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Abstract. We study the inefficiency of pure Nash equilibria in symmet-
ric unweighted network congestion games defined over series-parallel net-
works. We introduce a quantity y(D) to upper bound the Price of Anar-
chy (PoA) for delay functions in class D. When D is the class of polyno-
mial functions with highest degree p, our upper bound is 2p+1−1, which is
significantly smaller than the worst-case PoA for general networks. Thus,
restricting to symmetric games over series-parallel networks can limit the
inefficiency of pure Nash equilibria. We also construct a family of instances
withpolynomial delay functions that have aPoA inΩ(2p/p)when thenum-
ber of players goes to infinity. Compared with the subclass of extension-
parallel networks, whose worst-case PoA is in Θ (p/ln p), our results show
that the worst-case PoA quickly degrades from sub-linear to exponential
when relaxing the network topology. We also consider an alternative mea-
sure of the social cost of a strategy profile as the maximum players’ cost. We
introduce a parameter z(D) andwe show that thePoA is atmost y(D)z(D),
which for polynomial delays of maximum degree p is at most 22p+1 − 2p.
Compared to the worst-case PoA in general symmetric congestion games,
which is in pΘ(p), our results shows a significant improvement in efficiency.
We finally prove that our previous lower bound in Ω(2p/p) is still valid for
this measure of social cost. This is in stark contrast with the PoA in the
subclass of extension-parallel networks, where each pure Nash equilibrium
is a social optimum.

Keywords: Congestion games · Series-parallel networks · Price of
anarchy

1 Introduction

In a non-cooperative game, rational players act selfishly to maximize their utility.
The players influence each other’s behaviour, since the quality of each player’s
strategy depends on the other players’ actions. The notion of Nash equilibrium,
where no player can improve her cost by unilaterally changing strategy, is the
best-known solution concept for predicting a stable outcome of a game. However,
since the players act selfishly and independently in a non-cooperative fashion, a
Nash equilibrium might be far from minimizing the social cost. The inefficiency
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of a Nash equilibrium can be measured by comparing its social cost against the
minimum social cost that could be achieved. Precisely, the Price of Anarchy
(PoA), introduced by Koutsoupias and Papadimitriou [21], is the largest ratio
between the cost of a Nash equilibrium and the minimum social cost.

In this paper, we study network congestion games, where each player aims
at selecting a shortest path from an origin to a destination, but the cost of
each edge is non-decreasing with respect to the total number of players using
it. These games are commonly used to model problems in large-scale networks
such as routing in communication networks and traffic planning in road networks
[19,25] and represent a simple, yet powerful paradigm for selfish resource sharing.

We focus on the inefficiency of pure Nash equilibria. Unlike (mixed) Nash
equilibria, where each player selects a probability distribution on her strategy
set, in a pure Nash equilibrium (PNE) each player selects exactly one strategy
from her strategy set. Pure Nash equilibria are not guaranteed to exist in general,
but congestion games always admit one [26]. We consider two measures of social
cost: the total cost, which is the sum of all players’ costs, and the maximum cost,
which is the maximum cost of a player in a strategy profile.

Several variants of network congestion games have been studied in the litera-
ture, which depend on the combination of a number of parameters. While some
parameters seem to only marginally affect the PoA, the impact that graph struc-
ture has on the PoA is still not completely understood. Aland et al. [1] leave as an
open direction the problem of characterizing “what structures provide immunity
against a high PoA and what structures cause it”.

The approaches that have been proposed for general network congestion
games [1–3,7], later unified in the smoothness framework of Roughgarden [29,30],
cannot be used to derive stronger bounds that hold in the presence of special
network structures. The two main graph structures for which stronger bounds
on the PoA has been provided are parallel-links networks [5,6,15,16,23,32] and
extension parallel networks [12]. In this paper, we focus on the larger class of
two-terminal series-parallel networks, and we provide upper and lower bounds
on the worst-case PoA for (atomic, unweighted, symmetric) network congestion
games. These networks can be recognized in linear-time [33] and are relevant
in many applications, such as for problems on electric networks, scheduling and
compiler optimization. Previous works have highlighted some strong properties
of network congestion games defined over series-parallel networks, such as the
existence of strong equilibria [20] and optimal tolls [14,24].

First, we consider the total players’ cost and arbitrary delay functions. Let
D be a class of nonnegative and non-decreasing functions. We introduce a new
parameter y(D) defined as

y(D) = sup
d∈D, x∈N+

(x + 1)d(x + 1) − xd(x)
d(x)

, (1)

which intuitively can be used to upper bound by what percentage the cost of an
edge increases when one more player uses the edge. Note that y(D) ≥ 1 because
d(x) = (x + 1)d(x) − xd(x) ≤ (x + 1)d(x + 1) − xd(x). Our main result shows
that the worst-case PoA in series-parallel networks is at most y(D).
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Theorem 1. In a symmetric (unweighted) network congestion game on a series-
parallel (s, t)-network with delays functions in class D, the PoA w.r.t. the total
players’ cost is at most y(D).

The above result has interesting implications when D is the class of polynomial
functions with nonnegative coefficients and highest degree p. We show that in
this case y(D) is at most 2p+1 − 1. Our result significantly improves over the
worst-case PoA of unweighted congestion games, that is in Θ(p/ ln p)p+1 [1].
We point out that this worst-case PoA is also attained by unweighted network
congestion games [1], however the construction used in [1] requires asymmetry.
In the full version of this paper [17] we consider symmetric congestion games
on general networks and we provide a family of instances violating the upper
bound of Theorem 1. Moreover, we derive a lower bound on the worst-case PoA
in symmetric network congestion games defined over series-parallel networks.

