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Abstract. The selfish mining attack, arguably the most famous game-
theoretic attack in blockchain, indicates that the Bitcoin protocol is not
incentive-compatible. Most subsequent works mainly focus on strength-
ening the selfish mining strategy, thus enabling a single strategic agent
more likely to deviate. In sharp contrast, little attention has been paid
to the resistant behavior against the selfish mining attack, let alone fur-
ther equilibrium analysis for miners and mining pools in the blockchain
as a multi-agent system. In this paper, first, we propose a novel strat-
egy called insightful mining to counteract the selfish mining attack. By
infiltrating an undercover miner into the selfish pool, the insightful pool
could acquire the number of its hidden blocks. We prove that, with this
extra insight, the utility of the insightful pool is strictly greater than the
selfish pool’s when they have the same mining power. Then we investi-
gate the mining game where all pools can choose to be honest or take the
insightful mining strategy. We characterize the Nash equilibrium of such
a game and derive three corollaries: (a) each mining game has a pure
Nash equilibrium; (b) there are at most two insightful pools under some
equilibrium no matter how the mining power is distributed; (c) honest
mining is a Nash equilibrium if the largest mining pool has a fraction of
mining power no more than 1/3. Our work explores, for the first time,
the idea of spying in the selfish mining attack, which might shed new
light on researchers in the field.
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1 Introduction

Bitcoin [16], as the pioneering blockchain ecosystem, proposes an electronic pay-
ment system without any trusted party. It creatively uses Proof-of-Work (PoW)
to incentivize all miners to solve a cryptopuzzle (also known as mining). The
winner will gain the record-keeping rights to generate a block and be awarded
the newly minted tokens. As more and more computational power is invested
into mining, it may take sole miner months or even years to find a block [24]. In
order to reduce the uncertainty, a group of miners forms a mining pool to share
their computational resources. Under the leadership of the pool manager, all
miners in a pool solve the same puzzle in parallel and share the block rewards.
In the Bitcoin system, so long as all participants behave honestly, one’s expected
revenue will be proportional to its hashing power.

However, in practice, miners are rational and may act strategically. Thus,
game theory naturally stands out as a tool for analyzing the robustness of the
Bitcoin protocol. The conventional wisdom would expect a proof of the incentive
compatibility of the Bitcoin protocol and subsequently the strategyproofness
against manipulative miners.

Such a hope was broken by the seminal work [6], which proposed the
selfish mining strategy, arguably the most well-known game-theoretic attack
in blockchain. It indicates that the Bitcoin mining protocol is not incentive-
compatible. The key idea behind the attack is to induce honest miners to waste
their mining power. As a result, the selfish pool could obtain more revenue than
its fair share.

Pushing this approach to the extreme, [23] expanded the action space of
selfish mining, modeled it as a Markov Decision Process (MDP), and pioneered
a novel technique to resolve the non-linear objective function of the MDP to
get a more powerful selfish mining strategy, for a revenue arbitrarily close to
the optimum. A series of works have since been initiated to study the mining
strategies of a rational pool under the same assumption that other pools behave
honestly [7,11,14,17,18,21].

In sharp contrast, little attention has been paid to the incentive of other
pools, which plays an important role in studying the strategic interactions among
participants and understanding the stable state of blockchain systems. In this
paper, we propose and study the following vital questions.

1. Can a pool strategically defend against the selfish mining attack?
2. Moreover, what equilibrium will the ecosystem of different types of agents

eventually reach?

1.1 Our Contributions

In this work, we propose a strategy called insightful mining (Fig. 1). Once detect-
ing a selfish pool, an insightful pool that adopts the insightful mining strategy can
infiltrate an undercover miner into it to monitor the number of hidden blocks.1

1 We discuss this action in more detail in Sect. 3.1.
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With this key information, the insightful pool clearly knows the real-time state of
the mining competition and thus responds strategically. From a high-level view,
when observing that the selfish pool is taking the lead, the insightful pool would
behave honestly to end its leading advantage as quickly as possible. On the other
hand, when the insightful pool is taking the lead, it will take action similar to
selfish mining, regarding the selfish pool and the honest pool as “others”. Note
that by infiltrating spies, a strategic player can gain more information (e.g., the
hash values of hidden blocks) than the length of the private branch. With this
information, there are lots of things that a player could do. This paper, how-
ever, focuses on the insightful mining strategy, which only utilizes the number
of hidden blocks.

