbidding one access to branch (a), at most δ times,
therefore adding a factor at most 2−δ to the final probability.

Completeness. Assume γ′ to be a δ-optimal output difference for a given (α, β),
such that it is not found by our algorithm. Let γ′′ be a δ-optimal returned by
our algorithm for the same (α, β). Compare these differences bit-by-bit: if they
differ at an index that (in our difference γ′′) originated from case (b), we have
it in our list. If the difference originates from case (c), then we also have it since
we flipped all the possible combinations of indices originating from case (c).
As discussed before, the difference can not be originated from case (a). Notice
that we can always choose γ′′ since our algorithm (as well as Lipmaa’s) always
outputs at least one valid solution.

Complexity. Lipmaa-Moriai Alg. 3 is described in the original paper as a linear-
time algorithm. This is, however, not direct from the description given by the
authors: in particular, if we consider the case α ⊕ β = 2n − 1, then branch (b) is
the only possible choice for all bit positions except 0. This means that, all 2n−1

choices for the remaining bits of γ are valid, and the enumeration is exponential.
This enumeration issue can be addressed by using a compact representation

of all possible γ in linear time, by representing the solution space as a directed
graph G = (V,E), with 2 · n vertices, and at most 4 · n edges. In this repre-
sentation, vertices Vi,0 and Vi,1 represent the statement bit i of γ takes value 0
(resp. 1), and vertex Vi,j is connected to vertex Vi+1,k if (γi, γi+1) = (j, k) is a
pair that belongs to the set of all optimal γ values. A γ value is 0−optimal iff

Monte Carlo Tree Search for Automatic Differential Characteristics Search 385

V0,γ0 , V1,γ1 , . . . , Vn−1,γn−1 is a connected path in the graph. Through the loop of
Lipmaa-Moriai Alg. 3, each vertex is visited at most once, yielding a time com-
plexity in O(n). Sampling an optimal solution from the graph can then be done
in O(n), by following a connected path.

This representation is possible because the choice of a bit value at position i
is independent from the choices made before position i − 1. On the other hand,
when further dependencies exist, as in our variant, the situation is more complex.

Our variant introduces additional computations:

1. We add a pass to zero some values of C(α, β), according to the fix mentioned
previously. The computation becomes worse-case n, rather than logarithmic;

2. In order to enumerate all the solutions, we need to go through
δ∑

i=0

(
t
i

)
(with t

the maximum number of visits to the (c) branch) possible positions of flip in
the (c) case.

Point 1 is not an issue, as the computation of C(α, β) is only done once at
the start of the algorithm. On the other hand, point 2 prevents application of the
aforementioned graph approach, as the possible choices for bit i now depend on
a state defined by the number of times branch (c) was flipped. On the contrary,
our graph representation requires bit i to only depend on bit i − 1, and not on
the previous choices.

We therefore propose to have one graph for each combination of flipped bits,

effectively multiplying the computation time by
δ∑

i=0

(
t
i

)
, resulting in a complexity

in Θ(nδ), with δ a constant. Crucially, the number of visits to branch (c) t is
loosely upper bounded by n

2 (as it requires a chain of odd length), and we restrict
ourselves to δ values lower than 3, so that the computation overhead factor is

upper bounded by
2∑

i=0

(
32
i

)
= 528 for 64 bit words, as in SPECK-128.

Sampling a δ-optimal solution from the graph can be done in linear time, by
choosing one of the graphs at random, and following a connected path, while the
enumeration can be done, for example, with a DFS. This approach can however
lead to duplicate solutions, so that using an explicit list of solutions remains the
best way for full enumeration.

4 Differential Characteristic Search with MCTS

In this section, we outline a general strategy to find differential characteris-
tics with MCTS, using Lipmaa’s algorithm, for ciphers with a single modular
addition per round. This generic algorithm is not sufficient in practice, so that
cipher specific optimizations are required, which we address in the next section
for SPECK.

386 E. Bellini et al.

Algorithm 2. Generalized Lipmaa-Moriai Alg. 3
Require: a bit-size n ≥ 1, two n-bits input differences α, β and the offset 0 ≤ δ ≤ n−1.
Ensure: all possible output differences γ such that xdp+(α, β → γ) differs by at most

a 2−δ factor from the optimal one in the form of graphs. In order to sample from
them, we can use a simple randomized traversal.

Class Node:
lsb = -1
successors = [[False, False], [False, False]]

graphs = []
p = C(α, β) � our fixed version, as stated in Algorithm 1

procedure GenGraph(α, β)
possibleCPositions = [i for i = 1 to n − 1 if αi = βi]
positionsLists = [combinations(possibleCPositions, i) for i = 0 to δ]
for positions in positionsLists do

graph = [new Node() for i = 0 to n − 1]
graph.lsb = α0 ⊕ β0

for i = 1 to n − 1 do
for j ∈ {0, 1} do

if (i = 1 and graph.lsb = j) or (i ≥ 2 and graph[i − 2].successors[0][j]
or graph[i − 2].successors[1][j])) then

if αi−1 = βi−1 = j then
graph[i − 1].successors[j][αi ⊕ βi ⊕ βi−1] = True

else if αi �= βi or pi = 1 or i = n − 1 then
graph[i − 1].successors[j] = [True, True]

else
if i is in positions then

graph[i − 1].successors[j][1 − αi] = True
else

graph[i − 1].successors[j][αi] = True

Append graph to graphs

return graphs

4.1 A General Algorithm

The general idea behind our algorithm is to start with a tree that is as small as
possible and expand it with the algorithm presented in Algorithm2.

Building the Initial Tree. The initial plaintext difference is chosen from a pDDT
with threshold probability t = 2−τ , built following Biryukov et al.’s [BV14]
algorithm. A virtual root node is set to have all entries of the pDDT as its
children at the start of the search.

Monte Carlo Tree Search for Automatic Differential Characteristics Search 387

Exploring Paths. We begin our simulation of differential characteristics as runs
of a single-player game. We start from the virtual root (that can be seen as the
fixed starting position of a game), and select one of the differences in the pDDT
as our initial plaintext difference. We use a second threshold k to determine how
we choose this difference. Suppose for the moment that every node has children:

– if the node has already been visited at least k times, we select the
best child according to its score, using the UCT formula from Schadd et
al. [SWvdH+08]; at the end of the run, we update the score of each node of
the path using the same formula.

– If the node has not been visited k times yet, we choose a child uniformly at
random from allowed choices, using again the UCT formula to update the
scores at the end of the game. This allows us to have enough information on
the node before making choices based on the previous games.

These two cases can be seen respectively as the selection and simulation steps
of the classic MCTS algorithm.

Choosing the Plaintext Difference. We add a tweak to the selection of the plain-
text difference: we select it uniformly at random from the pDDT for the first
k iterations, then we store the input differences in a sorted list in descending
order based on their score, and select them using a geometrical distribution with
probability p. This favors exploration over exploitation, by permitting each dif-
ference to have some probability to be chosen at every run. Experimentally, we
found that this techniques dramatically improve the performance of the initial
difference selection.

Tree Expansion. If the node has no children, i.e. no corresponding entry in the
pDDT, then we need to generate some. For this purpose, we use our modified
version of Lipmaa-Moriai Alg. 3 presented in the previous section. This comes
from the idea that choosing always the best possible next difference is a very
local strategy, that does not allow us to look for long characteristics. In practice,
we fix a penalty threshold δ and list all the possible choices differing at most
2−δ from the optimal one, i.e., the δ-optimal transitions. We then add them to
the tree and proceed with our exploration strategy. This approach, in the case
of SPECK, is explained in more details in the following section.

Scoring the Nodes. To score the nodes, we use the UCT formula, with a custom
formula for the payouts. Our choice here is to mix the global weight of the char-
acteristic with a measure of the local one, weighted appropriately. This results
in a scoring that is similar to the one used in the α-AMAF heuristic presented
in [HPW09]. In formulas, we have that each payout used to compute the UCT
score has this form:

x = βG + (1 − β)L,

388 E. Bellini et al.

where:

– G is the global score of the characteristic, calculated as 1
w , with w being the

weight of the differential characteristic.
– L is the local score, calculated as α 1

w′ , where w′ is the weight of the differential
characteristic from this point to the end, and α is a normalization constant.

– 0 ≤ β ≤ 1 is a constant to weight the two parts of our score.

The purpose of this kind of scoring is to measure the choice of a difference
relatively to the current round, because some choices can be good at some point
of the characteristic (i.e. near the end, if they have a very good probability)
but very bad in others (i.e. near the beginning, if they do not generate good
successive choices). This score is then used to backpropagate the results to each
node of the path up to the root, meaning that the value of x is added to the list
of scores (used inside the UCT formula) of each encountered node.

4.2 Limitations of This Approach

We outline here the two main issues that can arise from the application of this
method to a real cipher.

The Branch Number. Even with a small value of δ, expanding the tree can lead
to nodes with a very high number of children. Intuitively, this is bad for MCTS,
because for its score to be precise, a node must be visited at least a few times,
and this becomes harder as the tree gets wider. Because of this issue we need to
find a way to give a limitation on the expansion without affecting the result of
the search.

The Choice of the Plaintext Difference. In our outline, we proposed to choose the
initial plaintext difference inside a pDDT. Experimentally, this works very well
when looking for short differential characteristics, but not too well for longer
ones. The motivation here is similar to the one of the tree expansion: with the
exception of pathological ciphers or cyclic characteristics, in general, differen-
tial characteristics start with differences that allow a long propagation without
increasing the cost too much. This is not guaranteed to happen with a small
pDDT, and creating a very big one can make the branching number too high for
the search to work.

How to solve these issues and their impact on the actual search is very cipher-
dependent. In the following section, we try to address both of them in our appli-
cation to the SPECK cipher.

Monte Carlo Tree Search for Automatic Differential Characteristics Search 389

5 Application to SPECK

In this section, we apply the previously described method to the search for
differential characteristics on the SPECK cipher. The initial discussion is done
on the SPECK32 version, but applications and results for all the versions of
SPECK are discussed in the last subsections. We stress again that our objective
is to show that our algorithm can be competitive against the state-of-the-art
Matsui-like approaches. For this reason, we put ourselves in the same settings
as them instead of pushing for a very large number of rounds, showing that our
implementation finds good characteristics way faster. We leave optimizations,
generalizations and the understanding of the limits of this algorithm for future
works.

5.1 The Start-in-the-Middle Approach

We start by tackling what, in our opinion, is the biggest limitation of our previous
approach: the choice of the initial difference. In order to better explain the
problem, and our solution, we used a SAT solver to list all the optimal differential
characteristics for 9 rounds on SPECK32. They are reported in Appendix A.
We start by noticing that there are only two characteristics that start with a
transition with probability 2−3, while most of them start with 2−5. As reported
by Biryukov et al., a pDDT containing all the possible differential transitions
with probability up to 2−5 contains about 230 elements in the case of SPECK32,
that is impossible to handle with MCTS.

Another observation from the reported characteristics is that each of them
contains a transition with probability 1 or 1/2. Our aim is to start from that
point. We start by creating a pDDT with all the transitions with probability
at most 1/2. For SPECK32 this table contains 183 transitions, that is a lot
more tractable than 230. Suppose for the moment that we are looking for a
differential characteristic on r rounds, and that we know the position s of this
“low weight” difference inside the characteristic. We build a cache by applying
our strategy on r − s rounds for a fixed number of iterations of MCTS. At the
end of this procedure we have a table that maps every low weight difference to a
characteristic starting with it. Then we simply run MCTS again in the backward
direction for s rounds. Notice that we can use the exact same algorithm that we
described in Sect. 3 because for every α, β, γ it holds

xdp+(α, β, γ) = xdp−(α, β, γ).

To conclude, we can simply drop the assumption of knowledge of s by brute-
forcing it: we start r parallel processes to do the search with all possible values
of s and we find one or more values that generate optimal characteristics. We
call this approach the start-in-the-middle, as an analogy with the classic meet-
in-the-middle one. The pseudocode for this algorithm is given in Sect. C.

390 E. Bellini et al.

5.2 Branching Number and the Choice of δ

We then address the other issue pointed out in the previous section: the branch-
ing number. From now on we will call the offset of a differential characteristic
the maximum possible deviation of a transition inside the characteristic from an
optimal one. For example: if all the transitions in the characteristic are optimal,
then its offset is 0. Otherwise, if there is at least a transition that deviates from
the optimal by a factor 2−δ and no bigger deviations, we say that the offset
of that characteristic is δ. We start again by analyzing our characteristics on
SPECK32. We can see that none of them has offset equal to 0, while only three,
which are very similar to each other, have offset equal to 1. On the contrary,
almost all the other characteristics, which are different from the aforementioned
three, have at least one transition that makes their offset equal to 2. For com-
pleteness, it has to be said that only one characteristic among those 15 has offset
equal to 3, and there are no bigger offsets. Motivated by this we decided to run
our expansion step keeping δ between 1 and 3. This is a very crucial part of our
algorithm: in fact, we stress again that the MCTS algorithm needs to explore
each branch several times in order to assign an accurate score and make bet-
ter choices. This is also the main reason behind the fact that chess (and other
games) are dominated by computers, while Go is a lot harder. If we compare the
branching factor of the two games, chess’s one is 35, while Go’s is very large,
with a value of about 200 [BW95]. This implies a huge difference when com-
paring the sizes of the two corresponding trees. When dealing with differential
characteristic search, if not limited, the branching factor could be even bigger
than Go’s one, having a maximum value of 2n−1 when α ⊕ β is 2n − 1.

5.3 Adding Further Heuristics to Improve the Search

With the previous approach we produce, on average, 83 children to each node
on SPECK32 when δ = 1. This number is in line with what we mentioned
for the game of chess, and in fact it is enough to find an optimal differential
characteristic for this version of SPECK; however, the branch number becomes
too large for bigger versions of SPECK. This is not feasible anymore, so we need
to add further heuristics to reduce these numbers.

Low Hamming weight differences. As it can be observed in all characteristics
found for SPECK and for several other ARX ciphers, good differentials have, in
general, a low Hamming weight. Intuitively, this makes sense because we want
the smallest possible number of carry propagations to have higher probabilities.
This heuristic has already been used in literature to improve the performances
of algorithms that find differential characteristics on SPECK, e.g. Biryukov et
al. in [BRV14].

Specifically, in our work, we use two kinds of filters based on the Hamming
weight of α, β and γ: the first one is based on the Hamming weight of each word,
while the second one limits the sum of the Hamming weights of the three words.

Based on the known list of characteristics for SPECK32, we have that the
maximum value for the Hamming weight of each 16-bit words is 8, while the

Monte Carlo Tree Search for Automatic Differential Characteristics Search 391

average is 4.7. The sum of the three Hamming weight has a maximum value of
20 and an average of 13.1. We use these to derive the parameters given in the
experimental results section.

The Expansion Threshold. Another optimization that we considered is to choose
to not expand some nodes. In addition to the bounding done through δ-optimal
transitions, we choose to further bound the probability of each transition by
a fixed threshold. In practice, we do not allow for transitions with probability
lower than 2−12 This is because nodes with good optimal transition probability
generate on average a small number of δ-optimal transitions, while bad optimal
transitions usually explode into very big numbers of δ-optimal transitions. Intu-
itively, a low optimal probability implies numerous visits to branches (b) and (c)
in Lipmaa-Moriai Alg. 3; each visit in branch (b) adds valid solution (as both bit

values are allowed), and each visit to branch (c) affects the
δ∑

i=0

(
t
i

)
factor in the

enumeration, and thus the number of solutions.
Using these heuristics significantly reduces the size of the search space, and

enable better scaling for larger versions of SPECK.

5.4 Experimental Results and Discussion

All experiments are performed on a laptop equipped with an Intel R© CoreTM

i7-11800H 3.6 GHz. The code is implemented in Python and executed with
PyPy3.6. The results are presented in Table 1. The parameters used in the search
were:

– C = 1
4 and D = 100 for the UCT, for all the versions.

– β = 1
5 to balance the scoring function, for all the versions.

– p = 1
4 for the geometric distribution, for all versions.

– δ = 2 for all the versions except SPECK32, for which δ = 1 was enough.
– 105 forward iterations for each version to build the cache.
– (t1, t2) = (8, 20) for the two Hamming weight thresholds on SPECK32, while

(12, 24) was used for all the other versions.
– A probability threshold of 2−12 was used for SPECK32, while 2−16 was used

on all the other versions.
– k = 5 for the number of visits of a node before starting to use the UCT, for

all the versions.

A key difference between MCTS and others is that the approach is not com-
plete; therefore, it is not able to determine when a solution is optimal, and can
keep searching until it exhausts all its allowed iterations. Because we let the
search in the backwards direction run without an iteration limit, we do not have
a stopping time to report; however, we report the time after which a solution is
found by our program.

For SPECK32 and SPECK48, the optimal differential characteristics are
found significantly faster than for state-of-the-art graph-based search methods,
as well as solvers. This is encouraging, even though it is worth noting that solvers

392 E. Bellini et al.

may require additional time to prove optimality; in that sense, the methods are
not directly comparable.

SPECK64 appears to be more difficult for our algorithm, as we can only find
good differential characteristics up to 13 rounds. We assume that the depth of
the tree makes the search more difficult for MCTS, as we generally struggle with
characteristics longer than 12 rounds.

For SPECK96, we find the optimal solution for 10 rounds in less than one
and a half minute, significantly outperforming the 48 h of the closest graph-based
approach. We also report a non-optimal result for 13 rounds, found in 12 min, as
a comparison with the previous Monte-Carlo based approach. However, solver-
based methods remain significantly ahead for this version of SPECK.

A similar analysis holds for SPECK128, where our approach dominates for
small number of rounds (up to 9), but, similarly to the other graph-based
approaches, does not scale to as many rounds as solver-based methods.

6 Conclusions

In this paper, we studied variations of custom search algorithms for the search of
differential characteristics for SPECK, using SP-MCTS. In the process, we revis-
ited Lipmaa-Moriai Alg. 3 to provide an efficient algorithm for the enumeration
of δ-optimal differentials. A naive implementation of SP-MCTS proved to be
inefficient, so that we derived additional heuristics from the structure of known
good characteristics, allowing us to outperform all other graph-based methods
for most instances, and sometimes even solver-based ones.

Our approach, on the other hand, seems to struggle with longer characteris-
tics, equivalent to deeper trees. Further performance gains could be achieved
by additional heuristics, possibly derived through reinforcement learning, or
through parallelization, as well as further parameters tuning, in particular in
the scoring function.

This research is very specific to the SPECK cipher, and it would be interest-
ing to evaluate how it can be extended to other ARX constructions, in particular
those with more than one modular addition per round, or even to SPN construc-
tions. Our results constitute a new step along the graph-based search route,
which, while more challenging than solver-based approaches, has the potential
to outperform solvers through specialization.

Appendix A All Optimal Characteristics on SPECK32

See Table 2.

Monte Carlo Tree Search for Automatic Differential Characteristics Search 393

Table 2. A list of all the differential characteristics with weight 30 in SPECK32.

r ΔL ΔR − log2 p r ΔL ΔR − log2 p r ΔL ΔR − log2 p

- 0211 0a04 – – 7448 b0f8 – – 8054 a900 –

1 2800 0010 4 1 01e0 c202 5 1 0000 a402 3

2 0040 0000 2 2 020f 0a04 5 2 a402 3408 3

3 8000 8000 0 3 2800 0010 5 3 50c0 80e0 8

4 8100 8102 1 4 0040 0000 2 4 0181 0203 4

5 8004 840e 3 5 8000 8000 0 5 000c 0800 5

6 8532 9508 8 6 8100 8102 1 6 2000 0000 3

7 5002 0420 7 7 8000 840a 2 7 0040 0040 1

8 0080 1000 3 8 850a 9520 4 8 8040 8140 1

9 1001 5001 2 9 802a d4a8 6 9 0040 0542 2

- 1488 1008 – – ad40 0012 – – a540 0012 –

1 0021 4001 4 1 8148 8100 5 1 8148 8100 5

2 0601 0604 4 2 1002 1400 3 2 1002 1400 3

3 1800 0010 6 3 1060 4060 4 3 1060 4060 4

4 0040 0000 3 4 0180 0001 5 4 0180 0001 5

5 8000 8000 0 5 0004 0000 3 5 0004 0000 3

6 8100 8102 1 6 0800 0800 1 6 0800 0800 1

7 8000 840a 2 7 0810 2810 2 7 0810 2810 2

8 850a 9520 4 8 0800 a840 3 8 0800 a840 3

9 802a d4a8 6 9 a850 0952 4 9 a850 0952 4

- a000 0508 – – 7458 b0f8 – – 0050 8402 –

1 0448 1068 4 1 01e0 c202 5 1 2402 3408 3

2 80a0 c100 5 2 020f 0a04 5 2 50c0 80e0 7

3 0207 0604 6 3 2800 0010 5 3 0181 0203 4

4 1800 0010 5 4 0040 0000 2 4 000c 0800 5

5 0040 0000 3 5 8000 8000 0 5 2000 0000 3

6 8000 8000 0 6 8100 8102 1 6 0040 0040 1

7 8100 8102 1 7 8000 840a 2 7 8040 8140 1

8 8000 840a 2 8 850a 9520 4 8 0040 0542 2

9 850a 9520 4 9 802a d4a8 6 9 8542 904a 4

- 052a 9000 – – 056a 9000 – – d40a 0120 –

1 440a 0408 5 1 440a 0408 5 1 1488 1008 6

2 1080 00a0 4 2 1080 00a0 4 2 0021 4001 4

3 0083 0203 4 3 0083 0203 4 3 0601 0604 4

4 000c 0800 6 4 000c 0800 6 4 1800 0010 6

5 2000 0000 3 5 2000 0000 3 5 0040 0000 3

6 0040 0040 1 6 0040 0040 1 6 8000 8000 0

7 8040 8140 1 7 8040 8140 1 7 8100 8102 1

8 0040 0542 2 8 0040 0542 2 8 8000 840a 2

9 8542 904a 4 9 8542 904a 4 9 850a 9520 4

- 7c48 b0f8 – – 540a 0120 – – 7c58 b0f8 –

1 01e0 c202 5 1 1488 1008 6 1 01e0 c202 5

2 020f 0a04 5 2 0021 4001 4 2 020f 0a04 5

3 2800 0010 5 3 0601 0604 4 3 2800 0010 5

4 0040 0000 2 4 1800 0010 6 4 0040 0000 2

5 8000 8000 0 5 0040 0000 3 5 8000 8000 0

6 8100 8102 1 6 8000 8000 0 6 8100 8102 1

7 8000 840a 2 7 8100 8102 1 7 8000 840a 2

8 850a 9520 4 8 8000 840a 2 8 850a 9520 4

9 802a d4a8 6 9 850a 9520 4 9 802a d4a8 6

394 E. Bellini et al.

Appendix B Best Characteristics Found with Our
Method

See Table 3.

Table 3. Differential characteristics related to the results listed in Table 1.

SPECK32 SPECK48 SPECK64

r ΔL ΔR − log2 p r ΔL ΔR − log2 p r ΔL ΔR − log2 p

- 7448 b0f8 - - 001202 020002 - - 40104200 00400240 -

1 01e0 c202 5 1 000010 100000 3 1 00001202 02000002 5

2 020f 0a04 5 2 000000 800000 1 2 00000010 10000000 3

3 2800 0010 5 3 800000 800004 0 3 00000000 80000000 1

4 0040 0000 2 4 808004 808020 2 4 80000000 80000004 0

5 8000 8000 0 5 8400a0 8001a4 4 5 80800004 80800020 2

6 8100 8102 1 6 608da4 608080 9 6 84008020 80008124 4

7 8000 840a 2 7 042003 002400 11 7 a08481a4 a0808880 8

8 850a 9520 4 8 012020 000020 5 8 04200401 00244004 9

9 802a d4a8 6 9 200100 200000 3 9 01202000 00022020 6

10 202001 202000 3 10 00010000 00100100 4

11 210020 200021 4 11 00100000 00900800 2

12 00900800 04104800 4

13 04104808 24920808 7

SPECK96

r ΔL ΔR − log2 p r ΔL ΔR − log2 p

- 00800a080808 0800124a0848 - - 900f00480001 011003084008 -

1 000092400040 400000104200 10 1 00800a080808 0800124a0848 10

2 000000820200 000000001202 6 2 000092400040 400000104200 10

3 000000009000 000000000010 4 3 000000820200 000000001202 6

4 000000000080 000000000000 2 4 000000009000 000000000010 4

5 800000000000 800000000000 0 5 000000000080 000000000000 2

6 808000000000 808000000004 1 6 800000000000 800000000000 0

7 800080000004 840080000020 3 7 808000000000 808000000004 1

8 808080800020 a08480800124 5 8 800080000004 840080000020 3

9 800400008124 842004008801 9 9 808080800020 a08480800124 5

10 a0a000008880 81a02004c88c 9 10 800400008124 842004008801 9

11 a0a000008880 81a02004c88c 9

12 000080044804 0d0180220c60 12

13 010080a20028 690c81b26328 13

SPECK128

r ΔL ΔR − log2 p r ΔL ΔR − log2 p

- 00000000924000c0 4000000000104200 - - 0000900f00480001 0100001003084008 -

1 0000000000820200 0000000000001202 6 1 000000800a080808 08000000124a0848 10

2 0000000000009000 0000000000000010 4 2 0000000092400040 4000000000104200 10

3 0000000000000080 0000000000000000 2 3 0000000000820200 0000000000001202 6

4 8000000000000000 8000000000000000 0 4 0000000000009000 0000000000000010 4

5 8080000000000000 8080000000000004 1 5 0000000000000080 0000000000000000 2

6 8000800000000004 8400800000000020 3 6 8000000000000000 8000000000000000 0

7 8080808000000020 a084808000000124 5 7 8180000000000000 8180000000000004 2

8 8004000080000124 8420040080000801 9 8 8000800000000004 8c00800000000020 5

9 a0a0000080800800 81a020048080480c 9 9 8080808000000020 e084808000000124 6

10 0004000080000124 0420040080000803 10

11 2020000080800800 0120200480804818 9

12 0100000480004800 08010020840208c0 11

13 0800002080820808 48080124a0924e08 11

14 4000012480124000 0040080184803042 17

15 00000800a0000202 0200480c84018012 12

Monte Carlo Tree Search for Automatic Differential Characteristics Search 395

Appendix C Pseudocode for the Search Algorithm

Algorithm 3. MCTS search for optimal differential characteristics for SPECK
Require: a bit-size n ≥ 1, the number of forward rounds and backward rounds for

the search, all the parameters specified in Section 5.
Ensure: Differential characteristics of decreasing weights.

Class Node:
visits, children, payout = 0, [], []

Class Cached:
path, path weights, best weight = [], [], ∞

Build the initial tree from the pDDT as a collection of Node
Initialize cache as a collection of Cached
procedure mcts iteration(ΔL, ΔR, num rounds)

path, path weights = [(ΔL, ΔR)], []; increment tree[(ΔL, ΔR)].visits
for i = 1 to num rounds do

if (ΔL, ΔR) ∈ tree then
if tree[(ΔL, ΔR)].visits ≤ k then

ΔL,new, ΔR,new, p = random choice from tree[(ΔL, ΔR)].children
else

ΔL,new, ΔR,new, p = node with max UCT in tree[(ΔL, ΔR)].children

else
possible children = δ-optimal(ΔL, ΔR, δ) � All δ-optimal transitions
for child in possible children do

if xdp+(child) > expand threshold then
Add child to tree[(ΔL, ΔR)].children

ΔL,new, ΔR,new, p = random choice from tree[(ΔL, ΔR)].children

Add (ΔL,new, ΔR,new) to path and − log2 p to path weights
tree[(ΔL,new, ΔR,new)].visits = tree[(ΔL,new, ΔR,new)].visits + 1
ΔL, ΔR = ΔL,new, ΔR,new

weight = sum(path weights)
for i = 0 to num rounds do

payout = β 1
weight

+ (1 − β)num rounds−i
num rounds

1
sum(path weights[i,i+1,i+2,...])

Add payout to tree[path[i]].payouts

return path, path weights, weight

procedure main
for i = 1 to forward iterations do

ΔL, ΔR ← sample from the first level of tree
path, path weights, weight = mcts iteration(ΔL, ΔR, fwd rounds)
if weight < cache[(ΔL, ΔR)].best weight then

update cache[(ΔL, ΔR)]

for i = 1 to backward iterations do
ΔL, ΔR ← sample from the first level of tree
path, path weights, weight = mcts iteration(ΔL, ΔR, bwd rounds)
weight = weight + cache[(ΔL, ΔR)].best weight
if weight < global best weight then

print the full characteristic and update global best weight

396 E. Bellini et al.

References

[Abr87] Abramson, B.D.: The expected-outcome model of two-player games.
Ph.D. thesis, Columbia University, USA (1987). AAI8827528

[BRV14] Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers
SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46706-0 28

[BS91] Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosys-
tems. J. Cryptol. 4, 3–72 (1991)

[BSS+15] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B.,
Wingers, L.: The SIMON and SPECK lightweight block ciphers. In:
Proceedings of the 52nd Annual Design Automation Conference, DAC
2015. Association for Computing Machinery, New York (2015)

[BV13] Biryukov, A., Velichkov, V.: Automatic search for differential trails
in ARX ciphers (extended version). IACR Cryptology ePrint Archive
2013:853 (2013)

[BV14] Biryukov, A., Velichkov, V.: Automatic search for differential trails in
ARX ciphers. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366,
pp. 227–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-04852-9 12

[BVLC16] Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best
trails in ARX: application to block cipher Speck. In: Peyrin, T. (ed.)
FSE 2016. LNCS, vol. 9783, pp. 289–310. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 15

[BW95] Burmeister, J., Wiles, J.: The challenge of go as a domain for AI research:
a comparison between go and chess. In: Proceedings of Third Aus-
tralian and New Zealand Conference on Intelligent Information Systems.
ANZIIS-95, pp. 181–186 (1995)

[CBSS08] Chaslot, G., Bakkes, S., Szitai, I., Spronck, P.: Monte-Carlo tree search:
a new framework for game AI1. In: Belgian/Netherlands Artificial Intel-
ligence Conference, pp. 389–390 (2008)

[Cou06] Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo
tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J.
(eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75538-8 7

[Din14] Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 9

[DMS19] Dwivedi, A.D., Morawiecki, P., Srivastava, G.: Differential cryptanaly-
sis of round-reduced speck suitable for internet of things devices. IEEE
Access 7, 16476–16486 (2019)

[DS18] Ashutosh Dhar Dwivedi and Gautam Srivastava: Differential cryptanal-
ysis of round-reduced lea. IEEE Access 6, 79105–79113 (2018)

[FWG+16] Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic
search algorithms for differential and linear trails for speck. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 14

[HNR68] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.
4(2), 100–107 (1968)

https://doi.org/10.1007/978-3-662-46706-0_28
https://doi.org/10.1007/978-3-662-46706-0_28
https://doi.org/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/978-3-662-52993-5_15
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-319-13051-4_9
https://doi.org/10.1007/978-3-662-52993-5_14

Monte Carlo Tree Search for Automatic Differential Characteristics Search 397

[HPW09] Helmbold, D., Parker-Wood, A.: All-moves-as-first heuristics in Monte-
Carlo go. In: Proceedings of the 2009 International Conference on Arti-
ficial Intelligence, ICAI 2009, vol. 2, pp. 605–610, January 2009

[HW19] Huang, M., Wang, L.: Automatic tool for searching for differential char-
acteristics in ARX ciphers and applications. In: Hao, F., Ruj, S., Sen
Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 115–138.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7 6

[Kor85] Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree
search. Artif. Intell. 27(1), 97–109 (1985)

[Koz92] Kozen, D.C.: Depth-first and breadth-first search. In: Kozen, D.C. (ed.)
The Design and Analysis of Algorithms. Texts and Monographs in Com-
puter Science, pp. 19–24. Springer, New York (1992). https://doi.org/
10.1007/978-1-4612-4400-4 4

[KS06] Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS
(LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://
doi.org/10.1007/11871842 29

[LLJW21] Liu, Z., Li, Y., Jiao, L., Wang, M.: A new method for searching optimal
differential and linear trails in ARX ciphers. IEEE Trans. Inf. Theory
67(2), 1054–1068 (2021)

[LM01] Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential
properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 336–350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45473-X 28

[LMM91] Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential crypt-
analysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
46416-6 2

[Mat94] Matsui, M.: On correlation between the order of S-boxes and the
strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 366–375. Springer, Heidelberg (1995). https://doi.org/10.
1007/BFb0053451

[SHY16] Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX
block ciphers with application to SPECK and LEA. In: Liu, J.K., Ste-
infeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 379–394. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40367-0 24

[SWvdH+08] Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot,
G.M.J.-B., Uiterwijk, J.W.H.M.: Single-player Monte-Carlo tree search.
In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG
2008. LNCS, vol. 5131, pp. 1–12. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-87608-3 1

[SWW21] Sun, L., Wang, W., Wang, M.: Accelerating the search of differential
and linear characteristics with the sat method. IACR Trans. Symmetric
Cryptol. 269–315 (2021)

https://doi.org/10.1007/978-3-030-35423-7_6
https://doi.org/10.1007/978-1-4612-4400-4_4
https://doi.org/10.1007/978-1-4612-4400-4_4
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.1007/978-3-540-87608-3_1

Finding Three-Subset Division Property
for Ciphers with Complex Linear Layers

Debasmita Chakraborty(B)

Applied Statistics Unit, Indian Statistical Institute, Kolkata, India

debasmitachakraborty1@gmail.com

Abstract. Conventional bit-based division property (CBDP) and bit-
based division property using three subsets (BDPT) introduced by Todo
et al. at FSE 2016 are the most effective techniques for finding inte-
gral characteristics of symmetric ciphers. At ASIACRYPT 2019, Wang
et al. proposed the idea of modeling the propagation of BDPT, and
recently Liu et al. described a model set method that characterized the
BDPT propagation. However, the linear layers of the block ciphers which
are analyzed using the above two methods of BDPT propagation are
restricted to simple bit permutation. Thus the feasibility of the MILP
method of BDPT propagation to analyze ciphers with complex linear lay-
ers is not settled. In this paper, we focus on constructing an automatic
search algorithm that can accurately characterize BDPT propagation for
ciphers with complex linear layers. We first introduce BDPT propagation
rule for the binary diffusion layer and model that propagation in MILP
efficiently. The solutions to these inequalities are exact BDPT trails of
the binary diffusion layer. Next, we propose a new algorithm that mod-
els Key-Xor operation in BDPT based on MILP technique. Based on
these ideas, we construct an automatic search algorithm that accurately
characterizes the BDPT propagation and we prove the correctness of
our search algorithm. We demonstrate our model for the block ciphers
with non-binary diffusion layers by decomposing the non-binary linear
layer trivially by the COPY and XOR operations. Therefore, we apply
our method to search integral distinguishers based on BDPT of SIMON,
SIMON(102), PRINCE, MANTIS, PRIDE, and KLEIN block ciphers.
For PRINCE and MANTIS, we find (2 + 2) and (3 + 3) round integral
distinguishers respectively which are longest to date. We also improve the
previous best integral distinguishers of PRIDE and KLEIN. For SIMON,
SIMON(102), the integral distinguishers found by our method are con-
sistent with the existing longest distinguishers.

Keywords: BDPT · Complex linear layer · Binary matrix · MILP

1 Introduction

Division Property. At Eurocrypt 2015, Todo [30] introduced Division property
which is a novel strategy to discover integral characteristics to search integral
distinguishers of block cipher structures (Feistel structure and SPN structure).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 398–421, 2022.
https://doi.org/10.1007/978-3-031-22912-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_18

Finding Three-Subset Division Property for Ciphers 399

Later, Todo and Morii [31] introduced bit-based division property (which is actu-
ally called Conventional Bit-based Division Property (CBDP)), which could be
treated as an exceptional instance of division property. Actually CBDP clas-
sify all vectors u in F

n
2 into two subsets such that the parity of

⊕
x∈X

xu is 0
or unknown (where xu is defined as xu :=

∏n
i=1 xi

ui). Moreover, at CRYPTO
2016, Boura and Canteaut [9] presented a different perspective on the division
property, called ’parity set’.

The intricacy of using CBDP was generally equivalent to 2n for a n-
bit primitives. Henceforth, the gigantic intricacy limited the wide uses of
CBDP. To tackle the limitation of the tremendous complexity, Xiang et al.
[34] applied MILP-strategy to look through integral distinguisher dependent
on CBDP and they applied this modeling technique to six lightweight block
ciphers. By extending and improving this method, the integral attacks have
been applied to many ciphers and many better integral distinguisher has been
found [18,19,21,23,28,29,37].

Three-Subset Division Property. Although CBDP can find more precise
integral distinguishers than other methods, the accuracy is never perfect. To
find more accurate distinguishers, the bit-based division property using three
subsets (BDPT) was proposed in [31]. BDPT divides all vectors u in F

n
2 into

two subsets such that the parity of
⊕

x∈X
xu is 0, 1 or unknown. Essentially,

the set unknown in CBDP is divided into 1-subset and unknown subset in
BDPT. As a result, BDPT can find more precise integral characteristics than
CBDP. For example, CBDP demonstrated the existence of SIMON32’s 14-round
integral distinguisher whereas BDPT discovered SIMON32’s 15-round integral
distinguisher [30].

Despite of its successful combination of the MILP and the CBDP, the MILP
modeling technique does not work quite well with the BDPT. As in case of
BDPT we have to track the division property propagation of two sets (K (the
unknown subset) and L (the 1-subset)) as well as the influence of the set L

on the set K should also be traced which makes the procedure of constructing
automatic search algorithm based on BDPT complicated.

First, Hu et al. [20] proposed variant three subset division property (VTDP)
and applied this method to improve some integral distinguishers although it
sacrifices quite some accuracy of BDPT. Therefore, Wang et al. [32] proposed
the idea of modeling the propagation for the BDPT and recently Liu et al. [24]
proposed a model set method to search integral distinguishers based on BDPT.
Both of these methods have been applied to the block ciphers having simple bit
permutation as their linear layer.

1.1 Motivation

The idea of modeling BDPT propagation which is described in [32] is that each
node on the breadth-first search algorithm is regarded as the starting point of
division trails, and the MILP evaluates whether there is a feasible solution from
every node. According to their searching algorithm, we can run this algorithm to

400 D. Chakraborty

any block cipher efficiently only if we can divide the round function into several
appropriate parts. Therefore, it is very difficult to model BDPT propagation
using this technique for the ciphers with complex linear layers. Next, Liu et al.
[24] proposed model set method to search BDPT where the authors constructed
r different MILP models for r-round block ciphers which is a bit complicated.
Moreover, both these methods have been applied to the block ciphers having
linear layers as simple bit permutation. Now, the following question arises:
Is MILP method of BDPT propagation efficiently applicable for ciphers with
complex linear layers?

1.2 Our Contributions

To address this question, first we propose an idea to find BDPT propagation
through the binary (complex) linear layer accurately and then we construct an
automatic search algorithm for BDPT in this paper. The details of our technical
contributions are listed as follows:

Model the BDPT Propagation of Binary Linear Layer. We give an idea
to find exact BDPT propagation through the binary (complex) linear layer which
is a new method that helps us to construct MILP model of BDPT propagation
through the binary linear layer accurately. We actually find that the rows of the
primitive matrix corresponding to the binary mixcolumn matrix can be divided
into some cosets with the property that the rows in different cosets have no
common nonzero entries in the same column. Using this interesting property, we
can easily find accurate BDPT propagation and can give a description of such
propagation by smallest number of inequalities.

Construction of Automatic Search Algorithm for BDPT. To search for
BDPT, first we construct the MILP models for key-independent components of
the round function of block ciphers. When a Key-Xor operation is applied, new
vectors generated from the set L will be added to the set K. Therefore, how to
model Key-Xor operation accurately is a complex problem. To solve this prob-
lem, we construct a new efficient algorithm that models each Key-Xor operation
based on MILP technique. Finally, by selecting appropriate initial BDPT and
stopping rules we construct an automatic search algorithm that accurately char-
acterize BDPT propagation using only two MILP models which is much simpler
than the algorithm described in [24]. Moreover, we prove the correctness of our
search algorithm.

Applications. As for the application of our methodology, first time we apply
BDPT on block ciphers with complex linear layers. We apply our automatic
search model to search integral distinguishers of PRINCE [8], MANTIS [6],
KLEIN [16], PRIDE [4], SIMON [5], and SIMON(102) [22]. The results are
shown in Table 1.

Finding Three-Subset Division Property for Ciphers 401

At first, we apply our method on PRINCE and MANTIS which have binary
linear layer. We find 2 + 2 round integral distinguisher for PRINCE which is
one more round than the previous best integral distinguisher [15] and find 3 + 3
round integral distinguisher for MANTIS which is also one more round than the
previous best integral distinguisher [15] where we denote a are the rounds before
the middle layer, and b are the rounds after the middle layer and a + b as total
number of rounds.

Table 1. Summarization of integral distinguishers

Cipher Data Round Number of constant bits Time References

MANTIS 232 3+2 16 – [15]

263 3+3 64 2h 8m Sect. 5.1

PRINCE 232 2+1 64 – [15]

263 2+2 64 21h 45m Sect. 5.1

PRIDE64∗ - 8 – – [33]

263 9 32 2h 35m Sect. 5.2

KLEIN64 232 5 64 – [36]

262 6 64 45m Sect. 5.2
∗ In [33], the authors have only mentioned that PRIDE64 has 8-round integral
distinguisher and no other information is available best known to us.

To complete our BDPT analysis on ciphers with complex linear layers, we
apply our method to KLEIN and PRIDE which have non-binary linear layers.
As there are no known results on them related to CBDP, then we first apply
MILP based CBDP on them and find 6-round and 9-round integral distinguishers
for KLEIN and PRIDE respectively which are one more rounds to previous
best integral distinguishers [33,36]. Therefore, we apply our MILP based BDPT
method and the integral distinguishers we find are in accordance with the integral
distinguishers we find based on CBDP. Finally, we apply our method to all
variants of SIMON, and SIMON(102) block ciphers and the distinguishers we
find are in accordance with the previous longest distinguishers [24] but we get
these results in better time.

1.3 Organization of the Paper

This paper is organized as follows: In Sect. 2, we briefly recall some background
knowledge about the bit-based division property. In Sect. 3, we studies how to
model basic operations used in the round function of a block cipher by the
MILP technique and introduce exact modelling of complex (binary) linear layer
in BDPT. Section 4 studies the initial and stopping rules, and search algorithm.
We show some applications of our model in Sect. 5. At last we conclude the paper
in Sect. 6.

402 D. Chakraborty

2 Preliminaries

2.1 Notation

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ F
n
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,
define xu =

∏n−1
i=0 xui

i . Then, for any k ∈ F
n
2 and k′ ∈ F

n
2 , define k � k′ if

ki ≥ k′
i holds for all i = 0, 1, . . . , n − 1, and define k � k′ if ki > k′

i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊆ {0, 1, ..., n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K = K ∪ {k} and K → k when K = K \ {k}. And
|K| denotes the number of elements in the set K. We denote [n] = {1, 2, . . . , n},
1 = 1n, and 0 = 0n. We denote i-th unit vector in F

n
2 as ei.

2.2 Bit-Based Division Property

Two kinds of bit-based division property (CBDP and BDPT) were introduced
by Todo and Morii at FSE 2016 [31]. Their definitions are as follows.

Definition 1 (CBDP [31]). Let X be a multiset whose elements take a value
of F

n
2 . Let K be a set whose elements take an n-dimensional bit vector. When

the multiset X has the division property D1n

K
, it fulfills the following conditions:

⊕

x∈X

xu =

{
unknown, if there is k ∈ K satisfying u � k,

0 otherwise.

Some propagation rules of CBDP are proven in [30,31,34].

Definition 2 (BDPT [31]). Let X be a multi-set whose elements take a value
of Fn

2 . Let K and L be two sets whose elements take n-dimensional bit vectors.
When the multi-set X has the division property D1n

K,L, it fulfils the following con-
ditions:

⊕

x∈X

xu =

⎧
⎪⎨

⎪⎩

unknown, if there isk ∈ K satisfying u � k,

1, else if there is l ∈ L satisfying u = l,

0, otherwise.

If there are k ∈ K and k
′ ∈ K satisfying k � k

′
in the CBDP D1n

K
, then k can be

removed from K because the vector k is redundant. This progress is denoted as
Reduce0(K). Moreover, if there are l ∈ L and k ∈ K, then the vector l is also
redundant if l � k. This progress is denoted as Reduce1(K,L). The redundant
vectors in K and L will not affect the parity of xu for any u.

The propagation rules of K in CBDP are the same with BDPT. So we only
introduce the propagation rules of BDPT which are needed in this paper. For
further details, please refer to [31,32].

Finding Three-Subset Division Property for Ciphers 403

BDPT Rule 1 (Xor with The Secret Key [31].) Let K be the input multiset
satisfying D1n

K,L. For the input x ∈ X, the output y ∈ Y is y = (x0, . . . , xi ⊕
rk, xi+1, . . . , xn−1), where rk is the secret key. Then, the output multiset Y has
D1n

K′,L′ , where K
′ and L

′ are computed as

⎧
⎪⎨

⎪⎩

L
′ ← l for l ∈ L,

K
′ ← k for k ∈ K,

K
′ ← (l1, l2, ..., li ∨ 1, ..., ln) for l ∈ L satisfying li = 0.

BDPT Rule 2 (S-box [32].) For an S-box : Fn
2 → F

n
2 , let x = (x0, . . . , xn−1)

and y = (y0, . . . , yn−1) denote the input and output variables. And every yi,
i ∈ {0, 1, . . . , n − 1} can be expressed as a boolean function of (x0, x1, . . . , xn−1).
If the input BDPT of S-box is D1n

K,L={l}, then the output BDPT of S-box can be
calculated by D1n

Reduce0(K),Reduce1(K, L),

{
K = {u′ ∈ F

n
2 | for any u ∈ K, if yu ′

contains any term xv satisfying v � u}
L = {u ∈ F

n
2 |yu contains the term xl}

Let D1n

K,L={l0,...,lr−1} and D1n

K′,L′ be the input and output BDPT of S-box, respec-
tively. We can get the output BDPT D1n

K′,L′
i
from the corresponding input BDPT

D1n

K,L={li} where i = 0, 1, . . . , r − 1. Then,

L
′ = {l | l appears odd times in sets L

′
0, . . . ,L

′
r−1}

2.3 The MILP Model for CBDP

At Asiacrypt 2016, Xiang et al. [34] applied MILP method to search integral
distinguishers based in CBDP, which allowed them to analyze block ciphers
with large sizes. Firstly they introduced the concept of CBDP trail as follows:

Definition 3 (CBDP Trail [34]). Consider the propagation of the division

property {k} ≡ K0
f1→ K1

f2→ K2
f3→ Moreover, for any vector k∗

i ∈ Ki(i ≥ 1),
there must exist an vector k∗

i−1 ∈ Ki−1 such that k∗
i−1 can propagate to k∗

i by
CBDP propagation rules. Furthermore, for (k∗

0,k
∗
1, ...,k

∗
r) ∈ K0 ×K1 × ... ×Kr,

if k∗
i−1 can propagate to k∗

i for all i ∈ {1, 2, . . . , r}, we call (k∗
0,k

∗
1, . . . ,k

∗
r) an

r-round CBDP trail.

With the help of division trail, finding the CBDP is transformed into a prob-
lem of finding a division trail ended at a unit vector. For more details please
refer to [34].

404 D. Chakraborty

3 The MILP Model for BDPT

Suppose Er is a r-round iterated block cipher whose round function fi for i ∈ [r]
consists of a non-linear layer, linear layer, and Key-Xor operation. Let f i

k be
the Key-Xor operation, and f i

e be the rest of the operations in the ith round
function fi i.e.

fi = f i
k ◦ f i

e

Let, the input multiset X to the block cipher Er has initial BDPT as
D1n

K0={k},L0={l}, and for any i ∈ [r], we denote the output BDPT as D1n

Ki,Li
.

Now, for the operation f i
e, we denote the BDPT propagation as

f i
e(Ki−1) = K

∗
i−1, f i

e(Li−1) = L
∗
i−1

We can evaluate the BDPT propagation for K (unknown subset) and L (1
subset) independently as per the BDPT propagation rules for linear and non-
linear layers. Now, for the operation f i

k, according to the BDPT Rule 1 some
new vectors which are produced from the vectors in L

∗
i−1 and those new vectors

along with the vectors in K
∗
i−1 are the vectors in the set Ki, and the set Li is

same as L
∗
i−1.

Now, we divide the operation f i
k into two parts say f i

1, f i
2 such that f i

1 is
the operation where new elements are produced from each elements in L

∗
i−1

according to BDPT Rule 1, and f i
2 is the operation which includes the new

vectors and the vectors from K
∗
i−1 in Ki which is as follows:

(Ki,Li) = f i
k(K

∗
i−1, L

∗
i−1) = (f i

2(f
i
1(L

∗
i−1), K

∗
i−1), L

∗
i−1) (1)

Precisely, f i
2 is the union operation i.e. Ki = f i

1(L
∗
i−1) ∪ K

∗
i−1.

To model the propagation of BDPT for the operations f i
e and f i

k for all i ∈ [r],
we reintroduce a notion named BDPT trail.1

Definition 4 (BDPT Trail) Let X be the input multiset to the block cipher
which has initial BDPT D1n

K0={k}, L0={l}, and denote the BDPT after r-round
propagation through f i

e, f i
k for all i ∈ [r] by D1n

Kr, Lr
, where r ≥ 1. Thus we have

the following chain of BDPT propagations:

{k} � K0 K
∗
0

f1
e

{l} � L0 L
∗
0

f1
e

f1
k

K1

L1

f2
e

f2
e

K
∗
1

L
∗
1

Kr−1 K
∗
r−1

fr
e

Lr−1 L
∗
r−1

fr
e

fr
k

Kr

Lr

where K
∗
i−1 = f i

e(Ki−1), L∗
i−1 = f i

e(Li−1), and (Ki, Li) = f i
k(K

∗
i−1, L

∗
i−1) for all

1 ≤ i ≤ r. Moreover, for any vector tuple (ki , li), ki ∈ Ki, and li ∈ Li (i ∈ [r]),
there must exist (k∗

i−1, l∗i−1), where k∗
i−1 ∈ K

∗
i−1, and l∗i−1 ∈ L

∗
i−1 such that

k∗
i−1 ∈ K

∗
i−1 propagate to (ki , li) by BDPT propagation rule of Key-Xor, and

1 In [24], the authors have defined BDPT trail. We actually rewrite it according to
our notations.

Finding Three-Subset Division Property for Ciphers 405

there must exist (ki−1, li−1) ∈ Ki−1 × Li−1 such that ki−1 propagate to k∗
i−1,

and li−1 propagate to l∗i−1 by BDPT propagation rules of linear and non-linear
layers. Furthermore, for (k0, l0), . . . , (kr, lr) ∈ K0 × L0 × . . . × Kr × Lr, if
(ki−1, li−1) can propagate to (ki, li) for all i ∈ {1, 2, . . . , r}, we call

(k0, l0)
f1
e , f

1
k→ (k1, l1)

f2
e , f

2
k→ . . .

fr
e , f

r
k→ (kr, lr)

an r-round BDPT trail.

Now, to model BDPT trail, we propose Proposition 1 according to Defini-
tion 4.

Proposition 1. Let the input multiset X has initial BDPT D1n

{k}, {l} and D1n

Kr,Lr

denote the BDPT of the output multiset after r-round propagation. Then, the set
of first components of the last vectors of all r-round BDPT trails which starts
with the vector (k, l) is equal to the set Kr and the set of second components of
the last vectors of all r-round BDPT trails which starts with the vector (k, l) is
equal to the set Lr.

Proof of this Proposition 1 directly follows from Definition 4.

3.1 Some Observations on BDPT Propagation Rule for S-box

S-box is an important component of block ciphers. For a lot of block ciphers
it is the only non-linear part. Although any Boolean function can be evaluated
by using three rules (COPY, XOR, AND), the propagation requires much time
and memory complexity when Boolean function is complex. Inspired by the
algorithm of calculating CBDP trails of S-box [34], Wang et al. proposed a
generalized method to calculate BDPT division trails of S-box in [32] and we
have mentioned the rule in BDPT Rule 2.

Let, the input BDPT of S-box is D1n

K, L={l}, and according to the BDPT
Rule 2, we have found the sets K, and L from K and L respectively as follows:
{
K = {u′ ∈ F

n
2 | for any u ∈ K, if yu ′

contains any term xv satisfying v � u}
L = {u ∈ F

n
2 |yu contains the term xl}

(2)
Now, according to the BDPT Rule 2, the output BDPT would be D1n

K′, L′

which is as follows:

K
′ = Reduce0(K), L

′ = Reduce1(K, L)

Therefore, it is obvious that, K′ ⊆ K, and L
′ ⊆ L. Here, we come to two

observations as follows:

Observation 1. L
′ does not contain 1 vector.

According to the BDPT propagation rule of S-box, as L
′ = Reduce1(K, L),

and for any u ∈ K, 1 � u, then L
′ does not contain 1 vector.

406 D. Chakraborty

Observation 2. If L = {0}, then L
′ = {0}.

Whenever, L = {0}, then
⊕

x∈X
x0 = 1 which implies that the input multiset

X contains a constant term. Therefore, for all u � 0,
⊕

x∈X
xu = unknown.

Hence, trivially
⊕

y∈Y
y0 = 1 and L

′ = {0} where Y is the output multiset.

Therefore, given an n-bit S-box and its input BDPT D1n

K={k}, L={l}, BDPT Rule 2
returns the output BDPT D1n

K′, L′ . Thus for any vector k′ ∈ K
′, (k,k′) is a valid

division trail for K
′ of the S-box. Similarly, this holds for L

′ as well. We know
that, the vector l does not affect the propagation of vector k through the S-box,
we will obtain a complete list of the division trail for K

′ by traversing k ∈ F
n
2

[34].
Similarly, for a certain input vector l ∈ F

n
2 , we will obtain a certain set of

division trails for L using Eq. 2 and then using Observation 1, and Observation 2
we will remove some invalid division trails from L and obtain a set of division
trail for L

′. Therefore, if we try all the 2n possible input vector l, we will get a
complete list of division trails for L

′.
In [32], the authors included some invalid BDPT trail for L′ set while obtain-

ing a complete list of division trails for L
′. In [24], the authors have removed

those invalid BDPT trail from L
′ by introducing another algorithm which is

actually equivalent to the algorithm of finding BDPT trail of S-box in [32] and
by traversing k ∈ F

n
2 . Now, our approach is similar to their idea [24] in a much

simplified manner using two observations from BDPT Rule 2 which was intro-
duced in [32].

In the full version of this paper [10], we present the complete lists of all the
division trails for L of PRINCE S-box according to our method which is same if
we apply the method the authors described in [24]. Therefore, after getting the
BDPT trails for K and L of S-box, we construct the linear inequalities using the
method described in [34] whose feasible solutions are exactly those BDPT trails
which are shown in the full version of this paper [10].

3.2 MILP Model of BDPT for Complex Linear Layer

In this section, we establish the idea to construct MILP model of BDPT for
complex linear layer represented by a matrix M = (mi,j)s×s ∈ F

s×s
2m . Given

the irreducible polynomial of the field F
m
2 where the multiplications operate,

the representation of the matrix over F2 is unique, which we call the primitive
matrix of M and is denoted by M ′ = (m′

i,j)n×n
where m′

i,j ∈ F2 and n = m× s.
Therefore, if each mi,j in M which is a polynomial in the extension field F2m �
F[x]/(f), where f is the irreducible polynomial over F2 with degree m, is either
0 or 1 then M is called binary matrix and otherwise M is non-binary matrix.

Therefore, block ciphers with complex linear layer can be partitioned into
two parts: (i) Block ciphers with binary linear layer and (ii) Block ciphers with
non-binary linear layer, depending on the binary or non-binary matrix as its
linear layer. Examples of block ciphers having binary linear layer are MIDORI,

Finding Three-Subset Division Property for Ciphers 407

SKINNY, CRAFT, PRINCE, MANTIS etc. and AES, LED, KLEIN, PRIDE
etc. have non-binary linear layer.

Now, an obvious way to model the BDPT propagation through any complex
linear layer i.e. u1

M→ v1 in K subset, and u2
M→ v2 in L subset is that one

can introduce some auxiliary binary variables and decompose it into the COPY
and XOR operations. Therefore, by following the BDPT propagation rule of
COPY and XOR, BDPT propagation through linear layer can be modelized.
The obvious advantage of this model is that using this technique we can model
BDPT propagation of any complex linear layer.

In [21,37], the authors have shown that using this technique one may intro-
duce many invalid division trails in K subset. Now, here we are going to show
that if we use this COPY-XOR technique to handle binary linear layer then
many invalid division trails may be added to the L subset as well which we have
shown by giving an example in the full version of this paper [10].

Exact BDPT Modelization for Ciphers Having Binary Linear Layer.
Given a binary matrix M = (mi,j)s×s ∈ F

s×s
2m , and denote n = m × s, we can

derive an equivalent matrix working at a bit level which is called primitive matrix
M ′ = (m′

i,j)n×n ∈ F
n×n
2 . Now, M ′ has n = ms number of rows which we denote

say R0, R1, . . . , Rn−1, and define a set of all rows R = {Ri | 0 ≤ i ≤ n − 1}.
Therefore, we can construct m disjoint sets R0, R1, . . . ,Rm−1 in the following
way:

Ri = {Rmj+i | 0 ≤ j ≤ s − 1} for all 0 ≤ i ≤ m − 1 (3)

Now, it is obvious that �m−1
i=0 Ri = R, and Ri contains exactly a number s of

rows from M ′ where 0 ≤ i ≤ m−1. Here we come to an important property that
the rows in different sets have no common nonzero entries in the same column,
which is the key feature of a binary matrix. Exploiting this property of a binary
matrix, the binary linear layer can actually be seen as the application of m many
s-bit S-box with algebraic degree 1 in parallel.

Therefore, if x = (x0, x1, . . . , xn−1), and y = (y0, y1, . . . , yn−1) are corre-
sponding input and output variables w.r.t the linear layer i.e. y = M ′ · x, then
we can write ANF of m many s-bit S-box with algebraic degree 1 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0(x0) = (R0
0 · x0, R0

m · x0, . . . , R
0
(s−1)m · x0)

S1(x1) = (R1
1 · x1, R1

m+1 · x1, . . . , R
1
(s−1)m+1 · x1)

...
Sm−1(xm−1) = (Rm−1

m−1 · xm−1, Rm−1
2m−1 · xm−1, . . . , R

m−1
sm−1 · xm−1)

where Ri
mj+i is a vector which belongs to the set F

s
2 such that Ri

mj+i =
(m′

mj+i, i, m′
mj+i,m+i, . . . ,m

′
mj+i, (s−1)m+i), and xi = (xi, xm+i, . . . ,

x(s−1)m+i) ∈ F
s
2 where i = 0, 1, . . . , m − 1, and j = 0, 1, . . . , s − 1.

408 D. Chakraborty

An Example of Exact BDPT Modelization of Binary Matrix. The
MixColumns matrix M of the block cipher MANTIS which is as follows:

M =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ ∈ F

4×4
24

Therefore, for this example, s = 4, and m = 4, and the primitive matrix M ′

corresponding to the matrix M is a 16 × 16 matrix where each matrix element
is either 0 or 1 i.e. the primitive matrix M ′ ∈ F

16×16
2 is as follows:

M ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ F
16×16
2

Now, we can easily conclude that applying the matrix M ′ to a vector x =
(x0, x1, . . . , x15) ∈ F

16
2 is actually equivalent to performing the following 4-bit

S-box in parallel:

Si(xi, xi+4, xi+8, xi+12) =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

xi

xi+4

xi+8

xi+12

⎞

⎟
⎟
⎠ , i ∈ {0, 1, 2, 3}

Therefore, we can construct exact BDPT trail for K and L for the mixcolumn
operation and the linear inequalities whose feasible solutions are exactly those
BDPT trail.

Now, the exact BDPT modelization of S-box we have discussed in the previ-
ous section. Applying that approach we can get the exact BDPT trail through
the binary linear layer and then we can easily represent the BDPT trails of
binary linear layer as linear inequalities following the approach mentioned in
[34]. Thus, we give a way to generate a set of inequalities that exactly model
the valid BDPT propagations through a binary linear layer. For the ciphers with
non-binary linear layer, we decompose its linear layer through the COPY and

Finding Three-Subset Division Property for Ciphers 409

XOR operation trivially and generate a set of linear inequalities that model the
propagations through the linear layer.

3.3 MILP Model of BDPT for Key-XOR

In this section, we explain how to construct MILP model of BDPT for the Key-
Xor operation. As per the notation discussed above Er is the r-round block cipher
where we denote fi is the ith round function and f i

k is the ith round Key-Xor
operation. Moreover, we denote the initial and output BDPT for the Key-Xor
operation as (K∗

i−1, L
∗
i−1), and (Ki, Li) respectively. Therefore, as per BDPT

Rule 1, we decompose f i
k into two operations say f i

1 which actually produces
some new elements from each elements of L∗

i−1 and f i
2 which includes the new

vectors and the vectors from K
∗
i−1 in Ki which is described in Eqn 1. Hence,

we model the operations f i
1, and f i

2 which jointly present the MILP model for
Key-Xor operation.

Table 2. Trails Corresponding to the Function f i
1

(l0, l1, l2, l3) (l′0, l
′
1, l

′
2, l

′
3)

(0, 0, l2, l3) (0, 1, l2, l3), (1, 0, l2, l3), (1, 1, l2, l3)

(0, 1, l2, l3) (1, 1, l2, l3),

(1, 0, l2, l3) (1, 1, l2, l3),

(1, 1, l2, l3) X

Modeling f i
1. In many ciphers, round key is only XORed with a part of block.

Without loss of generality, we assume that the round key is XORed with the
left s (0 ≤ s ≤ n − 1) bits. Let, L∗

i−1 ⊆ F
4
2 and s = 2 i.e. round key is XORed

with the leftmost 2 bits. Therefore, according to the BDPT rule 1, f i
1 function

creates l′ = (l′0, l′1, l′2, l′3) from l = (l0, l1, l2, l3) where for every vector l ∈ L
∗
i−1

satisfying li = 0, l′i = li∨1 where i ∈ {0, 1} and l′j = lj for all j = 2, 3. Therefore,
we write the propagation table (Table 2) corresponding to the function f i

1 using
which we construct linear inequalities whose feasible solutions are exactly those
trails. Now, we are ready to give linear inequalities description of these trails
listed in Table 2 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l′j ≥ lj , for j = 0, 1
l′j = lj , for j = 2, 3

2
∑1

j=0 l′j − ∑1
j=0 lj ≥ 2

∑3
j=0 l′j − ∑3

j=0 lj ≥ 1

(4)

where l′0, l′1, l′2, l′3, l0, l1, l2, l3 are binaries.
Apparently, all feasible solutions of the inequalities in Eq. 4 corresponding to

l, and l′ are exactly the trails of f i
1 function described above in Table 2. Similarly,

410 D. Chakraborty

for a n-bit block cipher where L
∗
i−1 ⊆ F

n
2 , and round key is XORed with the

leftmost s (0 ≤ s ≤ n − 1) bits, the linear inequalities we get which describe the

trails l
fi
1→ l′ as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l′j ≥ lj , for j = 0, 1, ..., s − 1
l′j = lj , for j = s, s + 1 . . . , n − 1

s
∑s−1

j=0 l′j − (s − 1)
∑s−1

j=0 lj ≥ s
∑n−1

j=0 l′j − ∑n
j=1 lj ≥ 1

(5)

where l′0, l′1, ..., l′n−1, l0, l1, ..., ln−1 are binaries.

Modeling f i
2. After applying f i

1 on each element of the set L∗
i−1, we get the set

say L
′
i−1 as follows:

L
′
i−1 = {l′ ∈ F

n
2 | f i

1(l) = l′, ∀ l ∈ L
∗
i−1}

Now, from BDPT Rule 1 we know that:

f i
2(K

∗
i−1, L

′
i−1) = K

∗
i−1 ∪ L

′
i−1 = Ki

Therefore, to model f i
2, we define another function g : (F2

2 \ {(0, 0), (1, 1)}) ×
K

∗
i−1 × L

′
i−1 → Ki such that:

g(λ0, λ1,k
∗, l′) = (λ0 ∧ k∗

0 , . . . , λ0 ∧ k∗
n−1) ⊕ (λ1 ∧ l′0, . . . , λ1 ∧ l′n−1) (6)

where λ = (λ0, λ1) ∈ F
2
2 \ {(0, 0), (1, 1)}, and k∗ = (k∗

0 , . . . , k∗
n−1), and l′ =

(l′0, . . . , l
′
n−1). Therefore, from the definition of g we can easily conclude that

Ki contain all the elements of L
′
i−1, and K

∗
i−1. Hence, modeling g is actually

equivalent to modeling f i
2. Now, we are going to construct the linear inequalities

whose feasible solutions are exactly the g function trail. In order to do that first
we have to construct the linear inequalities which are sufficient to describe the
propagation (a, b) ∧→ c where a, b, c ∈ F2 which is as follows:

⎧
⎪⎨

⎪⎩

a − c ≥ 0
b − c ≥ 0

a + b − c ≤ 1
(7)

where a, b, c are binaries. Therefore, using Eq. 6 and Eq. 7 we can easily conclude
that the following inequalities are sufficient to describe the propagation of g

function i.e. (λ0, λ1, k
∗, l′)

g→ k:

Finding Three-Subset Division Property for Ciphers 411

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0 − pj ≥ 0, for j = 0, 1, ..., n − 1
k∗
j − pj ≥ 0, for j = 0, 1, ..., n − 1

λ0 + k∗
j − pj ≤ 1, for i = 0, 1, ..., n − 1

λ1 − qj ≥ 0, for i = 0, 1, ..., n − 1
l′j − qj ≥ 0, for i = 0, 1, ..., n − 1

λ1 + l′j − qj ≤ 1, for i = 0, 1, ..., n − 1
pj + qj − kj = 0, for j = 0, 1, ..., n − 1

λ0 + λ1 = 1

(8)

where p0, ..., pn−1, q0, ..., qn−1, l
′
0, ..., l

′
n−1, k0, ..., kn−1, k

∗
0 , ..., k

∗
n−1, λ0, λ1 are

binaries and p = (p0, p1, ..., pn−1), q = (q0, q1, ..., qn−1) are auxiliary variables.
Hence Eq. 8 and Eq. 5 describe the complete MILP model of the Key-XOR oper-
ation w.r.t BDPT.

3.4 MILP Model Construction of r-Round Function

For all the functions based on these above mentioned operations, we are finally
making a set of linear inequalities depicting one round BDPT propagation. In
order to construct an MILP model for r round BDPT propagation we have to
iterate this above mentioned procedure r times and finally we conclude upon
getting a system of linear inequalities L which we describe in Algorithm 1.

Algorithm 1 constructs a system of linear inequalities which charecterizes all
r-round BDPT trails i.e.

(k0 = k, l0 = l)
f1→ (k1, l1)

f2→ . . .
fr→ (kr, lr)

Therefore, we have to construct MILP model using L and appropriate initial and
stopping rules and the search algorithm in order to find integral distinguisher.

4 Automatic Search Algorithm for r-Round Integral
Distinguisher

In this section, we first study the initial BDPT and stopping rule to use when
searching for integral distinguisher based on BDPT. From Algorithm1 we got
the linear inequality system L with the input vector k and l. Now, we convert the
stopping rule into an objective function and combining L and objective function,
we construct the MILP model MK,L. At last we propose an algorithm to search
integral distinguisher based on BDPT given the initial BDPT D1n

{k}, {l} for an
n-bit block cipher and prove the correctness of the algorithm.

412 D. Chakraborty

4.1 Initial BDPT

In [31], Todo and Morii set the initial BDPT as (K = {1}, L = {7fffffff})
to search the BDPT of SIMON32, where the active bits of the vector l are set
as 1 and 0 for constant bits. Hence we do the same. Let the initial input BDPT
variables are k0 = (k0

0, k
0
1, ..., k

0
n−1), and l0 = (l00, l

0
1, ..., l

0
n−1) where n is the

block size. The constraints on k0
i and l0i are

k0
i = 1 for i = 0, 1, ..., n − 1

l0i =

{
1, if i − th bit is active
0, otherwise

Algorithm 1: Computing A Set of Constraints Characterizing BDPT
Propagation
Input: The initial input BDPT of an n-bit iterated cipher

D1n

K0={k},L0={l}
Lk(Ki−1, K

∗
i−1): a constraint set of linear inequalities whose

feasible solutions are all division trails from the set Ki−1 to set
K

∗
i−1, ∀ i ∈ [r].

Ll(Li−1, L
∗
i−1): a constraint set of linear inequalities whose

feasible solutions are all division trails from the set Li−1 to set
L

∗
i−1, ∀ i ∈ [r].

Newk(L∗
i−1, L

′
i−1): a constraint set of linear inequalities whose

feasible solutions are all f i
1 function trails, ∀ i ∈ [r].

Unionk(L′
i−1, K

∗
i−1, Ki): a constraint set of linear inequalities

whose feasible solutions are all f i
2 function trails, ∀ i ∈ [r].

Output: A constraint set of linear inequalities L describing r-round
BDPT propagation

begin
L = ∅, Ci = Ci, ∗ = ∅ where i = 1, 2, . . . , r
Allocate n-bit variables ki, li to denote vectors in the set Ki, Li

respectively where i = 0, 1, . . . , r
Allocate n-bit variables li, ∗, pi, and ki, ∗ to denote vectors in the
set L

∗
i , L

′
i, and K

∗
i respectively where i = 0, 1, . . . , r − 1

L ← (k0 = k)
L ← (l0 = l)
for (i = 1 ; i ≤ r ; i + +) do

Ci ← Ll(Li−1, L
∗
i−1) ∪ Lk(Ki−1, K

∗
i−1)

Ci, ∗ ← Newk(L∗
i−1, L

′
i−1)

Ci, ∗ ← Unionk(L′
i−1, K

∗
i−1, Ki)

L ← (li−1, ∗ = li)
L ← (Ci ∪ Ci, ∗)

end
return L

end

Finding Three-Subset Division Property for Ciphers 413

4.2 Stopping Rule

Our automatic search model only focuses on the parity of one output bit. With-
out loss of generality, we consider the q-th output bit. After r round, the output
set has BDPT D1n

Kr,Lr
. Therefore, according to the Proposition 1, we know that

the set of the first components of the last vectors of all r-round BDPT trails
which start from the vector (k, l) is equal to Kr. Hence, to check whether there
exist any unit vector in the Kr, the objective function can be set as follows:

Obj : Minimize(kr
0 + kr

1 + . . . , kr
n−1) (9)

Similarly, according to the Proposition 1, the set of the second components of
the last vectors of all r-round BDPT trails which start from the vector (k, l) is
equal to Lr. Thus, we can set the objective function as :

Obj : Minimize(lr0 + lr1 + . . . , lrn−1) (10)

Now, at first we construct the MILP model MK,L using the system of linear
inequalities L we get from Algorithm 1 and the objective function defined in
Eq. 9. Moreover, we construct another MILP model ML as follows:

ML = ConstructModel(L∗,Min(lr0 + . . . , lrn−1))

where L∗ is the constraint set of linear inequalities whose feasible solutions are
all division trails from the set L0 to Lr.

Stopping Rule for the MILP Model MK,L. To check whether Kr contains
the unit vector eq is equivalent to check whether the MILP model MK,L has
feasible solution satisfying kr = eq. Therefore, we can set the stopping rule as:

kr
j =

{
1 if j = q

0 otherwise
(11)

If MK,L has such feasible solutions, then the q-th output bit is unknown.

Stopping Rule for the MILP Model ML. If Kr does not contain eq, then
to check whether Lr contains eq is equivalent to check whether the MILP model
ML has feasible solution satisfying lr = eq. Therefore, we can set the stopping
rule as :

lrj =

{
1 if j = q

0 otherwise
(12)

If both Kr and Lr do not contain eq, then q-th output bit is balanced.
Otherwise, we need to count the number of feasible solutions satisfying lr = eq
of the model ML. Therefore, the parity of q-th output bit is 0 or 1 if the number
of solutions are even or odd respectively as Kr does not contain eq.

414 D. Chakraborty

Algorithm 2: Deciding Parity of q-th Output Bit
Input: The r-round cipher Er, the initial input BDPT of an n-bit

iterated cipher D1n

K0={k},L0={l}, the number q, and Ll(Li−1, Li):
a constraint set of linear inequalities whose feasible solutions are
all division trails from the set Li−1 to set Li, ∀ i ∈ [r].

Output: The balanced information of the q-th output bit based on
BDPT

begin
Allocate all the variables denoting the input and output BDPT
Obj1 = Minimize(kr

0 + kr
1 + . . . , kr

n−1)
Obj2 = Minimize(lr0 + lr1 + . . . , lrn−1)
Call Algorithm 1 and get a constraint set L whose feasible solutions
are r-round BDPT trail
MK,L = ConstructModel(L, Obj1)
MK,L.AddConstraint(kr = eq)
if the MILP model MK,L has solutions then

return unknown
end
else

ML = ConstructModel(
⋃r

i=1 Ll(Li−1,Li), Obj2)
ML.AddConstraint(l0 = l)
if the MILP model ML has no feasible solution satisfying
lr = eq then

return 0
end
else

ML.AddConstraint(lr = eq)
Count the number of solutions in ML

if Count is even then
return 0

end
else

return 1
end

end
end

end

4.3 Search Algorithm

We present the automatic search algorithm to find integral distinguisher based
on BDPT, which decides the parity of the q-th output bit with the given initial
BDPT D1n

K0={k},L0={l} for an n-bit block cipher. Firstly, we allocate all round
variables and auxiliary variables. Therefore, we construct a MILP model MK,L

that describes all r-round BDPT trails, and another MILP model ML that

Finding Three-Subset Division Property for Ciphers 415

describes all r-round division trails for L. Finally, using appropriate initial and
stopping rules, we can obtain the parity of q-th output bit based on BDPT. We
illustrate the whole framework in Algorithm2.

4.4 Correctness of Search Algorithm

Let the initial input division property of an n-bit iterated cipher be
D1n

K0={k},L0={l}, and after r-round propagation, the output BDPT we denote
as DKr,Lr

. It is obvious that if eq ∈ Kr, then the parity of q-th bit is unknown
and if eq does not belongs to Kr as well as Lr, then the parity of q-th bit is 0.

Therefore, to prove correctness of Algorithm 2 we have to prove that if the
q-th unit vector does not belong to Kr and belongs to Lr, then the parity of q-th
output bit is 0 or 1 provided the number of division trails from l to eq is even
or odd respectively. We first prove the following Lemma:

Lemma 1. Let X ⊆ F
n
2 has division property D1n

K0={k},L0={l} and after r-round
propagation, the output set Yr has division property D1n

Kr,Lr
. For any l′ ∈ Lr, if

the number of division trail in L from l to l′ is even, then there exist at least one
j in [r] s.t Lj contains at least one element u which is produced even number of
times from the elements in Lj−1.

The proof is provided in the full version of this paper [10]. Therefore, using
Lemma 1 we prove the final result as follows:

Proposition 2. Let X ⊆ F
n
2 has division property D1n

K0={k},L0={l} and after r-
round propagation, the output set Y has division property D1n

Kr,Lr
. If eq doesn’t

belongs to the set Kr, where q ∈ [n], then we have:

1. If the number of division trail from l to eq is even in L, then
⊕

y∈Y
yq = 0.

2. If the number of division trail from l to eq is odd in L, then
⊕

y∈Y
yq = 1.

Proof. Let S ⊆ (Fn
2)r+1 be the set which contains all the division trail in L from

l to eq and |S| is even. Now, by using Lemma 1, we can easily conclude that there
exist at least one j ∈ {2, 3, ..., r} s.t Lj contains an element u which is produced
even number of times from the elements in Lj−1. Without loss of generality we
choose smallest such j.

According to the BDPT propagation rule of XOR and S-box, we can see
that if an element u is produced even number of times in Lj from Lj−1, then
the following holds: ⊕

y∈Yj

yu = 0

where Yj is the multiset whose BDPT is D1n

Kj ,Lj
and that implies u shouldn’t

be in Lj . Hence, all the division trails from l to eq which contains the vector u
are actually redundant and those number of redundant division trails must be
even. Therefore, we can remove these redundant division trails from S and we
can call the new set as S1. It is trivial that either |S1| is even or |S1| = 0.

416 D. Chakraborty

Case-I. If |S1| = 0, then it implies that all the division trails from l to eq
contains the element u. Therefore, as u shouldn’t be in Lj , so eq also shouldn’t
be in Lr and it is given that eq doesn’t belongs to Kr which means

⊕

y∈Y

yeq =
⊕

y∈Y

yq = 0.

Case-II. If |S1| is even, then in a similar way we can find even number of
redundant division trails from l to eq in L and construct S2 from S1 where |S2|
is either even or 0 and so on.

As |S| is finite, then after finitely many p steps, we must get some Sp s.t
|Sp| = 0. Hence, eq shouldn’t be in Lr and it is given that eq doesn’t belongs to
Kr which means ⊕

y∈Y

yeq =
⊕

y∈Y

yq = 0

which completes the first part of the proof.

Now, it is given that the number of division trail in L from l to eq is odd.
Similarly we can construct a set S′ containing all such division trails. Therefore,
there may or may not exist j ∈ {2, 3, ..., r} s.t Lj contains an element u which
is produced even number of times from the elements in Lj−1.

Case-A. If there doesn’t exist any such j, then by BDPT propagation rules, we
can easily conclude that no division trail from l to eq is redundant. Therefore,
it implies that eq belongs to Lr which means

⊕
y∈Y

yq = 1.

Case-B. If there exist some j s.t Lj contains an element u which is produced
even number of times from the elements in Lj−1, then similarly by the previous
argument we can easily conclude that all the division trails from l to eq which
contains u are actually redundant. Therefore, we can remove these redundant
division trails from S′ and we can call the new set as S′

1. It is obvious that |S′
1|

is odd.
Now, continuing like this way, after finitely many steps we arrive at a sit-

uation where the number of remaining division trails from l to eq is odd and
no redundant division trails are left which implies eq belongs to Lr. Therefore,⊕

y∈Y
yeq =

⊕
y∈Y

yq = 1 which completes the second part of the proof. ��

5 Applications to Block Ciphers

In this section, we apply our automatic search algorithm for BDPT to SIMON,
SIMON(102), MANTIS, PRINCE, KLEIN, and PRIDE block ciphers. All
the experiments are conducted on the platform Intel Core i5-8250U CPU @
1.60 GHz, 8 G RAM, 64 bit Ubuntu 18.04.5 LTS. The optimizer we used to solve
MILP models is Gurobi 9.1.2 [17]. For the integral distinguishers, ‘?’ denotes
the bit whose balanced information is unknown, ‘0’ denotes the bit whose sum

Finding Three-Subset Division Property for Ciphers 417

is zero, ‘1’ denotes the bit whose sum is 1. The detailed integral distinguishers
of PRINCE, MANTIS, KLEIN and PRIDE are listed in supporting material of
the full version of this paper [10].

5.1 Applications to PRINCE and MANTIS

In this section we present the application of our BDPT model to the cipher
PRINCE and MANTIS which have binary matrices to conduct their mixcolumn
operations in the round functions. Hence, we apply our method to model binary
linear layer in BDPT and construct the MILP model efficiently. Then, choosing
appropriate initial BDPT, we find improved integral distinguisher as follows:

Integral Attack on PRINCE. Block ciphers based on the reflection design
strategy, introduced by PRINCE [8], are a popular choice for low-latency designs.
PRINCE is the 64-bit block cipher which uses 128-bit key. The PRINCE cipher
is the substitution-permutation network composed of 12 rounds. The 64-bit state
can be organised as the 4 × 4 array of nibbles. For a complete specification and
design rationale of the cipher, a reader is referred to [8].

We will denote the number of rounds of PRINCE as a + b where a are the
rounds before the middle layer, and b are the rounds after the middle layer. There
are several attacks (Integral attack, higher order differential attack, boomerang
attack) on PRINCE [2,25,27]. Now, in [15], the authors applied CBDP on
PRINCE and found 2 + 1 and 1 + 2 round integral distinguishers which are
best integral distinguisher till date.

For PRINCE, we find a 2 + 2 round integral distinguisher which is one more
round than the previous best results [15].

Integral Attack on MANTIS. MANTIS is a tweakable block cipher pub-
lished at CRYPTO 2016 by Beierle et al. [6] and the cipher’s structure is similar
to PRINCE. This block cipher operate on a 64-bit message block and work with
a 64-bit tweak and (64+64) bit key and has a SPN structure. For a more detailed
description of the MANTIS family, we refer to the design paper [6].

In the light of cryptanalysis, there are several attacks [7,11,14] on MANTIS.
For MANTIS, we find a 3+3 round integral distinguisher based on BDPT which
is one more round than the previous best results [15].

5.2 Applications to KLEIN and PRIDE

To complete our BDPT analysis on ciphers with complex linear layers, we apply
our automatic search algorithm for BDPT to block ciphers KLEIN and PRIDE
which have non-binary linear layers. In order to handle non-binary linear layers
we trivially decompose the linear layers as COPY and XOR operations and con-
struct the MILP model accordingly. Then, choosing appropriate initial BDPT,
we find integral distinguisher as follows:

418 D. Chakraborty

Integral Attack on KLEIN. KLEIN [16] is a family of block ciphers, with a
fixed 64-bit block size and variable key length-64, 80 or 96-bits. The structure of
KLEIN is a typical Substitution Permutation Network. For more details, please
refer to [16].

In the light of cryptanalysis, there are several attacks [1,3,26,36] on the block
cipher KLEIN, mostly on KLEIN-64 (key length 64 bits). In [36], the authors
have presented a 5-round integral distinguisher using the higher-order integral
and the higher-order differential properties which is best integral distinguisher
known to us. First we apply MILP based CBDP on KLEIN and find a 6-round
integral distinguisher which is one more round than the previous best results
[36]. Therefore, we apply the MILP based BDPT on KLEIN and the integral
distinguishers we find are in accordance with the distinguishers we find based
on CBDP.

Integral Attack on PRIDE. PRIDE is a lightweight block cipher designed
by Albrecht et al. [4], appears in CRYPTO 2014. PRIDE is an SPN structure
block cipher with 64-bit block cipher and 128-bit key. For more details, please
refer to [4]. In the light of cryptanalysis, there are several attacks on PRIDE
[12,13,35,38].

First we apply MILP based CBDP on PRIDE and find a 9-round integral
distinguisher which is one more round than the previous best results [33]. There-
fore, we apply the MILP based BDPT on PRIDE and the integral distinguishers
we find are in accordance with the distinguishers we find based on CBDP.

5.3 Applications to SIMON, SIMON (102)

We apply our method to all variants of SIMON [5], and SIMON(102) [22] block
ciphers and the distinguishers we find are in accordance with the previous longest
distinguishers [24] but we get these results in better time which are shown in the
full version of this paper [10].

6 Conclusion and Future Work

In this paper, we provide an idea to model BDPT propagation of ciphers with
binary (complex) linear layers and furthermore we construct an efficient auto-
matic search algorithm that accurately characterize BDPT propagation. Based
on these, more accurate BDPT for ciphers with binary (complex) linear layers
such as PRINCE, MANTIS can be obtained.

For ciphers with non-binary linear layers we trivially decompose the lin-
ear layer by COPY-XOR technique which may ignore some balanced property.
Therefore, how to model BDPT propagation for ciphers with non-binary linear
layers accurately and efficiently is an open problem. Moreover, we construct our
model using MILP solver whereas SAT/SMT are also very popular and efficient
solvers in this domain. How to implement our model using SAT/SMT solvers or
similar ones will be a future work.

Finding Three-Subset Division Property for Ciphers 419

Acknowledgement. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Biclique cryptanalysis of
the PRESENT and LED lightweight ciphers. IACR Cryptology ePrint Archive
2012:591 (2012)

2. Abed, F., List, E., Lucks, S.: On the security of the core of PRINCE against biclique
and differential cryptanalysis. IACR Cryptology ePrint Archive, p. 712 (2012)

3. Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Biclique cryptanalysis of the full-
round KLEIN block cipher. IET Inf. Secur. 9(5), 294–301 (2015)

4. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 4

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015,
pp. 175:1–175:6. ACM (2015)

6. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

7. Beyne, T.: Block cipher invariants as eigenvectors of correlation matrices. J. Cryp-
tol. 33(3), 1156–1183 (2020)

8. Borghoff, J., et al.: PRINCE - a low-latency block cipher for pervasive computing
applications (full version). IACR Cryptology ePrint Archive, p. 529 (2012)

9. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 24

10. Chakraborty, D.: Finding three-subset division property for ciphers with complex
linear layers (full version). Cryptology ePrint Archive, Paper 2022/1444 (2022).
https://eprint.iacr.org/2022/1444

11. Chen, S., Liu, R., Cui, T., Wang, M.: Automatic search method for multiple differ-
entials and its application on MANTIS. Sci. China Inf. Sci. 62(3), 32111:1–32111:15
(2019)

12. Dai, Y., Chen, S.: Cryptanalysis of full PRIDE block cipher. Sci. China Inf. Sci.
60(5), 052108:1–052108:12 (2017)

13. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 10

14. Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: application to
MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018)

15. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers
with ease. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349, pp.
115–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 6

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53018-4_24
https://eprint.iacr.org/2022/1444
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-030-10970-7_6

420 D. Chakraborty

16. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-25286-0 1

17. Gurobi Optimization, LLC.: Gurobi Optimizer Reference Manual (2021)
18. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree

of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64837-4 18

19. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Strong and tight security guaran-
tees against integral distinguishers. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021. LNCS, vol. 13090, pp. 362–391. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92062-3 13

20. Hu, K., Wang, M.: Automatic search for a variant of division property using
three subsets. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 412–432.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 21

21. Hu, K., Wang, Q., Wang, M.: Finding bit-based division property for ciphers with
complex linear layer. IACR Cryptology ePrint Archive, p. 547 (2020)

22. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 8

23. Lambin, B., Derbez, P., Fouque, P.-A.: Linearly equivalent s-boxes and the division
property. Des. Codes Cryptogr. 88(10), 2207–2231 (2020)

24. Liu, H., Wang, Z., Zhang, L.: A model set method to search integral distinguishers
based on division property for block ciphers. Cryptology ePrint Archive, Paper
2022/720 (2022). https://eprint.iacr.org/2022/720

25. Morawiecki, P.: Practical attacks on the round-reduced PRINCE. IET Inf. Secur.
11(3), 146–151 (2017)

26. Nikolic, I., Wang, L., Shuang, W.: The parallel-cut meet-in-the-middle attack.
Cryptogr. Commun. 7(3), 331–345 (2015)

27. Rasoolzadeh, S., Raddum, H.: Cryptanalysis of PRINCE with minimal data. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 109–126. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31517-1 6

28. Sun, L., Wang, W., Wang, M.: Milp-aided bit-based division property for primitives
with non-bit-permutation linear layers. IACR Cryptology ePrint Archive, p. 811
(2016)

29. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

30. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

31. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

32. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of search-
ing division property using three subsets and applications. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 14

https://doi.org/10.1007/978-3-642-25286-0_1
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-92062-3_13
https://doi.org/10.1007/978-3-030-92062-3_13
https://doi.org/10.1007/978-3-030-12612-4_21
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://eprint.iacr.org/2022/720
https://doi.org/10.1007/978-3-319-31517-1_6
https://doi.org/10.1007/978-3-319-31517-1_6
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-030-34618-8_14

Finding Three-Subset Division Property for Ciphers 421

33. Xiang, Z., Zeng, X., Zhang, S.: On the bit-based division property of s-boxes. Sci.
China Inf. Sci. 65(4), 149101 (2021)

34. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

35. Yang, Q., et al.: Improved differential analysis of block cipher PRIDE. In: Lopez,
J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 209–219. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17533-1 15

36. Yu, X., Wu, W., Li, Y., Zhang, L.: Cryptanalysis of reduced-round KLEIN block
cipher. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp.
237–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-
7 18

37. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary dif-
fusion layer. IET Inf. Secur. 13(2), 87–95 (2019)

38. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential analysis on block cipher
PRIDE. IACR Cryptology ePrint Archive 2014:525 (2014)

https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-17533-1_15
https://doi.org/10.1007/978-3-642-34704-7_18
https://doi.org/10.1007/978-3-642-34704-7_18

Improved Truncated Differential
Distinguishers of AES with Concrete

S-Box

Chengcheng Chang1,2, Meiqin Wang1,2,3, Ling Sun1,2,3, and Wei Wang1,2,3(B)

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, Shandong, China

chengchengchang@mail.sdu.edu.cn, {mqwang,lingsun,weiwangsdu}@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security, Ministry

of Education, Shandong University, Qingdao 266237, Shandong, China
3 Quancheng Laboratory, Jinan 250103, China

Abstract. The security of Advanced Encryption Standard (AES) is one
of the most important issues in cryptanalysis. In ToSC 2020, Bao et al.
proposed an open question about the relation between the input-output
indices and the probability of truncated differentials. In this work, we try
to answer this question, and accomplish a tighter bound for several types
of truncated differential distinguishers based on the differential distribu-
tion table (DDT) of the S-box of AES.

In order to reduce the computational complexity, we choose the start-
ing point in the middle of the differential instead of the beginning, con-
struct the DDT of 32-bit to 8/16-bit Super-Sboxes adopting an inte-
grated S-box technique, and explore the divide-and-combine algorithm
to perform the accurate calculation. For the 4-round truncated differen-
tials with only one active byte in the input difference and one inactive
byte in the output difference, we investigate the concrete probability
of all 256 combinations of input-output indices. Moreover, our compu-
tation algorithms remove the independence assumption of functions in
Bao et al.’s work, and can be generalized to compute the probability of
truncated differentials ended with two inactive bytes in one column. To
take full advantage of the results, we construct statistical model based
on conditional probability, and propose 4/5/6-round truncated differen-
tial distinguishers, respectively. Our 6-round distinguisher needs 262.88

chosen-plaintexts and 263.42 encryptions, which is better than the pub-
lished 6-round distinguishers in key-independent secret-key setting. For
all truncated differentials presented in this work, we perform experimen-
tal verifications on Small-AES variants, and the results show our algo-
rithms can provide reliable results. It is noted that the results do not
threaten the security of AES.

Keywords: AES · Cryptanalysis · Secret-key attacks · Truncated
differential · Concrete S-box

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 422–445, 2022.
https://doi.org/10.1007/978-3-031-22912-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_19

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 423

1 Introduction

Advanced Encryption Standard (AES) [1] was adopted by National Institute of
Standards and Technology (NIST) in 2000, and has become the most widespread
block cipher in the world. The security evaluation of AES has attracted the
attention of international cryptographic community, triggered a series of excel-
lent ideas and cryptanalysis techniques since its publication. Besides the biclique
cryptanalysis of the full AES [9], the cryptanalysis results can be divided into
two kinds, one is the key recovery attack [3,4,10,19], and the other is the distin-
guishing attack [3,5,6,35], which distinguishes AES from a random permutation.
The construction of distinguishers may lead to key recovery attacks. Moreover, a
block cipher or its round-reduced version often serves as the pseudo-random per-
mutation, which is the assumption in the security proof of block cipher operation
modes [7], hash functions [33,34], and MACs [13], etc. Therefore, the existence of
distinguishers may lead to serious consequences, and we focus on distinguishers
of AES in this paper.

Because of the Wide Trail Strategy, AES seems immune to traditional dif-
ferential and linear cryptanalysis. The constructions of distinguishers on AES
often study a set of plaintexts or ciphertexts in specific form, investigate var-
ious aspects of its properties, and may combine different types of non-random
characteristics to achieve better results.

For integral distinguisher, Daemen et al. presented a 3-round integral dis-
tinguisher and extended it to 4-round by prepending a round at the beginning
[12]. Later, the time complexity is improved by Ferguson et al. by partial-sum
technique [21]. And then came a series of meet-in-the-middle attacks [18,20,30],
where [20] took truncated differential to enumerate the input and output dif-
ferential values instead of state values, which is called differential enumeration,
reduced the space complexity significantly.

Several novel and powerful distinguishers arose. Grassi et al. [26] introduced
subspace trail cryptanalysis which includes techniques based on (truncated)
impossible differentials and integrals as special cases, moreover, they observed
the multiple-of-8 property, which led to the first key-independent secret-key dis-
tinguisher for 5-round AES. Besides, Grassi [23–25] introduced Mixture Differen-
tial Cryptanalysis on round-reduced AES-like ciphers, translated the multiple-of-
8 5-round distinguisher into a simpler and more convenient one, and showed how
to combine the new 4-round distinguisher with a modified version of truncated
differential distinguisher in order to set up new 5-round distinguishers. Rnjom
et al. [35] proposed yoyo-distinguishers for 3 ∼ 6-round AES, which is the first
key-independent distinguisher for 6-round AES, and was improved by Bardeh
et al. [6]. Their data and time complexity were further reduced by Bardeh [5]
through adopting a variant with adaptively chosen ciphertexts. Recently, Bao
et al. [3] illustrated how the well-known integral distinguisher on 3-round AES
resembles a sum of PRPs and extended it to truncated-differential distinguishers
of 4/5/6-round.

424 C. Chang et al.

Note that there are various settings in the cryptanalysis of AES variants,
such as secret-key, known-key, key-(in)dependent, etc., and we only list the key-
independent secret-key distinguishers on AES-128 over 4 rounds in Table 1.

Our Contributions. From the results of Table 1, all the previous distinguishers
over 4 rounds do not take the details of S-box into consideration. Bao et al. [3]
asked an open question: Can we predict a-priori which input-output indices yield
particularly strong distinguishers, given the S-box? To answer this question, we
calculate a tighter bound for the truncated differentials of AES.

We start with the analysis of 4-round truncated differentials proposed in [3],
which begin with one active cell in the input difference and end with one inactive
cell in the output difference. In order to compute the concrete probability, we
have to list all differential characteristics following the 4-round truncated differ-
ential, obtain the probability of each one, and take the mean value of them as the
final result. Obviously, we can not afford such a huge calculation. A divide-and-
combine technique is put forward, and the complexity is reduced by choosing
the appropriate starting point and time-memory tradeoffs. Especially, for the
differential distribution table (DDT) of 32-bit to 8-bit Super-box, an integrated
idea is introduced and cuts down the complexity significantly. Three algorithms
are proposed to settle this question. We can also deduce the precise probability
of the extended 5/6-round truncated differentials in [3] under the assumption of
independent and random round keys.

Furthermore, we check some different 4-round truncated differentials, which
begin with one active cell and end with two inactive cells. The divide-and-
combine technique and statistical framework are refined, the DDT of a 32-bit to
16-bit integrated S-box is deduced, and the corresponding results are obtained.
The new 4-round distinguisher straightforwardly leads to a 5-round one, and
can be extended to 6-round, which is the best distinguisher in key-independent
secret-key setting till now.

For two kinds of 4-round distinguishers, we compute the probability based on
the output of our algorithms, and perform experimental verifications on AES.

Moreover, for all distinguishers, we test on Small-AES, the downscale variants
of AES [11] with 64-bit block size and different 4-bit S-boxes1, and present
the comparison of the experimental results and probability deduced from our
algorithms2. The results show that our algorithms are reasonable and suitable
for a concrete block cipher.

Outline. Section 2 reviews some preliminaries and backgrounds. Section 3 and
Sect. 4 focus on the probability calculation and experimental verifications of 4-
round truncated differentials with one active input cell. Section 3 analyzes the
obstacles of direct calculation, introduces the divide-and-combine technique and
corresponding algorithms for the truncated differential ended with one inactive

1 The details of the Small-AES and the different 4-bit S-boxes are presented in
Appendix A.

2 The results will be presented in the full paper.

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 425

cell, and describes the refined divide-and-combine technique and corresponding
algorithm for the one ended with two inactive cells. Section 4 introduces statis-
tical framework using conditional probability, and construct the new 4-round
truncated differential distinguisher of AES. Section 5 and Sect. 6 extend it to
5/6-round, respectively. Section 7 concludes this work.

2 Preliminaries and Backgrounds

2.1 Notations

Some notations used throughout this paper are given as follows:
Xi means the input state of the i-th round function; Xj

i stands for the j-th
state in a δ-set of the i-th round function, where j = 0, ..., 28 − 1; XSB

i ,XSR
i ,

and XMC
i mean the state Xi after the application of SubBytes, ShiftRows, and

Mixcolumns, respectively; Xi[j] is the j-th byte of state Xi, where j = 0, · · · , 15;
ki stands for the subkey of round i, k0 denotes the whitening key; ΔX means
the difference in the state X; · denotes the multiplication over GF(28) for AES;
the difference distribution table (DDT) of S-box, is denoted as DDTS, and
DDTS[i][j] stands for the number of input pairs following input difference i and
output difference j.

2.2 Short Description of AES

AES [15] is a block cipher with SP-network in which the plaintext is 128-bit, and
supports three versions, denoted as AES-128, AES-192, and AES-256, where the
corresponding key size is 128, 192, 256 bits and the round number is 10, 12, 14,
respectively. The 128-bit plaintext is treated as a 4 × 4 matrix, and each round
performs the following four basic operations:

1) SubBytes (SB): a nonlinear operation that applies the same 8-bit to 8-
bit invertible S-box to every state byte. 2) ShiftRows (SR): a linear operation
that rotates i bytes on the i-th row to the left. 3) MixColumns (MC): matrix
multiplication over the GF (28) that applies to each column. 4) AddRoundKey
(AK): a linear operation that XORs the state with the round key.

Before the first round of encryption, there is an additional AK operation,
which is named XOR whitening key. And in the last round of encryption, the
MC operation is omitted.

2.3 4-Round Truncated Differential Distinguisher of AES

Bao et al.’s Work. In 2020, Bao et al. [3] resembled the 3-round integral
distinguisher [12] as a sum of PRPs, and extended it to 4/5/6-round truncated
differential distinguisher. Adapting Patarin’s setting [32], for an input set of
which only different at X0[1], Bao et al. approximated that, for AES,

pAES{ΔXMC
3 [0] = 0} � 1

28
+

1
28 × (28 − 1)3

� 2−8 + 2−31.983. (1)

426 C. Chang et al.

Table 1. Comparison of existing Secret-Key Distinguishers for AES. Data complexity
is measured in the number of (adaptive) chosen plaintexts/ciphertexts ((A)CP/(A)CC)
for PS ≥ 0.95. Time complexity is measured in memory accesses (M) and in round-
reduced AES encryptions (E) or XOR operations (XOR) − using the common approxi-
mation 20 M � 1-round Encryption. * indicates that the details of S-box are considered.

Property Rounds Data Cost Ref.

Yoyo Game 4 2CP+2ACC 2XOR [35]

Impossible Differential 4 216.25CP 222.3M�216E [21]

Mixture Differential 4 217CP 223.1M�216.75E [23]

Truncated Differential * 4 230.56CP 230.94E Sect. 4

Integral 4 232CP 232XOR [12]

Multiple-of-8 4 233CP 240M�233.7E [27]

Truncated Differential 4 251.4CP - [3]

Yoyo Game 5 212CP+225.8ACC 224.8XOR [35]

Multiple-of-8 5 232CP 235.6M�229E [27]

Truncated Variance Differential 5 234CP 237.6M�231E [25]

Truncated Differential * 5 242.59CP 242.91E Sect. 5

Truncated Mean Differential 5 248.96CP 252.6M�246E [25]

Probabilistic Mixture Differential 5 252CP 271.5M�264.9E [24]

Truncated Differential 5 268CP 273.3M [3]

Impossible Mixture Differential 5 282CP 297.8M�291.1E [24]

Threshold Mixture Differential 5 289CP 298.1M�291.5E [24]

Truncated Differential * 6 262.88CP 263.42E Sect. 6

Exchange 6 283ACC 283E [5]

Exchange 6 288.2CP 288.2E [6]

Truncated Differential 6 289.43CP 296.52M [3]

Impossible Yoyo 6 2122.83ACC 2121.83XOR [35]

While for a random permutation, the probability is roughly

prand{ΔXMC
3 [0] = 0} � 2120 − 1

2128 − 1
� 2−8. (2)

Then, once ΔXMC
3 [0] = 0, ΔX5[0] = 0 with probability 1 since zero difference

is unaffected by AK, SB, SR operations. Thus, the difference between the pAES

and the prand can be exploited to build truncated differential distinguishers of
AES.

Statistical Framework. We briefly recall the satistical model adopted by Bao
et al.’s [3], which follows the framework of Grassi et al. [25].

The plaintext pairs which satisfy the output difference of the truncated dif-
ferential are called collisions. For N pairs of plaintexts, let Xrand be a ran-
dom variable for the number of collisions of PRP, and XAES be a random vari-

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 427

able of r-round AES. Then Xrand ∼ N (N × prand, N × prand(1 − prand)) and
XAES ∼ N (N × pAES , N × pAES(1 − pAES)). If follows that the number of
chosen plaintexts pairs N should satisfy

N ≥ 2 × [prand × (1 − prand) + pAES × (1 − pAES)]
(prand − pAES)2

× [erfinv(2 × PS − 1)2] (3)

to obtain a success probability of at least PS . The erfinv(x) is the inverse error
function. It is noted that the setting we considered in our work is form pairs
from δ-sets that have no non-trivial relation to each other.

3 Divide-and-Combine Technique

Truncated differential cryptanalysis is widely adopted in the security evalua-
tion of block ciphers, and obtain many good results. However, the critical factor
affecting the complexity of the attack, which is the probability of truncated dif-
ferential, is always roughly evaluated in the secret-Sbox setting. We wonder if
we can check all differential characteristics belonging to a truncated differen-
tial, compute the corresponding probability, and obtain their mean value, i.e., a
realistic bound of the truncated differential taking the details of the underlying
S-boxes into consideration.

In this section, we first propose a divide-and-combine technique to over-
come the obstacles of direct computation, accomplish such kind of calculation
for 4-round truncated differentials of AES proposed in [3]. Then, we modify the
divide-and-combine technique and consider the performance of 4-round trun-
cated differentials with one active cell in input and two inactive cells in the same
column of the output, which illustrate some new insights on the security of AES.
While the setting of Bao et al. is not applicable to such situation because they
require independence assumption of functions, and the bytes in one column are
not independent.

3.1 Obstacles of Direct Calculation

To calculate the truncated differential probability, one direct way is to list all
differentials leading to the specific truncated differential and sum up their proba-
bilities, which is similar to a tree-based breadth-first search algorithm. While for
AES, the biggest challenge is that the computation complexity or memory access
is too high to calculate since there are too many differentials involved. We take
the 3-round truncated differential (0*00000000000000 3r−→ 0???????????????)
(Fig. 1), which is the core of distinguishers presented by Bao et al., as an exam-
ple, where 0 corresponds to byte with zero (inactive) difference, ∗ means non-zero
(active), and ? is unknown, and illustrate the possibilities of differential charac-
teristic satisfying it.

As depicted in Fig. 1, for the starting point ΔX0, there is only one non-zero
byte, i.e., 28-1 possible input difference values. Since AK does not affect the value
of difference, so does ΔX1. We recall that in the DDTS of AES, for each non-zero

428 C. Chang et al.

Fig. 1. Truncated difference propagation of (0*00000000000000
3r−→ ΔX4[0] ??????????

?????). The gray bytes represent the active bytes. The black one in ΔX4 is the difference
we want to predict. The slashed represent bytes related to the black one in ΔX4. The
? represent bytes that are not sure whether they are active.

input difference, there are 27 − 1 = 127 non-zero output differences.Then each
ΔX1 corresponds to 27 − 1 ΔXSB

1 . Similar analysis are performed. It is noted
that for each byte in ΔX4, we just need to consider four related bytes in ΔX3.
For example, ΔX4[0] only relates to ΔXMC

3 [0], i.e., ΔXSB
3 [0, 5, 10, 15]. We take

#(Δin → Δout) to denotes the number of possible differential trails from input
difference Δin to output difference Δout. Then the possibilities to calculate the
route probability of (0*00000000000000 3r−→ ΔX4[0]???????????????) is

#(ΔX0[1] �= 0 → ΔXMC
3 [0])

= #(ΔX0[1] → ΔXSB
1 [1]) × #(ΔXSB

1 [1] → ΔXSB
2 [12, 13, 14, 15])

× #(ΔXSB
2 [12, 13, 14, 15] → ΔXSB

3 [0, 5, 10, 15])

� (28 − 1) × 27 × (27)4 × (27)4 � 271.

(4)

271 possibilities are infeasible to calculate straightly, therefore, the key issue is
how to deal with inner summation in order to reduce complexity.

3.2 Calculate the Probability of 4-Round Truncated Differential
with One Active Cell in Input and One Inactive in Output

4-Round Truncated Differentials Ended with One Inactive Cell. As
depicted in Fig. 1, if ΔX4[0] = 0, there must be ΔXSR

4 [0] = 0, which leads to a
4-round truncated differential (0*00000000000000 4r−→ ΔX5[0]???????????????)
where the MC operation is omitted in the last round. Therefore, we only need
to focus on the first 3-round transformation analyzed in Sect. 3.1.

According to Eq. (4), the computation can be splited into several parts, com-
pute the probability separately, and combine the related ones together. Similarly
with the partial sum technique [21], we can divide ΔX1[1] → ΔX4[0] into two
parts, for example, ΔX1[1] → ΔXSB

1 [1] and ΔXSB
1 [1] → ΔXSB

3 [0, 5, 10, 15].
Then, we compute Pr(ΔXSB

1 [1] → ΔXSB
3 [0, 5, 10, 15]) for each possible

ΔXSB
1 [1] and connect the beginner Pr(ΔX1[1] → ΔXSB

1 [1]) according to the
same ΔXSB

1 [1]. The probability of whole truncated differential is just the mul-
tiplication of them.

Choose the Appropriate Starting Point. In order to balance the complexity of
each part, we need to choose a proper starting point first. Inspired by the meet-
in-the-middle idea of [18,20,30], we think it is more appropriate to initiate the
calculation in the middle of the differential instead of ΔX1[1].

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 429

For example, we choose the starting point at ΔXSB
2 and calculate two round

forward and one round backward. Then the possibilities of differential trails, 271

in Eq. (4), becomes about (28 − 1) × 27 × (27)4 + (28 − 1)4 × (27)4 � 260. In
addition, due to the different circumstances, the algorithm in Sect. 3.2 places
the starting point at ΔXSB

2 , while the algorithms in Sect. 3.3 places the starting
point at ΔXMC

2 for the convenience of code operation.

32-bit to 8-bit Integrated S-box. We develop a new “integrated” S-box technique
to further cut down the complexity enlighted by Zhang et al.’s work [37] about
large-unit linear approximation and Daemen et al.’s Super-box [14,16,17,22].
This technique focuses on the computation of Pr(ΔXSB

2 [12, 13, 14, 15] →
ΔX4[0]) which can be accelerated by precomputation.

