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Abstract. We study coverage problems in which, for a set of agents
and a given threshold T , the goal is to select T subsets (of the agents)
that, while satisfying combinatorial constraints, achieve fair and efficient
coverage among the agents. In this setting, the valuation of each agent
is equated to the number of selected subsets that contain it, plus one.
The current work utilizes the Nash social welfare function to quantify
the extent of fairness and collective efficiency. We develop a polynomial-
time (18 + o(1))-approximation algorithm for maximizing Nash social
welfare in coverage instances. Our algorithm applies to all instances
wherein, for the underlying combinatorial constraints, there exists an
FPTAS for weight maximization. We complement the algorithmic result
by proving that Nash social welfare maximization is APX-hard in cov-
erage instances.

1 Introduction

Coverage problems, with a multitude of variants, are fundamental in theoretical
computer science, combinatorics, and operations research. These problems cap-
ture numerous resource-allocation applications, such as electricity division [2,22],
sensor allocation [20], program testing [18], and plant location [9].

Coverage problems entail identifying—for a given threshold T ∈ Z+ and a
set of elements [n]—a collection of subsets, F1, F2, . . . , FT ⊆ [n], that respect
particular combinatorial constraints. Here, the problem objective is specified
by considering, for each element i ∈ [n], the number of selected subsets, Ft-
s, that contain i. For instance, in the classic maximum coverage problem [16],
the subsets, F1, . . . , FT , are constrained to be from a given set family and the
objective is to maximize the number of elements i ∈ [n] that are contained in at
least one of the Ft-s, i.e., maximize | ∪t Ft|.

We study coverage problems where the ground set corresponds to a popu-
lation of n agents and the cardinal valuation of each agent i ∈ [n] depends on
the number of selected subsets that contain i, i.e., the valuation of i depends
on the coverage that i receives across the Ft-s. Our overarching goal is to select
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subsets that, while satisfying combinatorial constraints, achieve fair and efficient
coverage among the n agents.

Before detailing the model, we describe a stylized example that illustrates
the applicability of the coverage framework. Consider an electricity grid operator
tasked with apportioning electricity for T time periods among a set of n agents
(consumers with varying electricity requirements). In a time period t ∈ [T ], the
total demand of the n agents can exceed the available supply and, hence, the grid
operator must select a subset of agents, Ft ⊆ [n], whose electricity consumption
can be fulfilled–agents in the subset Ft receive electricity during the tth time
period and the remaining agents do not. An important desideratum in such load
shedding scenarios is to achieve fairness along with economic efficiency; see the
motivating work of Baghel et al. [2] for a thorough treatment of load shedding and
its connections with the fair division literature. Indeed, the coverage framework
provides an abstraction for this load shedding environment: for each t ∈ T ,
the selected subset Ft must satisfy a knapsack constraint1 and the cardinal
preference of each agent i ∈ [n] is captured by the number of subsets that
contain i, i.e., the number of time periods that i receives electricity.

Combinatorial Constraints. We study a coverage framework wherein, for each
t ∈ [T ], the tth selected subset, Ft ⊆ [n], must belong to a set family It, i.e., each
It ⊆ 2[n] specifies the possible choices for the tth selection. Our results do not
require the families It-s to be given explicitly as input. Our results hold for any
It-s that admit a fully polynomial-time approximation scheme (FPTAS) for the
weight maximization problem: given weights w1, . . . , wn ∈ R+, for the n agents,
find arg maxX∈It

∑
i∈X wi.

For instance, if each It contains the subsets that satisfy a knapsack con-
straint, then an FPTAS for weight maximization is known to exist [26]; in such
a case weight maximization corresponds to the standard knapsack problem.2

Furthermore, if the families It-s are independent sets of matroids, then one can
exactly solve the weight maximization problem in polynomial time [24]. It is
relevant to note that matroids provide an expressive construct for numerous
combinatorial constraints, e.g., cardinality and partition constraints. Hence, the
coverage framework with matroids provides, by itself, an encompassing class of
instances. Also, in instances wherein the sizes of the families It-s are polynomi-
ally large, weight maximization can be efficiently solved by direct enumeration.

In addition, our result applies to settings that entail two-sided matchings: say,
for each t ∈ [T ], we have a bipartite graph G = (L∪R,E), with L∪R = [n], and
the goal is to select a matching, i.e., agents covered by the matching constitute
the tth selected subset. We can express this matching setting in the current
framework by including, in each It, every subset of agents (i.e., subset of vertices
in G) that is covered by some matching in G. Notably, such a formulation models

1 In particular, the total demand of the agents in Ft should be at most the supply at
time period t.

2 Recall that in the electricity division example, the subsets Ft-s had to satisfy knap-
sack constraints.
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two-sided markets [14,25] such as (i) ridesharing platforms, wherein the agent set
consists of both the vehicle drivers and the passengers and (ii) recommendation
engines, in which producers are recommended to consumers. Our result holds in
such matching settings, since here weight maximization can be optimally solved
in polynomial time via a maximum-weight matching algorithm.3

Agents’ Valuations. As mentioned previously, we address settings in which each
agent’s valuation depends on the number of times it is covered among the selected
subsets Ft-s. Specifically, for a solution F = (F1, . . . , FT ) ∈ I1 × . . . × IT , agent
i’s valuation is defined as vi(F) := |{t ∈ [T ] : i ∈ Ft}|+1. Note that the valuation
of each agent is smoothed by adding 1. This smoothing enables us to achieve
meaningful (multiplicative) approximation guarantees by shifting the valuations
and, hence, the collective welfare away from zero. We also note that valuation
smoothing has been considered in prior works in fair division; see, e.g., [10,12],
and [17].

