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Preface

This volume contains all regular papers and abstracts presented at the 18th Conference
on Web and Internet Economics (WINE 2022) held during December 12–15, 2022, in
Troy, NY, USA, at Rensselaer Polytechnic Institute.

Over the last 18 years, the WINE conference series has become a leading inter-
disciplinary forum for the exchange of ideas and scientific progress across continents
on incentives and computation arising in diverse areas, such as theoretical computer
science, artificial intelligence, economics, operations research, and applied mathe-
matics. WINE 2022 built on the success of previous editions of WINE (named the
Workshop on Internet and Network Economics until 2013) which were held annually
from 2005 to 2021.

We continued the successful initiative introduced in 2021 of having a Senior
Program Committee, this year composed of 30 researchers from the field. The
Program Committee had 63 researchers. The committees reviewed 126 submissions
and decided to accept 38 papers. Each paper had at least three single blind reviews,
with additional reviews solicited as needed. We are very grateful to all members of the
Senior Program Committee and the Program Committee for their insightful reviews and
discussions. We thank EasyChair for providing a virtual platform to organize the
review process. We also thank Springer for publishing the proceedings and offering
support for the Best Paper and Best Student Paper Awards. The Best Paper award was
given to “Eliminating Waste in Cadaveric Organ Allocation” by Peng Shi and Junxiong
Yin; the Best Student Paper award was given to “Optimal Private Payoff Manipulation
against Commitment in Extensive-form Games” by Yurong Chen, Xiaotie Deng, and
Yuhao Li.

The program included four invited talks by leading researchers in the field: Vincent
Conitzer (Carnegie Mellon University, USA), Robert Kleinberg (Cornell University,
USA), Marzena Rostek (University of Wisconsin-Madison, USA), and David
Simchi-Levi (Massachusetts Institute of Technology, USA).

We also invited Spotlights beyond WINE talks; the nomination and selection
of these talks was decided by Edith Elkind, Michal Feldman, Philipp Strack, and
Gabriel Weintraub.

Our special thanks go to the general chairs David Pennock and Lirong Xia and the
local organization team.

October 2022 Kristoffer Arnsfelt Hansen
Tracy Xiao Liu

Azarakhsh Malekian
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Equilibria in Games



Inefficiency of Pure Nash Equilibria
in Series-Parallel Network Congestion

Games

Bainian Hao(B) and Carla Michini

Department of Industrial and Systems Engineering, University of Wisconsin-Madison,
Madison, WI, USA

{bhao8,michini}@wisc.edu

Abstract. We study the inefficiency of pure Nash equilibria in symmet-
ric unweighted network congestion games defined over series-parallel net-
works. We introduce a quantity y(D) to upper bound the Price of Anar-
chy (PoA) for delay functions in class D. When D is the class of polyno-
mial functions with highest degree p, our upper bound is 2p+1−1, which is
significantly smaller than the worst-case PoA for general networks. Thus,
restricting to symmetric games over series-parallel networks can limit the
inefficiency of pure Nash equilibria. We also construct a family of instances
withpolynomial delay functions that have aPoA inΩ(2p/p)when thenum-
ber of players goes to infinity. Compared with the subclass of extension-
parallel networks, whose worst-case PoA is in Θ (p/ln p), our results show
that the worst-case PoA quickly degrades from sub-linear to exponential
when relaxing the network topology. We also consider an alternative mea-
sure of the social cost of a strategy profile as the maximum players’ cost. We
introduce a parameter z(D) andwe show that thePoA is atmost y(D)z(D),
which for polynomial delays of maximum degree p is at most 22p+1 − 2p.
Compared to the worst-case PoA in general symmetric congestion games,
which is in pΘ(p), our results shows a significant improvement in efficiency.
We finally prove that our previous lower bound in Ω(2p/p) is still valid for
this measure of social cost. This is in stark contrast with the PoA in the
subclass of extension-parallel networks, where each pure Nash equilibrium
is a social optimum.

Keywords: Congestion games · Series-parallel networks · Price of
anarchy

1 Introduction

In a non-cooperative game, rational players act selfishly to maximize their utility.
The players influence each other’s behaviour, since the quality of each player’s
strategy depends on the other players’ actions. The notion of Nash equilibrium,
where no player can improve her cost by unilaterally changing strategy, is the
best-known solution concept for predicting a stable outcome of a game. However,
since the players act selfishly and independently in a non-cooperative fashion, a
Nash equilibrium might be far from minimizing the social cost. The inefficiency

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-22832-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22832-2_1&domain=pdf
http://orcid.org/0000-0002-3356-6444
http://orcid.org/0000-0002-4717-816X
https://doi.org/10.1007/978-3-031-22832-2_1


4 B. Hao and C. Michini

of a Nash equilibrium can be measured by comparing its social cost against the
minimum social cost that could be achieved. Precisely, the Price of Anarchy
(PoA), introduced by Koutsoupias and Papadimitriou [21], is the largest ratio
between the cost of a Nash equilibrium and the minimum social cost.

In this paper, we study network congestion games, where each player aims
at selecting a shortest path from an origin to a destination, but the cost of
each edge is non-decreasing with respect to the total number of players using
it. These games are commonly used to model problems in large-scale networks
such as routing in communication networks and traffic planning in road networks
[19,25] and represent a simple, yet powerful paradigm for selfish resource sharing.

We focus on the inefficiency of pure Nash equilibria. Unlike (mixed) Nash
equilibria, where each player selects a probability distribution on her strategy
set, in a pure Nash equilibrium (PNE) each player selects exactly one strategy
from her strategy set. Pure Nash equilibria are not guaranteed to exist in general,
but congestion games always admit one [26]. We consider two measures of social
cost: the total cost, which is the sum of all players’ costs, and the maximum cost,
which is the maximum cost of a player in a strategy profile.

Several variants of network congestion games have been studied in the litera-
ture, which depend on the combination of a number of parameters. While some
parameters seem to only marginally affect the PoA, the impact that graph struc-
ture has on the PoA is still not completely understood. Aland et al. [1] leave as an
open direction the problem of characterizing “what structures provide immunity
against a high PoA and what structures cause it”.

The approaches that have been proposed for general network congestion
games [1–3,7], later unified in the smoothness framework of Roughgarden [29,30],
cannot be used to derive stronger bounds that hold in the presence of special
network structures. The two main graph structures for which stronger bounds
on the PoA has been provided are parallel-links networks [5,6,15,16,23,32] and
extension parallel networks [12]. In this paper, we focus on the larger class of
two-terminal series-parallel networks, and we provide upper and lower bounds
on the worst-case PoA for (atomic, unweighted, symmetric) network congestion
games. These networks can be recognized in linear-time [33] and are relevant
in many applications, such as for problems on electric networks, scheduling and
compiler optimization. Previous works have highlighted some strong properties
of network congestion games defined over series-parallel networks, such as the
existence of strong equilibria [20] and optimal tolls [14,24].

First, we consider the total players’ cost and arbitrary delay functions. Let
D be a class of nonnegative and non-decreasing functions. We introduce a new
parameter y(D) defined as

y(D) = sup
d∈D, x∈N+

(x + 1)d(x + 1) − xd(x)
d(x)

, (1)

which intuitively can be used to upper bound by what percentage the cost of an
edge increases when one more player uses the edge. Note that y(D) ≥ 1 because
d(x) = (x + 1)d(x) − xd(x) ≤ (x + 1)d(x + 1) − xd(x). Our main result shows
that the worst-case PoA in series-parallel networks is at most y(D).
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Theorem 1. In a symmetric (unweighted) network congestion game on a series-
parallel (s, t)-network with delays functions in class D, the PoA w.r.t. the total
players’ cost is at most y(D).

The above result has interesting implications when D is the class of polynomial
functions with nonnegative coefficients and highest degree p. We show that in
this case y(D) is at most 2p+1 − 1. Our result significantly improves over the
worst-case PoA of unweighted congestion games, that is in Θ(p/ ln p)p+1 [1].
We point out that this worst-case PoA is also attained by unweighted network
congestion games [1], however the construction used in [1] requires asymmetry.
In the full version of this paper [17] we consider symmetric congestion games
on general networks and we provide a family of instances violating the upper
bound of Theorem 1. Moreover, we derive a lower bound on the worst-case PoA
in symmetric network congestion games defined over series-parallel networks.

Theorem 2. The worst-case PoA w.r.t. the total players’ cost of a symmetric
(unweighted) network congestion game on a series-parallel (s, t)-network, where
the delay functions are polynomials with non-negative coefficients and highest
degree p, is at least

1
1 + l2 2p

√
r − rl − 2p

√
r + r

, (2)

where r =
(

2
2p+1−1

) 2p
2p−1

and l = 1
2r1− 1

2p .

We finally prove that our lower bound is in Ω
(

2p

p

)
, thus also in Ω(2cp) for each

c ∈ (0, 1), which almost asymptotically matches the upper bound of 2p+1 − 1.
Since the worst-case PoA in extension-parallel networks (a subclass of series-
parallel networks) is in Θ(p/ ln p) [12,13], our result shows that the PoA dra-
matically increases when relaxing the network topology from extension-parallel
to series-parallel.

Next, we consider measuring the social cost of a strategy profile as the maxi-
mum players’ cost. This variant of the social cost expresses the goal that a central
authority might have to maximize fairness by minimizing the cost of the most
disadvantaged player. We first consider arbitrary delay functions. To bound the
PoA in this setting, introduce a new parameter z(D) defined as

z(D) = sup
d∈D, x∈N+

d(x + 1)
d(x)

. (3)

We first prove that the worst-case PoA in series-parallel networks is at most
y(D)z(D).

Theorem 3. In a symmetric (unweighted) network congestion game on a series-
parallel (s, t)-network with delays functions in class D, the PoA w.r.t. the max-
imum players’ cost is at most z(D)y(D).

When D is the class of polynomial functions with nonnegative coefficients and
maximum degree p we obtain that z(D) is upper bounded by 2p, thus the PoA is
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at most 22p+1 − 2p. Since the worst-case PoA for general symmetric congestion
games and polynomial delays is in pΘ(p) [7], our result shows a significant drop
of the PoA in series-parallel networks.

Finally we show that the lower bound on the PoA w.r.t. the total players’
cost also yields a valid lower bound when considering the maximum players’
cost. We say that a class of networks N is closed under series compositions if
the series composition of two networks G1 and G2 in N still belongs to N .

Theorem 4. Let N be a class of networks closed under series compositions and
let G be a network in N . Then the worst-case PoA with respect to the maximum
social cost of a symmetric (unweighted) network congestion game defined over
G is at least the worst-case PoA with respect to the total social cost.

For series-parallel networks and polynomial delays with nonnegative coefficients
and maximum degree p Theorem 4 implies that the worst-case PoA is in Ω(2p/p).
This is in stark contrast with the result of [10], establishing that the PoA in
extension-parallel networks is 1, i.e., any PNE is also a social optimum w.r.t. the
maximum players’ cost. Thus, relaxing the network topology from extension-
parallel to series-parallel dramatically increases the inefficiency of pure Nash
equilibria. The reason for this is that the key graph operations that we need
to allow are the series compositions, which are forbidden for extension-parallel
networks.

1.1 Further Related Work

Total Cost. There is a rich literature concerning the PoA in network congestion
games where the social cost is measured based on the players’ total cost. Many
variants of network congestion games arise from considering different parame-
ters and their combinations. As we shall see, the impact that graph structure
has on the inefficiency of pure Nash equilibria varies significantly based on the
combination of these parameters.

The first distinction is between atomic and non-atomic congestion games. In
non-atomic congestion games, the number of players is infinite and each player
controls an infinitesimal amount of flow. For these games, Roughgarden [27]
proved that the PoA is independent of the network structure and equal to ρ(D),
where ρ depends on the class of delay functions D [31].

For atomic games, where each player controls a non-negligible amount of
flow, network structure affects the PoA differently, depending on whether all the
players have the same effect on congestion. In weighted congestion games, where
the effect of each player on congestion is proportional to the player’s weight, the
worst-case PoA is already achieved by very simple networks consisting of only
parallel links [4] when D is the class of polynomial functions with nonnegative
coefficients and highest degree p. In contrast, in unweighted congestion games the
effect of network structure seems significant. For asymmetric congestion games
defined over general networks and in the case where D is the class of polyno-
mial functions with nonnegative coefficients, Christodoulou and Koutsoupias [7]
showed that the PoA is in pΘ(p) (see also [2,3]). Aland et al. [1] later obtained
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exact values for the worst-case PoA. These exact values admit a lower bound
of �φp�p+1 and an upper bound of φp+1

p , where φp ∈ Θ(p/ ln p) is the unique
nonnegative real solution to (x + 1)p = xp+1. For symmetric congestion games
the PoA is again pΘ(p) [2,3,7]. The worst case PoA drops significantly in the
presence of special structure. Lücking et al. [22,23] studied symmetric conges-
tion games on parallel links and proved that the PoA is 4/3 for linear functions.
Later Fotakis [12] extended this result by proving an upper bound of ρ(D) for
the larger class of extension parallel networks with delays in class D. Moreover,
this upper bound is tight [11,13]. It is known that, for the class of polynomial
delays with nonnegative coefficients and highest degree p, ρ(D) ∈ Θ (p/ln p).
This indicates that there is a huge gap between the worst-case PoA in general
networks and in extension-parallel networks.

The PoA in symmetric series-parallel network congestion games has been
recently investigated only for the specific case of affine delay functions [18], and
it has been shown that the worst-case PoA is between 27/19 and 2 [18], which is
strictly worse than the PoA of 4/3 in extension-parallel networks [12], and strictly
better than the PoA of 5/2 in general networks [8]. One key step to prove the
upper bound in [18] consists in using the following inequality introduced in [12]

cost(f)
ρ(D)

≤ cost(o) + Δ(f, o), (4)

where cost(f) and cost(o) denote the total cost of a PNE flow f and of a social
optimum flow o, respectively, and Δ(f, o), is a quantity that depends on the
difference o− f . For series-parallel networks with affine delays, Hao and Michini
[18] prove that Δ(f, o) ≤ 1/4 cost(f). This approach cannot be further extended
to polynomial delays of maximum degree p, because we would obtain Δ(f, o) ≤
α(p) cost(f), where α(p) is a function of p that exceeds 1/ρ(D) for large p. Thus,
an extension of the approach in [18] would provide an inconsequential bound.

Maximum Cost. The PoA with respect to the maximum players’ cost has
received less attention. In the non-atomic setting, Roughgarden [28] showed that
the PoA is n − 1, where n is the number of nodes in the network.

In the atomic setting, Koutsoupias and Papadimitriou [21] first studied
weighted congestion games with linear delay functions on m parallel links. For
these games, they provided a lower bound of the PoA of Ω

(
log m

log log m

)
and an

upper bound of O(
√

m logm). Later Czumaj and Vöcking [9] established a tight
bound of Θ

(
log m

log log log m

)
. Christodoulou and Koutsoupias [7] investigated gen-

eral unweighted congestion games. In the symmetric case, they showed that the
PoA is 5/2 for affine delays and pΘ(p) for polynomial delays of maximum degree
p. In the asymmetric case, for games with N players, they proved that the PoA
is in Θ(

√
N) for affine delays and in Ω(N

p
p+1 ) and O(N) for polynomial delays

of maximum degree p.
Epstein et al. [10] characterized efficient network topologies, i.e., graph

topologies such that, for any class of non-decreasing delay functions, every PNE
is also a social optimum. For unweighted symmetric network congestion games
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they established that extension-parallel networks are efficient, implying that on
these networks the PoA is 1. They also proved that this result is tight, i.e., it
does not hold when further relaxing the network topology.

2 Preliminaries

Notation. Let G = (V,E) be an (s, t)-network, i.e., a network with source s
and sink t. Directed paths will be simply referred to as paths. A path from node
u to node v is called a (u, v)-path. We will only consider simple paths, i.e., paths
that do not traverse any node multiple times. Paths and cycles of G are regarded
as sequences of edges, thus we may for example write e ∈ p for a path p. An
(s, t)-flow is an assignment of values to the edges of G such that, at each node u
other than s and t, the sum of the values of the edges entering u equals the sum
of the values of the edges leaving u. The value of the (s, t)-flow is the sum of the
values of the edges entering t. We say a path p is contained in an (s, t)-flow f if
for all e ∈ p, we have fe > 0. For n ∈ N, we denote by [n] the set {1, . . . , n}.

Network Congestion Games. Let G = (V,E) be an (s, t)-network. We con-
sider a network congestion game on G with N players. The strategy set Xi of
player i is the set P of (s, t)-paths in G. Since all the players have the same
origin and destination, their strategy sets all coincide with P and the game is
called symmetric. A state of the game is a strategy profile P = (p1, . . . , pN )
where pi ∈ P is the (s, t)-path chosen by player i, for i ∈ [N ]. The set of states
of the game is denoted by X = X1 ×· · ·×XN . Each state P = (p1, . . . , pN ) ∈ X
induces an (s, t)-flow f = f(P ) = χ1 + · · · + χN of value N , where χi is the
incidence vector of pi for all i ∈ [N ]. We say that the (s, t)-paths p1, . . . , pN are
a decomposition of the (s, t)-flow f if they induce flow f . Note that an (s, t)-flow
f of value N can correspond to several states, since there might be multiple
decompositions of f into N (s, t)-paths.

For each e ∈ E we have a nondecreasing delay function de : [N ] → R≥0.
Each player using e incurs a cost equal to de(fe), i.e., the cost of e depends
on the total number of players that use e in f . Since de is a nondecreasing
function, de(j+1) ≥ de(j) for j ∈ [N −1], which models the effect of congestion.
We denote the cost of a path p in G with respect to a flow f by costf (p) =∑

e∈p de(fe). Thus, the cost incurred by player i in state P is costf (pi). We also
define cost+f (p) =

∑
e∈p de(fe +1). Finally, the cost of flow f in G is denoted by

cost(f) =
∑

e∈E fede(fe). The total cost of a state P , denoted by tot(P ), is the
sum of all players’ costs. Clearly tot(P ) coincides with the cost of the flow f(P ):

tot(P ) =
∑

i∈[N ]

costf(P )(pi) = cost(f(P )).

We also define the maximum cost of P, denoted by max(P ) as the maximum
cost of a player in P :

max(P ) = max
i∈[N ]

costf(P )(pi).
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Pure Nash Equilibria and Social Optima. A pure Nash equilibrium (PNE)
is a state (p1, . . . , pi, . . . , pN ) inducing an (s, t)-flow f such that, for each i ∈ [N ]
we have

costf (pi) ≤ costf̃ (p̃
i) ∀(p1, . . . , p̃i, . . . , pN ) ∈ X inducing (s, t) -flow f̃ .

A PNE represents a stable outcome of the game, since no player i ∈ [N ] can
improve her cost if she unilaterally changes strategy by selecting a different (s, t)-
path p̃i. With a slight abuse of terminology, we say that an (s, t)-flow f is a PNE
if there exists a PNE P = (p1, . . . , pN ) ∈ X such that f = f(P ), i.e., f is the flow
induced by P . On the other hand, we are also interested in a social optimum.
We consider two definitions of social optimum, which depend on whether we
measure the cost of a state P according to tot(P ) or max(P ). In the first case,
a social optimum is a state that minimizes tot(P ) = cost(f(P )) over all the
states P ∈ X. With a slight abuse of terminology, we say that an (s, t)-flow o
is a social optimum if o minimizes cost(g) over all integral (s, t)-flows g of value
N . In the second case a social optimum is a state that minimizes max(P ) over
all the states P ∈ X. In other words, the social optimum is a state where the
maximum player’s cost is minimized.

Price of Anarchy. To measure the inefficiency of pure Nash equilibria, we use
the definition of (pure) Price of Anarchy. The (pure) Price of Anarchy (PoA) is
the maximum ratio between the cost of a PNE and the cost of a social optimum.
In other words, to compute the PoA we consider the “worst” PNE, i.e., a PNE
whose cost is as large as possible. For simplicity, from now on we will refer to
the pure PoA as PoA.

We consider two definitions of PoA, which depend on whether we measure
the cost of a state P according to tot(P ) or max(P ). In the first case, the PoA is
the maximum ratio cost(f)

cost(o) such that o is a social optimum flow and f is a PNE

flow. In the second case, the PoA is the maximum ratio max(Pf )
max(Po)

such that Po is
a social optimum state and Pf is a PNE.

Series-Parallel Networks. An (s, t)-network is series-parallel if it consists of
either a single edge (s, t) or of two series-parallel networks composed either in
series or in parallel. The parallel composition of two networks G1 and G2 is an
(s, t)-network obtained from the union of G1 and G2 by identifying the source
of G1 and the source of G2 into s, and by identifying the sink of G1 and the sink
of G2 into t. The series composition of G1 and G2, denoted by G1 ◦ G2, is an
(s, t)-network obtained from the union of G1 and G2 by letting s be the source of
G1, t be the sink of G2, and by identifying the sink of G1 with the source of G2.
We remark that series-parallel networks are a superclass of parallel-link networks
and extension-parallel networks, for which the PoA has been previously studied.
An (s, t)-network is extension-parallel if it consists of a single edge (s, t) or of
an extension-parallel network and a single edge composed either in series or in
parallel.
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3 Total Cost

3.1 Upper Bound on the PoA

In this section, we prove the upper bound on the PoA stated in Theorem 1. First,
we need to introduce some necessary notation and properties of series-parallel
networks. In the following, we denote by f and o a PNE and a social optimum,
respectively, of the series-parallel network congestion game. We consider the
graph G(o−f) introduced in [12]. Precisely, the node set of G(o−f) is V , and the
edge set is E(o − f) = {(u, v) : (e = (u, v) ∈ E and oe − fe > 0) or (e = (v, u) ∈
E and oe − fe < 0)}. G(o − f) is a collection of simple cycles {C1, . . . , Ch} such
that each Ci carries si units of flow. For each i ∈ [h], define C+

i = {e = (u, v) ∈
E : (u, v) ∈ Ci, oe > fe} and C−

i = {e = (u, v) ∈ E : (v, u) ∈ Ci, oe < fe}.
Recall the parameter y(D) we have defined in Sect. 1. In the next four lemmas,

we will assume that there exists an index i ∈ [h] such that C+
i is an (s, t)-

path, and we will prove that the PoA is at most y(D). Later, we will relax this
assumption. Observe that, by definition, C+

i is contained in o. In the next lemma,
we prove that the cost of C+

i with respect to o is at least the average players’
cost in the PNE f , that is, cost(f)/N .

Lemma 1. If C+
i , i ∈ [h], is an (s, t)-path, then costo(C+

i ) ≥ cost(f)/N .

Proof. The cost of C+
i with respect to flow o satisfies:

costo(C+
i ) =

∑

e∈C+
i

de(oe) ≥
∑

e∈C+
i

de(fe + 1) ≥ cost(f)
N

.

The first inequality holds since for every e ∈ C+
i , we have oe ≥ fe + 1. Next

we show that the second inequality holds. Denote by P ∗ the set of N (s, t)-
paths in the PNE inducing f . Clearly max {costf (π) : π ∈ P ∗} ≥ cost(f)

N . By
contradiction, suppose that

∑
e∈C+

i
de(fe + 1) < cost(f)

N . We would obtain that
max {costf (π) : π ∈ P ∗} > cost+f (C

+
i ), thus one player would prefer to change

her strategy into C+
i . This contradicts the fact that f is a PNE. �

In the next lemma, we contemplate adding one unit of flow on an arbitrary
(s, t)-path p contained in o, and we lower bound the corresponding increase of
the total cost. This will be crucial to derive a lower bound on costo(p) that will
be used to relate cost(f) and cost(o).

Lemma 2. Suppose that there exists an index i ∈ [h], such that C+
i is an (s, t)-

path. Then every (s, t)-path p contained in o satisfies

∑
e∈p

((oe + 1)de(oe + 1) − oede(oe)) ≥ cost(f)
N

.
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Proof. We will prove this by contradiction. Assume that there is an (s, t)-path
p contained in o such that

∑
e∈p

(oe + 1)de(oe + 1) −
∑
e∈p

oede(oe) <
cost(f)

N
. (5)

We define a new state o′ obtained from o by deviating one unit of flow from
C+

i to p. Let S = C+
i ∩ p. First, the cost difference between o′ and o is

cost(o′) − cost(o) =
∑

e∈C+
i \S

((oe − 1)de(oe − 1) − oede(oe))

+
∑

e∈p\S

((oe + 1)de(oe + 1) − oede(oe)).

Observe that, since the delay functions are non-decreasing, we have de(oe −1) ≤
de(oe) for all e ∈ C+

i , thus

cost(o′) − cost(o) ≤
∑

e∈C+
i \S

((oe − 1)de(oe) − oede(oe))

+
∑

e∈p\S

((oe + 1)de(oe + 1) − oede(oe))

= −
∑

e∈C+
i \S

de(oe) +
∑

e∈p\S

((oe + 1)de(oe + 1) − oede(oe)).

Moreover, we have de(oe + 1) ≥ de(oe) for all e ∈ S, thus

0 ≤
∑
e∈S

(oe + 1)(de(oe + 1) − de(oe))

= −
∑
e∈S

de(oe) +
∑
e∈S

((oe + 1)de(oe + 1) − oede(oe)).

By summing up these two inequalities we get

cost(o′) − cost(o) ≤ −
∑

e∈C+
i

de(oe) +
∑
e∈p

((oe + 1)de(oe + 1) − oede(oe)).

By Lemma 1, since C+
i is an (s, t)-path, we have costo(C+

i ) =
∑

e∈C+
i

de(oe) ≥
cost(f)

N . Thus, by (5) we obtain cost(o′)− cost(o) < 0, which contradicts the fact
that o is a social optimum. �

By using Lemma 2, we can derive a lower bound on costo(p) similar to the
lower bound on costo(C+

i ) stated in Lemma 1, but with an extra factor of y(D).

Lemma 3. Suppose there exists an index i ∈ [h] such that C+
i is an (s, t)-path,

and let P be any decomposition of o. Then for every p ∈ P ,

y(D) costo(p) ≥ cost(f)
N

.
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Proof. Since P is a decomposition of o, for each p ∈ P we have oe > 0 for all
e ∈ p. Then we have

y(D) costo(p) =
∑
e∈p

y(D)de(oe) ≥
∑
e∈p

((oe + 1)de(oe + 1) − oede(oe)) ≥ cost(f)
N

,

where the first inequality follows the definition of y(D) stated in Eq. (1) and the
second inequality follows from Lemma 2. �

Finally, under the assumption that there exists a path C+
i from s to t, we

are ready to prove that the PoA is at most y(D).

Lemma 4. If there exists an index i ∈ [h] such that C+
i is an (s, t)-path, then

cost(f) ≤ y(D) cost(o).

Proof. By Lemma 3 we know that given an arbitrary decomposition P of the
social optimal flow o, for all p ∈ P , we have y(D) costo(p) ≥ cost(f)

N . Then we
can conclude that:

y(D) cost(o) =
∑
p∈P

y(D) costo(p) ≥ |P |cost(f)
N

= cost(f),

where the last equality follows from the fact that |P | = N . This implies that
cost(f) ≤ y(D) cost(o). �

We now relax the assumption that there exists a path C+
i from s to t. In

order to do this, we will exploit the structure of series-parallel graphs. If G is
series-parallel, it is known that for each i ∈ [h] C+

i and C−
i are two internally

disjoint paths in G from a node ui to a node vi [12]. For each i ∈ [h], we identify
the pair of nodes ui, vi and we define

Vi = {w ∈ V : there is a (ui, vi) -path containing w},

Ei = {e ∈ E : there is a (ui, vi) -path containing e},

and we let L = {E1, . . . , Eh}.

Lemma 5. If G is series-parallel, then L = {E1, . . . , Eh} is a laminar family.

Proof. We prove this lemma by showing that if Ei ∩ Ej �= ∅ for some i and j in
[h], then Ei ⊆ Ej or Ej ⊆ Ei. We proceed by induction on |E|.

The base case as |E| = 2. If the two edges of G are composed in series, then
there are no cycles. If they are composed in parallel, then there is only one cycle,
i.e., i = j, and Ei = Ej = E. This implies that the lemma holds for the base
case. Now we assume that when |E| ≤ t, the lemma holds. When |E| = t + 1,
since G is series-parallel, it can be decomposed either in series or in parallel.

Suppose that G can be decomposed in series into G1 and G2. We first show
that Ei and Ej are both contained either in the edge set of G1 or in the edge
set G2. In fact, Ei cannot have edges both in G1 and in G2, otherwise C+

i and
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C−
i would not be internally disjoint paths. Thus Ei is contained either in the

edge set of G1 or in the edge set G2. Similarly, Ej is contained either in the edge
set of G1 or in the edge set G2. Moreover, Ei and Ej cannot belong to different
components, otherwise we would have Ei ∩Ej = ∅. Thus, Ei and Ej both belong
to the same component. Assume without loss of generality that this is G1. Since
the number of edges of G1 is at most t, by the inductive hypothesis we obtain
that Ei ⊆ Ej or Ej ⊆ Ei, thus the claim is proven in this case.

Now suppose that G can be decomposed in parallel into G1 and G2. If Ei

and Ej are both contained either in the edge set of G1 or in the edge set of
G2, then by induction the claim holds. If Ei is contained in the edge set of one
component, say G1, and Ej is contained in the edge set of the other component
G2, then Ei ∩ Ej = ∅, a contradiction. Thus at least one among Ei and Ej has
edges both in G1 and in G2. Without loss of generality, suppose Ei does. We
prove that C+

i and C−
i are (internally disjoint) (s, t)-paths. By contradiction,

suppose that C+
i and C−

i are (si, ti)-paths such that si �= s or ti �= t. Note that
si and ti are either both in G1 or both in G2. Suppose w.l.o.g. they are both in
G1. Then each (si, ti)-path cannot contain any edge in G2. Because C+

i and C−
i

are (s, t)-paths, by the definition of Ei, we have Ei = E. Thus we conclude that
Ej ⊆ Ei, which proves the claim in this case. �

By Proposition 1 in [12], if w and w′ are two nodes in Vi such that there exist
two internally disjoint (w,w′)-paths p1 and p2, then every (s, t)-path having an
edge in common with p1 contains both w and w′ and intersects p2 only at w and
w′. This implies that each (s, t)-path going through ui also goes through vi. As a
consequence, for each i ∈ [h] the sub-vectors of f and o that are indexed by the
edges of Ei, denoted by f(Ei) and o(Ei), respectively, both define (ui, vi)-flows
in the subgraph Gi = (Vi, Ei). Define a network congestion game on Gi, where
each edge e ∈ Ei has the same delay de as in G, and the number of players Ni

is equal to the value of flow f(Ei).

Lemma 6. If G is series-parallel and Ei is a maximal set in L, then in the
network congestion game defined on Gi, f(Ei) and o(Ei) are a PNE flow and a
social optimum flow, respectively.

Proof. Let Ni be the flow value of f(Ei). First we show that o(Ei) also has
value Ni. Recall that G(o − f) is a collection of cycles {C1, . . . , Ch} and each
Ci carries si units of flow. By the definition of G(o − f) we can change f into o
as follows: for j ∈ [h], decrease the flow on C−

j by sj and increase the flow on
C+

j by sj . By Lemma 5 L is a laminar family, thus for each j ∈ [h], the paths
C−

j and C+
j are either both in Gi or neither of them in Gi, i.e., either Ej ⊆ Ei,

or Ej ∩ Ei = ∅. Thus, each step does not change the flow value on Gi. We can
conclude that when the procedure ends, the flow value o(Ei) equals the flow
value of f(Ei) = Ni.

Next, we show that f(Ei) is a PNE flow on Gi. By contradiction, suppose
that f(Ei) is not a PNE flow on Gi. This implies that in each decomposition of
f(Ei) into Ni (ui, vi)-paths there is always one player who can decrease her cost
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by deviating her strategy to another (ui, vi)−path in Gi. This implies that in
each decomposition of f into N (s, t)-paths there is always one player that can
unilaterally deviate and decrease her cost. This contradicts to that f is a PNE
flow.

Finally, we show that o(Ei) is a social optimum on Gi. By contradic-
tion, suppose that there is another flow o′(Ei) in Gi of value Ni such that
cost(o′(Ei)) < cost(o(Ei)). Then we can construct a flow o′′ such that o′′

e = oe

for all e ∈ E \ Ei and o′′
e = o′

e for all e ∈ Ei. Then cost(o′′) < cost(o), contra-
dicting the fact that o is the social optimum. �

We now consider the graphs Gi, i ∈ [h], having node set Vi and edge set Ei.

Lemma 7. If G is series-parallel and Ei is a maximal set in L, then

cost(f(Ei)) ≤ y(D) cost(o(Ei)).

Proof. According to Lemma 6, the congestion game with Ni players on the two
terminal-series parallel graph Gi is such that f(Ei) is a PNE and o(Ei) is a
social optimum. Note that ui and vi are, respectively, the source and the sink of
Gi. Since C+

i is a (ui, vi)-path, by Lemma 4 we conclude that the lemma holds.

We are finally ready to prove Theorem 1, i.e., in a symmetric network con-
gestion game defined over a series-parallel network with delay functions in class
D, the PoA is at most y(D).

Proof of Theorem 1. Consider the PNE flow f , the social optimum flow o
and the laminar family L defined previously in this section. We will prove that,
since G is series-parallel, then cost(f) ≤ y(D) cost(o). Let EC1 , . . . , ECl

be the
maximal sets in L and denote by E(L) their union. We rewrite cost(f) as follows.

cost(f) =
∑

e/∈E(L)

fede(fe) +
∑

e∈E(L)

fede(fe).

Note that for each edge e /∈ E(L) we have fe = oe. Moreover, EC1 , . . . , ECl
are

a partition of E(L), since they are maximal members of L that are pairwise
disjoint. Thus we can rewrite the above expression as

cost(f) =
∑

e/∈E(L)

oede(oe) +
l∑

i=1

∑
e∈ECi

fede(fe)

≤ y(D)
∑

e�∈E(L)

oede(oe) + y(D)
l∑

i=1

∑
e∈ECi

oede(oe) = y(D) cost(o),

where the inequality follows from the fact that y(D) ≥ 1 and from Lemma 7. �

Let Poly- p be the class of polynomial delay functions with maximum degree
p, which are of the form

∑p
j=0 ajx

j , with aj ≥ 0 for j = 0, . . . , p.
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Lemma 8. For the class of polynomial delay functions Poly- p it holds that
y(Poly- p) ≤ 2p+1 − 1.

Proof. By using the definition of y(Poly- p) in (1) we have that for any x ∈ N
+

y(Poly- p) = sup
a0,...,ap∈R≥0, x∈N+

(x + 1)
∑p

j=0 aj(x + 1)j − x
∑p

j=0 ajx
j

∑p
j=0 ajxj

= sup
a0,...,ap∈R≥0, x∈N+

∑p
j=0

(
aj

(
(x + 1)j+1 − xj+1

))
∑p

j=0 ajxj
. (6)

We now exploit the fact that given two collections of nonnegative real numbers
b0, . . . , bp and c0, . . . , cp, we have

∑p
j=0 bj∑p
j=0 cj

≤ max
j=0,...,p

bj

cj
.

As a consequence, we can upper bound (6) by

max
j∈{0,...,p},x∈N+

(x + 1)j+1 − xj+1

xj
. (7)

We now upper bound the numerator of the above expression as follows:

(x + 1)j+1 − xj+1 =
j+1∑
k=0

(
j + 1

k

)
xj+1−k − xj+1 ≤

j+1∑
k=1

(
j + 1

k

)
xj ,

where the inequality follows from the fact that j + 1 ≥ 1 and x ∈ N
+. From (7)

we then obtain

y(Poly- p) ≤ max
j∈{0,...,p}

j+1∑
k=1

(
j + 1

k

)
= max

j∈{0,...,p}

j+1∑
k=0

(
j + 1

k

)
− 1 = 2p+1 − 1.

�

By Theorem 1 and Lemma 8 we obtain that the PoA of series-parallel network
congestion games with polynomial delay functions with highest degree is p is at
most 2p+1 − 1.

3.2 Lower Bound

In this section, we illustrate how to construct a family of instances that asymp-
totically achieve the lower bound on the PoA stated in Theorem 2. This construc-
tion is an extension to polynomial delays of the construction proposed in [18]
for affine delays. Let {q1, . . . , qN} be an ordered sequence of positive numbers
such that

∑N
i=1 qi = 1 and qi+1 = 1

2p

∑i
j=1

qj
i for i ∈ [N − 1]. Let m ∈ [N − 1].

We define a new sequence {s1, . . . , sN} by averaging {q1, . . . , qm}. Precisely,
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s1 = · · · = sm =
∑m

1 qi
m and sj = qj for j ≥ m+1. We construct a series-parallel

(s, t)-network G with delays in Poly- p, and an (s, t)-flow f of value N recur-
sively. Let Gm be a single (s, t)-edge with flow fm of value m and delay equal
to s1x

m . For every i ∈ [m,N − 1], we construct Gi+1 and fi+1 using Gi and fi as
follows: we compose in parallel Gi and a new (s, t)-edge with flow value 1 and
delay function si+1x

p and call the new network G̃i and the new (s, t)-flow f̃i.
Next, we compose in series i+ 1 copies of G̃i with flow f̃i to get Gi+1 and fi+1.
We also divide the delay functions by i + 1. Then we set f = fN . Finally we
compose GN in parallel with m new (s, t)-edges e1, . . . , em with delay function
1
N xp to get G. By construction, G is a series-parallel network with polynomial
delay functions having non-negative coefficients and maximum degree p.

To prove Theorem 2, we first show that f is a PNE. Then we define a new
(s, t)-flow h that is obtained from f by deviating k ∈ [m] units of flows from
the most expensive (s, t)-paths in f to the k parallel (s, t)-edges in G with delay
function 1

N xp. The parameters r and l in (2) are defined as r = m
N , l = k

m . The
complete proof of Theorem 2 is given in the full version of this paper [17].

We now argue that the worst case PoA is in Ω(2p/p). By substituting the
expression of l in the denominator of (2), we obtain

1 + l2 2p
√

r − rl − 2p
√

r + r = 1 − 1
4
r2− 1

2p + r − r
1
2p . (8)

Since r, l ∈ [0, 1], we can upper bound the above expression with

1 + r − r
1
2p = 1 +

(
2

2p+1 − 1

) 2p
2p−1

−
(

2
2p+1 − 1

) 1
2p−1

≤ 1 +
(

2
2p+1 − 1

) 2p
2p−1

−
(

1
2p

) 1
2p−1

≤ 1 −
(
1 − 1

2p

)(
1

2p − 1

) 1
2p−1

.

Finally, we have that limp→∞
1−(1− 1

2p )
(

2
2p+1−1

) 1
2p−1

p
2p

= 0, proving that (8) is
in O (p/2p), which implies that when N goes to infinity the PoA is at least in
Ω (2p/p).

4 Maximum Cost

In this section, we measure the social cost of a state P as the maximum players’
cost in P , and we derive an upper bound and a lower bound on the PoA with
respect to this notion of cost. Recall that given any state P , tot(P ) is the total
cost of P and max(P ) is the maximum cost of a player in P .

We first prove the upper bound on the PoA stated in Theorem 3.

Proof of Theorem 3. Let Po be the social optimum with respect to the
total cost, and let Pô be the social optimum with respect to the maximum cost.
Let Pf = {p1f , . . . , pN

f } be an arbitrary PNE. We will show that max(Pf ) ≤
z(D)y(D)max(Pô).
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Because Pf is a PNE and max(Pf ) is the cost of a player, we have max(Pf ) ≤
cost+f (p

i
f ) for any i ∈ [N ]. Moreover, by (3), we have cost+f (p

i
f ) ≤ z(D) costf (pi

f ).
In other words, the most expensive path in Pf has cost no greater than z(D)
times the cost of any other path in Pf . Thus we can conclude that

N · max(Pf ) ≤
N∑

i=1

cost+f (p
i
f ) ≤ z(D)

N∑
i=1

costf (pi
f ) = z(D) tot(f),

i.e., the most expensive path in Pf has cost no greater than z(D) times the
average players’ cost in Pf . Moreover,

z(D) tot(Pf ) ≤ z(D)y(D) tot(Po) (9)
≤ z(D)y(D) tot(Pô) (10)
≤ z(D)y(D)(N · max(Pô)). (11)

Inequality (9) directly follows Theorem 1. Inequality (10) holds since Po is the
social optimum state with respect to the total cost, which implies that tot(Po) ≤
tot(Pô). Inequality (11) holds because max(Pô) is the maximum player’s cost in
Pô. �

We now consider the class Poly- p of polynomial delays with nonnegative
coefficients and maximum degree p, and we prove that z(Poly- p) is at most 2p.

Lemma 9. For the class of polynomial delay functions Poly- p it holds that
z(Poly- p) ≤ 2p.

Proof. By the definition of z(Poly- p) in (3) we have that for any x ∈ N
+

z(Poly- p) = max
x∈N+

∑p
j=0 aj(x + 1)j∑p

j=0 ajxj

Note that given two collections of nonnegative real numbers b0, . . . , bp and
c0, . . . , cp, we have ∑p

j=0 bj∑p
j=0 cj

≤ max
j=0,...,p

bj

cj
.

Thus,

z(Poly- p) = max
x∈N+

∑p
j=0 aj(x + 1)j∑p

j=0 ajxj
≤ max

x∈N+
max

j=0,...,p

aj(x + 1)j

ajxj
≤ 2p.

�

Finally, we prove that, for any class of delay functions, and as long as the
network’s structure is preserved under series compositions, any lower bound on
the PoA with respect to the total social cost is also valid when measuring the
social cost in terms of the maximum players’ cost.
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Proof of Theorem 4. We start with an instance of an atomic, unweighted,
symmetric network congestion game on a (s, t)-network G, where Pf is a PNE,
Po is a social optimum with respect to the total players’ cost, and the PoA is
cost(Pf )/cost(Po). Our goal is to construct a new instance on a network G′, and
to define a PNE Pf ′ and a social optimum Po′ with respect to the maximum
players’ cost, such that

max(Pf ′)
max(Po′)

=
cost(Pf )
cost(Po)

.

We construct G′ as follows. First, let G1, . . . , GN be N duplicates of G and
let G′ be the (s, t)-network obtained by composing in series G1, . . . , GN . We
remark that any graph structure possessed by G is still valid for G′, by our
assumption. Let Pf = {p1f , . . . , pN

f } and Po = {p1o, . . . , p
N
o }. For each i ∈ [N ] let

Pfi
= {p1fi

, . . . , pN
fi

} and Poi
= {p1oi

, . . . , pN
oi

} be the corresponding duplicates of
Pf and Po in Gi, respectively. For each player i ∈ [N ] we define the strategy
pi

f ′ of player i in Pf ′ by having the player choose the path p
j(i)
fj

in Gj , where
j(i) = (i + N − 1) mod N . For example, the strategy of player 2 in Pf ′ is
obtained by composing in series the paths p2f1

, p3f2
, . . . , pN

fN−1
, p1fN

. Analogously,
we define the strategy pi

o′ of player i in Po′ by having the player choose the
path p

j(i)
oj in Gj . It can be checked that Pf ′ = {p1f ′ , . . . , pN

f ′} is a PNE for the
new instance defined on G′ (otherwise we would contradict that f is a PNE in
the original instance). Similarly, it can be checked that Po′ = {p1o′ , . . . , pN

o′ } is
the social optimum in G′ with respect to the total cost (otherwise we would
contradict that o is a social optimum in the original instance).

Observe that, since in our construction we are permuting the players’ strate-
gies, all the players have the same cost, both in Pf ′ and in Po′ . Moreover this
cost is equal to tot(Pf ) in Pf ′ and to tot(Po) in Po′ . Thus, max(Pf ′) = tot(Pf )
and max(Po′) = tot(Po). Now let f̂ and ô be the worst PNE and the social
optimum in the new instance. We conclude that

tot(Pf )
tot(Po)

=
max(Pf ′)
max(Po′)

≤ max(Pf̂ )

max(Pô)
,

which implies the statement of this theorem. �

5 Conclusion

Our contributions fill a gap in the literature on the PoA of atomic, unweighted,
symmetric network congestion games, which tackles either general networks, or
very simple network structures, such as parallel-link networks and extension-
parallel networks.

In this paper we have focused on symmetric games. The worst-case PoA
for unweighted congestion games over general networks [1] is achieved in the
asymmetric case. On the other hand, Bhavalkar et al. proved that PoA of sym-
metric (unweighted) congestion games is as large as in asymmetric ones [4]. What
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impact does symmetry have in the presence of network structure? Consider the
class of polynomial delays Poly- p. If we relax the symmetry assumption, the
upper bound of Theorem 1 does not hold. In fact, the PoA in asymmetric con-
gestion games defined over parallel-link networks is as large as in asymmetric
congestion games defined over general networks [16]. What happens if we instead
stay in the realm of symmetric network congestion games, with no assumption
on the network structure? In the full version of this paper [17], we provide a
construction that violates the upper bound of Theorem 1, even if only by one.
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Abstract. The selfish mining attack, arguably the most famous game-
theoretic attack in blockchain, indicates that the Bitcoin protocol is not
incentive-compatible. Most subsequent works mainly focus on strength-
ening the selfish mining strategy, thus enabling a single strategic agent
more likely to deviate. In sharp contrast, little attention has been paid
to the resistant behavior against the selfish mining attack, let alone fur-
ther equilibrium analysis for miners and mining pools in the blockchain
as a multi-agent system. In this paper, first, we propose a novel strat-
egy called insightful mining to counteract the selfish mining attack. By
infiltrating an undercover miner into the selfish pool, the insightful pool
could acquire the number of its hidden blocks. We prove that, with this
extra insight, the utility of the insightful pool is strictly greater than the
selfish pool’s when they have the same mining power. Then we investi-
gate the mining game where all pools can choose to be honest or take the
insightful mining strategy. We characterize the Nash equilibrium of such
a game and derive three corollaries: (a) each mining game has a pure
Nash equilibrium; (b) there are at most two insightful pools under some
equilibrium no matter how the mining power is distributed; (c) honest
mining is a Nash equilibrium if the largest mining pool has a fraction of
mining power no more than 1/3. Our work explores, for the first time,
the idea of spying in the selfish mining attack, which might shed new
light on researchers in the field.
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1 Introduction

Bitcoin [16], as the pioneering blockchain ecosystem, proposes an electronic pay-
ment system without any trusted party. It creatively uses Proof-of-Work (PoW)
to incentivize all miners to solve a cryptopuzzle (also known as mining). The
winner will gain the record-keeping rights to generate a block and be awarded
the newly minted tokens. As more and more computational power is invested
into mining, it may take sole miner months or even years to find a block [24]. In
order to reduce the uncertainty, a group of miners forms a mining pool to share
their computational resources. Under the leadership of the pool manager, all
miners in a pool solve the same puzzle in parallel and share the block rewards.
In the Bitcoin system, so long as all participants behave honestly, one’s expected
revenue will be proportional to its hashing power.

However, in practice, miners are rational and may act strategically. Thus,
game theory naturally stands out as a tool for analyzing the robustness of the
Bitcoin protocol. The conventional wisdom would expect a proof of the incentive
compatibility of the Bitcoin protocol and subsequently the strategyproofness
against manipulative miners.

Such a hope was broken by the seminal work [6], which proposed the
selfish mining strategy, arguably the most well-known game-theoretic attack
in blockchain. It indicates that the Bitcoin mining protocol is not incentive-
compatible. The key idea behind the attack is to induce honest miners to waste
their mining power. As a result, the selfish pool could obtain more revenue than
its fair share.

Pushing this approach to the extreme, [23] expanded the action space of
selfish mining, modeled it as a Markov Decision Process (MDP), and pioneered
a novel technique to resolve the non-linear objective function of the MDP to
get a more powerful selfish mining strategy, for a revenue arbitrarily close to
the optimum. A series of works have since been initiated to study the mining
strategies of a rational pool under the same assumption that other pools behave
honestly [7,11,14,17,18,21].

In sharp contrast, little attention has been paid to the incentive of other
pools, which plays an important role in studying the strategic interactions among
participants and understanding the stable state of blockchain systems. In this
paper, we propose and study the following vital questions.

1. Can a pool strategically defend against the selfish mining attack?
2. Moreover, what equilibrium will the ecosystem of different types of agents

eventually reach?

1.1 Our Contributions

In this work, we propose a strategy called insightful mining (Fig. 1). Once detect-
ing a selfish pool, an insightful pool that adopts the insightful mining strategy can
infiltrate an undercover miner into it to monitor the number of hidden blocks.1

1 We discuss this action in more detail in Sect. 3.1.
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With this key information, the insightful pool clearly knows the real-time state of
the mining competition and thus responds strategically. From a high-level view,
when observing that the selfish pool is taking the lead, the insightful pool would
behave honestly to end its leading advantage as quickly as possible. On the other
hand, when the insightful pool is taking the lead, it will take action similar to
selfish mining, regarding the selfish pool and the honest pool as “others”. Note
that by infiltrating spies, a strategic player can gain more information (e.g., the
hash values of hidden blocks) than the length of the private branch. With this
information, there are lots of things that a player could do. This paper, how-
ever, focuses on the insightful mining strategy, which only utilizes the number
of hidden blocks.

Although using very little information, the strategy firmly answers our first
research question: A pool can strategically defend against the selfish mining
attack with the insightful mining strategy. Specifically, the system consists of
three types of players: the honest pool, the selfish pool, and the insightful pool.
With different mining strategies, the three players may hold different branches
and have asymmetric information during the mining competition. The honest
pool, following the protocol, has the public information (i.e., the length of its
public branch). The selfish pool keeps a selfish branch and is aware of the length
of the public branch and its selfish branch. Owing to the infiltrated spy, the
insightful pool learns all information (in particular, the length of the honest
branch, the selfish branch, and its insightful branch). We model their interactions
as a two-dimensional Markov reward process with an infinite number of states
(Table 1 and Fig. 2). We prove that when there is a selfish pool and an insightful
pool with the same mining power, the insightful pool will get a strictly greater
expected revenue than the selfish pool (Theorem 1). This demonstrates that the
extra insight significantly reverses the selfish pool’s advantage.

Then we investigate the scene where all n mining pools are strategic. Besides
counteracting the selfish mining attack, insightful mining can be adopted directly
as a mining strategy. Specifically, insightful mining resembles selfish mining if
there is no pool mining selfishly. We study the mining game where each pool
plants spies into all other pools and chooses either to follow the Bitcoin protocol
or to take the insightful mining strategy. Such a mining game can be formulated
as an n-player normal-form game. Note that although there are 2n pure strategy
profiles, the payoff function of each player is explicitly represented (Proposition
1). Our main result is a characterization theorem of the Nash equilibrium in
mining games (Theorem 2). Concretely, Theorem 2 derives three corollaries:
(a) each mining game has a pure Nash equilibrium; (b) there are at most two
insightful pools under some equilibrium no matter how the mining power is
distributed; (c) honest mining is a Nash equilibrium if the largest mining pool
has a fraction of total hashing power no more than 1/3. These corollaries are
surprising. Taking (a) as an example, there is no guarantee of the existence of
pure Nash equilibria in general.

Beyond our theoretical results, we also conduct several simulations to under-
stand insightful mining (Sect. 5). First, we visualize the relative revenue of the
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selfish pool and the insightful pool when they have the same mining power. An
interesting observation is that when their hashing power is larger than 1/3, the
insightful pool can gain most of the revenue. Besides, we explore the performance
of the insightful mining strategy when they have different mining power. Sim-
ulation results provide compelling evidence that the insightful pool could still
gain more revenue even if it holds less mining power than the selfish pool.

In the end, we discuss the role of the undercover miner in the context of
selfish mining and blockchain, which sheds new light on future research directions
(Sect. 6).

1.2 Related Work

The classic selfish mining attack was first proposed and mathematically mod-
eled as a Markov reward process in the seminal paper [6]. Observing that the
classic selfish mining strategy could be suboptimal for a large parameter space,
several works [17,23] further generalized the system as a Markov Decision Pro-
cess (MDP) to find the optimal selfish mining strategy. Aiming to solve the
average-MDP with a non-linear objective function, [23] proposed a binary search
procedure by converting the problem into a series of standard MDPs. A recent
work [28] developed a more efficient method called Probabilistic Termination
Optimization, converting the average-MDP into only one standard MDP.