The mapping from XSB
2 [12, 13, 14, 15] to X4[0] can be taken as a 32-bit to

8-bit Super-Sbox, if we construct its DDT directly, the complexity is 232 ×232 =
264. Instead, we integrate the Super-Sbox into three 16-bit to 8-bit mappings in
the following.

According to X4[0] = 2·XSB
3 [0]⊕3·XSB

3 [5]⊕XSB
3 [10]⊕XSB

3 [15], XMC
2 [0] =

XSB
2 [15], XMC

2 [5] = 3 · XSB
2 [14], XMC

2 [10] = XSB
2 [13], and XMC

2 [15] = 2 ·
XSB

2 [12], the function XSB
2 [12, 13, 14, 15] → X4[0] is decomposed to:

f1 : (XMC
2 [0],XMC

2 [5]) → X ,

where X = 2 · S(XMC
2 [0] ⊕ k2[0]) ⊕ 3 · S(XMC

2 [5] ⊕ k2[5]),

f2 : (XMC
2 [10],XMC

2 [15]) → Y,

where Y = S(XMC
2 [10] ⊕ k2[10]) ⊕ S(XMC

2 [15] ⊕ k2[15]),
f3 : (ΔX ,ΔY) → ΔX4[0], where ΔX4[0] = ΔX ⊕ ΔY.

(5)

In the above definitions, f1, f2 are two 16-bit to 8-bit mappings, in fact, both of
them are XOR (linear operation) of two 8-bit to 8-bit permutations. According to
the distribution function of two discrete random variables sum [28], their DDTs
can be calculated efficiently by MergeTableDDT in Algorithm 1, and stored as
two precomputation tables, denoted as DDTX and DDTY , respectively. Since
f3 is a linear function too, its distribution function can be constructed from
DDTX and DDTY in a similar way, and the DDT of the whole function can
be obtained. However, we only precompute DDTX and DDTY , and generate
the related part of f3’s DDT for the given XSB

2 [12, 13, 14, 15] to reduce mem-
ory overhead. Once the DDT is obtained, the corresponding probability can be
deduced and the detailed implementation is processed in Algorithm 1.

Algorithms to Calculate the Probability. We present the whole algorithm
based on our divide-and-combine technique to calculate the probability of the
4-round truncated differential distinguisher introduced in [3]. We divide the 4-
round truncated differential into four parts and only list the bytes that affect
the probability:

(I) ΔX0[1] → ΔXSB
1 [1], (II) ΔXSB

1 [1] → ΔXSB
2 [12, 13, 14, 15],

(III) ΔXSB
2 [12, 13, 14, 15] → ΔX4[0], (IV) ΔX4[0] → ΔX5[0].

(6)

430 C. Chang et al.

Algorithm 1. Pr(ΔXSB
2 [12, 13, 14, 15] → ΔX4[0]) for given ΔXSB

2 [12, 13, 14,
15] and ΔX4[0]
Parameters: ΔXSB

2 [12, 13, 14, 15], ΔX4[0];

Precomputation: /* run once for each thread corresponding to ΔXSB
2 [12]*/

DDTX ← MergeTableDDT(2, 3); /* compute the DDT of f1*/
DDTY ← MergeTableDDT(1, 1); /* compute the DDT of f2*/
function MergeTableDDT(me1, me2)

Initialize the array DDTM of size 28 × 28 × 28 with zeros;
for u = 0,· · · ,255 and v = 0,· · · ,255 do

Tu ← DDTS[u];
Tv ← DDTS[v];
for i = 0,· · · ,255 and j = 0,· · · ,255 do

if Tu[i] �= 0 and Tv [j] �= 0 then
Δx = me1 × i ⊕ me2 × j;
DDTM [u][v][Δx] = DDTM [u][v][Δx] + Tu[i] × Tv[j];

return DDTM

Processing:
Compute ΔXMC

2 [0, 5, 10, 15] from ΔXSB
2 [12, 13, 14, 15];

Tx ← DDTX[ΔXMC
2 [0]][ΔXMC

2 [5]];

Ty ← DDTY [ΔXMC
2 [10]][ΔXMC

2 [15]];
p3 = 0;
for i = 0,· · · ,255 do

if Tx[i] �= 0 then
j = i ⊕ ΔX4,0;
if Ty [j] �= 0 then

p3 = p3 + Tx[i] × Ty[j]/2
32;

return p3;

It is noted that Pr(ΔX4[0] = 0 → ΔX5[0] = 0) = 1 if we do not con-
sider the MC operation in the 4-th round. Thus, only the probability of parts
(I) ∼ (III) needs to be computed, where the probability of part (III) for fixed
(ΔXSB

2 [12, 13, 14, 15], ΔX4[0]) can be obtained from Algorithm 1.
For the connection of part (II) and (III), i.e., Pr(ΔXSB

1 [1] → ΔX4[0]),
we perform a multithreading implementation, compute Pr(ΔXSB

1 [1] →
ΔXSB

2 [12] → ΔX4[0]) for each possible ΔXSB
2 [12] in parallel, and sum them

up to obtain Pr(ΔXSB
1 [1] → ΔX4[0]) in Algorithm 2. Algorithm 3 con-

nects the three parts, and outputs the p[i] = Pr(ΔX0 → ΔX4) where
ΔX0 = (0i00000000000000), ΔX4 = (ΔX4[0]???????????????) for all non-zero
ΔX0[1] = i (i = 1, ..., 255) and a fixed ΔX4[0]. Especially, the probability of
the 4-round truncated differential is the mean value of the sum of corresponding
p[i], obtained by Algorithm 3 with parameter ΔX4[0] = 0, i.e., 1

255

∑255
i=1 p[i].

Remark: It is noted that ΔX4[0] can take arbitrary value besides 0 in Algo-
rithm 1 ∼ 3.

Computational Complexity Analysis. A brief assessment of the computational
complexity of Algorithm 3 is as follows. The complexity of Algorithm 3 is dom-
inated by Algorithm 2, while Algorithm 2 is determined by the complexity of
calling Algorithm 1 in the function GetProbability. As the complexity of Algo-
rithm 1 is approximately 28, the computational complexity is approximately
28 × (28)3 × 2−3 × 28 = 237.

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 431

Algorithm 2. Pr(ΔXSB
1 [1] → ΔX4[0]) for all non-zero ΔXSB

1 [1], and given
ΔX4[0]
Parameters: ΔX4[0]
Processing:
1: Initial the array p23 of size 28 × 28 with zeros;
2: /* for ΔXSB

2 [12] = 1, ..., 255, use 255 threads to perform function GetProbability in parallel
*/

3: p23[ΔXSB
2 [12]] ← GetProbability(ΔXSB

2 [12], ΔX4[0]); /* p23[ΔXSB
2 [12]][i] means

Pr(ΔXSB
1 [1] = i → ΔXSB

2 [12] → ΔX4[0]) */

4: Initial the array p1 of size 28 with zeros;
5: for ΔXSB

2 [12] = 1,· · · ,255 and ΔXSB
1 [1] = 1,· · · ,255 do

6: p1[ΔXSB
1 [1]] = p1[ΔXSB

1 [1]] + p23[ΔXSB
2 [12]][ΔXSB

1 [1]];

7: return p1; /* p1[i] = Pr(ΔXSB
1 [1] → ΔX4[0]) for 1 ≤ i ≤ 255 */

8:
9: function GetProbability(ΔXSB

2 [12], ΔX4[0])

10: for ΔXSB
1 [1] = 1,· · · ,255 do

11: Compute ΔXMC
1 [12, 13, 14, 15] from ΔXSB

1 [1];

12: for 224 values of ΔXSB
2 [13, 14, 15] do

13: p2 = DDTS[ΔXMC
1 [12]][ΔXSB

2 [12]] × DDTS[ΔXMC
1 [13]][ΔXSB

2 [13]]

× DDTS[ΔXMC
1 [14]][ΔXSB

2 [14]] × DDTS[ΔXMC
1 [15]][ΔXSB

2 [15]];
14: if p2 �= 0 then
15: p3 = Algorithm1(ΔXSB

2 [12, 13, 14, 15], ΔX4[0]);

16: pm[ΔXSB
1 [1]] = pm[ΔXSB

1 [1]] + (p2/232) × p3;

17: return pm; /* pm[i] = Pr(ΔXSB
2 [12] = i → ΔX4[0]) for 1 ≤ i ≤ 255 */

Algorithm 3. Pr(ΔX0[1] → ΔX4[0]) for all non-zero ΔX0[1] and given ΔX4[0]
Parameters: ΔX4[0]
Processing:
1: p1 ← Algorithm2(ΔX4[0]);

2: for ΔX0[1] = 1,· · · ,255 and ΔXSB
1 [1] = 1,· · · ,255 do

3: if DDTS[ΔX0[1]][ΔXSB
1 [1]] �= 0 then

4: p[ΔX0[1]] = p[ΔX0[1]] + (DDTS[ΔX0[1]][ΔXSB
1 [1]]/28) × p1[ΔXSB

1 [1]] ;

5: return p; /* p[i] = Pr(ΔX0[1] = i → ΔX4[0]) for 1 ≤ i ≤ 255 */

Implemented Results and Experimental Verifications. For DDTS of AES,
we run Algorithm 3 with parameter ΔX4[0] = 0, and derive Pr(ΔX0 → ΔX4)
where ΔX0=(0i00000000000000) and ΔX4=(0???????????????) for all non-zero
i, which equals to Pr(ΔX0 → ΔXSB

5) where ΔXSB
5 =(0???????????????). The

average value is 2−8 + 2−31.816.

Index Dependencies. Moreover, we test the index dependencies, as pointed out
in [3], i.e., the relation between the probability and the position of the active
input cell i0 and inactive output cell i5, after three rounds. For all 16 × 16 =
256 combinations of (i0, i5), we perform Algorithm 3 on Small-AES and AES.
The result of Small-AES coincides with Bao et al., and shows that (i0, i5) =
(1, 0) corresponding to the combination with the highest probability. However,
the result of AES is different from that of Small-AES, which is summarized in
Table 2. It is noted that the 256 combinations can be divied into 16 equivalent
classes because of the structure of AES, and (i0, i5) = (1, 6) instead of (i0, i5) =
(1, 0) seems to be the one of best when i0 = 1, and the probability is 2−8 +
2−31.654.

432 C. Chang et al.

Data Complexity and Success Probability. We employ the statistical framework
in Sect. 2.3 to analyze the amount of data for an acceptable success probability.
For the 4-round truncated differential with probability 2−8 + 2−31.654, we need
to choose the number of plaintexts pairs N � 257.738 to guarantee a success
probability of PS = 0.95, and N � 258.738 with PS = 0.99. Since one δ-set
contains 28 texts, and can constitute

(
28

2

)
pairs. Thus, for Ps = 0.95, the distin-

guisher needs approximately 242.738 δ-sets, i.e., 250.738 chosen plaintexts. And for
Ps = 0.99, the number of δ-sets is roughly 243.738, i.e., 251.738 chosen plaintexts.
The complexity is slightly lower than Bao et al. [3].

Table 2. Results of the probability of 4-round truncated differentials of AES in [3] for
all combinations of (i0, i5). p4r-AES represents the mean value of Algorithm 3.

(i0, i5) p4r-AES

(0, 0), (1, 5), (2, 10), (3, 15), (4, 4), (5, 9), (6, 14), (7, 3), (8, 8), (9, 13), (10, 2), (11, 7), (12, 12), (13, 1), (14, 6), (15, 11) 2−8 + 2−31.982

(0, 1), (1, 6), (2, 11), (3, 12), (4, 5), (5, 10), (6, 15), (7, 0), (8, 9), (9, 14), (10, 3), (11, 4), (12, 13), (13, 2), (14, 7), (15, 8) 2−8 + 2−31.654

(0, 2), (1, 7), (2, 8), (3, 13), (4, 6), (5, 11), (6, 12), (7, 1), (8, 10), (9, 15), (10, 0), (11, 5), (12, 14), (13, 3), (14, 4), (15, 9) 2−8 + 2−31.765

(0, 3), (1, 4), (2, 9), (3, 14), (4, 7), (5, 8), (6, 13), (7, 2), (8, 11), (9, 12), (10, 1), (11, 6), (12, 15), (13, 0), (14, 5), (15, 10) 2−8 + 2−31.924

(0, 4), (1, 9), (2, 14), (3, 3), (4, 8), (5, 13), (6, 2), (7, 7), (8, 12), (9, 1), (10, 6), (11, 11), (12, 0), (13, 5), (14, 10), (15, 15) 2−8 + 2−31.682

(0, 5), (1, 10), (2, 15), (3, 0), (4, 9), (5, 14), (6, 3), (7, 4), (8, 13), (9, 2), (10, 7), (11, 8), (12, 17), (13, 6), (14, 11), (15, 12) 2−8 + 2−31.774

(0, 6), (1, 11), (2, 12), (3, 1), (4, 10), (5, 15), (6, 0), (7, 5), (8, 14), (9, 3), (10, 4), (11, 9), (12, 2), (13, 7), (14, 8), (15, 13) 2−8 + 2−31.924

(0, 7), (1, 8), (2, 13), (3, 2), (4, 11), (5, 12), (6, 1), (7, 6), (8, 15), (9, 0), (10, 5), (11, 10), (12, 3), (13, 4), (14, 9), (15, 14) 2−8 + 2−32.002

(0, 8), (1, 13), (2, 2), (3, 7), (4, 12), (5, 1), (6, 6), (7, 11), (8, 0), (9, 5), (10, 10), (11, 15), (12, 4), (13, 9), (14, 14), (15, 3) 2−8 + 2−31.797

(0, 9), (1, 14), (2, 3), (3, 4), (4, 13), (5, 2), (6, 7), (7, 8), (8, 1), (9, 6), (10, 11), (11, 12), (12, 5), (13, 10), (14, 15), (15, 0) 2−8 + 2−31.674

(0, 10), (1, 15), (2, 0), (3, 5), (4, 14), (5, 3), (6, 4), (7, 9), (8, 2), (9, 7), (10, 8), (11, 13), (12, 6), (13, 11), (14, 12), (15, 1) 2−8 + 2−31.988

(0, 11), (1, 12), (2, 1), (3, 6), (4, 15), (5, 0), (6, 5), (7, 10), (8, 3), (9, 4), (10, 9), (11, 14), (12, 7), (13, 8), (14, 13), (15, 2) 2−8 + 2−31.947

(0, 12), (1, 1), (2, 6), (3, 11), (4, 0), (5, 5), (6, 10), (7, 15), (8, 4), (9, 9), (10, 14), (11, 3), (12, 8), (13, 13), (14, 2), (15, 7) 2−8 + 2−31.687

(0, 13), (1, 2), (2, 7), (3, 8), (4, 1), (5, 6), (6, 11), (7, 12), (8, 5), (9, 10), (10, 15), (11, 0), (12, 9), (13, 14), (14, 3), (15, 4) 2−8 + 2−31.922

(0, 14), (1, 3), (2, 4), (3, 9), (4, 2), (5, 7), (6, 8), (7, 13), (8, 6), (9, 11), (10, 12), (11, 1), (12, 10), (13, 15), (14, 0), (15, 5) 2−8 + 2−31.908

(0, 15), (1, 0), (2, 5), (3, 10), (4, 3), (5, 4), (6, 9), (7, 14), (8, 7), (9, 8), (10, 13), (11, 2), (12, 11), (13, 12), (14, 1), (15, 6) 2−8 + 2−31.816

3.3 Calculate the Probability of 4-Round Truncated Differential
with One Active Cell in Input and Two Inactive in Output

We check 4-round truncated differentials with one active cell in the input differ-
ence and one inactive cell in the output difference in Sect. 3.2, and wonder the
performance of distinguishers when there are more than one inactive cells in the
output difference. However, the more output cells are involved, the more related
cells are considered, so that the possibilities to be considered may be out of con-
trol. In addition, the setting of Bao et al. is not applicable to multiple bytes in
the same column, since it requires independence between bytes in one column,
while considering concrete S-box removes the requirement of independence.

It is noted that the computation of cells in the same column of the output
difference, e.g. ΔX4[0, 1], relate to the same four bytes, ΔXSB

3 [0, 5, 10, 15], so
that the increment of possibilities is limited in this situation. Thus, we choose
the inactive cells of the output difference in the same column. Based on the
relation of cells in one column, we consider the joint distribution, and adjust the
integrated technique to compatible with the 32-bit to 16-bit Super-Sbox, inves-
tigate the divide-and-combine technique in Sect. 3.2, and achieve the probability

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 433

corresponding to the case of two inactive cells in the same column of the output
difference, which may lead to new distinguishers.

4-Round Truncated Differentials Ended with Two Inactive Cells. For
the convenience of description, we construct the new truncated differential (see
Fig. 2(a)) with the same active cell in ΔX0 and inactive cell in ΔX5, and only
add another inactive cell in ΔX5, i.e., ΔX0 = (0*00000000000000) 4r−→ ΔX5 =
(0??? ?????????0??).

Fig. 2. The figure on the left shows our new 4-round truncated differential distin-
guisher. The figure on the right shows our new 5-round truncated differential distin-
guisher. White cells represent bytes with zero difference, while slashed cells represent
the active (non-zero) ones, and the gray cells stand for unknown.

Algorithms to Calculate the Probability. Similar with Sect. 3.2, to calcu-
late the probability of new 4-round truncated differential depicted in Fig. 2(a),
we divide it into four parts (for the convenience of calculation, we move the
connecting point to ΔXMC

2 instead of ΔXSB
2):

(I) ΔX0[1] → ΔXSB
1 [1], (II) ΔXSB

1 [1] → ΔXMC
2 [0, 5, 10, 15],

(III) ΔXMC
2 [0, 5, 10, 15] → ΔX4[0, 1], (IV) ΔX4[0, 1] → ΔX5[0, 13].

(7)

It is noted that Pr(ΔX4[0, 1] = 0 → ΔX5[0, 13] = 0) = 1 if we do not consider
the MC operation in the 4-th round. Thus, only the probability of parts (I) ∼
(III) needs to be computed, where only the computation of part (III) involves

434 C. Chang et al.

one more parameters ΔX4[1], and the others can be deduced in a similar way
as Algorithm 2∼3. Thus, due to the space limination, we just present the corre-
sponding algorithm to compute part (III).
Remark: Note that ΔX4[0, 1] can take arbitrary values in our algorithms.

32-bit to 16-bit Integrated S-box. To accomplish the computation of part (III),
i.e., Pr(ΔXMC

2 [0, 5, 10, 15]) → ΔX4[0, 1], we take advantage of a 32-bit to 16-
bit integrated S-box, which is the mapping XMC

2 [0, 5, 10, 15] → X4[0, 1]. It
seems that we can compute Pr(ΔXMC

2 [0, 5, 10, 15] → ΔX4[0, 1]) in the simi-
lar way with Algorithm 1. Since X4[0] = 2 · XSB

3 [0] ⊕ 3 · XSB
3 [5] ⊕ XSB

3 [10] ⊕
XSB

3 [15], X4[1] = XSB
3 [0] ⊕ 2 · XSB

3 [5] ⊕ 3 · XSB
3 [10] ⊕ XSB

3 [15], the mapping
XMC

2 [0, 5, 10, 15] → X4[0, 1] is decomposed to:

f1 : (XMC
2 [0],XMC

2 [5]) → X1||X2,

where X1 = 2 · S(XMC
2 [0] ⊕ k2[0]) ⊕ 3 · S(XMC

2 [5] ⊕ k2[5]),

X2 = S(XMC
2 [0] ⊕ k2[0]) ⊕ 2 · S(XMC

2 [5] ⊕ k2[5]),

f2 : (XMC
2 [10],XMC

2 [15]) → Y1||Y2,

where Y1 = S(XMC
2 [10] ⊕ k2[10]) ⊕ S(XMC

2 [15] ⊕ k2[15]),

Y2 = 3 · S(XMC
2 [10] ⊕ k2[10]) ⊕ S(XMC

2 [15] ⊕ k2[15]),
f3 : (ΔX1||ΔX2, ΔY1||ΔY2) → ΔX4[0]||ΔX4[1],
where ΔX4[0] = ΔX1 ⊕ ΔY1 ,

ΔX4[1] = ΔX2 ⊕ ΔY2.

(8)

Similar as discussed in Sect. 3.2, f1 and f2 can be represented as XOR of two
8-bit to 16-bit mappings. Take f1 as an example. f1 is equivalent to the XOR of
g1 = 2 ·S(XMC

2 [0]⊕k2[0])||S(XMC
2 [0]⊕k2[0]) and g2 = 3 ·S(XMC

2 [5]⊕k2[5])||2 ·
S(XMC

2 [5] ⊕ k2[5]). Thus, their DDTSs, resp. DDTXX and DDTYY can be
obtained from the sum of corresponding elements in DDTs of gi, and this process
is implemented by the MergeTableDDT function. Similarly, f3 can be taken
as the XOR of two discrete variables, whose distribution function are DDTXX
and DDTYY. Thus the distribution function of f3 can be computed, and turns
to Pr(ΔXMC

2 [0, 5, 10, 15] → ΔX4[0, 1]) directly. The detailed implementation is
processed in Algorithm 43.

Remark: We take advantage of a kind of time-memory tradeoff, solve this prob-
lem by multithreading implementing a cycle calculation. First, in the connec-
tion of part (II) and (III), we create 256 threads for each ΔXMC

2 [0] and per-
form in parallel. In this way, f1 actually becomes an 8-bit to 16-bit mapping
in each thread, whose DDTS has 28 × 216 = 224 elements, and is denoted as
DDTXX. DDTXX[ΔXMC

2 [5]][Δx1||Δx2] means the number of pairs following
input difference ΔXMC

2 [0]||ΔXMC
2 [5] and output difference Δx1||Δx2. While,

f2 is turned to an 8-bit to 16-bit mapping by the loop of ΔXMC
2 [10], and the

3 The complete algorithms contain Algorithm 4, 5, and 6. Algorithm 5 and 6 are
presented in Appendix B.

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 435

Algorithm 4. Pr(ΔXMC
2 [0, 5, 10, 15] → ΔX4[0, 1]) for given ΔXMC

2 [0, 5, 10, 15]
and ΔX4[0, 1]
Parameters: DDTY Y, ΔXMC

2 [0, 5, 10, 15], ΔX4[0, 1];

Precomputation: /* run once for each thread corresponding to ΔXMC
2 [0] */

DDTXX ← MergeTableDDT(ΔXMC
2 [0], 2, 3, 1, 2) /* compute the DDT of f1*/ ;

function MergeTableDDT(u, me1, me2, me3, me4)
Initialize the array DDTMM of size 28 × 216 with zeros;
Tuu ← DDTS[u];
for v = 0,· · · ,255 do

Tvv ← DDTS[v];
for i = 0,· · · ,255 and j = 0,· · · ,255 do

if Tuu[i] �= 0 and Tvv [j] �= 0 then
Δx1 = me1 × i ⊕ me2 × j;
Δx2 = me3 × i ⊕ me4 × j;
DDTMM [v][Δx1||Δx2] = DDTMM [v][Δx1||Δx2] + Tuu[i] × Tvv[j];

return DDTMM

Processing:
Txx ← DDTXX[ΔXMC

2 [5]];

Tyy ← DDTY Y [ΔXMC
2 [15]];

p3 = 0;
for i = 0,· · · ,216 − 1 do

if Txx[i] �= 0 then
j = i ⊕ (ΔX4[0]||ΔX4[1])
if Tyy [j] �= 0 then

p3 = p3 + Txx[i] × Tyy[j]/2
32;

return p3;

corresponding DDTS is denoted as DDTY Y . DDTY Y [ΔXMC
2 [15]][Δx1||Δx2]

means the number of pairs following input difference ΔXMC
2 [10]||ΔXMC

2 [15] and
output difference Δx1||Δx2.

Furthermore, we calculate the probability for all 16 × 24 = 384 combinations
of (i0, i5[i, j]), where i5[i] and i5[j] are bytes in the same column and i �= j. The
results for i5[i, j] in the first column are listed in Table 3.

Computational Complexity Analysis. Similar with the assessment in Sect. 3.2, the
computational complexity to calculate the probability of new 4-round truncated
differential is about 216 × 216 × 2−2 × 28 × 28 � 246.

4 New 4-Round Truncated Differential Distinguisher

In order to further improve the complexity of distinguishing attack, we take
advantage of conditional probability instead of joint probability, and illustrate
that the distribution of new variable is still applicable to the statistical frame-
work in Sect. 2.3. Moreover, we checkout our results with experimental verifica-
tions, which show our model is reasonable.

4.1 Statistical Framework Using Conditional Probability

According to Eq. (3) of the statistical framework in Sect. 2.3, the number of
chosen-plaintext pairs N is in reverse proportion to (prand − pAES)2 for a given

436 C. Chang et al.

Table 3. Results of the probability of 4-round truncated differentials of AES in Sect. 3.3
for i5[i, j] in the first column, where each item means the probability of the correspond-
ing truncated differential.

i0

i5 0, 1 0, 2 0, 3 1, 2 1, 3 2, 3

0 2−16 − 2−30.398 2−16 − 2−30.414 2−16 − 2−30.408 2−16 − 2−29.955 2−16 − 2−30.407 2−16 − 2−29.972

1 2−16 − 2−29.566 2−16 − 2−29.226 2−16 − 2−25.863 2−16 − 2−25.853 2−16 − 2−30.464 2−16 − 2−29.558

2 2−16 − 2−30.409 2−16 − 2−30.391 2−16 − 2−30.402 2−16 − 2−30.388 2−16 − 2−30.403 2−16 − 2−30.403

3 2−16 − 2−23.942 2−16 − 2−31.479 2−16 − 2−23.949 2−16 − 2−23.948 2−16 + 2−32.966 2−16 − 2−23.944

4 2−16 − 2−23.944 2−16 − 2−31.552 2−16 − 2−23.950 2−16 − 2−23.948 2−16 + 2−33.868 2−16 − 2−23.943

5 2−16 − 2−29.955 2−16 − 2−30.407 2−16 − 2−30.398 2−16 − 2−29.972 2−16 − 2−30.414 2−16 − 2−30.408

6 2−16 − 2−29.660 2−16 − 2−29.126 2−16 − 2−25.868 2−16 − 2−25.869 2−16 − 2−30.301 2−16 − 2−29.568

7 2−16 − 2−30.401 2−16 − 2−30.419 2−16 − 2−30.190 2−16 − 2−30.412 2−16 − 2−30.411 2−16 − 2−30.279

8 2−16 − 2−30.403 2−16 − 2−30.391 2−16 − 2−30.388 2−16 − 2−30.402 2−16 − 2−30.403 2−16 − 2−30.409

9 2−16 − 2−23.944 2−16 − 2−31.479 2−16 − 2−23.948 2−16 − 2−23.949 2−16 + 2−32.966 2−16 − 2−23.942

10 2−16 − 2−29.972 2−16 − 2−30.414 2−16 − 2−29.955 2−16 − 2−30.408 2−16 − 2−30.407 2−16 − 2−30.398

11 2−16 − 2−29.558 2−16 − 2−29.226 2−16 − 2−25.853 2−16 − 2−25.863 2−16 − 2−30.464 2−16 − 2−29.566

12 2−16 − 2−29.568 2−16 − 2−29.126 2−16 − 2−25.869 2−16 − 2−25.868 2−16 − 2−30.301 2−16 − 2−29.660

13 2−16 − 2−30.279 2−16 − 2−30.419 2−16 − 2−30.412 2−16 − 2−30.190 2−16 − 2−30.411 2−16 − 2−30.401

14 2−16 − 2−23.943 2−16 − 2−31.552 2−16 − 2−23.948 2−16 − 2−23.950 2−16 + 2−33.868 2−16 − 2−23.944

15 2−16 − 2−30.408 2−16 − 2−30.407 2−16 − 2−29.972 2−16 − 2−30.398 2−16 − 2−30.414 2−16 − 2−29.955

PS . To enlarge the absolute value of the bias between pAES and prand, inspired
by a series of works on multiple linear approximations [2,8,29,31], we try to
achieve this goal by computing pAES and prand in conditional probability setting.
Without loss of generality, we consider

Pr4r-AES = Pr(ΔX0[1] �= 0 → ΔX5[13] = 0|ΔX0[1] �= 0 → ΔX5[0] = 0)

=
Pr(ΔX0[1] �= 0 → ΔX5[0, 13] = 0)

Pr(ΔX0[1] �= 0 → ΔX5[0] = 0)
=

Pr(ΔX0[1] �= 0 → ΔX4[0, 1] = 0)
Pr(ΔX0[1] �= 0 → ΔX4[0] = 0)

(9)
instead of Pr(ΔX0[1] �= 0 → ΔX5[0, 13] = 0). In the following, we prove that
the distribution of variable under conditional probability is still applicable to
the statistical framework in Sect. 2.3.

Denote X1|X0 as the conditional distribution of X1 under the condition
that X0 = x0. Suppose two-dimensional random variable (X0,X1) follows a
two-dimensional normal distribution N (μX0 , σ

2
X0

;μX1 , σ
2
X1

; ρ). Let fX0(x0) and
fX1(x1) denote the marginal density functions of X0 and X1, respectively,

fX0(x0) =
1√

2π × σX0

e
− (x0−μX0

)2

2σ2
X0 , fX1(x1) =

1√
2π × σX1

e
− (x1−μX1

)2

2σ2
X1 . (10)

Next, we discuss the conditional probability density function. Let fX1|X0(x1|x0)
represents the conditional probability density function of X1 under the condition
that X0 = x0, then fX1|X0(x1|x0)

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 437

=
f(x0, x1)
fX0(x0)

=
1√

2πσX1

√
1 − ρ2

× e
− 1

2(1−ρ2)σ2
X1

[x1−(μX1+ρ
σX1
σX0

(x0−μX0))]
2

. (11)

Therefore, the conditional distribution of X1 under the condition that X0 = x0

follows a normal distribution, that is, X1|X0 ∼ N (μX1 +ρ
σX1
σX0

(x0−μX0), σ
2
X1

(1−
ρ2)). Let μX1|X0 = μX1 + ρ

σX1
σX0

(x0 − μX0) and σ2
X1|X0

= σ2
X1

(1 − ρ2), then
X1|X0 ∼ N (μX1|X0 , σ

2
X1|X0

). Based on the Central Limit Theorem, we can use
the normal distribution to approximate the binomial distribution B(N, pX1|X0).
Then the mean μX1|X0 and variance σ2

X1|X0
is given by

μX1|X0 = N × pX1|X0 , σ2
X1|X0

= N × pX1|X0 × (1 − pX1|X0). (12)

Analogously, we can get another condition distribution Y1|Y0 � N (μY1|Y0 ,
σ2

Y1|Y0
). In addition, the difference of two one-dimensional normal distributions

is also a normal distribution. That is to say, X1|X0 − Y1|Y0 � N (μ, σ2) with

μ = μX1|X0 − μY1|Y0 = N × |pX1|X0 − pY1|Y0 |,
σ2 = σ2

X1|X0
+ σ2

Y1|Y0
= N × [pX1|X0 × (1 − pX1|X0) + pY1|Y0 × (1 − pY1|Y0)].

So we can get that

PS =
∫ +∞

0

1√
2π

e− (t−μ)2

2σ2 dt =
∫ +∞

− μ
σ

1√
2π

e− t2
2 dt =

1
2
[1 + erf(

−μ√
2σ

)]. (13)

Thus for a success probability of at least PS , the number N of independent
Boolean experiments needs to satisfy

N ≥ 2 × [pX1|X0 × (1 − pX1|X0) + pY1|Y0 × (1 − pY1|Y0)]
(pX1|X0 − pY1|Y0)2

× [erfinv(2 × PS − 1)2].

(14)
Where the erfinv(x) is the inverse error function.

4.2 4-Round Truncated Differential Distinguisher Using Conditional
Probability

In order to compute the conditional probability p4r-AES defined in Eq. (9), for
example, we obtain the joint probability Pr(ΔX0[1] �= 0 → ΔX4[0, 1] = 0) �
2−16 − 2−29.566 from Table 3, and find the corresponding probability of the con-
dition Pr(ΔX0[1] �= 0 → ΔX4[0] = 0) � 2−8 + 2−31.816 from Table 2, thus, the
conditional probability is

p4r-AES =
2−16 − 2−29.566

2−8 + 2−31.816
� 2−8 − 2−21.565. (15)

While for a random permutation, the conditional probability is roughly:

prand =
(

2112 − 1
2128 − 1

)

/

(
2120 − 1
2128 − 1

)

� 2−8 − 2−120. (16)

Thus, the absolute value of the bias is |prand − p4r-AES| � 2−21.565.

438 C. Chang et al.

Experimental Verifications on 4-Round AES. We follow the statistical framework
in Sect. 4.1 to evaluate the data complexity and get that N � 237.56, which is at
least 222.56δ-sets, i.e., 230.56 chosen plaintexts, for PS = 0.95. For PS = 0.99, we
get that N � 238.56, which is at least 223.56δ-sets, i.e., 231.56 chosen plaintexts.
To illustrate the accuracy of conditional probability in Eq. (15), we perform
experimental verifications with different size of samples, which randomly choose
224 and 225 δ-sets, respectively, and encrypt them under 100 random keys to
compute the mean value. The experimental results, which are approximately
2−8 − 2−22.077 for 224 δ-sets and 2−8 − 2−21.474 for 225 δ-sets, are consistent
with the probability 2−8 − 2−21.565 deduced from Eq. (15), and show that the
statistical framework in conditional probability is reasonable.
Remark: Obviously, for different (i0, i5[i, j]), we can deduce the corresponding
p4r-AES based on Table 2 and 3, and construct 4-round distinguishers similarly.

5 Extend to 5-Round Truncated Differential

Inspired by Bao et al.’s construction, we extend our 4-round truncated differen-
tial to 5-round. It is noted that four inactive bytes in one column of ΔX5 come
from four columns of ΔX4, and transfer to four inactive bytes in ΔX6 with prob-
ability 1 if the MC operation is omitted. Thus, collisions in ΔX6 relate to colli-
sions in ΔX4, whose probability can be deduced from our algorithms introduced
in Sect. 3. Take the 5-round truncated differential depicted in Fig. 2(b), which is
the best one, i.e., the position where the absolute value of the bias is the largest
we found, as an example. We can see that if ΔX4[1, 2, 6, 7, 8, 11, 12, 13] = 0, then
ΔX6[2, 3, 5, 6, 8, 9, 12, 15] = 0. Suppose the computation between the columns of
ΔX4 are independent of each other, we obtain the conditional probability for
5-round truncated differential:

p5r-AES =
Pr(ΔX0[1] �= 0 → ΔX6[2, 3, 5, 6, 8, 9, 12, 15] = 0)

Pr(ΔX0[1] �= 0 → ΔX6[2, 5, 8, 15] = 0)

=
Pr(ΔX0[1] �= 0 → ΔX4[1, 2, 6, 7, 8, 11, 12, 13] = 0)

Pr(ΔX0[1] �= 0 → ΔX4[2, 7, 8, 13] = 0)

=
Pr(ΔX0[1] �= 0 → ΔX4[1, 2] = 0)

Pr(ΔX0[1] �= 0 → ΔX4[2] = 0)
× Pr(ΔX0[1] �= 0 → ΔX4[6, 7] = 0)

Pr(ΔX0[1] �= 0 → ΔX4[7] = 0)

× Pr(ΔX0[1] �= 0 → ΔX4[8, 11] = 0)
Pr(ΔX0[1] �= 0 → ΔX4[8] = 0)

× Pr(ΔX0[1] �= 0 → ΔX4[12, 13] = 0)
Pr(ΔX0[1] �= 0 → ΔX4[13] = 0)

=
2−16 − 2−25.853

2−8 + 231.922
× 2−16 − 2−30.401

2−8 + 231.765
× 2−16 − 2−23.948

2−8 + 232.002
× 2−16 − 2−29.955

2−8 + 231.797

� 2−32 − 2−39.578.

While the conditional probability for a random permutation is prand = 264−1
296−1 �

2−32 − 2−96. Thus, the absolute value of bias is |prand − p5r-AES| � 2−39.578.

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 439

6 6-Round Truncated Differential Distinguisher

6.1 Extended 6-Round Truncated Differential

Based on the 5-round truncated differential in Sect. 5, we extend it to a 6-round
truncated differential by adding one round at the beginning. Our 6-round trun-
cated differential distinguisher is depicted in Fig. 3.

Fig. 3. Extended 6-round truncated differential. White cells represent bytes with zero
difference, while slashed cells represent the active ones, and the gray cells stand for
unknown.

The 6-round truncated differential is the connection of a 1-round truncated
differential and a 5-round truncated differential. So that, the computation of the
probability can be discussed in two cases: 1) the output difference of the first
round, ΔX2, coincides with the input of the 5-round distinguisher. In this case,
there are four choices for ΔX2, i.e., ΔX2[i] �= 0(i = 0, 1, 2, 3), respectively, and
the other 15 bytes are inactive, of which the probability of the first round is 255

232−1
for ΔX2[i] �= 0(i = 0, 1, 2, 3), and the probability of the corresponding 5-round
truncated differential are 2−32 − 2−39.878, 2−32 − 2−39.578, 2−32 − 2−39.878, and
2−32−2−39.578, respectively. 2) ΔX2 does not satisfy case 1), and we suppose the
difference propagates as a random permutation. Then the conditional probability
of the 6-round truncated differential for AES is:

p6r-AES �
3∑

i=0

p5r-AES,ΔX2[i] �=0× 255
232 − 1

+prand×(1− 4 × 255
232 − 1

) � 2−32−2−61.725.

While the conditional probability for a random permutation is prand � 2−32 −
2−96. Thus, the absolute value of bias is roughly |prand − p6r-AES| � 2−61.725.

6.2 Distinguishing Attack on 6-Round AES

We describe an improved distinguishing attack on 6-round AES based on the
extended 6-round truncated differential in Sect. 6.1.

440 C. Chang et al.

Attack Procedure. The details of the attack are as follows:

1. Initialize two counters c1 and c2, where c1 records the number of pairs s.t.
ΔX7[2, 5, 8, 15]=0, and c2 counts the one with ΔX7[2, 3, 5, 6, 8, 9, 12, 15] = 0.

2. For i = 1, 2, · · · , 2s:
(a) Generate a structure S with 232 randomly chosen plaintexts, which iter-

ate over all values in the active byte at positions 0,5,10,15 and set 12
remaining bytes to constants. For each plaintext in S, query the encryp-
tion oracle and get the corresponding ciphertext X7.

(b) Initialize a list L1. Denote u as the 32-bit index of list L1. Append the
ciphertext X7 to L1[u] if X7[2, 5, 8, 15] = u.

(c) For each u, if there are m (m ≥ 2) elements in L1[u], increase the counter
c1 by m(m − 1)/2. For each one of the m(m − 1)/2 collisions, if the
corresponding ΔX7[3, 6, 9, 12] = 0, the counter c2 is incremented by one.

3. If the result c = 2s ×(
232

2

)× c2/c1 is smaller than the threshold t, output that
the oracle is the 6-round AES, otherwise, it’s a random permutation.

Complexity and Success Probability. We set the threshold t = N × (p6r-AES +
prand)/2, following the setting in [36]. For PS = 0.95, the number of chosen-
plaintext pairs N � 293.88, p6r-AES = 2−32 − 2−61.725 and prand = 2−32 − 2−96,
so that t � 261.88.

A structure S contains 232 plaintexts, thus, one structure S can generate
(
232

2

) � 263 pairs, we need to choose 293.88−63 = 230.88 structures. The data
complexity is 230.88 × 232 = 262.88. The time complexity is dominated by step
2. For step 2.(a), the time complexity consists of 262.88 6-round encryptions.
For step 2.(b), it takes 262.88 memory accesses. And there are about

(
232

2

) ×
2−32 = 231 pairs colliding at ΔX7[2, 5, 8, 15] for each structure. Thus, step 2.(c)
checks about 230.88 × 231 collisions with 261.88 memory accesses. To sum up, the
total computational complexity can be approximated as 262.88 + 261.88 � 263.46

memory accesses and 262.88 encryptions, i.e., 263.42 encryptions. The memory
complexity is about 232 × 128-bit = 239-bit.

7 Conclusion and Future Work

In FSE 2020, Bao et al. [3] extended the 3-round integral distinguisher of AES,
which is proposed by Daemen et al. [12], to 4/5/6-round truncated differential
distinguishers in the secret S-box setting. A natural question is whether we can
get a tighter bound when considering the details of the underlying S-boxes.

However, it is infeasible to check all differentials belonging to a truncated dif-
ferential, and compute the corresponding probability directly, since too many dif-
ferentials are involved. Thus, we propose a divide-and-combine technique, includ-
ing choosing the appropriate starting point and integrated S-box, to present a
whole algorithm to overcome this obstacle, and accomplish the accurate calcu-
lation for Bao et al.’s truncated differentials on AES.

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 441

In addition, we investigate the relation of cells in one column, modify the
parameters of the integrated S-box and related algorithms, and achieve the prob-
ability corresponding to the case of two inactive cells in the output difference.
And the results lead to new 4/5/6-round distinguishers of AES with concrete
S-box, while the setting of Bao et al. is not applicable because the bytes in one
column are not independent. In order to further improve the complexity of dis-
tinguishing attack, we try to take advantage of the conditional probability to
depict the distribution of variables, rather than joint probability, and illustrate
the settings are still applicable to the statistical framework proposed by Grassi
et al. [25]. We also construct a 6-round truncated differential distinguisher and
describe an improved distinguishing attack in conditional probability setting,
which has a data complexity of 262.88 chosen plaintexts and time complexity of
263.42 encryptions.

Meanwhile, as a verification of the 4-round truncated differential, we con-
duct experimental verifications on AES, and for all 4/5/6-round truncated dif-
ferentials mentioned in this paper, we check out our results with experimental
verifications on Small-AES4.

One of the future work is whether our results can influence other techniques
making use of truncated differentials, such as the differential enumeration. The
other is to generalize the integrated computation of DDTs of Super-Sbox, and
obtain tighter bounds for more distinguishing attacks.

Acknowledgments. We sincerely thank the anonymous reviewers for providing valu-
able comments to help us improve the overall quality of the paper. This work is sup-
ported by the National Key Research and Development Program of China (Grant
No. 2018YFA0704702 & 2022YFB2701700), the National Natural Science Foundation
of China (Grant No. 62032014), the Shandong Provincial Natural Science Foundation
(Grant No. ZR2020MF053), the Major Basic Research Project of Natural Science Foun-
dation of Shandong Province (Grant No. ZR202010220025), and the Education Teach-
ing Reform and Research Program of Shandong University (Grant No. 2022Y286).

Appendix

A Brief Description of Small-AES [11].

Small-AES is a 4-bit variant of AES. The differences compared to AES are: 1)
Its length is 64-bit of a 4 × 4 state matrix, where each element is a 4-bit nibble
instead of a byte. 2) The operations are performed in the finite field GF (24).
The modulo polynomial of the MC operation becomes X4 + X + 1. The details
of key schedule are omitted.

The details of the S-boxes are defined in Table 4.

4 The source code of all algorithms to compute the probability and experimental veri-
fications, the supplementary algorithms, and the verified results are provided in the
github: https://github.com/ccchang123456/truncated differential.git.

https://github.com/ccchang123456/truncated_differential.git

442 C. Chang et al.

Table 4. Different 4-bit S-boxes were employed to perform our tests on Small-AES.

S(x)

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Small-AES 6 b 5 4 2 e 7 a 9 d f c 3 1 0 8

Present c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

B Algorithm 5 and Algorithm 6 in the Calculation
of 4-Round Truncated Differential with One Active
Cell in Input and Two Inactive in Output

Algorithm 4, 5, and 6 make up the complete algorithm for calculating the trun-
cated differential intruduced in Sect. 3.3. Algorithm 5 corresponds to the modi-
fied Algorithm 2, and Algorithm 6 corresponds to the modified Algorithm 3.

Algorithm 5. Pr(ΔXSB
1 [1] → ΔX4[0, 1]) for all non-zero ΔXSB

1 [1], and given
ΔX4[0, 1]
Parameters: ΔX4[0, 1];
Processing:
1: Initial the array p23 of size 28 × 28 with zeros;
2: /* for ΔXMC

2 [0] = 0, ..., 255, use 256 threads to perform function GetProbability in parallel
*/

3: p23[ΔXMC
2 [0]] ← GetProbability(ΔXMC

2 [0], ΔX4[0, 1]); /* p23[ΔXMC
2 [0]][i] means

Pr(ΔXSB
1 = i → ΔXMC

2 [0] → ΔX4[0, 1]) */

4: Initial the array p1 of size 28 with zeros;
5: for ΔXMC

2 [0] = 0,· · · ,255 and ΔXSB
1 [1] = 1,· · · ,255 do

6: p1[ΔXSB
1 [1]] = p1[ΔXSB

1 [1]] + p23[ΔXMC
2 [0]][ΔXSB

1 [1]];

7: return p1[i]; /* p1[i] = Pr(ΔXSB
1 [1] → ΔX4[0, 1]) for 1 ≤ i ≤ 255 */

8:
9: function GetProbability(ΔXMC

2 [0], ΔX4[0, 1]))

10: for ΔXMC
2 [10] = 0,· · · ,255 do

11: DDTY Y ← MergeTableDDT(ΔXMC
2 [10], 1, 1, 3, 1); /* compute the DDT of f2, run

once for each loop corresponding to ΔXMC
2 [10] */

12: for 216 values of ΔXMC
2 [5, 15] do

13: Compute ΔXSB
2 [12, 13, 14, 15] from ΔXMC

2 [0, 5, 10, 15];

14: for ΔXSB
1 [1] = 1,· · · ,255 do

15: Compute ΔXMC
1 [12, 13, 14, 15] from ΔXSB

1 [1];

16: p2 = DDTS[ΔXMC
1 [12]][ΔXSB

2 [12]]×DDTS[ΔXMC
1 [13]][ΔXSB

2 [13]]

× DDTS[ΔXMC
1 [14]][ΔXSB

2 [14]]×DDTS[ΔXMC
1 [15]][ΔXSB

2 [15]];
17: if p2 �= 0 then
18: p3 = Algorithm4(DDTY Y, ΔXMC

2 [0, 5, 10, 15], ΔX4[0, 1]);

19: pm[ΔXSB
1 [1]] = pm[ΔXSB

1 [1]] + (p2/232) × p3;

20: return pm; /* pm[i] = Pr(ΔXSB
1 [1] → ΔXMC

2 [0] = i → ΔX4[0, 1]) for 1 ≤ i ≤ 255 */

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 443

Algorithm 6 . Pr(ΔX0[1] → ΔX4[0, 1]) for all non-zero ΔX0[1], and given
ΔX4[0, 1]
Parameters: ΔX4[0, 1]
Processing:
1: p1 ← Algorithm5(ΔX4[0, 1]);

2: for ΔX0[1] = 1,· · · ,255 and ΔXSB
1 [1] = 1,· · · ,255 do

3: if DDTS[ΔX0[1]][ΔXSB
1 [1]] �= 0 then

4: p[ΔX0[1]] = p[ΔX0[1]] + (DDTS[ΔX0[1]][ΔXSB
1 [1]]/28) × p1[ΔXSB

1 [1]] ;

5: return p; /* p[i] = Pr(ΔX0[1] = i → ΔX4[0, 1]) for 1 ≤ i ≤ 255 */

References

1. National Institute of Standards and Technology: Advanced Encryption Standard,
FIPS 197. US Department of Commerce, Washington D.C., November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 31

3. Bao, Z., Guo, J., List, E.: Extended truncated-differential distinguishers on round-
reduced AES. IACR Trans. Symmetric Cryptol. 2020(3), 197–261 (2020). https://
doi.org/10.13154/tosc.v2020.i3.197-261

4. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key
recovery attacks on reduced-round AES with practical data and memory complex-
ities. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
185–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 7

5. Bardeh, N.G.: A Key-Independent Distinguisher for 6-round AES in an Adaptive
Setting. IACR Cryptol. ePrint Arch., 2019:945. https://eprint.iacr.org/2019/945

6. Bardeh, N.G., Rønjom, S.: The exchange attack: How to Distinguish Six Rounds
of AES with 288.2 Chosen Plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 12

7. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 32

8. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 1

9. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

10. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the Impossible
Possible. J. Cryptol. 31(1), 101–133 (2017). https://doi.org/10.1007/s00145-016-
9251-7

11. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11502760 10

12. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.13154/tosc.v2020.i3.197-261
https://doi.org/10.13154/tosc.v2020.i3.197-261
https://doi.org/10.1007/978-3-319-96881-0_7
https://eprint.iacr.org/2019/945
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/978-3-540-28628-8_1
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343

444 C. Chang et al.

13. Daemen, J., Rijmen, V.: The Pelican MAC Function 2.0. IACR Cryptol. ePrint
Arch., 2005:88. http://eprint.iacr.org/2005/088

14. Daemen, J., Rijmen, V.: Two-Round AES Differentials. IACR Cryptol. ePrint
Arch., 2006:39. http://eprint.iacr.org/2006/039

15. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002). https://doi.
org/10.1007/978-3-662-04722-4

16. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11832072 6

17. Daemen, J., Rijmen, V.: Plateau characteristics. IET Inf. Secur. 1(1), 11–17 (2007).
https://doi.org/10.1049/iet-ifs:20060099

18. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 7

19. Derbez, P., Fouque, P.-A., Jean, J.: [Improved key recovery attacks on reduced-
round, in the single-key setting]. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 23

20. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 10

21. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.:
Improved cryptanalysis of rijndael. In: Goos, G., Hartmanis, J., van Leeuwen, J.,
Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44706-7 15

22. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 21

23. Grassi, L.: Mixture Differential Cryptanalysis and Structural Truncated Differ-
ential Attacks on Round-Reduced AES. IACR Cryptol. ePrint Arch., 2017:832.
https://ia.cr/2017/832

24. Grassi, L.: Probabilistic mixture differential cryptanalysis on round-reduced AES.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 53–84.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5 3

25. Grassi, L., Rechberger, C.: Truncated Differential Properties of the Diagonal Set
of Inputs for 5-round AES. Accepted by ACISP 2022. IACR Cryptol. ePrint Arch.,
2018:182. https://eprint.iacr.org/2018/182

26. Grassi, L., Rechberger, C., Rønjom, S.: Subspace Trail Cryptanalysis and its
Applications to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016).
https://doi.org/10.13154/tosc.v2016.i2.192-225

27. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6 10

28. Gupta, B., Guttman, I., Jayalath, K.: Statistics and probability with applications
for engineers and scientists using MINITAB. R JMP (2020). https://doi.org/10.
1002/9781119516651

http://eprint.iacr.org/2005/088
http://eprint.iacr.org/2006/039
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11832072_6
https://doi.org/10.1049/iet-ifs:20060099
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-642-13858-4_21
https://ia.cr/2017/832
https://doi.org/10.1007/978-3-030-38471-5_3
https://eprint.iacr.org/2018/182
https://doi.org/10.13154/tosc.v2016.i2.192-225
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1002/9781119516651
https://doi.org/10.1002/9781119516651

Improved Truncated Differential Distinguishers of AES with Concrete S-Box 445

29. Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 4

30. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-round AES-192/256. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 7

31. Matsui, M.: The first experimental cryptanalysis of the data encryption standard.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 1

32. Patarin, J.: Generic attacks for the Xor of k random permutations. In: Jacobson,
M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol.
7954, pp. 154–169. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38980-1 10

33. Preneel, B.: Davies-Meyer Hash Function. In: van Tilborg, H.C.A. (ed.) Encyclo-
pedia of Cryptography and Security. Springer (2005). https://doi.org/10.1007/0-
387-23483-7 96

34. Preneel, B.: Davies-Meyer. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia
of Cryptography and Security, 2nd Ed, pp. 312–313. Springer (2011). https://doi.
org/10.1007/978-1-4419-5906-5 569

35. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

36. Samajder, S., Sarkar, P.: Rigorous upper bounds on data complexities of block
cipher cryptanalysis. J. Math. Cryptol. 11(3), 147–175 (2017). https://doi.org/10.
1515/jmc-2016-0026

37. Zhang, B., Xu, C., Meier, W.: Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 643–662. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 31

https://doi.org/10.1007/3-540-48658-5_4
https://doi.org/10.1007/978-3-662-46706-0_7
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-642-38980-1_10
https://doi.org/10.1007/978-3-642-38980-1_10
https://doi.org/10.1007/0-387-23483-7_96
https://doi.org/10.1007/0-387-23483-7_96
https://doi.org/10.1007/978-1-4419-5906-5_569
https://doi.org/10.1007/978-1-4419-5906-5_569
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1515/jmc-2016-0026
https://doi.org/10.1515/jmc-2016-0026
https://doi.org/10.1007/978-3-662-47989-6_31

Boolean Functions

Modifying Bent Functions to Obtain
the Balanced Ones with High

Nonlinearity

Subhamoy Maitra1, Bimal Mandal2(B), and Manmatha Roy1

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata 700108, India
subho@isical.ac.in

2 Department of Mathematics, Indian Institute of Technology Jodhpur,
Karwar 342030, India

bimalmandal@iij.ac.in

Abstract. Balanced Boolean functions with high nonlinearity are con-
sidered as major cryptographic primitives in the design of symmetric
key cryptosystems. Dobbertin, in early nineties, gave an explicit con-
struction for balanced functions on (even) n variables, with nonlin-
earity 2n−1 − 2

n
2 + nlb(n

2
), where nlb(t) is the maximum nonlinearity

of a balanced Boolean functions in t variables and conjectured that
nlb(n) ≤ 2n−1 − 2

n
2 + nlb(n

2
). This bound still holds. In this paper we

revisit the problem. First we present a detailed combinatorial analysis
related to highly nonlinear balanced functions exploiting the inter-related
properties like weight, nonlinearity, and Walsh–Hadamard spectrum. Our
results provide a general framework to cover the works of Sarkar-Maitra
(Crypto 2000), Maity-Johansson (Indocrypt 2002), and Maity-Maitra
(FSE 2004) as special cases. In this regard, we revisit the well-known
construction methods through modification of bent functions and pro-
vide supporting examples for 8, 10, 12, and 14 variables. We believe
these results will advance the understanding related to highly nonlinear
balanced Boolean functions on even numbers of variables as well as the
Dobbertin’s conjecture.

Keywords: Boolean functions · Balancedness · Bent functions ·
Nonlinearity · Walsh–Hadamard transform

1 Introduction

The most important question on nonlinearity of balanced Boolean functions (on
even number of input variables) circles around Dobbertin’s conjecture [6]. This
conjecture is open for around three decades. Towards disproving this conjecture,
there are a few studies that considered how an n-variable balanced function can
be expected with nonlinearity strictly greater than 2n−1 − 2

n
2 + nlb(n2). As such

functions are still undiscovered, this remains as one of the most coveted problem
to be solved in the domain of Boolean functions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 449–470, 2022.
https://doi.org/10.1007/978-3-031-22912-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_20

450 S. Maitra et al.

In symmetric key cryptography, Boolean functions are most of the time the
central design primitive. Not to mention that such Boolean functions must not
be chosen arbitrarily, but with great care such that they satisfy certain criteria.
There are handful of criteria, e.g., nonlinearity, balancedness, strong avalanche
criteria, correlation immunity, algebraic degree etc. Each of these cryptographic
properties essentially makes the cryptographic design resilient to certain crypt-
analytic attempts. For example, high nonlinearity resists affine approximation of
the design, good propagation criteria takes care of resistance against differential
attacks, and balancedness is desired to eliminate any potential analysis which
relies on guessing output of some Boolean function. Therefore, in this line of
work, one important task is to construct Boolean functions with good crypto-
graphic properties. What makes this task more difficult is that these properties
are sometimes orthogonal to each other, e.g., high algebraic degree implies low
correlation immunity. For decades, constructing Boolean functions with good
cryptographic properties has been an active area of research. In this paper, we
discuss about constructing Boolean functions with high nonlinearity and bal-
ancedness, in even number of variables.

It is known that the nonlinearity of any Boolean function in n variables is an
integer value less than or equal to 2n−1 − 2

n
2 −1. This bound is achieved when

n is even, and these functions are called bent functions, introduced by Rothaus
[19]. Thus, bent functions offer the maximum resistance to affine approxima-
tions. Although bent functions are not directly used as cryptographic primitives
due to not being balanced. There are some standard techniques of obtaining bal-
anced Boolean functions with good cryptographic properties by modifying bent
functions [6,7,13,14,20,22,23]. Research on different classes of bent functions
and their relationship with coding theory received very serious attention in lit-
erature and one may have a look at [2–5,15,17] and the pointers therein. On the
other hand, very little is known for odd n, so far as nonlinearity is concerned.
We do not even know the exact upper bound of nonlinearity in this case. It is
known that for odd n, one can construct a Boolean function with nonlinearity
2n−1 − 2

n−1
2 , by concatenating bent functions of (n − 1) variables. Construction

of an n-variable Boolean function with nonlinearity exceeding this bound (pop-
ularly called as bent concatenation bound) for odd n is an interesting problem,
and in many papers [8–10,12,18,21] such functions are identified. While most of
the results are open here, serious efforts have also been made through years.

Despite optimal nonlinearity of bent functions, which in turn provides opti-
mal resistance to affine approximation attempts, the notable weakness which
forbid its cryptographic usage, is lack of balancedness. In [6], Dobbertin pre-
sented a construction of balanced Boolean functions in even n with nonlinear-
ity 2n−1 − 2

n
2 + nlb(n2), where nlb(t) is the maximum nonlinearity of balanced

Boolean functions in t variables. Dobbertin also conjectured that

nlb(n) ≤ 2n−1 − 2
n
2 + nlb(

n

2
),

which is still standing. Early works related to this conjecture require mention
of Sarkar et al. [20], and Maity et al. [14]. More specifically, Sarkar et al. [20]

Modifying Bent Functions to Obtain the Balanced Ones 451

derived a sufficient condition for a balanced Boolean function in 8 variables
having nonlinearity 118 (Dobbertin’s construction achieves 116) by concatenat-
ing two 7-variable Boolean functions each having nonlinearity 55 and degree 7.
Essentially they shifted the question of existence of a Boolean function f in 8
variable with nonlinearity 118 to existence of a pair of Boolean functions (f1, f2)
each in 7 variable with nonlinearity 55 and degree 7.

Maity et al. [14] took an approach which is more constructive in essence. They
attempted to construct balanced functions in 8 variables having nonlinearity 118
by modifying the bent functions. In fact, they focused on the distance between
resilient and bent functions, and concluded that for n = 8 this distance is 10.
They could also construct one resilient Boolean functions in 8 variables with
nonlinearity 116. Because resiliency is a stronger criteria than balancedness,
they further proceeded to study the existence of balanced Boolean functions
in 8 variables with nonlinearity 118, which could have disproved Dobbertin’s
conjecture for n = 8. They ended up by suggesting certain modifications on a
suitably chosen bent function in 8 variables which would produce a balanced
function in n = 8 variables with nonlinearity 118. However, the final result could
not be achieved and Dobbertin’s conjecture remains open till date.

1.1 Contribution and Organization

Construction of a balanced Boolean function in n variables, n ≥ 8 is even, having
nonlinearity strictly greater than 2n−1 − 2

n
n + nlb(n2) is still an open problem.

In this paper we derive necessary and sufficient conditions for existence of such
functions in terms of existence of a particular class of linear codes. The rest of
the paper is organized as follows.

– In Sect. 3 we derive an equivalent representation of balanced Boolean func-
tions in terms of the existence of certain kind of linear codes and show that
the existence of balanced Boolean functions with nonlinearity exceeding Dob-
bertin’s bound can be rephrased as the existence of certain kind of linear codes
with required parameters.

– Next, in Sect. 4 we compare our characterization with the earlier attempts [14,
20], and show that the existing results can be subsumed by our more general
analysis.

– Further, in Sect. 5, we analyze the method of modifying bent function to get
cryptographically significant Boolean function, in light of our new character-
ization and identify required conditions for construction of balanced Boolean
functions with nonlinearity exceeding Dobbertin’s bound, in the aforesaid
way. We explore such conditions that might produce (we did not get any
example yet) balanced Boolean functions having nonlinearity strictly greater
than 2n−1 − 2

n
n + nlb(n2) and explain those for n = 8, 10, 12, 14.

Sect. 6 concludes the paper. The caveat is, we did not obtain any function to dis-
prove the Dobbertin’s conjecture. However, our results shed important insights
which may be useful towards further progress in this area of research.
Before proceeding further let us present some background material.

452 S. Maitra et al.

2 Preliminaries

Let F2 be the prime field of characteristic 2 and F
n
2 be an n-dimensional vec-

tor space over F2. An element of F
n
2 can be expressed as an n-tuple, i.e.,

x = (x1, x2, . . . , xn), where xi ∈ F2, 1 ≤ i ≤ n. Addition and scalar prod-
uct over F

n
2 are defined in a natural way. The inner product of x and y in F

n
2

is defined as x · y = ⊕n
i=1xiyi. The weight of an element x ∈ F

n
2 is the num-

ber of nonzero coordinates, i.e., wt(x) =
∑n

i=1 xi, the sum is over integer. The
cardinality of a set A, denoted by |A|, is defined by the number of elements in
A. Let 0 and 1 denote the all 0’s and all 1’s vectors of F

n
2 , respectively. Any

function from F
n
2 to F2 is called a Boolean function in n variables, and the set

of n-variable Boolean functions is denoted by Bn. Any Boolean function f in n
variables can be uniquely written as a multivariate polynomial of the form

f(x) =
⊕

a∈Fn
2

μax
a1
1 xa2

2 · · · xan
n ,

where μa ∈ F2, for all a ∈ F
n
2 . This polynomial form of f is called alge-

braic normal form (ANF). The algebraic degree of f ∈ Bn is the degree of
highest degree term(s) with nonzero coefficient in its ANF, i.e., deg(f) =
maxa∈Fn

2
{wt(a) : μa �= 0}. If the algebraic degree of a Boolean functions

is at most 1, then it is called an affine function. The support of f ∈ Bn,
denoted by Sf , is the set of inputs on which the function is always nonzero,
i.e., Sf = {x ∈ F

n
2 : f(x) = 1}. The weight of a Boolean function is the cardi-

nality of its support set, i.e., wt(f) = |Sf |. If the weight of an n-variable Boolean
function f is 2n−1, then f is called balanced.

The Walsh–Hadamard transform of an n-variable Boolean function f at a ∈
F
n
2 , denoted by Wf (a), is expressed as

Wf (a) =
∑

x∈Fn
2

(−1)f(x)⊕a·x

The multiset [Wf (a) : a ∈ F
n
2] is called Walsh–Hadamard spectrum of f . The

distance between two n-variable Boolean functions f and g is defined as

d(f, g) = |{x ∈ F
n
2 : f(x) �= g(x)}|.

The minimum distance of f ∈ Bn from the set of all n-variable affine functions
is called nonlinearity of f , denoted by nl(f). The relation between nonlinearity
and Walsh–Hadamard transform of a Boolean function f ∈ Bn is

nl(f) = 2n−1 − 1
2

max
a∈Fn

2

|Wf (a)|.

It is known that nonlinearity of any f ∈ Bn is upper bounded by 2n−1 − 2
n
2 −1

as maxa∈Fn
2

|Wf (a)| ≥ 2
n
2 for any Boolean function f in n variables. A Boolean

function that achieves this bound is called a bent function. Bent functions are

Modifying Bent Functions to Obtain the Balanced Ones 453

defined for even number of variables and not balanced as wt(f) = Wf (0) �= 0. A
Boolean function f ∈ Bn is said to be correlation immune of order t, 1 ≤ t ≤ n,
if its values are statistically independent of any subset of t input variables. A
function is called t-resilient if it is balanced and correlation immune of order t.
In the other word, a function f ∈ Bn is called t-resilient if Wf (a) = 0, for all
a ∈ F

n
2 with 0 ≤ wt(a) ≤ t.

Let Fn×r
2 be the set of all binary matrices of order n× r. The support matrix

of a Boolean function f in n variables with weight r is enumeration of all x ∈ F
n
2

from the support set of f in some order (we will consider the lexicographical
order from left to right), denoted as Mf ∈ F

n×r
2 , i.e., a binary matrix of order

n × r, where column vectors are the elements of its support set. It is clear that
any Boolean function in n variables can be written as an element of Fn×r

2 , where
wt(f) = r. For example let f be an 4-variable Boolean function with support
set Sf = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}. The
support matrix of f , Mf ∈ F

4×6
2 , is

Mf =

⎛

⎜
⎜
⎝

0 0 1 1 1 1
0 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 0

⎞

⎟
⎟
⎠ .

with a slight abuse of notation, we denote enumeration of members x ∈ F
n
2 from

some arbitrary set S with cardinality r in some order as MS ∈ F
n×r
2 . Suppose

S = {(0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 1)}
⊆ F

4
2. The binary matrix corresponding to S, MS ∈ F

4×7
2 , is

MS =

⎛

⎜
⎜
⎝

0 0 0 0 1 1 1
0 1 1 1 0 1 1
0 0 0 1 0 0 1
1 0 1 0 0 0 1

⎞

⎟
⎟
⎠ .

A binary linear code [11] of length n and dimension t is a subspace of Fn
2 with

dimension t. An element of linear code is called codeword. The weight of a
codeword is the number of its coordinates that are nonzero and the distance d of
the linear code is the minimum weight of its nonzero codewords (equivalently, the
minimum distance between distinct codewords). A binary linear code of length
n, dimension t, and distance d is said to be an [n, t, d] code. A generator matrix
G of a binary linear code L = [n, t, d] is an t × n matrix over F2 such that its
rows a set of basis vectors of L. We now define a subclass of binary linear codes,
called Bounded Linear Code, where weights of codewords are bounded from both
sides.

Definition 1. We call a subclass of binary linear code [n, t, d] is a Bounded Lin-
ear Code with parameter (n, t, dmin, dmax) if the weight of any nonzero codeword
c is bounded with dmin ≤ wt(c) ≤ dmax and there exist at least one codeword c′

such that either wt(c′) = dmin or wt(c′) = dmax.

454 S. Maitra et al.

3 Nonlinearity of Balanced Boolean Functions: A
Combinatorial Characterization

In this section, we provide a necessary and sufficient characterization for non-
linearity of a Boolean function, in terms of distance of a special kind of linear
code, whose generator matrix is the support matrix of the concerned Boolean
function. Then we use this characterization to derive more specific conditions
towards the existence of balanced Boolean functions with nonlinearity exceed-
ing Dobbertin’s bound. Such characterization is fairly robust, in the sense that
the similar characterization is possible for other related problems, e.g., the max-
imum nonlinearity of Boolean functions in odd number of variables. Towards
establishing the results, we first observe that every nonzero a ∈ F

n
2 defines a

partition over the support set of a given Boolean function. Such partition was
first defined in [16], and we follow their exposition with minor modifications. Let
f be an n-variable Boolean function and a ∈ F

n
2 . We define two sets as

S0
f (a) = {x ∈ Sf : a · x = 0},

S1
f (a) = {x ∈ Sf : a · x = 1}.

(1)

By definition, they are mutually disjoint, in particular, S0
f (a) = Sf \ S1

f (a), and
S0
f (0) = Sf . Now, if f ∈ Bn is balanced, then |S0

f (0)| = |Sf | = 2n−1.
At this point, we are ready to describe the key insights used in our main

result. First observe that if the support matrix of a Boolean function f is
considered as generator G of some linear code L, then the cardinality of the
set S1

f (a) is exactly equal to weight of the codeword corresponding to a, e.g.,
|S1

f (a)| = wt(aG). On the other hand, the set S1
f (a) is basically the intersection

between support set of two functions, f and the linear function a · x. The car-
dinality of the set S1

f (a) is then kind of correlation measure between those two
functions. In this way, one can the derive suitable expression relating |S1

f (a)|
and Wf (a), Walsh–Hadamard transform of f at a. Here comes the tricky part
of the proof. For Boolean functions with high nonlinearity, we expect absolute
values of elements of Walsh–Hadamard spectrum of f to be small, and that
essentially puts a restriction on the weight of codewords of linear code L. More
specifically, we show that for highly nonlinear functions, support matrix of the
function, as the generator of some linear code produces codewords with weight,
lying within a very short interval around its mean. We use this result to derive
specific parameters of such codes for a function with given nonlinearity.

We will present our main result in Theorem 1. In this regard, we first prove
two ingredients for the proof. As a first step, towards proving aforesaid result,
we derive relationship between cardinality of S1

f (a) and Walsh–Hadamard trans-
formation of f at a ∈ F

n
2 \ {0}.

Modifying Bent Functions to Obtain the Balanced Ones 455

Wf (a) =
∑

x∈Fn
2

(−1)f(x)⊕a·x =
∑

x∈Fn
2

(1 − 2f(x))(−1)a·x

= −2
∑

x∈Sf

(−1)a·x = −2
∑

x∈Sf

(1 − 2a · x)

= −2|Sf | + 4
∑

x∈Sf

a · x = 4|S1
f (a)| − 2|Sf |.

(2)

If f ∈ Bn is balanced, Walsh–Hadamard transformation of f at a evaluates to
4|S1

f (a)|−2n for all nonzero a ∈ F
n
2 . So, for any balanced function f ∈ Bn, n ≥ 2,

Wf (a) ≡ 0 (mod 4), for all x ∈ F
n
2 . Suppose the nonlinearity of f is nl(f) ≥ r.

Then
2n−1 − 1

2
max
a∈Fn

2

|Wf (a)| ≥ r ⇔ max
a∈Fr

2

|Wf (a)| ≤ 2n − 2r.

Hence, for all a ∈ F
n
2 \ {0}

− 2n + 2r ≤ Wf (a) ≤ 2n − 2r

⇒ − 2n + 2r ≤ 4|S1
f (a)| − 2n ≤ 2n − 2r

⇒ 2r ≤ 4|S1
f (a)| ≤ 2n+1 − 2r

⇒ r

2
≤ |S1

f (a)| ≤ 2n − r

2
.

We formalize above result in following lemma.

Lemma 1. Let f be a balanced Boolean function in n variables. The nonlinearity
of f is nl(f) ≥ r if and only if r

2 ≤ |S1
f (a)| ≤ 2n−r

2 , for all nonzero a ∈ F
n
2 .

Proof. The “if” direction has been already shown. For the other direction, let r
be a positive integer and f ∈ Bn is a balanced function such that r

2 ≤ |S1
f (a)| ≤

2n−r
2 for all nonzero a ∈ F

n
2 . Then maxa∈Fn

2
|Wf (a)| ≤ 2n − 2r, and so, nl(f) ≥

2n−1 − 1
2 (2n − 2r), i.e., nl(f) ≥ r. ��

In the above result, if there exist an element a ∈ F
n
2 such that |S1

f (a)| = r
2 or

2n−r
2 , then maxa∈Fn

2
|Wf (a)| = 2n − 2r, and so, nl(f) = r. Now, we move to

deriving relation between distance of the linear code as generated by support
matrix of f and cardinality of the set S1

f (a) as discussed earlier. Towards that,
we first observe that, if all the elements of the support set of f is enumerated
in some order and then considered as a binary matrix Mf , following facts are
obvious.

– Dimension of the Mf is n × 2n−1.
– Cardinality of the set S1

f (a) is exactly equal to weight of matrix vector product
aMf , e.g., |S1

f (a)| = wt(aMf).

456 S. Maitra et al.

If one considers Mf as generator of some linear code L, then above properties of
Mf characterizes the linear code to a great extent. We formally put the above
observation below.

Lemma 2. The support matrix Mf of a balanced function f ∈ Bn, when
considered as a generator of some linear code, generates codewords in the
range space F

2n−1

2 and weight of codeword corresponding to a ∈ F
n
2 \ {0}, is

|S1
f (a)| = wt(aMf).

Now we present our key result below.

Theorem 1. The support matrix Mf of a balanced function f with nonlinearity
r can be considered as a generator of the Bounded Linear Code with parameter
(2n−1, n, r

2 , 2n−r
2) with all distinct columns.

Proof. Consider any balanced Boolean function with nonlinearity r. Lemma 1
dictates that r

2 ≤ |S1
f (a)| ≤ 2n−r

2 , for all nonzero a ∈ F
n
2 . On the other hand,

when support matrix of f viewed as the generator matrix of some linear code,
Lemma 2 tells that, weight of the codeword corresponding to a ∈ F

n
2 , is |S1

f (a)|.
These two result together directly implies Theorem 1. ��

3.1 Nonlinearity Strictly Greater Than 2n−1 − 2
n
2 + nlb(n

2
)

Direct application of Lemma 1 immediately imposes the necessary and sufficient
conditions on |S1

f (a)| for a balanced function f ∈ Bn that have nonlinearity
strictly greater than 2n−1 − 2

n
2 + nlb(n2), where nlb(m) is the maximum nonlin-

earity among all balanced Boolean functions in m variables.

Corollary 1. Let f be a balanced Boolean function in n variables. The non-
linearity of f is nl(f) > 2n−1 − 2

n
2 + nlb(n2) if and only if for any nonzero

a ∈ F
n
2 ,

2n−2 − 2
n
2 −1 +

nlb(n2)
2

< |S1
f (a)| < 2n−2 + 2

n
2 −1 − nlb(n2)

2
.

From the above result we get the following relation between such balanced
functions and linear codes with desired parameters.

Corollary 2. The nonlinearity of a balanced function f ∈ Bn is nl(f) > 2n−1−
2

n
2 + nlb(n2) if and only if there exists Bounded Linear Code L with parameters

(n, 2n−1, 2n−2 − 2
n
2 −1 + nlb(n

2)

2 , 2n−2 + 2
n
2 −1 − nlb(n

2)

2), with all columns distinct.

Above result shifts the question of existence of balanced Boolean function
having nonlinearity exceeding Dobbertin’s bound into the question of existence
of some linear codes with desired parameters.

Modifying Bent Functions to Obtain the Balanced Ones 457

3.2 Deriving Specific Conditions for n = 8, 10, 12 and 14

One must know nlb(n2) to derive exact parameters for our desired linear code, for
all n. Because maximum nonlinearity of balanced Boolean function in 4, 5, 6 and
7 variables are known, we now proceed to derive exact parameters for required
linear code for n = 8, 10, 12 and 14. At first we calculate the parameters for
n = 8 in detail, for rest of the case, we skip the calculation and present the end
results in a Table 1.

Table 1. Conditions to obtain highly nonlinear balanced functions for n = 8, 10, 12
and 14

n 2n−1 − 2
n
2 −1 nlb(n

2
) 2n−1 − 2

n
2 + nlb(n

2
) nl(f) > 2n−1 − 2

n
2 + nlb(n

2
) nl(f)

2
≤ |S1

f (a)| ≤ 2n−nl(f)
2

(2n−1, n, nl(f)
2

, 2n−nl(f)
2

)

8 120 4 116 118 59 ≤ |S1
f (a)| ≤ 69 (128, 8, 59, 69)

10 496 12 492 494 247 ≤ |S1
f (a)| ≤ 265 (512, 10, 247, 265)

12 2016 26 2010 2012 1006 ≤ |S1
f (a)| ≤ 1042 (2048, 12, 1006, 1042)

2014 1007 ≤ |S1
f (a)| ≤ 1041 (2048, 12, 1007, 1041)

14 8128 56 8120 8122 4061 ≤ |S1
f (a)| ≤ 4131 (8192, 14, 4061, 4131)

8124 4062 ≤ |S1
f (a)| ≤ 4130 (8192, 14, 4062, 4130)

8126 4063 ≤ |S1
f (a)| ≤ 4129 (8192, 14, 4063, 4129)

For n = 8 and nl(f) = 118: Since nlb(4) = 4. The maximum known non-
linearity of balanced functions in 8 variables is 116. The (non)-existence of a
balanced function in 8 variables having nonlinearity 118 still an open question.
We now derive the following characterization of such balanced Boolean functions.

Corollary 3. Let f be a balanced Boolean function in 8 variables. The nonlin-
earity of f is 118 if and only if 59 ≤ |S1

f (a)| ≤ 69 for all nonzero a ∈ F
8
2, where

S1
f (a) is defined in (1).

Proof. Let f ∈ B8 be balanced. From Lemma 1, we have nl(f) = 118 if and only
if 59 ≤ |S1

f (a)| ≤ 69, for all nonzero a ∈ F
8
2. ��

Corollary 4. For each balanced function in 8 variables having nonlinearity 118,
there exist a Bounded Linear Code L with parameters (128, 8, 59, 69) with all
distinct columns, and converse is also true.

We present the similar results in Table 1 for n = 10, 12 and 14.

4 Comparison with Existing Results [14,20]

After Dobbertin [6] proposed his conjecture, many attempts were made towards
proving or disproving his conjecture. Among them, three attempts [13,14,20]
requires special mention. All of them considered the problem for n = 8 and
proposed characterization of functions with nonlinearity exceeding Dobbertin’s
bound for n = 8. We present their characterizations below and show that all of
them can be subsumed by our characterization.

458 S. Maitra et al.

4.1 On Characterization by Maity and Maitra [14]

In [14, Theorem 6], Maity et al. proposed the following construction of balanced
function in 8 variables having nonlinearity 118.

Theorem 2. [14, Theorem 6] Let f ∈ B8 be bent such that

i. f(x) = 0 for wt(x) ≤ 1, f(1) = 1,
ii. Wf (a) = 16 for wt(a) ≤ 2 and Wf (a) = −16 for wt(a) ≥ 6.

Let T = {x ∈ F
8
2 : wt(x) = 1} and g ∈ B8 such that

g(x) =
{

f(x) ⊕ 1, if x ∈ T
f(x), otherwise ,

Then g will be balanced with nonlinearity 118.

Here the set T is fixed and then they tried to identify a bent function in 8
variables as mentioned in Theorem [14, Theorem 6], but could not get any such
bent function. We see that aforesaid characterization is a special case of our
characterization. We first derive a sufficient characterization in our setup and
then show that their characterization fall as a special case of ours.

Construction 1. Let f be a bent function in 8 variables with cardinality 120
and T ⊂ F

8
2 \ Sf such that |T | = 8 and

i. if |S1
T (a)| = |{x ∈ T : a · x = 1}| ≤ 2, then Wf (a) = 16,

ii. if |S1
T (a)| = |{x ∈ T : a · x = 1}| ≥ 6, then Wf (a) = −16.

Let us define a Boolean function g in 8 variables such that

g(x) =
{

f(x) ⊕ 1, if x ∈ T
f(x), otherwise .

Then g is balanced and its nonlinearity 118.

Proof. It is clear that Wg(0) = 0, and from Corollary 3, 59 ≤ |S1
g (a)| ≤ 69, for

all nonzero a ∈ F
8
2. Then the nonlinearity of g is 118. ��

In the above Construction, if T = {x ∈ F
8
2 : wt(x) = 1}, then the results given

in [14, Theorem 6] directly follows as that case |S1
T (a)| ≤ 2 for all wt(a) ≤ 2, and

|S1
T (a)| ≥ 6 for all wt(a) ≥ 6. That is, in the above construction, we consider

the all possible sets T with the initial bent function instead of fixing one. The
initial bent function may not have the Walsh–Hadamard transformation values
16 at a ∈ F

8
2 when wt(a) ≤ 2 and −16 when wt(a) ≥ 6. Here, we extend

the search domain both by the choice of T and the initial bent function towards
constructing a balanced one in 8 variables with nonlinearity 118. Note that we are
yet to exactly obtain an example for such functions, and thus the question of 8-
variable balanced Boolean function with nonlinearity 118 still remains unsolved.
However, our explanation provides a more general class where such functions
can be explored.

Modifying Bent Functions to Obtain the Balanced Ones 459

It is also worth mentioning at this point that, Maity and Johansson [13, The-
orem 3] and Maity and Maitra [14, Theorem 4] constructed 1-resilient Boolean
functions in 8 variables with nonlinearity 116 by changing 10 outputs of a class of
bent functions. In [14], Maity et al. followed the similar kind of technique that is
used in [13], and in addition they improved the previous one that is proposed by
Maity et al. [13]. Rationale behind their proposed construction can be seen more
clearly in our framework. More specifically, they [14, Theorem 4] considered the
bent functions as described below.

Theorem 3. [14, Theorem 4] Let f ∈ B8 be a bent function such that

i. f(x) = 0 for wt(x) ≤ 1, f(1) = 1,
ii. Wf (x) = 16 for wt(x) ≤ 1 and Wf (1) = −16.

Suppose V = {x ∈ F
8
2 : wt(x) = 0, 1, 8}. Let us define a Boolean function g ∈ B8

such that

g(x) =
{

f(x) ⊕ 1, if x ∈ V
f(x), otherwise .

Then g is 1-resilient with nonlinearity 116.

In the same way, as done earlier, we first derive a sufficient characterization in
our framework for 1-resilient Boolean functions in 8 variables with nonlinearity
116, as follows.

Proposition 1. Let g be a balanced function in 8 variables. If g is 1-resilient
with nonlinearity 116 if and only if

i. |S1
g (a)| = 64, for all a ∈ F

8
2 with wt(a) = 1, and

ii. 58 ≤ |S1
g (a)| ≤ 70, for all nonzero a ∈ F

8
2, there exists at least one a ∈ F

8
2

such that |S1
g (a)| = 58 or 70.

Proof. Since g is balanced and Wg(a) = 4|S1
f (a)|− 2|Sf |, for all nonzero a ∈ F

8
2.

So, Wg(0) = 0, and for any nonzero a ∈ F
8
2, Wg(a) = 0 if and only if |S1

f (a)| = 64.
The second part is directly follow from Lemma 1. ��

It is clear that the 1-resilient functions constructed in [13,14] satisfy the
conditions given in Proposition 1. Now we show that there are many possible
ways to construct such functions using our Proposition 1, other than specified
in [13,14]. Here is one such example.

Construction 2. Let S = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0,
0, 0, 0), (1, 0, 1, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 1,
0, 0), (1, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0, 1)} and f ∈ Bn be a bent function such
that

i. f(x) = 0 for all x ∈ S and f(0, 1, 1, 1, 1, 1, 1, 1) = 1,
ii. Wf (a) = 16 for x ∈ F

8
2 such that wt(x) ≤ 1 except u = (1, 0, 0, 0, 0, 0, 0, 0),

Wf (u) = −16 and Wf (1) = 16.

460 S. Maitra et al.

Define a Boolean function g as

g(x) =
{

f(x) ⊕ 1, if x ∈ S ∪ {(0, 1, 1, 1, 1, 1, 1, 1)}
f(x), otherwise .

Then g is 1-resilient with nonlinearity greater than or equal to 116. In particular,
if Wf (a, 1) = 16, where a = (1, 1, 0, 0, 0, 0, 0, 0), then nl(g) = 116.

Proof. It is clear that g is balanced. Given that Wf (a) = 16 for x ∈ F
8
2 such

that wt(x) ≤ 1 except u = (1, 0, 0, 0, 0, 0, 0, 0) and Wf (u) = −16, then |S1
g (a)| =

64 for all x ∈ F
8
2 with wt(x) ≤ 1. So, f is 1-resilient. For nonlinearity, from

Proposition 1, it is sufficient to prove that 58 ≤ |S1
g (a)| ≤ 70, for all nonzero

a ∈ F
8
2. If wt(a) ∈ {2, 3, . . . , 7}, then 58 ≤ |S1

g (a)| ≤ 70 as the modified weights
lies between 2 and 6. For a = 1, |S1

g (a)| = 64, so nl(f) ≥ 116. If Wf (a, 1) = 16,
where a = (1, 1, 0, 0, 0, 0, 0, 0), then |S1

g (a)| = 70, and so, nl(g) = 116. ��
The above construction is based on the choices of an element a =
(1, 1, 0, 0, 0, 0, 0, 0) such that Wf (a, 1) = 16 need not be unique. One can
identify other possible choices so that nl(g) = 116. For example, let a =
(1, 0, 1, 0, 0, 0, 0, 0). If Wf (a, 1) = 16, then |S1

g (a)| = 70, and so, nl(g) = 116.
Now we give an example of our construction.

Example 1. Let π(y) = y, for all y ∈ F
4
2 \ {(1, 0, 0, 0), (0, 1, 1, 0)}, π(1, 0, 0, 0) =

(0, 1, 1, 0) and π(0, 1, 1, 0) = (1, 0, 0, 0). Define f(x,y) = x · π(y) ⊕ h(y), for all
x,y ∈ F

4
2, where h ∈ B4 such that h(y) = 0, for all y ∈ F

4
2 except (0, 1, 1, 0), i.e.,

h(0, 1, 1, 0) = 1. Let us define a Boolean function g in 8 variables such that

g(x) =
{

f(x) ⊕ 1, if x ∈ S ∪ {((0, 1, 1, 1), (1, 1, 1, 1))}
f(x), otherwise ,

where S is defined in Construction 2. Then g is a 1 resilient function having
nonlinearity 116.

Proof. Since π is permutation, f is a bent function. We can check that f(x,y) =
0, for all (x,y) ∈ S, and f((0, 1, 1, 1), (1, 1, 1, 1)) = 1. Then g is balanced. It is
clear that Wf (a,b) = 16, for all (a,b) ∈ F

4
2 × F

4
2 such that wt(a,b) ≤ 1 except

(u,v) = ((1, 0, 0, 0), (0, 0, 0, 0)), i.e., Wf (u,v) = −16, and Wf (1,1) = 16. Also
Wf ((1, 1, 0, 0), (0, 0, 0, 0)) = 16, so from Construction 2 the nonlinearity of g is
116. ��
The bent function f in 8 variables given in the above example belongs to
Maiorana–McFarland class. Here f can be written as concatenation of 16 linear
functions of the form

f = l0||l1||l2||l3||l4||l5||l̄8||l7||l6||l9||l10||l11||l12||l13||l14||l15,

where li = x ·yi ⊕ h(yi), yi is the binary representation of integer i, 0 ≤ i ≤ 15,
and l̄j = lj ⊕ 1, the complement of lj . In Example 1, we modify 10 points of f

Modifying Bent Functions to Obtain the Balanced Ones 461

belonging to S ∪ {((0, 1, 1, 1), (1, 1, 1, 1))}, where S is defined in Construction 2,
and construct a 1-resilient function having nonlinearity 116.

To explain the functions in more details, the 24 many distinct 4-variable linear
functions are concatenated concatenated to obtain the bent functions. Then ,
the functions l8 and l6 are swapped in their places and l8 is complemented. Thus
in the truth table, we obtain the bent function as

00005555333366660F0F5A5AFF0069693C3C55AA33CC66990FF05AA53CC36996.

Next we toggle the outputs corresponding to the ten input points as in Con-
struction 2. The points are as (x,y), for example x = (0, 1, 1, 1),y = (1, 1, 1, 1).
Now y = (1, 1, 1, 1) will decide the linear function l15 and x = (0, 1, 1, 1) will
decide the 7-th point. That is in the truth table, the 247-th point will be tog-
gled. In this manner, the ten points (0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0,
0), (1, 1, 0, 0, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0, 0, 0), (1, 0, 0,
0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0,
1), (0,1,1,1,1,1,1,1) will be identified as the decimal points 0, 8, 12, 10, 9, 136,
72, 40, 24, 247 respectively and toggling those in the bent function, we obtain
8-variable 1-resilient function with nonlinearity 116 as

80E855D533B366660F8F5A5AFF0069693CBC55AA33CC66990FF05AA53CC36896.

We would like to reiterate the following points here.

– We already observed that [14, Theorem 4] directly follows from Proposition 1.
For any nonzero a ∈ F

8
2, Wf (a) = 16 implies |S1

f (a)| = 64 and Wf (a) = −16
implies |S1

f (a)| = 56. If V ′ = {x ∈ F
8
2 : wt(x) = 1}, then |S1

V ′(a)| = wt(a),
for all nonzero a ∈ F

8
2. Thus, if one can construct a balanced function g from

a bent function f in 8 variables, defined in [14, Theorem 4] using Proposition
1, then g is 1-resilient having nonlinearity 116.

– There are other bent functions which are not used in [14, Theorem 4] to
obtain 1-resilient Boolean functions in 8 variables having nonlinearity 116. In
our method, such bent functions can be used to construct 1-resilient Boolean
functions in 8 variables having nonlinearity 116 from Proposition 1. For exam-
ple, the bent functions that are used in Construction 2 to construct 1-resilient
functions with nonlinearity 116 in 8 variables cannot be used to provide such
functions through [14, Theorem 4], as for any bent function f in these class
have property that Wf (1, 0, 0, 0, 0, 0, 0, 0) = −16. We prove that such bent
functions exist in Example 1.

4.2 On Characterization by Sarkar Et Al. [20]

In [20, Theorem 7], Sarkar et al. proved that if f ∈ B8 is balanced with non-
linearity 118, then degree of f must be 7 and it can be written as concatena-
tion of two functions in 7 variables as f(x) = (1 ⊕ x8)f1(x′) ⊕ x8f2(x′), for all
x = (x′, x8) ∈ F

7
2 × F2, where f1 and f2 are 7-variable Boolean functions each

having nonlinearity 55 and degree 7.
We view their characterization in our framework and show that this is a sufficient
condition.

462 S. Maitra et al.

Corollary 5. Let f = f1||f2, concatenation of two functions f1 and f2, be a
balanced function in 8 variables having nonlinearity 118. Then |Sf1 |+|Sf2 | = 128,
and following are true.

i. 55 ≤ |Sfi | ≤ 73, with |Sfi | �= 64, i = 1, 2
ii. For any nonzero a ∈ F

7
2,

|Sfi
|−9

2 ≤ |S1
fi

(a)| ≤ |Sfi
|+9

2 , i = 1, 2.

Proof. From [20, Theorem 7], f1 and f2 has nonlinearity 55 and degree 7. Thus,
f1 and f2 are not balanced. We have maxa∈F7

2
|Wfi(a)| = 18 ⇔ −18 ≤ Wfi(a) ≤

18, for all a ∈ F
7
2, where i = 1, 2. Let a = 0. Then −18 ≤ Wfi(0) ≤ 18 ⇔

128−18
2 ≤ |Sfi | ≤ 128+18

2 ⇔ 55 ≤ |Sfi | ≤ 73. For any nonzero a ∈ F
7
2 and i = 1, 2,

−18 ≤ 4|S1
fi

(a)| − 2|Sfi | ≤ 18 ⇔ |Sfi
|−9

2 ≤ |S1
fi

(a)| ≤ |Sfi
|+9

2 . ��
Now we present the conditions of small functions f1 and f2 in Table 2 for different
possible weights. We used the same notations as in the above corollary. The
nonlinearity of f1 and f2 are 55, an odd integer. Therefore, the cardinalities
of support sets of these functions are also odd numbers. It is clear that the
nonlinearity of f1||f2 is same as f2||f1. So without loss of generality we present
the weights of small functions f1 and f2 such that |Sf1 | < |Sf2 |.

Table 2. Properties of small functions given in [20, Theorem 7]

|Sf1 | |Sf2 | s ≤ |S1
f1(a)| ≤ t s′ ≤ |S1

f2(a)| ≤ t′

55 73 23 ≤ |S1
f1(a)| ≤ 32 32 ≤ |S1

f2(a)| ≤ 41

57 71 24 ≤ |S1
f1(a)| ≤ 33 31 ≤ |S1

f2(a)| ≤ 40

59 69 25 ≤ |S1
f1(a)| ≤ 34 30 ≤ |S1

f2(a)| ≤ 39

61 67 26 ≤ |S1
f1(a)| ≤ 35 29 ≤ |S1

f2(a)| ≤ 38

63 65 27 ≤ |S1
f1(a)| ≤ 36 28 ≤ |S1

f2(a)| ≤ 37

The sufficient conditions derived by Sarkar et al. [20, Theorem 7] involve the
degree and nonlinearity of small functions. Thus, if we experimentally search a
balanced function in 8 variables with nonlinearity 118, we first try to identify
the small functions f1 and f2 in 7 variables such that their degree and nonlin-
earity are 7 and 55, respectively. Here we further derive the possible weights of
S1
fi

(a) of the small functions as in Table 2. Now, to experimentally discover a bal-
anced function in 8 variables with nonlinearity 118, we first consider the possible
weights of small functions f1 and f2, and then check the cardinality of S1

fi
(a),

i = 1, 2. These additional properties of small functions can help to reduce the
search domain. Further, the sufficient conditions in each cases are related with
two binary matrices. For example, let (|Sf1 |, |Sf2 |) = (55, 73). Then the order of
support matrices of f1 and f2, Mf1 and Mf2 are 7×55 and 7×73, respectively.
We check the conditions 23 ≤ wt(aMf1) ≤ 32 and 32 ≤ wt(aMf1) ≤ 41, for all
nonzero a ∈ F

7
2 so that nonlinearities of f1 and f2 are 55.

Now we prove that weights of the small functions f1 (and f2) can not be 55 and
57 (73 and 71, respectively).

Modifying Bent Functions to Obtain the Balanced Ones 463

Proposition 2. Let f = f1||f2 be a balanced function in 8 variables having non-
linearity 118. Then the possible cardinality of the support set of f1 (respectively,
f2) are 59, 61, 63, 65, 67 and 69.

Proof. From Corollary 5, we have the cardinality of the support set of f1 and
f2 are 55, 57, 59, 61, 63, 65, 67, 71 and 73. Since |Sf1 | + |Sf2 | = 128, if |Sf1 | =
55, then |Sf2 | = 73. Therefore, |S1

f (0, 0, 0, 0, 0, 0, 0, 1)| = 73 = |Sf2 |, and from
Equation (2), nl(f) ≤ 128 − 36

2 = 110. Similarly, we prove that the cardinality
of Sf1 can not be 57, 71 and 73. ��
It is observed that if f = f1||f2 ∈ B8 is balanced, where f1 and f2 are two Boolean
functions in 7 variables having nonlinearity 55 and degree 7, then the nonlinearity
of f may not be 118, in general. For example, let f1 ∈ B7 such that nl(f1) = 55,
deg(f1) = 7, and f2 = f1 ⊕ 1. Then nl(f2) = 55, deg(f2) = 7, and nonlinearity
of f = f1||f2 is 110 with degree 7. Thus, the question is for which properties of
two small functions f1 and f2 in 7 variables so that the concatenation of f1 and
f2, i.e., f = f1||f2, is a balanced function with nonlinearity 118. We here prove
that the support matrix of f2 needs to satisfy some additional properties for
achieving the nonlinearity 118. The support matrix of f can be written as Mf =
M′

f1
||M′

f2
, where M′

f1
and M′

f2
are constructed from the support matrices of

f1 and f2, respectively, with last row of M′
f1

, M′
f2

being all-zero and all-one
vectors, respectively. Suppose the row vectors of Mf are u1,u2, . . . ,u7,u8. Then
ui = u1

i ||u2
i , where u1

i and u2
i are row vectors of M′

f1
and M′

f2
, respectively,

1 ≤ i ≤ 8. In particular, u1
i and u2

i are row vectors of Mf1 and Mf2 , respectively,
1 ≤ i ≤ 7, and u1

8 = (0, 0, . . . , 0) of length |Sf1 | and u1
8 = (1, 1, . . . , 1) of length

|Sf2 |.
Theorem 4. Let f = f1||f2 ∈ B8 be balanced, where f1 and f2 are two Boolean
functions in 7 variables having nonlinearity 55. The nonlinearity of f is 118 if
the following conditions hold for any nonzero a ∈ F

7
2.

i. If wt(a) is even, then 59 ≤ |S1
f1

(a)| + |S1
f2

(a)| ≤ 69, and
ii. if wt(a) is odd, then 59 ≤ |S1

f1
(a)| + |S0

f2
(a)| ≤ 69 and 59 ≤ |S1

f1
(a)| +

|S1
f2

(a)| ≤ 69,

where S1
f1

(a), S1
f2

(a) and S0
f2

(a) are defined in (1).

Proof. Suppose Mf = M′
f1

||M′
f2

be the support matrix of f , where M′
f1

and
M′

f2
are constructed from the support matrix of f1 and f2, respectively, as

discuss above. Let u1,u2, . . . ,u7,u8 be row vectors of Mf such that ui = u1
i ||u2

i ,
where u1

i and u2
i are row vectors of M′

f1
and M′

f2
, respectively, 1 ≤ i ≤ 8.

Suppose M̄f2 is constructed from Mf2 by complementing each row, i.e., the row
vectors of M̄f2 are ū2

1, ū
2
2, . . . , ū

2
7. For any nonzero a ∈ F

7
2, we have

|S1
f (a, ε)| =

{ |S1
f1

(a)| + |S1
f2

(a)|, if ε = 0,

|S1
f1

(a)| + |S̄1
f2

(a)|, if ε = 1,

where |S̄1
f2

(a)| = wt(aM̄f2).

464 S. Maitra et al.

Case (i): Suppose wt(a) is even. Then wt(a1ū2
1⊕a2ū2

2⊕· · ·⊕a7ū2
7) = wt(a1u2

1⊕
a2u2

2 ⊕ · · · ⊕ a7u2
7), so, |S̄1

f2
(a)| = wt(aM̄f2) = wt(aMf2) = |S1

f2
(a)|.

Case (ii): Suppose wt(a) is odd. Then wt(a1ū2
1⊕a2ū2

2⊕· · ·⊕a7ū2
7) = wt(a1u2

1⊕
a2u2

2 ⊕ · · · ⊕ a7u2
7 ⊕ 1) = |Sf2 | − wt(a1u2

1 ⊕ a2u2
2 ⊕ · · · ⊕ a7u2

7), so, |S̄1
f2

(a)| =
wt(aM̄f2) = |Sf2 | − wt(aMf2) = |S0

f2
(a)|.

From the above two cases, we get

|S1
f (a, ε)| =

⎧
⎨

⎩

|S1
f1

(a)| + |S1
f2

(a)|, if ε = 0,

|S1
f1

(a)| + |S1
f2

(a)|, if ε = 1 and wt(a) is even,

|S1
f1

(a)| + |S0
f2

(a)|, if ε = 1 and wt(a) is odd.

��
Using the above result we propose a possible construction method of balanced
Boolean functions in 8 variables having nonlinearity 118. This method is based
upon identifying two binary matrices of order 7×r1 and 7×r2 with r1+r2 = 128
that are satisfied certain properties. The justification of the next construction
directly follows from Proposition 2 and Theorem 4.

Construction 3. Let M1 and M2 be two binary matrices of order 7 × r1 and
7 × r2 with r1 + r2 = 128, respectively. Suppose the column vectors of M1 are
distinct, also for M2, and r1 ∈ {59, 61, 63, 65, 67, 69}. Let us define M̄1 and M̄2

such that its first seven row vectors are taken from M1 and M2, respectively,
and the last rows are all-zero and all-one, respectively. Then M = M̄1||M̄2 is
the support matrix of a balanced function in 8 variables having nonlinearity 118,
if the following conditions hold for any nonzero a ∈ F

7
2.

i. If wt(a) is even, then 59 ≤ wt(aM1) + wt(aM2) ≤ 69, and
ii. if wt(a) is odd, then 59 ≤ wt(aM1)+wt(aM2) ≤ 69 and 59 ≤ r2+wt(aM1)−

wt(aM2) ≤ 69.

We believe that aforesaid analysis 7-variable functions f1, f2 provides additional
useful insights towards the construction of balanced function in 8 variable with
nonlinearity 118.

5 Construction Method of Highly Nonlinear Balanced
Functions from Bent Functions

Though bent functions are directly of little use in cryptography, many construc-
tions of cryptographically significant functions starts with an appropriate bent
function and suitable modify it to achieve required properties. Not to mention,
Dobbertin’s construction for highly nonlinear balanced functions is one notable
example of such techniques. We take a similar approach for our very purpose e.g.
start with a bent function and modify it in certain way to construct balanced
functions with high nonlinearity. It is remembered that 2

n
2 −1 many changes (0

to 1) of a bent function in n variables with weight 2n−1 − 2
n
2 −1 (or 1 to 0 of a

Modifying Bent Functions to Obtain the Balanced Ones 465

bent function in n variables with weight 2n−1 + 2
n
2 −1), we get a balanced func-

tion. Nonlinearity of such functions may not exceed Dobbertin’s bound (if at all
possible). Our attempt here is to characterize the required modification which
will produce our desired functions.

Proposition 3. [16, Proposition 3] Let f ∈ Bn have weight 2n−1 −2
n
2 −1. Then

f is bent if and only if, for any nonzero a ∈ F
n
2 , we have:

(|S0
f (a)|, |S1

f (a)|) ∈ {(2n−2, 2n−2 − 2
n
2 −1), (2n−2 − 2

n
2 −1, 2n−2)},

where |S0
f (a)| and |S1

f (a)| are defined in (1).

Now we characterize the modification procedure for a given bent function, which
will lead to a function with desired nonlinearity.

Theorem 5. Let f ∈ Bn be bent with weight 2n−1 −2
n
2 −1. Suppose g ∈ Bn such

that Sg = Sf ∪ T , where T ⊂ F
n
2 \ Sf with |T | = 2n−1. Then g is balanced, and

its nonlinearity is nl(g) > 2n−1 − 2
n
2 + nlb(n2) if and only if for any nonzero

a ∈ F
n
2

i. |S1
T (a)| < 2

n
2 −1 − nlb(n

2)

2 , if Wf (a) = 2
n
2 , and

ii. |S1
T (a)| >

nlb(n
2)

2 , if Wf (a) = −2
n
2 .

Proof. Since Sf ∩T = ∅, |Sg| = 2n−1−2
n
2 −1+2

n
2 −1 = 2n−1. Thus, g is balanced.

From Corollary 1, we have the nonlinearity of f is nl(g) > 2n−1 − 2
n
2 + nlb(n2)

if and only if for any nonzero a ∈ F
n
2 ,

2n−2 − 2
n
2 −1 +

nlb(n2)
2

< |S1
g (a)| < 2n−2 + 2

n
2 −1 − nlb(n2)

2

⇔ 2n−2 − 2
n
2 −1 +

nlb(n2)
2

< |S1
f (a)| + |S1

T (a)| < 2n−2 + 2
n
2 −1 − nlb(n2)

2

Since f is bent, from Proposition 3 we have

|S1
f (a)| ∈ {2n−2 − 2

n
2 −1, 2n−2},

for all nonzero a ∈ F
n
2 , and we get the result. ��

To sum up we essentially ended up defining the modification procedure as a
concatenation of linear code of appropriate dimension and parameters. So the
question of finding such a right modification essentially backed by the question
of existence of right linear code of special type.

5.1 Studying the Specific Conditions for n = 8, and Explaining
Some Non-existence Issues

Let f be a bent functions in 8 variables such that Sf is 120, i.e., the order of
support matrix Mf is 8 × 120. Thus, the weight of any nonzero linear combina-
tions of row vectors of Mf is 56 or 64. Let g ∈ B8 such that Sg = Sf ∪ T , where
T ⊂ F

8
2 \ Sf with |T | = 8. Observe that 28−1 − 2

8
2 + nlb(82) = 116. The following

result is a direct consequence from Theorem 5.

466 S. Maitra et al.

Corollary 6. Let f ∈ B8 be bent such that |Sf | = 120. Suppose g ∈ B8 such
that Sg = Sf ∪ T , where T ⊂ F

8
2 \ Sf with |T | = 8. Then g is balanced and its

nonlinearity nl(g) = 118, if and only if, for any nonzero a ∈ F
8
2

i. |S1
T (a)| ≤ 5, if Wf (a) = 16, and

ii. |S1
T (a)| ≥ 3, if Wf (a) = −16.

So, if we could manage to find such a subset T and corresponding bent
function in 8 variables, then we could construct a balanced function in 8 variables
with nonlinearity 118. Here it is sufficient to identify a set T ⊂ F

8
2 \ Sf such

that |S1
T (a)| ∈ {3, 4, 5} for constructing a balanced function in 8 variables with

nonlinearity 118. Unfortunately, no such set can exist as we present below.

Proposition 4. There does not exist any set T = {u1,u2, . . .u8} ⊂ F
8
2 such

that |S1
T (a)| ∈ {3, 4, 5}, for all nonzero a ∈ F

8
2.

Proof. If T is a linearly dependent set, then there exist at least one nonzero
linear combination of vectors of T such that its weight is 0. Suppose T is lin-
early independent. Then linear span of T is F

8
2, and so, there are many linear

combination of vectors of T such that the weights are not 3 or 4 or 5. ��
The above discussion shows non-existence through one particular technique, thus
we need to explore different other directions in future. It may be possible to
construct a balanced function in 8 variables having nonlinearity 118, where the
values of |S1

T (a)| may be different from 3, 4 and 5. To achieve this, if |S1
T (a)| ≤ 2

(or ≥ 6) for a nonzero a ∈ F
8
2, then the Walsh–Hadamard transform value of

initial bent function at a must be 16 (or −16, respectively) at those points.

Example 2. Let us present a potential example of such construction method
considering a simple bent function. Let f(x,y) = x · y, for all x,y ∈ F

4
2. Then

f is bent, its Walsh–Hadamard spectrum value is 16 for 136 many times, and is
−16 in rest 120 cases. Thus, there are 135 many nonzero elements (a,b) ∈ F

4
2×F

4
2

such that |S1
f (a,b)| = 64 and 120 many elements (a,b) such that |S1

f (a,b)| = 56.
Let f(x,y) = x·y, for all x,y ∈ F

4
2. Suppose T ⊂ F

4
2×F

4
2\Sf with cardinality

8 and satisfies the following conditions.

i. |S1
T (a,b)| ≤ 5, if a · b = 0, and

ii. |S1
T (a,b)| ≥ 3, if a · b = 1.

Define a Boolean function g ∈ B8 as

g(x,y) =
{

f(x,y) ⊕ 1, if (x,y) ∈ T
f(x,y), otherwise .

Then g is balanced and from Corollary 6 its nonlinearity is 118.

Unfortunately, we are yet to identify any T to achieve such a result. Construction
of a balanced nonlinearity 118 function demands whether we can find a proper
bent function and obtain a T corresponding to that.

Modifying Bent Functions to Obtain the Balanced Ones 467

Simply speaking, fixing f(x,y) = x · y, a Maiorana-McFarland bent function is
obtained and one may try to toggle 8 output points from 0 to 1 to have a balanced
function. This will naturally produce functions with nonlinearities 112, 114, 116
or 118. Given that the conditions above are satisfied as in Example 2, we will
obtain 8-variable balanced functions with nonlinearity 118. However, to check
that, we need to exhaust

(
136
8

)
options, which is not computationally achievable

by the hardware available with us. Obtaining some better filtering strategies in
this regard will be useful for further research. For experimental purpose, given f
as above, we have chosen 108 random T ’s and obtained nonlinearities 112, 114
and 116 in the proportions 0.398549, 0.594860, 0.006591 respectively.

5.2 Studying the Cases for n = 10, 12, 14

Fortunately, for n = 10, there is no such obvious impossibility result as in Propo-
sition 4 above. To construct a balanced Boolean function in 10 variables with
nonlinearity 494, we need a set of 16 elements outside the support set of f with
certain weight properties.

Let f ∈ B10 such that Sf is 496, i.e., the order of support matrix Mf

is 10 × 496. Then wt(aMf) is 240 or 256, for all nonzero a ∈ F
10
2 . Suppose

g ∈ B10 such that Sg = Sf ∪ T , where T ⊂ F
10
2 \ Sf with |T | = 16. Since

210−1 − 2
10
2 + nlb(102) = 492, the question is to identify a balanced Boolean

function having nonlinearity 494.