Although using very little information, the strategy firmly answers our first
research question: A pool can strategically defend against the selfish mining
attack with the insightful mining strategy. Specifically, the system consists of
three types of players: the honest pool, the selfish pool, and the insightful pool.
With different mining strategies, the three players may hold different branches
and have asymmetric information during the mining competition. The honest
pool, following the protocol, has the public information (i.e., the length of its
public branch). The selfish pool keeps a selfish branch and is aware of the length
of the public branch and its selfish branch. Owing to the infiltrated spy, the
insightful pool learns all information (in particular, the length of the honest
branch, the selfish branch, and its insightful branch). We model their interactions
as a two-dimensional Markov reward process with an infinite number of states
(Table 1 and Fig. 2). We prove that when there is a selfish pool and an insightful
pool with the same mining power, the insightful pool will get a strictly greater
expected revenue than the selfish pool (Theorem 1). This demonstrates that the
extra insight significantly reverses the selfish pool’s advantage.

Then we investigate the scene where all n mining pools are strategic. Besides
counteracting the selfish mining attack, insightful mining can be adopted directly
as a mining strategy. Specifically, insightful mining resembles selfish mining if
there is no pool mining selfishly. We study the mining game where each pool
plants spies into all other pools and chooses either to follow the Bitcoin protocol
or to take the insightful mining strategy. Such a mining game can be formulated
as an n-player normal-form game. Note that although there are 2n pure strategy
profiles, the payoff function of each player is explicitly represented (Proposition
1). Our main result is a characterization theorem of the Nash equilibrium in
mining games (Theorem 2). Concretely, Theorem 2 derives three corollaries:
(a) each mining game has a pure Nash equilibrium; (b) there are at most two
insightful pools under some equilibrium no matter how the mining power is
distributed; (c) honest mining is a Nash equilibrium if the largest mining pool
has a fraction of total hashing power no more than 1/3. These corollaries are
surprising. Taking (a) as an example, there is no guarantee of the existence of
pure Nash equilibria in general.

Beyond our theoretical results, we also conduct several simulations to under-
stand insightful mining (Sect. 5). First, we visualize the relative revenue of the
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selfish pool and the insightful pool when they have the same mining power. An
interesting observation is that when their hashing power is larger than 1/3, the
insightful pool can gain most of the revenue. Besides, we explore the performance
of the insightful mining strategy when they have different mining power. Sim-
ulation results provide compelling evidence that the insightful pool could still
gain more revenue even if it holds less mining power than the selfish pool.

In the end, we discuss the role of the undercover miner in the context of
selfish mining and blockchain, which sheds new light on future research directions
(Sect. 6).

1.2 Related Work

The classic selfish mining attack was first proposed and mathematically mod-
eled as a Markov reward process in the seminal paper [6]. Observing that the
classic selfish mining strategy could be suboptimal for a large parameter space,
several works [17,23] further generalized the system as a Markov Decision Pro-
cess (MDP) to find the optimal selfish mining strategy. Aiming to solve the
average-MDP with a non-linear objective function, [23] proposed a binary search
procedure by converting the problem into a series of standard MDPs. A recent
work [28] developed a more efficient method called Probabilistic Termination
Optimization, converting the average-MDP into only one standard MDP.

Studying other agents’ incentives against one selfish miner was more chal-
lenging due to the tremendous state spaces and complicated Markov reward
processes. The work of [15] presented some simulation results on systems involv-
ing multiple selfish miners [6] or involving multiple stubborn miners [17]. On the
learning side, a recent work [12] proposed a novel framework called SquirRL,
which is based on deep reinforcement learning (deep-RL) techniques. Their
experiments suggest that adopting selfish mining might not be the optimal choice
when facing selfish mining. We prove such a result by providing the insight-
ful mining strategy and the dominating theorem (Theorem 1). The strength of
SquirRL is a more general strategy space generated by deep-RL. However, we
highlight that it cannot cover our insightful mining strategy since our greatest
strength comes from our undercover miner’s insights (information), which have
not been discussed in the broad selfish mining context.