Studying other agents’ incentives against one selfish miner was more chal-
lenging due to the tremendous state spaces and complicated Markov reward
processes. The work of [15] presented some simulation results on systems involv-
ing multiple selfish miners [6] or involving multiple stubborn miners [17]. On the
learning side, a recent work [12] proposed a novel framework called SquirRL,
which is based on deep reinforcement learning (deep-RL) techniques. Their
experiments suggest that adopting selfish mining might not be the optimal choice
when facing selfish mining. We prove such a result by providing the insight-
ful mining strategy and the dominating theorem (Theorem 1). The strength of
SquirRL is a more general strategy space generated by deep-RL. However, we
highlight that it cannot cover our insightful mining strategy since our greatest
strength comes from our undercover miner’s insights (information), which have
not been discussed in the broad selfish mining context.

To our best knowledge, the most related work that theoretically studied the
equilibria with multiple selfish mining pools is [4]. Due to the analytical chal-
lenges of infinite states in the classic selfish mining strategy, they proposed a
simplified version called semi-selfish mining, where the strategic mining pool
will only keep a private chain of the length of at most two. Such a restric-
tion makes the Markov reward process have finite states (as long as there is
a finite number of semi-selfish miners) and simplifies the equilibrium analysis.
However, our insightful mining strategy works against the classic selfish mining
strategy and may also keep an arbitrary long private chain. While this leads to
a 2-dimensional Markov reward process with an infinite number of states, the
techniques in the mathematical analysis are sufficient for us to prove the desired
dominating theorem (Theorem 1) and equilibrium characterization (Theorem 2).
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2 Preliminaries

2.1 Proof of Work

In the context of blockchain, Proof of Work was first introduced in Bitcoin [16].
As mentioned, the security of Bitcoin heavily relies on the Proof-of-Work
scheme, which has also been widely adopted by other blockchain systems like
Ethereum [2]. The past decade has seen a great amount of research around PoW,
with respect to its block rewards design [3], strategic deviation [13], the difficulty
adjustment algorithm [10,19], energy costs [8], and so on.

Taking Bitcoin as an example, PoW requires a miner to randomly engage
in the hashing function calls to solve a cryptopuzzle. Typically, miners should
search for a nonce value satisfying that

H(previous hash; address; Merkle root; nonce) ≤ D (1)

where H(·) is a commonly known cryptographic hash function (e.g., SHA-256
in Bitcoin); previous hash is the hash value of the previous block; address is the
miner’s address to receive potential rewards; Merkle root is an integrated hash
value of all transactions in the block; and D is the target of the problem and
reflects the difficulty of this puzzle.2 Started from the genesis block, all miners
compete to find a feasible solution, thus generating a new block appended to the
previous one. In return, they will be awarded the newly minted bitcoins for their
efforts in maintaining the blockchain system. The standard Bitcoin protocol
treats the longest chain as the main chain. Once encountering two blocks at
the same block height, miners randomly choose one to follow according to the
uniform tie-breaking rule. Thus, in order to be accepted by more miners, it is
suggested to publish the newly generated block immediately. In this paper, the
miners who stick to the Bitcoin protocol are referred to be honest.

2.2 Mining Pool

With more and more hashing power invested into mining, the chances of finding
a block as a sole miner are quite slim. Nowadays, miners tend to participate in
organizations called mining pools.

Generally, a mining pool comprises a pool manager and several peer miners.
All participants shall cooperate to solve the same puzzle. Specifically, each miner
will receive a task like (1) above from the pool manager and a work unit a work
unit containing a particular range of nonce. Instead of trying all possible nonce
values, the miner only needs to search for the answer from the received work unit.
In this way, all miners in the pool work in parallel. Once any miner finds a valid
solution, this pool succeeds in this mining competition. Then a new task will be
organized and further released to all miners in the pool. Also, participants will
share the mining rewards according to the reward allocation protocol like Pay
2 For security, the difficulty of puzzles will be adjusted automatically to ensure that

the mean interval of block generation is 10 min.
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Per Share (PPS), proportional (PROP), Pay Per Last N Shares (PPLNS) [27],
and so on. In expectation, the miners’ rewards are proportional to their hashing
power. As a result, miners who join the mining pool can significantly reduce
the variance of mining rewards. Currently, most of the blocks in Bitcoin are
generated by mining pools such as AntPool [1], Poolin [20], F2Pool [9].

2.3 Selfish Mining

It has long been believed that the Bitcoin protocol is incentive-compatible. How-
ever, Eyal and Sirer [6] indicate that it is not the case. It describes a well-known
attack called selfish mining. A pool could receive higher rewards than its fair
share via the selfish mining strategy. This attack ingeniously exploits the conflict-
resolution rule of the Bitcoin protocol, in which when encountering a fork, only
one chain of blocks will be considered valid. With the selfish mining strategy, the
attacker deliberately creates a fork and forces honest miners to waste efforts on
a stale branch. Specifically, the selfish pool strategically keeps its newly found
block secret rather than publishing it immediately. Afterward, it continues to
mine on the head of this private branch. When the honest miners generate a
new block, the selfish pool will correspondingly publish one private block at the
same height and thus create a fork. Once the selfish pool’s leads reduce to two,
an honest block will prompt the selfish pool to reveal all its private blocks. As a
well-known conclusion, assuming that the honest miners apply the uniform tie-
breaking rule, if the fraction of the selfish pool’s mining power is greater than
25%, it will always get more benefit than behaving honestly.

3 Insightful Mining Strategy

3.1 Model and Strategy

This paper considers a system of n miners. Each miner i has mi fraction of
total hashing power, such that

∑n
i=1 mi = 1. Let H, S, I denote the set of

honest miners, selfish miners, and insightful miners, respectively. As the honest
miners strictly follow the Bitcoin protocol and do not hide any block information
from each other, they are regarded as a whole, referred to as the honest pool in
the paper. Similarly, all selfish miners who adopt the selfish mining strategy
combine together to behave as a single agent, which is called the selfish pool.
The remaining miners form the insightful pool and adopt the insightful strategy
stated later. Let α and β denote the fraction of mining power controlled by the
selfish pool and the insightful pool, respectively. We have α =

∑
i∈S mi and

β =
∑

i∈I mi. Then the total power of the honest pool can be represented as
1−α−β. Following the previous work [6,23], in this paper, we also assume that
the time to broadcast a block is negligible and the transaction fee is negligible. In
other words, the pools’ revenue mainly comes from block rewards. In addition,
the block generation is treated as a randomized model, where a new block is
generated in each time slot.
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Now we describe the insightful mining strategy. Before getting into the
details, we state that the insightful pool could learn how many blocks the selfish
pool has been hiding by doing the following. The manager of the insightful pool
shall pretend to join the selfish pool as a spy. As a pool member, it will receive a
mining task from the manager of the selfish pool. The hash value of the previous
block can be parsed from the task. Normally, this hash value corresponds to the
last block of the main chain. Once the selfish pool mines a block,3 its manager
will keep the block private and publish a new task based on it. From the spy’s
perspective, there is no newly published block in the system, but the selfish
manager releases a new task based on an unknown block. Then it is reasonable
to believe that the selfish manager is hiding blocks. Furthermore, the number of
hidden blocks is exactly the number of recently received tasks with unmatched
previous hash.

By working as a spy,4 the insightful pool has a clear understanding of the
system’s situation, i.e., the mining progress of each player. Although all pools
are mining after the main chain, the three players may hold different sub-chain
(also referred to as branch) during the mining competition. Let lh, ls, li denote
the length of honest branch, selfish branch, and insightful branch respectively.
In the process of mining, the honest pool only knows the public information lh.
The selfish pool is aware of both lh and ls, while the insightful pool can observe
all three lengths. Then the three types of players compete to generate blocks
based on their own information. Their competition works in rounds. Each round
begins with a global consensus on the current longest chain. When the selfish
pool and insightful pool reveal all their private blocks, or they have no hidden
blocks while the honest pool finds a block (see Case 1 below), the round ends,
leading to a new global consensus. For the first block in a round, there are three
possible cases.

Case 1: the honest pool generates the first block. With probability 1 − α − β,
the honest pool mines a block and broadcasts it immediately. In this case, the
insightful pool accepts this newly generated block and mines after it. According
to the selfish mining strategy, the selfish pool will do the same. Consequently,
all players reach a consensus in this case and compete for the next block.

Case 2: the selfish pool generates the first block. With probability α, the selfish
pool mines a block. Based on the selfish mining strategy, the selfish pool will
keep it private, aiming to further extend its lead. After observing this situation
through the spy in the selfish pool, the insightful pool behaves honestly until the
selfish pool reveals all its hidden blocks. Recall that when facing two branches of
the same height, the honest pool chooses one of them uniformly. The insightful
pool, however, will deterministically mine on the opposite of the selfish branch.

3 A member of the selfish pool finds an acceptable nonce to the cryptopuzzle and
submits it to the manager.

4 We assume that the mining power of this spy is negligible, as well as its revenue
from the selfish pool.
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Fig. 1. Flow chart of the insightful mining strategy. lh, ls and li are the length of the
honest branch, selfish branch, and insightful branch, respectively.

The key insight behind this strategy is to prompt5 the selfish pool to reveal all
its hidden blocks and end its leading advantage as quickly as possible.

Case 3: the insightful pool generates the first block. With probability β, the
insightful pool mines a block. It hides this block and takes the following actions,
which are similar to selfish mining. The insightful pool keeps a watchful eye on
how many blocks the selfish pool and the honest pool have mined respectively. In
the following competition, when its lead is larger than one (i.e., li−max{lh, ls} >
1), the insightful pool always hides all its mined blocks. Otherwise, it reveals the
private branch all at once. Here, the way of releasing blocks is different from
selfish mining, which reveals blocks one by one in response to honest behavior.

The above three cases complete the description of our insightful mining strat-
egy. We also show the flow chart of the strategy in Fig. 1. We emphasize that even
if there is no selfish pool, the insightful mining could also work as an independent
strategy, where Case 2 never appears.

Remark 1. Note that with different strategies, players in the system have asym-
metric information. Each of them can be characterized by the depth of their
strategic thought, which forms a hierarchy of levels of iterated rationality.

5 The meaning of “prompt” is that by generating blocks on the opposing branch, the
selfish pool will be encouraged to reveal its hidden blocks one by one. Note that
in this process, the selfish pool does not know the insightful pool exists, which is
critical to the strategy design in game theory.
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– Level zero. The honest pool, as the naive level-0 player, truthfully follows the
protocol and has the public information (i.e., lh).

– Level one. The selfish pool, as the level-1 player, acts on the belief that other
players are level-0 players. It adopts the selfish mining strategy, keeps a selfish
branch, and is aware of lh and ls.

– Level two. Due to the infiltrated spy, the insightful pool works as a more
sophisticated level-2 player. It observes that the population consists of both
level-0 and level-1 players, learns all information (i.e., lh, ls, and li), and
adopts the insightful mining strategy.

Next, we will discuss the revenue of the three types of players with different
levels of cognition. The scenario where all players are at the same cognitive level
will be explored in Sect. 4.

3.2 Markov Reward Process

To analyze the relative revenue of different players under the insightful mining
strategy, we use a two-dimensional state s = (x, y) to reflect the system status
and further model the mining events as a Markov Reward Process. The state x
denotes the selfish pool’s lead over the honest pool, i.e., the number of blocks
that the selfish pool has not revealed. Similarly, y is the insightful pool’s lead
over the selfish pool. Thus, we have x, y ∈ N ∪ {0′} (0′ will be explained soon).
Here, zero means the selfish pool (corresponding to x) or the insightful pool
(corresponding to y) has no hidden blocks. Specifically, it contains two different
states, which we use 0 and 0′ to distinguish. Take x as an example. The state
x = 0 indicates that the honest pool and the selfish pool are in agreement about
a public chain. In other words, their branches are exactly the same. The state
x = 0′ means that the selfish pool and others (the honest pool or the insightful
pool) hold a separate branch of the same length, and the selfish pool has revealed
all blocks on its branch. In the state of 0′, the next block will break the tie and
decides the longest chain. For y, the meanings of state 0 and 0′ are similar to
the above, with the insightful pool and others (the selfish pool and the honest
pool) as two players.

Let Pr[s, s̃] denote the probability of changing from state s to state s̃. The
vector r[s, s̃] represents the expected reward obtained from this state transition.
It contains three components corresponding to the revenue of the honest pool,
the selfish pool, and the insightful pool, respectively. With the help of these
notations, Table 1 lists the detailed state transitions and corresponding revenues
in the system. Specifically, the item (1) formalizes Case 1 in Sect. 3.1. Items
(2)-(9) correspond to Case 2, and Case 3 contains items (10)–(24). The detailed
analysis of each transition can be found in [26]. Figure 2 illustrates the overall
state transitions in a more intuitive way. We denote the Markov Reward Process
of Fig. 2 by Markov(α, β).

Recall that a branch will win at the end of one round. It is easy to verify that
in our design, each block of the final winning branch will be awarded to some
player once and only once.
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Table 1. The state transitions and corresponding revenues.

No. State s State s̃ Pr [s, s̃] r [s, s̃] Conditions

1 (0,0) (0,0) 1 − α − β (1, 0, 0)

2 (0,0) (1,0) α (0, 0, 0)

3 (1,0) (0′, 0) 1 − α − β (0, 0, 0)

4 (0′, 0) (0,0) 1 ( 3−3α−β
2 , 1+3α−β

2 , β)

5 (1,0) (1, 0′) β (0, 0, 0)

6 (1, 0′) (0,0) 1 (1 − α − β, 1+3α−β
2 , 1−α+3β

2 )

7 (x, 0) (x + 1, 0) α (0,0,0) ∀x ≥ 1

8 (2,0) (0,0) 1 − α (0,2,0)

9 (x, 0) (x − 1, 0) 1 − α (0,1,0) ∀x ≥ 3

10 (0,0) (0,1) β (0,0,0)

11 (0,1) (1, 0′) α (0,0,0)

12 (0,1) (0, 0′) 1 − α − β (0,0,0)

13 (0, 0′) (0,0) 1 ( 3−2α−3β
2 , α, 1+3β

2 )

14 (0,1) (0,2) β (0,0,0)

15 (0,2) (0,0) 1 − β (0,0,2)

16 (x, y) (x, y + 1) β (0,0,0) ∀x ∈ {0′} ⋃
N, y ≥ 2

17 (0, y) (0, y − 1) 1 − α − β (0,0,1) ∀y ≥ 3

18 (x, y) (x + 1, y − 1) α (0,0,1) ∀x ≥ 0, y ≥ 3

19 (1, y) (0′, y) 1 − α − β (0,0,0) ∀y ≥ 2

20 (2, y) (0, y) 1 − α − β (0,0,0) ∀y ≥ 2

21 (x, y) (x − 1, y) 1 − α − β (0,0,0) ∀3 ≥ 2, y ≥ 2

22 (x, 2) (0,0) α (0,0,2) ∀x ≥ 1

23 (0′, 2) (0,0) 1 − β (0,0,2)

24 (0′, y) (0, y − 1) 1 − β (0,0,1) ∀y ≥ 3

Fig. 2. The Markov Process of the system under the insightful mining strategy.
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3.3 The Dominating Theorem

Let M := {H, IM,SM}. The utility of each i ∈ M is the relative revenue
(denoted by RREVi) defined as follows:

E

[

lim inf
T→∞

∑T
t=1 ri[st, st+1] | s0 = (0, 0), st+1 ∼ Pr[st, st+1]

∑T
t=1

∑
j∈M rj [st, st+1] | s0 = (0, 0), st+1 ∼ Pr[st, st+1]

]

.

Note that the transition probability Pr[st, st+1], ri[st, st+1], and RREVi (∀i ∈
M) should depend on the mining power α and β. Here we simplify the notation
without ambiguity.

Like previous work [12], here we focus on the scenario where the selfish pool
and the insightful pool have the same mining power. The following theorem
asserts that, in this case, the expected revenue of the insightful pool is strictly
greater than the expected revenue of the selfish pool. The scenario with different
pool sizes (i.e., α �= β) will be explored in Sect. 5.

Theorem 1. Let α and β be the fraction of mining power that the selfish
pool and the insightful pool control, respectively. When 0 < α = β < 1

2 ,
RREVSM (α, β) < RREVIM (α, β) holds.

Here, we give the intuition why Theorem 1 holds, and the formal proof can be
found in [26]. First, when the selfish pool takes the lead (Case 2 ), the insightful
pool cooperates with the honest pool as a whole. However, when the insightful
pool is taking the lead (Case 3 ), the selfish pool still competes with the honest
pool (i.e., inducing it to waste the mining power on a stale branch), which causes
their internal friction. The second intuition is that, when facing two branches
with the same length (one is the honest branch and the other is the selfish
branch), the insightful pool can clearly know the selfish pool’s branch and play
against it. Conversely, when confronted with an honest branch and an insightful
branch of the same length, the selfish pool will uniformly choose one of them.
These two reasons enable the insightful pool to get more revenue than the selfish
pool when both have the same mining power.

4 The Mining Game and Equilibria

In this section, we consider the scenario where all n mining pools are strategic
and study its Nash equilibrium. Specifically, during the competitive interaction,
the honest and selfish pool may realize the existence of insightful mining and
learn to do the same, where all players are at the same level of recognition.
It is worth noting that insightful mining is a well-defined strategy and can be
adopted directly. If there is no selfish pool in the system, insightful mining will
look the same as selfish mining. Then we consider the scenario where each pool
can choose to follow the Bitcoin protocol truthfully or take the insightful mining
strategy. We formally define its strategy space in Sect. 4.1, analyze the utility
functions in Sect. 4.2, and characterize the Nash equilibrium in Sect. 4.3.
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4.1 Strategy Space

There are n mining pools, and we denote by [n] := {1, · · · , n}. The fraction of
their hashing power is denoted by {m1, · · · ,mn} and we have

∑n
i=1 mi = 1.

Each pool i will infiltrate undercover miners into all other pools to monitor their
real-time state, namely, whether a certain pool is mining selfishly and, if any,
how many blocks are hidden. As a result, each pool i could adopt the insightful
mining strategy.

In the mining game, each pool has two strategies: refined honest mining and
insightful mining, denoted by RHonest and Insightful respectively. The insightful
mining strategy is exactly the same as we proposed before, while the refined
honest mining is a slightly modified version of the standard mining strategy.
Specifically, refined honest mining requires the pool to mine after the longest
public chain and to publish its newly-generated block immediately. If someone
hides the block, each pool could detect it through the spy therein. Then when
facing two branches of the same length, the pool adopting RHonest shall clearly
follow the honest branch instead of choosing one of them uniformly.

It is important to note that, in this mining game, at most one player is
hiding blocks at any time. This is because once an insightful pool mines the first
block and hides it, each other pool adopting no matter RHonest or Insightful
will play against it until this mining competition ends. This makes the following
analysis of the expected reward function fairly clean and enables us to complete
the equilibrium analysis.

4.2 Expected Reward Functions

This section gives the formula of the expected reward function ERi(x1, · · · , xn)
of each pool i under the pure strategy profile (x1, · · · , xn) ∈ {RHonest,
Insightful}n.

Proposition 1. For an n-player mining game (m1, · · · ,mn), let (x1, · · · , xn)
be a (pure) strategy profile. Let c be a value depending on (m1, · · · ,mn) and
(x1, · · · , xn).6 Let Q ⊆ [n] be the set of pools that adopt Insightful strategy.
Then we have

ERi(x1, · · · , xn) =

⎧
⎨

⎩

c ·
(
f(mi) + mi · ∑

j∈Q 2mj(1 − mj)
)

, i ∈ Q;

c ·
(
mi + mi · ∑

j∈Q 2mj(1 − mj)
)

, i �∈ Q,
(2)

where f(y) := y2 · (2 − 3y)/(1 − 2y).

The proof of Proposition 1 can be found in [26].

6 We note that c will not affect the calculation of a pool’s relative revenue in the
subsequent section.
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4.3 Equilibria Characterization

The following theorem characterizes the pure Nash equilibria of the mining game.
We refer readers to [26] for the proofs.

Theorem 2. For an n-player mining game (m1, · · · ,mn) with m1 ≥ · · · ≥ mn,
there are three types of pure Nash equilibrium (x1, · · · , xn), where

(1) (x1 = · · · xn = RHonest) is a Nash equilibrium if and only if m1 ≤ 1/3;
(2) (x1 = Insightful, x2 = · · · xn = RHonest) is a Nash equilibrium if and only

if m1 ≥ 1/3 and m2 ≤ g(m1);
(3) (x1 = x2 = Insightful, x3 = · · · xn = RHonest) is a Nash equilibrium if

and only if m1 ≥ 1/3 and m2 ≥ g(m1),

where g(y) := −y3 +2y2 + y − 1
2y2 +4y − 3 .

Remark 2 (Interpretation of two thresholds in Theorem 2). The analysis
of Theorem 2 (1) is to consider the case where one player (say player 1) is deciding
to choose RHonest or Insightful while all other players are adopting RHonest.
Note that when such a player is adopting Insightful, it is the only one that may
hide some blocks, and whenever it hides blocks, all other pools will play against
it. This case corresponds to the γ = 0 case of the seminal work [6],7 where
they also got a 1/3 threshold (see Observation 1 in [6]). However, the cases of
Theorem 2 (2) and (3) are much more interesting since there exists more than
one strategic player with complicated (but explicit) utility functions. For the
g(·) function, we note that the threshold g(m1) < 1/3 whenever m1 > 1/3. The
interpretation is from the following observation: When player 1 behaves honestly,
player 2’s relative revenue is exactly proportional to its hashing power (say m2).
But when player 1 adopts Insightful (m1 ≥ 1/3 by Theorem 2 (1)), the relative
revenue of player 2 is lower than m2 (see proof in [26] for the specific revenue
function). Hence, player 2 is more likely to deviate from RHonest if someone else
(i.e., player 1 here) has been behaving strategically. As a result, the threshold
for player 2 to adopt Insightful is also lower than (the original) 1/3, and the
exact bound is g(m1).

Theorem 2 has the following three corollaries.

Corollary 1. Every n-player mining game (m1, · · · ,mn) has a pure Nash equi-
librium.

Corollary 2. For an n-player mining game (m1, · · · ,mn), (RHonest, · · · ,
RHonest) is a Nash equilibrium if m1 ≤ 1/3.

Corollary 3. For every n-player mining game (m1, · · · ,mn), there is an equi-
librium with at most two insightful pools.

7 In [6], γ denotes the ratio of honest miners that choose to mine on the private block
when facing two branches with the same length.
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5 Simulation

This section conducts several simulations to evaluate the effectiveness of the
insightful mining strategy. Three agents are considered: the honest pool, the self-
ish pool, and the insightful pool. Their interactions are simulated as a discrete-
time random walk process. In each step, one of the pools generates a block with
a probability proportional to its hashing power, and others respond according
to their strategies. The simulation ends after 2e9 steps. Then we calculate each
pool’s relative revenue during the process, which is defined as the proportion of
blocks it generates on the main chain to the total number of blocks therein.

Fig. 3. Relative revenue of the selfish pool and the insightful pool with the same
mining power. The selfish pool adopts the selfish mining strategy. (a) The insightful
pool adopts the insightful mining strategy. (b) The insightful pool mines honestly.

Recall that α and β are the fractions of hashing power of the selfish pool
and the insightful pool, respectively. First, we focus on the scenario where the
insightful pool and the selfish pool have the same hashing power, i.e., α = β.
Figure 3(a) visualizes the relative revenue of the insightful pool and the self-
ish pool when their hashing power belongs to (0.25, 0.5). As can be seen, the
insightful pool can always gain more revenue than the selfish pool. It is exactly
consistent with our theoretical result in Theorem 1. Surprisingly, if their hash-
ing power is larger than 1/3 (i.e., α = β > 1/3), the insightful pool can gain
most of the revenue. For a clear comparison, we also show their relative revenue
under the circumstance that the insightful pool mines honestly in Fig. 3(b). As
mentioned in the Introduction, the insightful pool suffers heavy losses in this
case, which grow rapidly with the pool size increasing. Comparing Fig. 3(a) and
3(b) shows that the insightful mining strategy dramatically helps the pool turn
things around when facing selfish mining.

Then we explore the scenario where α > β, to consider whether less hashing
power can also enable the insightful pool to earn more. Here, two definitions of
“more revenue” are studied. One is the aforementioned relative revenue, which
corresponds to the dashed line in Fig. 4. It demonstrates the threshold above
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Fig. 4. Threshold of the insightful pool’s size, above which it could obtain more relative
revenue or unit relative revenue than the selfish pool.

which RREVIM (α, β) > RREVSM (α, β). The other is the unit relative revenue.
The solid line in Fig. 4 represents the corresponding threshold, above which
we have RREVIM (α,β)

β > RREVSM (α,β)
α . This curve is below the former. Both

curves have similar trends, and they are all below the line of β = α. It provides
compelling evidence that with the insightful mining strategy, less computing
power can also yield more revenue.

6 Discussion

In blockchain, the action of planting a spy in the pool has been deeply discussed
in the context of Block Withholding Attack [5,22]. In such an attack, the attacker
infiltrates miners into opponent pools to reduce their revenue. The undercover
miner sends only partial solutions (i.e., proofs of work) to the pool manager to
share rewards. If it luckily finds a full solution which means a valid block, the
undercover miner will discard the full proof of work directly, causing a loss to
the victim pool. Our work explores, for the first time, the idea of spying in the
selfish mining attack. It will shed new light on the researchers in the field.

Infiltrating spies dramatically expands the action spaces that a pool can take
to counteract the selfish mining attack. Besides insightful mining, other strategies
are worth exploring. Here, we roughly describe a potential idea. Recalling that
the spy can actually extract the hash value of the latest hidden block from
the new task issued by the pool manager. With this information, other pools
can mine directly behind the latest block, although its full contents are not
yet known.8 By this strategy, all pools could follow the longest chain, which
makes selfish mining ineffective. In other words, keeping the block secret for the

8 Such an idea was discussed in [25]. In that context, the strategic miner mines on a
newly generated block directly even before it is validated. To avoid potential conflict,
the miner can choose to embed no transaction in the block being mined and just
try to win the potential block rewards. Our discussion mainly focuses on the role of
spies against the selfish mining attack.
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selfish pool is equivalent to revealing it honestly, which extremely benefits the
blockchain system. Nevertheless, such a strategy might not be the best choice for
strategic mining pools. Further research should be undertaken to investigate the
optimal mining strategy. It is also worthwhile to extend the action of planting
spies to other blockchain scenarios.

Back to our work, insightful mining tells us that insight brings more revenue
to a pool. It would be interesting to study the interactions between the insightful
mining strategy and other strategies or protocols.
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Abstract. In this work, we study a scenario where a publisher seeks
to maximize its total revenue across two sales channels: guaranteed con-
tracts that promise to deliver a certain number of impressions to the
advertisers, and spot demands through an Ad Exchange. On the one
hand, if a guaranteed contract is not fully delivered, it incurs a penalty
for the publisher. On the other hand, the publisher might be able to
sell an impression at a high price in the Ad Exchange. How does a
publisher maximize its total revenue as a sum of the revenue from the
Ad Exchange and the loss from the under-delivery penalty? We study
this problem parameterized by supply factor f : a notion we introduce
that, intuitively, captures the number of times a publisher can satisfy
all its guaranteed contracts given its inventory supply. In this work we
present a fast simple deterministic algorithm with the optimal competi-
tive ratio. The algorithm and the optimal competitive ratio are a function
of the supply factor, penalty, and the distribution of the bids in the Ad
Exchange.

Beyond the yield optimization problem, classic online allocation prob-
lems such as online bipartite matching of Karp-Vazirani-Vazirani [25] and
its vertex-weighted variant of Aggarwal et al. [2] can be studied in the
presence of the additional supply guaranteed by the supply factor. We
show that a supply factor of f improves the approximation factors from
1− 1/e to f − fe−1/f . Our approximation factor is tight and approaches
1 as f → ∞.

Keywords: Online resource allocation · Online advertising · Ad
exchange

1 Introduction

An overwhelming majority of publishers on the web monetize their service by
displaying ads alongside their content. The revenue stream of such publishers
typically comes from two key channels, often referred to as direct sales and indi-
rect sales. In the direct sales channel the publisher strikes several contracts with
some major advertisers. The price of such contracts are often negotiated and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, pp. 41–59, 2022.
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decided on a per-impression basis before the serving begins. In the indirect sales
channel, the ad is selected by seeking, in real-time, bids in an Ad Exchange
platform (AdEx for short). In this case an auction is conducted to select the
winner and decide how much they pay. A comprehensive yield optimization con-
sists of jointly optimizing the publisher’s revenue across both channels. In fact,
revenue optimization in this context is significantly important since the display
ads industry represents a giant (> $50B) marketplace and is fast growing even
at its current mammoth size.

Basic Setting and Preliminaries. We begin by formally describing our setting.
The joint yield optimization problem can be modeled as an online edge-weighted
and vertex-capacitated bipartite matching problem. There is a set A of offline
vertices that correspond to the advertisers with contracts (direct sales), and
there is an additional special offline vertex ad representing AdEx (indirect sales).
Advertiser a ∈ A has capacity na and we have nad

= ∞. The capacity na

represents the number of impressions demanded1 by contractual advertiser a.
Let N =

∑
a∈A na. There is a penalty c that the publisher pays an advertiser

for every undelivered impression2: i.e., if at the end of the algorithm we assign
ka < na impressions to a ∈ A, the publisher pays c(na − ka) to a (there is no
benefit to the publisher for delivering beyond na impressions). The publisher is
not obligated to deliver any impression to AdEx, and thus doesn’t incur any
penalty from ad.

Arrival Model. Advertisers are represented as offline vertices. Users/queries,
arrive online in an adversarial manner, and they constitute the online vertex
set. When an online vertex (query) arrives, the set of its incident edges to offline
vertices (representing the offline nodes that are eligible to be assigned this query)
becomes known to the algorithm. Every arriving query has an edge to the AdEx
node ad, i.e., every query can be sent to an exchange seeking a bid. All edges
incident on any node a ∈ A have the same weight3 and the edges incident on
the AdEx node ad could have an arbitrary weight depending on the highest bid
from the Exchange. AdEx is modeled by the publicly known distribution D of
highest bids in the exchange: i.e., regardless of the query that arrives, when it
is assigned to ad, the publisher accrues a profit that is equal to a draw from

1 We use the terms demand and capacity interchangeably. Technically, offline nodes do
not have any capacities, they just have demands. However, for a node that demands
na impressions, assigning more than na impressions is always suboptimal, so essen-
tially na can be interpreted as a capacity as well. The AdEx offline node is an
exception where the capacity is infinite, in the sense that it is always profitable to
assign an additional online node to AdEx.

2 We later discuss relaxing the penalty c to depend on the advertiser a.
3 Unweighted edges for contractual advertisers is fine because these contracts are

mostly based on the number of impressions delivered. In a few cases the contracts are
based on the number of clicks or conversions, in which case the edges will be weighted
based on the probability of click or conversion. Contracts based on impressions form
such a large majority, that having unweighted edges, is almost wlog.
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D. The publisher’s basic problem is to decide, on a per-query basis, whether to
assign the query to a contract advertiser (if so, whom) or to AdEx.

Objective. Publisher’s goal is to maximize its overall revenue. Publishers typi-
cally have pre-negotiated prices pa for each contractual advertiser a. The total
revenue of the publisher will be the sum of three parts (i) the revenue from AdEx
(i.e., the sum of edge weights of queries assigned to AdEx), (ii) the revenue from
contracts:

∑
a∈A na · pa, and (iii) the revenue loss due to under-delivery, i.e., the

negative of the penalty paid. Note that (ii) is a constant, and is unaffected by
the allocation algorithm. Thus, while computing competitive ratio, we compute
it w.r.t. the sum of (i) and (iii).

Supply Factor. An important concept that we introduce is what we call a sup-
ply factor of an instance, which captures the (potentially fractional) number
of times that a publisher will be able to satisfy their contractual advertisers’
demands. Formally, let a complete matching be defined as one where all con-
tractual advertisers’ demands na are fully satisfied, i.e., all the offline vertices
are fully saturated. The supply factor of an instance is defined as the largest
positive real number f s.t., there exists an offline solution with f complete
matchings, s.t., these f matchings are vertex disjoint on the online vertices (the
offline vertices are clearly not vertex disjoint across these f matchings; rather,
the number of edges incident on any offline vertex a ∈ A, summed over all these
f matchings, is f · na). If there are many such matchings, we pick one to be
the supply-factor-determining-offline-solution. In this work, we assume that the
number of arriving online queries is exactly fN = f

∑
a∈A na. The algorithm

designer is aware of f , the na’s, and the highest bid distribution from AdEx.
There are several important practical aspects of the yield optimization prob-

lem that previous work do not capture that we aim to address:

1. The first aspect is that publishers typically have more inventory than they
are able to sell via the direct sales channel (contracts), and indeed that is the
main reason that most publishers are selling through the indirect sales chan-
nel of AdEx as well. Most previous works on joint yield optimization either
address the objectives of the two channels separately (bi-criteria objective),
or study them in the absence of supply factor/penalties/AdEx bid distribu-
tion. Studying the yield optimization problem with a single unified objective
(AdEx revenue - penalty) in the presence of supply factor and AdEx bid
distribution surfaces the nature of the optimal tradeoff between the supply
factor and how on-track a contract is towards hitting its goals. Clearly, when
a contract is lagging behind, we should allocate a query to AdEx only when
the AdEx bid is high enough. But how does this “high enough” vary as we
increase/decrease the publisher’s supply, captured by the supply factor f?
This is explicitly answered in our work. Similarly the dependence on the
penalty and AdEx distribution are also explicitly revealed.

2. Even in classic online allocation problems like the online bipartite matching of
Karp et al. [25] and the online vertex-weighted bipartite matching of Aggarwal
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et al. [2], it is interesting to inquire what happens to the competitive ratio
when there is a supply factor f ≥ 1.

3. Prior works mostly studied the problem in a fully stochastic model or a
fully adversarial model. In reality, while user browsing patterns might have
significant variations across days, in response to events, state-of-mind etc.
(and hence an adversarial arrival of queries is reasonable), advertiser bid-
ding/spending patterns are far more predictable because advertisers have
daily and hourly spending budgets. We incorporate this in our model by hav-
ing a distribution D over the highest bids from AdEx, even though query
arrival is adversarial. The inclusion of AdEx bid distribution, not only repre-
sents reality better, but also leads to a crisp algorithm that sheds ample light
on the role of the distribution in the joint yield optimization problem. Fur-
ther modeling bids in AdEx via a known distribution is standard in literature
(e.g. [10,27]).

1.1 Our Results

One of our contributions, as just discussed, is to present an economical model
that crisply captures the reality of display ads monetization. Our main result is
a fast simple deterministic algorithm that obtains the optimal competitive ratio
as na values grow large. The algorithm is as follows: let 0 = r1 < · · · < rd be
the points in the support of the distribution D of highest bid in AdEx (highest
bid is often referred to as reward for short). As a pre-processing step, compute
d thresholds s1 < · · · < sd as a function of f (we define s0 = 0 and sd+1 = 1), c
and the AdEx bid distribution. Let the satisfaction-ratio SR(a) of a contractual
advertiser a be the ratio of the number of impressions delivered to the contract
thus far, to the number of impressions na requested by the contract. For each
arriving query, the algorithm picks the contract with the lowest satisfaction ratio,
call it s. Find u such that s ∈ [su−1, su). Assign the query to AdEx if the highest
bid r in the exchange exceeds rd+1−u. And if not, assign the query to the contract
with the lowest satisfaction ratio. Algorithm 1 summarizes this. We highlight a
few important aspects of this algorithm.

1. Once the pre-processing step is over (which is a one-time computation), the
algorithm is very simple to implement in real time while serving queries, even
in a distributed fashion. Each relevant advertiser a for the current query (i.e.,
each offline node a with a matching edge to the current online node) just
responds with its satisfaction ratio SR(a). From there on, the algorithm sim-
ply computes the smallest satisfaction ratio, does a lookup over the thresholds
that are pre-computed, and decides the allocation based on how big the AdEx
bid is.

2. The algorithm is quite intuitive. As the satisfaction ratio of the most needy
contract gets lower, the AdEx bid has to be correspondingly higher to merit
snatching this impression from the contract. This tradeoff happens to take
such a simple symmetric form, where one looks for the mirror image in �r,
namely rd+1−u, of the index u to which the satisfaction ratio gets mapped
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ALGORITHM 1: Optimal algorithm for general AdEx distribution
Input: AdEx distribution D with support 0 = r1 < ... < rd, penalty c, and
supply factor f .

Preprocessing: Compute thresholds s1, ..., sd (we discuss how in Optimization
Problem 1).

for each query arriving online do
Let r be the highest AdEx bid for this query.
Let a be the advertiser, with an edge to this query, and with the lowest
satisfaction ratio SR(a).

if SR(a) = 1 then
Assign the impression to AdEx.

end
else

Find u such that SR(a) ∈ [su−1, su).
if r ≤ rd+1−u then

Assign the impression to advertiser a.
end
else

Assign the impression to AdEx.
end

end
end

is quite surprising. Importantly, the supply factor and penalty are used only
in the pre-processing step to compute the thresholds, and don’t appear in
serving time at all.

3. The algorithm need not fully know the highest bid r from AdEx. It just needs
to be able to compare the highest bid against a reserve price of rd+1−u. Fur-
ther, extending the algorithm to deal with multiple Ad Exchanges is simple:
broadcast the same reserve to all exchanges, and pick the highest bidding
exchange that clears the reserve (we just need to know which exchange is the
highest bidder, and whether they clear the reserve, not the exact value of the
bid). If no exchange clears the reserve, allocate to the advertiser a with the
lowest SR(a).

4. While the algorithm is intuitive in hindsight, it is far from obvious that it
obtains the optimal competitive ratio.

As mentioned earlier, apart from analyzing the joint yield optimization prob-
lem, we also show the benefits of surplus supply in classic online algorithmic
problems. For the seminal online bipartite matching problem of [25], we can
show that the same RANKING algorithm of [25] with a supply factor of f yields
a tight competitive ratio of f − fe−1/f , which increases with f and approaches
1 as f → ∞. Likewise for the vertex-weighted generalization of this problem
studied by [2], the same generalized vertex-weighted RANKING algorithm of [2]
(a.k.a Perturbed Greedy) yields a competitive ratio of f − fe−1/f .



46 M. Abolhassani et al.

Overview of Analysis Techniques. We use a max-min approach to analyze the
performance of our algorithm. Given the thresholds s1 < · · · < sd, our algorithm
is completely defined. Therefore the adversary can compute the instance that
minimizes the optimal objective of our algorithm given the thresholds, and the
algorithm can optimize the thresholds s1 < . . . sd knowing the best response of
the adversary. The minimization problem of the adversary can be captured by a
succinct LP, and we reason about the structure of the optimal solution to this LP.
This sets up the maximization problem of the algorithm, which turns out to be a
non-linear, non-convex optimization problem. Nevertheless, we develop a simple
poly-time dynamic programming algorithm that obtains the optimal solution
(optimal thresholds s1, . . . , sd) up to a small additive error. For tightness, we
construct an example which is a modified version of the “upper triangular graph”
of Karp et al. [25], and show that no algorithm can obtain an objective value
larger than the objective value achieved as the optimal solution to the max-
min problem described above. This establishes that the class of threshold-based
algorithms is optimal. To act as a warm up to ease into the general distribution
section, we begin with the special case of distributons with support size two. In
this case, the maximization problem of the algorithm in the max-min problem
above is a single-variable concave maximization problem, and already yields clear
insights on how the optimal threshold computed by the algorithm depends on
the supply factor f and the penalty c.

Extensions. A natural question to ask is what happens if the publishers have
different under-delivery penalties ca for different advertisers. To show a proof of
concept extension of our results to this setting, we consider the simpler setting
of our problem where the AdEx rewards are equal to r for every query (i.e., a
deterministic distribution D), and show how the technique and results extend
to handle different ca’s. We conjecture that the same approach extends to the
general AdEx distributions as well, and leave it as an open problem. In a different
direction, in this work, we focus on a deterministic algorithm because of its many
virtues when deployed in a production system: the ability to replay and hence
debug easily, ex-post fairness, etc. While we show that it achieves the optimal
competitive ratio (i.e., even randomized algorithms cannot improve further),
this necessarily requires na values being large (for a deterministic algorithm to
be optimal, large budgets are necessary even for the much simpler B-matching
problem [23]). In practice, however, large budget assumption essentially always
holds, as advertiser contractual demands are much larger than the edge weight of
1. Nevertheless, one could ask whether one could use randomized algorithms to
remove the dependence of na’s being large. Again, as a proof of concept extension
of our results, we show that for the special case where AdEx rewards equal to
r for every query, randomized algorithms can get the same competitive ratio as
deterministic ones for any value of na, not just large ones.

Related Notions of Surplus Supply. The first related concept is the bid-to-budget
ratio notion used in several works (e.g. [11,14]). On the surface level, it might
appear that the notion of supply factor is just like the “large budgets” assump-
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tion, where it is assumed that the budget (in our case the number of impressions
na demanded by each advertiser a) is much larger than the bid (i.e., the value
of an edge). However these two concepts are quite different. In particular, even
with the large budgets assumption, without a supply factor larger than 1, any
algorithm will be very conservative and will essentially always allocate to the
contracts (assuming the penalty is larger than the AdEx reward). The supply
factor is a property of the entire setup of the publisher: the demands of the con-
tracts and the nature of traffic (set of online nodes arriving, i.e., users/queries
that visit their website).

Several work consider other notions of surplus supply. Karande et al. [24]
show a competitive ratio of 1− O(1/

√
f) for the online matching problem when

there are f edge-disjoint matchings. Note that, while related, this assumption is
not equivalent to our definition of supply factor f that asks for f vertex disjoint
matchings (disjoint on the online side). On the negative side, Cohen and Wajc [9]
prove that no online matching algorithm can achieve a competitive ratio better
than 1 − O(1/

√
d) for d-regular graphs. This result does not violate our stated

bounds since f -regular graphs only have f edge disjoint matchings, and this
does not imply a supply factor of f . Naor and Wajc [31] consider assumptions
on vertex degrees that can be seen as a per vertex surplus supply notion.

Comparison to Closely Related Work. In terms of works that consider joint
optimization across the two channels, the closest to ours is that of Dvorák and
Henzinger [15], who also consider the objective of maximizing revenue across two
channels: the fundamental differences are (a) the absence of a supply factor in
their work, (b) they model adversarially both the arrivals and the AdEx bids,
and (c) they achieve separate approximation factors for each channel as opposed
to our approximating the joint unified objective. Equally close is the work of
Balseiro et al. [5], who study the same problem, with the differences being (a)
the absence of a supply factor, (b) they model stochastically both the arrivals
and AdEx bids.

Another closely related work is by Devanur and Jain [12] in which they con-
sider the adwords problem with concave returns in the objective: while their
model can capture penalties, it does not handle the AdEx reward distribution.
Our model takes the reward distribution and penalties into account simultane-
ously. Additionally, the supply factor notion is absent in [12].

There are some results on bi-objective online allocation which targets two
orthogonal objective functions, e.g. revenue and customer satisfaction. Korula
et al. studies this problem targeting a weighted objective and a cardinality objec-
tive [26]. Aggarwal et al. studies this problem with a budgeted allocation objec-
tive and a cardinality objective [1]. Esfandiari et al. improves and extended these
results to a more general setting [16].

A number of works consider the optimization problem without the presence
of AdEx. Feldman et al. [20] study the problem with worst case arrivals and
achieve a 1 − 1/e competitive ratio as the na’s grow large. Feldman et al. [19]
study the general packing LPs in a random permutation arrival model and show
how to achieve 1 − ε approximation as the na’s grow large, and Devanur and
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Hayes [11] study the related Adwords problem in the same random permutation
model to achieve a 1 − ε approximation.

Agrawal et al. [4] show how to attain 1−ε for general packing LPs with better
convergence rates on how fast na’s need to go to ∞. Devanur et al. [14] consider
general packing and covering LPs in an i.i.d. model with unknown distribution
and achieve even better convergence rates. Agrawal and Devanur [3] study online
stochastic convex programming. Mirrokni et al. [30] study the Adwords prob-
lem and design algorithms that simultaneously perform well for both stochastic
and adversarial settings, and Balseiro et al. [6] do this for generalized alloca-
tion problems with non-linear objectives using dual mirror descent. Variants of
display ads problem without the large capacity assumption (and without the
supply factor assumption) are also considered recently by [7,18,21,32]. We refer
the reader to Choi et al. [8] for a literature review on the display ads market as it
is too vast to cover in entirety here. The differentiating factors of all these works
from ours is that even if these works were to add an AdEx node with infinite
capacity, (a) they do not consider the supply factor, (b) and they do not have a
unified objective.

Another related work by Esfandiari et al. [17] considers the allocation prob-
lem in a mixed setting, where a fraction of queries arriving are adversarial, and
a fraction are stochastic. They then characterize their competitive ratio, by this
prediction fraction. The setting we consider is different, as we allow fully adver-
sarial queries. We only assume a known AdEx distribution, which we argued is
often more predictable than the user traffic.

Karp et al. [25] wrote the seminal paper on online bipartite matching, and
Aggarwal et al. [2] consider the generalization of it to vertex weighted settings.
Mehta et al. [29] introduced the influential Adwords problem and gave a 1− 1/e
approximation for it, with a recent breakthrough result by Huang et al. [22]
showing how to beat a 1/2 approximation for this problem even with small
budgets. Devanur et al. [13] give a randomized primal dual algorithm that gives
a unified analysis of [2,25,29]. We refer the reader to [28] for a survey on the
online matching literature.

2 Optimal Algorithm for Binary Ad Exchange
Distribution

In this section, we consider a special case where the highest AdEx bid (referred to
as AdEx reward often) of each query is drawn from a distribution D of support
size two. We consider the general distribution in Sect. 3. We first provide an
algorithm, and later show that this algorithm is optimal. Formally we consider
the following setting:

Definition 1 (Binary reward distribution with parameters q and r). We
consider the setting where AdEx reward distribution D is 0 with probability q,
and is r with probability 1 − q.
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Without loss of generality we assume that the two support points are 0 and
r, rather than r1 and r2 for 0 < r1 < r2. This is because, in the latter case,
we can subtract r1 from each support point, and also from the penalty, and it
yields the distribution in the format we need. Also, without loss of generality we
assume that the support point r in the distribution is such that r < c where c
is the penalty. Note that if r ≥ c, then clearly whenever the AdEx reward is r
(i.e., non-zero), an optimal algorithm can always allocate the query to AdEx, so
there is nothing to study here.

2.1 An Optimal Algorithm

Now we propose a simple greedy algorithm (we basically specialize Algorithm 1
for binary distributions), analyze its performance and establish its optimality.
The analysis can be extended to the more general distributions of AdEx rewards,
but with more involved techniques.

Algorithm 2 is our algorithm for binary reward distributions. Here, we com-
pute an appropriate threshold s as a pre-processing step. At arrival of a query,
let a be the available advertiser (i.e., an advertiser with an edge to the incom-
ing vertex) with the lowest satisfaction ratio SR(a). The algorithm allocates
the impression to AdEx if and only if SR(a) ≥ s and the query has non-zero
AdEx reward of r. I.e., the algorithm first greedily allocates queries to available
advertisers that are furthest from being satisfied, no matter how large the AdEx
weight of arriving queries. However, when the advertisers are satisfied to some
extent (i.e., their SR ≥ s), satisfying contracts becomes less of a priority, and
AdEx is preferred when it offers non-zero reward.

ALGORITHM 2: Optimal algorithm for binary AdEx bid distribution
Input: Binary AdEx distribution with parameter q and r, penalty c, and
supply factor f .

Preprocessing: Set the threshold s = max
(
0, 1 + fq ln(1 − r

c
)
)

(see
Proposition 2).

for each query arriving online do
Let a be a matching advertiser with the lowest satisfaction ratio.
if SR(a) = 1 then

Assign the impression to AdEx.
end
else if SR(a) ≥ s and AdEx reward is r then

Assign the impression to AdEx.
end
else

Assign the impression to a.
end

end
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Fig. 1. Analysis of Algorithm 2: The figure can be viewed from the POV of a sin-
gle advertiser, as well as from the POV of all advertisers. For a single advertiser a,
the demand na is divided into t intervals. Red colored rectangles represent queries
with AdEx reward r, and green rectangles represent queries with AdEx reward 0. The
threshold is represented by s. The figure on the LHS is for allocation to the contract
advertiser a, while the figure on the RHS is for allocation to AdEx. In the LHS figure,
each horizontal rectangle of height 1/t represents a value of βj . When smallest SR is
below the threshold, all the queries (regardless of AdEx reward) are allocated to the
contract, so each height 1/t rectangle below s is constituted by both red and green
queries. Above the threshold s, all rectangles are only colored green since only queries
with AdEx reward 0 are allocated to a contract. In the RHS figure, since AdEx gets
allocated only queries of non-zero value, all rectangles are red. Also, for each query
with AdEx reward 0 allocated to an advertiser with SR greater than s, in expectation
(1/q − 1) queries get allocated to AdEx (because in expectation for every query with
AdEx reward 0, 1/q − 1 queries have reward r). The α’s in the bottom of the figure
come into picture when all the advertisers are taken together. We will soon show that
αj − t(βj − βj+1). Thus the bottom right corner piece rectangle in the LHS figure
represents α1/t etc. (Color figure online )

Before proving the competitive ratio, we set some notation that we use in
our analysis throughout the paper. These concepts are also demonstrated in
Fig. 1. Let t be a sufficiently large integer used to discretize the total demand
of each advertiser into equal intervals of length 1/t. The right picture to have
in mind is na � t � 1. We call any given advertiser a to be of type j, if at
the end of the algorithm, SR(a) ∈ ( j−1

t , j
t ]. For type 1 alone we let the SR

interval be closed on both sides, namely [0, 1
t ]. Let Aj be the set4 of advertisers

of type j; and let αj = E[
∑

a∈Aj
na] be the total demand of advertisers in Aj .

For simplicity we assume that an advertiser a ∈ Aj gets allocated exactly j
t na

impressions: this leads to an additive error O(1t ) in analysis, which is negligible

4 Note that Aj is a random set depending on the realization of AdEx rewards over all
queries.
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when t → ∞. Let βj be the expected total number (across all advertisers) of
allocated impressions s.t., at the time of allocation the assigned advertiser had
satisfaction ratio ∈ [ j−1

t , j
t ). Finally, let N =

∑
a∈A na be the total demand of

all advertisers.
By definition of α, β we get the following (see also Fig. 1):

βj =
∑

a∈∪�≥jA�

1
t
na =

1
t
(N −

∑

�<j

α�). (1)

Thus
αj = t(βj − βj+1). (2)

Lemma 1. Based on definition of α, β as described, for any j ≤ t − 1,

∑

�≤j

fα� ≤
{∑

�≤st β� +
∑

st<�≤j
1
q β�, if j ≥ st;

∑
�≤j β�, if j < st.

(3)

Proof. The RHS represents the set of queries that, when they arrived, the most
deserving (lowest SR) contractual advertiser that was eligible was of type at
most j. To see this note that when the lowest SR is j

t < s, every arriving query
is allocated to the contract (hence the second line of RHS). When the lowest
SR is at least s, only a q fraction of the considered queries are allocated to the
contract—thus the considered queries = allocated queries / q, which is the first
line of RHS.

The LHS represents the number of queries that were allocated to an advertiser
of type at most j in the supply-factor-determining-offline-solution.

It is immediate that LHS is at most RHS because every query counted in the
LHS will count for RHS when it arrives.

Notice that the total expected reward of the algorithm can be divided into
the following parts:

– The baseline penalty is if no impression is allocated to contracts, the total such
penalty is −Nc. The total AdEx reward that may be obtained by assigning
everything to AdEx is Nf(1− q)r. The next points capture the change to the
objective when we move away from this extreme solution of giving everything
to AdEx.