Corollary 7. Let f ∈ B10 be bent such that |Sf | = 496. Suppose g ∈ B10 such
that Sg = Sf ∪ T , where T ⊂ F

10
2 \ Sf with |T | = 16. Then g is balanced and its

nonlinearity nl(g) = 494, if and only if, for any nonzero a ∈ F
10
2

i. |S1
T (a)| ≤ 9, if Wf (a) = 32, and

ii. |S1
T (a)| ≥ 7, if Wf (a) = −32.

Similar as in the case for n = 8, if we could manage to find T ⊂ F
10
2 \ Sf

and corresponding bent function f in 10 variables, then we could construct a
balanced function in 10 variables with nonlinearity 494. It is sufficient to identify
a set T such that |S1

T (a)| ∈ {7, 8, 9}. Here it might be possible to identify such
set T . For this one requires to identify 10 binary strings of length 16 such that
the weight of any nonzero linear combinations is 7, 8 or 9. Note that, the number
of binary strings of length 7, 8 or 9 is

(
16
7

)
+

(
16
8

)
+

(
16
9

)
= 35750. For existence

of T , we need 210 − 1 = 1023 < 35750 binary strings of length 16 should have
weights 7, 8 or 9. We could not prove an immediate non-existence result as in
Proposition 4 for n = 8 in this regard.

Similar characterizations hold for for n = 12 and 14. We enumerate the
observations in Table 3.

468 S. Maitra et al.

Table 3. Construction of highly nonlinear balanced functions for n = 8, 10, 12 and 14

n |Sf | |ST | Nonlinearity s ≤ |S1
T (a)| ≤ t

8 120 8 118 3 ≤ |S1
T (a)| ≤ 5

10 496 16 494 7 ≤ |S1
T (a)| ≤ 9

12 2016 32 2012 14 ≤ |S1
T (a)| ≤ 18

2014 15 ≤ |S1
T (a)| ≤ 17

14 8128 64 8122 29 ≤ |S1
T (a)| ≤ 35

8124 30 ≤ |S1
T (a)| ≤ 34

8126 31 ≤ |S1
T (a)| ≤ 33

Thus, we have two clear directions here towards obtaining balanced Boolean
functions on even number of variable beating the Dobbertin’s bound.

– A general idea in modifying bent functions and we can have several different
approaches to obtain such functions. One such example is to move in the
direction of Example 2.

– Putting more specific structures on that. One such idea fails for n = 8 as we
note in Proposition 4. However, we need further investigation in this regard
for even n ≥ 10.

6 Conclusion

Disproving Dobbertin’s Conjecture (if at all possible) is a long standing open
problem in Boolean function research. This is related to nonlinearity of n-variable
(n even) Boolean functions with balancedness. In this paper, we have studied
this problem in a disciplined manner and tried to understand several issues
that are related to nonlinearity exceeding the Dobbertin’s bound. The necessary
and sufficient conditions are enumerated in details and we examine instances
with n = 8, 10, 12, 14. The weight conditions are studied in details and further
relationships with certain linear codes are also explained. While we could not
achieve functions having nonlinearity exceeding the Dobbertin’s bound, we could
add new results that provide more transparent understanding in this domain.

Acknowledgments. We would like to thank the anonymous reviewers of Indocrypt
2022 for their valuable suggestions and comments, which considerably improved the
quality of our paper.

Modifying Bent Functions to Obtain the Balanced Ones 469

References

1. Carlet, C., Guillot, P.: A characterization of binary bent functions. J. Comb. Theor.
Ser. A 76, 328–335 (1996)

2. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cam-
bridge University Press, Cambridge (2010)

3. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications.
Elsevier-Academic Press, Cambridge (2009)

4. Dillon J.F.: Elementary Hadamard Difference Sets, PhD Thesis, University of
Maryland (1974)

5. Dillon J.F.: Elementary hadamard difference sets, In: proceedings of 6th S. E.
Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics,
Winnipeg, pp. 237–249 (1975)

6. Dobbertin H.: Construction of bent functions and balanced Boolean functions with
high nonlinearity, Fast Software Encryption 1994 LNCS 1008, pp. 61–74 (1994)

7. Kavut, S., Maitra, S., Tang, D.: Construction and search of balanced Boolean
functions on even number of variables towards excellent autocorrelation profile.
Des. Codes Crypt. 87(2–3), 261–276 (2019)

8. Kavut, S., Maitra, S., Yucel, M.D.: Search for Boolean functions with excellent
profiles in the rotation symmetric class. IEEE Trans. Inf. Theor. 53(5), 1743–1751
(2007)

9. Kavut, S., Yucel, M.D.: 9-variable Boolean functions with nonlinearity 242 in the
generalized rotation symmetric class. Inf. Comput. 208(4), 341–350 (2010)

10. Kavut, S., Maitra, S.: Patterson-Wiedemann type functions on 21 variables with
nonlinearity greater than bent concatenation bound. IEEE Trans. Inf. Theor.
62(4), 2277–2282 (2016)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, Ams-
terdam, North-Holland, The Netherlands (1977)

12. Maitra, S., Sarkar, P.: Maximum nonlinearity of symmetric Boolean functions on
odd number of variables. IEEE Trans. Inf. Theor. 48(9), 2626–2630 (2002)

13. Maity, S., Johansson, T.: Construction of cryptographically important Boolean
functions, INDOCRYPT 2002 LNCS 2551, pp. 234–245 (2002)

14. Maity, S., Maitra, S.: Minimum distance between bent and 1-resilient Boolean
functions, FSE 2004 LNCS 3017, pp. 143–160 (2004)

15. McFarland, R.L.: A family of noncyclic difference sets. J. Comb. Theor. Ser. A 15,
1–10 (1973)

16. Mesnager, S., Mandal, B., Tang, C.: New characterizations and construction meth-
ods of bent and hyper-bent Boolean functions. Discrete Math. 343(11), 112081
(2020)

17. Mesnager, S.: Bent Functions. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32595-8

18. Patterson, N.J., Wiedemann, D.H.: The covering radius of the (215, 16) Reed-
Muller code is at least 16276. IEEE Trans. Inf. Theor. 29(3), 354–356 (1983)

19. Rothaus, O.S.: On bent functions. J. Comb. Theor. Ser. A 20, 300–305 (1976)
20. Sarkar, P., Maitra, S.: Nonlinearity bounds and constructions of resilient Boolean

functions, CRYPTO 2000 LNCS 1880, pp. 515–532 (2000)
21. Sun, Y., Zhang, J., Gangopadhyay, S.: Construction of resilient Boolean func-

tions in odd variables with strictly almost optimal nonlinearity. Des. Codes Crypt.
87(12), 3045–3062 (2019). https://doi.org/10.1007/s10623-019-00662-5

https://doi.org/10.1007/978-3-319-32595-8
https://doi.org/10.1007/978-3-319-32595-8
https://doi.org/10.1007/s10623-019-00662-5

470 S. Maitra et al.

22. Tang, D., Maitra, S.: Constructions of n-variable (n ≡ 2 mod 4) balanced Boolean
functions with maximum absolute value in autocorrelation spectra < 2

n
2 . IEEE

Trans. Inf. Theor. 64(1), 393–402 (2018)
23. Tang, D., Kavut, S., Mandal, B., Maitra, S.: Modifying Maiorana-McFarland type

bent functions for good cryptographic properties and efficient implementation.
SIAM J. Discrete Math. 33(1), 238–256 (2019)

Revisiting BoolTest – On Randomness
Testing Using Boolean Functions

Bikshan Chatterjee1(B), Rachit Parikh1, Arpita Maitra2, Subhamoy Maitra1,
and Animesh Roy1

1 Indian Statistical Institute, Kolkata 700108, India
bchatterjee7980@gmail.com, prachit@me.iitr.ac.in, subho@isical.ac.in

2 TCG Crest, Kolkata 700091, India

Abstract. Pseudo-random number generation is crucial in cryptology
and other areas related to information technology. In a broad sense, the
security of a protocol relies on the ‘randomness’ provided by the pseudo-
random number generators. It is thus important to examine whether a
random-looking stream has some kind of non-randomness in it. Here we
consider that a binary stream is divided into blocks of a certain length
m and we try to identify an m-bit Boolean function in this regard that is
optimal to provide the highest Z-score for the output stream generated
by the said function. In this regard, we show certain limitations of the
BoolTest strategy by Sýs et al (2017) and present combinatorial results
related to identifying the most suitable Boolean functions. We show that
the existing works related to BoolTest identify the Boolean functions
that are sub-optimal, constrained by the low degree in the Algebraic
Normal Form. Our results find out the best Boolean function in this
regard that will produce the maximum Z-score and the complexity is
O(N log N) on the amount of random-looking stream of length N that we
read during the evaluation process. We present substantial experimental
evidence corresponding to our theoretical ideas. While we solve certain
combinatorial problems related to BoolTest, the caveat is, this test is
not sufficient to conclude on randomness or non-randomness of a given
stream of data.

Keywords: Boolean functions · BoolTest · Randomness testing ·
Statistical analysis · Z-score

1 Introduction

Random number generators have wide applications in the broad areas of commu-
nication and cryptography. However, classical computers are deterministic and
hence, it is not possible to produce any randomness out of them, other than the
effect of the initial random seed, if any. The prime development here is in the
direction of a Pseudo Random Number Generator (PRNG), where a small seed
is used (may be from a random source) as an input and then a deterministic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 471–491, 2022.
https://doi.org/10.1007/978-3-031-22912-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_21

472 B. Chatterjee et al.

algorithm generates a stream of random-looking data. This is not random, as
the same seed will always generate the same stream of data and the randomness
only depends on the initial seed. Only looking at the data, may be computa-
tionally or information-theoretically hard to distinguish the data from a truly
random source, without knowing the seed. That is the main idea in designing
symmetric ciphers.

As there is a need to study the security parameters of a cipher, randomness
plays an important role. Towards cryptanalysis of a cipher, an important tool is
to design certain distinguishers that can provide information regarding the inap-
propriate confusion and diffusion properties, i.e., to identify how far the output of
the cipher deviates from true randomness. Looking at the algorithm of the cipher
to obtain such a distinguisher is naturally a more scientific way. For example,
the famous distinguisher [4] against RC4 could be identified from its algorithm.
However, a complicated design will always make identifying such distinguishers
harder. In this regard, applying statistical tests on the reduced rounds of the
cipher might provide a quicker way to identify certain non-randomness, and a
more formal design of a distinguisher may be initiated from that observation. For
methodologies where the random numbers are generated from physical processes
such as quantum mechanics or thermal processes, such statistical tests might be
useful. That is, here we will not look at the algorithms to find the weaknesses,
but study the data and will try to obtain some statistical measure that will pos-
sibly differentiate the available stream at hand from some ideal data generated
from a random source. In this direction, one may refer to the well defined sta-
tistical test-beds like Diehard [5], Dieharder [1], NIST SP 800-22 [6], Cryp-X [3]
and ENT [9].

All these test suites (often called a battery) generally consist of a series of
empirical tests of randomness. Each test aims to find a predefined pattern of bits
(or block of bits) in the data under consideration and examines the randomness
property by certain measures that can be computed from the occurrences of the
predefined bit patterns. Each test results in a distribution of a specific feature of
bits or the blocks of bits. The distribution is then statistically compared with the
expected one from data coming from random data. The data under examination
is considered to be non-random if the distributions differ significantly.

In principle, one may design an unlimited number of tests for randomness
certification and each of them should have certain merits and demerits. Under-
standing each statistical test is thus crucial rather than using them as black
boxes. In this regard, we concentrate on the BoolTest [7], where each block of
the bit-stream is applied to a suitably chosen Boolean function and the output
bits are studied. In a later work, by Sýs et al [8], a similar technique has been
used and many experimental results have been provided. As mentioned in [8],
the BoolTest is a generalization of the frequency mono-bit test [6]. In this paper,
we revisit the techniques presented in [7], identify certain limitations of the test,
and then provide some techniques to optimize the method.

Revisiting BoolTest 473

1.1 Organization and Contribution

We present certain preliminary ideas in Sect. 1.2.
Then, in Sect. 2, we consider different kinds of data streams and show how

the Z-score varies. Our results show that the values from the Z-score might not
provide logical characteristics in terms of randomness in certain cases. Section 1.3
presents a brief description of BoolTest by Sýs et al [7].

In Sect. 3, we provide a deterministic algorithm to find the best Boolean
function that will maximize the Z-score for a given data. The algorithm runs in
O(N log N) time, given N amount of data.

Section 4 presents substantial experimental evidence corresponding to our
theoretical ideas. In this direction, we consider RC4 [4], AES [2], and Java rand ?
in studying files of various lengths to identify the Z-scores, with properly chosen
Boolean functions through our algorithms.

Section 5 concludes the paper. Some of the implementation related codes are
available in Appendix.

1.2 Preliminaries

Consider N -bit of data D, whose randomness we would like to test. The data
is divided into non-overlapping blocks of m bits. For simplicity, we consider N
is divisible by m, i.e., there are n = N

m blocks. Each block of data is applied to
a Boolean function of m-input bits to obtain one-bit output. Thus, given N -bit
data, we obtain N

m bits out of the Boolean function. Let us call the collection of
all m block inputs obtained in such a manner I. The collection I is a multi-set,
not a set since there might be m length blocks that occur more than once.

Naturally, we need to study the frequency distribution from the set I to
identify any non-randomness. By the method described in BoolTest [7], one
may try to find the best distinguisher function on the frequency distribution
obtained. The method used in BoolTest to obtain the Boolean function for the
best distinguisher involves the metric Z-score. Before defining Z-score in our
interpretation, let us introduce some notations. Support of an m-input 1-output
Boolean function f is defined as

supp(f) = {x ∈ {0, 1}m : f(x) = 1}. (1)

We also define W (f) as the following set,

W (f) = {x ∈ I : f(x) = 1}. (2)

Let qf be the proportion of inputs for which the f returns 1, i.e.,

qf =
|supp(f)|

2m
. (3)

If the input distribution had uniformly been random, we would get each input
x ∈ {0, 1}m with equal probability. If we had a uniform distribution of m-block

474 B. Chatterjee et al.

inputs {0, 1}m, then the number of data blocks for which the function f will
output 1 is nqf . Let pf be the proportion of elements in I which will output 1
when given as an input to f .

pf =
|x ∈ I : f(x) = 1|

2m
=

|W (f)|
2m

. (4)

In other words, the number of inputs for which the function f will output 1 from
the collection I will be npf .

Definition 1 (Z-score). For a given function f of m-variables, and a collection
I, pf and qf as defined above, the Z-score defined in [7] is given as,

zf =
#1 − nqf√
nqf (1 − qf)

. (5)

where #1 is the random variable that describes the number of m-bit blocks in
the input data D, that when fed to the function f returns 1. Here, #1 can be
written as

#1 = |W (f)| = npf (6)

Thus the Z-score would be

zf =

∣∣∣
∣∣

npf − nqf√
nqf (1 − qf)

∣∣∣
∣∣
. (7)

To provide more intuition to the definition above, if Y is a random variable rep-
resenting the number of ones obtained as output from the function f over some
input distribution, then Z-score is the normalization of binomially distributed
random variable Y .

Now that we have defined Z-score, let us proceed to outline a brief introduc-
tion to the method presented by [7]. Note that, we are interested in identifying
the most optimal Boolean function. Thus, the Z-score we discuss will always
be related to a suitable Boolean function f , and thus, as in Definition 1, we
always have zf that is to be studied. Note that the number of distinct m-variable
Boolean functions is 22

m

and choosing the optimal Boolean function out of that
super-exponential space is the main challenge.

Let x = (x1, . . . , xm) and a = (a1, . . . , am). Any Boolean function f in
m variables can be uniquely written as a multivariate polynomial of the form
f(x) =

⊕
a∈{0,1}m μax

a1
1 xa2

2 · · · xam
m , where μa ∈ {0, 1}, for all a ∈ {0, 1}m. This

polynomial form of f is called the algebraic normal form (ANF). The algebraic
degree of f is deg(f) = maxa∈{0,1}m{wt(a) : μa �= 0}, the degree of highest
degree term(s) with nonzero coefficient in its ANF. Here wt(a) is the number of
1’s in a.

Revisiting BoolTest 475

1.3 Brief Description of BoolTest by Sýs et al. [7]

The basic idea is to construct an m-bit Boolean function that will produce
the highest Z-score. Given that there are 22

m

Boolean functions, it has been
commented in [7] that only a heuristic method in the set of m-variable Boolean
functions will be attempted to identify the function. We will later show that
this technique [7] is sub-optimal and consequently we will present an optimal
algorithm. Now let us explain the strategy of [7].

The BoolTest algorithm B(deg,m, t, k) takes in as input the following param-
eters:

– deg: Each term in the ANF of the functions searched by BoolTest would be
of degree deg.

– m : Block size, which is also the number of inputs to the Boolean functions.
– t : Top t monomials of degree deg are chosen and combined by XOR in the

next step.
– k : Distinguishers are formed by combining k many monomials of degree deg.

Algorithm 1: BoolTest B(deg,m, t, k)

M ← {1, . . . , m}
T ← {1, . . . , t}

// GET-SUBSETS(j, M) returns all subsets of M of size j

Sdeg ← GET-SUBSETS(deg,M)

// Set Fdeg contains all monomials of degree deg

Fdeg ← {f : f =
∏

j∈J xj ,∀J ∈ Sdeg}

// Choose top t functions from Fdeg with highest Z-score

// GET-MAX function takes t monomials with highest Z-score

Ft ← GET-MAX(t, Fdeg)

Sk ← GET-SUBSETS(k, T)

// Take combinations of k monomials from Ft

F = {f : f =
⊕

k∈K fk,∀K ∈ Sk, fk ∈ Ft}

// Return the max Z-score and the corresponding distinguisher

function from F

return arg maxf∈F z(f)

The Algorithm 1 given above provides an algorithmic outline of the BoolTest [7].
There are many other details related to optimization to improve the performance
of the algorithm. To understand the approach, let us consider an example. If the
given parameters are B(deg = 2,m = 4, t = 5, k = 3), then BoolTest first
computes Z-score for all the monomials of degree 2 of the form xixj where

476 B. Chatterjee et al.

i, j ∈ {1, 2, 3, 4}(since m = 4). There are six such degree 2 monomials in this
case. From these monomials, the top t = 5 monomials with the highest Z-score
will be selected. Now, choose k = 3 monomials out of the 5 obtained in the
first step (total

(
5
3

)
combinations) and combine them using XOR operation to

form a new function with 3 monomials each having degree 2, and obtain the
Z-score for each combination. The function with the maximum Z-score out of
these combinations is considered to be the function that will provide the best
distinguisher through this heuristic.

Let the data D be a sequence of n random variables X1, . . . , Xn. The null
hypothesis is,

H0 : Xi ∼ Uniform(0, 2m − 1),∀i ∈ {1, . . . , n} (8)

If the Boolean function f had been fixed, the number of ones (#1) would be
a random variable that follows Binomial distribution B(n, qf) and zf would
approximately follow standard normal distribution N (0, 1).

The highest Z-score would be of the form Z = max{zf1 , . . . , zf22m
} where each

zfi
approximately follows standard normal distribution and, its CDF would be

difficult to calculate as the zfi
’s are not independent.

The value [7] calculates is the random variable max{zf1 , . . . , zf(t
k)

} (it consid-

ers only
(

t
k

)
among all possible boolean functions, f1, f2, . . . f(t

k) are functions
constructed from the data) whose CDF would be similarly difficult to calculate.
Instead, [7] estimates the acceptance region using a “reference window” created
by running the process on (assumed) true random data. If the highest Z-score
achieved by the procedure on some sample of data falls within the reference win-
dow, the data is assumed to be random; otherwise, it is considered that the data
might have non-randomness. However, we see later very high Z-scores do not
necessarily imply non-randomness. For example, for large block size m, and the
amount of data much smaller than 2m blocks, very high Z-scores are possible
even for truly random data.

2 Critical Evaluations of Z-score

In this section, we analyze a few issues related two the values that we receive
from Z-score.

2.1 Z-Score for Data with All and Equal Frequency Inputs

Let us consider N = nm many bits of data, where n = s2m, and each m-bit
pattern has frequency s in the data stream, in any order. Denote such a data
stream as Dall,m,s. Then we have the following result.

Lemma 1. The Z-score for the input stream Dall,m,s would be 0 considering
any m-bit Boolean function.

Revisiting BoolTest 477

Proof. If we parse through the bit stream and generate a frequency table of
all m-bit blocks then we know we will get all the patterns from {0, 1}m equal
number of times (here s) hence our distribution of inputs is uniform. Z-score
for a function f shows how the output bit pattern is different for a particular
distribution inferred from the data, from that of a uniform distribution. In this
case, the probability of getting any m-length block in Dall,m,s is,

p(x) =
1

2m
= q(x), ∀x ∈ {0, 1}m (9)

where q(x) is the probability of getting any input in the uniform distribution.
Then the Z-score would be,

zf =
n

√
nqf (1 − qf)

∣∣∣∣
∣∣

∑

x:f(x)=1

(p(x) − q(x))

∣∣∣∣
∣∣
= 0. (10)

Thus, the Z-score is 0 independent of the choice of the function. ��
Now, consider a simple counter circuit that generates all the m-bit patterns

in a cycle, in the increasing order of decimal digits 0 to 2m − 1, and continues
from 0 again. This data should not be considered random, but the Z-score will
always be zero when we have a multiple of full cycles. The result is the same when
the data comes in a cycle, but according to some permutation of 0 to 2m − 1.
However, there are many other tests, such that linear complexity analysis, that
can obtain the simplest LFSRs to distinguish among such streams. This is not
possible using Z-score.

2.2 Maximum Z-score for Frequencies s and s + 1

Let us consider N = nm many bits of data, where n = s2m + u. There are u
many m-bit patterns with frequency s+1 and the rest are having the frequency
s, in any order. Denote this data stream as Dall−two,m,s. Let fi denote the
Boolean function with the highest z-score among those functions that output 1
for exactly i inputs. As we have denoted, zfi

is the Z-score of fi. We prove later
in Sect. 3 that the truth table of fi will contain 1 in the top i most occurring m-
bit patterns. We claim that for the stream Dall−two,m,s, the maximum Z-score
would be obtained for i = u. Here, #1 would be

#1 =

{
i(s + 1) i ≤ u,

u(s + 1) + (i − u)s i > u.
(11)

When i ≤ u, we put 1’s in the outputs of the u patterns that occur s + 1 times,
so #1 = i(s + 1). Similarly, for the case where i > u, the top u patterns will
occur (s + 1) times whereas rest of the i − u patterns will occur s times making
#1 = u(s + 1) + (i − u)s. Now, we calculate zfi

as,

zfi
=

∣∣∣∣∣
#1 − nqf√
nqf (1 − qf)

∣∣∣∣∣
, (12)

478 B. Chatterjee et al.

where qf = i
2m . For simplicity of notation let M = 2m. Then zfi

for both cases
is

zfi
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣
i(s+1)−ni

M√
n(i

M)(1− i
M)

∣∣∣∣∣
, i ≤ u

∣∣∣∣∣
u(s+1)+s(i−u)−ni

M√
n(i

M)(1− i
M)

∣∣∣∣∣
, i > u

(13)

=

⎧
⎨

⎩

c1

√
i

M−i , i ≤ u,

c2

√
M−i

i , i > u,
(14)

where,

c1 =
M − u√

n
c2 =

u√
n

. (15)

From the above result, we can see that zfi
is a decreasing function for i > u and

it is an increasing function when i ≤ u. By this, we can conclude that zfi
will

be maximum for i = u. Thus, maximum Z-score obtained by plugging in i = u
will be,

Zfu
=

√
u(M − u)

n
. (16)

2.3 Maximum Z-score When Some of the Patterns Arrive Only,
and Only Once

Let us consider N = nm many bits of data, where n = u < 2m. There are u many
m-bit patterns with frequency 1 in any order and the rest are not appearing.
Denote such a data stream as Dsome,m,u. It can be seen that this data stream
is a special case of the Dall−two,m,s for s = 0. So by plugging in the values from
the above equation, we obtain

Z =

√
u(M − u)

n
=

√
u(M − u)
sM + u

=
√

M − u. (17)

This is important for large block sizes, as, for large blocks, it is very clear that
only a few patterns will arrive, and most of them will arrive only once. For
example, if we consider m = 256, then in a stream of 238 bits, only 230 blocks
will be generated. This is a very small part of 2256, and thus, each of the blocks
that appear will appear generally only once, and the rest huge numbers will not
appear at all. That is the reason this situation needs to be studied for practical
purposes in the cases of larger block sizes.

To provide specific data, we consider 1MB (megabyte) data generated by
AES (OFB mode, random IV) with block size m = 64 bits, i.e., 8 bytes. Since
the number of blocks in data is much less than 264, the probability of getting all
blocks distinct is high. The number of blocks for this data would be n = 220

23 =

Revisiting BoolTest 479

131072 (because 1MB = 220 bytes and 64 bits = 23 bytes). We have checked that
the generated data had all the blocks distinct, so u = 131072. The maximum Z-
score obtained by our implementation (see Appendix) is 4294967295.9999847 =√

264 − 131072 =
√

M − u, that matches the theory. It is important to highlight
that the Z-score might be very high in such a scenario.

3 Finding the Best Boolean Function to Have Maximum
Z-score

As described in Sect. 1.3, the BoolTest algorithm B(deg,m, t, k) searches through
α =

(
m

deg

)
monomials of degree deg. Now the top t monomials (with high Z-

scores) are considered for the second stage where k out of these are added
(XORed). That is, BoolTest searches through a very limited space of Boolean
functions since all the terms in monomials are of the same degree. On top of
that, it has a fixed number of terms k, which makes it at most

(
α
k

)
candidate

functions. This limited function search space significantly fails to discover the
function with the best Z-score. As described in [7], the Z-score is considered to
heuristically find the good Boolean functions.

In this section, we will present that one can devise a deterministic algorithm
to discover the Boolean function that will indeed provide the highest possible
Z-score. It is computationally elusive to exhaustively search all the 22

m

Boolean
functions for m ≥ 6. We demonstrate an O(N log N) algorithm for data size N ,
to achieve this for any arbitrary block size m. So it would be possible to run this
algorithm on almost any size of data that can be stored (and read in reasonable
time) in a particular machine.

In this regard, let us first define some notations and prove a few technical
results. We define MS for a function f as follow:

MS(f) = |pf − qf | , (18)

where pf and qf are same as defined earlier. If there are t inputs for which we get
1 as output then, qf = t

2m . We first show how using this metric we will obtain
the function with the highest Z-score in O(m2m) time (an improvement over
O(22

m

)). Define Ft to be the set of all m-variable Boolean functions that will
output 1 on exactly t of the 2m possible inputs. Thus, for all functions f ∈ Ft,
we have

qf =
t

2m
(19)

Since we have fixed the value qf for a given set Ft, we have essentially fixed the
denominator of the Z-score. Thus it would be easy to maximize it among the
functions in this set. Further, if F is a set of all Boolean functions of m variables,

F =
n⋃

t=0

Ft (20)

480 B. Chatterjee et al.

Let ft ∈ Ft be the function with maximum Z-score in the set Ft. So the Boolean
function with the best Z-score in F would be,

f = arg max
ft

z(ft), (21)

where, z(ft) gives the Z-score for the function ft. We claim that we can find the
function with maximum MS in each Ft (say ft ∈ Ft) efficiently. We further
claim that the same ft will provide us with the highest Z-score inside each Ft.

Let us first present a technical result. The complement of a Boolean function
f will have a truth table with negated outputs for each input. In other words, if
f is a Boolean function and f ′ is its complement then for input x

f ′(x) = 1 ⊕ f(x) (22)

So if a Boolean function f of m-input, outputs 1 for t-inputs then f ′ will output
1 for the other 2m − t inputs. Now, we prove that the Z-score for both f and f ′

would be the same.

Proposition 1. The Z-score for a function f and its complement f ′ would be
the same.

Proof. Let us assume that f is an m-input Boolean function that will output 1
t times then,

zf =
n

√
nqf (1 − qf)

∣∣∣∣∣
∣

∑

x:f(x)=1

p(x) − t

2m

∣∣∣∣∣
∣

(23)

where p(x) is the proportion of input x in the input data. Now,
∑

x:f(x)=1 p(x) =
pf . This can also be written as,

zf =
n

√
nqf (1 − qf)

∣∣∣∣
∣∣

⎛

⎝1 −
∑

x:f(x)=0

p(x)

⎞

⎠ − t

2m

∣∣∣∣
∣∣

(24)

By definition, if f outputs 0 for some input x, then for the similar inputs f ′

outputs 1, then

zf =
n

√
nqf (1 − qf)

∣
∣∣∣∣∣

(
1 − t

2m

)
−

∑

x:f ′(x)=1

p(x)

∣
∣∣∣∣∣

(25)

This is the Z-score for f ′ as,

zf =
n

√
nqf (1 − qf)

∣∣∣∣∣
∣

∑

x:f ′(x)=1

p(x) −
(

2m − t

2m

)
∣∣∣∣∣
∣

(26)

=
n

√
n(1 − qf ′)qf ′

∣∣∣∣∣
∣

∑

x:f ′(x)=1

p(x) −
(

2m − t

2m

)
∣∣∣∣∣
∣
= zf ′ (27)

��

Revisiting BoolTest 481

Now we present the main result.

Theorem 1. If ft is a function in Ft and MS(ft) = maxf∈Ft
MS(f) then

ft(x) =

{
1 if x ∈ At

0 otherwise
(28)

where At is the set of t-most occurring inputs in the data file.

Proof. For any f ∈ Ft we have,

MS(f) = |pf − qf |
Our goal is to maximize MS and find the function f for which we get the
maximum score. As the function f outputs 1 on exactly t inputs, we have

MS(f) =
∣
∣∣∣pf − t

2m

∣
∣∣∣ (29)

Since we have fixed t, maximizing MS(f) means either maximizing pf or mini-
mizing pf .

Following Proposition 1, we show that maximization is enough, i.e., it is not
necessary to minimize the sum pf and this can be seen by the fact that a function
and its complement share the same Z-score. Let’s say we minimize the value of
pf and f gives 1 for t inputs. Since we are minimizing the summation what we
are doing is taking the least frequent t inputs and making the function f output
1 on these inputs. In other words, f outputs 0 for the top 2m − t inputs, so
f ′ (the complement of f) outputs 1 for those 2m − t inputs. Since f ′ ∈ F2m−t,
we can calculate the function g ∈ F2m−t that has the best Z-score in F2m−t. If
g = f ′, then we do not need to minimize pf because we would anyway find the
function f ′, and calculating the Z-score for f would not be needed. If g �= f ′,
then also we do not need to minimize pf , because there is already a function g,
that has Z-score greater than that of f . Thus we do not need to minimize the
summation separately as we gain information about a function’s complement
from the function itself.

For a given input file, we calculate the number of occurrences (or probability
of occurrence) of each m-bit block [0 to 2m − 1]. We will sort an array containing
the 2m m-bit blocks (consider truth table rows) by their proportion in non-
decreasing order. For each t, we construct a function ft that returns 1 on the
top t highest probability blocks and 0 for the rest.

For any other function f ′
t that outputs 1 on exactly t inputs, pf ′

t
≤ pft

because we are summing over the highest p(x). Note that there might be other
functions f ′

t with pf ′
t
= pft

, but pf ′
t

can never be greater than pft
. ��

Now that we have established a way to find the maximum MS, we use it to
calculate the Z-score. The relation between MS and Z-score can be shown as:

zf =

∣
∣∣∣∣

#1 − nqf√
nqf (1 − qf)

∣
∣∣∣∣
=

∣
∣∣∣∣

npf − nqf√
nqf (1 − qf)

∣
∣∣∣∣
=

n
√

nqf (1 − qf)
|pf − qf |

=
n

√
nqf (1 − qf)

MS(f). (30)

482 B. Chatterjee et al.

Fixing the set Ft from which the function will be chosen, we know that the term
n√

nqf (1−qf)
is constant and so if a function maximizes MS, it maximizes the

Z-score. So, we find the highest Z-score for each Ft, t = {1, . . . , 2m − 1}. Note
that, for t = 0 or t = 2m only constant functions are possible with undefined
Z-scores, that we will not consider. Then we find the maximum among these
2m − 1 Z-scores. Based on this, we have the following algorithm.

Algorithm 2: modified booltest (run time: O(2m))
/* Suppose S is the set of inputs for which the function under

consideration returns 1 (this set completely defines the

function) */

I ← 0 to 2m − 1 (truth table inputs);
P ← probability of occurance of each m-bit block according to data;
z ← 0 // The Z-score value

t ← 1 // Number of ones as output

p ← 0
SORT (I, P) // Sort array of truth-table-inputs wrt their

probability of occurrence

while t < 2m do
// try to maximize |p - q|

p ← p + P [t − 1] // Adding next most occurring input to S
q ← t

2m

zt ← n · (p − q)
zt ← zt√

nq(1−q)

if zt > z then
tmax ← t
z ← zt

t ← t + 1
end

In Algorithm 2 above, to get the actual Boolean function providing the highest
Z-score, we can sort the inputs to the truth table using their probabilities and
output the truth table with 1’s in the tmax highest probability inputs.

3.1 Improving the Time and Space Complexity Further

The main drawbacks of the above algorithm are as follows:

– It takes O(m2m + N) time, O(N) for calculating the probabilities, O(m2m)
for sorting the inputs according to the probabilities, and O(2m) iterations in
the loop.

– It would also take O(2m) space for storing the probability array.

Note that N is the length of the data in bits, and thus, we have to accept that
for analysis. On the other hand, if m is large, such as m = 128, then the above

Revisiting BoolTest 483

algorithm cannot be executed with the present computational power. Thus, we
now improve the algorithm so that it requires O(N log N) time and O(N) space.

Some Observations. Suppose all the 2m possible blocks do not appear in the
input data. This is natural in the case where the block size is large. If we have
data of the order of 240 (say 232 blocks of length 28 each), then the block size
being 256 bits, it is very clear that at most 232 different patterns may appear.
Thus, the algorithm should be redesigned. We already considered that there are
n blocks in the data, i.e., n = N

m . Now let us consider there are d distinct m
bit patterns, i.e., d ≤ n. That is, there are d data blocks that have non-zero
probabilities of occurrences. Now we explain that as in the algorithm above, we
should not check all t. Rather, increasing t above d is not required as the Z-score
for those values of t would not be more than the Z-score achieved for t = d.

Theorem 2. Let, d be the number of distinct blocks that appear in the data and
zt be the highest possible Z-score for a function ft ∈ Ft. Then, zfd

> zfj
, ∀j > d.

Proof. For block size m and fixed input data having n many blocks (may not
be all distinct), let, ft be the function with highest Z-score in Ft and zft

be the
Z-score corresponding to ft. For t = d, consider the truth table of the function
fd providing the highest Z-score zfd

. By Algorithm 2, we know that there would
be 1’s in the d highest probability blocks in the truth table, which would be all
the blocks with non-zero probability. Thus, for every possible data block that
appears in the data, there would be a 1 in the corresponding row in fd’s truth
table. So, #1, i.e., the number of data blocks in the input which when fed into
the function fd would return 1 is n, the number of blocks. Thus the Z-score will
be:

zfd
=

∣
∣∣∣∣∣

n − d
2m n

√
n d

2m (1 − d
2m)

∣
∣∣∣∣∣
=

√
n

∣
∣∣∣∣∣

1 − d
2m√

d
2m (1 − d

2m)

∣
∣∣∣∣∣

(31)

When we increase t, by the above algorithm, the truth table corresponding to
each ft would contain 1’s in t highest probability blocks. Hence, it would contain
1’s in all the blocks with non-zero probability (since there are d < t such blocks),
i.e., all blocks that appear in the data will have 1 in the corresponding truth-table
row. Thus, #1 will remain fixed at n. Hence the Z-score will be:

zt>d =

∣
∣∣∣∣∣

n − t
2m n

√
n t

2m (1 − t
2m)

∣
∣∣∣∣∣
=

√
n

∣
∣∣∣∣∣

1 − t
2m√

t
2m (1 − t

2m)

∣
∣∣∣∣∣

(32)

484 B. Chatterjee et al.

Now, the function,

h(y) =

∣∣∣∣∣
1 − y

√
y(1 − y)

∣∣∣∣∣
(33)

is a decreasing function for y ∈ (0, 1). The graph of h is shown below:

So, for t > d, we have:
√

nh(d
2m) >

√
nh(t

2m), i.e.,

√
n

∣∣∣∣∣∣

1 − d
2m n

√
d
2m (1 − d

2m)

∣∣∣∣∣∣
>

√
n

∣∣∣∣∣∣

1 − t
2m n

√
t

2m (1 − t
2m)

∣∣∣∣∣∣
,

i.e., zfd
> zft

, for t > d. Thus the proof. ��
Based on the above result, we obtain a more efficient algorithm. Now t will be
considered till d which is O(N) and not up to 2m like in the previous method.
Since we are considering large m now, we cannot use the earlier idea of having 2m

length array for storing the probability of each m-bit block or storing and sorting
all the truth table rows. Instead, we sort the m-bit blocks in the input data
interpreting their natural decimal values. This brings the same blocks together.
Then we can count the number of occurrences of each block by counting the
number of consecutive similar blocks, and the number of distinct blocks that are
appearing in the data.

Function Encoding. Note that representing an arbitrary m-input Boolean
function would require O(2m) space in the worst case, irrespective of the function
encoding scheme such as truth table or ANF, etc. However, in our case, the
algorithm ensures that whatever is the highest Z-score Boolean function, it would
only output 1 for at most d inputs. So, consider the encoding scheme where we
just list the inputs (truth table rows) for which the function returns 1, that is
we will work with the support set of the function. This will require O(N) space.
Based on all these we present an efficient algorithm.

Revisiting BoolTest 485

Algorithm 3: optimized modified booltest (run time: O(N log N))
// Sort data by value of m bit blocks to bring same blocks together

SORT(Data)
m ← block size
n ← number of blocks in data
count ← 1
idx ← 0
DistinctBlocks ← empty N length array of m-bit blocks
Occurrences ← N length array of integers initialized to 0s
for i ← 1 to N do

if i = N or Data[i] �= Data[i-1] then
Occurrences[idx] ← count
DistinctBlocks[idx] ← Data[i − 1]
count ← 0
idx ← idx + 1

count ← count + 1
end
d ← idx // d is the number of distinct blocks in data

SORT-BY-OCCURRENCES(DistinctBlocks, Occurrences)
Δ ← 0
// Δ is the number of occurrences of the blocks in Data, for which

the candidate function being considered returns 1

zmax ← −1
tmax ← −1
for i ← 0 to d − 1 do

t ← i + 1
Δ ← Δ + Occurrences[i]
p ← Δ/N
q ← t/2m

z ←
∣
∣∣∣

N(p−q)√
Nq(1−q)

∣
∣∣∣

if z > zmax then
zmax ← z
tmax ← i + 1

end
return zmax, list of top tmax inputs of DistinctBlocks

4 Results

In this section, we present the experimental results and compare them with the
existing works.

486 B. Chatterjee et al.

4.1 RC4

It is well known [4] that the second byte of the RC4 keystream is biased towards
zero with probability almost 2

256 , which is significantly higher than the uniform
random value 1

256 . Consider that a long keystream byte sequence is generated
with randomly chosen secret keys and then accumulates the second output bytes
of RC4 in each case. Since the probability of any other value except zero is slightly
less than 1

256 , according to our strategy, the Boolean function that should provide
the highest Z-score should have output 1 for all zero input and the rest of the
outputs should be 0. This function contains all the terms in ANF.

Based on the bias, it can be shown that the best distinguisher Boolean func-
tion for this data, working on 8-bit blocks is the one that returns 1 on the (0,
0, 0, 0, 0, 0, 0, 0) input and 0 on everything else (say f0). The complement
of this function may also be considered. Let us name the input variables as
(x0, x1, . . . , x7) for the eight-bit block. The ANF of the function to maximize
the Z-score contains all the terms in ANF, as provided by our Algorithm 3 in
all the runs with different sets of data. It is clear that the ANF is quite com-
plicated and such an ANF will never be considered for BoolTest [7]. We note
that taking the constraint of degree 3, BoolTest [7] provides different functions
in different runs towards the sub-optimal efforts in maximizing the Z-score, i.e.,
cannot provide the correct answer due to sub-optimality.

Table 1. Testing RC4 2nd byte samples.

File B1 B2 Bool-Test-2

Highest
Z-score

Best-distinguisher Highest
Z-score

Best-distinguisher Highest Z-score Best-distinguisher

RC4 1MB 4.55 x3x6 + x3x4 4.47 x1x3x5 + x3x6x7 + x3x4x7 64.16 f0

RC4 10MB 11.56 x2x6 + x3x7 9.90 x3x4x7 + x0x2x7 + x2x4x6 204.36 f0

RC4 100MB 31.05 x6x7 + x4x5 23.64 x2x6x7 + x3x4x5 + x1x4x6 643.14 f0

In Table 1, B1 is BoolTest [7] with parameters (degree = 2, combine-degree
= 2) and B2 represents BoolTest [7] run with parameters (degree = 3, combine-
degree = 3). Our results are presented with Bool-Test-2, where it could be seen
that the Z-score is much higher.

4.2 Comparison with Java Rand and AES

In this section, we show a comparison of the Z-scores that we have obtained from
Java Random and AES. We use 10MB files for both AES and Java Random and
apply BoolTest [7] as well as our Algorithm 3.

Revisiting BoolTest 487

Table 2. Results

File Block-size B1 B2 Best Z-score

Java 10MB 8 2.668 3.8144 11.7884

Java 10MB 32 4.2611 5.8122 65526.278

Java 10MB 256 5.6797 9.3637 3.4 ×1038

AES 10MB 8 3.4817 4.7543 12.1083

AES 10MB 32 4.322 6.289 65526.10

AES 10MB 256 5.557 8.4509 3.4 ×1038

In the Table 2 above, B1 is the BoolTest algorithm with parameters B(deg =
2,m = Block-size, t = 128, k = 2) and B2 is the BoolTest algorithm with param-
eters B(deg = 3,m = Block-size, t = 128, k = 3). As explained in this initiative,
since BoolTest [7] searches in limited function space, the Z-score obtained with
those constraints is sub-optimal. On the other hand, we obtain very high scores
in this regard. Our analysis in Sect. 2.3 theoretically explains why such large
values in Z-score are possible.

4.3 Cross-testing by the Generated Polynomials, i.e., Functions

The motivation is to generate the Boolean function for which the Z-score will
be maximized so that one can interpret a high value outside some interval as
non-randomness. One interesting methodology to evaluate this BoolTest is to
generate the best function from one data set and to use that function to eval-
uate the Z-score of another random-looking data set. First, let us consider the
BoolTest [7] heuristics in this regard.

Table 3. Cross-testing with BoolTest [7].

Function generated by Z-score

Java 1MB Java
10MB

Java
100MB

AES 1MB AES 10MB

Java 1MB (m=8) 3.22 0.8 1.0 0.156 1.124

Java 1MB (m=256) 6.08 0.22 0.80 0.148 1.977

Java 100MB (m=256) 2.6 8.5 36.75 1.1 2.0

AES 10MB (m=256) 0.56 0.30 1.34 0.02 8.45

In the Table 3, for Java 1MB (m = 8), we have used the parameters B(deg =
2,m = 8, t = 128, k = 2). For Java 1MB (m = 256), we have used the parameters
B(deg = 2,m = 256, t = 128, k = 2) and for the Java 100MB (m = 256) we have
used the parameters B(deg = 3,m = 256, t = 128, k = 3).

488 B. Chatterjee et al.

Table 4. Cross-testing for our algorithm

Function generated by Z-score

Java 1MB Java 10MB Java 100MB AES 1MB AES 10MB

Java 1MB (m=8) 13 0.26 0.87 0.12 0.38

Java 1MB (m=8) 0.58 11.8 0.50 0.20 1.0

Java 100MB(m=256) 10−33 3× 10−33 3.4× 1038 9.6× 10−34 3× 10−33

AES 10MB(m=256) 3× 10−34 9.6× 10−34 3× 10−33 3× 10−34 3.4× 10−38

Using our Algorithm 3 (with implementation in Appendix) we performed
cross-testing too and obtained the following results.

The small values that we obtained for m = 256 are probably because most of
the 256-bit blocks for which the generated function outputs 1 will never arrive
in other samples of the data. The expected number of 1 s will also be small.

To summarize, we generate the Boolean function for a distinguisher based on
a particular sample of data. Then with this function, we run the distinguisher
for a different set of random-looking data and observe the Z-score. Generally,
the lower values related to AES provide the understanding that it demonstrates
more randomness than the Java random number generator. This is a natural
conclusion, but these kinds of cross-testing require further investigation and
more concrete theoretical support.

5 Conclusion

In this paper, we have presented several critical points related to BoolTest [7],
which is considered to be a method to evaluate the randomness of a stream of
data. In this connection, we present combinatorial results related to identifying
the most suitable Boolean functions in maximizing the Z-score that could not
be achieved in the heuristic presented for BoolTest [7]. Our Algorithm 3 finds
the best Boolean function having the maximum Z-Score in O(N log N) time,
given N amount of data. While we solve certain combinatorial problems related
to BoolTest, the caveat is, this test is not sufficient to conclude on randomness
or non-randomness of a given stream of data. Certain statistical interpretations
have been discussed in [7, Section 5], but we believe that this tool needs further
evaluation. For example, one may consider cross-testing based on the generated
polynomials from BoolTest [7] or by our method that we have discussed in
Sect. 4.3. Further analysis in this regard might provide a better understanding
of this domain, which we put forward for future research.

Acknowledgment. The authors like to acknowledge the anonymous reviewers for the
detailed comments that improved the editorial as well as the technical presentation of
the paper.

Revisiting BoolTest 489

Appendix : Implementation Details

For large block sizes, the Z-score would be very large and it would not be pos-
sible to store the results accurately in 64 bits data elements of C programming
compilers. For example, the highest Z-score for a block size of 256 might be
of the order of 1038. It would require ∼ 126 bits to represent such integers up
to 1038. To maintain accuracy, we instead use the GNU multi-precision library
(GMP) for the calculations [10].

Listing 1.1. C code for final algorithm

// data = address (of first byte) of nm bit data
// len = length in bytes of data , i.e, nm/8
// m = block size
void generate(unsigned char* data , int len , int m)
{

unsigned long n = (len*8)/m;

// merge sort m-bit blocks at address ’data ’
// by the value of m-bit blocks
sort_large_block(data , 0, n - 1, m);

if(n == 0)
{

printf("no data\n\n");
return;

}

// need length(occurences) = num_distinct_blocks (<= n)
int* occurences = malloc(n * sizeof(int));
// need length(distinct_blocks) = num_distinct_blocks * size_of_block

(<= data size)
unsigned char* distinct_blocks = malloc(len * sizeof(unsigned char));

unsigned long num_distinct_blocks = 0;
unsigned long curr_count = 1, idx = 0;
unsigned long sum_occurences = 0;
for(unsigned long i=1; i<=n; i++)
{

if(i==n || !same_block(data , i, data , i-1))
{

copy_block(distinct_blocks , idx , data , i-1, m);
occurences[idx] = curr_count;
sum_occurences += occurences[idx];
curr_count = 0;
idx++;

}
curr_count ++;

}
num_distinct_blocks = idx;

// merge sort m-bit blocks at address ’distinct_blocks ’
// by their number of occurrences in the data
sort_by_occurences(distinct_blocks , occurrences , 0, num_distinct_blocks

- 1, m);

mpf_t z_max;
mpf_init(z_max); mpf_set_ui(z_max , (unsigned long) 0);
mpf_t t, q, p, MS, z, d1, d2;
mpf_init(t);
mpf_init(q);
mpf_init(p);
mpf_init(MS);
mpf_init(z);

490 B. Chatterjee et al.

mpf_init(d1);
mpf_init(d2);

int t_max = -1; int num_one = 0;
sum_occurences = 0;

for(unsigned long i=0; i<num_distinct_blocks; i++)
{

sum_occurences += occurences[i];

mpf_set_ui(t, (unsigned long)(i + (unsigned long)1));
mpf_set_ui(d1, 2); mpf_pow_ui(d1, d1, m);

if(mpf_cmp(t, d1) == 0)
{

printf("t = 2^m: break\n\n");
break;

}

// MS
mpf_div(q, t, d1);
mpf_set_ui(p, sum_occurences);
mpf_div_ui(p, p, (unsigned long)n);
mpf_sub(MS, p, q);
mpf_abs(MS, MS);

// z-score
mpf_mul_ui(MS, MS, (unsigned long) n);
mpf_set_ui(d2, (unsigned long) 1);
mpf_sub(d2, d2, q);
mpf_mul(d2, d2, q);
mpf_mul_ui(d2, d2, (unsigned long) n);
mpf_sqrt(d2, d2);
mpf_div(z, MS, d2);

if(mpf_cmp(z, z_max) > 0)
{

mpf_set(z_max , z);
t_max = i+1;
num_one = sum_occurences;

}

}

// get anf
if(m <= 16)
{

int x = m - 3; if(x < 0) x = 0;
unsigned char* truth_table = (unsigned char*) malloc((1<<x)*sizeof(

unsigned char));

for(int i=0; i<(1<<x); i++)
truth_table[i] = 0;

for(int i=0; i<t_max; i++)
set_bit(truth_table , get_block_as_int(distinct_blocks , i));

anf_from_truth_table(truth_table , m);
free(truth_table);

}

printf("highest z-score --- \n");
mpf_out_str(stdout , 10, 0, z_max);
printf("\n t_max=%d, num_one = %d\n\n", t_max , num_one);

save_bool_function(distinct_blocks , num_distinct_blocks , t_max , m);\\
free(occurences);
free(distinct_blocks);

}

Revisiting BoolTest 491

References

1. Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: a random number test suite
(Version 3.31.1) (2014). https://webhome.phy.duke.edu/rgb/General/dieharder.
php

2. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1998). https://csrc.nist.gov/
csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-
development/rijndael-ammended.pdf

3. Gustafson, H., Dawson, E., Nielsen, L., Caelli, W.: A computer package for measur-
ing the strength of encryption algorithms. Comput. Secur. 13(8), 687–697 (1994)

4. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45473-X 13

5. Marsaglia, G.: The Marsaglia random number CDROM including the diehard
battery of tests of randomness; National Science Foundation: Alexandria, VA,
USA (1995). https://en.wikipedia.org/wiki/Diehard tests, https://web.archive.
org/web/20160125103112/,http://stat.fsu.edu/pub/diehard/

6. Rukhin, A., et al.: A statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications. https://nvlpubs.nist.gov/nistpubs/
legacy/sp/nistspecialpublication800-22r1a.pdf (2010). Random Bit Generation,
NIST, https://csrc.nist.gov/projects/random-bit-generation

7. Sýs, M., Klinec, D., Svenda, P.: The efficient randomness testing using Boolean
functions. In: 14th International Conference on Security and Cryptography
(Secrypt 2017), pp. 92–103. SciTePress (2017). https://www.scitepress.org/
papers/2017/64251/64251.pdf

8. Sýs, M., Klinec, D., Kubicek, K., Svenda, P.: BoolTest: the fast randomness testing
strategy based on Boolean functions with application to DES, 3-DES, MD5, MD6,
and SHA-256. E-Business and Telecommunications (2019). https://crocs.fi.muni.
cz/public/papers/secrypt2017selected

9. Walker, J.: Pseudorandom number sequence test program (2018). https://www.
fourmilab.ch/random/

10. The GNU MP Bignum Library. Available at: https://gmplib.org/. Accessed 6 Sept
2022

https://webhome.phy.duke.edu/rgb/General/dieharder.php
https://webhome.phy.duke.edu/rgb/General/dieharder.php
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://doi.org/10.1007/3-540-45473-X_13
https://doi.org/10.1007/3-540-45473-X_13
https://en.wikipedia.org/wiki/Diehard_tests
https://web.archive.org/web/20160125103112/
https://web.archive.org/web/20160125103112/
http://stat.fsu.edu/pub/diehard/
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://csrc.nist.gov/projects/random-bit-generation
https://www.scitepress.org/papers/2017/64251/64251.pdf
https://www.scitepress.org/papers/2017/64251/64251.pdf
https://crocs.fi.muni.cz/public/papers/secrypt2017selected
https://crocs.fi.muni.cz/public/papers/secrypt2017selected
https://www.fourmilab.ch/random/
https://www.fourmilab.ch/random/
https://gmplib.org/

Weightwise Almost Perfectly Balanced
Functions: Secondary Constructions
for All n and Better Weightwise

Nonlinearities

Agnese Gini(B) and Pierrick Méaux

University of Luxembourg, Esch-sur-Alzette, Luxembourg
{agnese.gini,pierrick.meaux}@uni.lu

Abstract. The design of FLIP stream cipher presented at Eurocrypt
2016 motivates the study of Boolean function with good cryptographic
criteria when restricted to subsets of F

n
2 . Since the security of FLIP

relies on properties of functions restricted to subsets of constant Ham-
ming weight, called slices, several studies investigate functions with good
properties on the slices, i.e. weightwise properties. A major challenge is
to build functions balanced on each slice, from which we get the notion
of Weightwise Almost Perfectly Balanced (WAPB) functions. Although
various constructions of WAPB functions have been exhibited since 2017,
building WAPB functions with high weightwise nonlinearities remains a
difficult task. Lower bounds on the weightwise nonlinearities of WAPB
functions are known for very few families, and exact values were com-
puted only for functions in at most 16 variables.

In this article, we introduce and study two new secondary construc-
tions of WAPB functions. This new strategy allows us to bound the
weightwise nonlinearities from those of the parent functions enabling us
to produce WAPB functions with high weightwise nonlinearities. As a
practical application, we build several novel WAPB functions in up to
16 variables by taking parent functions from two different known fami-
lies. Moreover, combining these outputs, we also produce the 16-variable
WAPB function with the highest weightwise nonlinearities known so far.

Keywords: FLIP cipher · Boolean functions · Weightwise (almost)
perfectly balanced function · Weightwise nonlinearity

1 Introduction

The study of Boolean functions with good cryptographic criteria when restricted
to subsets of Fn

2 became recently relevant due to their role in the security of FLIP
stream cipher introduced by Méaux, Journault, Standaert, and Carlet at Euro-
crypt 2016 [MJSC16]. FLIP’s filter function is evaluated on a set of vectors of
F

n
2 having constant Hamming weight, as a consequence of design choices to make

the cipher homomorphic-friendly. Hence, the security of FLIP family relates to
certain properties of Boolean functions when they are restricted to some input
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 492–514, 2022.
https://doi.org/10.1007/978-3-031-22912-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_22

Weightwise Almost Perfectly Balanced Functions 493

subsets, e.g. slices Ek,n = {x ∈ F
n
2 |wH(x) = k} of the hypercube Fn

2 . In [CMR17],
the Boolean cryptographic criteria on restricted sets such as balancedness, non-
linearity and algebraic immunity were first studied. In particular, the concept of
balancedness for a Boolean function f : Fn

2 → F2, i.e. the preimages of 0 and 1
under f have the same cardinality, is extended to weightwise perfectly balanced-
ness, i.e. all the restrictions of f to the slices Ek,n are balanced. As balanced
functions are generally suitable for avoiding constructions with statistical biases,
we expect the same for Weightwise Perfectly Balanced (WPB) functions in the
context of inputs with fixed Hamming weight. More precisely, WPB functions
are functions balanced on each slice with 1 ≤ k ≤ n − 1, equal to 0 in 0n and
to 1 in 1n. However, WPB functions only exist for n a power of 2, since the
balancedness on each slice requires the cardinality of each one of these sets to be
even. Thus, the authors also introduced the notion of weightwise almost perfectly
balancedness allowing a tolerance for slices of odd cardinality sufficiently small
to preserve the reliability of these functions. Namely, for Weightwise Almost Per-
fectly Balanced (WAPB) functions we allow the cardinalities of the preimages
of 0 and 1 to differ of 1 when the slice Ek,n has an odd cardinality.

Carlet et al. also provided in [CMR17] a recursive construction of WAPB
functions for all n and a secondary construction of WPB functions. Afterwards,
several other constructions have been proposed [LM19,TL19,LS20,MS21,ZS21,
MSL21,GS22,ZS22,MPJ+22,GM22]. Being WAPB function relevant in a cryp-
tographic context, all these works aim to produce W(A)PB functions having good
parameters relatively to the other cryptographic criteria such as restricted and
global nonlinearity, algebraic immunity and degree. For instance, the functions
proposed in [TL19] have optimal algebraic immunity, while the family described
in [LM19] has good nonlinearity on all the slices, also called weightwise nonlinear-
ities. In fact, the weightwise nonlinearity is the criterion that got the most atten-
tion in these constructions, often used to compare the different families. It is also
the criterion with more open problems; differently from F

n
2 (and the associated

concept of bent functions), the maximum nonlinearity that can take a function
restricted to a slice is unknown, and bounds on this maximum are studied in dif-
ferent works [CMR17,MZD19,GM22]. Furthermore, a notion of restricted Walsh
transform has been introduced [MMM+18] to study better the weightwise non-
linearity. Except for the exact weightwise nonlinearities obtained experimentally
on functions up to 16 variables, in very few cases, this parameter is known or even
bounded for a construction.There are lower bounds known for two families ofWPB
functions, the recursive construction of [CMR17], whose weightwise nonlinearities
are studied in [Su21], and one construction from [LM19].

In this article, we present two novel secondary constructions of WAPB func-
tions for all n with proven bound on their weightwise nonlinearities, and we use
them to build a 16-variable WPB function with the highest weightwise nonlinear-
ities exhibited so far. More precisely, our contributions are the following. First, we
study the impact of the addition of symmetric functions and of Siegenthaler’s con-
struction on the restricted Walsh transform. Secondly, we introduce the notion of
Special WAPB (SWAPB) functions, a sub-family where we fix the support size on
the slices of odd cardinality. Then, we give two secondary constructions of SWAPB

494 A. Gini and P. Méaux

functions, first fromann-variable SWAPB function and ann-variableWAPB func-
tion to an (n + 1)-variable WAPB function, and then from an n-variable SWAPB
function to a n + t-variable SWAPB function. Very differently from the precedent
constructions, these functions are obtained combining Siegenthaler’s construction
and addition of symmetric functions, which allows to derive a lower bound on the
weightwise nonlinearities of the child function from the parameters of the parent
functions. Furthermore, we prove that the recursive construction of [CMR17] gives
WAPB functions that are inherently special.

Finally, we provide an experimental part, where we determine the exact param-
eters of functions in 8 and 16 variables. Specifically, we first build 8 and 16-variable
WPB functions from our second construction seeded with CMR functions and with
LM functions, i.e. functions from [CMR17] and [LM19], respectively. Thereafter,
we combine (slice by slice) these functions in 16 variables to obtain the 16-variable
function with the highest weightwise nonlinearities exhibited so far.

Organization: In Sect. 2 we give the necessary preliminaries on Boolean func-
tions and (weightwise) cryptograhic criteria, and properties on the parity of binary
coefficients. In Sect. 3 we introduce and study special WAPB functions, we give two
secondary constructions and prove a lower bound on their weightwise nonlineari-
ties. We prove that CMR WAPB functions are special functions in Sect. 4. Then,
We give concrete functions in 8 and 16 variables, they are obtained from one of
our new construction seeded by CMR functions, by LM functions, of mixing such
functions to obtain higher weightwise nonlinearities. Finally, we conclude briefly
the article in Sect. 5.

2 Preliminaries

In addition to classic notations we use [a, b] to denote the subset of all integers
between a and b: {a, a+1, . . . , b}. For readability we use the notation + instead of
⊕ to denote the addition in F2 and

∑
instead of

⊕
. For a vector v ∈ F

n
2 we denote

wH(v) its Hamming weight wH(v) = |{i ∈ [1, n] | vi = 1}|.

2.1 Boolean Functions and Weightwise Considerations

In this subsection we recall the main concepts on Boolean functions and their
weightwise properties we will use in this article. We refer to e.g. [Car21] for Boolean
functions and cryptographic parameters and to [CMR17] for the weightwise prop-
erties, also called properties on the slices. For k ∈ [0, n] we call slice of the Boolean
hypercube (of dimension n) the set Ek,n = {x ∈ F

n
2 |wH(x) = k}. Accordingly,

the Boolean hypercube is partitioned into n+1 slices where the elements have the
same Hamming weight.

Definition 1 (Boolean Function). A Boolean function f in n variables is a
function from F

n
2 to F2. The set of all n-variable Boolean functions is denoted Bn.

Weightwise Almost Perfectly Balanced Functions 495

Definition 2 (Algebraic Normal Form (ANF) and degree). We call Alge-
braicNormal Formof aBoolean function f itsn-variable polynomial representation
over F2 (i.e. belonging to F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn)):

f(x1, . . . , xn) =
∑

I⊆[1,n]

aI

(
∏

i∈I

xi

)

where aI ∈ F2. The (algebraic) degree of f , denoted deg(f) is:

deg(f) = max
I⊆[1,n]

{|I| | aI = 1} if f is not null, 0 otherwise.

To denote when a definition or a property is restricted to a slice we will use the
subscript k. For example, for a n-variable Boolean function f we denote its support
supp(f) = {x ∈ F

n
2 | f(x) = 1} and we refer to suppk(f) for its support restricted

to a slice, that is supp(f) ∩ Ek,n.

Definition 3 (Balancedness). A Boolean function f ∈ Bn is called balanced if
|supp(f)| = 2n−1 = |supp(f + 1)|.

For k ∈ [0, n], f is said balanced on the slice k if ||suppk(f)|−|suppk(f+1)|| ≤ 1.
In particular when |Ek,n| is even |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Definition 4 (Weightwise (Almost) Perfectly Balanced Function (WPB
and WAPB)). Let m ∈ N

∗ and f be a Boolean function in n = 2m variables. It
will be called weightwise perfectly balanced (WPB) if, for every k ∈ [1, n − 1], f is
balanced on the slice k, that is ∀k ∈ [1, n − 1], |suppk(f)| =

(
n
k

)
/2, and:

f(0, · · · , 0) = 0, and f(1, · · · , 1) = 1.

The set of WPB functions in 2m variables is denoted WPBm.
When n is not a power of 2, other weights than k = 0 and n give slices of odd car-

dinality, in this case we call f ∈ Bn weightwise almost perfectly balanced (WAPB)
if:

|suppk(f)| =
{ |Ek,n|/2 if |Ek,n| is even,

(|Ek,n| ± 1)/2 if |Ek,n| is odd.

The set of WAPB functions in n variables is denoted WAPBn.

Note that the definition of WAPB functions above (as introduced in [CMR17])
is more general than the one of WPB functions, for n = 2m the WPB functions
are a subset of the WAPB functions since the value in 0n and 1n can be taken
freely for the latter. Alternatively, WAPBn corresponds to the set of functions at
maximal distance from the set of n-variable symmetric functions SYMn, that is
WAPBn is metrically regular for the Hamming distance and SYMn is its metric
complement. We refer to [Tok12] for the notion of metrically regular sets and the
survey [Obl20]. In [SSB18] various metrically regular sets are considered, WAPB
functions are presented under the name of maximally asymmetric functions, and
the authors provide the cardinality of WAPBn (also given in [IMM13]) and the
number of balanced WAPB functions.

496 A. Gini and P. Méaux

Definition 5 (Nonlinearity and weightwise nonlinearity). The nonlinear-
ity NL(f) of a Boolean function f ∈ Bn, where n is a positive integer, is the mini-
mum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where g(x) = a · x + ε, a ∈ F
n
2 , ε ∈ F2 (where · is some inner product in F

n
2 ; any

choice of an inner product will give the same value of NL(f)).
For k ∈ [0, n] we denoteNLk the nonlinearity on the slice k, the minimum Ham-

ming distance between f restricted to Ek,n and the restrictions to Ek,n of affine func-
tions over Fn

2 . Accordingly:

NLk(f) = min
g, deg(g)≤1

|suppk(f + g)|.

We also recall the concept of Walsh transform, and restricted Walsh trans-
form [MMM+18], which are of particular interest to study the (restricted) non-
linearity or balancedness.

Definition 6 (Walsh transform and restricted Walsh transform). Let f ∈
Bn be a Boolean function, its Walsh transform Wf at a ∈ F

n
2 is defined as:

Wf (a) :=
∑

x∈Fn
2

(−1)f(x)+a·x.

Let f ∈ Bn, S ⊂ F
n
2 , its Walsh transform restricted to S at a ∈ F

n
2 is defined as:

Wf,S(a) :=
∑

x∈S

(−1)f(x)+ax.

For S = Ek,n we denote Wf,Ek,n
(a) by Wf,k(a).

Property 1 (Nonlinearity on the slice, adapted from [CMR17], Proposition 6).
Let n ∈ N

∗, k ∈ [0, n], for every n-variable Boolean function f over Ek,n:

NLk(f) =
|Ek,n|

2
− maxa∈Fn

2
|Wf,k(a)|
2

.

Property 2 (Balancedness on the slice and restricted Walsh transform). Let n ∈
N

∗, k ∈ [0, n], f ∈ Bn is balanced over Ek,n if and only if:

Wf,k(0|Ek,n|) =
{

0 if |Ek,n| is even,
±1 if |Ek,n| is odd.

2.2 Siegenthaler’s Construction, Symmetric Functions

In the following we recall the Siegenthaler construction, a common secondary con-
struction which combines two n-variable functions to obtain an (n + 1)-variable
function:

Weightwise Almost Perfectly Balanced Functions 497

Definition 7 (Siegenthaler’s Construction). Let n ∈ N, f0, f1 ∈ Bn, we call
Siegenthaler’s construction f from components f0 and f1:

f ∈ Bn+1, ∀x ∈ F
n
2 ,∀y ∈ F2, f(x, y) = (1 + y) · f0(x) + y · f1(x).

We recall definitions and properties on symmetric functions since they will
be used for the main secondary construction we present in the article. Symmet-
ric functions are functions such that changing the order of the inputs does not
change the output. They have been the focus of many works for their cryptographic
parameters such as [Car04,CV05,BP05,DMS06,QLF07,SM07,QFLW09,CL11],
or more recently [TLD16,CM19,CZGC19,Méa19,Méa21,CM22].

Definition 8 (Symmetric Functions). Let n ∈ N
∗, the Boolean symmetric

functions are the functions which are constant on each Ek,n for k ∈ [0, n]. The
set of n variable symmetric functions is denoted SYMn and |SYMn| = 2n+1. We
distinguish families of symmetric functions:
– Elementary symmetric functions. Let i ∈ [0, n], the elementary symmetric func-

tion of degree i in n variables, denoted σi,n, is the function which ANF contains
all monomials of degree i and no monomials of other degrees.

– Threshold Functions. Let d ∈ [0, n], the threshold function of threshold d is
defined as:

∀x ∈ F
n
2 , Td,n(x) = 1 if and only if wH(x) ≥ d.

– Slice indicator functions. Let k ∈ [0, n], the indicator function of the slice of
weight k is defined as:

∀x ∈ F
n
2 , ϕk,n(x) = 1 if and only if wH(x) = k.

The n+1 n-variable symmetric functions of each family form a basis of SYMn

(that is every element of SYMn can be written as a linear combination of these
n + 1 functions). Now, we precise on how to express ϕk,n as a sum of symmet-
ric elementary function. To do so, we use the expression of threshold functions in
term of symmetric elementary functions from [Méa19], since ϕk,n is the sum of two
consecutive threshold functions.

Property 3 (Algebraic normal form of threshold functions (adapted from
[Méa19], Theorem 1)). Let n, d ∈ N

∗ such that 0 < d ≤ n + 1, let D = 2�log d�.
For v ∈ F

n
2 we denote v the complementary of v ∈ F

n
2 : ∀i ∈ [1, n], vi = 1 − vi. We

denote
 the partial order on F
n
2 defined as a
 b ⇔ ∀i ∈ [1, n], ai ≤ bi, where ≤

denotes the usual order on Z and the elements ai and bi of F2 are identified to 0 or
1 in Z. We denote the set:

Ad = {v ∈ [0,D − 1] | v
 D − d} = {v ∈ F
�log d�
2 | v
 d − 1},

where d − 1 is considered over log D − 1 bits. We also denote:

Bd,n = {kD + d + v | k ∈ N, v ∈ Ad} ∩ [1, n] = {kD − v | k ∈ N
∗, v ∈ Ad} ∩ [1, n].

The ANF of the threshold function is given by: Td,n =
∑

i∈Bd,n

σi,n.

Since ϕk,n = Tk,n+Tk+1,n its ANF is given by Bk,nΔBk+1,n, where Δ denotes
the symmetric difference of sets (i.e. AΔB = (A ∪ B) \ (A ∩ B)).

498 A. Gini and P. Méaux

2.3 Parity of Binomial Coefficients

This section contains results about binomial coefficients that will be used in this
article. As a convention we set

(
a
b

)
= 0 if b < 0 and b > a.

Property 4 (Pascal’s formula). Let a, b ∈ N. Then
(

a

b

)

=
(

a − 1
b

)

+
(

a − 1
b − 1

)

.

Property 5 (Vandermonde Convolution). Let a, b, c ∈ N. Then

(
a + c

b

)

=
b∑

j=0

(
c

b − j

)(
a

j

)

.

Property 6 Lucas’ Theorem, e.g. [Fin47]). Let a, b, p ∈ N be integers such that
a > b and p is a prime. Consider their p-adic expansions a =

∑q
j=0 ajp

j and
b =

∑q
j=0 bjp

j such that 0 ≤ aj < p and 0 ≤ bj < p for each j ∈ [0, q] and
aq = 0. Then

(
a

b

)

≡
q∏

j=0

(
aj

bj

)

(mod p).

Proposition 1. Let a, b ∈ N and their binary decomposition be a =
∑qa

j=0 aj2j

and b =
∑qb

j=0 bj2j such that 0 ≤ aj < 2 and 0 ≤ bj < 2 for each j, and aqa , bqb = 0.

1.
(
2a

b

)
is even for 0 < b < 2a.

2. If a ≡ 0 mod 2 and b ≡ 1 mod 2, then
(
a
b

) ≡ 0 mod 2.
3. If a ≡ 1 mod 2 and b ≡ 0 mod 2, then

(
a
b

) ≡ (
a−1

b

)
mod 2.

4.
(
a
b

) ≡ 1 mod 2 if and only if for all j ∈ [0, qb] it holds aj ≥ bj.

Proof. 1. If 0 < b < 2a, there exists at least a coefficient bj = 1 in the binary
expansion of b for j < a. Then by Property 6

(
2a

b

) ≡ 0 mod 2 since
(
0
bj

) ≡ 0.

2. If a ≡ 0 mod 2, then 0 ≡ a
(
a−1
b−1

) ≡ b
(
a
b

) ≡ (
a
b

)
mod 2.

3. This comes from Property 4 and point 2.
4. From Lucas’ theorem we have that

(
a
b

) ≡ 1 mod 2 if and only if
(
aj

bj

) ≡ 1
mod 2 for each j ∈ [0, qb] if and only if aj ≥ bj for each j ∈ [0, qb].

��
We prove the following fact, illustrated by Fig. 1 for n < 16.

Lemma 1. Let u ≥ 2 and t ∈ [1, 2u−2], for all k ∈ [2u−1 − 2t + 1, 2u−1 − 1] the
binomial coefficient

(
2u−2t

k

)
is even.

Proof. We write 2u − 2t = 2u−1 + (2u−1 − 2t), then using Property 5 we obtain

(
2u − 2t

k

)

=
k∑

j=0

(
2u−1 − 2t

k − j

)(
2u−1

j

)

Weightwise Almost Perfectly Balanced Functions 499

Since the coefficients
(
2u−1

j

)
are even for 0 < j < 2u−1 by Proposition 1.1, reducing

the convolution modulo 2 we obtain (recall that
(
a
b

)
= 0 if b < 0 and b > a,

therefore for certain values of k some addenda can be zero by default):
(

2u − 2t

k

)

≡
(

2u−1 − 2t

k

)

+
(

2u−1 − 2t

k − 2u−1

)

mod 2.

Therefore,
(
2u−2t

k

)
is even if k ∈ [2u−1 − 2t + 1, 2u−1 − 1]. ��

00

0 1

0 211

0 31 2

0 41 322

0 51 42 3

0 61 52 433

0 71 62 53 4

0 81 72 63 544

0 91 82 73 64 5

0 101 92 83 74 655

0 111 102 93 84 75 6

0 121 112 103 94 85 766

0 131 122 113 104 95 86 7

0 141 132 123 114 105 96 877

0 151 142 133 124 115 106 97 8

Fig. 1. Binomial coefficients and parity for n ∈ [0, 15]. The square labeled with k at level
n corresponds to the binomial coefficient

(
n
k

)
and it is colored in yellow if the coefficient

is even and teal if the coefficient is odd. (Color figure online)

3 SpecialWAPBFunctions and Secondary Constructions

In this section, we begin with properties of the restricted Walsh transform rela-
tively to Siegenthaler’s construction and addition of symmetric functions. Then,
we define a subset of balanced WAPB functions and give a construction to trans-
form any WAPB function into a function in this subclass. Finally, we provide and
study a secondary construction of (n + 1)-variable WAPB function from two n-
variable WAPB functions.

3.1 Restricted Walsh Transform and Properties

First, we study the weightwise restricted Walsh transform of functions obtained
through Siegenthaler’s construction.

Proposition 2 (Weightwise restricted Walsh transform and Siegen-
thaler’s construction).Letn ∈ N, f0, f1 ∈ Bn, f obtained through Siegenthaler’s
construction with components f0 and f1 has the following property:

∀k ∈ [0, n],∀(a, b) ∈ F
n
2 × F2, Wf,k(a, b) = Wf0,k(a) + (−1)bWf1,k−1(a).

500 A. Gini and P. Méaux

Proof. We rewrite Wf,k(a, b):

Wf,k(a, b) =
∑

(x,y)∈Ek,n+1

(−1)f(x,y)+(a,b)·(x,y)

=
∑

x∈Ek,n

(−1)f(x,0)+(a,b)·(x,0) +
∑

x∈Ek−1,n

(−1)f(x,1)+(a,b)·(x,1)

=
∑

x∈Ek,n

(−1)f0(x)+a·x +
∑

x∈Ek−1,n

(−1)f1(x)+a·x+b

= Wf0,k(a) + (−1)bWf1,k−1(a).

��
Proposition 3 (Weightwise nonlinearity bound on Siegenthaler’s con-
struction).Let n ∈ N, f0, f1 ∈ Bn, f obtained through Siegenthaler’s construction
with components f0 and f1 has the following property:

∀k ∈ [0, n], NLk(f) ≥ NLk(f0) + NLk−1(f1).

Proof. First, we bound max(a,b)∈Fn
2 ×F2 |Wf,k(a, b)| using Proposition 2:

max
(a,b)∈Fn

2 ×F2

|Wf,k(a, b)| = max
(a,b)∈Fn

2 ×F2

|Wf0,k(a) + (−1)bWf1,k−1(a)|

= max
a∈Fn

2

(|Wf0,k(a)| + |Wf1,k−1(a)|) .

Then, we use Property 1:

max
a∈Fn

2

(|Wf0,k(a)| + |Wf1,k−1(a)|) ≤ max
a∈Fn

2

|Wf0,k(a)| + max
a∈Fn

2

|Wf1,k−1(a)|

≤ |Ek,n| − 2NLk(f0) + |Ek−1,n| − 2NLk−1(f1)
≤ |Ek,n+1| − 2(NLk(f0) + NLk−1(f1)).

Finally, using again Property 1: NLk(f) ≥ NLk(f0) + NLk−1(f1). ��
In the following we consider the impact on the weightwise restricted Walsh

transform of adding a symmetric function.

Proposition 4 (Weightwise restricted Walsh transform and addition of
symmetric function). Let n ∈ N

∗, k ∈ [0, n] and f ∈ Bn, the following holds on
f + ϕk,n

∀a ∈ F
n
2 ,∀i ∈ [0, n]\{k},Wf+ϕk,n,i(a) = Wf,i(a), and Wf+ϕk,n,k(a) = −Wf,i(a).

Proof. Rewriting Wf+ϕk,n,i(a) we obtain:

Wf+ϕk,n,i(a) =
∑

x∈Ei,n

(−1)(f+ϕk,n)(x)+a·x =
{Wf,i(a) if i = k,

−Wf,i(a) if i = k.

��
Consequently, Proposition 4 directly implies that adding symmetric functions do
not alter the weightwise balancedness nor the weightwise nonlinearity of a func-
tion.

Weightwise Almost Perfectly Balanced Functions 501

3.2 Special WAPB Functions

In the following we specify a sub-part of balanced WAPB functions called special
WAPB. To do so we use the characterization of WAPB through the weightwise
restricted Walsh transform.

Definition 9 (Special Weightwise Almost Perfectly Balanced functions
(SWAPB)). Let n ∈ N

∗, f is a WAPB function if:

Wf,k(0n) =
{

0 if |Ek,n| is even,
±1 if |Ek,n| is odd.

Additionally, the function is called special WAPB (SWAPB) if:

Wf,k(0n) =

⎧
⎨

⎩

0 if |Ek,n| is even,
1 if |Ek,n| is odd and k < n/2,
−1 if |Ek,n| is odd and k > n/2.

The set of SWAPB functions in n variables is denoted SWAPBn.

Property 7 (Basic properties of SWAPB functions). Let n ∈ N
∗, the following

hold for SWAPBn:

– SWAPBn ⊂ WAPBn,
– if n = 2m then SWAPBn = WPBm,
– |SWAPBn| =

∏n
k=0

(
ν

	ν/2

)

for ν =
(
n
k

)
.

The next proposition allows to build a SWAPB function from a WAPB function.

Proposition 5 (From WAPB to SWAPB). Let n ∈ N
∗ and f ∈ WAPBn.

Let Sf ⊂ [0, n] the set defined as Sf = {k ∈ [0, n/2[, |Wf,k(0n) = −1} ∪ {k ∈
]n/2, n], |Wf,k(0n) = 1}, the function f ′ = f +

∑

k∈Sf

ϕk,n belongs to SWAPBn.

Proof. Using the characterization through the restricted Walsh transform and the
definition of Sf we get:

Wf,k(0n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if |Ek,n| is even,
1 if |Ek,n| is odd, k < n/2, and k ∈ Sf ,
−1 if |Ek,n| is odd, k < n/2, and k ∈ Sf ,
−1 if |Ek,n| is odd, k > n/2, and k ∈ Sf ,
1 if |Ek,n| is odd, k > n/2, and k ∈ Sf .

Applying Proposition 4, the value of Wf ′,k(0n) is flipped for all k ∈ Sf and
unchanged for the other weights (relatively to f). Thereafter, f ′ is SWAPB. ��

502 A. Gini and P. Méaux

3.3 Secondary Constructions of WAPB Functions

We introduce a secondary construction from two n-variables SWAPB functions to
one n+1 SWAPB function. Repetitively using this construction allows us to build
WAPB functions for all n.

Construction 1
Input: Let n ∈ N

∗ f0, f1 two n-variable SWAPB functions.
Output: f an n + 1-variable SWAPB function.
1: Define Sn as Sn = {k ∈ [1, n/2[| (n

k−1

) ≡ (
n
k

) ≡ 1 mod 2}.
2: for k ∈ Sn do
3: f1 ← f1 + ϕk−1,n + ϕn−k,n,
4: end for
5: Compute f = (1 + xn+1)f0 + xn+1f1.
6: return f .

Theorem 1 (Special weightwise almost perfectly balancedness of Con-
struction 1). Let n ∈ N

∗, f0 ∈ SWAPBn, and f1 ∈ WAPBn, the function f
given by Construction 1 belongs to SWAPBn+1.

Proof. By construction f is obtained from Siegenthaler’s construction with com-
ponents f0 and f ′

1 = f1 +
∑

k∈Sn
(ϕk−1,n + ϕn−k,n) where f0 and f1 are SWAPB

functions. Accordingly, the restricted Walsh transform values of f can be obtained
from the ones of f0 and f1 using Proposition 2. The values of the restricted Walsh
transform of f0 and f1 are given by Definition 9 since these two functions are
SWAPB. Then, Wf ′

1,k(0n) can be determined by using Proposition 4.
We do a disjunction of cases to determine Wf,k(0n+1), considering the parity

of
(

n
k−1

)
and

(
n
k

)
, for k ∈ [0, n/2[:

– Case
(

n
k−1

) ≡ (
n
k

) ≡ 0 mod 2. In this case:

Wf,k(0n+1) = Wf0,k(0n) + Wf ′
1,k−1(0n) = 0 + Wf1,k−1(0n) = 0,

and

Wf,n+1−k(0n+1) = Wf0,n−k+1(0n) + Wf ′
1,n−k(0n) = 0 + Wf1,n−k(0n) = 0.

– Case
(

n
k−1

) ≡ (
n
k

)
mod 2. In this case:

Wf,k(0n+1) = Wf0,k(0n) + Wf ′
1,k−1(0n) = Wf0,k(0n) + Wf1,k−1(0n) = 1,

and Wf,n+1−k(0n+1) = Wf0,n−k+1(0n) + Wf1,n−k(0n) = −1.
– Case

(
n

k−1

) ≡ (
n
k

) ≡ 1 mod 2. In this case:

Wf,k(0n+1) = Wf0,k(0n) + Wf ′
1,k−1(0n) = 1 + Wf1+ϕk,n,k−1(0n) = 1 − 1 = 0,

Weightwise Almost Perfectly Balanced Functions 503

and

Wf,n+1−k(0n+1) = Wf0,n−k+1(0n) + Wf ′
1,n−k(0n)

= −1 + Wf1+ϕn−k,n,n−k(0n) = −1 + 1 = 0.

Using Pascal’s formula |Ek,n+1| is even if and only if
(

n
k−1

) ≡ (
n
k

)
mod 2, and

regrouping the different cases we obtain:

Wf,k(0n+1) =

⎧
⎨

⎩

0 if |Ek,n+1| is even,
1 if |Ek,n+1| is odd and k < (n + 1)/2,
−1 if |Ek,n+1| is odd and k > (n + 1)/2.

Therefore, f ∈ SWAPBn. ��
Remark 1. From Proposition 1 we have that for each n ∈ N Sn = ∅ if n ≡ 0
mod 2. Therefore, if n is even, the input function f1 of Construction 1 is not mod-
ified by Step 1 to 4. Thus, one can output directly f = (1 + xn+1)f0 + xn+1f1.

Combining Proposition 5 and Theorem 1 enables us to obtain a SWAPB func-
tion in n + 1 variable from any n variable WAPB function. Since the obtained
function is SWAPB, the theorem can be reapplied with twice this function. Thus,
repeating this procedure allows us to build SWAPB functions for all n′ > n. More-
over, the weightwise nonlinearity of such built functions can be bounded using
Proposition 3. Thereafter, we describe the construction obtained by using t times
the same SWAPB function, i.e. Construction 2.

Theorem 2 (Special weightwise almost perfectly balancedness and
weightwise nonlinearity bound of Construction 2). Let n, t ∈ N

∗ and f ∈
SWAPBn, the function g generated by Construction 2 is such that:

g ∈ SWAPBn+t, and ∀k ∈ [0, n + t], NLk(g) ≥
min{k,t}∑

i=0

(
t

i

)

NLk−i(f).

Proof. Note that for t = 1, it corresponds to:

g =f + xn+1

(
∑

k∈Sn

ϕk−1,n + ϕn−k,n

)

=(1 + xn+1)f + xn+1

(

f +
∑

k∈Sn

ϕk−1,n + ϕn−k,n

)

,

i.e. the function obtained by Construction 1 from f0 = f1 = f . Therefore, using
Theorem 1, g is SWABP, and Proposition 3 gives the bound onNLk(g). The results
for t > 1 are obtained by immediate recursion. ��

504 A. Gini and P. Méaux

Construction 2
Input: Let n, t ∈ N

∗ f a n-variable SWAPB functions.
Output: g an (n + t)-variable SWAPB function.
1: Initialize g, g ← f .
2: for i ∈ [1, t] do
3: h = 0
4: if n + i − 1 ≡ 0 mod 2 then
5: Sn+i−1 ← {k ∈ [1, (n + i − 1)/2[| (n+i−1

k−1

) ≡ (
n+i−1

k

) ≡ 1 mod 2},
6: for k ∈ Sn+i−1 do
7: h ← h + ϕk−1,n+i−1 + ϕn+i−1−k,n+i−1,
8: end for
9: end if

10: g ← g + xn+ih,
11: end for
12: return g.

4 Concrete Constructions and Parameters

In the first part of this section we recall the CMR construction from [CMR17]
of WAPB functions for all n, and we prove that CMR functions are SWAPB.
This implies that we can use functions from this family as seeds for Construc-
tion 2 to obtain other SWAPB functions. Hence, we collect some relevant cryp-
tographic parameters of new WPB functions in 8 and 16 variables computed by
using this strategy. Finally, we also apply Construction 2 with some LM functions
from [LM19] as input, and we explain how to combine all these functions to get
another function in WPB4 having high weightwise nonlinearity on every slice.

The methods that we applied to explicitly determine the functions and the
value of their cryptographic parameters are discussed in Sect. 4.4

4.1 Building SWAPB Functions from CMR Construction

Definition 10 (CMR WAPB construction (adapted from [CMR17],
Proposition 5)). Let n ∈ N, n ≥ 2, the WAPB function fn is recursively defined
by f2(x1, x2) = x1 and for n ≥ 3:

fn(x1, . . . , xn) =

⎧
⎪⎨

⎪⎩

fn−1(x1, . . . , xn−1) if n odd,
fn−1(x1, . . . , xn−1) + xn−2 +

∏2d−1

i=1 xn−i if n = 2d; d > 1,

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d

i=1 xn−i if n = p · 2d; p odd.

For example, the 16-variable function from this construction is:

f16 = x1 + x2 + x2x3 + x4 + x4x5 + x6 + x4x5x6x7

+x8+x8x9+x10+x8x9x10x11+x12+x12x13+x14+x8x9x10x11x12x13x14x15,

Weightwise Almost Perfectly Balanced Functions 505

and the function fi for i ∈ [2, 15] is given by the ANF of f16 reduced to the variables
with index smaller than i for i even and i − 1 for i odd.

We prove that functions from CMR WAPB construction are SWAPB.

Theorem 3. Let n ∈ N, n ≥ 2 and fn be the n-variable WAPB function from
CMR construction (Definition 10). Then, fn ∈ SWAPBn.

Proof. If n = 2d for d > 1 we have that fn is WPB by [CMR17, Proposition
5], hence it is special by Property 7. If n = 3, explicit computations show that
|supp0(f3)| = 0 = (|E0,3| − 1)/2, |supp1(f3)| = 1 = (|E1,3| − 1)/2, |supp2(f3)| =
2 = (|E2,3| + 1)/2 and |supp3(f3)| = 1 = (|E0,3| + 1)/2. This implies that f3 ∈
SWAPB3, too.

Now, we prove that fn ∈ SWAPBn by induction on n for the missing values.
Since our results extends [CMR17, Proposition 5], for the sake of simplicity, we
recall here some facts from its proof denoting them by (�), and we refer to the
original paper for details. Specifically, let us assume that for n ≥ 5 for 2 ≤ i < n
fi is SWAPB.

– If n ≡ 1 mod 2, we can write it as 2� + 1. For any k ∈ [1, n − 1] it
holds |suppk(fn)| = |suppk−1(fn−1)| + |suppk(fn−1)|. Namely, Wfn,k(0n) =
Wfn−1,k(0n−1)+Wfn−1,k−1(0n−1). From Proposition 1, we get that at least one
cardinality between |Ek−1,n−1| and |Ek,n−1| is even. If both are even, |Ek,n−1|+
|Ek−1,n−1| = |Ek,n| is even and Wfn,k(0n) = 0.
If one is odd, then |Ek,n| is also odd and we have the following cases:

• Suppose k < �. Then |suppk(fn)| = |Ek,n−1|/2 + |Ek−1,n−1|/2 − 1/2 =
(|Ek,n| − 1)/2, i.e. Wfn,k(0n) = 1 , since fn−1 is SWABP.

• Suppose k > � + 1. Then |suppk(fn)| = |Ek,n−1|/2 + |Ek−1,n−1|/2 + 1/2 =
(|Ek,n| + 1)/2, i.e. Wfn,k(0n) = −1, since fn−1 is SWABP.

• The central binomial
(
2�
�

)
is always even for � > 1, since by Pascal’s formula

(Property 4)
(
2�
�

) ≡ 22� − 2
∑�−1

j=0

(
2�
j

) ≡ 0 mod 2. Being n − 1 = 2�,
we have |E�,n−1| ≡ 0 mod 2. Then, by Pascal’s formula we obtain that
|E�,n| ≡ |E�−1,n−1| mod 2 and |E�+1,n| ≡ |E�+1,n−1| mod 2 .
Therefore, since fn−1 is SWABP

Wfn,�(0n) = Wfn−1,�(0n−1) + Wfn−1,�−1(0n−1) = Wfn−1,�−1(0n−1) = 1,

Wfn,�+1(0n) = Wfn−1,�+1(0n−1) +Wfn−1,�(0n−1) = Wfn−1,�+1(0n−1) = −1.

Moreover, |supp0(fn)| = |supp0(fn−1)| = 0 and |suppn(fn)| = |suppn(fn−1)| =
1. Therefore, fn is SWAPB if n ≡ 1 mod 2.

– Suppose n = p · 2d and p > 1 odd. Let us denote nd = n − 2d. We have the
following cases:

• If k = 0, |supp0(fn)| = |supp0(fn)| = 0 (�).
• If k ∈ [1, 2d − 1], it holds

|suppk(fn)| = |suppk(fnd
)| +

1
2

((
n

k

)

−
(

nd

k

))

(�),

506 A. Gini and P. Méaux

Wfn,k(0n)

Wfnd
,k(0nd)

Wfnd
,k−2d(0nd)

n
k

nn
22d0 nd

2
ndnd+2d−1

2

Fig. 2. Light orange and light blue areas correspond to intervals of k where the restricted
Walsh transform of the corresponding CMR function is either in {0, 1} or {0, −1}, respec-
tively. While, dashed areas correspond to intervals of k where we prove it to be zero. For
the studied k we have Wfn,k(0n) = Wfnd

,k(0nd) + Wfnd
,s(0nd). Therefore, the coloring

of the top row is fully determined by those of the rows below. (Color figure online)

that is Wfn,k(0n) = Wfnd
,k(0nd

).
If |Ek,nd

| ≡ 0 mod 2, then Wfn,k(0n) = 0. Conversely, since (nd)/2 =
2d−1(p − 1) > 2d for p > 3, Wfn,k(0n) = Wfnd

,k(0nd
) = 1. If p = 3,

Wfn,k(0n) = 0 for each k ∈ [1, 2d − 1], since fnd
is WPB.

• If k ∈ [2d, n − 1], setting s = k − 2d it holds

|suppk(fn)| = |suppk(fnd
)|+|supps(fnd

)|+1
2

((
n

k

)

−
(

nd

k

)

−
(

nd

s

))

(�).

This is equivalent to

Wfn,k(0n) = Wfnd
,k(0nd

) + Wfnd
,s(0nd

)

Depending on the value of k by induction we know that

Wfnd
,k(0nd

) ∈
{

{1, 0} if k < nd/2,

{−1, 0} if k ≥ nd/2.

Wfnd
,s(0nd

) ∈
{

{1, 0} if k < nd/2 + 2d,

{−1, 0} if k ≥ nd/2 + 2d.

Notice that, at least one between |Ek,nd
| and |Es,nd

| is even. Indeed, con-
sider the binary decomposition nd =

∑q
j=0 aj2j , k =

∑q
j=0 kj2j and

s = k − 2d =
∑q

j=0 sj2j (where q = �log2(n)�). If
(
nd

k

)
is odd, from Propo-

sition 1 we have that aj ≥ bj for each j. In particular, since nd = 2d(p− 1),
ad = 0 and consequently kd = 0. This implies that sd = 1, hence

(
ad

sd

)
= 0.

Thus, by Lucas’ theorem
(
nd

s

)
is even if

(
nd

k

)
is odd.

This implies that for k ∈ [2d, nd/2] we have that Wfn,k(0n) ∈ {1, 0}, while
that Wfn,k(0n) ∈ {−1, 0} for k ∈ [nd/2 + 2d, n − 1]. See Fig. 2.
In order to conclude, it is sufficient to show that

(
nd

k

)
is even for k ∈

[nd/2−2d−1, nd/2]. Indeed, by using the symmetries of binomial coefficient

Weightwise Almost Perfectly Balanced Functions 507

this implies

Wfn,k(0n) =

{
Wfnd

,s(0nd
) ∈ {1, 0} if k ∈ [nd/2, n/2],

Wfnd
,k(0nd

) ∈ {−1, 0} if k ∈ [n/2, nd/2 + 2d].
(1)

Recall that nd = 2d(p − 1). If p = 3, fnd
is WPB and all the

(
nd

k

)
are even

for k ∈ [1, nd − 1].
Hence, suppose p > 3. Setting L = �log2(p)� + 1, since p is odd, we can
write p = 2L−1 +

∑L−2
j=1 pj2j + 1 with pj ∈ {0, 1}. Let u = d + L, then

2d < nd < n < 2u and

nd =2d(p − 1) = 2d+L−1 +
L−2∑

j=1

pj2j+d = 2u−1 +
u−2∑

j=d+1

pj−d2j

=2u − 2u−1 +
u−2∑

j=d+1

pj−d2j = 2u − 2(2u−2 −
u−3∑

i=d

pi−d+12i)

This implies that we can write nd = 2u − 2t with t ∈ [1, 2u−2]. Therefore,
applying Lemma 1 we obtain that for k ∈ [2u−1 − 2t + 1, 2u−1 − t] =
[nd/2 − t + 1, nd/2] the binomial coefficients

(
nd

k

)
are even.

Furthermore, since nd + 2d = n < 2d+L = 2u, we must have t > 2d−1, i.e.
t ∈]2d−1, 2u−2]. Then, [nd/2 − 2d−1, nd/2] ⊆ [nd/2 − t + 1, nd/2].
This implies that for k ∈ [nd/2 − 2d−1, nd/2] the coefficients

(
nd

k

)
are even

and consequently (1) holds true.
• If k = n, |suppn(fn)| = 1 (�).

Therefore, fn is SWAPB.

��
Now, we can define a novel family of functions obtained by Construction 2

seeded by the SWAPB CMR functions.

Definition 11 (SWAPB functions g�,n). Let n, � ∈ Nwith � ∈ [2, n−1], we call
g�,n the SWAPB function obtained by applying Proposition 5 and Construction 2
with t = n − � and f�, the �-variable WAPB function from CMR construction. We
set gn,n = fn.

In Tables 1 and 2 we report degree, algebraic immunity, nonlinearity and NLk

for k = 2, . . . , n − 2 of the functions g�,n for n = 8 and n = 16, respectively.
Studying only g�,n for � even is sufficient, since the following fact holds:

Proposition 6. Let n, s ∈ N and s ∈ [1, (n − 1)/2]. Then g2s,n = g2s+1,n.

Proof. Following Definition 11, the function g2s,n is obtained by applying Con-
struction 2 with f2s as input. Therefore, we have

g2s,n = f2s +
n−2s∑

i=1

x2s+ih2s+i−1

508 A. Gini and P. Méaux

where hj =
∑

k∈Sj
ϕk−1,j + ϕj−k,j . By Remark 1 we have S2s = ∅ and conse-

quently h2s = 0. Moreover, we have that f2s+1(x1, . . . , x2s+1) = f2s(x1, . . . , x2s)
from Definition 10. This implies that

g2s,n =f2s +
n−2s∑

i=1

x2s+ih2s+i−1 = f2s + x2s+1h2s + x2s+2h2s+1 + · · · + xnhn−1

=f2s+1 + x2s+2h2s+1 + · · · + xnhn−1 = g2s+1,n.

��

Table 1. Cryptographic parameters of the SWAPB functions g�,8.

Degree AI NL NL2 NL3 NL4 NL5 NL6

g2,8 4 3 88 5 10 16 12 5

g4,8 4 3 88 3 7 15 11 3

g6,8 4 3 96 2 12 18 12 2

g8,8 4 3 88 2 12 19 12 6

Table 2. Cryptographic parameters of the SWAPB functions g�,16.

Deg AI NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

g2,16 8 6 28576 16 97 459 1508 3078 4209 4699 4441 3157 1674 671 170 26

g4,16 8 6 28032 14 75 383 1343 2879 4010 4534 4354 3126 1555 627 168 24

g6,16 8 6 29792 10 44 344 1458 3110 4502 4947 4321 2897 1326 580 157 20

g8,16 8 6 27712 10 44 328 1326 2818 3815 4083 4105 3047 1534 656 144 16

g10,16 8 6 29840 5 43 377 1595 3279 4446 5066 4714 3320 1655 507 105 11

g12,16 8 5 29152 5 43 265 1397 3148 4439 4971 4803 3396 1712 627 151 13

g14,16 8 5 29824 4 56 350 1288 3108 4774 5540 4902 3228 1664 638 152 12

g16,16 8 4 29488 4 56 350 1288 3108 4774 5539 4902 3236 1672 654 152 28

4.2 Building Other WPB Functions from LM Construction

In this subsection we study the output of Construction 2 seeded by WPB functions
introduced in [LM19]. We recall the definition of these LM functions, referring to
the original paper and to [Car21] for the notions of coset leaders of the cyclotomic
classes and trace form of a Boolean function.

Definition 12 (LM WPB construction (adapted from [LM19], Corollary
3.5)). Let n ∈ N, n ≥ 2, we denote by Γn the set of all the coset leaders of the
cyclotomic classes of 2 modulo 2n − 1 and by o(j) the cardinality of the cyclotomic
class of 2 modulo 2n − 1 containing j. Define Tj : F2o(j) → F2 the function y �→
∑o(j)−1

i=0 y2i . For any fixed β primitive element of F22 and any given any function
ι : Γn \ {0} → {1, 2}, the LM WPB function associate to ι is

LMι(x) =
∑

j∈Γn\{0}
Tj(βι(j)xj).

Weightwise Almost Perfectly Balanced Functions 509

These functions are proven to be WPB functions defined in 2m variables, hence
SWAPB. Therefore, they can be used to generate other SWAPB by using Con-
struction 2 for all n. We observed that when we apply Construction 2 exhaustively
to all LM functions in 4 variables to construct new 8-variable WPB functions we
obtain functions having two possible configurations of degree, algebraic immunity,
nonlinearity and NLk for k = 2, . . . , n − 2, summarized by Table 3.

Table 3. Profiles of WPB functions in 8 variables returned by Construction 2 applied
to the LM family in 4 variables.

Degree AI NL NL2 NL3 NL4 NL5 NL6

Profile 1 4 4 96 5 13 19 17 5

Profile 2 4 4 96 5 16 20 17 5

In order to get new 16-variable WPB functions, we considered in practice two
functions as a seed for Construction 2 derived from LM construction having good
cryptographic properties. See Table 4.

Table 4. Cryptographic parameters of two WPB functions in 8 variables derived from
LM construction.

Degree AI NL NL2 NL3 NL4 NL5 NL6

l 7 4 108 6 21 27 22 9

l0 7 4 104 9 22 27 22 9

Specifically, we took l as a LM WPB function optimizing NL4, NL5,and NL6
for LM construction (see [LM19, Table 1]), while we obtained l0 as ϕ0,n(x)l(x) +
∑3

k=1 ϕk,n(x)l̄(x)+
∑n

k=4 ϕk,n(x)l(x), where for any f ∈ Bn we denote by f̄(x) the
Boolean function f(x + 1n) obtained by the composition of the bit-wise negation
of x and f . Applying Construction 2 for n = t = 8 and as a input either l or l0, we
get two distinct functions g and g0, respectively. We collect in Table 5 their degree,
algebraic immunity, nonlinearity and NLk for k = 2, . . . , n − 2.

Table 5. Cryptographic parameters of the WPB functions g and g0.

Deg AI NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

g 8 7 30720 22 160 672 1878 3570 4983 5567 5103 3629 1884 688 172 24

g0 8 7 30592 22 160 672 1865 3581 4951 5455 5071 3603 1880 688 172 24

510 A. Gini and P. Méaux

4.3 Hybrid Function with High Weightwise Nonlinearity in WPB4

In the previous subsections we described the properties of some WPB in 16 vari-
ables obtained by Construction 2 seeded both with CMR and LM functions.
Namely, we computed some functions in WPB4 having high weightwise nonlin-
earity on certain slices. In Table 2 and 5 the maximal realised values are in red.
Therefore, by combining these functions we can obtain the following hybrid func-
tion:

h16(x) =
2∑

k∈{1,2}
ϕk,n(x)f̄16(x) +

∑

k∈{3,4,5,6,7}
ϕk,n(x)ḡ(x)+

+
∑

k∈{8,9,10,11,12,13}
ϕk,n(x)g(x) +

∑

k∈{14,15,16,0}
ϕk,n(x)f16(x) ∈ WPB4

Table 6 contains the degree, algebraic immunity, nonlinearity and NLk for k =
2, . . . , n − 2 of h16.

Table 6. Cryptographic parameters of h16. By construction NLk(h16) = NLn−k(h16).

Deg AI NL NL2 NL3 NL4 NL5 NL6 NL7 NL8

h16 14 8 30704 28 172 688 1884 3629 5103 5567

Table 7. Comparison with known lower bound [GM22, Proposition 9] and upper bound
[GM22, Proposition 10] for Mk,16, i.e. the maximum weightwise nonlinearity of WPB4

over Ek,16.

NL2 NL3 NL4 NL5 NL6 NL7 NL8

h16 28 172 688 1884 3629 5103 5567

Lower bound 34 222 803 2016 3774 5443 6141

Upper bound 54 268 888 2150 3959 5666 6378

Table 7 shows that the values NLk(h16) are below the known lower bound of
Mk,16, the maximum weightwise nonlinearity of WPB4 over Ek,16. Nevertheless,
according to [GM22, Table 5], h16 is the currently known (explicitly constructed)
function with the best weightwise nonlinearity on the slices.

4.4 Computational Aspects

We provided the exact value of cryptographic parameters of the WPB functions
thatwe analyzed, both in 8 and 16 variables.We retrieved themby concrete compu-
tations via sagemath [The22]. Specifically, we used BooleanFunction class from

Weightwise Almost Perfectly Balanced Functions 511

the module sage.crypto.boolean function to encode the functions, and we
applied the built-in methods for computing degree and algebraic immunity. Then,
we computed the weightwise nonlinearity on the slices NLk for k = 2, . . . , n− 2 by
adapting the strategy from [GM22]. See Algorithm 1. For Construction 2 we built
the ϕk,n functions via truth tables for compatibility. Another possible approach
can be via ANF using Property 3.

Data parallelism and iterators allowed us to obtain these values in less then one
hour by using 128 cores, by 2xAMD Epyc ROME 7H12 @ 2.6 GHz [64c/280W], i.e.
one regular node of the UL Aion supercomputer https://hpc.uni.lu/ [VBCG14].
Our code is available at https://github.com/agnesegini/WAPB pub.

Algorithm 1
Input: Let n, k ∈ N

∗ with 0 < k < n , and f ∈ Bn.
Output: NLk(f)
1: Compute vf the vector of evaluations of f over the Ek,n.
2: Generate Pk,n the spherically punctured Reed Muller code of order 1 of length ν =(

n
k

)
.

3: Compute δ the distance between vf and Pk,n. � This can be performed in parallel.
4: return δ

5 Conclusion

In this article we introduced two secondary constructions of weightwise almost per-
fectly balanced functions and provided examples up to 16 variables. While former
approaches focused on modifying the support of a low degree functions to make it
W(A)PB, our technique is based on an iterative application of Siegenthaler’s con-
struction and addition of symmetric functions. This directly provides us a theoret-
ical lower bound on the weightwise nonlinearities based on the parameters of the
parent function (Theorem 2). Moreover, via this construction, we explicitly built
SWAPB functions up to 16 variables and determined exactly their main crypto-
graphic parameters. Finally, we combined these functions by taking for each slice
k the one from the function obtaining the highest NLk, which gave us the function
h16 with the highest weightwise nonlinearities exhibited so far.

Open Questions:

– Higher weightwise nonlinearities. The function h16 is obtained by combining
the functions with highest NLk built with Construction 2 from CMR of LM
functions. One natural next step would be to use other WPB families as seed for
Construction 2 and possibly combine those functions with best NLk. Moreover,
it would be interesting to try to reach (or overcome) the non-constructive lower
bound from [GM22]. See Table 7.

– Parameters of equivalent WAPB functions. Considering W(A)PB functions rel-
atively to classes equivalent up to addition of symmetric functions is a good
start to build more constructions, and it has the advantage to group WAPB

https://hpc.uni.lu/
https://github.com/agnesegini/WAPB_pub

512 A. Gini and P. Méaux

functions having exactly the sameNLk. As a matter of fact, using special WAPB
functions rather than WAPB functions has been useful in this article to exhibit
a secondary construction. Taking a special WAPB function is not restrictive
since any WAPB function is equivalent to a special one up to the addition of
symmetric functions. Major questions relatively to these classes would be to
determine the variation of cryptographic parameters inside the same class, and
find a criterion to choose the best representative.

Acknowledgments. The two authors were supported by the ERC Advanced Grant no.
787390.