Nash Social Welfare. With the overarching aim of achieving fairness along with
economic efficiency in coverage instances, we address the problem of maximizing
Nash social welfare (NSW). This welfare function is defined as the geometric
mean of agents’ valuations and it achieves a balance between the extremes of
social welfare (a well-studied objective for economic efficiency) and egalitarian
welfare (a prominent fairness notion). NSW stands as a fundamental metric
for quantifying the extent of fairness in numerous resource-allocation contexts;
indeed, in recent years, NSW has been extensively studied in the fair division
literature; see, e.g., [5,7,15,19,23] and many references therein.

Nash social welfare satisfies key fairness axioms, including scale freeness, sym-
metry, and the Pigou-Dalton transfer principle [21]. The Pigou-Dalton principle
requires that the collective welfare should increase under a bounded transfer of
value from a well-off agent i to a worse-off agent j. NSW satisfies this principle,
since the geometric mean of a more balanced valuation profile (of the n agents)
is higher than that of a skewed one. At the same time, if the increase in agent
j’s value is significantly less than the drop experienced by i, then NSW does
not increase. That is, NSW prefers solutions4 that have reduced inequality and,
simultaneously, it accommodates for economic efficiency.

Furthermore, in various fair division contexts, prior works have shown that
a solution that maximizes NSW satisfies additional fairness properties, e.g.,
[1,7,10,13,15]. Critically, the fact that Nash optimal solutions bear additional
guarantees does not undermine the relevance of finding solutions with as high
a Nash social welfare as possible. NSW cardinally ranks the solutions and, con-
forming to a welfarist perspective, one prefers solutions with higher NSW. There-
fore, developing approximation guarantees for NSW maximization is a well-
justified objective in and of itself.
3 One can also address one-sided matching—with agents on one side and, say, indivis-

ible slots on the other—as a transversal matroid.
4 In the current context, a solution is a collection of T subsets F1, . . . , FT that are

contained in the underlying set families I1, . . . , IT , respectively.
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1.1 Our Results and Techniques

We develop a constant-factor approximation algorithm for maximizing Nash
social welfare in fair coverage instances. Given a set of n agents and threshold
T ∈ Z+, our algorithm (Algorithm 1) computes in polynomial time a solu-
tion F = (F1, . . . , FT ) ∈ I1 × . . . × IT whose Nash social welfare, NSW(F) =
(
∏n

i=1 vi(F))
1
n , is at least 1

18+o(1) times the optimal (Theorem 1). As mentioned
previously, the algorithm only requires blackbox access to an FPTAS for weight
maximization over the set families I1, . . . , IT ⊆ 2[n].

The algorithm starts with an arbitrary solution and iteratively performs
updates till it essentially reaches a local maximum of the log social welfare
ϕ(F) :=

∑n
i=1 log (vi(F)). Here, for any solution F = (F1, . . . , FT ), a local

update corresponds to replacing—for some τ ∈ [T ]—the subset Fτ with some
other subset Aτ ∈ Iτ . The algorithm performs the local updates by invoking, as
a subroutine, the FPTAS for weight maximization.

It is relevant to note that while the algorithm is simple in design, its analysis
entails novel insights. In particular, the domain of solutions, I1×. . .×IT , is com-
binatorial and, hence, it is not obvious if a local maximum solution of ϕ upholds
any global approximation guarantees for ϕ, let alone for NSW. Furthermore, a
multiplicative approximation bound for ϕ does not translate into a multiplicative
guarantee for NSW: for any solution F , we have 1

nϕ (F) = log (NSW(F)). Hence,
even though a solution that (globally) maximizes ϕ also maximizes NSW, mul-
tiplicative approximation guarantees get exponentially worse when one moves
from ϕ to NSW. This observation also implies that one cannot directly utilize
the approximation guarantee known for the so-called concave coverage problem
[3] to obtain a commensurate approximation ratio for NSW maximization.

Interestingly, in lieu of developing local-to-global approximation guarantees,
we rely on counting arguments to establish the approximation ratio. We prove
that, at a local maximum solution F (of the function ϕ) and for any integer
α ≥ 4, the number of α-suboptimal agents is at most n/α; here, an agent i is
said to be α-suboptimal iff i’s current valuation vi(F) is (about) 1/α times
less than her optimal valuation. We complete the analysis by proving that
these Markov-like bounds ensure that the computed solution F achieves an
(18 + o(1))-approximation guarantee for NSW maximization.

In addition, we complement the algorithmic result by proving that, in fair
coverage instances, NSW maximization is APX-hard (Theorem 2). This inap-
proximability result rules out a polynomial-time approximation scheme (PTAS)
for NSW maximization in fair coverage instances.