– Any impression that is allocated to an advertiser with satisfaction ratio j
t < s

(which is the set of impressions counted in βj for j ≤ st), with probability
(1 − q), loses a reward of r from AdEx. Thus in expectation each impression
has reward c − (1 − q)r added to the objective;

– Each time an impression is allocated to an advertiser with satisfaction ratio
j
t ≥ s (which is the set of impressions counted in βj for j > st), the impression
always has reward 0 for AdEx, but adds c to the objective.
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Therefore the expected total reward ALG of the algorithm is

ALG = Nf(1 − q)r − Nc +
∑

j≤st

(c − (1 − q)r)βj +
∑

st<j≤t

cβj . (4)

We can add (2) and (3) as constraints, to get a linear program that lower bounds
the reward of the algorithm as follows:

minimize Nf(1 − q)r − Nc +
∑

j≤st

(c − (1 − q)r)βj +
∑

st<j≤t

cβj (5)

s.t. ftβ1 − ftβj+1 ≤
∑

�≤j

β�, ∀j, 1 ≤ j ≤ st;

ftβ1 − ftβj+1 ≤
∑

�≤st

β� +
∑

st<�≤j

1
q
β�, ∀j, st < j ≤ t;

β1 =
N

t
; βj ≥ 0,∀j, 1 ≤ j ≤ t.

The constraints are explained immediately by expanding and doing a tele-
scopic summation using (2) and (3). We set β1 = N/t because in all but patho-
logical instances we have that every advertiser ends up with at least /1t fraction
of their demand satisfied (note that t is large, just that na � t � 1). Even
in the pathological instances where this is not true, i.e., only β1 < N/t holds,
by setting β1 = N/t, there is just a O(1/t) additive error we have introduced.
Namely, when proving optimality of our algorithm, we will just have proved it
up to additive O(1/t) terms. We first observe that the optimal solution of the
LP (5) is achieved when all non-trivial constraints are tight.

Proposition 1. By setting β values as follows we get an optimal solution to the
linear program (5):

β∗
j =

⎧
⎪⎨

⎪⎩

N
t

(
1 − 1

tf

)j−1

, if j ≤ st + 1;

N
t

(
1 − 1

tf

)st (
1 − 1/q

tf

)j−st−1

, if j > st + 1.

We can use the above observations on structure of ALG to compute the
appropriate threshold in the following proposition:

Proposition 2. The objective of the algorithm is maximized when the threshold
is set to s = max

(
0, 1 + fq ln(1 − r

c )
)
.
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Proof. Using Proposition 1 we have,

ALG ≥ Nf(1 − q)r − Nc +
∑

j≤st

(c − (1 − q)r)β∗
j +

∑

st<j≤t

cβ∗
j

= Nf(1 − q)r − Nc + (c − (1 − q)r)Nf

(

1 −
(

1 − 1
tf

)st
)

+cqfN

(

1 − 1
tf

)st
(

1 −
(

1 − 1/q

tf

)t−st
)

= Nf(1 − q)r − Nc + (c − (1 − q)r)Nf(1 − e− s
f ) + cqfNe− s

f (1 − e− 1−s
qf )

= Nc(f − 1) + (1 − q)(r − c)fNe−x − qfNce
1−q

q x− 1
qf ,

where x = s
f ∈ [0, 1

f ]. Then to maximize the reward, we consider the following
expression in the right hand side:

RHS(x) = Nc(f − 1) + (1 − q)(r − c)fNe−x − qfNce
1−q

q x− 1
qf . (6)

We have the unique zero point of RHS′(x) is x∗ = q(ln(1 − r/c) + 1
qf ) < 1/f .

This means that RHS(x) is maximized either when s∗ = fx∗ or s∗ = 0.

Useful Insights. Interesting insights already flow out of this binary support dis-
tribution case. It shows that the optimal threshold s∗ that we set is an affine
function of the supply factor f . The higher the supply factor, lower the thresh-
old we set (note that the coefficient of f in s∗, namely q ln(1− r/c) is negative).
Also, the dependence on the penalty c and AdEx reward r are quite non-trivial
and intriguing. The binary support is often a good first-order approximation of
reality when we bucket bids into “high” and “low” types.

2.2 Optimality of Algorithm 2

We now prove the optimality of the algorithm in the previous section by show-
ing an example for which no algorithm can perform better. Consider a binary
distribution with parameter q and r as defined earlier. We use a modification of
the “upper triangular graph” instance of [25] as follows:

Example 1. Suppose that there are m advertisers, and each advertiser demands
n impressions. There are fmn = fN queries arriving in m groups G1, · · · , Gm,
with queries in group Gi have an edge to the same m−i+1 advertisers determined
as follows: consider a random permutation π : [m] → [m], then the queries in
group Gi are available to advertisers j with π(j) ≥ i.

At a high-level, in this instance, all advertisers are available to the first group of
queries arriving. Then with each group one random advertiser is removed from
the set of available advertisers to the group. We next argue that Algorithm 2 is
optimal for this instance by showing that any online algorithm will not lead to
a better reward.
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Theorem 1. For Example 1, the competitive ratio of any randomized online
algorithm matches the competitive ratio obtained by Algorithm 2 up to a small
additive factor O

(
1
m

)
.

Proof. First we have the following observation about deterministic algorithms.
By Yao’s minimax principle, we only need to consider the performance of any
deterministic algorithm over the randomness of the instance.

Fix any deterministic algorithm. Let qij1 be the fraction of queries in Gi with
AdEx reward 0 that is allocated to advertiser π−1(j), and qij2 be the fraction of
queries in Gi with AdEx reward r that is allocated to advertiser π−1(j). Then
for u = 1 and 2,

Eπ[qiju] ≤
{

1
m−i+1 , if j ≥ i;
0, if j < i.

Also later we use Eπ[qiju] = Eπ[qimu]. This is because for each i, there are
m − i + 1 random advertisers that have an edge connected to impressions in
Gi. If j ≥ i, then π−1(j) is a uniformly at random advertiser among this group
of m − i + 1 advertisers. Thus Eπ[qiju] ≤ 1

m−i+1 and for any j, j′ ≥ i it holds
Eπ[qiju] = Eπ[qij′u]. If j < i, then advertiser π−1(j) does not have an edge to
impressions in Gi. Then the expected reward we get from the algorithm, using
the same reasoning from the previous section, is

−Nc + fN(1 − q)r +
m∑

i=1

m∑

j=i

(
fN

m
qEπ[qij1]c +

fN

m
(1 − q)Eπ[qij2](c − r)

)

.

Here the first term and the second term are the total reward from not allocating
anything to the contract advertisers, while the third term is the total reward
gain from the allocation of the algorithm: there are in expectation fN

m q queries
with AdEx reward 0 (or fN

m (1−q) with reward r) from group Gi and Eπ[qij1] (or
Eπ[qij2]) fraction of them are allocated to advertiser π−1(j), with each impression
contributing to a reward gain c (or c − r) compared to being allocated to AdEx.

As we discussed Eπ[qiju] = Eπ[qimu] for any j ≥ i, u = 1, 2. Hence we can
simplify the overall expectation for all j ≥ i:

−cN + fN(1 − q)r +
m∑

i=1

(m − i + 1)
fN

m
(qEπ[qim1]c + (1 − q)Eπ[qim2](c − r)) .

Then the reward of the algorithm is upper bounded by the solution of the follow-
ing linear program, where yiu variables represent the expected value Eπ[qimu].

maximize − cN + fN(1 − q)r +
fN

m

m∑

i=1

(m − i + 1) (qyi1c + (1 − q)yi2(c − r))

s.t.

m∑

i=1

(
fN

m
qyi1 +

fN

m
(1 − q)yi2

)

≤ N

m
;

0 ≤ yi1, yi2 ≤ 1
m − i + 1

, ∀i, 1 ≤ i ≤ m.

(7)
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Here the left hand side of the first constraint is the total expected number of
allocated impressions to advertiser π−1(m), which is at most n = N

m .
Next, we show a structure on any optimal solution to this LP, that captures

a threshold based behavior that we can be related to the algorithm we presented
in the previous section. The proof is omitted.

Lemma 2. For an optimal solution y to the above LP, there exists thresholds
1 ≤ z2 ≤ z1 ≤ m, such that, yiu = 1

m−i+1 for i < zu, and yiu = 0 for i > zu for
u = 1, 2.

From the above lemma, we know that the optimal strategy for Example 1 has
the following form: for queries in group G1, · · · , Gz2 , all impressions are allocated
uniformly to all available advertisers; for queries in group Gz2+1, · · · , Gz1 , only
queries with AdEx reward 0 are allocated uniformly to all available advertisers;
for queries in group Gz1+1, · · · , Gm, no impression is allocated a contract.

By setting the y values, as determined by Lemma 2, we can simplify the
objective function of linear program (7) with threshold z1 and z2 and bound the
reward ALG obtained from an online algorithm as follows: the objective is

−cN + (1 − q)r +

(
z2∑

i=1

(qc + (1 − q)(c − r)) +
z1∑

i=z2+1

qc

)

= −cN + (1 − q)r + z1qc + z2(1 − q)(c − r)z2.

Then we get,

ALG ≤ max
z1,z2

−cN + (1 − q)fNr + z1qc + z2(1 − q)(c − r)z2 (8)

s.t.

z2∑

i=1

f · 1
m − i + 1

+
z1∑

i=z2+1

f · 1
m − i + 1

q = 1.

When m is large enough, the constraint can be replaced by

f ln
m

m − z2
+ fq ln

m − z2
m − z1

= 1.

Let x = m
m−z2

∈ [0, 1
f ]. We can express z1 and z2 by x as z1 = m(1− e

x(1−q)
q − 1

fq )
and z2 = m(1 − e−x). Apply these to (8) we have ALG upper bounded by

max
x∈[0, 1

f ]
−cN + (1 − q)fNr + m(1 − e

x(1−q)
q − 1

fq )qc + m(1 − e−x)(1 − q)(c − r)

= max
x∈[0, 1

f ]
Nc(f − 1) + (1 − q)(r − c)fNe−x − qfNce

1−q
q x− 1

qf .

Notice that the optimization problem here is identical to the optimization prob-
lem (6) that we described in the analysis of Algorithm 2. Thus the upper bound
of the performance of any online algorithm for this instance matches the lower
bound of the performance of Algorithm 2 for any underlying graph. As the opti-
mal offline allocation has the same expected reward for any instance, we prove
the optimality of Algorithm 2.
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Understanding the Optimality of Algorithm 2. Algorithm 2 is optimal in the
following sense. Although due to the complexity of the problem we did not
give a closed-form competitive ratio of the algorithm, we are able to provide a
lower bound of the net reward of the algorithm (characterized by (6)) on any
instance with the same supply factor f , total demand of advertisers N , binary
bid distribution parameterized by q and r, and penalty c, but with possibly
different underlying online advertiser-impression bipartite graph. On the other
hand, we show that for the same set of parameters, there exists an underlying
graph such that no online algorithm can obtain reward more than (6) (plus
some negligible terms). Thus the optimality of the algorithm can be viewed as
a worst-case optimality over all possible online bipartite graphs.

3 General Ad Exchange Distribution

In this section, we briefly discuss how to generalize the setting with a binary
AdEx distribution to the setting with arbitrary binary distribution, omitting
the details. For a general AdEx reward distribution, we use a similar max-min
approach as in Sect. 2. Although the max-min problem of the algorithm becomes
multi-variate, non-linear and non-convex, for general AdEx distributions we can
still establish that the non-linear mathematical programs obtained in the maxi-
mization problem of the algorithm and in the hard example are identical.

Suppose that each query has an AdEx reward drawn from a discrete distri-
bution D with a fixed support size d:5

Definition 2 (AdEx distribution with parameters (ri, qi)i∈[d]). Consider
an AdEx distribution D with support size d, rewards 0 = r1 ≤ r2 ≤ ... ≤ rd ≤ c,
where probability of that the reward is r ≤ ri is qi. Also we set q0 = 0, qd = 1.

Our algorithm is presented in Algorithm 1 (see Sect. 1). For any query that
arrives, if a is the advertiser the lowest satisfaction ratio, and SR(a) ∈ [su−1, su),
then the impression is allocated to a if and only if its AdEx reward r ≤ rd+1−u.
Here we define s0 = 0 for completeness. We propose Algorithm 1, a threshold-
based algorithm in which a set of thresholds s1, ..., sd are chosen based on an
optimization problem that takes D, f, c into account. For t being a large enough
integer, as a generalization of Proposition 1 define β∗

j for every j ∈ [t] as follows:

β∗
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
t

(
1 − 1/qd

tf

)j−1

, if j ≤ s1t + 1;

N
t

(
1 − 1/qd

tf

)s1t−s0t
(
1 − 1/qd−1

tf

)j−s1t−1

, if s1t + 1 < j ≤ s2t + 1;

· · ·
N
t

(
1 − 1/qd

tf

)s1t−s0t · · ·
(
1 − 1/qd+2−u

tf

)su−1t−su−2t
(
1 − 1/qd+1−u

tf

)j−su−1t−1

,

if su−1t + 1 < j ≤ sut + 1;

· · ·
N
t

(
1 − 1/qd

tf

)s1t−s0t · · ·
(
1 − 1/qd+2−u

tf

)sd−1t−sd−2t
(
1 − 1/q1

tf

)j−sd−1t−1

,

if sd−1t + 1 < j ≤ sdt = t.

5 The assumption on a fixed support, can be relaxed using a standard discretization
approach at a small cost in the competitive ratio that depends on this discretization.
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We have the following optimization problem that decides the value of s1, · · · , sd:

Optimization Problem 1. Given an AdEx distribution D with parameters
(ri, qi)i∈[d], find 0 ≤ s1 ≤ s2 ≤ · · · ≤ sd = 1 that maximizes the following
objective such that β∗

j values satisfy the above constraints:

−cN +
d∑

u=1

fN(qu − qu−1)ru +
d∑

u=1

sut∑

j=su−1t+1

β∗
j (c − ED[r|r ≤ rd+1−u]).

Theorem 2. For any f ≥ 1, and AdEx distribution with parameters (ri, qi)i∈[d],
Algorithm 1 with thresholds determined by Optimization Problem 1 is optimal.

References

1. Aggarwal, G., Cai, Y., Mehta, A., Pierrakos, G.: Biobjective online bipartite match-
ing. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 218–231.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13129-0_16

2. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite
matching and single-bid budgeted allocations. In: Randall, D. (ed.) Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp. 1253–1264.
SIAM (2011)

3. Agrawal, S., Devanur, N.R.: Fast algorithms for online stochastic convex program-
ming. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 Jan-
uary 2015, pp. 1405–1424. SIAM (2015)

4. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear
programming. Oper. Res. 62(4), 876–890 (2014)

5. Balseiro, S.R., Feldman, J., Mirrokni, V.S., Muthukrishnan, S.: Yield optimization
of display advertising with ad exchange. Manag. Sci. 60(12), 2886–2907 (2014)

6. Balseiro, S.R., Lu, H., Mirrokni, V.S.: Dual mirror descent for online allocation
problems. In: Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, July 13–18 2020, Virtual Event. Proceedings of Machine Learning
Research, vol. 119, pp. 613–628. PMLR (2020)

7. Blanc, G., Charikar, M.: Multiway online correlated selection. In: 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pp. 1277–1284.
IEEE (2022)

8. Choi, H., Mela, C.F., Balseiro, S.R., Leary, A.: Online display advertising markets:
a literature review and future directions. Inf. Syst. Res. 31(2), 556–575 (2020)

9. Cohen, I.R., Wajc, D.: Randomized online matching in regular graphs. In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 960–979. SIAM (2018)

10. Derakhshan, M., Golrezaei, N., Leme, R.P.: Lp-based approximation for person-
alized reserve prices. In: Karlin, A., Immorlica, N., Johari, R. (eds.) Proceedings
of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix,
AZ, USA, 24–28 June 2019, p. 589. ACM (2019)

https://doi.org/10.1007/978-3-319-13129-0_16


58 M. Abolhassani et al.

11. Devanur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. In: Chuang, J., Fortnow, L., Pu,
P. (eds.) Proceedings 10th ACM Conference on Electronic Commerce (EC-2009),
Stanford, California, USA, 6–10 July 2009, pp. 71–78. ACM (2009)

12. Devanur, N.R., Jain, K.: Online matching with concave returns. In: Proceedings of
the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 137–144
(2012)

13. Devanur, N.R., Jain, K., Kleinberg, R.D.: Randomized primal-dual analysis
of RANKING for online bipartite matching. In: Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, 6–8 January 2013, pp. 101–107. SIAM (2013)

14. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. J. ACM 66(1),
7:1-7:41 (2019)

15. Dvoák, W., Henzinger, M.: Online ad assignment with an ad exchange. In: Bampis,
E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 156–167. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18263-6_14

16. Esfandiari, H., Korula, N., Mirrokni, V.: Bi-objective online matching and sub-
modular allocations. Adv. Neural. Inf. Process. Syst. 29, 2739–2747 (2016)

17. Esfandiari, H., Korula, N., Mirrokni, V.: Allocation with traffic spikes: mixing
adversarial and stochastic models. ACM Trans. Econ. Comput. (TEAC) 6(3–4),
1–23 (2018)

18. Fahrbach, M., Huang, Z., Tao, R., Zadimoghaddam, M.: Edge-weighted online
bipartite matching. In: 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 412–423. IEEE (2020)

19. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic
packing applied to display ad allocation. In: de Berg, M., Meyer, U. (eds.) ESA
2010. LNCS, vol. 6346, pp. 182–194. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15775-2_16

20. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad
assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol.
5929, pp. 374–385. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10841-9_34

21. Gao, R., He, Z., Huang, Z., Nie, Z., Yuan, B., Zhong, Y.: Improved online correlated
selection. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 1265–1276. IEEE (2022)

22. Huang, Z., Zhang, Q., Zhang, Y.: Adwords in a panorama. In: 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
16–19 November 2020, pp. 1416–1426. IEEE (2020)

23. Kalyanasundaram, B., Pruhs, K.: An optimal deterministic algorithm for online
b-matching. Theor. Comput. Sci. 233(1–2), 319–325 (2000)

24. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown
distributions. In: Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, pp. 587–596 (2011)

25. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipar-
tite matching. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, pp. 352–358 (1990)

26. Korula, N., Mirrokni, V.S., Zadimoghaddam, M.: Bicriteria online matching: max-
imizing weight and cardinality. In: Chen, Y., Immorlica, N. (eds.) WINE 2013.
LNCS, vol. 8289, pp. 305–318. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45046-4_25

https://doi.org/10.1007/978-3-319-18263-6_14
https://doi.org/10.1007/978-3-642-15775-2_16
https://doi.org/10.1007/978-3-642-15775-2_16
https://doi.org/10.1007/978-3-642-10841-9_34
https://doi.org/10.1007/978-3-642-10841-9_34
https://doi.org/10.1007/978-3-642-45046-4_25
https://doi.org/10.1007/978-3-642-45046-4_25


Online Allocation and Display Ads Optimization with Surplus Supply 59

27. Leme, R.P., Pál, M., Vassilvitskii, S.: A field guide to personalized reserve prices.
In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Pro-
ceedings of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada, 11–15 April 2016, pp. 1093–1102. ACM (2016)

28. Mehta, A.: Online matching and ad allocation. Found. Trends Theor. Comput. Sci.
8(4), 265–368 (2013)

29. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. Journal of the ACM (JACM) 54(5), 22-es (2007)

30. Mirrokni, V.S., Gharan, S.O., Zadimoghaddam, M.: Simultaneous approximations
for adversarial and stochastic online budgeted allocation. In: Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17–19, 2012. pp. 1690–1701. SIAM (2012)

31. Naor, J., Wajc, D.: Near-optimum online ad allocation for targeted advertising.
ACM Transactions on Economics and Computation (TEAC) 6(3–4), 1–20 (2018)

32. Shin, Y., An, H.C.: Making three out of two: Three-way online correlated selection.
arXiv preprint arXiv:2107.02605 (2021)

http://arxiv.org/abs/2107.02605


Online Ad Allocation in Bounded-Degree
Graphs

Susanne Albers and Sebastian Schubert(B)

Department of Computer Science, Technical University of Munich, Boltzmannstr. 3,
85748 Garching, Germany

albers@in.tum.de, sebastian.schubert@tum.de

Abstract. We study the AdWords problem defined by Mehta, Saberi,
Vazirani and Vazirani [10]. A search engine company has a set of adver-
tisers who wish to link ads to user queries and issue respective bids. The
goal is to assign advertisers to queries so as to maximize the total rev-
enue accrued. The problem can be formulated as a matching problem
in a bipartite graph G. We assume that G is a (k, d)-graph, introduced
by Naor and Wajc [11]. Such graphs model natural properties on the
degrees of advertisers and queries.

As a main result we present a deterministic online algorithm that
achieves an optimal competitive ratio. The competitiveness tends to 1,
for arbitrary k ≥ d, using the standard small-bids assumption where the
advertisers’ bids are small compared to their budgets. Hence, remark-
ably, nearly optimal ad allocations can be computed deterministically
based on structural properties of the input. So far competitive ratios
close to 1, for the AdWords problem, were only known in probabilistic
input models.

Keywords: Online ad allocation · Targeted advertising ·
Deterministic algorithm · AdWords problem

1 Introduction

Ad allocation in Internet advertising and in particular the AdWords problem
have received considerable research interest over the past years, see e.g. [3–7,10,
11] and references therein. The worldwide digital ad spending has reached nearly
half a trillion US$ in 2021 [1]. Search ads are the dominant advertising format
with a share of over 40%. Scientifically, ad allocation incorporates challenging
assignment problems that are relevant in more general auction design.

We investigate the AdWords problem, which was introduced by Mehta et
al. [10]. A search engine company, such as Google, Yahoo or Microsoft Bing,
has a set of advertisers who wish to link ads to users of the search engine as
they enter search queries. The information on the query keywords allows for
highly targeted ad assignments. Formally, the setting can be modeled as an
online matching problem in a bipartite graph G = (A,Q,E). The vertex set
A represents the set of advertisers. These vertices are known in advance. Each
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advertiser a ∈ A has a daily budget B(a) he can spend. Furthermore, he specifies
a set K(a) of relevant keywords. There is a bid wa,k for each k ∈ K(a). In manual
bidding, these bids are determined by the advertiser; in automated bidding they
are set by the advertising platform. The vertices of Q are the individual queries
that are entered by the users. These vertices arrive online, one by one. Whenever
a new query i ∈ Q with a keyword k arrives, the advertising platform checks
which advertisers a ∈ A are interested in presenting an ad to the query, i.e. for
which advertisers k ∈ K(a). For any such advertiser a, the graph G contains
an edge (a, i) ∈ E of weight wa,i = wa,k. The advertising platform must decide
immediately which advertiser a to assign to query i, for a revenue of wa,i. For
simplicity it is assumed that at most one advertiser is assigned to a query. The
goal is to maximize the total revenue accrued by the platform at the end of the
day.

We study the AdWords problem in bipartite graphs G = (A,Q,E) that
satisfy natural degree properties. Such properties were first identified and for-
malized by Naor and Wajc [11]. Obviously, each advertiser a ∈ A has a high
degree: During a day a great number of queries are entered at the search engine,
and the advertiser sets up a campaign that reaches a reasonable fraction of the
user population. However, his budget is not high enough to present an ad to all
interesting queries, i.e.

∑
(a,i)∈E wa,i >> B(a). On the other hand, each query

in Q has a relatively small degree: It is of interest to a smaller number of adver-
tisers, within the huge pool A of advertisers a search engine company has. As
an example, consider a typical query that may address a particular sports disci-
pline (or travel to a specific location, or a given consumer product). The number
of advertisers that sell suitable equipment (or tickets/services, or the requested
product) is small, compared to the total number |A| of advertisers. The set of
advertisers covers essentially all aspects of daily and commercial life.

We assume that G is a bipartite (k, d)-graph, as defined by Naor and
Wajc [11] for the AdWords problem. Here k and d are positive integers. (1)
Each advertiser a ∈ A has a total bid volume (total weighted degree) satisfy-
ing

∑
(a,i)∈E wa,i ≥ k · B(a). Since bids are small compared to the budget, i.e.

wa,i << B(a), the last inequality implies a very high degree for a. (2) Each
query i ∈ Q has a degree d(i) ≤ d. This captures the fact that a limited number
of advertisers can offer a suitable ad. In practice k ≥ d. We assume that d ≥ 2.
If d = 1, then a Greedy algorithm constructs an optimal assignment.

The AdWords problem generalizes the classical online bipartite matching
problem, introduced by Karp et al. [8], where each vertex in A can be matched
only once and the goal is to maximize the cardinality of the constructed match-
ing.

We analyze the performance of online algorithms for the AdWords problem
using competitive analysis. Given an input graph G, let Alg(G) be the total
revenue (weight) of the assignment constructed by an online algorithm Alg.
Let Opt(G) be the corresponding value of an optimal offline algorithm Opt.
Algorithm Alg is c-competitive if Alg(G) ≥ c ·Opt(G) holds, for all G. In our
analyses we will focus on bipartite (k, d)-graphs G.
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Related Work. As mentioned above, the AdWords problem was formally defined
by Mehta et al. [10]. They presented a deterministic online algorithm that assigns
an incoming query i to the advertiser a who maximizes wa,i · e−(1−T (a)), where
T (a) is the fraction of the advertiser’s budget that has been spent so far. The
algorithm achieves a competitive ratio of 1 − 1/e ≈ 0.632, using the standard
small-bids assumption where the bids are small compared to the advertisers’ bud-
gets. More precisely, let Rmax = max(a,i)∈E

wa,i

B(a) be the maximum ratio between
the bid of any advertiser and his budget. With the small-bids assumption, Rmax

tends to 0. Mehta et al. also showed that no randomized online algorithm can
obtain a competitive ratio greater than 1 − 1/e. Hence their algorithm achieves
an optimal competitiveness.

Buchbinder et al. [4] developed a primal-dual algorithm for AdWords that
attains a competitive ratio of (1−1/c)(1−Rmax), where c = (1+Rmax)1/Rmax . As
Rmax → 0, the competitiveness tends to 1−1/e. Buchbinder et al. also examined
a setting where the degree of each incoming query is upper bounded by d and
gave an algorithm with a competitive ratio of nearly 1 − (1 − 1/d)d. Azar et
al. [3] showed that this ratio is best possible, also for randomized algorithms.
The expression 1− (1− 1/d)d is always greater than 1− 1/e but approaches the
latter value as d increases.

The class of (k, d)-graphs was defined by Naor and Wajc [11], who studied
online bipartite matching and the AdWords problem. They devised deterministic
online algorithms that achieve a competitive ratio of 1 − (1 − 1/d)k. This ratio
holds for online bipartite matching and the vertex-weighted extension where
all edges incident to a vertex a ∈ A have the same weight. Furthermore, the
ratio holds for AdWords with equal bids per advertiser, i.e. each advertiser has
the same bid to all his relevant keywords. The ratio of 1 − (1 − 1/d)k is best
possible for online bipartite matching and the vertex-weighted extension if k ≥ d.
For AdWords with arbitrary bids, Naor and Wajc gave an algorithm with a
competitive ratio of (1 − Rmax)(1 − (1 − 1/d)k). They also showed an upper
bound of (1 − Rmax)(1 − (1 − 1/d)k/Rmax) on the best possible competitiveness
if k ≥ d. For increasing k/d, the expression 1− (1− 1/d)k tends to 1. For k ≈ d
increasing, it tends again to 1 − 1/e.

In our recent work [2] we studied the online b-matching problem in (k, d)-
graphs. Each vertex a on the left-hand side of the bipartite graph is a server with
a capacity of ba, meaning that it may be matched with up to ba incoming requests
that arrive as right-hand side vertices. The goal is to maximize the cardinality
of the constructed matching. We developed deterministic online algorithms that
achieves an optimal competitiveness.

For the Adwords problem without the small-bids assumption, a Greedy algo-
rithm attains a competitive ratio of 1/2 [9]. This ratio was recently improved to
0.506 [7].

All of the above results hold in the adversarial input model where the query
vertices Q and their arrival order are determined by an adversary. The AdWords
problem has also been examined in stochastic input models. In the random-order
model, a random permutation of the vertices of Q arrives. Alternatively, the ver-
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tices of Q are drawn i.i.d. from a known or unknown distribution. For AdWords in
the random-arrival order, Devanur and Hayes [5] developed a (1−ε)-competitive
algorithm, for any ε > 0. The algorithm needs to know (approximately) the
number |Q| of queries. Furthermore, the maximum bid of any advertiser must
be upper bounded by roughly ε3/|A|2 times the revenue of an optimal solution.
For AdWords in the unknown i.i.d. model, Devanur et al. [6] gave an algorithm
with a competitiveness of 1 − O(

√
Rmax).

Our Contributions. We investigate the AdWords problem in (k, d)-graphs. For
each advertiser a ∈ A, arbitrary bids for the relevant keywords in K(a) are
allowed.

In Sect. 2 we present a deterministic online algorithm, called Allocation.
At the heart of the algorithm is a continuous function V with two arguments.
The first argument considers budget that has already been spent by a given
advertiser. The second argument keeps track of the total bid volume that has
been issued by him so far. For technical reasons, the arguments have to be
scaled down. The ad assignment works as follows. At any time while queries of
Q are processed and for each advertiser a ∈ A, Allocation maintains a value
Va. Whenever a new query i ∈ Q arrives, bids are issued by the advertisers a
who find the corresponding query interesting and their total issued bid volume
increases. This results in updates of Va. The query is assigned to the advertiser
a who maximizes the increase in Va, multiplied by B(a).

We formulate and analyze Allocation as a primal-dual algorithm. We prove
that it achieves a competitive ratio of (1 − Rmax)c∗, where

c∗ := 1 − 1
b

(
b∑

i=1

i

(
kb

b − i

)
1

(d − 1)b−i

)(

1 − 1
d

)kb

and b := �1/Rmax	. The ratio of c∗ is best possible. No deterministic online
algorithm can achieve a higher competitive ratio, even if all advertisers issue
uniform bids equal to 1 for all their relevant keywords. This follows from our
work [2] on the b-matching problem, which can be viewed as a special AdWords
problem in which all advertisers have bids equal to 1 for all their keywords. The
competitive factor of c∗ is complex but exact in all terms. In [2] we also show
that c∗ tends to 1 as b tends to infinity, for arbitrary k ≥ d. Consequently, the
competitive ratio of Allocation tends to 1, for all k ≥ d, with the small-bids
assumption as Rmax tends to 0. The Allocation algorithm generalizes our
algorithm for the b-matching problem [2] but the extension is non-trivial, for
bids of arbitrary value.

A major technical contribution of this paper is the construction of the func-
tion V that guides the assignment decisions. Section 3 is devoted to it. A crucial
aspect is that V must be continuous in both arguments because bids of arbitrary
value must be handled, in terms of budgets spent and bid volumes issued. On a
high-level, V is a linear combination of data points with integral arguments. In
fact, V induces a grid of parallelograms whose vertices are function values with
integral arguments. Bidding operations and ad assignments have the property
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that the new function values are still in the same parallelogram on in a neigh-
boring one to the right or above. Even this seemingly simple “interpolation” of
the function V is hard to analyze. We show how to define V and prove proper-
ties that are essential to establish an optimal competitiveness in the primal-dual
analysis of our algorithm.

A strength of our results is that Allocation achieves a competitiveness
arbitrarily close of 1, for all k ≥ d, using the small-bids assumption. Hence
nearly optimal allocations can be computed deterministically and online based
on natural structural properties of the input. Recall that without degree con-
straints, the best competitive ratio is 1− 1/e ≈ 0.632, again with the small-bids
assumption. So far, competitive factors close to 1 for AdWords were only known
in probabilistic input models, based on small bids. Our results improve upon the
previous best factor of (1 − Rmax)(1 − (1 − 1/d)k) by Naor and Wajc [11] and
settle open questions raised by them.

2 An Algorithm for AdWords

In this section, we present the online algorithm Allocation for the AdWords
problem. It makes use of an upper bound on Rmax. Every bid of advertiser a
is upper bounded by maxk∈K(a) wa,k. Hence, by slightly abusing notation we
now set Rmax := maxa∈A,k∈K(a)

wa,k

B(a) . The latter value can be computed easily,
given B(a) and the bids for the keywords in K(a), for any a ∈ A, because this
information is available in advance. In automated bidding one can assume that
bids are updated once a day.

Let b := �1/Rmax	. We will show that Allocation achieves a competitive
ratio of (1 − Rmax)c∗, where again

c∗ := 1 − 1
b

(
b∑

i=1

i

(
kb

b − i

)
1

(d − 1)b−i

)(

1 − 1
d

)kb

.

Our algorithm uses the standard convention that allows more queries to be
assigned to an advertiser a than he can pay for with his budget B(a). However,
the actual revenue generated by a is upper bounded by B(a). This is reasonable,
as advertisers typically do not mind if their ads are shown to more users for free.
At the end of this section, we discuss the necessary changes to Allocation if
this is not permitted. It results in a slightly worse competitiveness, which still
tends to 1 under the small-bids assumption.

Allocation is a generalization of the primal-dual algorithm WeightedAs-
signment [2]. It maintains a carefully chosen value for each advertiser a, which
depends on the sum of all the bids for queries assigned to a (in the following
load la) and the sum of all the bids made by a (in the following degree δa), so
far. The primal and dual (fractional) linear program modelling the AdWords
problem are given below. The primal program uses a variable m(a, i) for each



Online Ad Allocation in Bounded-Degree Graphs 65

edge (a, i) ∈ E. It denotes what fraction of query i is assigned to advertiser a.

P: max
∑

(a,i)∈E

m(a, i) · wa,i

s.t.
∑

i:(a,i)∈E

m(a, i) · wa,i ≤ B(a), (∀a ∈ A)

∑

a:(a,i)∈E

m(a, i) ≤ 1, (∀i ∈ Q)

m(a, i) ≥ 0, (∀(a, i) ∈ E)

D: min
∑

a∈A

B(a) · x(a) +
∑

i∈Q

y(i)

s.t. wa,i · x(a) + y(i) ≥ wa,i, (∀(a, i) ∈ E)
x(a), y(i) ≥ 0, (∀a ∈ A,∀i ∈ Q)

The algorithm Allocation is detailed below. It uses the value wa := B(a)/b,
which can be seen as the maximum bid that the advertiser a may make. For now,
consider the function V as a black box. We only state the properties of V crucial
for the analysis in this section. A detailed definition of V and the proofs for the
stated properties are given in Sect. 3.
Algorithm 1: Allocation

1 Initialize x(a) = 0, y(i) = 0 and m(a, i) = 0, ∀a ∈ A and ∀i ∈ Q;
2 while a new query i ∈ Q arrives do
3 Let N(i) denote the set of neighbors a of i with remaining budget;
4 if N(i) = ∅ then
5 Do not assign i;
6 else
7 Assign i to a :=

argmax
{

B(a′) ·
(
V

(
la′
wa′ ,

δa′+wa′,i
wa′

)
− V

(
la′
wa′ ,

δa′
wa′

))
: a′ ∈ N(i)

}
;

8 Update m(a, i) ← 1;

9 Set x(a) ← V
(

la+wa,i

wa
,

δa+wa,i

wa

)
;

10 forall a′ = a ∈ N(i) do
11 Set x(a′) ← V

(
la′
wa′ ,

δa′+wa′,i
wa′

)
;

12 end
13 end
14 end

As we shall see, the function V has three parameters: b, k and d, which are all
positive integers. We have b = �1/Rmax	, while k and d denote the parameters
of the underlying (k, d)-graph. The crucial properties of V are then as follows.
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(a) It holds that V (0, 0) = 0.
(b) For all l ∈ [0,∞), δ ∈ [l,∞) and w ∈ [0, 1], it holds that

V (l + w, δ + w) − V (l, δ) + (d − 1) · (V (l, δ + w) − V (l, δ)
) ≤ w

b · c∗ .

(c) It holds that V (l, δ) = 1, if l ≥ b or δ ≥ k · b.

With these properties, we can show the competitiveness of Allocation in
three steps.

1. Let ΔP and ΔD denote the increase in the value of the primal and dual
solution of any iteration, respectively. We show

ΔP

ΔD
≥ c∗ .

2. The algorithm produces a feasible dual solution.
3. The algorithm produces an almost feasible primal solution.

Proof of 1. Note that the dual variables are only updated by Allocation if a
query i is assigned to an advertiser a. In this case, the increase in the primal
solution is equal to ΔP = wa,i, since m(a, i) is set to one. Afterwards, the
dual variables are updated in Lines 9 and 11. Property a) implies that x(a) =
V (la/wa, δa/wa) is true initially. It is then easy to verify that this invariant is
maintained until a has no budget left. This means that we have a total increase
in the value of the dual solution of

ΔD = B(a) ·
(

V

(
la + wa,i

wa
,
δa + wa,i

wa

)

− V

(
la
wa

,
δa

wa

))

+
∑

a′∈N(i)\{a}
B(a′) ·

(

V

(
la′

wa′
,
δa′ + wa′,i

wa′

)

− V

(
la′

wa′
,

δa′

wa′

))

.

Recall that |N(i)| ≤ d. Since the algorithm chose a in Line 7, we can upper
bound ΔD by

ΔD ≤ B(a) ·
(

V

(
la + wa,i

wa
,
δa + wa,i

wa

)

− V

(
la
wa

,
δa

wa

)

+ (d − 1) ·
(

V

(
la
wa

,
δa + wa,i

wa

)

− V

(
la
wa

,
δa

wa

)))

.

We now use Property (b), applied with l = la/wa, δ = δa/wa and w = wa,i/wa.
Note that w ∈ [0, 1] is always true, since wa is an upper bound for wa,i. We
obtain

ΔD ≤ B(a) · wa,i

wa

1
b · c∗ =

wa,i

c∗ ,

where the last step is true because B(a)/wa = b, by definition. This finishes the
proof. ��
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Proof of 2. Observe that x(a) = 1 for all advertisers a ∈ A by the end of the
algorithm implies dual feasibility. As mentioned before, Allocation maintains
that x(a) = V (la/wa, δa/wa), as long as a still has remaining budget. Hence,
if an advertiser a still has remaining budget by the end of the algorithm, we
have δa ≥ k · B(a), by definition of a (k, d)-graph. This implies δa/wa ≥ k · b.
Property (c) then immediately yields x(a) = 1.

Now, consider the case that a has no budget remaining in the end. Let δ′
a

denote the value of δa when a had no budget remaining for the first time. When
the last query was assigned to a, x(a) was updated to V (la/wa, δ′

a/wa). It holds
that la ≥ B(a) and thus la/wa ≥ b. Property (c) again implies x(a) = 1. ��

Proof of 3. The algorithm stops assigning queries to an advertiser a once a has
no budget left. Hence, we have

∑

i∈Q

m(a, i) · wa,i ≤ B(a) + max
i∈Q

wa,i .

In these cases, the actual amount of money paid by the advertiser is B(a). Let
Alg denote the total revenue generated in the assignment created by Alloca-
tion. It follows that

Alg ≥ P · min
a∈A

{
B(a)

B(a) + maxi∈Q wa,i

}

= P · 1
1 + Rmax

≥ P · (1 − Rmax) .

��
Theorem 1. Let b = �1/Rmax	. Allocation achieves a competitive ratio of
(1 − Rmax)c∗ for the AdWords problem on (k, d)-graphs.

Proof. Let Alg and Opt denote the total amount of revenue accrued in the
assignment created by Allocation and the optimal offline algorithm, respec-
tively. Step 2 and weak duality implies Opt ≤ D. Step 3 gives Alg ≥
P · (1−Rmax). Applying step 1 at every iteration of the algorithm further yields
P/D ≥ c∗. Overall, we can conclude

Alg
Opt

≥ (1 − Rmax)
P

D
≥ (1 − Rmax)c∗ .

��
As mentioned at the start of this section, Allocation is allowed to assign

more queries to an advertiser than he can pay for with his budget. If this is
not permitted, we have to change Line 3 such that the set N(i) also excludes
advertisers a where wa,i exceeds the remaining budget of a. Furthermore, we
redefine la and δa such that they now exclude bids that were ignored for this
reason. We denote the resulting algorithm by AllocationR. At every step of
this algorithm, it still holds that ΔP/ΔD ≥ c∗. Moreover, AllocationR now
always produces a feasible primal solution. However, it may create an infeasible
dual solution, since we cannot guarantee δa ≥ k ·B(s) anymore. If la ≤ B(a)−wa

by the end of the algorithm, then a never made a bid bigger than his remaining
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budget. Hence, we have δa ≥ k · B(s) and thus x(a) = 1 in this case. However, if
la > B(a)− wa, then bids of a may be neglected by the algorithm. In the worst
case, x(a) may not be increased any further once we have la = δa = B(a)−wa+ε.
This results in a lower bound of x(a) > V (b−1, b−1) for all a ∈ A. It is possible
to show that

α := V (b − 1, b − 1) = 1 −
(

1
b · c∗

)(

1 − 1
d

)(k−1)b+1

< (1 − Rmax) .

Nonetheless, observe that α tends to 1 as b tends to infinity, which is equivalent
to Rmax tending to 0.

Again, let AlgR and Opt denote the total amount of revenue generated
in the assignment created by AllocationR and the optimal offline algorithm,
respectively. If we were to multiply the value of each dual variable by (1/α),
we would obtain a feasible dual solution. This implies Opt ≤ (1/α)D, by weak
duality. Moreover, we have AlgR = P and P/D ≥ c∗. Overall, we obtain

AlgR
Opt

≥ α · P

D
≥ α · c∗ .

Theorem 2. AllocationR achieves a competitive ratio of α · c∗ for the
AdWords problem on (k, d)-graphs.

3 The Function V

In this section, we give the definition of V (l, δ), for all l ∈ [0,∞) and δ ∈ [l,∞).
Moreover, we show that it attains the desired properties. We start by adopting
the definition of V from [2]. There, V (l, δ) (with three parameters b, k and d) is
defined for l ∈ {0, 1, . . . , b} and δ ∈ {l, l + 1, . . . , kb}. This definition satisfies

p(l, δ) + (d − 1) · q(l, δ) =
1

b · c∗ , (1)

for all l ∈ {0, 1, . . . , b − 1} and δ ∈ {l, l + 1, . . . , kb − 1}, where

p(l, δ) := V (l + 1, δ + 1) − V (l, δ) ,

q(l, δ) := V (l, δ + 1) − V (l, δ) .

Moreover, it holds that V (0, 0) = 0 and V (l, δ) = 1, if l = b or δ = kb. The exact
definition of V (l, δ) is complex and not needed for the extension in the following.
Nevertheless, we want to mention it here for the sake of completeness. It holds
that

V (l, l) :=
1

b · c∗

(
b−l∑

i=1

i

(
kb − l

b − l − i

)
1

(d − 1)b−l−i

)(

1 − 1
d

)kb−l

+ 1 − b − l

b · c∗

and

V (l, δ) :=
b−1∑

i=l

(−1)i−l 1
(d − 1)i−l

(
δ − l

i − l

)(
d

d − 1

)δ−i (

V (l, l) +
b − i

b · c∗ − 1
)

+ 1 − b − l

b · c∗ .
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δ

l

V

V (l, δ)

V (l + 1, δ + 1)

V (l, δ + 1)

V (l + 1, δ + 2)

Fig. 1. Definition of V on the continuous domain inside a parallelogram. V is defined
by a linear combination of the values of V at the corners. The dashed lines indicate
the linear functions that are fit in (2) and (3).

We start extending this definition by setting V (l, δ) := 1, if l ≥ b or δ ≥ kb.
By that, V already satisfies Properties a) and c) from Sect. 2. For Property b)
to hold, we need to fill the remaining gaps carefully. It is done by a technique
that is reminiscent of linear interpolation. The details are given in the following.
Subsequently, we show that the resulting function V has the desired property in
Lemma 1.

Consider the parallelogram with corners (l, δ), (l, δ + 1), (l + 1, δ + 1) and
(l+1, δ +2), where l ∈ {0, 1, . . . , b − 1} and δ ∈ {l, l+1, . . . , kb − 2}. We extend
V along the edges of said parallelogram by fitting linear functions between the
values of V at these corners. This means, we define

V (l, δ + x) := V (l, δ) + x · (V (l, δ + 1) − V (l, δ)) = V (l, δ) + x · q(l, δ) ,

and

V (l + y, δ + y) := V (l, δ) + y · (V (l + 1, δ + 1) − V (l, δ)) = V (l, δ) + y · p(l, δ) ,

for all x, y ∈ [0, 1]. We use the same idea to define V for all the points inside
this parallelogram, i.e. we fit a linear function between V (l + x, δ + x) and
V (l + x, δ + x + 1), for all x ∈ [0, 1] (see Fig. 1). This results in

V (l + x, δ + x + y) := V (l + x, δ + x) + y
(
V (l + x, δ + x + 1) − V (l + x, δ + x)

)

= V (l, δ) + xp(l, δ)

+ y
(
V (l, δ + 1) + xp(l, δ + 1) − V (l, δ) − xp(l, δ)

)

= V (l, δ) + xp(l, δ) + y
(
q(l, δ) + xp(l, δ + 1) − xp(l, δ)

)

= V (l, δ) + yq(l, δ) + x
(
(1 − y)p(l, δ) + yp(l, δ + 1)

)
.

(2)
Alternatively, we could have also decided to fit a linear function between

V (l, δ + y) and V (l + 1, δ + y + 1). This would result in

V (l + x, δ + x + y) := V (l, δ) + xp(l, δ) + y
(
(1 − x)q(l, δ) + xq(l + 1, δ + 1)

)
.
(3)
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δ

l

V

V (l, kb − 1)

V (l + 1, kb)

V (l, kb)

Fig. 2. The definition of V on the continuous domain inside a triangle. The triangle
is extended to a parallelogram using dummy definitions, indicated in red. Then, V is
again defined by a linear combination of the values at the corners. (Color figure online)

We want to note that these two definitions are identical, since

y · q(l, δ) + x · (
(1 − y)p(l, δ) + yp(l, δ + 1)

)

= y · q(l, δ) + x· (l, δ) − xy · (
p(l, δ) − p(l, δ + 1)

)

= y · q(l, δ) + x · p(l, δ) − xy · (q(l, δ) − q(l + 1, δ + 1)
)

= x · p(l, δ) + y · (
(1 − x)q(l, δ) + xq(l + 1, δ + 1)

)
,

where the second equality is true because

p(l, δ) + q(l + 1, δ + 1) = V (l, δ + 2) − V (l, δ) = q(l, δ) + p(l, δ + 1) .

Interestingly, Definition (2) reveals the gradient of the linear function that
is fit between V (l, δ + y) and V (l + 1, δ + y + 1). It is the convex combination
of p(l, δ) and p(l, δ + 1) with coefficients (1 − y) and y. Similarly, Definition (3)
yields that the gradient of the line between V (l+x, δ+x) and V (l+x, δ+x+1)
is the convex combination of q(l, δ) and q(l + 1, δ + 1) with coefficients (1 − x)
and x. For this reason, we will use Definition (2) to quantify the difference in V
if both l and δ are updated. On the other hand, Definition (3) will be useful for
determining the difference in V if only δ changes and l remains the same.

Note that we have not defined V inside the triangles with corners (l, kb − 1),
(l, kb) and (l + 1, kb), for l ∈ {0, 1, . . . , b − 1}. There, we want to extend V by
fitting a plane through the values of V at the three corners. For this, we introduce
the dummy definitions p(l, kb) := p(l, kb−1) and q(l+1, kb) := q(l, kb−1). This
extends the triangle to a parallelogram, such that the dummy value V (l+1, kb+1)
is embedded in the desired plane (see Fig. 2). Hence, we can use the definitions
above for the points within the triangle.

We want to show that these dummy definitions also satisfy (1), since this
property is crucial for the subsequent proofs. Since it holds that V (l, kb) = 1,
we have p(l, kb − 1) = 1 − V (l, kb − 1) = q(l, kb − 1), for all l ∈ {0, . . . , b − 1}.
Plugging this into (1) yields p(l, kb − 1) = q(l, kb − 1) = 1/(bc∗d). This implies
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that

p(l, kb) + (d − 1) · q(l, kb) =
1

bc∗d
+ (d − 1) · 1

bc∗d
=

1
b · c∗ ,

where l ∈ {0, 1, . . . , b − 1}. Here, we additionally define q(0, kb) := 1/(bc∗d) for
the sake of completeness.

Lemma 1. For all l ∈ [0,∞), δ ∈ [l,∞) and w ∈ [0, 1], it holds that

V (l + w, δ + w) − V (l, δ) + (d − 1) · (
V (l, δ + w) − V (l, δ)

) ≤ w

b · c∗ . (4)

Before we can prove Lemma 1, we need the following monotonicity lemmas.

Lemma 2. For all l ∈ {0, 1, . . . , b − 1} and δ ∈ {l + 1, l + 2, . . . , kb}, it holds
that

p(l, δ) ≤ p(l, δ − 1) .

Proof. We want to start by mentioning the connection

p(l, δ) � p(l′, δ′) ⇐⇒ q(l, δ) � q(l′, δ′) , (5)

which holds for all l, l′ ∈ {0, 1, . . . , b − 1} and δ, δ′ ∈ {l, l + 1, . . . , kb}. It is a
direct implication of (1), since

p(l, δ) + (d − 1) · q(l, δ) =
1

b · c∗ = p(l′, δ′) + (d − 1) · q(l, δ′)

⇒ p(l, δ) = p(l′, δ′) + (d − 1) · (q(l′, δ′) − q(l, δ)) .

Recall that we defined p(l, kb) := p(l, kb − 1), for all l ∈ {0, 1, . . . , b − 1},
which already implies the lemma for δ = kb. For all δ < kb, we will prove the
lemma by showing q(l, δ) ≥ q(l, δ − 1), which is identical to p(l, δ) ≤ p(l, δ − 1)
by (5).

For l = b − 1, one can show by induction over δ that

V (b − 1, δ) = 1 − 1
bc∗d

kb−δ−1∑

i=0

(
d − 1

d

)i

.

Hence, it holds that

q(b − 1, δ) =
1

bc∗d

(
d − 1

d

)kb−δ−1

≥ 1
bc∗d

(
d − 1

d

)kb−δ

= q(b − 1, δ − 1) .

So far we have shown that q(b − 1, δ) ≥ q(b − 1, δ − 1) holds for all δ. We
will finish the proof inductively. Consider a load level l ≤ b − 2. For all δ ∈
{l + 1, l + 2, . . . , kb − 2}, the induction hypothesis states that q(l + 1, δ + 1) ≥
q(l + 1, δ). Now, consider q(l, δ − 1) and suppose for the sake of contradiction
that q(l, δ − 1) < q(l + 1, δ). Plugging this into

p(l, δ − 1) + q(l + 1, δ) = V (l + 1, δ + 1) − V (l, δ − 1) = q(l, δ − 1) + p(l, δ) (6)
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yields p(l, δ) > p(l, δ − 1). By (5), it follows that q(l, δ) < q(l, δ − 1). Together
with our assumption and the induction hypothesis, we conclude that q(l, δ) <
q(l + 1, δ + 1). To summarize, we showed that q(l, δ − 1) < q(l + 1, δ) implies
q(l, δ) < q(l+1, δ+1). Thus, we can apply these arguments repeatedly to obtain
q(l, kb − 2) < q(l + 1, kb − 1). However, we can show that this is false, yielding
a contradiction. Therefore, our assumption does not hold, implying q(l, δ − 1) ≥
q(l + 1, δ). Plugging this into (6) and then using (5) gives q(l, δ) ≥ q(l, δ − 1).

We finish the proof by justifying our claim. We show that q(l, kb − 2) =
q(l+1, kb−1) holds if l ≤ b−2. As mentioned before, V (l+1, kb) = V (l+2, kb) = 1
implies that p(l+1, kb−1) = q(l+1, kb−1). Using this in (1) gives q(l+1, kb−1) =
1/(bc∗d). We can use the exact same arguments to show q(l, kb − 1) = 1/(bc∗d),
as also V (l, kb) = 1. This means that V (l + 1, kb − 1) = V (l, kb − 1) holds. This
further implies

p(l, kb−2) = V (l+1, kb−1)−V (l, kb−2) = V (l, kb−1)−V (l, kb−2) = q(l, kb−2) .

Plugging this into (1) again yields q(l, kb − 2) = 1/(bc∗d), finishing the proof. ��
Lemma 3. For all l ∈ {1, 2, . . . , b} and δ ∈ {l, l + 1, . . . , kb}, it holds that

q(l, δ) ≤ q(l − 1, δ − 1) .