References

[BP05] Braeken, A., Preneel, B.: On the algebraic immunity of symmetric
Boolean functions. In: Progress in Cryptology - INDOCRYPT 2005,
6th International Conference on Cryptology in India, Bangalore, India,
December 10–12, 2005, pp. 35–48. Proceedings (2005)

[Car04] Carlet, C.: On the degree, nonlinearity, algebraic thickness, and nonnor-
mality of Boolean functions, with developments on symmetric functions.
IEEE Trans. Inf. Theor. 50, 2178–2185 (2004)

[Car21] Carlet, C.: Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, Cambridge (2021)

[CL11] Chen, Y., Lu, P.: Two classes of symmetric Boolean functions with opti-
mum algebraic immunity: construction and analysis. IEEE Trans. Info.
Theor. 57(4), 2522–2538 (2011)

[CM19] Carlet, C., Méaux, P.: Boolean functions for homomorphic-friendly
stream ciphers. In: Gueye, C.T., Persichetti, E., Cayrel, P.-L., Buchmann,
J. (eds.) A2C 2019. CCIS, vol. 1133, pp. 166–182. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36237-9 10

[CM22] Carlet, C., Méaux, P.: A complete study of two classes of Boolean func-
tions: direct sums of monomials and threshold functions. IEEE Trans. Inf.
Theor. 68(5), 3404–3425 (2022)

[CMR17] Carlet, C., Méaux, P., Rotella, Y.: Boolean functions with restricted input
and their robustness; application to the FLIP cipher. IACR Trans. Sym-
metric Cryptol. 3, 2017 (2017)

[CV05] Canteaut, A., Videau, M.: Symmetric Boolean functions. IEEE Trans.
Inf. Theor. 51, 2791–2811 (2005)

[CZGC19] Chen, Y., Zhang, L., Guo, F., Cai, W.: Fast algebraic immunity of
2m+2 and 2m+3 variables majority function. IEEE Access 7, 80733–80736
(2019)

[DMS06] Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean
functions with maximum possible annihilator immunity. Des. Codes
Crypt. 40, 41–58 (2006)

[Fin47] Fine, N.J.: Binomial coefficients modulo a prime. Am. Math. Monthly
54(10), 589–592 (1947)

[GM22] Gini, A., Méaux, P.: On the weightwise nonlinearity of weightwise per-
fectly balanced functions. Discrete Appl. Math. 322, 320–341 (2022)

https://doi.org/10.1007/978-3-030-36237-9_10

Weightwise Almost Perfectly Balanced Functions 513

[GS22] Guo, X., Sihong, S.: Construction of weightwise almost perfectly balanced
Boolean functions on an arbitrary number of variables. Discrete Appl.
Math. 307, 102–114 (2022)

[IMM13] Ivchenko, I., Medvedev, Y.I., Mironova, V.A.: Symmetric Boolean func-
tions and their metric properties matrices of transitions of differences
when using some modular groups. Mat. Vopr. Kriptogr. 4, 49–63 (2013)

[LM19] Liu, J., Mesnager, S.: Weightwise perfectly balanced functions with high
weightwise nonlinearity profile. Des. Codes Crypt. 87(8), 1797–1813
(2019)

[LS20] Li, J., Sihong, S.: Construction of weightwise perfectly balanced Boolean
functions with high weightwise nonlinearity. Discrete Appl. Math. 279,
218–227 (2020)

[Méa19] Méaux, P.: On the fast algebraic immunity of majority functions. In:
Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774,
pp. 86–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 5

[Méa21] Méaux, P.: On the fast algebraic immunity of threshold functions. Crypt.
Commun. 13(5), 741–762 (2021). https://doi.org/10.1007/s12095-021-
00505-y

[MJSC16] Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream
ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. Part I, volume 9665 of LNCS,
pp. 311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 13

[MMM+18] Maitra, S., Mandal, B., Martinsen, T., Roy, D., Stănică, P.: Tools in ana-
lyzing linear approximation for Boolean functions related to FLIP. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356,
pp. 282–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05378-9 16

[MPJ+22] Mario, L., Picek, S., Jakobovic, D., Djurasevic, M., Leporati, A.: Evolu-
tionary construction of perfectly balanced Boolean functions (2022)

[MS21] Mesnager, S., Su, S.: On constructions of weightwise perfectly balanced
Boolean functions. Crypt. Commun. 13(6), 951–979 (2021). https://doi.
org/10.1007/s12095-021-00481-3

[MSL21] Mesnager, S., Su, S., Li, J.: On concrete constructions of weightwise
perfectly balanced functions with optimal algebraic immunity and high
weightwise nonlinearity. Boolean Functions and Applications (2021)

[MZD19] Mesnager, S., Zhou, Z., Ding, C.: On the nonlinearity of Boolean functions
with restricted input. Crypt. Commun. 11(1), 63–76 (2019)

[Obl20] Oblaukhov, A.K.: On metric complements and metric regularity in finite
metric spaces. Prikl. Diskr. Mat. 49, 35–45 (2020)

[QFLW09] Qu, L., Feng, K., Liu, F., Wang, L.: Constructing symmetric Boolean
functions with maximum algebraic immunity. IEEE Trans. Inf. Theor.
55, 2406–2412 (2009)

[QLF07] Qu, L., Li, C., Feng, K.: A note on symmetric Boolean functions with
maximum algebraic immunity in odd number of variables. IEEE Trans.
Inf. Theor. 53, 2908–2910 (2007)

[SM07] Sarkar, P., Maitra, S.: Balancedness and correlation immunity of symmet-
ric Boolean functions. Discrete Math. 307, 2351–2358 (2007)

[SSB18] Stanica, P., Sasao, T., Butler, J.T.: Distance duality on some classes of
Boolean functions. J. Comb. Math. Comb. Comput. 107, 181–198 (2018)

https://doi.org/10.1007/978-3-030-30530-7_5
https://doi.org/10.1007/978-3-030-30530-7_5
https://doi.org/10.1007/s12095-021-00505-y
https://doi.org/10.1007/s12095-021-00505-y
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-030-05378-9_16
https://doi.org/10.1007/978-3-030-05378-9_16
https://doi.org/10.1007/s12095-021-00481-3
https://doi.org/10.1007/s12095-021-00481-3

514 A. Gini and P. Méaux

[Su21] Sihong, S.: The lower bound of the weightwise nonlinearity profile of a
class of weightwise perfectly balanced functions. Discrete Appl. Math.
297, 60–70 (2021)

[The22] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.5) (2022). https://www.sagemath.org

[TL19] Tang, D., Liu, J.: A family of weightwise (almost) perfectly balanced
Boolean functions with optimal algebraic immunity. Crypt. Commun.
11(6), 1185–1197 (2019). https://doi.org/10.1007/s12095-019-00374-6

[TLD16] Tang, D., Luo, R., Du, X.: The exact fast algebraic immunity of two sub-
classes of the majority function. IEICE Trans. Fund. Electron. Commun.
Comput. Sci. E99.A, 2084–2088 (2016)

[Tok12] Tokareva, N.N.: Duality between bent functions and affine functions. Dis-
crete Math. 312(3), 666–670 (2012)

[VBCG14] Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an
academic HPC cluster: The UL experience. In: 2014 International Confer-
ence on High Performance Computing & Simulation (HPCS), pp. 959–967
(2014)

[ZS21] Zhang, R., Su, S.: A new construction of weightwise perfectly balanced
Boolean functions. Adv. Math. Commun. (2021)

[ZS22] Zhu, L., Sihong, S.: A systematic method of constructing weightwise
almost perfectly balanced Boolean functions on an arbitrary number of
variables. Discrete Appl. Math. 314, 181–190 (2022)

https://www.sagemath.org
https://doi.org/10.1007/s12095-019-00374-6

Quantum Cryptography
and Cryptanalysis

Improved Quantum Analysis of SPECK
and LowMC

Kyungbae Jang1(B), Anubhab Baksi2, Hyunji Kim1, Hwajeong Seo1,
and Anupam Chattopadhyay2

1 Division of IT Convergence Engineering, Hansung University, Seoul, South Korea
starj1023@gmail.com

2 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
{anubhab001,anupam}@ntu.edu.sg

Abstract. As the prevalence of quantum computing is growing in leaps
and bounds over the past few years, there is an ever-growing need to
analyze the symmetric-key ciphers against the upcoming threat. Indeed,
we have seen a number of research works dedicated to this. Our work
delves into this aspect of block ciphers, with respect to the SPECK fam-
ily and LowMC family.

The SPECK family received two quantum analysis till date (Jang et
al., Applied Sciences, 2020; Anand et al., Indocrypt, 2020). We revisit
these two works, and present improved benchmarks SPECK (all 10 vari-
ants). Our implementations incur lower full depth compared to the pre-
vious works.

On the other hand, the quantum circuit of LowMC was explored ear-
lier in Jaques et al.’s Eurocrypt 2020 paper. However, there is an already
known bug in their paper, which we patch. On top of that, we present
two versions of LowMC (on L1, L3 and L5 variants) in quantum, both
of which incur significantly less full depth than the bug-fixed implemen-
tation.

Keywords: Quantum implementation · Grover’s search · SPECK ·
LowMC

Hyunji Kim and Hwajeong Seo were supported by the Institute for Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korean
government (MSIT) (〈Q|Crypton, number 2019-0-00033, Study on Quantum Secu-
rity Evaluation of Cryptography based on Computational Quantum Complexity); and
Kyungbae Jang was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Educa-
tion (2022R1A6A3A13062701) of the Korean government. Anupam Chattopadhyay
was partly supported by the NRF Grant Award, number NRF2021-QEP2-02-P05 by
the Singaporean government. Further, we thank Da Lin (Hubei University, Wuhan, PR
China) for the kind support during preparation of the manuscript.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 517–540, 2022.
https://doi.org/10.1007/978-3-031-22912-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_23

518 K. Jang et al.

1 Introduction

Among the major progress in the computational science in recent times, the
quantum computing is certainly included in the topmost contenders. While a
massive race of research is underway to build a functional quantum computer, it
stands to reason that we should investigate how such a device can undermine the
current security notions. As a matter of fact, it is well-known that certain public-
key systems would face major problem [10,16,19,20,34,38] against an adversary
equipped with a quantum computer. Going further, one may also notice that the
symmetric-key counterpart would also be affected, mostly due to the so-called
Grover’s search algorithm [18].

Due to the power of the quantum properties of matter (namely, superposi-
tion and entanglement), quantum algorithms can find (with a high probability)
the solution to certain types of problems faster than the best-known classical
algorithms. In this case, the Grover’s search algorithm can find the secret key of
a symmetric-key cipher with about square-root search of what would be required
for a classical computer, roughly speaking.

Therefore, it is not surprising that the research community in the symmetric-
key cryptography as well would take interest in figuring out the possible impact
a functional quantum computer can have—see Sect. 2.2 for a collection of related
works. This work, too, makes a humble attempt to evaluate the quantum security
of the block cipher families, SPECK [12] and LowMC [1].

Contribution

In brief, we present the followings in this work:

1. SPECK Family (10 variants; Sect. 4). We improve the quantum implemen-
tations of the SPECK family from the Indocrypt 2020 paper by Anand,
Maitra and Mukhopadhyay, [6]; and the same from the Applied Sciences
paper by Jang, Choi, Kwon, Kim, Park and Seo [23] in terms lower depth
(though the X gate count is higher in our case). By improving the quantum
adders and parallelization in the architecture, we show noticeable reduction
of depth1.

2. LowMC Family (L1, L3 and L5; Sect. 5). We observe that the implemen-
tation (LowMC) by [31] contains some programming related issue, which
probably resulted in underestimating the resources for non-linear components
(similar issue with respect to AES was reported by the Asiacrypt’20 authors
[43]; and later in [22,26]); although the linear components (Sects. 5.2, 5.3)
were not affected. We patch the issues (❅, such as impossible parallelism and
omitting initialization of ancilla qubits) and estimate the correct quantum
gates and depth from the number of qubits they reported in Sect. 5.5.

1 However the reduction of full depth is less prominent (ranging from 10% to 12%
depending on the variant of SPECK), still our implementation takes less quantum
resource. See Table 4 for the benchmark.

Improved Quantum Analysis of SPECK and LowMC 519

Independent to that, we present two versions of three LowMC variants, which
we refer to as, the regular (◊) and the shallow (��) versions. Both the regu-
lar and the shallow versions provide high parallelism as the linear layer and
key schedule work simultaneously. The regular (respectively, shallow) version
uses the S-box implementation that has the Toffoli depth of 3 (respectively,
1), as described in Fig. 4. Further, we show some improvement in the imple-
mentation of the linear layer, key schedule, and also in the parallelization of
both.

Table 1 shows the benchmarks for the SPECK cipher family, including the
results from [6,23]. The proposed SPECK quantum circuits require a higher
number of X gates than previous works. This is due to the nature of the quantum
adder used in our implementation (detailed in Sect. 4.1). Similarly, a summary
of results of on LowMC can be found in Table 2, where we consolidate results
from the bug-fixed implementation of [31]. The T-depth of the shallow version
of LowMC is higher than the bug-fixed implementation of [31], but actually, this
is derived from the difference in the decomposition method of the Toffoli gate
although the Toffoli depth is the same (see Sect. 2.3 for details).

When the basic implementation of the ciphers is available, in Sect. 6, we
elaborate the estimated cost of running the Grover’s search algorithm. We esti-
mate only the cost of oracle in the Grover’s search algorithm with the proposed
quantum circuits. There is a module called diffusion operator that amplifies the
amplitude of the solution returned by oracle, but the overhead is negligible,
so it is excluded from the cost estimation. Lastly, the parallel operation of the
Grover’s search algorithm required according to the block and key size of the
cipher is reflected in the cost estimation. We also comment on the quantum
security level proposed in [33].

Our source codes are written in ProjectQ2. Developed by the researchers from
ETH Zurich, it is a Python-based open-source framework for quantum comput-
ing, and offers a support for IBM’s quantum chips. The variable resource check
is set to 0 in ClassicalSimulator to check the test vectors and set to 1 in
ResourceCounter to decompose Toffoli gates in our codes. All relevant codes,
along with a toy version of SPECK (where it is possible to simulate the Grover’s
search), are released in public3. For more information, one may refer to the full
version of the paper, which can be found in [25].

2 Prerequisite

2.1 Backdrop and Motivation

The Grover’s search algorithm is a quantum algorithm that can find a solution
in an n-qubit search space with �π

4

√
2n� (about

√
2n) serial application. Theo-

retically, this algorithm can reduce symmetric-key ciphers (having an n-bit key)
2 Homepage: https://projectq.ch/. Code: https://github.com/ProjectQ-Framework/

ProjectQ. Documentation: https://projectq.readthedocs.io/en/latest/.
3 https://github.com/starj1023/SPECK LowMC QC.

https://projectq.ch/
https://github.com/ProjectQ-Framework/ProjectQ
https://github.com/ProjectQ-Framework/ProjectQ
https://projectq.readthedocs.io/en/latest/
https://github.com/starj1023/SPECK_LowMC_QC

520 K. Jang et al.

Table 1. Comparison of quantum resources required for variants of SPECK.

SPECK
#Toffoli #CNOT #NOT #qubits Depth Full depth

✩ ✲ ✱ ❂ ❈

32/64

JCKKPS [23] 1,290 3,706 42 97 3,313 N/A

AMM [6] 1,290 4,222 42 96 1,694 5,873

This work 1,247 4,179 1,160 98 814 5,258

48/72

JCKKPS [23] 1,982 5,606 42 121 4,969 N/A

AMM [6] 1,978 6,462 42 120 2,574 9,153

This work 1,935 6,419 1,848 122 1,166 8,075

48/96

JCKKPS [23] 2,074 5,866 45 145 5,203 N/A

AMM [6] 2,070 6,762 45 144 2,691 9,541

This work 2,025 6,717 1,935 146 1,219 8,441

64/96

JCKKPS [23] 3,162 8,890 54 161 8,009 N/A

AMM [6] 3,162 10,318 54 160 4,082 14,563

This work 3,111 10,267 3,012 162 1,794 12,870

64/128

JCKKPS [23] 3,286 9,238 57 193 8,323 N/A

AMM [6] 3,286 10,722 57 192 4,239 15,181

This work 3,233 10,669 3,131 194 1,863 13,365

96/96

JCKKPS [23] 5,172 14,436 60 193 12,923 N/A

AMM [6] 5,170 16,854 60 192 6,636 23,657

This work 5,115 16,799 5,010 194 2,828 21,028

96/144

JCKKPS [23] 5,360 14,960 64 241 13,397 N/A

AMM [6] 5,358 17,466 64 240 6,873 23,657

This work 5,301 17,409 5,194 242 2,929 21,779

128/128

JCKKPS [23] 7,942 22,086 75 257 19,797 N/A

AMM [6] 7,938 25,862 75 256 10,144 36,358

This work 7,875 25,799 7,761 256 4,256 32,224

128/192

JCKKPS [23] 8,192 22,784 80 321 20,427 N/A

AMM [6] 8,190 26,682 80 320 10,461 37,381

This work 8,125 26,617 8,010 322 4,389 33,231

128/256

JCKKPS [23] 8,444 23,484 81 385 21,061 N/A

AMM [6] 8,442 27,502 81 384 10,778 38,431

This work 8,375 27,435 8,255 386 4,522 34,238

with n-bit security on a classical computer to n/2-bit security on a quantum
computer.

An abridged description of the algorithm is given as follows. The Grover’s
search algorithm operates on n-qubits in the superposition state and finds a
solution by iterating the set of oracle and diffusion operators about n times.
First, n Hadamard gates are used to prepare n-qubits in superposition state.
This causes 2n queries to coexist as probabilities in n-qubit. In the oracle, the
logic to find a solution is implemented as quantum gates. For the quantum key
search, quantum encryption of the target cipher must be implemented as logic in
the oracle. The oracle finds a solution (i.e., the secret key), but the measurement
probabilities with non-solutions are still the same. So, the diffusion operator
amplifies the amplitude of the solution returned by the oracle. After increasing
the amplitude of the solution sufficiently by repeating the oracle and diffusion
operators, n-qubits are finally measured.

However, the catch is that the quantum attack using the Grover’s algorithm
on the symmetric-key cipher requires a lot of quantum resources. Despite much

Improved Quantum Analysis of SPECK and LowMC 521

Table 2. Comparison of quantum resources required for variants of LowMC.

LowMC
#CNOT #1qCliff #T T-depth #qubits Full depth

✲ ❁ ✢ ✤ ❂ ❈

L1

❅ 344,972 2,466 4,200 20 1,006 49,350

◊ 498,208 2,466 4,200 240 3,200 4,708

�� 500,208 2,466 4,200 80 3,830 4,708

L3

❅ 1,135,935 4,699 6,300 30 1,434 159,659

◊ 1,669,456 4,699 6,300 360 6,720 10,571

�� 1,672,456 4,699 6,300 120 7,650 10,571

L5

❅ 2,535,162 7,137 7,980 38 1,802 346,736

◊ 3,754,484 7,137 7,980 456 11,008 17,789

�� 3,758,284 7,137 7,980 152 12,178 17,789

❅: Bug-fixed JNRV [31]

◊: Regular version.

��: Shallow version.

progress though, the state-of-the-art quantum computers have only very limited
resources, and consequently cannot afford to run the Grover’s algorithm.

If the quantum cost required to attack the cipher is high, it can be expected
to provide the desired security (i.e., n-bit security) even in the post-quantum era
(without increasing the key size). Thus, it is important to estimate and analyze
the cost of quantum attacks on various ciphers.

2.2 Related Works

Estimating the quantum resources required for key recovery using the Grover
search algorithm was probably first presented for AES by Grassl, Langenberg,
Roetteler, and Steinwand [17]. This work has been followed up by the research
community with various implementations of AES [2,22,26,31,32,43]. These
papers all focus on the efficient implementation of quantum circuits, thereby
reducing the cost for running the Grover’s search algorithm with increasingly low
resource. Apart from AES, a large number of other ciphers have also received
the quantum analysis, SIMON [7], SPECK [6,23], SKINNY [13], PRESENT
and GIFT [28], SHA-2 and SHA-3 [3], FSR-based ciphers [5], ChaCha [11], SM3
[39,42], RECTANGLE and KNOT [9], KATAN [35], DEFAULT [24], GIFT–
SKINNY–SATURNIN [13], PIPO [30], to name some of those.

2.3 Quantum Gates

There are several commonly used quantum gates to implement ciphers into quan-
tum circuits, such as X (NOT), CNOT, and Toffoli (CCNOT) gates. The X gate
inverts the value of a qubit, which can replace the classical NOT operation (i.e.,
X (a) = ∼ a). The CNOT gate operates on two qubits, and the value of the
target qubit is determined according to the value of the control qubit. If the
value of the control qubit is 1, the target qubit is inverted, and if the value of

522 K. Jang et al.

the control qubit is 0, it is maintained (i.e., CNOT (a, b) = (a, a ⊕ b). Since
this is equivalent to XORing the value of the control qubit to the target qubit,
the CNOT gate can replace the classic XOR operation. Toffoli gates operate on
three qubits, with two control qubits and one target qubit. The value of the
target qubit is reversed only when the values of both control qubits are 1 (i.e.,
Toffoli (a, b, c) = (a, b, c ⊕ ab)). Since this is equivalent to XORing the ANDed
value of control qubits to the target qubit, Toffoli gate can replace the classic
AND operation. We can implement cipher encryption in quantum using these
quantum gates, which can replace the classic NOT, XOR, and AND operations.

Among these gates, it is important from an optimization point of view that
we need to reduce the number of Toffoli gates. Because the Toffoli gate is imple-
mented as a combination of T gates (determine the T-depth) and Clifford gates
(i.e., CNOT, H, or X gate), the cost is relatively high. There are several ways to
decompose the Toffoli gate [4,21,36], and the full depth means the depth when
the Toffoli gates are decomposed. In our work, when estimating decomposed
resources, we adopt the decomposition method of 7 T gates + 8 Clifford gates,
T-depth of 4, and full depth of 8 for one Toffoli gate [4].

2.4 NIST Security Levels

In order to describe the security of cipher against a quantum adversary, NIST
stated the following security margins for a cipher [33]:

– Level 1: Cipher is at least as hard to break as AES-128.
– Level 2: Cipher is at least as hard to break as SHA-256.
– Level 3: Cipher is at least as hard to break as AES-192.
– Level 4: Cipher is at least as hard to break as SHA-384.
– Level 5: Cipher is at least as hard to break as AES-256.

NIST recommended that ciphers should achieve at least Levels 1, 2 and/or
3, to provide sufficient security in the post-quantum era. The estimates used in
[33] were based on the results of AES circuits were taken from that of [17], and
are as listed as follows: Level 1: 2170, Level 3: 2233, Level 5: 2298. These figures
were calculated as total number of gates × full depth of the quantum key search
(as estimated in [17]) respectively for AES-128, 192, and 256 under the Grover’s
algorithm.

3 Target Ciphers

3.1 SPECK Family (32/64, 48/72, 48/96, 64/96, 64/128, 96/96,
96/144, 128/128, 128/192, 128/256)

SPECK [12] is a family of lightweight block ciphers that was developed by the
National Security Agency (NSA) in 2013. The SPECK family adopts a Feistel-
like structure and contains 10 variants. The parameters for each variant are
specified in Table 3.

Improved Quantum Analysis of SPECK and LowMC 523

Table 3. Parameters for SPECK variants.

Word size Key words Block size Key size α β Rounds

(n) (m) (2n) (nm) (T)

16 4 32 64 7 2 22

24 3 48 72 8 3 22

4 96 23

32 3 64 96 8 3 26

4 128 27

48 2 96 96 8 3 28

3 144 29

64 2 128 128 8 3 32

3 192 33

4 256 34

x2i+1 x2i

≫ α

≪ β

x2i+3 x2i+2

Round Key

Fig. 1. Round function of SPECK.

Round Function. The round function of SPECK consists of modular addition,
bit-wise rotation and exclusive-OR (XOR) as shown in Fig. 1. Let (x2i+1, x2i)
be the 2n-bit input of the ith round, where x2i+1 and x2i are both n-bit words.
In each round, the state is updated as follows:

1. Updating x2i+1 by cyclically shifting its bits to the right by α bits, and then
performing the addition modulo 2n on x2i+1 and x2i via x2i+1 = x2i+1 + x2i.

2. XORing the n-bit round key to x2i+1, and cyclically shifting the bits in x2i

to the left by β bits, simultaneously.
3. XORing x2i+1 to x2i and finishing the update of round function.

Key Schedule. The sub-keys of SPECK are expanded in a similar way as
the state in each round. Denote l0, l1, · · · , lm−2 the variables for producing the
sub-keys of SPECK family. In order to generate the (i + 1)th-round sub-key,
where i ∈ {0, T}, take (li, ki) as the input of round function as shown in Fig. 1
with the number i served as round key in key addition step. Denote the output
(li+m−1, ki+1), ki+1 is the generated sub-key.

3.2 LowMC Family (L1, L3, L5)

LowMC [1] is a family of SPN-based block ciphers. Motivated by the fact that
non-linear gates are costly compared to the linear gates in applications such
as Multi-party Computation (MPC), Fully Homomorphic Encryption (FHE)
and Zero Knowledge (ZK), the ciphers specific to these niches are designed to
have a low small AND gate/depth count. LowMC is flexible in design (some
components of it can be determined randomly), the recommended instance of
[1] can be characterized by the block size n, the key size k, the number of S-
boxes m in the non-linear layer, the allowed data complexity d of attacks and
the round r, where (n, k,m, d, r) ∈ {(256, 80, 49, 64, 11), (256, 128, 63, 128, 12)}.
Note that in the post-quantum digital signature Picnic4 [41], the adopted
variants of LowMC can be characterized by (n, k,m, r) ∈ {(128, 128, 10, 20),
4 Apart from LowMC, Picnic also uses SHA-3 in some form.

524 K. Jang et al.

(192, 192, 10, 30), (256, 256, 10, 38)}. LowMC round consists of SboxLayer, Lin-
earLayer, ConstantAddition and KeyAddition; and in the Key Schedule, round
keys are generated through LinearLayer5.

Round Function. The encryption of LowMC starts with a whitening key addi-
tion over F2, followed by r iterations of the round function which is composed
as KeyAddition ◦ ConstantAddition ◦ LinearLayer ◦ SboxLayer. Schematic dia-
grams of LowMC round function and key schedule can be found in Fig. 2.

SboxLayer. LowMC adopts a 3-bit S-box (in the look-up form, it is given by
01367452) with the coordinate function representation (in ANF) as (a ⊕ bc, a ⊕
b⊕ac, a⊕ b⊕ c⊕ab) in its substitution layer, where a, b, c are the input bits. For
a specific instance of LowMC, only the first 3m bits of the state will go through
the S-box.

LinearLayer. The linear layer of LowMC is matrix multiplication in F2.

ConstantAddition. Round constants are XORed to the sate by the operation of
addition in F2.

KeyAddition. The n-bit round keys generated by key schedule are XORed to
the state after each round. Also, the encryption with LowMC starts with a key
whitening.

←− KeyAddition

S-box S-box S-box · · · S-box · · ·

LinearLayer

Fig. 2. Round function of LowMC.

Key Schedule. The round keys are derived from the master key via multipli-
cation with a random matrix with full rank.

5 As the exact specification is generated at random, it is suggested in [8] to call LowMC
as a ‘meta-cipher’ (instead of a ‘cipher’).

Improved Quantum Analysis of SPECK and LowMC 525

4 SPECK in Quantum

For implementation of SPECK in quantum, we present a parallel addition imple-
mentation for a quantum circuit. We design a parallel addition structure by allo-
cating one more carry qubit. We take an on-the-fly approach to perform round
functions and key schedules together. Then the additions of the round func-
tion and key schedule are performed in parallel. As a result, compared to the
implementation in [6], we save one Toffoli gate per addition and provide a 56%
performance improvement in terms of depth.

4.1 Quantum Adder for SPECK

A quantum adder is implemented as a combination of quantum gates. Previous
implementations of SPECK [27] used a ripple carry-based quantum adder [15].
The quantum adder in the previous work uses one ancilla qubit, (2n−2) Tofffoli
gates, (4n−2) CNOT gates, with a depth of (5n−3). Later, Anand et al. improved
performance in terms of depth and saved one ancilla qubit by adopting a different
quantum adder (from [40]) in their SPECK quantum circuit implementation [6].
The quantum adder used in their work uses a (2n − 2) Tofffoli gate, (5n − 6)
CNOT gates, with a depth of (5n− 5) where no ancilla qubits are used. For this
reason, it saves 1 qubit compared to the quantum adder used in [27].

We use an improved quantum adder based on the ripple-carry approach,
which is referred to as the improved Cuccaro–Draper–Kutin–Moulton (CDKM)
adder [15]. This quantum adder uses one ancilla and more X gates, but reduce
the Toffoli gates and circuit depth, significantly. When the condition is n ≥ 4
for n-bit addition, an improved quantum adder is available. Since the 16-bit
addition operator is the smallest unit in SPECK, the improved quantum adder
can be applied to all variants of SPECK. In modular addition, one ancilla qubit
can be saved (generic addition uses two ancilla), and the quantum gates and
circuit depth can also be reduced. Finally, the quantum adder we used requires
one ancilla qubit, (2n − 3) Toffoli gates, (5n − 7) CNOT gates, (2n − 6) X
gates, and the circuit depth is (2n + 3). We do not know exactly why, but when
we implemented in ProjectQ, a depth of (2n + 3) was estimated. Details of the
implementation can be found in [15]. Algorithm 1 describes the improved CDKM
adder used in our implementation of SPECK.

4.2 Quantum Circuit for SPECK Using Parallel Addition

We briefly reiterate the round function of SPECK and the key schedule process
(refer to Sect. 3.1) for better clarity. The round function of SPECK uses an n-
bit round key (k) for a 2n-bit (x, y) block, and the process is shown in Eq. (1).
Notations ≪ and ≫ mean left and right rotation, respectively.

Rk(x, y) = ((x ≪ α) + y) ⊕ k, (y ≫ β) ⊕ ((x ≪ α) + y) ⊕ k) (1)

526 K. Jang et al.

Algorithm 1. Quantum circuit for improved n-bit CDKM adder (n ≥ 6).

Input: n-qubit operands a, b, carry qubit
c (= 0).

Output: a = a, b = a + b, c = 0.

1: for i = 0 to n − 3 do
2: b[i + 1] ← CNOT(a[i + 1], b[i + 1])
3: end for

4: c ← CNOT(a[1], c)
5: c ← Toffoli(a[0], b[0], c)
6: a[1] ← CNOT(a[2], a[1])
7: a[1] ← Toffoli(c, b[1], a[1])
8: a[2] ← CNOT(a[3], a[2])

9: for i = 0 to n − 6 do
10: a[i + 2] ← Toffoli(a[i + 1], b[i +

2], a[i + 2])
11: a[i + 3] ← CNOT(a[i + 4], a[i + 3])
12: end for

13: a[n − 3] ← Toffoli(a[n − 4], b[n −
3], a[n − 3])

14: b[n − 1] ← CNOT(a[n − 2], b[n − 1])
15: b[n − 1] ← CNOT(a[n − 1], b[n − 1])
16: b[n−1] ← Toffoli(a[n−3], b[n−2], b[n−

1])

17: for i = 0 to n − 4 do
18: b[i + 1] ← X(b[i + 1])
19: end for

20: b[1] ← CNOT(c, b[1])

21: for i = 0 to n − 4 do
22: b[i + 2] ← CNOT(a[i + 1], b[i + 2])
23: end for

24: a[n − 3] ← Toffoli(a[n − 4], b[n −
3], a[n − 3])

25: for i = 0 to n − 6 do
26: a[n − 4 − i] ← Toffoli(a[n − 5 −

i], b[n − 4 − i], a[n − 4 − i])
27: a[n − 3 − i] ← CNOT(a[n − 2 −

i], a[n − 3 − i])
28: b[n − 3 − i] ← X(b[n − 3 − i])
29: end for

30: a[1] ← Toffoli(c, b[1], a[1])
31: a[2] ← CNOT(a[3], a[2])
32: b[2] ← X(b[2])
33: c ← Toffoli(a[0], b[0], c)
34: a[1] ← CNOT(a[2], a[1])
35: b[1] ← X(b[1])
36: c ← CNOT(a[1], c)

37: for i = 0 to n − 2 do
38: b[i] ← CNOT(a[i], b[i])
39: end for

40: return a, b, c

The initial key is K = k0, l0, . . . , lm−2, and the generated RKi = k0, k1, . . . ,
kr−1 are used as the ith round key (0 ≤ i ≤ r − 1, r being the total number of
rounds). The key schedule process is given in Eq. (2).

li+m−1 = (ki + (li ≪ α)) ⊕ i, ki+1 = (ki ≫ β) ⊕ li+m−1. (2)

In this part, we explore where the parallel addition is available in the imple-
mentation of SPECK as a quantum circuit. We use the initial k0 in the first
round, then update k0 to ki to use it as the round key in the ith round
(0 ≤ i ≤ r − 1). By taking this on-the-fly approach, there is no need to allocate
qubits for the key schedule. For each round, the round function and key schedule
are executed together. Due to this, addition (x ≪ α) + y in the round function
and addition ki + (li ≪ α) in the key schedule can be performed in parallel.

Improved Quantum Analysis of SPECK and LowMC 527

In the previous implementation, the key schedule is performed after the round
function in the i-th round by adopting the same on-the-fly approach. And only
one carry qubit c0 for addition is allocated. We take two different approaches for
parallel addition.

First, k should not be updated in the key schedule until the round key k is
used in the round function. In general, parallel addition is impossible because
the round function and the key schedule are performed sequentially. We present
the procedure for each round as round function (1/2) → key schedule (1/2) →
round function (2/2) → key schedule (2/2) instead of round function (1/1) →
key schedule (1/1).

Then, Round function (1/2) is x = (x ≪ α) + y and key schedule (1/2) is
li = ki + (li ≪ α), which are parallel addition targets. Since ki should not be
updated (required in round function (2/2)), the result of addition in key schedule
(1/2) is stored in li. Round function (2/2) is x = x ⊕ ki, y = (y ≫ β) ⊕ x and
key schedule (2/2) is ki = (ki ≫ β) ⊕ (li ⊕ i).

Algorithm 2. Quantum circuit implementation of SPECK-32/64.

Input: 32-qubit block (x, y), 64-qubit
keywords (k0, l0, l1, l2),

carry qubits c0 (= 0), c1 (= 0).
Output: 32-qubit ciphertext (x, y).

1: for i = 0 to r − 2 do
2: Round function (1/2) :

3: x ← x ≪ 7
4: x ← ADD(y, x, c0)

5: Key schedule (1/2) :

6: li%3 ← li%3 ≪ 7
7: li%3 ← ADD(k0, li%3, c1)

8: Round function (2/2) :

9: x ← CNOT16(k0, x)
10: y ← y ≫ 2
11: y ← CNOT16(x, y)

12: Key schedule (2/2) :

13: for j = 0 to 5 do � Constant
XOR

14: if (i � j)&1 then
15: li%3[j] ← X(li%3[j])
16: end if
17: end for
18: k0 ← k0 ≫ 2
19: k0 ← CNOT16(li%3, k0)

20: end for

21: Round function (1/2) : � Last
round

22: x ← x ≪ 7
23: x ← ADD(y, x, c0)

24: Round function (2/2) :

25: x ← CNOT16(k0, x)
26: y ← y ≫ 2
27: y ← CNOT16(x, y)

28: return (x, y)

Second, now that parallel addition is possible, we need one more carry qubit
for this. A ripple-carry quantum adder requires a carry qubit with an initial
value of 0, and when the addition is completed, the carry qubit is reset to 0
again. The previous implementation takes advantage of this to allocate only one
carry qubit c0 and reuse it in all additions. However, in order to reuse c0, the
next addition cannot be performed until the addition is finished. Therefore, since

528 K. Jang et al.

we will perform two additions in parallel, we allocate two carry qubits c0 and c1
and use them in each addition.

Finally, the proposed quantum circuit implementation provides a 56% per-
formance improvement in terms of depth. Algorithm2 describes the quantum
circuit implementation for SPECK-32/64.

This technique is applied to all SPECK versions, only the parameters are
changed. Implementations for other versions can be found in our code. Rota-
tions (i.e., ≪,≫) can be implemented with the swap gates, but we do not use
quantum resources by implementing a logical swap that changes the index of
the qubits. CNOT16 means CNOT gate operation of a 16-qubit array. Figure 3
shows the quantum circuit of SPECK-32/64 operating for 3 rounds.

x ≪ 7

Add

• ≪ 7

Add

• ≪ 7

Add

• x

y ≫ 2 ≫ 2 ≫ 2 y

c0 c0

c1

Add

Add Add c1

k0 • ≫ 2 Add • ≫ 2 Add • ≫ 2 k0

l0 ≪ 7 X(i) • l0

l1 ≪ 7 Add X(i) • l1

l2 ≪ 7 Add X(i) • l2

Fig. 3. Quantum circuit for SPECK-32/64 (3 rounds only).

4.3 Architecture and Resource Requirement

As shown in Table 1, the quantum resources required to implement our SPECK
quantum circuits are much cheaper compared to the previous SPECK quantum
circuits. In [23,27], Jang et al. used a ripple carry-based quantum adder and did
not take into account the room for parallel addition. In [6], Anand et al. improved
the performance by using a different quantum adder than that of the previous
implementation. The quantum circuit they implemented does not use additional
qubits and offers performance improvements in terms of depth. We use two more
carry qubits and X gates, but parallel addition using an improved ripple carry
quantum adder provides performance improvement in terms of circuit depth and
a reduction in the number of Toffoli gates.

In the case of SPECK, which is based on an ARX structure, it is important
which quantum adder is used. In this work, a quantum circuit is designed so
that the additions of the round function of SPECK and the key schedule are
performed in parallel, and a few ancilla qubits are allocated accordingly. Also,
this approach is expandable because it works even if it is changed to another
quantum adder.

Improved Quantum Analysis of SPECK and LowMC 529

In Table 1, quantum resources are reported when the Toffoli gates are not
decomposed for simplicity of comparison. However, the Toffoli gate is decom-
posed into several quantum gates. For detailed resource estimation in this paper,
we follow the Toffoli gate decomposition in [4]. One Toffoli gate is decomposed
into 7 T gates + 8 Clifford gates (T-depth is 4 and full depth is 8). Table 4 shows
the detailed quantum resources required for our SPECK quantum circuits.

Table 4. Quantum resources (decomposed gates) required for variants of SPECK (this
work).

SPECK #CNOT #1qCliff #T T-depth #qubits Full depth

✲ ❁ ✢ ✤ ❂ ❈

32/64 11,661 3,654 8,729 2,552 98 5,258

48/72 18,029 5,718 13,545 3,960 122 8,074

48/96 18,867 5,985 14,175 4,140 146 8,441

64/96 28,933 9,234 21,777 6,344 162 12,870

64/128 30,067 9,597 22,631 6,588 194 13,365

96/96 47,489 15,240 35,805 10,416 194 21,028

96/144 49,215 15,796 37,107 10,788 242 21,779

128/128 73,049 23,511 55,125 16,000 258 32,224

128/192 75,367 24,260 56,875 16,500 322 33,231

128/256 77,685 25,005 58,625 17,000 386 34,238

5 LowMC in Quantum

Regular and Shallow Versions

As mentioned earlier, our quantum circuits of LowMC are divided into regular
(◊) and shallow (��) versions. The regular version offers high parallelism while
taking into account the trade-off of qubit-depth. Both the regular and the shal-
low versions provide high parallelism as the linear layer and key schedule work
simultaneously. The difference is that the regular version of the S-box has a Tof-
foli depth of 3 and the shallow version of the S-box has a Toffoli depth of 1, as
detailed in Sect. 5.1.

5.1 Implementation of S-box

In [31], two quantum circuit implementation for the 3-bit S-box of LowMC were
described as shown in Fig. 4. The in-place S-box (Fig. 4(a)) stores the output
value in the input, and the shallow S-box (Fig. 4(b)) additionally uses 3 output
qubits and 3 ancilla qubits, but the Toffoli depth can be reduced and the shallow
S-box is adopted in their implementation. Notice that the 3 garbage lines are

530 K. Jang et al.

reset, this is because those are reused in the next S-box (save for the last one).
When the Toffoli gate is decomposed in the case of the in-place S-box, the full
depth is 23, and the shallow S-box is lower at 12. Table 5(a) shows the quantum
resources required for the two implementations of the 3-bit S-box.

|a〉 • • • |a ⊕ bc〉

|b〉 • • • |a ⊕ b ⊕ ac〉

|c〉 • • |a ⊕ b ⊕ c ⊕ ab〉
(a) Regular (in-place).

|a〉 • • • • |a〉
|b〉 • • • • |b〉
|c〉 • • • |c〉
|0〉 • • • |0〉
|0〉 • • |0〉
|0〉 • • |0〉
|0〉 |a ⊕ bc〉
|0〉 |a ⊕ b ⊕ ac〉
|0〉 |a ⊕ b ⊕ c ⊕ ab〉

(b) Shallow (out-of-place).

Fig. 4. Quantum circuit for LowMC S-box.

Several trade-offs are to be considered when choosing the quantum S-box
implementation. The Toffoli depth of the in-place S-box is 3 and that of the
shallow S-box is 1. This is definitely an advantage for the shallow S-box. However,
we found that the full depth of the S-box does not affect the full depth of the
LowMC when using 10 S-boxes. This is because the depth for S-box is covered
by the key schedule and the linear layer. One thing to note is that in-place
S-box can be operated in parallel without additional cost, but shallow S-box
requires additional ancilla qubits for parallel operation, and qubits for output
are allocated every round. Considering these trade-offs, we adopt and compare
both S-boxes in our implementations. The regular version of LowMC (◊) uses
the regular/in-place S-box implementation and the shallow version (��) uses the
shallow/out-of-place S-box implementation.

5.2 Implementation of Linear Layer and Key Schedule

In the linear layer, the pseudo-randomly generated matrix over GF(2) of dimen-
sion n × n in LowMC instantiation is multiplied by an n-bit block. In [31], it
is possible to implement an in-place implementation in which CNOT gates are
used only in an n-qubit block due to PLU factorization (i.e., internal mixing).
In contrast, in our quantum circuit implementation, CNOT gate is performed
depending on where the bit value of the matrix is 1. In the CNOT gate, the
n-qubit block acts as a control, and a newly allocated n-qubit acts as a target.
Finally, the matrix product is stored in the newly allocated n-qubit. Although
n-qubit to store the output of the linear layer is newly allocated every round,
our approach can obtain a compact quantum circuit. Because we allocate new
n-qubits for matrix multiplication, it frees up space and allows for parallelism.
Table 5(b) shows the quantum resources required to implement quantum cir-
cuits for the linear layer. Since the CNOT gates and depths required for a round

Improved Quantum Analysis of SPECK and LowMC 531

are slightly different according to the pseudo-randomly generated matrices, our
results in Table 5(b) show the average for all rounds.

In the key schedule, round keys are generated by multiplying the k-bit input
key with the matrix of dimension k × k of each round in the same way. Unlike
the linear layer, we can save qubits by using the reverse operation in the key
schedule. Only in the first key schedule, a new k-qubit for storing the round
key is allocated. After KeyAddition, the reverse operation of the key schedule
is performed to return the round key (k-qubit) to a clean state, and it is reused
in the next key schedule. Due to the reverse operation, the CNOT gates are
doubled. However, in terms of depth, we perform the reverse operation of the
key schedule in parallel with the linear layers for the n-qubit block by using two
input keys and round key qubits. Figure 5 shows our LowMC quantum circuit
operating fully in parallel by operating two input keys (reverse operation of Key
Schedule is denoted as Key schedule†6). We initially allocate additional 2 · k
qubits (k1 and rk1) and use them alternately in rounds. Although it is omitted
in Fig. 5, the input key k0 is copied to k1 through the CNOT gates and then the
circuit is executed. Through this, the key schedule and the reverse operation of
the key schedule can be executed simultaneously with the linear layer. Table 5(c)
shows the quantum resources required to implement quantum circuits for the
key schedule. It should be pointed out that in Table 5(c), our result excludes the
initially allocated 3 · k-qubit (rk0, k1 and rk1 in Fig. 5). The regular version of
Fig. 5(a) and the shallow version of Fig. 5(b) differ in whether the output qubits
for the S-boxes are allocated or not, and the Toffoli depth.

5.3 Implementation of KeyAddition and ConstantAddition

KeyAddition and ConstantAddition are implemented the same as in SPECK.
KeyAddition is simply implemented using k CNOT gates. In ConstantAddition,
since the constants are already known, the X gates are performed where the bit
value of the constant is 1.

5.4 Architecture and Resource Requirement

As already presented in Table 2, one may find the quantum resources required to
implement our LowMC quantum circuits. In LowMC quantum circuits, the most
quantum resources are used for matrix multiplication in the key schedule and
linear layer. In [31], an in-place implementation was presented through matrix
multiplication using the PLU factorization. On the other hand, we design with
a general structure, using more qubits, but more compact quantum circuits are
obtained. Lastly, our quantum circuit design using two input keys simultaneously
executes the linear layer, key schedule, and reverse operation of the key schedule.

6 Key Schedule in quantum (of LowMC) denotes the product of the matrix of the
round and the input key, and the product is stored in qubits for the round key. The
reverse operation (i.e., uncompute) of Key Schedule is defined as Key Schedule†, and
cleans the qubits for the round key.

532 K. Jang et al.

Table 5. Comparison of quantum resources (decomposed gates) required for LowMC.

(a) S-box.

Method
#CNOT #1qCliff #T Toffoli depth #qubits Full depth

✲ ❁ ✢ ✦ ❂ ❈

◊ S-box [31] 20 6 21 3 3 26

�� S-box [31] 30 6 21 1 9 12

◊: Regular version.

��: Shallow version.

(b) Linear layer.

Method
#CNOT #1qCliff #qubits Full depth

✲ ❁ ❂ ❈

Linear layer L1 [31] 8,093 60 128 2,365

Linear layer L3 [31] 18,080 90 192 5,301

Linear layer L5 [31] 32,714 137 256 8,603

Linear layer L1 8,205 0 256 225

Linear layer L3 18,418 0 384 339

Linear layer L5 32,793 0 512 455

(c) Key schedule.

Method
#CNOT #1qCliff #qubits Full depth

✲ ❁ ❂ ❈

Key schedule L1 [31] 8,104 0 128 2,438

Key schedule L3 [31] 18,242 0 192 4,896

Key schedule L5 [31] 32,525 0 256 9,358

Key schedule L1 8,183 0 128 224

Key schedule L3 18,418 0 192 340

Key schedule L5 32,772 0 256 456

5.5 Corrected LowMC Implementation from Eurocrypt’20 (JNRV)

For a clearer context, here we give a brief description of the situations where
Q#’s ResourcesEstimator issues arise and how those issues affect the quantum
benchmarks given in the Eurocrypt’20 paper [31]. This was discovered when we
tried to cross-check their publicly available source codes7. Indeed, this was also
noted in [43] as a bug; and this apparently led to underestimation of gate count,
qubit count and depth reported in [31] for the non-linear components (and also
the S-box of LowMC).

To our understanding, some problems arise if the qubits are allocated by
the using command in Q# (and it affects the non-linear components). However

7 https://github.com/microsoft/grover-blocks.

https://github.com/microsoft/grover-blocks

Improved Quantum Analysis of SPECK and LowMC 533

Fig. 5. Architecture of LowMC quantum circuit.

more experiments are to be carried out in order to be completely certain about
it. The using command automatically disposes when the function ends. If ancilla
qubits to implement LowMC S-box are allocated with the using command, the
consistency between depth and qubits is lost. When 10 S-boxes are executed
in SubBytes, the ancilla qubits allocated by the using are counted only for
the first S-box and not after. Also counts the depth for executing 10 S-boxes
simultaneously. In order to derive the correct result, the number of qubits or
depth must be increased. To be modified, the number of qubits must be increased
or the depth must be increased. Q#’s ResourcesEstimator tries to find its own
lower bound for depth and qubit. That is, to achieve the qubits of the lower
bound, the depth may have to be increased, and to achieve the depth of the
lower bound, the qubits may have to be increased.

For LowMC quantum circuits in [31], the key schedule and the linear layer
are in-place implementations, so only the shallow S-box is reported as lower-
bound. We correct the number of qubits so that 10 × S-boxes can be operated
in parallel. In LowMC, CCNOT implementation with T -depth of one in [37] is
adopted rather than AND gate. This CCNOT implementation requires 4 ancilla
qubits (see [37] for details). We correct the number of qubits while keeping the
CCNOT implementation they adopted.

They count the qubits for (10×S-boxes×number of rounds) as follows: (10×
3 × number of rounds) ancilla qubits for the output of S-boxes, 3 ancilla qubits

534 K. Jang et al.

for all shallow S-boxes, and 4 ancilla qubits for all CCNOT implementations. As
a result, 607, 907 and 1,147 ancilla qubits are counted for LowMC L1, L3, and
L5, respectively8.

Now, we correct the number of ancilla qubits estimated as lower-bound. To
operate 10 shallow S-boxes in parallel, 10 × 3 ancilla qubits are required (rather
than 3 ancilla qubits). For parallel operation of three CCNOT gates in a shallow
S-box, 3 × 4 ancilla qubits are required. Furthermore, for parallel operation
of all CCNOT gates in 10 × S-boxes, 10 × 3 × 4 ancilla qubits are required
(rather than 4 ancilla qubits). Since these ancilla qubits are initialized to zero
after the operation, there is no need to clean the ancilla qubits (i.e., no need
to reverse). So the count for ancilla qubits for S-boxes is correct as follows:
(10 × 3 × number of rounds) ancilla qubits for the output of S-boxes, 10 × 3
ancilla qubits for parallel shallow S-boxes, and 10 × 3 × 4 ancilla qubits for
parallel CCNOT implementation. As a result, corrected 750, 1,050, and 1,290
ancilla qubits are counted for LowMC L1, L3, and L5, respectively.

For the linear layer and key schedule, there is no need for ancilla qubits
as they are in-place implementations. So only (block size + key size) qubits are
initially set. However, 384, 576, and 768 qubits are reported for LowMC L1, L3,
and L5 respectively. We believe that only 256, 384 and 512 qubits need be set
for LowMC L1, L3 and L5 respectively.

Finally, the corrected 1,056, 1,434 and 1,802 qubits are counted for LowMC
L1, L3 and L5, respectively. We correct the number of qubits while maintaining
their gates and circuit depth.

6 Estimating Cost of Grover’s Key Search

In this part, we evaluate the performance (quantum resources required) of the
proposed quantum circuits (i.e., SPECK and LowMC). Our quantum imple-
mentation results from a quantum simulator on a classical computer, not on
a real quantum computer. Due to the difficulty in accessing real quantum
computers (and there is also no large-scale quantum computer), most studies
report quantum implementations and resource analysis on quantum simulators
[6,7,26,29,31,35]. In our work, we use the quantum programming tool Pro-
jectQ to implement and simulate quantum circuits. We use two internal libraries
(ClassicalSimulator and ResourceCounter) of ProjectQ to verify the test
vector and then estimate the required quantum resources. ClassicalSimulator
can simulate large-scale quantum circuits by limiting only quantum gates with
Boolean functions (i.e., that have analogy with classical gates) such as X, CNOT,
and CCNOT gates. We use ResourceCounter to check the number of qubits, the
number of quantum gates, and the depth of our quantum circuits. Tables 2 and
4 show the quantum resources required to implement our SPECK and LowMC
quantum circuits.

8 https://github.com/microsoft/grover-blocks/blob/master/numbers/lowmc.csv.

https://github.com/microsoft/grover-blocks/blob/master/numbers/lowmc.csv

Improved Quantum Analysis of SPECK and LowMC 535

We estimate the cost of the Grover’s key search for SPECK and LowMC
based on the proposed quantum circuits. The Grover’s search algorithm oper-
ates by iteration of oracle and diffusion operator. Commonly, the cost of the
diffusion operator is ignored in the estimation [17,24,26,31]. The diffusion oper-
ator operates on key qubits, and has very little overhead compared to oracle.
For this reason, in most studies, the cost of iterating the oracle is estimated as
the final cost of the Grover’s key search.

In the Grover’s oracle, the quantum circuit for the target cipher is operated
twice. The first operation encrypts the known plaintext using the key in super-
position. Then, we need to check that the (n-bit) ciphertext in the superposition
state matches the ciphertext we know. An n-Controlled X gate is used for this.
This single gate (i.e., n-Controlled X gate) is also excluded from resource esti-
mation for simplicity because it is a negligible overhead in oracle. Therefore,
the cost of the oracle is calculated as the quantum resources required for the
encryption circuit (Table 2 or 4) to operate twice sequentially.

As mentioned earlier, the Grover’s search algorithm operates as an iteration
of oracle and diffusion operator, and we exclude the cost of diffusion operator
from resource estimation. Then, the final cost of the Grover’s key search is cal-
culated as (oracle × number of iterations). The number of times the Grover’s
oracle is applied is in turn determined by the key size. For a k-bit key (i.e., k-bit
search space), the number of iterations to get the solution key is �π

4

√
2k� [14]

(about
√

2k). That is, the Grover’s search algorithm reduces the security (by
the square root) of symmetric key ciphers. Lastly, the Grover’s key search on r
(plaintext, ciphertext) pairs must be performed (which can be done in parallel)
to exclude spurious keys. In [31,32], r = �k/n (plaintext, ciphertext) pairs are
used for Grover’s key search for ciphers using n-bit blocks and k-bit keys, and
we also follow this structure.

Table 6 shows the Grover’s key search cost for SPECK variants. According
to the block and key size of SPECK variants, r (plaintext, ciphertext) pairs are
required. However, since r (plaintext, ciphertext) pairs are operated in paral-
lel, the depth is not affected. Table 6 and 7 show the Grover’s key search cost
for SPECK and LowMC variants, respectively. Table 6 and 7 are calculated as
(Table 4 and 2, respectively) × 2 × �π

4

√
2k� × r (the number of qubits is not

needed in the calculation, owing to the sequential nature of the quantum cir-
cuits).

Now, we evaluate the post-quantum security levels of SPECK and LowMC
based on NIST’s post-quantum security requirements [33]. NIST defined the
post-quantum security level as the Grover’s’s key search cost of AES variants
calculated in [17], as stated already in Sect. 2.4. For instance, if the complexity
to mount a quantum attack for a given cipher is comparable to or more difficult
to that of AES-128 (i.e., 2170), then Level 1 is said to be achieved; since the
estimate of Level 1 was taken as 2170 in [33]. It may be stated that, the count of
qubit was not directly included in computing the security levels (i.e., high full
depth was allowed).

Following the security levels stated in [33], the cost of running the Grover’s’s
key search on SPECK and LowMC, for the variants of ≤ 128-bit sized keys, none

536 K. Jang et al.

Table 6. Quantum resources required for key search for SPECK (this work).

SPECK r
#qubits Total gates Full depth Cost Level of security

❂ ❋ ❈ ❋ × ❈ NIST [33] G+ [17] J+ [26]

32/64 2 133 1.749 · 247 1.008 · 245 1.747 · 292
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Not

achieved

(< 2170)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Not

achieved

(< 2169)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Not

achieved

(< 2157)

48/72 2 173 1.357 · 252 1.548 · 249 1.05 · 2102

48/96 2 197 1.419 · 264 1.619 · 261 1.149 · 2126

64/96 2 229 1.089 · 265 1.234 · 262 1.344 · 2127

96/96 1 195 1.181 · 265 1.008 · 263 1.19 · 2128

64/128 2 261 1.132 · 281 1.281 · 278 1.45 · 2159 Level 1

(> 2157)

96/144 2 341 1.854 · 289 1.044 · 287 1.936 · 2176 Level 1 Level 1 Level 1

(< 2233)) (< 2233)) (< 2222)

128/128 1 259 1.818 · 281 1.545 · 279 1.404 · 2161 Not achieved Not achieved Level 1

(< 2170)) (< 2169)) (> 2157))

128/192 2 453 1.42 · 2114 1.593 · 2111 1.131 · 2226 Level 1 Level 1 Level 3

(< 2233)) (< 2233)) (> 2222))

128/256 2 517 1.463 · 2146 1.641 · 2143 1.201 · 2290 Level 3 Level 3 Level 5

(< 2298)) (< 2298)) (> 2286)

Table 7. Quantum resources required for key search for LowMC (this work).

LowMC r
#qubits Total gates Full depth Cost Level of security

❂ ❋ ❈ ❋ × ❈ NIST [33] G+ [17] J+ [26]

L1
◊

1
3,201 1.513 · 283 1.806 · 276 1.366 · 2160 Not achieved Not achieved Level 1

�� 3,831 1.519 · 283 1.806 · 276 1.371 · 2160 (< 2170) (< 2169) (> 2157)

L3
◊

1
6,721 1.259 · 2117 1.013 · 2110 1.276 · 2227 Level 1 Level 1 Level 3

�� 7,651 1.261 · 2117 1.013 · 2110 1.278 · 2227 (< 2233) (< 2233) (> 2222)

L5
◊

1
11,009 1.412 · 2150 1.706 · 2142 1.204 · 2293 Level 3 Level 3 Level 5

�� 12,179 1.413 · 2150 1.706 · 2142 1.205 · 2293 (< 2298) (< 2298) (> 2286)

◊: Regular version.

��: Shallow version.

achieves Level 1 security. When the key size is increased, SPECK using 144-bit
key achieves Level 1 security; similarly the variants with 192-bit and 256-bit
sized keys respectively achieve Level 1 and Level 3 security. On the other hand,
the bounds that were actually computed based on the circuits presented in [17]
are quite close, but not exactly the same as that of [33] for Level 1 (< 2169 from
[17], but 2170 in [33]).

That said, one may note that the bounds stated in [33] or [17], in some sense
overestimated the cost for the respective levels. With each newer implementation,
the quantum costs is reduced. In other words, as the quantum costs for the AES
variants are reduced, the security levels are to be adjusted accordingly. As far
as we know, the best-known implementation (i.e., with the least cost) of AES-
128, 192 and 256 as quantum circuits were presented in [26]; were calculated
as Level 1: ≈ 2157, Level 3: ≈ 2222, Level 5: ≈ 2286. When adjusted with these

Improved Quantum Analysis of SPECK and LowMC 537

newly computed figures, we observe that SPECK and LowMC achieve Level 1
for 128-bit keys, Level 3 for 192-bit keys, and Level 5 (highest) for 256-bit keys.

Apart from the cost itself, there is another requirement from NIST in terms
of full depth. The quantum circuits should have less full depth than the so-called
“MAXDEPTH” limit [33]. No clear boundary for MAXDEPTH was specified;
instead 240, 264 and 296 are to be considered as landmarks. However, as discussed
in [26, Section 2.3], this limit is not always respected in the literature. Looking
at Tables 6 and 7 that, one may notice that, our implementations overtook the
MAXDEPTH boundaries, particularly those with larger key size. As a follow-up
work, one may be interested in adopting a proper procedure (see [26, Section 2.3]
for three possible options), as those are out-of-scope for this work.

7 Conclusion

In this work, we follow the previous works [6,23,31] where the quantum anal-
ysis of the SPECK and LowMC cipher families was conducted. As a synopsis
of our work, it can be mentioned that, we manage to find a reduced depth
implementation of the 10 SPECK variants (thereby improving from [6,23]) and
3 LowMC variants, on top of bug-fixing the LowMC implementation from [31]
(and benchmark those). All in all, our implementations achieve these security
bounds (which are defined in terms of the quantum cost of the AES family [33]):

– Variants of SPECK that use ≤ 96-bit key: Not achieved (< 2157), SPECK-
64/128: 2159 (Level 1), SPECK-96/144: 2176 (Level 1), SPECK-128/128: 2161

(Level 1), SPECK-128/192: 2226 (Level 3), SPECK-128/256: 2290 (Level 5);
– LowMC L1: 2160 (Level 1), LowMC L3: 2227 (Level 3), LowMC L5: 2293 (Level

5);

when the results from [26] are taken into account. We anticipate our work would
be useful to the broader community when analyzing the quantum security of
ciphers in the coming future. In particular, we anticipate future researcher will
take interest in implementing other ARX ciphers (for instance, by utilizing the
quantum adder, see Sect. 4.1) as well as SHA-256 and SHA-384 (those are impor-
tant milestones to figure out the quantum security levels, see Sect. 2.4).

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quant. Inf. Process. 17(5), 1–30 (2018). https://doi.org/10.
1007/s11128-018-1864-3

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/s11128-018-1864-3

538 K. Jang et al.

3. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 18

4. Amy, M., Maslov, D., Mosca, M., Roetteler, M., Roetteler, M.: A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013). https://doi.org/
10.1109/tcad.2013.2244643

5. Anand, R., Maitra, A., Maitra, S., Mukherjee, C.S., Mukhopadhyay, S.: Quantum
resource estimation for FSR based symmetric ciphers and related Grover’s attacks.
In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol.
13143, pp. 179–198. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92518-5 9

6. Anand, R., Maitra, A., Mukhopadhyay, S.: Evaluation of quantum cryptanalysis
on SPECK. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT
2020. LNCS, vol. 12578, pp. 395–413. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-65277-7 18

7. Anand, R., Maitra, A., Mukhopadhyay, S.: Grover on SIMON . Quant. Inf. Pro-
cess. 19(9), 1–17 (2020). https://doi.org/10.1007/s11128-020-02844-w

8. Baksi, A., Bhattacharjee, A., Breier, J., Isobe, T., Nandi, M.: Big brother is watch-
ing you: a closer look at backdoor construction. Cryptology ePrint Archive, Paper
2022/953 (2022). https://eprint.iacr.org/2022/953

9. Baksi, A., Jang, K., Song, G., Seo, H., Xiang, Z.: Quantum implementation and
resource estimates for Rectangle and Knot. Quant. Inf. Process. 20(12), 1–24
(2021). https://doi.org/10.1007/s11128-021-03307-6

10. Banegas, G., Bernstein, D.J., Van Hoof, I., Lange, T.: Concrete quantum crypt-
analysis of binary elliptic curves. Cryptology ePrint Archive (2020)

11. Bathe, B., Anand, R., Dutta, S.: Evaluation of Grover’s algorithm toward quantum
cryptanalysis on ChaCha. Quant. Inf. Process. 20(12), 1–19 (2021). https://doi.
org/10.1007/s11128-021-03322-7

12. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

13. Bijwe, S., Chauhan, A.K., Sanadhya, S.K.: Quantum search for lightweight block
ciphers: gift, skinny, saturnin. Cryptology ePrint Archive, Paper 2020/1485 (2020).
https://eprint.iacr.org/2020/1485

14. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum search-
ing. Fortschritte der Physik 46(4–5), 493–505 (1998). https://doi.org/10.1002/
(SICI)1521-3978(199806)46:4/5〈493::AID-PROP493〉3.0.CO;2-P

15. Cuccaro, S., Draper, T., Kutin, S., Moulton, D.: A new quantum ripple-carry
addition circuit. arXiv (2008). https://arxiv.org/pdf/quant-ph/0410184.pdf

16. Gidney, C.: Factoring with n+2 clean qubits and n-1 dirty qubits. arXiv preprint
arXiv:1706.07884 (2017)

17. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

https://doi.org/10.1007/978-3-319-69453-5_18
https://doi.org/10.1109/tcad.2013.2244643
https://doi.org/10.1109/tcad.2013.2244643
https://doi.org/10.1007/978-3-030-92518-5_9
https://doi.org/10.1007/978-3-030-92518-5_9
https://doi.org/10.1007/978-3-030-65277-7_18
https://doi.org/10.1007/978-3-030-65277-7_18
https://doi.org/10.1007/s11128-020-02844-w
https://eprint.iacr.org/2022/953
https://doi.org/10.1007/s11128-021-03307-6
https://doi.org/10.1007/s11128-021-03322-7
https://doi.org/10.1007/s11128-021-03322-7
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2020/1485
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://arxiv.org/pdf/quant-ph/0410184.pdf
http://arxiv.org/abs/1706.07884
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3

Improved Quantum Analysis of SPECK and LowMC 539

19. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quan-
tum circuits for elliptic curve discrete logarithms. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 425–444. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 23

20. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+ 2 qubits with toffoli
based modular multiplication. arXiv preprint arXiv:1611.07995 (2016)

21. He, Y., Luo, M.X., Zhang, E., Wang, H.K., Wang, X.F.: Decompositions of n-qubit
toffoli gates with linear circuit complexity. Int. J. Theor. Phys. 56(7), 2350–2361
(2017)

22. Huang, Z., Sun, S.: Synthesizing quantum circuits of AES with lower t-depth and
less qubits. Cryptology ePrint Archive, Report 2022/620 (2022). https://eprint.
iacr.org/2022/620

23. Jang, K., Choi, S., Kwon, H., Kim, H., Park, J., Seo, H.: Grover on Korean block
ciphers. Appl. Sci. 10(18) (2020). https://doi.org/10.3390/app10186407

24. Jang, K., Baksi, A., Breier, J., Seo, H., Chattopadhyay, A.: Quantum implemen-
tation and analysis of default. Cryptology ePrint Archive, Paper 2022/647 (2022).
https://eprint.iacr.org/2022/647

25. Jang, K., Baksi, A., Kim, H., Seo, H., Chattopadhyay, A.: Improved quantum
analysis of speck and LOWMC (full version). Cryptology ePrint Archive, Paper
2022/1427 (2022). https://eprint.iacr.org/2022/1427

26. Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quantum anal-
ysis of AES. Cryptology ePrint Archive, Paper 2022/683 (2022). https://eprint.
iacr.org/2022/683

27. Jang, K., Choi, S., Kwon, H., Seo, H.: Grover on SPECK: quantum resource esti-
mates. Cryptology ePrint Archive, Report 2020/640 (2020). https://eprint.iacr.
org/2020/640

28. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient implementation
of PRESENT and GIFT on quantum computers. Appl. Sci. 11(11) (2021). https://
www.mdpi.com/2076-3417/11/11/4776

29. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Parallel quantum addition
for Korean block cipher. IACR Cryptology ePrint Archive, p. 1507 (2021). https://
eprint.iacr.org/2021/1507

30. Jang, K., et al.: Grover on PIPO. Electronics 10(10), 1194 (2021)
31. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for

quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 10

32. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the
advanced encryption standard as a quantum circuit. IEEE Trans. Quant. Eng. 1,
1–12 (2020). https://doi.org/10.1109/TQE.2020.2965697

33. NIST.: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

34. Putranto, D.S.C., Wardhani, R.W., Larasati, H.T., Kim, H.: Another concrete
quantum cryptanalysis of binary elliptic curves. Cryptology ePrint Archive (2022)

35. Rahman, M., Paul, G.: Grover on katan: quantum resource estimation. IEEE Trans.
Quant. Eng. 3, 1–9 (2022)

36. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87(4), 042302 (2013)
37. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87, 042302 (2013).

https://doi.org/10.1103/PhysRevA.87.042302

https://doi.org/10.1007/978-3-030-44223-1_23
https://doi.org/10.1007/978-3-030-44223-1_23
http://arxiv.org/abs/1611.07995
https://eprint.iacr.org/2022/620
https://eprint.iacr.org/2022/620
https://doi.org/10.3390/app10186407
https://eprint.iacr.org/2022/647
https://eprint.iacr.org/2022/1427
https://eprint.iacr.org/2022/683
https://eprint.iacr.org/2022/683
https://eprint.iacr.org/2020/640
https://eprint.iacr.org/2020/640
https://www.mdpi.com/2076-3417/11/11/4776
https://www.mdpi.com/2076-3417/11/11/4776
https://eprint.iacr.org/2021/1507
https://eprint.iacr.org/2021/1507
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1109/TQE.2020.2965697
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1103/PhysRevA.87.042302

540 K. Jang et al.

38. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

39. Song, G., Jang, K., Kim, H., Lee, W., Hu, Z., Seo, H.: Grover on SM3. IACR
Cryptology ePrint Archive (2021). https://eprint.iacr.org/2021/668

40. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded
fan-out (2009). https://arxiv.org/abs/0910.2530

41. Zaverucha, G., et al.: The Picnic signature algorithm. Submission to PQC Third
Round (2020). https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.
pdf

42. Zou, J., Li, L., Wei, Z., Luo, Y., Liu, Q., Wu, W.: New quantum circuit implemen-
tations of SM4 and sm3. Quant. Inf. Process. 21(5), 1–38 (2022)

43. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 697–726. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 24

https://eprint.iacr.org/2021/668
https://arxiv.org/abs/0910.2530
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24

A Proposal for Device Independent
Probabilistic Quantum Oblivious Transfer

Jyotirmoy Basak1(B), Kaushik Chakraborty2, Arpita Maitra3,
and Subhamoy Maitra1

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
bjyotirmoy.93@gmail.com

2 School of Informatics, The University of Edinburgh, Edinburgh, UK
3 TCG Centre for Research and Education in Science and Technology, Kolkata, India

Abstract. In this paper, we propose a novel Probabilistic Quantum
Oblivious Transfer (also known as Quantum Private Query or QPQ)
scheme with full Device-Independent (DI) certification. To the best of
our knowledge, this is the first time we provide such a full DI-QPQ
scheme using EPR pairs. Our proposed scheme exploits the self-testing
of shared EPR pairs along with the self-testing of projective measurement
operators in a setting where the client and the server do not trust each
other. To certify full device independence, we exploit a strategy to self-
test a particular class of POVM elements that are used in the protocol.
Further, we provide formal security analysis and obtain an upper bound
on the maximum cheating probabilities for both the dishonest client as
well as the dishonest server.

1 Introduction

Since the very first proposal by Chor et al. [6], both Private Information Retrieval
(PIR), and Symmetric PIR have attracted extensive attention from the classical
cryptography domain. [5,7,11,12,22,28]. SPIR is a two-party (say Server, and
Client) mistrustful crypto primitive. Informally, in SPIR one party, Client would
like to retrieve some information from a database that is stored at the other party,
i.e., Server’s side without revealing any information about the retrieved data bits
to the Server. The Server’s goal is not to reveal any information about the rest
of the database. The task of SPIR is similar to the 1 out of N oblivious transfer.
Similar to most of the secure two-party cryptographic primitives, designing a
secure SPIR scheme is a difficult task. Since the client’s privacy and the database
security appear to be conflicting, it is elusive to design information-theoretically
secure SPIR schemes both in classical and in quantum domain [12,23]. This
paper focuses on a more weaker version of SPIR, called Private Query (PQ),
where the client is allowed to gain more information about the database than
SPIR or 1 out of N oblivious transfer. On the other hand, the client’s privacy
is ensured in the sense of cheat sensitivity i.e., if the server tries to gain the
information about the client’s queries then the client can detect that.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 541–565, 2022.
https://doi.org/10.1007/978-3-031-22912-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_24

542 J. Basak et al.

The PQ primitive is weaker than SPIR but stronger than PIR. However, this
type of primitive suffers from the same limitation as in the PIR schemes. For
example, in order to respond client’s query, the server must process the entire
database. Otherwise, the server will gain information regarding the indices corre-
sponding to the client’s query. Moreover, the server needs to send the encrypted
version of the entire database; otherwise, it would get an estimate about the
number of records that match the query.

In Quantum Private Query (QPQ), the client issues queries to a database
and obtains the values of the data bits corresponding to the queried indices such
that the client can learn a small amount of extra information about the database
bits that are not intended to know by her (known as database security), whereas
the server can gain a small amount of information about the query indices of
the client (known as user privacy) in a cheat-sensitive way. The functionality
of this QPQ primitive can be explained as a probabilistic n-out-of-N Oblivious
Transfer (here we consider n = 1) where the client has probabilistic knowledge
about the other (the bits that are not intended to know by her) database bits.

The first protocol in this domain had been proposed by Giovannetti et al. [13],
followed by [14] and [27]. However, all these protocols used quantum memories
and none of these are practically implementable at this point. For implementa-
tion purpose, Jakobi et al. [18] presented an idea which was based on a Quantum
Key Distribution (QKD) protocol [32]. This is the first QPQ protocol based on
a QKD scheme. In 2012, Gao et al. [9] proposed a flexible generalization of [18].
Later, Rao et al. [30] suggested two more efficient modifications of classical post-
processing in the protocol of Jakobi et al. In 2013, Zhang et al. [37] proposed
a QPQ protocol based on the counterfactual QKD scheme [26]. Then, in 2014,
Yang et al. came up with a flexible QPQ protocol [36] which was based on the
B92 QKD scheme [3]. This domain is still developing, as evident from the number
of recent publications [10,34]. Some of these protocols exploit entangled states
to generate a shared key between the server (Bob) and the client (Alice). In
some other protocols, a single qubit is sent to the client. The qubit is prepared
in certain states based on the value of the key and the client has to perform
certain measurements on this encoded qubit to extract the key bit. Although
these protocols differ in the process of key generation, the basic ideas are the
same. The security of all these protocols is defined based on the following facts.

– The server (Bob) knows the whole key which would be used for the encryption
of the database.

– The client (Alice) knows a fraction of bits of the key.
– Bob does not get any information about the position of the bits which are

known to Alice.

It is natural to consider that one of the legitimate parties may play the role
of an adversary. Alice tries to extract more information about the raw key bits
(which implies additional information about data bits), whereas Bob tries to
know the position of the bits that are known to Alice. For this reason, QPQ can
be viewed as a two-party mistrustful cryptographic primitive. Despite its cheat-
sensitive property, the server Bob and the client Alice are allowed to violate user

A Proposal for DI Probabilistic Quantum Oblivious Transfer 543

privacy and data security, respectively, with a negligible probability based on the
security requirements. In practice, the exact primitive that one tries to achieve
is as follows-

– Malicious Alice can only know a small amount of additional data bits than
that is intended to know by her. Here the aim is to minimise Alice’s of extra
information about the database.

– Malicious Bob can only gain a small amount of information about the query
indices of Alice. Here Alice tries to hides her query indices from Bob.

Very recently, Maitra et al. [24] identified that the securities of all the exist-
ing protocols are based on the fact that the communicating parties rely on their
devices, i.e., the source that supplies the qubits and the detectors that measure
the qubits. Thus, similar to the QKD protocols, the trustworthiness of the devices
are implicit in the security proofs of the QPQ protocols. However, in Device Inde-
pendent (DI) scenario, these trustful assumptions over the devices are removed
and the security is guaranteed even after removing these assumptions. But unlike
QKD, it is hard to prove DI security in the case of QPQ because of its mistrustful
property.

To remove the trustful assumptions and enhance the overall security, recently
a DI-QPQ protocol has been described in [24] and it’s finite sample analysis has
been discussed in [1]. In [24], the authors introduced a testing phase at the server-
side and proposed a semi-device independent version of the Yang et al. [36] QPQ
scheme.

In this QKD based QPQ scheme [36] (and also in the other QKD based QPQ
schemes), the main idea of partial key generation at the client’s side relies on
the distinction between non-orthogonal states. For the QPQ scheme [36], the
server Bob and the client Alice share non maximally entangled states and Alice
performs projective measurements at her side on some specified basis randomly
to guess the raw key bits (chosen by Bob) with certainty.

It is well-known that contrary to the non maximally entangled states, maxi-
mally entangled states are easy to prepare in practice and are also more robust in
the case of DI certification. Moreover, it is also known that POVM measurement
provides optimal distinction [17,29] between non-orthogonal quantum states.

Keeping these in mind, here we propose a novel QPQ scheme using shared
EPR pairs (between the server and the client) and POVM measurement (at the
client’s side to retrieve the maximum number of raw key bits with certainty).
Our proposed scheme provides full DI certification exploiting self-testing of EPR
pairs along with self-testing of POVM measurement (at the client’s side) and
projective measurement (at server’s side). We further provide formal security
proofs (considering all the strategies that preserve the correctness condition)
and obtain an upper bound on the maximum cheating probabilities for both
dishonest server and dishonest client.

1.1 Our Contribution

In a distrustful cryptographic primitive like QPQ, it is much harder to prove
Device Independence (DI). Keeping this in mind, here we try to achieve data

544 J. Basak et al.

privacy and user security (so that no significant information is leaked to any
of the parties) and also try to maintain the cheat-sensitive property. Our main
contributions in this paper are threefold which we enumerate below.

1. We propose a novel QPQ scheme and remove the trustworthiness from the
devices (source as well as measurement devices) using the self-testing of EPR
pairs, self-testing of projective measurements (mentioned in [19]) and self-
testing of POVM measurements. Recently, Maitra et al. [24] proposed a semi
DI version of the QPQ scheme [36]. However, the QPQ scheme [36] uses
non maximally entangled states which are difficult to prepare in practice
and are also less robust in the case of DI certification as compared to the
maximally entangled states. Keeping this in mind, here we propose a QPQ
scheme using EPR pairs and a proper self-testing mechanism that guarantees
full DI security of our protocol. To the best of our knowledge, this is the first
time we provide such a full DI-QPQ scheme.

2. We replace the usual projective measurement at client Alice’s side with opti-
mal POVM measurement so that (on average) Alice can obtain maximum
raw key bits with certainty and (possibly) retrieve the maximum number of
data bits in a single query. We also show that our proposed scheme provides
(on average) the maximum number of raw key bits with certainty for Alice.

3. Contrary to all the existing QPQ protocols, in the present effort, we provide
a general security analysis (considering all the attacks that preserve the cor-
rectness condition) and provide an upper bound on the cheating probabilities
(i.e., a lower bound on the amount of information leakage in terms of entropy)
for both the parties (server as well as the client).

1.2 Notations and Definitions

Atfirst, we list down a few notations that we use throughout this paper to
describe our scheme.

– K: Initial number of states for the QPQ protocol. Here, we assume that K is
asymptotically large for our scheme.

– |ψ〉BiAi
: the i-th copy of the shared state where the first qubit corresponds to

Bob (subscript Bi denotes the subsystem corresponds to Bob) and the second
qubit corresponds to Alice (subscript Ai denotes the subsystem corresponds
to Alice).

– ρBiAi
: the density matrix representation for the i-th shared state.

– ρAi
(ρBi

): the reduced density matrix at Alice’s (Bob’s) side for the i-th
shared state.

– X: the N -bit database which corresponds to server Bob.
– Xi: i-th bit of the database.
– R(RA): the entire raw key corresponding to Bob (Alice) of size kN bits for

some integer k > 1.
– F (FA): the entire final key corresponding to Bob (Alice) of size N bits.
– Ri(RAi

): the i-th raw key bit at Bob’s (Alice’s) side.

A Proposal for DI Probabilistic Quantum Oblivious Transfer 545

– Fi(FAi
): the i-th final key bit at Bob’s (Alice’s) side.

– Il: the index set of the elements which are quaried by the client Alice.
– M : POVM device used at Alice’s side.
– A(B): measurement outcome at Alice’s (Bob’s) side.
– A(A∗): honest (dishonest) client Alice.
– B(B∗): honest (dishonest) server Bob.
– |φ0〉 = cos θ

2 |0〉 + sin θ
2 |1〉.

– |φ1〉 = cos θ
2 |0〉 − sin θ

2 |1〉.
Now we list down a few definitions that are required to understand the secu-

rity related issues of our scheme.

– Trace Distance: The trace distance allows us to compare two probability
distributions {pi} and {qi} over the same index set which can be defined as

Dist(pi, qi) =
1
2

∑

i

|pi − qi|.

– In quantum paradigm, the trace distance is a measure of closeness of two
quantum states ρ and σ. The trace norm of an operator M is defined as,

||M ||1 = Tr|M |,
where |M | =

√
M†M . The trace distance between quantum states ρ and σ is

given by,

Dist(ρ, σ) = Tr|ρ − σ|
= ||ρ − σ||1,

where |A| =
√

A†A is the positive square root of
√

A†A.

– Fidelity: Like trace distance, fidelity is an alternative measure of closeness.
In terms of fidelity, the similarity between the two probability distributions
{pi} and {qi} can be defined as,

F (pi, qi) =

(
∑

i

√
piqi

)2

.

– The fidelity of two quantum states ρ and σ is defined as

F (ρ, σ) =
[
Tr(

√
ρ1/2σρ1/2)

]2
.

– In case of pure states, the fidelity is a squared overlap of the states |ψ〉 and
|φ〉, i.e.,

F (ρ, σ) = |〈ψ|φ〉|2,
where ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| are corresponding density matrix represen-
tation of the pure states |ψ〉 and |φ〉 respectively.

546 J. Basak et al.

– The two measures of closeness of quantum states, trace distance and fidelity,
are related by the following inequality [8],

1 −
√

F (ρ, σ) ≤ 1
2
Tr|ρ − σ| ≤

√
1 − F (ρ, σ).

– Trace distance has a relation with the distinguishability of two quantum
states. Suppose, one referee prepares two quantum states ρ and σ for another
party (say Alice) to distinguish. The referee prepares each of the states with
probability 1

2 . Let pcorrect denotes the optimal guessing probability for Alice
and it is related to trace distance by the following expression,

pcorrect =
1
2

(
1 +

1
2
Tr|ρ − σ|

)
.

It implies that trace distance is linearly dependent to the maximum success
probability in distinguishing two quantum states ρ and σ. For further details
one may refer to [15].

– Conditional Minimum Entropy: Let ρ = ρAB be the density matrix
representation of a bipartite quantum state. Then the conditional minimum
entropy of subsystem A conditioned on subsystem B is defined by [21]

Hmin(A|B)ρ = − inf
σB

D∞(ρAB ||IA ⊗ σB),

where IA denotes the identity matrix of the dimension of system A and the
infimum ranges over all normalized density operators σB on subsystem B and
also for any two density operators T, T ′ we define,

D∞(T ||T ′) = inf{λ ∈ R : T ≤ 2λT ′}.

– Let ρXB be a bipartite quantum state where the X subsystem is classical.
For the given state ρXB if pguess(X|B)ρXB

denotes the maximum probability
of guessing X given the subsystem B, then from [21] we have,

pguess(X|B)ρXB
= 2−Hmin(X|B)ρ . (1)

1.3 Adversarial Model

In the distrustful primitive QPQ, each of the parties has different security goals.
The requirement of the entire protocol for the honest case is termed as Protocol
Correctness whereas the security of the server (Bob) is termed as Data Privacy
and the security requirement for the client (Alice) is termed as User privacy.
Formally, these terms are defined below.

Definition 1. Protocol Correctness:
If the user (i.e., the client) Alice and the database owner (i.e., the server)

Bob both are honest, then after the key establishment phase, the probability that

A Proposal for DI Probabilistic Quantum Oblivious Transfer 547

Alice correctly retrieves the expected number of data bits in a single database
query is very high. This implies that in case of honest implementation of the
protocol, if X denotes the actual number of data bits known by Alice and E[X]
denotes the expected number of data bits that are supposed to be known by Alice
then, after the key establishment phase,

Pr(|X − E[X]| ≤ δt ∧ the protocol does not abort) ≥ Pc (2)

where δt denotes the amount of deviation allowed by Bob and Pc denotes the
probability with which the value of X lies within the interval [E[X]−δt, E[X]+δt]
(ideally, the value of Pc should be high).

Definition 2. Protocol Robustness:
If the user (i.e., the client) Alice and the database owner (i.e., the server) Bob

both are honest, then after the key establishment phase of our proposed scheme,
the probability that Alice will know none of the final key bits (as well as the
database bits) and the protocol has to be restarted is very low. More formally,

Pr(the protocol aborts in honest scenario) ≤ Pa (3)

where Pa denotes the probability that Alice knows none of the final key bits and
aborts the protocol (ideally, the value of Pa should be small).

Definition 3. Data Privacy:
A QPQ protocol satisfies the data privacy property if either the protocol aborts

with high probability in the asymptotic limit, or in a single database query, dis-
honest Alice (A∗) can correctly extract (on average) at most τ fraction of bits of
the N -bit database X where τ(0 < τ < 1) is very small compared to the size of
the entire database i.e., N . This implies that if DA∗ denotes the number of data
bits that dishonest Alice can extract (on average) in a particular query then,

ER(DA∗) ≤ τN (4)

where the expectation is taken all over the random coins R that are used in the
protocol.

Definition 4. User Privacy:
Let Il = {i1, . . . , il} denotes the indices of the data bits that Alice wants to

know from the database by performing l many queries. Then for a QPQ proto-
col, after l many queries, either the protocol aborts with high probability in the
asymptotic limit, or the dishonest Bob (B∗) can correctly guess (on average) at
most δ fraction of indices from the index set Il where δ (0 < δ < 1) is very
small compared to the size of the index set i.e., l. This implies that after l many
queries to the database by Alice, if IB∗ denotes the number of correctly guessed
indices by dishonest Bob then,

ER′(IB∗) ≤ δl (5)

where the expectation is taken all over the random coins R′ that are used in the
protocol.

548 J. Basak et al.

1.4 Assumptions for Our Device Independent Proposal

The list of assumptions for the security of our proposed QPQ-protocol can be
summarized as follows.

1. Devices follow the laws of quantum mechanics i.e., the quantum states and the
measurement operators involved in this scheme lead to the observed outcomes
via the Born rule.

2. Like the recent DI proposal for oblivious transfer from the bounded-quantum-
storage-model and computational assumptions in [4], here also we assume that
the state generation device and the measurement devices (both at honest and
dishonest party’s end) are described by a tensor product of Hilbert spaces,
one for each device. That means for this proposal, we assume that the devices
follow the i.i.d. assumptions such that each use of a device is independent of
the previous use and they behave the same in all trials. This also implies that
the statistics of all the rounds are independent and identically distributed
(i.i.d.) and the devices are memoryless. We also assume that the honest party
chooses the inputs randomly and independently for each rounds.
Note : As QPQ is a distrustful primitive, to detect the fraudulent behavior
(if any) of the dishonest party, the i.i.d. assumption on the inputs chosen by
the honest party seems justified here.

3. The honest party can interact with the unknown devices at his end only by
querying the devices with the inputs and getting the corresponding outputs
whereas the dishonest party can manipulate all the devices before the start
of the protocol. However, we assume that after the protocol starts, the dis-
honest party can no longer change this behavior - s/he cannot manipulate
any devices held by the honest party, and also cannot “open up” any devices
s/he possesses at her/his end (i.e. the dishonest party is also restricted to
only supplying the inputs and getting the corresponding outputs from those
devices after the start of the protocol). We also assume that the dishonest
party processes their data in an i.i.d. fashion.

4. Generally, in the Device Independent (DI) scenario, it is assumed that Alice’s
and Bob’s laboratories are perfectly secured, i.e., there is no communication
between the laboratories. As QPQ is a distrustful scheme, here we assume
that each party’s aim is not only to retrieve as much additional information as
possible from the other party but also to leak as little additional information
as possible from his side. For this reason, while testing the cheating of a dis-
honest party in a particular testing phase, the other party must act honestly
in that test to detect the fraudulent behavior (if any) of the dishonest party.
If both the parties act deceitfully in any testing phase, then none of them
can detect the cheating of the other party. So, one party must act honestly
in every testing phase.
In the local tests, the honest party chooses the input bits randomly for the
devices at his end (on behalf of the referee). So, there is no communication
between the laboratories. But for distributed tests (i.e., the tests performed
by both of them with the shared states), we assume that the honest party

A Proposal for DI Probabilistic Quantum Oblivious Transfer 549

chooses the input bits for both the parties on behalf of the referee and then
dishonest party announces the measurement outcomes. That means for the
distributed tests, we allow communication regarding the input and output
bits from the honest party’s and the dishonest party’s end respectively.
We also assume that the honest party can somehow “shield” his devices such
that no information (regarding the inputs and the outputs) is leaked from his
laboratory until he chooses to announce something.
Note: Here, one may think that in case of distributed test, the dishonest
party may not measure his qubits according to the values of the input bits
chosen by the honest party. In that case, how the honest party can detect this
dishonest behaviour in the corresponding testing phase is clearly mentioned
later in the analysis of device independent security.

5. The inputs for self-tests are chosen freely and independently i.e., the device
used to generate input bits for one party does not have any correlations
(classical or quantum) with the devices of the other party.

2 Our Proposed DI-QPQ Scheme

Here we describe the step by step procedures of the protocol. Note that we
haven’t considered the channel noise here. So, here we assume that all the oper-
ations are perfect.

Algorithm 1: LoaclCHSHtest(S,P)
– For each i ∈ S, P does the following-

1. For the inputs si = 0 and si = 1, P’s device performs a measurement in the
first qubit of the i-th state and outputs ci = 0 or ci = 1.

2. For the inputs ri = 0 and ri = 1, P’s device performs a measurement in the
second qubit of the i-th state and outputs bi = 0 or bi = 1.

– From the inputs si, ri and corresponding outputs ci, bi, P estimates the following
quantity,

C =
1

|S|
∑

i∈S
Ci

where the parameter Ci is defined as follows ,

Ci :=

{
1 If siri = ci ⊕ bi

0 otherwise.

– If C = cos2 π
8

then the protocol continues.
– Otherwise, the protocol aborts.

550 J. Basak et al.

1. Entanglement Distribution Phase:
(a) A third party distributes K copies of two qubit states |φ〉AB between Alice

and Bob such that Alice (Bob) receives A (B) subsystem of |φ〉AB.

Algorithm 2: OBStest(S)
– For each i ∈ S, Alice and Bob does the following-

(a) Bob generates a random bit si ∈R {0, 1} as an input of Alice’s device and
declares the input publicly.

(b) For the inputs si = 0 and si = 1, Alice’s device performs a measurement in
her part of the i-th copy of the shared states and outputs ci = 0 or ci = 1.

(c) Bob already generates the input bits ri = 0 or ri = 1 randomly for his
measurement device in the i-th instance and obtains the outcome bi = 0 or
bi = 1.

(d) Alice and Bob declare their inputs si, ri and corresponding outputs ci, bi.
– From the declared outcomes Alice and Bob estimate the following quantity,

β =
1

4

∑

s,r,c,b∈{0,1}
(−1)dsrcbα1⊕s〈φAB|As

c ⊗ Br
b |φAB〉

where α = (cos θ+sin θ)
|(cos θ−sin θ)| and dsrcb is defined as follows ,

dsrcb :=

{
0 If sr = c ⊕ b

1 otherwise.

– If β = 1√
2|(cos θ−sin θ)| then the protocol continues.

– Otherwise, the protocol aborts.

2. Source Device Verification Phase:
This phase comprises of two subphases. Atfirst Bob acts as a referee and
performs a local test and then Alice does the same at her end. The different
steps are as follows.
(a) Bob randomly chooses γ1K

2 instances from the shared K instances, declares
the instances publicly and constructs a set ΓB

CHSH with these instances.
(b) Alice sends her qubits for all the instances in ΓB

CHSH to Bob.
(c) For every i-th sample in ΓB

CHSH, Bob generates random bits ri ∈R {0, 1}
and si ∈R {0, 1} as the inputs of his two measurement devices (these
devices act as the devices of two different parties).

A Proposal for DI Probabilistic Quantum Oblivious Transfer 551

(d) Bob performs LocalCHSHtest(ΓB
CHSH, Bob), mentioned in Algorithm1 for

the set ΓB
CHSH.

(e) If Bob passes the LocalCHSHtest(ΓB
CHSH, Bob) game then they proceed

further, otherwise they abort.
(f) From the rest

(
K − γ1K

2

)
instances, Alice randomly chooses γ1K

2

instances, declares the instances publicly and constructs a set ΓA
CHSH with

these instances.
(g) Bob sends her qubits for all the instances in ΓA

CHSH to Alice.
(h) For every i-th sample in ΓA

CHSH, Alice generates random bits ri ∈R {0, 1}
and si ∈R {0, 1} as the inputs of her two measurement devices (these
devices act as the devices of two different parties).

(i) Alice performs LocalCHSHtest(ΓA
CHSH, Alice), mentioned in Algorithm1

for the set ΓA
CHSH.

(j) If Alice passes the LocalCHSHtest(ΓA
CHSH, Alice) game then they proceed

to the next part of the protocol where Bob self-tests his observables,
otherwise they abort.

Algorithm 3: KEYgen(S)
– For each i ∈ S, Alice does the following-

(a) If Bob declared ai = 0, Alice measures her qubit of the i-th shared state
using the measurement device M0 = {M0

0 , M0
1 , M0

2 }.
(b) If Bob declared ai = 1, Alice measures her qubit of the i-th shared state

using the measurement device M1 = {M1
0 , M1

1 , M1
2 }.

3. DI Testing for Bob’s Measurement Device:
(a) Bob and Alice consider the rest (K−γ1K) states and for 1 ≤ i ≤ (K−γ1K),

Bob does the following-
– Bob first generates a random bit ri for the i-th instance (i.e., bit

ri ∈R {0, 1}).
– If ri = 0, Bob’s device applies measurement operator {B0

0 , B
0
1}, and

generates the output bi = 0 and bi = 1 respectively.
– If ri = 1, Bob’s device applies measurement operator {B1

0 , B
1
1}, and

generates the output bi = 0 and bi = 1 respectively.
– Bob declares ai = 0 whenever his device outputs bi = 0 (i.e., the

device applies measurement operator B0
0 or B1

0 for the i-th instance).
– Bob declares ai = 1 whenever his device outputs bi = 1 (i.e., the

device applies measurement operator B0
1 or B1

1 for the i-th instance).

552 J. Basak et al.

(b) From these (K − γ1K) instances, Bob randomly chooses γ2(K−γ1K)
2

instances, declares the instances publicly and constructs a set ΓB
obs with

these instances.
(c) Alice then randomly chooses γ2(K−γ1K)

2 instances from the rest (K−γ1K−
γ2(K−γ1K)

2) instances, declares the instances publicly and make a set ΓA
obs

with these instances.
(d) Alice and Bob construct a set Γobs with all their chosen instances i.e.,

Γobs = ΓA
obs ∪ ΓB

obs.
(e) Alice and Bob perform OBStest(Γobs), mentioned in Algorithm 2, for the

set Γobs.

Algorithm 4: POVMtest(S)
– Alice considers all those instances of the set S where Bob declared ai = 0 and

creates a set S0 with those instances.
– Similarly, with the rest of the instances (i.e., the instances where Bob declared

ai = 1), Alice creates a set S1.
– Let us assume that y denotes the value of ai and for the set Sy, the states at

Alice’s side are either ρy
x or ρy

x⊕1 (for input x ∈R {0, 1} at Bob’s side).
– For each set Sy, Alice calculates the value of the parameter

Ωy =
∑

b,x∈{0,1}
(−1)b⊕xTr[My

b ρy
x]

where My
b is the measurement outcome at Alice’s side in KEYgen().

– If for every Sy (y ∈ {0, 1}),

Ωy =
2 sin2 θ

(1 + cos θ)

then the protocol continues.
– Otherwise, the protocol aborts.

4. DI Testing for Alice’s POVM Elements:
(a) After the DI testing phase for Bob’s measurement device, Alice and Bob

proceed to this phase with the rest (K − |ΓCHSH| − |Γobs|) shared states.
Let us denote this set as ΓPOVM.

(b) Alice randomly chooses γ3|ΓPOVM| samples from the rest shared |ΓPOVM|
states. We call this set as Γ test

POVM. Alice performs KEYgen(Γ test
POVM), men-

tioned in Algorithm 3, for the set Γ test
POVM.

A Proposal for DI Probabilistic Quantum Oblivious Transfer 553

(c) Alice then performs POVMtest(Γ test
POVM), mentioned in Algorithm 4, for

the set Γ test
POVM.

5. Key Establishment Phase:
(a) After the DI testing phase for POVM elements, Alice proceeds to this

phase with the rest (|ΓPOVM| − γ3|ΓPOVM|) shared states. Let us denote
this set as ΓKey.

(b) For the shared states of the set ΓKey, Alice performs KEYgen(ΓKey).
(c) After KEYgen(ΓKey),

– If Alice gets M0
0 (M0

1) for ai = 0, she concludes that the original raw
key bit for i-th instance is 0(1). Whenever Alice gets M0

2 , she ignores
that outcome.

– Similarly, if Alice obtains M1
0 (M1

1) for ai = 1, she concludes that the
original raw key bit for i-th instance is 0(1). Whenever Alice gets M1

2 ,
she ignores that outcome.

(d) After these key generation, Alice and Bob proceed to private query phase
with this |ΓKey| shared states. Note that |ΓKey| = kN for some positive
integer k > 1 where N is the number of bits in the database and k is
exponentially smaller than N .

(e) Alice and Bob use the raw key bits obtained from these kN many states
for the next phase.

6. Private Query Phase:
(a) After the key establishment phase, Alice and Bob share a raw key of length

kN bits where Bob knows every bit value and Alice knows partially (and
Bob does not know the indices of the bits known by Alice).

(b) Alice and Bob then cut the raw key into k substrings of length N , and
add these k strings bitwise to obtain the final key of length N .

(c) Now suppose that Alice knows only the i-th bit Fi of Bob’s final key F
and wants to know the j-th bit mj of the database. Alice then announces
a permutation PA such that after applying the permutation, the i-th bit
of the final key goes to j-th position.

(d) Consequently, Bob applies this permutation PA on the final key F at his
side, encrypt the database with this modified key using one time pad and
send the encrypted database to Alice.

(e) As, the data bit mj will be encrypted by the final key bit Fi, Alice can
correctly recover the intended data bit after decrypting the encrypted
database with her key.

554 J. Basak et al.

Proposed QPQ Scheme (In Case of Honest Implementation):

– The server Bob and the client Alice share K EPR pairs among them-
selves such that the first qubit of every shared EPR state corresponds
to Alice and the second qubit corresponds to Bob.

– For each of these K shared EPR pairs, Bob and Alice generate raw
key bits in the following way-

• Bob randomly chooses the value of the i-th raw key bit ri (i.e.,
ri ∈R {0, 1}).

• If ri = 0, Bob measures his qubit of the i-th shared state
in {|0〉 , |1〉} basis, otherwise (i.e., for ri = 1) he measures in
{|0′〉 , |1′〉} basis where |0′〉 = cos θ |0〉 + sin θ |1〉 and |1′〉 =
sin θ |0〉 − cos θ |1〉 (here Bob chooses the value of θ according to
the relation as mentioned in equation 8).

• Bob declares a classical bit ai = 0(ai = 1) whenever the measure-
ment outcome at his side for the i-th instance is either |0〉 (|1〉) or
|0′〉 (|1′〉).

• Whenever Bob declared ai = 0, Alice measures her qubit of the
i-th EPR pair using the POVM M0 = {M0

0 ,M0
1 ,M0

2 } where

M0
0 ≡ (sin θ |0〉 − cos θ |1〉)(sin θ 〈0| − cos θ 〈1|)

1 + cos θ

M0
1 ≡ 1

1 + cos θ
|1〉 〈1|

M0
2 ≡ I − M0

0 − M0
1

• Similarly, whenever Bob declared ai = 1, Alice measures her qubit
of the i-th EPR pair using the POVM M1 = {M1

0 ,M1
1 ,M1

2 } where

M1
0 ≡ (cos θ |0〉 + sin θ |1〉)(cos θ 〈0| + sin θ 〈1|)

1 + cos θ

M1
1 ≡ 1

1 + cos θ
|0〉 〈0|

M1
2 ≡ I − M1

0 − M1
1

• If Alice gets M0
0 (M0

1) for ai = 0, she concludes that the original
raw key bit for i-th instance is 0(1). Whenever Alice gets M0

2 , her
measurement outcome remains uncertain.

• Similarly, if Alice obtains M1
0 (M1

1) for ai = 1, she concludes that
the original raw key bit for i-th instance is 0(1). Whenever Alice
gets M1

2 , her measurement outcome remains uncertain.
• After this raw key generation, Alice and Bob first perform some

postprocessing on their raw key bits to generate the final key and
then perform database query according to the strategy mentioned
in the private query phase of the proposed scheme.

A Proposal for DI Probabilistic Quantum Oblivious Transfer 555

Fig. 1. Schematic diagram of our proposed DI-QPQ scheme.

3 Analysis of Our Protocol

In this section we discuss the functionality of our proposed scheme. At first,
we discuss the correctness of our protocol in Subsect. 3.1. Next, we estimate
(in Subsect. 3.2) the values of different parameters involved in our scheme for
security purpose. At last, we discuss the security related issues of our proposed
scheme in Subsect. 3.3 (Fig. 1).

3.1 Correctness of the Protocol

Theorem 1. For honest Alice and honest Bob scenario, at the end of key estab-
lishment phase, Alice can correctly guess (on average) only (1 − cos θ) fraction
of bits of the entire raw key R.

The proof of this theorem directly follows from our proposed scheme. How-
ever, a detailed proof of this theorem can be found in [2].

3.2 Parameter Estimation for Private Query Phase

Here we estimate the values of different parameters considering the honest imple-
mentation of our proposed scheme such that the protocol preserves both user
privacy and data privacy.

556 J. Basak et al.

Estimation of the parameter θ for security purpose:

In our proposed scheme, the server Bob wants the client Alice to know atmost
one final key bit for database security. As the client Alice can guess a raw key
bit with probability around (1 − cos θ), and they XOR k number of raw key bits
to generate every bit of the final key, the probability that Alice can correctly
guess a final key bit is around (1 − cos θ)k.

If we assume that FA denotes the number of final key bits known by Alice
then the expected value of FA is,

E[FA] ≈ (1 − cos θ)k
N

In our proposal, dishonest Alice has to measure correctly for all the instances
to pass the DI testing phases. Moreover, it is known that (1 − cos θ) is the
optimal probability with which two non orthogonal states can be distinguished.
This implies that for dishonest Alice, the guessing probability of a raw key bit
and a final key bit such that the protocol does not abort is upper bounded by
(1 − cos θ) and (1 − cos θ)k respectively.

So, the expected value of FA∗ will also be upper bounded by,

E[FA∗] ≤ (1 − cos θ)k
N (6)

As the database is encrypted by performing bitwise XOR with the final key,
the expected number of data bits that dishonest Alice can guess correctly in a
single query is also upper bounded by (1 − cos θ)k

N i.e.,

E[DA∗] ≤ (1 − cos θ)k
N (7)

For security purpose, we want dishonest Alice to know at least one and less
than two final key bits. That means,

1 ≤ E[FA] < 2

i.e.,
1
N

≤ (1 − cos θ)k
<

2
N

(8)

From these results, one can conclude the following,

Corollary 1. If the server Bob wants the client Alice to know at least one final
key bit but less than two final key bits, then Bob needs to choose the parameter
k and the value of θ such that,

1
N

≤ (1 − cos θ)k
<

2
N

A Proposal for DI Probabilistic Quantum Oblivious Transfer 557

Estimation of the security parameter Pa and Pc :

In our scheme, the probability that Alice can successfully guess a final key
bit is equal to (1 − cos θ)k. So, the probabilty that Alice can not guess a final key
bit is equal to

[
1 − (1 − cos θ)k

]
. That means the probability that Alice knows

none of the N final key bits is equal to

[
1 − (1 − cos θ)k

]N

≈ e−(1−cos θ)kN (9)

This implies that for our proposed scheme, we get the following bound on
the value of the parameter Pa

Pa ≤ e−(1−cos θ)kN (10)

From the Eq. 8, we get that 1
N ≤ (1 − cos θ)k

< 2
N . If we consider that Bob

chooses the value of θ such that (1 − cos θ)k = 1
N then replacing this value in

Eq. 10, we can get,

Pa ≤ e−1 (11)

That means the value of Pa is small for our proposed scheme. Similarly, the
probability that the protocol does not abort in honest scenario (i.e., Alice knows
atleast one final key bit) is equal to

Pr(protocol doesn’t abort in honest scenario) ≥ [
1 − e−1

]
(12)

Hence, for our scheme, the probability that the protocol does not abort is
high. Now, we recall the Chernoff-Hoeffding [16] inequality.

Proposition 1. (Chernoff-Hoeffding Inequality) Let X = 1
m

∑
1≤i≤m Xi be the

average of m independent random variables X1,X2, · · · ,Xm with values (0, 1),
and let E[X] = 1

m

∑
1≤i≤m E[Xi] be the expected value of X. Then for any δCH >

0, we have Pr [|X − E[X]| ≥ δCH] ≤ exp(−2δ2CHm).

Here, after the key establishment phase of our scheme, we consider Xi = 1
whenever Alice knows the value of the i-th final key bit (i.e., for all the raw key
bits corresponding to the i-th final key bit, Alice gets the conclusive outcomes
i.e., either M0

0 (M1
0) or M0

1 (M1
1)) or equivalently the corresponding data bit (i.e.,

the data bit which is encrypted with the i-th final key bit after permutation on
the final key) and the protocol does not abort and Xi = 0 otherwise. As there are
total N number of final key bits, we consider the value of the random variable
X as X =

∑N
i=1 Xi.

Whenever the protocol does not abort, the expected number of final key
bits that Alice should know after the key establishment phase is E[X] =

558 J. Basak et al.

(1 − cos θ)k
N and there are total m = N number of final key bits. Now, we

want that the value of X lie within the error margin δCH = ε (1 − cos θ)k
N

from the expected value. Here, we can calculate the corresponding probability
using the Chernoff-Hoeffding inequality as the final key bits at Alice’s side are
all independent. For our proposed scheme, the value of the random variable X
and also the expected value E[X] is calculated considering the scenario that the
protocol does not abort. So, from the expression of Chernoff-Hoeffding bound in
Proposition 1, we can write that,

Pr [|X − E[X]| < δCH ∧ protocol doesn’t abort]

≥ 1 − exp(−2δ2CH m) (13)

We want that the number of final key bits known by Alice lie within the
interval [p − εp, p + εp] where p = (1 − cos θ)k

N i.e., the deviation is δCH =
ε (1 − cos θ)k

N . From the expression 13, replacing the value of δCH and m, we
get that,

Pr [|X − E[X]| < δCH ∧ protocol doesn’t abort]

≥ 1 − exp(−2δ2CH N)

where δCH = ε (1 − cos θ)k
N

(14)

Now, if we consider that Bob chooses the value of θ such that (1 − cos θ)k = 1
N

then replacing this value in Eq. 14, we can get,

Pr [|X − E[X]| < ε ∧ protocol doesn’t abort]

≥ 1 − exp(−2ε2 N)

As the correct guessing of a final key bit implies the correct guessing of the
corresponding data bit, from Definition 1, we can say that for honest Alice and
honest Bob, the value of the parameter Pc for our scheme is lower bounded by,

Pc ≥ [1 − exp(−2ε2 N)] (15)

In practice, this probability is high as the value of N is very large.
From the condition in Eq. 8, we can get the following bound on the value of

δCH .

ε ≤ δCH < 2ε (16)

This implies that for security purpose, the upper bound on the value of ε will
be ε ≤ 1

2 .
To evaluate the performance, here we consider our scheme as 1 out of 2

probabilistic oblivious transfer (i.e., N = 2 and k = 1). From Eq. 6, we can say
that if Bob chooses the value of θ such that (1 − cos θ) = 1

2 , then the expected

A Proposal for DI Probabilistic Quantum Oblivious Transfer 559

number of final key bit (or data bit) that Alice can guess in a single round of
our scheme is 1

2 × 2 = 1. From Eq. 15, one can conclude that for our scheme, the
probability of getting this final key bit is lower bounded by

Pc ≥ 1 − exp(−1) ≈ 0.632 (17)

We now discuss the security related issues of this modified scheme.

3.3 Security of Our Protocol

In this section, we discuss the security related issues of our proposed scheme.

Device Independent Security
In our proposal, the device independent (DI) testing has been done in three
phases. The first two DI testing are done in source device verification phase
and DI testing for Bob’s measurement device. The third DI testing occurs in DI
testing phase for Alice’s POVM elements. From the rigidity of CHSH game [31,
Lemma 4.2], one can conclude the following for the LocalCHSHtest.

Corollary 2 (DI testing of shared states). In the LocalCHSH test of
the source device verification phase of our proposed scheme, either the devices
achieve C = cos2 π

8 for both Alice and Bob (i.e., the shared states are EPR pairs),
or the protocol aborts with high probability in the asymptotic limit.

In the next phase, Bob checks the functionality of his measurement devices.
Here we assume that Bob will act honestly in this phase to check the functionality
of his devices because from the result in Lemma 2, it is clear that if dishonest
Bob wants to guess Alice’s query indices with more certain probability then he
should allow Alice to know more data bits in a single query which violates our
assumption 4 that none of the parties reveal additional information from his side
to get more information from the other party. From OBStest, one can conclude
the following about the functionality of Bob’s measurement device.

Theorem 2 (DI testing of Bob’s measurement devices). In OBStest,
either Bob’s measurement devices achieve β = 1√

2|(cos θ−sin θ)| (i.e., his devices
measure correctly in {|0〉 , |1〉} and {|0′〉 , |1′〉} basis where |0′〉 = (cos θ |0〉 +
sin θ |1〉), |1′〉 = (sin θ |0〉 − cos θ |1〉)) or the protocol aborts with high probability
in the asymptotic limit.