To our best knowledge, the most related work that theoretically studied the
equilibria with multiple selfish mining pools is [4]. Due to the analytical chal-
lenges of infinite states in the classic selfish mining strategy, they proposed a
simplified version called semi-selfish mining, where the strategic mining pool
will only keep a private chain of the length of at most two. Such a restric-
tion makes the Markov reward process have finite states (as long as there is
a finite number of semi-selfish miners) and simplifies the equilibrium analysis.
However, our insightful mining strategy works against the classic selfish mining
strategy and may also keep an arbitrary long private chain. While this leads to
a 2-dimensional Markov reward process with an infinite number of states, the
techniques in the mathematical analysis are sufficient for us to prove the desired
dominating theorem (Theorem 1) and equilibrium characterization (Theorem 2).
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2 Preliminaries

2.1 Proof of Work

In the context of blockchain, Proof of Work was first introduced in Bitcoin [16].
As mentioned, the security of Bitcoin heavily relies on the Proof-of-Work
scheme, which has also been widely adopted by other blockchain systems like
Ethereum [2]. The past decade has seen a great amount of research around PoW,
with respect to its block rewards design [3], strategic deviation [13], the difficulty
adjustment algorithm [10,19], energy costs [8], and so on.

Taking Bitcoin as an example, PoW requires a miner to randomly engage
in the hashing function calls to solve a cryptopuzzle. Typically, miners should
search for a nonce value satisfying that

H(previous hash; address; Merkle root; nonce) ≤ D (1)

where H(·) is a commonly known cryptographic hash function (e.g., SHA-256
in Bitcoin); previous hash is the hash value of the previous block; address is the
miner’s address to receive potential rewards; Merkle root is an integrated hash
value of all transactions in the block; and D is the target of the problem and
reflects the difficulty of this puzzle.2 Started from the genesis block, all miners
compete to find a feasible solution, thus generating a new block appended to the
previous one. In return, they will be awarded the newly minted bitcoins for their
efforts in maintaining the blockchain system. The standard Bitcoin protocol
treats the longest chain as the main chain. Once encountering two blocks at
the same block height, miners randomly choose one to follow according to the
uniform tie-breaking rule. Thus, in order to be accepted by more miners, it is
suggested to publish the newly generated block immediately. In this paper, the
miners who stick to the Bitcoin protocol are referred to be honest.

2.2 Mining Pool

With more and more hashing power invested into mining, the chances of finding
a block as a sole miner are quite slim. Nowadays, miners tend to participate in
organizations called mining pools.

Generally, a mining pool comprises a pool manager and several peer miners.
All participants shall cooperate to solve the same puzzle. Specifically, each miner
will receive a task like (1) above from the pool manager and a work unit a work
unit containing a particular range of nonce. Instead of trying all possible nonce
values, the miner only needs to search for the answer from the received work unit.
In this way, all miners in the pool work in parallel. Once any miner finds a valid
solution, this pool succeeds in this mining competition. Then a new task will be
organized and further released to all miners in the pool. Also, participants will
share the mining rewards according to the reward allocation protocol like Pay
2 For security, the difficulty of puzzles will be adjusted automatically to ensure that

the mean interval of block generation is 10 min.
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Per Share (PPS), proportional (PROP), Pay Per Last N Shares (PPLNS) [27],
and so on. In expectation, the miners’ rewards are proportional to their hashing
power. As a result, miners who join the mining pool can significantly reduce
the variance of mining rewards. Currently, most of the blocks in Bitcoin are
generated by mining pools such as AntPool [1], Poolin [20], F2Pool [9].

2.3 Selfish Mining

It has long been believed that the Bitcoin protocol is incentive-compatible. How-
ever, Eyal and Sirer [6] indicate that it is not the case. It describes a well-known
attack called selfish mining. A pool could receive higher rewards than its fair
share via the selfish mining strategy. This attack ingeniously exploits the conflict-
resolution rule of the Bitcoin protocol, in which when encountering a fork, only
one chain of blocks will be considered valid. With the selfish mining strategy, the
attacker deliberately creates a fork and forces honest miners to waste efforts on
a stale branch. Specifically, the selfish pool strategically keeps its newly found
block secret rather than publishing it immediately. Afterward, it continues to
mine on the head of this private branch. When the honest miners generate a
new block, the selfish pool will correspondingly publish one private block at the
same height and thus create a fork. Once the selfish pool’s leads reduce to two,
an honest block will prompt the selfish pool to reveal all its private blocks. As a
well-known conclusion, assuming that the honest miners apply the uniform tie-
breaking rule, if the fraction of the selfish pool’s mining power is greater than
25%, it will always get more benefit than behaving honestly.