Proof. First, recall that for δ = kb, we defined q(l, kb) = q(l − 1, kb − 1). Hence,
this lemma also trivially holds for δ = kb. For δ < kb, consider the parallelogram
with lower left corner V (l − 1, δ − 1). Lemma 2 implies that p(l − 1, δ − 1) ≥
p(l − 1, δ). Since q(l − 1, δ − 1) + p(l − 1, δ) = p(l − 1, δ − 1) + q(l, δ), we get
q(l, δ) ≤ q(l − 1, δ − 1). ��
Proof of Lemma 1. At first, we assume that l + w ≤ b and δ + w ≤ kb. This
means that (l + w, δ + w), (l, δ + w) and (l, δ) are all contained in one of the
previously mentioned parallelograms. Thus, the value of V at these points is
defined using (2) or (3). We do a case distinction over the different possible
locations of (l + w, δ + w) and (l, δ + w) with respect to (l, δ). Since w ≤ 1,
(l + w, δ + w) is either in the same parallelogram as or in the one to the top
of the parallelogram containing (l, δ). Similarly, (l, δ + w) is either in the same
parallelogram as or in the one to the right of (l, δ). Thus, we consider the following
four cases.

Case 1. Both (l + w, δ + w) and (l, δ + w) are in the same parallelogram as
(l, δ). Let (l′, δ′) be the lower left corner of this parallelogram. Further, define
y := l−l′, x := δ−y−δ′, p = V (l+w, δ+w)−V (l, δ) and q = V (l, δ+w)−V (l, δ)
(see Fig. 3).

Using Definition (2), we obtain

p = w · ((1−x)p(l′, δ′)+xp(l′, δ′ +1)) = w ·p(l′, δ′)+wx · (p(l′, δ′ +1)−p(l′, δ′)) .

Lemma 2 implies that p(l′, δ + 1) ≤ p(l′, δ′). Hence, we get p ≤ w · p(l′, δ′).
Similarly, by using Definition (3), we have

q = w·((1−y)q(l′, δ′)+yq(l′+1, δ′+1)) = w·q(l′, δ′)+wy·(q(l′+1, δ′+1)−q(l′, δ′)) ,
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(l, δ)

(l, δ + w)

(l + w, δ + w)

q

p

(l , δ ) (l , δ + 1)

(l + 1, δ + 1) (l + 1, δ + 2)

y

w

y x w

Fig. 3. Case 1. All three points are in the same parallelogram.

which we can upper bound by w · q(l′, δ′) with Lemma 3. Overall, we have

b · (p + (d − 1) · q) ≤ w · b · (p(l′, δ′) + (d − 1) · q(l′, δ′)) =
w

c∗ ,

where the last equality is true according to (1).
Case 2. (l+w, δ+w) is in the parallelogram to the top of the one containing

both (l, δ) and (l, δ + w). Let (l′, δ′) be the lower left corner of the bottom
parallelogram. We define again y := l − l′, x := δ − y − δ′ and q = V (l, δ +w)−
V (l, δ). Moreover, we set w1 := 1 − y and w2 := w − w1. It holds that w2 > 0.
Let p1 = V (l+w1, δ+w1)−V (l, δ) and p2 = V (l+w, δ+w)−V (l+w1, δ+w1)
(see Fig. 4).

We obtain

p1 = w1 · ((1 − x)p(l′, δ′) + xp(l′, δ′ + 1)) ,

p2 = w2 · ((1 − x)p(l′ + 1, δ′ + 1) + xp(l′ + 1, δ′ + 2)) ,

q = w · ((1 − y)q(l′, δ′) + yq(l′ + 1, δ′ + 1)) .

Similarly to Case 1, we can upper bound p1 and p2 with the help of Lemma 2
by

p1 ≤ w1 · p(l′, δ′) and p2 ≤ w2 · p(l′ + 1, δ′ + 1) .

In order to upper bound q, we use w = w1 + w2 and y = 1 − w1

q = (w1 + w2) · q(l′, δ′)

+ (w1 + w2 − w2
1 − w1w2) · (q(l′ + 1, δ′ + 1) − q(l′, δ′))

= w1 · q(l′, δ′) + w2 · q(l′ + 1, δ′ + 1)

+ (w1 − w2
1 − w1w2) · (q(l′ + 1, δ′ + 1) − q(l′, δ′))

= w1 · q(l′, δ′) + w2 · q(l′ + 1, δ′ + 1)
+ w1(1 − (w1 + w2)) · (q(l′ + 1, δ′ + 1) − q(l′, δ′))

≤ w1 · q(l′, δ′) + w2 · q(l′ + 1, δ′ + 1) ,
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(l, δ)

(l, δ + w)

(l + w, δ + w)

q

p1

p2

(l , δ ) (l , δ + 1)

(l + 1, δ + 1)
(l + 1, δ + 2)

(l + 2, δ + 2) (l + 2, δ + 3)

y

w

w1

w2

y x w

Fig. 4. Case 2. The points are contained by two parallelograms on top of each other.

where the last inequality follows from Lemma 3 and w1(1 − (w1 + w2)) ≥ 0 as
w1 + w2 = w ≤ 1. Thus, we overall get

b · (p1 + p2 + (d − 1) · q) ≤ w1 · b · (p(l′, δ′) + (d − 1) · q(l′, δ′))
+ w2 · b · (p(l′ + 1, δ′ + 1) + (d − 1) · q(l′ + 1, δ′ + 1))

=
w1 + w2

c∗ =
w

c∗ .

Case 3. (l, δ + w) is in the parallelogram to the right of the one containing
both (l, δ) and (l + w, δ + w). This case is analogous to case 2.

Case 4. The three points are in three different parallelograms. Let (l′, δ′)
be the lower left corner of the parallelogram containing (l, δ). Let y := l − l′,
x := δ − y − δ′, wl1 := 1 − y and wl2 := w − wl1. Moreover, we also have
here wδ1 = 1 − x and wδ2 = w − wδ1. It holds that wl2 > 0 and wδ2 > 0. Let
p1 = V (l + wl1, δ + wl1) − V (l, δ), p2 = V (l + w, δ + w) − V (l + wl1, δ + wl1),
q1 = V (l, δ + wδ1) − V (l, δ) and q2 = V (l, δ + w) − V (l, δ + wδ1) (see Fig. 5).

It holds that

p1 = wl1 · ((1 − x)p(l′, δ′) + xp(l′, δ′ + 1)) ,

p2 = wl2 · ((1 − x)p(l′ + 1, δ′ + 1) + xp(l′ + 1, δ′ + 2)) ,

q1 = wδ1 · ((1 − y)q(l′, δ′) + yq(l′ + 1, δ′ + 1)) ,

q2 = wδ2 · ((1 − y)q(l′, δ′ + 1) + yq(l′ + 1, δ′ + 2)) .
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(l, δ)

(l, δ + w)

(l + w, δ + w)

q1 q2

p1
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(l , δ ) (l , δ + 1) (l , δ + 2)

(l + 1, δ + 1) (l + 1, δ + 2) (l + 1, δ + 3)

(l + 2, δ + 2) (l + 2, δ + 3)

y

w

wl1

wl2

y x wδ1 wδ2

Fig. 5. Case 4. All three points are in different parallelograms.

First, we substitute wl1 = 1 − y and wδ1 = 1 − x to obtain

p1 = (1 − x)(1 − y)p(l′, δ′) + x(1 − y)p(l′, δ′ + 1)) ,

q1 = (1 − x)(1 − y)q(l′, δ′) + (1 − x)yq(l′ + 1, δ′ + 1)) .

Next, we use wl2 = y + w − 1 and wδ2 = x + w − 1

p2 = (1 − x)yp(l′ + 1, δ′ + 1) + xyp(l′ + 1, δ′ + 2))
+ (w − 1) · ((1 − x)p(l′ + 1, δ′ + 1) + xp(l′ + 1, δ′ + 2)) ,

q2 = x(1 − y)q(l′, δ′ + 1) + xyq(l′ + 1, δ′ + 2))
+ (w − 1) · ((1 − y)q(l′, δ′ + 1) + yq(l′ + 1, δ′ + 2)) .

Observe that the factors (excluding those with (w − 1)) before corresponding p
and q values are identical. Moreover, they sum up to one, i.e.

xy + x(1 − y) + (1 − x)y + (1 − x)(1 − y) = 1 .

Hence, we get

b · (
p1 + p2 + (d − 1) · (q1 + q2)

)

=
1
c∗ + (w − 1)b · [(1 − x)p(l′ + 1, δ′ + 1) + xp(l′ + 1, δ′ + 2)

+ (d − 1) · ((1 − y)q(l′, δ′ + 1) + yq(l′ + 1, δ′ + 2))
]
.
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Lemma 2 implies that p(l′ + 1, δ′ + 1) ≥ p(l′ + 1, δ′ + 2) and Lemma 3 implies
that q(l′, δ′ + 1) ≥ q(l′ + 1, δ′ + 2). Because w − 1 ≤ 0, this yields

b · (
p1 + p2 + (d − 1) · (q1 + q2)

)

≤ 1
c∗ + (w − 1)b · [p(l′ + 1, δ′ + 2) + (d − 1)q(l′ + 1, δ′ + 2)

]

=
1
c∗ +

w − 1
c∗ =

w

c∗ .

At last, we want to consider the case l + w > b or δ + w > kb. If l > b or
δ > kb, the left side of (4) is 0, trivially satisfying the inequality. Hence, we focus
on the case where l ∈ (b − w, b] and δ ≤ kb or l ≤ b and δ ∈ (kb − w, kb]. Then
not all the relevant values of V are defined using (2) and (3). However, once we
leave the area of these definitions, we know that V is defined as 1 everywhere.
Let wl = min{w, b− l} and wδ = min{w, kb−δ}. Note that at least one of wl and
wδ has to be strictly less than w. If wδ ≤ wl, it holds that δ+wδ = kb. It follows
that V (l+w, δ +w) = 1 = V (l+wδ, δ +wδ) and V (l, δ +w) = 1 = V (l, δ +wδ).
This yields

b · (
V (l + w, δ + w) − V (l, δ) + (d − 1) · (V (l, δ + w) − V (l, δ))

)

= b · (
V (l + wδ, δ + wδ) − V (l, δ) + (d − 1) · (V (l, δ + wδ) − V (l, δ))

)

≤ wδ

c∗ ≤ w

c∗ .

The first inequality is true since l + wδ ≤ b and δ + wδ = kb, meaning that we
can use the calculations of the case distinctions.

On the other hand, if wl < wδ, it holds that l + wl = b. This means that
V (l+w, δ+w) = 1 = V (l+wl, δ+wl) and V (l, δ+w) = V (l, δ+wδ). Moreover,
let m := �wδ/wl	. We partition the increase V (l, δ + wδ) − V (l, δ) into (m + 1)
parts, i.e. m parts of length wl and one part of length wδ mod wl. Then, the
idea is to add the necessary terms such that we can apply the results from the
case distinctions above to all m + 1 parts. More, precisely

b · (
V (l + w, δ + w) − V (l, δ) + (d − 1) · (V (l, δ + w) − V (l, δ))

)

≤ b ·
m∑

i=1

(
V (l + wl, δ + iwl) − V (l, δ + (i − 1)wl)

+ (d − 1) · (
V (l, δ + iwl) − V (l, δ + (i − 1)wl)

))

+ b ·
(
V (l + (wδ mod wl), δ + wδ) − V (l, δ + mwl)

+ (d − 1) · (
V (l, δ + wδ) − V (l, δ + mwl)

))

≤
m∑

i=1

wl

c
+

wδ mod wl

c
=

wδ

c
≤ w

c
.

For the first inequality to hold, we have to show that V (l+wl, δ+i ·wl)−V (l, δ+
(i−1) ·wl), for 2 ≤ i ≤ m, as well as V (l+(wδ mod wl), δ+wδ)−V (l, δ+m ·wl)
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are non-negative. Using Definition (2), we can see that such a term could only
be negative if there was a pair of l′ and δ′ such that p(l′, δ′) < 0. However,
by repeatedly applying Lemma 2, we would obtain 0 > p(l′, δ′) ≥ p(l′, kb). As
shown previously, we have p(l′, kb) = 1/(bc∗d) > 0, which is a contradiction. ��
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Abstract. Team formation is ubiquitous in many sectors: education,
labor markets, sports, etc. A team’s success depends on its members’
latent types, which are not directly observable but can be (partially)
inferred from past performances. From the viewpoint of a principal trying
to select teams, this leads to a natural exploration-exploitation trade-off:
retain successful teams that are discovered early, or reassign agents to
learn more about their types? We study a natural model for online team
formation, where a principal repeatedly partitions a group of agents into
teams. Agents have binary latent types, each team comprises two mem-
bers, and a team’s performance is a symmetric function of its members’
types. Over multiple rounds, the principal selects matchings over agents
and incurs regret equal to the deficit in the number of successful teams
versus the optimal matching for the given function. Our work provides
a complete characterization of the regret landscape for all symmetric
functions of two binary inputs. In particular, we develop team-selection
policies that, despite being agnostic of model parameters, achieve opti-
mal or near-optimal regret against an adaptive adversary.

Keywords: Online team formation · Regret · Combinatorial bandits

1 Introduction

An instructor teaching a large online course wants to pair up students for assign-
ments. The instructor knows that a team performs well as long as at least one of
its members has some past experience with coding, but unfortunately, there is
no available information on the students’ prior experience. However, the course
staff can observe the performance of each team on assignments, and so, over
multiple assignments, would like to reshuffle teams to try and quickly maximize
the overall number of successful teams. How well can one do in such a situation?

Team formation is ubiquitous across many domains: homework groups in
large courses, workers assigned to projects on online labor platforms, police offi-
cers paired up for patrols, athletes assigned to teams, etc. Such teams must
often be formed without prior information on each individual’s latent skills or
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personality traits, albeit with knowledge of how these latent traits affect team
performance. The lack of information necessitates a natural trade-off: a principal
must decide whether to exploit successful teams located early or reassign team-
mates to gain insight into the abilities of other individuals. The latter choice
may temporarily reduce the overall rate of success.

To study this problem, we consider a setting (described in detail in Sect. 2)
where agents have binary latent types, each team comprises two members, and
the performance of each team is given by the same synergy function, i.e., some
given symmetric function of its members’ types. Over multiple rounds, the prin-
cipal selects matchings over agents, with the goal of minimizing the cumulative
regret, i.e., the difference between the number of successful teams in a round ver-
sus the number of successful teams under an optimal matching. Our main results
concern the special case of symmetric Boolean synergy functions—in particular,
we study the functions EQ and XOR (in Sect. 3), OR (in Sect. 4) and AND (in
Sect. 5). While this may at first appear to be a limited class of synergy func-
tions, in Sect. 2.3, we argue that these four functions are in a sense the atomic
primitives for this problem; our results for these four settings are sufficient to
handle arbitrary symmetric synergy functions.

The above model was first introduced by Johari et al. [12], who considered the
case where agent types are i.i.d. Bernoulli(p) (for known p) and provide asymp-
totically optimal regret guarantees under AND (and preliminary results for OR).
As with any bandit setting, it is natural to ask whether one can go beyond a
stochastic model to admit adversarial inputs. In particular, the strongest adver-
sary one can consider here is an adaptive adversary, which observes the choice
of teams in each round, and only then fixes the latent types of agents. In most
bandit settings, such an adversary is too strong to get any meaningful guaran-
tees; among other things, adaptivity precludes the use of randomization as an
algorithmic tool, and typically results in every policy being as bad as any other.
Nevertheless, in this work, we provide a near-complete characterization of the
regret landscape for team formation under an adaptive adversary. In particular,
in a setting with n agents of which k have type ‘1’, we present algorithms that
are agnostic of the parameter k, and yet when faced with an adaptive adver-
sary, achieve optimal regret for EQ and XOR, and near-optimal regret bounds
under OR and AND (and therefore, using our reduction in Sect. 2.3, achieve
near-optimal regret for any symmetric function).

While our results are specific to particulars of the model, they exhibit several
noteworthy features. First, despite the adversary being fully adaptive, our regret
bounds differ only by a small constant factor from prior results for AND under
i.i.d. Bernoulli types [12]; such a small gap between stochastic and adversar-
ial bandit models is uncommon and surprising. Next, our bounds under differ-
ent synergy functions highlight the critical role of these functions in determin-
ing the regret landscape. Additionally, our algorithms expose a sharp contrast
between learning and regret minimization in our setting: while the rate of learn-
ing increases with more exploration, minimizing regret benefits from maximal
exploitation. Finally, to deal with adaptive adversaries in our model, we use
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techniques from extremal graph theory that are atypical in regret minimization;
we hope that these ideas prove useful in other complex bandit settings.

1.1 Related Work

Regret minimization in team formation, although reminiscent of combinato-
rial bandits/semi-bandits [4–6,8,16], poses fundamentally new challenges aris-
ing from different synergy functions. In particular, a crucial aspect of bandit
models is that rewards and/or feedback are linear functions of individual arms’
latent types. Some models allow rewards/feedback to be given by a non-linear
link function of the sum of arm rewards [7,10], but typically require the link
function to be well-approximated by a linear function [17]. In contrast, our team
synergy functions are non-linear, and moreover, are not well-approximated by
any non-linear function of the sums of the agents’ types.

One way to go beyond semi-bandit models and incorporate pairwise interac-
tions is by assuming that the resulting reward matrix is low-rank [13,20,24].
The critical property here is that under perfect feedback, one can learn all
agent types via a few ‘orthogonal’ explorations; this is true in our setting under
the XOR function (Sect. 3), but not for other Boolean functions. Another app-
roach for handling complex rewards/feedback is via a Bayesian heuristic such as
Thompson sampling or information-directed sampling [9,14,19,23]. While such
approaches achieve near-optimal regret in many settings, the challenge in our
setting is in updating priors over agents’ types given team scores. We hope that
the new approaches we introduce could, in the future, be combined with low-
rank decomposition and sampling approaches to handle more complex scenarios
such as shifting types and corrupted feedback.

In addition to the bandit literature, there is a parallel stream on learning for
team formation. Rajkumar et al. [18] consider the problem of learning to parti-
tion workers into teams, where team compatibility depends on individual types.
Kleinberg and Raghu [15] consider the use of individual scores to estimate team
scores and use these to approximately determine the best team from a pool of
agents. Singla et al. [21] present algorithms for learning individual types to form
a single team under an online budgeted learning setting. These works concen-
trate on pure learning. In contrast, our focus is on minimizing regret. Finally,
there is a line of work on strategic behavior in teams, studying how to incentivize
workers to exert effort [2,3], and how to use signaling to influence team forma-
tion [11]. While our work eschews strategic considerations, it suggests extensions
that combine learning by the principal with strategic actions by agents.

2 Model

2.1 Agents, Types, and Teams

We consider n agents who must be paired by a principal into teams of two
over a number of rounds; throughout, we assume that n is even. Each agent
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has an unknown latent type θi ∈ {0, 1}. These types can represent any dichoto-
mous attribute: “left-brain” vs. “right-brain” (Sect. 3), “low-skill” vs. “high-skill”
(Sects. 4 and 5), etc. We let k denote the number of agents with type 1, and
assume that k is fixed a priori but unknown.

In each round t, the principal selects a matching Mt, with each edge
(i, j) ∈ Mt representing a team. We use the terms “edge” and “team” interchange-
ably. The success of a team (i, j) ∈ Mt is f(θi, θj), where f : {0, 1}2 → R is some
known symmetric function of the agents’ types. In Sects. 3-5, we restrict our focus
to Boolean functions, interpreting f(θi, θj) = 1 as a success and f(θi, θj) = 0
as a failure. The algorithm observes the success of each team, and may use
this to select the matchings in subsequent rounds; however, the algorithm can-
not directly observe agents’ types. For any matching M , we define its score as
S(M) :=

∑
(i,j)∈M f(θi, θj)—in the special case of Boolean functions, this is the

number of successful teams.
A convenient way to view the Boolean setting is as constructing an edge-

labeled exploration graph G(V,E1, E2, . . .), where nodes in V are agents, and
the edge set Et :=

⋃
t′≤t Mt′ represents all pairings played up to round t. Upon

being played for the first time, an edge is assigned a label {0, 1} corresponding
to the success value of its team. Known 0-agents and known 1-agents are those
whose types can be inferred from the edge labels. The remaining agents are
unknown. The unresolved subgraph is the induced subgraph on the unknown
agents.

2.2 Adversarial Types and Regret

The principal makes decisions facing an adaptive adversary, who knows k (unlike
the principal, who only knows n) and, in each round, is free to assign agent types
after seeing the matching chosen by the principal, as long as (1) the assignment is
consistent with prior observations (i.e., with the exploration graph), and (2) the
number of 1-agents is k. Note that this is the strongest notion of an adversary we
can consider in this setting; in particular, since the adversary is fully adaptive
and knows the matching before making decisions, randomizing does not help,
and so it is without loss of generality to consider only deterministic algorithms.

We evaluate the performance of algorithms in terms of additive regret against
such an adversary. Formally, let M∗ be any matching maximizing S(M∗)—note
that for any Boolean team success function, S(M∗) is a fixed function of n and k.
In round t, an algorithm incurs regret rt := S(M∗)−S(Mt), and its total regret
is the sum of its per-round regret over an a priori infinite time horizon. Note,
however, that after a finite number of rounds, a naïve algorithm that enumerates
all matchings can determine, and henceforth play, M∗; thus, the optimal regret is
always finite. Moreover, the “effective” horizon (i.e., the time until the algorithm
learns M∗) of our algorithms is small.
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2.3 Symmetry Synergy Functions and Atomic Primitives

In subsequent sections, we consider the problem of minimizing regret under four
Boolean synergy functions f : {0, 1}2 → {0, 1}: EQ, XOR, OR, and AND. Inter-
estingly, the algorithms for these four settings suffice to handle any symmetric
synergy function f : {0, 1}2 → R. We argue this below for synergy functions that
take at most two values; We handle the case of synergy functions f taking three
different values at the end of Sect. 3.1.

Lemma 1. Fix some � ≤ u, let f : {0, 1}2 → {�, u} be any symmetric synergy
function, and let rf (n, k) denote the optimal regret with n agents, of which k
have type 1.

Then, rf (n, k) = (u − �) · rg(n, k) for one of g ∈ {EQ,XOR,AND,OR}.
Proof. First, note that without loss of generality, we may assume that f(0, 0) ≤
f(1, 1). Otherwise, we can swap the labels of the agent types without altering the
problem. Note that this immediately allows us to reduce team formation under
the Boolean NAND and NOR function to the same problem under AND and OR,
respectively. Next, note that if f(0, 0) = f(1, 0) = f(1, 1), then the problem is
trivial, as all matchings have the same score. Otherwise, we may apply the affine
transformation f �→ 1

u−� · f − �
u−� to the output to recover a Boolean function:

– When f(0, 1) < f(0, 0) = f(1, 1), we recover the EQ function.
– When f(0, 0) = f(1, 1) < f(0, 1), we recover the XOR function.
– When f(0, 0) = f(0, 1) < f(1, 1), we recover the AND function.
– When f(0, 0) < f(0, 1) = f(1, 1), we recover the OR function.

The structure of the problem remains unchanged since total regret is linear
in the number of each type of team played over the course of the algorithm. The
regret simply scales by a factor of u − �. �

3 Uniform and Diverse Teams

We first focus on forming teams that promote uniformity (captured by the
Boolean EQ function) or diversity (captured by the XOR function). In addi-
tion, we also show that the algorithm for EQ minimizes regret under any general
symmetric synergy function taking three different values.

3.1 Uniformity (EQ)

We first consider the equality (or EQ) synergy function, fEQ(θi, θj) = θi ⊕ θj .
Here, an optimal matching M∗ includes as few (0, 1)-teams as possible, and
thus S(M∗) = n

2 − (k mod 2). If k (and thus n − k) is even, then all agents
can be paired in successful teams; else, any optimal matching must include one
unsuccessful team with different types. For this setting, Theorem 1 shows that a
simple policy (Algorithm 1) achieves optimal regret for all parameters n and k.
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Algorithm 1. Form Uniform Teams
Round 1: Play an arbitrary matching.
Round 2: Swap unsuccessful teams in pairs as {(a, b), (c, d)} → {(a, c), (b, d)}.
Repeat remaining teams (including one unsuccessful team when k is odd).
Round 3: If {(a, b), (c, d)}, {(a, c), (b, d)} are both unsuccessful, play {(a, d), (b, c)}.
Repeat remaining teams.

Theorem 1. Define rEQ(n, k) := 2 · (
min(k, n − k) − (k mod 2)

)
. Then,

1. Algorithm 1 learns an optimal matching by round 3, and incurs regret at most
rEQ(n, k).

2. Any algorithm incurs regret at least rEQ(n, k) in the worst case.

Proof. For the upper bound on the regret, note that every unsuccessful team
includes a 0-agent and a 1-agent. Thus, there is a re-pairing of any two unsuc-
cessful teams that gives rise to two successful teams. If the re-pairing in round 2
is unsuccessful, the only other re-pairing, selected in round 3, must be success-
ful. There will be k mod 2 unsuccessful teams in round 3, making it an optimal
matching. At most min(k, n−k) (0, 1)-teams can be chosen in each of rounds 1–
2, implying that the maximum regret in each of these rounds is min(k, n−k)− (k
mod 2). Since Algorithm 1 incurs regret only in rounds 1–2, its total regret is at
most rEQ(n, k).

For the converse (Claim 2), we argue that against any algorithm, the adver-
sary can always induce regret min(k, n − k) − (k mod 2) in each of rounds 1–2.
Note that after round 2, the exploration graph is a union of two (not necessarily
disjoint) matchings, and hence consists of a disjoint union of even-length cycles
and isolated (duplicated) edges; this is independent of the algorithm, as it holds
for any pair of perfect matchings. Since the graph is bipartite, the adversary can
assign types such that no pair of the minority type is adjacent in the graph by
starting with the labeling according to the bipartition, then arbitrarily relabeling
a subset of the minority side to make the labeling consistent with k. �

A similar argument allows us to complete our treatment of general (symmetric)
synergy functions from Sect. 2.3.

Corollary 1. For any symmetric synergy function f : {0, 1}2 → R such that
f(0, 0) �= f(0, 1) �= f(1, 1), there is a regret-minimizing algorithm that locates an
optimal matching within two rounds.

Proof. By applying an affine transformation to the outputs as in Sect. 2.3, we
may assume without loss of generality that f(0, 0) = 0, and f(1, 1) = 1. There
are three cases to consider:

– f(0, 1) = 1
2 : The problem is trivial, since all matchings have the same score.

– f(0, 1) > 1
2 : The optimal matching includes as many 1–0 agent teams as

possible. After the first (arbitrary) matching, every agent is either part of a
known 1–0 team or has a known identity (as a member of a 0–0 or 1–1 team).
Thus, one can always select an optimal matching in the second round.
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– f(0, 1) < 1
2 : The optimal matching includes as many 1–1 agent teams as

possible, just as in the EQ setting. Note that the three distinct values of
f allow us to distinguish between (0, 0), (0, 1), and (1, 1) teams. The same
adversarial policy ensures that all 0–1 teams remain sub-optimally paired in
round 2, so we exactly recover the EQ setting.

�

3.2 Diversity (XOR)

Next we consider the XOR success function, fXOR(θi, θj) = θi ⊕ θj , which pro-
motes diverse teams. Now S(M∗) = min(k, n − k), since any optimal matching
M∗ includes as many (0, 1)-teams as possible. Define x+ := max(0, x); we again
show that a simple policy (Algorithm 2) has optimal regret for all n, k.

Algorithm 2. Form Diverse Teams
Round 1: Play an arbitrary matching; let {(1, 2), . . . , (�−1, �)} denote unsuccessful
teams.
Round 2: Replay all successful teams, and construct a single cycle over all unsuc-
cessful teams (i.e., play teams {(�, 1), (2, 3), . . . , (� − 2, � − 1)}).
Round 3: Play any inferred optimal matching (see Theorem 2).

Theorem 2. Define rXOR(n, k) := 2 · (min(k, n − k)− 1− (k mod 2)
)+

. Then,

1. Algorithm 2 learns an optimal matching after round 2, and incurs regret at
most rXOR(n, k).

2. Any algorithm incurs regret at least rXOR(n, k) in the worst case.

Proof. For the achievability in Claim 1, note that each edge
(
i, (i + 1) mod �

)

of the cycle constructed in the algorithm has the following property: if the
edge is successful in round 2, then its endpoints have opposite types; otherwise,
they have the same type. By following edges around the cycle, the algorithm
can therefore construct the sets S= of agents with the same type as agent 1,
and S �= of agents with the opposite type. Subsequently, it is optimal to match
min(|S=|, |S �=|) teams of (known) opposite-type agents, and match the extrane-
ous agents into unsuccessful teams.

Among agents 1, . . . , �, there are k − n−�
2 1-agents and n − k − n−�

2 0-agents;
thus, the round 1 regret is r1 := min(k, n − k)− n−�

2 (note that When k is odd,
one team must be successful in round 1). Since no regret is incurred after round
2, the adversary must maximize the regret in round 2 conditioned on the choice
of �. This is achieved by assigning type 1 to agents 1, . . . , k − n−�

2 , and type 0
to agents k − n−�

2 +1, . . . , �. Since (�, 1) and (k − n−�
2 , k − n−�

2 +1) are the only
successful teams (as long as agents 1 to � do not all have the same type), the
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regret in round 2 is (r1 − 2)+. The total regret
(
2min(k, n − k)− n+ � − 2

)+ is
monotone increasing in �, with the maximum attained at � = n − 2(k mod 2).
Substituting, we get the upper bound.

For the converse (Claim 2), we describe a policy for the adversary that ensures
regret at least rXOR(n, k). In round 1, the adversary reveals k mod 2 successful
teams, resulting in regret min(k, n−k)− (k mod 2). In round 2, the exploration
graph must consist of a disjoint union of even-length cycles (including isolated
duplicated edges).

First, when k is odd, consider the component containing the one revealed
successful team from round 1. If the component has just two agents (i.e., the
algorithm repeats the team), then we again get one successful team. Otherwise, if
the team is part of a longer cycle, the adversary puts an odd number of adjacent
0s and an odd number of adjacent 1 s in the cycle, such that the previously
successful team is (0, 1). Since the edge is not repeated, and only one other (0,
1)-team is created, the algorithm gets at most one successful team in this cycle.
The remaining cycles contain an even number of 1-agents, so we appeal to below.

When k is even, the adversary fills cycles with 0-agents until they are
exhausted, then labels all remaining agents as 1-agents. At most one cycle con-
tains both agent types. Placing the 0-agents contiguously in this cycle ensures
only two adjacent successful teams. Since all cycle lengths are even, as is n − k,
these successful teams will be an even number of edges apart; in particular, the
adversary can ensure that they are both edges from round 2, making the assign-
ment consistent with round 1. In total, the algorithm obtains at most 2 + (k
mod 2) successful teams in round 2, giving total regret at least rXOR(n, k). �

4 The Strongest Link Setting (OR)

We next consider the Boolean OR synergy function, that is, fOR(θi, θj) = θi+θj .
Adopting the terminology of Johari et al. [12], we refer to this setting as the
strongest link model: interpreting 0/1-agents as having low/high skill, a team is
successful when it has at least one high-skill member.

Observe that under OR, we have S(M∗) = min(k, n/2), since any optimal
matching M∗ includes a maximal set of (0, 1)-teams. Define α := n−k

n to be
the fraction of low-skill agents; our regret bounds in this setting are more con-
veniently phrased in terms of α. In particular, our first result establishes the
following lower bounds on the regret incurred by any algorithm.

Theorem 3. For the strongest link setting, any algorithm incurs regret at least
LOR(α) · n in the worst-case, where

LOR(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

13α
17 0 ≤ α ≤ 1

2
6−9α

4
1
2 < α ≤ 6

11
3−4α

3
6
11 < α ≤ 3

5
1−α
2

3
5 < α ≤ 1
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Fig. 1. Our regret bounds (Thoerems 3 to 5) under the Strongest Link model, as func-
tions of α := n−k

n
, the fraction of low-skill agents. The bounds match for 10

19
≤ α ≤ 1.

Proof Sketch. The bounds are established using a common underlying adver-
sarial strategy that forces any algorithm to incur an unavoidable regret. The
structure of the strategy is as follows: The adversary first reveals a chosen fraction
of 0-agents in round 1. Subsequently, when the algorithm explores an unresolved
agent, the adversary reveals it to be a 0-agent whenever possible. This leads to
a tension between inducing high regret in the first round (by revealing 0-edges),
and leaving more unresolved 0-agents for later rounds. LOR(α) is obtained by
choosing the fraction of initially revealed 0-agents to maximize regret under this
tension. A full proof is presented in the extended version. �

The lower bound in Theorem 3 is plotted in Fig. 1, and notably varies greatly
with α. Nevertheless, we provide a policy (Algorithm 3) that manages to achieve
nearly matching regret across all α, while being agnostic of k (and thus α). Both
bounds are plotted in Fig. 1; despite the functions being piecewise linear, they
match exactly for α ≥ 10

19 , and UOR(α) − LOR(α) < 0.018 for all α.

4.1 The MAXEXPLOIT WITH 4-CLIQUES Algorithm

To simplify our analysis, we introduce some terminology: we say that two
unknown 0-agents become discovered when they are paired to form an unsuc-
cessful team. An unknown agent is explored when its type is revealed by pairing
it with a known 0-agent. Our policy for this setting, MaxExploit with 4-
Cliques, is given in Algorithm 3. The algorithm exploits the inferred types
of agents to the greatest possible extent; a maximal number of known 1–0
agent teams are played in each round. Exploration is only done using known
0-agents that cannot be included in such a pair. If only two agents in a 4-cycle
are explored, we treat the other two agents as unknown, even if their type is
deducible.

First, to see that the algorithm terminates, note that in each iteration of the
loop, at least one known 0-agent is used for exploration, revealing the type of
another agent. Thus, the algorithm makes progress and eventually terminates.
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Algorithm 3. MaxExploit with 4-Cliques
Round 1: Select an arbitrary matching.
while #{known 0-agents} > #{known 1-agents} and #{unknown agents} > 0
do

Pair each known 1-agent with a known 0-agent.
Use extra known 0-agents to explore both members of successful teams.
(In round 3, explore all members of 4-cycles whenever possible3.)
Round 2: Re-pair remaining unknown successful teams into 4-cycles.
(If number of remaining unknown successful teams is odd, repeat one team.)
Round 3: In each 4-cycle with undiscovered agents, re-pair to form a 4-clique.
Round 4+: Re-play the matching from round 1 on unexplored successful teams.

Next, note that unknown agents are always in successful teams throughout
the algorithm (as both members of an unsuccessful team can be deduced as 0-
agents). Upon termination, the algorithm can play an optimal matching: either
all agents are known, or there are enough known 1-agents to match all known 0-
agents, and the other successful teams of unknown agents can be safely replayed.

Let dt be the number of 0-agents discovered in round t by pairing two
unknown agents, and et the number of 0-agents revealed by exploration with
a known 0-agent. We define

Δt := #{known 0-agents after round t} − #{known 1-agents after round t}

The following lemma studies how Δt evolves over rounds t.

Lemma 2. Δ1 = d1, and 2et = Δt ≤ Δt−1, for all t ≥ 2.

Proof. In round 1, the algorithm discovers d1 0-agents, and no 1-agent (since
there is no exploration); hence Δ1 = d1. Consider the 4-cycle and 4-clique edges
played in rounds 2–3. If such an edge comprises two 0-agents, then the other two
agents in its cycle or clique must be 1-agents. In particular, the addition of dt

known 0-agents in these rounds is exactly counterbalanced by the deduction of
their neighboring dt 1-agents, so discovery does not contribute to Δt+1 − Δt.

Next, consider any round t ≥ 2. The algorithm first pairs all known 1-agents
with known 0-agents, so exactly Δt−1 agents are used for exploration. Each
exploration must discover either a 0-agent or a 1-agent, so Δt = Δt−1 + et −
(Δt−1 − et) = 2et. Since members of successful teams are explored in pairs, at
most half of all explorations can reveal 0-agents. Thus, et ≤ Δt−1

2 . �

For the subsequent analysis, there are two distinct regimes depending on
the fraction of low-skill agents α. When most agents are low-skill (α > 1

2 ), the
optimal configuration includes some (0, 0)-teams, but no (1, 1)-teams, and rt

equals the number of (1, 1)-teams in Mt. On the other hand, when most agents
are high-skill (α ≤ 1

2 ), the optimal configuration consists entirely of successful
teams, and an algorithm’s round-t regret rt is the number of (0, 0)-teams in Mt.
Consequently, the analysis in each regime is very different.
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4.2 Majority High-Skill Regime (α ≤ 1
2
)

We begin the analysis by focusing on the case when α ≤ 1
2 . Recall that the total

regret in this regime equals the total number of (0, 0) teams the algorithm plays.

Theorem 4. For α ≤ 1
2 , Algorithm 3 has regret at most 4

5 · αn.

Proof. First, note that in the regime α ≤ 1
2 , the algorithm never pairs two

known 0-agents; known 0-agents are paired with known 1-agents or used for
exploration. Hence, the number of (0, 0)-teams selected, and thus the regret, in
round t is et + dt

2 . (Note that e1 = 0.)
After round 3, by Lemma 2, there are 2e3 more known 0-agents than 1-agents.

The unresolved agents are contained in 4-cliques of successful teams, which must
each contain at least three 1-agents. Thus, exploring any 0-agent means that the
algorithm can deduce three 1-agents. After e3 such explorations, the algorithm
locates 3e3 1-agents, terminating the loop. The regret incurred in rounds 4 and
later is thus at most e3, giving total regret at most d1

2 + d2
2 + d3

2 + e2 + 2e3.
We can now bound the regret incurred by Algorithm 3 by formulating the adver-
sary’s problem of choosing the worst-case number of revealed zeros in each round
as an LP with variables {d1, d2, d3, e2, e3}. Applying Lemma 2 to rounds 2 and
3, we obtain that e2 ≤ d1

2 and e3 ≤ e2. In addition, d1 + d2 + d3 + e2 +2e3 ≤ αn
ensures that the number of 0-agents revealed by the adversary is at most the
total number of 0-agents. Put together, we get the following LP:

Maximize: d1
2 + d2

2 + d3
2 + e2 + 2e3

Subject to: e2 ≤ d1
2

e3 ≤ e2

d1 + d2 + d3 + e2 + 2e3 ≤ αn

d1, d2, d3, e2, e3 ≥ 0

Solving, we get (d1, d2, d3, e2, e3) = (2αn
5 , 0, 0, αn

5 , αn
5 ) as the adversary’s best

strategy, with regret at most 4
5αn. �

4.3 Majority Low-Skill Regime (α > 1
2
)

A different, more involved, analysis shows that Algorithm 3 is also near-optimal
when α > 1

2 .

Theorem 5. For α > 1
2 , Algorithm 3 learns an optimal matching after incur-

ring regret at most UOR(α) · n, where

UOR(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

10−16α
5

1
2 ≤ α < 10

19 ,
6−9α

4
10
19 ≤ α < 6

11 ,
3−4α

3
6
11 ≤ α < 3

5 ,
1−α
2

3
5 ≤ α ≤ 1.
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Note that limα↓ 1
2

UOR(α) = 2
5 , which matches limα↑ 1

2
UOR(α) from Theorem

4. Before proceeding, we define s00t , s01t , s11t to be the number of (0, 0), (0, 1), and
(1, 1)-teams the algorithm plays in round t, respectively. Since there are (1−α)n
1-agents in total, s01t = (1 − α)n − 2s11t ; in turn, since there are αn 0-agents,
s00t = 1

2 · (αn − s01t ) = s11t + (α − 1
2 ) · n > s11t . We now prove Theorem 5 via a

series of lemmas.

Lemma 3. The adversary has a best response to Algorithm 3 with the following
properties:

1. It never reveals pairs of unknown agents as (0, 0)-teams after round 1.
2. It never reveals any (1, 1)-team until all (0, 1)-teams have been revealed.

Proof. For the first claim, suppose that the adversary reveals a (0, 0)-team
among the re-paired teams in round t = 2 or t = 3. The 4-cycle or 4-clique
containing this (0, 0)-team contains two 0-agents and two 1-agents, so two (0, 1)-
teams were selected in each of the first t − 1 rounds. The adversary can force
the same regret, and provide the same information, by relabeling these agents
so a (0, 0)-team and a (1, 1)-team are revealed in round 1, the two 1-agents are
explored in round 2, and (if t = 3) the (0, 1)-teams are repeated in round 3. By
repeating this relabeling, we arrive at an adversary strategy of the same regret,
of the claimed form.

For the second claim, recall that the algorithm’s regret in the regime α > 1
2 is

exactly the number of (1, 1)-teams it plays. We will describe a scheme charging
(1, 1)-teams played in round t to 0-agents explored in round t.

Consider some round t ≥ 2 in which s11t (1, 1)-teams are played. Since
s00t > s11t , and all (0, 0)-teams result from exploration1 by the first claim, we can
charge one distinct explored 0-agent for each such (1, 1)-team. Thus, the num-
ber of uncharged explored 0-agents in round t is exactly s00t − s11t = (α − 1

2 ) · n,
independent of t and s11t .

The total number of 0-agents explored in rounds t ≥ 2 is exactly s011 . If
the algorithm runs for T rounds, exactly (T − 1) · (α − 1

2 ) · n explored 0-agents
remain uncharged. Thus, the number of charged 0-agents, which equals the regret
incurred after round 1, is s011 − (T − 1) · (α − 1

2 ) · n. Conditioned on s001 , s011 , s111 ,
the regret is therefore maximized by minimizing T ; that is, the adversary wants
the algorithm to finish in as few rounds as possible. To minimize the number of
rounds T , the adversary should maximize the number of 0-agents available for
exploration. The adversary accomplishes this by having the algorithm explore
(0, 1)-teams before any (1, 1)-teams. �

We now focus, without loss of generality, on such an adversary. This lets us
bound the regret in terms of (s001 , s011 , s111 ).

1 Except in the last round, where known (0, 0)-teams may be played; however, no (1,
1)-teams are played in this round.
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Lemma 4. Conditioned on s001 , s011 , s111 , Algorithm 3 has regret at most
⌊

s011 + s111
s001

⌋

s111 +min(s111 , (s011 + s111 ) mod s001 ).

Proof. From Lemma 3 we know that only (0, 1)-teams are explored before any
(1, 1)-team is explored. Each explored (0, 1)-team results in pairing a 0-agent
with a newly discovered 1-agent, and also adds a known 0-agent. Thus as long as
the algorithm explores only (0, 1)-teams, the number of pairs of 0-agents available
for exploration stays constant at s001 . Therefore, the total number of rounds of
exploration until all agents in successful teams are explored is

⌈
s01
1 +s11

1
s00
1

⌉
. One

subtlety here is that the exploration of (1, 1)-teams decreases the available 0-
agents. However, because s111 < s001 , the first round in which a (1, 1)-team can
be explored is one round before the last; in this case, the last round only explores
(1, 1)-teams, and the number of 0-agents available for this exploration exceeds
the number of 1-agents to be explored. Thus, the bound on the number of rounds
of exploration does hold. In the last round of exploration, no (1, 1)-teams can be
played, so no regret is incurred. We therefore focus on the first T =

⌊
s01
1 +s11

1
s00
1

⌋

rounds of exploration. Again because s111 < s001 , none of the first T − 1 rounds
of exploration explore any (1, 1)-team; thus, each of these rounds, as well as the
very first round of the algorithm, incurs a regret of s111 .

In round T , the total regret is the number of (1, 1)-teams explored in round
T + 1 (because these teams are still played in round T ). This number is either
(s011 +s111 ) mod s001 (if only (1, 1)-teams are explored in round T+1, then it is the
total number of explored teams in round T +1), or s111 (if some (0, 1)-teams are
explored in round T +1, then all (1, 1)-teams are explored in round T +1). Thus,
the regret in the T th round of exploration is the minimum of the two terms. We
thus obtain the total regret of the algorithm as:

⌊
s01
1 +s11

1
s00
1

⌋
·s111 +min(s111 , (s011 +s111 )

mod s001 ). �
s00t turns out to be further constrained, as follows:

Lemma 5. In Algorithm 3, if the adversary reveals 0-agents only by exploration
in rounds t ≥ 2, then s001 > α

5 n.

Proof. The number of 0-agents discovered in round 1 is 2s001 . In rounds 2 and
3 combined, the algorithm discovers an additional e2 + e3 0-agents. The number
of 1-agents discovered in round 2 is Δ1 − e2 = 2s001 − e2, and in round 3, it
is Δ2 − e3 = 2e2 − e3, by Lemma 2. Thus, the number of unknown 0-agents
after round 3 is αn − 2s001 − e2 − e3, and the number of unknown 1-agents is
(1−α) ·n−2s001 −e2+e3. But notice also that after round 3, all unknown agents
form 4-cliques of successful edges, which can contain at most one 0-agent each.
Therefore, there must be at least three times as many remaining 1-agents as
0-agents, so (1−α) ·n−2s001 − e2+ e3 ≥ 3(αn−2s001 − e2 − e3). Rearranging, we
obtain that 4s001 ≥ (4α−1)·n−2e2−4e3. By Lemma 2, we get that e3 ≤ e2 ≤ s001 ,
so the previous inequality in particular implies that 4s001 ≥ (4α − 1) · n − 6s001 ,
or s001 ≥ 4α−1

10 · n > α
5 · n, because α > 1

2 . �
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We obtain the piecewise-linear bound in Theorem 5 by maximizing the bound
in Lemma 4 subject to the constraint in Lemma 5 (and using s01t = αn − 2s00t ,
s11t = s00t − (α − 1

2 )n). Details of this calculation can be found in the extended
version.

5 The Weakest Link Setting (AND)

Finally, we consider the Boolean AND synergy function. If, as before, we interpret
0/1-agents as having low/high skill, then (in the terminology of Johari et al.
[12]), this corresponds to a weakest link model: the difficulty of the task ensures
any team with a low-skill member is unsuccessful. To simplify the analysis, we
assume throughout that k is even.

Theorem 6. For the weakest link model, any algorithm incurs regret at least
LAND(n, k) := n − k.

Proof Sketch. The total regret for an algorithm equals half the number of
(0, 1)-teams selected over the duration of the algorithm, since the optimal solu-
tion would re-pair these agents into (0, 0)-teams and (1, 1)-teams. We consider a
myopic greedy adversary which reveals as few 1-agents as possible in each round,
and argue that such an adversary can ensure that each 0-agent is paired with at
least two 1-agents during the execution of any algorithm. The proof is presented
via a series of lemmas in the extended version. �

5.1 The RING FACTORIZATION WITH REPAIRS Algorithm

The fact that the regret of an algorithm is half the number of (0, 1)-teams selected
suggests that we want the algorithm’s chosen matchings to quickly locate (and
pair) all of the 1-agents, while minimizing the number of times each 0-agent is
paired with a 1-agent. Playing matchings according to a 1-factorization (that
is, a partition of the complete graph Kn into perfect matchings) ensures that
no team is ever repeated. This intuition is used in the Exponential Cliques
algorithms of Johari et al. [12], who show that when each agent has independent
Bernoulli(k/n) type, this algorithm has expected regret 3

4 (n − k) + o(n), which
is asymptotically optimal. Against an adaptive adversary, however, an arbitrary
1-factorization is not enough to get good regret; for example, a 1-factorization
that first builds the Turán graph T (n, n

k ) [1,22] has regret 1
2k(n − k). Similarly,

the performance of Exponential Cliques in the worst case is also much worse.

Lemma 6. Exponential Cliques incurs regret 2(n−k −1) against an adap-
tive adversary.

Proof. Consider an instance on n = 2j + 2 agents with k = 2 having high
skill. An adaptive adversary can ensure that the two 1-agents comprise the last
unexplored team. Over its first 2j − 1 rounds, Exponential Cliques builds a 2j-
clique in the explored subgraph while repeating the remaining team 2j −1 times.



92 M. Eichhorn et al.

Subsequently, it must spend 2j additional rounds exploring all teams comprising
a member of this repeated edge and a member of the clique, resulting in regret
2(2j − 1) = 2(n − k − 1). �

Our main algorithm for this setting, Ring Factorization with Repairs,
leverages a particular 1-factorization, which we call the Ring Factorization.
We organize the agents into two nested rings and choose matchings so that
closer agent pairs under this ring geometry are matched earlier. In the first
round, agents in corresponding positions in the rings are matched. Over the
next four rounds, matchings are chosen to pair each agent with the four agents
in adjacent positions in the rings, and this process repeats at greater distances.
The structure and order of the four matchings chosen in each “phase” are critical.
A formal description of this 1-factorization is given in the extended version. We
visualize the first 5 matchings in the constructions for n = 10 and n = 12
in Fig. 2.

Fig. 2. The first five rounds (i.e., Phases 0 and 1) of Ring Factorizationon 10
(top) and 12 (bottom) agents. The last four matchings illustrate the general matching
sequence for cycles in intermediate phases; the blue highlighted section of each matching
is repeated based upon the size of the cycle.

Theorem 7. Ring Factorization with Repairs (Algorithm 4) locates an
optimal matching after incurring regret at most UAND(n, k) := n − k +⌊
min(k,n−k)

4

⌋
.

Proof Sketch. As mentioned before, the double-ring structure of our factoriza-
tion defines a notion of distance between agents (namely, the difference between
their column indices modulo m). By selecting matchings according to this fac-
torization, each agent is paired up with other agents in non-decreasing order of
distance. Consider this pairing from the perspective of a 0-agent x. We will show
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Algorithm 4. Ring Factorization with Repairs (Sketch)
while #{unknown agents} > 0 do

Select a matching via Ring Factorization for n.
if a (1, 1)-team is revealed then

Perform a case-specific “repair” step (possibly over multiple rounds) that parti-
tions agents into known (0, 0)-teams, known (1, 1)-teams, and an intermediary
stage of the Ring Factorization construction of size n′ < n. (See Appendix
B in the extended version)
Play known (0, 0)- and (1, 1)-teams, and continue playing matchings according
to Ring Factorization on the remaining n′ agents.

that roughly speaking (with some exceptions which require technical work and
slightly weaken the bound), x will be paired with at most two 1-agents before
being identified as a 0-agent. If each 0-agent is paired with at most two 1-agents
before discovery, then we get an overall regret bound of n − k. Consider three
1-agents {y1, y2, y3}, all located in different columns from x. Then, two of these
1-agents—say, y1 and y2—lie on the same side of x. Thus, y1 and y2 are strictly
closer to each other than the further of the two (say, y1) is to x. In particular, y1
and y2 were paired before y1 is paired with x, and so must have been revealed as
1-agents. Thus, y1 will never be paired with x. Since this holds for every triple
of 1-agents, x cannot be paired with three 1-agents.

While the above argument encapsulates the main intuition, the technical
challenge is removing the assumption that y1, y2, y3 were all in different columns
from x. “Repairing” the cycle to account for the case of a 1-agent in the same
column as x largely accounts for the additional term in the regret bound. The
full analysis of these “repair” steps is intricate; see Appendix B in the extended
version for details. �

The bounds of Theorems 6 and 7 are off by an additive term
	min(k, n − k)/4
. The lower bound is simpler, and it is tempting to think that
it may be tight; unfortunately, this is not true in general; in Appendix C of the
extended version, we show that any algorithm on the instance with n = 10, k = 4
must incur regret at least 7 (which coincidentally matches the upper bound in
Theorem 7, though it is unclear if this extends to larger settings). Closing this
gap is an interesting and challenging direction for future work.

6 Conclusion

Our work provides near-optimal regret guarantees for learning an optimal match-
ing among agents under any symmetric function of two binary variables. While
our results are specific to each function, they exhibit several noteworthy com-
mon features. First, although we consider an adaptive adversary, it is not hard
to see that the regret bounds with i.i.d. Bernoulli types can only improve by
a small constant factor; such a small gap between stochastic and adversarial
models is uncommon. Next, for all our settings, minimizing regret turns out
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to require maximal exploitation (in contrast to quickly learning all agent types,
which would benefit from more exploration). Finally, the problems appear to get
harder for k = n

2 , and also handling the weakest link setting (i.e., the Boolean
AND function) is more challenging than other synergy functions. These phenom-
ena hint at underlying information-theoretic origins, and formalizing these may
help in reasoning about more complex models.

Our work raises three natural future directions:

1. It would be desirable to close the gaps between our bounds for the OR and
AND settings. In each case, however, our results suggest that the optimal
procedures may depend heavily on number-theoretic properties of n and k
which can expose a further level of complication.