The proof of this theorem follows exactly the same approach that is men-
tioned in [19] for certifying non-maximally incompatible observables. For space
limitation, the detailed proof is omitted here. However, one can refer to [2] for
the proof of this theorem.

The third DI testing is done in DI testing for Alice’s POVM elements. In this
phase, Alice measures the chosen states using the device M0 = {M0

0 ,M0
1 ,M0

2 } or
M1 = {M1

0 ,M1
1 ,M1

2 } based on the declared ai values for each of the instances.
From the measurement outcomes, one can conclude the following.

560 J. Basak et al.

Theorem 3 (DI testing of Alice’s measurement device M0). In
POVMtest, for the instances where Bob declares ai = 0, either the protocol aborts
with high probability in the asymptotic limit or Alice’s measurement devices
achieve Ω0 = 2 sin2 θ

1+cos θ i.e., the devices are of the following form (up to a local
unitary),

M0
0 =

1
(1 + cos θ)

(|1′〉〈1′|) (18)

M0
1 =

1
(1 + cos θ)

(|1〉〈1|) (19)

M0
2 = I − M0

0 − M0
1 , (20)

where |1′〉 = sin θ|0〉 − cos θ|1〉.
Theorem 4 (DI testing of Alice’s measurement device M1). In
POVMtest, for the instances where Bob declares ai = 1, either the protocol aborts
with high probability in the asymptotic limit or Alice’s measurement devices
achieve Ω1 = 2 sin2 θ

1+cos θ , i.e., the devices are of the following form (up to a local
unitary),

M1
0 =

1
(1 + cos θ)

(|0′〉〈0′|) (21)

M1
1 =

1
(1 + cos θ)

(|0〉〈0|) (22)

M1
2 = I − M1

0 − M1
1 , (23)

where |0′〉 = cos θ|0〉 + sin θ|1〉.
The proofs of these two theorems are omitted here because of the space

limitation. However, one can refer to Appendix C (entitled DI Testing of POVM
Elements) in the full version of this paper in [2] for the detailed proof.

All these discussions lead us to the following conclusion.

Corollary 3. Either our DI proposal aborts with high probability in the asymp-
totic limit, or it certifies that the devices involved in our QPQ scheme achieve
the intended values of C, β and Ω0 (or Ω1) in LocalCHSHtest, OBStest and
POVMtest respectively.

Database Security Against Dishonest Alice
In this subsection, we establish an upper bound on the cheating probability of
dishonest Alice during the key establishment phase.

Theorem 5. After OBStest, if Alice’s measurement device is not tested then
in the key establishment phase, dishonest Alice can inconclusively (i.e., can not
know the positions of the correctly guessed bits with certainty) retrieve (on aver-
age) at most

(
1
2 + 1

2 sin θ
)

fraction of bits of the entire raw key.

A Proposal for DI Probabilistic Quantum Oblivious Transfer 561

Lemma 1. In the key establishment phase of our scheme, either the protocol
aborts with high probability in the asymptotic limit, or dishonest Alice’s strategy
can retrieve (on average) (1 − cos θ) fraction of bits of the entire raw key.

The result in Theorem 5 actually follows from [35]. The detailed proof of
Theorem 5 and Lemma 1 can be found in [2].

For our QPQ proposal, the database contains N number of data bits. Now
relating Eq. 7 with the expression in Definition 3, we can derive the following
bound on the value of τ for this proposed scheme.

Corollary 4. In our DI-QPQ proposal, for dishonest Alice and honest Bob,
either the protocol aborts with high probability in the asymptotic limit, or dis-
honest Alice can guess on average τ fraction of bits of the final key, where

τ ≤ (1 − cos θ)k (24)

Replacing the value of (1 − cos θ)k with the upper bound mentioned in Eq. 8,
we can get the following upper bound on the value of τ .

τ <
2
N

(25)

This relation shows that for this proposed scheme, τ is small compared to N .

The comparative study between maximum inconclusive (i.e., the positions
of the correctly guessed bits can’t be known with certainty) success probabil-
ity and maximum conclusive (i.e., the positions can be known with certainty)
success probability is shown in Fig. 2. From the figure, it is clear that the maxi-
mum inconclusive success probability outperforms maximum conclusive success
probability for small values of θ.

User Security Against Dishonest Bob
In this section, we establish an upper bound on the guessing probability of
dishonest Bob in guessing an index correctly from Alice’s query index set.

Lemma 2. In the proposed QPQ protocol, after l many queries to the N -bit
database by Alice, dishonest Bob (B∗) can successfully guess whether a particular
index i belongs to Alice’s query index set Il (i.e., i ∈ Il) with probability atmost
l
N , i.e.,

Pr(Bob guesses i ∈ Il) ≤ l

N

The proof of Lemma 2 is omitted here because of space limitation and can
be found in the full version of this paper in [2].

This result implies that whenever Bob guesses a particular index from the
data bits, the chosen index will be in Alice’s query index set with probability
around l

N . Here we assume that after l many queries, Alice’s query index set Il

has l many data bits and Alice chooses these l bits independently. That means

562 J. Basak et al.

Fig. 2. Comparison between maximum inconclusive and conclusive success probabili-
ties

if Bob guesses l many indices after the query phases then the expected value of
the number of indices (IB∗) that dishonest Bob guesses correctly from the index
set Il will be,

E[IB] = Pr(Bob guesses i ∈ Il).l

≤ l2

N
(26)

Note that, due to the statistical fluctuations, the dishonest Bob can pass
all the tests in our DI-QPQ proposal, and can learn much more than negligible
(in l) fraction of query indices from Alice’s query index set. However, from the
result in Corollary 3, we can say that in the asymptotic limit, dishonest Bob’s
probability of passing all such tests is very low. Moreover, it is also clear from
the result of Lemma 1 that if dishonest Bob wants to guess a query index with
more certain probability then he has to allow Alice to know more data bits in a
particular query which violates the assumption 4.

Now, comparing Eq. 26 with the expression in the Definition 4, we can derive
the following upper bound on the value of δ for our proposed scheme.

Corollary 5. In our proposed QPQ scheme, for dishonest Bob and honest Alice,
either the protocol aborts with high probability in the asymptotic limit, or dis-
honest Bob can guess on average δ fraction of indices from Alice’s query index
set Il where,

δ ≤
(

l

N

)
(27)

Usually, in practice, the size of the database (i.e., N) is exponentially larger
as compared to the size of Alice’s query index set (i.e., l). More precisely, N ≈ ln,

A Proposal for DI Probabilistic Quantum Oblivious Transfer 563

for some positive integer n. Now, replacing this value of N in Eq. 27, we can get
the following bound on the value of δ.

δ ≤ 1
l(n−1)

(28)

This relation shows that for this proposed scheme, δ is small compared to l.

4 Discussion and Conclusion

Initially, all the QPQ schemes were proposed considering that the devices
involved are trusted. Thus, a significant portion of the security issues depends
on the functionality of the underlying devices. To remove such assumptions,
Maitra et al. [24] first initiated the idea of DI in the QPQ domain by suggest-
ing a semi-DI version of the QPQ scheme [36]. In this present effort, we move
one step further and propose a novel QPQ scheme considering maximally entan-
gled states with full DI certification to improve the robustness. We also discuss
the optimality of the number of raw key bits that a dishonest client Alice can
retrieve at her side for these kinds of QKD based QPQ schemes and show that
for this proposal, Alice retrieves the optimal number of raw key bits. Contrary
to all the existing QPQ schemes which analyze the security issues considering
certain eavesdropping strategies, here in this effort, we analyze the security of
our scheme in the most general way considering all the attacks that preserve the
correctness condition. We further manage to get upper bounds on the cheating
probabilities for both the dishonest client and the dishonest server. As the recent
QPQ schemes incorporate the idea of QKD, along with the other applications
of oblivious transfer, QPQ may soon become a crucial near-term application of
quantum internet.

References

1. Basak, J., Maitra, S.: Clauser-Horne-Shimony-Holt versus three-party pseudo-
telepathy: on the optimal number of samples in device-independent quantum pri-
vate query. Quantum Inf. Process. 17, 77 (2018)

2. Basak, J., Chakraborty, K., Maitra, A., Maitra, S.: Improved and formal proposal
for device independent quantum private query (2022). https://arxiv.org/abs/1901.
03042

3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys.
Rev. Lett. 68(21), 3121–3124 (1992)

4. Broadbent, A., Yuen, P.: Device-independent oblivious transfer from the bounded-
quantum-storage-model and computational assumptions. arxiv.org/abs/2111.08595
(2021)

5. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

https://arxiv.org/abs/1901.03042
https://arxiv.org/abs/1901.03042
http://arxiv.org/2111.08595
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28

564 J. Basak et al.

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, pp. 41–50 (1995)

7. Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private informa-
tion retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 10

8. Fuchs, C.A., de Graaf, J.V.: Cryptographic distinguishability measures for
quantum-mechanical states. IEEE Trans. Inf. Theory 45, 1216 (1999)

9. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on
quantum key distribution. Opt. Express 20, 17411–17420 (2012)

10. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-based quantum private query with-
out a failure probability. Sci. China Physics, Mech. Astron. 58(10), 1–6 (2015).
https://doi.org/10.1007/s11433-015-5714-3

11. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 65

12. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, pp. 151–160 (1998)

13. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100(23), 230502 (2008)

14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis.
IEEE Trans. Info. Theory 56(7), 3465–3477 (2010)

15. Helstrom, C.W.: Quantum Detection and Estimation Theory. Mathematics in Sci-
ence and Engineering, vol. 123. Academic Press, New York (1976)

16. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

17. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Physics Lett.
A 123(6), 257–259 (1987)

18. Jakobi, M., et al.: Practical private database queries based on a quantum-key-
distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

19. Kaniewski, J.: Self-testing of binary observables based on commutation. Phys. Rev.
A 95(6), 062323 (2017)

20. Kon, W.Y., Lim, C.C.W.: Provably-secure symmetric private information retrieval
with quantum cryptography. https://arxiv.org/abs/2004.13921 (2020)

21. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-
entropy. IEEE Trans. Info. Theory 55(9), 4337–4347 (2009)

22. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, pp. 364–373, 1997

23. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154
(1997)

24. Maitra, A., Paul, G., Roy, S.: Device-independent quantum private query. Phys.
Rev. A 95(4), 042344 (2017)

25. Kumar Mishra, S., Sarkar, P.: Symmetrically private information retrieval. In: Roy,
B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 225–236. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44495-5 20

26. Noh, T.G.: Counterfactual Quantum Cryptography. Phys. Rev. Lett. 103(23),
230501 (2009)

https://doi.org/10.1007/3-540-45539-6_10
https://doi.org/10.1007/3-540-45539-6_10
https://doi.org/10.1007/s11433-015-5714-3
https://doi.org/10.1007/11523468_65
https://arxiv.org/abs/2004.13921
https://doi.org/10.1007/3-540-44495-5_20

A Proposal for DI Probabilistic Quantum Oblivious Transfer 565

27. Olejnik, L.: Secure quantum private information retrieval using phase-encoded
queries. Phys. Rev. A 84(2), 022313 (2011)

28. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information
retrieval: techniques and applications. In: Proceedings of the 10th International
Conference on Practice and Theory in Public-Key Cryptography, pp. 393–411
(2007)

29. Peres, A., Terno, D.R.: Optimal distinction between non-orthogonal quantum
states. J. Phys. A: Math. Gen. 31, 7105 (1998)

30. Rao, M.V.P., Jakobi, M.: Towards communication-efficient quantum oblivious key
distribution. Phys. Rev. A 87(1), 012331 (2013)

31. Reichardt, B., Unger, F., Vazirani, U.: A classical leash for a quantum system:
command of quantum systems via rigidity of CHSH games. Nature 496(7446), 456
(2013)

32. Scarani, V., Aćın, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols
robust against photon number splitting attacks for weak laser pulse implementa-
tions. Phys. Rev. Lett. 92, 057901 (2004)

33. P.W. Shor, Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: Foundations of Computer Science (FOCS) 1994, pp. 124–134. IEEE
Computer Society Press (1994)

34. Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private
query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-
distribution protocol. Sci. Rep. 4, 7537 (2014)

35. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
36. Yang, Y.G., Sun, S.J., Xu, P., Tiang, J.: Flexible protocol for quantum private

query based on B92 protocol. Quant. Info. Proc. 13, 805 (2014)
37. Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based

on counterfactual quantum key distribution. Phys. Rev. A 88(2), 022334 (2013)

Quantum Attacks on PRFs Based
on Public Random Permutations

Tingting Guo1,2, Peng Wang1,2(B), Lei Hu1,2, and Dingfeng Ye1,2

1 SKLOIS, Institute of Information Engineering, CAS, Beijing, China
w.rocking@gmail.com, {guotingting,hulei,yedingfeng}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Plenty of permutation-based pseudorandom functions
(PRFs) were proposed. In order to analyze their quantum security uni-
formly, we proposed three general frameworks F1, F2, and F3 for n-to-n-
bit PRFs with one, two parallel, and two serial public permutation calls
respectively, where every permutation is preceded and followed by any
bitwise linear mappings. We analyze them in the Q2 model where attack-
ers have quantum-query access to PRFs and permutations. Our results
show F1 is not secure with O(n) quantum queries while its PRFs achieve
n/2-bit security in the classical setting, and F2, F3 are not secure with
O(2n/2n) quantum queries while their PRFs, such as SoEM, PDMMAC,
and pEDM, achieve 2n/3-bit security in the classical setting. Besides, we
attack three general instantiations XopEM, EDMEM, and EDMDEM
of F2, F3 with at most O(2n/2n) quantum queries, which derive from
replacing the two PRPs in Xop, EDM, and EDMD with two independent
EM constructions. We also attack pre-existing concrete PRF instantia-
tions of F2, F3: DS-SoEM, PDMMAC, pEDM, and SoKAC21, with at
most O(2n/2n) quantum queries.

Keywords: PRF · Permutation · Quantum attack

1 Introduction

Symmetric-key Schemes Based on PRFs. A Message Authentication Code
(MAC) is a symmetric-key primitive that ensures message integrity. For a
popular nonce-based MAC, the Wegman-Carter (WC) scheme [5,10,34,36], it
offers better security when replacing the underlying Pseudorandom Permutation
(PRP) with Pseudorandom Function (PRF). For other cryptographic designs,
such as encryption mode CTR [1] and authenticated encryption mode GCM
[27], it also offers better security when replacing the underlying PRPs (block
ciphers) with PRFs. Thus it is of great necessity to design pseudorandom func-
tions (PRFs) even with fixed-input length. Unfortunately, dedicated fixed input
length PRF designs are scarce. The well-known PRP/PRF switching lemma
[4,23] suggests simply viewing the PRP as a PRF. However, it makes the cryp-
tographic designs be limited to only birthday bound security, i.e., n/2-bit security
(We say a design m-bit security if it is secure up to O(2m) queries) assuming
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 566–591, 2022.
https://doi.org/10.1007/978-3-031-22912-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_25

Quantum Attacks on PRFs Based on Public Random Permutations 567

the size of the output of PRP is n bits. Thus, plenty of researchers make a great
effort to transform PRPs to PRFs with high quality.

PRP-to-PRF Conversion Methods with BBB Security. Fortunately,
there have existed four main PRP-to-PRF transformation methods in achiev-
ing security beyond the birthday bound: Trunc, Xop, EDM, and EDMD. Let
block ciphers be modeled as PRPs. Trunc [22] truncates the output of an n-bit
block cipher by m < n bits, resulting (m + n)/2-bit security [2,19]. Let E1, E2

be two independent block ciphers. Xop, EDM, and EDMD based on E1, E2 all
provide n-bit security [28,30–32]. Xop [3] is the XOR of PRPs for input M :

XoPE1,E2(M) = E1(M) ⊕ E2(M).

Encrypted Davies-Meyer (EDM) [16] and Encrypted Davies-Meyer Dual
(EDMD) [28] EDMD serially perform two block ciphers:

EDME1,E2(M) = E2(E1(M) ⊕ M),
EDMDE1,E2(M) = E2(E1(M)) ⊕ E1(M).

In fact, at ASIACRYPT 2021, Chen et al. [15] have proved XoP, EDM, and
EDMD are the only constructions with Beyond-Birthday-Bound (BBB) security
(> n/2-bit security) of all n-to-n-bit PRFs based on two block cipher calls.

Advantages of Permutation-Based Designs. It is well known that design-
ing a block cipher is more complex than a keyless public permutation, as the
former involves evaluating the underlying key scheduling algorithm. Besides, we
do not need to store the round keys in public permutation-based designs. In
addition, the theory of analyzing the security of any cryptographic design based
on public permutations is full-fledged. Therefore, it has been an extraordinarily
popular approach to design cryptographic schemes based on public permutations
straightforwardly.

Even-Mansour Constructions. We can view PRPs as PRFs directly. One of
the most famous public permutation-based PRPs is Even-Mansour (EM) cipher
[18]: EM(M) = π(M ⊕ K1) ⊕ K2, where π is a public random permutation
and K1,K2 are two independent keys. Later, Bogdanov et al. [7] introduced a
more general PRP KAC by iterating EM for multiple rounds. However, they
both only provide birthday bound security with respect to the block size by
PRP/PRF switching lemma.

n-to- n -Bit PRFs with One or Two Permutation Calls. Researchers try
to design public permutation-based n-to-n-bit PRFs that provide BBB security
with one or two permutations calls. At CRYPTO 2019 Chen et al. [14] firstly
delved into the methods of designing such PRFs. They presented the general
design of a PRF with only one public permutation call and whose permutation is
preceded and followed by any linear mappings consisting of bitwise exclusive-OR
and scalar multiplication (see Fig. 1). They showed such construction cannot be
secure beyond the birthday bound for any linear mapping in the classical setting.

568 T. Guo et al.

Fig. 1. Function proposed by Chen et al. [14] using two keys K1 and K2, and making
one public random permutations evaluation π, where L1, L2 are two blockwise linear
mappings.

So they try to design PRFs with higher security by making two public permu-
tations calls. In the same paper [14], they try to get such PRFs by instantiating
generic BBB secure PRP-to-PRF conversion functions with EMs or their variants,
i.e., replacing the two PRPs in Xop and EDMD with two independent EMs or their
variants. They firstly proposed SoKAC by instantiating with the variants of EM for
EDMD construction, which is similar to 2-round KAC [7], with two public permu-
tations and two keys. They named it SoKAC1 if the two permutations are the same,
which only provides birthday bound security [14]. And they named it SoKAC21
if the two keys are the same, which provides BBB security [14] but unfortunately
attacked by Nandi [29] at EUROCRYPT 2020 with only birthday bound complex-
ity. In addition to SoKAC, they also put forward SoEM by instantiating with EM
for Xop construction. SoEM is based on two public permutations and two keys
as well. They called it SoEM1 if the two permutations are the same and SoEM21
if the two keys are the same, which are both only birthday bound securities [14].
Delightfully, they proved that SoEM22, with two independent permutations and
two independent keys, is secure up to 2n/3 bits [14].

Following their design method, plentiful fantabulous PRFs have been put for-
ward. Quickly, at CRYPTO 2020 Chakraborti et al. [13] introduced PDMMAC,
which is based on only single public permutation and its reverse and only takes
a single key, by instantiating with the EM appropriately for EDM construction.
It also provides 2n/3-bit security [13]. Next to PDMMAC, in 2020, Bhattacharjee
et al. [6] designed DS-SoEM, which is based on only one public permutation and
even doesn’t need the inverse of the permutation like PDMMAC. It is a Xop con-
struction instantiated with EM with two same public permutation calls and two
independent keys and still maintains 2n/3-bit security. Another preeminent PRF
based on only one public permutation and two keys is pEDM, which is introduced

Quantum Attacks on PRFs Based on Public Random Permutations 569

by Dutta et al. [17] in 2021. It is also an EDM construction instantiated with EMs
with 2n/3-bit security.

Previous Quantum Attacks on PRFs with One or Two Permuta-
tion Calls. There have existed attacks for permutation-based PRFs in the Q2
model, which means attackers can make superposition queries to a quantum ora-
cle of UF : |x, y〉 �→ |x, y⊕F (x)〉, where F is a classical primitive implemented on a
quantum computer and attacker has quantum access to it. Kuwakado et al. [25] and
Kaplan et al. [24] firstly recovered the keys of EM cipher by constructing periodic
function based on this cipher and applying Simon’s algorithm with O(n) queries
to recover the secret period which is useful for key recovery. For PRFs based on
two public permutation calls, recently in 2022 Shinagawa et al. [33] presented key
recovery attacks against SoEM. They successfully attacked SoEM1 and SoEM21
with quantum queries for polynomial times by applying Simon’s algorithm, and
SoEM22 with O(2n/2n) quantum queries by applying Grover-meet-Simon algo-
rithm. For SoEM variants with linear key schedules, Zhang [37] showed they are
also vulnerable to Simon’s algorithm and Grover-meet-Simon algorithm.

Motivations. There are still plenty of PRFs based on permutations haven’t
been analyzed in the Q2 model, such as SoKAC, PDMMAC, DS-SoEM, pEDM
and so on. What about the security of such PRFs in the Q2 model? How to
propose general frameworks and analyze their securities?

Our Contributions. We assume all permutations in all PRFs we analyzed are
on n bits. And the following functions all are n-to-n-bit functions except for
DS-SoEM.

1. The first contribution is to systematically tackle the security of a PRF with
one random permutation call whose permutation is preceded and followed by
linear mappings from a generalized perspective in the Q2 model. The general
function we considered (See Fig. 2) is more universal than Chen et al. [14]
(See Fig. 1):
1) First, we change the value from the first linear mapping to the permu-

tation (i.e. x) and the value from the first linear mapping to the second
linear mapping (i.e. z) from same to be independent;

2) Second we extend blockwise linear mappings to bitwise linear mappings.
We name our generalized function as F1. It actually generalize the pre-
existing constructions with one permutation call. We considering different
types of linear mappings and prove that, whatever the linear mappings are,
such construction is not secure with quantum queries for polynomial times
in the Q2 model in spite of its birthday bound security [14] in the classical
setting.

570 T. Guo et al.

Fig. 2. Function F1 using two keys K1 and K2, and making one public random per-
mutations evaluation π, where L1, L2 are two bitwise linear mappings.

2. The second contribution is to systematically tackle the security of a PRF with
two public random permutations calls and both permutations are preceded
and followed by bitwise linear mappings from a generalized perspective. We
show that all such PRFs can be divided into two kinds: one’s two permutation
calls are parallel and the other’s are serial. We call the general design of the
former as F2 as pictured in Fig. 3(a) and the latter as F3 as pictured in
Fig. 3(b). They actually generalize the pre-existing constructions with two
permutation calls. We find that, whatever the linear mappings are, the both
two constructions cannot be secure beyond O(2n/2n) quantum queries in the
Q2 model in spite of BBB security of their concrete instantiations in the
classical setting [13,14,17].

(a) Function F2 based on four keys
K1, K2, K3 and K4, and making
two parallel public random permu-
tations evaluation π1 and π2, where
L1, L2, L3 are three bitwise linear
mappings.

(b) Function F3 using four keys K1, K2, K3

and K4, and making two serial public random
permutations evaluation π1 and π2, where
L1, L2, L3 are three bitwise linear mappings.

Fig. 3. Functions based on two public permutations calls.

Quantum Attacks on PRFs Based on Public Random Permutations 571

3. Our third contribution is to present the quantum security of general and
cencrete instantiations of F2, F3. We show the hierarchy of all PRFs based
on two public permutations in Fig. 4.

Fig. 4. The hierarchy of all PRFs based on two public permutations calls.

1) By replacing the two PRPs in Xop, EDM, and EDMD with two inde-
pendent EMs respectively, we get three constructions and name them
XopEM, EDMEM, and EDMDEM. It is a general and natural idea to
get PRFs with two permutation calls. The attack for EM cipher [24,25]
is inapplicable to these combined constructions for their more complex
constructions which are difficult to construct periodic functions. So the
combined constructions may be safer in the Q2 model. We show they
are not secure with at most O(2n/2n) quantum queries in the Q2 model
in spite of their concrete instantiations (such as PDMMAC, pEDM, and
SoEM22) are secure up to 2n/3 bits.

2) We show the security of pre-existing concrete PRF designs instantiated
with EM or its variants for Xop, EDM, and EDMD which make two
permutation calls. Our results show 2n/3-bit secure DS-SoEM, PDMMAC
and pEDM in the classical can be broken with at most O(2n/2n) queries in
the Q2 model. We also show that SoKAC21 breaks with O(2n/3) queries
in the Q2 model.

We summarize our main results in Table 1.

Table 1. Summary of the our main results. n is the size of permutation. d is a trun-
cation parameter.

Functions The number of

calls of public

permutations

The number

of public

permutations

The

number

of keys

The query

complexity of our

quantum attack

Generic F1 1 1 2 O(n)

functions F2 2 2 4 O(2n/2n)

F3 2 2 4 O(2n/2n)

General XopEM 2 2 4 O(2n/2n)

Instantiations EDMEM 2 2 4 O(2n/2n)

EDMDEM 2 2 4 O(2n/2n)

DS-SoEM [6] 2 1 2 O(2(n−d)/2(n − d))

Special PDMMAC [13] 2 1 1 O(2n/2)

Instantiations pEDM [17] 2 1 2 O(2n/2n)

SoKAC21 [14] 2 2 1 O(2n/3)

572 T. Guo et al.

2 Preliminaries

2.1 Notations

Let N be the set of positive integers. For n ∈ N, let {0, 1}n be the set of all
n-bit binary strings. Let Perm(n) be the set of all permutations on n bits and

Func(m,n) be the set of all functions from m bits to n bits. Let x
$← X indicate

choosing x from set X uniformly and random. Let π
$← Perm(n) be a random

permutation on n bits (i.e. π
$←Perm(n)). Let ρ be a random function from n

bits to n bits (i.e. ρ
$←Func(n, n)). Let #X be the number of the elements in set

X . Let 0̂ indicate the zero linear mappings which maps all values in {0, 1}n to
0n. Let x := y indicate defining x as y.

2.2 Decomposition of Linear Mappings

Chen et al. [14] considered blockwise linear mappings. That is to say, the linear
mappings consisting of bitwise exclusive-OR ‘⊕’ and scalar multiplication ‘×’ in
{0, 1}n. We give an example. Let matrix

M =
[

a1 a2

a3 a4

]
,

where a1, a2, a3, a4 ∈ {0, 1}n. For any x1, x2 ∈ {0, 1}n,

M
[

x1

x2

]
=

[
a1 a2

a3 a4

] [
x1

x2

]
=

[
(a1 × x1) ⊕ (a2 × x2)
(a3 × x1) ⊕ (a4 × x2)

]
. (1)

Let linear mapping L(x1, x2) = Eq. (1) and branch linear mappings l1(x1) =
a1 × x1, l2(x2) = a2 × x2, l3(x1) = a3 × x1, l4(x2) = a4 × x2. Then

L(x1, x2) =
[

l1(x1) ⊕ l2(x2)
l3(x1) ⊕ l4(x2)

]
.

So they decomposed L to l1, l2, l3, l4.
In this paper, we considered bitwise linear mappings. That is to say, the

linear mappings consisting of bitwise exclusive-OR ‘⊕’ and dot product ‘·’ with
constants in {0, 1} (i.e., b′ · y′ = 1 iff b′ = y′ = 1; otherwise, b′ · y′ = 0). We give
an example. Let matrix

M =

⎡
⎢⎣

b1,1 . . . b1,2n

...
. . .

...
b2n,1 . . . b2n,2n

⎤
⎥⎦ .

where bi,j ∈ {0, 1} for i, j = 1, . . . , 2n. For any x1 = y1y2 . . . yn ∈ {0, 1}n and
x2 = yn+1yn+2 . . . y2n ∈ {0, 1}n, we interpret them to

x1 =

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ ,x2 =

⎡
⎢⎣

yn+1

...
y2n

⎤
⎥⎦ .

Quantum Attacks on PRFs Based on Public Random Permutations 573

Then

M
[
x1

x2

]
=

⎡
⎢⎣

b1,1 . . . b1,2n

...
. . .

...
b2n,1 . . . b2n,2n

⎤
⎥⎦

⎡
⎢⎣

y1
...

y2n

⎤
⎥⎦ =

⎡
⎢⎣

b1,1 · y1 ⊕ . . . ⊕ b1,2n · y2n

...
b2n,1 · y1 ⊕ . . . ⊕ b2n,2n · y2n

⎤
⎥⎦ (2)

We partitioning matrix M to four n × n partitioned matrices M1,M2,M3,M4:

M =
[
M1 M2

M3 M4

]
.

It also holds that

M
[
x1

x2

]
=

[
M1x1 ⊕ M2x2

M3x1 ⊕ M4x2

]
.

Let linear mapping L(x1, x2) = Eq. (2) and branch linear mappings l1(x1) =
M1x1,l2(x2) = M2x2, l3(x1) = M3x1, l4(x2) = M4x2. Then

L(x1, x2) =
[

l1(x1) ⊕ l2(x2)
l3(x1) ⊕ l4(x2)

]
.

So we can decomposed L to l1, l2, l3, l4. For simplicity, we write L = (l1, l2, l3, l4).
Multiplication by a in {0, 1}n is a linear transformation over the n column

vectors space with every element in {0, 1}, and can therefore be represented by a
n×n matrix Ma with every element in {0, 1}. Thus, for any element x ∈ {0, 1}n

and its corresponding n column vector x whose every element in {0, 1}, we can
write

a × x = Max.

So the bitwise linear mappings are more general than blockwise linear mappings.

2.3 The Security of qPRF Based on Public Random Permutations

Let π1, . . . , π� be public random permutations. Let F be a keyed function that
may depend on π1, . . . , π� and ρ be a random function that is independent of
π1, . . . , π�. Given the quantum oracle of π±

1 , . . . , π±
� and function F or ρ, where

the superscript ± for πi indicates the distinguishers has bi-directional access.
The security of quantum pseudorandom function (qPRF) of F is defined by
the minimum number of quantum queries of all distinguishers to distinguish
(F, π±

1 , . . . , π±
�) from (ρ, π±

1 , . . . , π±
�). We call the queries to F or ρ construction

queries and the queries to π±
1 , . . . , π±

� primitive queries.

2.4 Quantum Algorithms

1) Simon’s Algorithm. Simon’s algorithm [35] finds the period of a periodic
function with quantum queries for polynomial times and polynomial qubits. It
solves the Simon’s problem.

574 T. Guo et al.

Definition 1 (Simon’s Problem). Let n be a positive integer. Given a
Boolean function f : {0, 1}n → {0, 1}n, and the promise that there exists s ∈
{0, 1}n\{0n} such that for any x, y ∈ {0, 1}n, [f(x) = f(y)] ⇔ [x ⊕ y ∈ {0n, s}].
Find s.

Classically, we can find s by searching collisions with O(2n/2) queries. How-
ever, in the Q2 model Simon’s algorithm [35] can reduce the queries rapidly to
only polynomial times. Recall that the Hadamard transform H⊗n applied on an
n-qubit state |x〉 for some x ∈ {0, 1}n gives H⊗n|x〉 = 1√

2n

∑
y∈{0,1}n(−1)x·y|y〉,

where x · y := x1y1 ⊕ · · · ⊕ xnyn.

The Steps of Simon’s Algorithm [35]:

1. Initialize the state of 2n qubits to |0〉⊗n|0〉⊗n;
2. Apply Hadamard transformation H⊗n to the first n qubits to obtain quantum

superposition 1√
2n

∑
x∈{0,1}n |x〉|0〉⊗n;

3. A quantum query to the function f maps this to the state:
1√
2n

∑
x∈{0,1}n |x〉|f(x)〉;

4. Measure the last n qubits to get the output of f(z), and the first n qubits
collapse to 1√

2
(|z〉 + |z ⊕ s〉);

5. Apply the Hadamard transform H⊗n to the first n quantum qubits again,
we can get 1√

2
1√
2n

∑
y∈{0,1}n(−1)y·z (1 + (−1)y·s) |y〉. If y · s = 1 then the

amplitude of |y〉 is 0. So measuring the state in the computational basis
yields a random vector y such that y · s = 0, which means that y must be
orthogonal to s.

By repeating these steps O(n) times, n − 1 independent vectors y orthogonal
to s can be obtained with high probability, then we can recover s with high
probability by using linear algebra.

At CRYPTO 2016, Kaplan et al. [24] relaxed the promise in Simon’s problem.
They defined ε(f) to quantify how far the function is from satisfying Simon’s
promise, where

ε(f) := max
t∈{0,1}n\{0n,s}

Prx[f(x) = f(x ⊕ t)].

ε(f) = 0 means satisfying the promise in Simon’s problem. They proved Simon’s
algorithm still can recover the period s provided bounded ε(f) [24].

Theorem 1 (Simon’s Algorithm with Approximate Promise [24]). If
ε(f) ≤ p0 < 1, then Simon’s algorithm returns s with cn queries to f using O(n)

qubits, with probability at least 1 −
(
2
(
1+p0

2

)c
)n

.

Choosing c ≥ 3
(1−p0)

ensures that the error decreases exponentially with n.

Quantum Attacks on PRFs Based on Public Random Permutations 575

2) Grover’s Algorithm. Grover’s algorithm [20] can find a target from a set.
It solves the Grover’s problem.

Definition 2 (Grover’s Problem). Let m be a positive integer, and test :
{0, 1}m → {0, 1} be a Boolean function. Find an u such that test(u) = 1.

Classically, we can find an u such that test(u) = 1 with O(2m

#{u:test(u)=1})
queries to test(·). However, in the Q2 model Grover’s algorithm [20] can speed
up the search by square root [11].

The Steps of Grover’s Algorithm [20]:

1. Initializing a n-bit register |0〉⊗m.
2. Apply Hadamard transformation H⊗m to the first register to obtain quantum

superposition H⊗m|0〉 = 1√
2m

∑
x∈{0,1}m |u〉 = |ϕ〉.

3. Construct an oracle O : |u〉 �→ (−1)test(u)|u〉.
4. Apply Grover iteration for R ≈ π

4

√
2m

#{u:test(u)=1} times to amplify the ampli-

tudes of goal elements in U : [(2|ϕ〉〈ϕ| − I)O]R|ϕ〉.
5. Measure the register to get an u such that test(u) = 1.

More generally, the test function can’t describe the target set so precisely.
That is to say, test(u) always outputs 1 for elements in the target set, but for
elements not in the target set that test(u) also output 1 with some probability.

Definition 3 (Grover’s Problem with Biased test Function). Let m be a
positive integer, U be a subset in {0, 1}m, test : {0, 1}m → {0, 1} be a Boolean
function who satisfies {

Pr[test(u) = 1] = 1, u ∈ U ,
Pr[test(u) = 1] ≤ p1, u ∈ U .

Find an u ∈ U .

Luckily, the Grover’s algorithm with O(2m/2) quantum queries to test(·)
using O(m) qubits can find a u ∈ U as well assuming #U ≤ 2, p1 ≤ 1

22m [8,21].

3) Grover-meet-Simon Algorithm. At ASIACRYPT 2017 Leander and May
[26] combined Grover’s algorithm with Simon’s algorithm to recover the keys of
FX construction. They named their technique as Grover-meet-Simon algorithm.
Paper [8,21] considered the general algorithm to solve the general Grover-meet-
Simon problem.

Definition 4 (Grover-meet-Simon Problem). Let m,n be two positive inte-
gers, set U ⊆ {0, 1}m and f : {0, 1}m × {0, 1}n → {0, 1}n be a function who
satisfies {

f(u, ·) is a periodic function with period su, u ∈ U ,
f(u, ·) is an aperiodic function, u ∈ U .

Set Us := {(u, su) : u ∈ U , su is the period of f(u, ·)}. Find any tuple (u, su) ∈
Us.

576 T. Guo et al.

The main idea of the Grover-meet-Simon algorithm is to search u ∈ U by
Grover’s algorithm and check whether or not u ∈ U by whether f(u, ·) is periodic
or not, which can be implemented by Simon’s algorithm. Let ε(f) to quantify how
far the function is from satisfying [f(u, x) = f(u, y)] ⇔ [u ∈ U , x ⊕ y ∈ {0n, su}].

ε(f) := max
(u,t)∈{0,1}m×{0,1}n\(Us∪{0,1}m×{0n})

Prx[f(u, x) = f(u, x ⊕ t)].

Then Grover-meet-Simon algorithm with O(2m/2n) quantum queries to f using
O(m + n2) qubits will output a tuple (u, su) ∈ Us assuming ε(f) ≤ 7/8,#U ≤ 2
[21].

At ASIACRYPT 2019 Bonnetain et al. [9] improved the Grover-meet-Simon
algorithm in the Q2 model for the function f(u, ·) in Definition 4 which can be
constructed from the sum of two functions, i.e.,

f(u, ·) = h(u, ·) ⊕ g(·).
Given the quantum oracle of h(u, ·) and g(·), it is easy to construct the quantum
oracle of f(u, ·). They also used Grover’s algorithm to search u ∈ U and check
whether f(u, ·) is periodic or not by Simon’s algorithm. Each time a new u
is tested, a new function h(u, ·) is queried. But, in contrast, the function g is
always the same. So they firstly got a superposition quantum state about g by
making O(n) queries to the quantum oracle of g′. Then they reused it every
time the algorithm queries about f(u, ·). They showed after making O(2m/2n)
queries to h(u, ·) and O(n) queries to g using O(m + n2) qubits, the algorithm
can recover the unique u ∈ U and its corresponding period assuming ε(f) ≤
1/2,#U = 1 [9]. It is easy to prove it is also suitable for ε(f) ≤ 7/8,#U = 2.
This improved algorithm greatly reduces the query complexity from O(2m/2n)
to O(n) for f(u, ·) whose h(u, ·) is public computable by the adversary itself,
such as f(u, ·) based on FX construction.

3 Attack on Function with One Permutation Call

We will show that any function that makes only one public random permutation
call and has linear pre- and post-processing functions of the permutation only
is not secure with queries for polynomial times in the Q2 model. Let M,C ∈
{0, 1}n and K1,K2 be two independent keys in {0, 1}n. Let π be a public random
permutation, L1 : ({0, 1}n)2 → ({0, 1}n)2 and L2 : ({0, 1}n)3 → {0, 1}n be any
two linear mappings. Then we let F1 : {0, 1}2n×{0, 1}n → {0, 1}n be the general
function using keys K1,K2 with input M and output C. And it makes one call to
public random permutation π and has the pre- and post-linear mapping L1, L2.
See F1 in Fig. 2.

Theorem 2. Let n ∈ N, and consider the function F1 : {0, 1}2n × {0, 1}n →
{0, 1}n of Fig. 2 based on a public random permutation π with block length of n

bits and using two keys K1,K2
$← {0, 1}n, for any linear mappings L1, L2. There

exists a distinguisher D making at most O(n) construction queries and at most
O(n) primitive queries to distinguish F1 from random function.

Quantum Attacks on PRFs Based on Public Random Permutations 577

Proof. The linear mappings L1, L2 are public. So firstly, we decompose

L1 = (l11, l12, l13, l14),
L2 = (l21, l22, l23),

in the classical setting such that

L1(K1,M) =
[

l11(K1) ⊕ l12(M)
l13(K1) ⊕ l14(M)

]
,

L2(K2, y, z) =
[
l21(K2) ⊕ l22(y) ⊕ l23(z)

]
,

where every branch linear mapping lij maps {0, 1}n → {0, 1}n. The function F1
after decomposition is in Fig. 5(a). Then we can distinguish (F1, π) from (ρ, π) by
considering these branch linear mappings in three cases, which cover all scenarios.
In the case 1), 2), and 3.1), we refer to the attack in [14] to distinguish F1 from
random function just by O(1) classical queries. The subcase 3.2) is a bit more
complicated. However, we can still attack it by constructing a periodic function
and applying Simon’s algorithm to recover the secret period of F1, which leads
to distinguishing attack as well. Let e denote a value only related to keys. And
h(M) denotes a function which can been calculated by public functions with M .
For simplicity, then we can write function F1 as:

F1(M) = l22π(l12(M) ⊕ l11(K1)) ⊕ h(M) ⊕ e,

where
e = l23l13(K1) ⊕ l21(K2),
h(M) = l23l14(M).

See Fig. 5(b).

(a) The decomposition of function F1 by
L1 = (l11, l12, l13, l14) and L2 = (l21, l22,
l23).

(b) The simple form of function F1 after
decomposition.

Fig. 5. The decomposition of function F1.

Case 1) l22 = 0̂. When l22 = 0̂, the output of the permutation π is not related to
C. That is to say, F1(M) = h(M)⊕e. We select arbitrary two different messages

578 T. Guo et al.

M and M ′ and query the construction oracle with them to get answers C and
C ′. If the function is F1, then C ′ ⊕ C = h(M) ⊕ h(M ′). However, for random
function it holds with negligible probability. So we distinguish them.

Case 2) l11(K1) = 0n. In this case, the input of the function π is independent of
the key K1. We select arbitrary two different messages M and M ′ and query the
construction oracle with them to get answers C and C ′. Then we distinguish F1
from random function by whether or not C ′⊕C = l22π(l12(M))⊕l22π(l12(M ′))⊕
h(M) ⊕ h(M ′).

Case 3) l22 = 0̂, l11(K1) = 0n.

Subcase 3.1) l12 is not invertible. Firstly, we find two different M and
M ′ who satisfies l12(M) = l12(M ′). It is easy to achieve by using basic linear
algebra to find the kernel of l12 classically. We name the kernel kel(l12) and for
any a ∈ kel(l12), l12(a) = 0n. We choose arbitrary a ∈ kel(l12)\{0n}. Then for any
M ∈ {0, 1}n and M ′ = M ⊕ a that l12(M) = l12(M ′). After that we query the
construction oracle with M and M ′ to obtain C and C ′. And we can distinguish
F1 from random function by whether or not C ′ ⊕ C = h(M) ⊕ h(M ′).

Subcase 3.2) l12 is invertible. We let

f : {0, 1}n →{0, 1}n

M �→F1(M) ⊕ h(M) ⊕ l22π(l12(M))
f(M) =l22π(l12(M) ⊕ l11(K1)) ⊕ l22π(l12(M)) ⊕ e.

Public classical primitives h, l22, l12 can be implemented on quantum computers
by adversaries using at most O(n2) qubits. So with the addition of given the
quantum oracle of F1 and π, we can construct the quantum oracle of f using at
most O(n2) qubits similar to paper [24]. It is easily to obtain f(M) = f(M ⊕
l−1
12 l11(K1)) for all M . That is to say, f is a periodic function with period s :=
l−1
12 (l11(K1)). If ε(f) ≤ 1/2, then by Theorem 1, Simon’s algorithm can find the
period with O(n) quantum queries to f using O(n) qubits. We put the proof of
ε(f) ≤ 1/2 in Appendix A. After recovering s, query the construction oracle with
any M,M ⊕ s to get responds C,C ′ and query l22π(·) with l12(M), l12(M ⊕ s)
to get responses y, y′. Then C ′ ⊕ C = h(M) ⊕ y ⊕ h(M ⊕ s) ⊕ y′. Instead, if
the adversary is given quantum access to random function ρ and permutation
π, it doesn’t hold. Because Simon’s algorithm will output a random value after
querying random function. So we distinguish them. The whole attack costs O(n)
queries to F1 and π with at most O(n2) qubits. This method can be applied to
EM construction. ��

4 Pseudorandom Function with Two Permutation Calls

We will show that any pseudorandom function that makes two serial (see
Fig. 3(b)) or parallel (see Fig. 3(a)) public permutation calls and every permu-
tation has linear pre- and post-processing functions is not secure with O(2n/2n)

Quantum Attacks on PRFs Based on Public Random Permutations 579

queries in the Q2 model by applying the improved Grover-meet-Simon algorithm
[9]. In Sect. 5, the method applies to EDM [16], EDMD [28] and Xop [3] construc-
tions instantiated with EM construction [18], and concrete schemes DS-SoEM
[6], PDMMAC [13] and pEDM [17].

4.1 Attack on Pseudorandom Function with Two Parallel
Permutation Calls

Let π1, π2 ∈ Perm(n) and K1,K2,K3,K4 are four independent keys in {0, 1}n.
Let L1 : ({0, 1}n)2 → ({0, 1}n)2, L2 : ({0, 1}n)2 → ({0, 1}n)2, L3 : ({0, 1}n)6 →
{0, 1}n be any three linear mappings. Then let the general function F2 :
{0, 1}4n × {0, 1}n → {0, 1}n based on two parallel public permutation calls be
defined as Fig. 3(a).

Theorem 3. Let n ∈ N, and consider the function F2 : {0, 1}4n × {0, 1}n →
{0, 1}n of Fig. 3(a) based on public random permutations π1 and π2 with block

length of n bits and using four keys K1,K2, K3,K4
$← {0, 1}n, for any linear

mapplings L1, L2, L3. There exists a distinguisher D making at most O(n) con-
struction queries and at most O(2n/2n) primitive queries to distinguish F2 from
random function.

(a) The decomposition of function F2
by L1 = (l11, l12, l13, l14), L2 = (l21, l22,
l23, l24) and L3 = (l31, l32, l33, l34, l35, l36).

(b) The simple form of function F2 after
decomposition.

Fig. 6. The decomposition of function F2.

580 T. Guo et al.

Proof. Firstly, we decompose L1, L2, L3 into

L1 = (l11, l12, l13, l14),
L2 = (l21, l22, l23, l24),
L3 = (l31, l32, l33, l34, l35, l36)

as in Fig. 6(a) in the classical setting, where every branch linear mapping
lij : {0, 1}n → {0, 1}n. Then we will attack the decomposition form of F2.
We consider four cases as follows, which cover all scenarios. Let e denote a value
only related to keys. And h(M) denotes a function which can been calculated
by public functions with M . For simplicity, then we can write

F2(M) = l32π1(l12(M) ⊕ l11(K1)) ⊕ l34π2(l22(M) ⊕ l21(K2)) ⊕ h(M) ⊕ e,

where
h(M) = l33l14(M) ⊕ l35l24(M),
e = l31(K1) ⊕ l36(K4) ⊕ l35l23(K2) ⊕ l33l13(K1).

See Fig. 6(b).

Case 1) l32 = 0̂ or l34 = 0̂. Take l32 = 0̂ as an example. Now

F2(M) = l34π2(l22(M) ⊕ l21(K2)) ⊕ h(M) ⊕ e,

which degenerates into F1. By Theorem 2 there exists a distinguisher making at
most O(n) construction queries and at most O(n) primitive queries to distinguish
it from random function.

Case 2) l12 = 0̂ or l22 = 0̂. Take l12 = 0̂ as an example. Now

F2(M) = l34π2(l22(M) ⊕ l21(K2)) ⊕ h(M) ⊕ e ⊕ l32π1(l11(K1)),

which degenerates into F1, too.

Case 3) l11(K1) = 0n or l21(K2) = 0n . Take l11(K1) = 0n as an example.
Now

F2(M) = l34π2(l22(M) ⊕ l21(K2)) ⊕ h(M) ⊕ l32π1(l12(M)) ⊕ e,

which degenerates into F1, too.

Case 4) l32 �= 0̂, l12 �= 0̂, l34 �= 0̂, l22 �= 0̂, l11(K1) �= 0n , l21(K2) �= 0n .

Subcase 4.1) l12 is not invertible or l22 is not invertible. We take l12 is
not invertible as an example.

If there are two different M and M ′ such that l12(M) = l12(M ′) and l22(M) =
l22(M ′), we query the construction oracle with M and M ′ to obtain C and C ′.
Then we can distinguish F2 from random function by whether or not C ⊕ C ′ =
h(M) ⊕ h(M ′).

Quantum Attacks on PRFs Based on Public Random Permutations 581

If there are no two different M and M ′ such that l12(M) = l12(M ′) and
l22(M) = l22(M ′), no nonzero element of the kernel of linear mapping l22
(resp.l12) belongs to the kernel of l12 (resp.l22). Fix an arbitrary nonzero ele-
ment a of the kernel of l12 and any M . Then

{
l12(M) = l12(M ⊕ a),
l22(M) ⊕ l22(M ⊕ a) = l22(a)(= 0n)

Assume the size of the kernel of l12 (resp. l22) is r (resp. x), then linear mapping
l12 (resp. l22) has 2n/r (resp. 2n/x) different images and every image of l12
(resp. l22) has r (resp. x) pre-images. By there being no two different M and
M ′ such that l12(M) = l12(M ′) and l22(M) = l22(M ′), we get every different
pre-images corresponding to the same image of l12 (resp. l22) correspond to
different images of l22 (resp. l12), which leads r ≤ 2n/x (resp. x ≤ 2n/r). Thus
max{2n/x, 2n/r} ≥ 2n/2, which means the larger size of the images of l12, l22 is at
least 2n/2. Assume the image size of l22 is larger than l12. Under this assumption
there exist the following attack, or there exist another similar attack as well. Let

f : {0, 1}n →{0, 1}n

u �→F2(M) ⊕ h(M) ⊕ F2(M ⊕ a) ⊕ h(M ⊕ a)⊕
l34π2(l22(M) ⊕ u) ⊕ l34π2(l22(M ⊕ a) ⊕ u)

f(u) =l34π2(l22(M) ⊕ l21(K2)) ⊕ l34π2(l22(M ⊕ a) ⊕ l21(K2))⊕
l34π2(l22(M) ⊕ u) ⊕ l34π2(l22(M ⊕ a) ⊕ u).

Let U := {l21(K2), l21(K2) ⊕ l22(a)}. It is easy to obtain when u ∈ U , f(u) = 0n

for all M ∈ {0, 1}n. So we try to search an u ∈ U by Grover’s algorithm through
defining a test function, which filters u ∈ U from all u’s by whether or not
f(u) = 0n. Firstly, fix M := {M1,M2, . . . , Mq} which satisfies for any Mi that
l22(Mi), l22(Mi⊕a) /∈ {l22(Mj), l22(Mj ⊕a)|Mj ∈ M\{Mi}}. Secondly, calculate
bi := F2(Mi)⊕h(Mi)⊕F2(Mi ⊕a)⊕h(Mi ⊕a) for i = 1, . . . , q through querying
F2. Then let test : {0, 1}n → {0, 1} be

test(u) =
{

1, if bi = l34π2(l22(Mi) ⊕ u) ⊕ l34π2(l22(Mi ⊕ a) ⊕ u) i = 1, . . . , q,
0, otherwise.

Given the quantum oracle of F2 and π2, we can construct the quantum oracle of
test(·) using at most O(n2) qubits. It is easy to obtain that test(u) = 1 for any
u ∈ U . If Pr[test(u) = 1] ≤ 1

22n holds for any u /∈ U , then we can recovery an
u ∈ U by Grover’s algorithm with at most O(2n/2) queries to test(·) using O(n)
qubits. We prove Pr[test(u) = 1] ≤ 1

22n for any u /∈ U when q ≥ 4n in Appendix
B. After recovering a u ∈ U , for a fixed M ∈ {0, 1}n\M we check whether
F2(M)⊕h(M)⊕F2(M⊕a)⊕h(M⊕a)⊕l34π2(l22(M)⊕u)⊕l34π2(l22(M⊕a)⊕u) =
0n or not by O(1) classical queries to F2 and π2. It holds beyond doubt. However,

582 T. Guo et al.

if we replace the construction function from F2 to a random function, it happens
with negligible probability. Thus we distinguish F2 from the random function.
The whole attack costs O(n) queries to F2 and O(2n/2n) queries to π2 with at
most O(n2) qubits.

Subcase 4.2) l12, l22 are invertible. Because π1 and π2 are two independent
random permutations, so π1 = π2 with negligible probability. We only consider
π1 = π2. We let

f : {0, 1}n × {0, 1}n →{0, 1}n

(u,M) �→F2(M) ⊕ h(M) ⊕ l34π2(l22(M) ⊕ u) ⊕ l32π1(l12(M))
f(u,M) =l34π2(l22(M) ⊕ l21(K2)) ⊕ l32π1(l12(M) ⊕ l11(K1))⊕

l34π2(l22(M) ⊕ u) ⊕ l32π1(l12(M)) ⊕ e.

Let U := {l21(K2), l22l−1
12 l11(K1) ⊕ l21(K2)} and s := l−1

12 l11(K1). It is easy to
get when u ∈ U , f(u,M) = f(u,M ⊕ s) holds for all M . Thus if ε(f) ≤ 7/8,
the improved Grover-meet-Simon algorithm [9] can recover an u ∈ U and s with
O(n) quantum queries to F2 and π1 and O(2n/2n) quantum queries to π2 using
at most O(n2) qubits. After that, we can distinguish F2 from random function.
We put the proof of ε(f) ≤ 7/8 in Appendix C. ��

4.2 Attack on Pseudorandom Function with Two Serial
Permutation Calls

Let π1, π2
$← Perm(n) and K1,K2,K3,K4 are four independent keys in {0, 1}n.

Let L1 : ({0, 1}n)2 → ({0, 1}n)3, L2 : ({0, 1}n)4 → ({0, 1}n)2, L3 : ({0, 1}n)4 →
{0, 1}n be any three linear mappings. And let the general function F3 : {0, 1}4n×
{0, 1}n → {0, 1}n based on two serial public permutation calls be defined as in
Fig. 3(b). Similar to F1 and F2, we can decompose L1, L2, L3 into

L1 = (l11, l12, l13, l14, l15, l16),
L2 = (l21, l22, l23, l24, l25, l26, l27, l28),
L3 = (l31, l32, l33, l34)

as in Fig. 7(a) in the classical setting, where every branch linear mapping lij :
{0, 1}n → {0, 1}n. For whether general or concrete instantiations of F3 in Sect. 5,
l12 is identical mappling. Thus for l12 = 0̂, we only consider l12 is invertible.

Quantum Attacks on PRFs Based on Public Random Permutations 583

(a) The decomposition of function F3 by L1 = (l11, l12, l13, l14, l15, l16), L2 =
(l21, l22, l23, l24, l25, l26, l27, l28) and L3 = (l31, l32, l33, l34).

(b) The simple form of function F3 after decomposition.

Fig. 7. The decomposition of function F3.

Theorem 4. Let n ∈ N, and consider the function F3 : {0, 1}4n × {0, 1}n →
{0, 1}n of Fig. 3(b) based on two public random permutation π1 and π2 with block

length of n bits and using four keys K1,K2, K3,K4
$← {0, 1}n, for any linear

mapplings L1, L2, L3 where l12 = 0̂ or invertible. There exists a distinguisher
D making at most O(n) construction queries and at most O(2n/2n) primitive
queries to distinguish F3 from random function.

Proof. For simplicity, we let

h(M) := l33l28l14(M) ⊕ l34l16(M),
e := l33(l28l13(K1) ⊕ l25(K2) ⊕ l26(K3)) ⊕ l31(K4) ⊕ l34l15(K1),
u∗ := l21 (K2) ⊕ l22 (K3) ⊕ l24l13(K1).

Then
F3(M) =l32π2(l23π1(l12(M) ⊕ l11(K1)) ⊕ l24l14(M) ⊕ u∗)⊕

l33l27π1(l12(M) ⊕ l11(K1)) ⊕ h(M) ⊕ e.

See Fig. 7(b). We will attack F3 by attacking four cases as follows.

584 T. Guo et al.

Case 1) l32 = 0̂. In this case,

F3(M) = l33l27π1(l12(M) ⊕ l11(K1)) ⊕ h(M) ⊕ e,

which degenerates into F1.

Case 2) l12 = 0̂. In this case,

F3(M) = l32π2(l23π1(l11(K1)) ⊕ l24l14(M) ⊕ u∗) ⊕ h(M) ⊕ e ⊕ l33l27π1(l11(K1)),

which degenerates into F1, too.

Case 3) l23 = 0̂. In this case,

F3(M) = l32π2(l24l14(M) ⊕ u∗) ⊕ l33l27π1(l12(M) ⊕ l11(K1)) ⊕ h(M) ⊕ e,

which degenerates into F2.

Case 4) l32 �= 0̂, l12 �= 0̂, l23 �= 0̂. In this case, l12 is invertible. Let

u∗∗ := u∗ ⊕ l24l14l
−1
12 l11 (K1) ,

g(u, x) := l32π2

(
l23π1(x) ⊕ l24l14l

−1
12 (x) ⊕ u

) ⊕ l33l27π1(x).

Then
F3(M) = g(u∗∗, l12(M) ⊕ l11(K1)) ⊕ h(M) ⊕ e.

Let

f : {0, 1}n × {0, 1}n →{0, 1}n

(u,M) �→F3(M) ⊕ h(M) ⊕ g(u, l12(M))
f(u,M) =g(u∗∗, l12(M) ⊕ l11(K1)) ⊕ g(u, l12(M)) ⊕ e.

Then it is easy to get when u = u∗∗, f(u∗∗,M) = f(u∗∗,M ⊕ s) holds for all
M ∈ {0, 1}n where s := l−1

12 l11(K1). Thus if ε(f) ≤ 7/8, the improved Grover-
meet-Simon algorithm [9] can recover an u∗∗ and s with O(n) quantum queries
to F3 and O(2n/2n) quantum queries to π1, π2 using at most O(n2) qubits. We
put the proof of ε(f) ≤ 7/8 in Appendix D. After that, we can distinguish F3
from random function. ��

5 Instantiations of Some PRFs

In this section, we show the security of general and some concrete instantiations
of F2 and F3. In the following, we always assume K1,K2,K3,K4

$← {0, 1}n

and π1, π2
$← Perm(n). For the reason that Ki = 0n happens with negligible

probability, we assume Ki = 0n for i = 1, 2, 3, 4. These instantiations are simpler
than F2 and F3. So it is easier to constructing the Grover-meet-Simon function
f(u, .) for them. In the following, we only put the key recovery methods of PRFs.
After recovery the distinguishing attacks from random function are similar as
F2, F3, so we omit them.

Quantum Attacks on PRFs Based on Public Random Permutations 585

5.1 Xop Construction Instantiated with EM Construction

We instantiate Xop construction by replacing two block ciphers with two EM
constructions EM(x) = π1(x ⊕ K1) ⊕ K2 and EM(x) = π2(x ⊕ K3) ⊕ K4, and
get

XopEM(M) = π1(M ⊕ K1) ⊕ π2(M ⊕ K2) ⊕ K3 ⊕ K4.

It is a general instantiation of F2. Thus we can recover K1,K2 by applying the
improved Grover-meet-Simon algorithm [9] with O(2n/2n) queries using O(n2)
qubits when considering function

f(u,M) = XopEM(M) ⊕ π1(M) ⊕ π2(M ⊕ u),

which has a period K1 in its second component when u = K1 ⊕ K2 or K2.

DS-SoEM. For message M ∈ {0, 1}n−d, ‘msbn−d’ means the truncation of key
masks at the input to their n − b most significant bits. Bhattarcharjee et al. [6]
defined

DS-SoEM(M) =π1((M ⊕ msbn−d(K1))‖0d)⊕
π1((M ⊕ msbn−d(K2))‖1d) ⊕ K1 ⊕ K2.

It is a concrete variant of the instantiation of Xop. We can recover msbn−d(K1),
msbn−d(K2) by applying the improved Grover-meet-Simon algorithm [9] with
O(2

n−d
2 (n − d)) queries using O(n(n − d)) qubits when considering function

f(u,M) = DS-SoEM(M) ⊕ π1(M‖0d) ⊕ π1((M ⊕ u)‖1d),

which has a period msbn−d(K1) in its second component when u = msbn−d(K1⊕
K2) or msbn−d(K2).

5.2 EDM Construction Instantiated with EM Construction

We can instantiate EDM construction with two EM construction and get

EDMEM(M) = π2(π1(M ⊕ K1) ⊕ M ⊕ K2 ⊕ K3) ⊕ K4.

It is a general instantiation of F3. We can recover K1,K2 ⊕ K3 by applying the
improved Grover-meet-Simon algorithm [9] with O(2n/2n) queries using O(n2)
qubits when considering function

f(u,M) = EDMEM(M) ⊕ π2(π1(M) ⊕ M ⊕ u),

which has a period K1 in its second component when u = K1 ⊕ K2 ⊕ K3.

PDMMAC. Chakraborti et al. [13] defined

PDMMAC(M) = π−1
1 (π1(M ⊕ K1) ⊕ M ⊕ K1 ⊕ 2K1) ⊕ 2K1.

It is a concrete instantiation of EDM. We search K1 straightforwardly by
Grover’s search, which costs O(2n/2) queries and O(n) qubits.

586 T. Guo et al.

pEDM. Dutta et al. [17] defined

pEDM(M) = π1 (π1 (M ⊕ K1) ⊕ M ⊕ K1 ⊕ K2) ⊕ K1.

It is a concrete instantiation of EDM. We apply the improved Grover-meet-
Simon algorithm [9] to attack it with O (

2n/2n
)

queries using O (
n2

)
qubits

when considering function

f(u,M) = pEDM(M) ⊕ π1 (π1(M) ⊕ M ⊕ u) ,

which has a period K1 in its second component when u = K2.

5.3 EDMD Construction Instantiated with EM Construction

We instantiate EDMD construction with EM construction and get

EDMDEM(M) = π2(π1(M ⊕ K1) ⊕ K2 ⊕ K3) ⊕ π1(M ⊕ K1) ⊕ K2 ⊕ K4.

It is a general instantiation of F3. We can recover K1,K2 ⊕ K3 by applying the
improved Grover-meet-Simon algorithm [9] with O(2n/2n) queries using O(n2)
qubits when considering function

f(u,M) = EDMDEM(M) ⊕ π2(π1(M) ⊕ u) ⊕ π1(M),

which has a period K1 in its second component when u = K2 ⊕ K3.

SoKAC21. SoKAC21 [14] is as follows:

SoKAC21(M) = π2(π1(M ⊕ K1) ⊕ K1) ⊕ π1(M ⊕ K1) ⊕ K1.

It is a concrete instantiation of EDMD. It is well known that BHT algorithm
[12] is a time-memory trade-off algorithm of Grover’s algorithm. By applying
this algorithm to speed up the birthday bound classical attack [29] by Nandi,
we can distinguish it from random function with O(2n/3) quantum queries with
at most O(2n/3) qubits.

6 Conclusion

In this paper, we systematically analyze the securities of PRFs based on one
or two public random permutation calls with pre- and post-linear processes of
each permutation in the Q2 model. Besides, we present the security of some
popular instantiations: contain general instantiations (XopEM, EDMEM, EDM-
DEM) and concrete PRFs (DS-SoEM, PDMMAC, SoKAC21). Section 4.2 does
not include that case l12 not invertible. We find it is more complicated to find
attack when l12 is not invertible for whatever other branch linear mapplings be.
We leave it an open problem. Generally, it is sufficient to consider l12 = O or
invertible with respect to pre-existing instantiations. The further question is if
there is provable security in the Q2 model to show the tightness of the bound.

Acknowledgments. The authors thank the anonymous reviewers for many helpful
comments. This paper was supported by the NSFC of China (61732021 and 62202460)
and the National Key R&D Program of China (2018YFA0704704).

Quantum Attacks on PRFs Based on Public Random Permutations 587

A Proof of ε(f) ≤ 1/2 in Subcase 3.2) in Sect. 3

In fact, we can prove ε(f) is at most 1
2 , i.e., for any t ∈ {0, 1}n\{0n, s} that

PrM

[
l22π(l12(M) ⊕ l11(K1)) ⊕ l22π(l12(M))

l22π(l12(M ⊕ t) ⊕ l11(K1)) ⊕ l22π(l12(M ⊕ t)) = 0n

]
≤ 1/2. (3)

By t ∈ {0n, s} we know the four inputs of l22π, i.e., l12(M) ⊕ l11(K1), l12(M),
l12(M ⊕ t) ⊕ l11(K1), and l12(M ⊕ t), are different from each other. Then by
the randomness of π, the four inputs of l22(·) are four distinct random values in
{0, 1}n. By l22 = 0̂, we obtain the range of l22(·) has at least two elements and
the probability of l22(x) = y for any random x ∈ {0, 1}n and y in the range is
at most 1

2 . Thus the Eq. (3) happens with probability no more than 1
2 .

B Proof of Pr[test(u) = 1] ≤ 1
22n for Any u /∈ U

in Subcase 4.1) in Sect. 4.1

Let fi(u) :=F2(Mi) ⊕ h(Mi) ⊕ F2(Mi ⊕ a) ⊕ h(Mi ⊕ a) ⊕ l34π2(l22(Mi) ⊕ u)⊕
l34π2(l22(Mi ⊕ a) ⊕ u)

=l34π2(l22(Mi) ⊕ l21(K2)) ⊕ l34π2(l22(Mi ⊕ a) ⊕ l21(K2))⊕
l34π2(l22(Mi) ⊕ u) ⊕ l34π2(l22(Mi ⊕ a) ⊕ u),

and y1
i := l22(Mi)⊕ l21(K2), y2

i := l22(Mi ⊕a)⊕ l21(K2), y3
i := l22(Mi)⊕u, y4

i :=
l22(Mi ⊕ a) ⊕ u, for i = 1, 2, . . . , q. By l22(a) = 0n, u /∈ U we get for any
function fi, the y1

i , y2
i , y3

i , and y4
i are different from each other. To calculate the

probability of these q equations fi(u) = 0n where u /∈ U , we consider sampling
about π2. If y1

i , y2
i , y3

i , and y4
i , who are the inputs of π2 in ith equation, all

have appeared in the other q − 1 equations, then we don’t sample in the ith
equation. By any Mi that l22(Mi), l22(Mi ⊕ a) /∈ {l22(Mj), l22(Mj ⊕ a) : Mj ∈
M \ {Mi}}, we get y1

i , y2
i /∈ {y1

j , y2
j : j ∈ {1, 2, . . . , q} \ {i}}. However, if u =

l22(Mi) ⊕ l22(Mj) ⊕ l21(K2) then y1
i = y3

j , y2
i = y4

j , y3
i = y1

j , y4
i = y2

j . Or if
u = l22(Mi)⊕ l22(Mj)⊕ l21(K2)⊕ l22(a) then y1

i = y4
j , y2

i = y3
j , y3

i = y2
j , y4

i = y1
j .

Therefore, even in the worst case we have to sample π2 in at least � q
2� equations

among q. For every equation needing sample, by the randomness of π2, it holds
with probability at most 1

2 . Therefore, for any u /∈ U , we have Pr[test(u) = 1] ≤
(12)	 q

2
. We have Pr[test(u) = 1] ≤ 1/22n for q ≥ 4n. We notice that this attack
requires l22 with at least 4n different images. When 4n ≤ 2n/2, that is to say,
n ≥ 6, it works.

C Proof of ε(f) ≤ 7/8 in Subcase 4.2) in Sect. 4.1

Let Ut = {0, 1}n ×{0, 1}n\({(l21(K2), s), (l22l−1
12 l11(K1)⊕ l21(K2), s)}∪{0, 1}n ×

{0n}). In this case, ε(f) = max
(u,t)∈Ut

PrM [f(u,M) = f(u,M ⊕ t)]. The function

588 T. Guo et al.

f(u,M) = f(u,M ⊕ t) equals

l34π2(l22(M) ⊕ l21(K2)) ⊕ l34π2(l22(M) ⊕ u)⊕
l34π2(l22(M ⊕ t) ⊕ l21(K2)) ⊕ l34π2(l22(M ⊕ t) ⊕ u)⊕
l32π1(l12(M) ⊕ l11(K1)) ⊕ l32π1(l12(M))⊕
l32π1(l12(M ⊕ t) ⊕ l11(K1)) ⊕ l32π1(l12(M ⊕ t)) = 0n

(4)

1) u ∈ U , t /∈ {0n , s}. By l11(K1) = 0n, t /∈ {0n, s} we get the four inputs of
l32π1 in Eq. (4) are different. By the randomness of π1 the Eq. (4) holds with
probability at most 1/2.

2) u /∈ U , t = s. Now the Eq. (4) equals

l34π2(l22(M) ⊕ l21(K2)) ⊕ l34π2(l22(M) ⊕ u)⊕
l34π2(l22(M ⊕ l−1

12 l11(K1)) ⊕ l21(K2)) ⊕ l34π2(l22(M ⊕ l−1
12 l11(K1)) ⊕ u) = 0n

By u /∈ U , l22l
−1
12 l11(K1) = 0n, we get the four inputs of l34π2 in Eq. (4) are

different. By the randomness of π2 the Eq. (4) holds with probability at most
1/2.

3) u /∈ U , t /∈ {0n , s}. We can prove the Eq. (4) holds with probability at most
1/2 the same as 1), so we omit it.

D Proof of ε(f) ≤ 7/8 in Case 4) of Sect. 4.2

Let Ut = {0, 1}n × {0, 1}n\({(u∗∗, s)} ∪ {0, 1}n × {0n}). In this case, ε(f) =
max

(u,t)∈Ut

PrM [f(u,M) = f(u,M ⊕ t)]. we take l33l27 = l24l14 = O as an example.

The other cases when l33l27 = O, l24l14 = O are similar. We divide (u, t) ∈ Ut

into the following cases, which cover all sceneries.

1) u = u∗∗, t /∈ {0n , s}. Now the equation f(u,M) = f(u,M ⊕ t) equals

l32π2(y1) ⊕ l32π2(y2) ⊕ l32π2(y3) ⊕ l32π2(y4) = 0n, (5)

wherec y1 = l23π1(l12(M) ⊕ l11(K1)) ⊕ u∗∗, y2 = l23π1(l12(M)) ⊕ u∗∗, y3 =
l23π1(l12(M ⊕t)⊕ l11(K1))⊕u∗∗, y4 = l23π1(l12(M ⊕t))⊕u∗∗. If y1 = y2, y3 = y4
or y1 = y3, y2 = y4 or y1 = y4, y2 = y3, then Eq. (5) holds. We observe that four
inputs of l23π1: y1, y2, y3, and y4 are distinct from each other by l11(K1) = 0n and
t /∈ {0n, s}. So this case happens with probability at most 3/4 by the randomness
of π1. Otherwise, there is at least one yi(i ∈ {1, 2, 3, 4}) is different from the other
three. In this case, by the randomness of π2, the Eq. (5) holds with probability
at most 1/2. So the Eq. (5) holds with a bound 3/4 + 1/4 · 1/2 = 7/8.

2) u �= u∗∗, t = s. Now the equation f(u,M) = f(u,M ⊕ t) is equal to

l32π2(y1) ⊕ l32π2(y2) ⊕ l32π2(y3) ⊕ l32π2(l23π1(y4) = 0n, (6)

where y1 = l23π1(l12(M) ⊕ l11(K1)) ⊕ u∗∗, y2 = l23π1(l12(M)) ⊕ u, y3 =
l23π1(l12(M)) ⊕ u∗∗, y4 = l23π1(l12(M) ⊕ l11(K1)) ⊕ u. By u = u∗∗, we get

Quantum Attacks on PRFs Based on Public Random Permutations 589

y1 = y4. And we observe that [y1 = y2 ⇔ y3 = y4] (resp. [y1 = y3 ⇔ y2 = y4]).
So y1 = y2 and y1 = y3 don’t hold simultaneously, or it leads to y1 = y4. If
y1 = y2, the Eq. (6) holds. This case holds with probability at most 1/2 by the
randomness of π1. Otherwise, if y1 = y2 and y1 = y3, the Eq. (6) holds as well.
This case holds with probability at most 1/2 · 1/2 = 1/4 by the randomness of
π1. At last, if y1 = y2 and y1 = y3, then y1, y2, y3, and y4 are different from
each other, the Eq. (6) holds with probability of 1/2 · 1/2 · 1/2 = 1/8 by the
randomness of π2. So the Eq. (6) holds with a bound 7/8.

3) u �= u∗∗, t /∈ {0n , s}. This case is similar to 1), so we omit it.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment
of symmetric encryption. In: FOCS 1997, pp. 394–403. IEEE Computer Society
(1997). https://doi.org/10.1109/SFCS.1997.646128

2. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. IACR Cryptol. ePrint Arch. 1999, 24 (1999). https://eprint.iacr.org/1999/
024

3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054132

4. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

5. Bernstein, D.J.: Stronger security bounds for wegman-carter-shoup authenticators.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 10

6. Bhattacharjee, A., List, E., Nandi, M.: CENCPP - beyond-birthday-secure encryp-
tion from public permutations. IACR Cryptol. ePrint Arch. 2020, 602 (2020).
https://eprint.iacr.org/2020/602

7. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small
number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 5

8. Bonnetain, X.: Tight Bounds for Simon’s algorithm. In: Longa, P., Ràfols, C. (eds.)
LATINCRYPT 2021. LNCS, vol. 12912, pp. 3–23. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88238-9 1

9. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 20

10. Brassard, Gilles: On computationally secure authentication tags requiring short
secret shared keys. In: Chaum, David, Rivest, Ronald L.., Sherman, Alan T.. (eds.)
Advances in Cryptology, pp. 79–86. Springer, Boston, MA (1983). https://doi.org/
10.1007/978-1-4757-0602-4 7

https://doi.org/10.1109/SFCS.1997.646128
https://eprint.iacr.org/1999/024
https://eprint.iacr.org/1999/024
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11426639_10
https://eprint.iacr.org/2020/602
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-030-88238-9_1
https://doi.org/10.1007/978-3-030-88238-9_1
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-1-4757-0602-4_7
https://doi.org/10.1007/978-1-4757-0602-4_7

590 T. Guo et al.

11. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

12. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002 (1997)

13. Chakraborti, A., Nandi, M., Talnikar, S., Yasuda, K.: On the composition of single-
keyed tweakable Even-Mansour for achieving BBB security. IACR Trans. Symmet-
ric Cryptol. 2020(2), 1–39 (2020). https://doi.org/10.13154/tosc.v2020.i2.1-39

14. Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from
public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 266–293. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26948-7 10

15. Chen, Y.L., Mennink, B., Preneel, B.: Categorization of faulty nonce misuse resis-
tant message authentication. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13092, pp. 520–550. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92078-4 18

16. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 5

17. Dutta, A., Nandi, M., Talnikar, S.: Permutation based EDM: an inverse free BBB
secure PRF. IACR Trans. Symmetric Cryptol. 2021(2), 31–70 (2021). https://doi.
org/10.46586/tosc.v2021.i2.31-70

18. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptol. 10(3), 151–162 (1997). https://doi.org/10.1007/
s001459900025

19. Gilboa, S., Gueron, S.: The advantage of truncated permutations. CoRR
abs/1610.02518 (2016). https://arxiv.org/abs/1610.02518

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, 1996. pp. 212–219 (1996). https://doi.org/10.1145/237814.237866

21. Guo, T., Wang, P., Hu, L., Ye, D.: Attacks on beyond-birthday-bound MACs in
the quantum setting. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021.
LNCS, vol. 12841, pp. 421–441. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81293-5 22

22. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055742

23. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

25. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: ISITA 2012, pp. 312–316. IEEE (2012). https://ieeexplore.ieee.org/document/
6400943/

26. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

https://doi.org/10.13154/tosc.v2020.i2.1-39
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-030-92078-4_18
https://doi.org/10.1007/978-3-030-92078-4_18
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.46586/tosc.v2021.i2.31-70
https://doi.org/10.46586/tosc.v2021.i2.31-70
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/s001459900025
https://arxiv.org/abs/1610.02518
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-81293-5_22
https://doi.org/10.1007/978-3-030-81293-5_22
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-662-53008-5_8
https://ieeexplore.ieee.org/document/6400943/
https://ieeexplore.ieee.org/document/6400943/
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6

Quantum Attacks on PRFs Based on Public Random Permutations 591

27. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

28. Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 19

29. Nandi, M.: Mind the composition: birthday bound attacks on EWCDMD and
SoKAC21. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105,
pp. 203–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 8

30. Patarin, J.: A proof of security in O(2n) for the Xor of Two Random Permutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85093-9 22

31. Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities
and linear non equalities for cryptography. IACR Cryptol. ePrint Arch. 2010, 287
(2010). https://eprint.iacr.org/2010/287

32. Patarin, J.: Generic attacks for the XOR of k random permutations. In: Jacobson,
M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol.
7954, pp. 154–169. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38980-1 10

33. Shinagawa, K., Iwata, T.: Quantum attacks on sum of Even-Mansour pseudoran-
dom functions. Inf. Process. Lett. 173, 106172 (2022). https://doi.org/10.1016/j.
ipl.2021.106172

34. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 24

35. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997). https://doi.org/10.1137/S0097539796298637

36. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981). https://doi.org/10.
1016/0022-0000(81)90033-7

37. Zhang, P.: Quantum attacks on sum of Even-Mansour construction with linear key
schedules. Entropy 24(2), 153 (2022)

https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-030-45721-1_8
https://doi.org/10.1007/978-3-540-85093-9_22
https://eprint.iacr.org/2010/287
https://doi.org/10.1007/978-3-642-38980-1_10
https://doi.org/10.1007/978-3-642-38980-1_10
https://doi.org/10.1016/j.ipl.2021.106172
https://doi.org/10.1016/j.ipl.2021.106172
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

On Security Notions for Encryption
in a Quantum World

Céline Chevalier1, Ehsan Ebrahimi2, and Quoc-Huy Vu1(B)

1 CRED, Université Panthéon-Assas, Paris, France
{celine.chevalier,quoc.huy.vu}@ens.fr

2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
ehsan.ebrahimi@uni.lu

Abstract. Indistinguishability against adaptive chosen-ciphertext
attacks (IND-CCA2) is usually considered the most desirable security
notion for classical encryption. In this work, we investigate its adapta-
tion in the quantum world, when an adversary can perform superposition
queries. The security of quantum-secure classical encryption has first been
studied by Boneh and Zhandry (CRYPTO’13), but they restricted the
adversary to classical challenge queries, which makes the indistinguisha-
bility only hold for classical messages (IND-qCCA2). We extend their work
by giving the first security notions for fully quantum indistinguishability
under quantum adaptive chosen-ciphertext attacks, where the indistin-
guishability holds for superposition of plaintexts (qIND-qCCA2).

1 Introduction

Recent advances in quantum computing show the possible emergence of new
kinds of attacks due to quantum adversaries. The first type of attacks would
be due to adversaries owning a quantum computer and using it to break com-
putational assumptions (thus attacking classical cryptographic cryptosystems).
This has been made possible by the invention of quantum algorithms that solve
factoring and discrete logarithm problems in polynomial time [20] and conse-
quently, break the security of many classical public-key encryption schemes based
on these assumptions. This threat has led to the emergence of so-called post-
quantum cryptography, based on arguably quantum-resistant assumptions. But
this change of assumptions may not be sufficient, and symmetric cryptosystems
may also be impacted, in case we allow a quantum adversary, not only to perform
computation on a quantum computer it may own, but also to carry out a second
type of attacks, by interacting with the target in superposition. Quantum algo-
rithms for unstructured search [13] or period finding [21] could then be applied to
attack classical constructions using superposition queries [10,15]. Cryptosystems
secure against this type of attacks would be called quantum secure.

As we approach the quantum era, it thus becomes necessary to construct
new public-key cryptosystems based on quantum-resistant assumptions, and to

E. Ebrahimi—Work done while at École Normale Supérieure.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 592–613, 2022.
https://doi.org/10.1007/978-3-031-22912-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_26&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_26

On Security Notions for Encryption in a Quantum World 593

investigate the security of both symmetric and public-key cryptosystems against
an attacker allowed to interact with honest parties using quantum communica-
tion. Recently, there has been towards this goal extensive research works that
consider this scenario of quantum superposition attacks for different classical
cryptographic constructions such as random oracles, pseudorandom functions,
encryption and signature schemes [1,4–6,11,22] and give corresponding new
security definitions. Furthermore, this new field of research is also motivated
by the existence of concrete attacks against classical constructions using super-
position queries (e.g., see [10,15] and their follow up works). In this paper, we
continue this line of work and focus on the security for classical encryption
schemes against quantum adversaries allowed to make quantum encryption and
decryption queries.

1.1 Defining Security for Encryption Against Quantum Adversaries

Classical Security Notions. Indistinguishability-based security definitions are
modeled as a game between a challenger and an adversary A. In the Find-
Then-Guess style, the game starts with a first learning phase (with access to
some oracles), followed by a challenge phase where A sends a challenge query
(two messages x0 and x1 to be encrypted) and receives a challenge ciphertext
(encryption of xb). Afterwards, a second learning phase follows, and finally, A
outputs a solution (its guess for the bit b). The security reduction consists in
constructing a new adversary which simulates A and solves some hard underlying
problem. The learning phases define the type of attacks: chosen-plaintext attacks
(CPA) if the adversary has access to an encryption oracle in both learning phases,
and chosen-ciphertext attacks (CCA) in case it also has access to a decryption
oracle in the learning phases (non-adaptive or CCA1 if it is restricted to the first
learning phase, and adaptive or CCA2 otherwise).

Indistinguishability against adaptive chosen-ciphertext attack (IND-CCA2)
is usually considered the most desirable security notion for encryption. In the
CCA2 games, the adversary is restricted not to ask for decryption of the challenge
ciphertext, otherwise, this would lead to a trivial guess of the bit b. It is the role
of the challenger to ensure that the adversary obeys this rule, which intrinsically
requires the ability to copy, store and compare classical strings.

Quantum Attacks on Encryption. With recent advances in quantum com-
puting, a quantum adversary may become a tangible threat in not so long.
Switching to post-quantum computational assumptions is a beginning but may
not be enough in case the adversary gains quantum access to honest parties and
protocols. Consider for instance the well-known construction of CCA2 secure
encryption schemes from lossy trapdoor functions [19]: if the construction is
instantiated with lattice-based problems, it is arguably post-quantum secure.
But we show later that, the insecurity may arise from the use of a one-time pad
inside the construction. Furthermore, [10,15] and their follow up works show
that the security of several classical constructions can be compromised if the
adversary can perform superposition attacks.

594 C. Chevalier et al.

Boneh-Zhandry’s Security Notions [6]. Boneh and Zhandry propose the first
definition of IND-CCA for both symmetric and public-key encryption schemes
against quantum adversaries allowed to make quantum encryption and decryp-
tion queries. But they show that the natural translation of the classical Find-
then-Guess paradigm to the quantum setting is unachievable, even for IND-
CPA security. To overcome this impossibility, they resort to considering quantum
queries during the learning phases only, and classical queries during the challenge
phase. In addition to looking artificial, this inconsistency between the learning
phases and the challenge phase may lead to a cryptographic construction that
fulfills this security notion (IND-qCPA or IND-qCCA) while being subject to an
attack.

For instance, in [2], the authors verify IND-qCPA security of XTS mode of
operation (with quantum learning queries and classical challenge queries). They
design a block cipher such that an encryption scheme in XTS mode, instantiated
with that block cipher, can be attacked during the learning phase using quantum
learning queries. However, this attack cannot be used to violate the IND-qCPA
security definition. The explanation for this inconsistency is that this attack
cannot be implemented in the challenge phase due to the classical restriction
imposed on the adversary. This example supports our claim that the inconsis-
tency between the learning phases and the challenge phase can be problematic
and should be overcome.

IND-CCA2 Security Notions. To date, defining the CCA2 security with
quantum challenge queries remains unsolved. In [11], the authors address the
inconsistency described above for the case of symmetric encryption, but only for
IND-CPA, and leave as an open problem the IND-CCA definitions.

The main obstacle is to define how the challenger should reply to the quan-
tum decryption queries after the adversary has made the quantum challenge
queries. When the challenge queries are classical, they can be stored and later
the challenger can return ⊥ if the adversary submits one of them as a decryp-
tion query. Although it is trivial and inherent to store the challenge ciphertext
in the classical setting, it is highly non-trivial to store ciphertexts in the quan-
tum world, due to a number of technical obstacles, all of which can be traced to
quantum no-cloning and the destructiveness of quantum measurements.

In this paper, we manage to overcome this recording barrier by using
Zhandry’s compressed oracle technique [23] (an overview is given in Sect. 1.2)
and we propose the first quantum version for IND-CCA security notion. We jus-
tify our definitions in Sect. 1.3. Due to the space limitations, we defer discussions
on our security notions and related work to the full version of our paper [8].

1.2 Our Approach

Towards resolution, we start from a recent groundbreaking technique that allows
for on-the-fly simulation of random oracles in the quantum setting: Zhandry’s
compressed oracles [23]. The goal of his work is to overcome the recording barrier,
by allowing the reduction to record information about the adversary’s queries,
which is a key feature of many classical ROM proofs.

On Security Notions for Encryption in a Quantum World 595

Zhandry’s key observations are threefold. First, instead of considering a ran-
dom function h being chosen beforehand, one can purify the adversary’s mixed
state by putting h in uniform superposition

∑
h|h〉. This observation is a tech-

nicality that allows us to fulfill the two next points. Then, the next observation
is that, by doing the queries in the Fourier basis, the data will be written to
the oracle’s registers instead of writing to the opposite direction. This enables
the simulator to get some information about the adversary’s queries. Finally,
the last and most important one is that the simulator needs to be ready to for-
get some point it simulated previously, by performing a particular test on the
database after answering the query. In particular, Zhandry defines a test com-
putation that maps |+〉 �→ |+〉|1〉 and |φ〉 �→ |φ〉|0〉 for any |φ〉 orthogonal to |+〉,
where |+〉 =

∑
x|x〉 is the uniform superposition state. The “test-and-forget”

procedure can be implemented by first performing the query in the Fourier basis
and then doing the test operation on the output registers (of the simulator).
This test determines whether the adversary has any information from the oracle
at some input. If not, that pair will be removed from the database so that the
adversary cannot detect that it is interacting with a simulated oracle.

This technique has been extended from random oracles to lazy-sampling of
non-uniform random functions in [9]. The intuition is almost the same, except
that now one starts from the all-zero state, performs an efficient sampling oper-
ation that computes the function f(x) according to some non-uniform distri-
bution – it is the quantum Fourier transform (QFT) operation in the uniform
setting. One then performs the query in the Fourier basis, transforms back to
the computational basis and applies the “test-and-forget” operation (which is
defined similarly as in the uniform setting). For this to work, the two impor-
tant requirements are that: i) the sampling operation must be efficient; ii) the
function distribution must be independent for every input.

To define security for encryption, we choose the real-or-random paradigm
to work with. This is because partially, the real-or-random paradigm does not
suffer from Boneh-Zhandry’s impossibility (discussion below). Furthermore, it is
actually possible to define quantum chosen-ciphertext security for this paradigm
using the quantum lazy-sampling technique we just described. In what follows,
let us focus on the random world of the paradigm. For each challenge query in the
random world, the challenger applies a random function to the plaintext registers
before encrypting, all aforementioned requirements are met: the encryption of
each submitted plaintext is actually an encryption of another uniformly random
plaintext, and since the encryption algorithm is efficient, the sampling operation
can also be efficiently constructed.

The above idea gives us a reasonable way to define adaptive chosen cipher-
text security against quantum challenge queries: by instantiating the encryption
oracle with this lazy-sampling technique, we are able to keep track of the infor-
mation needed to formulate the CCA2 notions, namely the challenge queries
the adversary has made, and the challenge ciphertexts it has received. However,
applying Zhandry’s framework directly to our setting does not work, and more
efforts are needed. For example, one main difference is that in our setting, when

596 C. Chevalier et al.

making queries to the random oracle, there is no response register (from the
adversary). In Zhandry’s framework, this response register is essential for the
technique, as the “test-and-forget” procedure works based on the value of this
register. Another problem is how to implement the oracle with an one-shot call
to the encryption algorithm: this is necessary when defining “one-time” security,
or when doing security reductions. We refer the reader to Sect. 3 for technical
details.

1.3 Our Contributions

New Notions of Quantum Indistinguishability and Their Achievabil-
ity. We define novel security notions for encryption in both the symmetric (Def-
inition 2 in Sect. 4) and public-key settings (Defnition 3 in Sect. 5). Our main
contribution is to propose the first definitions for adaptive chosen ciphertext
security that support fully quantum indistinguishability, resolving an outstand-
ing open problem posed by Gagliardoni et al. [11]. Furthermore, to justify our
formalization, we show that our notions

– are achievable (see Theorem 2 and Theorem 4);
– are all closed under composition (see Theorem 1 and Theorem 3);
– are strictly stronger than previous notions with classical challenge queries. In

particular, this shows the quantum (in)security of various symmetric encryp-
tion schemes including stream cipher and some block cipher modes of opera-
tion such as CFB, OFB, CTR. This even extends to authenticated encryption,
in which some most widely used encryption modes like GCM are also resulting
in an insecure scheme.

– (when restricted to classical challenge queries) are equivalent to Boneh-
Zhandry’s notions [6].

In this work, we adopt the Real-or-Random security definition. Informally,
in the real game, the adversary has no restrictions on the use of the decryp-
tion oracle Dec. Only in the random game, the challenge encryption oracle is
implemented as a compressed oracle: it applies a random function h1 to the
plaintext register before doing the encryption. For each decryption query, the
challenger looks for the query’s basis state in the database (in superposition)
and if found, it reasonably guesses that the adversary is trying to decrypt the
challenge ciphertext, and so it returns the adversary’s original message (which is
what is stored in the database). Otherwise, it decrypts normally. Intuitively, the
security is established by the distinguishing probability of the adversary between
whether its message is encrypted with Enc or Enc ◦ h.
1 We note that previous works [7,17] use random permutations instead of random

functions in the random world. It is arguable which security definition is the right
adaptation of the classical Real-or-Random security definition to the quantum set-
ting. However, the two notions are equivalent if the message space has size super-
polynomial. This is because in this case, random functions and random permutations
are indistinguishable.

On Security Notions for Encryption in a Quantum World 597

We then provide constructions satisfying these security notions in Sect. 4.2
and Sect. 5.2. For the symmetric-key setting, our construction follows the clas-
sical Encrypt-then-Mac paradigm, in which we use a pseudorandom function in
the role of the MAC scheme (see Theorem 2). Concerning the public-key setting,
we propose a compiler that lifts any secure encryption scheme in the sense of
[6] to an encryption scheme secure in the sense of our notions in Sect. 5.2 (The-
orem 4). The compiler follows the classical hybrid encryption paradigm, where
we encrypt the message with a one-time symmetric encryption which can be
constructed from pseudorandom functions, and then encrypt the symmetric key
with a secure public-key scheme (in the sense of [6]).

Due to the space limitations, we defer formal proofs of some theorems stated
in the paper, as well as other results to the full version [8].

2 Preliminaries

2.1 Notations

Let λ ∈ N be the security parameter. The notation negl(λ) denotes any func-
tion f such that f(λ) = λ−ω(1). When sampling uniformly at random a value
a from a set U , we employ the notation a

$← U . When sampling a value a
from a probabilistic algorithm A, we employ the notation a ← A. For a ∈ N,
[a] = {x ∈ N | x ≤ a} will denote the closed integer interval with endpoints 0 and
a. Let |·| denote either the length of a string, or the cardinal of a finite set, or the
absolute value. By PPT we mean a polynomial-time non-uniform family of prob-
abilistic circuits, and by QPT we mean a polynomial-time non-uniform family
of quantum circuits. Let δx,x′ denote the Kronecker delta function of x and x′.

2.2 Quantum Computing

For notation and conventions regarding quantum information, we refer the reader
to [18]. We recall a few basics here. We let |φ〉 denote an arbitrary pure quantum
state, let |x〉 denote an element of the standard (computational) basis. A mixed
state will be denoted by lowercase Greek letters, e.g., ρ. We let |+〉 denote the
uniform superposition, that is |+〉 :=

∑
x|x〉.

A pure state |φ〉 can be manipulated by performing a unitary transforma-
tion U to the state |φ〉, which we denote U |φ〉. The identity on a n-bit quantum
system is denoted In. Given two quantum systems A,B, with corresponding
Hilbert spaces HA,HB , let |φ〉 = |φ0, φ1〉 be a state of the joint system. We
write UA|φ〉 to denote that we act with U on register A, and with identity I on
register B, and we write UAB to denote that we act with U on both registers
A,B simultaneously, that is UAB = UA ⊗ UB.

Quantum Computations. Let Q be a n-bit quantum system over Zq for some
integer q. The Quantum Fourier Transform (QFT) performs the following oper-
ation efficiently:

598 C. Chevalier et al.

QFT|x〉 :=
1√
qn

∑

y∈{0,1}n

ωx·y
q |y〉,

where ωq := exp(2πi
q), and x · y denotes the dot product. In this paper, we

usually consider q = 2, so that ωq = (−1).
Given a function f : X → Y, we model a quantum-accessible oracle O for f as

a unitary transformation Of acting on three registers X,Y,Z with the property
that Of : |x, y, 0〉 �→ |x, y ⊕ f(x), 0〉, where ⊕ is some involutive group operation
(so-called quantum query model). Given an algorithm A, we sometimes write
y ← AO1,O2,...(x) for the event that a quantum adversary A takes x as input,
makes quantum queries to O1,O2, . . ., and finally outputs y.

2.3 Cryptosystems and Notions of Security

Here we briefly recall standard notations of classical cryptosystems [12].

Symmetric-key Encryption. A symmetric-key cryptosystem SE consists of
three PPT algorithms SE = (K,SymEnc,SymDec).

The standard correctness requirement is that for any key k ← K(), any
random coin r of SymEnc and any x ∈ X , we have SymDeck(SymEnck(x; r)) = x.
We sometimes omit the randomness r in SymEnc.

Public-key Encryption. A public-key cryptosystem E consists of three PPT
algorithms E = (KeyGen,Enc,Dec).

The following correctness definition is taken from [14]. We call a public-key
encryption scheme E δ-correct if

E

[

max
x∈X

Pr
r∈R

[Decsk(Encpk(x; r)) = x]
]

≤ δ,

where the expectation is taken over (pk, sk) ← KeyGen(λ).

Game-Based Definitions. Previously, quantum indistinguishability for adap-
tive chosen-ciphertext security has been defined in the work of Boneh and
Zhandry [6]. At a high level, their notions allow quantum encryption and decryp-
tion queries, but require challenge queries to be classical. Regarding the attack
models, the following security notions are then defined: IND-qCPA, IND-qCCA1,
IND-qCCA2.

3 How to Record Encryption Queries in the Random
World?

The starting point towards our goal of defining indistinguishability-based secu-
rity notions for encryption is to explain how the challenger should reply to quan-
tum decryption queries in the second learning phase after the adversary has made
the quantum encryption queries in the challenge phase. This implies explaining
how it could record these quantum challenge queries. In this section, we show
how this can be done in the random world.

On Security Notions for Encryption in a Quantum World 599

3.1 Ciphertext Decomposition

For simplicity, let we denote the encryption algorithm as a function f that takes
as input a plaintext x ∈ X , a randomness r ∈ R and outputs a ciphertext
y ← f(x; r) ∈ Y. We also assume that the domain of f is X = {0, 1}m, its range
is Y = {0, 1}n, and the randomness space R = {0, 1}�. We make a convention
that f(⊥) = 0, where ⊥ denotes some symbol outside the domain X and the
range Y. We define ciphertext decomposition as follows.

Definition 1. For a function f , for all messages x ∈ X , we write y :=
(y1‖y2) ← f(x; r) and define:

– Message-independent: y1 is message-independent if for all randomness r,
there exists a function g such that y1 := g(r). In other words, the message-
independent component of the ciphertext can be computed solely from the
randomness r, independent of the message x. Furthermore, we require that
0 ≤ |y1| ≤ |y|.

– Message-dependent: y2 is message-dependent if for all randomness r, there
exists no function g such that y2 := g(r). In other words, the message-
dependent component of the ciphertext can not be computed solely from the
randomness r. Furthermore, we require that 1 ≤ |y2| ≤ |y|.

We will also write f := f2 ◦ f1, where f1 acts only on the randomness, and f2
acts on both the randomness and the plaintext.

Remark 1. Our definition above can be defined for any encryption scheme, with-
out losing of generality. Furthermore, it also does not exclude some artificial
encryption scheme such that the encryption is deterministic when the plaintext
x is some special value (for example, the secret key), that is, there exists a
function g such that y2 := g(x).

Remark 2. The definition of ciphertext decomposition is merely served as a tech-
nical step towards constructing the compressed encryption oracle in the random
world in subsequent sections. We note that in an actual proof of security of an
encryption scheme, one usually needs not to pay attention to this decomposition
definition.

3.2 Oracle Variations

Here, we describe some oracle variations which will be used later in subsequent
sections, the so-called standard oracle and Fourier oracle. These oracles and
their equivalence are proven in much of literature on quantum-accessible oracles
(e.g., see [9,16,23]).

Standard Oracles. For any function f with domain X = {0, 1}m and range
Y = {0, 1}n, the standard oracle for f is a unitary defined as

StdOf

∑

x,y

αx,y|x, y〉XY �→
∑

x,y

αx,y|x, y ⊕ f(x)〉XY .

600 C. Chevalier et al.

The standard oracle can also be implemented in the truth table form: for each
query, the oracle’s internal state consists of n2m-qubit F registers containing
the truth table of the function. For short, we write |f(0)‖ . . . ‖f(2m − 1)〉 as |D〉.
Then, StdOf performs the following map (on the adversary’s basis states):

StdOf |x, y〉XY ⊗ |D〉F �→|x, y ⊕ D(x)〉XY |D〉F

=|x, y ⊕ f(x)〉XY |D〉F

The equivalence of these two oracle variations follows directly from the fact
that for each query, if we trace out the oracle’s internal registers, the mixed state
of the adversary in both cases will be identical.

Fourier Oracles. The Fourier oracle model FourierOf , while technically pro-
vides a different interface to the adversary, can be mapped to the standard
oracle by QFT operations. The initial state of FourierOf is

QFTF |D〉F =
1√

2n2m

∑

E

(−1)E·F |E〉F .

On the basis states, the Fourier oracle FourierOf is defined as follows.

FourierOf |x, z〉XY ⊗ 1√
2n2m

∑

E

(−1)E·D|E〉F

�→ 1√
2n2m

∑

E

(−1)E·D|x, z〉XY |E ⊕ Px,z〉F .

where Px,z is the point function that outputs z on x and 0 everywhere else.
Intuitively, with the Fourier oracle, instead of adding data from the oracle’s
registers to the adversary’s registers, it adds in the opposite direction.

Lemma 1 [16,23]. For any adversary A making queries to StdOf , let B be the
adversary that is identical to A, except it performs the Fourier transformation
to the response registers before and after each query. Then Pr

[AStdOf () = 1
]

=
Pr

[BFourierOf () = 1
]
.

Proof. Each oracle can be constructed by an f -independent quantum circuit
containing just one copy of the other, that is

QFTY F ◦ StdOf ◦ QFT†Y F = FourierOf ,

QFT†Y F ◦ FourierOf ◦ QFTY F = StdOf . ��

3.3 Recording Queries in the Random World

As we have explained in Sect. 1, to define chosen-ciphertext security, we follow
the real-or-random paradigm. In this section, we show how to process queries
and record them in the random world, in which before applying the encryption
algorithm f , the challenger chooses a random function h and applies it to the
plaintext registers. As such, we also denote the encryption procedure in the

On Security Notions for Encryption in a Quantum World 601

random world as f ◦ h. In what follows, we abuse the notation and write f ◦ h
in the subscript of the oracle’s notation with this meaning: for each query, a
random function h is chosen uniformly by the oracle, so that h is not a pre-
defined function. We note that the function f is known to the adversary though.

Single-Query Setting. We first start describing the oracle operations handling
a single query and describe the general case later.

Without loss of generality, we assume that the query’s response register Y
can be decomposed into two parts Y1, Y2, in which the first part corresponds
to the message-independent component, and the second part corresponds to the
message-dependent component. Let |Y1| := n1 and |Y2| := n2 where n1 +n2 = n.

In the standard oracle model, the encryption oracle is implemented by first
sampling a randomness r, a function h : X → X uniformly at random, and then
applying the encryption algorithm f on the input (h(x); r). From the adversary’s
point of view, this is equivalent to h being in uniform superposition

∑
h|h〉 and

performing the following map:

|x, y〉XY ⊗ |r〉R

∑

h

|h〉H �→
∑

h

|x, y ⊕ f((h(x)); r)〉XY |r〉R|h〉H . (1)

Augmenting the joint system with a uniform superposition register H is a purifi-
cation of the adversary’s mixed state, and tracing out H (i.e., projecting onto
the one-dimensional subspace spanned by |h〉) recovers the original mixed state.
Moreover, this projection, which is outside of the adversary’s view, is unde-
tectable by any adversary A.

Using ciphertext decomposition definition, we can write Eq. (1) as follows.

|x, y1‖y2〉XY1Y2 ⊗ |r〉R

∑

h

|h〉H �→
∑

h

|x, (y1‖y2) ⊕ f(h(x); r)〉XY1Y2 ⊗ |r〉R|h〉H

=
∑

h

|x, y1 ⊕ f1(r), y2 ⊕ f2(h(x); r)〉XY1Y2 ⊗ |r〉R|h〉H .

We further note that, since the same randomness r is used for all “slots” in
superposition, f1(r) is also the same for all “slots”. In other words, f1(r) is just
a classical value, which can be computed independently from the adversary’s
query. As a result, only the message-dependent registers are needed for recording
queries. From now on to the rest of this section, we only consider the message-
dependent parts in the adversary’s response registers as well as the oracle’s
registers. These parts are denoted with index 2 in subscript (e.g., y2, z2, f2, . . .).

Now we describe our compressed encryption oracles. We first introduce some
local procedures acting on the oracle’s side, possibly controlled by the adversary’s
registers. Let Decompx be the identity operator except for

Decompx

⎛

⎝|r〉|x〉 1√
2m

∑

u∈{0,1}m

|u〉 1√
2n2

∑

v

(−1)f2(u;r)·v|v〉
⎞

⎠ = |r〉|⊥〉|0〉|0〉,

602 C. Chevalier et al.

and

Decompx (|r〉|⊥〉|0〉|0〉) = |r〉|x〉 1√
2m

∑

u∈{0,1}m

|u〉 1√
2n2

∑

v

(−1)f2(u;r)·v|v〉.

It is clear that Decompx is a unitary operator. Furthermore, applying it twice
results in the identity, thus Decompx is an involution.

Using the notion similar to the description of Zhandry’s compressed random
oracle in [23], we introduce the notion of a database D that is maintained by the
oracle as follows. A database D will be a collection of tuples (x, (x′, y)), where
(x, (x′, y)) ∈ D corresponds to D(x) = (x′, y). We say D(x) = ⊥ if there is
no such pair for an input x. For a database D with D(x) = ⊥, we also write
D = {x, u, v}∪D′ where D′(x) = ⊥. D consists of all the oracle’s registers, except
the randomness registers R. Decomp is then defined as the related unitary acting
on the joint quantum system as follows.

Decomp|x, z2〉 ⊗ |r〉|D〉 = |x, z2〉 ⊗ Decompx|r〉|D〉.

Let Init be the procedure that samples a random r uniformly and initializes
a new register |r〉|⊥, 0, 0〉. Let FourierO′ be unitary defined on the adversary’s
basis states as:

FourierO′|x, z2〉 ⊗ |r〉|D〉
= FourierO′|x, z2〉 ⊗ |r〉 1√

2m

1√
2n2

∑

u,v

(−1)v·f2(u;r)|{x, u, v} ∪ D′〉

= |x, z2〉 ⊗ |r〉 1√
2m

1√
2n2

∑

u,v

(−1)v·f2(u;r)|{x, u, v ⊕ z2} ∪ D′〉.

Finally, we define the CFourierOf2◦h oracle2:

CFourierOf2◦h := Decomp ◦ FourierO′ ◦ Decomp ◦ Init.

We state the following lemma:

Lemma 2. In the single-query setting, the compressed Fourier oracle
CFourierOf2◦h acts on a basis state |x, z2〉 where x ∈ X and z2 ∈ {0, 1}n2 , as
follows.

– If z2 = 0, then CFourierOf2◦h|x, z2〉 �→ |x, z2〉 ⊗ |r〉|⊥, 0, 0〉.
– If z2 = 0, then CFourierOf2◦h|x, z2〉 �→ |x, z2〉 ⊗ |φx,z2〉, where

|φx,z2〉 := |r〉 1√
2m+n2

∑

u

∑

v

(−1)f2(u;r)·v|x, u, v ⊕ z2〉.

2 For notation consistency, we use the same subscript in compressed oracles as for stan-
dard oracles. However, we note that there is no real function h in the implementation
of CFourierO and its variants.

On Security Notions for Encryption in a Quantum World 603

Furthermore, for any adversary A making a single query to StdOf2◦h, let
B be the adversary that is identical to A, except it performs the Hadamard
transformation H⊗n to the response registers before and after the query. Then
Pr

[AStdOf2◦h() = 1
]

= Pr
[BCFourierOf2◦h() = 1

]
.

Proof. To prove the lemma, it is enough to show that CFourierOf2◦h and
FourierOf2◦h are perfectly indistinguishable.

We prove this through a sequence of games. In what follows, we ambiguously
denote QFT|f2(x; r)〉 by |ηx〉 for each x ∈ {0, 1}m. We will also take y ⊕ ⊥ =
y, y · ⊥ = 0. When the adversary’s response register is |+〉 (which corresponds
to |0〉 in the Fourier basis), we can write, on the truth table of the oracle (for
both FourierOf2◦h and StdOf2◦h), the column with index x where x is the query’s
input as ⊥.
Game G0: In this game, the adversary interacts with the Fourier
oracle FourierOf2◦h, whose initial state is |r〉 1√

2m2m

∑
h(h(0), ηh(0))‖ · · · ‖

(h(2m−1), ηh(2m−1)|)〉.
Game G1: In this game, we represent the oracle in the form:

|r〉 1√
2m2m

∑

h

|(0, h(0), ηh(0))‖ · · · ‖(2m − 1, h(2m−1), ηh(2m−1))〉.

The update procedure for a query is then simply FourierO′. G1 is identical to
G0, since we have inserted the input points 0, . . . , 2m − 1 into the oracle’s state,
which is independent from the adversary’s state.

Game G2: In this game, the oracle starts out as the “zero” database:

|r〉|(⊥, 0, 0)‖ · · · ‖(⊥, 0, 0)〉.
Then a query is implemented as Decomp′† ◦ FourierO′ ◦ Decomp′, where
Decomp′ :=

⊗2m−1
i=0 Decompi. At the beginning, Decomp′ is applied to the “zero”

database, which maps it to the complete database

|r〉 1√
2m2m

∑

h

|(0, h(0), ηh(0))‖ · · · ‖(2m − 1, h(2m−1), ηh(2m−1))〉.

Then FourierO′ is applied and the output state of G2 in this stage will be exactly
the output state of G1. Since Decomp′† is a unitary that only operates on the ora-
cle’s register, its applications is undetectable to the adversary. So G2 is perfectly
indistinguishable from G1.

Game G3: In this final game, we use the compressed oracle CFourierOf2◦h. Let
x be the query’s input. We note that FourierO′ and Decompx′ commute for any
x′ = x. Thus, we can move the computation of Decompx′ to come after FourierO′,
consequently, its applications cancel out. We then have:

Decomp′† ◦ FourierO′ ◦ Decomp′(|x, z〉 ⊗ |r〉|D〉)
= Decomp†

x ◦ FourierO′ ◦ Decompx(|x, z〉 ⊗ |r〉|D〉)
= Decomp† ◦ FourierO′ ◦ Decomp(|x, z〉 ⊗ |r〉|D〉).

