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Abstract. Team formation is ubiquitous in many sectors: education,
labor markets, sports, etc. A team’s success depends on its members’
latent types, which are not directly observable but can be (partially)
inferred from past performances. From the viewpoint of a principal trying
to select teams, this leads to a natural exploration-exploitation trade-off:
retain successful teams that are discovered early, or reassign agents to
learn more about their types? We study a natural model for online team
formation, where a principal repeatedly partitions a group of agents into
teams. Agents have binary latent types, each team comprises two mem-
bers, and a team’s performance is a symmetric function of its members’
types. Over multiple rounds, the principal selects matchings over agents
and incurs regret equal to the deficit in the number of successful teams
versus the optimal matching for the given function. Our work provides
a complete characterization of the regret landscape for all symmetric
functions of two binary inputs. In particular, we develop team-selection
policies that, despite being agnostic of model parameters, achieve opti-
mal or near-optimal regret against an adaptive adversary.
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1 Introduction

An instructor teaching a large online course wants to pair up students for assign-
ments. The instructor knows that a team performs well as long as at least one of
its members has some past experience with coding, but unfortunately, there is
no available information on the students’ prior experience. However, the course
staff can observe the performance of each team on assignments, and so, over
multiple assignments, would like to reshuffle teams to try and quickly maximize
the overall number of successful teams. How well can one do in such a situation?

Team formation is ubiquitous across many domains: homework groups in
large courses, workers assigned to projects on online labor platforms, police offi-
cers paired up for patrols, athletes assigned to teams, etc. Such teams must
often be formed without prior information on each individual’s latent skills or
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personality traits, albeit with knowledge of how these latent traits affect team
performance. The lack of information necessitates a natural trade-off: a principal
must decide whether to exploit successful teams located early or reassign team-
mates to gain insight into the abilities of other individuals. The latter choice
may temporarily reduce the overall rate of success.

To study this problem, we consider a setting (described in detail in Sect. 2)
where agents have binary latent types, each team comprises two members, and
the performance of each team is given by the same synergy function, i.e., some
given symmetric function of its members’ types. Over multiple rounds, the prin-
cipal selects matchings over agents, with the goal of minimizing the cumulative
regret, i.e., the difference between the number of successful teams in a round ver-
sus the number of successful teams under an optimal matching. Our main results
concern the special case of symmetric Boolean synergy functions—in particular,
we study the functions EQ and XOR (in Sect. 3), OR (in Sect. 4) and AND (in
Sect. 5). While this may at first appear to be a limited class of synergy func-
tions, in Sect. 2.3, we argue that these four functions are in a sense the atomic
primitives for this problem; our results for these four settings are sufficient to
handle arbitrary symmetric synergy functions.

The above model was first introduced by Johari et al. [12], who considered the
case where agent types are i.i.d. Bernoulli(p) (for known p) and provide asymp-
totically optimal regret guarantees under AND (and preliminary results for OR).
As with any bandit setting, it is natural to ask whether one can go beyond a
stochastic model to admit adversarial inputs. In particular, the strongest adver-
sary one can consider here is an adaptive adversary, which observes the choice
of teams in each round, and only then fixes the latent types of agents. In most
bandit settings, such an adversary is too strong to get any meaningful guaran-
tees; among other things, adaptivity precludes the use of randomization as an
algorithmic tool, and typically results in every policy being as bad as any other.
Nevertheless, in this work, we provide a near-complete characterization of the
regret landscape for team formation under an adaptive adversary. In particular,
in a setting with n agents of which k have type ‘1’, we present algorithms that
are agnostic of the parameter k, and yet when faced with an adaptive adver-
sary, achieve optimal regret for EQ and XOR, and near-optimal regret bounds
under OR and AND (and therefore, using our reduction in Sect. 2.3, achieve
near-optimal regret for any symmetric function).

While our results are specific to particulars of the model, they exhibit several
noteworthy features. First, despite the adversary being fully adaptive, our regret
bounds differ only by a small constant factor from prior results for AND under
i.i.d. Bernoulli types [12]; such a small gap between stochastic and adversar-
ial bandit models is uncommon and surprising. Next, our bounds under differ-
ent synergy functions highlight the critical role of these functions in determin-
ing the regret landscape. Additionally, our algorithms expose a sharp contrast
between learning and regret minimization in our setting: while the rate of learn-
ing increases with more exploration, minimizing regret benefits from maximal
exploitation. Finally, to deal with adaptive adversaries in our model, we use
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techniques from extremal graph theory that are atypical in regret minimization;
we hope that these ideas prove useful in other complex bandit settings.

1.1 Related Work

Regret minimization in team formation, although reminiscent of combinato-
rial bandits/semi-bandits [4–6,8,16], poses fundamentally new challenges aris-
ing from different synergy functions. In particular, a crucial aspect of bandit
models is that rewards and/or feedback are linear functions of individual arms’
latent types. Some models allow rewards/feedback to be given by a non-linear
link function of the sum of arm rewards [7,10], but typically require the link
function to be well-approximated by a linear function [17]. In contrast, our team
synergy functions are non-linear, and moreover, are not well-approximated by
any non-linear function of the sums of the agents’ types.