2. We consider only perfect feedback, which in itself presented interesting chal-
lenges, but may be unrealistic in real-world settings. Our results likely extend
to some noisy feedback models by repeatedly playing a team and averaging
their scores. However, quantifying the relationship between the amount of
noise and the expected additional regret is an open problem.

3. The restriction to teams of size 2, and binary agent types, are the main
restrictions of our model. For a more general theory of team formation, it is
desirable to consider larger teams and other synergy functions (in particular,
threshold functions); doing so is a rich and challenging open direction.
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Abstract. Gaitonde and Tardos [3,4] recently studied a model of queue-
ing networks where queues compete for servers and re-send returned
packets in future rounds. They quantify the amount of additional pro-
cessing power that guarantees a decentralized system’s stability, both
when the queues adapt their strategies from round to round using no-
regret learning algorithms, and when they are patient and evaluate the
utility of a strategy over long periods of time.

In this paper, we generalize Gaitonde and Tardos’s model and con-
sider scenarios where not all servers can serve all queues (i.e., the under-
lying graph is an incomplete bipartite graphs) and, further, when pack-
ets need to go through more than one server before their completions
(i.e., when the underlying graph is a DAG). For the bipartite case, we
obtain bounds comparable to those by Gaitonde and Tardos, with the
factor slightly worse in the patient queueing model. For the more general
multi-layer systems, we show that straightforward generalizations of the
queues’ utilities and servers’ priority rules in [3] may lead to unbounded
gaps between centralized and decentralized systems when the queues use
no regret strategies. We give new utilities and service priority rules that
are aware of the queue lengths, and show that these suffice to restore the
bounded gap between centralized and decentralized systems.

Keywords: Queueing networks · Price of anarchy · No-regret learning
dynamics

1 Introduction

A recurrent theme in algorithmic game theory is to analyze systems operated
by decentralized, strategic agents, in comparison with those run by centralized
authorities. Since Koutsoupias and Papadimitriou [6] introduced the concept
of Price of Anarchy, it has been applied and studied in various games such as
routing in congestion games [8], network resource allocation [5], auctions [2],
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among many other settings. Recently, Gaitonde and Tardos [3,4] introduced a
routing game in queueing systems, where queues compete for servers each round,
and packets not processed successfully in one round go back to their queues
and have to be re-sent in the future. Unlike most games previously studied, in
such systems, the strategies and outcomes of one round have carryover effect in
future rounds, introducing intricate dependencies among the rounds. Gaitonde
and Tardos developed bicriteria bounds that quantify the loss of efficiency due
to decentralized strategic behaviors in such systems in two settings: in [3], the
queues evaluate the utility of their strategies from round to round, and adopt
no-regret learning algorithms in their routing decisions; in [4], the queues are
“patient”, and fix their strategies over long periods of time over which they
evaluate their performances.

In both [3] and [4], all servers can process requests from all queues, and a
packet leaves the system once it is processed by a server. These are simplifying
modelling assumptions: in many queueing systems, each queue’s packets may
only be processed by certain servers, and a packet may need to go through more
than one server before leaving the system. In this work, we model such added
complexities by seeing the queues and servers as nodes of a directed acyclic graph
(DAG). A queue can send requests to a server only if it has an outgoing edge
to the server. Packets arrive at given rates to nodes with no incoming edges,
and leave the system when they are successfully processed by servers with no
outgoing edges; nodes with both incoming and outgoing edges are both servers
and queues—after it successfully processes a packet, the packet joins its queue
and waits to be sent to the next server. The case considered by Gaitonde and
Tardos [3] corresponds to complete bipartite graphs. We examine whether and
how their results generalize to more general settings.

Our Results. We first characterize networks that can be stable under a central-
ized policy, where stability roughly means that the number of packets accumu-
lated in the system is bounded. As in [3], the main lesson of the characterization
is that it is without loss of generality for a centralized policy to fix for each queue
a distribution and sample a server from this distribution at each time step, inde-
pendently of the history and all other happenings in the system. For bipartite
graphs (Theorem 2) our proof takes a perspective arguably simpler than that
in [3], and this perspective is instrumental in showing the conditions for general
DAGs, which are considerably more involved.

We then consider decentralized systems where queues use no-regret learning
strategies. For general bipartite graphs, we show that the bound in [3] gener-
alizes with minor modification. We inherit much of the proof framework of [3],
including a potential function argument and various apparatus for analyzing the
random processes, although in the key step of the argument where one uses the
no regret property to bound the number of “old” packets processed over a time
window, our proof has to take into account the underlying graph structure, and
makes a connection with the dual form of the conditions for centralized stability.
The eventual stability conditions we give (Theorem 3) when queues use no-regret
learning strategies is also expressed as a scaled dual form of the centralized sta-
bility conditions. As a consequence, the main bicriteria comparison result in [3]
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extends to general bipartite graphs: a decentralized system is stable if it can
be made stable under a centralized policy with the arrival rates doubled. Inter-
estingly, the dual variables in our decentralized stability condition take values
from a smaller range ({0, 1}) than in the centralized stability condition (where
they may be any nonnegative numbers). For complete bipartite graphs, it can be
shown that even for the centralized stability condition, the dual variables need
only take 0, 1 values. In this sense, our results suggest that the gap between the
two conditions tends to be smaller for incomplete bipartite graphs.

Networkswithmore than one layer of servers are evenmore interesting.Amajor
conclusion reached in [3] is that a server’s rule of priority for packets simultaneously
sent to it is crucial for the system’s stability. In the complete bipartite graphs, it
was shown that, if the servers pick a packet uniformly at random, then no said
bicriteria bound can be given; in contrast, the bicriteria result was obtained when
servers are assumed to prioritize older packets. Another important factor in the
model is the queues’ utilities: it was assumed in [3] that a queue collects utility of
1 if its packet is successfully cleared by a server, and 0 otherwise. Our results for
general bipartite graphs inherit both these modelling assumptions. However, for
graphs of even three layers, we give an example showing that no finite bound of the
bicriteria form can be obtained if one directly extends the utility and the priority
rule from [3]. Intuitively, in order for the system not to lose too much efficiency,
information on the underlying graph is important when there are multiple layers:
a server with strong processing capacity may be poorly connected in the next layer,
and myopic strategies easily send too many packets to such a server. Therefore, the
queues’ utilities need to incorporate more information for their strategies to better
align with the system’s stability; on the other hand, if they are fed with too much
global information, the difference could blur between centrally controlled systems
and decentralized ones.A natural question to raise is whether it is possible to incen-
tivize the queues using only local information so that their selfish behaviors do not
hurt the system efficiency too much. We answer this question in the affirmative,
showing that the lengths of queues in the neighboring nodes provide just this infor-
mation. We propose a new service priority rule, under which the servers prioritize
packets from the longest queues. We also propose new utility functions for queues,
with which a queue of length Li, when it sends a packet to a server j whose own
queue is of length Lj , obtains utility Li − Lj if the packet is successfully processed
by j. In particular, with this new utility function, a queue never sends its pack-
ets to a server whose current queue is longer than itself. We show that when the
new service priority rule and utilities are adopted, the bicriteria result is restored:
a queueing system is stable with queues that use no-regret strategies as long as it
is stable under a centralized policy even when the packet arrival rates are doubled.

Lastly, we extend the model with patient queues to bipartite graphs.
Gaitonde and Tardos [4] showed for complete bipartite graphs that, when queues
are patient, with appropriately defined long-term utilities, a Nash equilibrium
always exists, and a system is stable under any Nash equilibrium as long as it is
stable under a centralized policy even with e

e−1 times the original arrival rates.
To this end, they developed elaborate tools for computing the long-term utilities
given the queues’ strategies. These tools generalize straightforwardly in general
bipartite graphs, but the delicate deformation argument in the proof of their
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bicriteria result does not easily generalize. Our proof again makes use of the
dual form of the condition for centralized stability, which provides a matching
between the fastest growing queues in an equilibrium and servers.

In the full version of this paper, we also consider two other variants of the
problem: in one model, whether a server can process a packet is not determined
by which queue the packet is from, but is an intrinsic property of the packet;
in the other one, the arrival of packets at each queue is not from a Bernoulli
distribution, but is controlled by an adversarial, as in the model of Borodin et
al. [1]. In both variants, we show that the bicriteria results persist when queues
use no-regret strategies. Lastly, we give a tighter bicriteria result for the model
in [3], where the underlying graph is a complete bipartite graph. We show that
a queueing system is stable with queues that play no-regret strategies as long as
it is stable under a centralized policy even when the k-th largest packet arrival
rate is increased by a factor 2k−1

k for each k.

Further Related Works. We refer to Gaitonde and Tardos [3,4] for pointers to
related works in algorithmic game theory and no regret learning. Sentenac et
al. [9] considered the same model as in [3] but when queues use cooperative
learning. When incentives are removed from the problem, they show that the
queues can essentially learn the necessary system parameters and reach a stable
outcome as long as the system is stable under a centralized policy.

2 Preliminaries

2.1 Queue-G Model

A Queue-G Model is a G = (V,E,λ,μ), where (V = S1 ∪S2 ∪S3, E) constitutes
a directed acyclic graph, and λ and μ are the arrival and processing rates on the
nodes. A node i with no incoming edge is a source, and has an arrival rate λi. For
each i, λi ∈ (0, 1). S1 denotes the set of sources. All the other nodes are servers,
and each server j has a processing rate μj . A server with no outgoing edge is a
terminal. S3 denotes the set of terminals. The set of non-terminal server nodes
is S2 := V − S1 − S3. An edge (i, j) ∈ E means that node i can send packets to
node j. For i ∈ S1 ∪ S2, we denote by Nout(i) := {j ∈ V : (i, j) ∈ E} the set of
out-neighbors of i, and for a server i, we denote by N in(i) := {j ∈ V : (j, i) ∈ E}
the set of in-neighbors of i.

Let Qi
t denote the number of packets at node i at the beginning of time step

t. For all i ∈ V , Qi
0 = 0. At each time step t, the following events happen, in

two phases:

(I) Packet sending: each node i with Qi
t > 0 chooses a server j from Nout(i)

and sends to j the oldest packet (with the earliest timestamp) in i’s queue.
In a centralized system, a central authority dictates for each node if and
where to send its packet at each time step; in a decentralized system, each
node strategizes over this decision.
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(II) Packet arrival and processing: at each source i ∈ S1, a packet with times-
tamp t arrives with probability λi; each server i ∈ S2 ∪ S3, if it receives
any packet in phase (I), chooses one such packet according to some service
priority rule to process, and succeeds with probability μi. The arrivals of
packets at each source and the successes of their processing at each server
are all mutually independent events. A packet cleared by server j ∈ S2 joins
the queue of server j; a packet cleared by a server in S3 leaves the system.
A packet not chosen by or not successfully processed by a server goes back
to the node that sends it. It follows that any i ∈ S3 has Qi

t = 0 at any time
step t.

Gaitonde and Tardos [3] considered a special case of the Queue-G Model,
where there are no non-terminal servers and every source can send packets to
every server, i.e., S2 = ∅ and E = S1 × S3, and the service priority rule at each
server is to choose the oldest packet (breaking ties arbitrarily).1

We refer to this special case as the Queue-CB Model (“CB” for complete
bipartite).

If we only have S2 = ∅ (and allow any E ⊆ S1 × S3), we have the Queue-B
Model.

2.2 Stability and No Regret Learning

Let Qt :=
∑

i∈V Qi
t be the total number of packets in the queueing system at

the start of time step t. We inherit from [3] the notion of stability:

Definition 1. Under some scheduling policy (either with a central authority or
with queues strategizing), a queueing system is strongly stable if for any a > 0,
there is a constant Ca only related to a, such that E[(Qt)a] ≤ Ca for all t. A
queueing system is almost surely strongly stable if with probability 1, the
following event happens: for any a > 0, Qt = o(ta).

Gaitonde and Tardos [3] showed that if a queueing system is strongly stable,
then it is almost surely strongly stable. We therefore focus on showing strong
stability, and often refer to a strongly stable system simply as stable.

The following theorem by Pemantle and Rosenthal [7], also used in [3], is the
workhorse for showing stability.

Theorem 1 ([7]). Let X0, · · · ,Xn be nonnegative random variables. If there
are constants b, c, d > 0 and p > 2 such that X0 ≤ b and, for all n,

E(|Xn+1 − Xn|p | X0, · · · ,Xn) ≤ d; (1)
Xn > b ⇒ E(Xn+1 − Xn | X0, · · · ,Xn) ≤ −c, (2)

then for any a ∈ (0, p − 1), there is C = C(p, a, b, c, d) such that E(Xn)a < C
for all n.
1 For ease of presentation, we made minor changes from Gaitonde and Tardos [3]’s

model, in the order of packet sending and packet arrival. It is easy to see that
the difference is negligible for the analysis of the system’s stability, which is an
asymptotic quality, to be defined below.
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We refer to (2) as the negative drift condition, and (1) as the bounded jump
condition.

We now introduce utilities of queues, as defined in [3]. The utility of a queue
at time step t is the number of packets cleared from this queue at time step t.
Let ai(t) denote the server that node i chooses at time step t. (A node i may
not choose any server, in which case we let ai(t) = 0 and we set μ0 = 0.) Let
Ft denote the history of the system up to the beginning of time step t. We use
ui

t(ai(t), a−i(t))|Ft) to denote the utility of node i when node i chooses server
ai(t) and the other nodes choose a−i(t), given history Ft. We should specify the
content of a history: Ft only includes information on which packets, up to time
step t, were cleared and the age of the currently oldest packet in each node, but
does not include the queue size Qi

t. This makes sure that, for the k-th packet in
node i that is cleared at time step t, the time difference between its arrival and
that of the (k + 1)-st packet is independent of the history Ft′ for all t′ < t, and
obeys the geometric distribution with parameter λi.

Lastly, we define the regret of a node i up to time w as the difference between
its utility in a real sample path and what it could have achieved by always playing
a best fixed action in hindsight.

Definition 2. For a time window from time step t0 − w to t0 − 1, the regret of
queue i for actions ai(t0 − w), . . . , ai(t0 − 1) is

Regi(w, t0) := max
j:j∈Nout(i)

t0−1∑

t=t0−w

ui
t(j, a−i(t)|Ft) −

t0−1∑

t=t0−w

ui
t(ai(t), a−i(t)|Ft).

Note that, in this definition, the utility obtained by playing the best fixed
strategy is evaluated using “real” histories (Ft’s) observed under the actual
actions taken by the node. It does not use counterfactual histories generated
by playing the fixed strategy. We often drop the parameter t0 when it is clear
from the context.

Definition 3. Given fixed δ ∈ (0, 1), queue i’s scheduling policy is no regret if,
for any time window from time step t0 − w to t0 − 1, with probability at least
1 − δ, Regi(w, t0) ≤ ϕδ(w), where ϕδ(w) = o(w) may depend only on δ and the
number of nodes in the queueing system.

3 Bipartite Queueing Systems

In this section we derive necessary and sufficient conditions for the existence
of a centralized policy that stabilizes a queueing system in a bipartite graph (a
Queue-B model). We then give a sufficient condition that guarantees the stability
of such systems when all queues adopt no-regret strategies. For the special case
when the underlying graph is complete bipartite, our conditions degenerate to
the ones given by Gaitonde and Tardos [3].
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3.1 Stability Conditions Under Centralized Policies

A Queue-B model as defined in Sect. 2 simply consists of n queues on one side
and m servers on the other. Server j is able to clear a packet from queue i if
and only if there is an edge between the two. It is easy to see that a centralized
policy never benefits from sending packets from two queues to a same server in
a single time step, as the server picks up only one of them. Therefore, with loss
of generality, the routing dictated by a centralized policy at any step gives a
matching of the queues to the servers. (Some queues may be asked not to send
their packets, and some servers may be allowed to be idle for that round.) It is
less clear whether a centralized policy benefits from making intricate use of the
history when it decides on the matching at each step. It turns out, for the system
to be stable (Definition 1), it is without loss of generality to consider history
oblivious centralized policy, which samples a matching from a fixed distribution
over matchings from step to step. A Queue-B model can be stable under any
centralized policy if and only if it can be stable under such a policy. This is the
essence of the following theorem.

Recall that a fractional matching matrix P ∈ [0, 1]n×m is such that
∑

j Pij ≤
1 for all i ∈ [n] and

∑
i Pij ≤ 1 for all j ∈ [m].

Theorem 2. Given a Queue-B model with n queues and m servers, with arrival
rates λ = (λ1, · · · , λn) and processing rates μ = (μ1, . . . , μm), there is a central-
ized policy under which the system is stable if and only if there exists a fractional
matching matrix P ∈ [0, 1]n×m, such that Pμ � λ, where � denotes element-
wise greater than.

Sufficiency of the condition is a consequence of Birkhoff-von Neumann theo-
rem. The argument of necessity makes use of the observation that, conditioning
on any event in the system, the expected routing decision made by a centralized
policy is expressible as a fractional matching matrix. One may as well condition
on the event that all queues have arrivals considerably larger than the expec-
tations, which occurs with constant probability. This part of the argument is
arguably simpler than the proof in [3], and makes possible the more involved
proof for more general graphs (Theorem 4). The proofs missing due to lack of
space are deferred to the full version of this paper.

Before moving on to decentralized Queue-B models, we derive a dual form of
the conditions in Theorem 2. The dual form plays a crucial role in our analysis
of the systems’ stability under no-regret policies.

Lemma 1. Given a Queue-B model with arrival rates λ and processing rates μ,
the following two conditions are equivalent:

(1) There is a fractional matching matrix P such that Pμ � λ.
(2) For any α ∈ R

n
+, there is a matching matrix M ∈ {0, 1}n×m, such that

α�Mμ > α�λ.

The lemma is an application of Farkas’ lemma. The proof of this lemma is
deferred to the full version. It is worth pointing out that, when the underlying
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graph is a complete bipartite graph, it suffices to have the condition (2) satisfied
for only α ∈ {0, 1}n. This difference plays a role in the contrast between complete
and incomplete bipartite graphs when the system is decentralized, as we explain
in the next section.

3.2 Stability Conditions Under Decentralized, No-Regret Policies

In this section we give conditions under which, in a queueing system on an
incomplete bipartite graph (the Queue-B model), if all queues use no-regret
strategies, the system is stable. Our conditions are most easily comparable with
the dual form of centralized stability conditions stated in Lemma 1. When the
underlying graph is a complete bipartite graph, the conditions are identical to
those by Gaitonde and Tardos [3], as we discuss below. The technique in this part
is largely inherited from [3], although our proof reveals an interesting connection
between the dual form of stability conditions and key steps in the proof. The
sufficient condition is the following:

Assumption 1. There is a constant β > 0, such that for any α = (α1, ..., αn) ∈
{0, 1}n, there is a matching matrix M , such that 1

2 (1 − β)α�Mμ > α�λ.

A quick comparison between this and dual condition in Lemma 1 suggests
that, if one has a Queue-B model which can be made stable by a centralized
policy, then, doubling its processing capabilities guarantees its stability when the
queues use no-regret strategies. Note though that the range of α is much smaller
in Assumption 1 ({0, 1}n) than in Lemma 1 (Rn

+). For complete bipartite graphs,
this difference vanishes (see remark following Lemma 1), but in general bipartite
graphs, this difference is real. This suggests that in incomplete bipartite graphs,
the gap between centralized and decentralized systems tends to be smaller than
in complete bipartite graphs.

Theorem 3. If a Queue-B model queueing system satisfies Assumption 1, and
queues use no-regret learning strategies with δ = β

128n , then the system is strongly
stable.

Following Gaitonde and Tardos [3], we introduce a potential function with
the intention to apply Theorem 1 to its square root. The age of a packet that
arrives in the system at time t1 is defined to be t2 − t1 at time t2. Let T i

t be
the age of the oldest packet in queue i at time step t, and let T be the vector
(T 1

t , · · · , Tn
t ). Note that Qi

t, the length of the queue, is at most T i
t . For a positive

integer τ > 0, define

Φτ (Tt) :=
∑

i:T i
t ≥τ

λi(T i
t − τ).

The potential function Φ is defined as

Φ(Tt) :=
∞∑

τ=1

Φτ (Tt) =
∞∑

τ=1

∑

i:T i
t ≥τ

λi(T i
t − τ) =

1
2

n∑

i=1

λiT
i
t (T

i
t − 1).
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We analyze the system by dividing the time steps into windows of length w
each, for some large enough w. Let Z� :=

√
Φ(T�·w) be the square root of the

potential function at the beginning of the �-th window. The main work lies in
showing that (Z�)� satisfies the conditions of Theorem 1, which implies E[Za

� ] is
bounded for any a > 0. This in turn implies that E[(

∑
i T i

t )
a] is bounded, and

so is E[(Qt)a].

Lemma 2. [Negative drift condition.] Denote by λ(n) the minimum element of
λ.
Let b = w√

2λ(n)
max

(
8
β (

∑n
i=1 λi) , 16n2

)
, c = −

√
2λ(n)βw

64 . Then Z0 = 0 ≤ b

and, for all �,

Z� > b ⇒ E [Z�+1 − Z� | Z0, · · · , Z�] ≤ −c.

Lemma 3. [Bounded jump condition.] For each even integer p ≥ 2, there is a
constant dp, such that for all �

E [|Z�+1 − Z�|p | Z0, · · · , Z�] ≤ dp.

Lemma 3 is identical to the corresponding part in Gaitonde and Tardos [3],
and we omit its proof. The main difference between our proof and [3] is in the
proof of the negative drift condition (Lemma 2). We present here the key steps
of our proof, and the rest is deferred to full version.

Following Gaitonde and Tardos [3], for a given τ > 0, we say a packet is
τ -old if its age is at least τ at time step � · w, i.e., if its arrival time is no later
than �w − τ . Let Jτ be the set of queues which have τ -old packets at time step
(�+1) ·w. For a queue i, if by time step (�+1) ·w, it still has packets that arrived
before time step � · w, let τi = maxτ>0:Jτ �i τ be the age of the oldest packet in
queue i; otherwise, set τi = 0. Let N i

τ be the number of τ -old packets cleared
from queue i during the time window from time step � ·w to (�+1) ·w. Similarly,
for a server j, let Lj

τ be the number of τ -old packets cleared by server j during
this time window. Next, define Nτ =

∑
i∈[n] N

i
τ =

∑
j∈[m] L

j
τ as the number of

τ -old packets cleared during this time window. Lastly, let Cj
t be the indicator

variable for server j succeeding in processing a packet if it picks one up.

Lemma 4. For any τ > 0 and ε > 0, if
∑(�+1)·w−1

t=�·w Cj
t ≥ (1−ε)μjw for each j,

then Nτ ≥ 1−ε
1−β

∑
i∈Jτ

λiw − ∑n
i=1 Regi(w, (� + 1) · w).

Proof. Any queue i ∈ Jτ has a τ -old packet throughout the time window. For a
server j which can serve queue i, consider the counterfactual utility i may gain
during this time window by sending a request to j at each step. Let Xτ

jt be the
indicator variable for the event that some queue (which may not be i) sends a
τ -old packet to server j at time step t. Then at any time step t when Xτ

jt = 0,
server i’s packet would have been picked up by server j had i sent a request,
because no other packet sent to j is τ -old, so the packet from i has priority.
Recall that Cj

t is the indicator variable for server j succeeding in processing a
packet if it picks one up. So queue i would have gained utility 1 at time t by
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sending a request to j if Cj
t = 1 and Xτ

jt = 0. Over the time window, queue i’s
counterfactual utility could have been

∑(�+1)·w−1
t=�·w (1 − Xτ

jt). Note that queue i’s
actual utility is N i

τ , so by definition of regret, we have

N i
τ ≥

(�+1)·w−1∑

t=�·w
Cj

t (1 − Xτ
jt) − Regi(w, (� + 1) · w).

On the other hand, whenever Xτ
jtS

j
t = 1, server j successfully clears a τ -old

packet. Therefore, Lj
τ =

∑(�+1)·w−1
t=�·w Cj

t Xτ
jt. Then, for a pair of queue i ∈ Jτ and

server j that can serve i, we have

N i
τ + Lj

τ ≥
(�+1)·w−1∑

t=�·w
Cj

t − Regi(w, (� + 1) · w). (3)

Now we are ready to apply Assumption 1. Let α be the indicator vector for the
set Jτ ⊆ [n], i.e., αi = 1 if i ∈ Jτ , and αi = 0 otherwise. By Assumption 1, we
can find a matching matrix Mτ such that 1

2 (1 − β)α�Mτμ > α�λ. Let Uτ be
the edge set such that (i, j) ∈ Uτ ⇔ Mτ (i, j) = 1. Then,

1
2
(1 − β)

∑

(i,j)∈Uτ

μj >
∑

i∈Jτ

λi. (4)

Now, we are ready to give a lower bound for Nτ :

2Nτ =
n∑

i=1

N i
τ +

m∑

j=1

Lj
τ ≥

∑

(i,j)∈Uτ

(N i
τ + Lj

τ )

≥
∑

(i,j)∈Uτ

⎛

⎝
(�+1)·w−1∑

t=�·w
Cj

t − Regi(w, (� + 1) · w)

⎞

⎠ (5)

≥
∑

(i,j)∈Uτ

(1 − ε)μjw −
n∑

i=1

Regi(w, (� + 1) · w) (6)

≥ 2(1 − ε)
1 − β

∑

i∈Jτ

λiw −
n∑

i=1

Regi(w, (� + 1) · w), (7)

where the second inequality uses (3), and the last inequality uses (4).

We sketch the rest of the proof, and all details are deferred to the full version.
When the servers’ realized processing capacities are close to their expectations
(as in the condition of Lemma 4) and when the queues’ regret are small (which
should happen with high probability by assumption), the lower bound given by
Lemma 4 on Nτ implies a lower bound on the decrease in the potential function
due to packet clearing (Lemma 5). We can further bound the increase in the
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potential function due to aging over the time interval. (Lemma 6). We define
an event A, specified in the full version of this paper, which happens with high
probability, and under which all of these events (of concentration and no regret)
happen.

Recall that τi is the age of the oldest packet in queue i at time step (�+1) ·w,
where the age is measured by time step � · w. Let τ = {τ1, · · · , τn}.

Lemma 5. Under event A, Φ(T�·w) − Φ(τ ) ≥ 1−2ε
1−β

∑n
i=1 λiτiw.

Lemma 6. Under event A, Φ(T(�+1)·w) − Φ(τ ) ≤ ∑n
i=1 λiτiw + 1

2

∑n
i=1 λiw

2.

With a small probability, event A does not happen, and it is relatively
straightforward to upper bound the increase in the potential in this case. (Most
pessimistically, no packets is cleared during the time window and T i

t in each
queue grows by w.)

Lemma 7. If event A does not happen, Φ(T(�+1)·w) − Φ(T�·w) ≤
∑n

i=1 λiT
i
�·ww + 1

2

∑n
i=1 λiw

2.

Lemma 2 follows from combining Lemma 5, 6 and 7.

4 Queueing Systems with Multiple Layers

In this section we study queueing systems where packets or tasks may need to
go through more than one servers before their completions. After a packet is
successfully processed by an intermediate server, it immediately joins the queue
forming at their server, waiting to be sent to the next server. In Sect. 4.1, we
give sufficient and necessary conditions for such a queueing system to be stable
under a centralized policy. In Sect. 4.2, we show that, when one extends the
utility and service priority rules from Gaitonde and Tardos [3]’s model to such
networks, it is impossible to obtain a PoA result comparable to Theorem 3. In
Sect. 4.2, we introduce new utilities and service priority rules that are aware of
local queue lengths, and show that they suffice to restore conditions for stability
under decentralized, no-regret strategies.

4.1 Stability Under Centralized Policies

As we reasoned for the bipartite case, it never benefits a central planner to send
packets from more than one queues to the same server in a single time step,
therefore, it is without loss of generality to consider policies under which, at
each time step, the edges along which packets are sent from a set of vertex-
disjoint paths. (Note that one such path need not start from a source or end at
a terminal.) In general, at each step this set of paths may be sampled from a
distribution that depends on the history. As in the bipartite case, the following
characterization of stable systems shows it without loss of generality to let this
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distribution be the same from step to step, regardless of what happened in the
past. The proof though is considerably more involved than in the bipartite case.2

Theorem 4. Given a Queue-G model (V,E,λ,μ), the following statements are
equivalent.

1. There exists a centralized policy under which the system is stable.
2. The following linear system is feasible:

λi <
∑

j

zijμj , ∀i ∈ S1; (8)

μi

∑

j

zji <
∑

j

zijμj , ∀i ∈ S2 with
∏

j∈N in(i)

zji > 0; (9)

∑

j

zij ≤ 1, ∀i ∈ S1 ∪ S2; (10)

∑

j

zji ≤ 1, ∀i ∈ S2 ∪ S3; (11)

zij = 0, ∀(i, j) /∈ E; (12)
zij ≥ 0, ∀(i, j) ∈ E. (13)

3. The following linear system in (fiπ)i∈S1,π∈Π is feasible, where Π is the set of
paths from a node in S1 to a node in S3:

∑

i∈S1

∑

y∈Nout(x)

∑

π∈Π:π�(x,y)

fiπ

μy
≤ 1,∀x ∈ S1 ∪ S2; (14)

∑

i∈S1

∑

y∈N in(x)

∑

π∈Π:π�(y,x)

fiπ ≤ μx,∀x ∈ S2 ∪ S3; (15)

∑

π∈Π

fiπ > λi,∀i ∈ S1; (16)

∑

i∈S1

∑

π∈Π:∃y,(y,x)∈π

fiπ =
∑

i∈S1

∑

y∈Nout(x)

∑

π∈Π:π�(x,y)

fiπ,∀x ∈ S2; (17)

fiπ = 0,∀i ∈ S1, π ∈ Π s.t. i not on π. (18)

We relegate the proof of the theorem to the full version. The fact that con-
straints (8)–(13) being feasible implies the stability of a centralized policy is a
relatively straightforward consequence of a generalization of Birkhoff-von Neu-
mann theorem. Proving the other direction is considerably more involved than
for the bipartite case, and it is for this purpose that we introduce the third
condition in Theorem 4. We show that the feasibility of constraints (14)–(18)
implies the feasibility of constraints (8)–(13), then we show that a system for
which constraints (14)–(18) are not feasible cannot be stable.
2 It is relatively easy to extend the argument in Theorem 2 to show the necessity of

the conditions in Theorem 4, except for the strictness of the signs in (8) and (9).
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Again we give a dual form of conditions for centralized stability, which are
central to our analysis of the systems’ stability under no-regret policies. Its proof
can be found in the full version of this paper.

Definition 4. A vertex-disjoint path (one such path need not start from a source
or end at a terminal) is a collection of edges. Any two edges in the path can’t
have the same head or the same tail.

Lemma 8. Given a Queue-G model (V,E,λ,μ) with n sources and m servers,
the following two conditions are equivalent:

(1) The linear system of the second statement in Theorem 4 is feasible.
(2) For any α ∈ {Rn+m

+ | αi = 0 if i ∈ S3}, there is a vertex-disjoint path set
U , such that

∑
(i,j)∈U (αi − αj)μj >

∑
i∈S1

αiλi.

4.2 Decentralized Multi-Layer Networks

System Failure with Myopic Queues. In a queueing system with multiple
layers, (i.e., when S2 = ∅), a natural extension of the utility in bipartite systems
as defined in Sect. 2 is to let a queue earn utility 1 at a time step if one of
its packet is successfully processed by the server it is sent to. The hope is that
when all queues focus on getting their packets processed by the next server, the
system runs relatively efficiently. Unfortunately, as the following example shows,
when the queues run no-regret strategies on such utilities, they may be too
short-sighted for the decentralized system to have performance comparable to a
centralized one, even if one increases the processing capacities by any constant
factor.

Fig. 1. A queueing system with two layers of servers. A centralized policy sending
packets from both sources to server 5 makes the system stable, but the two sources
may find it a no-regret strategy to send requests to servers 3 and 4, respectively.
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Example 1. The system shown in Fig. 1 is stable under a centralized policy.
One feasible solution to the linear system given in Theorem 4 is z15 = z25 =
0.4, z58 = 1, with all other coordinates of z set to 0. It is not difficult to see
that, if both queue 1 and queue 2 send their requests to server 3 and server 4,
respectively, they play no-regret strategies, but the system is unstable because
packets accumulate at servers 3 and 4. The phenomenon persists even when the
processing capacities are increased by a factor of 1

ε .

Stability with Queue Length Aware Utilities. Example 1 suggests that
the instantaneous, local feedback is not enough to align the queues’ interests
with the system’s efficiency. In this section we show that, when we incorporate
one other piece of local information, the queue lengths, into the queues’ utilities
and the service priority rule, we can recover the bicriteria results we showed for
single-layer systems in Sect. 3.

Recall that Qi
t denotes the length of queue i at time t. Our new utility for

queue i ∈ S1 ∪ S2 for sending a request to server j at time t is

ui
t(j, a−i(t) | Ft) =

{
Qi

t − Qj
t , if the packet sent to j is successfully processed;

0, otherwise.

Note that this utility function immediately implies that it is never in a queue’s
interest to send a request to a server with a queue longer than itself. Also recall
that Qj

t = 0 for any j ∈ S3 at any time t. The history Ft now includes information
on which packets have been cleared and the queue size Qi

t.3
We also change the servers’ priority rules to preferring requests from longer

queues. With the new utilities and service priority rules, the sufficient condition
we obtain for decentralized stability is:

Assumption 2. There is a β > 0 such that for any α ∈ {Rn+m
+ | αi = 0 if i ∈

S3}, there is a vertex-disjoint path set U such that

1
2
(1 − β)

∑

(i,j)∈U

(αi − αj)μj >
∑

i∈S1

αiλi

Theorem 5. If a Queue-G model queueing system satisfies Assumption 2 holds,
and nodes use no-regret learning strategies with δ = βμ(m)

96(n+m)2 , then the queueing
system is strongly stable.

A quick comparison between Assumption 2 and the dual form of condition
for centralized stability in Lemma 8 shows that, a queueing system is guaranteed

3 This is different from the setup in Sect. 2. We now no longer have the independence
between the time interval between packet arrivals and histories prior to the their
clearing. As will be clear in the proof, this independence is no longer needed in the
proof. The introduction of queue lengths makes the change in the potential more
directly connected with the queues’ utilities.
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to be stable with queues using no-regret learning strategies as long as the system
can be stable under a centralized policy with twice as many packet arrivals.

As in the proof for Theorem 3, we introduce a similar potential function

Φ(Qt) :=
1
2

∑

i∈S1∪S2

Qi
t(Q

i
t − 1), (19)

and define Z� as its square root at the beginning of the �-th window of length w.
There is change in the proofs for both the negative drift condition and the
bounded jump condition. We detail here the main different steps in Lemma 9
for the negative drift condition, and relegate the rest to the full version.

Lemma 9. [Negative drift condition.] Let b = 8
√

2(n+m)

βμ(m)
(
∑

i∈S1
λ2

i w
2 +

∑
i∈S2∪S3

μjw
2 + w), c = −

√
2μ(m)βw

128(n+m) . Then Z0 = 0 ≤ b and, for all �,

Z� > b ⇒ E [Z�+1 − Z� | Z0, · · · , Z�] ≤ −c.

Lemma 10. [Bounded jump condition.] For each even integer p ≥ 2, there is
a constant dp, such that for all �,

E [|Z�+1 − Z�|p | Z0, · · · , Z�] ≤ dp.

At time step (� + 1) · w, let τi be the number of unprocessed packets at node
i which arrived before time step � · w. Note the difference from the definition
of τi in the proof of Theorem 3—there, τi is the age of the oldest packet in
queue i at time �w. For any node i and t ∈ [� · w, (� + 1) · w], τi ≤ Qi

t ≤ τi + w.
Recall that Cj

t is the indicator variable for server j succeeding in processing a
packet if it picks one up, and ui

t is the utility of queue i at time step t. For a
server j, define its contribution vj

t to be ui
t if j successfully clears a packet from

queue i at time step t, and is 0 if it fails to do so. Then, at any time step t,∑
i∈S1∪S2

ui
t =

∑
j∈S2∪S3

vj
t . A key observation is that, with the new utility

functions, when a packet is cleared, the decrease in potential is exactly equal
to the increase in the corresponding queue’s utility. We can therefore calculate
the decrease in potential function by tracking the sum of utilities of all nodes.
The following key lemma lower bounds the total utility over a time window as
a function of the number of old packets (τi’s), assuming the realized processing
capacities of all servers are around their expectations. Its use of vertex-disjoint
paths paves the way for applying Assumption 2. The following lemma gives the
lower bound of the utility of queues since queues use no regret learning strategies:
for a pair of a long queue and a server, either the server clears many packets
from long queues, generating a certain amount of utility or queues will generate
a certain amount of utility since its utility will no less than the utility if it always
sends packets to this server and its packets have priority since its queue length
is large.

Lemma 11. For any ε > 0, if
∑(�+1)·w−1

t=�·w Cj
t ≥ (1 − ε)μjw for each j ∈

S2 ∪ S3, then for any set U of vertex-disjoint paths,
∑

i∈S1∪S2

∑(�+1)·w−1
t=�·w ui

t ≥
1
2

∑
(i,j)∈U (τi − τj − w)(1 − ε)μjw − ∑

i∈S1∪S2
Regi(w, (� + 1) · w).
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We sketch the rest of the proof, and relegate details to the full version.
When the servers’ realized processing capacities are close to their expecta-

tions (as in the condition of Lemma 11) and when the queues’ regrets are small
(which should happen with high probability by assumption), the lower bound
given by Lemma 11 on the utility of queues implies a lower bound on the decrease
in the potential function due to packet processing (Lemma 12). When the packet
arrivals in the sources are close to their expectations, we can further bound the
increase in the potential function due to packet arrival (Lemma 13). We define
an event B, specified in the full version of this paper, which happens with high
probability, and under which all of these events (of concentration and no regret)
happen. Roughly speaking, when B happens, the increase in the potential due
to packet arrivals is at least offset by the decrease due to packet clearing when
we use Assumption 2 to generate an appropriate U in Lemma 11 and relate the
term 1

2

∑
(i,j)∈U (τi − τj)μjw to

∑
i∈S1

τiλi. With a small probability, event B
does not happen, and it is relatively straightforward to upper bound the increase
in the potential in this case.

To put things formally, recall that τi is the length of packets in queue i at time
step (�+1)·w, which arrived in queue i before time step �·w; let τ = {τ1, · · · , τn}.
Given τi for each node i, by Assumption 2, let U∗ be the vertex-disjoint path
such that

1
2
(1 − β)

∑

(i,j)∈U∗
(τi − τj)μj >

∑

i∈S1

τiλi.

Lemma 12. Under event B, Φ(Q�·w)−Φ(τ ) ≥ β
4

∑
(i,j)∈U∗(τi − τj)μjw + (1 +

β
8 )

∑
i∈S1

λiτiw − ∑
i∈S2∪S3

μiw
2 − w.

Lemma 13. Under event B, Φ(Q(�+1)·w) − Φ(τ ) ≤ (1 + β
8 )

∑
i∈S1

λiτiw +
∑

i∈S1
λ2

i w
2.

With a small probability, event B does not happen, and it is relatively
straightforward to upper bound the increase in the potential in this case. (Most
pessimistically, no packets is cleared during the time window and for each time
step, there is a packet arriving at each source node, then the queue length of
each source node grows by w.)

Lemma 14. If event B does not happen, then Φ(Q(�+1)·w) − Φ(Q�·w) ≤∑
i∈S1

Qi
�·ww + w2.

Lemma 9 follows from combining Lemma 12, 13 and 14.

5 Patient Queueing Model

In this section we extend a model introduced in [4], where queues do not vary
their routing policies from step to step, but evaluate the utility of a fixed routing
policy over a long period of time. On complete bipartite graphs, Gaitonde and
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Tardos [4] showed that Nash equilibria always exist in the resulting game, and
that a system is stable under any Nash as long as it can be stable under a
central policy with e

e−1 times as much arrival rates. We obtain a similar result
for incomplete bipartite graphs, but the factor in our bicriteria result worsens
to 2. We leave for future work to decide whether this factor can be improved.

Below we first describe the model in more detail, before presenting our result.

5.1 Model Description

A bipartite Patient Queueing Model has the same packet arrival, routing and
processing procedures as in a Queue-B model described in Sect. 2; the servers’
priority rule is to pick the oldest packet. The main difference is that the queues
are “patient”: each queue fixes a routing strategy in the form of a distribution
over the servers it can reach, and evaluates its utility/cost over a long time
period. Formally, the strategy space of queue i is the simplex over the servers
i can send requests to: Δi := Δ(Nout(i)). By adopting a strategy pi ∈ Δi,
queue i in each round samples a server according to the distribution given by pi,
independently of all history and other happenings in the system, and sends a
request to the sampled server if its queue is non-empty. Let p-i be the strategies
of the queues other than i, then the cost of queue i for using strategy pi is
ci(pi,p-i) := limt→∞

T i
t

t , where T i
t is the age of the oldest packet in queue i at

time step t. Each queue aims to minimize its cost. A strategy profile p is a Nash
equilibrium if for each queue i, pi ∈ argminp′∈Δi

ci(p′,p-i).
Gaitonde and Tardos [4] considered a special case of the Patient queueing

Model, where the underlying bipartite graph is complete, i.e., E = S1×S3. They
gave an algorithm that, given a strategy profile p, computes an ri(p) for each
queue i, with ri(p) equal to ci(p) almost surely. This algorithm played a crucial
role in the derivation of their main result. The algorithm extends directly to
our more general setting, and is also a key step in our result in this section. We
present this algorithm next.

5.2 Gaitonde and Tardos’s Algorithm for Computing Costs

Algorithm 1 is a straightforward generalization (to general bipartite graphs) of
Gaitonde and Tardo’s [4] algorithm for computing the queues’ costs. We give
some rough intuition here. Thanks to the service priority rule, in the long run,
the queues are tiered according to the rates of growth of their lengths: the faster
growing ones have higher priority over the slower growing ones. Determining
which queues grow the fastest is like a self-fulfilling prophecy: a group of queues
grow the fastest even when they have the highest priority. The algorithm enumer-
ates all possible “first tier” queues, and finds the one that fulfills the “prophecy.”
It then continues to find lower tiers, assuming that all higher tiers have priority.
Nailing down this intuition involves intricate probabilistic arguments, and is a
major technical accomplishment of [4].

In the step that picks Qk, there is no ambiguity because the union of mini-
mizers of f(Q) can be shown to be another minimizer. The following results are
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Algorithm 1: Computing the queues’ costs given their strategies
Input: Queueing system (S1 ∪ S3, E,λ,μ), strategy profile p
I ← S1, k ← 1
while I �= ∅ do

Compute for each Q ⊆ I, f(Q) =
∑m

j=1 μj(1−∏
i∈Q(1−pij))

∑
i∈Q λi

.
Let Qk be the minimizer of f(Q), breaking ties in favor of larger cardinality.
if f(Qk) ≥ 1 then

For any i ∈ I, output ri(p) = 0, terminate.
else

For each i ∈ Qk, ri(p) = 1 − f(Qk);
Update µj ← µj

∏
i∈Qk

(1 − pij), I ← I \ Qk, k ← k + 1.
end

end
Output: a sequence of queueing groups Q1, · · · , QK and ri(p) for each queue i.

straightforward generalizations of corresponding results in [4]. We state them
without proofs. Theorem 6 and 7 correspond to Theorem 4.1 and 3.3 in [4],
respectively. Theorem 8 is a generalization of Lemma 3.3 and Theorem 4.4 in
[4].

Theorem 6. For any strategy profile p, ci(p) = limt→∞
T i

t

t = ri(p) almost
surely.

Theorem 7. If the cost function of each queue i is defined to be ri(p), then
every system of the Patient Queueing Model admits a Nash Equilibrium.

Theorem 8. Given a queueing system and a strategy profile p, let Q1 be the
first group of queues output by Algorithm 1. If f(Q1) > 1, then the queueing
system is stable under p.

5.3 Price of Anarchy in Patient Queueing Model

Our bicriteria result for general bipartite graphs is presented again in a form
more comparable to the dual form of conditions for centralized stability (see
Lemma 1).

Theorem 9. Given a bipartite queueing system (V,E,λ,μ), if for any α =
(α1, · · · , αn) ∈ {0, 1}n, there is a matching matrix M , such that 1

2α�Mμ >
α�λ, then the system is stable in any Nash Equilibrium in the patient queue
model.

The proofs missing due to lack of space are deferred to the full version of this
paper.

We remark that repeatedly playing a Nash Equilibrium strategy profile p
may not be no-regret strategies (see an example in the full version), therefore
Theorem 9 is not implied by our results in Sect. 3.
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6 Conclusion

In this work generalize the decentralized queueing systems proposed by Gaitonde
and Tardos [3,4]. In the full version of this paper, we also consider two more
variants of the model with multiple layers, when packet arrivals are adversarial
instead of probabilistic, and when packets themselves (rather than the queues
they are from) determine which servers can process them. We show that the
bicriteria results under no regret strategies are robust against these model mod-
ifications. Lastly, we provide a slightly tighter analysis for the Queue-CB model
of [3] in the full version of the paper.

Since the bicriteria result in [3] for queues using no regret strategies is tight
even for complete bipartite graphs, our results for the more general cases are also
tight. On the other hand, we do not know if the factor 2 is tight in our result
for patient queues in general bipartite graphs. It seems challenging to directly
apply the deformation technique developed in [4] in this more general setting;
we leave for future work to investigate the tight bound of this problem.
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Abstract. There is a growing interest in studying sample-based prophet
inequality with the motivation stemming from the connection between
the prophet inequalities and the sequential posted pricing mechanisms.
Rubinstein, Wang, and Weinberg (ITCS 2021) established the optimal
single-choice prophet inequality with only a single sample per each dis-
tribution. Our work considers the sample-based prophet inequality with
less than one sample per distribution, i.e., scenarios with no prior infor-
mation about some of the random variables. Specifically, we propose a
p-sample model, where a sample from each distribution is revealed with
probability p ∈ [0, 1] independently across all distributions. This model
generalizes the single-sample setting of Rubinstein, Wang, and Weinberg
(ITCS 2021), and the i.i.d. prophet inequality with a linear number of
samples of Correa et al. (EC 2019). Our main result is the optimal p

1+p

prophet inequality for all p ∈ [0, 1].

Keywords: Prophet inequality · Online algorithms · Optimization
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1 Introduction

Prophet inequality is a fundamental problem in optimal stopping theory and
online Bayesian optimization. Consider a sequence of n boxes arriving online,
each box i associated with a random value Xi sampled from a priori known
distribution Di. The actual value of Xi is observed upon the arrival of the box
i and the algorithm decides immediately whether to accept it. If the box is
accepted, the algorithm collects the observed value Xi and the game ends. Else,
the algorithm proceeds to the next box. The goal is to maximize the value of the
accepted box and to compete against the expected maximum value of all boxes,
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i.e., E[maxi Xi]. The benchmark is also known as the prophet, since it can be
interpreted as the expected value of an optimal algorithm that can look into the
values of all boxes before making a choice. Krengel and Sucheston [23,24] first
established an optimal 1

2 -competitive prophet inequality. Subsequently, Samuel-
Cahn [27] provided a single-threshold algorithm with the same tight competitive
ratio.

The classic single-choice prophet inequality is equivalent to the problem of
designing revenue-maximizing sequential posted pricing mechanism [10,20]. That
connection has inspired a number of generalizations in the field of algorithmic
mechanism design to multi-choice settings such as matroids [4,16,22], match-
ings and combinatorial auctions [14,15,18], and general downward-closed con-
straints [25]. Furthermore, the sequential posted pricing motivates the study of
prophet inequalities with limited information, as the complete knowledge of the
prior distributions (Di)n

i=1 is a rather strong and unrealistic assumption as was
pointed out by Azar, Kleinberg, and Weinberg [1].

In the limited information setting, the algorithm may only access a limited
number of samples per each distribution Di instead of the complete description
of Di in the full-information case. This model is arguably more realistic than
the full-information model, since samples are easy to collect, e.g., from historical
data. Azar, Kleinberg, and Weinberg designed constant competitive algorithms
with only a constant number of samples per distribution for various matroid and
matching settings. Recently, Rubinstein, Wang, and Weinberg [26] proved that
the optimal 1/2 competitive ratio for the single-choice prophet inequality can be
achieved, with only a single sample per distribution. Furthermore, Caramanis
et al. [3] explored the limit of single-sample prophet inequalities for matroids,
matching, and combinatorial auctions. Correa et al. [5] also studied the prophet
secretary problem with a single sample per distribution and obtained a 0.635-
competitive algorithm.

1.1 Our Contributions

Model and Result. In the regime with little prior information, it is reasonable
to assume that some distributions may be completely new, i.e., they have no
samples whatsoever. We propose a new framework of p-sparse sample access
parameterized by p ∈ [0, 1] and apply it to the single-choice prophet inequality.
Specifically, we assume that independently for each box, the algorithm sees a
sample from it with probability p. It generalizes the single-sample setting of
Rubinstein, Wang, and Weinberg [26] when p = 1.

Our less than one sample regime also generalizes the model of Correa et al. [7]
who studied the setting with linear βn and sublinear o(n) number of samples for
n i.i.d. distributions. They showed that no algorithm can achieve a competitive
ratio better than 1/e when β = o(1), and designed a (1 − 1/e)-competitive
algorithm for β = 1. Subsequently, Correa et al. [8] achieved a tight competitive
ratio of 1+β

e for all β ≤ 1
e−1 , and improved the competitive ratio to 0.648 for

β = 1.
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To the best of our knowledge, we are the first to study the less than one
sample setting for non identical distributions. Our main result is a tight p

1+p -
competitive algorithm for the single-choice prophet inequality. Our algorithm is
based on the simple Maximum-sample algorithm [26] that stops at the first value
box i with a value Xi greater than the maximum sample. However, our version
(see Definition 1 later in the paper) has a non trivial alternation.

Techniques. First, note that stochastic optimization with a constant number
of samples makes problem so much harder than the full information case, e.g.,
in the closely related auction literature on revenue maximization with samples,
designing mechanisms with 1 sample per distribution [12,17] is quite different
from the full information setting. Moreover, it is a daunting task to get an
improvement on the revenue guarantee from the setting with 1 sample to 2
samples per distribution (see, e.g., [2,11]).

At the technical level our analysis proceeds by reducing the original problem
of maximizing the expected value to a simpler objective of stopping at any of the
top k card values for each fixed k ∈ N. We first studied the problem for k = 1
and identified a hard family of instances that already gives a tight upper bound
of p

1+p on the competitive ratio for any p ∈ (0, 1].
Next, we found the right variation of the Max-Sample algorithm for the objec-

tive of stopping at the maximum (k = 1) with a matching lower bound of p
1+p

on the competitive ratio. Our proof proceeds by carefully constructing a set of
disjoint events that would guarantee Max-Sample to win. A challenging part was
to define/select the events in such a way that would keep the number of cases at
a minimum. Lastly, we extended the analysis for k = 1 to arbitrary k ∈ N with
a noticeably more elaborate set of winning events and larger case analysis.

1.2 Further Related Works

A closely related problem to prophet inequality is the celebrated secretary prob-
lem. In this setting, n elements arrive in a random arrival order. An online
algorithm observes the value of each element and decide whether to take it
immediately and irrevocably. Observe that in this setting, the algorithm has no
prior information of the n values. Recently, Kaplan, Naori, and Raz [21] pro-
posed a data-driven variant to the secretary problem. They assume that among
the n values, a fraction p of the values are given as samples to the algorithm
in advance; the remaining values either comes in an adversarial or in a random
order. They designed an optimal algorithm for the adversarial arrivals and a
near optimal algorithm for the random arrivals. Duetting et al. [13] generalized
the latter setting to secretaries with advice and found an optimal algorithm for
the random arrival variant. Correa et al. [6] proposed a slightly different model
in which each value is sampled independently with probability p and designed
optimal algorithms for all p. This model bridges the secretary problem (when
p = 0) and the i.i.d. prophet inequality (when p = 1). These models have similar
flavour to our problem, but are not directly comparable.
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Another line of research in sample-based prophet inequality studies the sam-
ple complexity, i.e., how many samples are needed to almost (up to an ε error)
match the competitive ratio in the full-information case. First, Correa et al. [7]
proved that O(n2) samples are sufficient to get the competitive ratio of 0.745−ε
in the i.i.d. prophet inequality setting, where the optimal algorithm [9] with full
information is 0.745-competitive. The sample complexity was later improved
to O(n/ε6) by Rubinstein, Wang, and Weinberg [26]. Guo et al. [19] further
improved the dependency on ε by establishing an upper bound of O(n/ε2).