1.2 Additional Related Work and Applications

The coverage framework generalizes the well-motivated setup of public decision
making [8], albeit for agents that have binary additive valuations. The public
decision making setup captures settings wherein decisions have to be made on T
social issues, that can impact many of the n agents simultaneously. Specifically,
each issue t ∈ [T ] is associated with a set of alternatives At = {a1

t , a
2
t , . . . , a

�t
t }
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and every agent i ∈ [n] has an additive valuation over the issues. That is, for
any outcome A = (a1, a2, . . . , aT ) ∈ A1 × A2 × . . . × AT , agent i’s utility is
ui(A) =

∑T
t=1 ut

i(at); here ut
i(at) ∈ R+ is the utility that i gains from the

alternative at ∈ At.
Indeed, for agents i ∈ [n] with binary additive valuations (i.e., ut

i(a) ∈ {0, 1}
for all t and a ∈ At) the coverage framework generalizes public decision making:
for every t ∈ [T ], define the set family It by including in it the set Fa := {i ∈
[n] : ut

i(a) = 1} for each a ∈ At. In particular, It contains a set Fa, for each
alternative a ∈ At, where Fa is the set of agents that value alternative a. This
reduction gives us set families of polynomial size (|It| = |At|) and, hence, our
results specialize to this case.

In the public decision making context, Conitzer et al. [8] obtain fairness guar-
antees in terms of relaxations of proportionality. They also show that Nash opti-
mal solutions bear particular fairness properties. Complementing these results
and for agents with (smoothed) binary additive valuations, the current work
obtains approximation guarantees for NSW in public decision making.

The coverage framework also encompasses the standard fair division setting
that entails allocation of m indivisible goods among n agents that have binary
additive valuations. Multiple prior works have studied NSW in this discrete fair
division setting; see, e.g., [6,15]. Here, each agent i ∈ [n] prefers a subset of the
goods Vi ⊆ [m] and agent i’s valuation ui(S) = |S ∩ Vi|, for any S ⊆ [m]. One
can express this setting as a coverage instance by considering T = m set families
each comprised of singleton subsets. Specifically, for each good g ∈ [m], we have
a set family Ig that includes all singletons {i} with the property that g ∈ Vi, i.e.,
subset {i} is included in Ig iff agent i values good g. As in the public decision
making setting, here we obtain a coverage instance with polynomially large It-s.

With Nash welfare as a notion of fairness, Fluschnik et al. [12] study fair
selection of indivisible goods under a knapsack constraint.5 By contrast, the
current work addresses combinatorial constraints over subsets of agents.

2 Notation and Preliminaries

An instance of a fair coverage problem is specified as a tuple 〈[n], T, {It}T
t=1〉,

where [n] = {1, 2, . . . , n} denotes the set of agents and T ∈ Z+ denotes the
number of subsets (of the agents) to be selected. Here, for each t ∈ [T ], the tth
selected subset (say Ft ⊆ [n]) is constrained to be from the family It, i.e., each
It ⊆ 2[n] specifies the possible choices for the tth selection. It is not necessary
that the set families It-s are given explicitly; our algorithmic result only requires
a blackbox access to an FPTAS for weight maximization over It-s.

For a fair coverage instance 〈[n], T, {It}T
t=1〉, a solution F = (F1, F2, . . . , FT )

is a tuple with the property that Ft ∈ It for all t ∈ [T ]. We address settings
wherein the valuation of each agent depends on the number of times it is covered

5 Fluschnik et al. [12] also highlight connections between NSW and proportional
approval voting.
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among the selected subsets. Specifically, for a solution F = (F1, F2, . . . , FT ), the
coverage value vi(F), of agent i ∈ [n], is defined as vi(F) := |{t ∈ [T ] : i ∈
Ft}| + 1. Note the coverage value of each agent is smoothed by adding 1. This
smoothing ensures that the Nash social welfare of any solution is nonzero. We,
in fact, show that if each agent’s value is equated to exactly the number of times
it is covered among the subsets, then one cannot achieve any multiplicative
approximation guarantee for Nash social welfare maximization (refer to the full
version [4]).

The Nash social welfare (NSW) of a solution F is defined as the geometric

mean of the agents’ coverage values, NSW (F) :=
(

n∏

i=1

vi(F)
) 1

n

. We will write

F∗ = (F ∗
1 , F ∗

2 , . . . , F ∗
T ) to denote a solution that maximizes the Nash social wel-

fare in a given fair coverage instance. Furthermore, a solution F̂ is said to achieve
a γ-approximation guarantee for the Nash social welfare maximization prob-
lem iff NSW(F̂) ≥ 1

γNSW (F∗). The current work develops a constant-factor
approximation algorithm for NSW maximization in fair coverage instances.

As mentioned previously, the algorithm works with a blackbox access to an
FPTAS for weight maximization over It-s. Specifically, with parameter β :=

1
64nT 2 , we will write ApxMaxWt to denote a subroutine (blackbox) that takes
as input weights w1, . . . , wn ∈ R+, along with an index t ∈ [T ], and finds a (1−β)-
approximation to max

X∈It

∑

i∈X

wi. The assumption that weight maximization over

It-s admits an FPTAS implies that a (1 − β)-approximation (with β = 1
64nT 2 )

can be computed in polynomial time.
For any solution F = (F1, . . . , FT ), index t ∈ [T ], and subset X ∈ It, write

(X,F−t) to denote the solution obtained by replacing Ft with X, i.e., (X,F−t) :=
(F1, , . . . , Ft−1,X, Ft+1, . . . , FT ). Finally, we will write ϕ(F) to denote the log

social welfare of the agents under solution F , i.e., ϕ(F) :=
n∑

i=1

log (vi(F)). Here,

the logarithm is to the base e, i.e., we consider the natural logarithm of coverage
values.