One way to go beyond semi-bandit models and incorporate pairwise interac-
tions is by assuming that the resulting reward matrix is low-rank [13,20,24].
The critical property here is that under perfect feedback, one can learn all
agent types via a few ‘orthogonal’ explorations; this is true in our setting under
the XOR function (Sect. 3), but not for other Boolean functions. Another app-
roach for handling complex rewards/feedback is via a Bayesian heuristic such as
Thompson sampling or information-directed sampling [9,14,19,23]. While such
approaches achieve near-optimal regret in many settings, the challenge in our
setting is in updating priors over agents’ types given team scores. We hope that
the new approaches we introduce could, in the future, be combined with low-
rank decomposition and sampling approaches to handle more complex scenarios
such as shifting types and corrupted feedback.

In addition to the bandit literature, there is a parallel stream on learning for
team formation. Rajkumar et al. [18] consider the problem of learning to parti-
tion workers into teams, where team compatibility depends on individual types.
Kleinberg and Raghu [15] consider the use of individual scores to estimate team
scores and use these to approximately determine the best team from a pool of
agents. Singla et al. [21] present algorithms for learning individual types to form
a single team under an online budgeted learning setting. These works concen-
trate on pure learning. In contrast, our focus is on minimizing regret. Finally,
there is a line of work on strategic behavior in teams, studying how to incentivize
workers to exert effort [2,3], and how to use signaling to influence team forma-
tion [11]. While our work eschews strategic considerations, it suggests extensions
that combine learning by the principal with strategic actions by agents.

2 Model

2.1 Agents, Types, and Teams

We consider n agents who must be paired by a principal into teams of two
over a number of rounds; throughout, we assume that n is even. Each agent



Online Team Formation Under Different Synergies 81

has an unknown latent type θi ∈ {0, 1}. These types can represent any dichoto-
mous attribute: “left-brain” vs. “right-brain” (Sect. 3), “low-skill” vs. “high-skill”
(Sects. 4 and 5), etc. We let k denote the number of agents with type 1, and
assume that k is fixed a priori but unknown.

In each round t, the principal selects a matching Mt, with each edge
(i, j) ∈ Mt representing a team. We use the terms “edge” and “team” interchange-
ably. The success of a team (i, j) ∈ Mt is f(θi, θj), where f : {0, 1}2 → R is some
known symmetric function of the agents’ types. In Sects. 3-5, we restrict our focus
to Boolean functions, interpreting f(θi, θj) = 1 as a success and f(θi, θj) = 0
as a failure. The algorithm observes the success of each team, and may use
this to select the matchings in subsequent rounds; however, the algorithm can-
not directly observe agents’ types. For any matching M , we define its score as
S(M) :=

∑
(i,j)∈M f(θi, θj)—in the special case of Boolean functions, this is the

number of successful teams.
A convenient way to view the Boolean setting is as constructing an edge-

labeled exploration graph G(V,E1, E2, . . .), where nodes in V are agents, and
the edge set Et :=

⋃
t′≤t Mt′ represents all pairings played up to round t. Upon

being played for the first time, an edge is assigned a label {0, 1} corresponding
to the success value of its team. Known 0-agents and known 1-agents are those
whose types can be inferred from the edge labels. The remaining agents are
unknown. The unresolved subgraph is the induced subgraph on the unknown
agents.

2.2 Adversarial Types and Regret

The principal makes decisions facing an adaptive adversary, who knows k (unlike
the principal, who only knows n) and, in each round, is free to assign agent types
after seeing the matching chosen by the principal, as long as (1) the assignment is
consistent with prior observations (i.e., with the exploration graph), and (2) the
number of 1-agents is k. Note that this is the strongest notion of an adversary we
can consider in this setting; in particular, since the adversary is fully adaptive
and knows the matching before making decisions, randomizing does not help,
and so it is without loss of generality to consider only deterministic algorithms.

We evaluate the performance of algorithms in terms of additive regret against
such an adversary. Formally, let M∗ be any matching maximizing S(M∗)—note
that for any Boolean team success function, S(M∗) is a fixed function of n and k.
In round t, an algorithm incurs regret rt := S(M∗)−S(Mt), and its total regret
is the sum of its per-round regret over an a priori infinite time horizon. Note,
however, that after a finite number of rounds, a naïve algorithm that enumerates
all matchings can determine, and henceforth play, M∗; thus, the optimal regret is
always finite. Moreover, the “effective” horizon (i.e., the time until the algorithm
learns M∗) of our algorithms is small.
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2.3 Symmetry Synergy Functions and Atomic Primitives

In subsequent sections, we consider the problem of minimizing regret under four
Boolean synergy functions f : {0, 1}2 → {0, 1}: EQ, XOR, OR, and AND. Inter-
estingly, the algorithms for these four settings suffice to handle any symmetric
synergy function f : {0, 1}2 → R. We argue this below for synergy functions that
take at most two values; We handle the case of synergy functions f taking three
different values at the end of Sect. 3.1.

Lemma 1. Fix some � ≤ u, let f : {0, 1}2 → {�, u} be any symmetric synergy
function, and let rf (n, k) denote the optimal regret with n agents, of which k
have type 1.