2 Preliminaries

p-Sample Prophet Inequality. There are n boxes, whose values v = (X1, . . . , Xn)
are drawn independently from D1 × . . . × Dn. In contrast to the classic prophet
inequality, the algorithm does not have knowledge about the underlying distri-
bution in advance. Instead, for each random variable Xi we observe a sample
X̂i independently for all i ∈ [n] with probability p. For simplicity of notations,
we assume X̂i = 0 when we do not see a sample. The goal is to maximize the
expected value of the accepted box and to compete against the expected maxi-
mum E[maxi Xi].

Our algorithm is defined as the following.

Definition 1 (Max-Sample algorithm). Given as input samples X̂1, . . . , X̂n,
let T = maxi∈[n] X̂i and i∗ def== argmaxi X̂i (i∗ = 0 if T = 0). Let Xj be the first
observed random variable exceeding T .

If j �= i∗, take Xj , If j = i∗ then

{
take Xj w.p. 2p

1+p

skip Xj , take next X� > T w.p. 1−p
1+p

Theorem 1. Max-Sample is p
1+p -competitive for the p-sample prophet inequality

problem. Moreover, the ratio is the best possible for any p ∈ [0, 1].

For the algorithmic part of the result, we shall focus on the following card
model and analyze the performance of our algorithm. The card model is adapted
from the work of Rubinstein, Wang, and Weinberg [26] and Correa et al. [5].

Card Model. Each box corresponds to a card Ci = {ai, bi} with two unknown
values written on either side. Each card is put on the table with one of its sides
independently and uniformly at random facing down and the other side facing
up. The card i corresponds to an ordered pair (vi, si): a value at the bottom, and
a value on top. I.e., Pr[vi = ai, si = bi] = Pr[vi = bi, si = ai] = 0.5. The online
algorithm gets to see some of the top values in the initial stage before making
any decisions. Each top value si is revealed (independently for all i ∈ [n]) to the
algorithm with probability p, with remaining probability 1−p the value is erased
and is substituted with a blank. The online algorithm proceeds by flipping the
cards one by one starting from C1 and until the last card Cn. After flipping a
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card Ci, the algorithm observes the value vi at the bottom and may either take
it and stop, or discard the card Ci and continue. We denote the set of cards with
revealed samples as R ⊆ [n] and the distribution of the revealed samples R ∼ R.
Also for each card i ∈ [n] we use ri ∈ {0, 1} to indicate whether the sample on
top of card i is revealed (ri = 1) or not (ri = 0). We denote by r ∈ {0, 1}n the
vector of revealed samples. We slightly abuse the notations and use R to denote
the distribution of r ∼ R. The algorithm sees revealed samples s(R) and aims
to maximize the value of the accepted card and compete against the prophet in
the card model: E

v,s
[maxi∈[n] vi].

For analysis purpose, we sort the multi-set of values V = {ai}n
i=1 ∪ {bi}n

i=1

in decreasing order. We denote the elements in the sorted multi-set V as w1 ≥
w2 ≥ . . . ≥ w2n. We use σ : [2n] → [n] to denote the indexes of the cards in V .
Specifically, σ1 is the index of the card with the largest values in V , σ2 is the
index of the card with the second largest value, etc.

It is straightforward to observe that a competitive algorithm for the card
model preserves its competitive ratio in the p-sample prophet inequality setting,
by setting the values {ai, bi} to be independent samples of Di.

Roadmap. In Sect. 3, we consider the simpler task of stopping at the maximum
value card. Built on it, we prove our main result in Sect. 4. Finally, in Sect. 5,
we provide a matching hardness result.

3 Stopping at the Maximum

Consider the case when the largest value w1 is much larger than the rest wi ∈ V .
In this case, the contribution of all other values to the expected reward of our
algorithm and the prophet are negligibly small and the question is how often
our algorithm stops at Cσ1 and gets vσ1 = w1.

Our objective then is to stop at the global maximum w1 in V . The prophet
gets w1 with probability 0.5, whenever vσ1 = w1, i.e., when w1 is at the bottom
of the card Cσ1 . We show that Max-Sample stops at the maximum w1 with
probability at least p

2(1+p) , which gives us the desired guarantee in the special
case when w1 is much larger than all other wi ∈ V . The analysis will be helpful
for obtaining the result in general case.

Theorem 2. Given that maximum w1 is on the value side, i.e., vσ1 = w1, Max-
Sample stops at the maximum with probability at least p

1+p .

Remark 1. Before we proceed with the proof, we give an example demonstrating
why the original algorithm of Rubinstein et al. [26] of accepting the first item
above maximum sample has strictly worse performance than p

1+p . The instance
has n = 2 boxes: the first box with distribution F1 = Uni[1, 2], the second box
with distribution F2 = {v = 10000 w.p. 1

100 , 0 w.p. 99
100}; let p = 1

2 . We may only
consider the case when X2 = 10000, X̂2 = 0 that contributes 10000 · 1

100 · 199
200 =

99.5 to the expected value of the prophet, since the total contribution in all other
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cases is less than 3. In this case the algorithm of Rubinstein et al. gets X1, if
and only if X̂1 > X1 which happens with probability p

2 < p
1+p .

Proof. One difficulty in the analysis is that we know neither the order of cards,
nor the pairings of w1, w2, . . . , w2n (i.e., which pairs of them are on the same
cards). Our approach in dealing with so many possibilities will be to describe a
sequence of disjoint events that guarantee our algorithm to stop at w1. We still
need to consider a few cases, but only a small number.

We begin constructing these events by considering the cards with the largest
values w2, . . . , wt until the next one σt+1 ∈ {σ1, . . . , σt}, i.e., the first time when
wt+1 is on the same card with one of the previous values {w1, . . . , wt}. Let us
first deal with the case when σt+1 �= σ1, i.e., wt+1 is on the same card with one
of the {w2, . . . , wt}.

Case 1: σt+1 �= σ1. We first consider the event E1 that w2 is a visible sample
(sσ2 = w2, rσ2 = 1), then Max-Sample sets the threshold T = w2 and waits until
w1 (recall that w1 must be at the bottom of its card Cσ1) at which point the
algorithm must stop and take w1. We have Pr[E1] = p

2 .
Next, if sσ2 = w2 and the sample w2 is not revealed rσ2 = 0, then we can look

at w3. If w3 is a revealed sample (w3 = sσ3 , rσ3 = 1) then Max-Sample must stop
at w1. This is our second event E2: (sσ2 = w2, rσ2 = 0), and (w3 = sσ3 , rσ3 = 1).
Similarly, Max-Sample must stop at w1 for each of the following events {E�}t−1

�=1:

E�
def=={∀i ∈ [2, �] (sσi

= wi, rσi
= 0), and (w�+1 = sσ�+1 , rσ�+1 = 1})

Pr [E�] =
(

1 − p

2

)�−1
p

2
. (1)

When we continue our sequence of events {E�}t−1
�=1 to � = t, the value wt+1

appears on one of the previously fixed cards Cσj
for 2 ≤ j ≤ t. We note that

Max-Sample algorithm skips the card with the maximum sample with probability
1−p
1+p . Thus it may still stop at w1 even when vσj

= wj (wj is at the bottom of
Cσj

card). Finally, we define the last event Et as follows:

Et
def==

{
∀i ∈ [t] \ {1, j}

(
sσi

= wi

rσi
= 0

)
and

(
wj = vσj

, wt+1 = sσj

rσj
= 1, alg. ignores wj

)}

Pr [Et] =
(

1 − p

2

)t−2

· p

2
· 1 − p

1 + p
. (2)

As all events {E�}t
�=1 are disjoint, we may combine (1) and (2) and get

Pr[alg. takes w1] ≥
t∑

�=1

Pr[E�] =
p

2
·
[(

1 − p

2

)t−2

· 1 − p

1 + p
+

t−2∑
i=0

(
1 − p

2

)i
]

=
p

1 + p

(
1 − p

2

)t−1

+
p

2
· 1 − (

1−p
2

)t−1

1 − (
1−p
2

) =
p

1 + p
(3)
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Case 2: σt+1 = σ1. We have the same events {E�}t−1
�=1 as in (1). The Et is now a

little different, as we want Max-Sample algorithm to stop at card Cσt+1 :

Et
def==

{
∀i ∈ [t] \ {1}

(
sσi

= wi

rσi
= 0

)
and

(
w1 = vσ1 , wt+1 = sσ1

rσj
= 1, alg. takes w1

)}

Pr [Et] =
(

1 − p

2

)t−2

· p · 2p

1 + p
. (4)

We continue the sequence of events {E�}t
�=1 after t by considering new cards

Cσt+2 , Cσt+3 , . . . , Cσk
until we get σk+1 ∈ {σ1, . . . , σk} \ {σ1, σt+1}, i.e., the first

time wk+1 appears on the same card with one of the previous {w1, . . . , wk}.
Notice that w1 and wt+1 are on the same card, and w1 is always at the bottom
of Cσ1 . We would like the sample wt+1 = sσ1 not to be revealed (i.e., rσ1 = 0),
which happens with probability (1 − p). We define {E�}k−1

�=t+1 as follows

E�
def==

{(
vσ1 = w1

rσ1 = 0

)
,∀i ∈ [�] \ {1, t + 1}

(
sσi

= wi

rσi
= 0

)
, and

(
w� = sσ�

rσ�
= 1

)}

Pr [E�] =(1 − p) ·
(

1 − p

2

)�−2

· p

2
. (5)

Finally, let j be the index such that wk+1 appears on one of the previously fixed
cards Cσj

for 2 ≤ j ≤ k. We define the last event Ek similar to (2) as follows.

Ek
def==

{
∀i ∈ [k] \ {j, t + 1}

(
sσi

= wi

rσi
= 0

)
,

(
wj = vσj

, wk+1 = sσj

rσj
= 1, alg. ignores wj

)}

Pr [Ek] =(1 − p) ·
(

1 − p

2

)k−3

· p

2
· 1 − p

1 + p
. (6)

As all events {E�}k
�=1 are disjoint, we combine (1), (4), (5), and (6) to get

Pr[alg. takes w1] ≥
k∑

�=1

Pr[E�] =
p

2
·

t−2∑
i=0

(
1 − p

2

)i

+
(

1 − p

2

)t−2

· 2p2

1 + p
+

p ·
k−1∑

�=t+1

(
1 − p

2

)�−1

+
(

1 − p

2

)k−1

· 2p

1 + p
>

p

1 + p

[
1 −

(
1 − p

2

)t−1
]

+
p2

1 + p

(
1 − p

2

)t−1

+ p ·
(

1 − p

2

)t 1 − (
1−p
2

)k−1−t

1 − 1−p
2

+
(

1 − p

2

)k−1

· 2p

1 + p

=
p

1 + p
− p

1 + p

(
1 − p

2

)t−1

(1− p)+
2p

1 + p

(
1 − p

2

)t

·
[
1 −

(
1 − p

2

)k−t−1
]

+

(
1 − p

2

)k−1 2p

1 + p
=

p

1 + p
, (7)
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where to get the last inequality we simply decreased the term Pr[Et] in (4) to(
1−p
2

)k−1 p2

1+p .
Theorem 2 follows from (3) in the case σt+1 �= σ1 and from (7) in the case

σt+1 = σ1.

4 Maximizing Expectation

In this section we prove our main result that Max-Sample algorithm achieves
optimal competitive ratio of p

1+p on arbitrary instances. To this end we consider
a few special instances with top k values being almost equal to each other1 and
much larger than the remaining wi for i ∈ [2n]\[k]. We call it a top-k instance for
any k ≤ 2n. It turns out that restricting our attention only to the top-k instances
is without loss of generality for the Max-Sample algorithm. We prove next that
Max-Sample is a p

1+p approximation to the prophet on any top-k instance for
each k ∈ [2n] using similar approach to what we did in Sect. 3 for the top-1
instances, but with a more elaborate case analysis.

Theorem 3. Max-Sample algorithm is a p
1+p -approximation to the prophet for

any value of p ∈ (0, 1].

Proof. We analyse Max-Sample in the card model and first show that restricting
our attention only to the top-k instances is without loss of generality.

Claim. Suppose a rank-based ALG (i.e., ALG only uses comparisons “>,<”
between variables and samples) is an α < 1 approximation to the prophet on any
top-k instance in the card model for each k ≥ 1. Then ALG is an α-approximation
to the prophet on every instance.

Proof. The fact that ALG is an α-approximation to the prophet on a top-k
instance means that

Prv,r[ALG(v, r) gets wi for an i ∈ [k]] ≥ α · Prv[∃i ∈ [k] vσi
= wi] (8)

for this instance. As ALG is an ordinal algorithm the same guarantee holds for
any instance that is not necessarily a top-k. Expected performance of the ALG
can be written as

E[ALG] =
2n∑

k=1

wk · Pr[ALG gets wk] =
2n∑

k=1

wk ·
(
Pr[ALG gets wi, i ∈ [k]]

− Pr[ALG gets wi, i ∈ [k − 1]]
)

=
2n∑

k=1

Pr[ALG gets wi, i ∈ [k]] · (wk − wk+1)

≥ α ·
2n∑

k=1

Pr[∃i ∈ [k] vσi
= wi] · (wk − wk+1) = α · E[Prophet],

where Pr[ALG gets wi, i ∈ [0]] = w2n+1 = 0; we used (8) to get the inequality.
1 E.g., w1 = w2 + ε = . . . = wk + (k − 1)ε, for some negligibly small ε > 0.
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To conclude the proof of Theorem 3, we only need to show that Max-Sample
is a p

1+p -approximation to the prophet on a top-k instance for each k ∈ [2n].
Section 3 already gives the desired result for k = 1. For k ≥ 2 we consider the
sequence of cards (σi)k

i=1 with the top k values. There are two cases: 1) there is
a pair of wi, wj on the same card (σi = σj), or 2) all (σi)k

i=1 are different.

Case 1. ∃ σj = σi, i, j ∈ [k]. Let us consider the first time two top values
appear on the same card, i.e., the smallest i ≤ k with σi = σj for a j < i.
Notice that the prophet can get one of the top-i values (either wi or wj), i.e.,
Pr[∃j ∈ [i] vσj

= wj ] = 1. On the other hand, for the Max-Sample it is only
harder to stop at one of the top-i values. Hence, we can assume without loss of
generality that k = i and that σj = σk is the only two top-k values on the same
card. We distinguish three cases based on the index j.

Case 1.a. k = 2. Then σ1 = σ2, i.e., w1 and w2 are on the same card. Then
consider the event E0 that (vσ1 = w1, sσ1 = w2, rσ1 = 1), then Max-Sample
succeeds with probability 2p

1+p . On the other hand, if rσ1 = 0 (sample sσ1 ∈
{w1, w2} is not revealed) we can use the same events (Ei)i≥1 from Sect. 3 (count
starts from w3 instead of w2) to guarantee that Max-Sample stops at w1 or w2

(whichever is at the bottom of Cσ1). Overall, the events (Ei)i≥0 give us the
desired guarantee

Pr[alg. wins] ≥ p

2
· 2p

1 + p
+ (1 − p) ·

∑
i≥1

Pr[Ei] ≥ p2

1 + p
+ (1 − p)

p

1 + p
=

p

1 + p
.

Case 1.b. k > 2 and σj = σk �= σ1. The Max-Sample wins in the event E0 :
(vσ1 = w1, rσk

= 1). On the other hand, when (vσ1 = w1, rσk
= 0), we can use

the same events (Ei)i≥1 as in Sect. 3 with a small modification that wj , wk and
their respective card Cσj

are removed from the sequence (wi)2n
i=1 to guarantee

the win of Max-Sample. Indeed, the card Cσj
may only cause the algorithm to

stop early at wj or wk, which is a win for the algorithm. We have

Pr[alg. wins] ≥ Pr[E0] +
1
2
(1 − p) ·

∑
i≥1

Pr[Ei] ≥ p

2
+

1 − p

2
p

1 + p
=

p

1 + p
.

Case 1.c. k > 2 and σk = σ1. We consider first what happens with the card
Cσ1 . First, let us consider what happens when (sσ1 = wk, rσ1 = 0). The Max-
Sample wins if at least one of the top values wi, i ∈ [2, k] is revealed as a sample
(sσi

= wi, rσi
= 1). We define this event EI as

EI
def=={(sσ1 = wk, rσ1 = 0), ∃ 1 < i < k (sσi

= wi, rσi
= 1)}

Pr [EI ] =
1 − p

2
·
(

1 −
(
1 − p

2

)k−2
)

(9)

Next, let us consider what happens when (vσ1 = w1, sσ1 = wk, rσ1 = 1). The
algorithm is guaranteed to win when one of the wi for 1 < i < k appears at the
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bottom, or as a revealed sample. The Max-Sample also wins when all of the wi

for 1 < i < k appear as a hidden samples and Max-Sample decides not to skip
w1 when it reaches sσ1 = wk. Formally, we define these two events EII , EIII as

EII
def== {(sσ1 = wk, rσ1 = 1), ∃ 1 < i < k (vσi

= wi or sσi
= wi, rσi

= 1)}
EIII

def== {(sσ1 = wk, rσ1 = 1), ∀ 1 < i < k (sσi
= wi, rσi

= 0),ALG takes w1}

Pr [EII � EIII ] =
p

2
·
(

1 −
(

1 − p

2

)k−2

+
(

1 − p

2

)k−2

· 2p

1 + p

)
(10)

Finally, let us consider what happens when wk is at the bottom of the card Cσ1

and w1 is not revealed as a sample (vσ1 = wk, rσ1 = 0). We would like to treat
wk as w1 from Sect. 3 and construct events that guarantee Max-Sample to stop
at wk. The main problem is that if any of the wi for i ∈ [2, k − 1] appears as a
revealed sample, then the algorithm will never stop at wk. To avoid this issue we
will add the condition that no wi for i ∈ [2, k − 1] is revealed as a sample (note
that if wi appears at the bottom of Cσi

, it can only help Max-Sample to win).
We use the events {E�}�≥1 from Sect. 3 with a modification that wk plays the
role of w1 and all w2, . . . , wk−1 are ignored or equivalently treated as very small
numbers (i.e., (wi)i≥2 in Sect. 3 correspond to (wi)i≥k+1 in our instance, and w1

in Sect. 3 corresponds to wk here)2. Notice that if a card with wi, i ∈ [2, k − 1] is
used in an event E�, then the other value wj , j ≥ k + 1 on the card Cσi

must be
a sample (sσj

= wj , vσj
= wi). I.e., we do not need to worry that wi is revealed

as a sample. Thus for each event E� the algorithm wins in the event

E ′
�

def== {(vσ1 = wk, rσ1 = 0) ∧ E� ∧ {∀1 < i < k vσi
= wi ∨ (sσi

= wi, rσi
= 0)}}

Pr [E ′
�] ≥ 1 − p

2
·
(
1 − p

2

)k−2

· Pr [E�] . (11)

When we combine the events defined by (9), (10), (11) we get

Pr[alg. wins] ≥ Pr

⎡
⎣EI � EII � EIII �

⊔
�≥1

E ′
�

⎤
⎦ ≥ 1 − p

2
·
(

1 −
(
1 − p

2

)k−2
)

+

p

2
·
(

1 −
(

1 − p

2

)k−2

+
(

1 − p

2

)k−2

· 2p

1 + p

)
+

1 − p

2

(
1 − p

2

)k−2

· p

1 + p

=
1 − p

2
·
(

1 − 1
1 + p

(
1 − p

2

)k−2
)

+
p

2
·
(

1 − 1 − p

1 + p

(
1 − p

2

)k−2
)

k=3
>

1 − p

2
·
(

1 − 1
1 + p

(
1 − p

2

))
+

p

2
·
(

1 − 1 − p

1 + p

)
=

p

1 + p
,

2 We can assume that once wi is set to 0 for 1 < i < k, it is small enough to not appear
in the E�. Indeed, we can add a few dummy cards with both sides having negligibly
small numbers in the beginning of the sequence that do not affect performance of
Max-Sample, but still bigger than wi ← 0.
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where to get the last inequality we used that the previous expression is minimized
for k = 3 (recall that k > 2) and also that

(
1−p
2

)k−2
< 1. This concludes the

proof for the case 1 as we have Pr[alg. wins] ≥ p
1+p in each of the sub-cases 1.a,

1.b, and 1.c.

Case 2. k ≥ 2 and ∀ 1 ≤ i < j ≤ k σi �= σj . The main difficulty in this case is
that the value of the prophet Pr[∃ j ∈ [i] vσj

= wj ] = 1 − 1
2k , which depends on

k. On the positive side, there are no sub-cases here unlike case 1. We consider
first what happens when at least one of the wi, i ∈ [k] is revealed as a sample.
Let j ∈ [k] be the first wj with (sσj

= wj , rσj
= 1). For each j ≥ 2, Max-Sample

algorithm wins when at least one of the wi, i < j appears at the bottom of its
card Cσi

. Formally, we define these events (E∗
j )k

j≥2 as

E∗
j

def==
{

(sσj
= wj , rσj

= 1),
∀ i < j (vσi

= wi ∨ rσi
= 0)

not ∀ i < j (sσi
= wi ∧ rσi

= 0)

}

Pr
[E∗

j

]
=

p

2
·
((

1 − p

2

)j−1

−
(

1 − p

2

)j−1
)

(12)

Next, consider the event E ′ that none of wi, i ∈ [k] is revealed as a sample
and at least one of them is at the bottom of its card Cσi

. In this case, we
need to consider other (wi)i≥k+1 to guarantee the win of Max-Sample. To this
end, we would like to use the events (E�)�≥1 from Sect. 3 with the following
modification: all w1, . . . , wk are ignored, i.e., (wi)i≥2 from Sect. 3 correspond to
(wi)i≥k+1 in our instance. If event E� does not specify position of any of the
cards Cσ1 , . . . , Cσk

, then Max-Sample wins in the event E ′
� defined as:

E ′
�

def==
{

E� ,
∀ i ∈ [k] (vσi

= wi ∨ rσi
= 0)

not ∀ i ∈ [k] (sσi
= wi ∧ rσi

= 0)

}

Pr [E ′
�] =

((
1 − p

2

)k

−
(

1 − p

2

)k
)

· Pr [E�] (13)

Now, if E� specifies the position of any of the cards Cσ1 , . . . , Cσk
, then let us

consider the first time j ≥ k + 1 when σj = σi, for an i ∈ [k]. Note that in
this case wi must be at the bottom of Cσj

(vσi
= wi). We can treat wi as w1

in the event E� from Sect. 3 and ignore the remaining wt, t ∈ [k] \ {i}. Then for
every card Cσt

, t ∈ [k] that is specified in E�, we have vσt
= wt. We immediately

get ¬∀ i ∈ [k] (sσi
= wi ∧ rσi

= 0) and specifically for the card Cσt
we get

(vσt
= wt ∨ rσt

= 0). We still need to check that vσt
= wt ∨ rσt

= 0 for the
cards not specified in E�. Thus, for the event E ′

� formally defined in (13) we get

Pr[E ′
�] ≥

(
1 − p

2

)k−1

· Pr[E�] ≥
((

1 − p

2

)k

−
(

1 − p

2

)k
)

· Pr[E�] (14)
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Finally, we combine the events {E∗
j }k

j≥2 and {E ′
�}�≥1 and use (12), (14) to get

Pr[alg. wins] ≥ Pr

⎡
⎣ k⊔

j=2

E∗
j �

⊔
�≥1

E ′
�

⎤
⎦ ≥ p

2
·

k−1∑
j=1

((
1 − p

2

)j

−
(

1 − p

2

)j
)

+

((
1 − p

2

)k

−
(

1 − p

2

)k
)

·
∑
�≥1

Pr[E�] ≥ p

2
·

k−1∑
j=1

((
1 − p

2

)j

−
(

1 − p

2

)j
)

+

((
1 − p

2

)k

−
(

1 − p

2

)k
)

· p

1 + p
=

p

2

(
1 − p

2

) 1 − (
1 − p

2

)k−1

p/2

− p

2

(
1 − p

2

)
1 − (

1−p
2

)k−1

1 − 1−p
2

+

((
1 − p

2

)k

−
(

1 − p

2

)k
)

p

1 + p

= 1 − p

2
− 1

1 + p

(
1 − p

2

)k

− p(1 − p)
2(1 + p)

=
1

1 + p

(
1 −

(
1 − p

2

)k
)

(15)

We are left to verify that the right hand side of (15) is at least p
1+p · Prophet =

p
1+p ·(1 − 1

2k

)
. This is equivalent to showing that f(p) def== 1−(

1 − p
2

)k ≥ g(p) def==
p · (1 − 1

2k ). Now, observe that f(0) = g(0), f(1) = g(1), and f ′(p) − g′(p) =
k
2

(
1 − p

2

)k−1 − 1 + 1
2k is a decreasing function in p that is positive at p = 0

(recall that k ≥ 2). These three conditions imply that f(p) − g(p) ≥ 0 for any
p ∈ [0, 1].

5 Matching Lower Bound

We give in this section a matching lower bound of p
1+p . Interestingly, our con-

struction has the property that the maximum value among all n values together
with all n samples (revealed or not) is almost surely much larger than the rest
2n − 1 numbers, that is the upper bound of p

1+p from Sect. 3 is tight.
Our construction is as follows for any fixed constant p ∈ (0, 1].

Example 1. Set ε = o(p) > 0. Let the number of variables n = Θ
(

1
ε2

)
. Define the

distribution F0 = {v = 0 w.p. 1} and distributions Fi
def== {v = 1

εi w.p. ε, v =
0 w.p. 1 − ε} for all i ∈ [n]. We construct the following mixture of n instances
{Ii}n

i=1.

i-th instance Ii : ∀j ≤ i Dj = Fj ,∀j > i Dj = F0 Pr[Ii] =
εi−1∑n−1
j=0 εj

The next two claims describe an optimal online algorithm ALG for this instance.
Let i∗ def== argmaxi X̂i (i∗ = 1 if all X̂i = 0).

Claim. There is an optimal ALG that does not take any Xi with i < i∗.
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Proof. If ALG stops at any i < i∗, then its reward Xi is equal to or smaller than
1

εi∗−1 . On the other hand, ALG could wait until i∗ and get a reward of at least
1

εi∗ with probability ε, since the distribution Di∗ = Fi. This gives at least as
large expected reward of 1

εi∗ · ε as taking Xi.

Claim. The ALG that takes the first non zero Xi for i ≥ i∗ is optimal.

Proof. First, we may assume that ALG does not stop before i∗ by Claim 5. Also
we can assume that ALG skips any Xi = 0. Note that the revealed samples up
until i∗ give no information about the variables after i∗. Thus ALG should only
consider zero samples after i∗, which we denote by a vector sR. Then for each
j ≥ i∗

PrIi
[sR = 0 | Ii = Ij ] = (1 − ε)f(j), where f(j) def== |R ∩ {i∗, i∗ + 1, . . . , j}|.

Using Bayes rule and the law of total probability we can get

PrIi
[Ii = Ij | i ≥ i∗, sR = 0] =

wj∑
i≥i∗ wi

, where wj
def== εj−i∗ · (1−ε)f(j) (16)

We will prove that an optimal ALG should always take Xt = 1
εt for any t ≥ i∗ and

any sR by backward induction on t. The base of induction for t = n is trivial. We
prove induction step for a t < n assuming that the induction hypothesis holds
for all t′ : t < t′ ≤ n. Assume towards a contradiction that an optimal algorithm
ALG′ does not take Xt = 1

εt , then by the induction hypothesis ALG′ must wait
until the next variable Xt′ > 0 and stop. Next, we will show that the expected
reward in this case is strictly smaller than 1

εt – the reward ALG would have by
stopping at Xt.

E[ALG′] =
n∑

j>t

1
εj

· Pr[∀t < i < j Xi = 0,Xj > 0] · PrIi
[i ≥ j | i ≥ t, sR = 0]

=
n∑

j>t

ε · (1 − ε)j−t−1

εj
·
∑n

i≥j wi∑n
i≥t wi

<
n∑

j>t

ε · (1 − ε)j−t−1

εj
· εj−t <

1
εt−1

∞∑
i=0

(1 − ε)i

=
1
εt

= E[ALG], (17)

where to get the first inequality we observe that εj−twt ≥ wj , εj−twt+1 ≥
wj+1, . . ., εj−twn−j+t ≥ wn by formula (16) and thus εj−t · ∑n

i≥t wi >
∑n

i≥j wi;
in the second inequality we simply extended the range of summation from i =
n−t−1 to infinity. The strict inequality (17) shows that ALG′ cannot be optimal,
and, therefore, an optimal ALG has to stop at Xt, which concludes the proof.

Now, we can compare the optimal online algorithm described by Claim 5 with
the prophet.

Theorem 4. The competitive ratio of any online algorithm with respect to the
prophet is at least p

1+p for the Example 1.
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Proof. First, we get the following lower bound on the expected reward of the
prophet

Prophet ≥
n∑

�=1

PrIi
[Ii = I�] · Pr

[
X� =

1
ε�

]
· 1
ε�

=
n∑

�=1

ε�−1 · ε · 1
ε�∑n−1

i=0 εi
= n − o(n).

In what follows we get an upper bound on the expected reward ALG of the
optimal online algorithm. Let us assume that the realized instance is Ii = I�.
We first observe that the total contribution from Xj with 1 ≤ j < � is not more
than

�−1∑
j=1

Pr[Xj > 0] · 1
εj

= ε ·
�−1∑
j=1

ε−j = O

(
1

ε�−2

)
. (18)

As we will see later this turns out to be a negligibly small amount. Next we
get an upper bound on the probability that ALG stops at X� when Ii = I� and
X� > 0.

Pr[ALG takes X� | Ii = I�,X� > 0] = Pr[∀1 ≤ i < � Xi = 0]

+
�−1∑
j=1

Pr[∀j < i < � Xi = 0,Xj > 0] · Pr
[
∃j < i ≤ � (X̂i > 0, ri = 1)

]

= (1 − ε)�−1 +
�−2∑
i=0

ε · (1 − ε)i · (1 − (1 − pε)i+1) (19)

We further estimate the term A�
def==

∑�−2
i=0 ε · (1 − ε)i · (1 − (1 − pε)i+1) in (19).

We give an upper bound on A� by analysing a simple Markov chain M that
corresponds to this summation. Markov chain M has 4 states {S, I,End,Win};
the random walk starts in the S state, and from there we can go either to Win
with probability pε, or to I with the remaining probability 1 − pε; from state I
we can either go back to S with probability 1 − ε, or go to End with remaining
probability ε; finally, both states Win and End are terminal states, i.e., once the
random walk gets in one of them, it stays there forever. The Win state represents
that ALG successfully reaches X� and End state represents that ALG stops at an
earlier random variable. Observe that

Pr[reach Win] = 1 − Pr[reach End] = 1 −
∞∑

�=0

ε(1 − ε)�(1 − pε)�+1

=
∞∑

�=0

ε(1 − ε)� −
∞∑

�=0

ε(1 − ε)�(1 − pε)�+1 =
∞∑

�=0

ε(1 − ε)�(1 − (1 − pε)�+1) ≥ A�

On the other hand, we have a simple recurrent equation for Pr[reach Win] =
pε + (1 − pε) · (1 − ε) · Pr[reach Win], which gives us

p + o(p)
1 + p

=
p

1 + p − εp
= Pr[reach Win] ≥ A�. (20)
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For the other term B�
def== (1 − ε)�−1 in (19) we will use that n = Ω( 1

ε2 ) is
rather large and thus for almost all � the term B� is negligibly small. Now we
can combine the bounds (18), (19), and (20) together to get the lower bound on
expected reward ALG of the optimal online algorithm.

ALG ≤
n∑

�=1

PrIi
[Ii = I�] ·

[
Pr[X� > 0]

ε�
· Pr[ take X� | Ii = I�,X� > 0]

+O

(
1

ε�−2

)]
=

n∑
�=1

ε�−1∑n−1
i=0 εi

·
[

ε

ε�
· (

A� + (1 − ε)�−1
)

+ O

(
1

ε�−2

)]
≤

n∑
�=1

ε�−1

[
A�

ε�−1
+

(1 − ε)�−1

ε�−1
+ O

(
1

ε�−2

)]
< n · An + O(nε) +

∞∑
�=1

(1 − ε)�−1

≤ np + o(np)
1 + p

+ O(nε) +
1
ε

= n ·
(

p

1 + p
+ o(1)

)
.

Combining this upper bound on ALG with a lower bound on the prophet we get
the desired bound ALG ≤ (1 + o(1)) p

1+pProphet.

6 Conclusions and Open Directions

In this paper we analysed the impact of sparse statistical information on the
stochastic optimization in the classic prophet inequality (PI) setting. The opti-
mization from samples framework allows one to nicely capture the sparsity of
the information with a single parameter p ∈ [0, 1]. At least in the PI setting,
it appears that finding good algorithms is more challenging than in the one-
sample-per-distribution regime, but our regime also seems to be more tractable
than the few-samples-per-distribution regime.

There are a many interesting directions for future research in the sparse
sample regime. For example

1. An immediate question is to analyse other PI settings in the sparse samples
regime: e.g., a natural candidate is the k-unit prophet inequality.

2. It is interesting to see the interplay between sparse statistical information
and another commonly used secretary assumption (i.e., random order arrival
models). Specifically, it is unclear if one can improve the performance in
secretary models with an additional statistical information. E.g., would it be
possible to strictly improve the online algorithm in classic secretary problem
for any value of p > 0?

3. Many auction design problems have been analysed in the optimization from
samples framework and there have been a few results in one-sample-per-
distribution regime. These settings are natural candidates to be studied in
the sparse samples regime as well.
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Abstract. Empirical game-theoretic analysis (EGTA) is a general
framework for reasoning about complex games using agent-based sim-
ulation. Data from simulating select strategy profiles is employed to esti-
mate a cogent and tractable game model approximating the underlying
game. To date, EGTA methodology has focused on game models in nor-
mal form; though the simulations play out in sequential observations and
decisions over time, the game model abstracts away this temporal struc-
ture. Richer models of extensive-form games (EFGs) provide a means to
capture temporal patterns in action and information, using tree represen-
tations. We propose tree-exploiting EGTA (TE-EGTA), an approach to
incorporate EFG models into EGTA. TE-EGTA constructs game models
that express observations and temporal organization of activity, albeit
at a coarser grain than the underlying agent-based simulation model.
The idea is to exploit key structure while maintaining tractability. We
establish theoretically and experimentally that exploiting even a little
temporal structure can vastly reduce estimation error in strategy-profile
payoffs compared to the normal-form model. Further, we explore the
implications of EFG models for iterative approaches to EGTA, where
strategy spaces are extended incrementally. Our experiments on several
game instances demonstrate that TE-EGTA can also improve perfor-
mance in the iterative setting, as measured by the quality of equilibrium
approximation as the strategy spaces are expanded.

1 Introduction

Empirical game-theoretic analysis (EGTA) (Wellman 2016) employs agent-based
simulation to induce a game model over a restricted set of strategies. The
methodology is salient for games that are too complex for analytic description
and reasoning. Complexity in dynamics and information can be expressed in
a simulator, but abstracted from the game model. In typical EGTA practice,
simulation data is used to estimate a normal-form game (NFG) model, associ-
ating a payoff vector with each combination of strategies available to the agents.
But game theory offers richer model forms that capture sequentiality in agent
play and conditional information. Specifically, extensive-form game (EFG) mod-
els represent the game as a tree, where nodes or sets of nodes represent states,
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and edges represent player moves and chance events. Whereas NFGs treat agent
strategies as atomic objects, EFGs afford a finer-grained expression of the obser-
vations and actions that define these strategies, capturing structure that may
be shared among many strategies. The goal of this work is to take advantage of
extensive-form structure, at flexible granularity, for complex game environments
described by agent-based simulation. Our approach, Tree-Exploiting EGTA (TE-
EGTA), follows the basic framework of EGTA, but employs a parameterized
EFG model to leverage part of the game’s tree structure.

Taking advantage of extensive form necessitates two key modifications to the
EGTA process. First, we require methods to estimate the more complex model
form: an abstracted game tree parameterized by player utilities at terminal nodes
and probability distributions over successors for stochastic events represented by
chance nodes in the tree. These stochastic events, together with information-set
structure, model the imperfect information available to the players. We introduce
straightforward techniques to estimate these game-tree parameters, and describe
how the structure intuitively affords more effective use of available simulation
data. Second, we require methods for extending extensive-form models as the
strategy space is expanded, across iterations of the EGTA process. We introduce
techniques for iterative augmentation of empirical game-tree models with new
(best-response) strategies, within a standard approach that incorporates deep
RL within EGTA (Lanctot et al. 2017).

To establish the benefits of tree-exploitation for EGTA, we show that an
extensive-form empirical game model provides (with high probability) a more
accurate approximation of the true game than a normal-form model constructed
from the same simulation data. As it is generally intractable to construct a
game tree expressing the full fidelity of the game simulated, our approach is
designed to operate on highly abstracted models capturing only selected tree
structure. To ground the meaning of such abstractions, we provide an algorithm
that produces a coarsened model given the full game and a description of what to
abstract away. We demonstrate the efficacy of TE-EGTA through experiments
on three stylized games, and over varying levels of abstraction. We compare TE-
EGTA to normal-form EGTA on two key performance measures. The first is the
average error incurred from estimating the true player payoffs for all strategy
combinations in the empirical game. The second is the regret of empirical-game
solutions with respect to the full multiagent scenario, computed over successive
empirical game models in an iterative EGTA process.

Outline. Section 2 provides technical preliminaries, including a formal exposi-
tion of the EFG representation and precise elaboration of the EGTA framework
and process. Sect. 3 delineates our algorithmic contribution, TE-EGTA, start-
ing with the structure of an extensive-form empirical game model and how to
estimate its parameters from simulation data (Sect. 3.1). We then give a the-
oretical procedure for generating a (usually) coarsened extensive-form model
from the underlying game (Sect. 3.2), and explain how to iteratively refine the
model via simulation-aided strategy exploration (Sect. 3.3). In Sect. 4, we present
theoretical results on the advantage of TE-EGTA over normal-form EGTA in
approximating true payoffs given a set of strategy profiles. All proofs are avail-
able in the full version. In Sect. 5, we report experiments that demonstrate the
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improvement in strategy-profile payoff estimation (Sect. 5.1) and in model refine-
ment using the PSRO approach (Lanctot et al. 2017) (Sect. 5.2) produced via
tree exploitation. Sect. 6 concludes.

2 Preliminaries

2.1 Extensive-Form Games (EFGs)

An extensive-form game (EFG) is a standard model for strategic multi-agent sce-
narios where agents act sequentially with potentially varying degrees of imper-
fect information about the history of game play. Early algorithmic work on
EFGs showed how to generalize the Lemke-Howson method for computing Nash
equilibria (NE) for two-player games with perfect recall (Koller et al. 1996).
Well-known game-theoretic methods such as replicator dynamics (Gatti et al.
2013) and fictitious self-play (Heinrich et al. 2015) have also been adapted for
EFGs. The task of successful abstraction with exploitability guarantees has also
been investigated: Kroer and Sandholm (2018) gave a framework for analyzing
abstractions of large-scale EFGs, and Zhang and Sandholm (2020) introduced the
notion of small certificates carrying proofs of approximate NE. Other works have
developed algorithms that search for optimal strategies or approximate equilib-
ria that minimize exploitability (Johanson et al. 2012; Lockhart et al. 2019).
In this paper, we will only consider games with perfect recall, so no player can
forget what it observed or knew earlier.

Tree Structure. Formally, a finite, imperfect-information EFG is a tuple G :=
〈N,H, V, {Ij}n

j=0, {Πj}n
j=1,X, P, u〉. The components of G are defined as follows

(see Fig. 1 for an illustrative example):

– N = {0, . . . , n} is the set of players. Player 0 represents Nature, a non-
strategic agent responsible for stochastic events that impact the course of
play; the remaining players are strategic rational agents.

– H is the finite game tree, rooted at a node h0, that captures the dynamic
nature of interactions. Each node h ∈ H represents a state of the game, also
identified with a history of actions (see below) beginning at the initial state h0

which corresponds to the null history ∅. The leaves or terminal nodes T ⊂ H
represent possible end-states of the game. We refer to the non-terminal nodes
of H as decision nodes, represented by the set D = H \ T .

– V : D → N assigns a player to each decision node h.
– For each player j ∈ N , Ij is a partition of V −1(j) where each I ∈ Ij is an

information set (infoset) of j. All nodes h ∈ I are indistinguishable from the
viewpoint of player j.

– At each information set I ∈ Ij , player j has a set of available actions Πj(I).
– A node h where V (h) = 0 is called a chance node. X(h) is the set of actions

available to Nature (i.e., possible outcomes of the stochastic event) at h, and
P (· | h) is the probability distribution over X(h).

– The utility function u : T → R
n maps each terminal node to a real-valued

vector of players’ utilities {uj(t)}n
j=1.



Exploiting Extensive-Form Structure in Empirical Game-Theoretic Analysis 135

The directed edge connecting any h ∈ I to its child child[h] represents a state
transition resulting from V (h)’s move, and is labeled with an action π ∈ ΠV (h)(I)
if V (h) �= 0, or an outcome x ∈ X(h) otherwise. We denote by ϕ(h, j) the history
of actions belonging to player j up to node h.

Strategies and Payoffs. A pure strategy for player j ∈ N \ {0} specifies the
action πj ∈ Πj(I) that j selects at information set I ∈ Ij . More generally,
a mixed strategy or simply strategy σj(· | I) defines a probability distribution
over Πj(I) at each information set of agent j; that is, action πj is selected with
probability σj(πj | I). The vector σ = (σ1, . . . , σn) is called a strategy profile,
and σ−j represents the combination of strategies for players other than j. We
denote the set of all strategies available to player j by Σj and the space of
joint strategy profiles by Σ = ×n

j=1Σj . Let rj(t, σj) denote the probability that
node t is reached if player j adopts strategy σj and all other players (including
Nature) always choose actions that lead to h when possible; the probability that
t is reached under strategy profile σ is given by its reach probability, r(t,σ) =∏

j∈N rj(t, σj). Likewise, the contribution of Nature to the reach probability
of t is r0(t) =

∏
h∈H, e∈X(h)∩ ϕ(t,0) P (e | h). We define the payoff from joint

strategy profile σ to player j as its expected utility over all end-states: Uj(σ) :=∑
t∈T uj(t)r(t,σ).

Best Response Formulation and Regret. A best response (BR) of player
j ∈ N \ {0} to σ−j is a strategy σj ∈ argmaxσ′

j∈Σj
Uj(σ′

j ,σ−j) that maximizes
the payoff for j given σ−j . The regret of player j from playing σ is given by
Regj(σ) = maxσj∈Σj

Uj(σj ,σ−j)−Uj(σ). The total regret of the strategy profile
σ is the sum: Reg(σ) =

∑n
j=1 Regj(σ). For ε > 0, an ε-Nash equilibrium is a

strategy profile σ such that Regj(σ) ≤ ε for every player j ∈ N \ {0}; a strategy
profile σ with Reg(σ) = 0 is a Nash equilibrium.

Fig. 1. EFG representation of Game1, our running example also used in our exper-
iments. Dashed lines indicate outgoing edges to nodes omitted from this illustration.

Running Example. Consider the two-agent strategic scenario depicted in
Fig. 1, which we call Game1. First, Player 1 chooses an action from Π1 =
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{πi
1}10i=1; then, a single stochastic event X(πi

1) ∈ {A,B} occurs, outcome A hav-
ing probability P (A | πi

1) dependent on Player 1’s choice πi
1. Player 2 observes

the outcome e ∈ {A,B} but not Player 1’s chosen action, which induces two
information sets for Player 2. Player 2 also has ten actions to choose from in
each information set, Π2A = {πi

2A}10i=1 and Π2B = {πi
2B}10i=1. Each leaf with

history (πi
1, e, π

i′
2e) is labeled with the 2-dimensional vector of Player 1 and 2’s

realized utilities. Neither the conditional probabilities P (A | πi
1) nor the leaf

utilities u(πi
1, e, π

i′
2e) are known a priori to the game analyst.

2.2 Empirical Game-Theoretic Analysis (EGTA)

The framework of EGTA was developed for the application of game-theoretic
reasoning to scenarios too complex for analytic description, accessible only in
the form of a procedural simulation (Wellman 2016). Over the years, EGTA has
been applied to multifarious problem domains including recreational strategy
games (Tuyls et al. 2020), security games (Wang et al. 2019), social dilemmas
(Leibo et al. 2017), and auctions (Wellman 2020). There is also substantial work
on methodological questions such as how to decide which strategy profiles to
simulate (Fearnley et al. 2015; Jordan et al. 2008), and how to reason statistically
about estimated game models (Areyan Viqueira et al. 2020; Tuyls et al. 2020;
Vorobeychik 2010). Recently, EGTA has received newfound attention, as the
simulation-based approach meshes well with powerful new strategy generation
methods from deep reinforcement learning (RL) (Lanctot et al. 2017).

Fig. 2. Schematic illustration of EGTA. TE-EGTA modifies two subprocesses to incor-
porate the tree structure of EFGs: accumulation of simulation data into the game model
(enclosed in blue, described in Sect. 3.1); and the procedure for augmenting Σ̂ with new
strategies (enclosed in red, described in Sect. 3.3). Black (resp. grey) arrows represent
the sequence of operations (resp. direction of possible information flow). (Color figure
online)

The main feature of EGTA is its construction of an empirical game model
Ĝ of a much larger game of interest, called the true game G, from simulation
data. A typical EGTA process (see Fig. 2) iteratively refines and extends Ĝ
by cumulative simulation over an incrementally growing strategy space. Ĝ is a
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simplification of the underlying G since: (1) it is defined on restricted subsets
Σ̂j ⊂ Σj of the players’ true-game strategy spaces, and the restricted strat-
egy profile space, given by Σ̂ = ×n

j=1Σ̂j , is typically a vast reduction of Σ; (2)
some information revelation and conditioning structure may be abstracted away.
Moreover, we assume that G is accessible only through a high-fidelity but expen-
sive simulator that executes a given strategy profile in G and outputs limited
observation histories and noisy utility samples. Ĝ is thus also an approximation
of G since its parameters must be estimated from this simulation data.

Almost all EGTA literature to date expresses game models in normal form,
given by a (multi-dimensional) matrix of payoff estimates for combinations of
agents’ strategies from the restricted set. The multi-agent scenarios themselves
are typically dynamic in nature, as represented by an agent-based simulator;
agent strategies are generally conditional on partial observations. For example,
a normal-form game model for Game1 in Sect. 2.1 would treat each pure strategy
πi′
2 of player 2 as atomic, abstracting away the nuanced conditioning on whether

A or B happened, and record estimated utility vectors for strategy combinations
of the form (πi

1, π
i′
2 ) from restricted set.

As our objective is to extend EGTA to extensive-form modeling, we will
call this normal-form baseline NF-EGTA. In NF-EGTA, the sole simulator out-
put of concern is the noisy sample of players’ payoffs, from which we compute
estimates {ÛNF

j (σ)}n
j=1 of the true utilities {Uj(σ)}n

j=1 to obtain the empirical
game model Ĝ. We then analyze or solve this tractable, multi-dimensional game
matrix by standard techniques to obtain a result for the next iteration. Termi-
nation may be decided by a criterion such as the true-game regret of a solution
(i.e., the maximum payoff increase achievable by any player j by deviating to a
strategy in Σj rather than Σ̂j) falling below a specified threshold. If termination
criteria are not met, we expand the restricted strategy sets through a process
called strategy exploration (Balduzzi et al. 2019; Jordan et al. 2010), and update
Ĝ through further simulation and model induction.

Game Model Estimation. Consider the process of estimating a normal-form
model for an underlying extensive-form game implicitly represented by traces
from the simulator. Suppose we simulate each strategy profile in Σ̂ m times. Each
simulated play traces a path through the game tree ending at some undisclosed
terminal node t ∈ T and returns a vector of noisy payoffs for all players sampled
from a distribution with expectation u(t). Let {ūi

j}n
j=1 denote the realized payoff

sample at the end of the ith simulation for i = 1, . . . , m; Typically, NF-EGTA’s
payoff estimate ÛNF

j (σ) is the simple average of these samples. ÛNF
j (σ) is an

unbiased estimator of the true payoff, as shown in Proposition 1. In practice,
the number of samples m that can be acquired is limited by the computational
cost of simulation. This begs the question: can incorporating tree structure into
Ĝ improve the accuracy of estimated payoffs, relative to NF-EGTA, for a fixed
simulation budget m? We address this question in Sect. 3.1.

Proposition 1. For every player j ∈ N \ {0} and strategy profile σ ∈ Σ̂,
E

[
ÛNF

j (σ)
]
= Uj(σ).
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Policy-Space Response Oracles (PSRO). A fully automated implementa-
tion of the iterative EGTA framework of Fig. 2 requires the ability to automati-
cally generate new strategies based on analysis of the empirical game model at
a given point. Phelps et al. (2006) first introduced automated strategy gener-
ation to EGTA via genetic search, and Schvartzman and Wellman (2009) first
employed RL for this purpose. The advent of deep RL methods brought sig-
nificant new power to this approach, which is now the predominant means of
accumulating a set of restricted strategies in EGTA algorithms.

Lanctot et al. (2017) developed a general framework for interleaving empir-
ical game modeling with deep RL techniques, which they termed policy-space
response oracles. A key idea of PSRO is that of a meta-strategy solver (MSS),
an abstract operation that implements the “Analyze Empirical Game” block of
Fig. 2. The output of an MSS is a strategy profile, which provides the other-
agent context for a BR calculation performed by deep RL. The policy generated
by RL as a BR to the MSS result is then added as a new strategy to expand
the current restricted strategy space, leading to another round of simulation
and induction for the next EGTA iteration. The MSS concept provides a useful
abstraction for expressing a variety of approaches to strategy exploration (Wang
et al. 2022). For example, using Nash equilibrium as an MSS yields the double
oracle (DO) algorithm (McMahan et al. 2003). If the MSS simply returns the
uniform distribution over the restricted strategy sets, the algorithm reduces to
fictitious play.

Prior work has extended the DO algorithm to exploit game-tree structure.
Bošanský et al. (2014) developed a sequence-form double-oracle algorithm for
zero-sum EFGs that maintains a restricted game model based on partial action
sequences. The XDO algorithm of McAleer et al. (2021) for two-player zero-sum
games computes a mixed BR at each information set, as compared to normal-
form DO which mixes policies only at the root level. It modifies PSRO for EFGs
while still using a normal-form empirical model. The benefits over normal-form
demonstrated by these works suggest EGTA can be similarly extended to exploit
game-tree structure beyond the strategy exploration block.

3 Tree-Exploiting EGTA

We call our approach for augmenting empirical game models to incorporate
extensive-form game elements tree-exploiting EGTA (TE-EGTA). In the typi-
cal normal-form treatment of EGTA, the underlying game is parameterized by
entries in a payoff matrix {Uj(σ)}j∈N\{0},σ∈Σ .1 TE-EGTA instead parameter-
izes the underlying game to capture the EFG tree structure through a set of leaf
utilities {u(t)}t∈T , and conditional probability distributions that are dependent
on possibly unobserved previous choices made in the game play and estimated
from observations of stochastic events.
1 More general approaches based on regression have been proposed (Sokota et al. 2019;

Vorobeychik et al. 2007), which also amount to parameterized representations of a
payoff function.
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We assume that the structure of decisions and stochastic events in the empir-
ical EFG model is given (typically a high-level abstraction of the game tree
implicitly represented by the simulator, as discussed in Sect. 3.2). This ensures
that the order of player choices and stochastic events in the empirical game
tree matches the order in the true game, from root to leaf. In particular, the
true game’s information sets must be a refinement of the empirical game’s infor-
mation sets. Given this structure, we treat observations of Nature’s actions as
conditioned on past game play. The empirical game tree therefore must associate
with each chance node a conditional probability distribution over the relevant
set of outgoing edges. Leaves of the tree are associated with payoff estimates,
which depend on the entire path from the root.

