
Stability of Decentralized Queueing
Networks Beyond Complete Bipartite

Cases

Hu Fu1(B), Qun Hu1, and Jia’nan Lin2

1 ITCS, Shanghai University of Finance and Economics, Shanghai, China
fuhu@mail.shufe.edu.cn, 2019212804@sufe.edu.cn

2 Rensselaer Polytechnic Institute, Troy, NY, USA
linj21@rpi.edu

Abstract. Gaitonde and Tardos [3,4] recently studied a model of queue-
ing networks where queues compete for servers and re-send returned
packets in future rounds. They quantify the amount of additional pro-
cessing power that guarantees a decentralized system’s stability, both
when the queues adapt their strategies from round to round using no-
regret learning algorithms, and when they are patient and evaluate the
utility of a strategy over long periods of time.

In this paper, we generalize Gaitonde and Tardos’s model and con-
sider scenarios where not all servers can serve all queues (i.e., the under-
lying graph is an incomplete bipartite graphs) and, further, when pack-
ets need to go through more than one server before their completions
(i.e., when the underlying graph is a DAG). For the bipartite case, we
obtain bounds comparable to those by Gaitonde and Tardos, with the
factor slightly worse in the patient queueing model. For the more general
multi-layer systems, we show that straightforward generalizations of the
queues’ utilities and servers’ priority rules in [3] may lead to unbounded
gaps between centralized and decentralized systems when the queues use
no regret strategies. We give new utilities and service priority rules that
are aware of the queue lengths, and show that these suffice to restore the
bounded gap between centralized and decentralized systems.

Keywords: Queueing networks · Price of anarchy · No-regret learning
dynamics

1 Introduction

A recurrent theme in algorithmic game theory is to analyze systems operated
by decentralized, strategic agents, in comparison with those run by centralized
authorities. Since Koutsoupias and Papadimitriou [6] introduced the concept
of Price of Anarchy, it has been applied and studied in various games such as
routing in congestion games [8], network resource allocation [5], auctions [2],

Supported by the Fundamental Research Funds for the Central Universities of China.
Part of the work was done when the third author was visiting Shanghai University of
Finance and Economics.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, pp. 96–114, 2022.
https://doi.org/10.1007/978-3-031-22832-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22832-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-22832-2_6


Stability of Decentralized Queueing Networks 97

among many other settings. Recently, Gaitonde and Tardos [3,4] introduced a
routing game in queueing systems, where queues compete for servers each round,
and packets not processed successfully in one round go back to their queues
and have to be re-sent in the future. Unlike most games previously studied, in
such systems, the strategies and outcomes of one round have carryover effect in
future rounds, introducing intricate dependencies among the rounds. Gaitonde
and Tardos developed bicriteria bounds that quantify the loss of efficiency due
to decentralized strategic behaviors in such systems in two settings: in [3], the
queues evaluate the utility of their strategies from round to round, and adopt
no-regret learning algorithms in their routing decisions; in [4], the queues are
“patient”, and fix their strategies over long periods of time over which they
evaluate their performances.

In both [3] and [4], all servers can process requests from all queues, and a
packet leaves the system once it is processed by a server. These are simplifying
modelling assumptions: in many queueing systems, each queue’s packets may
only be processed by certain servers, and a packet may need to go through more
than one server before leaving the system. In this work, we model such added
complexities by seeing the queues and servers as nodes of a directed acyclic graph
(DAG). A queue can send requests to a server only if it has an outgoing edge
to the server. Packets arrive at given rates to nodes with no incoming edges,
and leave the system when they are successfully processed by servers with no
outgoing edges; nodes with both incoming and outgoing edges are both servers
and queues—after it successfully processes a packet, the packet joins its queue
and waits to be sent to the next server. The case considered by Gaitonde and
Tardos [3] corresponds to complete bipartite graphs. We examine whether and
how their results generalize to more general settings.

Our Results. We first characterize networks that can be stable under a central-
ized policy, where stability roughly means that the number of packets accumu-
lated in the system is bounded. As in [3], the main lesson of the characterization
is that it is without loss of generality for a centralized policy to fix for each queue
a distribution and sample a server from this distribution at each time step, inde-
pendently of the history and all other happenings in the system. For bipartite
graphs (Theorem 2) our proof takes a perspective arguably simpler than that
in [3], and this perspective is instrumental in showing the conditions for general
DAGs, which are considerably more involved.

We then consider decentralized systems where queues use no-regret learning
strategies. For general bipartite graphs, we show that the bound in [3] gener-
alizes with minor modification. We inherit much of the proof framework of [3],
including a potential function argument and various apparatus for analyzing the
random processes, although in the key step of the argument where one uses the
no regret property to bound the number of “old” packets processed over a time
window, our proof has to take into account the underlying graph structure, and
makes a connection with the dual form of the conditions for centralized stability.
The eventual stability conditions we give (Theorem 3) when queues use no-regret
learning strategies is also expressed as a scaled dual form of the centralized sta-
bility conditions. As a consequence, the main bicriteria comparison result in [3]



98 H. Fu et al.

extends to general bipartite graphs: a decentralized system is stable if it can
be made stable under a centralized policy with the arrival rates doubled. Inter-
estingly, the dual variables in our decentralized stability condition take values
from a smaller range ({0, 1}) than in the centralized stability condition (where
they may be any nonnegative numbers). For complete bipartite graphs, it can be
shown that even for the centralized stability condition, the dual variables need
only take 0, 1 values. In this sense, our results suggest that the gap between the
two conditions tends to be smaller for incomplete bipartite graphs.