3 Insightful Mining Strategy

3.1 Model and Strategy

This paper considers a system of n miners. Each miner i has mi fraction of
total hashing power, such that

∑n
i=1 mi = 1. Let H, S, I denote the set of

honest miners, selfish miners, and insightful miners, respectively. As the honest
miners strictly follow the Bitcoin protocol and do not hide any block information
from each other, they are regarded as a whole, referred to as the honest pool in
the paper. Similarly, all selfish miners who adopt the selfish mining strategy
combine together to behave as a single agent, which is called the selfish pool.
The remaining miners form the insightful pool and adopt the insightful strategy
stated later. Let α and β denote the fraction of mining power controlled by the
selfish pool and the insightful pool, respectively. We have α =

∑
i∈S mi and

β =
∑

i∈I mi. Then the total power of the honest pool can be represented as
1−α−β. Following the previous work [6,23], in this paper, we also assume that
the time to broadcast a block is negligible and the transaction fee is negligible. In
other words, the pools’ revenue mainly comes from block rewards. In addition,
the block generation is treated as a randomized model, where a new block is
generated in each time slot.



Insightful Mining Equilibria 27

Now we describe the insightful mining strategy. Before getting into the
details, we state that the insightful pool could learn how many blocks the selfish
pool has been hiding by doing the following. The manager of the insightful pool
shall pretend to join the selfish pool as a spy. As a pool member, it will receive a
mining task from the manager of the selfish pool. The hash value of the previous
block can be parsed from the task. Normally, this hash value corresponds to the
last block of the main chain. Once the selfish pool mines a block,3 its manager
will keep the block private and publish a new task based on it. From the spy’s
perspective, there is no newly published block in the system, but the selfish
manager releases a new task based on an unknown block. Then it is reasonable
to believe that the selfish manager is hiding blocks. Furthermore, the number of
hidden blocks is exactly the number of recently received tasks with unmatched
previous hash.

By working as a spy,4 the insightful pool has a clear understanding of the
system’s situation, i.e., the mining progress of each player. Although all pools
are mining after the main chain, the three players may hold different sub-chain
(also referred to as branch) during the mining competition. Let lh, ls, li denote
the length of honest branch, selfish branch, and insightful branch respectively.
In the process of mining, the honest pool only knows the public information lh.
The selfish pool is aware of both lh and ls, while the insightful pool can observe
all three lengths. Then the three types of players compete to generate blocks
based on their own information. Their competition works in rounds. Each round
begins with a global consensus on the current longest chain. When the selfish
pool and insightful pool reveal all their private blocks, or they have no hidden
blocks while the honest pool finds a block (see Case 1 below), the round ends,
leading to a new global consensus. For the first block in a round, there are three
possible cases.

Case 1: the honest pool generates the first block. With probability 1 − α − β,
the honest pool mines a block and broadcasts it immediately. In this case, the
insightful pool accepts this newly generated block and mines after it. According
to the selfish mining strategy, the selfish pool will do the same. Consequently,
all players reach a consensus in this case and compete for the next block.

Case 2: the selfish pool generates the first block. With probability α, the selfish
pool mines a block. Based on the selfish mining strategy, the selfish pool will
keep it private, aiming to further extend its lead. After observing this situation
through the spy in the selfish pool, the insightful pool behaves honestly until the
selfish pool reveals all its hidden blocks. Recall that when facing two branches of
the same height, the honest pool chooses one of them uniformly. The insightful
pool, however, will deterministically mine on the opposite of the selfish branch.

3 A member of the selfish pool finds an acceptable nonce to the cryptopuzzle and
submits it to the manager.

4 We assume that the mining power of this spy is negligible, as well as its revenue
from the selfish pool.
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Fig. 1. Flow chart of the insightful mining strategy. lh, ls and li are the length of the
honest branch, selfish branch, and insightful branch, respectively.

The key insight behind this strategy is to prompt5 the selfish pool to reveal all
its hidden blocks and end its leading advantage as quickly as possible.

Case 3: the insightful pool generates the first block. With probability β, the
insightful pool mines a block. It hides this block and takes the following actions,
which are similar to selfish mining. The insightful pool keeps a watchful eye on
how many blocks the selfish pool and the honest pool have mined respectively. In
the following competition, when its lead is larger than one (i.e., li−max{lh, ls} >
1), the insightful pool always hides all its mined blocks. Otherwise, it reveals the
private branch all at once. Here, the way of releasing blocks is different from
selfish mining, which reveals blocks one by one in response to honest behavior.