3 Approximation Algorithm for Nash Social Welfare

This section develops an (18 + o(1))-approximation algorithm for maxi-
mizing Nash social welfare in fair coverage instances. Given any instance
〈[n], T, {It}T

t=1〉, our algorithm Alg (Algorithm 1) starts with an arbitrary solu-
tion F = (F1, . . . , FT ) ∈ I1 × . . . × IT and iteratively performs local updates
as long as it experiences a sufficient (additive) increase in the log social wel-
fare ϕ. Here, for any solution F = (F1, . . . , FT ), a local update corresponds to
replacing—for some τ ∈ [T ]—the subset Fτ with some other subset Aτ ∈ Iτ .
For updating a solution F and with ϕ as a guiding objective, the algorithm
addresses the problem of finding, for every t ∈ [T ], a subset At ∈ It that achieves
max
X∈It

ϕ(X,F−t)−ϕ(F). Notably, we reduce this problem to that of weight max-

imization over It-s, by setting appropriate weights wt
i , for each agent i ∈ [n] and
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each index t ∈ [T ]. In particular, for a current solution F = (F1, . . . , FT ), the
algorithm sets the weights as follows

wt
i =

{
log (vi(F)) − log (vi(F) − 1) if i ∈ Ft

log (vi(F) + 1) − log (vi(F)) otherwise, if i ∈ [n] \ Ft.

We note that for each agent i ∈ Ft, the coverage value vi(F) ≥ 2; this follows
from the inclusion of ‘+1’ in the definition of coverage value. Hence, the weights
(specifically, the terms log (vi(F) − 1) for i ∈ Ft) are well defined. This is a
relevant implication of smoothing the coverage values.

Moreover, this weight assignment ensures that, for every subset X ⊆ [n],
its weight

∑
i∈X wt

i = (ϕ(X,F−t) − ϕ(F)) +
∑

j∈Ft
wt

j (see Claim 3). Since the
weight of the current subset Ft (i.e.,

∑
j∈Ft

wt
j) is fixed, finding a subset X ∈ It

with maximum possible weight is equivalent to finding a subset that maximizes
ϕ(X,F−t)−ϕ(F). In fact, we show that an FPTAS for this weight maximization
suffices. As mentioned previously, we denote by ApxMaxWt(t, wt

1, . . . , w
t
n) a

subroutine (blackbox) that takes as input weights wt
1, . . . , w

t
n ∈ R+ and finds a

(1 − β)-approximation to max
X∈It

∑

i∈X

wt
i ; where the parameter β = 1

64nT 2 .

Hence, for updating the solution F = (F1, . . . , FT ), the algorithm invokes
ApxMaxWt to obtain candidate subsets A1, A2, . . . , AT . If, for some index
τ ∈ [T ], replacing Fτ by Aτ leads to a sufficient additive increase ϕ, then Alg
updates the solution to (Aτ ,F−τ ). Specifically, the algorithm sets parameter
ε := 1

16nT and if ϕ (Aτ ,F−τ ) − ϕ(F) ≥ εn
8T , then it updates the solution (see

Lines 4 and 5 in Algorithm 1). Otherwise, if for all the candidate subsets the
increase in ϕ is less than εn

8T , the algorithm terminates.
Note that, for any solution F̂ , the log social welfare ϕ(F̂) is at most

n log(T + 1).6 This observation, and the fact that in every iteration of Alg the
log social welfare of the maintained solution increases by at least εn

8T , imply that
the algorithm terminates in polynomial time (Lemma 3). Overall, the algorithm
efficiently finds a local maximum of ϕ.

We establish the approximation ratio via counting arguments. In the analysis,
for each maintained solution F , we consider the agents i whose current coverage
value, vi(F), is sufficiently smaller than their optimal coverage value, vi(F∗);
recall that F∗ denotes a Nash optimal solution. In particular, for a solution F
and any integer α ∈ Z+, we will write SF

α to denote the subset of agents whose
coverage value is α(2.25 + ε) times less than their optimal, where, ε = 1

16nT .
Formally, for any α ∈ Z+, the set of α-suboptimal agents is defined as7

SF
α :=

{

i ∈ [n] : vi(F) <
1

α(2.25 + ε)
vi(F∗)

}

. (1)

First, we prove that, for any solution F and any integer α ≥ 4, if the number of
α-suboptimal agents is more than n

α , then there necessarily exists a local update

6 Indeed, for any solution ̂F , we have vi( ̂F) ≤ T + 1, for all agents i ∈ [n].
7 Here, the constant 2.25 is selected to achieve the desired approximation ratio.
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Algorithm 1. Alg

Input: Instance 〈[n], T, {It}T
t=1〉.

Output: A solution F = (F1, . . . , FT ).

1: Initialize F = (F1, F2, . . . , FT ) ∈ I1 ×I2 × . . .×IT to be an arbitrary solution and,
for all agents i ∈ [n], set coverage value vi = vi(F). Set parameter ε := 1

16nT
.