Networkswithmore than one layer of servers are evenmore interesting.Amajor
conclusion reached in [3] is that a server’s rule of priority for packets simultaneously
sent to it is crucial for the system’s stability. In the complete bipartite graphs, it
was shown that, if the servers pick a packet uniformly at random, then no said
bicriteria bound can be given; in contrast, the bicriteria result was obtained when
servers are assumed to prioritize older packets. Another important factor in the
model is the queues’ utilities: it was assumed in [3] that a queue collects utility of
1 if its packet is successfully cleared by a server, and 0 otherwise. Our results for
general bipartite graphs inherit both these modelling assumptions. However, for
graphs of even three layers, we give an example showing that no finite bound of the
bicriteria form can be obtained if one directly extends the utility and the priority
rule from [3]. Intuitively, in order for the system not to lose too much efficiency,
information on the underlying graph is important when there are multiple layers:
a server with strong processing capacity may be poorly connected in the next layer,
and myopic strategies easily send too many packets to such a server. Therefore, the
queues’ utilities need to incorporate more information for their strategies to better
align with the system’s stability; on the other hand, if they are fed with too much
global information, the difference could blur between centrally controlled systems
and decentralized ones.A natural question to raise is whether it is possible to incen-
tivize the queues using only local information so that their selfish behaviors do not
hurt the system efficiency too much. We answer this question in the affirmative,
showing that the lengths of queues in the neighboring nodes provide just this infor-
mation. We propose a new service priority rule, under which the servers prioritize
packets from the longest queues. We also propose new utility functions for queues,
with which a queue of length Li, when it sends a packet to a server j whose own
queue is of length Lj , obtains utility Li − Lj if the packet is successfully processed
by j. In particular, with this new utility function, a queue never sends its pack-
ets to a server whose current queue is longer than itself. We show that when the
new service priority rule and utilities are adopted, the bicriteria result is restored:
a queueing system is stable with queues that use no-regret strategies as long as it
is stable under a centralized policy even when the packet arrival rates are doubled.

Lastly, we extend the model with patient queues to bipartite graphs.
Gaitonde and Tardos [4] showed for complete bipartite graphs that, when queues
are patient, with appropriately defined long-term utilities, a Nash equilibrium
always exists, and a system is stable under any Nash equilibrium as long as it is
stable under a centralized policy even with e

e−1 times the original arrival rates.
To this end, they developed elaborate tools for computing the long-term utilities
given the queues’ strategies. These tools generalize straightforwardly in general
bipartite graphs, but the delicate deformation argument in the proof of their



Stability of Decentralized Queueing Networks 99

bicriteria result does not easily generalize. Our proof again makes use of the
dual form of the condition for centralized stability, which provides a matching
between the fastest growing queues in an equilibrium and servers.

In the full version of this paper, we also consider two other variants of the
problem: in one model, whether a server can process a packet is not determined
by which queue the packet is from, but is an intrinsic property of the packet;
in the other one, the arrival of packets at each queue is not from a Bernoulli
distribution, but is controlled by an adversarial, as in the model of Borodin et
al. [1]. In both variants, we show that the bicriteria results persist when queues
use no-regret strategies. Lastly, we give a tighter bicriteria result for the model
in [3], where the underlying graph is a complete bipartite graph. We show that
a queueing system is stable with queues that play no-regret strategies as long as
it is stable under a centralized policy even when the k-th largest packet arrival
rate is increased by a factor 2k−1

k for each k.

Further Related Works. We refer to Gaitonde and Tardos [3,4] for pointers to
related works in algorithmic game theory and no regret learning. Sentenac et
al. [9] considered the same model as in [3] but when queues use cooperative
learning. When incentives are removed from the problem, they show that the
queues can essentially learn the necessary system parameters and reach a stable
outcome as long as the system is stable under a centralized policy.

2 Preliminaries

2.1 Queue-G Model

A Queue-G Model is a G = (V,E,λ,μ), where (V = S1 ∪S2 ∪S3, E) constitutes
a directed acyclic graph, and λ and μ are the arrival and processing rates on the
nodes. A node i with no incoming edge is a source, and has an arrival rate λi. For
each i, λi ∈ (0, 1). S1 denotes the set of sources. All the other nodes are servers,
and each server j has a processing rate μj . A server with no outgoing edge is a
terminal. S3 denotes the set of terminals. The set of non-terminal server nodes
is S2 := V − S1 − S3. An edge (i, j) ∈ E means that node i can send packets to
node j. For i ∈ S1 ∪ S2, we denote by Nout(i) := {j ∈ V : (i, j) ∈ E} the set of
out-neighbors of i, and for a server i, we denote by N in(i) := {j ∈ V : (j, i) ∈ E}
the set of in-neighbors of i.

Let Qi
t denote the number of packets at node i at the beginning of time step

t. For all i ∈ V , Qi
0 = 0. At each time step t, the following events happen, in

two phases:

(I) Packet sending: each node i with Qi
t > 0 chooses a server j from Nout(i)

and sends to j the oldest packet (with the earliest timestamp) in i’s queue.
In a centralized system, a central authority dictates for each node if and
where to send its packet at each time step; in a decentralized system, each
node strategizes over this decision.



100 H. Fu et al.

(II) Packet arrival and processing: at each source i ∈ S1, a packet with times-
tamp t arrives with probability λi; each server i ∈ S2 ∪ S3, if it receives
any packet in phase (I), chooses one such packet according to some service
priority rule to process, and succeeds with probability μi. The arrivals of
packets at each source and the successes of their processing at each server
are all mutually independent events. A packet cleared by server j ∈ S2 joins
the queue of server j; a packet cleared by a server in S3 leaves the system.
A packet not chosen by or not successfully processed by a server goes back
to the node that sends it. It follows that any i ∈ S3 has Qi

t = 0 at any time
step t.

Gaitonde and Tardos [3] considered a special case of the Queue-G Model,
where there are no non-terminal servers and every source can send packets to
every server, i.e., S2 = ∅ and E = S1 × S3, and the service priority rule at each
server is to choose the oldest packet (breaking ties arbitrarily).1

We refer to this special case as the Queue-CB Model (“CB” for complete
bipartite).

If we only have S2 = ∅ (and allow any E ⊆ S1 × S3), we have the Queue-B
Model.

2.2 Stability and No Regret Learning

Let Qt :=
∑

i∈V Qi
t be the total number of packets in the queueing system at

the start of time step t. We inherit from [3] the notion of stability:

Definition 1. Under some scheduling policy (either with a central authority or
with queues strategizing), a queueing system is strongly stable if for any a > 0,
there is a constant Ca only related to a, such that E[(Qt)a] ≤ Ca for all t. A
queueing system is almost surely strongly stable if with probability 1, the
following event happens: for any a > 0, Qt = o(ta).