Theorem 2. The worst-case PoA w.r.t. the total players’ cost of a symmetric
(unweighted) network congestion game on a series-parallel (s, t)-network, where
the delay functions are polynomials with non-negative coefficients and highest
degree p, is at least

1
1 + l2 2p

√
r − rl − 2p

√
r + r

, (2)

where r =
(

2
2p+1−1

) 2p
2p−1

and l = 1
2r1− 1

2p .

We finally prove that our lower bound is in Ω
(

2p

p

)
, thus also in Ω(2cp) for each

c ∈ (0, 1), which almost asymptotically matches the upper bound of 2p+1 − 1.
Since the worst-case PoA in extension-parallel networks (a subclass of series-
parallel networks) is in Θ(p/ ln p) [12,13], our result shows that the PoA dra-
matically increases when relaxing the network topology from extension-parallel
to series-parallel.

Next, we consider measuring the social cost of a strategy profile as the maxi-
mum players’ cost. This variant of the social cost expresses the goal that a central
authority might have to maximize fairness by minimizing the cost of the most
disadvantaged player. We first consider arbitrary delay functions. To bound the
PoA in this setting, introduce a new parameter z(D) defined as

z(D) = sup
d∈D, x∈N+

d(x + 1)
d(x)

. (3)

We first prove that the worst-case PoA in series-parallel networks is at most
y(D)z(D).

Theorem 3. In a symmetric (unweighted) network congestion game on a series-
parallel (s, t)-network with delays functions in class D, the PoA w.r.t. the max-
imum players’ cost is at most z(D)y(D).

When D is the class of polynomial functions with nonnegative coefficients and
maximum degree p we obtain that z(D) is upper bounded by 2p, thus the PoA is
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at most 22p+1 − 2p. Since the worst-case PoA for general symmetric congestion
games and polynomial delays is in pΘ(p) [7], our result shows a significant drop
of the PoA in series-parallel networks.

Finally we show that the lower bound on the PoA w.r.t. the total players’
cost also yields a valid lower bound when considering the maximum players’
cost. We say that a class of networks N is closed under series compositions if
the series composition of two networks G1 and G2 in N still belongs to N .

Theorem 4. Let N be a class of networks closed under series compositions and
let G be a network in N . Then the worst-case PoA with respect to the maximum
social cost of a symmetric (unweighted) network congestion game defined over
G is at least the worst-case PoA with respect to the total social cost.

For series-parallel networks and polynomial delays with nonnegative coefficients
and maximum degree p Theorem 4 implies that the worst-case PoA is in Ω(2p/p).
This is in stark contrast with the result of [10], establishing that the PoA in
extension-parallel networks is 1, i.e., any PNE is also a social optimum w.r.t. the
maximum players’ cost. Thus, relaxing the network topology from extension-
parallel to series-parallel dramatically increases the inefficiency of pure Nash
equilibria. The reason for this is that the key graph operations that we need
to allow are the series compositions, which are forbidden for extension-parallel
networks.

1.1 Further Related Work

Total Cost. There is a rich literature concerning the PoA in network congestion
games where the social cost is measured based on the players’ total cost. Many
variants of network congestion games arise from considering different parame-
ters and their combinations. As we shall see, the impact that graph structure
has on the inefficiency of pure Nash equilibria varies significantly based on the
combination of these parameters.

The first distinction is between atomic and non-atomic congestion games. In
non-atomic congestion games, the number of players is infinite and each player
controls an infinitesimal amount of flow. For these games, Roughgarden [27]
proved that the PoA is independent of the network structure and equal to ρ(D),
where ρ depends on the class of delay functions D [31].

For atomic games, where each player controls a non-negligible amount of
flow, network structure affects the PoA differently, depending on whether all the
players have the same effect on congestion. In weighted congestion games, where
the effect of each player on congestion is proportional to the player’s weight, the
worst-case PoA is already achieved by very simple networks consisting of only
parallel links [4] when D is the class of polynomial functions with nonnegative
coefficients and highest degree p. In contrast, in unweighted congestion games the
effect of network structure seems significant. For asymmetric congestion games
defined over general networks and in the case where D is the class of polyno-
mial functions with nonnegative coefficients, Christodoulou and Koutsoupias [7]
showed that the PoA is in pΘ(p) (see also [2,3]). Aland et al. [1] later obtained
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exact values for the worst-case PoA. These exact values admit a lower bound
of �φp�p+1 and an upper bound of φp+1

p , where φp ∈ Θ(p/ ln p) is the unique
nonnegative real solution to (x + 1)p = xp+1. For symmetric congestion games
the PoA is again pΘ(p) [2,3,7]. The worst case PoA drops significantly in the
presence of special structure. Lücking et al. [22,23] studied symmetric conges-
tion games on parallel links and proved that the PoA is 4/3 for linear functions.
Later Fotakis [12] extended this result by proving an upper bound of ρ(D) for
the larger class of extension parallel networks with delays in class D. Moreover,
this upper bound is tight [11,13]. It is known that, for the class of polynomial
delays with nonnegative coefficients and highest degree p, ρ(D) ∈ Θ (p/ln p).
This indicates that there is a huge gap between the worst-case PoA in general
networks and in extension-parallel networks.