The above three cases complete the description of our insightful mining strat-
egy. We also show the flow chart of the strategy in Fig. 1. We emphasize that even
if there is no selfish pool, the insightful mining could also work as an independent
strategy, where Case 2 never appears.

Remark 1. Note that with different strategies, players in the system have asym-
metric information. Each of them can be characterized by the depth of their
strategic thought, which forms a hierarchy of levels of iterated rationality.

5 The meaning of “prompt” is that by generating blocks on the opposing branch, the
selfish pool will be encouraged to reveal its hidden blocks one by one. Note that
in this process, the selfish pool does not know the insightful pool exists, which is
critical to the strategy design in game theory.
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– Level zero. The honest pool, as the naive level-0 player, truthfully follows the
protocol and has the public information (i.e., lh).

– Level one. The selfish pool, as the level-1 player, acts on the belief that other
players are level-0 players. It adopts the selfish mining strategy, keeps a selfish
branch, and is aware of lh and ls.

– Level two. Due to the infiltrated spy, the insightful pool works as a more
sophisticated level-2 player. It observes that the population consists of both
level-0 and level-1 players, learns all information (i.e., lh, ls, and li), and
adopts the insightful mining strategy.

Next, we will discuss the revenue of the three types of players with different
levels of cognition. The scenario where all players are at the same cognitive level
will be explored in Sect. 4.

3.2 Markov Reward Process

To analyze the relative revenue of different players under the insightful mining
strategy, we use a two-dimensional state s = (x, y) to reflect the system status
and further model the mining events as a Markov Reward Process. The state x
denotes the selfish pool’s lead over the honest pool, i.e., the number of blocks
that the selfish pool has not revealed. Similarly, y is the insightful pool’s lead
over the selfish pool. Thus, we have x, y ∈ N ∪ {0′} (0′ will be explained soon).
Here, zero means the selfish pool (corresponding to x) or the insightful pool
(corresponding to y) has no hidden blocks. Specifically, it contains two different
states, which we use 0 and 0′ to distinguish. Take x as an example. The state
x = 0 indicates that the honest pool and the selfish pool are in agreement about
a public chain. In other words, their branches are exactly the same. The state
x = 0′ means that the selfish pool and others (the honest pool or the insightful
pool) hold a separate branch of the same length, and the selfish pool has revealed
all blocks on its branch. In the state of 0′, the next block will break the tie and
decides the longest chain. For y, the meanings of state 0 and 0′ are similar to
the above, with the insightful pool and others (the selfish pool and the honest
pool) as two players.

Let Pr[s, s̃] denote the probability of changing from state s to state s̃. The
vector r[s, s̃] represents the expected reward obtained from this state transition.
It contains three components corresponding to the revenue of the honest pool,
the selfish pool, and the insightful pool, respectively. With the help of these
notations, Table 1 lists the detailed state transitions and corresponding revenues
in the system. Specifically, the item (1) formalizes Case 1 in Sect. 3.1. Items
(2)-(9) correspond to Case 2, and Case 3 contains items (10)–(24). The detailed
analysis of each transition can be found in [26]. Figure 2 illustrates the overall
state transitions in a more intuitive way. We denote the Markov Reward Process
of Fig. 2 by Markov(α, β).

Recall that a branch will win at the end of one round. It is easy to verify that
in our design, each block of the final winning branch will be awarded to some
player once and only once.
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Table 1. The state transitions and corresponding revenues.

No. State s State s̃ Pr [s, s̃] r [s, s̃] Conditions

1 (0,0) (0,0) 1 − α − β (1, 0, 0)

2 (0,0) (1,0) α (0, 0, 0)

3 (1,0) (0′, 0) 1 − α − β (0, 0, 0)

4 (0′, 0) (0,0) 1 ( 3−3α−β
2 , 1+3α−β

2 , β)

5 (1,0) (1, 0′) β (0, 0, 0)

6 (1, 0′) (0,0) 1 (1 − α − β, 1+3α−β
2 , 1−α+3β

2 )

7 (x, 0) (x + 1, 0) α (0,0,0) ∀x ≥ 1

8 (2,0) (0,0) 1 − α (0,2,0)

9 (x, 0) (x − 1, 0) 1 − α (0,1,0) ∀x ≥ 3

10 (0,0) (0,1) β (0,0,0)

11 (0,1) (1, 0′) α (0,0,0)

12 (0,1) (0, 0′) 1 − α − β (0,0,0)