Then, rf (n, k) = (u − �) · rg(n, k) for one of g ∈ {EQ,XOR,AND,OR}.
Proof. First, note that without loss of generality, we may assume that f(0, 0) ≤
f(1, 1). Otherwise, we can swap the labels of the agent types without altering the
problem. Note that this immediately allows us to reduce team formation under
the Boolean NAND and NOR function to the same problem under AND and OR,
respectively. Next, note that if f(0, 0) = f(1, 0) = f(1, 1), then the problem is
trivial, as all matchings have the same score. Otherwise, we may apply the affine
transformation f �→ 1

u−� · f − �
u−� to the output to recover a Boolean function:

– When f(0, 1) < f(0, 0) = f(1, 1), we recover the EQ function.
– When f(0, 0) = f(1, 1) < f(0, 1), we recover the XOR function.
– When f(0, 0) = f(0, 1) < f(1, 1), we recover the AND function.
– When f(0, 0) < f(0, 1) = f(1, 1), we recover the OR function.

The structure of the problem remains unchanged since total regret is linear
in the number of each type of team played over the course of the algorithm. The
regret simply scales by a factor of u − �. �

3 Uniform and Diverse Teams

We first focus on forming teams that promote uniformity (captured by the
Boolean EQ function) or diversity (captured by the XOR function). In addi-
tion, we also show that the algorithm for EQ minimizes regret under any general
symmetric synergy function taking three different values.

3.1 Uniformity (EQ)

We first consider the equality (or EQ) synergy function, fEQ(θi, θj) = θi ⊕ θj .
Here, an optimal matching M∗ includes as few (0, 1)-teams as possible, and
thus S(M∗) = n

2 − (k mod 2). If k (and thus n − k) is even, then all agents
can be paired in successful teams; else, any optimal matching must include one
unsuccessful team with different types. For this setting, Theorem 1 shows that a
simple policy (Algorithm 1) achieves optimal regret for all parameters n and k.
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Algorithm 1. Form Uniform Teams
Round 1: Play an arbitrary matching.
Round 2: Swap unsuccessful teams in pairs as {(a, b), (c, d)} → {(a, c), (b, d)}.
Repeat remaining teams (including one unsuccessful team when k is odd).
Round 3: If {(a, b), (c, d)}, {(a, c), (b, d)} are both unsuccessful, play {(a, d), (b, c)}.
Repeat remaining teams.

Theorem 1. Define rEQ(n, k) := 2 · (
min(k, n − k) − (k mod 2)

)
. Then,

1. Algorithm 1 learns an optimal matching by round 3, and incurs regret at most
rEQ(n, k).

2. Any algorithm incurs regret at least rEQ(n, k) in the worst case.

Proof. For the upper bound on the regret, note that every unsuccessful team
includes a 0-agent and a 1-agent. Thus, there is a re-pairing of any two unsuc-
cessful teams that gives rise to two successful teams. If the re-pairing in round 2
is unsuccessful, the only other re-pairing, selected in round 3, must be success-
ful. There will be k mod 2 unsuccessful teams in round 3, making it an optimal
matching. At most min(k, n−k) (0, 1)-teams can be chosen in each of rounds 1–
2, implying that the maximum regret in each of these rounds is min(k, n−k)− (k
mod 2). Since Algorithm 1 incurs regret only in rounds 1–2, its total regret is at
most rEQ(n, k).

For the converse (Claim 2), we argue that against any algorithm, the adver-
sary can always induce regret min(k, n − k) − (k mod 2) in each of rounds 1–2.
Note that after round 2, the exploration graph is a union of two (not necessarily
disjoint) matchings, and hence consists of a disjoint union of even-length cycles
and isolated (duplicated) edges; this is independent of the algorithm, as it holds
for any pair of perfect matchings. Since the graph is bipartite, the adversary can
assign types such that no pair of the minority type is adjacent in the graph by
starting with the labeling according to the bipartition, then arbitrarily relabeling
a subset of the minority side to make the labeling consistent with k. �

A similar argument allows us to complete our treatment of general (symmetric)
synergy functions from Sect. 2.3.

Corollary 1. For any symmetric synergy function f : {0, 1}2 → R such that
f(0, 0) �= f(0, 1) �= f(1, 1), there is a regret-minimizing algorithm that locates an
optimal matching within two rounds.

Proof. By applying an affine transformation to the outputs as in Sect. 2.3, we
may assume without loss of generality that f(0, 0) = 0, and f(1, 1) = 1. There
are three cases to consider:

– f(0, 1) = 1
2 : The problem is trivial, since all matchings have the same score.

– f(0, 1) > 1
2 : The optimal matching includes as many 1–0 agent teams as

possible. After the first (arbitrary) matching, every agent is either part of a
known 1–0 team or has a known identity (as a member of a 0–0 or 1–1 team).
Thus, one can always select an optimal matching in the second round.



84 M. Eichhorn et al.

– f(0, 1) < 1
2 : The optimal matching includes as many 1–1 agent teams as

possible, just as in the EQ setting. Note that the three distinct values of
f allow us to distinguish between (0, 0), (0, 1), and (1, 1) teams. The same
adversarial policy ensures that all 0–1 teams remain sub-optimally paired in
round 2, so we exactly recover the EQ setting.

�

3.2 Diversity (XOR)

Next we consider the XOR success function, fXOR(θi, θj) = θi ⊕ θj , which pro-
motes diverse teams. Now S(M∗) = min(k, n − k), since any optimal matching
M∗ includes as many (0, 1)-teams as possible. Define x+ := max(0, x); we again
show that a simple policy (Algorithm 2) has optimal regret for all n, k.