The PoA in symmetric series-parallel network congestion games has been
recently investigated only for the specific case of affine delay functions [18], and
it has been shown that the worst-case PoA is between 27/19 and 2 [18], which is
strictly worse than the PoA of 4/3 in extension-parallel networks [12], and strictly
better than the PoA of 5/2 in general networks [8]. One key step to prove the
upper bound in [18] consists in using the following inequality introduced in [12]

cost(f)
ρ(D)

≤ cost(o) + Δ(f, o), (4)

where cost(f) and cost(o) denote the total cost of a PNE flow f and of a social
optimum flow o, respectively, and Δ(f, o), is a quantity that depends on the
difference o− f . For series-parallel networks with affine delays, Hao and Michini
[18] prove that Δ(f, o) ≤ 1/4 cost(f). This approach cannot be further extended
to polynomial delays of maximum degree p, because we would obtain Δ(f, o) ≤
α(p) cost(f), where α(p) is a function of p that exceeds 1/ρ(D) for large p. Thus,
an extension of the approach in [18] would provide an inconsequential bound.

Maximum Cost. The PoA with respect to the maximum players’ cost has
received less attention. In the non-atomic setting, Roughgarden [28] showed that
the PoA is n − 1, where n is the number of nodes in the network.

In the atomic setting, Koutsoupias and Papadimitriou [21] first studied
weighted congestion games with linear delay functions on m parallel links. For
these games, they provided a lower bound of the PoA of Ω

(
log m

log log m

)
and an

upper bound of O(
√

m logm). Later Czumaj and Vöcking [9] established a tight
bound of Θ

(
log m

log log log m

)
. Christodoulou and Koutsoupias [7] investigated gen-

eral unweighted congestion games. In the symmetric case, they showed that the
PoA is 5/2 for affine delays and pΘ(p) for polynomial delays of maximum degree
p. In the asymmetric case, for games with N players, they proved that the PoA
is in Θ(

√
N) for affine delays and in Ω(N

p
p+1 ) and O(N) for polynomial delays

of maximum degree p.
Epstein et al. [10] characterized efficient network topologies, i.e., graph

topologies such that, for any class of non-decreasing delay functions, every PNE
is also a social optimum. For unweighted symmetric network congestion games
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they established that extension-parallel networks are efficient, implying that on
these networks the PoA is 1. They also proved that this result is tight, i.e., it
does not hold when further relaxing the network topology.

2 Preliminaries

Notation. Let G = (V,E) be an (s, t)-network, i.e., a network with source s
and sink t. Directed paths will be simply referred to as paths. A path from node
u to node v is called a (u, v)-path. We will only consider simple paths, i.e., paths
that do not traverse any node multiple times. Paths and cycles of G are regarded
as sequences of edges, thus we may for example write e ∈ p for a path p. An
(s, t)-flow is an assignment of values to the edges of G such that, at each node u
other than s and t, the sum of the values of the edges entering u equals the sum
of the values of the edges leaving u. The value of the (s, t)-flow is the sum of the
values of the edges entering t. We say a path p is contained in an (s, t)-flow f if
for all e ∈ p, we have fe > 0. For n ∈ N, we denote by [n] the set {1, . . . , n}.

Network Congestion Games. Let G = (V,E) be an (s, t)-network. We con-
sider a network congestion game on G with N players. The strategy set Xi of
player i is the set P of (s, t)-paths in G. Since all the players have the same
origin and destination, their strategy sets all coincide with P and the game is
called symmetric. A state of the game is a strategy profile P = (p1, . . . , pN )
where pi ∈ P is the (s, t)-path chosen by player i, for i ∈ [N ]. The set of states
of the game is denoted by X = X1 ×· · ·×XN . Each state P = (p1, . . . , pN ) ∈ X
induces an (s, t)-flow f = f(P ) = χ1 + · · · + χN of value N , where χi is the
incidence vector of pi for all i ∈ [N ]. We say that the (s, t)-paths p1, . . . , pN are
a decomposition of the (s, t)-flow f if they induce flow f . Note that an (s, t)-flow
f of value N can correspond to several states, since there might be multiple
decompositions of f into N (s, t)-paths.

For each e ∈ E we have a nondecreasing delay function de : [N ] → R≥0.
Each player using e incurs a cost equal to de(fe), i.e., the cost of e depends
on the total number of players that use e in f . Since de is a nondecreasing
function, de(j+1) ≥ de(j) for j ∈ [N −1], which models the effect of congestion.
We denote the cost of a path p in G with respect to a flow f by costf (p) =∑

e∈p de(fe). Thus, the cost incurred by player i in state P is costf (pi). We also
define cost+f (p) =

∑
e∈p de(fe +1). Finally, the cost of flow f in G is denoted by

cost(f) =
∑

e∈E fede(fe). The total cost of a state P , denoted by tot(P ), is the
sum of all players’ costs. Clearly tot(P ) coincides with the cost of the flow f(P ):

tot(P ) =
∑

i∈[N ]

costf(P )(pi) = cost(f(P )).

We also define the maximum cost of P, denoted by max(P ) as the maximum
cost of a player in P :

max(P ) = max
i∈[N ]

costf(P )(pi).
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Pure Nash Equilibria and Social Optima. A pure Nash equilibrium (PNE)
is a state (p1, . . . , pi, . . . , pN ) inducing an (s, t)-flow f such that, for each i ∈ [N ]
we have

costf (pi) ≤ costf̃ (p̃
i) ∀(p1, . . . , p̃i, . . . , pN ) ∈ X inducing (s, t) -flow f̃ .