604 C. Chevalier et al.

We are left with a database D whose support has at most 1 defined point after the
query in G2. The remaining ≥ 2m − 1 points are all (⊥, 0, 0). So we may end up
with a superposition of databases that have at most one defined point. We then
can move this defined point in the database to the first register (this is a unitary
operator and is undetectable to the adversary) and obtain a superposition of
databases that have a defined point only in the first register. Therefore we can
discard all but the first register, without affecting the adversary’s state. This
shows that G3 and G2 are identical. ��

The compressed Fourier encryption oracle in the random world CFourierOf◦h

is straightforwardly obtained by running the message-independent function f1
on the randomness r, transforming it to the Fourier basis and then composing it
with CFourierOf2◦h. Formally, CFourierOf◦h := (QFTF1UR

f1
) ◦ CFourierOf2◦h. We

then have

Lemma 3. For any adversary A making a single query to StdOf◦h, let B be
the adversary that is identical to A, except it performs the Hadamard trans-
formation H⊗n to the response registers before and after the query. Then
Pr

[AStdOf◦h() = 1
]

= Pr
[BCFourierOf◦h() = 1

]
.

Compressed Standard Encryption Oracles. By applying Hadamard to the
adversary’s response registers before and after the query, and to the oracle’s
register F after the query, we also obtain the compressed standard encryp-
tion oracle CStOf◦h. The oracle’s state after the query is (in superposition
of) |r, x, u, f(u; r)〉. Formally, CStOf◦h := QFTY F ◦ CFourierOf◦h ◦ QFTY . By
applying the same argument as in Lemma 1 to CFourierOf◦h and CStOf◦h, and
combining with Lemma 3, the following lemma follows:

Lemma 4. CStOf◦h and StdOf◦h are perfectly indistinguishable. That is, for
any adversary A, we have that Pr

[AStdOf◦h() = 1
]

= Pr
[ACStOf◦h() = 1

]
.

Many-Query Setting. We denote CStOf◦H as the following oracle: for each
query, CStOf◦H invokes a new instance of CStOf◦h with uniformly and indepen-
dently randomness r. Similarly, StdOf◦H denote the following oracle: for each
query, StdOf◦H samples uniformly and independently a randomness r and a ran-
dom function h, and then answers that query using StdOf◦h. By the standard
hybrid argument, it is easy to verify that:

Lemma 5. CStOf◦H and StdOf◦H are perfectly indistinguishable, in the many-
query setting.

For each i-th query, its oracle’s database is |Di〉 := |xi, ui, f(ui; ri)〉. Over-
all, the oracle’s database D will be a collection of many tuples (x, (x′, y)) where
(x, (x′, y)) ∈ D means f(x′; r) = y and h(x) = x′ for different random functions h.

3.4 A Technical Observation

Notice that from the proof of Lemma 2 above, we implement this compressed
encryption oracle with at least two computations of f2 (and so f) via two appli-
cations of Decomp. However, as we will see in later sections, it is crucial for our

On Security Notions for Encryption in a Quantum World 605

security reductions to simulate CFourierOf◦h with only one computation of f ,
which allows us to “outsource” f computations to other oracles. We now give an
intuition why we can reduce many computations of f to one computation. Let’s
consider the following cases.

– The z2 registers are all-zero. Note that since the initial state of the oracle
database D is also all-zero, applying the first Decomp and then XORing the
adversary’s registers to the oracle’s (i.e., the application of FourierO′) does
not change the database’s state. Finally, the second application of Decomp
brings it back to all-zero state, which can be discarded. At the end of this
step, D is empty. In this case, we see that we can skip FourierO′, and two
applications of Decomp cancel out, leaving us no applications of f .

– The z2 registers are not zero. By a similar argument, we have that the second
application of Decomp has no effects on the joint system, leaving us only one
application of f in the first application of Decomp.

We describe a quantum circuit in Fig. 1, which applies a single computation of f2
(denoted as a unitary Uf2), implementing our compressed encryption oracle in
the random world. Let Test be the unitary defined as Test|0〉|b〉 �→ |0〉|b〉 and
Test|φ〉|b〉 �→ |φ〉|b ⊕ 1〉 for any |φ〉 orthogonal to |0n2〉 and b ∈ {0, 1}. A concrete
computation reveals that this circuit outputs the same quantum state as stated
in Lemma 2.

Fig. 1. A quantum circuit implementing our CFourierOf2◦h oracle. Depending on the
control bit b which is the output of Test, if b = 1, we apply Uf2 , otherwise, we apply
the identity. The bit b will be discarded after the computation.

3.5 How to Answer Decryption Queries?

We now describe how to answer decryption queries in the random world using the
database constructed above. Generally, we will consider any δ-correct encryption
scheme (see Definition in Sect. 2.3).

We will start with a technical lemma, in which the decryption will answer
“naively”, that is if the ciphertext is f(x′; r) for some x′, the decryption oracle is
expected to return x′, even if x′ was the output of a random function. (Roughly
speaking, this decryption oracle mimics a standard decryption oracle with no
restrictions on the adversary.) We call this decryption oracle the naive decryption
oracle.

606 C. Chevalier et al.

In the following, we abuse the notation and denote f−1 as the decryp-
tion algorithm. We then give the adversary access to a new oracle denoted
CInvOf−1 (this is our naive decryption oracle) which acts on the database, instead
of StdOf−1 . Given access to CInvOf−1 , the bound on the distinguishing proba-
bility of the adversary when interacting with the compressed oracle CStOf◦H is
stated in Lemma 6.

We define a classical procedure FindImage′ which takes as input a ciphertext
y ∈ Y, and a database D. Then, it looks for a tuple (x, (x′, y)) ∈ D. If found, it
outputs (b = 1, w = x′), otherwise, it outputs (b = 0, w = 0). Notice that there
may be many tuples with the same y in D, but since an encryption scheme must
be injective (for decryption to work), these pairs must have the same x′.

We define the unitary operation CInvOf−1 for the inverse queries which maps
the basis state |y, z〉 ⊗ |D〉 to:

{
Uf−1 |y, z〉 ⊗ |D〉 = |y, z ⊕ f−1(y)〉 ⊗ |D〉 if FindImage′(y,D) = (0, 0),
|y, z ⊕ w〉 ⊗ |D〉 if FindImage′(y,D) = (1, w).

This unitary is implemented by a single call to f−1, controlled by the output
bit b of FindImage′ recorded in some ancilla registers3.

Lemma 6. For any (unbounded) oracle algorithm A, and any δ-correct encryp-
tion scheme:

∣
∣
∣Pr

[
AStdOf◦H ,StdOf−1 () = 1

]
− Pr

[
ACStOf◦H ,CInvOf−1 () = 1

]∣
∣
∣ ≤ O(qi · δ) ,

where qi is the number of inverse queries.

Proof. We prove this lemma through a sequence of games.
Game G0: This is the game where A interacts with the standard oracles StdOf◦H

and StdOf−1 .
Game G1: This is identical to G0, except that now the oracle StdOf◦H is simu-
lated using the compressed oracle CStOf◦H . Notice that StdOf−1 operation does
not touch the database registers, thus it commutes with any CStOf◦h opera-
tion. Since CStOf◦H is equivalent to the standard oracle StdOf◦H , A cannot
distinguish G1 and G0.
Game G2: This is identical to G1, except that now the oracle StdOf−1 is replaced
by the oracle CInvOf−1 .

Let |Ψ〉 be the joint system state of the adversary and the oracle before
making any inverse query. Denote Δ = StdOf−1 − CInvOf−1 . For each query
|y, z〉 to the inverse oracle, we consider the registers y, z,D. We now examine
three cases.

(a) Let D be such that y /∈ D, that is, FindImage(y,D) = (0, 0). Let P1 be
the projection onto the registers y,D such that y /∈ D. In this case, the
inverse oracle in both games applies the unitary mapping |y, z〉 ⊗ |D〉 �→
|y, z ⊕ f−1(y)〉 ⊗ |D〉. Thus, ΔP1|Ψ〉 = 0.

3 The oracle first computes FindImage′, records the output in some ancilla register,
performs the CNOT operation controlled on the output and finally un-compute
FindImage′.

On Security Notions for Encryption in a Quantum World 607

(b) Let D be such that y ∈ D, that is, FindImage(y,D) = (1, w). Let P2 be the
projection onto the registers y,D such that y ∈ D and f−1(y) = w. In this
case, we also have ΔP2|Ψ〉 = 0.

(c) Let D be such that y ∈ D. Let P3 be the projection onto the registers
y,D such that y ∈ D but f−1(y) = w. Thus ‖P3|Ψ〉‖2 is the probability
of measuring y,D and get y ∈ D such that f−1(y = f(x)) = x for some
pre-image x of y. In this case, we have ‖ΔP3|Ψ〉‖2 ≤ δ, by the definition
that the encryption scheme is δ-correct.

Notice that P1+P2+P3 = I. Therefore, we have ‖Δ|Ψ〉‖2 =
∥
∥
∥
∑3

i=1 ΔPi|Ψ〉
∥
∥
∥
2 (∗)

≤
∑3

i=1 ‖ΔPi|Ψ〉‖2 ≤ δ, where (∗) uses triangle inequality. Then the same holds
true for any mixed state since any mixed state is in the convex hull of pure
states. If A makes at most qi inverse queries, the trace distance of the mixed
state of the adversary in games G2 and G1 is at most O(qi · δ). This completes
the proof. ��

Now we describe our actual decryption oracle in the random world. Instead
of using FindImage′ which returns (1, x′), we use an identical FindImage except
that it returns (b = 1, w = x) when (x, (x′, y)) ∈ D. The oracle CInvOf−1 is
redefined using FindImage as follows. It maps the basis state |y, z〉 ⊗ |D〉 to:

{
Uf−1 |y, z〉 ⊗ |D〉 = |y, z ⊕ f−1(y)〉 ⊗ |D〉 if FindImage(y,D) = (0, 0),
|y, z ⊕ w〉 ⊗ |D〉 if FindImage(y,D) = (1, w).

3.6 Notation

From now on to the rest of the paper, we will use the following notation:

– O to denote the standard encryption and decryption oracles StdO (which
are distinguished by subscript, e.g., OSymEnc for encryption and OSymDec for
decryption) in the real world.

– R to denote the compressed encryption and decryption oracles (which are dis-
tinguished by subscript, e.g., RSymEnc for encryption and RSymDec for decryp-
tion) in the random world. In particular, the encryption one will be imple-
mented using CStO, and the decryption one using CInvO.

4 Quantum-Secure Symmetric Encryption

4.1 Definitions of Security

In this section, we use the compressed oracle technique defined above to define
quantum real-or-random indistinguishability security notions.

High-Level View. During the learning phases, A has access to the encryption
standard oracle OSymEnck . In the CCA case, it also has access to OSymDeck in
the first learning phase. We describe informally how we handle the challenge

608 C. Chevalier et al.

phase and the decryption queries in the second learning phase. The goal is to
mimic the (purely) classical CCA security game in which: A gives a challenge
plaintext and receives either encryption of it or encryption of a random message;
during the second learning phase, if A makes a decryption query on the challenge
ciphertext, it is given back the challenge plaintext in both games.

In the real-world (b = 1), the adversary has no restrictions on the use of the
decryption oracle (in particular, A can freely decrypt the challenge ciphertext –
getting back the challenge plaintext, as in the classical case), so that the encryp-
tion oracle is simply implemented as the standard encryption oracle OSymEnck
and the decryption oracle as the standard decryption oracle OSymDeck .

In the random-world (b = 0), the challenger implements the challenge encryp-
tion oracle using a compressed encryption oracle RSymEnck , and the decryption
oracle in the second phase RSymDeck as described in Sect. 3.5. As in the real-world,
this decryption oracle always returns the original plaintext (x) if the query is a
challenge one, using the database. Otherwise, it just decrypts normally.

Definitions. Formally, denote A = (A1,A2). In both games, A1 outputs an
internal state |Φ〉 after the first phase (i.e., the first learning phase), which will
be given to A2 in the second phase (including the challenge and the second
learning phase). We define a “real-or-random” oracle RR allowing A2 to make
quantum challenge queries. For learning queries, A2 has access to OSymEnck and
potentially a decryption oracle DEC defined as follows.

RR(b) =

{
OSymEnck if b = 1,

RSymEnck if b = 0,
DEC(b) =

{
OSymDeck if b = 1,

RSymDeck if b = 0.

Definition 2 (Indistinguishability notions for symmetric encryption
(qIND-qCPA, qIND-qCCA1, qIND-qCCA2)).
Let SE = (K,SymEnc,SymDec) be a symmetric encryption scheme and let
A = (A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define
the following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
SE (λ,A):

1 : k
$← K

2 : |Φ〉 ← AOSymEnck
,O1

1 (λ)

3 : b′ ← ARR(b),OSymEnck
,O2

2 (|Φ〉)
4 : return b′

qatk

qcpa

qcca1

qcca2

Oracle O1

∅

OSymDeck

OSymDeck

Oracle O2

∅

∅

DEC(b)

We define A’s advantage by

Advqind-qatk
A,SE (λ) :=

∣
∣
∣Pr

[

Exptqind-qatk−1
SE (λ, A) = 1

]

− Pr
[

Exptqind-qatk−0
SE (λ, A) = 1

]∣
∣
∣ .

We say SE is secure in the sense of qIND-qatk if A being QPT implies that
Advqind-qatk

A,SE (λ) is negligible.

On Security Notions for Encryption in a Quantum World 609

Comparison with Boneh-Zhandry’s Notions. To justify our notions, in
the full version of the paper [8], we show that when restricting our definitions
to classical challenge queries, they are equivalent to Boneh-Zhandry’s notions
(IND-qatk). If we denote our restricted notions by IND-qatk′, a scheme SE is
IND-qatk′ secure iff it is IND-qatk secure.

Furthermore, we also show that upgrading from classical challenge queries
to quantum challenge queries gives the adversary more power. In particular, we
show that the IND-qCCA2 secure symmetric encryption scheme given by Boneh
and Zhandry [6] is insecure once the adversary can make even a single quan-
tum challenge query in the sense of chosen plaintext security (qIND-qCPA). Our
attack can be considered as an impossibility to achieve quantum indistinguisha-
bility for encryption schemes which follow the stream cipher-like paradigm (such
as stream ciphers, block cipher modes of operation including CFB, OFB, CTR,
or even some most widely used modes like GCM for authenticated encryptions).

Single-Message versus Many-Message Security. We have presented defini-
tions which allow the adversary to make q(λ)-many challenge queries to the real-
or-random oracle. A scheme satisfying the definitions in the case when q(λ) = 1 is
said to be single-message secure. The question of whether single-message security
implies many-message security is the question of composability of the definitions,
which is answered affirmatively below.

Theorem 1. A symmetric encryption scheme SE is many-message qIND-qatk
secure iff it is single-message qIND-qatk secure.

The proof follows the classical hybrid argument; we give it in the full version
of our paper [8].

4.2 Feasibility of Quantum CCA2 Security

The classical Encrypt-then-MAC paradigm [3] shows that an IND-CPA secure
symmetric encryption scheme can be made IND-CCA2 secure if combined with
an EUF-CMA MAC scheme. However, it is not obvious how to prove security
in the quantum setting, as the reduction algorithm has no way to tell which
ciphertexts the adversary received as the result of an encryption query in the
learning phases, and no way to decrypt the ciphertexts if it has received them.
To remedy these problems, we choose a specific type of MAC scheme in the
construction (that is, any quantum-secure PRF) and leave the general security
proof as an open question. The encryption scheme can be instantiated with any
qIND-qCPA encryption scheme. In the proof, we simulate the MAC with random
oracle and use Zhandry’s compressed oracles technique to efficiently check if the
adversary has seen a particular ciphertext as a result of an encryption query,
and to decrypt in this case. Due to space limitations, the proof of Theorem2 is
given in the full version of our paper [8].

Construction 1. Let SE = (KSE ,SymEnc,SymDec) be a symmetric encryp-
tion scheme and qPRF = {qPRFk}k∈N be a family of quantum-secure pseudoran-
dom functions. A composition of base schemes SE and qPRF is the symmetric

610 C. Chevalier et al.

encryption scheme SE ′ = (K′,SymEnc′,SymDec′) whose constituent algorithms
are defined as follows.

K′(λ) :

1 : k1
$← KSE()

2 : k2
$← {0, 1}λ

3 : return k1 ‖ k2

SymEnc′
k1‖k2(x) :

1 : c ← SymEnck1(x)

2 : τ ← qPRFk2(c‖x)

3 : return c ‖ τ

SymDec′
k1‖k2(c ‖ τ) :

1 : x ← SymDeck1(c)

2 : if qPRFk2
(c‖x) �= τ then

3 : return ⊥
4 : return x

Theorem 2. Let SE be an qIND-qCPA secure symmetric encryption scheme. Let
qPRF be a family of quantum-secure pseudorandom functions. Then the encryp-
tion scheme SE ′ defined in Construction 1 is qIND-qCCA2 secure.

Remark 3. As shown in [22], quantum-secure PRFs can be constructed from
quantum-secure one-way functions. In addition, [7,11] shows how to construct
qIND-qCPA secure encryption schemes from quantum-secure pseudorandom per-
mutations.

5 Quantum-Secure Public-Key Encryption

5.1 Definitions of Security

Indistinguishability Security. The indistinguishability notions can be defined
analogously to the ones given in Sect. 4. We define a real-or-random oracle allow-
ing quantum queries and the decryption oracle in the second learning phase as
follows.

RR(b) =

{
OEncpk if b = 1,

REncpk if b = 0,
DEC(b) =

{
ODecsk if b = 1,

RDecsk if b = 0.

Definition 3 (qIND-qCPA, qIND-qCCA1, qIND-qCCA2).
Let E = (KeyGen,Enc,Dec) be a public-key encryption scheme and let A =
(A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define
the following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
E (λ,A):

1 : (pk, sk) ← KeyGen(λ)

2 : |Φ〉 ← AO1
1 (pk)

3 : b′ ← ARR(b),O2
2 (|Φ〉)

4 : return b′

qatk

qcpa

qcca1

qcca2

Oracle O1

∅

ODecsk

ODecsk

Oracle O2

∅

∅

DEC(b)

On Security Notions for Encryption in a Quantum World 611

We define A’s advantage by

Advqind-qatk
A,E (λ) :=

∣
∣
∣Pr

[

Exptqind-qatk−1
E (λ, A) = 1

]

− Pr
[

Exptqind-qatk−0
E (λ, A) = 1

]∣
∣
∣ .

We say E is secure in the sense of qIND-qatk if A being QPT implies that
Advqind-qatk

A,E (λ) is negligible.

Similarly as in Sect. 4, our definitions, restricted to classical challenge queries, are
equivalent to Boneh-Zhandry’s notions (IND-qatk). Furthermore, the following
theorem shows that our notions are closed under composition.

Theorem 3. An encryption scheme E is many-message qIND-qatk secure iff
it is single-message qIND-qatk secure.

5.2 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2

We present a compiler transforming IND-qatk security to qIND-qatk security.
Our compiler follows the classical hybrid encryption paradigm. The message is
encrypted under a random symmetric key each time, and the key is encrypted
by the public-key encryption scheme. Since the same randomness is used for
each query in superposition, we can use the same random symmetric key in
superposition each time. This means that the adversary never has quantum
access to the encryption algorithm of the public-key scheme, only the symmetric
encryption needs to be secure against quantum queries, which we know how to
construct from one-way functions (Theorem 2).

Construction 2. Let E = (KeyGen,Enc,Dec) be a public-key encryption scheme
which is IND-qatk secure and δ-correct. Let SE = (SymEnc,SymDec) be a one-
time qIND-qatk secure symmetric-key encryption scheme. We construct a new
public-key encryption scheme E ′ = (KeyGen′,Enc′,Dec′) as follows.

KeyGen′(λ) :

1 : (pk, sk)
$← KeyGen (λ)

2 : return (pk, sk)

Enc′
pk(x) :

1 : k
$← K()

2 : c1 ← Encpk(k)

3 : c2 ← SymEnck(x)

4 : return c1‖c2

Dec′
sk(c1‖c2) :

1 : k ← Decsk(c1)

2 : x ← SymDeck(c2)

3 : return x

Remark 4. In this construction, we make no extra assumptions. We know
that the existence of IND-qatk secure encryption implies the existence of
quantum-secure one-way functions. IND-qatk secure public-key encryption can
be constructed based on quantum-resistant assumptions (e.g., Learning With
Errors) [6].

612 C. Chevalier et al.

Theorem 4. The encryption scheme E ′ defined in Construction 2 is
qIND-qCCA2 secure, if E is IND-qCCA2 secure, and SE is one-time qIND-qCCA2
secure. In particular, for any QPT adversary A, there exist QPT adversaries B, C
such that

Advqind-qcca2
A,E′ (λ) ≤ O(qd · δ) + 2 · Advind-qcca2

B,E (λ) + Advqind-qcca2
C,SE (λ),

where qd is the number of decryption queries in the second phase.

Acknowledgments. This work was supported in part by the French ANR project
CryptiQ (ANR-18-CE39-0015) and the French Programme d’Investissement d’Avenir
under national project RISQ P141580. The authors want to thank Damien Vergnaud,
David Pointcheval and Christian Majenz for fruitful discussions, as well as the anony-
mous reviewers for useful comments.

References

1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message
authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45727-3 27

2. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of
the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.)
PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29360-8 4

3. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

5. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 35

6. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

7. Carstens, T.V., Ebrahimi, E., Tabia, G.N., Unruh, D.: Relationships between quan-
tum IND-CPA notions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol.
13042, pp. 240–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90459-3 9

8. Chevalier, C., Ebrahimi, E., Vu, Q.-H.: On security notions for encryption in a
quantum world. Cryptology ePrint Archive, Report 2020/237 (2020)

9. Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and
game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive,
Report 2019/428 (2019)

https://doi.org/10.1007/978-3-030-45727-3_27
https://doi.org/10.1007/978-3-030-45727-3_27
https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-90459-3_9
https://doi.org/10.1007/978-3-030-90459-3_9

On Security Notions for Encryption in a Quantum World 613

10. Damg̊ard, I., Funder, J., Nielsen, J.B., Salvail, L.: Superposition attacks on cryp-
tographic protocols. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 142–161.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04268-8 9

11. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3 3

12. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, pp. 212–219. ACM Press, May 1996

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

15. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

16. Kashefi, E., Kent, A., Vedral, V., Banaszek, K.: Comparison of quantum oracles.
Phys. Rev. A 65(5), 050304 (2002)

17. Mossayebi, S., Schack, R.: Concrete security against adversaries with quan-
tum superposition access to encryption and decryption oracles. arXiv preprint
arXiv:1609.03780 (2016)

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, Cambridge
(2011)

19. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th
ACM STOC, pp. 187–196. ACM Press, May 2008

20. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

21. Simon, D.R.: On the power of quantum computation. In: 35th FOCS, pp. 116–123.
IEEE Computer Society Press, November 1994

22. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687. IEEE Computer Society Press, October 2012

23. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.1007/978-3-319-04268-8_9
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-662-53008-5_8
http://arxiv.org/abs/1609.03780
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Post Quantum Cryptography

A One-Time Single-bit Fault Leaks All
Previous NTRU-HRSS Session Keys

to a Chosen-Ciphertext Attack

Daniel J. Bernstein1,2(B)

1 Department of Computer Science, University of Illinois at Chicago, Chicago, USA
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany

djb@cr.yp.to

Abstract. This paper presents an efficient attack that, in the standard
IND-CCA2 attack model plus a one-time single-bit fault, recovers the
NTRU-HRSS session key. This type of fault is expected to occur for
many users through natural DRAM bit flips. In a multi-target IND-
CCA2 attack model plus a one-time single-bit fault, the attack recovers
every NTRU-HRSS session key that was encapsulated to the targeted
public key before the fault. Software carrying out the full multi-target
attack, using a simulated fault, is provided for verification. This paper
also explains how a change in NTRU-HRSS in 2019 enabled this attack.

Keywords: Chosen-ciphertext attacks · Natural faults · Implicit
rejection

1 Introduction

In 2016, the call for submissions for the NIST Post-Quantum Cryptography
Standardization Project [78] said that NIST intends to standardize “one or more
schemes that enable existentially unforgeable digital signatures with respect to
an adaptive chosen message attack” and “one or more schemes that enable
‘semantically secure’ encryption or key encapsulation with respect to adaptive
chosen ciphertext attack”—in other words, signature systems providing EUF-
CMA security, and PKEs or KEMs providing IND-CCA2 security.

The EUF-CMA game allows the attacker to call an oracle that signs arbitrary
messages; the only restriction is that the attacker does not win the game if

This work was funded by the Intel Crypto Frontiers Research Center; by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Excel-
lence Strategy of the German Federal and State Governments—EXC 2092 CASA—
390781972 “Cyber Security in the Age of Large-Scale Adversaries”; by the U.S. National
Science Foundation under grant 1913167; by the Taiwan’s Executive Yuan Data Safety
and Talent Cultivation Project (AS-KPQ-109-DSTCP); and by the Cisco Univer-
sity Research Program. “Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation” (or other funding agencies). Permanent ID
of this document: 662cf4ad8f5bff33ae4d71d56051a656d8a62e48. Date: 2022.10.24.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 617–643, 2022.
https://doi.org/10.1007/978-3-031-22912-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_27

618 Daniel J. Bernstein

the attacker’s forged message was specifically provided as input to the oracle.
Similarly, the IND-CCA2 game for KEMs allows the attacker to call an oracle
that decapsulates arbitrary messages, although the attacker does not win the
game if the oracle was used specifically to decapsulate the target message.

An application providing such powerful oracles is thoroughly flawed and
should not be used. But applications do sign and decapsulate some mes-
sages, providing some of the same information. Aiming merely for security in
the absence of such oracles would then be a disaster, as illustrated by Ble-
ichenbacher’s million-message attack [24], which was demonstrated against real
HTTPS servers and played an important role in ensuring attention to chosen-
ciphertext attacks. See also [25] demonstrating continued exploitability of essen-
tially the same attack against some servers two decades later.

Sometimes the literature suggests that it suffices to aim for security against
the oracles provided by applications.1 But this would be an evaluation night-
mare. One would have to check all the different ways that applications handle
signatures and decapsulations, consider how this can change in the future, and
then evaluate whether a cryptographic system is secure in all of these contexts.
So the community asks for EUF-CMA signature systems and for IND-CCA2
KEMs, rather than for something weaker.2

The literature often presents a simpler justification for stronger security mod-
els: namely, the blanket statement that it is always better (e.g., “more conser-
vative”) to ask for security in stronger models.3 This blanket statement goes far
beyond saying that it is better to ask for IND-CCA2 than for IND-CPA: it also
implies that any proposal to replace IND-CCA2 with stronger model M1 should
be accepted, and then any proposal to replace M1 with a stronger model M2

should be accepted, and so on. This is its own form of evaluation nightmare.
The critical question to ask is how to manage the risk of real-world security

failures so as to best protect real users from attack. The answer cannot be to
devote more and more security-analysis resources to more and more obscure
risks: time taken chasing a neverending series of academic targets is time taken
away from ensuring more important security properties. This does not imply,
however, that the right answer is to stop with EUF-CMA and IND-CCA2.

1 See, e.g., [77]: “We conclude that the CNS attack is a concern for the ISO 9796-2
signature scheme with partial message recovery in environments where the attacker
is capable of obtaining the signatures of a significant number (e.g., one million) of
chosen messages. In environments where the attacker is not capable of obtaining
these signatures, the CNS attack is not a concern.”.

2 Exception: In the context of protocols that use the cryptosystem key just once, such
as the SIGMA approach to secure sessions, the literature often encourages targeting
merely IND-CPA. See [60] for a recent example. On the other hand, it is a mistake
from a systems-security perspective to give users (1) a cryptosystem designed for
IND-CCA2 and (2) a non-IND-CCA2 cryptosystem designed merely for IND-CPA.
As [71] put it: “CPA vs CCA security is a subtle and dangerous distinction, and if
we’re going to invest in a post-quantum primitive, better it not be fragile.”.

3 Occasionally exceptions are made for security notions proven to be unachievable.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 619

1.1. Fragility. Beyond EUF-CMA security and IND-CCA2 security, NIST’s
call for submissions said that “additional security properties . . . would be desir-
able”. Let’s focus on the last item in NIST’s list:

A final desirable, although ill-defined, property is resistance to misuse.
Schemes should ideally not fail catastrophically due to isolated coding
errors, random number generator malfunctions, nonce reuse, keypair reuse
(for ephemeral-only encryption/key establishment) etc.

In 2018, a catastrophic failure was reported in Dilithium because of an iso-
lated coding error in the official Dilithium software. Specifically, the software
generated random values incorrectly, reusing randomness at a place where the
specification instead generated new randomness; [75] announced that this “reuse
of randomness can easily be exploited to recover the secret key”. Evidently
Dilithium fails to provide “resistance to misuse”.

On the other hand, it is difficult to imagine how any scheme could prevent
“isolated coding errors” from causing catastrophic failures,4 never mind all the
other forms of potential “misuse”. Did NIST have some reason to think that
“resistance to misuse” could be achieved?

Perhaps the intent was not to ask the yes-no question of whether one can
construct a misuse scenario, but rather the tricky risk-assessment question of how
likely it is for people to make mistakes that will cause a scheme to fail. It could
be that other cryptographic systems are more failure-prone than Dilithium, and
that the official Dilithium software was simply unlucky.

It is not easy to evaluate such a complicated, open-ended security “property”.
The lack of a clear definition violates the following Katz–Lindell [68] statement:
“One of the key intellectual contributions of modern cryptography has been the
realization that formal definitions of security are essential prerequisites for the
design, usage, or study of any cryptographic primitive or protocol.” It is also easy
to see how an attacker can use this “property” as a tool to attack cryptosystem-
selection processes, promoting weaker cryptosystems by selectively objecting to
stronger cryptosystems.5

4 A standard could insist that implementors take a majority vote of three independent
implementations, but experience shows that there are correlations among errors from
different implementors. Furthermore, a coding error could replace the majority vote
with taking just the result of the first implementation, or an implementor could
“misuse” the scheme by taking just one implementation; either way, a coding error in
that implementation could cause disaster even if other implementations are perfect.

5 In its latest report [2], NIST criticized Classic McEliece for a “misuse scenario” where
“reusing the same error vector when encapsulating for multiple public keys” would
damage security—even though (1) there have been no examples of this scenario occur-
ring for Classic McEliece, (2) the official Classic McEliece software has always used
RNGs correctly, and (3) no encapsulation mechanism is safe against external RNG
failures. Meanwhile none of NIST’s reports criticized Dilithium for the “misuse sce-
nario” of reusing randomness inside a single signature—even though (1) this scenario
occurred in the official Dilithium software, (2) this destroyed the security of that soft-
ware, and (3) the problem was in that software, not in an external RNG.

620 Daniel J. Bernstein

The literature nevertheless provides clear reasons to believe that some cryp-
tographic systems are more failure-prone than others. For example, for ECDH
systems that transmit curve points in affine coordinates (x, y), there are endless
reports (e.g., [21]) of implementations that fail to check whether the incoming
point is on the curve, and that are easily breakable as a result. This attack is
structurally eliminated by ECDH systems that (as in [8] and [9]) choose twist-
secure curves and transmit merely x.

Presumably there are also ways to adjust post-quantum design decisions to
reduce the chance of implementation failures. It is important to keep in mind
here that there is far less evidence available today regarding post-quantum imple-
mentation failures than regarding pre-quantum implementation failures, and the
general difficulty of evaluating implementation security means that claims of
security improvements need to be investigated carefully before they are used for
making decisions. This is not a reason to avoid study of the topic.

1.2. Natural DRAM Faults. In 2009, Schroeder, Pinheiro, and Weber [93]
reported the results of a 2006–2008 study of failure rates in the DRAM in “the
majority of machines in Google’s fleet”. The observed failure rates were “25,000
to 70,000 errors per billion device hours per Mbit”.

Conventional SECDED ECC DRAM encodes 64 bits of logical data in 72 bits
of physical DRAM, using a distance-4 linear error-correcting code.6 “SECDED”
here means “single-error correcting, double-error detecting”, and “ECC” means
“error-correcting code”. In particular, SECDED ECC DRAM corrects any single
bit flip, while reporting the correction to the operating system. Some computer
buyers make sure to buy SECDED ECC DRAM; this is also how the study
from [93] collected data.

However, most computing devices today simply store 64 bits of logical data
in 64 bits of physical DRAM. Any single physical bit flip is then a logical bit flip,
directly corrupting data, with no warning to the user. For example, flipping a
single bit in DRAM can silently convert the ASCII letters “NTRU” to “NTRW”.

Consider a reasonably popular cryptosystem that, worldwide, has a billion
active 256-bit keys stored in DRAM without SECDED. An extrapolation from
the error rates reported in [93] suggests that between 50000 and 140000 of those
keys will have a bit flipped each year.7 This is frequent enough to mandate
investigation of the security consequences.

6 This 12.5% overhead is not the best that can be done. The overhead of a distance-4
error-correcting code, such as an extended Hamming code, drops as the dimension
increases. DRAM today is normally accessed in 512-bit blocks (“lines”), larger than
the 64-bit blocks conventionally used for SECDED. A 512-bit line encoded as 528
bits can be stored as 16 bits on each chip in a 33-chip module, which in principle
should cost just 3.125% more than a 32-chip module; and 523 bits are enough to
encode 512 bits with SECDED, as noted in, e.g., [104].

7 Presumably this is an underestimate of the error rate: one would not expect average
user devices to be as reliable as Google’s air-conditioned, systematically monitored,
frequently replaced servers.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 621

1.3. Contributions of This Paper. This paper shows that, in the IND-CCA2
attack model augmented to include a one-time flip of one bit stored by the legiti-
mate user, NTRU-HRSS is devastatingly insecure: there is an efficient attack that
recovers the NTRU-HRSS session key. In a multi-target IND-CCA2 attack model
similarly augmented to include a one-time single-bit fault, the same attack effi-
ciently recovers all of the NTRU-HRSS session keys that were encapsulated to
the targeted public key before the fault.

Section 4.2 presents the full multi-target attack. For verification, as a sup-
plement to this paper, attack software is provided that carries out the multi-
target attack against the official NTRU-HRSS software, using a simulation of
the required fault. See Sect. 2 for a comparison to previous fault attacks.

Section 4.3 formulates analogous fault attacks against Streamlined NTRU
Prime and Classic McEliece, and explains why both of those attacks are blocked
by plaintext confirmation, a CCA defense already built into the CCA conversions
inside those cryptosystems. (This should not be interpreted as a claim that
Streamlined NTRU Prime and Classic McEliece are immune to all fault attacks.)
See Sect. 3 for a survey of chosen-ciphertext attacks and defenses.

Interestingly, NTRU-HRSS had included the same CCA defense in its orig-
inal design, but then removed the defense on the basis of papers claiming to
have proven that the defense was not necessary. See Sect. 4.4. Those papers were
considering a more limited attack model.

2 Fault Attacks

This section explains how this paper’s fault attack fits into the broader literature
on fault attacks.

A fault is like a software bug or a hardware bug in that it complicates analyses
of computer behavior: it violates the implicit assumption that each computation
is being carried out correctly. As a further complication, a fault is like a physical
side channel in that it comes from physical effects whose boundaries are hard to
formalize and analyze. Even if a system is secure in the absence of faults, the
attacker can hope that the system becomes breakable when faults occur.

2.1. A Generic Fault Attack. If one wants to skip the complications of ana-
lyzing physical effects—or if one believes the blanket statement that it is better
to ask for security in stronger models; see Sect. 1—then one might hypothe-
size that the attacker has the power to induce arbitrary faults in computations.
Under this hypothesis, the following generic fault attack extracts the internal
secrets from any computation whose output is visible to the attacker.

View the computation as an unrolled circuit consisting of NAND gates, and
consider a NAND gate a, b �→ 1 − ab producing output at the end of the com-
putation. If the output is 0 then a = b = 1. Otherwise the attack deduces

622 Daniel J. Bernstein

a, b by re-running the computation with a bit-flip fault on a and then with a
bit-flip fault on b. The attack now knows the inputs to the NAND gate.

The attack then targets the inputs to an earlier NAND gate that produced
a, while using a set-to-1 fault to force b = 1 so that changes in a are visible as
changes in the output 1 − ab. Set-to-1 faults can also be used in place of the
bit-flip faults in the previous paragraph.

The attack proceeds upwards in the same way through each gate to extract
the entire internal state of the computation. The number of runs of the compu-
tation is Θ(n) where n is the circuit size. Each run uses O(d) faults to ensure
that the targeted bit is visible in the output, where d ≤ n is the circuit depth.

Internal checks in the computation, such as verifying signatures before releas-
ing them, do nothing to stop this attack: checks are just like any other computa-
tion in succumbing to faults. Randomizing the computation simply requires the
attacker to apply further faults to zero the randomness. Destroying the device
after 1000 computations requires keeping track of the number of computations;
the attacker can apply faults to zero that number. Destroying the device after one
computation does not need a counter but still requires triggering a self-destruct
mechanism; the attacker can apply faults to clear the trigger.

2.2. Specializing, Optimizing, and Demonstrating the Generic Fault
Attack. A typical fault attack in the literature can be viewed as (1) specializing
the generic attack from Sect. 2.1 to a particular target and (2) optimizing the
specialized attack so that the attacker does not need to induce as many faults.
The resulting attacks vary in how many faults they use and in how precisely
targeted those faults are.

Sometimes fault-attack papers include real-world demonstrations that one can
produce the necessary faults by, e.g., heating a circuit, firing lasers at the circuit,
etc.; see, e.g., [34]. Sometimes faults can be induced by software; see, e.g., [94].

For most attacks, one cannot reasonably expect the requisite faults to occur
naturally. One can try to stop these attacks by cutting off data flow that the
attacker might be able to use to induce faults in the legitimate user’s compu-
tation. This includes keeping the attacker physically away from the device, and
constraining software behavior so as to avoid faults.

2.3. Natural-Fault Attacks. Occasionally a fault attack relies on such a small
number of faults that one can expect naturally occurring physical effects to
produce the requisite faults. Eliminating the attacker’s ability to induce faults
does nothing to stop an attack of this type. The classic example, pointed out by
Boneh, Demillo, and Lipton [27], is as follows.8

8 As a different example of using just one fault, consider the IND-CCA2 game for
KEMs. The attacker is free to send a ciphertext with one bit flipped, and to inspect
the resulting session key; now simply hypothesize that a fault flips the bit back at
the beginning of decapsulation. One reason that this is a less satisfactory example
than [27] is that it requires a specific fault to occur during a narrow window of time,
while a fault in a stored secret key at any moment—something more likely to occur
naturally—opens up the attack of [27].

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 623

The job of an RSA signer is to compute an eth root s of h modulo pq, where
(pq, e) is the public key and h is a hash of the message being signed. This is the
same as computing s = hd mod pq for a suitable decryption exponent d. “RSA-
CRT”, the usual speed-oriented choice of RSA signature algorithm, computes
an eth root sp of h modulo p as hdp mod p where dp = d mod (p − 1), computes
an eth root sq of h modulo q, and combines sp with sq to obtain s.

Now say the signer signs the same message again, but this time there is a
fault in the computation of sp—anything that changes the output; e.g., a bit flip
in dp. The resulting signature S will then be the same as the correct signature s
modulo q but not modulo p, and the attacker can compute q as gcd{S − s, pq}.

A variant by Lenstra [72] is to compute q as gcd{Se − h, pq}. This variant
assumes that the attacker also sees the message m being signed, but avoids the
need for multiple signatures of m, so the attack works with passive observation
of objects that are normally sent in the clear, namely messages and signatures.

One of the countermeasures suggested in [27] is to check signatures before
releasing them. In real-world RSA, the exponent e is chosen to be small, so the
check adds very little to the cost of signing. But typical RSA descriptions do not
include this check, and typical tests of RSA software do not detect the check, so
it is easy to imagine RSA software being deployed without the check.

Sullivan–Sippe–Heninger–Wustrow [96] announced in 2022 that they had
exploited faults to extract “private RSA keys associated with a top-10 Alexa
site” and “browser-trusted wildcard certificates for organizations that used a
popular VPN product”. [96, Section 5.3] found some hosts producing bad sig-
natures for months, suggesting that faults “are persistent: disk corruption or
memory corruption affecting the private key.” Other faults were transient; per-
haps a secret key was copied from disk to DRAM, then a bit flipped in DRAM,
and then the same DRAM was reused for other data, wiping out the flipped
bit. On the other hand, [96] reported unsuccessfully trying some possibilities for
flipped bits. Another hypothesis noted in [96] is “failing hardware”.

2.4. Algorithm Dependence in Natural-Fault Attacks. At the time of
[27], the primary RSA specification was PKCS #1 v1.5, released in 1993. Secret
keys were specified to have the following components (see [66, Section 7.2]): the
public key n; the encryption exponent e; the decryption exponent d; the secret
primes p and q; the integers dp and dq; and the inverse of q modulo p. There are
many ways to double-check these secret keys so as to detect flipped bits: check
whether n matches pq, check whether dp matches d mod (p − 1), check whether
ed is 1 modulo p − 1, etc. With more work one can correct flipped bits (and also
correct any errors that might occur inside the signing computation).

Consequently, the fault attack from [27] was an attack against some
algorithms computing the specified signing function. Stopping the attack
required changing commonly used algorithms (for example, to check signatures
as mentioned above), but did not require a new specification of the signing
function,9 new test vectors, etc.
9 Perhaps the signing function could have been changed to reduce the chance of

problems—see Sect. 1.1—but this is a separate issue.

624 Daniel J. Bernstein

As another example of algorithm dependence in natural-fault attacks, con-
sider the following three versions of the Ed25519 signature system:

• In standard Ed25519 (see [63]), the secret key is a 32-byte string that is hashed
to obtain (1) a secret scalar and (2) another secret that is hashed together
with the message to obtain a nonce. Any bit flip in the stored secret key will
produce completely different hash output, leading to garbage signatures of no
evident value for the attacker.

• In the most commonly used variant of Ed25519, the secret key is 64 bytes:
the same 32-byte string as above, plus a copy of the 32-byte public key. With
the simplest signing algorithm, a fault in these 64 bytes will leak the secret
key. This is an algorithm-dependent attack; a signing algorithm that double-
checks the secret scalar against the public key will detect the fault.

• A more efficient fault-attack countermeasure incorporates another 32 bytes
of randomness into the input to the hash producing the nonce, without the
cost of checking the public key. This variant of Ed25519 was considered in,
e.g., [11] and (as a fault-attack countermeasure) [85, Section 8].

To summarize, the availability of fault attacks is sensitive to details of (1) the
cryptosystem at hand and (2) the algorithms used for that cryptosystem.

2.5. Comparison. Like the attack from [27] against RSA-CRT, this paper’s
attack against NTRU-HRSS works if a single bit is flipped in a stored secret key,
an event that will occur naturally for some users.

Unlike the attack from [27], this paper’s attack has the further feature of
being algorithm-independent: it works against any algorithm that computes
the specified function of the secret key. The NTRU-HRSS secret key does not
contain any data that a decapsulation algorithm can use to detect the fault
exploited in this paper’s attack. This paper’s attack against NTRU-HRSS is
thus a decapsulation-algorithm-independent natural-fault attack.

A disadvantage of this paper’s attack (compared to the attack from [27] with
the improvement of [72]) is that it is active. The attack takes full advantage of
the flexibility of the attack model: for each target ciphertext, the attack sends
some modified versions of the ciphertext before and after the fault occurs, and
sees some information about the resulting session keys. Hopefully the application
does not actually provide so much flexibility to the attacker. On the other hand,
the rationale for asking for IND-CCA2 security (see Sect. 1), rather than inves-
tigating whether IND-CCA2 security is overkill for applications, applies with
equal force when one extends the IND-CCA2 attack model to include a natural
fault. It is interesting that the IND-CCA2 security of NTRU-HRSS is so fragile
in the presence of natural faults.

Another disadvantage of this paper’s attack is that it is recovering only ses-
sion keys, not Alice’s secret key. On the other hand, the reason an attacker wants
to recover Alice’s secret key is to be able to recover all session keys; this attack
recovers all session keys that were communicated before the fault.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 625

2.6. The Cold-Boot Argument Against Error Correction. The litera-
ture on cold-boot DRAM attacks often uses redundancy in stored data to cor-
rect flipped bits; see, e.g., [49, Section 5]. This is occasionally used as an argument
that secret data should be stored in maximally compressed format; see, e.g., [49,
Section 8, “suggested countermeasures”, including “avoiding precomputation”].
The same argument implies that users should not include redundancy in data to
detect and correct errors, and in particular should not use SECDED ECC DRAM;
[49, Section 3.4] says “ECC memory could turn out to help the attacker”.

However, users who avoid SECDED ECC DRAM are exposed to a large
class of hard-to-analyze correctness risks and security risks that they would oth-
erwise have avoided. Meanwhile it is clear that well-executed cold-boot DRAM
attacks rarely encounter errors in the first place (see, e.g., [49, Table 2, “no
errors” entries]) and are thus not stopped by attempts to avoid redundancy.

Encrypting DRAM, using a key stored in better-protected hardware, is a sim-
pler and much more convincing defense to cold-boot DRAM attacks. Encrypting
DRAM is also compatible with SECDED ECC DRAM and other protections
against faults.

3 Chosen-Ciphertext Attacks and Defenses

This section surveys the general structure of chosen-ciphertext attacks against
code-based and lattice-based systems, and of various cryptosystem features that
seem to interfere with these attacks. Beware that the literature often overstates
the extent to which (some of) these features are known to interfere with these
attacks; see Sect. 4.4.

The round-3 versions of NTRU-HRSS, Streamlined NTRU Prime, and Classic
McEliece are used as running examples, abbreviated ntruhrss, sntrup, and
mceliece respectively. Table 3.1 summarizes the features of these cryptosystems.

3.2. Ciphertext Structure. Throughout this section, Bob’s ciphertext has
the form B = bG + d, where G is Alice’s public key and b, d are secrets, in
particular with d chosen to be small. The choice of letters here is as in [12,
Section 8], unifying notation between ECDH, “noisy DH” lattice-based and code-
based systems, and further lattice-based and code-based systems.

The mceliece description uses an optimized ciphertext structure due to
Niederreiter: simply He, where H is the public key and e is small. However,
H internally consists of two parts, an identity matrix and another matrix Q, so
He can be written as e1 + Qe2. This is, modulo transposition and relabeling,
again a ciphertext of the form bG + d.

3.3. Decryption. Alice uses her private key to recover b and d. Let’s assume
at the outset that this recovery process is labeled as a PKE returning plaintext
(b, d).

The original McEliece system [76] instead viewed b as the plaintext—not
required to be small—and d as something chosen randomly in encryption. The
original NTRU system [52] instead viewed d as the plaintext and b as something

626 Daniel J. Bernstein

Table 3.1. Cryptosystem features that seem to (but do not necessarily) interfere
with chosen-ciphertext attacks. The mceliece, sntrup, and ntruhrss columns indi-
cate whether the features appear in Classic McEliece, Streamlined NTRU Prime, and
NTRU-HRSS respectively. All entries are for the round-3 versions of mceliece, sntrup,
and ntruhrss; implicit rejection appeared in sntrup and ntruhrss in 2019, while plain-
text confirmation was removed from ntruhrss in 2019.

feature (see main body for definitions) mceliece sntrup ntruhrss

hashing the plaintext yes yes yes

rigidity yes yes yes

no decryption failures yes yes yes

plaintext confirmation yes yes no

implicit rejection yes yes yes

hashing the ciphertext yes yes no

limited ciphertext space beyond small plaintext no yes no

limited plaintext space beyond small plaintext no no no

no derandomization yes yes yes

chosen randomly in encryption. A 1996 NTRU handout [53, Section 4.2] had
also considered a deterministic PKE with (b, d) as the plaintext—although this
handout was not put online until 2016, after deterministic NTRU PKEs had
already been recommended in, e.g., [10].

Linear algebra easily recovers b from bG (assuming G is public and injective),
but recovering b from a noisy multiple bG+d is conjectured to be hard (for appro-
priate choices of parameters). This conjecture is often described as conjectured
hardness of the “LPN”, “LWE”, “Ring-LPN”, “Ring-LWE”, “Module-LPN”, or
“Module-LWE” problems (again for appropriate choices of parameters), where
the choice of name depends on various details of the algebraic structure contain-
ing G. These problems, in turn, are typically claimed to have been introduced in
various 21st-century papers. However, the original McEliece [76] and NTRU [52,
Section 3] papers had already analyzed the cost of various algorithms for the
cases of LPN and Ring-LWE that matter for those cryptosystems, so it is wrong
to credit those problems to subsequent papers. There is some value in general-
izing the problems (for example, to study other cryptosystems), but credit for
the general problems has to include credit to the cases considered earlier.

The rest of this paper ignores the possibility of recovering (b, d) purely from
(G, bG+d), and instead focuses on the extra power of chosen-ciphertext attacks.

3.4. Exploiting Linearity for Chosen-Ciphertext Attacks. Given the lin-
ear structure of a ciphertextB = bG+d and the definition of IND-CCA2 security,10

the obvious attack sends a modified B′ = B + δ = bG + d + δ for some small
nonzero δ. The attacker hopes that the decryption process successfully returns

10 Beware that there are several slightly different definitions of IND-CCA2 security for
PKEs. See generally [7].

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 627

(b, d + δ), at which point the attacker simply subtracts δ and wins. The attacker
chooses δ to be small because decryption does not work for arbitrarily large d.

For example, a mceliece decoder requires (b, d) to have a specific Hamming
weight. The attacker chooses a random weight-2 vector δ, a vector of the form
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0). There is then a good chance that (b, d + δ) has
the right weight, meaning that decryption returns (b, d + δ). Various features
described below are included in mceliece to stop this attack.

In the same example, the attacker can, more generally, choose B′ = B+βG+δ
where β, δ have total weight 2. To simplify notation, the comments below focus
mainly on B′ = B + δ, but similar comments apply to B′ = B + βG + δ.

3.5. Feature 0: Hashing the Plaintext. As a preliminary step in limiting
the information provided to chosen-ciphertext attacks, let’s switch from a PKE
to a KEM that hashes the plaintext.

Specifically, let’s define encapsulation to choose the input (b, d) randomly
(not necessarily uniformly; other distributions can be more convenient), and let’s
define decapsulation to return a hash H(b, d). The attacker sending B + δ and
receiving H(b, d + δ) has no obvious way to reconstruct or otherwise recognize
H(b, d), unless the hash function H is remarkably weak.

Let’s assume from now on that the goal is to build a KEM that resists chosen-
ciphertext attacks. This was the target for most encryption submissions to the
NIST Post-Quantum Cryptography Standardization Project, and in particular is
the target for ntruhrss, sntrup, and mceliece. Internally, each of these KEMs
is built from a PKE that produces ciphertext bG + d and recovers (b, d), or
something equivalent to (b, d), during decryption.

Generic transformations convert any KEM into various other cryptographic
objects. For example, in the paper [95] that introduced the KEM abstraction
(and specifically KEMs that hash the plaintext), Shoup built a PKE handling
variable-length user messages by using a KEM to encapsulate a session key and
then using symmetric cryptography to encrypt user data under that key.

There are arguments against using KEMs. For example, the literature
explains how to build a variable-length PKE with smaller ciphertexts by encod-
ing some of the user data inside the input to a fixed-length PKE: in particular,
encoding some user data inside (b, d). The usual approach is to take some ran-
domness and some user data, apply an “all-or-nothing transform” (see generally
[91]), and encode the result as (b, d); decryption reverses these steps. However,
the space savings seems less important than the simplification of independently
analyzing a KEM layer. All-or-nothing transforms might still be useful inside
KEM designs; see Sect. 3.14 below.

3.6. Probing the Boundaries of Successful Decryption. Hashing by itself
does not stop chosen-ciphertext attacks. The main issue is that the attacker
sending B + δ does not always receive a hash of (b, d+ δ). Sometimes d+ δ is too
large to be decoded successfully, and then decapsulation returns a failure report
instead of a hash.

628 Daniel J. Bernstein

The pattern of successes and failures is valuable information for the attacker.
For example, consider again the mceliece decoder, which works exactly when
(b, d) has a specific weight. If adding δ = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ F

n
2 to

d preserves weight then exactly one of the two 1 positions must match a position
set in d. Seeing enough such δ quickly reveals all of the positions in d. One can
try to accelerate this by using each failing δ as a statistical indication that both
1 positions are likely to be unset in d, but the attack works quickly in any case.

This attack against the original McEliece system was introduced by Hall,
Goldberg, and Schneier in [50] and by Verheul, Doumen, and van Tilborg in [101]
(which says it was submitted in 1998, before [50] appeared). To be more precise,
this is essentially the attack in [101, Section 4]; the attacks in [50, Section 2] and
[101, Section 3] are variants that assume that the decoder works when d has at
most a specific weight.

As another example, ntruhrss chooses d ∈ Z[x]/(xn − 1) as x − 1 times
a polynomial T with coefficients in {−1, 0, 1}, and checks the same condition
during decapsulation. Adding δ = 2(x−1) changes T to T +2, which works when
the constant coefficient of T is −1 and seems very unlikely to work otherwise;
adding δ = −2(x − 1) works when the constant coefficient of T is 1; adding
δ = 2x(x − 1) works when the next coefficient of T is −1; etc.

3.7. Probing as an Attack Against the Secret Key. Failure patterns have
further consequences for PKEs that are not rigid. Non-rigidity means that the
specified decryption function can successfully decrypt multiple ciphertexts to the
same plaintext.

For example, recall that the original NTRU system has just d as a plaintext,
with b chosen randomly in encryption. A closer look at the system reveals that
decrypting B + βG for small β has a good chance of producing d—there are
multiple ciphertexts that produce the same plaintext—and then the resulting
session key is exactly the legitimate user’s session key, breaking IND-CCA2.

Even worse, the pattern of successes and failures for small β reveals the
secret key. Here the attacker does not need to see any information about the
session keys except for knowing which B + βG succeeded and which failed. This
paper suppresses details of this attack, aside from noting that it is easiest for the
attacker to begin with a known (b, d). Attacks of this type against NTRU were
published by Hoffstein–Silverman [54] and Jaulmes–Joux [62]; variants include
[45], [38], [40], [17], [4], [39], [59], [81], [22], [88], [105], and [89].

An analogous problem occurs for PKEs that have decryption failures, mean-
ing that the specified decryption function will sometimes fail to decrypt a legit-
imate ciphertext to the original plaintext. For example, the original NTRU sys-
tem had a noticeable frequency of decryption failures, and this was exploited
by Howgrave-Graham, Nguyen, Pointcheval, Proos, Silverman, Singer, and
Whyte [56] to recover the secret key.

3.8. Feature 1: Rigidity. The first step in limiting the power of probing is
to choose a rigid PKE, so that multiple ciphertexts cannot produce the same
plaintext. It is easy to convert any deterministic PKE into a rigid PKE by

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 629

modifying decryption to reencrypt the plaintext and to check the result against
the ciphertext. This is the Fujisaki–Okamoto [46] transform in the case of deter-
ministic PKEs.

All of ntruhrss, sntrup, and mceliece are designed as rigid PKEs starting
from deterministic PKEs, although not always with an obvious step of reen-
crypting via the encryption procedure:

• Simple facts about error-correcting codes are used inside mceliece to acceler-
ate the reencryption procedure. The resulting algorithm uses, asymptotically,
an essentially linear number of operations, and avoids storage of the public
key inside the private key.11

• For ntruhrss, the reencryption procedure is optimized to share a multiplica-
tion with the original decryption algorithm.

• For sntrup, the original decryption algorithm automatically avoids the anal-
ogous multiplication (since d is chosen by rounding), and reencryption simply
calls the same procedure as encryption.

What matters for this feature is not whether there is a visible reencryption step,
but whether the resulting PKE is rigid; this is why Table 3.1 lists “rigidity”
rather than “reencryption”.

3.9. Feature 2: No Decryption Failures. The second step in limiting the
power of probing is to choose a PKE where the specified decryption function
always recovers the original plaintext from the corresponding ciphertext. There
are no decryption failures in ntruhrss, sntrup, and mceliece.

Note that “no decryption failures” refers to decryption failures for cipher-
texts obtained from the encryption algorithm. Decryption can still fail for other
ciphertexts created by the attacker.

If a rigid PKE has no decryption failures then it decrypts exactly the cipher-
texts bG + d for a key-independent set of valid plaintexts (b, d). An attacker
replacing B = bG + d with B′ = B + βG + δ will obtain a valid ciphertext if
(b+β, d+δ) is in the same key-independent set, and presumably will not obtain a
valid ciphertext if (b+β, d+δ) is not in this key-independent set. Otherwise some
valid (b′, d′) �= (b+β, d+δ) has B′ = b′G+d′, i.e., (b+β−b′)G+(d+δ−d′) = 0;
but it is supposed to be hard for the attacker to find small nonzero s, t such that
sG + t = 0. Taking large β or large δ seems even less useful.

In short, there is no obvious way for the attacker to find (β, δ) where fail-
ures will provide any information about the secret key. In the absence of such
information, the secret key is protected against the attack of Sect. 3.7.

However, the attacker can still target the legitimate user’s plaintext (b, d) via
the attack from Sect. 3.6. This is addressed in Sect. 3.10.

11 See generally [14, Section 8]. Even better, the usual decoding algorithm inside
mceliece is shown in [14, Section 7] to be rigid even without reencryption. How-
ever, [14, Section 8.4] recommends reencryption for robustness.

630 Daniel J. Bernstein

3.10. Feature 3: Plaintext Confirmation. The third step in limiting the
power of probing is to replace the ciphertext B with (B,H ′(b, d)), where H ′ is
another hash function, and to check H ′(b, d) on decryption. This transformation
was published by Dent [37, Table 4] and is now known as plaintext confirmation.

The point of plaintext confirmation is to prevent the attacker from modifying
a ciphertext for the legitimate user’s secret (b, d) into a ciphertext for (b, d + δ).
The attacker can replace B with B+δ, but has no obvious way to replace H ′(b, d)
with H ′(b, d + δ) without first finding (b, d). If the attacker knew (b, d) then the
attacker could compute the session key H(b, d) without bothering to carry out
a chosen-ciphertext attack. An attacker can still choose (b, d) and modify the
resulting ciphertext to try to attack the secret key, but this is addressed by a
rigid PKE without decryption failures; see Sect. 3.9.

Typically H and H ′ are both chosen as a cryptographic hash function applied
to separate input spaces: H(b, d) = F (1, b, d) and H ′(b, d) = F (2, b, d). An alter-
native is to choose H and H ′ as the left and right halves of the output of a
cryptographic hash function: F (b, d) = (H(b, d),H ′(b, d)). Obviously one must
not select H ′ as H, or as any other function whose outputs reveal the H outputs
on the same inputs; see [6] for examples of attacks against real proposals where
H and H ′ were not adequately separated.

3.11. Feature 4: ImplicitRejection. An alternative to plaintext confirmation
is “implicit rejection”. This means replacing any failure output for a ciphertext
B with a string H(r,B), where r is a random string, part of Alice’s secret key.

The idea is that replacing the failures with random garbage hides the pattern
of successfully modified ciphertexts. The attacker sees H(b, d+δ) in success cases
and H(r,B + δ) in failure cases, and—without knowing (b, d) in advance—has
no way to distinguish these situations.

For comparison, plaintext confirmation stops the attacker’s B +δ from being
a valid ciphertext. These features are compatible: one can use implicit rejection
to hide the pattern of successes, and use plaintext confirmation to limit the
attacker’s ability to create a pattern of successes in the first place.

With implicit rejection, care is required to avoid leaking the pattern of failures
through timing. A typical approach starts with B, computes (b, d) in constant
time along with a bit indicating failure, computes H(r,B), computes H(b, d),
and uses the bit to select either H(r,B) or H(b, d) in constant time.

More generally, one can replace any failure output with R(B), where R is
a secretly keyed function producing output of the same length as the normal
hash outputs H(b, d). Well-studied message-authentication codes are faster than
general-purpose hash functions.

Implicit rejection was introduced by Persichetti [86] in the McEliece context,
and generalized by Hofheinz–Hövelmanns–Kiltz [55].

3.12. Feature 5: Hashing the Ciphertext. Instead of choosing the session
key as H(b, d), one can choose it as H(b, d,B) where B is the ciphertext. If an
attacker-chosen B + δ decrypts to the same (b, d) then the resulting session key
H(b, d,B + δ) will be different from H(b, d,B).

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 631

This extra hash input hides any collisions produced by decryption. For com-
parison, reencryption creates rigidity, preventing any collisions from appearing
in the first place. These features are compatible. Note the analogy to implicit
rejection hiding the pattern of successfully modified ciphertexts while plaintext
confirmation eliminates those ciphertexts.

For implementors, a convenient feature of using H(b, d,B) for a valid session
key and H(r,B) for implicit rejection is that one can easily merge the hash
calls if r has the same length as (b, d). Security analysis is slightly easier if a
valid session key uses H(1, b, d,B) and implicit rejection uses H(0, r, B); this
still allows the same merging.

Hofheinz–Hövelmanns–Kiltz [55] observed that ciphertext hashing changed
what they could prove regarding security. See [19, Appendix A.5] for an example
of a broken cryptosystem that seems to be rescued by ciphertext hashing.

3.13. Feature 6: Limited Ciphertext Space. Another way to reduce the
attacker’s ability to modify ciphertexts is to force legitimate ciphertexts bG + d
to be in a constrained set checked by Alice.

For example, sntrup chooses b randomly, and then rounds each entry of bG
to the nearest multiple of 3 to obtain B = bG+d; each entry of d is −1 or 0 or 1.
The ciphertext format enforces the multiple-of-3 rule, so an attacker’s modified
ciphertexts also have to follow this rule.

An advantage of constraining ciphertexts via the ciphertext format is that
this constraint does not rely on Alice’s decapsulation algorithm. This does not
mean that the constraint is as effective as other defenses. Typically such cipher-
text constraints are presented as a way to reduce the use of randomness and
reduce ciphertext sizes; there is very little cryptanalytic literature considering
the extent to which these constraints interfere with chosen-ciphertext attacks.12

Here is another example of constraining the set of ciphertexts. Recall that
McEliece’s original cryptosystem has ciphertexts bG+d where b is arbitrary and
d is small. To constrain bG+d to a linear subspace V , first choose a small d and
then find, by linear algebra, b for which bG + d ∈ V . It is easy to select V so
that b always exists and is unique, and it is easy to show that these constrained
ciphertexts bG + d are equivalent to Niederreiter’s ciphertexts.

As noted above, Niederreiter’s ciphertexts can also be viewed as having the
form bG+d, where different variables are now labeled as b, d,G, and where (b, d)
is required to be small. One could further constrain bG+d to a limited subspace
by choosing b randomly and then finding a small d for which bG + d is in that
subspace; this means solving a decoding problem for that subspace.

In Table 3.1, “limited ciphertext space beyond small plaintext” means that
bG + d is constrained beyond requiring small (b, d), so mceliece’s use of

12 Given recent misinformation regarding rounding, it seems necessary to emphasize
that the cryptanalytic question here is whether rounding is stronger than adding
random errors: this attack avenue obviously works against random errors, whereas
analysis is required of the extent to which the attack avenue is blocked by rounding.
See also [90], which finds that rounding complicates side-channel-assisted chosen-
ciphertext attacks.

632 Daniel J. Bernstein

Niederreiter’s ciphertexts does not qualify, whereas further constraining bG + d
as in the previous paragraph would qualify.

3.14. Feature 7: Limited Plaintext Space. One last way to reduce the
attacker’s ability to modify ciphertexts is to limit the space of plaintexts (b, d).

In the standard attacks, the attacker is choosing (β, δ) so that the target
plaintext (b, d) has a noticeable chance of (b + β, d + δ) also being a plaintext.
Constraining the plaintext space can reduce this chance to something negligible.

Typically there is a reasonably efficient way to compress (b, d) into an s-bit
string where the number N of choices of (b, d) is not far below 2s. Normally
N , and therefore 2s, is much larger than 2256. A standard way to sample from
a “structureless” set of s-bit strings is as follows: start with a 256-bit string,
zero-pad to s bits, and then apply an all-or-nothing transform.13 One can then
try decompressing the resulting s-bit string to (b, d); if this fails then one can
try again with a new 256-bit string. Unless there is some surprising interaction
between the all-or-nothing transform and the compression mechanism, each try
will succeed with probability approximately N/2s, and one can statistically check
this with experiments.

Alice, upon decrypting a ciphertext to obtain (b, d), compresses (b, d) to s
bits, inverts the all-or-nothing transform, and checks for the zero-padding. Defin-
ing hashes in terms of the 256-bit string instead of (b, d) forces implementations
to invert the all-or-nothing transform, although one still has to worry that imple-
mentations will skip the zero-padding check.

An alternative way to limit the plaintext space is as follows. Take any
algorithm to randomly generate (b, d), and compose it with any cryptographic
random-number generator producing the necessary bits of randomness from a
256-bit seed. This is generally hard to invert, but one can transmit, as part of
the ciphertext, the seed encrypted under a hash of (b, d).

Because of various patent issues that remain unresolved at the time of this
writing,14 I’m currently limiting time spent investigating Kyber [3] and other
cryptosystems in the GAM/LPR family. However, it is interesting to note that
this family relies on the seed approach for another reason, namely “derandom-
ization”. Care is required here regarding security: my paper [13] gives examples
of cryptosystems where derandomization loses about 100 bits of security, and
the impact of derandomization on GAM/LPR systems requires cryptanalysis.
None of ntruhrss, sntrup, and mceliece have this issue. This is reported in
the “no derandomization” line in Table 3.1.

13 Presumably an all-or-nothing transform is overkill here, since most of the structure
in the plaintext (b, d) is not easy to see in ciphertexts bG + d. It would be inter-
esting to identify the relevant security properties of plaintext sets, and to optimize
construction algorithms and recognition algorithms for secure sets.

14 See, e.g., [2, page 18]: “If the agreements are not executed by the end of 2022, NIST
may consider selecting NTRU instead of Kyber.” There are also various relevant
patents that do not seem to be considered in [2], such as CN107566121A.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 633

4 The NTRU-HRSS Attack

This section presents this paper’s attack against ntruhrss, and describes an
accompanying software package attackntrw [16] that successfully carries out
the attack against existing ntruhrss software with a simulated fault.

This section also presents analogous attacks against sntrup and mceliece,
and explains why these attacks are blocked by the plaintext confirmation built
into sntrup and mceliece. This section continues by reviewing how “provable
security” led ntruhrss to remove plaintext confirmation, and concludes by eval-
uating possible countermeasures to protect ntruhrss.

4.1. Attack Model. The model considered here is the standard IND-CCA2
attack model for KEMs, plus a one-time bit flip at a uniform random position
inside Alice’s stored secret key. “One time” means that there is a time at which a
bit flips—and then the bit stays flipped, not magically returning to its previous
value. The attacker can carry out many chosen-ciphertext queries to the original
secret key before the bit flip and to the new secret key after the bit flip.

The attack below requires the bit flip to occur within 256 specific bits inside
Alice’s secret key. This does not occur with probability 1, but it does occur with
noticeable probability, namely 256/z, where the secret key has z bits. In the real
world, one expects a fault in these 256 bits to naturally occur for the fraction
of users described in Sect. 1.2. Note that padding the secret key, increasing z,
would not reduce the number of users affected, although it would reduce 256/z.

It is easy to see that one can achieve security in this model (unlike the more gen-
eral fault-attack models reviewed in Sect. 2) if and only if one can achieve standard
IND-CCA2 security without faults: simply change the secret-key format to include
error correction, for example with a distance-3 Hamming code or a distance-4
extended Hamming code, and apply an error-correcting decoder inside the decap-
sulation algorithm. However, a KEM that lacks this feature in its secret-key format
might be breakable in this model whether or not it is IND-CCA2. The attack below
shows that ntruhrss is breakable in this model.

The attack is actually stated for multi-target IND-CCA2 (plus a one-time
bit flip), but readers not familiar with multi-target IND-CCA2 can freely focus
on the case of a single target ciphertext.

A weaker starting attack model than IND-CCA2 would suffice for this attack.
What the attack needs to see is simply whether specified pairs of session keys
are identical within the attacker-chosen ciphertexts.

4.2. Attack Details. The available ntruhrss software supports one parameter
set, namely ntruhrss701. The following description focuses on ntruhrss701.

Eve sees Alice’s ntruhrss701 public key G and any number of legitimate
ciphertexts B1, B2, These are elements of the ring (Z/8192)[x]/(x701 − 1),
encoded as strings. The attackntrw software uses the official nturhrss701 soft-
ware15 to generate a public key and 10 target ciphertexts.

15 Officially, NTRU-HRSS has three software releases and a development repository.
Software release 1, via PQClean, was eliminated by PQClean in July 2022 [67] since

634 Daniel J. Bernstein

For each j, Eve sends Alice various modified versions (described below) of
the legitimate ciphertext Bj , and observes the resulting session keys, as allowed
by the (multi-target) IND-CCA2 attack model. To ensure that there is no cheat-
ing, the attackntrw software carries out decapsulation via an alice_oracle
function that (1) aborts if the input matches any of B1, B2, . . . and otherwise
(2) calls the official ntruhrss701 software.

A fault then occurs, flipping a bit anywhere inside the implicit-rejection
key from Sect. 3.11, the random string r stored inside the secret key.16 The
attackntrw software simulates such a fault by flipping the next-to-bottom bit
of the last byte of Alice’s secret key; this bit happens to be inside r, and flipping
any other bit inside r would also work.

Eve then sends the same modified ciphertexts to Alice, observes the resulting
session keys, and performs a simple calculation (described below) to extract the
secrets bj , dj inside each ciphertext Bj = bjG + dj . The attackntrw software
performs this calculation and verifies that the session keys computed by the
attack match the session keys obtained from the official ntruhrss701 software.

Eve’s modified versions of Bj have the form Bj+2(x−1)xe and Bj−2(x−1)xe

for 0 ≤ e < 701, so overall there are 1402 modifications of each ciphertext. One
could try to improve this—for example, just 701 modifications would identify
about 1/3 of the coefficients of the relevant secret and limit the other 2/3 to just
two values, presumably enough information to make a lattice attack feasible—
but attackntrw is already very fast with 1402 modifications.

The point of these modifications is that, as noted in Sect. 3.6, dj has the form
(x − 1)Tj where Tj has coefficients in {−1, 0, 1}, and the modified ciphertext
Bj ±2(x−1)xe = bjG+dj ±2(x−1)xe will decrypt successfully17 when Tj ±2xe

has coefficients in {−1, 0, 1}, i.e., when the coefficient of xe in Tj is ∓1, whereas
it cannot be expected to decrypt successfully otherwise.

Without the fault, the pattern of decryption failures would be hidden by
implicit rejection. However, with the fault, a decryption failure is immediately
visible as a ciphertext producing a different session key before and after the fault:
it would be astonishing if changing a bit in r produced a hash collision! Eve sees
these mismatches, reconstructs Tj and thus dj , and follows the relevant steps in

NTRU is “no longer under consideration by NIST”, even though, as noted above, [2]
says “NIST may consider selecting NTRU instead of Kyber”. Software release 2, via
BoringSSL, is of the ntruhrss variant used in the CECPQ2 post-quantum deploy-
ment experiments in Google Chrome; this is “not compatible” with the NTRU-
HRSS specification, although the reported reason for this—a different choice of hash
function—should not matter for this paper. Software release 3, via the SUPER-
COP [18] benchmarking framework, is what attackntrw uses.

16 Faults could also flip other bits of the secret key, or—in a broader model—bits of
code, intermediate bits in computations, etc. This paper is analyzing the impact of
faults in r; again, this should not be interpreted as making security claims regarding
arbitrary fault attacks.

17 Exception: The multi-target IND-CCA2 attack model will also prevent successful
decryption if a modified ciphertext happens to collide with another legitimate cipher-
text. However, such collisions are so rare that they can safely be ignored.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 635

the decapsulation algorithm to reconstruct bj and the corresponding session key,
completely breaking ntruhrss in this attack model.

To recap: ntruhrss relies critically on implicit rejection for (conjecturally)
achieving IND-CCA2, but implicit rejection is fragile, losing security when a
natural fault occurs.

4.3. How Plaintext Confirmation Stops Analogous mceliece and sntrup
Attacks. A valid mceliece ciphertext has the form B = bG+d where (b, d) has a
specific Hamming weight. An analogous chosen-ciphertext attack replaces B with
B +βG+ δ, where (β, δ) is chosen by the attacker to have a good chance of having
the right Hamming weight of (b + β, d + δ), as in Sect. 3.4. The attacker again
detects whether implicit rejection has occurred by checking whether a session key
is the same before and after a fault.

Similarly, a valid sntrup ciphertext has the form bG + d where (b, d) has
coefficients in {−1, 0, 1} and b has a specific Hamming weight. An analogous
chosen-ciphertext attack replaces B with B + βG + δ where (β, δ) are chosen
by the attacker to have a good chance of still having coefficients in {−1, 0, 1} in
(b + β, d + δ) and the right Hamming weight for b + β; e.g., take β = 0 and set
exactly one coefficient in δ to 1 to detect whether that coefficient of d is 1.

However, for both mceliece and sntrup, the ciphertext also includes plain-
text confirmation, another hash of (b, d). As in Sect. 3.10, the attacker has no
way to replace this with a hash of (b+β, d+δ). So all of the modified ciphertexts
are (implicitly) rejected, eliminating the information that the attack needs.

For sntrup, there is an independent reason that the attack does not work
as stated: see Sect. 3.13. However, there could be workarounds for the attacker.
Plaintext confirmation makes much more obvious that the attack fails.

4.4. How Proofs Led ntruhrss to Remove Plaintext Confirmation. The
original version of ntruhrss in 2017 included plaintext confirmation, as did the
ntruhrss submission to round 1 of the NIST competition: see [57, Algorithm 6,
“e2”] and [58, Section 1.10.4, “qrom hash”]. However, the ntruhrss submission
to round 2 of the NIST competition in 2019 removed plaintext confirmation. It
is interesting to look at why.

The reason for original ntruhrss and round-1 ntruhrss to include plaintext
confirmation was not that plaintext confirmation interferes with attacks, but
rather that plaintext confirmation seemed necessary for certain types of proofs.
This distinction became important later.

Saito, Xagawa, and Yamakawa [92] proposed a modification of round-1
ntruhrss, writing in [92, Section 1.2] that “the obtained KEM is CCA secure in
the QROM” under a specific assumption. The modification was designed to be
as simple as possible to support the underlying QROM proof; the proof relied
on implicit rejection but not on plaintext confirmation; consequently, the modi-
fication did not include plaintext confirmation.

The round-2 ntruhrss submission [35, page 24] said that the KEM from [92]
“has a tight security reduction in the ROM and avoids the plaintext-confirmation
hash”, along with having “a tight reduction in the QROM”. The round-2

636 Daniel J. Bernstein

ntruhrss KEM is the KEM from [92] plus some further changes that are not
relevant here. For comparison, previous versions of ntruhrss had appealed to
the QROM proofs from [98], which assumed plaintext confirmation.

To summarize: Why did ntruhrss end up deciding that it was not useful
to spend ciphertext space on plaintext confirmation? Answer: because plaintext
confirmation turned out to be unnecessary for various types of proofs. But this
paper shows that even a one-time single-bit fault is enough to break the proofs!

The practice of eliminating any cryptosystem features not needed for proofs
is common in cryptography—but not universal. The possibility of plaintext con-
firmation stopping attacks not stopped by implicit rejection was noted in [19,
Section 17]: implicit rejection and plaintext confirmation “target different aspects
of attacks”, so it is “difficult to justify a recommendation against the dual-defense
construction”. More broadly, Koblitz wrote the following in [69, page 977]: “Any-
one working in cryptography should think very carefully before dropping a vali-
dation step that had been put in to prevent security problems. Certainly someone
with Krawczyk’s experience and expertise would never have made such a blunder
if he hadn’t been over-confident because of his ‘proof’ of security.” The “proof”
critiqued in [69] was erroneous, but the same danger appears when a correct
proof is in a model too narrow to capture real-world attacks.

4.5. Countermeasures for NTRU-HRSS. Any algorithm computing the
specified ntruhrss decapsulation function will be vulnerable to the same attack.
There is nothing in the secret-key format that the algorithm can use to detect
that r has had a fault: r is simply 256 bits of randomness generated indepen-
dently of the rest of the secret key.18 The fault converts a valid secret key into
another valid secret key.

Consequently, to stop this attack, implementors have to use a cryptosystem
that is not the currently specified ntruhrss cryptosystem. Perhaps the simplest
approach is to switch to another secret-key format that makes bit flips detectable
or even correctable; see, e.g., the generic use of Hamming codes in Sect. 4.1.

Implementors can also replace the specified decapsulation function with a
more complicated stateful function that tries to detect attack patterns and to
limit the exposure of each ciphertext. One approach is to maintain a database of
previously seen values of d and reject nearby values, and similarly for b; but this
could be a serious performance problem if “nearby” is too generous, and could
allow attacks if “nearby” is too strict. An alternative is to maintain a database of
ciphertexts and reject any repeated ciphertexts (modulo any “benign malleabil-
ity” allowed by the cryptosystem), if this is suitable for the application. See [54,
Section 2] for further stateful approaches. All of these approaches complicate the
data flow and raise denial-of-service questions.

More options are available for implementors willing to break interoperabil-
ity with ntruhrss ciphertexts; see Sect. 3. Plaintext confirmation is an obvious

18 For comparison, the specified mceliece secret-key format already includes a 256-bit
seed that can be double-checked against the rest of the secret key. This seed was
specified to allow compression, but implementors can reuse it for double-checks of
whether various faults have occurred.

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 637

choice. Limiting the ciphertext space or plaintext space could help, but this
needs analysis. Hashing the ciphertext does not help: the attack detects failing
ciphertexts by seeing that a fault changes the results for the same ciphertext.

4.6. Whose Responsibility Is Error Correction? Let’s assume that there’s
an objective of changing the secret-key format, specifically encoding the secret key
using a distance-4 extended Hamming code. This fixes natural bit flips anywhere
in the secret key, not just in r, so it is attractive whether or not there is plaintext
confirmation.

There’s still a question of who should encode the secret key. Should the
ntruhrss specification be updated to specify an encoded secret-key format? Or
should applications encode secret keys, and much more data, to protect all of that
data against bit flips? Or should the operating system build error correction into
paging mechanisms, and continually sweep through pages to check for errors?
Or should the hardware apply error correction to all data stored in DRAM?

The attack relies on all of these layers failing to act. Note that the fact that
there are multiple layers that can act gives each layer an excuse not to act,
especially when nobody is responsible for the security of the system as a whole.

One could respond that any layer that can take action should do so: the
ntruhrss designers can specify error correction, so they should; applications
can correct errors, so they should; the operating system can correct errors, so
it should; and the hardware can correct errors, so it should. These layers can
share specifications, and to some extent implementations, of the error-correction
mechanisms. But this nevertheless means added complications at each layer.
Surely a simpler, more easily reviewed system can address the problem at hand,
the same way that twist-security and x-coordinates address the ECDH security
problem mentioned in Sect. 1.1 without the complications of implementations
having to check point validity.

SECDED ECC DRAM handles DRAM bit flips in a way that is measurable
and seems robust. Unfortunately, computer manufacturers appear to have used
the minor costs of SECDED ECC DRAM for market segmentation, in much
the same way that 19th-century railroad companies installed a roof on some
train cars for market segmentation; see generally [80, Section 3]. Perhaps DDR5
“on-die ECC”—which tries to catch DRAM errors, although it does not protect
data in transit to the CPU—will eventually put an end to the non-ECC era, but
non-ECC equipment will continue to be in use for many years.

It is clear that many options require software for error correction. As another
supplement to this paper, I have released a libsecded software library [15] that
encodes arrays in RAM using a distance-4 Hamming code. However, this paper
does not draw conclusions regarding the optimal way forward.

Acknowledgments. This paper is inspired by a series of discussions with Tanja Lange
regarding IND-CCA2 attacks and defenses. In particular, Lange pointed out plaintext
confirmation as a countermeasure to fault attacks.

638 Daniel J. Bernstein

References

1. — (no editor), IEEE international conference on communications, ICC 2017,
IEEE, 2017. See [38]

2. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, Yi-Kai Liu, Status report on the third
round of the NIST Post-Quantum Cryptography Standardization Process (2022).
NISTIR 8413. Cited in §1.1, §3.14, §3.14, §4.2

3. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé,
CRYSTALS-Kyber: Algorithm specifications and supporting documentation
(2020). Cited in §3.14

4. Ciprian Baetu, F. Betül Durak, Löıs Huguenin-Dumittan, Abdullah Talayhan,
Serge Vaudenay, Misuse attacks on post-quantum cryptosystems, in Eurocrypt
2019 [61] (2019), 747–776. Cited in §3.7

5. Mihir Bellare (editor), Advances in cryptology—CRYPTO 2000, LNCS, 1880,
Springer, 2000. See [62]

6. Mihir Bellare, Hannah Davis, Felix Günther, Separate your domains: NIST PQC
KEMs, oracle cloning and read-only indifferentiability , in Eurocrypt 2020 [32]
(2020), 3–32. Cited in §3.10

7. Mihir Bellare, Dennis Hofheinz, Eike Kiltz, Subtleties in the definition of IND-
CCA: when and how should challenge decryption be disallowed? , Journal of
Cryptology 28 (2015), 29–48. Cited in §3.4

8. Daniel J. Bernstein, Re: Current consensus on ECC (2001). Cited in §1.1
9. Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006

[103] (2006), 207–228. Cited in §1.1
10. Daniel J. Bernstein, A subfield-logarithm attack against ideal lattices (2014).

Cited in §3.3
11. Daniel J. Bernstein, How to design an elliptic-curve signature system (2014).

Cited in §2.4
12. Daniel J. Bernstein, Comparing proofs of security for lattice-based encryption

(2019). Second PQC Standardization Conference. Cited in §3.2
13. Daniel J. Bernstein, On the looseness of FO derandomization (2021). Cited in

§3.14
14. Daniel J. Bernstein, Understanding binary-Goppa decoding (2022). Cited in §3.8,

§3.8, §3.8
15. Daniel J. Bernstein, libsecded (software package) (2022). Cited in §4.5
16. Daniel J. Bernstein, attackntrw (software package) (2022). Cited in §4
17. Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange, Lorenz Panny,

HILA5 Pindakaas: On the CCA security of lattice-based encryption with error
correction, in Africacrypt 2018 [64] (2018), 203–216. Cited in §3.7

18. Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking
of Cryptographic Systems (2022). Accessed 25 August 2022. Cited in §4.2

19. Daniel J. Bernstein, Edoardo Persichetti, Towards KEM unification (2018). Cited
in §3.12, §4.4

20. Eli Biham (editor), Fast software encryption, 4th international workshop, FSE
’97, LNCS, 1267, Springer, 1997. See [91]

21. Eli Biham, Lior Neumann, Breaking the Bluetooth pairing—the fixed coordinate
invalid curve attack , in SAC 2019 [84] (2019), 250–273. Cited in §1.1

https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://web.archive.org/web/20211007045636/https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://eprint.iacr.org/2019/525
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2009/418
https://eprint.iacr.org/2009/418
https://groups.google.com/g/sci.crypt/c/mu_paShEU3w/m/m491pYxHbtAJ
https://cr.yp.to/papers.htmlcurve25519
https://blog.cr.yp.to/20140213-ideal.html
https://blog.cr.yp.to/20140323-ecdsa.html
https://cr.yp.to/papers.html#latticeproofs
https://cr.yp.to/papers.html#footloose
https://cr.yp.to/papers.html#goppadecoding
https://pqsrc.cr.yp.to/downloads.html
https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/papers.html#hila5
https://cr.yp.to/papers.html#hila5
https://bench.cr.yp.to
https://bench.cr.yp.to
https://cr.yp.to/papers.html#tightkem
https://www.cs.technion.ac.il/biham/BT/
https://www.cs.technion.ac.il/biham/BT/

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 639

22. Nina Bindel, Douglas Stebila, Shannon Veitch, Improved attacks against key
reuse in learning with errors key exchange, in Latincrypt 2021 [74] (2021),
168–188. Cited in §3.7

23. Mario Blaum, Patrick G. Farrell, Henk C. A. van Tilborg (editors), Informa-
tion, coding and mathematics, Kluwer International Series in Engineering and
Computer Science, 687, Kluwer, 2002. MR 2005a:94003. See [101]

24. Daniel Bleichenbacher, Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1 , in Crypto 1998 [70] (1998), 1–12. Cited in §1

25. Hanno Böck, Juraj Somorovsky, Craig Young, Return of Bleichenbacher’s
oracle threat (ROBOT), in [43] (2018), 817–849. Cited in §1

26. Dan Boneh (editor), Advances in cryptology—CRYPTO 2003, LNCS, 2729,
Springer, 2003. See [56]

27. Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the importance of
checking cryptographic protocols for faults (extended abstract), in Eurocrypt 1997
[47] (1997), 37–51; see also newer version [28]. Cited in §2.3, §2.3, §2.3,
§2.3, §2.4, §2.4, §2.5, §2.5, §2.5

28. Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the importance of
eliminating errors in cryptographic computations, Journal of Cryptology 14
(2001), 101–119; see also older version [27]

29. Joe P. Buhler (editor), Algorithmic number theory, third international
symposium, ANTS-III, LNCS, 1423, Springer, 1998. See [52]

30. Kevin Butler, Kurt Thomas (editors), 31st USENIX Security Symposium,
USENIX Association, 2022. See [96]

31. L. Jean Camp, Stephen Lewis (editors), Economics of information security,
Advances in Information Security, 12, Springer, 2004. See [80]

32. Anne Canteaut, Yuval Ishai (editors), Advances in cryptology—EUROCRYPT
2020, LNCS, 12106, Springer, 2020. See [6]

33. Anne Canteaut, François-Xavier Standaert (editors), Advances in
cryptology—EUROCRYPT 2021, LNCS, 12697, Springer, 2021. See [34]

34. Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu,
Lilian Bossuet, Message-recovery laser fault injection attack on the Classic
McEliece cryptosystem, in [33] (2021), 438–467. Cited in §2.2

35. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost
Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
NTRU: algorithm specifications and supporting documentation (2019). Cited in
§4.4

36. Mauro Conti, Jianying Zhou, Emiliano Casalicchio, Angelo Spognardi (edi-
tors), Applied cryptography and network security—18th international conference,
ACNS 2020, LNCS, 12146, Springer, 2020. See [59]

37. Alexander W. Dent, A designer’s guide to KEMs, in Cirencester 2003 [83] (2003),
133–151. Cited in §3.10

38. Jintai Ding, Saed Alsayigh, R. V. Saraswathy, Scott R. Fluhrer, Xiaodong Lin,
Leakage of signal function with reused keys in RLWE key exchange, in ICC 2017
[1] (2017), 1–6. Cited in §3.7

39. Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, Zheng Zhang, A simple
and efficient key reuse attack on NTRU cryptosystem (2019). Cited in §3.7

40. Jintai Ding, Scott R. Fluhrer, Saraswathy RV, Complete attack on RLWE key
exchange with reused keys, without signal leakage, in ACISP 2018 [97] (2018),
467–486. Cited in §3.7

https://eprint.iacr.org/2020/1288
https://eprint.iacr.org/2020/1288
https://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf
https://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/3-540-69053-0_4.pdf
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/3-540-69053-0_4.pdf
https://crypto.stanford.edu/~dabo/abstracts/faults.html
https://crypto.stanford.edu/~dabo/abstracts/faults.html
https://eprint.iacr.org/2020/900
https://eprint.iacr.org/2020/900
https://ntru.org/f/ntru-20190330.pdf
https://eprint.iacr.org/2002/174
https://eprint.iacr.org/2016/1176
https://eprint.iacr.org/2019/1022
https://eprint.iacr.org/2019/1022
https://eprint.iacr.org/2017/1185
https://eprint.iacr.org/2017/1185

640 Daniel J. Bernstein

41. John R. Douceur, Albert G. Greenberg, Thomas Bonald, Jason Nieh (editors),
Proceedings of the eleventh international joint conference on measurement and
modeling of computer systems, SIGMETRICS/Performance 2009, ACM, 2009.
See [93]

42. Orr Dunkelman, Stefan Dziembowski (editors), Advances in
cryptology—EUROCRYPT 2022, LNCS, 13277, Springer, 2022. See [60]

43. William Enck, Adrienne Porter Felt (editors), 27th USENIX security symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018 , USENIX
Association, 2018. See [25]

44. Wieland Fischer, Naofumi Homma (editors), Cryptographic hardware and
embedded systems—CHES 2017, LNCS, 10529, Springer, 2017. See [57]

45. Scott R. Fluhrer, Cryptanalysis of ring-LWE based key exchange with key share
reuse (2016). Cited in §3.7

46. Eiichiro Fujisaki, Tatsuaki Okamoto, Secure integration of asymmetric and
symmetric encryption schemes, in Crypto 1999 [102] (1999), 537–554. Cited
in §3.8

47. Walter Fumy (editor), Advances in cryptology—EUROCRYPT ’97, LNCS, 1233,
Springer, 1997. See [27]

48. Debin Gao, Qi Li, Xiaohong Guan, Xiaofeng Liao (editors), Information and
communications security-23rd international conference, ICICS 2021, LNCS,
12919, Springer, 2021. See [105]

49. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, Edward W.
Felten, Lest we remember: cold boot attacks on encryption keys, in USENIX
Security 2008 [82] (2008), 45–60. Cited in §2.6, §2.6, §2.6, §2.6

50. Chris Hall, Ian Goldberg, Bruce Schneier, Reaction attacks against several
public-key cryptosystems, in ICICS 1999 [100] (1999), 2–12. Cited in §3.6, §3.6,
§3.6

51. Martin Hirt, Adam D. Smith (editors), Theory of cryptography—14th
international conference, TCC 2016-B, LNCS, 9986, 2016. See [98]

52. Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: a ring-based public
key cryptosystem, in ANTS III [29] (1998), 267–288. Cited in §3.3, §3.3

53. Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: a new high speed
public key cryptosystem (2016). Circulated at Crypto 1996, put online in 2016.
Cited in §3.3

54. Jeffrey Hoffstein, Joseph H. Silverman, Reaction attacks against the NTRU
public key cryptosystem (2000). Cited in §3.7, §4.5

55. Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz, A modular analysis of the
Fujisaki-Okamoto transformation, in TCC 2017-1 [65] (2017), 341–371. Cited in
§3.11, §3.12

56. Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos,
Joseph H. Silverman, Ari Singer, William Whyte, The impact of decryption
failures on the security of NTRU encryption, in Crypto 2003 [26] (2003),
226–246. Cited in §3.7

57. Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe, High-speed
key encapsulation from NTRU , in [44] (2017), 232–252. Cited in §4.4

58. Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe,
NTRU-HRSS-KEM: algorithm specifications and supporting documentation
(2017). Cited in §4.4

https://www.usenix.org/conference/usenixsecurity18
https://www.usenix.org/conference/usenixsecurity18
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/3-540-48405-1_34.pdf
https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/3-540-48405-1_34.pdf
https://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
https://cypherpunks.ca/~iang/pubs/paper-reaction-attacks.pdf
https://cypherpunks.ca/~iang/pubs/paper-reaction-attacks.pdf
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps96.pdf
https://ntru.org/f/hps96.pdf
https://ntru.org/f/tr/tr015v2.pdf
https://ntru.org/f/tr/tr015v2.pdf
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://iacr.org/archive/crypto2003/27290225/27290225.pdf
https://eprint.iacr.org/2017/667
https://eprint.iacr.org/2017/667
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Round-1-Submissions

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 641

59. Löıs Huguenin-Dumittan, Serge Vaudenay, Classical misuse attacks on NIST
round 2 PQC—the power of rank-based schemes, in ACNS 2020 [36] (2020),
208–227. Cited in §3.7

60. Löıs Huguenin-Dumittan, Serge Vaudenay, On IND-qCCA security in the ROM
and its applications: CPA security is sufficient for TLS 1.3 , in Eurocrypt 2022
[42] (2022), 613–642. Cited in §1

61. Yuval Ishai, Vincent Rijmen (editors), Advances in cryptology—EUROCRYPT
2019, LNCS, 11477, Springer, 2019. See [4]

62. Éliane Jaulmes, Antoine Joux, A chosen-ciphertext attack against NTRU , in
Crypto 2000 [5] (2000), 20–35. Cited in §3.7

63. Simon Josefsson, Ilari Liusvaara, Edwards-curve digital signature algorithm
(EdDSA) (2017). Cited in §2.4

64. Antoine Joux, Abderrahmane Nitaj, Tajjeeddine Rachidi (editors), Progress in
cryptology—AFRICACRYPT 2018, LNCS, 10831, Springer, 2018. See [17]

65. Yael Kalai, Leonid Reyzin (editors), Theory of cryptography—15th international
conference, TCC 2017, LNCS, 10677, Springer, 2017. See [55]

66. Burt Kaliski, PKCS #1: RSA encryption version 1.5 (1998). Cited in §2.4
67. Matthias Kannwischer, Remove schemes that are no longer under consideration

by NIST (2022). Cited in §4.2
68. Jonathan Katz, Yehuda Lindell, Introduction to modern cryptography: principles

and protocols, Chapman & Hall/CRC, 2007. Cited in §1.1
69. Neal Koblitz, The uneasy relationship between mathematics and cryptography ,

Notices of the American Mathematical Society 54 (2007), 972–979. Cited in §4.4,
§4.4

70. Hugo Krawczyk (editor), Advances in cryptology—CRYPTO ’98, LNCS, 1462,
Springer, 1998. See [24]

71. Adam Langley, CECPQ2 (2018). Cited in §1
72. Arjen K. Lenstra, Memo on RSA signature generation in the presence of faults

(1996). Cited in §2.3, §2.5
73. Joseph K. Liu, Hui Cui (editors), Information security and privacy—25th

Australasian conference, ACISP 2020, LNCS, 12248, Springer, 2020. See [80]
74. Patrick Longa, Carla Ràfols (editors), Progress in cryptology—LATINCRYPT

2021, LNCS, 12912, Springer, 2021. See [22]
75. Vadim Lyubashevsky, OFFICIAL COMMENT: CRYSTALS-DILITHIUM

(2018). Cited in §1.1
76. Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory

(1978), 114–116. JPL DSN Progress Report. Cited in §3.3, §3.3
77. Alfred Menezes, Evaluation of security level of cryptography: RSA signature

schemes (PKCS#1 v1.5, ANSI X9.31, ISO 9796) (2002). Cited in §1
78. National Institute of Standards and Technology, Submission requirements and

evaluation criteria for the post-quantum cryptography standardization process
(2016). Cited in §1

79. Jesper Buus Nielsen, Vincent Rijmen (editors), Advances in
cryptology—EUROCRYPT 2018, LNCS, 10822, Springer, 2018. See [92]

80. Andrew M. Odlyzko, Privacy, economics, and price discrimination on the
internet , in [31] (2004), 187–211. Cited in §4.5

81. Satoshi Okada, Yuntao Wang, Tsuyoshi Takagi, Improving key mismatch attack
on NewHope with fewer queries, in ACISP 2020 [73] (2020), 505–524. Cited in
§3.7

82. Paul C. van Oorschot (editor), Proceedings of the 17th USENIX security
symposium, USENIX Association, 2008. See [49]

https://eprint.iacr.org/2020/409
https://eprint.iacr.org/2020/409
https://eprint.iacr.org/2021/844
https://eprint.iacr.org/2021/844
https://www.iacr.org/archive/crypto2000/18800021/18800021.pdf
https://datatracker.ietf.org/doc/rfc8032/
https://datatracker.ietf.org/doc/rfc8032/
https://datatracker.ietf.org/doc/html/rfc2313
https://github.com/PQClean/PQClean/commit/b0fc0c098c7930e04931071a46cc7d520a1f8d1b
https://github.com/PQClean/PQClean/commit/b0fc0c098c7930e04931071a46cc7d520a1f8d1b
https://www.cs.umd.edu/~jkatz/imc.html
https://www.cs.umd.edu/~jkatz/imc.html
https://www.ams.org/notices/200708/tx070800972p.pdf
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://infoscience.epfl.ch/record/164524
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://www.cryptrec.go.jp/exreport/cryptrec-ex-1014-2002.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-1014-2002.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://www.dtc.umn.edu/~odlyzko/doc/privacy.economics.pdf
http://www.dtc.umn.edu/~odlyzko/doc/privacy.economics.pdf
https://eprint.iacr.org/2020/585
https://eprint.iacr.org/2020/585

642 Daniel J. Bernstein

83. Kenneth G. Paterson (editor), Cryptography and coding, 9th IMA international
conference, LNCS, 2898, Springer, 2003. See [37]

84. Kenneth G. Paterson, Douglas Stebila (editors), Selected areas in
cryptography—SAC 2019, LNCS, 11959, Springer, 2020. See [21]

85. Trevor Perrin, The XEdDSA and VXEdDSA signature schemes (2016). Cited in
§2.4

86. Edoardo Persichetti, Improving the efficiency of code-based cryptography , Ph.D.
thesis, 2012. Cited in §3.11

87. Bart Preneel (editor), Advances in cryptology—EUROCRYPT 2000, LNCS,
1807, Springer, 2000. See [95]

88. Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, Jintai Ding, A
systematic approach and analysis of key mismatch attacks on lattice-based NIST
candidate KEMs, in Asiacrypt 2021 [99] (2021), 92–121. Cited in §3.7

89. Yue Qin, Ruoyu Ding, Chi Cheng, Nina Bindel, Yanbin Pan, Jintai Ding, Light
the signal: optimization of signal leakage attacks against LWE-based key exchange
(2022). Cited in §3.7

90. Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam
Chattopadhyay, Sujoy Sinha Roy, Will you cross the threshold for me? Generic
side-channel assisted chosen-ciphertext attacks on NTRU-based KEMs, IACR
Transactions on Cryptographic Hardware and Embedded Systems 2022.1
(2022), 722–761. Cited in §3.13

91. Ronald L. Rivest, All-or-nothing encryption and the package transform, in FSE
1997 [20] (1997), 210–218. Cited in §3.5

92. Tsunekazu Saito, Keita Xagawa, Takashi Yamakawa, Tightly-secure
key-encapsulation mechanism in the quantum random oracle model , in
Eurocrypt 2018 [79] (2018), 520–551. Cited in §4.4, §4.4, §4.4, §4.4

93. Bianca Schroeder, Eduardo Pinheiro, Wolf-Dietrich Weber, DRAM errors in the
wild: a large-scale field study , in [41] (2009), 193–204. Cited in §1.2, §1.2, §1.2

94. Mark Seaborn, Thomas Dullien, Exploiting the DRAM rowhammer bug to gain
kernel privileges (2015). Cited in §2.2

95. Victor Shoup, Using hash functions as a hedge against chosen ciphertext attack ,
in Eurocrypt 2000 [87] (2000), 275–288. Cited in §3.5

96. George Arnold Sullivan, Jackson Sippe, Nadia Heninger, Eric Wustrow, Open to
a fault: On the passive compromise of TLS keys via transient errors, in USENIX
Security 2022 [30] (2022), 233–250. Cited in §2.3, §2.3, §2.3, §2.3

97. Willy Susilo, Guomin Yang (editors), Information security and privacy—23rd
Australasian conference, ACISP 2018, LNCS, 10946, Springer, 2018. See [40]

98. Ehsan Ebrahimi Targhi, Dominique Unruh, Post-quantum security of the
Fujisaki-Okamoto and OAEP transforms, in [51] (2016), 192–216. Cited in §4.4

99. Mehdi Tibouchi, Huaxiong Wang (editors), Advances in
cryptology—ASIACRYPT 2021, LNCS, 13093, Springer, 2021. See [88]

100. Vijay Varadharajan, Yi Mu (editors), Information and communication security,
second international conference, ICICS’99, Springer, 1999. See [50]

101. Eric R. Verheul, Jeroen M. Doumen, Henk C. A. van Tilborg, Sloppy
Alice attacks! Adaptive chosen ciphertext attacks on the McEliece public-key
cryptosystem, in [23] (2002), 99–119. MR 2005b:94041. Cited in §3.6, §3.6, §3.6

102. Michael J. Wiener (editor), Advances in cryptology—CRYPTO ’99, LNCS, 1666,
Springer, 1999. See [46]

103. Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key
cryptography—9th international conference on theory and practice in public-key
cryptography, LNCS, 3958, Springer, 2006. See [9]

https://www.signal.org/docs/specifications/xeddsa/xeddsa.pdf
https://persichetti.webs.com/Thesis%20Final.pdf
https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2021/123
https://eprint.iacr.org/2022/131
https://eprint.iacr.org/2022/131
https://eprint.iacr.org/2021/718
https://eprint.iacr.org/2021/718
https://people.csail.mit.edu/rivest/pubs/Riv97d.pdf
https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2017/1005
https://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf
https://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.iacr.org/archive/eurocrypt2000/1807/18070279-new.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2015/1210
https://research.utwente.nl/en/publications/sloppy-alice-attacks-adaptive-chosen-ciphertext-attacks-on-the-mc
https://research.utwente.nl/en/publications/sloppy-alice-attacks-adaptive-chosen-ciphertext-attacks-on-the-mc
https://research.utwente.nl/en/publications/sloppy-alice-attacks-adaptive-chosen-ciphertext-attacks-on-the-mc

A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys 643

104. Meilin Zhang, Vladimir M. Stojanovic, Paul Ampadu, Reliable ultra-low-voltage
cache design for many-core systems, IEEE Transactions on Circuits and Systems
II: Express Briefs 59 (2012), 858–862. Cited in §1.2

105. Xiaohan Zhang, Chi Cheng, Ruoyu Ding, Small leaks sink a great ship: an
evaluation of key reuse resilience of PQC third round finalist NTRU-HRSS , in
ICICS 2021 [48] (2021), 283–300. Cited in §3.7

https://www.rle.mit.edu/isg/documents/Zhang_TCASII12.pdf
https://www.rle.mit.edu/isg/documents/Zhang_TCASII12.pdf
https://eprint.iacr.org/2021/168
https://eprint.iacr.org/2021/168

An Efficient Key Recovery Attack Against
NTRUReEncrypt from AsiaCCS 2015

Zijian Song1,2, Jun Xu1,2(B), Zhiwei Li1,2, and Dingfeng Ye1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

xujun@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100093, China

Abstract. At AsiaCCS 2015, Nuñez et al. proposed a NTRU-based
proxy re-encryption (PRE) scheme, called NTRUReEncrypt. A complete
PRE scheme permits the sender to encrypt messages to the proxy, and
allows the receiver to decrypt the ciphertexts re-encrypted by the proxy.
At PQCrypto 2019, Liu et al. provided cryptanalysis of the scheme based
on decryption failures and statistical analysis, both of which need huge
amount of ciphertexts. For instance, for ees1171ep1 parameter set, the
number of ciphertexts required are 4.68 ·1017 and 4.83 ·1017 respectively.
In this paper we point out that the security of NTRUReEncrypt would
be impacted by an efficient key recovery attack based on linearization
technique, it can reduce the number of required ciphertexts drastically.
To be specific, two parties sending and receiving messages can recover the
other’s private key by communicating O(N + [N

2
]) times, where N is an

odd prime in the ring R = Z[x]/
(
xN − 1

)
. For specific scheme on param-

eter sets ees1087ep1, ees1171ep1, ees1499ep1, where N equals 1087, 1171
and 1499 respectively, the amount of ciphertexts used in our attack is
only on the order of 103, and our experiments are all completed within
one hour on PC. Moreover, we discuss the NTRUReEncrypt instanti-
ated with the NTRU parameter sets in the third round of NIST-PQC
competition and give the theoretical analysis.

Keywords: NTRUReEncrypt · NTRU · Linearization technique · Key
recovery attack

1 Introduction

In 1998, Blaze, Bleumer and Strauss [3] proposed a new type of public-key cryp-
tographic scheme, namely proxy re-encryption (PRE) scheme. A complete PRE
scheme consists of three parties: the sender Alice, the receiver Bob, and the proxy.
It permits Alice to encrypt messages to the proxy, and allows Bob to decrypt
the ciphertexts re-encrypted by the proxy. Further, in the communication pro-
cess, the proxy only provides the re-encryption operation without knowing any
information about messages. In fact, proxy re-encryption scheme is a variant of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 644–657, 2022.
https://doi.org/10.1007/978-3-031-22912-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_28

An Efficient Key Recovery Attack Against NTRUReEncrypt 645

the traditional public key cryptosystem. Its basic algorithm is the same as that
of public key encryption scheme, except that there are two more steps: gener-
ating proxy re-encryption key and re-encrypting ciphertexts. After a period of
development, many PRE schemes have been constructed, but the vast majority
of these are based on traditional number theoretic problems, such as discrete
logarithm problem [4]. However, these problems suffered the impact after Shor’s
algorithm [14,15] was put forward. Therefore, the attention turned to the field
of post-quantum cryptography, such as lattice-based schemes [1].

At AsiaCCS 2015 [13], Nuñez et al. proposed a NTRU-based proxy re-
encryption (PRE) scheme, called NTRUReEncrypt. It only has one more re-
encryption step, and the rest is the same as NTRU scheme including param-
eter sets. In 1996, Hoffstein, Pipher and Silverman proposed a cryptosystem
called NTRU [7], which has the advantages of high efficiency and low memory
usage. Due to these properties, it becomes an indispensable part of post-quantum
cryptography, and has been standardized by IEEE P1363.1 [2]. Recently, it was
also submitted to the third round of NIST-PQC competition, e.g. NTRU-HPS,
NTRU-HRSS [5]. One reason for the efficiency of NTRU is that, some of poly-
nomials in NTRU have small coefficients, which we will call “small" polynomi-
als for ease of description. The brief process of NTRUReEncrypt scheme is as
follows: (1) Alice encrypts the message m as CA = hA ∗ r + m by selecting
a small polynomial r, where Alice’s private key is (fA, gA) and public key is
hA = p ∗ gA ∗ f−1

A . (2) The proxy selects a small polynomial e, encrypts CA sent
by Alice as CB = CA ∗ rkA→B + p ∗ e, where rkA→B = fA ∗ f−1

B mod q is the
re-encrypted key of the proxy and fB is Bob’s private key. (3) Bob decrypts CB

sent by the proxy as (CB ∗ fB mod q) mod p to obtain the message m.
There are many attacks against NTRU, such as decryption failure attack

[8], broadcast attack [6,10]. The method of latter uses the linearization tech-
nique, whose main idea is to generate a linear system by linearizing monomials
into new variables. At PQCrypto 2019 [11], Liu et al. proposed cryptanalysis
of NTRUReEncrypt, whose strategy is based on two points: one is decryption
failure, the other is statistical analysis. Due to the huge amount of data required,
these two attacks are hard to implement in practice. For instance, for ees1171ep1
parameter set, the number of required ciphertexts are 4.68 · 1017 and 4.83 · 1017
respectively.