Gaitonde and Tardos [3] showed that if a queueing system is strongly stable,
then it is almost surely strongly stable. We therefore focus on showing strong
stability, and often refer to a strongly stable system simply as stable.

The following theorem by Pemantle and Rosenthal [7], also used in [3], is the
workhorse for showing stability.

Theorem 1 ([7]). Let X0, · · · ,Xn be nonnegative random variables. If there
are constants b, c, d > 0 and p > 2 such that X0 ≤ b and, for all n,

E(|Xn+1 − Xn|p | X0, · · · ,Xn) ≤ d; (1)
Xn > b ⇒ E(Xn+1 − Xn | X0, · · · ,Xn) ≤ −c, (2)

then for any a ∈ (0, p − 1), there is C = C(p, a, b, c, d) such that E(Xn)a < C
for all n.
1 For ease of presentation, we made minor changes from Gaitonde and Tardos [3]’s

model, in the order of packet sending and packet arrival. It is easy to see that
the difference is negligible for the analysis of the system’s stability, which is an
asymptotic quality, to be defined below.



Stability of Decentralized Queueing Networks 101

We refer to (2) as the negative drift condition, and (1) as the bounded jump
condition.

We now introduce utilities of queues, as defined in [3]. The utility of a queue
at time step t is the number of packets cleared from this queue at time step t.
Let ai(t) denote the server that node i chooses at time step t. (A node i may
not choose any server, in which case we let ai(t) = 0 and we set μ0 = 0.) Let
Ft denote the history of the system up to the beginning of time step t. We use
ui

t(ai(t), a−i(t))|Ft) to denote the utility of node i when node i chooses server
ai(t) and the other nodes choose a−i(t), given history Ft. We should specify the
content of a history: Ft only includes information on which packets, up to time
step t, were cleared and the age of the currently oldest packet in each node, but
does not include the queue size Qi

t. This makes sure that, for the k-th packet in
node i that is cleared at time step t, the time difference between its arrival and
that of the (k + 1)-st packet is independent of the history Ft′ for all t′ < t, and
obeys the geometric distribution with parameter λi.

Lastly, we define the regret of a node i up to time w as the difference between
its utility in a real sample path and what it could have achieved by always playing
a best fixed action in hindsight.

Definition 2. For a time window from time step t0 − w to t0 − 1, the regret of
queue i for actions ai(t0 − w), . . . , ai(t0 − 1) is

Regi(w, t0) := max
j:j∈Nout(i)

t0−1∑

t=t0−w

ui
t(j, a−i(t)|Ft) −

t0−1∑

t=t0−w

ui
t(ai(t), a−i(t)|Ft).

Note that, in this definition, the utility obtained by playing the best fixed
strategy is evaluated using “real” histories (Ft’s) observed under the actual
actions taken by the node. It does not use counterfactual histories generated
by playing the fixed strategy. We often drop the parameter t0 when it is clear
from the context.

Definition 3. Given fixed δ ∈ (0, 1), queue i’s scheduling policy is no regret if,
for any time window from time step t0 − w to t0 − 1, with probability at least
1 − δ, Regi(w, t0) ≤ ϕδ(w), where ϕδ(w) = o(w) may depend only on δ and the
number of nodes in the queueing system.

3 Bipartite Queueing Systems

In this section we derive necessary and sufficient conditions for the existence
of a centralized policy that stabilizes a queueing system in a bipartite graph (a
Queue-B model). We then give a sufficient condition that guarantees the stability
of such systems when all queues adopt no-regret strategies. For the special case
when the underlying graph is complete bipartite, our conditions degenerate to
the ones given by Gaitonde and Tardos [3].



102 H. Fu et al.

3.1 Stability Conditions Under Centralized Policies

A Queue-B model as defined in Sect. 2 simply consists of n queues on one side
and m servers on the other. Server j is able to clear a packet from queue i if
and only if there is an edge between the two. It is easy to see that a centralized
policy never benefits from sending packets from two queues to a same server in
a single time step, as the server picks up only one of them. Therefore, with loss
of generality, the routing dictated by a centralized policy at any step gives a
matching of the queues to the servers. (Some queues may be asked not to send
their packets, and some servers may be allowed to be idle for that round.) It is
less clear whether a centralized policy benefits from making intricate use of the
history when it decides on the matching at each step. It turns out, for the system
to be stable (Definition 1), it is without loss of generality to consider history
oblivious centralized policy, which samples a matching from a fixed distribution
over matchings from step to step. A Queue-B model can be stable under any
centralized policy if and only if it can be stable under such a policy. This is the
essence of the following theorem.

Recall that a fractional matching matrix P ∈ [0, 1]n×m is such that
∑

j Pij ≤
1 for all i ∈ [n] and

∑
i Pij ≤ 1 for all j ∈ [m].

Theorem 2. Given a Queue-B model with n queues and m servers, with arrival
rates λ = (λ1, · · · , λn) and processing rates μ = (μ1, . . . , μm), there is a central-
ized policy under which the system is stable if and only if there exists a fractional
matching matrix P ∈ [0, 1]n×m, such that Pμ � λ, where � denotes element-
wise greater than.

Sufficiency of the condition is a consequence of Birkhoff-von Neumann theo-
rem. The argument of necessity makes use of the observation that, conditioning
on any event in the system, the expected routing decision made by a centralized
policy is expressible as a fractional matching matrix. One may as well condition
on the event that all queues have arrivals considerably larger than the expec-
tations, which occurs with constant probability. This part of the argument is
arguably simpler than the proof in [3], and makes possible the more involved
proof for more general graphs (Theorem 4). The proofs missing due to lack of
space are deferred to the full version of this paper.

Before moving on to decentralized Queue-B models, we derive a dual form of
the conditions in Theorem 2. The dual form plays a crucial role in our analysis
of the systems’ stability under no-regret policies.

Lemma 1. Given a Queue-B model with arrival rates λ and processing rates μ,
the following two conditions are equivalent:

(1) There is a fractional matching matrix P such that Pμ � λ.
(2) For any α ∈ R

n
+, there is a matching matrix M ∈ {0, 1}n×m, such that

α�Mμ > α�λ.