A PNE represents a stable outcome of the game, since no player i ∈ [N ] can
improve her cost if she unilaterally changes strategy by selecting a different (s, t)-
path p̃i. With a slight abuse of terminology, we say that an (s, t)-flow f is a PNE
if there exists a PNE P = (p1, . . . , pN ) ∈ X such that f = f(P ), i.e., f is the flow
induced by P . On the other hand, we are also interested in a social optimum.
We consider two definitions of social optimum, which depend on whether we
measure the cost of a state P according to tot(P ) or max(P ). In the first case,
a social optimum is a state that minimizes tot(P ) = cost(f(P )) over all the
states P ∈ X. With a slight abuse of terminology, we say that an (s, t)-flow o
is a social optimum if o minimizes cost(g) over all integral (s, t)-flows g of value
N . In the second case a social optimum is a state that minimizes max(P ) over
all the states P ∈ X. In other words, the social optimum is a state where the
maximum player’s cost is minimized.

Price of Anarchy. To measure the inefficiency of pure Nash equilibria, we use
the definition of (pure) Price of Anarchy. The (pure) Price of Anarchy (PoA) is
the maximum ratio between the cost of a PNE and the cost of a social optimum.
In other words, to compute the PoA we consider the “worst” PNE, i.e., a PNE
whose cost is as large as possible. For simplicity, from now on we will refer to
the pure PoA as PoA.

We consider two definitions of PoA, which depend on whether we measure
the cost of a state P according to tot(P ) or max(P ). In the first case, the PoA is
the maximum ratio cost(f)

cost(o) such that o is a social optimum flow and f is a PNE

flow. In the second case, the PoA is the maximum ratio max(Pf )
max(Po)

such that Po is
a social optimum state and Pf is a PNE.

Series-Parallel Networks. An (s, t)-network is series-parallel if it consists of
either a single edge (s, t) or of two series-parallel networks composed either in
series or in parallel. The parallel composition of two networks G1 and G2 is an
(s, t)-network obtained from the union of G1 and G2 by identifying the source
of G1 and the source of G2 into s, and by identifying the sink of G1 and the sink
of G2 into t. The series composition of G1 and G2, denoted by G1 ◦ G2, is an
(s, t)-network obtained from the union of G1 and G2 by letting s be the source of
G1, t be the sink of G2, and by identifying the sink of G1 with the source of G2.
We remark that series-parallel networks are a superclass of parallel-link networks
and extension-parallel networks, for which the PoA has been previously studied.
An (s, t)-network is extension-parallel if it consists of a single edge (s, t) or of
an extension-parallel network and a single edge composed either in series or in
parallel.
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3 Total Cost

3.1 Upper Bound on the PoA

In this section, we prove the upper bound on the PoA stated in Theorem 1. First,
we need to introduce some necessary notation and properties of series-parallel
networks. In the following, we denote by f and o a PNE and a social optimum,
respectively, of the series-parallel network congestion game. We consider the
graph G(o−f) introduced in [12]. Precisely, the node set of G(o−f) is V , and the
edge set is E(o − f) = {(u, v) : (e = (u, v) ∈ E and oe − fe > 0) or (e = (v, u) ∈
E and oe − fe < 0)}. G(o − f) is a collection of simple cycles {C1, . . . , Ch} such
that each Ci carries si units of flow. For each i ∈ [h], define C+

i = {e = (u, v) ∈
E : (u, v) ∈ Ci, oe > fe} and C−

i = {e = (u, v) ∈ E : (v, u) ∈ Ci, oe < fe}.
Recall the parameter y(D) we have defined in Sect. 1. In the next four lemmas,

we will assume that there exists an index i ∈ [h] such that C+
i is an (s, t)-

path, and we will prove that the PoA is at most y(D). Later, we will relax this
assumption. Observe that, by definition, C+

i is contained in o. In the next lemma,
we prove that the cost of C+

i with respect to o is at least the average players’
cost in the PNE f , that is, cost(f)/N .

Lemma 1. If C+
i , i ∈ [h], is an (s, t)-path, then costo(C+

i ) ≥ cost(f)/N .

Proof. The cost of C+
i with respect to flow o satisfies:

costo(C+
i ) =

∑

e∈C+
i

de(oe) ≥
∑

e∈C+
i

de(fe + 1) ≥ cost(f)
N

.

The first inequality holds since for every e ∈ C+
i , we have oe ≥ fe + 1. Next

we show that the second inequality holds. Denote by P ∗ the set of N (s, t)-
paths in the PNE inducing f . Clearly max {costf (π) : π ∈ P ∗} ≥ cost(f)

N . By
contradiction, suppose that

∑
e∈C+

i
de(fe + 1) < cost(f)

N . We would obtain that
max {costf (π) : π ∈ P ∗} > cost+f (C

+
i ), thus one player would prefer to change

her strategy into C+
i . This contradicts the fact that f is a PNE. �

In the next lemma, we contemplate adding one unit of flow on an arbitrary
(s, t)-path p contained in o, and we lower bound the corresponding increase of
the total cost. This will be crucial to derive a lower bound on costo(p) that will
be used to relate cost(f) and cost(o).