Our Contribution. We present a key recovery attack based on the linearization
technique against NTRUReEncrypt, where the parameter sets are from those in
AsiaCCS 2015 and PQCrypto 2019. To implement an attack, O(N +

[
N
2

]
) legal

communications are needed to collect ciphertexts CAi
and CBi

, where N is an
odd prime in the ring R = Z[x]/

(
xN − 1

)
. The comparison of PQCrypto 2019

and our work is shown in Table 1.
The technical overview is as follows. First, we focus on the following relation

from the proxy’s re-encryption stage:

CB = CA ∗ rkA→B + p ∗ e mod q.

Here, CA, CB , p, q = 2γ are known, where γ is an integer, and rkA→B , e are
unknown. Our goal is to recover the re-encryption key rkA→B , and then obtain

646 Z. Song et al.

Table 1. Number of ciphertexts needed

ees1087ep1 ees1171ep1 ees1499ep1

PQCrypto 2019 4.06 · 1017 4.83 · 1017 9.67 · 1017
Our work 3.17 · 103 3.58 · 103 4.45 · 103

the private key fA or fB based on rkA→B = fA ∗ f−1
B mod q. For the sake of

efficiency, we first choose to recover rkA→B mod 2 instead of rkA→B mod q. Due
to the special structure of coefficients in the polynomial e, i.e., its coefficients
have certain numbers of +1, −1, and 0. Hence, the inner product of the coefficient
vector of e is fixed. Thus, we can establish a system of linear congruence equations
by using inner product calculation, and then obtain rkA→B mod 2 by using the
linearization technique. According to rkA→B = fA ∗ f−1

B mod q and q is a power
of 2, we get that fB ∗ (rkA→B mod 2) = fA mod 2. Without loss of generality,
suppose that Bob is an attacker, where fB is the private key of Bob. Based on the
above equation, Bob can determine the position of 0 bits of Alice’s private key fA.
Notice that the private key pair (fA, gA) of Alice satisfies hA = p∗gA∗f−1

A mod q,
where hA is the public key. It implies fA ∗ hA = p ∗ gA mod 2. Furthermore, the
attacker Bob can also deduce the position of 0 bits of gA. Finally, combining with
the position of 0 bits about fA and gA, we get a new system of linear congruence
equations derived from fA ∗ hA = p ∗ gA mod q, and compute the remaining bits
of fA and gA using Gaussian elimination. Theoretically, the algorithm overhead
is divided into two main parts: constructing linear equations from the proxy’s
re-encryption stage and solving linear equations. Since we choose to work on F2

rather than Z2048, the cost of the latter is greatly reduced to negligible. This
means that the time required to implement an attack is almost dependent on
constructing a system of equations, which could be completed within one hour
on PC.

Our another contribution is to discuss the NTRUReEncrypt instantiated with
the NTRU parameter sets in the third round of NIST-PQC competition. Unlike
the parameter sets from AsiaCCS 2015 and PQCrypto 2019, the parameter sets
in the third round of NIST-PQC competition, e.g., NTRU-HPS and NTRU-
HRSS [5], no longer determine the certain numbers of +1, −1, 0 in the coefficients
of the secret polynomials. It means that the inner product of e is not fixed.
However, we can still take advantage of another property of ternary polynomials
e. Denote the coefficient vector of e as e, hence each component ei ∈ {−1, 0, 1}
satisfies ei = (ei)3. The remaining operations are the same as the previous
attack, except that the number of communications is increased to O(N2).

Organization. The rest of this paper is organized as follows: In Sect. 2, we
provide some basic preliminaries for the linear form and parameter sets of NTRU.
In Sect. 3, we briefly describe NTRU and NTRUReEncrypt schemes, provide the
specific parameter sets used in this paper. In Sect. 4, we present our attack in
detail and give a comparison with PQCrypto 2019 [11]. In Sect. 5, we discuss the
NTRUReEncrypt instantiated with the NTRU parameter sets in the third round

An Efficient Key Recovery Attack Against NTRUReEncrypt 647

of NIST-PQC competition, and also compare with previous parameter sets used
in Sect. 4. In Sect. 6, we present the experimental results, whose parameter sets
are ees1087ep1, ees1171ep1, ees1499ep1 respectively. In Sect. 7, we conclude the
paper.

2 Preliminaries

In this section, we provide some basic preliminaries of NTRU and NTRUReEn-
crypt scheme. The operations of both schemes are defined over the quotient
ring R = Zq[x]/

(
xN − 1

)
, where N is an odd prime. Other parameters p, q are

integers, where p is much smaller than q and gcd(p, q) = 1.
The polynomials are selected from four subset of R, denote as Lf =

T(df ,df −1), Lg = T(dg,dg), Lr = T(dr,dr),

Lm =
{

m ∈ R : every coefficient of m lies between − p − 1
2

and
p − 1
2

}
.

In addition, elements in Lf , Lg, Lr are ternary polynomials. We introduce the
definition of ternary polynomial from PQCrypto 2019 [11].

Definition 1. A ternary polynomial T with positive integers d1, d2 is defined
as:

T(d1,d2) =
{

trinary polynomials of R with d1 entries
equal to 1 and d2 entries equal to − 1

}
.

2.1 Vector and Matrix Forms of NTRU

A polynomial f ∈ R in NTRU can be presented as f =
∑N−1

i=0 fix
i. Its vector

form can be presented as f = (f0, f1, · · · , fN−1)
T

. The polynomial f can be
written in the form of a circular matrix F in Z

N×N
q :

F =

⎛

⎜
⎜
⎜
⎝

f0 fN−1 . . . f1
f1 f0 . . . f2
...

...
. . .

...
fN−1 fN−2 . . . f0

⎞

⎟
⎟
⎟
⎠

Further, the matrix form of multiplication of two polynomials f, g ∈ R can be
presented as: ⎛

⎜
⎜
⎜
⎝

f0 fN−1 · · · f1
f1 f0 · · · f2
...

...
. . .

...
fN−1 fN−2 · · · f0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

g0
g1
...

gN−1

⎞

⎟
⎟
⎟
⎠

.

As needed, there are the following fundamental lemmas [9]:

648 Z. Song et al.

Lemma 1. If H ∈ Z
N×N
q is a circular matrix over Z

N×N
q , then HT is also a

circular matrix over Z
N×N
q .

Lemma 2. If G,H ∈ Z
N×N
q are circular matrices, then GH is also a circular

matrix. In particular, HTH is a symmetric circular matrix.

3 NTRU and Its Proxy Re-encryption Scheme

In this section, we overview the NTRU and NTRU-based proxy re-encryption
scheme, called NTRUReEncrypt. Parameters sets are shown in the following
table, related to version 3.3 of the EESS#1 specification [2], from IEEE P1363.1
standard. For ees1087ep1, ees1171ep1, ees1499ep1, the private keys are f, g
selected from Lf = T(df ,df −1) and Lg = T(dg,dg) respectively, the set of small
polynomials is Lr = T(dr,dr), where small means that the coefficients of the
polynomials are small.

Table 2. Instance of polynomial sets

Instance N p q dg df = dr

ees1087ep1 1087 3 2048 362 120
ees1171ep1 1171 3 2048 390 106
ees1499ep1 1499 3 2048 499 79

In practice, some variants of NTRU take the following approach to generating
key f for efficiency: f have the form of 1+ p ∗F with F ∈ T(df ,df), first generate
F ∈ T(df ,df), and then calculate 1 + p ∗ F to obtain f . We would use this form
throughout the rest of the paper.

3.1 NTRU Cryptosystem

The brief description of NTRU cryptosystem is as follows, see [7] for more details.

– Key Generation: Randomly chooses F ∈ T(df ,df), then calculate 1 + p ∗ F
to obtain f , where f has inverse f−1

p , f−1
q in Rp, Rq, then randomly chooses

g ∈ T(dg,dg). Outputs public key pk = h = p ∗ g ∗ f−1
q mod q, private key

sk = (f, g).
– Encryption: To encrypt a plaintext m ∈ Lm, randomly chooses r ∈ Lr.

Outputs ciphertext c = h ∗ r + m mod q.
– Decryption: To decrypt a ciphertext c, receiver uses private key f and com-

putes a = f ∗c mod q such that coefficients of a are all lie between (−q/2, q/2].
Outputs plaintext m = a ∗ f−1

p mod p.

An Efficient Key Recovery Attack Against NTRUReEncrypt 649

Note that f , g, s, m are small, i.e. each of its coefficients is small, then all
coefficients of a = c ∗ f = p ∗ g ∗ s + m ∗ f mod q lie in (−q/2, q/2] with high
probability. Thus, one computes a = c ∗ f mod q turns to a = c ∗ f over Z. Then
can decrypt the message:

a ∗ f−1
p = p ∗ g ∗ s ∗ f−1

p + m ∗ f ∗ f−1
p = m mod p.

3.2 NTRUReEncrypt

NTRUReEncrypt is a NTRU-based proxy re-encryption scheme, all parameter
sets are related to formal NTRU scheme. Its initial key generation and first
encryption stage are consistent with NTRU encryption, at second re-encryption
stage, algorithm selects the same set of polynomials as NTRU. NTRUReEncrypt
has a unique re-encrypt key generation, which ensures that Bob can decrypt the
re-encrypted ciphertext sent from proxy.

The flow of the algorithm is as follows:

– Key Generation: Key generation algorithm is the same as that in NTRU.
Outputs a pair of public and secret keys (pkA, skA) for Alice, where skA =
(fA, gA) and pkA = hA, and Bob also obtains a public-private key pair in the
same way.

– Re-encrypt Key Generation: The algorithm requires two private keys skA

and skB , from sender Alice and receiver Bob respectively. Outputs re-encrypt
key rkA→B = fA ∗ f−1

B mod q. The re-encryption key can be computed by a
simple three-party protocol below:
1. Alice selects t ∈ Rq, sends t ∗ fA mod q to Bob and t to proxy;
2. Bob sends t ∗ fA ∗ f−1

B mod q to proxy;
3. Proxy computes rkA→B = fA ∗ f−1

B mod q.
– Encryption: Alice encrypts a plaintext m ∈ Lm, randomly chooses r ∈ Lr.

Outputs ciphertext CA = hA ∗ r + m mod q.
– Re-encryption: Proxy encrypts a ciphertext CA sent by Alice, randomly

chooses e ∈ Lr. Outputs ciphertext CB = CA ∗ rkA→B + p ∗ e mod q.
– Decryption: Bob decrypts a ciphertext CB , uses private key fB and compute

CB ∗ fB = p ∗ gA ∗ r + m ∗ fA + p ∗ e ∗ fB mod q

such that coefficients of CB ∗ fB are all lie between (−q/2, q/2]. Outputs
plaintext m = CB ∗ fB mod p.

Decryption stage is similar to previous NTRU decryption, see [13] for more
details.

4 Key Recovery Attack Against NTRUReEncrypt

In this section, we propose an efficient key recovery attack by only collecting
ciphertexts CA and CB based on the algorithm of Li et al. [10]. They proposed
a broadcast attack against NTRU only to recover messages at AsiaCCS 2015,
however in NTRUReEncrypt, we find out that the re-encryption key rkA→B

can be recovered from the proxy’s re-encryption stage, then a malicious receiver
(sender) can directly recover the private key of the other one.

650 Z. Song et al.

4.1 Construction of Equations

We now recall the re-encryption stage, proxy encrypts a ciphertext CA sent by
Alice, randomly choosese ∈ Lr. Outputs ciphertext

CB = CA ∗ rkA→B + p ∗ e mod q. (4.1)

For convenience, we denote e, cB, λ as their vector form in lowercase, and denote
CA as its matrix form in uppercase, then write Eq. (4.1) in linear form:

pe = cB − CAλ mod q,

where λ is the vector form of re-encryption key rkA→B .
Then, do the inner product of both sides of the equation:

(pe)T (pe) = (cB − CAλ)T (cB − CAλ) mod q.

Note that p = 3 and secret polynomial e selected in set Lr, the numbers of +1
and −1 in their coefficients are dr, thus (pe)T (pe) = 2drp

2 is a constant, denote
as d.

We can get

d − cBT cB = λTCA
TCAλ − 2cBTCAλ mod q. (4.2)

4.2 Linearization

For convenience, let d − cBT cB = u, cBTCA = (k0, k1, · · · , kN−1), and

CA
TCA =

⎛

⎜
⎜
⎜
⎝

c0 cN−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cN−1 cN−2 · · · c0

⎞

⎟
⎟
⎟
⎠

.

From Lemma 2.2, CA
TCA is a symmetric circular matrix, where ci = cN−i,

for i ∈ {0, 1, · · · , N − 1}. Then expanding Eq. (4.2), we can get

u = c0
(
λ2
0 + λ2

1 + · · · + λ2
N−1

)

+ c1 (λ1λ0 + λ2λ1 + · · · + λ0λN−1)
+ · · · · · ·
+ cN−1 (λN−1λ0 + λ0λ1 + · · · + λN−2λN−1)
− 2k0λ0 − 2k1λ1 − · · · − 2kN−1λN−1 mod q

(4.3)

Note that when choosing a specific parameter N , vector λ = (λ0, λ1, · · · , λN−1)
has N unknown components. After the inner product operation, it generates
O(N2) new monomials λiλj , for 0 ≤ i ≤ j ≤ N − 1.

A trivial idea is to linearize these variables to O(N2) one-order monomials,
denoted as x = (x0, x1, · · · , xO(N2)−1). Then Eq. (4.3) turns to a congruence

An Efficient Key Recovery Attack Against NTRUReEncrypt 651

equation with O(N2+N) variables, thus λi can be recovered by collecting O(N2)
equations in time O(N6) by Gaussian elimination. In certain parameter sets
defined by NTRUReEncrypt, the size of N generally amounts to 103, which
means the system of linear equations with around 106 variables and it is hard
to implement in practice.

To reduce the number of variables, let

xi = λiλ0 + λi+1λ1 + · · · + λN−1λN−i−1 + λ0λN−i + · · · + λi−1λN−1,

for i = 0, 1, · · · , N − 1. In the parameter sets we attacked, N is an odd prime.
Note that ci = cN−i and xi = xN−i for i = 0, 1, · · · , N − 1, the Eq. (4.3) is
equivalent to

u = c0x0 + 2c1x1 + · · · + 2c[N
2]x[N

2]
− 2k0λ0 − 2k1λ1 − · · · − 2kN−1λN−1 mod q,

(4.4)

where q is a power of 2 denoted as q = 2γ , γ is a positive integer. Further,
assuming that c0, u are even, the equation could be converted to

1
2
u =

1
2
c0x0 + c1x1 + · · · + c[N

2]x[N
2]

− k0λ0 − k1λ1 − · · · − kN−1λN−1 mod 2γ−1.
(4.5)

Notice that we can get one congruence Eq. (4.4) with (N +[N2]+1) variables
by collecting CA and CB through one legal communication, so we could collect a
series of samples by communicating relevant times. In fact through experiment,
we could always select enough equations in the form of (4.5) by choosing these
samples, and the number of samples is O(N + [N2]), which is related to the
number of variables.

4.3 Solving the System of Linear Congruence Equations

Denote n as the number of variables and n = N +
[

N
2

]
+1, then we build a linear

system L×X = S mod 2γ−1 by collecting n+ l equations from Eq. (4.5), where
l is a positive integer, the vector X = (x0, x1, · · · , x[N

2], λ0, λ1, · · · , λN−1)T , the
row of the matrix L corresponds to (4.5) equals

(
1
2
c0, c1, · · · , c[N

2],−k0,−k1, · · · ,−kN−1)T ,

and S is the column vector related to 1
2u. For the sake of efficiency, we choose

to apply our algorithm to work over the finite field F2 but not the ring Z2γ−1 ,
which means that we turn to solve the system of equations L × X = S mod 2.
That is, our goal is to find rkA→B mod 2 not rkA→B mod 2γ−1, and we would
show that it is enough for recovering the private key in the next subsection.

Note that the vector S ∈ F
n
2 , the matrix L ∈ F

(n+l)×n
2 , we aim to find

rkA→B mod 2 = (λ0, λ1, · · · , λN−1)T by selecting last N bits of X ∈ F
n
2 . It is

652 Z. Song et al.

obvious that there is a unique solution is equivalent to the matrix L is invertible,
which means that the rank of L equals to n. The problem turns to figure out
the proportion of the matrices of rank n in L ∈ F

(n+l)×n
2 . Li et al. [10] gave the

following result estimating the proportion of invertible matrices in finite field
among all matrices:

Theorem 1. Let Fq be the finite field with q elements, where q is a prime power.
The proportion of matrices of rank n in the set of (n+l)×n matrices with entries
in Fq is equal to:

n+l∏

k=l+1

(
1 − q−k

)
, l = 0, 1, 2, · · · .

According to the theorem above, we give the proportion of the matrices of rank n
in Fq in Table 3 blow. It implies that if l grows, the probability that the random
matrix L is invertible is also increasing. In the case of our attack, q = 2, l = 4,
and the random matrix L is invertible with high probability.

Table 3. The proportion of the matrices of rankn in L ∈ F
(n+l)×n
q

q l = 0 l = 1 l = 2 l = 3 l = 4

2 0.2889 0.5776 0.7701 0.8801 0.9388

3 0.5601 0.8402 0.9452 0.9816 0.9938

7 0.8368 0.9763 0.9966 0.9995 0.9999

For any ciphertext pair (CA, CB) in Eq. (4.1), we could always get CB(1) =
CA(1)rkA→B(1) mod q, which also holds on F2. Specifically, we could obtain a
new equation:

CB(1) = CA(1)(λ0 + λ1 + · · · + λN−1) mod 2,

where CA(1), CB(1) are fixed number. Adding this equation to the system of
linear equations that we seek to solve, and now we can take l = 3 to implement
our attack. Since the number of variables is n = N +

[
N
2

]
+ 1, l = 3, thus

we can construct a system of linear equations with the number of equations
n + l + 1 = N +

[
N
2

]
+ 5, which could be solved to obtain a unique solution

in time O(N3) using Gaussian elimination. Compared to running on Z1024, our
algorithm requires significantly less time to run on F2, just a few seconds.

4.4 Recovering Private Keys

In Sect. 4.3, we have obtained the re-encryption key rkA→B mod 2. Now, we
discuss how to recover the private key in this subsection. First, we recover
the position of 0 bits of the private key pair (f, g) by means of the obtained

An Efficient Key Recovery Attack Against NTRUReEncrypt 653

rkA→B mod 2, and then reveal the remaining bits of the private key f by solv-
ing a system of linear equations.

Since rkA→B = fA ∗ f−1
B mod q, we have that rkA→B = fA ∗ f−1

B mod 2. If
one party to the communication obtains rkA→B mod 2, then can immediately
calculate the other party’s private key in the sense of modulo 2. Now we design
a roadmap to show how to recover the private keys. For the sake of description,
we assume that Bob is the malicious party, who knows rkA→B mod 2 and the
private key fB :
Step 1. Considering fA = fB ∗ rkA→B mod 2. Since fA = 1 + p ∗ F with F ∈
L(df ,df) and p = 3, we get p ∗ F = fB ∗ rkA→B − 1 mod 2. Note that there are
df +1’s, df −1’s and (N − 2df) 0’s in the coefficients of F , so the position
of 0 bits of F can be determined by counting the position of the 0 bits of
fB ∗ rkA→B − 1 mod 2, where the number of 0 bits of F is N − 2df . It means
that we can also get the position of the 0 bits of fA.
Step 2. Since the public key hA = p ∗ gA ∗ f−1

A mod q with gA ∈ L(dg,dg) holds,
hA = p∗gA∗f−1

A mod 2 is also satisfied, where the coefficients of gA have dg +1’s
and dg −1’s, (N −2dg) 0’s. Based on p∗gA = hA∗fA mod 2, the position of the 0
bits of gA can be determined by counting the position of 0 bits of hA ∗fA mod 2,
where the number of 0 bits is N − 2dg.
Step 3. Plugging fA = 1 + p ∗ F into hA ∗ fA = p ∗ gA mod q, we get hA ∗ (1 +
p ∗ F) = p ∗ gA mod q, which is equivalent to the equation

p ∗ hA ∗ F = p ∗ gA − hA mod q. (4.6)

For convenience, we denote f , g, h as the vector form of F , gA, hA, and HA

as the matrix form of hA. The Eq. (4.6) can be rewritten as the following linear
form:

pHAf = pg − h mod q.

That is,

p · HA

⎛

⎜
⎜
⎜
⎝

f0
f1
...

fN−1

⎞

⎟
⎟
⎟
⎠

= p ·

⎛

⎜
⎜
⎜
⎝

g0
g1
...

gN−1

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎝

h0

h1

...
hN−1

⎞

⎟
⎟
⎟
⎠

mod q, (4.7)

where HA is a N×N matrix. Considering the 2N variables (f and g) of Eq. (4.7),
there are N − 2df and N − 2dg known in f and g respectively. Hence, the
number of unknown variables is 2df + 2dg, whereas the number of equations
is N . According to Table 2, N is larger than 2df + 2dg (e.g. in ees1171ep1,
N = 1171, dg = 390, df = 106, the number of equations N = 1171 is larger than
the number of variables 2df + 2dg = 992). Hence we can recover the remaining
bits of f by solving the system of linear equations using Gaussian elimination,
then recover all bits of fA which is Alice’s private key.

At PQCrypto 2019, Liu, Pan, and Zhang [11] proposed a key recovery attack
based on statistical methods, malicious receiver Bob needed huge amount of
ciphertexts CBi

encrypted by the same plaintext m, which is illegal and hard to
implement. Here are the approximate number of ciphertexts in Table 4.

654 Z. Song et al.

Table 4. Comparison of our work with PQCrypto 2019

ees1087ep1 ees1171ep1 ees1499ep1

PQCrypto 2019 4.06 · 1017 4.83 · 1017 9.67 · 1017
Our work 3.17 · 103 3.58 · 103 4.45 · 103

Remark. The cryptanalysis proposed by PQCrypto 2019 is based on decryp-
tion failure and statistical analysis, both require huge amount of ciphertexts
and the chosen plaintexts. Moreover, the ciphertexts in latter case should be
encrypted by the same plaintext. Unlike the previous ones, our attack has two
advantages: (1) The amount of ciphertext required is greatly reduced. (2) There
are no restrictions on plaintext, our attack only needs to be done in legal com-
munication.

5 Case of NTRU Scheme with Different Parameter Sets

In this section, we discuss other schemes of NTRU with different parameter sets
instantiated to the NTRUReEncrypt. We divide them into two cases, one with a
constant number of +1, −1 (if any) coefficients of the secret polynomial selected
in Lr, in which case we can still attack with the same method as in the previous
section, and the other with the NTRU schemes in the third round of NIST-PQC
competition, which have a variable number of +1, −1 (if any) coefficients of the
secret polynomial selected in Lr, and we analyze this case by a new trick.

5.1 Case of Certain Secret Polynomial Coefficients

For the case of certain secret polynomial coefficients, [12] summarised some
instantiations of NTRU, and their specific parameter sets are listed in the table
below, where B denotes the set of all polynomials with binary coefficients, B (d)
denotes a subset of B with exactly d coefficients equal 1, Lm denotes the poly-
nomial set whose coefficients lying between − 1

2 (p − 1) and 1
2 (p − 1) (Table 5).

One can check that, as for the secret polynomial e selected from Lr in these
schemes, the inner product of its coefficient vectors is a constant. Then we can
use the method proposed in Sect. 4 to recover the private keys.

Table 5. Some instantiations of NTRU

Parameter Sets q p Lf Lg Lm Lr

NTRU-1998 2k ∈ [
N
2
, N

]
3 L(df ,df−1) L(dg,dg) Lm L(dr,dr)

NTRU-2001 2k ∈ [
N
2
, N

]
x+ 2 1 + p ∗ F B (dg) B B (dr)

NTRU-2005 prime 2 1 + p ∗ F B (dg) B B (dr)

An Efficient Key Recovery Attack Against NTRUReEncrypt 655

5.2 Case of Uncertain Secret Polynomial Coefficients

We now discuss the case in the third round of NIST-PQC competition, such
as NTRU-HPS, NTRU-HRSS [5], whose parameter sets are instantiated to
the NTRUReEncrypt. For specific parameter sets in ees1087ep1, ees1171ep1,
ees1499-ep1, our attack’s point is that the secret polynomial e selected in set Lr,
whose coefficients have a certain number of +1, −1, and 0.

However, in NTRU-HPS and NTRU-HRSS, polynomial set Lr = T and T
is the set of non-zero ternary polynomials of degree at most N − 2. It indicates
that we no longer have information on the number of coefficients in the secret
polynomial e, thus the inner product calculation would fail. Ding et al. [6] used
the property ei = ei

3, for i ∈ {0, 1, · · · , N − 1} in the broadcast attack against
NTRU to recover plantexts, it could also be used in this case to recover the
secret keys.

Separating p from Eq. (4.1) and write it in linear form, we can get

e = (CB − CAr) ∗ p−1 mod q.

Since ei = ei
3, so we can get equations that eliminates e:

[(CB − CAr) ∗ p−1]i = [(CB − CAr) ∗ p−1]3i mod q, (5.1)

for i ∈ {0, 1, · · · , N − 1}. Note that in Eq. (5.1) only r is the unknown variable,
cubic computation generates O(N3) new monomials, and we can also linearize
these monomials into new variables. Since one legal communication produces N
equations, the system of linear congruence equations can be built by communi-
cating N2 times, thus recover r in time O(N9). The following table is the compar-
ison of parameter sets between EESS#1 and NTRU-Round3, where NTRU-HPS
is the same as NTRU-HRSS (Table 6).

Table 6. Comparison of EESS#1 with NTRU-Round3

Instance Number of communications Variables Gaussian elimination

EESS#1 O(N) O(N) O(N3)

NTRU-HPS O(N2) O(N3) O(N9)

6 Experiments

In this section, we present experimental results on the assumption that Bob
is a malicious receiver. Due to ciphertexts CA could be collected on the pub-
lic channel and CB could be received normally by Bob, we assumed in our
experiment that the attacker could collect enough ciphertext pairs (CA, CB).
All experiments were performed in SageMath 9.6 on a macOS Monterey 12.5.1
system with Apple M1 CPU @ 3.2GHz, 8GB RAM, and our implement was avail-
able at https://github.com/s4lTea/NTRUReEncrypt_Attack. We implemented

https://github.com/s4lTea/NTRUReEncrypt_Attack

656 Z. Song et al.

our attack against NTRUReEncrypt scheme, whose parameter sets defined by
EESS#1 are the same as those from AsiaCCS 2015 [13] and PQCrypto 2019
[11]. We performed our attack 50 times for each instance, and gave the average
number of communications and running time required by the algorithm. In our
experimental results, let n = N +

[
N
2

]
+ 1, we could always find a matrix L of

rank n. We splited the algorithm into 3 steps:

1) Focusing on the proxy’s re-encryption stage, then generate a system of linear
congruence equations with n+4 equations and n variables by communicating
enough times.

2) Solving it on F2 using Gaussian elimination to obtain re-encryption key
rkA→B mod 2.

3) Building another system of linear congruence equations with N equations and
2df + 2dg variables to solve, finally obtain Alice’s private key.

Table 7. Experimental Results with different parameter sets

Instance N p q Rank(L) Number of
communications

Total time(min)

ees1087ep1 1087 3 2048 1634 3174 17.4
ees1171ep1 1171 3 2048 1757 3579 22.8
ees1499ep1 1499 3 2048 2249 4454 41.9

Step 1 takes some time (minutes) due to matrix multiplication operations. As
it works on F2, so step 2 takes only a few seconds and the running time could be
negligible. There are small number of variables related to the equations in step
3, so the time required to either construct or solve the equations is negligible.
The experimental results are shown in Table 7. For ease of description, we take
the cost of step 1 as the total time of our algorithm.

7 Conclusion

In this paper, we presented an efficient key recovery attack against NTRUReEn-
crypt scheme, whose parameter sets are defined by EESS#1 specification [2] from
IEEE P1363.1 standard. The attack is based on a special structure of secret poly-
nomials from the set Lr. In addition, the key recovery attack could be extended
to the NTRUReEncrypt instantiated with the NTRU parameter sets in the third
round of NIST-PQC competition.

Acknowledgments. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was supported in part by
the National Natural Science Foundation of China (Grants 61732021, 62272454).

An Efficient Key Recovery Attack Against NTRUReEncrypt 657

References

1. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_1

2. Key Cryptographic Techniques Based. IEEE p1363. 1TM/d1211 (2008)
3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-

tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

4. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194 (2007)

5. Cong, C., Oussama, D., Jerey, H.: NTRU: the round 3 NIST submission (2020).
https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016

6. Ding, J., Pan, Y., Deng, Y.: An algebraic broadcast attack against NTRU. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 124–137.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_10

7. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

8. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4_14

9. Kra, I., Simanca, S.R.: On circulant matrices. Notices AMS 59(3), 368–377 (2012)
10. Li, J., Pan, Y., Liu, M., Zhu, G.: An efficient broadcast attack against NTRU. In:

Proceedings of the 7th ACM Symposium on Information, Computer and Commu-
nications Security, pp. 22–23 (2012)

11. Liu, Z., Pan, Y., Zhang, Z.: Cryptanalysis of an NTRU-based proxy encryption
scheme from ASIACCS’15. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 153–166. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7_9

12. Mol, P., Yung, M.: Recovering NTRU secret key from inversion oracles. In: Cramer,
R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 18–36. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78440-1_2

13. Nuñez, D., Agudo, I., Lopez, J.: NTRUReEncrypt: an efficient proxy re-encryption
scheme based on NTRU. In Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security, pp. 179–189 (2015)

14. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1007/BFb0054122
https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016
https://doi.org/10.1007/978-3-642-31448-3_10
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-030-25510-7_9
https://doi.org/10.1007/978-3-030-25510-7_9
https://doi.org/10.1007/978-3-540-78440-1_2

Two Remarks on the Vectorization
Problem

Wouter Castryck(B) and Natan Vander Meeren

imec-COSIC, KU Leuven, Leuven, Belgium

wonter.castryck@esat.kuleuven.be

Abstract. We share two small but general observations on the vector-
ization problem for group actions, which appear to have been missed
by the existing literature. The first observation is pre-quantum: explicit
examples show that, for classical adversaries, the vectorization problem
cannot in general be reduced to the parallelization problem. The sec-
ond observation is post-quantum: by combining a method for solving
systems of linear disequations due to Ivanyos with a Kuperberg-style
sieve, one can solve the hidden shift problem, and therefore the vector-
ization problem, for any finite abelian 2tpk-torsion group in polynomial
time and predominantly relying on classical work; here t, k are any fixed
non-negative integers and p is any fixed prime number.

Keywords: Group actions · Vectorization problem · Linear
disequations

1 Introduction

This paper discusses two unrelated aspects of the vectorization problem for
abelian group actions, which specializes to the classical discrete logarithm prob-
lem in the case of exponentiation in finite cyclic groups.

The first formal study of cryptographic group actions was carried out in 1990
by Brassard and Yung [8], but non-discrete-logarithm-based examples go back, at
least, to the work of Brassard and Crépeau from 1986 [6]. However, none of the
early concrete instances were genuinely novel, perhaps with the exception of finite
symmetric groups (or abelian subgroups thereof) acting on sets of graphs, whose
vectorization problem is just the graph isomorphism problem, famously solved by
Babai in 2017 [4,20]. This situation changed with the independent works of Cou-
veignes [13] and Rostovtsev–Stolbunov [31,36], who proposed to use ideal-class
groups acting on sets of elliptic curves over finite fields through isogenies. Also
CSIDH [10] fitswithin this framework. It is Couveigneswho coined the term vector-
ization. The isogeny-based construction attracted a lot of attention, lately, because
the corresponding vectorization problem is supposed to be hard even in the pres-
ence of quantum adversaries. At the same time, being an abelian group action, it
inherits many of the features of the celebrated exponentiation map.

To date, the list of cryptographically interesting group actions remains rather
limited, but since it concerns such a basic and flexible concept, it is well imagin-
able that new constructions remain to be discovered, both for use in a classical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 658–678, 2022.
https://doi.org/10.1007/978-3-031-22912-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_29

Two Remarks on the Vectorization Problem 659

and in a (post-)quantum context, e.g., see [23] for a candidate based on ten-
sors. General statements on the hardness of the vectorization problem help in
understanding the fundamental features and limitations of group-action-based
cryptography. We present two such statements, which are small addenda to the
existing literature, including surveys such as [1,17,35], but which appear to have
been missed and therefore seem worth reporting.

A Pre-quantum Observation. Our first statement is classical and negative
in nature: very simple constructions show that, classically, one cannot expect in
general that the vectorization problem for an abelian group action reduces in
polynomial time to the parallelization problem.1 This contrasts with the post-
quantum setting, where the vectorization and parallelization problems become
computationally equivalent [16,27]. Our conclusion also contrasts with the dis-
crete logarithm problem, which is believed to be no harder than the computa-
tional Diffie–Hellman problem in view of the Maurer–Wolf reduction [26]. It had
already been pointed out, e.g. by Smith [35, §11] and Gnilke–Zumbrägel [17, p3],
that Maurer–Wolf does not extend to the group action framework. But, as far
as we are aware, the existence of alternative classical reductions was not ruled
out yet. To the contrary: some researchers have suggested that such a reduction
should exist, see e.g. [11, §1.2]. The current work refutes this.

A Post-quantum Observation. Our second observation revisits [9, §3], where
it was shown how to combine a classical (= pre-quantum) method due to Friedl et
al. [15, §3] for solving systems of linear disequations modulo p with a Kuperberg-
style sieve [24]. This led to an easy polynomial-time quantum algorithm which
solves the hidden shift problem, and therefore the vectorization problem, for
groups of the form

(Z2t1 × Z2t2 × · · · × Z2tm × Z
n
p , +) (1)

while relying mainly on classical computations; most notably, the requirements
in terms of quantum memory are very limited. Here, p is a fixed prime number
and the exponents ti are bounded by a fixed integer t, but n and m can vary
freely. For t = 1 and n = 0 the algorithm specializes to Simon’s method [34].

In [9] it was left unnoticed that a generalization of the method of Friedl et
al. due to Ivanyos [22], capable of solving systems of linear disequations modulo
powers of p, is equally compatible with Kuperberg’s sieve. This allows one to
extend the algorithm from (1) to groups of the form

(Z2t1 × Z2t2 × · · · × Z2tm × Zpk1 × Zpk2 × · · · × Zpkn , +) (2)

for any fixed prime number p and any number of exponents ti, resp. ki, that are
bounded by fixed integers t, resp. k. Without affecting the polynomial runtime
and the memory-efficiency, that is.
1 Except under cataclysmic hypotheses such as P=NP, in which case hard instances of

the vectorization problem do not exist.

660 W. Castryck and N. Vander Meeren

Moreover, as in the case of [9], this extended algorithm can be combined with
Kuperberg’s collimation sieve [25,29], yielding the following refinement of [9,
Thm. 1.2]:

Theorem 1. For any fixed prime number p and non-negative integers t, k, there
exists a quantum algorithm for solving the hidden shift problem in any finite
abelian group (G,+) with time, query and QROM-complexity

poly(log |G|) · 2O(
√

log |2tpkG|)

and requiring storage of poly(log |G|) qubits.

Here QROM stands for quantum read-only memory; this is also known as quan-
tum random-access classical memory (QRACM), see [25, §2]. Let us also clarify
that the group

2tpkG = { 2tpkg | g ∈ G }
is the group obtained from G by annihilating its 2tpk-torsion.

Paper Organization. In Sect. 2 we quickly recall the vectorization and paral-
lelization problems as well as their connection to the abelian hidden shift prob-
lem. In Sect. 3 we present examples of group actions proving the non-equivalence
between vectorization and parallelization in a classical context. We devote a sep-
arate Sect. 4 to solving systems of linear disequations, because a secondary aim
of our paper is to make this interesting problem (which is open for moduli as
small as 6) more widespread in the cryptographic community; indeed, perhaps
naively, we hope that this problem will find other cryptographic applications. In
Sect. 5 we describe our method for finding hidden shifts in finite abelian 2tpk-
torsion groups, while spending time on recalling the details of its most important
plug-in: Ivanyos’ algorithm from [22]. We take the opportunity to correct a minor
error and to considerably sharpen the estimated runtime. The final Sect. 6 gives
some concluding remarks.

2 Vectorization, Parallelization and Hidden Shift

Let (G,+) be an abelian group. An action of G on a finite set X is a map

� : G × X → X : (g, x) �→ g � x

satisfying 0 � x = x and g1 � (g2 � x) = (g1 + g2) � x for all g1, g2 ∈ G and all
x ∈ X. Throughout, we make the implicit assumption that the action is only
ever evaluated in elements of G and X that admit an efficient representation, and
that computing this evaluation is efficient as well. The stabilizer of an element
x ∈ X is the subgroup St(x) = { g | g � x = x } ⊆ G. The orbit of x ∈ X is
the subset Or(x) = { g � x | g ∈ G } ⊆ X and as soon as G is finite we have
|Or(x)| · |St(x)| = |G| for all x ∈ X. Two orbits either coincide or are disjoint,
and together the orbits partition X. All elements within one orbit have the
same stabilizer. The action is called free if all stabilizers are trivial. It is called
transitive if there is one orbit, only.

Two Remarks on the Vectorization Problem 661

Definition 2. The vectorization problem for � is about explicitly determining
g mod St(x) upon input of x, g � x ∈ Or(x).

One basic example of a group action is the exponentiation map

Z
∗
n × X : (g, x) �→ xg

in a finite cyclic group X of order n. Here, the vectorization problem specializes
to the discrete logarithm problem. Note that the generators of X form one orbit,
and when restricting the action to this orbit it becomes free and transitive.

The classical Diffie–Hellman key exchange protocol naturally generalizes from
exponentiation in cyclic groups to arbitrary abelian group actions. Indeed, after
Alice and Bob agree on a base element x ∈ X, Alice acts with a secret g0 ∈ G on
x and sends the result g0 � x to Bob, and likewise Bob acts with a secret g1 ∈ G
on x and sends g1 � x to Alice. Both parties can now compute

(g0 + g1) � x = g1 � (g0 � x) = g0 � (g1 � x), (3)

which can be fed to a key derivation function; note that (3) uses the assumption
that G is abelian. Breaking this protocol directly relates to:

Definition 3. The parallelization problem for � is about explicitly determining
(g0 + g1) � x upon input of x, g0 � x, g1 � x ∈ Or(x).

The parallelization problem straightforwardly reduces to the vectorization prob-
lem but the converse reduction, as we will see in Sect. 3, does not apply in general.
We recall that this story changes in the presence of quantum adversaries, where
the converse reduction does apply [16,27].

When studying the hardness of vectorization and parallelization, one can
assume that the action is free and transitive. Indeed, it clearly suffices to assume
transitivity because the vectorization problem and the parallelization problem
are formulated within one orbit. But then all x ∈ X have the same stabilizer
S, so we can assume freeness by acting with G/S rather than with G. Free and
transitive actions necessarily satisfy |G| = |X|.
Remark 4. The explicit determination of the stabilizer S can be viewed as an
instance of the hidden subgroup problem in the abelian group G. Quantumly, this
is easy using Shor’s algorithm [33], but classically this may be a hard problem.
Nevertheless, it is possible to compute in G/S without knowing S explicitly,
because testing equivalence mod S is easy: g0−g1 ∈ S if and only if g0�x = g1�x
for whatever x ∈ X (assuming transitivity).

For free actions, the vectorization problem can be viewed as an instance of:

Definition 5. Given oracle access to injective functions f0, f1 : G → X such
that there exists an s ∈ G such that for all g ∈ G we have f0(g) = f1(g + s), the
(abelian) hidden shift problem is about finding s.

662 W. Castryck and N. Vander Meeren

Indeed, from an input x, s � x to the vectorization problem we can construct the
functions fi : G → X as

f0 : g �→ g � (s � x),
f1 : g �→ g � x,

which hide the shift s. Assuming access to an oracle for evaluating the func-
tions f0, f1 on arbitrary superpositions over elements of G, there exist quantum
algorithms due to Kuperberg [24,25] for solving the hidden shift problem in
subexponential time

2O(
√

log |G|) (4)

as well as subexponential quantum space; more precisely the algorithm from [25]
requires storage of poly(log |G|) qubits and an amount (4) of QROM. Kuperberg
studied this in the context of the hidden subgroup problem in the associated
dihedral group Dih(G), which turns out to be equivalent with the hidden shift
problem in G, see [24, §6].

Remark 6. There exist non-injective versions of the abelian hidden shift problem,
where the problem of breaking the Legendre pseudo-random function is arguably
the best-known instance in cryptography. Such versions may be easier to tackle,
quantumly, and will not be considered here; see [19, Ch. 7].

While Kuperberg’s algorithm admits variants with different time-memory
trade-offs, see e.g. [12,30], none of them breaks through the L|G|(1/2)-barrier in
general. This does not mean that better quantum algorithms are not possible
for special classes of G. Famously, this is true for 2-torsion groups, which can
be handled in polynomial time using Simon’s method [34]. This generalizes to
2t-torsion for any fixed t using Kuperberg’s sieve, see [5]. In a different direction,
it generalizes to p-torsion for any fixed prime p using the aforementioned method
due to Friedl et al. [15]. The latter authors also present a self-reducibility tool,
allowing for a polynomial-time quantum solution to the abelian hidden shift
problem in finite abelian groups of any fixed exponent r.2 However, this requires
a quantization of otherwise classical post-processing steps, resulting in more
complicated quantum algorithms with more restrictive memory requirements;
in particular the self-reducibility does not seem suitable for obtaining memory-
friendly statements like Theorem 1. As mentioned, in [9, §3] it was shown that
for r = 2tp there exists an easy workaround; we revisit this in Sect. 5, where we
generalize it to r = 2tpk.

3 Non-equivalence of Vectorization and Parallelization

We claim that the vectorization problem and the parallelization problem are not
equivalent as soon as one believes in the existence of one-way group homomor-
phisms, see e.g. [7, §5]. This does not contradict the results from [16,27] because,

2 Recall: the exponent of a finite group is the least common multiple of the orders of
its elements.

Two Remarks on the Vectorization Problem 663

in the presence of quantum adversaries, no such one-way homomorphisms exist.
But pre-quantumly we have several very classical candidates.

The construction is really simple: consider two finite abelian groups (G0,+)
and (G1,+) along with an easy-to-compute but hard-to-invert group homomor-
phism f : G0 → G1. Then the map

� : G0 × G1 → G1 : (g, x) �→ g � x := x + f(g)

is a well-defined action of G0 on G1. The vectorization problem amounts to
extracting g from a pair x, x + f(g), which is of course equivalent to extracting
g from f(g): this is hard by assumption. On the other hand, the parallelization
problem is about computing x+f(g0 +g1) = x+f(g0)+f(g1) from x, x+f(g0)
and x + f(g1), which is trivial.

Example 7. One classical example of a one-way group homomorphism is the
squaring map

(Z∗
N , ·) → (Z∗

N , ·) : x �→ x2

in the unit group of the ring of integers modulo an RSA modulus N . So the
vectorization problem for the corresponding group action (Z∗

N × Z
∗
N) → Z

∗
N :

(g, x) �→ g2x is hard, while parallelization is trivial.

Example 8. A free and transitive example can be obtained from exponentiation

(Zn,+) → (X, ·) : g �→ αg

in a cyclic order-n group X = 〈α〉 in which the discrete logarithm problem
is believed to be hard. The vectorization problem for the corresponding group
action (Zn × X) → X : (g, x) �→ xαg is hard, and parallelization is straightfor-
ward.

Interestingly, Example 7 may have been the first non-exponentiation based
group action that saw study in the context of cryptography [6], yet for the
purpose of bit commitment rather than key exchange.

4 Systems of Linear Disequations and the Standard
Approach to Hidden Shift Finding

A system of linear disequations over an integer residue ring Zr, for some r > 1,
is a system of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11s1 + a12s2 + . . . + a1nsn 	= b1,
a21s1 + a22s2 + . . . + a2nsn 	= b2,

...
am1s1 + am2s2 + . . . + amnsn 	= bm,

with known aij , bi ∈ Zr (1 ≤ i ≤ m, 1 ≤ j ≤ n), where one wants to solve for
s1, . . . , sn. It is an intriguing (and not very widespread) open problem how to do

664 W. Castryck and N. Vander Meeren

this in general. Of course, for r = 2 one just faces a system of linear equations
in disguise. More generally, for r = p a prime number, one can re-express every
disequation as

(ai1s1 + ai2s2 + . . . + ainsn − bi)p−1 = 1, (5)

thus obtaining a system of non-linear (as soon as p > 2) equations, which can be
fed to a Gröbner basis calculation. Alternatively, if we have unlimited access to
random disequations then we can solve this by linearization: this is the approach
from [15] and it runs in polynomial time for fixed p. This can be generalized to
r = pk for any k ≥ 1, following Ivanyos [22], but away from prime powers we are
clueless about how to approach this problem. Even seemingly harmless rings such
as Z6

∼= Z2 ×Z3 remain unsolved. Let us stress that the algorithms from [15,22]
are pre-quantum. This being said, we do not know of quantum algorithms that
perform significantly better than their pre-quantum counterparts (apart from
speed-ups of Grover type [18] in search steps).

Systems of linear disequations naturally show up in the “standard” quantum
approach to solving the hidden shift problem in a finite abelian group (G,+),
which can always be assumed to be of the form

Zr1 × Zr2 × · · · × Zrn
, +

for integers ri. This standard approach works by generating many phase vectors:

Definition 9. Given a finite abelian group G, let

G∨ = { group homomorphisms (G,+) → (C∗, ·) }
denote the dual group, equipped with point-wise multiplication. Then for any
χ ∈ G∨ and s ∈ G the quantum state

|Ψs(χ)〉 =
1√
2
(|0〉 + χ(s)|1〉)

is called a phase vector over G.

Within our context, the value of s = (s1, s2, . . . , sn) will always be the hidden
shift we are looking for: therefore we drop the subscript and just write |Ψ(χ)〉.
Creating such a phase vector for some uniformly random χ ∈ G∨ is standard
practice and comes at the cost of two quantum Fourier transforms, one call to f0
and one call to f1 [24,30]. We treat this as a black box and assume throughout
that we have oracle access to phase vectors. We stress that the result of an oracle
call is |Ψ(χ)〉 with χ a uniformly random, known element of G∨. The amplitude
χ(s) is unknown, though.

Phase vectors serve as input to the hidden shift finding algorithms due to
Kuperberg and others [24,25,29,30]. These algorithms proceed by gradually con-
verting the phase vectors into more interesting ones through a process of com-
bination and measurement; a basic version of Kuperberg’s sieve will appear as
a subroutine in Sect. 5.

Two Remarks on the Vectorization Problem 665

For now, we just note that when measuring |Ψ(χ)〉 in the |±〉-basis, where as
usual

|±〉 =
|0〉 ± |1〉√

2
,

we measure ‘−’ with probability |1−χ(s)|2/4. Upon such a measurement we can
conclude that χ(s) 	= 1. Writing

χ : (g1, g2, . . . , gn) �→ exp
(
2πi

(a1g1
r1

+
a2g2
r2

+ . . . +
angn

rn

))

for known ai, this translates into a disequation

r

r1
a1s1 +

r

r2
a2s2 + · · · +

r

rn
ansn 	≡ 0 mod r (6)

where r = lcm(r1, r2, . . . , rn) denotes the exponent of G. Querying many phase
vectors leads to a large system of linear disequations, unless s = (0, 0, . . . , 0) in
which case one never measures ‘−’; but this will be noticed quickly (or it can
be tested beforehand). This means that we have effectively reduced the hidden
shift problem over G to the problem of solving a system of linear disequations.
A more formal discussion will be given in Sect. 5.2.

Remark 10. Clearly, disequations of the form (6) are not arbitrary. The presence
of the cofactors r/ri is totally natural, since we can only expect to determine
si modulo ri. But we also see that each disequation is homogeneous, i.e., all
constants bi are zero. Consequently, this approach will only allow to determine
(s1, s2, . . . , sn) up to multiplication with an unknown scalar λ ∈ Z

∗
r . This means

that, after solving the system, one is still left with the task of determining this
scalar, e.g., by exhaustive search.

Unfortunately, as mentioned before, the only moduli r for which we have a
solution with polynomial run-time (for fixed r) are prime powers. Our objective
however lies in solving the hidden shift problem and, as shown in [9, §3], it is
possible to get rid of powers of 2 using a Kuperberg-style sieve prior to running
the above reduction. This is recalled, in a generalized setting, in the next section.

5 Finding Hidden Shifts in 2tpk-torsion Groups

This section covers our algorithm for solving the hidden shift problem in finite
abelian 2tpk-torsion groups. It is an adaptation of [9, §3], where we aim for
an incorporation of Ivanyos’ algorithm rather than that of Friedl et al. We can
assume that our group (G,+) is of the form (2) with t = t1 ≥ . . . ≥ tm ≥ 1, k =
k1 ≥ . . . ≥ kn ≥ 1 for integers m,n ≥ 0, and p an odd prime. The hidden shift
s is written as s = (s′

1, . . . s
′
m, s1, . . . , sn) with s′

i ∈ Z2ti and si ∈ Zpki .

666 W. Castryck and N. Vander Meeren

5.1 Kuperberg Sieve

The goal of this first part of the algorithm is to turn phase vectors over G into
phase vectors over the subgroup H = Zpk1 × . . . × Zpkn . This is done through
Kuperberg’s process of combining phase vectors, which is about merging |Ψ(χ1)〉
and |Ψ(χ2)〉 into |Ψ(χ1χ

±
2)〉, as follows:

1. Tensor the two phase vectors together:
|Ψ(χ1)〉|Ψ(χ2)〉 = 1

2 (|00〉 + χ2(s)|01〉 + χ1(s)|10〉 + χ1(s)χ2(s)|11〉.
2. Perform a CNOT gate on the second qubit:

1
2 (|00〉 + χ2(s)|01〉 + χ1(s)|11〉 + χ1(s)χ2(s)|10〉.

3. Measure the second qubit:
|Ψ(χ1χ

±
2)〉 = 1√

2
(|0〉 + χ1(s)χ±

2 (s)|1〉).
More generally, one can combine q phase vectors |Ψ(χ1)〉, |Ψ(χ2)〉 . . . , |Ψ(χq)〉
into one phase vector |Ψ(χ1χ

±
2 . . . χ±

q)〉 by repeating this procedure q − 1 times.
We can use this to obtain phase vectors that are �-divisible for increasing

values of �, in the following sense:

Definition 11. If the character χ ∈ G∨ satisfies

χ2t−�pk

= 1

for some 0 ≤ � ≤ t, then the phase vector |Ψ(χ)〉 is said to be �-divisible.

More precisely, if we let r� denote the largest positive integer for which tr�
≥ t−�,

then one can combine r� + 1 �-divisible phase vectors

|Ψ(χ1)〉, |Ψ(χ2)〉, . . . , |Ψ(χr�+1)〉
into a single (� + 1)-divisible phase vector. Indeed, write every χi as

(g1, . . . , gm, h1, . . . , hn) �→ exp
(
2πi

(ai,1g1
2t1

+. . .+
ai,mgm

2tm
+

bi,1h1

pk1
+. . .+

bi,nhn

pkn

))

By assumption, for all 1 ≤ j ≤ r� we have 2tj−t+� | ai,j . Setting

ci,j := ai,j/2tj−t+� mod 2

thus yields r� + 1 vectors of the form (ci,1, . . . , ci,r�
) for 1 ≤ i ≤ r� + 1. Further-

more, these vectors are linearly dependent in Z2, which means that there are
coefficients d1, . . . , dr�+1 ∈ Z2 such that

d1c1,j + . . . + dr�+1cr�+1,j = 0 mod 2

for all 1 ≤ j ≤ r�. We can calculate these coefficients classically, and combine
the phase vectors |Ψ(χi)〉 for which di = 1, in the sense of Kuperberg. The result
is a phase vector |Ψ(χ)〉 for which

χ : (g1, . . . , gm, h1, . . . , hn) �→ exp
(
2πi

(a1g1
2t1

+ . . .+
amgm

2tm
+

b1h1

pk1
+ . . .+

bnhn

pkn

))

Two Remarks on the Vectorization Problem 667

is such that the coefficients aj satisfy 2 | aj

2tj
2t−� for 1 ≤ j ≤ r�. This implies that

the phase vector is in fact (� + 1)-divisible. Note that in the procedure above,
the phase vectors |Ψ(χi)〉 for which di = 0 need not be discarded: they can be
kept aside for possible later use.

Pipelining this procedure for � = 0, 1, . . . , t − 1 eventually yields a phase
vector |Ψ(χ)〉 where χ ∈ G∨ is such that all the coefficients a1, . . . , am are zero.
This means that χ depends only on h1, . . . , hn. We can therefore interpret this
phase vector as a phase vector over H.

5.2 Disequations

Now that we have a procedure returning phase vectors over H = Zpk1 × . . . ×
Zpkn , we can use these for generating linear disequations over Zpk along the
lines of Sect. 4. Here we discuss this more formally, while explaining how these
disequations can be solved for (s1, . . . , sn). This follows Ivanyos [22], but we take
the opportunity to fix a small error in step (a) and to provide a sharper degree
bound in step (d), leading to an improved complexity estimate. We stress that
these steps are entirely classical. We need the notion of near uniformity :

Definition 12. Given a probability distribution over a finite set A along with
a subset A′ ⊆ A, we say that the distribution is nearly uniform over A′ with
tolerance c ≥ 1 if Pr(a) = 0 when a ∈ A \ A′ and

1
c|A′| ≤ Pr(a) ≤ c

|A′|
when a ∈ A′.

For any finite abelian group (G,+) and tolerance c ≥ 1, we formally define
the problems RLD-s(G,c) and RLD-d(G, c), which are the search and decision
versions of the homogeneous random linear disequations problem:

Definition 13. RLD-s(G, c) is about finding any generator of a secret cyclic
subgroup 〈s〉 ⊆ G, given access to samples from a nearly uniform distribution
with tolerance c over the subset {χ ∈ G∨ |χ(s) 	= 1 } ⊆ G∨.

It should be clear from the definition that, indeed, one can only hope to find a
generator of 〈s〉 rather than s itself. This directly relates to the fact that the
corresponding linear disequations are homogeneous, see Remark 10.

Definition 14. Given unlimited access to characters χ ∈ G∨ which are consis-
tently sampled from either

– a nearly uniform distribution with tolerance c over {χ ∈ G∨ |χ(s) 	= 1 } for
a fixed s ∈ G \ {0}, or

– a nearly uniform distribution with tolerance c over the entirety of G∨,

the RLD-d(G, c) problem is about deciding which is the case.

668 W. Castryck and N. Vander Meeren

Of course, in our case, we will apply these definitions to the group

H = Zpk1 × · · · × Zpkn ,

and the element s in the above problems will take the value of the corresponding
component (s1, . . . , sn) of our hidden shift.
(a) From finding (s1,. . .,sn) to RLD-s(H , 3). To sample from

H∨
s1,...,sn

= {χ ∈ H∨ |χ(s1, . . . , sn) 	= 1 },

we use the following method. First, using the Kuperberg sieve from Sect. 5.1, we
generate a phase vector |Ψ(χ)〉 over H, where it is easy to check that χ ∈ H∨ is
uniformly random. We then measure this phase vector in the |±〉-basis. When
measuring ‘+’ we reject the sample and start over. When measuring ‘−’, we
return χj for some uniformly random j ∈ {0, 1, . . . , pk − 1} that is coprime to p.

Note that the overall probability of measuring ‘−’ is

1
|H|

∑

χ∈H∨

|1 − χ(s1, . . . , sn)|2
4

=
1 − δ(s1,...,sn),(0,...,0)

2
,

where δ·,· denotes the Kronecker delta. If we fail to measure ‘−’ for (say) 128
consecutive times then with overwhelming probability (s1, . . . sn) = (0, . . . , 0)
and we are done. Else, it follows from Bayes’ theorem that the above procedure
samples χ ∈ H∨ with probability

1
2ϕ(pk)|H|

pk−1∑

j=0
gcd(j,p)=1

|1 − χj(s1, . . . , sn)|2

which equals 0 if χ(s1, . . . , sn) = 1, i.e., if χ /∈ H∨
s1,...,sn

, and is contained in the
interval [1/2|H|, 2/|H|] in the other case; see [22, Lem. 2] (here ϕ denotes Euler’s
totient function). Therefore the resulting distribution is nearly uniform over
H∨

s1,...,sn
with tolerance 2|H|/|H∨

s1,...,sn
| ≤ 2p/(p−1) ≤ 3. Thus, by solving RLD-

s(H, 3) we can find a generator of the cyclic group 〈(s1, . . . , sn)〉; note that there
is a small error in the corresponding statement in Ivanyos’ paper [22, Prop. 1],
who reduces to RLD-s(H, 2) instead. Finding the exact value of (s1, . . . , sn) then
amounts to exhaustive search over a set of size 〈(s1, . . . , sn)〉 ≤ pk.

Remark 15. Testing whether a guess (s̃1, . . . , s̃n) is correct can be done as
explained in [9, §3], by transforming phase vectors |Ψ(χ)〉 into

1√
2
(|0〉 + χ(s̃1, . . . , s̃n)−1χ(s1, . . . , sn)|1〉)

before measuring it in the |±〉-basis. As soon as we measure ‘−’, the guess is
wrong. If we fail to measure ‘−’ for (say) 128 consecutive times then the guess
was correct with overwhelming probability.

Two Remarks on the Vectorization Problem 669

(b) From RLD-s(H , 3) to RLD-d(S , 6). For any subgroup S ⊆ H, we
obtain a distribution on S∨ by restricting the domain of the characters from H
to S. Depending on whether (s1, . . . , sn) ∈ S or not, this distribution is nearly
uniform over

S∨
s1,...,sn

= {χ ∈ S∨ |χ(s1, . . . , sn) 	= 1 } or the entirety of S∨

where the tolerance doubles at worst; see [22, Lem. 3]. This can be used to
reduce RLD-s(H, 3) to O(p(k1 + . . . + kn)) instances of RLD-d(S, 6) for varying
subgroups S ⊆ H, as follows. The first goal is to find a cyclic subgroup containing
(s1, . . . , sn). To this end, we will assume that H is non-cyclic; if H is already
cyclic, we can skip the next paragraph.

We start by setting S = H and repeat the following procedure. Choose an
isomorphism

ι : S
∼=−→ Z

pk′
1

× . . . × Z
pk′

r
(7)

with r ∈ {2, . . . , n} and all k′
i positive. Pick any two indices i, j ∈ {1, . . . , r} and

consider the p + 1 index-p subgroups

S(λi:λj) = ι−1{ (x1, . . . , xr) ∈ S |λixi + λjxj ≡ 0 mod p }

with (λi : λj) ∈ P
1(Zp) = { (a : 1) | a ∈ Zp } ∪ { (1 : 0) }. We distinguish between

two cases:

(i) if ι(s1, . . . , sn) has zero components at indices i and j then (s1, . . . , sn) ∈
S(λi:λj) for all (λi : λj),

(ii) if not, then (s1, . . . , sn) ∈ S(λi:λj) for exactly one (λi : λj).

Using at most 2 calls of the form RLD-d(S(λi:λj), 6) we can figure out whether
we are in case (i) or (ii), and in the latter case at most p−2 further calls identify
the unique (λi : λj) for which (s1, . . . , sn) ∈ S(λi:λj). In the former case we know

(s1, . . . , sn) ∈
⋂

(λi:λj)∈P1(Fp)

S(λi:λj) = ι−1{ (x1, . . . , xr) |xi ≡ xj ≡ 0 mod p }.

Thus we have replaced S by a subgroup of index p or p2.
Repeating this process eventually leads to a cyclic subgroup

S ∼= Zpk′

of H that contains (s1, . . . , sn). This means that 〈(s1, . . . , sn)〉 = pi−1S, where
i ∈ {1, . . . , k′} is minimal such that a call to RLD-d(piS, 6) reveals near unifor-
mity over the entirety of piS.
(c) Reduction to the case of free modules. Reconsider the isomorphism ι
from (7) and write k′ = maxi k′

i. Through composition of ι with

ε : Z
pk′

1
× · · · × Z

pk′
r

↪→ Z
r
pk′ : (x1, . . . , xn) �→

(
x1p

k′−k′
1 , . . . , xrp

k′−k′
r

)
(8)

670 W. Castryck and N. Vander Meeren

we can embed S in the free Zpk′ -module Z
r
pk′ . We turn our distribution on S∨

into a distribution on Z
r∨
pk′ as follows: for any sample χ we can write

χ ◦ ι−1 : (x1, . . . , xr) �→ e
2πi

(
a1x1

p
k′
1

+...+ arxr

p
k′

r

)

and we lift ai to ãi = ai+fpk′
i for some uniformly random f ∈ {0, . . . , pk′−k′

i −1}
in order to end up with a character

χ̃ : (x1, . . . , xr) �→ e
2πi

(
ã1x1+...+ãrxr

pk′

)

. (9)

The resulting distribution is nearly uniform over either
{

ψ ∈ Z
r∨
pk′

∣
∣
∣ ψ(ε(ι(s1, . . . , sn))) 	= 1

}
or all ofZr∨

pk′

depending on whether the distribution on S∨ was nearly uniform over S∨
s1,...,sn

or all of S∨. The tolerance is not affected. Thus the calls to RLD-d(S(λi:λj), 6)
from above can be replaced with calls to RLD-d(Zr

pk′ , 6).
(d) Solving RLD-d for free modules. From now on we simply assume that

H = Z
n
pk and s = (s1, . . . , sn)

and we recall Ivanyos’ method for solving RLD-d(H, 6); in order to use this
method in the above reduction, one needs to replace k ← k′, n ← r, s ← ε(ι(s)).
Along the way, we reduce the value D = (p − 1)((2p − 2)k − 1)/(2p − 3) from
Ivanyos’ paper by roughly a factor 2k−1.

Concretely, we let D = pk − 1 and consider the space

V = Z
D
p [x1,0, . . . , x1,k−1, . . . , xn,0, . . . , xn,k−1]

of polynomials in nk variables of total degree at most D, where each variable
occurs in degree at most p − 1; we can assume D ≤ nk(p − 1). The dimension of
V admits the crude estimate

dim V ≤
(

nk + D

nk

)

= O(nD)

(remember that p and k are treated as fixed constants), although for concrete
parameter sets it is more convenient to work with the precise formula

dim V =
nk∑

i=0

(−1)i

(
nk

i

)(
nk + D − ip

D − ip

)

, D = pk − 1 (10)

from [3, Thm. 5.5]. We refer to [14] for alternative upper bounds obtained from
Cramér’s theorem. For every character

χ : (x1, . . . , xn) �→ e
2πi

(
a1x1+...+anxn

pk

)

(11)

Two Remarks on the Vectorization Problem 671

that we sample, we add a new row to a matrix M with entries in Zp having
dim V columns, as follows. By applying the base-p expansion map

δ : Zpk → Z
k
p : x0 + x1p + . . . + xk−1p

k−1 �→ (x0, x1, . . . , xk−1)

component-wise to (a1, . . . , an) we end up with a vector of length nk: the cor-
responding row then consists of the evaluations of the monomials in V at this
vector. After sampling N characters, we have M ∈ Z

N×dimV
p .

If our distribution is nearly uniform over the entirety of H∨, then the kernel
of M describes polynomials in V that vanish at N nearly uniformly randomly
sampled points of Z

nk
p . Since V does not contain non-zero polynomials that

vanish everywhere, this kernel must eventually become trivial as N grows. To
estimate how large N must be taken, Ivanyos makes the following beautiful (but
crude) reasoning: if kerM contains a non-zero polynomial P then this polynomial
is non-vanishing in at least about pnk−D/(p−1) points, in view of [3, Cor. 5.26].
Therefore the probability that P gets removed when passing to the next sample,
and therefore the probability that dim kerM drops, is at least roughly

pnk−D/(p−1)

pnk
= p−D/(p−1).

So, incorporating our tolerance c = 6, we can expect about 6pD/(p−1) dim V =
O(nD) samples to be sufficient for revealing that ker M = {0}.

On the other hand, if all characters χ are non-vanishing at (s1, . . . , sn) then
the kernel is never empty. We quickly recall the argument, while highlighting
the source of the improved value of D: this comes from a sharp estimate on the
degree of the carry-polynomial

C(x, y) =
p−1∑

i=1

(1 − (x − i)p−1)
p−1∑

j=p−i

(1 − (y − j)p−1) ∈ Zp[x, y]

which for all a, b ∈ Zp satisfies C(a, b) = 1 if a + b ≥ p and C(a, b) = 0 if
a + b < p, thereby explaining its name. Ivanyos, who describes C(x, y) using
Langrange basis polynomials, provided the naive bound deg C(x, y) ≤ 2p−2, but
from [21, Thm. 1] applied to C(x+ p− 1, y) it follows that the degree is actually
p. Through a repeated use of this carry-polynomial, for any positive integer T it
is easy to construct polynomials Qi ∈ Zp[x1,0, . . . , x1,k−1, . . . , xT,0, . . . , xT,k−1]
of degree at most (deg C)i = pi such that

δ(a1 + . . . + aT) =
(
Q0

(
δ(a1), . . . , δ(aT)

)
, . . . , Qk−1

(
δ(a1), . . . , δ(aT)

))
(12)

for all a1, . . . , aT ∈ Zpk , see [22, Lem. 5]. Choosing T = (pk −1)n, for every tuple
(a1, . . . , an) coming from a character χ as in (11), we can use (12) to view

δ(a1s1 + . . . + ansn) = δ(a1 + . . . + a1︸ ︷︷ ︸
+ . . . + an + . . . + an︸ ︷︷ ︸

+ 0 + . . . + 0
︸ ︷︷ ︸

)

×s1 × sn × (T − s1 − . . . − sn)

672 W. Castryck and N. Vander Meeren

as the evaluation in (δ(a1), . . . , δ(an)) of a tuple of fixed but unknown polyno-
mials

P0, . . . , Pk−1 ∈ Zp[x1,0, . . . , x1,k−1, . . . , xn,0, . . . , xn,k−1],
of degrees satisfying deg Pi ≤ pi. So we know that χ(s1, . . . , sn) 	= 1 if and only
if the polynomial P obtained from

k−1∏

j=0

(P p−1
j − 1)

by reduction mod xp
1,0 − x1,0, . . . , x

p
n,k−1 − xn,k−1 vanishes at (δ(a1), . . . , δ(an)).

This is the desired non-zero element of V .

Remark 16. We can also view

δ(a1s1 + . . . + ansn) = δ(s1 + . . . + s1︸ ︷︷ ︸
+ . . . + sn + . . . + sn︸ ︷︷ ︸

+ 0 + . . . + 0
︸ ︷︷ ︸

)

×a1 ×an × (T −a1 − . . .−an)

as a tuple P ′
0, . . . , P

′
k−1 of known polynomials evaluated in the unknown entries

of (δ(s1), . . . , δ(sn)). The polynomial
k−1∏

j=0

(P ′p−1
j − 1)

then serves as an analogue of (5): gathering enough such polynomials should
allow one the recover the hidden shift (or rather the cyclic subgroup it generates)
using Gröbner bases, or via linearization. We expect this to run in time O(nD),
although a precise runtime analysis of this direct search approach seems hard.

Remark 17. As was suggested to us by Frederik Vercauteren, instead of using
base-p expansions it may be enlightening to work with Witt vector expan-
sions [32, §II.6], for which formulae for addition (i.e., analogues of the above
polynomials Qi) and multiplication have seen more systematic study. But we
will not pursue this track here.

5.3 Kuperberg Sieve, Again

Once s1, . . . , sn are found, we can define f ′
0, f

′
1 : Z2t1 ×· · ·×Z2tm → X by letting

f ′
0(g1, . . . , gm) = f0(g1, . . . , gm, 0, . . . , 0)

and
f ′
1(g1, . . . , gm) = f1(g1, . . . , gm, s1, . . . , sn).

This gives a new hidden shift problem with hidden shift (s′
1, . . . , s

′
m). We solve

this by rerunning Kuperberg’s sieve from Sect. 5.1. Concretely, we sieve until we
obtain (t−1)-divisible phase vectors. Measuring these in the |±〉-basis results in
linear disequations mod 2 in the least significant bits of s′

1, . . . , s
′
m. Of course,

these disequations can be seen as exact equations; also note that both ‘+’ and
‘−’ give rise to an equation. After solving this system of linear equations, we
repeat this process for (t− 2)-divisible phase vectors, obtaining the second most
significant bits. We continue until we have found all of (s′

1, . . . , s
′
m).

Two Remarks on the Vectorization Problem 673

5.4 Algorithm Summary and Complexity

The method is summarized in Algorithm 3 and determines the hidden shift
s = (s′

1, . . . , s
′
m, s1, . . . , sn) in two stages. In the pseudo-code, the unspecified

parameter ε can be increased to reduce the probability of false positives, i.e.,
to decrease the likeliness that a nearly uniform distribution over the entirety of
H∨ is not recognized as such (leading one to conclude that s ∈ S in Step 7 of
Algorithm 2 while in fact s /∈ S, and likewise for Step 14). The quantity dimV
refers to the formula from (10).

The cost of determining (s1, . . . , sn) is dominated by the runs of the decision
algorithm from Step 5.2(d) on the (free module versions of the) groups S(λi:λj)

from Step 5.2(b). There are O(n) such groups to be considered. In order to run
the decision algorithm, we need to prepare

O(nD) characters χ ∈ H∨
s1,...,sn

(13)

and transform them into characters

χ̃ ∈ Z
r∨
pk′ , r ≤ n, k′ ≤ k

Algorithm 1: Ivanyos’ decision algorithm
Input : H ∼= Zpk1 × · · · × Zpkn , p odd prime, k = k1 ≥ k2 ≥ · · · ≥ kn ≥ 1

(6 + ε)p(pk−1)/(p−1) dim V characters χ ∈ H∨ which are either
(i) nearly uniform over {χ ∈ H∨|χ(s) �= 1} for a fixed s ∈ H \ {0},
(ii) or nearly uniform over the entirety of H∨,

with tolerance 6 and where dim V is as in (10)
Output: the correct distribution: (i) or (ii)

1 Choose an isomorphism ι : H → Zpk1 × · · · × Zpkn ;

2 Initialize a matrix M over Zp with dim V columns ;
3 for χ in given list of characters do
4 Lift χ ◦ ι−1 to a character

χ̃ : Zn
pk → C

∗ : (x1, . . . , xn) �→ e
2πi

(
ã1x1+...+ãnxn

pk

)

as in (9) ;
5 Add row to M consisting of the evaluations of the dim V monomials of

degree at most p − 1 in each variable and total degree at most pk − 1 in

(δ(ã1), . . . , δ(ãn)) ∈ Z
nk
p

(component-wise base-p expansion) ;
6 end
7 if ker M �= {0} then
8 return “distribution (i)” ;
9 else

10 return “distribution (ii)” ;
11 end

674 W. Castryck and N. Vander Meeren

via the methods described in Steps 5.2(b-c); the costs of these transformations
are largely dominated by the estimates that follow.

Once we have the characters χ̃ at our disposal, we can build the O(nD) ×
O(nD) matrix M and compute its kernel, requiring O(nDω) time and O(n2D)
space, where ω ≈ 2.373 denotes the Alman–Williams constant [2]. Note that the
same characters (13) can be reused during each run of the decision algorithm.
Each character (13) is obtained by generating O(1) phase vectors over H via the
Kuperberg sieve from Sect. 5.1 and proceeding as in Step 5.2(a). In turn, each
phase vector over H requires us to combine O(mt) phase vectors over G, and
this combination takes O(mt) quantum gates, O(m) quantum space, O(mt−1+ω)
classical work and O(m2) classical space. Finally, generating a phase vector over
G costs two quantum Fourier transforms over G and one call to f0, f1 each.

If we measure the cost of the quantum Fourier transform by O(log2 |G|) time
and O(log |G|) space [28, §5.1], we arrive at the following overall estimates for
retrieving (s1, . . . , sn):

– O(nDmt(m+n)2) quantum gates, O(m+n) qubits and O(nDmt) oracle calls
to f0, f1,

– O(nDmt−1+ω + nnDω) classical time and O(m2 + n2D) classical space.

The cost of determining (s′
1, . . . , s

′
m) once (s1, . . . , sn) is found again amounts

to the combination of O(mt) phase vectors via Kuperberg’s sieve, but now over
the smaller group

Z2t1 × · · · × Z2tm .

Algorithm 2: Ivanyos’ search algorithm
Input : H ∼= Zpk1 × · · · × Zpkn , p odd prime, k = k1 ≥ k2 ≥ · · · ≥ kn ≥ 1

(6 + ε)p(pk−1)/(p−1) dim V nearly uniform χ ∈ H∨ satisfying χ(s) �= 1
for a fixed s ∈ H \ {0}, with tolerance 3 and with dim V as in (10)

Output: a generator of 〈s〉
1 Choose an isomorphism ι : H → Zpk1 × · · · × Zpkn ;

2 if n > 1 then
3 Pick i, j ∈ {1, . . . , n} with ki, kj maximal ;
4 repeat
5 Take new point (λi : λj) ∈ P

1(Zp) ;
6 S ← ι−1{ (x1, . . . , xn) | λixi + λjxj ≡ 0 mod p } ;

7 until s ∈ S (decide by running Algorithm 1 on group S and chars χ|S) ;
8 Find generator of 〈s〉 by running Algorithm 2 on group S and chars χ|S ;

9 else
10 Pick generator s0 of H ;
11 i ← 0 ;
12 repeat
13 i ← i + 1 ;

14 until s /∈ piH (decide using Algorithm 1 on group piH and chars χ|piH) ;

15 return pi−1s0 ;

16 end

Two Remarks on the Vectorization Problem 675

Algorithm 3: Finding hidden shifts in finite abelian 2tpk-torsion groups
Input : G = Z2t1 × · · · × Z2tm × Zpk1 × · · · × Zpkn , with p an odd prime,

t = t1 ≥ · · · ≥ tm ≥ 1, k = k1 ≥ · · · ≥ kn ≥ 1
Oracle access to phase vectors (|0〉 + χ(s)|1〉)/√

2 for known but
uniformly random χ ∈ G∨ and unknown but fixed s ∈ G

Output: s = (s′
1, . . . , s

′
m, s1, . . . , sn)

1 for � from 0 to t do
2 Determine r� maximal such that tr� ≥ t − �
3 end
4 if n > 0 then
5 L ← {} ; (will contain characters of H = Zpk1 × · · ·Zpkn)

6 repeat
7 Call for (r0 + 1)(r1 + 1) · · · (rt−1 + 1) phase vectors
8 for j from 0 to t − 1 do
9 Divide the phase vectors into groups of size rj + 1

10 Create a (j + 1)-divisible phase vector from every such group

11 end
12 sign ← measurement of resulting t-divisible |Ψ(χ)〉 w.r.t. |±〉 ;
13 if sign = − then
14 sample j from Z

∗
pk uniformly at random ;

15 L ← L ∪ {χj} ;

16 end
17 ((if failure for 128 consecutive times ⇒ (s1, . . . , sn) = (0, . . . , 0)))

18 until |L| = (6 + ε)p(pk−1)/(p−1) dim V ;
19 Find generator of 〈(s1, . . . , sn)〉 by running Algorithm 2 on L ;
20 Find (s1, . . . , sn) as in Remark 15 (requires few extra t-divisible |Ψ(χ)〉) ;

21 else
22 Call for (r0 + 1)(r1 + 1) · · · (rt−2 + 1) phase vectors
23 for j from 0 to t − 2 do
24 Divide the phase vectors into groups of size rj + 1
25 Create a (j + 1)-divisible phase vector from every such group

26 end
27 Apply Simon’s method to obtain s mod 2G
28 Apply Algorithm 3 on 2G ∼= Z2t1−1 × · · · × Z2tm−1

29 end

So this cost is dominated by the above estimates.
We stress that the implicit constants in the O-notations above strongly

depend on p, k, t, which are treated as fixed values. Finally, revisiting Remark 16,
we expect that a direct search variant would reduce the classical runtime from
O(nDmt−1+ω + nnDω) to O(nDmt−1+ω + nDω).

5.5 Hidden Shift Finding in Groups with Large 2tpk-torsion

An almost word-by-word copy of the discussion from [9, §5] shows that the
algorithm described in Sect. 5 naturally merges into Peikert’s “least-significant

676 W. Castryck and N. Vander Meeren

bit first” variant [29] of Kuperberg’s collimation sieve [25]. More concretely, all
one needs to do is make the following adjustments to [9, Alg. 3] and [9, Alg. 4]:
replace each occurrence of p with pk, and at the point where [9, Alg. 1] is invoked,
call the algorithm from Sect. 5 instead. This yields Theorem 1.

6 Conclusion

In this paper, we have presented two unrelated addenda to the existing literature
on cryptographic group actions.

The first addendum is the observation that, classically, the vectorization
problem does not in general admit a polynomial-time (or even sub-exponential
time) reduction to the parallelization problem. This contrasts with the quan-
tum setting, where both problems were shown to be computationally equiva-
lent [16,27]. It also contrasts with the special case of exponentiation in finite
cyclic groups, where convincing arguments in favour of the existence of a classi-
cal polynomial-time reduction were provided by Maurer and Wolf [26].

The second addendum is the remark that an algorithm due to Ivanyos [22] for
solving systems of linear disequations over Zpk (p prime, k a positive integer) can
be combined with a Kuperberg-style sieve in order to obtain a polynomial-time
quantum algorithm for solving the hidden shift problem in finite abelian 2tpk-
torsion groups (t a positive integer, p, k, t fixed) that involves mostly classical
work; in particular, the requirements in terms of quantum memory are very
limited. This extends the observation from [9, §3] from k = 1 to arbitrary fixed
values of k. Along the way, we fixed a small error in Ivanyos’ reduction and we
provided a sharper complexity estimate. More importantly, we hope that this
paper succeeds in bringing the intriguing problem of solving systems of linear
disequations to the attention of a wider audience.

As in [9], our algorithm can be merged with Kuperberg’s collimation sieve
into a single quantum algorithm for solving the hidden shift problem in any finite
abelian group G in time

poly(log |G|) · 2O(
√

log |2tpkG|),

where the main memory requirements are in terms of quantum read-only mem-
ory: only polynomially many qubits are needed. The consequences for group-
action based cryptography are as discussed in [9, Ex. 2.3]: the vectorization
problem is weakened by the presence of a large 2tpk-torsion group, however
ideal-class groups, as used by Couveignes [13], Rostovtsev–Stolbunov [31] and
in CSIDH [10], are well-protected against this, in view of the Cohen–Lenstra
heuristics. Nevertheless, wariness of this potential weakness is advisable.

Acknowledgements. The author names are in alphabetical order: see https://www.
ams.org//profession/leaders/CultureStatement04.pdf. The paper was written in the
context of the second-listed author’s participation in the Honours @ KU Leuven Pro-
gramme and was supported in part by the European Research Council (ERC) under

https://www.ams.org//profession/leaders/CultureStatement04.pdf
https://www.ams.org//profession/leaders/CultureStatement04.pdf

Two Remarks on the Vectorization Problem 677

the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment ISOCRYPT - No. 101020788), by CyberSecurity Research Flanders with reference
number VR20192203, and by the Research Council KU Leuven under grant number
C14/18/067. Both authors would like to thank the anonymous reviewers for helpful
comments.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: SODA 2020, pp. 522–539. SIAM (2021)

3. Assmus, E.F., Key, J.D.: Polynomial codes and finite geometries. In: Handbook of
Coding Theory, vol. I, II, pp. 1269–1343 (1998)

4. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
STOC’16, pp. 684–697. ACM, New York (2016)

5. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and impli-
cations. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272,
pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-
2 19

6. Brassard, G., Crépeau, C.: Non-transitive transfer of confidence: a perfect zero-
knowledge interactive protocol for SAT and beyond. In: Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, pp. 188–195 (1986)

7. Brassard, G., Crépeau, C., Yung, M.: Everything in NP can be argued in per-
fect zero-knowledge in a bounded number of rounds. In: Ausiello, G., Dezani-
Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372, pp. 123–136.
Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035756

8. Brassard, G., Yung, M.: One-way group actions. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-38424-3 7

9. Castryck, W., Dooms, A., Emerencia, C., Lemmens, A.: A fusion algorithm for
solving the hidden shift problem in finite abelian groups. In: Cheon, J.H., Tillich,
J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 133–153. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81293-5 8

10. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

11. Chenu, M., de La Morinerie: Supersingular group actions and post-quantum key
exchange. PhD thesis, Institut Polytechnique de Paris (2021)

12. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Crypt. 8(1), 1–29 (2014)

13. Couveignes, J.-M.: Hard homogeneous spaces (1997). IACR Cryptology ePrint
Archive, Report 2006/291. https://ia.cr/2006/291

14. Ellenberg, J.S., Gijswijt, D.: On large subsets of Fn
q with no three-term arithmetic

progression. Ann. Math. 185(1), 339–343 (2017)
15. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and

Orbit Coset in quantum computing. In: STOC’03, pp. 1–9. ACM, New York (2003)

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/978-3-030-03326-2_19
https://doi.org/10.1007/BFb0035756
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/978-3-030-81293-5_8
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://ia.cr/2006/291

678 W. Castryck and N. Vander Meeren

16. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the
DLP and CDHP for group actions. Math. Crypt. 1(1), 40–44 (2021)

17. Gnilke, O.W., Zumbrägel, J.: Cryptographic group and semigroup actions. In:
WCC 2022, Designs, Codes and Cryptography. Springer (2022)

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
STOC’96, pp. 212–219. ACM (1996)

19. Hallgren, S.: Quantum Fourier sampling, the hidden subgroup problem, and
beyond. PhD thesis, University of California, Berkeley (2000)

20. Helfgott, H.A.: Isomorphismes de graphes en temps quasi-polynomial [d’après
Babai et Luks, Weisfeiler-Leman,...]. Astérisque, (407), pp.135–182 (2019).
Séminaire Bourbaki (exp. no. 1125)

21. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV and
BFV. In: PETS 2021 (3), pp. 246–264. De Gruyter (2021)

22. Ivanyos, G.: On solving systems of random linear disequations. Quantum Inf. Com-
put. 8(6–7), 579–594 (2008)

23. Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: a
candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.) TCC
2019. LNCS, vol. 11891, pp. 251–281. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36030-6 11

24. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

25. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC 2013, volume 22 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pp. 20–34 (2013)

26. Maurer, U., Wolf, S.: The relationship between breaking the Diffie-Hellman proto-
col and computing discrete logarithms. SIAM J. Comput. 28(5), 1689–1721 (1999)

27. Montgomery, H., Zhandry, M.: Full quantum equivalence of group action DLog
and CDH, and more. In: Asiacrypt, Lecture Notes in Computer Science. Springer
(2022)

28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

29. Peikert, C.: He gives C-sieves on the CSIDH. In: Eurocrypt 2, volume 12106 of
Lecture Notes in Computer Science, pp. 463–492 (2020)

30. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space (2004). Cornell University arXiv https://arxiv.
org/abs/quant-ph/0406151

31. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies (2006).
IACR Cryptology ePrint Archive, Report 2006/145. https://ia.cr/2006/145/

32. Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics.
Springer-Verlag, 1979. Translated from the French by Marvin Jay Greenberg

33. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

34. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

35. Smith, B.: Pre- and post-quantum Diffie-Hellman from groups, actions, and iso-
genies. In: WAIFI 2018, volume 11321 of Lecture Notes in Computer Science, pp.
3–40 (2018)

36. Stolbunov, A.: Cryptographic schemes based on isogenies. PhD thesis, Norwegian
University of Science and Technology (2012)

https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151
https://ia.cr/2006/145/

Efficient IBS from a New Assumption
in the Multivariate-Quadratic Setting

Sanjit Chatterjee and Tapas Pandit(B)

Department of Computer Science and Automation, Indian Institute of Science
Bangalore, Bengaluru, India
{sanjit,tapas}@iisc.ac.in

Abstract. Since its introduction in 1984, identity-based signature (IBS)
schemes have been studied in different settings. But, there are very few
constructions available in the multivariate quadratic polynomials (MQ)
setting. The existing IBS schemes in the MQ-setting are either less effi-
cient or do not have any formal security reduction. In this paper, we
investigate the problem of constructing an efficient and provably secure
IBS scheme in the MQ-setting. Our starting point is the recent IBS
scheme of Chen et al. which is very efficient but has some issues related
to correctness and lacks a formal justification of security. We propose
a modified construction that addresses the limitations of the Chen et
al. proposal while retaining its efficiency. For the security reduction, we
introduce a new cryptographic parameterized assumption in the MQ-
setting. Our modified proposal allows any arbitrary bit string to be an
identity and the size of the public parameters does not depend on the
size of the universe of identities in contrast to the original proposal.
Therefore, our modified scheme works as an unbounded IBS. Finally, we
provide some justification towards the intractability of the newly intro-
duced assumption.

Keywords: Identity-based signature · Multivariate cryptography ·
Post-quantum security · Provable security

1 Introduction

Shamir [Sha84] introduced the concept of identity-based cryptography to sim-
plify certificate management process of the traditional public key cryptosystems
[DH76]. In the same paper, he illustrated an identity-based signature (IBS)
scheme in the RSA-setting. Since then, several IBS schemes [CC03,BLMQ05]
have been proposed based on different cryptographic assumptions.

It is widely known that all the deployed public-key cryptosystems will be
insecure, once a full-scale quantum computer is ready. Therefore, the research
community is now involved in the race of designing cryptosystems in the post-
quantum setting. Multivariate quadratic polynomials (MQ) setting is an attrac-
tive choice for quantum-safe signature schemes. In fact, four multivariate signa-
tures Rainbow, LUOV, GeMSS and MQDSS were shortlisted for the 2nd round
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 679–696, 2022.
https://doi.org/10.1007/978-3-031-22912-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_30

680 S. Chatterjee and T. Pandit

of the NIST PQC standardization competition [NIS19], and among them Rain-
bow [DS05] and GeMSS were selected as a finalist and alternative candidate
respectively for the 3rd round of evaluation [NIS20].

In this paper, we are interested to study post-quantum identity-based sig-
nature in the MQ-setting. In the literature, only a handful of IBS schemes
[STX13,Luy19,CLND19,CDP21] have been designed in the MQ-setting. The
first two proposals hardly have any practical relevance as both the signatures con-
tain the UOV/Rainbow public-key which is rather large. On the other hand, the
proposal in [CLND19] is very efficient. In fact, when instantiated using UOV as
the underlying primitive, signature size as well as signing and verification time for
the IBS is comparable to that of UOV. However, the proposal in [CLND19] nei-
ther ensures correctness (see Sect. 3) nor provides any formal security argument.
Most recently, Chatterjee et al. [CDP21] proposed an identity-based signature
scheme in the MQ-setting following the style of MQDSS signature [CHR+16].
Although the authors provided a formal security reduction of their scheme, the
size of the signature is proportional to the size of the 3-pass version of MQDSS
which is considerably less efficient than UOV and Rainbow signatures. So, all
these limitations in the existing proposals indicate the relative difficulty of con-
structing a secure IBS in the MQ-setting with efficiency comparable to that of
UOV.

Our Result. In this paper, we make some progress on this problem. Basically,
we revisit the proposal of Chen at al. [CLND19] and modify it to resolve the
issues (Sect. 3) related to the correctness. In contrast to the original proposal,
our modification (Sect. 4) allows any arbitrary bit string to be an identity and
the size of the public parameters does not depend on the size of the universe.
Therefore, our construction essentially works as an unbounded identity-based
signature. Further, in this modified proposal, we make some improvement in
terms of efficiency as well.

As mentioned earlier in this section, the original proposal of Chen et al. does
not have any formal security analysis. We provide a formal treatment (Sect. 4.1)
of security of our modified proposal in the random oracle model. For the secu-
rity reduction, we introduce a new parameterized assumption (Sect. 2.2) in the
MQ-setting. We show that a special case1 of the assumption is equivalent (Propo-
sition 1) to the WMQ-problem [SSH11] and also give some justification towards
the intractability of the general case (Sect. 5).

2 Preliminaries

The basic notations, like oil-and-vinegar polynomials, different classes of polyno-
mials and a special UOV-map [CLND19] are defined in this section. The hardness
assumptions, and the syntax and security of identity-based signature scheme are
also provided in this section.

1 Security of our proposal relies on this special case, if the attacker is not given any
access to the key extraction oracle.

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 681

2.1 Notations and Background

Notations. For a set X, the notation x
U←− X denotes that x is drawn uniformly

at random from X. For a, b ∈ N ∪ {0}, define [a, b] = {x ∈ N ∪ {0} : a ≤ x ≤ b}
and when b ∈ N, define [b] = [1, b].
Oil-and-Vinegar Polynomials. Suppose v, m and n are three positive integers
such that n = v+m and they would be called the number of vinegar variables, oil
variables and total variables respectively. Without loss of generality, we assume
that out of n variables, the first v variables are vinegar variables and the rest
m variables are oil variables. If x = (x1, . . . , xv, xv+1, . . . , xv+m), then we write
x = (xv,xm), where xv = (x1, . . . , xv) and xm = (xv+1, . . . , xv+m). The same
integer m also represents the number of polynomials in the context of system of
equations.

By a quadratic polynomial map F : Fn → F
m of oil-and-vinegar type, we

mean F = (f (1), . . . , f (m)) and each f (k) : Fn → F is a quadratic polynomial of
oil-and-vinegar type:

f (k)(x) =
v∑

i=1

n∑

j=v+1

α
(k)
i,j · xixj +

v∑

i=1

v∑

j=1

β
(k)
i,j · xixj +

n∑

i=1

γ
(k)
i · xi + δ(k) (1)

where F is a field and α
(k)
i,j , β

(k)
i,j , γ

(k)
i , δ(k) ∈ F for k ∈ [m].

For a quadratic polynomial map F : Fn → F
m and a fixed xv ∈ F

v, define a
map Fxv

: Fm → F
m by Fxv

(xm) = F(xv,xm) for all xm ∈ F
m. So, for y ∈ F

m,
its preimage set under Fxv is given by:

F−1
xv

(y) = {zm ∈ F
m : Fxv

(zm) = y}
= {zm ∈ F

m : F(xv,zm) = y}.

Non-singular Matrices. The notation, GLn(F) denotes the collection of all
n × n non-singular matrices over F. When n = v + m, we can write an n × n
matrix B over F through its block representation as follows

B =
[
B11 B12

B21 0

]
(2)

where B11, B12 and B21 are v × v, v × m and m × v matrices respectively,
and 0 represents m × m zero matrix. Note that if F : F

n → F
m is an oil-

and-vinegar map, then F ◦ B : Fn → F
m will be of oil-and-vinegar type. Let

G̃Ln(F) = {B ∈ GLn(F) : B can be written as in Eq. (2)}.

Invertible Affine Maps. By invertible affine map, we mean T = (A,a) ∈
GLn(F) × F

n. For x ∈ F
n, define T (x) := Ax + a. So, T is a map from F

n onto
F

n. We use the notation invAff(Fn,Fn) to denote the set of all invertible affine
maps from F

n onto F
n.

Classes of Polynomial Maps. Let Fuov(Fn,Fm) be the collection of all
quadratic polynomial maps F : F

n → F
m of oil-and-vinegar type. Define

682 S. Chatterjee and T. Pandit

Puov(Fn,Fm) = {F ◦T : F ∈ Fuov(Fn,Fm)∧T ∈ invAff(Fn,Fn)}. Let P(Fn,Fm)
be the collection of all quadratic polynomial maps P : F

n → F
m. Obviously,

Puov(Fn,Fm) is a subset of P(Fn,Fm).

Special UOV-Maps [CLND19]. Usually, the key-pair of a UOV-system consists
of a public UOV-map P = F ◦ T ∈ Puov(Fn,Fm) and a secret key (F , T) ∈
Fuov(Fn,Fm) × invAff(Fn,Fn), where the coefficients of each map f (k) and the
entries in T are constant. In this work, we consider a special type of central
map and affine map which are described next. In the following, we first define
F̃ = (f (1), . . . , f (m)) and T̃ = (A,a) respectively, where the coefficients of each
f (k) and the entries of the matrix A and the vector a involved in T are not
constant, rather linear maps in the variables in z := (z1, . . . , zd) for some positive
integer d. In fact, for x = (x1, . . . , xn) ∈ F

n, f (k) for k ∈ [m] and T̃ = (A,a) are
given by

f (k)(x) =
v∑

i=1

n∑

j=v+1

α
(k)
i,j (z) ·xixj +

v∑

i=1

v∑

j=1

β
(k)
i,j (z) ·xixj +

n∑

i=1

γ
(k)
i (z) ·xi+δ(k)(z)

(3)

(T̃ (x))i :=
n∑

j=1

Ai,j(z) · xj + ai(z) for i ∈ [n] (4)

where α
(k)
i,j , β

(k)
i,j , γ

(k)
i , δ(k), Ai,j and ai are random linear maps in z1, . . . , zd.

When α
(k)
i,j , β

(k)
i,j , γ

(k)
i and δ(k) are evaluated at a fixed z, then f (k) : Fn → F

will become a quadratic oil-and-vinegar polynomial and hence F̃ : Fn → F
m will

be a central oil-and-vinegar map. Similarly, when Ai,j and ai are evaluated at
a fixed z, then T̃ : Fn → F

n will become an affine map. The public parameter
P̃ = (p(1), . . . , p(m)) is defined by

P̃ := F̃ ◦ T̃ = (f (1) ◦ T̃ , . . . , f (m) ◦ T̃). (5)

Note that the coefficients of 2-degree monomials, 1-degree monomials and con-
stant term in each p(k) are polynomials in z1, . . . , zd of degree 3, 2 and 1 respec-
tively. Similarly as above, when the coefficients of each p(k) are evaluated at a
fixed z, then P̃ : Fn → F

m will be a public oil-and-vinegar map. To summarize,
for a fixed z, the maps F̃ : Fn → F

m, T̃ : Fn → F
n and P̃ : Fn → F

m consti-
tute an instantiation of UOV-maps, which will be denoted by F̃z : Fn → F

m,
T̃z : Fn → F

n and P̃z : Fn → F
m respectively in the rest of this paper.

2.2 Hardness Assumption

In this section, we recall the MQ-problem and some variant of it. We also intro-
duce a new parameterized problem based on which we provide a security reduc-
tion of our proposed IBS construction in Sect. 4.

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 683

Definition 1 (MQ-Problem). Given (P,y∗) ∈ P(Fn,Fm)×F
m, find an x∗ ∈

F
n such that y∗ = P(x∗). The advantage of an algorithm A in breaking the MQ-

Problem is defined by

AdvMQ
A (κ) = Pr

[
P(x∗) = y∗ : (P,y∗) U←− P(Fn,Fm) × F

m; x∗ ← A(P,y∗)
]
.

We say the MQ-Problem is intractable, if for every quantum PPT algorithm A,
the advantage AdvMQ

A (κ) is a negligible function in κ.

Now, consider a special case of the MQ-Problem which we call the WMQ-
Problem. The authors [SSH11] considered this problem for proving security of
their salted version of UOV-signature.

Definition 2 (WMQ-Problem[SSH11]). Given (P,y∗) ∈ Puov(Fn,Fm)×F
m,

find an x∗ ∈ F
n such that y∗ = P(x∗). The advantage AdvWMQ

A (κ) of an algo-
rithm A in breaking the WMQ-Problem is defined by

Pr
[
P(x∗) = y∗ : (P,y∗) U←− Puov(Fn,Fm) × F

m; x∗ ← A(P,y∗)
]
.

We say the WMQ-Problem is intractable, if for every quantum PPT algorithm
A, the advantage AdvWMQ

A (κ) is a negligible function in κ.

The following newly introduced problem is no harder than the WMQ prob-
lem.

Definition 3 (ν-Parameterized Weak Multivariate Quadratic (PWMQ)
Problem). For a non-negative integer ν, we define the problem instance as follows:
Let d be a positive integer.

1. Consider F̃ = (f (1), . . . , f (m)), T̃ = (A,a) and P̃ = (p(1), . . . , p(m)) as defined
in Eqs. (3), (4) and (5) respectively.

2. Pick a random subset V ⊂ F
d with |V | = ν such that T̃z is non-singular2 for all

z ∈ V .
3. Pick z∗ U←− F

d \ V such that T̃z∗ is non-singular.
4. For each z ∈ V , choose Rz

U←− G̃Ln(F) and compute F̃z and T̃z . Then, set
Fz := F̃z ◦ Rz , Tz := (Rz)−1 ◦ T̃z and SKz := (Fz , Tz).

5. Pick y∗ U←− F
m and set D :=

(
P̃, (z,SKz)z∈V ,z∗,y∗

)
.

Given D, find x∗ ∈ F
n such that P̃z∗(x∗) = y∗. The advantage of an algorithm A

in breaking the ν-PWMQ problem is defined by

Advν-PWMQ
A (κ) = Pr

[
P̃z∗(x∗) = y∗ : x∗ ← A(D)

]
.

We say the ν-PWMQ problem is intractable, if for every quantum PPT algorithm
A, the advantage Advν-PWMQ

A (κ) is a negligible function in κ.

A special case of this problem is for ν = 0. It is useful for arguing security
of the proposed construction against an attacker who does not have access to
the key-extract oracle. In Sect. 5, we discuss about the plausible intractability of
this new parameterized problem.
2 If we write ˜Tz = (Az ,az), then ˜Tz is singular if and only if Az is singular.

684 S. Chatterjee and T. Pandit

2.3 Identity-Based Signature

Definition 4 (IBS Scheme). It consists of four PPT algorithms - IBS.Setup,
IBS.Extract, IBS.Sign and IBS.Ver.

– IBS.Setup: It takes as input a security parameter κ and outputs public param-
eters and master secret key pair (PP,MSK).

– IBS.Extract: It takes as input public parameters PP, master secret key MSK
and an identity id ∈ U , where U is the universe of identities, and outputs a
signing key SKid.

– IBS.Sign: It takes as input public parameters PP, a message m ∈ M, where
M is the message space, and a secret key SKid and outputs a signature σ.

– IBS.Ver: It takes as input public parameters PP, a message m, a signature σ
and an identity id. It outputs a value 1, if σ is a valid signature for (m, id),
else it outputs 0.

Correctness: For all (PP,MSK) U←− IBS.Setup(1κ), for all id ∈ U , SKid
U←−

IBS.Extract(PP,MSK, id) and for all m ∈ M, it is required that

IBS.Ver(PP,m, IBS.Sign(PP,m,SKid), id) = 1.

Next, we define the standard security notion of IBS, called existentially
unforgeable under chosen-key and chosen-message attack (EUF-ID-CMA).

Definition 5 (EUF-ID-CMA). An IBS scheme is said to be EUF-ID-CMA
secure, if for all quantum PPT algorithms A, the advantage

AdvEUF-ID-CMA
A (κ) := Pr

[
ExpEUF-ID-CMA

A (κ) = 1
]

in ExpEUF-ID-CMA
A (κ) (defined in Fig. 1) is a negligible function in κ, where A

is provided access to signature oracle OSign and key-extract oracle OExtr at most
polynomial number of times, and Qextr is the set of identities on which key-
extract queries were made and Qsign is the set of message-identity pairs on which
signature queries were made.

Fig. 1. Experiment for EUF-ID-CMA of IBS scheme

EUF-nID-CMA. The security notion, existentially unforgeable under no-key and
chosen-message attack (EUF-nID-CMA) can be defined similarly as EUF-ID-
CMA, except that no key-extract oracle is provided to the adversary.

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 685

3 Revisiting the IBS of Chen et al.

In [CLND19], the authors proposed two IBS constructions: the first construc-
tion, called ID-UOV, uses UOV-style signature generation [KPG99], whereas
the second one, called ID-Rainbow, uses the Rainbow-style signature generation
[DS05]. The novelty of their constructions lies in the key-extraction for different
identities. Here, we mainly discuss ID-UOV as ID-Rainbow has a similar struc-
ture. The universe of identities is considered to be U = {U1, . . . , UN} for some
positive integer N . For each user Ui, a unique identifier z = (z1, . . . ,zd) ∈ F

d

is assigned, where d is some positive but fixed integer. [CLND19] did not pro-
vide any details on the derivation of these public identifiers but from the scheme
description one can surmise that the size of U can be at most a polynomial in
the security parameter.

The master secret key MSK consists of the random linear maps α
(k)
i,j (z),

β
(k)
i,j (z), γ(k)

i (z), δ(k)(z), Ai,j(z) and ai(z) as defined in Eqs. (3) and (4). These
random linear maps basically represent the expressions for the central map F̃ and
the affine map T̃ . For each user with unique identifier z, a non-singular linear
transformation3 Rz (having the form as defined in Eq. (2)) is also considered
as part of the MSK. This linear transformation works as a randomizer while
extracting the secret key for a user having the identifier z. The public map P̃
defined in Eq. (5) is included as part of the public parameters PP.

For a user U with the unique identifier z, the secret key SKU is extracted as
follows. Evaluate each linear map appearing in MSK at z to obtain the concrete
secret maps F̃z and T̃z . Then compute Fz = F̃z ◦ Rz and Tz = (Rz)−1 ◦
T̃z , and assign SKU = (Fz , Tz) to the user U . This key basically plays the
role of a particular instance of UOV, where the corresponding public key is
PKU = P̃z = F̃z ◦ T̃z . Note that P̃z can be computed by evaluating each
coefficient of the polynomials involved in the public parameter P̃ at z. The
signature generation and verification process are the same as that of the UOV
scheme using (SKU ,PKU) as the corresponding UOV key-pair.

Problem of Non-singularity. We point out an issue related to the non-
singularity of T̃z that has a bearing on the correctness of the scheme. A nec-
essary condition for the scheme to function properly is that (SKU ,PKU) must
be valid for all the registered users U ∈ U . This means, the linear transformation
Tz must be non-singular, which essentially implies that T̃z must be non-singular.
Note that for z ∈ F

d, with non-negligible probability4, say, μ, T̃z will be non-
singular. If all the users U ∈ U get registered, then the corresponding key-pairs

3 Although the authors considered a non-singular randomizer for each user, they, per-
haps erroneously also mentioned that KDC will compute the randomizer via ID
without detailing how, see [CLND19, pages 4 and 6].

4 The formula in [Lev05] says that the probability of ˜Tz being non-singular is roughly
(1−1/q), where q is the size of the underlying field F. The formula needs the entries of
˜Tz to be uniformly and independently distributed over F, which is assumed to be the
case in practice. A similar assumption was also considered in [SSH11,Beu21,Beu22]..

686 S. Chatterjee and T. Pandit

(SKU ,PKU) will all be valid UOV key-pairs with probability approximately μN .
This, in turn, implies that for all users U ∈ U with unique identifier z, all the
corresponding T̃z ’s will be non-singular with probability roughly μN .

For the correctness of ID-UOV, one has to ensure that μN is non-negligible in
κ. Thus, the total number of identities N cannot be exponential5. Further, for a
given N (polynomial in κ), whether μN is non-negligible or not will depend upon
the size of F. So, it cannot be conclusively said that the universe considered in
[CLND19] supports even a polynomial (in κ) number of identities. However, for
real-world applications, one will prefer an explicit large universe construction.
Finally and most importantly, the authors did not provide any formal security
argument for their proposal.

4 Modified Construction and Its Security

In this section, we propose an IBS scheme by modifying the original construction
of Chen et al. [CLND19]. This modified IBS scheme not only resolves the issues
of non-singularity discussed above, but also provides some additional advantages
such as registering new arbitrary identities to the existing IBS system. Further,
our IBS proposal can handle any binary string as identity, i.e., the universe of
identities is considered to be {0, 1}∗. We use a cryptographic hash function to
assign a unique value from F

d to each identity. Following the style of salted
UOV [SSH11], we introduce random token and random salt in key-extraction
and signature-generation respectively. Formally, the description of the scheme is
given below.

IBS.Setup(κ). Let U = {0, 1}∗ be the universe of identities. Let H : U ×
TokSpac → F

d and Huov : M × SaltSpac → F
m be cryptographic hash

functions, where M, TokSpac = {0, 1}�t and SaltSpac = {0, 1}�s denote the
message space, token space and salt space respectively. Note that to avoid
the birthday attack, |F|d should be chosen sufficiently large. In fact, for 128-
bit security, we want |F|d to be at least 2256. Pick F̃ = (f (1), . . . , f (m)),
T̃ = (A,a) and P̃ = (p(1), . . . , p(m)) as defined in Eqs. (3), (4) and (5) respec-
tively. The public parameters and master secret key are given as follows:

PP =
(
P̃,H,Huov, 	t, 	s

)

MSK =
(
{α

(k)
i,j (z), β(k)

i,ι (z)}(k,i,j,ι)∈[m]×[v]×[v+1,n]×[v],

{γ
(k)
i (z), δ(k)(z)}(k,i)∈[m]×[n], {Ai,j(z), ai(z)}i,j∈[n]

)
.

Note that each of the components involved in MSK is a polynomial in z of
degree 1 as mentioned in Sect. 2.1.

5 This can also be viewed from the fact that MSK has to contain the randomizer Rz

for each user with unique identifier z.

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 687

IBS.Extract(PP,MSK, id ∈ U). The following is the procedure for generating
the secret key SKid:
1. choose tokid

U←− TokSpac
2. compute z = H(id, tokid)
3. if T̃z is singular, then go to step 1
4. pick a matrix Rz

U←− G̃Ln(F)
5. set Fz := F̃z ◦ Rz and Tz := (Rz)−1 ◦ T̃z

6. return SKid := (tokid,Fz , Tz).
IBS.Sign(PP,m,SKid). Set F := Fz and T := Tz and then perform the following

steps:
1. choose x′

v
U←− F

v

2. r
U←− SaltSpac

3. y = Huov(m||r)
4. if F−1

x′
v
(y) = ∅, go to step 2

5. x′
m

U←− F−1
x′

v
(y)

6. x = T −1(x′
v,x′

m)
7. set σ = (x, r)
8. return σm,id = (tokid, σ).

IBS.Ver(PP,m, id, σm,id). Here σm,id = (tokid, σ) and σ = (x, r). Then, compute
z = H(id, tokid) and P̃z . The signature is accepted if P̃z (x) = Huov(m||r),
else rejected.

Here we point out some features of our proposed IBS.

1. The matrix Az (as part of T̃z) is non-singular with probability roughly (1 −
1/q) (see footnote 4), where q = |F|. So, the expected number of executions
of the loop in IBS.Extract will be roughly q/(q − 1). Note that the additional
random tokens involved in IBS.Extract ensures the non-singularity of T̃z for
each id with z = H(id, tokid) unlike the proposal of [CLND19].

2. Further, in the original proposal of Chen et al., the randomizer Rz for each
user with unique identifier z is part of the MSK. This means, their proposal
has the drawback of storing additional n2 · N field elements corresponding to
the randomizers in MSK, where N = |U|. In contrast for key extraction, we
sample every time a fresh non-singular matrix Rz with z = H(id, tokid). So,
we do not need to store the Rz for each user with identifier z. Hence, our
scheme improves upon the efficiency of the original proposal. Note that, our
scheme allows the creation of multiple secret keys for the same identity.