2: For each t ∈ [T ] and all agents i ∈ [n], set weight

wt
i =

{

log vi − log(vi − 1) if i ∈ Ft

log(vi + 1) − log vi if i ∈ [n] \ Ft.

3: For each t ∈ [T ], set At = ApxMaxWt(t, wt
1, w

t
2, . . . , w

t
n).

4: while there exists τ ∈ [T ] such that ϕ (Aτ , F−τ ) − ϕ(F) ≥ εn
8T

do
5: Update F ← (Aτ , F−τ ), i.e., update Fτ ← Aτ .
6: For all agents i ∈ [n], update coverage value vi = vi(F).
7: For each t ∈ [T ] and all agents i ∈ [n], set weights wt

i as in Line 2.
8: Set At = ApxMaxWt(t, wt

1, w
t
2, . . . , w

t
n) for all t ∈ [T ].

9: end while
10: return solution F

that increases ϕ by a sufficient amount (Lemma 2). Contrapositively, we obtain
that, for the solution finally obtained by Alg and for any α ≥ 4, the number of
α-suboptimal agents is at most n/α. We complete the analysis by proving that
this guarantee ensures that Alg achieves a constant-factor approximation ratio
for NSW maximization; more formally, we will establish the following theorem
(in Sect. 3.2).

Theorem 1 (Main Result). Given any fair coverage instance 〈[n], T, {It}T
t=1〉,

with blackbox access to an FPTAS for weight maximization over It-s, Alg (Algo-
rithm 1) computes—in polynomial time—an

(
18 + 1

2nT

)
-approximate solution for

the Nash social welfare maximization problem.

3.1 Algorithm’s Analysis

The following claim bounds the change in log social welfare ϕ when a solution
is updated.

Claim 1. For a solution F = (F1, . . . , FT ), let value vi := vi(F) for all agents
i ∈ [n]. Then, for any subset X ⊆ [n] and any index t ∈ [T ], we have

ϕ(X,F−t) − ϕ(F) ≥
∑

i∈X

1
vi + 1

−
∑

j∈Ft

1
vj − 1

.

The proof of Claim 1 is deferred to the full version of the paper. Note that
here, for each agent j ∈ Ft, the coverage value vj(F) ≥ 2 and, hence, the
subtracted terms, 1

vj−1 , in the claim are well defined.
Next, we bound the expected change in ϕ when—for any solution F =

(F1, . . . , FT )—we replace Ft by F ∗
t , for a t ∈ [T ] chosen uniformly at random.
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Lemma 1. For any solution F = (F1, . . . , FT ) and a Nash optimal solution
F∗ = (F ∗

1 , . . . , F ∗
T ), let values vi := vi(F) and v∗

i := vi(F∗), for all agents
i ∈ [n]. Then, uniformly sampling index t from the set [T ], we obtain

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥ 1
T

n∑

i=1

(
v∗

i − 1
vi + 1

)

− n

T
.

Proof. Invoking Claim 1, with X = F ∗
t for each t ∈ [T ], we obtain

Et∈R[T ]

[
ϕ(F ∗

t , F−t) − ϕ(F)
]

≥ Et∈R[T ]

⎡
⎣ ∑

i∈F ∗
t

1

vi + 1
−

∑
j∈Ft

1

vj − 1

⎤
⎦

= Et∈R[T ]

⎡
⎣ ∑

i∈[n]

1{i ∈ F ∗
t } 1

vi + 1

−
∑

j∈[n]:vj≥2

1{j ∈ Ft} 1

vj − 1

⎤
⎦

(since vj ≥ 2, for all j ∈ Ft)

=
∑

i∈[n]

P{i ∈ F ∗
t } 1

vi + 1
−

∑
j∈[n]:vj≥2

P{j ∈ Ft} 1

vj − 1
. (2)

Index t is selected uniformly at random from the set [T ]. Also, by definition, v∗
i is

equal to 1 plus the number of subsets that contain i in the Nash optimal solution
F∗ = (F ∗

1 , . . . , F ∗
T ). Hence, the probability P{i ∈ F ∗

t } = v∗
i −1
T , for all agents

i ∈ [n]. Similarly, for the solution F = (F1, . . . , FT ), we have P{j ∈ Ft} = vj−1
T ,

for all j ∈ [n]. These equations and inequality (2) give us

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥
∑

i∈[n]

v∗
i − 1
T

· 1
vi + 1

−
∑

j∈[n]:vj≥2

vj − 1
T

· 1
vj − 1

≥ 1
T

∑

i∈[n]

(
v∗

i − 1
vi + 1

)

− n

T
.

The lemma stands proved.

Next, we show that if, under a solution F , the number of α-suboptimal agents
is large, then the log social welfare can be sufficiently increased by replacing Fτ

with F ∗
τ , for some τ ∈ [T ]. Recall that F∗ = (F ∗

1 , . . . , F ∗
T ) denotes a Nash optimal

allocation and SF
α denotes the set of α-suboptimal agents under solution F ; see

Eq. (1).