Lemma 2. Suppose that there exists an index i ∈ [h], such that C+
i is an (s, t)-

path. Then every (s, t)-path p contained in o satisfies

∑
e∈p

((oe + 1)de(oe + 1) − oede(oe)) ≥ cost(f)
N

.
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Proof. We will prove this by contradiction. Assume that there is an (s, t)-path
p contained in o such that

∑
e∈p

(oe + 1)de(oe + 1) −
∑
e∈p

oede(oe) <
cost(f)

N
. (5)

We define a new state o′ obtained from o by deviating one unit of flow from
C+

i to p. Let S = C+
i ∩ p. First, the cost difference between o′ and o is

cost(o′) − cost(o) =
∑

e∈C+
i \S

((oe − 1)de(oe − 1) − oede(oe))

+
∑

e∈p\S

((oe + 1)de(oe + 1) − oede(oe)).

Observe that, since the delay functions are non-decreasing, we have de(oe −1) ≤
de(oe) for all e ∈ C+

i , thus

cost(o′) − cost(o) ≤
∑

e∈C+
i \S

((oe − 1)de(oe) − oede(oe))

+
∑

e∈p\S

((oe + 1)de(oe + 1) − oede(oe))

= −
∑

e∈C+
i \S

de(oe) +
∑

e∈p\S

((oe + 1)de(oe + 1) − oede(oe)).

Moreover, we have de(oe + 1) ≥ de(oe) for all e ∈ S, thus

0 ≤
∑
e∈S

(oe + 1)(de(oe + 1) − de(oe))

= −
∑
e∈S

de(oe) +
∑
e∈S

((oe + 1)de(oe + 1) − oede(oe)).

By summing up these two inequalities we get

cost(o′) − cost(o) ≤ −
∑

e∈C+
i

de(oe) +
∑
e∈p

((oe + 1)de(oe + 1) − oede(oe)).

By Lemma 1, since C+
i is an (s, t)-path, we have costo(C+

i ) =
∑

e∈C+
i

de(oe) ≥
cost(f)

N . Thus, by (5) we obtain cost(o′)− cost(o) < 0, which contradicts the fact
that o is a social optimum. �

By using Lemma 2, we can derive a lower bound on costo(p) similar to the
lower bound on costo(C+

i ) stated in Lemma 1, but with an extra factor of y(D).

Lemma 3. Suppose there exists an index i ∈ [h] such that C+
i is an (s, t)-path,

and let P be any decomposition of o. Then for every p ∈ P ,

y(D) costo(p) ≥ cost(f)
N

.
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Proof. Since P is a decomposition of o, for each p ∈ P we have oe > 0 for all
e ∈ p. Then we have

y(D) costo(p) =
∑
e∈p

y(D)de(oe) ≥
∑
e∈p

((oe + 1)de(oe + 1) − oede(oe)) ≥ cost(f)
N

,

where the first inequality follows the definition of y(D) stated in Eq. (1) and the
second inequality follows from Lemma 2. �

Finally, under the assumption that there exists a path C+
i from s to t, we

are ready to prove that the PoA is at most y(D).

Lemma 4. If there exists an index i ∈ [h] such that C+
i is an (s, t)-path, then

cost(f) ≤ y(D) cost(o).

Proof. By Lemma 3 we know that given an arbitrary decomposition P of the
social optimal flow o, for all p ∈ P , we have y(D) costo(p) ≥ cost(f)

N . Then we
can conclude that:

y(D) cost(o) =
∑
p∈P

y(D) costo(p) ≥ |P |cost(f)
N

= cost(f),

where the last equality follows from the fact that |P | = N . This implies that
cost(f) ≤ y(D) cost(o). �

We now relax the assumption that there exists a path C+
i from s to t. In

order to do this, we will exploit the structure of series-parallel graphs. If G is
series-parallel, it is known that for each i ∈ [h] C+

i and C−
i are two internally

disjoint paths in G from a node ui to a node vi [12]. For each i ∈ [h], we identify
the pair of nodes ui, vi and we define

Vi = {w ∈ V : there is a (ui, vi) -path containing w},

Ei = {e ∈ E : there is a (ui, vi) -path containing e},

and we let L = {E1, . . . , Eh}.

Lemma 5. If G is series-parallel, then L = {E1, . . . , Eh} is a laminar family.

Proof. We prove this lemma by showing that if Ei ∩ Ej �= ∅ for some i and j in
[h], then Ei ⊆ Ej or Ej ⊆ Ei. We proceed by induction on |E|.

The base case as |E| = 2. If the two edges of G are composed in series, then
there are no cycles. If they are composed in parallel, then there is only one cycle,
i.e., i = j, and Ei = Ej = E. This implies that the lemma holds for the base
case. Now we assume that when |E| ≤ t, the lemma holds. When |E| = t + 1,
since G is series-parallel, it can be decomposed either in series or in parallel.

Suppose that G can be decomposed in series into G1 and G2. We first show
that Ei and Ej are both contained either in the edge set of G1 or in the edge
set G2. In fact, Ei cannot have edges both in G1 and in G2, otherwise C+

i and
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C−
i would not be internally disjoint paths. Thus Ei is contained either in the

edge set of G1 or in the edge set G2. Similarly, Ej is contained either in the edge
set of G1 or in the edge set G2. Moreover, Ei and Ej cannot belong to different
components, otherwise we would have Ei ∩Ej = ∅. Thus, Ei and Ej both belong
to the same component. Assume without loss of generality that this is G1. Since
the number of edges of G1 is at most t, by the inductive hypothesis we obtain
that Ei ⊆ Ej or Ej ⊆ Ei, thus the claim is proven in this case.