Algorithm 2. Form Diverse Teams
Round 1: Play an arbitrary matching; let {(1, 2), . . . , (�−1, �)} denote unsuccessful
teams.
Round 2: Replay all successful teams, and construct a single cycle over all unsuc-
cessful teams (i.e., play teams {(�, 1), (2, 3), . . . , (� − 2, � − 1)}).
Round 3: Play any inferred optimal matching (see Theorem 2).

Theorem 2. Define rXOR(n, k) := 2 · (min(k, n − k)− 1− (k mod 2)
)+

. Then,

1. Algorithm 2 learns an optimal matching after round 2, and incurs regret at
most rXOR(n, k).

2. Any algorithm incurs regret at least rXOR(n, k) in the worst case.

Proof. For the achievability in Claim 1, note that each edge
(
i, (i + 1) mod �

)

of the cycle constructed in the algorithm has the following property: if the
edge is successful in round 2, then its endpoints have opposite types; otherwise,
they have the same type. By following edges around the cycle, the algorithm
can therefore construct the sets S= of agents with the same type as agent 1,
and S �= of agents with the opposite type. Subsequently, it is optimal to match
min(|S=|, |S �=|) teams of (known) opposite-type agents, and match the extrane-
ous agents into unsuccessful teams.

Among agents 1, . . . , �, there are k − n−�
2 1-agents and n − k − n−�

2 0-agents;
thus, the round 1 regret is r1 := min(k, n − k)− n−�

2 (note that When k is odd,
one team must be successful in round 1). Since no regret is incurred after round
2, the adversary must maximize the regret in round 2 conditioned on the choice
of �. This is achieved by assigning type 1 to agents 1, . . . , k − n−�

2 , and type 0
to agents k − n−�

2 +1, . . . , �. Since (�, 1) and (k − n−�
2 , k − n−�

2 +1) are the only
successful teams (as long as agents 1 to � do not all have the same type), the
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regret in round 2 is (r1 − 2)+. The total regret
(
2min(k, n − k)− n+ � − 2

)+ is
monotone increasing in �, with the maximum attained at � = n − 2(k mod 2).
Substituting, we get the upper bound.

For the converse (Claim 2), we describe a policy for the adversary that ensures
regret at least rXOR(n, k). In round 1, the adversary reveals k mod 2 successful
teams, resulting in regret min(k, n−k)− (k mod 2). In round 2, the exploration
graph must consist of a disjoint union of even-length cycles (including isolated
duplicated edges).

First, when k is odd, consider the component containing the one revealed
successful team from round 1. If the component has just two agents (i.e., the
algorithm repeats the team), then we again get one successful team. Otherwise, if
the team is part of a longer cycle, the adversary puts an odd number of adjacent
0s and an odd number of adjacent 1 s in the cycle, such that the previously
successful team is (0, 1). Since the edge is not repeated, and only one other (0,
1)-team is created, the algorithm gets at most one successful team in this cycle.
The remaining cycles contain an even number of 1-agents, so we appeal to below.

When k is even, the adversary fills cycles with 0-agents until they are
exhausted, then labels all remaining agents as 1-agents. At most one cycle con-
tains both agent types. Placing the 0-agents contiguously in this cycle ensures
only two adjacent successful teams. Since all cycle lengths are even, as is n − k,
these successful teams will be an even number of edges apart; in particular, the
adversary can ensure that they are both edges from round 2, making the assign-
ment consistent with round 1. In total, the algorithm obtains at most 2 + (k
mod 2) successful teams in round 2, giving total regret at least rXOR(n, k). �

4 The Strongest Link Setting (OR)

We next consider the Boolean OR synergy function, that is, fOR(θi, θj) = θi+θj .
Adopting the terminology of Johari et al. [12], we refer to this setting as the
strongest link model: interpreting 0/1-agents as having low/high skill, a team is
successful when it has at least one high-skill member.

Observe that under OR, we have S(M∗) = min(k, n/2), since any optimal
matching M∗ includes a maximal set of (0, 1)-teams. Define α := n−k

n to be
the fraction of low-skill agents; our regret bounds in this setting are more con-
veniently phrased in terms of α. In particular, our first result establishes the
following lower bounds on the regret incurred by any algorithm.

Theorem 3. For the strongest link setting, any algorithm incurs regret at least
LOR(α) · n in the worst-case, where

LOR(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

13α
17 0 ≤ α ≤ 1

2
6−9α

4
1
2 < α ≤ 6

11
3−4α

3
6
11 < α ≤ 3

5
1−α
2

3
5 < α ≤ 1
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Fig. 1. Our regret bounds (Thoerems 3 to 5) under the Strongest Link model, as func-
tions of α := n−k

n
, the fraction of low-skill agents. The bounds match for 10

19
≤ α ≤ 1.

Proof Sketch. The bounds are established using a common underlying adver-
sarial strategy that forces any algorithm to incur an unavoidable regret. The
structure of the strategy is as follows: The adversary first reveals a chosen fraction
of 0-agents in round 1. Subsequently, when the algorithm explores an unresolved
agent, the adversary reveals it to be a 0-agent whenever possible. This leads to
a tension between inducing high regret in the first round (by revealing 0-edges),
and leaving more unresolved 0-agents for later rounds. LOR(α) is obtained by
choosing the fraction of initially revealed 0-agents to maximize regret under this
tension. A full proof is presented in the extended version. �

The lower bound in Theorem 3 is plotted in Fig. 1, and notably varies greatly
with α. Nevertheless, we provide a policy (Algorithm 3) that manages to achieve
nearly matching regret across all α, while being agnostic of k (and thus α). Both
bounds are plotted in Fig. 1; despite the functions being piecewise linear, they
match exactly for α ≥ 10

19 , and UOR(α) − LOR(α) < 0.018 for all α.