Lemma 2. For any solution F = (F1, . . . , FT ) and any α ≥ 4, if the number
of α-suboptimal agents is at least n

α (i.e., |SF
α | > n

α), then there exists an index
τ ∈ [T ] such that

ϕ(F ∗
τ ,F−τ ) − ϕ(F) ≥ εn

2T
.
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Proof. Consider any solution F and integer α ≥ 4 such that |SF
α | > n

α . For each
agent i ∈ [n], write vi := vi(F) and v∗

i = vi(F∗). Now, Lemma 1 gives us

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥ 1
T

n∑

i=1

(
v∗

i − 1
vi + 1

)

− n

T

≥ 1
T

∑

i∈SF
α

(
v∗

i − 1
vi + 1

)

− n

T

≥ 1
T

∑

i∈SF
α

(
α(2.25 + ε)vi − 1

vi + 1

)

− n

T
.

(by definition of SF
α )

Claim 2. For parameter ε ∈ (0, 1) along with any integers α ≥ 4 and v ≥ 1, we
have

α(2.25 + ε)v − 1
v + 1

≥
(
1 +

ε

2

)
α.

Claim 2 (proof appears in the full version [4]) shows that α(2.25+ε)v−1
v+1 ≥

(
1 + ε

2

)
α, for all integers α ≥ 4 and v ≥ 1. Therefore, the above-mentioned

inequality simplifies to

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥ 1
T

∑

i∈SF
α

(
1 +

ε

2

)
α − n

T

>
1
T

n

α

(
1 +

ε

2

)
α − n

T
(since |SF

α | > n
α )

=
εn

2T
.

Therefore, there exists a τ ∈ [T ] such that

ϕ(F ∗
τ ,F−τ ) − ϕ(F) ≥ εn

2T
.

This completes the proof of the lemma.
Using Lemma 2, we will establish in Corollary 1, below, that the algorithm

continues to iterate as long as the number of α-suboptimal agents is more than
n/α. The proof of the corollary also utilizes the following claim.

Claim 3. Let F = (F1, . . . , FT ) be any solution considered in Alg (Algo-
rithm 1) and, for all indices t ∈ [T ] and agents i ∈ [n], let wt

i-s be the cor-
responding weights set in Lines 2 or 7. Then, the weight of any subset X ⊆ [n]
satisfies

∑

i∈X

wt
i = (ϕ(X,F−t) − ϕ(F)) +

∑

j∈Ft

wt
j .

The proof of this claim appears in the full version of the paper.
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Corollary 1. For any solution F = (F1, . . . , FT ) considered in Alg (Algo-
rithm 1) and any α ≥ 4, if the number of α-suboptimal agents is at least n

α (i.e.,
|SF

α | > n
α), then the execution condition in the while-loop (Line 4) of Alg holds.

Proof. Consider any solution F in Alg and integer α ≥ 4 such that |SF
α | > n

α .
In such a case, we will show that there exists an index τ ∈ [T ] for which the
subset Aτ returned by the subroutine ApxMaxWt(τ, wτ

1 , . . . , wτ
n) (in Line 8)

satisfies ϕ(Aτ ,F−τ ) − ϕ(F) ≥ εn
8T . Hence, the while-loop continues to iterate.

The desired index is in fact the one identified in Lemma 2. In particular,
Lemma 2 ensures that for an index τ ∈ [T ] we have

ϕ(F ∗
τ ,F−τ ) − ϕ(F) ≥ εn

2T
. (3)

Now, Claim 3 (with X = F ∗
τ ) gives us

∑

i∈F ∗
τ

wτ
i = (ϕ(F ∗

τ ,F−τ ) − ϕ(F)) +
∑

i∈Fτ

wτ
i

≥ εn

2T
+

∑

i∈Fτ

wτ
i . (via inequality (3))

Therefore,

max
X∈Iτ

{
∑

i∈X

wτ
i

}

≥
∑

i∈Fτ

wτ
i +

εn

2T
. (4)

Recall that ApxMaxWt(τ, wτ
1 , . . . , wτ

n) returns a set Aτ ∈ Iτ with the property
that

∑

i∈Aτ

wτ
i ≥ (1 − β)

(

max
X∈Iτ

∑

i∈X

wτ
i

)

. (5)

Here, parameter β = 1
64nT 2 . Since ε = 1

16nT , we have β = ε
4T . Inequalities (4)

and (5) give us

∑

i∈Aτ

wτ
i ≥ (1 − β)

(
∑

i∈Fτ

wτ
i +

εn

2T

)

=
∑

i∈Fτ

wτ
i +

εn

2T
− β

∑

i∈Fτ

wτ
i − βεn

2T

≥
∑

i∈Fτ

wτ
i +

εn

2T
− βn − βεn

2T
(since

∑
i∈Fτ

wτ
i ≤ n)

=
∑

i∈Fτ

wτ
i +

εn

2T
− εn

4T
− βεn

2T
(since β = ε

4T )

≥
∑

i∈Fτ

wτ
i +

εn

2T
− εn

4T
− εn

8T
(since β ≤ 1

4 )

=
∑

i∈Fτ

wτ
i +

εn

8T
.
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Applying Claim 3, with X = Aτ , we get ϕ(Aτ ,F−τ ) − ϕ(F) ≥ εn
8T . Therefore,

the execution condition in the while-loop of Alg holds. This establishes the
corollary.

We conclude the section by showing that the algorithm runs in polynomial
time.

Lemma 3 (Runtime Analysis). Given any fair coverage instance 〈[n], T,
{It}T

t=1〉 with blackbox access to an FPTAS for weight maximization over It-s,
Alg (Algorithm 1) terminates in time that is polynomial in n and T .