3. Unlike [CLND19], our proposal supports any arbitrary bit string to be identity
and the size of public parameters does not depend on the size of the universe.
Therefore, our proposal gives an unbounded identity-based signature scheme.

4. Note that the size of the signatures and the computations involved in sig-
nature generation and verification of our proposal are more or less the same
as that of the UOV (or Rainbow). Hence, the efficiency of the proposed con-
struction is comparable to that of the underlying primitive.

688 S. Chatterjee and T. Pandit

Correctness. By the construction, P̃ = F̃ ◦ T̃ . Therefore, for all z ∈ F
d, we have

P̃z = F̃z ◦ T̃z . Since Rz is non-singular, we have P̃z = F̃z ◦ T̃z = Fz ◦ Tz . By the
choice of Rz , Fz will be of oil-and-vinegar type. Also note that for all identities
id ∈ U with z = H(id, tokid), T̃z is always non-singular (thanks to point (1.)).
Therefore, (P̃z , (Fz , Tz)) is a valid UOV key-pair. Hence, correctness follows
from that of the salted UOV-signature [SSH11].

4.1 Security Argument

In this section, we argue security of the proposed IBS construction under the
ν-PWMQ problem in the random oracle model. Although we closely follow the
proof strategy of Sakumoto et al. [SSH11], ours is a bit involved as we handle
random oracle for tokens and key-extract oracle additionally. In the following,
we state and prove the security of the proposed IBS construction.

Theorem 1. If the νext-PWMQ problem is intractable, then the proposed IBS
is EUF-ID-CMA secure in the classical random oracle model, where νext is the
number of key-extract queries.

Proof. Let A be a quantum PPT adversary which can break the EUF-ID-CMA
security of the signature scheme. An instance D :=

(
P̃, (z,SKz)z∈V ,z∗,y∗

)
of

the νext-PWMQ problem is given to a simulator S and the goal of S is to find
x∗ ∈ F

n such that P̃z∗(x∗) = y∗. We treat both the hash functions H and
Huov as random oracles. Let the numbers of oracle queries made by A to H
and Huov be νid and νuov respectively. Let Qext be the set for keeping identity-
token pairs involved in the key-extract oracle. Let Qtok be the set for keeping
the information of token for each identity involved in the sign oracle. Initially,
Qext = ∅ and Qtok = ∅. Let νs be the number of signature queries made by A.
The simulator maintains two lists Listid and Listuov for keeping records of the
forms: (id||tok,H(id||tok)) and (m||r,Huov(m||r)) respectively. The simulator S

picks (i∗, j∗) U←− [νid +νs]× [νuov +νs] as a guess for the forgery identity id∗ and
message m∗ respectively.

The identity space U is partitioned into two disjoint sets Uλ and U \Uλ based
on a biased coin having the probability of head λ following Coron’s partitioning
technique [Cor00,CDP21]. The exact value of λ will be set later. The decision
whether an identity id belongs to Uλ is taken as follows. First, toss the biased
coin and then id is assigned to Uλ if and only if the outcome is head. In the
simulation, the following strategy is used to answer key-extract and sign oracle
query.

1. For a key-extract query on id, if id ∈ Uλ, then abort.
2. For a sign query on (m, id), do the following.

(a) If id ∈ Uλ, the query is answered by manipulating Huov oracle as done in
the proof of salted UOV [SSH11].

(b) Otherwise, the query is answered by running the original sign algorithm
using the corresponding secret key.

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 689

The simulator S answers all the oracle queries (that may appear in arbitrary
order) in the following manner.
– Hash-oracle(H). The simulator handles the i-th query on idi||toki as follows.

It checks whether (idi||toki, ∗) ∈ Listid.
1. If yes, then returns H(idi||toki).
2. Otherwise.

(a) If i = i∗, it sets Listid := Listid ∪ {(idi||toki,z
∗)} and returns z∗.

(b) Else, it picks zi
U←− F

d, sets Listid := Listid ∪ {(idi||toki,zi)} and
returns zi.

– Key-Extract-oracle. Let id be the query identity. Then S answers key-
extract query as follows. It checks whether id �∈ Uλ.
1. If yes, it performs the following steps.

(a) It chooses tok
U←− TokSpac.

(b) If (id||tok, ∗) ∈ Listid, it aborts.
(c) Else, it chooses z from V and then sets Listid := Listid ∪ {(id||tok,z)},

V := V \ {z} and Qext := Qext ∪ {id||tok}.
(d) Returns the key SKid := (tok,SKz)6.

2. Otherwise, it aborts.
– Hash-oracle(Huov). The simulator handles the j-th query on mj ||rj as fol-

lows. It checks whether (mj ||rj , ∗) ∈ Listuov.
1. If yes, then returns Huov(mj ||rj).
2. Otherwise.

(a) If j = j∗, sets Listuov := Listuov ∪ {(mj ||rj ,y
∗)} and returns y∗.

(b) Else, it picks yj
U←− F

m, sets Listuov := Listuov ∪ {(mj ||rj ,yj)} and
returns yj .

– Sign-oracle. The simulator answers the signature oracle query on m||id as
follows. It checks whether id ∈ Uλ.

• If yes, it performs the following steps.
1. If id||∗ �∈ Qtok, then it chooses tok

U←− TokSpac and sets Qtok :=
Qtok ∪ {id||tok}.

2. Now, there exists a token tok ∈ TokSpac such that id||tok ∈ Qtok.
3. It then calls its internal oracle H on id||tok and let z be the answer.
4. Picks σ = (x, r) U←− F

n × SaltSpac.
5. If (m||r, ∗) ∈ Listuov, it aborts, otherwise updates Listuov with

(m||r, P̃z (x)).
6. Returns σm,id = (tok, σ).

• Otherwise, the simulator checks whether there exists a token tok such
that id||tok ∈ Qext.
1. If yes, then answers by running the original sign algorithm using the

corresponding SKid = (tok,SKz), where z = H(id||tok)7.
6 Note that in the construction, tok is not distributed uniformly, but it can be made

negligibly-close to uniform distribution, if q is chosen sufficiently large. Sakumoto et
al. [SSH11] also faced a similar issue while simulating salts in their reduction and
they implicitly assumed that A cannot distinguish the difference. Nonetheless, we
assume that A cannot distinguish between a uniform token and the token involved
in the actual key-extraction.

7 If for an identity id, there are many tokens in Qext then consider any one of them.

690 S. Chatterjee and T. Pandit

2. Else, it calls its internal key-extract oracle on id and let SKid be the
reply. Then answers by running the original sign algorithm using the
secret key SKid.

– Forgery. A submits the forgery (m∗, id∗, σm∗,id∗ = (tokid∗ ,x∗, r∗)) to S. If
id∗||tokid∗ is not the i∗-th argument of H oracle or m∗||r∗ is not the j∗-th
argument of Huov oracle, then it aborts. It returns x∗ to its challenger, if
P̃z∗(x∗) = y∗, else aborts.

– Analysis. Let us assume that ‘abort’ in step 2 of key-extract oracle does
not occur. Then the probability that S aborts in answering a single key-
extract query is at most ζ1 = (νid + νext + νs) · 2−�t . The probability that S
aborts in answering a single sign-query is at most ζ2 = (νuov + νs) · 2−�s +
(νid + νext + νs) · 2−�t . So, if ‘abort’ in step 2 of key-extract oracle does not
occur, then S answers all the queries successfully with probability at least ρ =
1− ζ1 ·νext − ζ2 ·νs. Note that ρ can be made negligibly-close to 1 by choosing
	t and 	s sufficiently large. Now, the probability that for all the key-extract
queries ‘abort’ in step 2 of key-extract oracle never occurs is (1−λ)νext , which
attains the maximum value of 1/e, when λ is set to 1/(1 + νext). Therefore, S
answers all the queries successfully (i.e., without any abort) with probability
at least ρ/e. With probability 1/ ((νid + νs) · (νuov + νs)), S correctly guesses
the indices i∗ and j∗ such that idi∗ ||toki∗ = id∗||tokid∗ and mj∗ ||rj∗ = m∗||r∗.
This implies that H(id∗||tokid∗) = z∗ and Huov(m∗||r∗) = y∗. So, we have
P̃z∗(x∗) = y∗, if the forgery is a valid one. The advantage of S in solving the
given problem instance is

Advνext-PWMQ
S (κ) ≤ ρ

e
· AdvEUF-ID-CMA

A (κ)
(νid + νs) · (νuov + νs)

.

�

Remark 1. Note that the components SKz involved in the instance of the ν-
PWMQ are utilized only when the key-extract oracle is invoked. Therefore, the
above argument can be easily modified to establish the EUF-nID-CMA security
of the proposed IBS scheme based on the 0-PWMQ problem where one has to
essentially consider Uλ to be the whole identity space U .

5 On the Hardness Assumption

In this section, we focus on the intractability of the ν-PWMQ problem. As
mentioned above, the special case, 0-PWMQ problem can be used to argue
EUF-nID-CMA security of the proposed IBS scheme. We first show that the
0-PWMQ problem is equivalent to the WMQ-problem.

Proposition 1. The WMQ-problem is no harder than the 0-PWMQ problem.

Proof. We will establish a solver S for the WMQ-problem using a solver A for the
0-PWMQ problem. Let (P,y∗) ∈ P(Fn,Fm) × F

m be the given WMQ-problem

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 691

instance. Let P = (p(1), . . . ,p(m)). Note that each p(k) is a quadratic polynomial
in n variables, i.e.,

p(k)(x) =
n∑

i=1

n∑

j=1

p(k)
i,j · xixj +

n∑

i=1

p(k)
i · xi + p(k)

0 .

We then write p(k) as
(
{p(k)

i,j }i,j∈[n], {p(k)
i }i∈[n],p

(k)
0

)
, where {p(k)

i,j }i,j∈[n] rep-

resents the quadratic part, {p(k)
i }i∈[n] denotes the linear part and p(k)

0 is the
constant term.

Let u = (u1, . . . , ud)
U←− F

d. We will prepare P̃ = F̃ ◦ T̃ for random expres-
sions F̃ and T̃ as defined in Sect. 2.1 such that

P̃u = P. (6)

Let us write F̃ = (f(1), . . . , f(m)), where each f(k) is of the form as defined in
Eq. (3). Also, note that T̃ has the form as defined in Eq. (4). Then we can write
P̃ = (f(1) ◦ T̃ , . . . , f(m) ◦ T̃). By the requirement (as given in Eq. (6)), we have
f(k)u ◦ T̃u = p(k) for all k ∈ [m], which in turn implies that

Q(f(k)u ◦ T̃u) = Q(p(k)) (7)

where Q(p(k)) and Q(f(k)u ◦T̃u) denote the matrix representations of the quadratic
part of p(k) and f(k)u ◦T̃u respectively. Note that we can express Q(f(k)) as a block
matrix Bk as given below:

Q(f(k)) = Bk =

⎡

⎢⎣
B

(k)
11 | B

(k)
12

−− | −−
B

(k)
21 | 0

⎤

⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(k)
11 (z) . . . α

(k)
1v (z) | α

(k)
1v+1(z) . . . α

(k)
1n (z)

... . . .
... |

... . . .
...

α
(k)
v1 (z) . . . α

(k)
vv (z) | α

(k)
vv+1(z) . . . α

(k)
vn (z)

− − − − − − − − − −|− − − − − − − − − −
α
(k)
v+11(z) . . . α

(k)
v+1v(z) | 0 . . . 0

... . . .
... |

... . . .
...

α
(k)
n1 (z) . . . α

(k)
nv (z) | 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where α
(k)
ιζ (z) = b

(kιζ)
1 z1 + · · · + b

(kιζ)
d zd which is a linear map in z1, . . . , zd.

We now discuss how to find each expression f(k) and T̃ . Here we only illustrate
the steps in finding the coefficients (as expressions) of the quadratic part of f(k)

as the expressions for the linear terms and constant term can be computed
similarly. For finding quadratic terms of f(k), we only use {p(k)

i,j }i,j∈[n]. The idea

692 S. Chatterjee and T. Pandit

is to choose T̃ and the blocks B
(k)
11 , B

(k)
21 randomly, and then find8 B12 using

Eq. (7) for k ∈ [m]. If we denote C = T̃u = (cij)i,j∈[n], then we can write
Q(f(k)u ◦ T̃u) = C� ·Q(f(k)u) ·C, where C� denotes the transpose of C. Therefore,
we have the following relation using Eqs. (6) and (8):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
ι=1

cι1

v∑
ζ=1

cζ1α
(k)
ιζ (u)+

n∑
ι=1

cι1

v∑
ζ=1

cζnα
(k)
ιζ (u)+

v∑
ι=1

cι1

n∑
ζ=v+1

cζ1α
(k)
ιζ (u) . . .

v∑
ι=1

cι1

n∑
ζ=v+1

cζnα
(k)
ιζ (u)

.

.

.
.
.
.

.

.

.
n∑

ι=1

cιn

v∑
ζ=1

cζ1α
(k)
ιζ (u)+

n∑
ι=1

cιn

v∑
ζ=1

cζnα
(k)
ιζ (u)+

v∑
ι=1

cιn

n∑
ζ=v+1

cζ1α
(k)
ιζ (u) . . .

v∑
ι=1

cιn

n∑
ζ=v+1

cζnα
(k)
ιζ (u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Q(p
(k)

).

Note that all α
(k)
ιζ ’s (as polynomials) involved in the above matrix are known,

except the ones that are highlighted in gray color. It boils down to find α
(k)
ιζ (z) =

b
(kιζ)
1 z1+ · · ·+b

(kιζ)
d zd for (ι, ζ) ∈ [v]× [v+1, n] involved in the following system:

n
∑

ι=1

cι1

v
∑

ζ=1

cζ1α
(k)
ιζ (u) +

v
∑

ι=1

cι1

n
∑

ζ=v+1

cζ1α
(k)
ιζ (u) = p

(k)
11

...
n

∑

ι=1

cι1

v
∑

ζ=1

cζnα
(k)
ιζ (u) +

v
∑

ι=1

cι1

n
∑

ζ=v+1

cζnα
(k)
ιζ (u) = p

(k)
1n

...
n

∑

ι=1

cιi

v
∑

ζ=1

cζjα
(k)
ιζ (u) +

v
∑

ι=1

cιi

n
∑

ζ=v+1

cζjα
(k)
ιζ (u) = p

(k)
ij

...
n

∑

ι=1

cιn

v
∑

ζ=1

cζ1α
(k)
ιζ (u) +

v
∑

ι=1

cιn

n
∑

ζ=v+1

cζ1α
(k)
ιζ (u) = p

(k)
n1

...
n

∑

ι=1

cιn

v
∑

ζ=1

cζnα
(k)
ιζ (u) +

v
∑

ι=1

cιn

n
∑

ζ=v+1

cζnα
(k)
ιζ (u) = p(k)

nn

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(9)

8 One can alternate the choice of the blocks. It is also possible to randomly choose
some of the entries of Bk (not necessarily block-wise) and find the expressions of the
remaining entries.

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 693

where (i, j)-th element of Q(p(k)) is p
(k)
ij . The system in Eq. (9) can be further

written as
v

∑

ι=1

n
∑

ζ=v+1

cι1cζ1u1b
(kιζ)
1 + · · · +

v
∑

ι=1

n
∑

ζ=v+1

cι1cζ1udb
(kιζ)
d = θ

(k)
11

...
v

∑

ι=1

n
∑

ζ=v+1

cι1cζnu1b
(kιζ)
1 + · · · +

v
∑

ι=1

n
∑

ζ=v+1

cι1cζnudb
(kιζ)
d = θ

(k)
1n

...
v

∑

ι=1

n
∑

ζ=v+1

cιicζju1b
(kιζ)
1 + · · · +

v
∑

ι=1

n
∑

ζ=v+1

cιicζjudb
(kιζ)
d = θ

(k)
ij

...
v

∑

ι=1

n
∑

ζ=v+1

cιncζ1u1b
(kιζ)
1 + · · · +

v
∑

ι=1

n
∑

ζ=v+1

cιncζ1udb
(kιζ)
d = θ

(k)
n1

...
v

∑

ι=1

n
∑

ζ=v+1

cιncζnu1b
(kιζ)
1 + · · · +

v
∑

ι=1

n
∑

ζ=v+1

cιncζnudb
(kιζ)
d = θ(k)

nn

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10)

where θ
(k)
ij = p

(k)
ij −

∑n
ι=1

∑v
ζ=1 cιicζjα

(k)
ιζ (u). Therefore, the above system is a

linear system of equations in the variables b
(kιζ)
� ’s involved in α

(k)
ij (highlighted

in gray color) for (ι, ζ) ∈ [v] × [v + 1, n] and 	 ∈ [d]. Note that C = (cij)i,j∈[n] is
obtained by evaluating T̃ at u. Since each entry of T̃ is a random linear map in z,
w.l.o.g9 we can assume that all cij ’s are distributed uniformly and independently
over F. Further, the coefficients of the polynomials given in Eq. (10) are random
variables of the form cιicζju� for (ι, ζ) ∈ [v]×[v+1, n], 	 ∈ [d] and i, j ∈ [n], where
the variables cιi’s, cζj ’s and u�’s are uniformly and independently distributed
over F. It is easy to check that the number of random variables involved in
Eq. (10) is n2 · v · m · d. That is, we derive n2 · v · m · d new variables of the form
cιicζju� from the same number of original variables, i.e., from cιi’s, cζj ’s and u�.
Hence, the new variables cιicζju�’s are expected to behave as if they are chosen
uniformly and independently from F. Therefore, the above system looks like a
random system. Here the number of equations is n2 ≈ 9m2 and the number of
variables is v · m · d ≈ 2m2 · d. By choosing d sufficiently large (in fact, choose d
to be at least �9/2�), we can make the above system to be underdetermined and
therefore, the system will have a solution with high probability. Assuming θ

(k)
ij ’s

are uniform over F, each component of the solution will be uniform over F (thanks

9 More precisely, all cij ’s will be distributed uniformly and independently over F, if
each entry of ˜T is a random affine map in z. This is due to the fact that each entry
will now have an independently and uniformly chosen constant term.

694 S. Chatterjee and T. Pandit

to the linearity of the system). Further, the system can be solved efficiently. In
fact, let the rank of the system be τ (≤ 9m2). So, the degree of freedom will be
2m2 · d − τ (≥ m2(2d − 9)). That is, we can choose (2m2 · d − τ) many variables
randomly. Then, the remaining τ many variables will be a linear combination
of the chosen (2m2 · d − τ) random values and n2 many given random values
{θ

(k)
ij }i.j∈[n]. Therefore, P̃ will have a close-to-proper distribution from A’s point

of view.
Now, S supplies D =

(
P̃,z∗ := u,y∗

)
to A which then returns x∗ ∈ F

n such

that P̃u (x∗) = y∗. By construction of P̃, P̃u = P, and hence P(x∗) = y∗. This
completes the argument. �

Unlike the 0-PWMQ problem, we do not have any formal reduction or separa-
tion result regarding the ν-PWMQ problem. However, we provide some heuristic
arguments justifying why this new problem is expected to be computationally
intractable. Here the goal is to solve P̃z∗(x) = y∗ for random z∗ ∈ F

d and
y∗ ∈ F

m. Note that the UOV-public map P̃z∗ is efficiently computable by eval-
uating each coefficient of the public expression P̃ at z∗. Since P̃ and z∗ are
chosen uniformly, P̃z∗ behaves as a random UOV-public map whose correspond-
ing secret key is SKz∗ = (F̃z∗ , T̃z∗). First assume that we do not know any-
thing other than the target UOV-public key P̃z∗ . Then the only available known
attacks are the generic attacks, e.g., direct attack [Fau99,Fau02,BFP09], band
separation [DYC+08] and UOV-attack [KS98], etc. Under suitable parameter
choice, one can compensate for those generic attacks.

Note that SKz∗ is easily computable just by evaluating F̃ and T̃ at z∗.
Since F̃ and T̃ are not publicly available, so the question is whether there is any
alternative way to compute SKz∗ . Given the structure of the problem instance
(Definition 3), this essentially boils down to the question of whether one can
efficiently compute the expression of F̃ or T̃ using the additional information
SKz = (F̃z ◦ Rz , (Rz)−1 ◦ T̃z) for z ∈ V \ {z∗}. For simplicity, let us assume
that T̃ = A (i.e., without translation by a). Since each entry of A is a linear
map in d variables, we can find the expression for T̃ using Gaussian elimination,
if we know T̃z for at least d many z (i.e., |V | ≥ d). Similarly, we can find the
expression of F̃ , if we know F̃z for at least d many z. However, neither F̃z

nor T̃z is given directly as part of the secret key SKz for z ∈ V \ {z∗}. In
fact, they are concealed by a random matrix Rz and its inverse respectively.
So, the components of SKz do not reveal any valuable information about F̃z

and T̃z . Therefore, it is reasonable to conclude that finding neither T̃z nor F̃z is
computationally feasible.

6 Concluding Remark

We have proposed an efficient IBS scheme in the MQ-setting by modifying the
IBS proposal of Chen et al. The modified proposal ensures that any arbitrary
bit string can be considered as an identity without affecting the size of the

Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting 695

public parameters. The IBS can be instantiated in the UOV/Rainbow setting
and retains the efficiency of that underlying signature primitive. For the security
reduction, we have introduced a new parameterized assumption in the MQ-
setting and provided some justification towards its plausible intractability. A
more rigorous cryptanalysis of the newly introduced assumption is left as an
interesting open problem.

Acknowledgement. We would like to thank Dr. M. Prem Laxman Das and the
anonymous reviewers of Indocrypt 2022 for their comments and suggestions that helped
us in polishing the technical and editorial content of this paper. This work is sup-
ported by the Ministry of Electronics and Information Technology, Government of
India through its grants for the Center of Excellence in Quantum Technology at IISc
Bangalore, India.

References

Beu21. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut,
A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–
373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

Beu22. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 16

BFP09. Bettale, L., Faugére, J.-C., Perret, L.: Hybrid approach for solving multi-
variate systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

BLMQ05. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient
and provably-secure identity-based signatures and signcryption from bilin-
ear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–
532. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 28

CC03. Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-
Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
18–30. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-
6 2

CDP21. Chatterjee, S., Dimri, A., Pandit, T.: Identity-based signature and extended
forking algorithm in the multivariate quadratic setting. In: Adhikari, A.,
Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp.
387–412. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92518-
5 18

CHR+16. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.:
From 5-pass MQ-based identification to MQ-based signatures. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 5

CLND19. Chen, J., Ling, J., Ning, J., Ding, J.: Identity-based signature schemes for
multivariate public key cryptosystems. Comput. J. 62(8), 1132–1147 (2019)

Cor00. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

DH76. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf.
Theory 22(6), 644–654 (1976)

https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/11593447_28
https://doi.org/10.1007/3-540-36288-6_2
https://doi.org/10.1007/3-540-36288-6_2
https://doi.org/10.1007/978-3-030-92518-5_18
https://doi.org/10.1007/978-3-030-92518-5_18
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/3-540-44598-6_14

696 S. Chatterjee and T. Pandit

DS05. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signa-
ture scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/
10.1007/11496137 12

DYC+08. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New
differential-algebraic attacks and reparametrization of rainbow. In: Bellovin,
S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol.
5037, pp. 242–257. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68914-0 15

Fau99. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

Fau02. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5). In: Proceedings of the 2002 International Sympo-
sium on Symbolic and Algebraic Computation, pp. 75–83. Springer, Cham
(2002). https://doi.org/10.1145/780506.780516

KPG99. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signa-
ture schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 15

KS98. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–
266. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055733

Lev05. Levitskaya, A.A.: Systems of random equations over finite algebraic struc-
tures. Cybernetics and Sys. Anal 41(1), 67–93 (2005)

Luy19. Van Luyen, L.: An improved identity-based multivariate signature scheme
based on rainbow. Cryptography 3(1) (2019)

NIS19. National Institute of Standards and Technology: Post-quantum crypto
project (Second Round Submission) (2019). https://csrc.nist.gov/
Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/round-2-submissions. Accessed 16 Aug 2022

NIS20. National Institute of Standards and Technology: Post-quantum
crypto project (Third Round Submission) (2020). https://csrc.nist.
gov/Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/round-3-submissions. Accessed 16 Aug 2022

Sha84. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blak-
ley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 5

SSH11. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and
HFE signature schemes against chosen-message attack. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 5

STX13. Shen, W., Tang, S., Xu, L.: IBUOV, a provably secure identity-based UOV
signature scheme. In: IEEE 16th International Conference on Computa-
tional Science and Engineering, LNCS, pp. 388–395. IEEE (2013)

https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-540-68914-0_15
https://doi.org/10.1007/978-3-540-68914-0_15
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-25405-5_5

Revisiting the Security of Salted UOV
Signature

Sanjit Chatterjee1, M. Prem Laxman Das2, and Tapas Pandit1(B)

1 Department of Computer Science and Automation, Indian Institute of Science
Bangalore,Bangalore, India

{sanjit,tapas}@iisc.ac.in
2 Society for Electronic Transactions and Security, Chennai, India

Abstract. Due to the recent attack of Beullens on Rainbow, the crypto
community looks back again at the unbalanced oil-and-vinegar (UOV)
signature. The original UOV does not have any formal security reduction.
It was Sakumoto et al. who added a random salt to the original UOV
signature to give a reduction under the UOV-inversion (UOVI) problem
in the classical random oracle model (CROM).

In this paper, we revisit the security of salted UOV signature. We start
by identifying some issues related to programming the random oracle
and the distribution of the salt. Then provide a security reduction of the
salted UOV signature in the CROM that clearly addresses these issues.
One crucial requirement of our reduction is that the field size needs to
be asymptotically superpolynomial in the security parameter. We also
give a security reduction of the salted UOV under the UOVI problem
in the quantum random oracle model. This work is hoped to aid further
concrete security analysis and thereby guide parameter choice of UOV-
based schemes in the context of future standardization of post-quantum
signature.

Keywords: Digital signature · Multivariate cryptography · UOV ·
Post-quantum security · QROM

1 Introduction

Multivariate quadratic polynomials (MQ) based signatures [DS05,PCY+15,
CHR+16] are attractive candidates for post-quantum cryptography due to their
fast verification and short signature. One of these is Rainbow which was a finalist
in the recently concluded third round of NIST PQC Standardization competi-
tion. Rainbow [DS05] is a multilayered version of unbalanced oil-and-vinegar
(UOV) signature scheme [KPG99]. Several variants of signatures, e.g., identity-
based signature [CLND19,CDP21], blind signature [PSM17] and ring signature
[MP17] have been designed in the MQ-setting using Rainbow (or UOV) as pri-
mary building block. Note that Rainbow as a multilayered extension of UOV
[KPG99] was solely introduced to gain efficiency. For practical applications,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 697–719, 2022.
https://doi.org/10.1007/978-3-031-22912-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_31&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_31

698 S. Chatterjee et al.

two-layered version of Rainbow is mainly recommended as further increasing the
number of layers does not significantly improve its efficiency. However, the recent
attack [Beu22] on the two-layered Rainbow basically works by peeling off the 2nd
layer followed by an existing UOV attack in [KPG99] on the 1st layer with much
smaller parameter size compared to the original UOV. The attack motivates
the research community to look back at the UOV signature with renewed inter-
est. Thus a rigorous security analysis would be useful in designing UOV-based
signatures, which could be candidates for future standardization efforts.

Note that the original UOV proposal of [KPG99] does not have any for-
mal security proof. It was Sakumoto et al. [SSH11] who first formally studied
security of the UOV signature. They introduced a random salt to make the
output signature somewhat uniform and then argued security in the classical
random oracle model (CROM) from UOV-inversion (UOVI) problem1 using the
FDH-technique [BR93]. In [SSH11], the authors consider the hash function to
be H : M × SaltSpac → F

m, where F is the underlying field. That is, the hash
arguments have the form: (m, s), where m is the message and s is the salt (a
binary string). A valid signature for m under the salted UOV is of the form:
σ = (x, s) such that P(x) = H(m, s), where P : Fn → F

m is the UOV public
map. In the security reduction, H is treated as a random oracle.

Our Result. In this paper, we revisit the security reduction of the salted UOV
[SSH11] and identify some gaps pertaining to programming the random oracle
and distribution of the salt (Sect. 3). In particular, when queried with (m, s) the
random oracle involved in the signature oracle is programmed to return P(x),
where x ∈ F

n is randomly chosen. That is, the authors implicitly assumed that
for a random x ∈ F

n, P(x) is uniform. The paper also assumed that the salt
part of the output signature is uniform, although the distribution of the salt
actually depends on the size of the underlying field.

We then provide (Sect. 4) a security reduction of the salted UOV signature
in the CROM that clearly addresses these issues. Here we consider the salted
homogeneous UOV scheme, but through the subspace description [Beu21] of the
UOV-trapdoor (Sect. 4.1). The main reason for using [Beu21] is that it improves
secret key sizes (Sect. 4.2). For the reduction, we assume neither the uniformity
of P(x) nor the uniformity of the salt involved in the output signature. We
essentially show that both distributions deviate from the respective uniform dis-
tributions by at most 1/q (Proposition 1 and Corollary 2), where q is the size of
the underlying field. One crucial implication of our result is that the field size q
needs to be asymptotically superpolynomial in the security parameter. Suppose
the upper bound on the numbers of signature queries and random oracle queries
in practice are 220 and 260 respectively. Then, from a back-of-the-envelope calcu-
lation based on Theorem 1, one can see that the underlying field has to be chosen
of size roughly 288 for 128-bit security2. This will surely impact the efficiency of

1 Given a random UOV public map P : Fn → F
m and a random element y ∈ F

m, find
an x ∈ F

n such that P(x) = y.
2 Note that whatever the parameter choice of UOV, the unavoidable degradation due

to the total number of random oracle queries will always be there.

Revisiting the Security of Salted UOV Signature 699

the scheme. Thus deriving the parameter sizes and the consequent implication
on efficiency based on a concrete analysis of our security reduction of salted UOV
could be an interesting future work.

In principle, it is desirable to have security proof in the quantum random
oracle model (QROM), rather than just in CROM. We achieve this for salted
UOV by providing a security reduction (Sect. 5) from the UOVI problem in the
QROM. Again based on this reduction, we do not provide any parameter choice,
other than pointing out the fact that q needs to be asymptotically superpolyno-
mial in the security parameter (Theorem 2).

2 Preliminaries

For a ∈ N\{0}, define [a] = {x ∈ N\{0} : x ≤ a}. For a set X, we write x
$←− X

to mean that x is drawn uniformly at random from X. For an algorithm A and
its input x, the notation y ← A(x) denotes that when A is run on x, it outputs
y. We use bold-face lower case letters, e.g., x to denote column vectors. The
i-th entry of x is denoted by xi. For a matrix A, the notation A� is used to
denote its transpose. The fixed finite field on which all the operations take place
is denoted by F. The notation q will denote the size of the field F. We make no
assumptions about the characteristic of F.

We shall consider only homogeneous quadratic polynomials in n variables
over F. While discussing UOV scheme, the number of polynomials in the secret
system F and that in the public system P will be m. This number would match
the number of oil variables, as per the usual description of UOV scheme. The
oil (vinegar) variables will be last m (respectively, the first v = n − m) of them
among {X1, . . . , Xn}. With the secret and public systems one can associate poly-
nomial maps F : Fn → F

m and P : Fn → F
m, respectively, which will just denote

evaluation. All the polynomials which appear in this work are homogeneous. It is
well-known in literature that the security of MQ-based systems depends mainly
the quadratic part of the polynomials involved. The transformation used for
mixing the variables in UOV is assumed to be an invertible matrix. Hence the
public key obtained will be homogeneous whenever the secret key is so.

2.1 Quadratic Polynomials and Their Matrix Representation

We shall consider homogeneous quadratic polynomials in m variables over a finite
field F. Any such f has a associated polar form f′, which is symmetric bilinear,
satisfying

f′(X,Y) = f(X + Y) − f(X) − f(Y).

With every homogeneous quadratic polynomial one can associate a matrix.
The matrix representing the polynomial is defined as follows.

Definition 1. Let f be a homogeneous quadratic polynomial over F in n vari-
ables. An n × n matrix Mf is said to represent f if

f(X) = X�MfX,

700 S. Chatterjee et al.

where X = (X1, . . . , Xm)� is a column vector of variables.

Remark 1. The polar form of the quadratic form is bilinear. There is an obvious
way (see [Beu21]) for obtaining the matrix representing the polar form, depend-
ing on the characteristic of the underlying field. If M ′

f denotes this matrix, then
f′(X,Y) = X�M ′

fY .

2.2 (Unbalanced) Oil-Vinegar Signature Schemes

We will be following the treatment of Kipnis et al. [KPG99]. Let F be a fixed
finite field. As usual, let n and m be positive integers, and set v = n − m. Let
{X1, . . . , Xv} denote the (ordered) set of vinegar variables and {Xv+1, . . . , Xn}
that of oil variables. The message (digest) space is F

m and the signature space
is F

n (for plain-UOV scheme).
The central object in such schemes is a polynomial of the following special

form. The oil-vinegar type polynomial is a quadratic polynomial over F in the
variables described above, but without any quadratic terms involving only the
oil variables. In other words, a oil variable is not allowed to mix with another
oil variable in such a polynomial. The general form of such a polynomial is as
follows:

φ(X1, . . . , Xm) =
v∑

j=1

n∑

k=j

αjkXjXk +
n∑

j=1

βjXj + γ. (1)

For a given polynomial of the form in Eq. (1), if values are assigned to all vinegar
variables, the resulting polynomial is linear in oil variables. This feature is the
central theme of the trapdoor.

Let T : F
n → F

n denote an invertible linear map. Such a transformation
is used for mixing the input variables. The oil-vinegar trapdoor is described as
follows.

Definition 2. (Oil-Vinegar Trapdoor) Let F be a system of m polynomials of
the form given in Eq. (1). Let T be a invertible linear transformation on F

n. Let
P = F ◦ T be the polynomial system obtained by composing each polynomial in
F with T (i.e., transformed polynomials when T acts on the vector of variables).
Given P and τ ∈ F

m, the challenge is to solve P(·) = τ .

Remark 2. Solving P(·) = τ directly is assumed to be hard. But the knowledge of
the trapdoor information, namely F and T , can be used for solving such a system
[KPG99]. Solving F(·) = τ is easy. The strategy is to assign random values for
vinegar variables and solving the linear system involving only the oil variables.
The resulting assignment is then inverted under the affine transformation T .
The process of assigning values to vinegar variables and solving the resulting
system of linear equations is repeated until one valid assignment for all variables
is found.

Revisiting the Security of Salted UOV Signature 701

Matrix Description of Homogeneous Quadratic System. Studying the
matrices representing the F and P systems becomes useful from the analysis
point of view. Let us consider the component polynomials f involved in the
system F to be homogeneous quadratic polynomials. Since every polynomial f in
the system F is devoid of oil-oil term and every polynomial g in P is constructed
as g = f ◦ T , the (block) form of their corresponding matrices will be

Mf =
[
A B
0 0

]
and Mg = T�MfT , (2)

where A is a v × v upper triangular matrix, B is a v × m matrix, and 0’s are all
zero matrices of suitable orders such that Mf is an n × n matrix.

2.3 Linear Subspace Interpretation of Oil-Vinegar Trapdoor

Beullens [Beu21] takes a subspace approach to the oil-vinegar trapdoor descrip-
tion. The public key is a MQ system P (m MQ polynomials in n variables)
which vanishes on a secret subspace O ⊂ F

n of dimension m. The trapdoor is
set as follows. First, the subspace O is chosen at random. Then a system P,
consisting of m multivariate quadratic polynomials in n variables, vanishing at
this subspace O, is chosen uniformly at random. The trapdoor information is
the description of O. For a target τ ∈ F

m, solving P(·) = τ is easy. Notice that

P(v + o) = P(v) + P(o) + P ′(v,o) (3)

holds for any o coming from the subspace O and any v coming from F
n. Thus

P(·) = τ can be solved by solving

P ′(v,o) = τ − P(v),

where o ∈ O. The above system is linear in variable o. For, the first term in the
right hand side of Eq. (3) is fixed once v is fixed, the second term is zero since o
is from the distinguished subspace O and the third term is linear in oil variables.

On the other hand, solving the MQ system P, without the knowledge of the
trapdoor information is assumed to be hard.

2.4 Syntax and Security of Signature Scheme

Definition 3 (Signature Scheme). It consists of three PPT algorithms - Key-
Gen, Sign and Ver.

– KeyGen: It takes as input a security parameter κ and outputs a public and
private key pair (PK,SK).

– Sign: It takes as input a message m ∈ M, where M is the message space, and
the secret key SK and outputs a signature σ.

– Ver: It takes as input a message-signature pair (m, σ) and the public key PK.
It outputs a value 1 if (m, σ) is a valid message-signature pair else it outputs
0.

702 S. Chatterjee et al.

Correctness: For all (PK,SK) ← KeyGen(1κ) and for all messages m ∈ M, it
is required that

Ver(m,Sign(m,SK),PK) = 1.

Next we define security model of the signature scheme. A security notion
very useful in practice is called existentially unforgeable under chosen message
attack (EUF-CMA).

Definition 4 (EUF-CMA). A signature scheme is said to be EUF-CMA
secure if for all quantum PPT algorithms A, the advantage

AdvEUF -CMA
A (κ) = Pr

[
Ver(m∗, σ∗,PK) = 1

∣∣∣∣
(PK,SK) ← KeyGen(1κ);
(m∗, σ∗) ← AOSign(PK)

]

is a negligible function in κ, where A is provided access to the sign oracle OSign

with a natural restriction that m∗ �= m for all messages m queried to OSign.

3 Revisiting the Security Reduction of Salted UOV

The unbalanced oil-and-vinegar (UOV) signature was proposed in [KPG99] to
protect from the attack of [KS98] on the balanced oil-and-vinegar signature of
Patarin [Pat97]. However, the authors of UOV-signature did not provide any for-
mal security proof of their construction. The distribution of the signatures gen-
erated in the original UOV-signature [KPG99] is not uniform, even if the under-
lying hash function is treated as random oracle. Therefore, the FDH-technique
[BR93] is not directly applicable in arguing security of the UOV-signature.

The signature scheme, salted UOV was presented in [SSH11, Section 4.1]
(see Appendix B). The salt is appended to the message and hashed, thereby a
system P(·) = H(m||s) is set up. A solution is obtained by first putting values
for the vinegar variables and solving (a linear system) for the oil variables. If the
system does not have a solution, a fresh salt is chosen. The authors point out
that, this way, the distribution of the signature will be uniform, and hence, the
FDH-technique can be used to argue the security of the salted UOV signature.

3.1 On the Simulation of Random Oracle and Salt

First, we informally describe the FDH-style security reduction [BR93]. Let
(f : D → R, y∗ ∈ R) be the given problem instance, where f is a trapdoor
permutation and the goal is to find an x∗ ∈ D such that f(x∗) = y∗. Recall
that the FDH-signature for a message m is of the form σ = x, where y = H(m),
x = f−1(y) and H : M → R is the underlying hash function. A message-
signature pair (m, σ) is valid, if f(σ) = H(m).

Revisiting the Security of Salted UOV Signature 703

If an adversary can produce a valid forgery (m∗, σ∗) for this signature scheme,
then a solver for the above problem can be constructed. Here the underlying hash
function H : M → R is treated as a random oracle. That means, the adversary
must have queried the corresponding message m∗ to the random oracle H. In the
reduction, an index is guessed where the forgery message m∗ could appear as a
random oracle query and the corresponding random oracle value is appropriately
programmed. In other words, pick an index i∗ randomly as a guess and set
H(mi∗) = y∗. Note that for a correct guess, we have m∗ = mi∗ . For a query on

message m ∈ M other than mi∗ , first pick a signature σ
$←− D, then program

the random oracle at m as H(m) = y = f(σ) and store the tuple (m, σ, y) in a
list List. So using the list, all the oracle queries can be answered. Note that f(σ)
will be uniform over R as f is bijective3. If i∗ is correctly guessed and (m∗, σ∗) is
a valid forgery, then we have f(σ∗) = H(m∗) = y∗, which implies that x∗ = σ∗

is the required solution of the given problem instance.
In [SSH11], the authors showed a security reduction of salted UOV in the

CROM under the hardness of UOVI-problem. Since a salt is involved as part of
the signature, the FDH-style proof will be slightly different here. We summa-
rize their security proof as follows. In the game between a simulator S and an
adversary A, S maintains a list Listuov of three tuples (m, s,y), where y is the
hash of m||s. The random oracle query on challenge message is answered in a
similar way as done above. The other queries are answered as follows. For an
incoming random oracle query m||s, if (m, s, ·) ∈ Listuov, then the stored value is
returned. Else a random value y is returned and (m, s,y) is appended to the list
Listuov. If m is a signing oracle query, the simulator chooses a salt s at random. If
(m, s, ·) is in the list, it aborts. Else, it chooses x ∈ F

n uniformly at random and
returns (x, s) as signature corresponding to m after appending (m, s,y), with
y = P(x), to the list Listuov. Similarly as above, when the index i∗ is correctly
guessed and (x∗, s∗) is a valid forgery for m∗, then x∗ will be a solution of the
given UOVI-problem instance.

Issue in Random Oracle Programming. Note that while answering the
sign-queries, the random oracle H is programmed by assigning P(x) for random
choice of x from F

n. Since P is neither bijective nor known to be regular, it
cannot be definitely said that P(x) is uniform over Fm. Hence, H is treated as a
random oracle in [SSH11] without any proper justification. This, in turn, opens
up the possibility of a potential gap in the security claim.

Issue in Salt Distribution. A signature in the salted UOV [SSH11] consists
of a salt and an element from F

n. Note that only the salt generated in the
last iteration of the loop in the sign algorithm (Algorithm3) contributes to the
final output signature. In other words, the salt in the output signature follows
a distribution that samples a couple of salts in a row without replacement and
outputs the final salt. More precisely, the distribution of the salt in the output
signature depends on the rank of an m × m matrix, which further depends

3 Note that the reduction also works, if f is considered to be a regular function. Here
regular means the preimage sets of all the points in M under f are of same size.

704 S. Chatterjee et al.

on q = |F| (for details, see [SSH11, Section 3.1]). As described earlier, while
answering the sign-queries in the reduction, the salts are always chosen uniformly
at random. Essentially, this creates a difference between the distributions of salts,
one involved in the actual signatures and the other in the simulated signatures.
It seems the authors implicitly assume that a computational adversary cannot
detect the difference.

4 A Clean Security Reduction of Salted UOV

For addressing the issues raised in the previous section, we consider the underly-
ing maps involved in the public key P to be homogeneous quadratic polynomials.
For general quadratic polynomial maps, closing the above gaps still remains an
interesting research problem. Nonetheless, restricting to homogeneous quadratic
maps does not weaken the security of the signature as the intractability of the
underlying MQ-problem mainly relies on the quadratic part of the MQ-system.
Using the result on the distribution of P(x) that we describe in Sect. 4.3, one can
derive a clean security proof of the salted homogeneous UOV signature. However,
in this paper, we argue the security of an alternative salted UOV signature (see
Sect. 4.2) which is based on the subspace approach to UOV trapdoor [Beu21].
The reason for considering this alternative construction is that it improves upon
the key sizes a bit. The remainder of this section is organized as follows. We
start with the (plain) homogeneous UOV signature based on Beullens’ subspace
approach in Sect. 4.1. Then, present its salted version in Sect. 4.2. We analyze
the distribution of P(x) in Sect. 4.3. Finally, provide a clean proof of the salted
homogeneous UOV in Sect. 4.4.

4.1 Homogeneous UOV Signature Scheme Using the Subspace
Interpretation

The trapdoor described in Sect. 2.3 can be used to design a signature scheme. We
discuss the efficiency aspects of the key generation and signing modules (without
salt) in this section. The public key system is an MQ-system, which vanishes on
a subspace. The trapdoor information is the description of the subspace. The
two major questions are the following. How does one sample a random subspace
of F

n and a uniformly random MQ system which vanishes on this subspace?
How does one represent the trapdoor information so that the MQ system can
be solved, efficiently, using the trapdoor information? Next we discuss these two
points based on [Beu21].

Efficient Setup for the UOV Trapdoor. The trapdoor can be efficiently
setup using the matrix representation of the quadratic form. Let F = (f1, . . . ,
fm), be the collection of secret UOV (homogeneous) polynomials. The matrix
corresponding to fi has the form

Revisiting the Security of Salted UOV Signature 705

Mfi =
v m

v
m

[
Ai Bi

0 0

]
(4)

where Ai is a random v × v upper triangular matrix, Bi is a random v × m
matrix, and 0’s are all zero matrices of suitable orders such that Mfi is an n × n
matrix. The following subspace

O′ =
{
(x1, . . . , xn)� ∈ F

n : x1 = · · · = xn−m = 0
}

is called oil subspace of dimension m. Notice that every fi vanishes on O′. If
P = (g1, . . . , gm) is the public key system, where gi = fi◦T , then every quadratic
form in P vanishes on O = T −1(O′), where T is an invertible matrix. Since T
is invertible, the dimension of O is equal to m. So, O will be a random subspace
when T is a random invertible matrix.

Note that the distribution of the public keys generated in both ways, one
as discussed above and the traditional one are the same. Beullens also pointed
out in [Beu21] that the public key generated using the subspace description
(discussed in Sect. 2.3) and using the traditional description have the identical
distribution.

Solving the MQ System Using Trapdoor, Efficiently. We discuss how a
solution for P(·) = τ can be obtained, efficiently, using the trapdoor information.
Recall that the trapdoor information is a description of the subspace on which
this system P vanishes. From Eq. (3), solving this system amounts to solving
P ′(v,o) = τ ′ for o ∈ O, where τ ′ = τ − P(v) and v ∈ F

n is fixed. For a
homogeneous quadratic polynomial g, the polar form is given by g′(x,y) =
x�M ′

gy for all x,y ∈ F
n (see Remark 1).

We can describe the subspace O ⊂ F
n of dimension m using column-span of

a full-rank n × m matrix M . For, if O is generated by a linearly independent set
of vectors {w1, . . . ,wm} from F

n, then i-th column of M will be wi. Thus M is
a full-rank matrix and any element of the subspace O can be written as o = My
for some y ∈ F

m.
We now describe an effective procedure for solving the public key system. For

each public key polynomial g, a row vector cg is computed as cg = v�M ′
gM ,

where v is a random vector chosen from F
n. We then consider the following linear

system: Cy = τ ′ (recall that τ ′ = τ − P(v)), where the g-th row of the matrix
C is the row vector cg. If a solution y ∈ F

m to the system exists, an element
o ∈ O can hence be obtained as o = My. The quantity v + o is a solution for
P(·) = τ .

Remark 3. Note that the matrix C can also be written as C = C ′ · M , where
the row of C ′ corresponding to the public polynomial g is given by c′

g = v�M ′
g.

When the map P ′(v, .) : O → F
m is non-singular, then the rank of C ′ will be m,

706 S. Chatterjee et al.

which in turn implies that the matrix C will be non-singular as M is an n × m
full-rank matrix. In [Beu21], Beullens uses the following fact:

Pr[P ′(v, .) : O → F
m is non-singular : v

$←− F
n] ≈ (1 − 1/q). (5)

So, the procedure described above is expected to terminate after a few trials.

The algorithmic version of the above description is given in Appendix A. The
signature scheme derived from the trapdoor is also described there.

4.2 Salted Homogeneous UOV

In this section, we illustrate a signature scheme, designed using the subspace
description of the UOV trapdoor [Beu21]. The approach is similar to that used
in [SSH11]. A salt is used for making the security reduction to go through in the
random oracle model. Let us refer to this signature as salted homogeneous UOV
(SHUOV) signature.

KeyGen. This takes the security parameter 1κ as input and outputs the public and
secret keys. The secret key SK is a description of the subspace O ⊂ F

n, that is,
an n×m full-rank matrix M (as mentioned in Sect. 4.1). The public key PK is
the system P consisting of m MQ-polynomials in n variables which vanishes
at O. See Sect. 4.1 for a description. A hash function H : M×SaltSpac → F

m

for converting message into a fixed-length digest is known publicly, where M
and SaltSpac = {0, 1}�s are respectively the message space and the salt space.
Note that the signature space of SHUOV-signature is Σ = F

n × SaltSpac.
Sign. This takes message m and the secret key SK as input and outputs a signa-

ture σ. The procedure for computing the signature is described in Algorithm1.
The tuple (z, s) is returned as signature σ.

Ver. This module takes message m, the signature σ and the public key PK as
input and outputs accept or reject. The steps are described below:

– Parse the signature as (z, s)
– Compute τ = H(m||s)
– Accept the signature if P(z) = τ holds; otherwise reject.

Correctness. The signature scheme is correct. If a message m, public key P and
a signature (z, s), where z is obtained according to Algorithm 1 are given, then,
we need to verify that P(z) = H(m||s) holds. Let g be any MQ-polynomial in
the public key system P. The following can be easily verified for each such g:

g(z) = g(v + o)
= g(v) + g(o) + g′(v,o)

= g(v) + g(o) + g′(v,Mu)

= g(v) + g(o) + v�M ′
gMu (6)

Revisiting the Security of Salted UOV Signature 707

Algorithm 1. Signing Module for Salted UOV
Require: The message m, secret key SK and the description of the salt space
Ensure: A signature (z, s) on m

1: Sample a vector v
$←− F

n

2: Compute cg = v�M ′
gM � M ′

gM can be precomputed
3: Construct the m × m matrix C with cg as rows
4: repeat

5: Sample s
$←− {0, 1}�s � a salt s is sampled

6: Compute τ = H(m||s)
7: Compute τ ′ = τ − P(v)
8: until {y ∈ F

m : C · y = τ ′} �= ∅
9: Sample u

$←− {y ∈ F
m : C · y = τ ′}

10: Compute o = Mu � column-span corresponding to u
11: Compute z = v + o
12: Output σ = (z, s)

where g′ is the polar form of g. Since o ∈ O, the second term on the RHS of
Eq. (6) is zero and the third term is equal to the g-th coordinate of the vector
τ ′ = τ − P(v). Thus, combining the above observation for every such g, we
obtain P(z) = H(m||s). This proves that (z, s) is a valid signature on m.

Efficiency Comparison. One can easily check that both the versions, based on
traditional approach [SSH11] and subspace approach (presented above) enter-
tain more or less the same signing and verification time. However, the key sizes
are improved in the subspace approach as only the basis information for the
secret hidden subspace is required to store. In fact, the number of field elements
required to store for both the approaches are presented in Table 1.

Table 1. Public and secret key sizes for UOV signature

Approach Public key (# of field elements) Secret key (# of field elements)

Traditional mn(n + 1)/2 m(v(v + 1)/2 + vm) + n2

Subspace mn(n + 1)/2 mn

We now discuss the distribution of the output signatures. Note that the
output signature has two components z and the salt s. In the following, we first
establish (in Proposition 1) that the statistical distance between the salt part
of the output signature and the uniform distribution over {0, 1}�s is bounded
by 1/q. Then, we show (in Corollary 1) that the distribution of the signature
deviates from the uniform distribution over Fn × {0, 1}�s by at most 1/q. Let us
define a good set and a bad set as follows:

Good = {v ∈ F
n : P ′(v, .) : O → F

m is non-singular}
Bad = {v ∈ F

n : P ′(v, .) : O → F
m is singular}.

708 S. Chatterjee et al.

Following Eq. (5), we have |Good| ≈ qn(1 − 1/q) and |Bad| ≈ qn · 1
q , where

q = |F|. Sometimes, we refer to an element of Good (resp. Bad) as good (resp.
bad) element. Let χ denote the random variable corresponding to the salt part
of the output signature. Note that the distribution of χ depends on that of
random variables v and s (involved in steps 1 and 5 respectively). Let U denote
the uniform distribution over {0, 1}�s . Then, the following proposition gives a
bound on their statistical distance.

Proposition 1. The statistical distance between χ and U is bounded by 1/q.

Proof. First observe that for any a ∈ {0, 1}�s , we have Pr [χ = a | v ∈ Good] =
1/2�s , where the probability is taken over the random choice of v ∈ F

n and
s ∈ {0, 1}�s . Then, calculate the following probability for any a ∈ {0, 1}�s .

Pr [χ = a] =
∑

S∈{Good,Bad}
Pr [χ = a | v ∈ S] · Pr [v ∈ S]

≈ 1
2�s

·
(

1 − 1
q

)
+ pa · 1

q
(7)

where pa = Pr [χ = a | v ∈ Bad]. Then, the statistical distance between χ and
U is given by

Δ(χ,U) =
1
2

·
∑

a∈{0,1}�s

|Pr [χ = a] − Pr [U = a]|

≈ 1
2

·
∑

a∈{0,1}�s

∣∣∣∣
1

2�s
·
(

1 − 1
q

)
+ pa · 1

q
− 1

2�s

∣∣∣∣ [using Eq. (7)]

≤ 1
2

·
∑

a∈{0,1}�s

(
1

2�s
· 1
q

+ pa · 1
q

)

=
1

2 · q
·

⎛

⎝1 +
∑

a∈{0,1}�s

pa

⎞

⎠

=
1

2 · q
· (1 + 1) =

1
q
.

This completes the proof.

Corollary 1. The distribution of the output signature deviates from the uniform
distribution over Σ by at most 1/q.

Proof. Since v is chosen uniformly at random from F
n, the z-part of the signa-

ture is uniform over F
n. Hence, the corollary follows from Proposition 1.

4.3 Uniformity of MQ-Systems

We now analyze the distribution of P(x), when x ∈ F
n is chosen uniformly at

random. In particular, we quantify the gap between this distribution and the

Revisiting the Security of Salted UOV Signature 709

uniform distribution. This is essentially required for giving a concrete security
reduction of the salted homogeneous UOV signature. Recall that P is a random
MQ-system which vanishes on a random subspace O. We show (see Corollary 2)
that the statistical distance between the distribution of P(x) and the uniform
distribution over F

m is at most 1/q, where q = |F|. Since |Fn/O| = qn−m, Fn

can be written as a union of qn−m disjoint cosets of O in F
n, i.e.,

F
n =

qn−m

∪
i=1

Coseti

where Coseti = vi +O, vi is called a coset representative and Cosetj ∩Cosetk = ∅
for distinct j, k ∈ [qn−m]. We now study the behavior (basically, bijectivity) of
P on each coset Coseti which is independent of the choice of the representative.

Proposition 2. When vi ∈ Good, then the restricted map P : Coseti → F
m is

bijective.

Proof. It suffices to show P : Coseti → F
m is injective. Let x′

1,x
′
2 ∈ O be two

arbitrary distinct elements. Since P ′(vi, .) : O → F
m is injective, P ′(vi,x

′
1) �=

P ′(vi,x
′
2), that means P(vi + x′

1) �= P(vi + x′
2).

When P is bijective on a coset, then we would refer to this coset as ‘good
coset’, otherwise ‘bad coset’. Note that given a coset, any element of it can
be a representative. So, if a coset contains at least one good element, then P
will be bijective on that coset. We now ask the following question. What is the
probability that a randomly picked coset is good? To answer the question let us
take a look at the worst case situation, although the likelihood of this is very
low: Out of the total qn−m cosets, roughly 1

q ·qn−m many cosets contain only the
bad elements. Therefore, if we pick up any coset randomly, then it will be good
with probability roughly (1−1/q) in the worst case. Let GSet be the union of all
good cosets and BSet be the union of all bad cosets (i.e., BSet = F

n \GSet). So,
Pr[x ∈ GSet] ≈ 1 − 1/q and Pr[x ∈ BSet] ≈ 1/q, where the probability is taken
over the uniform choice of x ∈ F

n. Note that the statistical distance between
the distribution of P(x) and the uniform distribution over Fm will be maximum
in the worst case situation mentioned above. The following corollary quantifies
the gap of the two distributions.

Corollary 2. Let P : F
n → F

m be a homogeneous UOV public map. When
x

$←− F
n, let χ denote the distribution of P(x) over F

m. Let U be the uniform
distribution over F

m. Then Δ(χ,U) ≤ 1
q .

Proof. When x
$←− GSet, then x belongs to a random good coset; let us

call it Coset. Then, x will be uniform over Coset. So, P(x) will be uni-
form over F

m thanks to Proposition 2. That is, for any a ∈ F
m, we have

Pr [χ = a | x ∈ GSet] = 1/qm, where the probability is taken over the random
choice of x ∈ F

n. Therefore, for any a ∈ F
m, we have

710 S. Chatterjee et al.

Pr [χ = a] =
∑

S∈{GSet,BSet}
Pr [χ = a | x ∈ S] · Pr [x ∈ S]

≈ 1
qm

·
(

1 − 1
q

)
+ pa · 1

q
(8)

where pa = Pr [χ = a | x ∈ BSet]. Then, the statistical distance between χ and
U is given by

Δ(χ,U) =
1
2

·
∑

a∈Fm

|Pr [X = a] − Pr [U = a]|

≈ 1
2

·
∑

a∈Fm

∣∣∣∣
1

qm
·
(

1 − 1
q

)
+ pa · 1

q
− 1

qm

∣∣∣∣ [using Eq. (8)]

≤ 1
2

·
∑

a∈Fm

(
1

qm
· 1
q

+ pa · 1
q

)

=
1

2 · q
·
(

1 +
∑

a∈Fm

pa

)

=
1

2 · q
· (1 + 1) =

1
q
.

This completes the proof.

4.4 Security of Salted Homogeneous UOV Signature in CROM

In this section, we argue the security of SHUOV signature (presented in Sect. 4.2)
in the classical random oracle model. Following the proof-style of [SSH11] and
Corollaries 1 and 2, a security reduction can be easily shown from the UOVI-
problem. For the shake of completeness, we give a proof-sketch in the CROM
thereby resolving the issues raised in Sect. 3.1. Similarly, a security reduction for
the traditional salted homogeneous UOV of [SSH11] can be derived.

Theorem 1. If the UOVI-problem is intractable and q is superpolynomial in
the security parameter κ, then the SHUOV-Signature is EUF-CMA secure in
the CROM.

Proof-sketch in CROM. The proof uses a hybrid argument over the following
games.

0. Game0. This is exactly the original EUF-CMA security game, where the hash
function H : M × SaltSpac → F

m is treated as random oracle. Note that
the non-salt part of the output signature is distributed uniformly over F

n.
Let quov and qsign be the number of hash queries and the number of sign-
queries respectively. Let δ be the advantage of an adversary A0 in Game0,
i.e., AdvEUF-CMA

A0
(κ) = δ.

Revisiting the Security of Salted UOV Signature 711

1. Game1. This is same as Game0, except4 the salts involved in the answers of
sign queries are chosen uniformly at random. That is, the output signature in
Game1 is distributed uniformly over Σ. Then, by Corollary 1, the advantage
of an adversary A1 in Game1 is given by AdvEUF-CMA

A1
(κ) ≥ AdvEUF-CMA

A0
(κ)−

qsign · 1
q = δ − qsign · 1

q .
2. Game2. This is same as Game1, except the qsign-many random oracle queries

are answered by P(x), where x
$←− F

m. Then, by Corollary 2, the advantage
of an adversary A2 in Game2 is given by AdvEUF-CMA

A2
(κ) ≥ AdvEUF-CMA

A1
(κ)−

qsign · 1
q ≥ δ − 2 · qsign · 1

q .

We now show that using A2 in Game2, we can break the UOVI-problem.
An instance (P,y∗) ∈ Puov(Fn,Fm) × F

m of the UOVI-problem is given to a
simulator S and the goal of S is to find x∗ ∈ F

n such that P(x∗) = y∗. The
simulator maintains a list Listuov for keeping records of the form: (m, s,H(m||s)).
The adversary A2 may ask queries to hash oracle and sign-oracle in any order.
The simulator S picks i∗ $←− [quov] as a guess for the forgery message.

– Hash-oracle. When A2 asks the i-th H-query on mi||si, it returns H(mi||si)
if (mi, si, ·) ∈ Listuov. Otherwise, if i = i∗, then S updates Listuov with the

entry (mi, si,y
∗) and returns y∗, else it picks yi

$←− F
m, updates Listuov with

(mi, si,yi) and returns yi.
– Sign-oracle. On the i-th query on message mi, S picks (xi, si)

$←− Σ. If
(mi, si, ·) ∈ Listuov, it aborts, otherwise updates Listuov with (mi, si,P(xi))5

and returns σi = (xi, si).
– Forgery. When A2 produces a message-signature pair (m∗, σ∗ = (x∗, s∗)), S

submits x∗ as a solution of the given instance of the UOVI-problem.

Note that all the queries of A2 are answered according to the description in
Game2. With probability 1/quov, S correctly guesses the message m∗ = mi∗ , and
x∗ is a correct solution of the given problem instance if (m∗, σ∗ = (x∗, s∗)) is a
valid pair. So, the advantage of breaking the UOVI-problem is given by

AdvUOVI
S (κ) ≥ 1

quov
· AdvEUF-CMA

A2
(κ)

=
1

quov
·
(

δ − 2 · qsign · 1
q

)
(9)

≈ 1
quov

· δ [as q is superpolynomial in κ]

This ends the proof-sketch. ��
4 As mentioned earlier in Sect. 3.1, there is a gap between the distribution of salts

involved in the construction and the security reduction of [SSH11]. That gap essen-
tially depends on the size of the underlying field. But the authors implicitly assumed
that a computational adversary cannot distinguish the difference. Unlike [SSH11],
our security treatment takes into account this difference.

5 Note that H(mi||si) is programmed by the value P(xi), instead of uniformly random
value of Fm and this change is already captured in Game2.

712 S. Chatterjee et al.

Remark 4. As mentioned earlier, we are able to resolve the issues in the security
argument of [SSH11] (raised in Sect. 3) for the case of homogeneous salted UOV
signature. While we utilize the subspace description of the scheme, one can
easily check that the same strategy works for the case of conventional description
(thanks to the identical distribution of keys in both the approaches). However,
for general (not necessarily homogeneous) salted UOV signature, it is not known
whether the corresponding key can be expressed through the subspace structure.
Hence, one cannot directly apply Proposition 2 in this case.

Remark 5. Note that the above reduction makes sense, if q (that is, the size
of the underlying field) involved in Eq. (9) is a superpolynomial in the security
parameter. This q appears in Eq. (9) due to the bounds involved in Corollaries 1
and 2. Improving these bounds is an interesting future research problem as they
have a direct bearing on the size of the underlying field.

5 Security of Salted Homogeneous UOV in QROM

In this section, we prove the security of SHUOV-signature in the quantum ran-
dom oracle model. We start by recalling some notations and important results
required for the security reduction. For two sets X and Y, the notation YX

denotes the set of all functions from X to Y. For a distribution D on Y, the
notation g←−DX denotes sampling a function g : X → Y as follows: for x ∈ X ,
g(x) is sampled according to the distribution D. For a given function f : X → Y,
we can always handle on-the-fly simulation of the function by the following uni-
tary (see [NC00]):

Of : X × Y → X × Y
|x, y〉 �→ |x, y ⊕ f(x)〉 (10)

So, for handling superposition queries to the random oracle H, it suffices to give
a function description of the oracle. Here, we will use the fact [Zha12b] that the
advantage of a quantum algorithm in distinguishing a randomly chosen 2k-wise
independent function from a truly random function is 0, where the number of
quantum queries is at most k. This means a quantum-accessible random oracle
can be implemented by choosing a random 2k-wise independent function.

We show a reduction in the QROM based on small-range distributions
[Zha12a]. Here, we first give the definition and related results of small-range
distribution.

Definition 5 (Small-range distributions [Zha12a]). Given an integer r ∈ N,
two sets X and Y, and a distribution D on Y, a small-range distribution, denoted
by SRD

r (X), is defined to be the following distribution on YX :

1. For each i ∈ [r], choose a random value yi from Y according to the distribution
D, i.e., sample a function, say, g : [r] → Y according to D[r].

2. For each x ∈ X , pick i
$←− [r] and set O(x) = yi.

Revisiting the Security of Salted UOV Signature 713

This distribution can be alternatively viewed as follows: choose g←−D[r] and
f

$←− [r]X and return the composition O = g ◦ f . Now, we state a result which
is very important for arguing security of public-key schemes in the QROM. It
essentially says that the difference between the output distributions of a quantum
algorithm making k quantum queries to an oracle sampled either according to
SRD

r (X) or randomly from YX is at most 27k3/r. The result is stated below.

Lemma 1 ([Zha12a, Corollary 7.5]). Suppose a quantum algorithm asks k
many quantum queries to an oracle either drawn from SRD

r (X) or drawn ran-
domly from YX . Then, the output distributions of the algorithm are �(k)/r-close,
where �(k) = π2(2k)3/3 < 27k3.

Next, we describe another important result that can be used for programming
random oracles. In particular, the result is useful in a situation, where oracle
values were supposed to be assigned uniformly, but are assigned by sampling
according to a distribution which is ε (negligible) distance apart from uniform
distribution. Then, any quantum algorithm making k many queries to one of
them can distinguishing them with probability at most O(k3/2) · ε1/2. The result
is stated below.

Lemma 2 ([BZ13, Lemma 2.5]). Let X and Y be two sets. Suppose for each
x ∈ X , there are two distributions Dx and D′

x on Y with |Dx −D′
x| ≤ ε. Let two

functions O : X → Y and O′ : X → Y be defined as follows: for each x ∈ X ,
O(x) and O′(x) are set by sampling from Y according to the distributions Dx

and D′
x respectively. Then, any quantum algorithm making at most k quantum

queries to O or O′ can not distinguishing them, except with probability at most√
8C0k3ε, where C0 = 27 (a universal constant).

Let M̃ = M × SaltSpac. The sets X and Y that appear in the above lemma are
considered to be M̃ and F

m in our context respectively. Further, we consider
for all x ∈ X , the distributions Dx (resp. D′

x) are to be the same and let us
call it D (resp. D′). Now, we set D to be the uniform distribution over F

m and

define the distribution D′ over F
m as follows: Pick x

$←− F
n and output P(x),

where P : Fn → F
m is a random public key of SHUOV-scheme. Note that the

statistical distance between D and D′ is at most ε (thanks to Corollary 2), where
ε = 1/q and q = |F|. In the reduction, we use the following corollary.

Corollary 3. Let Õ : M̃ → F
n and O : M̃ → F

m be two quantum-accessible
random oracles. Let O′ : M̃ → F

m be a quantum-accessible oracle defined as
follows: for m||s ∈ M̃, O′(m||s) = P(Õ(m||s)). Then, any quantum algorithm
making at most k queries to O or O′ can not distinguishing them, except with
probability at most

√
8C0k3ε.

Proof. Let D be the uniform distribution over F
m. Then, we define Dm||s = D

for all m||s ∈ M̃ and the computation of O : M̃ → F
m can be thought of via

sampling from F
m according to distribution D. The distribution D′ picks x

$←−
F

n and returns P(x). For each m||s ∈ M̃, the distribution D′
m||s samples P(x),

714 S. Chatterjee et al.

where x = Õ(m||s) is uniform over F
n. Basically, D′ and D′

m||s have identical
distribution. The remainder of the proof immediately follows from Lemma2 and
Corollary 2.

Theorem 2. If the UOVI-problem is intractable and q is exponential in the
security parameter κ, then the SHUOV-Signature is EUF-CMA secure in the
QROM.

Proof. We adopt the proof strategy [Zha15] of signature from trapdoor permu-
tations. The proof essentially follows from a hybrid argument over the following
games.

0. Game0. This is exactly the original EUF-CMA security game, where the hash
function H : M̃ → F

m is treated as random oracle. Note that the non-salt
part of the output signature is distributed uniformly over Fn. Let quov and qsign
be the number of hash queries and the number of sign-queries respectively.
Let qtot = quov+qsign+1. Let δ be the advantage of an adversary A0 in Game0,
i.e., AdvEUF-CMA

A0
(κ) = δ.

1. Game1. This is same as Game0, except the random oracle is programmed as
follows: Pick a quantum-accessible random oracle Õ : M̃ → F

n. Then, for
each m||s ∈ M̃, define H(m||s) = P(Õ(m||s)). By Corollary 3, the advantage
of an adversary A1 in Game1 is

AdvEUF-CMA
A1

(κ) ≥ AdvEUF-CMA
A0

(κ) −
√

8 · C0 · q3tot · ε = δ −
√

8 · C0 · q3tot · ε.

2. Game2. This is same as Game1, except the function Õ : M̃ → F
n is sampled

according to the small-range distribution SRD
r (M̃), where D is the uniform

distribution over Fn, r = �2 · �(qtot)/δ� and �(qtot) = π2 · (2qtot)
3/3 < 27 · q3tot.

Note that as mentioned earlier, Õ can be viewed as Õ = g ◦ f , where g :
[r] → F

n is described by the elements x1, . . . ,xr
$←− F

n and f
$←− [r] ˜M,

i.e., for m||s ∈ M̃, Õ(m||s) = xi, where f(m||s) = i. Then, by Lemma 1, the
advantage of an adversary A2 in Game2 is

AdvEUF-CMA
A2

(κ) ≥ AdvEUF-CMA
A1

(κ) − �(qtot)/r ≥ δ/2 −
√

8 · C0 · q3tot · ε.

3. Game3. This is same as Game2, except the salt computation in sign-oracle
which is handled as follows: Let Osalt : M̃ × [qsign] → SaltSpac be a classical6

random oracle. A counter ctr (initially, set to 0) is maintained to keep track
the index7 of the current message queried to the sign-oracle. For a query
message m, ctr ← ctr+1 and the salt value for m is computed as Osalt(m||ctr).
That is, the output signature in Game3 is distributed uniformly over Σ. By
Corollary 1, the advantage of an adversary A3 in Game3 is

AdvEUF-CMA
A3

(κ) ≥ AdvEUF-CMA
A2

(κ)− qsign · ε ≥ δ/2−
√

8 · C0 · q3tot · ε− qsign · ε.
6 Since the salt generation in the security game is involved only in answering sign-

oracle (classically), it is sufficient to have a salt generation random oracle Osalt which
is classical.

7 The whole purpose of this counter is to generate different salts even for the same
message queried multiple times to the sign-oracle.

Revisiting the Security of Salted UOV Signature 715

4. Game4. This is same as Game3, except the following:
(a) At the beginning of the game, pick i∗ $←− [r]. (This is the guess where

the forged message-salt appears to the oracle f , i.e., f(m∗||s∗) = i∗.)
(b) Abort, if f(m∗||s∗) �= i∗ or if for any sign-query on m, f(m||s) = i∗, where

s is computed as described in Game3.
The probability of not abort is

Pr [¬abort] =
1
r

·
(

1 − 1
r

)qsign

≥ 1
r

− qsign
r2

≥ 1
2 · r

(as r ≥ 2 · qsign).

Then, the advantage of an adversary A4 in Game4 is

AdvEUF-CMA
A4

(κ) ≥ 1
2 · r

· AdvEUF-CMA
A4

(κ)

≥ 1
2 · r

·
(

δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
.

5. Game5. This is same as Game4, except the following change in answering hash
queries: Pick y

$←− F
m and set H(m||s) = y (instead of defining H(m||s) =

P(xi∗)) for all m||s ∈ M̃ such that f(m||s) = i∗. Then, the advantage of an
adversary A5 in Game5 (using Corollary 2) is

AdvEUF-CMA
A5

(κ) ≥ AdvEUF-CMA
A4

(κ) − ε

≥ 1
2 · r

(
δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
− ε.

Now, we create a solver for the UOVI-problem using the adversary A5 (in
Game5). An instance (P,y∗) ∈ Puov(Fn,Fm)×F

m of the UOVI-problem is given
to a simulator S and the goal of S is to find x∗ ∈ F

n such that P(x∗) = y∗.
The simulator will use A5 in the environment of Game5 for breaking the problem
instance. S picks i∗ $←− [r] and answers the following queries that may appear
in any order:

– Hash-oracle. For answering quantum queries to hash-oracle, it suffices to
describe only the classical description of the oracle function (without using
any history) thanks to the on-the-fly simulation due to the unitary given in
Eq. (10). For an input m||s ∈ M̃, the function is defined as follows:

H(m||s) =

{
y∗ if i = i∗

P(xi) otherwise

where f(m||s) = i. As mentioned earlier the quantum random oracle f : M̃ →
[r] can be implemented using random 2 · qtot-wise independent function.

– Sign-oracle. For a sign-query on m, S sets ctr ← ctr + 1 and computes
s = Osalt(m||ctr) and i = f(m||s). If i = i∗, it aborts, otherwise returns the
signature σ = (x, s), where x = Õ(m||s).

716 S. Chatterjee et al.

– Forgery. When A produces a message-signature pair (m∗, σ∗ = (x∗, s∗)), S
checks whether f(m∗||s∗) = i∗. If not, S aborts, otherwise it submits x∗ as a
solution of the given problem instance.

Note that when (m∗, σ∗ = (x∗, s∗)) is a valid forgery, we have P(x∗) =
H(m∗||s∗) = y∗ and hence, x∗ is a valid solution to the instance of the UOVI-
problem. Therefore, we have

AdvUOVI
S (κ) = AdvEUF-CMA

A5
(κ)

≥ 1
2 · r

(
δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
− ε

≥ δ

4 · 27 · q3tot

(
δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
− ε

=
δ2

216 · q3tot
− ε ·

(
1 +

δ · qsign
108 · q3tot

)
−

√
ε ·

√
C0

54
· δ√

q3tot

≈ δ

216 · q3tot
(11)

where the 2nd and the 3rd terms involved in Eq. (11) are ignored as ε = 1/q is
negligible in κ. When δ is non-negligible in κ, then AdvUOVI

S (κ) is non-negligible
– a contradiction.

6 Concluding Remark

In this paper, we have identified some issues related to the security reduction
of the salted UOV signature in the CROM [SSH11] and then addressed these
issues through the subspace description [Beu21] of the scheme. This alterna-
tive construction of salted UOV improves the signing key size a bit. We also
have provided a security reduction of the same scheme in the QROM. Our secu-
rity treatment is applicable only to the homogeneous salted UOV signature. A
clean security reduction for general salted UOV signature remains an interesting
research problem.

Acknowledgement. We would like to thank the anonymous reviewers of Indocrypt
2022 for their comments and suggestions that helped us in polishing the technical and
editorial content of this paper. This work is supported by the Ministry of Electronics
and Information Technology, Government of India through its grants for the Center of
Excellence in Quantum Technology at IISc Bangalore, India.

A Signature Using Trapdoor Information

A.1 Algorithm for Solving the Public Key System Using Trapdoor
Information

In this section, we give the method for solving the public key system using the
trapdoor information as an algorithm. The procedure was described in Sect. 4.1.

Revisiting the Security of Salted UOV Signature 717

Algorithm 2. Inverting Public Key System Using Trapdoor
Require: The matrices M ′

g for each public key polynomial g, the hidden subspace O
and an image point τ ∈ F

m, where P(O) = {0} and O is described as column-space
of an n × m matrix M .

Ensure: A solution z ∈ F
n such that P(z) = τ .

1: repeat

2: Sample a vector v
$←− F

n

3: Compute τ ′ = τ − P(v)
4: Compute cg = v�M ′

gM
5: Construct m × m matrix C with cg as rows
6: until {y ∈ F

m : C · y = τ ′} �= ∅
7: Sample u

$←− {y ∈ F
m : C · y = τ ′}

8: Compute o = Mu � column-span corresponding to u
9: Compute z = v + o

10: Output σ = z

A.2 Signature Scheme

Let us write down the complete signature scheme based on this trapdoor.

KeyGen. This takes the security parameter 1κ as input and outputs the public
and secret keys. The secret key is a description of the subspace O ⊂ F

n

and the public key is the system P consisting of m MQ-polynomials in n
variables which vanish at O. Note that O can be represented by an n × m
matrix as described in Sect. 4.1. Thus SK = O and PK = P. A hash function
H : M → F

m for converting message into a fixed-length digest is known
publicly.

Sign. This takes messagem and the secret key SK as input and outputs a signature
σ. The signature σ is obtained by solving P(·) = H(m) using Algorithm 2.

Ver. This takes the message m, the signature σ and the public key PK as input
and outputs accept or reject. If P(σ) = H(m), holds, the signature is accepted.
Otherwise, the signature is rejected.

B Signature of Sakumoto et al.

We reproduce the salted version of UOV signature given in [SSH11, Section 4.1].
The secret key is a UOV type MQ system F of m polynomials in n variables.
The authors consider non-homogeneous polynomials. Then, as usual, an affine
invertible transformation T is used for mixing the variables. The public key is
obtained in the obvious way as P = F ◦ T . The scheme uses a salt of length �s,
which is a polynomial in the security parameter κ. The public and the secret
keys contain a description of the salt space.

The verification follows the obvious procedure. We describe the signing algo-
rithm in Algorithm 3. The variable list is parsed as (xv,xm), where xv denotes
the vector of vinegar variables and xm that of oil variables. There are v vinegar

718 S. Chatterjee et al.

variables and m oil variables. The notation F(x′
v,xm) is used to denote the

linear system in oil variables which is obtained after the vinegar variables have
been specialized to the vector x′

v.

Algorithm 3. Signing Algorithm of Sakumoto, Shirai and Hiwatari
Require: F , T and the message m
Ensure: A signature σ on m such that P(σ) = H(m||s)
1: Sample x′

v
$←− F

v � uniform assignment for vinegar variables
2: repeat

3: Sample salt s
$←− {0, 1}�s � sampling random salt

4: Compute y = H(m||s)
5: until {xm ∈ F

m : F(x′
v, xm) = y} �= ∅

6: Sample x′
m

$←− {xm ∈ F
m : F(x′

v, xm) = y}
7: Compute x = T −1(x′

v, x′
m) � applying T −1 on a length n vector

8: Output (x, s) as signature

References

[Beu21] Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut,
A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–
373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

[Beu22] Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 16

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: 1st ACM conference on Computer and
communications security, pp. 62–73. SIAM (1993)

[BZ13] Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in
a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40084-1 21

[CDP21] Chatterjee, S., Dimri, A., Pandit, T.: Identity-based signature and extended
forking algorithm in the multivariate quadratic setting. In: Adhikari, A.,
Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143,
pp. 387–412. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92518-5 18

[CHR+16] Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.:
From 5-pass MQ-based identification to MQ-based signatures. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 5

[CLND19] Chen, J., Ling, J., Ning, J., Ding, J.: Identity-based signature schemes for
multivariate public key cryptosystems. Comput. J. 62(8), 1132–1147 (2019)

[DS05] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signa-
ture scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/
10.1007/11496137 12

https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-92518-5_18
https://doi.org/10.1007/978-3-030-92518-5_18
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/11496137_12

Revisiting the Security of Salted UOV Signature 719

[KPG99] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signa-
ture schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 15

[KS98] Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–
266. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055733

[MP17] Mohamed, M.S.E., Petzoldt, A.: RingRainbow – an efficient multivariate
ring signature scheme. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
LNCS, vol. 10239, pp. 3–20. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57339-7 1

[NC00] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation. Cambridge University Press, New York (2000)

[Pat97] Patarin, J.: The oil and vinegar algorithm for signatures. In: Dagstuhl
Workshop on Cryptography (1997)

[PCY+15] Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design princi-
ples for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 14

[PSM17] Petzoldt, A., Szepieniec, A., Mohamed, M.S.E.: A practical multivariate
blind signature scheme. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322,
pp. 437–454. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70972-7 25

[SSH11] Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and
HFE signature schemes against chosen-message attack. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 5

[Zha12a] Zhandry, M.: How to construct quantum random functions. In: FOCS, pp.
679–687. IEEE Computer Society (2012)

[Zha12b] Zhandry, M.: Secure identity-based encryption in the quantum random ora-
cle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 44

[Zha15] Zhandry, M.: Cryptography in the age of quantum computers. Ph.D. thesis,
Stanford University (2015)

https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/978-3-319-57339-7_1
https://doi.org/10.1007/978-3-319-57339-7_1
https://doi.org/10.1007/978-3-662-48797-6_14
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

Author Index

Abdolmaleki, Behzad 3
Agrawal, Shashank 26
Appan, Ananya 223

Baksi, Anubhab 517
Basak, Jyotirmoy 541
Becker, Hanno 272
Bellini, Emanuele 294, 373
Bernstein, Daniel J. 617
Bhattacharjee, Arghya 171, 195
Bhaumik, Ritam 171
Boudgoust, Katharina 78

Castryck, Wouter 658
Chakraborti, Avik 195
Chakraborty, Debasmita 398
Chakraborty, Kaushik 541
Chandramouli, Anirudh 223
Chang, Chengcheng 422
Chatterjee, Bikshan 471
Chatterjee, Sanjit 679, 697
Chattopadhyay, Anupam 517
Chavez-Saab, Jorge 294
Chevalier, Céline 592
Chi-Domínguez, Jesús-Javier 294
Choudhury, Ashish 223
Connolly, Aisling 249

Da, Qi 125
Daemen, Joan 336
Dai, Wei 26, 52
Das, M. Prem Laxman 697
Datta, Nilanjan 146, 195
Delaune, Stéphanie 103
Derbez, Patrick 103
Deschamps, Jérôme 249
Dunkelman, Orr 349
Dutta, Avijit 146

Ebrahimi, Ehsan 592
Esser, Andre 294

Gerault, David 373
Ghosh, Shibam 146, 349

Gini, Agnese 492
Gontier, Arthur 103
Guo, Chun 125
Guo, Tingting 566

Hu, Lei 566

Ionica, Sorina 294

Jang, Kyungbae 517
Jeudy, Corentin 78

Kannwischer, Matthias J. 272
Kim, Hyunji 517
Kuijsters, Daniël 336

Lafourcade, Pascal 249
Lambooij, Eran 349
Li, Zhiwei 644
Luykx, Atul 26

Maitra, Arpita 471, 541
Maitra, Subhamoy 449, 471, 541
Mancillas-López, Cuauhtemoc 195
Mandal, Bimal 449
Méaux, Pierrick 492
Mukherjee, Pratyay 26

Nandi, Mridul 171, 195

Okamoto, Tatsuaki 52

Pandit, Tapas 679, 697
Parikh, Rachit 471
Perez Kempner, Octavio 249
Protopapa, Matteo 373
Prud’homme, Charles 103

Rindal, Peter 26
Rivera-Zamarripa, Luis 294
Rodríguez-Henríquez, Francisco 294
Rossi, Matteo 373
Roux-Langlois, Adeline 78
Roy, Animesh 471
Roy, Manmatha 449

Samajder, Subhabrata 319
Sarkar, Palash 319

722 Author Index

Seo, Hwajeong 517
Slamanig, Daniel 3
Song, Zijian 644
Sun, Ling 422

Trimoska, Monika 294

Vander Meeren, Natan 658
Verbakel, Denise 336
Vu, Quoc-Huy 592

Wang, Meiqin 422
Wang, Peng 566
Wang, Wei 422
Wen, Weiqiang 78

Xu, Jun 644
Xu, Shanjie 125

Yamamoto, Go 52
Ye, Dingfeng 566, 644

Zweydinger, Floyd 294

	 Preface
	 Organization
	 Contents
	Foundation
	CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments
	1 Introduction
	1.1 Motivation
	1.2 Our Results

	2 Preliminaries
	3 Updatable Asymmetric QA-NIZK
	3.1 Security Definitions for Updatable QA-NIZK Arguments
	3.2 Construction of Updatable Asymmetric QA-NIZKs
	3.3 Security Proof for Our Construction

	4 Knowledge Soundness of (Updatable) Asymmetric QA-NIZK Arguments
	5 Discussion and Future Work
	A CRS-update Hiding Proof
	References

	ParaDiSE: Efficient Threshold Authenticated Encryption in Fully Malicious Model
	1 Introduction
	1.1 Approaches to Threshold Symmetric Encryption
	1.2 Revisiting Threshold Authenticated Encryption
	1.3 Contributions

	2 Technical Overview
	2.1 Security Definitions
	2.2 Constructions
	2.3 Related Work

	3 Preliminaries
	4 Threshold Authenticated Encryption
	4.1 Syntax
	4.2 Decryption Criteria
	4.3 Security

	5 Construction from Indifferential AE
	5.1 Random Injection
	5.2 The Construction
	5.3 Security

	6 Constructions from Threshold PRF and Signature
	6.1 IND-RCCA TAE Using DPRF and Threshold Signature

	A Performance Experiments
	References

	Stronger Security and Generic Constructions for Adaptor Signatures
	1 Introduction
	1.1 Background and Problems
	1.2 Our Contributions

	2 Preliminary
	3 Definitions and Relations
	3.1 Relations with Previous Notions
	3.2 Modular Proofs from Simple Notions

	4 Generic Constructions
	A Omitted Proofs
	A.1 Proof of Theorem 5
	A.2 Proof of Theorem 7

	References

	Entropic Hardness of Module-LWE from Module-NTRU
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Number Theory
	2.2 Lattices
	2.3 Probabilities
	2.4 Noise Lossiness
	2.5 Module Learning with Errors and Module NTRU

	3 Structured LWE
	3.1 Structured LWE and Structured NTRU
	3.2 (Mild) Hardness

	4 Entropic Hardness of Structured LWE
	4.1 From Sometimes Lossiness to the Entropic Hardness of Structured LWE
	4.2 Construction of Sometimes Lossy Pseudorandom Distributions

	5 Instantiation for M-LWE
	5.1 Invertibility and Singular Values of Discrete Gaussian Matrices
	5.2 Instantiation
	5.3 On the Statistical Entropic Hardness of M-LWE

	6 Related Work
	References

	Symmetric Key Cryptology
	New Algorithm for Exhausting Optimal Permutations for Generalized Feistel Networks*-12pt
	1 Introduction
	2 Preliminaries
	2.1 Generalized Feistel Networks
	2.2 Diffusion Round

	3 Path Building Algorithm
	3.1 Graph Representation of a Feistel Permutation
	3.2 The MakePath Algorithm
	3.3 Skeletons

	4 Non-even-odd Case: Search for Optimal Permutations
	4.1 Up to 2k=32
	4.2 Towards an Impossibility Result

	5 Even-odd Case: Search for New Properties
	5.1 Number of Paths
	5.2 Number of S-Boxes
	5.3 TWINE

	6 Conclusion
	A Proofs of Proposition 3 and 4
	References

	Minimizing Even-Mansour Ciphers for Sequential Indifferentiability (Without Key Schedules)
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Preliminaries
	3 Slide Attack on the Single-Key, Single-Permutation EMSP
	4 Seq-Indifferentiability of EM2P4
	4.1 Simulator of EM2P4
	4.2 The Indistinguishability Proof
	4.3 Abort Probability of SE,P
	4.4 Indistinguishability of 1 and 3

	5 Conclusion
	References

	INT-RUP Security of SAEB and TinyJAMBU
	1 Introduction
	1.1 Designing Area-Efficient Authenticated Ciphers
	1.2 Authenticated Ciphers Under Release of Unverified Plaintext (RUP) Setting
	1.3 Towards RUP-Secure Single-state On-the-Fly Authenticated Encryption
	1.4 Our Contribution and Significance of the Result

	2 Preliminaries
	2.1 Authenticated Encryption
	2.2 Integrity Security in RUP Setting

	3 SAEB AEAD Mode and Its INT-RUP Security
	3.1 INT-RUP Attack on SAEB

	4 INT-RUP Security of SAEB
	4.1 Definition and Probability of Bad Transcripts
	4.2 Analysis of the Good Transcripts

	5 TinyJAMBU and Its INT-RUP Security
	5.1 Definition and Probability of Bad Transcripts
	5.2 Analysis of the Good Transcripts

	6 Conclusion and Future Works
	References

	Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Distinguishing Advantage
	2.2 TPRP, TPRP* and TSPRP Security Notions
	2.3 Authenticated Encryption and Its Security Notion
	2.4 Coefficients H Technique
	2.5 Mirror Theory

	3 Finding a Suitable Tweakable Block-cipher
	3.1 Attempt with Same Offset
	3.2 Independent Offsets
	3.3 Updatable Offsets
	3.4 Offsets with Updatable Caches
	3.5 TPRP* Security Analysis of OTBC-3

	4 An Application of OTBC-3
	4.1 Nonce Handling
	4.2 Handling Incomplete Blocks
	4.3 Security Claims

	References

	ISAP+: ISAP with Fast Authentication
	1 Introduction
	1.1 ISAP and Its Variants
	1.2 Improving the Throughput of ISAP
	1.3 Our Contributions
	1.4 Relevance of the Work

	2 Preliminaries
	2.1 Notations
	2.2 Distinguishing Advantage
	2.3 Authenticated Encryption and Its Security Notion
	2.4 The Coefficients H Technique
	2.5 Fixed Input - Variable Output PRFs with Prefix Property
	2.6 Multi-target 2nd Pre-image with Associated Data

	3 An EtHM Paradigm for NAEAD
	3.1 Specification
	3.2 Security of EtHM
	3.3 Proof of Lemma 1

	4 Multi-target 2nd Pre-image Security of Sponge Based Hashes
	4.1 Sponge Hash and Its 2PI+ Security
	4.2 Feed Forward Based Sponge Hash and Its 2PI+ Security

	5 ISAP+: A Throughput-Efficient Variant of ISAP
	5.1 Specification of ISAP+
	5.2 Design Rationale
	5.3 Security of ISAP+

	6 Conclusion
	References

	Protocols and Implementation
	Revisiting the Efficiency of Perfectly Secure Asynchronous Multi-party Computation Against General Adversaries
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries and Existing Asynchronous Primitives
	2.1 The Asynchronous Universal Composability (UC) Framework
	2.2 Existing Asynchronous Primitives

	3 Perfectly-Secure Pre-processing Phase Protocol
	3.1 Optimistic Multiplication Protocol
	3.2 Multiplication Protocol with Cheater Identification
	3.3 Multiplication Protocol
	3.4 The Pre-processing Phase Protocol

	4 MPC Protocol in the Pre-processing Model
	References

	Protego: Efficient, Revocable and Auditable Anonymous Credentials with Applications to Hyperledger Fabric
	1 Introduction
	2 Cryptographic Background
	2.1 Notation
	2.2 Set-Commitment Scheme Supporting Disjoint Sets ch11UsPKC2022
	2.3 Structure-Preserving Signatures on Equivalence Classes ch11UsPKC2022

	3 Our ABC Model
	4 Protego
	5 Evaluation
	6 Conclusions and Future Work
	A Our NIZK Argument for Issuer-hiding
	References

	Hybrid Scalar/Vector Implementations of Keccak and SPHINCS+ on AArch64
	1 Introduction
	2 Preliminaries
	2.1 Keccak
	2.2 SPHINCS+
	2.3 ArmArchitecture

	3 Keccak on AArch64–Architecture
	3.1 Scalar Implementation
	3.2 Armv8.4-A Neon Implementation
	3.3 Armv8-A Neon Implementation

	4 Keccak-f1600 on AArch64–Microarchitecture
	4.1 Scalar Implementation
	4.2 Armv8-A Neon Implementation
	4.3 Armv8.4-A Neon Implementation
	4.4 Hybrid Implementations

	5 Results
	5.1 Benchmarking Environments
	5.2 Keccak-f1600 Performance
	5.3 SPHINCS+ Performance

	References

	Parallel Isogeny Path Finding with Limited Memory
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves and Isogenies
	2.2 Meet in the Middle (MitM)
	2.3 Parallel Collision Search

	3 Accurate Formulas for vOW and MitM
	3.1 Meet in the Middle
	3.2 Golden Collision Search
	3.3 Simplified Cost Models for Montgomery Curves

	4 Practical Results on Solving the SIPFD
	4.1 Practical Results of Our MitM CPU Implementation
	4.2 Practical Considerations for Our vOW GPU Implementation
	4.3 Practical Results of Our vOW GPU Implementation

	References

	Cryptanalysis
	Distinguishing Error of Nonlinear Invariant Attacks*-12pt
	1 Introduction
	2 Nonlinear Invariant Attack
	2.1 Building Distinguishers

	3 Error Probability for Uniform Random Function
	4 Error Probability for Uniform Random Permutation
	5 Computational Results
	6 Conclusion
	References

	Weak Subtweakeys in SKINNY
	1 Introduction
	1.1 Outline and Contributions

	2 The SKINNY Family of Block Ciphers
	3 Linear Cryptanalysis
	4 Linear Trails of `3́9`42`"̇613A``45`47`"603ASm `3́9`42`"̇613A``45`47`"603ATm, k `3́9`42`"̇613A``45`47`"603ASm
	5 Patching the Problem
	6 Conclusion
	References

	Full Round Zero-Sum Distinguishers on TinyJAMBU-128 and TinyJAMBU-192 Keyed-Permutation in the Known-Key Setting
	1 Introduction
	1.1 Existing Analysis on TinyJAMBU Permutation
	1.2 Our Contributions
	1.3 Paper Structure

	2 Preliminaries
	2.1 Notations
	2.2 Boolean Functions and Upper Bounds on the Degree
	2.3 Monomial Prediction
	2.4 Computing the Algebraic Degree Using Monomial Prediction

	3 The Specification of TinyJAMBU
	4 Zero-Sum Distinguishers on TinyJAMBU
	4.1 MILP Modeling
	4.2 MILP Model for the Monomial Trails of TinyJAMBU
	4.3 Degree Estimation of the TinyJAMBU Permutation
	4.4 Basic Zero-Sum Distinguisher
	4.5 Extending to Full Rounds Using Inside-Out Approach

	5 Improved Zero-Sum Distinguisher
	5.1 Extending to Full Rounds Using Inside-Out Approach
	5.2 Attack on TinyJAMBU-192 and TinyJAMBU-256
	5.3 Experimental Verification

	6 Conclusion
	A The Algebraic Degree of TinyJAMBU-128 Permutation and Its Inverse
	References

	Monte Carlo Tree Search for Automatic Differential Characteristics Search: Application to SPECK
	1 Introduction
	1.1 Related Works
	1.2 Structure of This Work

	2 Preliminaries
	2.1 Notation
	2.2 Monte Carlo Tree Search
	2.3 Differential Cryptanalysis
	2.4 Modular Addition and (Partial) DDTs
	2.5 The SPECK Family of Block Ciphers
	2.6 Differential Characteristics and Key Recovery in SPECK

	3 Lipmaa's Algorithms: Known Facts and New Results
	3.1 Overview of Algorithm 2
	3.2 High Level Overview of Lipmaa-Moriai Alg. 3
	3.3 A Fix for the Original Algorithm
	3.4 Finding -Optimal Transitions

	4 Differential Characteristic Search with MCTS
	4.1 A General Algorithm
	4.2 Limitations of This Approach

	5 Application to SPECK
	5.1 The Start-in-the-Middle Approach
	5.2 Branching Number and the Choice of
	5.3 Adding Further Heuristics to Improve the Search
	5.4 Experimental Results and Discussion

	6 Conclusions
	A All Optimal Characteristics on SPECK32
	B Best Characteristics Found with Our Method
	C Pseudocode for the Search Algorithm
	References

	Finding Three-Subset Division Property for Ciphers with Complex Linear Layers
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Bit-Based Division Property
	2.3 The MILP Model for CBDP

	3 The MILP Model for BDPT
	3.1 Some Observations on BDPT Propagation Rule for S-box
	3.2 MILP Model of BDPT for Complex Linear Layer
	3.3 MILP Model of BDPT for Key-XOR
	3.4 MILP Model Construction of r-Round Function

	4 Automatic Search Algorithm for r-Round Integral Distinguisher
	4.1 Initial BDPT
	4.2 Stopping Rule
	4.3 Search Algorithm
	4.4 Correctness of Search Algorithm

	5 Applications to Block Ciphers
	5.1 Applications to PRINCE and MANTIS
	5.2 Applications to KLEIN and PRIDE
	5.3 Applications to SIMON, SIMON (102)

	6 Conclusion and Future Work
	References

	Improved Truncated Differential Distinguishers of AES with Concrete S-Box
	1 Introduction
	2 Preliminaries and Backgrounds
	2.1 Notations
	2.2 Short Description of AES
	2.3 4-Round Truncated Differential Distinguisher of AES

	3 Divide-and-Combine Technique
	3.1 Obstacles of Direct Calculation
	3.2 Calculate the Probability of 4-Round Truncated Differential with One Active Cell in Input and One Inactive in Output
	3.3 Calculate the Probability of 4-Round Truncated Differential with One Active Cell in Input and Two Inactive in Output

	4 New 4-Round Truncated Differential Distinguisher
	4.1 Statistical Framework Using Conditional Probability
	4.2 4-Round Truncated Differential Distinguisher Using Conditional Probability

	5 Extend to 5-Round Truncated Differential
	6 6-Round Truncated Differential Distinguisher
	6.1 Extended 6-Round Truncated Differential
	6.2 Distinguishing Attack on 6-Round AES

	7 Conclusion and Future Work
	A Brief Description of Small-AES ch1910.1007sps11502760sps10.
	B Algorithm 5 and Algorithm 6 in the Calculation of 4-Round Truncated Differential with One Active Cell in Input and Two Inactive in Output
	References

	Boolean Functions
	Modifying Bent Functions to Obtain the Balanced Ones with High Nonlinearity
	1 Introduction
	1.1 Contribution and Organization

	2 Preliminaries
	3 Nonlinearity of Balanced Boolean Functions: A Combinatorial Characterization
	3.1 Nonlinearity Strictly Greater Than 2n-1 - 2n2 + nlb(n2)
	3.2 Deriving Specific Conditions for n=8, 10, 12 and 14

	4 Comparison with Existing Results ch20MS03,ch20SM00
	4.1 On Characterization by Maity and Maitra ch20MS03
	4.2 On Characterization by Sarkar Et Al. ch20SM00

	5 Construction Method of Highly Nonlinear Balanced Functions from Bent Functions
	5.1 Studying the Specific Conditions for n=8, and Explaining Some Non-existence Issues
	5.2 Studying the Cases for n = 10, 12, 14

	6 Conclusion
	References

	Revisiting BoolTest – On Randomness Testing Using Boolean Functions
	1 Introduction
	1.1 Organization and Contribution
	1.2 Preliminaries
	1.3 Brief Description of BoolTest by Sýs et al. ch21booltestspssecrypt2017

	2 Critical Evaluations of Z-score
	2.1 Z-Score for Data with All and Equal Frequency Inputs
	2.2 Maximum Z-score for Frequencies s and s+1
	2.3 Maximum Z-score When Some of the Patterns Arrive Only, and Only Once

	3 Finding the Best Boolean Function to Have Maximum Z-score
	3.1 Improving the Time and Space Complexity Further

	4 Results
	4.1 RC4
	4.2 Comparison with Java Rand and AES
	4.3 Cross-testing by the Generated Polynomials, i.e., Functions

	5 Conclusion
	References

	Weightwise Almost Perfectly Balanced Functions: Secondary Constructions for All n and Better Weightwise Nonlinearities
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions and Weightwise Considerations
	2.2 Siegenthaler's Construction, Symmetric Functions
	2.3 Parity of Binomial Coefficients

	3 Special WAPB Functions and Secondary Constructions
	3.1 Restricted Walsh Transform and Properties
	3.2 Special WAPB Functions
	3.3 Secondary Constructions of WAPB Functions

	4 Concrete Constructions and Parameters
	4.1 Building SWAPB Functions from CMR Construction
	4.2 Building Other WPB Functions from LM Construction
	4.3 Hybrid Function with High Weightwise Nonlinearity in WPB4
	4.4 Computational Aspects

	5 Conclusion
	References

	Quantum Cryptography and Cryptanalysis
	Improved Quantum Analysis of SPECK and LowMC
	1 Introduction
	2 Prerequisite
	2.1 Backdrop and Motivation
	2.2 Related Works
	2.3 Quantum Gates
	2.4 NIST Security Levels

	3 Target Ciphers
	3.1 SPECK Family (32/64, 48/72, 48/96, 64/96, 64/128, 96/96, 96/144, 128/128, 128/192, 128/256)
	3.2 LowMC Family (L1, L3, L5)

	4 SPECK in Quantum
	4.1 Quantum Adder for SPECK
	4.2 Quantum Circuit for SPECK Using Parallel Addition
	4.3 Architecture and Resource Requirement

	5 LowMC in Quantum
	5.1 Implementation of S-box
	5.2 Implementation of Linear Layer and Key Schedule
	5.3 Implementation of KeyAddition and ConstantAddition
	5.4 Architecture and Resource Requirement
	5.5 Corrected LowMC Implementation from Eurocrypt'20 (JNRV)

	6 Estimating Cost of Grover's Key Search
	7 Conclusion
	References

	A Proposal for Device Independent Probabilistic Quantum Oblivious Transfer
	1 Introduction
	1.1 Our Contribution
	1.2 Notations and Definitions
	1.3 Adversarial Model
	1.4 Assumptions for Our Device Independent Proposal

	2 Our Proposed DI-QPQ Scheme
	3 Analysis of Our Protocol
	3.1 Correctness of the Protocol
	3.2 Parameter Estimation for Private Query Phase
	3.3 Security of Our Protocol

	4 Discussion and Conclusion
	References

	Quantum Attacks on PRFs Based on Public Random Permutations
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Decomposition of Linear Mappings
	2.3 The Security of qPRF Based on Public Random Permutations
	2.4 Quantum Algorithms

	3 Attack on Function with One Permutation Call
	4 Pseudorandom Function with Two Permutation Calls
	4.1 Attack on Pseudorandom Function with Two Parallel Permutation Calls
	4.2 Attack on Pseudorandom Function with Two Serial Permutation Calls

	5 Instantiations of Some PRFs
	5.1 Xop Construction Instantiated with EM Construction
	5.2 EDM Construction Instantiated with EM Construction
	5.3 EDMD Construction Instantiated with EM Construction

	6 Conclusion
	A Proof of (f)1/2 in Subcase 3.2) in Sect.3
	B Proof of Pr[test(u)=1]122n for Any u-.25ex-.25ex-.25ex-.25exU in Subcase 4.1) in Sect.4.1
	C Proof of (f)7/8 in Subcase 4.2) in Sect.4.1
	D Proof of (f)7/8 in Case 4) of Sect.4.2
	References

	On Security Notions for Encryption in a Quantum World
	1 Introduction
	1.1 Defining Security for Encryption Against Quantum Adversaries
	1.2 Our Approach
	1.3 Our Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Quantum Computing
	2.3 Cryptosystems and Notions of Security

	3 How to Record Encryption Queries in the Random World?
	3.1 Ciphertext Decomposition
	3.2 Oracle Variations
	3.3 Recording Queries in the Random World
	3.4 A Technical Observation
	3.5 How to Answer Decryption Queries?
	3.6 Notation

	4 Quantum-Secure Symmetric Encryption
	4.1 Definitions of Security
	4.2 Feasibility of Quantum CCA2 Security

	5 Quantum-Secure Public-Key Encryption
	5.1 Definitions of Security
	5.2 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2

	References

	Post Quantum Cryptography
	A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys to a Chosen-Ciphertext Attack
	1 Introduction
	1.1 Fragility
	1.2 Natural DRAM Faults
	1.3 Contributions of This Paper

	2 Fault Attacks
	2.1 A Generic Fault Attack
	2.2 Specializing, Optimizing, and Demonstrating the Generic Fault Attack
	2.3 Natural-Fault Attacks
	2.4 Algorithm Dependence in Natural-Fault Attacks
	2.5 Comparison
	2.6 The Cold-Boot Argument Against Error Correction

	3 Chosen-Ciphertext Attacks and Defenses
	3.2 Ciphertext Structure
	3.3 Decryption
	3.4 Exploiting Linearity for Chosen-Ciphertext Attacks
	3.5 Feature 0: Hashing the Plaintext
	3.6 Probing the Boundaries of Successful Decryption
	3.7 Probing as an Attack Against the Secret Key
	3.8 Feature 1: Rigidity
	3.9 Feature 2: No Decryption Failures
	3.10 Feature 3: Plaintext Confirmation
	3.11 Feature 4: Implicit Rejection
	3.12 Feature 5: Hashing the Ciphertext
	3.13 Feature 6: Limited Ciphertext Space
	3.14 Feature 7: Limited Plaintext Space

	4 The NTRU-HRSS Attack
	4.1 Attack Model
	4.2 Attack Details
	4.3 How Plaintext Confirmation Stops Analogous mceliece and sntrup Attacks
	4.4 How Proofs Led ntruhrss to Remove Plaintext Confirmation
	4.5 Countermeasures for NTRU-HRSS

	References

	An Efficient Key Recovery Attack Against NTRUReEncrypt from AsiaCCS 2015
	1 Introduction
	2 Preliminaries
	2.1 Vector and Matrix Forms of NTRU

	3 NTRU and Its Proxy Re-encryption Scheme
	3.1 NTRU Cryptosystem
	3.2 NTRUReEncrypt

	4 Key Recovery Attack Against NTRUReEncrypt
	4.1 Construction of Equations
	4.2 Linearization
	4.3 Solving the System of Linear Congruence Equations
	4.4 Recovering Private Keys

	5 Case of NTRU Scheme with Different Parameter Sets
	5.1 Case of Certain Secret Polynomial Coefficients
	5.2 Case of Uncertain Secret Polynomial Coefficients

	6 Experiments
	7 Conclusion
	References

	Two Remarks on the Vectorization Problem
	1 Introduction
	2 Vectorization, Parallelization and Hidden Shift
	3 Non-equivalence of Vectorization and Parallelization
	4 Systems of Linear Disequations and the Standard Approach to Hidden Shift Finding
	5 Finding Hidden Shifts in 2t pk-torsion Groups
	5.1 Kuperberg Sieve
	5.2 Disequations
	5.3 Kuperberg Sieve, Again
	5.4 Algorithm Summary and Complexity
	5.5 Hidden Shift Finding in Groups with Large 2tpk-torsion

	6 Conclusion
	References

	Efficient IBS from a New Assumption in the Multivariate-Quadratic Setting
	1 Introduction
	2 Preliminaries
	2.1 Notations and Background
	2.2 Hardness Assumption
	2.3 Identity-Based Signature

	3 Revisiting the IBS of Chen et al.
	4 Modified Construction and Its Security
	4.1 Security Argument

	5 On the Hardness Assumption
	6 Concluding Remark
	References

	Revisiting the Security of Salted UOV Signature
	1 Introduction
	2 Preliminaries
	2.1 Quadratic Polynomials and Their Matrix Representation
	2.2 (Unbalanced) Oil-Vinegar Signature Schemes
	2.3 Linear Subspace Interpretation of Oil-Vinegar Trapdoor
	2.4 Syntax and Security of Signature Scheme

	3 Revisiting the Security Reduction of Salted UOV
	3.1 On the Simulation of Random Oracle and Salt

	4 A Clean Security Reduction of Salted UOV
	4.1 Homogeneous UOV Signature Scheme Using the Subspace Interpretation
	4.2 Salted Homogeneous UOV
	4.3 Uniformity of MQ-Systems
	4.4 Security of Salted Homogeneous UOV Signature in CROM

	5 Security of Salted Homogeneous UOV in QROM
	6 Concluding Remark
	A Signature Using Trapdoor Information
	A.1 Algorithm for Solving the Public Key System Using Trapdoor Information
	A.2 Signature Scheme

	B Signature of Sakumoto et al.
	References

	Author Index