4.1 The MAXEXPLOIT WITH 4-CLIQUES Algorithm

To simplify our analysis, we introduce some terminology: we say that two
unknown 0-agents become discovered when they are paired to form an unsuc-
cessful team. An unknown agent is explored when its type is revealed by pairing
it with a known 0-agent. Our policy for this setting, MaxExploit with 4-
Cliques, is given in Algorithm 3. The algorithm exploits the inferred types
of agents to the greatest possible extent; a maximal number of known 1–0
agent teams are played in each round. Exploration is only done using known
0-agents that cannot be included in such a pair. If only two agents in a 4-cycle
are explored, we treat the other two agents as unknown, even if their type is
deducible.

First, to see that the algorithm terminates, note that in each iteration of the
loop, at least one known 0-agent is used for exploration, revealing the type of
another agent. Thus, the algorithm makes progress and eventually terminates.
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Algorithm 3. MaxExploit with 4-Cliques
Round 1: Select an arbitrary matching.
while #{known 0-agents} > #{known 1-agents} and #{unknown agents} > 0
do

Pair each known 1-agent with a known 0-agent.
Use extra known 0-agents to explore both members of successful teams.
(In round 3, explore all members of 4-cycles whenever possible3.)
Round 2: Re-pair remaining unknown successful teams into 4-cycles.
(If number of remaining unknown successful teams is odd, repeat one team.)
Round 3: In each 4-cycle with undiscovered agents, re-pair to form a 4-clique.
Round 4+: Re-play the matching from round 1 on unexplored successful teams.

Next, note that unknown agents are always in successful teams throughout
the algorithm (as both members of an unsuccessful team can be deduced as 0-
agents). Upon termination, the algorithm can play an optimal matching: either
all agents are known, or there are enough known 1-agents to match all known 0-
agents, and the other successful teams of unknown agents can be safely replayed.

Let dt be the number of 0-agents discovered in round t by pairing two
unknown agents, and et the number of 0-agents revealed by exploration with
a known 0-agent. We define

Δt := #{known 0-agents after round t} − #{known 1-agents after round t}

The following lemma studies how Δt evolves over rounds t.

Lemma 2. Δ1 = d1, and 2et = Δt ≤ Δt−1, for all t ≥ 2.

Proof. In round 1, the algorithm discovers d1 0-agents, and no 1-agent (since
there is no exploration); hence Δ1 = d1. Consider the 4-cycle and 4-clique edges
played in rounds 2–3. If such an edge comprises two 0-agents, then the other two
agents in its cycle or clique must be 1-agents. In particular, the addition of dt

known 0-agents in these rounds is exactly counterbalanced by the deduction of
their neighboring dt 1-agents, so discovery does not contribute to Δt+1 − Δt.

Next, consider any round t ≥ 2. The algorithm first pairs all known 1-agents
with known 0-agents, so exactly Δt−1 agents are used for exploration. Each
exploration must discover either a 0-agent or a 1-agent, so Δt = Δt−1 + et −
(Δt−1 − et) = 2et. Since members of successful teams are explored in pairs, at
most half of all explorations can reveal 0-agents. Thus, et ≤ Δt−1

2 . �

For the subsequent analysis, there are two distinct regimes depending on
the fraction of low-skill agents α. When most agents are low-skill (α > 1

2 ), the
optimal configuration includes some (0, 0)-teams, but no (1, 1)-teams, and rt

equals the number of (1, 1)-teams in Mt. On the other hand, when most agents
are high-skill (α ≤ 1

2 ), the optimal configuration consists entirely of successful
teams, and an algorithm’s round-t regret rt is the number of (0, 0)-teams in Mt.
Consequently, the analysis in each regime is very different.
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4.2 Majority High-Skill Regime (α ≤ 1
2
)

We begin the analysis by focusing on the case when α ≤ 1
2 . Recall that the total

regret in this regime equals the total number of (0, 0) teams the algorithm plays.

Theorem 4. For α ≤ 1
2 , Algorithm 3 has regret at most 4

5 · αn.

Proof. First, note that in the regime α ≤ 1
2 , the algorithm never pairs two

known 0-agents; known 0-agents are paired with known 1-agents or used for
exploration. Hence, the number of (0, 0)-teams selected, and thus the regret, in
round t is et + dt

2 . (Note that e1 = 0.)
After round 3, by Lemma 2, there are 2e3 more known 0-agents than 1-agents.