Proof. For any solution F , the coverage values vi(F) ≥ 1, for agents i ∈ [n].
Hence, for the initial solution (arbitrarily) selected by the algorithm, we have

ϕ(F) =
n∑

i=1

log(vi(F)) ≥ 0. In addition, since the coverage values of the agents

under any solution are at most T +1, the log social welfare ϕ across all solutions
is upper bounded by n log(T + 1). Furthermore, note that in every iteration
of Alg the log social welfare of the maintained solution increases additively
by at least εn

8T . These observations imply that the algorithm terminates after
O

(
nT 2 log T

)
iterations; recall that ε = 1

16nT . Since each iteration executes in
polynomial time, the time complexity of the algorithm is polynomial in n and
T . The lemma stands proved.

3.2 Proof of Theorem 1

This section establishes the approximation ratio of Alg. For the given fair cov-
erage instance, let F = (F1, . . . , FT ) be the solution returned by Alg and
F∗ = (F ∗

1 , . . . , F ∗
T ) be a Nash optimal allocation. Note that vi(F) ≥ 1 and

vi(F∗) ≤ T +1, for all agents i ∈ [n]. Hence, for each agent i ∈ [n], the following
bound holds: vi(F) ≥ 1

T+1vi(F∗).
We partition the set of agents [n] considering the multiplicative gap between

the coverage values under F and F∗. Specifically, for each integer d ∈
{2, 3, . . . , 
log(T + 1)�}, define the set

X2d :=
{

i ∈ [n] :
1

2d+1

vi(F∗)
(2.25 + ε)

≤ vi(F) <
1
2d

vi(F∗)
(2.25 + ε)

}

.

Furthermore, write X ′ := [n]\
(

�log (T+1)�⋃

d=2

X2d

)

. Since all agents i satisfy vi(F) ≥
1

T+1vi(F∗), the subset X ′ only contains agents j ∈ [n] with the property that

vj(F) ≥ 1
4

vj(F∗)
(2.25+ε) . Also, note that the subsets X2d -s and X ′ form a partition of

the set of agents [n]; in particular, |X ′| +
∑

d≥2 |X2d | = n.
Recall that SF

α denotes the set of α-suboptimal agents (see Eq. (1)). Also,
note that, with α = 2d, we have Xα ⊆ SF

α . Moreover, by the contrapositive of
Corollary 1, for the solution F = (F1, . . . , FT ), returned by Alg, we have

|X2d | ≤ ∣
∣SF

2d

∣
∣ ≤ n

2d
for all 2 ≤ d ≤ 
log (T + 1)� (6)



268 S. Barman et al.

For any subset of agents Y ⊆ [n], write ρ(Y ) :=
∏

i∈Y
vi(F)
vi(F∗) , if subset Y �= ∅.

Otherwise, if Y = ∅, define ρ(Y ) := 1. To bound the approximation ratio of the
algorithm, we consider

NSW(F)
NSW(F∗)

=

⎛

⎝ρ(X ′)
�log(T+1)�∏

d=2

ρ(X2d)

⎞

⎠

1
n

≥
⎛

⎝
(

1
9 + 4ε

)|X′| ∏

d≥2

ρ(X2d)

⎞

⎠

1
n

(vj(F) ≥ 1
4(2.25+ε)vj(F∗) for all j ∈ X ′)

≥
⎛

⎝
(

1
9 + 4ε

)|X′| ∏

d≥2

(
1

2d+1(2.25 + ε)

)|X2d |
⎞

⎠

1
n

(vi(F) ≥ 1
2d+1(2.25+ε)

for all i ∈ X2d)

=
1

9 + 4ε

⎛

⎝
∏

d≥2

(
1

2d−1

) |X
2d |
n

⎞

⎠ (since |X ′| +
∑

d≥2 |X2d | = n)

≥ 1
9 + 4ε

⎛

⎝
∏

d≥2

(
1

2d−1

) 1
2d

⎞

⎠ . (via inequality (6))

Claim 4. For any integer 	 ≥ 2, we have
�∏

d=2

(
1

2d−1

) 1
2d ≥ 1

2 .

The proof of Claim 4 appears in the full version of the paper. Hence, the stated
approximation ratio follows

NSW(F)
NSW(F∗)

≥ 1
9 + 4ε

⎛

⎝
�log(T+1)�∏

d=2

(
1

2d−1

) 1
2d

⎞

⎠ ≥ 1
9 + 4ε

· 1
2

=
1

18 + 8ε
.

4 APX-Hardness of Fair Coverage

This section shows that NSW maximization in fair coverage instances is APX-
hard. In particular, we prove that there exists an absolute constant γ > 1
such that it is NP-hard to approximate the problem within factor γ. Hence,
a constant-factor approximation is the best one can hope for NSW maximiza-
tion in fair coverage instances, unless P = NP. The hardness result is obtained
via an approximation preserving reduction from the following gap version of the
maximum coverage problem.
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Maximum k-Coverage [11]: Given a universe of elements U = {1, 2, . . . , n}, a
threshold k ∈ Z+, and a set family S =

{
S� ⊆ [n]

}N

�=1
, it is NP-hard to distin-

guish between

– YES Instances: There exists a collection of k subsets in S that covers all the
elements, i.e., the union of the k subsets is equal to [n].