13 (0, 0′) (0,0) 1 ( 3−2α−3β
2 , α, 1+3β

2 )

14 (0,1) (0,2) β (0,0,0)

15 (0,2) (0,0) 1 − β (0,0,2)

16 (x, y) (x, y + 1) β (0,0,0) ∀x ∈ {0′} ⋃
N, y ≥ 2

17 (0, y) (0, y − 1) 1 − α − β (0,0,1) ∀y ≥ 3

18 (x, y) (x + 1, y − 1) α (0,0,1) ∀x ≥ 0, y ≥ 3

19 (1, y) (0′, y) 1 − α − β (0,0,0) ∀y ≥ 2

20 (2, y) (0, y) 1 − α − β (0,0,0) ∀y ≥ 2

21 (x, y) (x − 1, y) 1 − α − β (0,0,0) ∀3 ≥ 2, y ≥ 2

22 (x, 2) (0,0) α (0,0,2) ∀x ≥ 1

23 (0′, 2) (0,0) 1 − β (0,0,2)

24 (0′, y) (0, y − 1) 1 − β (0,0,1) ∀y ≥ 3

Fig. 2. The Markov Process of the system under the insightful mining strategy.
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3.3 The Dominating Theorem

Let M := {H, IM,SM}. The utility of each i ∈ M is the relative revenue
(denoted by RREVi) defined as follows:

E

[

lim inf
T→∞

∑T
t=1 ri[st, st+1] | s0 = (0, 0), st+1 ∼ Pr[st, st+1]

∑T
t=1

∑
j∈M rj [st, st+1] | s0 = (0, 0), st+1 ∼ Pr[st, st+1]

]

.

Note that the transition probability Pr[st, st+1], ri[st, st+1], and RREVi (∀i ∈
M) should depend on the mining power α and β. Here we simplify the notation
without ambiguity.

Like previous work [12], here we focus on the scenario where the selfish pool
and the insightful pool have the same mining power. The following theorem
asserts that, in this case, the expected revenue of the insightful pool is strictly
greater than the expected revenue of the selfish pool. The scenario with different
pool sizes (i.e., α �= β) will be explored in Sect. 5.

Theorem 1. Let α and β be the fraction of mining power that the selfish
pool and the insightful pool control, respectively. When 0 < α = β < 1

2 ,
RREVSM (α, β) < RREVIM (α, β) holds.

Here, we give the intuition why Theorem 1 holds, and the formal proof can be
found in [26]. First, when the selfish pool takes the lead (Case 2 ), the insightful
pool cooperates with the honest pool as a whole. However, when the insightful
pool is taking the lead (Case 3 ), the selfish pool still competes with the honest
pool (i.e., inducing it to waste the mining power on a stale branch), which causes
their internal friction. The second intuition is that, when facing two branches
with the same length (one is the honest branch and the other is the selfish
branch), the insightful pool can clearly know the selfish pool’s branch and play
against it. Conversely, when confronted with an honest branch and an insightful
branch of the same length, the selfish pool will uniformly choose one of them.
These two reasons enable the insightful pool to get more revenue than the selfish
pool when both have the same mining power.

4 The Mining Game and Equilibria

In this section, we consider the scenario where all n mining pools are strategic
and study its Nash equilibrium. Specifically, during the competitive interaction,
the honest and selfish pool may realize the existence of insightful mining and
learn to do the same, where all players are at the same level of recognition.
It is worth noting that insightful mining is a well-defined strategy and can be
adopted directly. If there is no selfish pool in the system, insightful mining will
look the same as selfish mining. Then we consider the scenario where each pool
can choose to follow the Bitcoin protocol truthfully or take the insightful mining
strategy. We formally define its strategy space in Sect. 4.1, analyze the utility
functions in Sect. 4.2, and characterize the Nash equilibrium in Sect. 4.3.
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4.1 Strategy Space

There are n mining pools, and we denote by [n] := {1, · · · , n}. The fraction of
their hashing power is denoted by {m1, · · · ,mn} and we have

∑n
i=1 mi = 1.

Each pool i will infiltrate undercover miners into all other pools to monitor their
real-time state, namely, whether a certain pool is mining selfishly and, if any,
how many blocks are hidden. As a result, each pool i could adopt the insightful
mining strategy.