The lemma is an application of Farkas’ lemma. The proof of this lemma is
deferred to the full version. It is worth pointing out that, when the underlying



Stability of Decentralized Queueing Networks 103

graph is a complete bipartite graph, it suffices to have the condition (2) satisfied
for only α ∈ {0, 1}n. This difference plays a role in the contrast between complete
and incomplete bipartite graphs when the system is decentralized, as we explain
in the next section.

3.2 Stability Conditions Under Decentralized, No-Regret Policies

In this section we give conditions under which, in a queueing system on an
incomplete bipartite graph (the Queue-B model), if all queues use no-regret
strategies, the system is stable. Our conditions are most easily comparable with
the dual form of centralized stability conditions stated in Lemma 1. When the
underlying graph is a complete bipartite graph, the conditions are identical to
those by Gaitonde and Tardos [3], as we discuss below. The technique in this part
is largely inherited from [3], although our proof reveals an interesting connection
between the dual form of stability conditions and key steps in the proof. The
sufficient condition is the following:

Assumption 1. There is a constant β > 0, such that for any α = (α1, ..., αn) ∈
{0, 1}n, there is a matching matrix M , such that 1

2 (1 − β)α�Mμ > α�λ.

A quick comparison between this and dual condition in Lemma 1 suggests
that, if one has a Queue-B model which can be made stable by a centralized
policy, then, doubling its processing capabilities guarantees its stability when the
queues use no-regret strategies. Note though that the range of α is much smaller
in Assumption 1 ({0, 1}n) than in Lemma 1 (Rn

+). For complete bipartite graphs,
this difference vanishes (see remark following Lemma 1), but in general bipartite
graphs, this difference is real. This suggests that in incomplete bipartite graphs,
the gap between centralized and decentralized systems tends to be smaller than
in complete bipartite graphs.

Theorem 3. If a Queue-B model queueing system satisfies Assumption 1, and
queues use no-regret learning strategies with δ = β

128n , then the system is strongly
stable.

Following Gaitonde and Tardos [3], we introduce a potential function with
the intention to apply Theorem 1 to its square root. The age of a packet that
arrives in the system at time t1 is defined to be t2 − t1 at time t2. Let T i

t be
the age of the oldest packet in queue i at time step t, and let T be the vector
(T 1

t , · · · , Tn
t ). Note that Qi

t, the length of the queue, is at most T i
t . For a positive

integer τ > 0, define

Φτ (Tt) :=
∑

i:T i
t ≥τ

λi(T i
t − τ).

The potential function Φ is defined as

Φ(Tt) :=
∞∑

τ=1

Φτ (Tt) =
∞∑

τ=1

∑

i:T i
t ≥τ

λi(T i
t − τ) =

1
2

n∑

i=1

λiT
i
t (T

i
t − 1).



104 H. Fu et al.

We analyze the system by dividing the time steps into windows of length w
each, for some large enough w. Let Z� :=

√
Φ(T�·w) be the square root of the

potential function at the beginning of the �-th window. The main work lies in
showing that (Z�)� satisfies the conditions of Theorem 1, which implies E[Za

� ] is
bounded for any a > 0. This in turn implies that E[(

∑
i T i

t )
a] is bounded, and

so is E[(Qt)a].

Lemma 2. [Negative drift condition.] Denote by λ(n) the minimum element of
λ.
Let b = w√

2λ(n)
max

(
8
β (

∑n
i=1 λi) , 16n2

)
, c = −

√
2λ(n)βw

64 . Then Z0 = 0 ≤ b

and, for all �,

Z� > b ⇒ E [Z�+1 − Z� | Z0, · · · , Z�] ≤ −c.

Lemma 3. [Bounded jump condition.] For each even integer p ≥ 2, there is a
constant dp, such that for all �

E [|Z�+1 − Z�|p | Z0, · · · , Z�] ≤ dp.

Lemma 3 is identical to the corresponding part in Gaitonde and Tardos [3],
and we omit its proof. The main difference between our proof and [3] is in the
proof of the negative drift condition (Lemma 2). We present here the key steps
of our proof, and the rest is deferred to full version.

Following Gaitonde and Tardos [3], for a given τ > 0, we say a packet is
τ -old if its age is at least τ at time step � · w, i.e., if its arrival time is no later
than �w − τ . Let Jτ be the set of queues which have τ -old packets at time step
(�+1) ·w. For a queue i, if by time step (�+1) ·w, it still has packets that arrived
before time step � · w, let τi = maxτ>0:Jτ �i τ be the age of the oldest packet in
queue i; otherwise, set τi = 0. Let N i

τ be the number of τ -old packets cleared
from queue i during the time window from time step � ·w to (�+1) ·w. Similarly,
for a server j, let Lj

τ be the number of τ -old packets cleared by server j during
this time window. Next, define Nτ =

∑
i∈[n] N

i
τ =

∑
j∈[m] L

j
τ as the number of

τ -old packets cleared during this time window. Lastly, let Cj
t be the indicator

variable for server j succeeding in processing a packet if it picks one up.

Lemma 4. For any τ > 0 and ε > 0, if
∑(�+1)·w−1

t=�·w Cj
t ≥ (1−ε)μjw for each j,

then Nτ ≥ 1−ε
1−β

∑
i∈Jτ

λiw − ∑n
i=1 Regi(w, (� + 1) · w).

Proof. Any queue i ∈ Jτ has a τ -old packet throughout the time window. For a
server j which can serve queue i, consider the counterfactual utility i may gain
during this time window by sending a request to j at each step. Let Xτ

jt be the
indicator variable for the event that some queue (which may not be i) sends a
τ -old packet to server j at time step t. Then at any time step t when Xτ

jt = 0,
server i’s packet would have been picked up by server j had i sent a request,
because no other packet sent to j is τ -old, so the packet from i has priority.
Recall that Cj

t is the indicator variable for server j succeeding in processing a
packet if it picks one up. So queue i would have gained utility 1 at time t by



Stability of Decentralized Queueing Networks 105

sending a request to j if Cj
t = 1 and Xτ

jt = 0. Over the time window, queue i’s
counterfactual utility could have been

∑(�+1)·w−1
t=�·w (1 − Xτ

jt). Note that queue i’s
actual utility is N i

τ , so by definition of regret, we have

N i
τ ≥

(�+1)·w−1∑

t=�·w
Cj

t (1 − Xτ
jt) − Regi(w, (� + 1) · w).