The unresolved agents are contained in 4-cliques of successful teams, which must
each contain at least three 1-agents. Thus, exploring any 0-agent means that the
algorithm can deduce three 1-agents. After e3 such explorations, the algorithm
locates 3e3 1-agents, terminating the loop. The regret incurred in rounds 4 and
later is thus at most e3, giving total regret at most d1

2 + d2
2 + d3

2 + e2 + 2e3.
We can now bound the regret incurred by Algorithm 3 by formulating the adver-
sary’s problem of choosing the worst-case number of revealed zeros in each round
as an LP with variables {d1, d2, d3, e2, e3}. Applying Lemma 2 to rounds 2 and
3, we obtain that e2 ≤ d1

2 and e3 ≤ e2. In addition, d1 + d2 + d3 + e2 +2e3 ≤ αn
ensures that the number of 0-agents revealed by the adversary is at most the
total number of 0-agents. Put together, we get the following LP:

Maximize: d1
2 + d2

2 + d3
2 + e2 + 2e3

Subject to: e2 ≤ d1
2

e3 ≤ e2

d1 + d2 + d3 + e2 + 2e3 ≤ αn

d1, d2, d3, e2, e3 ≥ 0

Solving, we get (d1, d2, d3, e2, e3) = (2αn
5 , 0, 0, αn

5 , αn
5 ) as the adversary’s best

strategy, with regret at most 4
5αn. �

4.3 Majority Low-Skill Regime (α > 1
2
)

A different, more involved, analysis shows that Algorithm 3 is also near-optimal
when α > 1

2 .

Theorem 5. For α > 1
2 , Algorithm 3 learns an optimal matching after incur-

ring regret at most UOR(α) · n, where

UOR(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

10−16α
5

1
2 ≤ α < 10

19 ,
6−9α

4
10
19 ≤ α < 6

11 ,
3−4α

3
6
11 ≤ α < 3

5 ,
1−α
2

3
5 ≤ α ≤ 1.



Online Team Formation Under Different Synergies 89

Note that limα↓ 1
2

UOR(α) = 2
5 , which matches limα↑ 1

2
UOR(α) from Theorem

4. Before proceeding, we define s00t , s01t , s11t to be the number of (0, 0), (0, 1), and
(1, 1)-teams the algorithm plays in round t, respectively. Since there are (1−α)n
1-agents in total, s01t = (1 − α)n − 2s11t ; in turn, since there are αn 0-agents,
s00t = 1

2 · (αn − s01t ) = s11t + (α − 1
2 ) · n > s11t . We now prove Theorem 5 via a

series of lemmas.

Lemma 3. The adversary has a best response to Algorithm 3 with the following
properties:

1. It never reveals pairs of unknown agents as (0, 0)-teams after round 1.
2. It never reveals any (1, 1)-team until all (0, 1)-teams have been revealed.

Proof. For the first claim, suppose that the adversary reveals a (0, 0)-team
among the re-paired teams in round t = 2 or t = 3. The 4-cycle or 4-clique
containing this (0, 0)-team contains two 0-agents and two 1-agents, so two (0, 1)-
teams were selected in each of the first t − 1 rounds. The adversary can force
the same regret, and provide the same information, by relabeling these agents
so a (0, 0)-team and a (1, 1)-team are revealed in round 1, the two 1-agents are
explored in round 2, and (if t = 3) the (0, 1)-teams are repeated in round 3. By
repeating this relabeling, we arrive at an adversary strategy of the same regret,
of the claimed form.

For the second claim, recall that the algorithm’s regret in the regime α > 1
2 is

exactly the number of (1, 1)-teams it plays. We will describe a scheme charging
(1, 1)-teams played in round t to 0-agents explored in round t.

Consider some round t ≥ 2 in which s11t (1, 1)-teams are played. Since
s00t > s11t , and all (0, 0)-teams result from exploration1 by the first claim, we can
charge one distinct explored 0-agent for each such (1, 1)-team. Thus, the num-
ber of uncharged explored 0-agents in round t is exactly s00t − s11t = (α − 1

2 ) · n,
independent of t and s11t .

The total number of 0-agents explored in rounds t ≥ 2 is exactly s011 . If
the algorithm runs for T rounds, exactly (T − 1) · (α − 1

2 ) · n explored 0-agents
remain uncharged. Thus, the number of charged 0-agents, which equals the regret
incurred after round 1, is s011 − (T − 1) · (α − 1

2 ) · n. Conditioned on s001 , s011 , s111 ,
the regret is therefore maximized by minimizing T ; that is, the adversary wants
the algorithm to finish in as few rounds as possible. To minimize the number of
rounds T , the adversary should maximize the number of 0-agents available for
exploration. The adversary accomplishes this by having the algorithm explore
(0, 1)-teams before any (1, 1)-teams. �

We now focus, without loss of generality, on such an adversary. This lets us
bound the regret in terms of (s001 , s011 , s111 ).

1 Except in the last round, where known (0, 0)-teams may be played; however, no (1,
1)-teams are played in this round.
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Lemma 4. Conditioned on s001 , s011 , s111 , Algorithm 3 has regret at most
⌊

s011 + s111
s001

⌋

s111 +min(s111 , (s011 + s111 ) mod s001 ).