In the mining game, each pool has two strategies: refined honest mining and
insightful mining, denoted by RHonest and Insightful respectively. The insightful
mining strategy is exactly the same as we proposed before, while the refined
honest mining is a slightly modified version of the standard mining strategy.
Specifically, refined honest mining requires the pool to mine after the longest
public chain and to publish its newly-generated block immediately. If someone
hides the block, each pool could detect it through the spy therein. Then when
facing two branches of the same length, the pool adopting RHonest shall clearly
follow the honest branch instead of choosing one of them uniformly.

It is important to note that, in this mining game, at most one player is
hiding blocks at any time. This is because once an insightful pool mines the first
block and hides it, each other pool adopting no matter RHonest or Insightful
will play against it until this mining competition ends. This makes the following
analysis of the expected reward function fairly clean and enables us to complete
the equilibrium analysis.

4.2 Expected Reward Functions

This section gives the formula of the expected reward function ERi(x1, · · · , xn)
of each pool i under the pure strategy profile (x1, · · · , xn) ∈ {RHonest,
Insightful}n.

Proposition 1. For an n-player mining game (m1, · · · ,mn), let (x1, · · · , xn)
be a (pure) strategy profile. Let c be a value depending on (m1, · · · ,mn) and
(x1, · · · , xn).6 Let Q ⊆ [n] be the set of pools that adopt Insightful strategy.
Then we have

ERi(x1, · · · , xn) =

⎧
⎨

⎩

c ·
(
f(mi) + mi · ∑

j∈Q 2mj(1 − mj)
)

, i ∈ Q;

c ·
(
mi + mi · ∑

j∈Q 2mj(1 − mj)
)

, i �∈ Q,
(2)

where f(y) := y2 · (2 − 3y)/(1 − 2y).

The proof of Proposition 1 can be found in [26].

6 We note that c will not affect the calculation of a pool’s relative revenue in the
subsequent section.
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4.3 Equilibria Characterization

The following theorem characterizes the pure Nash equilibria of the mining game.
We refer readers to [26] for the proofs.

Theorem 2. For an n-player mining game (m1, · · · ,mn) with m1 ≥ · · · ≥ mn,
there are three types of pure Nash equilibrium (x1, · · · , xn), where

(1) (x1 = · · · xn = RHonest) is a Nash equilibrium if and only if m1 ≤ 1/3;
(2) (x1 = Insightful, x2 = · · · xn = RHonest) is a Nash equilibrium if and only

if m1 ≥ 1/3 and m2 ≤ g(m1);
(3) (x1 = x2 = Insightful, x3 = · · · xn = RHonest) is a Nash equilibrium if

and only if m1 ≥ 1/3 and m2 ≥ g(m1),

where g(y) := −y3 +2y2 + y − 1
2y2 +4y − 3 .

Remark 2 (Interpretation of two thresholds in Theorem 2). The analysis
of Theorem 2 (1) is to consider the case where one player (say player 1) is deciding
to choose RHonest or Insightful while all other players are adopting RHonest.
Note that when such a player is adopting Insightful, it is the only one that may
hide some blocks, and whenever it hides blocks, all other pools will play against
it. This case corresponds to the γ = 0 case of the seminal work [6],7 where
they also got a 1/3 threshold (see Observation 1 in [6]). However, the cases of
Theorem 2 (2) and (3) are much more interesting since there exists more than
one strategic player with complicated (but explicit) utility functions. For the
g(·) function, we note that the threshold g(m1) < 1/3 whenever m1 > 1/3. The
interpretation is from the following observation: When player 1 behaves honestly,
player 2’s relative revenue is exactly proportional to its hashing power (say m2).
But when player 1 adopts Insightful (m1 ≥ 1/3 by Theorem 2 (1)), the relative
revenue of player 2 is lower than m2 (see proof in [26] for the specific revenue
function). Hence, player 2 is more likely to deviate from RHonest if someone else
(i.e., player 1 here) has been behaving strategically. As a result, the threshold
for player 2 to adopt Insightful is also lower than (the original) 1/3, and the
exact bound is g(m1).

Theorem 2 has the following three corollaries.

Corollary 1. Every n-player mining game (m1, · · · ,mn) has a pure Nash equi-
librium.

Corollary 2. For an n-player mining game (m1, · · · ,mn), (RHonest, · · · ,
RHonest) is a Nash equilibrium if m1 ≤ 1/3.

Corollary 3. For every n-player mining game (m1, · · · ,mn), there is an equi-
librium with at most two insightful pools.