Now suppose that G can be decomposed in parallel into G1 and G2. If Ei

and Ej are both contained either in the edge set of G1 or in the edge set of
G2, then by induction the claim holds. If Ei is contained in the edge set of one
component, say G1, and Ej is contained in the edge set of the other component
G2, then Ei ∩ Ej = ∅, a contradiction. Thus at least one among Ei and Ej has
edges both in G1 and in G2. Without loss of generality, suppose Ei does. We
prove that C+

i and C−
i are (internally disjoint) (s, t)-paths. By contradiction,

suppose that C+
i and C−

i are (si, ti)-paths such that si �= s or ti �= t. Note that
si and ti are either both in G1 or both in G2. Suppose w.l.o.g. they are both in
G1. Then each (si, ti)-path cannot contain any edge in G2. Because C+

i and C−
i

are (s, t)-paths, by the definition of Ei, we have Ei = E. Thus we conclude that
Ej ⊆ Ei, which proves the claim in this case. �

By Proposition 1 in [12], if w and w′ are two nodes in Vi such that there exist
two internally disjoint (w,w′)-paths p1 and p2, then every (s, t)-path having an
edge in common with p1 contains both w and w′ and intersects p2 only at w and
w′. This implies that each (s, t)-path going through ui also goes through vi. As a
consequence, for each i ∈ [h] the sub-vectors of f and o that are indexed by the
edges of Ei, denoted by f(Ei) and o(Ei), respectively, both define (ui, vi)-flows
in the subgraph Gi = (Vi, Ei). Define a network congestion game on Gi, where
each edge e ∈ Ei has the same delay de as in G, and the number of players Ni

is equal to the value of flow f(Ei).

Lemma 6. If G is series-parallel and Ei is a maximal set in L, then in the
network congestion game defined on Gi, f(Ei) and o(Ei) are a PNE flow and a
social optimum flow, respectively.

Proof. Let Ni be the flow value of f(Ei). First we show that o(Ei) also has
value Ni. Recall that G(o − f) is a collection of cycles {C1, . . . , Ch} and each
Ci carries si units of flow. By the definition of G(o − f) we can change f into o
as follows: for j ∈ [h], decrease the flow on C−

j by sj and increase the flow on
C+

j by sj . By Lemma 5 L is a laminar family, thus for each j ∈ [h], the paths
C−

j and C+
j are either both in Gi or neither of them in Gi, i.e., either Ej ⊆ Ei,

or Ej ∩ Ei = ∅. Thus, each step does not change the flow value on Gi. We can
conclude that when the procedure ends, the flow value o(Ei) equals the flow
value of f(Ei) = Ni.

Next, we show that f(Ei) is a PNE flow on Gi. By contradiction, suppose
that f(Ei) is not a PNE flow on Gi. This implies that in each decomposition of
f(Ei) into Ni (ui, vi)-paths there is always one player who can decrease her cost
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by deviating her strategy to another (ui, vi)−path in Gi. This implies that in
each decomposition of f into N (s, t)-paths there is always one player that can
unilaterally deviate and decrease her cost. This contradicts to that f is a PNE
flow.

Finally, we show that o(Ei) is a social optimum on Gi. By contradic-
tion, suppose that there is another flow o′(Ei) in Gi of value Ni such that
cost(o′(Ei)) < cost(o(Ei)). Then we can construct a flow o′′ such that o′′

e = oe

for all e ∈ E \ Ei and o′′
e = o′

e for all e ∈ Ei. Then cost(o′′) < cost(o), contra-
dicting the fact that o is the social optimum. �

We now consider the graphs Gi, i ∈ [h], having node set Vi and edge set Ei.

Lemma 7. If G is series-parallel and Ei is a maximal set in L, then

cost(f(Ei)) ≤ y(D) cost(o(Ei)).

Proof. According to Lemma 6, the congestion game with Ni players on the two
terminal-series parallel graph Gi is such that f(Ei) is a PNE and o(Ei) is a
social optimum. Note that ui and vi are, respectively, the source and the sink of
Gi. Since C+

i is a (ui, vi)-path, by Lemma 4 we conclude that the lemma holds.

We are finally ready to prove Theorem 1, i.e., in a symmetric network con-
gestion game defined over a series-parallel network with delay functions in class
D, the PoA is at most y(D).

Proof of Theorem 1. Consider the PNE flow f , the social optimum flow o
and the laminar family L defined previously in this section. We will prove that,
since G is series-parallel, then cost(f) ≤ y(D) cost(o). Let EC1 , . . . , ECl

be the
maximal sets in L and denote by E(L) their union. We rewrite cost(f) as follows.

cost(f) =
∑

e/∈E(L)

fede(fe) +
∑

e∈E(L)

fede(fe).

Note that for each edge e /∈ E(L) we have fe = oe. Moreover, EC1 , . . . , ECl
are

a partition of E(L), since they are maximal members of L that are pairwise
disjoint. Thus we can rewrite the above expression as

cost(f) =
∑

e/∈E(L)

oede(oe) +
l∑

i=1

∑
e∈ECi

fede(fe)

≤ y(D)
∑

e�∈E(L)

oede(oe) + y(D)
l∑

i=1

∑
e∈ECi

oede(oe) = y(D) cost(o),

where the inequality follows from the fact that y(D) ≥ 1 and from Lemma 7. �

Let Poly- p be the class of polynomial delay functions with maximum degree
p, which are of the form

∑p
j=0 ajx

j , with aj ≥ 0 for j = 0, . . . , p.
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Lemma 8. For the class of polynomial delay functions Poly- p it holds that
y(Poly- p) ≤ 2p+1 − 1.