Each simulation of a strategy profile yields sample payoffs, as well as a trace
of publicly or privately observable actions from both the players and Nature that
are made over the course of the game. This is a key point of contrast with the
normal-form model, for which only payoffs are relevant. The trace of actions tells
us which leaf node in the abstract model is reached and what stochastic event
outcomes were realized along the way.

To explain our tree-exploiting estimation approach, we first restate the
expression for Uj(σ) in a way that explicitly factors in probabilities of specific
observations of stochastic events. We assume that a game theorist working with
the black-box simulator’s partial observations in order to formulate an empirical
model is aware of the game’s rules, and so can surmise where in the game the
observation has occurred. We also assume that the observation labels used by the
simulator allow the game theorist to distinguish the observations from each other
and associate them with the appropriate chance nodes. A stochastic observation
during gameplay is captured in the tree by an edge e ∈ ϕ(t, 0) from a chance
node h such that V (h) = 0 to a node with history he. The reach probability of
he from the perspective of Nature is r0(he) = P (e | h), and recall r0(t) is the
joint probability of Nature’s choices along the path from the root to t. Hence,

Uj(σ) =
∑

t∈T

uj(t)
n∏

k=1

rk(t, σk)r0(t). (1)

3.1 TE-EGTA Game Model Estimation

The probabilities rk(t, σk), for all terminal nodes t, are directly determined by
the strategy profile σ. Hence, to estimate Uj(σ) based on Eq. (1), we need
estimates for u(t) and {r0(t)}t∈T . These are, in fact, the game parameters for
TE-EGTA (leaf utilities and conditional probabilities respectively) that we intro-
duced above. We denote the respective estimates by {ûj(t)}n

j=1 and {r̂0(t)}t∈T .
A key feature of TE-EGTA is that, in modeling the payoff of strategy pro-

file σ, we estimate the parameters using all relevant simulation data, not just
the data from simulating σ. Different strategy profiles may lead to overlapping
or identical paths being taken through the game tree, with some probability.
We compute ûj(t) as the sample average of player j’s payoffs across simulation
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runs that terminate at node t. Similarly, we estimate chance node probabilities
using all simulations. Suppose a chance node h is reached mh times across all
simulation data, and the node with history he (reflecting Nature’s choice e) is
reached mhe < mh times. The empirical probability of observing the stochastic
outcome represented by e in the game tree is mhe

mh
. Note that mh can never be

zero because the algorithm for constructing the empirical game model includes
only nodes that are reached in simulation. Finally, we give player j’s estimated
payoff for strategy profile σ:

ÛTE
j (σ) =

∑

t∈T

ûj(t)
n∏

k=1

rk(t, σk)

⎛

⎝
∏

e∈ϕ(t,0)

mhe

mh

⎞

⎠ .

Recall that each strategy profile σ in Σ̂ is simulated m times, resulting in m
game play sequences for each. Some strategies that end at different terminal
nodes t1 and t2 may still include the same node h in their respective paths and
result in the same observation e ∈ X̂(h). The observation occurs with the same
probability for both strategies since their histories diverge only at node he. This
feature is what allows the empirical game model to take into account the role of
different decision points in the formulation of player strategies in a way that the
normal-form model does not.

To illustrate the difference in model estimation between NF- and TE-EGTA,
consider the following example from Game1. Suppose we simulate the strategy
profile (π1

1 , π
1
2) 10 times, and obtain the following payoff samples for Player 1:

99, 95, 100, 96, 95, 100, 92, 95, 93, 94; we also observe outcome A of the stochastic
event in the first 6 of these 10 simulations. NF-EGTA would simply average
the 10 payoff samples and record ÛNF

1 (π1
1 , π

1
2) = 95.9. In contrast, TE-EGTA

distinguishes the 6 samples corresponding to the leaf (π1
1 , A, π1

2A) from the 4
samples corresponding to the leaf (π1

1 , B, π1
2B ), and separately averages them to

get the estimates û1(π1
1 , A, π1

2A) = 97.5 and û1(π1
1 , B, π1

2B ) = 93.5. Now, suppose
we also have data from 10 simulations of another strategy profile (π1

1 , π
2
2), π2

2 �=
π1
2 , A being realized in 5 of these simulations. From this experience, our overall

estimated probability of A conditioned on π1
1 is 6+5

10+10 = 0.55. Thus, using all
relevant sample data, ÛTE

1 (π1
1 , π

1
2) = 0.55 × 97.5 + (1 − 0.55) × 93.5 = 95.7.

The following proposition shows that, like NF-EGTA, TE-EGTA produces
unbiased estimates of strategy-profile payoffs. However, our theoretical results
in Sect. 4 suggest that TE-EGTA offers more accurate payoff estimates with a
high probability.

Proposition 2. For every player j ∈ N \ {0} and strategy profile σ ∈ Σ̂,
Et∼r(T,σ)

[
ÛTE

j (σ)
]
= Uj(σ).

3.2 The Game Model as an Abstraction

Abstraction methods have extended the state of the art in solving imperfect-
information games over the years (Sandholm 2010), particularly poker. An
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abstraction algorithm takes as input a complete game description and produces
a simpler version of the tree. TE-EGTA incorporates some of the tree structure
from the true game into the empirical game model; in order to ground this game
model as a coarse abstraction of the underlying game, we describe Coarsen, an
algorithm that coarsens a game tree by abstracting away chance nodes.

We express coarseness as the fraction of chance nodes from the true game
that are included in the empirical game model. An empirical game that matches
the true game’s structure would include all of them; conversely, an empirical
game in normal-form would include none of them. We are primarily concerned
with games represented by agent-based simulation where the representation of
the true game as an EFG is intractable, and thus we would not expect to obtain
a coarsened model by actually applying Coarsen. Our intent is to contextualize
a coarsened game as one that could in principle be produced by abstracting away
chance nodes.

Coarsen Algorithm for coarsening an input game G

Require: Input game G, partition C′ ⊆ C and map ρ : C′ → X
Copy H ′ = H, with each node h represented by its history
for c ∈ C′, beginning at the chance node furthest from the root do

Let Ij(c) be the set of infosets induced by each event e ∈ X(c) for player j.
Compute power set Z∗ of intersections Z =

⋂
I∈Ij(c)

{h | he ∈ I} of all the
histories h across Ij(c).

for Z ∈ Z∗ do
{I ′

j , Π
′
j(I

′
j)}, H ′ = CoarsenInfosets (Ij(c), Z, ρ, G)

Assign X ′(c) = X(c) \ ρ(c)
I′
j , Π

′
j = CondenseBranching

({I ′
j , Π

′
j(I

′
j)}, I′

j

)

end for
end for
Assign X ′(c) = X(c) for all c /∈ C′.
Assign all player j’s infosets not conditioned on chance events from any c ∈ C′ to I′

j

For all nodes h that preceded or did not follow any nodes in C′, assign V ′(h) = V (h)

return G′ = (N, H ′, V ′, {I′}n
j=1, {Π ′

j}n
j=1, X

′)

The algorithm is given a partition of both G’s chance nodes C = {h ∈ H |
V (h) = 0} and the set of outcomes X(h) for each chance node, denoting what to
exclude from the coarsened tree. One important restriction on G is that the child
nodes of a given chance node in C ′ must all belong to the same player so that
they can be collapsed into one node. We denote the abstracted game by G′ =
〈N,H ′, V ′, {I ′

j}n
j=1, {Π ′

j}n
j=1,X

′〉 whose components are defined as in Sect. 2.
The nodes identified, information sets, and action spaces will necessarily differ
from those of G, depending on what information is coarsened and where. Without
loss of generality, Coarsen treats both G and G′ as binary trees in order to
limit the branching factor of G′. CoarsenInfosets transforms the intersecting
information sets of the children of each c ∈ C ′ into a new information set for G′
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whose action space is the Cartesian product of the old infosets’ action spaces. To
keep the branching factor equal to 2, CondenseBranching transforms these
action spaces (comprised of tuples) into binary (sub-)trees where each edge is
part of an action tuple.

3.3 Tree-Exploiting PSRO

Recall the PSRO framework for iterative EGTA with deep RL, introduced
in Sect. 2.2. Like EGTA more generally, past work within the PSRO framework
has relied on normal-form representations of the empirical game, even though the
games of interest are inherently sequential. We call PSRO that uses a normal-
form (resp. tree-exploiting) empirical game NF-PSRO (TE-PSRO). In addition
to exploiting extensive structure for estimation (Sect. 3.1), TE-PSRO also takes
advantage of the tree representation for managing the restricted strategy space.
A single pure strategy profile can result in multiple different paths depending on
Nature’s choices. If a new best response for a given infoset is part of the profile,
new paths with their own new utilities and stochastic distributions at Nature’s
decision points are discovered and added to the empirical game tree. If one of
those paths includes moves from other players that are already part of the game
tree, then additional samples from this new combination can be included in the
(tighter) estimation of the old parameters pertinent to that path.

Consider the empirical game in Fig. 3a with restricted strategy sets Π̂1, Π̂2A,
and Π̂2B for each information set as shown; the true game here is Game1. Let
BR1(σ2A, σ2B ) and (BR2A(σ1), BR2B (σ1)) denote the respective best responses
from Game1 (the true game) to the strategy profile (σ1, (σ2A, σ2B )). Suppose,
in an iteration, BR1(σ2A, σ2B ) = π2

1 , BR2A(σ1) = π2
2A, and BR2B (σ1) = π1

2B .

Fig. 3. Two successive steps of possible TE-PSRO instantiation on Game1.

In the next round, the new best-response elements are considered in conjunc-
tion with the pre-existing strategy combinations from the restricted set, as well as
other players’ new best responses. The resulting trajectories are shown in Fig. 3b:
(1) BR1×Π2A×Π2B highlighted in yellow; (2) Π1×BR2A×Π2B highlighted in
blue; (3) Π1 × Π2A × BR2B highlighted in orange; and (4) (BR1, BR2A, BR2B )
highlighted in purple. See the full paper for more detail. This expansion of the
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empirical game tree captures finer-grained structural information about the true
game than simply adding a matrix entry for each new best-response combination.

4 Payoff Estimation Improvement: Theoretical Results

To develop a formal framework for comparing the efficacy of payoff estima-
tion (Sect. 3.1) by TE-EGTA and NF-EGTA, we apply the concept of uniform
approximation of a game (Areyan Viqueira et al. 2020) to our setting. Consider
a true EFG G and an empirical game Ĝ with the same set of players and with
restricted set Σ̂ constructed from accumulated simulation data upon termina-
tion of EGTA. Let Ûj(σ) be the estimate in Ĝ of an arbitrary player j’s true
payoff under strategy profile σ.

Definition 1. The �∞-norm between games G and Ĝ is given by

‖ G − Ĝ ‖∞= max
j∈N\{0},σ∈Σ̂

|Uj(σ) − Ûj(σ)|.

If ‖ G − Ĝ ‖∞≤ ε, then Ĝ is said to be a unifor ε-approximation of G.

Note that in this definition, the maximization is only over the restricted set
Σ̂ ⊆ Σ. An important consequence of Ĝ being a uniform approximation of G
upon EGTA’s termination is that a strategy profile that is an approximate Nash
equilibrium in Ĝ is an approximate Nash equilibrium in G as well:

Proposition 3. If Ĝ is a uniform ε-approximation of G and σ is a γ-Nash
equilibrium of Ĝ for some γ ≥ 0, then Regj(σ) ≤ 2ε + γ for each player j ∈
N \ {0} upon the termination of EGTA.

The main result of this section is that for a given EFG, under reasonable
assumptions, TE-EGTA induces an empirical game model that is a tighter uni-
form approximation of the EFG than that induced by NF-EGTA, with a high
probability. Given an arbitrary true game G, let ĜNF and ĜTE denote respec-
tively the empirical game models induced by the application of NF-EGTA and
TE-EGTA to G over the same restricted set Σ̂.2 We further assume an upper
and a lower bound for all agent payoff samples returned by the simulator. Let c
be the number of strategy profiles from the restricted set that, after each profile
is sampled m times, result in a path taken through the tree that includes the
first edge of ϕ(t). c can be as small as 1 and as large as O(|Σj |) for some j ∈ N
depending on the game structure and when the selected EGTA method termi-
nates. Combined with Proposition 3, we have the following result, which also

2 In the iterative application of EGTA, the NF- and TE- variants may produce different
choices of strategies to add; hence, strategy sets covered at a given iteration number
tend to diverge. However, for comparing model estimation accuracy, however, it
makes sense to start with a common baseline of strategy space. Our experiments
(Sect. 5) provide empirical corroboration that the benefits accrue as well when we
examine the trajectory of models produced within the iterative PSRO framework.
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implies a tighter upper bound for player regret in G under approximate equi-
libria in the empirical game model computed using payoffs estimated through
TE-EGTA.

Theorem 1. For any δ ∈ (0, 1) and the same number m of game simulation
repetitions in each iteration of either type of EGTA, there exist positive constants
εNF and εTE such that εTE

εNF
= 1√

c
, and with probability at least 1 − δ w.r.t. the

randomness in the simulator payoff output, ĜNF (respectively, ĜTE ) is a uniform
εNF -approximation (respectively, εTE -approximation) of G.

5 Experiments

We conducted two sets of experiments comparing TE-EGTA with varying levels
of tree structure exploitation to NF-EGTA. Each set used three different EFGs,
chosen so that the corresponding empirical game models induced by our flexible
tree-exploiting framework would vary in size and complexity. We implemented
a simulator for each game that produced observations in accordance with the
corresponding stochastic events, and end-state payoff samples that were normally
distributed about the true utilities at the respective terminal nodes with a noise
variance ε = 0.1. The first game was Game1 (Sect. 2.1). In our experiments, for
each instance of Game1, we randomly assigned P (A | πi

1) from U [0, 1] for each
πi
1 ∈ Π1 and u(t) from {0, 0.25, . . . , 4.75, 5} for each leaf utility. During each

game play sample, the simulator returned the realized outcome A or B of the
single stochastic event and a noisy payoff vector.

The second game was Game2, an extension of Game1 having a second
stochastic event e2 ∈ {C,D} after Player 2’s turn and a second turn for Player 1
afterward. Player 1 only observes its first action and the second event e2. Thus
Player 2 has 2 information sets whereas Player 1 has 1+2·10 = 21. For its second
turn, Player 1 has ten options depending on which outcome of e2 it observed:
Π1C = {πi

1C}10i=1 and Π1D = {πi
1D}10i=1. See the full version of this paper for

an illustration. For each instance of Game2 and each πi
2A (respectively, πi

2B ),
we sampled P (C | A, πi

2A) (respectively, P (C | B, πi
2B )) from U [0, 1]. Each leaf

utility was chosen uniformly at random from the set {0, 0.1, . . . , 9.9, 10}. We
experimented with two game model forms: one for when the simulator returned
a noisy payoff vector and e1 only, and one for when it returned the vector and
outcomes of both events.

The final game was Game3, which begins with a stochastic event e1 ∈
{A,B,C,D}. Player 1 observes the event and then takes a turn, choosing one
of four possible actions. Next, Player 2 observes the event (but not Player 1’s
action) and also chooses from four possible actions. This 3-round sequence is
repeated twice, but in each subsequent sequence, the only outcomes available to
Nature and the agents are the remaining ones that have not yet been chosen.
For instance, if e1 = A, then Nature can only output e2 ∈ {B,C,D} dur-
ing its second turn and e3 ∈ {B,C,D} \ {e2} during its third. Likewise, the
players are restricted to the actions that they have not yet played in the pre-
vious 3-round sequence(s). Since the players are only unable to observe the
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other player’s actions during the current 3-round sequence, each player has
4 + 43 · 3 + 43 · 33 · 2 = 3652 information sets. To compare the effects of varying
degrees of tree exploitation, we examined three different game model forms: (1)
simulator reports observation e1 only; (2) simulator reports e1 and e2 only; and
(3) simulator reports all three events. We believe that a model that includes
only the first stochastic event would generally yield only a negligible difference
in accuracy from a model that includes only the second (or third) stochastic
event.

Each iteration of EGTA had a fixed budget of 500 total samples available for
all strategy combinations to be fed into the simulator for Game1 and Game2.
Due to the larger size, we allotted 5000 total samples for Game3. We ran the
experiments for Game1 on a standard laptop (Quad-Core Intel Core i7 Proces-
sor, 2.7GHz, 16GB RAM). Each repetition of both TE-PSRO and NF-PSRO
for Game1 finished in less than 1min. We ran the experiments for Game2 and
Game3 on a single core of the Great Lakes Slurm cluster at the University of
Michigan, with 786MB of memory. NF-PSRO on Game2 consistently finished
within 6min, and took 4–90min for Game3. TE-PSRO required between 3min
and 5 h for Game2 (depending on the MSS used, see Sect. 5.2), and at most 1 h
for Game3. All figures include the metrics’ initial values at time-step 0.

5.1 TE-EGTA Payoff Estimation

The aim of the first set of experiments was to assess the improvement in strat-
egy profile payoff estimation produced by incorporating the EFG tree structure
into the empirical game model. We ran NF-EGTA and TE-EGTA on each true
game with the same number m = 500 of simulations for each strategy-profile
payoff vector estimation. To update the game model for either variant of EGTA,
we implemented the PSRO framework using an oracle that returns the best
response to the other player’s strategy for Game1 and Game2. However, the size
of Game3 made a best response oracle infeasible, so we instead used Q-learning
to compute an approximate best response from the true game. For newly selected
strategy profiles that were simulated in each iteration, we computed estimated
payoffs ÛNF

j (σ) (resp. ÛTE
j (σ)) for NF-EGTA (resp. TE-EGTA) from accumu-

lated simulation data using the approach described in Sect. 2.2 (resp. Sect. 3.1).
We evaluated the estimation error for that iteration of either variant as the
average absolute difference between true and estimated payoffs for all players
over all strategy combinations in the current empirical game. We repeated this
operation for 25 initial restricted sets, each consisting of a single randomly cho-
sen policy, and reported the estimation error averaged over all 25 repetitions for
each iteration of PSRO in Fig. 4.

As the plots show, TE-EGTA achieves significantly lower payoff estimation
error compared to NF-EGTA across all games. It is also clear that while the vast
number of infosets in Game3 led NF-EGTA to perform worse as more strategy
combinations were added despite an unchanging sample budget m; such was not
the case for TE-EGTA, which converged very quickly. We attribute this to the
relatively small number of actions (2, 3, or 4) available at each information set, as
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Fig. 4. Average estimation error of strategy payoffs over the course of EGTA’s run-
time. Shaded areas represent the standard error of the mean. The estimation errors
at iteration 0 are identical since the restricted sets for both models contain the same
randomly chosen policy; hence, they are omitted.

well as the large number of infosets relative to the total number of game paths.
Q-learning returned a best response for every infoset that could be reached,
given σ, so the empirical game ceased growing after only a few iterations. Finally,
we note that the more stochastic events included in Ĝ, the more tree structure
is exploited by TE-EGTA, and the lower the resulting payoff error. In fact, the
inclusion of even a single stochastic event or round in the model dramatically
decreased the payoff error in comparison to NF-EGTA.

5.2 Iterative Model Refinement in PSRO

Our second set of experiments compared the power of NF-PSRO and TE-PSRO
to iteratively explore the EFG’s strategy space and fine-tune their respective
empirical game models. PSRO terminates once no new best responses can be
added to Σ̂. To evaluate the efficacy of this iterative fine-tuning, we computed
the regret Reg(σ) (as defined in Sect. 2.1) in the true game G of the solution σ
returned by the MSS in every iteration.

For NF-PSRO, we used the Python-Gambit interface to represent the empir-
ical game and used Gambit’s lcp solver as the MSS. The solver takes as input an
NFG or EFG, converts it into a linear complementarity program, and solves for
all NE. We also used the lcp as the TE-PSRO solver for Game1 and Game2. It



Exploiting Extensive-Form Structure in Empirical Game-Theoretic Analysis 147

Fig. 5. Average regret of solution profiles over the course of PSRO’s runtime. Shaded
areas represent standard error of the mean.

is important to note that Gambit’s solvers can become intractable for medium
or large game trees. However, when possible, we intentionally chose an MSS that
finds exact solutions to the empirical game in order to minimize any error/vari-
ability in the solutions resulting from the iterative process of adding strategies
and fine-tuning the empirical game models. For medium-to-large game trees like
Game3, we used counterfactual regret minimization (CFR) (Zinkevich et al.
2007) to find an approximate NE and Q-learning to learn an approximate best
response from the true game. We used CFR as the MSS for Game2 as well for
comparison to the exact lcp solver. As in Sect. 5.1, we repeated PSRO for 25
different restricted sets, each consisting of a single, randomly chosen strategy
profile. We report the regret curves, averaged over 25 repetitions, in Fig. 5.

TE-PSRO converged on average to a regret at least as tight as NF-PSRO
using the same simulation budget and regardless of which pure σ the initial
restricted set contained. It also converged in fewer iterations, particularly in
Game2 and Game3 as more tree structure was included in Ĝ. Additional plots in
the full version of this paper demonstrate the same result for different numbers
of samples. However, the standard error shadings for Game1 overlap mainly
due to the high volatility in NF-PSRO regret in earlier iterations. Since, in
each iteration, we add new, pertinent best responses to Σ̂, we hypothesize that
their absence from the previous strategy space caused the regret to increase. A
one-sided two-sample t-test on each of the iterations of Game1’s regret curves
established that TE-PSRO’s regret improvement was statistically significant.
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These results suggest that including even some tree structure in Ĝ results in
PSRO converging at least as quickly and to a solution that has lower regret in
the true game.

6 Conclusions and Future Work

This study represents a first step towards the goal of leveraging extensive-form
structure within the EGTA framework. Our work complements prior research
that showed benefits of exploiting tree structure in game reasoning and learn-
ing, for example studies that demonstrated advantages of extensive form in tech-
niques based on the double oracle algorithm (Bošanský et al. 2014; McAleer et al.
2021). In future work, we hope to draw on further insights from this line of work,
combining the best features of techniques from game reasoning, machine learn-
ing, and simulation-based game modeling. One particularly fruitful direction
may be consideration of strategy exploration methods that explicitly consider
extensive structure in the currently defined strategy space.
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Abstract. Firms typically require multiple sales observations under
varying prices to understand how the demand for their items respond
to price. In this paper, our partner online retailer is faced with the prob-
lem of reconstructing demand curves when only a single point on each
curve has been historically observed. We show how a second point on
each curve can be extracted from the sales of their discounted bundles,
after which we help them estimate linear demand curves for their items.
We perform this extraction by fitting a multi-item valuation model from
the bundle pricing literature, introducing a new iterative procedure for
solving this fitting problem. Our extraction process reveals a new insight
on the relationship between an item’s relative frequency of bundle sales
vs. the steepness of its demand curve around its current price. We vali-
date this insight on the data provided by our partner firm.

Keywords: Learning valuation distributions · Bundling

1 Introduction

Demand prediction is critical to a firm’s operations, allowing for the advance
planning of production, distribution, and fulfillment. This paper is concerned
with modeling how the demand of an individual item responds to price, when
only a single point on this curve has been historically observed. As a motivating
example taken from the data of our partner online retailer, a recently-released
pressure cooker has been consistently priced at $207 and its weekly demand has
been 222. The firm wants to know—how would the weekly demand change if
the price is reduced to $190, as planned for the upcoming promotional week
surrounding Black Friday?

The reader may pause for a second here and convince themselves that it is
difficult to say anything without further information. Would the demand that
week skyrocket to 500, or would there be little boost in demand from the price
reduction? To answer these questions, some contextual knowledge about pres-
sure cookers and how similar items fared during previous promotions would be
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required. Or more commonly, if one had access to additional data points on
the demand curve, then it is possible to perform curve-fitting—e.g., if there had
already been a week where the price dropped by $7 and the demand increased by
70, then fitting a linear demand curve would allow one to extrapolate something
like “the weekly demand increases by 10 for every $1 dropped in price”.

However, our partner online retailer does not have detailed contextual infor-
mation for most of its items, nor is it known to vary its prices over the course of
its regular yearly operations. Instead, it is famous for “discounts” that come in the
form of yearlong-available bundles, where different items are packaged together
and sold cheaply. In this example, the pressure cooker is offered together with
a recipe book for $212, with the recipe book individually costing $14. In effect,
this bundle offers a discount of $207+$14−$212 = $9 for purchasing both items,
and our partner has shared with us the weekly sales of both individual items as
well as the bundle. Using only this information, as depicted in Table 1, can we
say anything about the items’ demands after a price drop?

Table 1. The limited data from which we attempt to construct demand curves.

Price Average weekly sales

Pressure cooker $207 222
Recipe book $14 30
Bundle $212 ($9 discount) 29

We answer this question with a surprising “Yes”, with the intuition being
that the bundle sales contains information about the demand of the pressure
cooker after a $9 discount, providing a second point on the demand curve. We
show how to extract this data point from the bundle sales by fitting a multi-
item valuation model, after which we construct a linear demand curve out of the
two data points. This allows us to make a statement of the form “the demand
increases by x for every $1 dropped in price”. While the numerical details for our
fitting are deferred to Sect. 2, here we explain how the main insight from our
multi-item valuation fitting applies to Table 1.

Main Insight: If item i is bundled with item j and j is purchased relatively
frequently (resp. infrequently) without i, then the demand curve of i is flat
(resp. steep) around its current price.

Applying the insight to Table 1, we see that the pressure cooker was purchased
relatively frequently without the recipe book (222 times, compared to 29 times
with the recipe book), and hence the book’s demand curve is flat around its
current price. On the other hand, we see that the recipe book was purchased
30 times without the pressure cooker (relative to 29 times with), and hence the
cooker’s demand curve is steeper around its current price.

These conclusions from our insight can be explained as follows. Every week,
222 people purchase the pressure cooker and decline to “add on” the recipe book
at a $9 discount in the form of the bundle. This suggests that an individual item
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discount is also unlikely to increase the sales of the recipe book, corresponding
to a flat demand curve. By contrast, only 30 people purchase the recipe book
and decline the pressure cooker at a $9 discount. Consequently, an individual
item discount on the pressure cooker is more likely to boost sales, corresponding
to a steeper demand curve.

At this point the reader may have various reservations about our insight,
which we discuss. First, it is possible to formulate alternate explanations for
the data in Table 1—e.g., the low individual sales of the recipe book could be
a consequence of it being a complementary product to the pressure cooker, and
have nothing to do with the demand curve of either item. Second, even if the
pressure cooker did have a steep demand curve around its current price, this may
not generalize to the largely discounted Black Friday price which is far away from
the current price. Finally, some customers who purchased the pressure cooker
may not have even been aware of the recipe book or carefully evaluated the
bundle deal, invalidating the explanation behind our main insight.

While we acknowledge all of these reservations, in Sect. 3 we validate our
insight to generally hold on the data provided by our partner online retailer.
To be specific, for a large number of items and bundles containing them, we
are given their fixed prices and average weekly sales before Black Friday. We
calculate the ratios suggested by our insight and generate a ranking of the items
by our estimated steepness of their demand curves. To evaluate this ranking, we
sort the items by their observed price elasticities after their discounts and sales
on Black Friday. We find our ranking to be correct on a statistically-significant
fraction of pairwise comparisons, and that in fact it provides an accurate first-
order segmentation of items as either elastic and inelastic.

We provide some explanations for this, in spite of the aforementioned reser-
vations. First, we note that the online retailer also offers many bundles whose
constituents are not complements, such as a pressure cooker and a rice cooker,
alleviating the first concern. Second, since we only validated through sorting by
elasticity (as opposed to exact demand estimation), some of the error caused by
the non-linearity of demand curves would have been hidden, sidestepping the
second concern. Finally, the online retailer’s website automatically displays and
recommends bundles containing any viewed items, supporting our assumption
that customers are aware of the bundle deals.

We conclude by emphasizing that we are not suggesting bundle discounts as
a go-to method for learning demand curves, since as just discussed, they merely
provide an educated guess instead of an exact prediction. If a firm’s main goal is
learning, then they should experiment with price, extract product features, con-
duct surveys, etc.—tried-and-true methods for accurate demand learning which
we discuss in Sect. 1.1. However, for firms like our partner online retailer which
have not invested in these methods, we showed them how to still glean valuable
information from their bundle sales. As a general takeaway, our paper establishes
that bundle discounts essentially provide a form of price variation, which makes it
possible to construct linear demand curves, even when the data does not contain
any price changes or useful covariates for comparing items.
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1.1 Literature Review

Our work is related to several streams of literature on demand learning.

Learning from Limited Information. Our paper is related to the problem
of understanding customer demand for new products with very little historical
data. Previous works have suggested comparing the features of new products
to existing ones [3,20], or efficient methods for eliciting additional information
[6,12]. By contrast, our paper assumes that sales have already been observed
at a single price, and extracts a second point on each demand curve based on
discount purchases, with no further covariate or survey information.

We note that the situation of having access to only one point on a demand
curve is practically well-motivated [8] beyond the example of our online retailer.
For this situation, without further information, robust pricing solutions have
been proposed [2]. Our paper suggests that records of discounted sales could be
a subtle source for further information.

Learning from Bundle Sales. The technical part of our paper is related to the
challenging estimation problem where items can be sold individually or in bun-
dles. Existing work on this topic has focused on discrete choice models, where
a bundle S is explicitly modeled as an “alternative”, as surveyed in [27]. The
valuation of a customer segment t for a bundle S could then depend on only
the items in S [14], the pairs of items in S so that pairwise complementarity is
modeled [23], or covariates based on both t and S in accordance to the balance
model [19] which allows for customer heterogeneity and complex correlations
[16]. The random utility derived by segment t from alternative S is then the
valuation minus βS times the price, where βS is a bundle-dependent price elas-
ticity parameter, plus a Gumbel noise term. Once the model is specified, the
parameters which best fit the data can be computed using a Hierarchical Bayes
framework [11]. Although these models considered are richer than ours, their
parameters are identifiable only if there is sufficient variation in the prices and
covariates—something we do not have.

We note that progress [13] has been made on this problem since our paper.
Their work focuses more on the preference estimation problem than the insight
that bundle sales can contain richer information about consumers.

Modeling Customer Choice for Bundles. We fit the standard multi-item
valuation model from the bundle pricing literature [1,5], making the common
modeling assumptions of valuations being additive and independent [4,22], and
also uniform [9,18] in some of our results. Fitting this parsimonious model leads
to our main insight, which is empirically validated to be relevant even beyond
the assumptions. To the best of our knowledge, we are the first to fit this as a
structural model, instead of using it for price optimization.

We should mention that there are other, more explicit ways of modeling
customer valuations for bundles in specific industries [15,17,21] or in the product
versioning literature [10,28]. However, these models also require rich data and
industry-specific knowledge to fit.
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Demand Learning Through Moment Matching. The way in which we
fit our multi-item valuation model can be described as a Method of Moments,
which (in its Generalized form) has been classically been used for estimating
price elasticities as part of the BLP procedure [7,26]. Similar as before, BLP
cannot be used in our setting because it requires differentiated markets with
price variation. Finally, we should mention that although we just assume demand
curves to be linear after recovering their two quantiles, the general problem of
fitting distributions from quantiles is discussed in [25].

2 Fitting a Multi-item Valuation Model

We introduce our multi-item valuation model and fitting problem. Recall that the
goal is to identify a second point on the demand curve of every item, given only a
single set of bundle sales numbers. Consequently, we must restrict the multi-item
valuation model to have few enough parameters such that it is fully identifiable
from the bundle sales. We summarize all of our restrictions/assumptions and
provide a thorough discussion of them in Sect. 2.5. We also explain how to draw
our main insight in Sect. 2.5, and empirically validate it in Sect. 3.

Input Data. There are n different items, denoted by [n] = {1, . . . , n}. For every
S ⊆ [n], we observe the number of customers NS who purchased exactly the
subset S from the items in [n]. It is assumed that we observe N∅, the number of
customers who visited the store without making a purchase; therefore, we know
the total number of customers N =

∑
S⊆[n] NS . It is also assumed that the same

customer never purchases multiple copies of the same item.
For every S ⊆ [n], we are also told the fixed price P (S) a customer has to

pay to obtain the set of items S. We assume that P (S) takes the form

P (S) =

{∑
i∈S Pi, S �= [n]

∑n
i=1 Pi − d, S = [n]

where Pi ≥ 0 denotes the individual price of item i and d ∈ (0,
∑n

i=1 Pi] denotes
the bundle discount for purchasing all of [n]. This set of items [n] should be
interpreted as a small group of items being sold together and it is assumed that
there are no partial discounts for purchasing part of [n].

Multi-item Valuation Model. A customer has a valuation v(S) ≥ 0 for each
subset S of items, with v(∅) = 0. A customer purchases the S maximizing her
surplus v(S)− P (S), where we allow ties to be broken arbitrarily. It is assumed
that v(S) is additive, taking the form

v(S) =
∑

i∈S

xi ∀S ⊆ [n]

where xi ≥ 0 denotes the customer’s atomic valuation for item i.
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For each of the N customers visiting the store, her valuation vector
(x1, . . . , xn) is drawn IID from a multi-dimensional distribution D, which cap-
tures the heterogeneity of valuations across the population. It is also assumed
that D = D1 × . . .×Dn is a product distribution, with atomic valuation xi being
drawn independently from marginal distribution Di for all items i ∈ [n].

Constructing a Linear Demand Curve for Each Item. Our goal is to
compute estimates of

{
Pr[xi < Pi − d], Pr[Pi − d ≤ xi < Pi], Pr[Pi ≤ xi] : i ∈ [n]

}
(1)

which best fit the observed sales {NS : S ⊆ [n]}. A linear demand curve can then
be constructed for each item i ∈ [n] as follows. We know that the demand at
price Pi is N ·Pr[xi ≥ Pi], and that the demand at the “discounted” price Pi − d
is N · (Pr[Pi − d ≤ xi < Pi] + Pr[Pi ≤ xi]), where N =

∑
S⊆[n] NS is the known

total customer population. From these two points we can linearly extrapolate
the demand D(P ) at a price P to be

D(P ) = N · Pr[Pi − d ≤ xi < Pi]
d

(Pi − P ) + N · Pr[xi ≥ Pi].

2.1 Formulation of Fitting Problem

Having explained how computing (1) would allow us to fit linear demand curves,
we now focus our attention on computing (1), based on the observed bundle sales
{NS : S ⊆ [n]}. Generally speaking, our approach can be described as a Method
of Moments where the aim is to find distributions {Di : i ∈ [n]} such that the
expected fraction of the population to choose each subset S ⊆ [n] matches the
empirically observed fraction NS/N . In this subsection, we derive formulas which
allow us to express these expected fractions solely in terms of the probabilities
in (1).

Definition 1 (Underlying Parameters). For all items i ∈ [n], define

q∗
i = Pr[xi ≥ Pi] and a∗

i = Pr[xi ≥ Pi − d|xi < Pi].

These represent the underlying model parameters and note that all of the prob-
abilities in (1) can be computed from them. q∗

i represents the probability of a
customer being willing to buy item i at its individual price Pi, while a∗

i repre-
sents the probability of a customer being willing to buy item i at price Pi − d,
conditioned on her not being willing to buy item i at price Pi.

Definition 2 (Observed Values). For all S ⊆ [n], define p̂S = NS/N, which
denotes the fraction of customers observed to choose subset S. These represent
the empirical values from which we will try to recover the parameters q∗

i and a∗
i .

For all S ⊆ [n], let p∗
S denote the expected value of p̂S.
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The following sequence of lemmas leads to a system of equations that
expresses each p∗

S in terms of {q∗
i , a

∗
i : i ∈ [n]}. The proofs of these lemmas

are deferred to the full version of this paper [24].

Lemma 1. For a customer with valuations x1, . . . , xn, the surplus-maximizing
subset is the full, discounted set of items [n] if and only if

n∑

i=1

max{Pi − xi, 0} ≤ d. (2)

We can interpret max{Pi−xi, 0} as the deficit incurred by the customer had she
been forced to buy item i at price Pi, which equals 0 if xi ≥ Pi. This allows us to
characterize the customer’s purchase decision. Indeed, she first checks inequality
(2), i.e. whether her total deficit from buying all the items is covered by the
bundle discount. If so, then she buys all the items; otherwise, she selects the
items i for which her valuation is at least the individual price Pi and buys this
subset.

Lemma 2. For all subsets S �= ∅, define

F ∗
S = Pr

[
∑

i/∈S

(Pi − xi) ≤ d
∣
∣Pi − d ≤ xi < Pi ∀i ∈ S

]

. (3)

Then, for all subsets S �= [n], the probability p∗
S of a customer selecting subset S

satisfies
p∗
S =

( ∏

i∈S

q∗
i

)( ∏

i/∈S

(1 − q∗
i )

)(
1 − F ∗

[n]\S
∏

i/∈S

a∗
i

)
. (4)

Note that Eq. (4) in Lemma 2 only holds for subsets S �= [n], but p∗
[n] can be found

by computing 1−∑
S�[n] p

∗
S . Intuitively, the three parentheses in expression (4)

can be interpreted as follows. For a subset S �= [n] to be selected, the customer
has to: (i) value the items i ∈ S above their individual prices; (ii) value the items
i /∈ S below their individual prices; and (iii) not prefer the full set of items over
S, i.e. incur greater than d deficit from buying the items i /∈ S.

Following the Method of Moments, our goal is now to replace p∗
S and F ∗

[n]\S
in (4) with observed values, in order to solve for the underlying parameters
q∗
i and a∗

i . It is natural to replace each p∗
S with the empirically observed frac-

tion p̂S . However, without any distributional assumptions, estimating F ∗
[n]\S is

difficult, because it depends on the exact conditional distributions of xi when
xi ∈ [Pi − d, Pi) for i /∈ S. As a saving grace, we observe that F ∗

[n]\S can be
exactly computed when these distributions are uniform. We note that having
uniform valuations is equivalent to having linear demand curves, an assumption
made up-front in this paper due to limited data.

Lemma 3. For a subset S �= ∅, suppose that the conditional distribution of xi

on [Pi − d, Pi) is uniform, for all i ∈ S. Then F ∗
S = 1

|S|! .
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Using the uniform distribution as a benchmark, we replace F ∗
[n]\S with

1
(n−|S|)! in (4) and attempt to solve the system. Even though the true distri-
butions may not be uniform, we analyze the error in our solution as a function
of a non-uniformity parameter (Sect. 2.3). We also show that our method numer-
ically yields a good solution for common non-uniform distributions (Sect. 2.4).

Definition 3 (Fitting Problem). For all S �= ∅, let FS be shorthand for
1

|S|! . Then our fitting problem is to solve for q1, . . . , qn and a1, . . . , an from the
following system of equations:

( ∏

i∈S

qi

)( ∏

i/∈S

(1 − qi)
)(

1 − F[n]\S
∏

i/∈S

ai

)
= p̂S ∀S �= [n]. (5)

2.2 Iterative Fitting Algorithm

The system which we need to solve, (5), consists of intractable high-dimensional
polynomial equations. Moreover, since there are 2n − 1 equations and only 2n
variables, the system will generally be overdetermined, with no solution unless
the given values p̂S and F[n]\S exactly match the true values p∗

S and F ∗
[n]\S (in

which case setting qi = q∗
i and ai = a∗

i will be a solution).
To cope, we propose an iterative algorithm that hopes to quickly arrive at

a “reasonable” solution, which we will justify both theoretically (Sect. 2.3) and
numerically (Sect. 2.4). In the full version [24], we compare with the established
Generalized Method of Moments (GMM) and Maximum Likelihood (ML) meth-
ods for fitting an overdetermined system of equations, with the main advantage of
our method being that it runs much faster. Indeed, to our knowledge, the GMM
and ML estimators for our problem can only be computed via brute force, and
in the full version [24] we numerically demonstrate why this quickly becomes
impractical.

Our algorithm is based on the following observation: given a set of candidate
values for

(
qi

)
i∈[n]

, it is possible to derive from (5) a closed-form expression
for each ai; and vice-versa, i.e. given

(
ai

)
i∈[n]

we can express each qi in terms
of

(
ai

)
i∈[n]

. These expressions are given in the description of our algorithm, in
Fig. 1. Our algorithm is parameterized by {Si : i ∈ [n]}, where each Si is a
collection of strict subsets of [n] \ {i}. Equations in (5) where S = S′ or S =
S′ ∪{i}, with S′ ∈ Si, are what the algorithm uses to update its current solution
(
q
(k)
i

)
i∈[n]

during each iteration k ≥ 0. We provide a full intuitive explanation
of our algorithm’s update rules, (6)–(8), in the full version [24].

2.3 Theoretical Correctness of Algorithm

We now show that our iterative algorithm correctly solves system (5) when it is
possible, i.e. when

1. The observed fractions p̂S equal the true probabilities p∗
S ; and
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Fig. 1. Iterative algorithm, on input {p̂S : S �= [n]} and {Si : i ∈ [n]}
2. The values FS = 1

|S|! based on the uniform distribution equal the true values
F ∗
S .

In this case, our algorithm converges upon the true parameters q∗
i and a∗

i for
all items i. In fact, our theoretical analysis is only for the algorithm using the
parameters S1 = · · · = Sn = {∅}, in which case the conditions above only need
to hold for a subfamily of relevant subsets S.

We explain why we cannot expect convergence to the true parameters without
the two conditions above. For the first, it is easy to see that if p̂S is allowed to
differ from p̂S , then it is possible for {p̂S : S ⊆ [n]} to be perturbed in a way
such that the system (5) being fitted has a feasible solution which is different
from {q∗

i , a
∗
i : i ∈ [n]}. There would be no way to know that this solution was

incorrect. To justify the second condition, note that if the valuations were non-
uniform, then the probability F ∗

S would depend on the exact positioning of prices
Pi, d relative to the distribution (instead of having the simple formula F ∗

S = 1
|S|!

in the uniform case). Therefore, FS in our system (5) would become an unknown,
even if the functional form of the valuation (e.g. Normal) was known, leading to
a system with more unknowns than equations.

Therefore, we can only expect exact convergence when the two conditions
above do hold for the subsets S used by the algorithm, and we now formally
state this result.

Theorem 1 (Exact Convergence Theorem). Suppose n ≥ 3, and that p̂S =
p∗
S for all S with |S| ∈ {0, 1, n−1}, and that FS = F ∗

S for all S with |S| ≥ n−1 (a
sufficient condition for FS = F ∗

S is the distributions being uniform). Furthermore
suppose that q∗

i , a
∗
i ∈ (0, 1) for all i. Then the estimates returned by our algorithm
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in Fig. 1, using parameters Si = {∅} for all i, satisfies

lim
k→∞

q
(k)
i = q∗

i and lim
k→∞

a
(k)
i = a∗

i ∀i ∈ [n].

We note that the condition n ≥ 3 in Theorem 1 is also necessary, because if
n ≤ 2, then our fitting problem (5) has more unknowns than equations.

More generally, in the full version [24], we relax the two conditions above
and analyze the multiplicative errors in our algorithm’s estimates q

(k)
i and a

(k)
i

after some number of iterations k, where the bound depends on the error in the
values of p̂S and FS used by algorithm. While all of the analysis is deferred to the
full version [24], we provide a brief summary of our technique. We first derive an
expression for the multiplicative error in the algorithm’s initial estimates q

(0)
i . We

carefully bound the error propagation over iterations, using the tightest possible
inequalities on how errors can multiply. This allows us to bound the error in
our algorithm’s estimates after many iterations, as a function of the errors in
p̂S and in our estimates FS = 1

|S|! of F ∗
S . Importantly, we show that if both of

these input errors are 0, then the error in our algorithm’s output converges to
0, thereby establishing Theorem 1.

Finally, we remark that our convergence result resembles a contraction
mapping argument. However, in our case we know that the fixed point will
be

(
q∗
i

)
i∈[n]

, and hence we directly establish convergence to that point. We
believe this to be easier than trying to show that our algorithm’s mapping from
(
q
(k)
i

)
i∈[n]

to
(
q
(k+1)
i

)
i∈[n]

is generally contractive over the feasible space [0, 1]n.

2.4 Numerically Testing Algorithm on Synthetic Instances

In our numerical experiments, we relax two assumptions (no noise in p̂S , uniform
valuations) necessary for the exact convergence result in Theorem 1, and test how
our algorithm performs without them. We generate synthetic instances from the
test bed of [15], on which we can compare our algorithm’s output to the ground
truth. Although quantitative results are deferred to the full version [24], we
summarize our findings as follows:

– By iterating our algorithm with a simple stopping criterion based on compar-
ing a(k) to a(k−1), approximately-correct parameters can be reached in less
than 10 iterations on average;

– The error due to noise in p̂S can be mitigated by increasing the cardinality
of Si;

– The increase in error, if our algorithm does not observe no-purchases, is neg-
ligible for n ≥ 4;

– The error due to distributions being non-uniform is less than 2%, as long as
the distributions are unimodal—we provide an explanation for this surprising
accuracy in the full version [24];

– GMM and ML are generally inapplicable because their optimization problems
are intractable to solve by brute force, even if n = 3;
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– “Rigging” the instances so that the true parameters lie on the search grids
of GMM and ML, we find that our algorithm’s performance is worse under
noisy p̂S , but quickly becomes indistinguishable as this noise is reduced.

2.5 Discussion of Assumptions and Derivation of Main Insight

In Table 2, we list the eight assumptions made to the end of Sect. 2.3, summa-
rizing that most of them are necessary, in order for the model to be identifiable
from limited data (Assumptions 1–4) and for exact convergence to be theoreti-
cally possible (Assumptions 7–8). In conjunction with Sect. 2.4, which shows that
Assumptions 6–8 are not needed for good numerical performance, we believe this
justifies our choice of model and proposed fitting algorithm.

Of course, we also have to discuss whether Assumptions 1–8 hold in practice,
which we do so in the second column of Table 2. We emphasize that even when
they do not hold, a main insight from our model and algorithm does empirically
hold independent of these assumptions, through real-world validation in the full
version [24]. We now explain the main insight from our model, first repeating its
statement from the Introduction.

Main Insight: If item i is bundled with item j and j is purchased relatively
frequently (resp. infrequently) without i, then the demand curve of i is flat (resp.
steep) around its current price.

Explanation: Fixing an item i, the items j it is bundled with being purchased
relatively frequently without i corresponds to p̂[n]\{i} being high. In instruction (7)
of our algorithm, this causes the recovered value a

(k)
i to be low on every iter-

ation k. Assuming that a
(k)
i is close to the true value a∗

i after some number of
iterations k, we see that by definition of a∗

i , there must be a low probability
of the customer’s valuation for i being higher than Pi − d, conditioned on it
being lower than Pi. Therefore, discounting item i by d yields a low increase in
purchase probability, corresponding to a flat demand curve.

3 Empirical Validation of Insight

In this section we test how the main insight from our model applies to a real-
world data set.

We consider sales data provided by a large Latin American online retailer,
on their home and kitchen items, many of which are sold in discounted bundles.
For each item and bundle, we are given its price and sales for 26 weeks starting
June 1st, 2016. We emphasize that this online retailer does not generally vary
its prices over the regular year, so the price of each item and bundle is identical
across the first 25 weeks. On the other hand, the last of these 26 weeks is a major
promotional week containing Black Friday during which many items are heavily
marked down.

We use an item’s sales boost after a Black Friday markdown to measure its
price elasticity, and test whether this agrees with the steepness of the item’s



Constructing Demand Curves from a Single Observation of Bundle Sales 161
Table 2. Categorizing all of our assumptions, discussing their theoretical necessity and
practical justifiability.

Assumption Theoretical necessity True in practice?

1. Customer purchases at most
one of each item

Completely necessary. Assumption 1
is necessary to even have the concept
of a valuation v(S) for a subset S.
Assumptions 2 and 3 are necessary
to prevent model from having more
parameters than equations

Common modeling simplifications
which are difficult to validate exactly.
Customer valuations are believed to
be super-additive for bundles of
complements (e.g. pressure cooker,
recipe book) and sub-additive for
bundles of substitutes (e.g. pressure
cooker, rice cooker)

2. Valuations are Additive
i.e. v(S) =

∑
i∈S xi

for some x1, . . . , xn

3. Valuations are Independent
i.e. D = D1 × . . . × Dn

4. n ≥ 3 If n = 2, then 4 parameters but only
3 equations. We show an example of
solving the system by brute force
when one parameter is given, in the
full version [24]

Some bundles in practice have n = 2
items

5. Single Bundle Discount Not necessary, but made for
mathematical tractability. We also
solve the case where P (·) describes a
two-part tariff, in the full version [24]

Usually true, since discounts for
sub-bundles S � [n] make pricing too
complex. However, bundles in practice
can overlap

i.e. P (S) =

{∑
i∈S Pi, S �= [n]

∑n
i=1 Pi − d, S = [n]

for some P1, . . . , Pn, d

6. No-purchases are Observed Not necessary, but made for
mathematical tractability. Not
needed for good numerical
performance unless n = 3. We show
how to analytically deduce N∅ if it is
not given, in the full version [24]

Can approximate by counting the
number of receipts containing no
items from the bundle [n] in question
(brick-and-mortar retailer), or the
number of page views (online retailer)

7. No Noise in Observations Only used in our exact convergence
result (Theorem 1), and necessary
for that result. Not used in our
general, and also not needed for
good numerical performance.

Not always the case, but we note that
a uniform valuation distribution
(equivalently, a linear demand curve)
is a commonly-used model of demand

i.e. p̂S = Prv∼D[S = argmaxS′v(S′)]

for all S

8. Valuations are Uniform
i.e. Di = Unif[li, ui] for all i

demand curve as indicated by its bundle sales prior to Black Friday. We revisit
the example from the Introduction, where we now also display the Black Friday
markdown amounts, in Table 3. Our goal is to use the items’ bundle sales to
speculate on their sales boosts after the Black Friday markdowns.

Table 3. An example from the data. Can we speculate on the “?” values using only
the information in the table? (Answers in text.)

First 25 weeks Black Friday week

Price in R$ Average weekly sales Price in R$ Sales

Pressure cooker $207 222 $190 ($17 markdown) ?

Recipe book $14 30 $3 ($11 markdown) ?

Bundle $212 ($9 discount) 29 $212 (dominated by markdowns)

A naive observation of the data might suggest that neither item is particularly
elastic, because the discounted bundle did not sell many copies (only 29) relative
to the weekly sales of the items (222 and 30, respectively). However, the analysis
in our paper would suggest that the recipe book is much less elastic than the
pressure cooker. This is because a large number of people (222) paid $207 for the
pressure cooker alone, declining to add the recipe book at the “highly discounted”
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price of $5 (normally they would have to pay $14 for the recipe book, but the
bundle allows them to pay $5). By contrast, much fewer (30) people purchased
the recipe book alone.

In the end, the recipe book sold only 176 copies during Black Friday week,
representing a dismal price elasticity given the massive 79% Black Friday mark-
down. Meanwhile, the pressure cooker sold 1153 copies during Black Friday week,
achieving a similar percentage increase from a much smaller 8% markdown, and
hence representing a much better price elasticity. This is exactly consistent with
our predictions from the bundle sales before Black Friday.

3.1 Relationship Between Bundle Sales and Price Elasticity

We test whether the relationships from the example in Table 3 generalize to
the other items in the data set. Most of the items have been offered in multi-
ple bundles, so for each item, we consider aggregate statistics over the bundles
containing it.

Definition 4. Define the following for each item i, based on the 25 weeks before
Black Friday.

– PctBund(i): out of all copies of i sold, the fraction of which came from a
bundle purchase.

– PctBundPartners(i): the weighted average value of PctBund over the partner
items of i, where an item j is considered a partner of i if there is some bundle
containing both i and j.

– AvgBundDisc(i): the % discount provided by the bundles containing i, taking
a weighted average.

For full details on how we processed these statistics from the data, we defer to
the full version [24].

To illustrate these statistics, we calculate them for the example in Table 3. In
the full data, the (pressure) cooker was only part of the bundle with the (recipe)
book, while the book was part of many bundles with different kitchen appliances.
An additional 235 copies of it were sold weekly in these other bundles. Therefore,

PctBund(Cooker) =
29

29 + 222
≈ 12% and PctBund(Book) =

29 + 235

29 + 30 + 235
≈ 90%.