On the other hand, whenever Xτ
jtS

j
t = 1, server j successfully clears a τ -old

packet. Therefore, Lj
τ =

∑(�+1)·w−1
t=�·w Cj

t Xτ
jt. Then, for a pair of queue i ∈ Jτ and

server j that can serve i, we have

N i
τ + Lj

τ ≥
(�+1)·w−1∑

t=�·w
Cj

t − Regi(w, (� + 1) · w). (3)

Now we are ready to apply Assumption 1. Let α be the indicator vector for the
set Jτ ⊆ [n], i.e., αi = 1 if i ∈ Jτ , and αi = 0 otherwise. By Assumption 1, we
can find a matching matrix Mτ such that 1

2 (1 − β)α�Mτμ > α�λ. Let Uτ be
the edge set such that (i, j) ∈ Uτ ⇔ Mτ (i, j) = 1. Then,

1
2
(1 − β)

∑

(i,j)∈Uτ

μj >
∑

i∈Jτ

λi. (4)

Now, we are ready to give a lower bound for Nτ :

2Nτ =
n∑

i=1

N i
τ +

m∑

j=1

Lj
τ ≥

∑

(i,j)∈Uτ

(N i
τ + Lj

τ )

≥
∑

(i,j)∈Uτ

⎛

⎝
(�+1)·w−1∑

t=�·w
Cj

t − Regi(w, (� + 1) · w)

⎞

⎠ (5)

≥
∑

(i,j)∈Uτ

(1 − ε)μjw −
n∑

i=1

Regi(w, (� + 1) · w) (6)

≥ 2(1 − ε)
1 − β

∑

i∈Jτ

λiw −
n∑

i=1

Regi(w, (� + 1) · w), (7)

where the second inequality uses (3), and the last inequality uses (4).

We sketch the rest of the proof, and all details are deferred to the full version.
When the servers’ realized processing capacities are close to their expectations
(as in the condition of Lemma 4) and when the queues’ regret are small (which
should happen with high probability by assumption), the lower bound given by
Lemma 4 on Nτ implies a lower bound on the decrease in the potential function
due to packet clearing (Lemma 5). We can further bound the increase in the



106 H. Fu et al.

potential function due to aging over the time interval. (Lemma 6). We define
an event A, specified in the full version of this paper, which happens with high
probability, and under which all of these events (of concentration and no regret)
happen.

Recall that τi is the age of the oldest packet in queue i at time step (�+1) ·w,
where the age is measured by time step � · w. Let τ = {τ1, · · · , τn}.

Lemma 5. Under event A, Φ(T�·w) − Φ(τ ) ≥ 1−2ε
1−β

∑n
i=1 λiτiw.

Lemma 6. Under event A, Φ(T(�+1)·w) − Φ(τ ) ≤ ∑n
i=1 λiτiw + 1

2

∑n
i=1 λiw

2.

With a small probability, event A does not happen, and it is relatively
straightforward to upper bound the increase in the potential in this case. (Most
pessimistically, no packets is cleared during the time window and T i

t in each
queue grows by w.)

Lemma 7. If event A does not happen, Φ(T(�+1)·w) − Φ(T�·w) ≤
∑n

i=1 λiT
i
�·ww + 1

2

∑n
i=1 λiw

2.

Lemma 2 follows from combining Lemma 5, 6 and 7.

4 Queueing Systems with Multiple Layers

In this section we study queueing systems where packets or tasks may need to
go through more than one servers before their completions. After a packet is
successfully processed by an intermediate server, it immediately joins the queue
forming at their server, waiting to be sent to the next server. In Sect. 4.1, we
give sufficient and necessary conditions for such a queueing system to be stable
under a centralized policy. In Sect. 4.2, we show that, when one extends the
utility and service priority rules from Gaitonde and Tardos [3]’s model to such
networks, it is impossible to obtain a PoA result comparable to Theorem 3. In
Sect. 4.2, we introduce new utilities and service priority rules that are aware of
local queue lengths, and show that they suffice to restore conditions for stability
under decentralized, no-regret strategies.

4.1 Stability Under Centralized Policies

As we reasoned for the bipartite case, it never benefits a central planner to send
packets from more than one queues to the same server in a single time step,
therefore, it is without loss of generality to consider policies under which, at
each time step, the edges along which packets are sent from a set of vertex-
disjoint paths. (Note that one such path need not start from a source or end at
a terminal.) In general, at each step this set of paths may be sampled from a
distribution that depends on the history. As in the bipartite case, the following
characterization of stable systems shows it without loss of generality to let this



Stability of Decentralized Queueing Networks 107

distribution be the same from step to step, regardless of what happened in the
past. The proof though is considerably more involved than in the bipartite case.2

Theorem 4. Given a Queue-G model (V,E,λ,μ), the following statements are
equivalent.

1. There exists a centralized policy under which the system is stable.
2. The following linear system is feasible:

λi <
∑

j

zijμj , ∀i ∈ S1; (8)

μi

∑

j

zji <
∑

j

zijμj , ∀i ∈ S2 with
∏

j∈N in(i)

zji > 0; (9)

∑

j

zij ≤ 1, ∀i ∈ S1 ∪ S2; (10)

∑

j

zji ≤ 1, ∀i ∈ S2 ∪ S3; (11)

zij = 0, ∀(i, j) /∈ E; (12)
zij ≥ 0, ∀(i, j) ∈ E. (13)

3. The following linear system in (fiπ)i∈S1,π∈Π is feasible, where Π is the set of
paths from a node in S1 to a node in S3:

∑

i∈S1

∑

y∈Nout(x)

∑

π∈Π:π�(x,y)

fiπ

μy
≤ 1,∀x ∈ S1 ∪ S2; (14)

∑

i∈S1

∑

y∈N in(x)

∑

π∈Π:π�(y,x)

fiπ ≤ μx,∀x ∈ S2 ∪ S3; (15)

∑

π∈Π

fiπ > λi,∀i ∈ S1; (16)

∑

i∈S1

∑

π∈Π:∃y,(y,x)∈π

fiπ =
∑

i∈S1

∑

y∈Nout(x)

∑

π∈Π:π�(x,y)

fiπ,∀x ∈ S2; (17)

fiπ = 0,∀i ∈ S1, π ∈ Π s.t. i not on π. (18)

We relegate the proof of the theorem to the full version. The fact that con-
straints (8)–(13) being feasible implies the stability of a centralized policy is a
relatively straightforward consequence of a generalization of Birkhoff-von Neu-
mann theorem. Proving the other direction is considerably more involved than
for the bipartite case, and it is for this purpose that we introduce the third
condition in Theorem 4. We show that the feasibility of constraints (14)–(18)
implies the feasibility of constraints (8)–(13), then we show that a system for
which constraints (14)–(18) are not feasible cannot be stable.
2 It is relatively easy to extend the argument in Theorem 2 to show the necessity of

the conditions in Theorem 4, except for the strictness of the signs in (8) and (9).