7 In [6], γ denotes the ratio of honest miners that choose to mine on the private block
when facing two branches with the same length.
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5 Simulation

This section conducts several simulations to evaluate the effectiveness of the
insightful mining strategy. Three agents are considered: the honest pool, the self-
ish pool, and the insightful pool. Their interactions are simulated as a discrete-
time random walk process. In each step, one of the pools generates a block with
a probability proportional to its hashing power, and others respond according
to their strategies. The simulation ends after 2e9 steps. Then we calculate each
pool’s relative revenue during the process, which is defined as the proportion of
blocks it generates on the main chain to the total number of blocks therein.

Fig. 3. Relative revenue of the selfish pool and the insightful pool with the same
mining power. The selfish pool adopts the selfish mining strategy. (a) The insightful
pool adopts the insightful mining strategy. (b) The insightful pool mines honestly.

Recall that α and β are the fractions of hashing power of the selfish pool
and the insightful pool, respectively. First, we focus on the scenario where the
insightful pool and the selfish pool have the same hashing power, i.e., α = β.
Figure 3(a) visualizes the relative revenue of the insightful pool and the self-
ish pool when their hashing power belongs to (0.25, 0.5). As can be seen, the
insightful pool can always gain more revenue than the selfish pool. It is exactly
consistent with our theoretical result in Theorem 1. Surprisingly, if their hash-
ing power is larger than 1/3 (i.e., α = β > 1/3), the insightful pool can gain
most of the revenue. For a clear comparison, we also show their relative revenue
under the circumstance that the insightful pool mines honestly in Fig. 3(b). As
mentioned in the Introduction, the insightful pool suffers heavy losses in this
case, which grow rapidly with the pool size increasing. Comparing Fig. 3(a) and
3(b) shows that the insightful mining strategy dramatically helps the pool turn
things around when facing selfish mining.

Then we explore the scenario where α > β, to consider whether less hashing
power can also enable the insightful pool to earn more. Here, two definitions of
“more revenue” are studied. One is the aforementioned relative revenue, which
corresponds to the dashed line in Fig. 4. It demonstrates the threshold above
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Fig. 4. Threshold of the insightful pool’s size, above which it could obtain more relative
revenue or unit relative revenue than the selfish pool.

which RREVIM (α, β) > RREVSM (α, β). The other is the unit relative revenue.
The solid line in Fig. 4 represents the corresponding threshold, above which
we have RREVIM (α,β)

β > RREVSM (α,β)
α . This curve is below the former. Both

curves have similar trends, and they are all below the line of β = α. It provides
compelling evidence that with the insightful mining strategy, less computing
power can also yield more revenue.

6 Discussion

In blockchain, the action of planting a spy in the pool has been deeply discussed
in the context of Block Withholding Attack [5,22]. In such an attack, the attacker
infiltrates miners into opponent pools to reduce their revenue. The undercover
miner sends only partial solutions (i.e., proofs of work) to the pool manager to
share rewards. If it luckily finds a full solution which means a valid block, the
undercover miner will discard the full proof of work directly, causing a loss to
the victim pool. Our work explores, for the first time, the idea of spying in the
selfish mining attack. It will shed new light on the researchers in the field.

Infiltrating spies dramatically expands the action spaces that a pool can take
to counteract the selfish mining attack. Besides insightful mining, other strategies
are worth exploring. Here, we roughly describe a potential idea. Recalling that
the spy can actually extract the hash value of the latest hidden block from
the new task issued by the pool manager. With this information, other pools
can mine directly behind the latest block, although its full contents are not
yet known.8 By this strategy, all pools could follow the longest chain, which
makes selfish mining ineffective. In other words, keeping the block secret for the

8 Such an idea was discussed in [25]. In that context, the strategic miner mines on a
newly generated block directly even before it is validated. To avoid potential conflict,
the miner can choose to embed no transaction in the block being mined and just
try to win the potential block rewards. Our discussion mainly focuses on the role of
spies against the selfish mining attack.
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selfish pool is equivalent to revealing it honestly, which extremely benefits the
blockchain system. Nevertheless, such a strategy might not be the best choice for
strategic mining pools. Further research should be undertaken to investigate the
optimal mining strategy. It is also worthwhile to extend the action of planting
spies to other blockchain scenarios.

Back to our work, insightful mining tells us that insight brings more revenue
to a pool. It would be interesting to study the interactions between the insightful
mining strategy and other strategies or protocols.
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