– NO Instances: Any collection of k subsets from S covers at most
(
1 − 1

e

)
n

elements, i.e., the union of any k subsets from S has cardinality at most(
1 − 1

e

)
n.

This hardness result of Feige [11] holds even for instances that satisfy the
following properties: (i) all the subsets in S have the same size τ , i.e., |S�| = τ
for all subsets S� ∈ S, and (ii) the threshold k = n/τ . Properties (i) and (ii) will
be utilized in our approximation preserving reduction.8

The APX-hardness result is established next. Notably, this negative result
is applicable even for fair coverage instances in which the set families It-s are
explicitly given as input.

Theorem 2. In fair coverage instances, it is NP-hard to approximate the max-
imum Nash social welfare within a factor of 1.092.

Proof. Given an instance of the maximum k-coverage problem with universe
U = {1, 2, . . . , n} and set family S = {S1, S2, . . . , SN} of τ -sized subsets of [n],
we construct a fair coverage instance with n agents and T = k. Since threshold
k = n

τ , we have T = n
τ . To complete the construction and obtain an instance

〈[n], T, {It}T
t=1〉, we set the families It = S, for all t ∈ [T ].

First, we show that if the underlying maximum coverage instance is a YES
instance, then the optimal NSW in the constructed fair coverage instance is
at least 2. Note that in the YES case there exists a size-k collection S ′ =
{S′

1, S
′
2, . . . , S

′
k} ⊆ S that covers all of [n]. Also, by construction, T = k and

It = S for all 1 ≤ t ≤ k. Hence, for each t ∈ [T ], we have S′
t ∈ It. Therefore, the

tuple F ′ = (S′
1, S

′
2, . . . , S

′
k) is a solution under which vi(F ′) ≥ 2, for all agents

i ∈ [n].9 This bound on the coverage value of the agents implies that in the
current case, the optimal Nash social welfare is at least 2.

Now, we show that in the NO case the optimal NSW is at most c, for an
absolute constant c < 2. Here, consider any solution F = (F1, . . . , FT ) in the
constructed fair coverage instance. We have T = k = n

τ and, by construction,
Ft ∈ S. Furthermore, given that we are in the NO case, the collection of subsets
{F1, F2, . . . , FT } ⊆ S covers at most (1 − 1

e )n elements. Let L denote the set of
agents not covered by the subsets Ft-s and write 	 := |L| ≥ n

e . Since each agent
i ∈ L is not covered under F , we have vi(F) = 1 for all i ∈ L. Furthermore, note
8 The properties also ensure that in the YES case there is a collection of k = n

τ
subsets

that are pairwise disjoint and they cover all of [n]. That is, in the YES case there
exists a perfect cover.

9 In fact, for each agent i the coverage value vi(F ′) = 2, since i is contained in exactly
one of the subsets S′

t-s. Recall that properties (i) and (ii) ensure that S ′ is a perfect
cover.
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that the agents in the set Lc := [n] \ L are covered by the T = k = n
τ subsets

F1, . . . , FT , and each of these subsets is of size τ . Therefore,

∑

j∈Lc

vj(F) =
n/τ∑

t=1

|Ft| + |Lc|

=
n

τ
τ + |Lc| (since |Ft| = τ for each t)

= n + (n − 	). (	 = |L|)

Hence, the average social welfare among agents in Lc satisfies 1
|Lc|

∑
j∈Lc

vj(F) = 2n−�
n−� . This bound and the AM-GM inequality give us

∏

j∈Lc

vi(F) ≤
(

2n−�
n−�

)|Lc|
. Therefore, we can bound the Nash social welfare of F as follows

NSW(F) =

⎛

⎝
∏

i∈L

vi(F)
∏

j∈Lc

vj(F)

⎞

⎠

1
n

≤ 1
�
n

(
2n − 	

n − 	

)n−�
n

=
(

2 − 	/n

1 − 	/n

)(1− �
n )

(7)

Note that the function f(x) :=
(

2−x
1−x

)(1−x)

is decreasing in the interval x ∈
[
1
e , 1

)
. Hence, using the fact that 	 ≥ n

e and inequality (7), we get

NSW(F) ≤
(

2 − 1/e

1 − 1/e

)1− 1
e

≤ 1.83 (8)

Since, in the NO case, inequality (8) holds for all solutions F , we get that the
optimal NSW is at most 1.83.

Overall, we get that in the YES case the optimal NSW is at least 2 and in
the NO case it is at most 1.83. This multiplicative gap of 2

1.83 > 1.092 implies
that a 1.092-approximation algorithm for NSW maximization can be used to
distinguish between the two cases. Since this differentiation is NP-hard, a 1.092-
approximation is NP-hard as well. The theorem stands proved.

5 Conclusion and Future Work

The current paper extends the scope of coverage problems from combinatorial
optimization to fair division. In this setting, we develop algorithmic and hardness
results for maximizing the Nash social welfare. The coverage framework consid-
ered in this work accommodates expressive combinatorial constraints and, hence,
it models a range of applications. The framework also generalizes public decision
making among agents that have binary additive valuations.

It would be interesting to extend the coverage framework to settings in which
each agent i has value vt

i for getting covered by the tth selected subset and her
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valuation is additive across the T selections. Online version of fair coverage is
another interesting direction for future work.
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