Proof. From Lemma 3 we know that only (0, 1)-teams are explored before any
(1, 1)-team is explored. Each explored (0, 1)-team results in pairing a 0-agent
with a newly discovered 1-agent, and also adds a known 0-agent. Thus as long as
the algorithm explores only (0, 1)-teams, the number of pairs of 0-agents available
for exploration stays constant at s001 . Therefore, the total number of rounds of
exploration until all agents in successful teams are explored is

⌈
s01
1 +s11

1
s00
1

⌉
. One

subtlety here is that the exploration of (1, 1)-teams decreases the available 0-
agents. However, because s111 < s001 , the first round in which a (1, 1)-team can
be explored is one round before the last; in this case, the last round only explores
(1, 1)-teams, and the number of 0-agents available for this exploration exceeds
the number of 1-agents to be explored. Thus, the bound on the number of rounds
of exploration does hold. In the last round of exploration, no (1, 1)-teams can be
played, so no regret is incurred. We therefore focus on the first T =

⌊
s01
1 +s11

1
s00
1

⌋

rounds of exploration. Again because s111 < s001 , none of the first T − 1 rounds
of exploration explore any (1, 1)-team; thus, each of these rounds, as well as the
very first round of the algorithm, incurs a regret of s111 .

In round T , the total regret is the number of (1, 1)-teams explored in round
T + 1 (because these teams are still played in round T ). This number is either
(s011 +s111 ) mod s001 (if only (1, 1)-teams are explored in round T+1, then it is the
total number of explored teams in round T +1), or s111 (if some (0, 1)-teams are
explored in round T +1, then all (1, 1)-teams are explored in round T +1). Thus,
the regret in the T th round of exploration is the minimum of the two terms. We
thus obtain the total regret of the algorithm as:

⌊
s01
1 +s11

1
s00
1

⌋
·s111 +min(s111 , (s011 +s111 )

mod s001 ). �
s00t turns out to be further constrained, as follows:

Lemma 5. In Algorithm 3, if the adversary reveals 0-agents only by exploration
in rounds t ≥ 2, then s001 > α

5 n.

Proof. The number of 0-agents discovered in round 1 is 2s001 . In rounds 2 and
3 combined, the algorithm discovers an additional e2 + e3 0-agents. The number
of 1-agents discovered in round 2 is Δ1 − e2 = 2s001 − e2, and in round 3, it
is Δ2 − e3 = 2e2 − e3, by Lemma 2. Thus, the number of unknown 0-agents
after round 3 is αn − 2s001 − e2 − e3, and the number of unknown 1-agents is
(1−α) ·n−2s001 −e2+e3. But notice also that after round 3, all unknown agents
form 4-cliques of successful edges, which can contain at most one 0-agent each.
Therefore, there must be at least three times as many remaining 1-agents as
0-agents, so (1−α) ·n−2s001 − e2+ e3 ≥ 3(αn−2s001 − e2 − e3). Rearranging, we
obtain that 4s001 ≥ (4α−1)·n−2e2−4e3. By Lemma 2, we get that e3 ≤ e2 ≤ s001 ,
so the previous inequality in particular implies that 4s001 ≥ (4α − 1) · n − 6s001 ,
or s001 ≥ 4α−1

10 · n > α
5 · n, because α > 1

2 . �
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We obtain the piecewise-linear bound in Theorem 5 by maximizing the bound
in Lemma 4 subject to the constraint in Lemma 5 (and using s01t = αn − 2s00t ,
s11t = s00t − (α − 1

2 )n). Details of this calculation can be found in the extended
version.

5 The Weakest Link Setting (AND)

Finally, we consider the Boolean AND synergy function. If, as before, we interpret
0/1-agents as having low/high skill, then (in the terminology of Johari et al.
[12]), this corresponds to a weakest link model: the difficulty of the task ensures
any team with a low-skill member is unsuccessful. To simplify the analysis, we
assume throughout that k is even.

Theorem 6. For the weakest link model, any algorithm incurs regret at least
LAND(n, k) := n − k.

Proof Sketch. The total regret for an algorithm equals half the number of
(0, 1)-teams selected over the duration of the algorithm, since the optimal solu-
tion would re-pair these agents into (0, 0)-teams and (1, 1)-teams. We consider a
myopic greedy adversary which reveals as few 1-agents as possible in each round,
and argue that such an adversary can ensure that each 0-agent is paired with at
least two 1-agents during the execution of any algorithm. The proof is presented
via a series of lemmas in the extended version. �

5.1 The RING FACTORIZATION WITH REPAIRS Algorithm

The fact that the regret of an algorithm is half the number of (0, 1)-teams selected
suggests that we want the algorithm’s chosen matchings to quickly locate (and
pair) all of the 1-agents, while minimizing the number of times each 0-agent is
paired with a 1-agent. Playing matchings according to a 1-factorization (that
is, a partition of the complete graph Kn into perfect matchings) ensures that
no team is ever repeated. This intuition is used in the Exponential Cliques
algorithms of Johari et al. [12], who show that when each agent has independent
Bernoulli(k/n) type, this algorithm has expected regret 3

4 (n − k) + o(n), which
is asymptotically optimal. Against an adaptive adversary, however, an arbitrary
1-factorization is not enough to get good regret; for example, a 1-factorization
that first builds the Turán graph T (n, n

k ) [1,22] has regret 1
2k(n − k). Similarly,

the performance of Exponential Cliques in the worst case is also much worse.

Lemma 6. Exponential Cliques incurs regret 2(n−k −1) against an adap-
tive adversary.