108 H. Fu et al.

Again we give a dual form of conditions for centralized stability, which are
central to our analysis of the systems’ stability under no-regret policies. Its proof
can be found in the full version of this paper.

Definition 4. A vertex-disjoint path (one such path need not start from a source
or end at a terminal) is a collection of edges. Any two edges in the path can’t
have the same head or the same tail.

Lemma 8. Given a Queue-G model (V,E,λ,μ) with n sources and m servers,
the following two conditions are equivalent:

(1) The linear system of the second statement in Theorem 4 is feasible.
(2) For any α ∈ {Rn+m

+ | αi = 0 if i ∈ S3}, there is a vertex-disjoint path set
U , such that

∑
(i,j)∈U (αi − αj)μj >

∑
i∈S1

αiλi.

4.2 Decentralized Multi-Layer Networks

System Failure with Myopic Queues. In a queueing system with multiple
layers, (i.e., when S2 = ∅), a natural extension of the utility in bipartite systems
as defined in Sect. 2 is to let a queue earn utility 1 at a time step if one of
its packet is successfully processed by the server it is sent to. The hope is that
when all queues focus on getting their packets processed by the next server, the
system runs relatively efficiently. Unfortunately, as the following example shows,
when the queues run no-regret strategies on such utilities, they may be too
short-sighted for the decentralized system to have performance comparable to a
centralized one, even if one increases the processing capacities by any constant
factor.

Fig. 1. A queueing system with two layers of servers. A centralized policy sending
packets from both sources to server 5 makes the system stable, but the two sources
may find it a no-regret strategy to send requests to servers 3 and 4, respectively.



Stability of Decentralized Queueing Networks 109

Example 1. The system shown in Fig. 1 is stable under a centralized policy.
One feasible solution to the linear system given in Theorem 4 is z15 = z25 =
0.4, z58 = 1, with all other coordinates of z set to 0. It is not difficult to see
that, if both queue 1 and queue 2 send their requests to server 3 and server 4,
respectively, they play no-regret strategies, but the system is unstable because
packets accumulate at servers 3 and 4. The phenomenon persists even when the
processing capacities are increased by a factor of 1

ε .

Stability with Queue Length Aware Utilities. Example 1 suggests that
the instantaneous, local feedback is not enough to align the queues’ interests
with the system’s efficiency. In this section we show that, when we incorporate
one other piece of local information, the queue lengths, into the queues’ utilities
and the service priority rule, we can recover the bicriteria results we showed for
single-layer systems in Sect. 3.

Recall that Qi
t denotes the length of queue i at time t. Our new utility for

queue i ∈ S1 ∪ S2 for sending a request to server j at time t is

ui
t(j, a−i(t) | Ft) =

{
Qi

t − Qj
t , if the packet sent to j is successfully processed;

0, otherwise.

Note that this utility function immediately implies that it is never in a queue’s
interest to send a request to a server with a queue longer than itself. Also recall
that Qj

t = 0 for any j ∈ S3 at any time t. The history Ft now includes information
on which packets have been cleared and the queue size Qi

t.3
We also change the servers’ priority rules to preferring requests from longer

queues. With the new utilities and service priority rules, the sufficient condition
we obtain for decentralized stability is:

Assumption 2. There is a β > 0 such that for any α ∈ {Rn+m
+ | αi = 0 if i ∈

S3}, there is a vertex-disjoint path set U such that

1
2
(1 − β)

∑

(i,j)∈U

(αi − αj)μj >
∑

i∈S1

αiλi

Theorem 5. If a Queue-G model queueing system satisfies Assumption 2 holds,
and nodes use no-regret learning strategies with δ = βμ(m)

96(n+m)2 , then the queueing
system is strongly stable.

A quick comparison between Assumption 2 and the dual form of condition
for centralized stability in Lemma 8 shows that, a queueing system is guaranteed

3 This is different from the setup in Sect. 2. We now no longer have the independence
between the time interval between packet arrivals and histories prior to the their
clearing. As will be clear in the proof, this independence is no longer needed in the
proof. The introduction of queue lengths makes the change in the potential more
directly connected with the queues’ utilities.



110 H. Fu et al.

to be stable with queues using no-regret learning strategies as long as the system
can be stable under a centralized policy with twice as many packet arrivals.

As in the proof for Theorem 3, we introduce a similar potential function

Φ(Qt) :=
1
2

∑

i∈S1∪S2

Qi
t(Q

i
t − 1), (19)

and define Z� as its square root at the beginning of the �-th window of length w.
There is change in the proofs for both the negative drift condition and the
bounded jump condition. We detail here the main different steps in Lemma 9
for the negative drift condition, and relegate the rest to the full version.

Lemma 9. [Negative drift condition.] Let b = 8
√

2(n+m)

βμ(m)
(
∑

i∈S1
λ2

i w
2 +

∑
i∈S2∪S3

μjw
2 + w), c = −

√
2μ(m)βw

128(n+m) . Then Z0 = 0 ≤ b and, for all �,

Z� > b ⇒ E [Z�+1 − Z� | Z0, · · · , Z�] ≤ −c.

Lemma 10. [Bounded jump condition.] For each even integer p ≥ 2, there is
a constant dp, such that for all �,

E [|Z�+1 − Z�|p | Z0, · · · , Z�] ≤ dp.