Proof. By using the definition of y(Poly- p) in (1) we have that for any x ∈ N
+

y(Poly- p) = sup
a0,...,ap∈R≥0, x∈N+

(x + 1)
∑p

j=0 aj(x + 1)j − x
∑p

j=0 ajx
j

∑p
j=0 ajxj

= sup
a0,...,ap∈R≥0, x∈N+

∑p
j=0

(
aj

(
(x + 1)j+1 − xj+1

))
∑p

j=0 ajxj
. (6)

We now exploit the fact that given two collections of nonnegative real numbers
b0, . . . , bp and c0, . . . , cp, we have

∑p
j=0 bj∑p
j=0 cj

≤ max
j=0,...,p

bj

cj
.

As a consequence, we can upper bound (6) by

max
j∈{0,...,p},x∈N+

(x + 1)j+1 − xj+1

xj
. (7)

We now upper bound the numerator of the above expression as follows:

(x + 1)j+1 − xj+1 =
j+1∑
k=0

(
j + 1

k

)
xj+1−k − xj+1 ≤

j+1∑
k=1

(
j + 1

k

)
xj ,

where the inequality follows from the fact that j + 1 ≥ 1 and x ∈ N
+. From (7)

we then obtain

y(Poly- p) ≤ max
j∈{0,...,p}

j+1∑
k=1

(
j + 1

k

)
= max

j∈{0,...,p}

j+1∑
k=0

(
j + 1

k

)
− 1 = 2p+1 − 1.

�

By Theorem 1 and Lemma 8 we obtain that the PoA of series-parallel network
congestion games with polynomial delay functions with highest degree is p is at
most 2p+1 − 1.

3.2 Lower Bound

In this section, we illustrate how to construct a family of instances that asymp-
totically achieve the lower bound on the PoA stated in Theorem 2. This construc-
tion is an extension to polynomial delays of the construction proposed in [18]
for affine delays. Let {q1, . . . , qN} be an ordered sequence of positive numbers
such that

∑N
i=1 qi = 1 and qi+1 = 1

2p

∑i
j=1

qj
i for i ∈ [N − 1]. Let m ∈ [N − 1].

We define a new sequence {s1, . . . , sN} by averaging {q1, . . . , qm}. Precisely,
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s1 = · · · = sm =
∑m

1 qi
m and sj = qj for j ≥ m+1. We construct a series-parallel

(s, t)-network G with delays in Poly- p, and an (s, t)-flow f of value N recur-
sively. Let Gm be a single (s, t)-edge with flow fm of value m and delay equal
to s1x

m . For every i ∈ [m,N − 1], we construct Gi+1 and fi+1 using Gi and fi as
follows: we compose in parallel Gi and a new (s, t)-edge with flow value 1 and
delay function si+1x

p and call the new network G̃i and the new (s, t)-flow f̃i.
Next, we compose in series i+ 1 copies of G̃i with flow f̃i to get Gi+1 and fi+1.
We also divide the delay functions by i + 1. Then we set f = fN . Finally we
compose GN in parallel with m new (s, t)-edges e1, . . . , em with delay function
1
N xp to get G. By construction, G is a series-parallel network with polynomial
delay functions having non-negative coefficients and maximum degree p.

To prove Theorem 2, we first show that f is a PNE. Then we define a new
(s, t)-flow h that is obtained from f by deviating k ∈ [m] units of flows from
the most expensive (s, t)-paths in f to the k parallel (s, t)-edges in G with delay
function 1

N xp. The parameters r and l in (2) are defined as r = m
N , l = k

m . The
complete proof of Theorem 2 is given in the full version of this paper [17].

We now argue that the worst case PoA is in Ω(2p/p). By substituting the
expression of l in the denominator of (2), we obtain

1 + l2 2p
√

r − rl − 2p
√

r + r = 1 − 1
4
r2− 1

2p + r − r
1
2p . (8)

Since r, l ∈ [0, 1], we can upper bound the above expression with

1 + r − r
1
2p = 1 +

(
2

2p+1 − 1

) 2p
2p−1

−
(

2
2p+1 − 1

) 1
2p−1

≤ 1 +
(

2
2p+1 − 1

) 2p
2p−1

−
(

1
2p

) 1
2p−1

≤ 1 −
(
1 − 1

2p

)(
1

2p − 1

) 1
2p−1

.

Finally, we have that limp→∞
1−(1− 1

2p )
(

2
2p+1−1

) 1
2p−1

p
2p

= 0, proving that (8) is
in O (p/2p), which implies that when N goes to infinity the PoA is at least in
Ω (2p/p).

4 Maximum Cost

In this section, we measure the social cost of a state P as the maximum players’
cost in P , and we derive an upper bound and a lower bound on the PoA with
respect to this notion of cost. Recall that given any state P , tot(P ) is the total
cost of P and max(P ) is the maximum cost of a player in P .

We first prove the upper bound on the PoA stated in Theorem 3.