Proof. Consider an instance on n = 2j + 2 agents with k = 2 having high
skill. An adaptive adversary can ensure that the two 1-agents comprise the last
unexplored team. Over its first 2j − 1 rounds, Exponential Cliques builds a 2j-
clique in the explored subgraph while repeating the remaining team 2j −1 times.
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Subsequently, it must spend 2j additional rounds exploring all teams comprising
a member of this repeated edge and a member of the clique, resulting in regret
2(2j − 1) = 2(n − k − 1). �

Our main algorithm for this setting, Ring Factorization with Repairs,
leverages a particular 1-factorization, which we call the Ring Factorization.
We organize the agents into two nested rings and choose matchings so that
closer agent pairs under this ring geometry are matched earlier. In the first
round, agents in corresponding positions in the rings are matched. Over the
next four rounds, matchings are chosen to pair each agent with the four agents
in adjacent positions in the rings, and this process repeats at greater distances.
The structure and order of the four matchings chosen in each “phase” are critical.
A formal description of this 1-factorization is given in the extended version. We
visualize the first 5 matchings in the constructions for n = 10 and n = 12
in Fig. 2.

Fig. 2. The first five rounds (i.e., Phases 0 and 1) of Ring Factorizationon 10
(top) and 12 (bottom) agents. The last four matchings illustrate the general matching
sequence for cycles in intermediate phases; the blue highlighted section of each matching
is repeated based upon the size of the cycle.

Theorem 7. Ring Factorization with Repairs (Algorithm 4) locates an
optimal matching after incurring regret at most UAND(n, k) := n − k +⌊
min(k,n−k)

4

⌋
.

Proof Sketch. As mentioned before, the double-ring structure of our factoriza-
tion defines a notion of distance between agents (namely, the difference between
their column indices modulo m). By selecting matchings according to this fac-
torization, each agent is paired up with other agents in non-decreasing order of
distance. Consider this pairing from the perspective of a 0-agent x. We will show
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Algorithm 4. Ring Factorization with Repairs (Sketch)
while #{unknown agents} > 0 do

Select a matching via Ring Factorization for n.
if a (1, 1)-team is revealed then

Perform a case-specific “repair” step (possibly over multiple rounds) that parti-
tions agents into known (0, 0)-teams, known (1, 1)-teams, and an intermediary
stage of the Ring Factorization construction of size n′ < n. (See Appendix
B in the extended version)
Play known (0, 0)- and (1, 1)-teams, and continue playing matchings according
to Ring Factorization on the remaining n′ agents.

that roughly speaking (with some exceptions which require technical work and
slightly weaken the bound), x will be paired with at most two 1-agents before
being identified as a 0-agent. If each 0-agent is paired with at most two 1-agents
before discovery, then we get an overall regret bound of n − k. Consider three
1-agents {y1, y2, y3}, all located in different columns from x. Then, two of these
1-agents—say, y1 and y2—lie on the same side of x. Thus, y1 and y2 are strictly
closer to each other than the further of the two (say, y1) is to x. In particular, y1
and y2 were paired before y1 is paired with x, and so must have been revealed as
1-agents. Thus, y1 will never be paired with x. Since this holds for every triple
of 1-agents, x cannot be paired with three 1-agents.

While the above argument encapsulates the main intuition, the technical
challenge is removing the assumption that y1, y2, y3 were all in different columns
from x. “Repairing” the cycle to account for the case of a 1-agent in the same
column as x largely accounts for the additional term in the regret bound. The
full analysis of these “repair” steps is intricate; see Appendix B in the extended
version for details. �

The bounds of Theorems 6 and 7 are off by an additive term
	min(k, n − k)/4
. The lower bound is simpler, and it is tempting to think that
it may be tight; unfortunately, this is not true in general; in Appendix C of the
extended version, we show that any algorithm on the instance with n = 10, k = 4
must incur regret at least 7 (which coincidentally matches the upper bound in
Theorem 7, though it is unclear if this extends to larger settings). Closing this
gap is an interesting and challenging direction for future work.

6 Conclusion

Our work provides near-optimal regret guarantees for learning an optimal match-
ing among agents under any symmetric function of two binary variables. While
our results are specific to each function, they exhibit several noteworthy com-
mon features. First, although we consider an adaptive adversary, it is not hard
to see that the regret bounds with i.i.d. Bernoulli types can only improve by
a small constant factor; such a small gap between stochastic and adversarial
models is uncommon. Next, for all our settings, minimizing regret turns out
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to require maximal exploitation (in contrast to quickly learning all agent types,
which would benefit from more exploration). Finally, the problems appear to get
harder for k = n

2 , and also handling the weakest link setting (i.e., the Boolean
AND function) is more challenging than other synergy functions. These phenom-
ena hint at underlying information-theoretic origins, and formalizing these may
help in reasoning about more complex models.

Our work raises three natural future directions:

1. It would be desirable to close the gaps between our bounds for the OR and
AND settings. In each case, however, our results suggest that the optimal
procedures may depend heavily on number-theoretic properties of n and k
which can expose a further level of complication.

2. We consider only perfect feedback, which in itself presented interesting chal-
lenges, but may be unrealistic in real-world settings. Our results likely extend
to some noisy feedback models by repeatedly playing a team and averaging
their scores. However, quantifying the relationship between the amount of
noise and the expected additional regret is an open problem.

3. The restriction to teams of size 2, and binary agent types, are the main
restrictions of our model. For a more general theory of team formation, it is
desirable to consider larger teams and other synergy functions (in particular,
threshold functions); doing so is a rich and challenging open direction.
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