At time step (� + 1) · w, let τi be the number of unprocessed packets at node
i which arrived before time step � · w. Note the difference from the definition
of τi in the proof of Theorem 3—there, τi is the age of the oldest packet in
queue i at time �w. For any node i and t ∈ [� · w, (� + 1) · w], τi ≤ Qi

t ≤ τi + w.
Recall that Cj

t is the indicator variable for server j succeeding in processing a
packet if it picks one up, and ui

t is the utility of queue i at time step t. For a
server j, define its contribution vj

t to be ui
t if j successfully clears a packet from

queue i at time step t, and is 0 if it fails to do so. Then, at any time step t,∑
i∈S1∪S2

ui
t =

∑
j∈S2∪S3

vj
t . A key observation is that, with the new utility

functions, when a packet is cleared, the decrease in potential is exactly equal
to the increase in the corresponding queue’s utility. We can therefore calculate
the decrease in potential function by tracking the sum of utilities of all nodes.
The following key lemma lower bounds the total utility over a time window as
a function of the number of old packets (τi’s), assuming the realized processing
capacities of all servers are around their expectations. Its use of vertex-disjoint
paths paves the way for applying Assumption 2. The following lemma gives the
lower bound of the utility of queues since queues use no regret learning strategies:
for a pair of a long queue and a server, either the server clears many packets
from long queues, generating a certain amount of utility or queues will generate
a certain amount of utility since its utility will no less than the utility if it always
sends packets to this server and its packets have priority since its queue length
is large.

Lemma 11. For any ε > 0, if
∑(�+1)·w−1

t=�·w Cj
t ≥ (1 − ε)μjw for each j ∈

S2 ∪ S3, then for any set U of vertex-disjoint paths,
∑

i∈S1∪S2

∑(�+1)·w−1
t=�·w ui

t ≥
1
2

∑
(i,j)∈U (τi − τj − w)(1 − ε)μjw − ∑

i∈S1∪S2
Regi(w, (� + 1) · w).



Stability of Decentralized Queueing Networks 111

We sketch the rest of the proof, and relegate details to the full version.
When the servers’ realized processing capacities are close to their expecta-

tions (as in the condition of Lemma 11) and when the queues’ regrets are small
(which should happen with high probability by assumption), the lower bound
given by Lemma 11 on the utility of queues implies a lower bound on the decrease
in the potential function due to packet processing (Lemma 12). When the packet
arrivals in the sources are close to their expectations, we can further bound the
increase in the potential function due to packet arrival (Lemma 13). We define
an event B, specified in the full version of this paper, which happens with high
probability, and under which all of these events (of concentration and no regret)
happen. Roughly speaking, when B happens, the increase in the potential due
to packet arrivals is at least offset by the decrease due to packet clearing when
we use Assumption 2 to generate an appropriate U in Lemma 11 and relate the
term 1

2

∑
(i,j)∈U (τi − τj)μjw to

∑
i∈S1

τiλi. With a small probability, event B
does not happen, and it is relatively straightforward to upper bound the increase
in the potential in this case.

To put things formally, recall that τi is the length of packets in queue i at time
step (�+1)·w, which arrived in queue i before time step �·w; let τ = {τ1, · · · , τn}.
Given τi for each node i, by Assumption 2, let U∗ be the vertex-disjoint path
such that

1
2
(1 − β)

∑

(i,j)∈U∗
(τi − τj)μj >

∑

i∈S1

τiλi.

Lemma 12. Under event B, Φ(Q�·w)−Φ(τ ) ≥ β
4

∑
(i,j)∈U∗(τi − τj)μjw + (1 +

β
8 )

∑
i∈S1

λiτiw − ∑
i∈S2∪S3

μiw
2 − w.

Lemma 13. Under event B, Φ(Q(�+1)·w) − Φ(τ ) ≤ (1 + β
8 )

∑
i∈S1

λiτiw +
∑

i∈S1
λ2

i w
2.

With a small probability, event B does not happen, and it is relatively
straightforward to upper bound the increase in the potential in this case. (Most
pessimistically, no packets is cleared during the time window and for each time
step, there is a packet arriving at each source node, then the queue length of
each source node grows by w.)

Lemma 14. If event B does not happen, then Φ(Q(�+1)·w) − Φ(Q�·w) ≤∑
i∈S1

Qi
�·ww + w2.

Lemma 9 follows from combining Lemma 12, 13 and 14.

5 Patient Queueing Model

In this section we extend a model introduced in [4], where queues do not vary
their routing policies from step to step, but evaluate the utility of a fixed routing
policy over a long period of time. On complete bipartite graphs, Gaitonde and



112 H. Fu et al.

Tardos [4] showed that Nash equilibria always exist in the resulting game, and
that a system is stable under any Nash as long as it can be stable under a
central policy with e

e−1 times as much arrival rates. We obtain a similar result
for incomplete bipartite graphs, but the factor in our bicriteria result worsens
to 2. We leave for future work to decide whether this factor can be improved.

Below we first describe the model in more detail, before presenting our result.

5.1 Model Description

A bipartite Patient Queueing Model has the same packet arrival, routing and
processing procedures as in a Queue-B model described in Sect. 2; the servers’
priority rule is to pick the oldest packet. The main difference is that the queues
are “patient”: each queue fixes a routing strategy in the form of a distribution
over the servers it can reach, and evaluates its utility/cost over a long time
period. Formally, the strategy space of queue i is the simplex over the servers
i can send requests to: Δi := Δ(Nout(i)). By adopting a strategy pi ∈ Δi,
queue i in each round samples a server according to the distribution given by pi,
independently of all history and other happenings in the system, and sends a
request to the sampled server if its queue is non-empty. Let p-i be the strategies
of the queues other than i, then the cost of queue i for using strategy pi is
ci(pi,p-i) := limt→∞

T i
t

t , where T i
t is the age of the oldest packet in queue i at

time step t. Each queue aims to minimize its cost. A strategy profile p is a Nash
equilibrium if for each queue i, pi ∈ argminp′∈Δi

ci(p′,p-i).
Gaitonde and Tardos [4] considered a special case of the Patient queueing

Model, where the underlying bipartite graph is complete, i.e., E = S1×S3. They
gave an algorithm that, given a strategy profile p, computes an ri(p) for each
queue i, with ri(p) equal to ci(p) almost surely. This algorithm played a crucial
role in the derivation of their main result. The algorithm extends directly to
our more general setting, and is also a key step in our result in this section. We
present this algorithm next.