Proof of Theorem 3. Let Po be the social optimum with respect to the
total cost, and let Pô be the social optimum with respect to the maximum cost.
Let Pf = {p1f , . . . , pN

f } be an arbitrary PNE. We will show that max(Pf ) ≤
z(D)y(D)max(Pô).
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Because Pf is a PNE and max(Pf ) is the cost of a player, we have max(Pf ) ≤
cost+f (p

i
f ) for any i ∈ [N ]. Moreover, by (3), we have cost+f (p

i
f ) ≤ z(D) costf (pi

f ).
In other words, the most expensive path in Pf has cost no greater than z(D)
times the cost of any other path in Pf . Thus we can conclude that

N · max(Pf ) ≤
N∑

i=1

cost+f (p
i
f ) ≤ z(D)

N∑
i=1

costf (pi
f ) = z(D) tot(f),

i.e., the most expensive path in Pf has cost no greater than z(D) times the
average players’ cost in Pf . Moreover,

z(D) tot(Pf ) ≤ z(D)y(D) tot(Po) (9)
≤ z(D)y(D) tot(Pô) (10)
≤ z(D)y(D)(N · max(Pô)). (11)

Inequality (9) directly follows Theorem 1. Inequality (10) holds since Po is the
social optimum state with respect to the total cost, which implies that tot(Po) ≤
tot(Pô). Inequality (11) holds because max(Pô) is the maximum player’s cost in
Pô. �

We now consider the class Poly- p of polynomial delays with nonnegative
coefficients and maximum degree p, and we prove that z(Poly- p) is at most 2p.

Lemma 9. For the class of polynomial delay functions Poly- p it holds that
z(Poly- p) ≤ 2p.

Proof. By the definition of z(Poly- p) in (3) we have that for any x ∈ N
+

z(Poly- p) = max
x∈N+

∑p
j=0 aj(x + 1)j∑p

j=0 ajxj

Note that given two collections of nonnegative real numbers b0, . . . , bp and
c0, . . . , cp, we have ∑p

j=0 bj∑p
j=0 cj

≤ max
j=0,...,p

bj

cj
.

Thus,

z(Poly- p) = max
x∈N+

∑p
j=0 aj(x + 1)j∑p

j=0 ajxj
≤ max

x∈N+
max

j=0,...,p

aj(x + 1)j

ajxj
≤ 2p.

�

Finally, we prove that, for any class of delay functions, and as long as the
network’s structure is preserved under series compositions, any lower bound on
the PoA with respect to the total social cost is also valid when measuring the
social cost in terms of the maximum players’ cost.
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Proof of Theorem 4. We start with an instance of an atomic, unweighted,
symmetric network congestion game on a (s, t)-network G, where Pf is a PNE,
Po is a social optimum with respect to the total players’ cost, and the PoA is
cost(Pf )/cost(Po). Our goal is to construct a new instance on a network G′, and
to define a PNE Pf ′ and a social optimum Po′ with respect to the maximum
players’ cost, such that

max(Pf ′)
max(Po′)

=
cost(Pf )
cost(Po)

.

We construct G′ as follows. First, let G1, . . . , GN be N duplicates of G and
let G′ be the (s, t)-network obtained by composing in series G1, . . . , GN . We
remark that any graph structure possessed by G is still valid for G′, by our
assumption. Let Pf = {p1f , . . . , pN

f } and Po = {p1o, . . . , p
N
o }. For each i ∈ [N ] let

Pfi
= {p1fi

, . . . , pN
fi

} and Poi
= {p1oi

, . . . , pN
oi

} be the corresponding duplicates of
Pf and Po in Gi, respectively. For each player i ∈ [N ] we define the strategy
pi

f ′ of player i in Pf ′ by having the player choose the path p
j(i)
fj

in Gj , where
j(i) = (i + N − 1) mod N . For example, the strategy of player 2 in Pf ′ is
obtained by composing in series the paths p2f1

, p3f2
, . . . , pN

fN−1
, p1fN

. Analogously,
we define the strategy pi

o′ of player i in Po′ by having the player choose the
path p

j(i)
oj in Gj . It can be checked that Pf ′ = {p1f ′ , . . . , pN

f ′} is a PNE for the
new instance defined on G′ (otherwise we would contradict that f is a PNE in
the original instance). Similarly, it can be checked that Po′ = {p1o′ , . . . , pN

o′ } is
the social optimum in G′ with respect to the total cost (otherwise we would
contradict that o is a social optimum in the original instance).

Observe that, since in our construction we are permuting the players’ strate-
gies, all the players have the same cost, both in Pf ′ and in Po′ . Moreover this
cost is equal to tot(Pf ) in Pf ′ and to tot(Po) in Po′ . Thus, max(Pf ′) = tot(Pf )
and max(Po′) = tot(Po). Now let f̂ and ô be the worst PNE and the social
optimum in the new instance. We conclude that

tot(Pf )
tot(Po)

=
max(Pf ′)
max(Po′)

≤ max(Pf̂ )

max(Pô)
,

which implies the statement of this theorem. �

5 Conclusion

Our contributions fill a gap in the literature on the PoA of atomic, unweighted,
symmetric network congestion games, which tackles either general networks, or
very simple network structures, such as parallel-link networks and extension-
parallel networks.

In this paper we have focused on symmetric games. The worst-case PoA
for unweighted congestion games over general networks [1] is achieved in the
asymmetric case. On the other hand, Bhavalkar et al. proved that PoA of sym-
metric (unweighted) congestion games is as large as in asymmetric ones [4]. What



PoA in Series-Parallel Network Congestion Games 19

impact does symmetry have in the presence of network structure? Consider the
class of polynomial delays Poly- p. If we relax the symmetry assumption, the
upper bound of Theorem 1 does not hold. In fact, the PoA in asymmetric con-
gestion games defined over parallel-link networks is as large as in asymmetric
congestion games defined over general networks [16]. What happens if we instead
stay in the realm of symmetric network congestion games, with no assumption
on the network structure? In the full version of this paper [17], we provide a
construction that violates the upper bound of Theorem 1, even if only by one.
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