5.2 Gaitonde and Tardos’s Algorithm for Computing Costs

Algorithm 1 is a straightforward generalization (to general bipartite graphs) of
Gaitonde and Tardo’s [4] algorithm for computing the queues’ costs. We give
some rough intuition here. Thanks to the service priority rule, in the long run,
the queues are tiered according to the rates of growth of their lengths: the faster
growing ones have higher priority over the slower growing ones. Determining
which queues grow the fastest is like a self-fulfilling prophecy: a group of queues
grow the fastest even when they have the highest priority. The algorithm enumer-
ates all possible “first tier” queues, and finds the one that fulfills the “prophecy.”
It then continues to find lower tiers, assuming that all higher tiers have priority.
Nailing down this intuition involves intricate probabilistic arguments, and is a
major technical accomplishment of [4].

In the step that picks Qk, there is no ambiguity because the union of mini-
mizers of f(Q) can be shown to be another minimizer. The following results are



Stability of Decentralized Queueing Networks 113

Algorithm 1: Computing the queues’ costs given their strategies
Input: Queueing system (S1 ∪ S3, E,λ,μ), strategy profile p
I ← S1, k ← 1
while I �= ∅ do

Compute for each Q ⊆ I, f(Q) =
∑m

j=1 μj(1−∏
i∈Q(1−pij))

∑
i∈Q λi

.
Let Qk be the minimizer of f(Q), breaking ties in favor of larger cardinality.
if f(Qk) ≥ 1 then

For any i ∈ I, output ri(p) = 0, terminate.
else

For each i ∈ Qk, ri(p) = 1 − f(Qk);
Update µj ← µj

∏
i∈Qk

(1 − pij), I ← I \ Qk, k ← k + 1.
end

end
Output: a sequence of queueing groups Q1, · · · , QK and ri(p) for each queue i.

straightforward generalizations of corresponding results in [4]. We state them
without proofs. Theorem 6 and 7 correspond to Theorem 4.1 and 3.3 in [4],
respectively. Theorem 8 is a generalization of Lemma 3.3 and Theorem 4.4 in
[4].

Theorem 6. For any strategy profile p, ci(p) = limt→∞
T i

t

t = ri(p) almost
surely.

Theorem 7. If the cost function of each queue i is defined to be ri(p), then
every system of the Patient Queueing Model admits a Nash Equilibrium.

Theorem 8. Given a queueing system and a strategy profile p, let Q1 be the
first group of queues output by Algorithm 1. If f(Q1) > 1, then the queueing
system is stable under p.

5.3 Price of Anarchy in Patient Queueing Model

Our bicriteria result for general bipartite graphs is presented again in a form
more comparable to the dual form of conditions for centralized stability (see
Lemma 1).

Theorem 9. Given a bipartite queueing system (V,E,λ,μ), if for any α =
(α1, · · · , αn) ∈ {0, 1}n, there is a matching matrix M , such that 1

2α�Mμ >
α�λ, then the system is stable in any Nash Equilibrium in the patient queue
model.

The proofs missing due to lack of space are deferred to the full version of this
paper.

We remark that repeatedly playing a Nash Equilibrium strategy profile p
may not be no-regret strategies (see an example in the full version), therefore
Theorem 9 is not implied by our results in Sect. 3.



114 H. Fu et al.

6 Conclusion

In this work generalize the decentralized queueing systems proposed by Gaitonde
and Tardos [3,4]. In the full version of this paper, we also consider two more
variants of the model with multiple layers, when packet arrivals are adversarial
instead of probabilistic, and when packets themselves (rather than the queues
they are from) determine which servers can process them. We show that the
bicriteria results under no regret strategies are robust against these model mod-
ifications. Lastly, we provide a slightly tighter analysis for the Queue-CB model
of [3] in the full version of the paper.

Since the bicriteria result in [3] for queues using no regret strategies is tight
even for complete bipartite graphs, our results for the more general cases are also
tight. On the other hand, we do not know if the factor 2 is tight in our result
for patient queues in general bipartite graphs. It seems challenging to directly
apply the deformation technique developed in [4] in this more general setting;
we leave for future work to investigate the tight bound of this problem.

References

1. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM 48(1), 13–38 (2001)

2. Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. J.
ACM 63(2), 11:1–11:19 (2016)

3. Gaitonde, J., Tardos, É.: Stability and learning in strategic queuing systems. In:
Proceedings of the 21st ACM Conference on Economics and Computation, pp. 319–
347 (2020)

4. Gaitonde, J., Tardos, E.: Virtues of patience in strategic queuing systems. In: Pro-
ceedings of the 22nd ACM Conference on Economics and Computation, pp. 520–540
(2021)

5. Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game.
Math. Oper. Res. 29(3), 407–435 (2004)

6. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3_38

7. Pemantle, R., Rosenthal, J.S.: Moment conditions for a sequence with negative drift
to be uniformly bounded in LR. Stoch. Process. Appl. 82(1), 143–155 (1999)

8. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259
(2002)

9. Sentenac, F., Boursier, E., Perchet, V.: Decentralized learning in online queuing
systems. Adv. Neural. Inf. Process. Syst. 34, 18501–18512 (2021)

https://doi.org/10.1007/3-540-49116-3_38

	Stability of Decentralized Queueing Networks Beyond Complete Bipartite Cases*-12pt
	1 Introduction
	2 Preliminaries
	2.1 Queue-G Model
	2.2 Stability and No Regret Learning

	3 Bipartite Queueing Systems
	3.1 Stability Conditions Under Centralized Policies
	3.2 Stability Conditions Under Decentralized, No-Regret Policies

	4 Queueing Systems with Multiple Layers
	4.1 Stability Under Centralized Policies
	4.2 Decentralized Multi-Layer Networks

	5 Patient Queueing Model
	5.1 Model Description
	5.2 Gaitonde and Tardos's Algorithm for Computing Costs
	5.3 Price of Anarchy in Patient Queueing Model

	6 Conclusion
	References