The cooker’s sole partner is the book, so PctBundPartners(Cooker) =
PctBund(Book) = 90%. Meanwhile, PctBundPartners(Book) = 24% after aver-
aging over all of its partners. Finally, AvgBundDisc considers the % discounts
provided by the bundles, which for this one is 1 − 212

207+14 ≈ 4%. Hence
AvgBundDisc(Cooker) = 4%. AvgBundDisc(Book) takes an average over all of
the bundles containing the book, ending up at 8%.

For each item i, we let PriceElas(i) denote its price elasticity, measured as
its % increase in sales during Black Friday week, divided by its % decrease in
individual price. We are interested in the relationship of PriceElas(i) with both
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Fig. 2. Relationship between bundle sales and price elasticity. The example items from
Table 3 are labeled with an “x”. The exact functional form chosen (with the vertical axis
on a log-scale) is purely for visual clarity and does not affect the Kendall’s τ measure
of statistical significance.

PctBund(i)
AvgBundDisc(i) and PctBundPartners(i)

AvgBundDisc(i) , where we have divided by the bundle discount
to penalize bundle sales percentages that came from highly discounted bundles.
We will only investigate the ordering of the items according to these statistics,
i.e., do the items with the highest values of PctBund(i)

AvgBundDisc(i) or PctBundPartners(i)
AvgBundDisc(i) tend to

have the highest values of PriceElas(i) after Black Friday? Consequently, we can
equivalently consider the relationship between ln(PriceElas(i)×AvgBundDisc(i))
vs. both PctBund(i) and PctBundPartners(i), which we plot in Fig. 2, for the 51
items that were marked down during Black Friday and had prior bundle sales. We
emphasize that the functional form plotted in Fig. 2 was chosen purely for visual
clarity, and does not affect the Kendall’s τ measure of correlation used, which
only considers the rankings of the items according to PriceElas(i), PctBund(i)

AvgBundDisc(i) ,

and PctBundPartners(i)
AvgBundDisc(i) .

Looking at Fig. 2, PctBund(i) shows a positive correlation with price elastic-
ity, with τ = .16 (i.e. 58% of the pairs were concordant), which for 51 data points
results in a two-sided p-value of .08. However, the correlation is weak with many
outliers, as exemplified by the recipe book. That is, it is possible for an “add-on”
item like the recipe book to be inelastic to a Black Friday discount, even though
most of its previous sales occurred in discounted bundles.

Meanwhile, PctBundPartners(i) demonstrates a highly significant correlation
with price elasticity, with τ = .3 and p = .002. This is exactly as explained by
our model: if many people bought the partners of item i without adding i at a
bundle discount, then they also wouldn’t buy item i after an individual discount;
on the other hand, if nobody bought the partners of item i individually, then a
logical hypothesis is that everybody was willing to add i to the bundle.
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It is also interesting to note that in Fig. 2, the uncertainty for a given value of
PctBundPartners(i) appears to be one-sided. That is, a high PctBundPartners(i)
could still imply a low price elasticity, likely caused by bundle sales that were
driven by highly complementary items. However, a low PctBundPartners(i) never
implied a high price elasticity, likely because substitutes being bundled together
(which would cause this effect) occurs less frequently in practice.

4 Conclusion

In this paper we are faced with our online retailer’s problem of constructing
demand curves for items which have only been sold at a single price. We intuit
that a second point on each item’s demand curve can be extracted by looking at
its selling frequency in discounted bundles. To formalize this, we propose a fitting
problem for a parsimonious model (with many assumptions, but necessarily so)
from the bundle pricing literature and derive an iterative algorithm for matching
the moments. This algorithm unveils a “main insight”: a directional relationship
between the frequency of an item’s bundle sales and the slope of its demand
curve. We test this insight on the data from our online retailer and verify that
(even though the assumptions may not hold) the directional relationship holds.

Of course, our approach merely shows how to make an “educated guess” when
faced with limited data (no price variation, no covariates), so we mostly see it
being used in one of two ways. First, it can be used as a starting point to iden-
tify the items more likely to be elastic, which should be further investigated and
considered for a price drop. Indeed, as we saw in Fig. 2, a markdown was much
more likely to be effective on items with a high value of PctBundPartners, as
opposed to a low value of PctBundPartners. Second, we see the simplicity and
interpretability of our PctBundPartners statistic as a benefit to managers. For
example, suppose after further analysis (possibly further data collection) that
an item’s elasticity is much lower than that indicated by its PctBundPartners
statistic. This identifies items that are frequently sold in bundles with comple-
mentary products, and these items should be considered for inclusion in more
bundles, instead of considered for a price drop.

Next, we discuss the higher-order managerial question of why our online
retailer did not collect better data in the first place. General reasons for refrain-
ing from changing prices include operational overhead, potentially negative cus-
tomer response, and encouraging customers to strategically wait [29]. Our part-
ner online retailer tends to focus their discounts for Black Friday week, where
it is expected that prices will drop and then rise back up. We would also like to
point out that in our industry experience, even for firms that do change prices,
often the system tracks these changes poorly and the only data available is of
the form (average price, sales).

Finally, we mention two other generally challenging issues, which are beyond
the scope of our analysis. First, there could be endogeneity in the price elastici-
ties constructed from the data—the goods that were discounted on Black Friday
and the discount amounts were intentionally chosen by a revenue-maximizing
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firm. Second, the demand curve for Black Friday could be fundamentally dif-
ferent from the demand curves seen during the rest of the year. However, we
do not have access to data of more regular discounts that might also display
less endogeneity—our partner firm generally does not offer these. Our validation
using the Black Friday data made use of what was available to us.

Acknowledgement. The anonymous reviewers from WINE22 are thanked for their
insightful comments which improved the final version of the paper.
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Abstract. We study the problem of allocating multiple types of
resources to agents with Leontief preferences. The classic Dominant
Resource Fairness (DRF) mechanism satisfies several desired fairness and
incentive properties, but is known to have poor performance in terms
of social welfare approximation ratio. In this work, we propose a new
approximation ratio measure, called fair-ratio, which is defined as the
worst-case ratio between the optimal social welfare (resp. utilization)
among all fair allocations and that by the mechanism, allowing us to
break the lower bound barrier under the classic approximation ratio. We
then generalize DRF and present several new mechanisms with two and
multiple types of resources that satisfy the same set of properties as DRF
but with better social welfare and utilization guarantees under the new
benchmark. We also demonstrate the effectiveness of these mechanisms
through experiments on both synthetic and real-world datasets.

Keywords: Fair division · Mechanism design · Cloud computing

1 Introduction

In order to offer flexible resources and economies of scale, in cloud computing
systems, a fundamental problem is to efficiently allocate heterogeneous comput-
ing resources, such as CPU time and memory, to agents with different demands.
This resource allocation problem presents several significant challenges from a
technical perspective. For example, how to balance the efficiency of the system
and fairness among users? How to incentivize agents to participate and truth-
fully reveal their private information? These are all delicate issues that need to
be carefully considered when designing a resource allocation algorithm.

One of the most widely used mechanisms for multi-type resource allocation
is the Dominant Resource Fairness (DRF) mechanism proposed by [7]. This
work assumes that agents in the system have Leontief preferences, which means
they demand to receive resources of each type in fixed proportions. Under such
preferences, the proposed DRF mechanism generalizes the max-min allocation by
equalizing the share of the most demanded resource, called dominant share, for
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all agents. [7] show that DRF satisfies a set of desirable properties. These include
fairness properties: (i) share incentive (SI), all agents should be at least as happy
as if each resource is equally allocated to all agents, and (ii) envy-freeness (EF),
no agent should prefer the allocation of another agent; efficiency properties:
(iii) Pareto optimality (PO), it is impossible to increase the allocation of one
agent without decreasing the allocation of another agent; as well as incentive
properties: (iv) strategy-proofness (SP), no agent can benefit from reporting a
false demand. Consequently, DRF has received significant attention with many
variants proposed to tackle different restrictions occurred in practice.

Despite the above attractive properties, however, DRF is known to have poor
performance in terms of utilitarian social welfare, which is defined as the sum
of utilities of all agents. Many alternative mechanisms have then been proposed
to tackle this issue and balance the trade-off between fairness and efficiency
[2,3,8,10,11,13,22,23]. Most of these mechanisms still satisfy SI, EF, and PO.
However, none of them satisfy SP. Recently, [10] propose the so called 2-dominant
resource fairness (2-DF) to balance fairness and efficiency. Different from other
mechanisms, 2-DF satisfies SP and PO, but does not satisfy SI and EF generally.
On the other hand, [19] justify this worst-case performance of DRF by showing
that any mechanism satisfying any of the three properties SI, EF, and SP cannot
guarantee more than 1

m of the optimal social welfare, which is also what DRF
can achieve. Here m denotes the number of resource types. This characterization
seems to suggest that from a worst-case viewpoint, DRF has the best possible
social welfare guarantee among all fair or truthful mechanisms.

In this work, we aim to design new mechanisms that satisfy the same set
of properties with DRF but with better efficiency guarantees. In order to get
around the theoretical barrier set by [19], we first propose and justify a new
benchmark to measure the social welfare guarantee of a mechanism. Note that
[19] and many other works use the approximation ratio, which is defined as the
worst-case ratio between the optimal social welfare among all allocations and
the mechanism’s social welfare, as the performance measure of a mechanism.
However, since SI and EF are both fairness properties that place significant con-
straints on feasible allocations, it is not surprising that any allocation satisfying
SI or EF would incur a large approximation ratio of m. On the other hand, one
can show that any mechanism satisfying SI has approximation ratio at most m.
This means all mechanisms satisfying SI and EF will have the same worst-case
approximation ratio, which renders the approximation ratio notion meaningless
in systems where these fairness conditions are hard constraints that must be
satisfied. Since fairness is a hard constraint in many practical applications, we
argue that it is more reasonable to compare the mechanism’s social welfare to the
optimal social welfare among all allocations that satisfy SI and EF. To this end,
we modify the approximation ratio definition and propose this according variant.
The new definition allows us to get pass the lower bound barrier from [19] and
design mechanisms with better social welfare approximation ratio guarantees.
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1.1 Our Results

We design new resource allocation mechanisms that satisfy properties such as
SI, EF, PO, and SP, and at the same time achieve high efficiency. The efficiency
is measured by two objectives: social welfare, defined as the sum of utilities of
all agents, and utilization, defined as the minimum utilization rate among all
resources. Social welfare is an indicator commonly used to measure efficiency,
while improving utilization rate is also an important goal for cloud providers
for cost-saving (see, e.g., Amazon1, IBM2). In academia, utilization has been
studied by [12,13,16]. For the performance measure, we define fair-ratio for social
welfare (resp. utilization) of a mechanism as the worst-case ratio between the
social welfare (resp. utilization) achieved by the optimal mechanism satisfying
SI and EF and that by the mechanism. See formal definitions in Sect. 2.

We first focus on the setting where all agents’ dominant resources fall into
two types. This is the most basic and arguably also the most important setting
in cloud computing and other application domains such as high performance
computing. For example, most existing commercial cloud computing services,
such as Azure, Amazon EC2, and Google Cloud, work with only two (dominant)
resources: CPU and memory. Two-resource setting can also be used to model
the coupled CPU-GPU architectures where CPU and GPU are integrated into
a single chip to achieve high performance computing [22]. In this setting, we
present three new mechanisms UNB, BAL, and BAL∗, all with better fair-ratio
guarantees than DRF. Different from DRF which equalizes the dominant share
of all agents, the idea behind our new mechanisms is to partition all agents
into two groups according to their dominant resources and carefully increase the
share of agents with the smallest fraction of their non-dominant resource in each
group. Mechanism UNB satisfies all four properties (SI, EF, PO, and SP) and
has a fair-ratio of 3

2 for social welfare and 2 for utilization. Mechanism BAL
further improves the fair-ratio for social welfare to 4

3 . However, BAL satisfies SI,
EF, and PO, but not SP. Finally, we generalize BAL to a new mechanism BAL∗

which satisfies all the four properties and has the same asymptotic fair-ratio as
BAL when the number of agents n goes to infinity. We further provide a more
fine-grained analysis of the fair-ratio parameterized by a minority population
ratio parameter α ∈ (0, 1

2 ], which is defined as the fraction of agents in the
smaller group classified by their dominant resources. Table 1 lists a summary
of the fair-ratios of different mechanisms in the worst case and in terms of α.
We also compare our mechanisms with DRF by conducting experiments on both
synthetic and real-world data. Our results match well with the theoretical bounds
of fair-ratios and show that both UNB and BAL∗ achieve better social welfare
and utilization than DRF.

Next we move to the general situation with m ≥ 2 resources. We first give
a family F of mechanisms, containing DRF as a special case, that satisfy all
the four properties. This answers the question posed by [7] that “whether DRF
1 https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-

environment/.
2 https://www.ibm.com/cloud/learn/cloud-computing.

https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://www.ibm.com/cloud/learn/cloud-computing
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Table 1. Fair-ratio results for m = 2 resources overview.

Social welfare Utilization

DRF (Lemma 1) 2 (2 − α) ∞ ( 1
α
)

UNB (Theorem 1) 3
2
(1 + α) 2 ( 1

1−α
)

BAL (Theorem 2) 4
3
( 4−2α

3−α
) 2 ( 2

1+α
)

BAL∗ (Theorem 3)
[
4−2α
3−α

, 4−2α

3−α− 1
n

] [
2

1+α
, 2

1+α− 1
n

]

Table 2. Price of SP results overview.

Social welfare Utilization

m = 2 (Theorem 6) [1, 3 − √
3 + 1

2n
] [1, 3

2− 1
n

]

m = 3 (Theorem 7) [2, 3] ∞

m ≥ 4 (Theorem 7) m ∞

is the only possible strategy-proof policy for multi-resource fairness, given other
desirable properties such as Pareto efficiency”. Unfortunately, as we will see in
the next part, for general m all mechanisms that satisfy the four properties will
have the same fair-ratio as DRF. Nevertheless, we show that a generalization of
UNB still satisfies the four properties and its fair-ratio is always weakly better
than DRF.

Finally, we investigate the efficiency loss caused by incentive constraints.
We define the price of strategyproofness (Price of SP) for social welfare (resp.
utilization) as the best fair-ratio for social welfare (resp. utilization) among all
mechanisms which satisfy SI, EF, PO, and SP. Our results are summarized in
Table 2. For the case with m = 2 resources, we show that the price of SP is
at most 3 − √

3 + 1
2n for social welfare, and at most 3

2− 1
n

for utilization. When
m = 3, the price of SP is ∞ for utilization and between 2 and 3 for social welfare.
Finally, when m ≥ 4, the price of SP is ∞ for utilization and m for social welfare,
which implies that in the general setting all mechanisms that satisfy the four
properties have the same fair-ratio as DRF.

Due to the lack of space, we refer the reader to the long version of the paper [1]
for proof details.

1.2 Related Work

Since its introduction by [7], DRF has been extended in multiple directions,
including the setting with weighted agents or indivisible tasks [19], the setting
when resources are distributed over multiple servers with placement constraints
[21,25] or without placement constraints [5,24], a dynamic setting when agents
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arrive at different times [14] and the case when agents’ demands are limited
[16,17]. In contrast to these works, we consider the original setting and aim to
design mechanisms with better efficiency guarantees than DRF. Notably, [16]
generalize DRF to the limited demand setting, and study the approximation
ratio of the generalized mechanism by comparing it with the optimal allocation
satisfying PO, SI and EF. Essentially, their results implies that for two resources,
the fair-ratio of DRF is 2 for social welfare and ∞ for utilization, which can be
seen as a special case of our more fine-grained result in Lemma 1 parameterized
by α. [4] advocate a different fairness notion called Bottleneck Based Fairness
(BBF) for multi-resource allocation with Leontief preferences and show that
a BBF allocation always exists. [9] extend DRF and BBF for a larger family
of utilities and give a polynomial time algorithm to compute a BBF solution.
Characterization of mechanisms satisfying a set of desirable properties under
Leontief preferences has been studied in economics literature [6,15,18]. However,
they consider different properties than what we consider.

2 Preliminaries

2.1 Multi-resource Allocation

We start by introducing the formal model of multi-resource allocation. The nota-
tions are mainly adopted from [19]. Given a set of agents N = {1, 2, . . . , n}
and a set of resources R with |R| = m, each agent i has a resource demand
vector Di = {Di1,Di2, . . . , Dim}, where Dir is the ratio between the demand
of agent i for resource r to complete one task and the total amount of that
resource. The dominant resource of an agent i is the resource r∗

i such that
r∗
i ∈ argmaxr∈R Dir. For simplicity, we assume that all agents have positive

demands, i.e., Dir > 0,∀i ∈ N,∀r ∈ R. For each agent i and each resource r,
define dir = Dir

Dir∗
i

∈ (0, 1] as the normalized demand and denote the normalized

demand vector of agent i by di = {di1, di2, . . . , dim}. An instance of the multi-
resource allocation problem with n agents and m resource is a matrix I of size
n × m with each row representing a normalized demand vector.

To help better understand these notions, consider a cloud computing sce-
nario where two agents share a system with 9 CPUs and 18GB RAM. Each
task agent 1 runs require 〈1 CPUs, 4 GB〉, and each task agent 2 runs require
〈3 CPUs, 1GB〉. Since each task of agent 1 demands 1

9 of the total CPU and 2
9

of the total RAM, the demand vector for agent 1 is D1 = { 1
9 , 2

9}, with RAM
being its dominant resource, and the corresponding normalized demand vector
is d1 = { 1

2 , 1}. Similarly, for agent 2 we have D2 = { 1
3 , 1

18}, d2 = {1, 1
6}, and its

dominant resource is CPU.
Given problem instance I, an allocation A is a matrix of size n × m which

allocates a fraction Air of resource r to agent i. We assume all resources are
divisible. An allocation A is feasible if no resource is required more than avail-
able, i.e.,

∑
i∈N Air ≤ 1,∀r ∈ R. We assume agents have Leontief preferences

and the utility of an agent with its allocation vector Ai is defined as

ui(Ai) = max{y ∈ R+ : ∀r ∈ R,Air ≥ y · dir}.
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We say an allocation is non-wasteful if for each agent i ∈ N there exists y ∈ R+

such that Air = y ·dir,∀r ∈ R. In words, for each agent, the amount of allocated
resources are proportional to its normalized demand vector. The dominant share
of an agent i under a non-wasteful allocation A is Air∗

i
, where r∗

i is i’s dominant
resource.

Denote the set of all instances by I, and the set of all feasible allocations
by A. A mechanism is a function f : I → A that maps every instance to a
feasible allocation. We use fi(I) to denote the allocation vector to agent i under
instance I. A mechanism is non-wasteful if the allocation of the mechanism on
any instance is non-wasteful. We only consider non-wasteful mechanisms.

2.2 Dominant Resource Fairness (DRF)

The DRF mechanism [7] works by maximizing and equalizing the dominant
shares of all agents, subject to the feasible constraint. Let x be the dominant
share of each agent, DRF solves the following linear program:

maximize x

subject to
∑

i∈N

x · dir ≤ 1, ∀r ∈ R

This linear program can be rewritten as x∗ = 1
maxr∈R

∑
i∈N dir

. Then, for
agent i the allocation Ai = x∗ · di.

2.3 Properties of Mechanisms

In this work we are interested in the following properties of a resource allocation
mechanism.

Definition 1 (Share Incentive (SI)). An allocation A is SI if ui(Ai) ≥
1
n ,∀i ∈ N . A mechanism f is SI if for any instance I ∈ I the allocation f(I) is
SI.

Definition 2 (Envy Freeness (EF)). An allocation A is EF if ui(Ai) ≥
ui(Aj),∀i, j ∈ N . A mechanism f is EF if for any instance I ∈ I the allocation
f(I) is EF.

Definition 3 (Pareto Optimality (PO)). An allocation A is PO if it is not
dominated by another allocation A′, i.e., there is no A′ such that ∃i0 ∈ N :
ui0(A

′
i0
) > ui0(fi0(I)) and ∀i ∈ N : ui(A′

i0
) ≥ ui(fi(I)). A mechanism f is PO

if for any instance I ∈ I the allocation f(I) is PO.

Definition 4 (Strategyproofness (SP)). A mechanism f is SP if no
agent can benefit by reporting a false demand vector, i.e., ∀I ∈ I,∀i ∈
N,∀d′

i, ui(fi(I)) ≥ ui(fi(I′)), where I′ is the resulting instance by replacing agent
i’s demand vector by d′

i.
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Notice that SI, EF, and PO are defined for both allocations and mechanisms,
while SP is only defined for mechanisms. It is easy to verify that a non-wasteful
mechanism satisfies PO if and only if at least one resource is used up in the
allocation returned by the mechanism.

[7] shows that DRF satisfies all of these desirable properties.

2.4 Approximation Ratio

We define social welfare (SW) of an allocation A as the sum of the utilities of
all agents,

SW(A) =
∑

i∈N

ui(Ai).

As in [16], we define utilization of an allocation A as the minimum utilization
rate of m resources,

U(A) = min
r∈R

∑

i∈N

Air.

As discussed in the introduction, we use a revised notion of approximation
ratio to measure the efficiency performance of a mechanism, where we use the
optimal fair allocation as the benchmark instead of the original benchmark which
is based on the optimal allocation.

Definition 5. The fair-ratio for social welfare (resp. utilization) of a mechanism
f is defined as, among all instances I ∈ I, the maximum ratio of the optimal
social welfare (resp. utilization) among all allocations that satisfy SI and EF over
the social welfare (resp. utilization) of f(I), i.e.,

FRSW = max
I∈I

max
Ais SI,EF

SW(A)

SW(f(I))
and FRUtil = max

I∈I

max
Ais SI,EF

U(A)

U(f(I))
.

3 Two Types of Resources

In this section we focus on the case where there are only two competing resources.
More specifically, we assume that among the m types of resources, there exists
r1, r2 ∈ R, such that for any agent i and any other resource r �= r1, r2, we have
dir1 ≥ dir and dir2 ≥ dir. This means in any allocation, other resources will not
run out before r1 or r2 runs out. Thus it is equivalent to assume that R contains
only two resources r1 and r2.

We partition all agents into two groups G1 and G2, where Gi(i = 1, 2) consists
of all agents whose dominant resource is ri. Agents with demand vector (1, 1)
are considered to be in G1. Denote n1 = |G1| and n2 = |G2|. Without loss of
generality, we assume that n1 ≥ n

2 (otherwise we can rename the two resources).
We now let

α :=
n2

n
∈ (0,

1
2
]
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Algorithm 1: UNB(d1,d2, . . . ,dn)
1 C ← (c1, c2) = (1, 1) // remaining resources
2 G1 ← {i | di,1 = 1}; G2 ← {i | di,1 < 1}
3 foreach i ∈ N do
4 Ai ← 1

n
di // every agent receives 1

n
dominant share

5 C ← C − Ai

6 while c1 > 0 and c2 > 0 do
7 P ← argmini∈G2 Ai,1 // agents with the smallest fraction of resource r1
8 δ0 ← min

i∈N\P
Ai,1 − min

i∈P
Ai,1 // increasing step when 2nd smallest fraction of

resource r1 is reached
9 δ1 ← C1

|P | , δ2 ← C2∑
i∈P

1
di,1

// increasing step when resource r1 (or r2) is

used up
10 δ∗ ← min{δ0, δ1, δ2}
11 foreach i ∈ P do
12 Ai ← Ai + (δ∗, δ∗

di,1
) // increase resource r1 by the same δ∗

13 C ← C − (δ∗, δ∗
di,1

)

14 return A

be the fraction of agents in the smaller group and we call α the minority pop-
ulation ratio. We assume that α > 0, because when α = 0 the only allocation
satisfying SI is to give every agent 1

n of the first resource (and the corresponding
amount of the second resource). As we will see in the following, α is crucial in
analyzing the fair-ratio of a mechanism.

We start by analyzing the fair-ratio of DRF.

Lemma 1. With 2 resources, for instances with minority population ratio α, we
have

FRSW(DRF) = 2 − α and FRUtil(DRF) =
1
α

.

When α approaches 0, we have FRSW(DRF) → 2 and FRUtil(DRF) → ∞.
Notice that with 2 resources FRSW(f) for any mechanism f satisfying SI is at
most 2 as the mechanism can always achieve at least 1 in SW.

In the following, we present two new mechanisms with the same set of prop-
erties as DRF but with better fair-ratios.

3.1 Mechanism UNB

The more detailed analysis of Lemma 1 shows that when the population of two
groups are unbalanced, i.e., when α is close to 0, it is better to allocate more
resources to agents in the minor group G2 with smaller di,1. This idea leads to
mechanism UNB, described in Algorithm 1. The mechanism has two steps. In
step 1, the mechanism allocates every agent 1

ndi of resources such that each
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Fig. 1. Allocations under DRF, UNB, BAL and BAL∗ in Example 1. The shaded area
represents the added parts in respective Step 2.

agent has a dominant share of 1
n , which ensures SI. In step 2, the mechanism

repeats the following process till one resource is used up: Select a set of agents
from G2 who have the smallest fraction t1 of resource r1, denoted by P , and
increase their fractions of resource r1 at the same speed (δ∗) till the fraction
reaches the second smallest fraction t2 in G2 (δ∗ = δ0) or one resource is used
up (δ∗ = δ1 for resource r1 and δ∗ = δ2 for resource r2).

Example 1. Consider an instance with 3 agents who have demand vectors
d1 = (1, 2

5 ), d2 = (1, 1
5 ) and d3 = (15 , 1). We compare the allocation under UNB

and DRF. Notice that DRF can also be viewed as a two-step mechanism, where
in step 1 every agent gets 1

n dominant share (the same as UNB) and in step 2 we
increase the dominant share of every agent at the same speed till one resource
is used up. For the above instance, in step 1 all 3 agents get 1

3 dominant share,
and the remaining resource is C = ( 4

15 , 7
15 ), corresponding to Fig. 1a. In step 2,

under DRF, all agents have the same dominant share x∗ = 1
max{ 11

5 , 85} = 5
11 and

the final allocation vectors are A1 = ( 5
11 , 2

11 ), A2 = ( 5
11 , 1

11 ) and A3 = ( 1
11 , 5

11 ),
corresponding to Fig. 1b. Under UNB, we increase the allocation of agent 3, who
currently has the smallest fraction 1

15 of resource r1, till the second resource r2
is used up and we have A3 = ( 4

25 , 4
5 ), corresponding to Fig. 1c. The SW under

DRF is 5
11 × 3 ≈ 1.36, while the SW under UNB is 1

3 + 1
3 + 4

5 ≈ 1.47.

We show that UNB satisfies all four properties and has a better fair-ratio
than DRF.

Theorem 1. With 2 resources, mechanism UNB can be implemented in poly-
nomial time, satisfies SI, EF, PO, and SP, and has

FRSW(UNB) = 1 + α and FRUtil(UNB) =
1

1 − α
.

Because α ∈ (0, 1/2], we have FRSW(UNB) ≤ 3/2 and FRUtil(UNB) ≤ 2,
both of which are significantly better than DRF.
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Algorithm 2: BAL(d1,d2, . . . ,dn)
1 C ← (c1, c2) = (1, 1) // remaining resources
2 G1 ← {i | di,1 = 1}; G2 ← {i | di,1 < 1}
3 foreach i ∈ N do
4 Ai ← 1

n
di // every agent receives 1

n
dominant share

5 C ← C − Ai

6 (R1, R2) ← C // remaining resources after step 1
7 while c1 > 0 and c2 > 0 do
8 P1 ← argmini∈G1 Ai,2

9 P2 ← argmini∈G2 Ai,1

10 (δ∗
1 , δ∗

2) ← CalcStep () // calculate increasing steps
11 foreach k = 1, 2 do
12 foreach i ∈ Pk do
13 Ai ← Ai +

δ∗
k

di,3−k
di // increase the non-dominant resource by the

same δ∗
k

14 C ← C − δ∗
k

di,3−k
di

15 return A

The intuition behind FRSW(UNB) ≤ 1 + α is that under UNB agents in G1

get at most α less utility than the optimal allocation and agents in G2 get no less
utility than the optimal allocation. For the lower bound FRSW(UNB) ≥ 1 + α,
consider instances where after step 1 the remaining resource is C = (α − ε, ε)
with ε → 0. In step 2 UNB can only increase the allocations of agents in G2 and
get SW at most 1 + ε, while the optimal allocation can increase the allocation
of agents in G1 with the smallest di,2 and get SW of 1 + α − ε.

3.2 Mechanism BAL and BAL∗

According to Theorem 1, UNB has the worst performance when the population
of two groups are balanced, i.e., when α is close to 1

2 , because in step 2 it only
increases allocations of agents in one group (G2). In this case, a better strategy
in step 2 is to increase allocations of agents from both groups.

Following this intuition, we propose mechanism BAL, described in Algo-
rithm2. Mechanism BAL also has two steps. Step 1 is the same as UNB, where
every agent gets 1

n dominant share. In step 2, the mechanism increases alloca-
tions of agents from both groups, and within each group the method is the same
as in UNB, that is, within each group, only agents who have the smallest amount
of the non-dominant resource will be allocated more resources, and they will be
allocated the same fraction (δ∗

1 or δ∗
2) of the non-dominant resource. In addition,

BAL controls the relative allocation rates (δ∗
1 , δ

∗
2) of two groups such that the

ratio between the increased dominant shares of two groups is proportional to the
ratio between the remaining amounts of two resources after step 1. Formally, let
ΔS1 and ΔS2 be the sum of increased dominant share of agents in G1 and G2 in
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Algorithm 3: CalcStep ()
1 foreach k = 1, 2 do
2 δk ← min

i∈N\Pk

Ai,3−k − min
i∈Pk

Ai,3−k // increasing step when 2nd smallest

fraction of resource r3−k is reached
3 Dk ← ∑

i∈Pk

1
di,3−k

4 δk ← c3−k

|Pk|+Dk
R3−k

Rk

// increasing step when resource r3−k is used up

5 δ∗
k ← min{δk, δk}

6 if δ∗
1D1

δ∗
2D2

≤ R1
R2

then
7 δ∗

2 ← δ∗
1 · D1

D2
· R2

R1
// decrease δ∗

2 according to δ∗
1

8 else
9 δ∗

1 ← δ∗
2 · D2

D1
· R1

R2
// decrease δ∗

1 according to δ∗
2

10 return (δ∗
1 , δ∗

2)

step 2 respectively. Let R1 = 1− n1
n − 1

n

∑
i∈G2

di,1 and R2 = 1− n2
n − 1

n

∑
i∈G1

di,2

be the amount of remaining resources after step 1, then BAL ensures that

ΔS1

ΔS2
=

R1

R2
. (1)

This condition is crucial to guarantee the good performance of BAL.
To compute the increasing steps (δ∗

1 , δ
∗
2) (CalcStep () in line 10 of Algo-

rithm2), we calculate the largest increasing steps (δ∗
1 , δ

∗
2) such that condition

(1) is satisfied and one of the following conditions is satisfied: (a) one resource
has been used up; (b) one agent has to be added into P1 or P2. The concrete
algorithm is given in Algorithm3.

We now show that BAL satisfies SI, EF, and PO, and its fair-ratio for SW
is at most 4

3 .

Theorem 2. With 2 resources, mechanism BAL can be implemented in polyno-
mial time, satisfies SI, EF, and PO, and has

FRSW(BAL) =
4 − 2α
3 − α

and FRUtil(BAL) =
2

1 + α
.

The intuition behind FRSW(BAL) ≤ 4−2α
3−α is that compared with the optimal

allocation, where in step 2 the sum of increased dominant share of agents in G1

and G2 are ΔS∗
1 and ΔS∗

2 respectively, we can show that either ΔS1 ≥ ΔS∗
1 or

ΔS2 ≥ ΔS∗
2 , and ΔSi ≥ 1

2ΔS∗
i for any i ∈ {1, 2}. Combining them with the fact

that max{ΔS∗
1 ,ΔS∗

2} ≤ 1 − α, we get

FRSW(BAL) =
1 + ΔS∗

1 + ΔS∗
2

1 + ΔS1 + ΔS2
≤ max

i∈{1,2}
1 + ΔS∗

i

1 + 1
2ΔS∗

i

≤ 2 − α

1 + 1−α
2

=
4 − 2α
3 − α

.

For the lower bound FRSW(BAL) ≥ 4−2α
3−α , consider instances where after step 1

the remaining resource is C = (ε, 1 − α − ε) with ε → 0. In step 2 the optimal
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allocation can allocate all the remaining resource to agent i∗ in G2 who has
demand vector ( ε

1−α−ε , 1) and get SW of 2 − α − ε, while for BAL, because of
the condition (1), we can only give about half of the remaining resource r1 to i∗

and the other half to agents in G1 such that ΔS1
R1

= ΔS2
R2

≈ 1
2 , where the SW is

about 1 + 1−α
2 = 1

2 (3 − α).
However, BAL does not satisfy SP as the agent with the minimum di,1 (or

minimum di,2) could influence the ratio R1
R2

by modifying its demand vector to
get more resources in step 2, as shown in the following example.

Example 2. Consider an instance with two agents who have demand vectors
d1 = (1, 1

2 ) and d2 = (14 , 1). According to BAL, in step 1 agent 1 gets (12 , 1
4 ) and

agent 2 gets (18 , 1
2 ). Then the remaining resources is (38 , 1

4 ) and the increasing
speed ratio is 3

2 . In step 2, agent 1 gets ( 3
14 , 3

28 ) and agent 2 gets ( 1
28 , 1

7 ), and
resource 2 is used up. Overall agent 2 gets ( 9

56 , 9
14 ). However, if agent 2 reports

another demand vector d′
2 = (12 , 1), then both agents will get the same dominant

share 2
3 under BAL. In particular, agent 2 will get ( 13 , 2

3 ), which is strictly better
than ( 9

56 , 9
14 ). Therefore, BAL is not SP.

Fortunately, we can make BAL satisfy SP with a small modification. In the
following we propose a slightly different mechanism BAL∗ that replaces the con-
dition (1) by the following condition:

ΔS1

ΔS2
=

R∗
1

R∗
2

=
R1 + 1

ndi∗,1

R2 + 1
ndj∗,2

, (2)

where i∗ is an agent in G2 with the minimum di,1 and j∗ is an agent in G1 with
the minimum di,2. That is, the ratio between ΔS1 and ΔS2 is proportional to the
ratio between the remaining amounts of two resources when all agents except i∗

and j∗ get 1
n dominant share. Intuitively, for agent i∗, this modification prevents

it from increasing di∗,1 to influence R∗
1

R∗
2
, unless di∗,1 becomes larger than the

second smallest di,1, for which case we can show that i∗ cannot benefit.
We show that BAL∗ satisfies all four properties including SP, and its fair-ratio

is very close to that of BAL.

Theorem 3. With 2 resources, mechanism BAL∗ can be implemented in poly-
nomial time, satisfies SI, EF, PO, and SP, and has

FRSW(BAL∗) ∈
[
4 − 2α
3 − α

,
4 − 2α

3 − α − 1
n

]

; FRUtil(BAL∗) ∈
[

2
1 + α

,
2

1 + α − 1
n

]

.

Example 1 (Continued). We compare BAL and BAL∗ for the instance in
Example 1. Step 1 is the same as before and we have R1

R2
=

4
15
7
15

= 4
7 and R∗

1
R∗

2
=

4
15+

1
15

7
15+

1
15

= 5
8 . In step 2, under BAL, we increase the allocation of agent 2 by

( 1681 , 16
405 ), and that of agent 3 by ( 28

405 , 28
81 ) such that resource r1 is used up. Notice

that ΔS1 = 16
81 and ΔS2 = 28

81 satisfy ΔS1
ΔS1

= R1
R2

. Under BAL∗, we increase the
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Fig. 2. Fair-ratio of mechanisms as a function of α. As FRUtil(DRF ) → ∞ when
α → 0, for better visualization, we only show FRUtil for α ∈ [0.2, 0.5].

allocation of agent 2 by ( 2099 , 4
99 ), and that of agent 3 by ( 32

495 , 32
99 ). Notice that

ΔS1 = 20
99 and ΔS2 = 32

99 satisfy ΔS1
ΔS1

= R∗
1

R∗
2
. These two corresponds to Fig. 1d

and 1e. The SW under BAL and BAL∗ is ≈ 1.54 and ≈ 1.53 respectively, which
is larger than 1.36 under DRF and 1.47 under UNB.

Figure 2 shows fair-ratios of DRF, UNB, BAL, and BAL∗ (when n → ∞) as
a function of α. Notice that all three new mechanisms have better fair-ratio than
DRF for any α ∈ (0, 1

2 ). Among new mechanisms, UNB has better fair-ratio than
BAL (BAL∗) when α is close to 0 while BAL (BAL∗) has better fair-ratio than
UNB when α is close to 0.5. Note that we can combine these two mechanisms
to achieve a better fair-ratio, which will be further discussed in Sect. 5.

3.3 Experimental Evaluation

The above analysis of fair-ratio shows that our mechanism UNB and BAL∗

have better performance than DRF from the worst-case perspective. In this
section, we compare the performance of DRF, UNB and BAL∗ when m = 2 using
both synthetic instances and real-world instances based on Google cluster-usage
traces [20]. Our results are shown in Fig. 3, where we plot the ratio between the
optimal allocation (satisfying SI and EF) and the allocation under compared
mechanisms. Our results match well with the above fair-ratios and show that
both UNB and BAL∗ achieve better social welfare and utilization than DRF.

Random Instances with Different α. First we compare mechanisms on ran-
dom instances with fixed n = 100 and different α ∈ {0.05, 0.10, . . . , 0.50}. For
each α, we average over 1000 instances to get the data point. To control the
value of α, we choose n(1 − α) agents and set di,1 = 1 for them, and for the
remaining agents we set di,2 = 1. The other entries of the demand vectors are
sampled uniformly from {0.01, 0.02, . . . , 1.00}.

The result is shown in the first row of Fig. 3. For SW, BAL∗ is very close to
the optimal solution (the ratio is close to 1) and BAL∗ is always better than DRF
for different values of α. UNB also outperforms DRF for most values of α except
when α ∈ [0.45, 0.5]. Comparing UNB and BAL∗, similarly to the crossing point
of their theoretical fair-ratios in Fig. 2, their performance on random instances
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Fig. 3. Performance ratio between the optimal allocation and allocations under DRF,
UNB, BAL∗ on synthetic instances with different α (1st row) and real-world instances
with different n (2nd row).

also cross when α ≈ 0.25 in Fig. 3, confirming that when α → 0, UNB is better
than BAL∗, and when α → 0.5, BAL∗ is better than UNB. When α ≥ 0.2, the
performance trend of three mechanisms matches well with the fair-ratio. More
precisely, when α increases, BAL∗ and DRF perform better while UNB performs
worse. The comparison of three mechanisms in utilization is almost the same as
in SW.

Instances Generated from Google Trace. Next we test mechanisms on
instances that are generated according to the real demands of tasks from the
Google traces. The Google traces record the demands for CPU and memory of
each submitted task. We normalize these demands to get a pool of normalized
demand vectors. Then we generate instances by randomly sampling demand vec-
tors from this pool. We compare mechanisms on instances with different number
n ∈ {10, 20, . . . , 100} of agents. For each n, we average over 1000 instances to
get the data point.

The result is shown in the second row of Fig. 3. For both SW and utilization,
UNB and BAL∗ outperform DRF and the improvements are more than 10%. The
performance of UNB and BAL∗ are very close, because in the demand vector
pool more agents (about 67%) have CPU as the dominant resource and hence
the generated instances have α close to 0.33. Notice that the fair-ratios of UNB
and BAL∗ are indeed very close when α = 0.33 (see Fig. 2).

4 Multiple Types of Resources

We move to the general case with m ≥ 2 types of resources.
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4.1 A Family of Mechanisms

We start by presenting a large family of mechanisms that satisfy the four desired
properties SI, EF, PO, and SP, which includes DRF as a special case. This is
in response to the question asked in [7] that “whether DRF is the only possible
strategy-proof policy for multi-resource fairness, given other desirable properties
such as Pareto efficiency”. Although many mechanisms based on DRF have been
proposed for different settings and there are characterizations of mechanisms
satisfying desirable properties under Leontief preferences [6,15,18], to the best
of our knowledge, there is no work that directly answers this question.

We call a function g that maps vectors v ∈ [0, 1]m to R monotone, if it
satisfies that for any two vectors v1,v2 with v1 > v2, g(v1) > g(v2). Here
v1 > v2 means v1 is element-wise strictly larger than v2. Denote G the set
of all monotone functions. Now we define a family of mechanisms F based on
monotone functions. For each monotone function g ∈ G, we define a mechanism
fg ∈ F as follows. The mechanism contains two steps that have the same flavor
as UNB. In step 1, every agent receives 1

n dominant share. In step 2, we increase
the allocation for agents that have the minimum value of g(Ai) till some resource
is used up. We show that all mechanisms in F satisfy the four desired properties.

Theorem 4. For any m, every mechanism Fg ∈ F satisfies SI, EF, PO, and
SP.

With the large family of mechanisms at hand, the next question is to check
if there exists any mechanism from F that can achieve better efficiency than
DRF. Unfortunately, as we will see in the next part, all mechanisms from F
will have the same approximation guarantee for general m. This means from a
worst-case analysis point of view, no mechanism has a provable better SW or
utilization than DRF. Thus a more fine-grained analysis is needed to find better
mechanisms. In the next section, we analyze a special mechanism from F , which
can be seen as a generalization of UNB, by considering two parameters.

4.2 Generalization of UNB

Similar to the case with 2 resources, we first partition all agents into m groups
Gi(i ∈ [m]) according to their dominant resources and choose an arbitrary group
(say G1) as a special group. Then, we let α := 1− |G1|

n be the fraction of agents
not in G1, and let β :=

∑
i∈N\G1

di,1
nα be the average demand of agents not in G1

for resource r1.
UNB can be generalized as follows. In step 1, each agent gets 1

n dominant
share. In step 2, we increase the allocation of agents who have the smallest
fraction of resource r1 in the same speed for resource r1, till some resource is
used up. With slight abuse of notation, we still call this generalized mechanism
UNB. Note that this mechanism is equivalent to the mechanism from the family
F with monotone function g(v) = v1. We prove the fair-ratio of UNB and DRF
parameterized by α and β in the following theorem.
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Theorem 5. With m ≥ 3 resources, mechanism UNB can be implemented
in polynomial time, satisfies SI, EF, PO, and SP, has FRUtil(UNB) =
FRUtil(DRF) = ∞, and

FRSW(UNB) = max

{

m − αβ − (1 − α),
m − αβ

1 + 1−β
β α

}

,

compared to

FRSW(DRF) = max {m − αβ − (1 − α), (m − αβ)(1 − α(1 − β))} .

In particular, one can show that for any α, β ∈ (0, 1), 1−α(1−β) > 1
1+ 1−β

β α
.

This means FRSW(UNB) is always weakly better than FRSW(DRF). We also
conduct experiment to compare UNB and DRF on random instances with m =
3, 4, 5. Our results show that UNB outperforms DRF for a wide range of α and
β, especially when α and β are small. See the long version [1] for more details.

5 Price of Strategyproofness

At last, we investigate the efficiency loss caused by incentive constraints. In [19],
it is shown that any mechanism that satisfies one of SI, EF and SP can only guar-
antee at most 1/m of the social welfare. However, the benchmark used in [19] is
the optimal social welfare among all allocations. Recall that the fair-ratio defined
in this paper is benchmarked against the best social welfare (resp. utilization)
among all allocations that satisfy SI and EF. In other words, we are working
entirely in the domain of fair allocations. Moreover, note that any optimal allo-
cation satisfying SI and EF must also satisfy PO. Therefore, the lower bound
of the fair-ratio characterizes the efficiency loss caused by strategyproofness.
Accordingly, we can define the price of strategyproofness as follows.

Definition 6. The Price of Strategyproofness (Price of SP) for social welfare
(resp. utilization) is defined as the best fair-ratio for social welfare (resp. utiliza-
tion) among all mechanisms which satisfy SI, EF, PO and SP.

We now study the price of SP and start with the case with two resources.
Recall that FRSW(UNB) is increasing with α while FRSW(BAL∗) is decreasing
with α (see Fig. 2). By choosing the better one from UNB and BAL∗ for each
value of α, we get a new mechanism with a better fair-ratio than both UNB and
BAL∗ and show that the price of SP is at most 3 − √

3 for SW.

Theorem 6. With 2 resources and n ≥ 2 agents, the price of SP is at most
3 − √

3 + 1
2n

n→∞−→ 3 − √
3 for SW and at most 3

2− 1
n

n→∞−→ 3
2 for utilization.

We then show that for general m except one special case, all mechanisms
satisfying SI, EF, PO and SP have the same fair-ratio.



Fair and Efficient Multi-resource Allocation for Cloud Computing 185

Theorem 7. For social welfare, the price of SP is m when m ≥ 4 and between
2 and 3 when m = 3. For utilization, the price of SP is ∞ for any m ≥ 3.

One of the main results of [19] is that any mechanism that satisfies SP can
only guarantee at most 1/m of the social welfare. Theorem 7 strengthens this
by showing that the result still holds for m ≥ 4 even if we use fair-ratio as our
benchmark. Our proof follows a similar framework as [19, Theorem 4.1], but
requires a different construction to incorporate EF and SI. For the case when
m = 3, we show that the price of SP is still ∞ for utilization, while for SW we
can only get a lower bound of 2. We leave the gap as an open question.

6 Conclusion

In this paper, we investigate the multi-type resource allocation problem. Gen-
eralizing the classic DRF mechanism, we propose several new mechanisms in
the two-resource setting and in the general m-resource setting. The new mech-
anisms satisfy the same set of desirable properties as DRF but with better effi-
ciency guarantees. For future works, we hope to extend these mechanisms to
handle more realistic assumptions, such that when agents have limited demands
or indivisible tasks, and when agents arrive at different times.
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Abstract. We study mechanisms that select a subset of the vertex set
of a directed graph in order to maximize the minimum indegree of any
selected vertex, subject to an impartiality constraint that the selection of
a particular vertex is independent of the outgoing edges of that vertex.
For graphs with maximum outdegree d, we give a mechanism that selects
at most d + 1 vertices and only selects vertices whose indegree is at
least the maximum indegree in the graph minus one. We then show that
this is best possible in the sense that no impartial mechanism can only
select vertices with maximum degree, even without any restriction on
the number of selected vertices. We finally obtain the following trade-
off between the maximum number of vertices selected and the minimum
indegree of any selected vertex: when selecting at most k vertices out
of n, it is possible to only select vertices whose indegree is at least the
maximum indegree minus �(n − 2)/(k − 1)� + 1.

Keywords: Voting · Impartial selection · Mechanism design

1 Introduction

Impartial selection is the problem of selecting vertices with large indegree in a
directed graph, in such a way that the selection of a particular vertex is inde-
pendent of the outgoing edges of that vertex. The problem models a situation
where agents nominate one another for selection and are willing to offer their
true opinion on other agents as long as this does not affect their own chance of
being selected.

The selection of a single vertex is governed by strong impossibility results.
For graphs with maximum outdegree one, corresponding to situations where
each agent submits a single nomination, every impartial selection rule violates
one of two basic axioms [11] and as a consequence must fail to provide a non-
trivial multiplicative approximation to the maximum indegree. For graphs with
arbitrary outdegrees, corresponding to situations where each agent can submit
multiple nominations, impartial rules violate an even weaker axiom and cannot
provide a non-trivial approximation in a multiplicative or additive sense [1,8].
These impossibilities largely remain in place if rather than a single vertex we
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want to select any fixed number of vertices, but positive results can be obtained
if we relax the requirement that the same number of vertices must be selected
in every graph [4,18].

From a practical point of view, the need for such a relaxation should not
necessarily be a cause for concern. Indeed, situations in the real world to which
impartial selection is relevant often allow for a certain degree of flexibility in the
number of selected agents. The exact number of papers accepted to an academic
conference is usually not fixed in advance but depends on the number and quality
of submissions. Best paper awards at conferences are often given in overlapping
categories, and some awards may only be given if this is warranted by the field of
candidates. The Fields medal is awarded every four years to two, three, or four
mathematicians under the age of 40. Examples at the more extreme end of the
spectrum of flexibility include the award of job titles such as vice president or
deputy vice-principal. Such titles can often be given to a large number of indi-
viduals at a negligible cost per individual, but should only be given to qualified
individuals so as not to devalue the title.

Tamura and Ohseto [18] specifically studied what they call nomination cor-
respondences, i.e., rules that may select an arbitrary set of vertices in any graph.
For graphs with maximum outdegree one a particular such rule, plurality with
runners-up, satisfies impartiality and appropriate versions of the two axioms of
Holzman and Moulin [11]. The rule selects any vertex with maximum indegree;
if there is a unique such vertex, any vertex whose indegree is smaller by one and
whose outgoing edge goes to the vertex with maximum indegree is selected as
well. An appropriate measure for the quality of rules that select varying numbers
of vertices is the difference in the worst case between the best vertex and the
worst selected vertex, and we can call a rule α-min-additive if the maximum
difference, taken over all graphs, between these two quantities is at most α. In
this terminology, plurality with runners-up is 1-min-additive.

As Tamura and Ohseto [18] point out, it may be desirable in practice to ensure
that the maximum number of vertices selected is not too large, a property that
plurality with runners-up clearly fails. It is therefore interesting to ask whether
there exist rules that are α-min-additive and never select more than k vertices,
for some fixed α and k. For graphs with outdegree one, Tamura and Ohseto [18]
answer this question in the affirmative: a variant of plurality with runners-up that
breaks ties according to a fixed ordering of the vertices remains 1-min-additive
but never selects more than two vertices.

Our Contribution. Our first result provides a generalization of the result of
Tamura and Ohseto [18] to graphs with larger outdegrees: for graphs with max-
imum outdegree d, it is possible to achieve 1-min-additivity while selecting at
most d + 1 vertices. For the particular case of graphs with unbounded outde-
grees we obtain a slight improvement, by guaranteeing 1-min-additivity without
ever selecting all vertices. Our second result establishes that 1-min-additivity is
best possible, thus ruling out the existence of impartial mechanisms that only
select vertices with maximum indegree. This holds even when no restrictions are
imposed on the number of selected vertices, and is shown alongside analogous
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impossibility results concerning the maximization of the median or mean inde-
gree of the selected vertices instead of their minimum indegree. Our third result
provides a trade-off between the maximum number of vertices selected, where
smaller is better, and the minimum indegree of any selected vertex, where larger
is better: if we are allowed to select at most k vertices out of n, we can guarantee
α-min-additivity for α = �(n − 2)/(k − 1)� + 1. This is achieved by removing a
subset of the edges from the graph before plurality with runners-up is applied,
in order to guarantee impartiality while selecting fewer vertices. We do not know
whether this last result is tight and leave open the interesting question for the
optimal trade-off between the number and quality of selected vertices.

Related Work. Impartiality as a property of an economic mechanism was intro-
duced by de Clippel et al. [9], and first applied to the selection of vertices in a
directed graph by Alon et al. [1] and Holzman and Moulin [11]. Whereas Holz-
man and Moulin [11] gave axiomatic characterizations for mechanisms selecting
a single vertex when all outdegrees are equal to one, Alon et al. [1] studied the
ability of impartial mechanisms to approximate the maximum indegree for any
fixed number of vertices when there are no limitations on outdegrees.

Both sets of authors obtained strong impossibility results, which a significant
amount of follow-up work has since sought to overcome. Randomized mecha-
nisms providing non-trivial multiplicative guarantees had already been proposed
by Alon et al. [1], and Fischer and Klimm [10] subsequently achieved the best
possible such guarantee for the selection of one vertex. Starting from the observa-
tion that worst-case instances for randomized mechanisms have small indegrees,
Bousquet et al. [5] developed a mechanism that is asymptotically optimal as
the maximum indegree grows, and Caragiannis et al. [6,7] initiated the study of
mechanisms providing additive rather than multiplicative guarantees. Cembrano
et al. [8] subsequently identified a deterministic mechanism that provides non-
trivial additive guarantees whenever the maximum outdegree is bounded and
established that no such guarantees can be obtained with unbounded outde-
grees. Randomized mechanisms have been also studied from an axiomatic point
of view by Mackenzie [14,15].

Bjelde et al. [4] gave randomized mechanisms with improved multiplicative
guarantees for the selection of more than one vertex and observed that when
selecting at most k vertices rather than exactly k, deterministic mechanisms can
in fact achieve non-trivial guarantees. An axiomatic study of Tamura and Ohseto
[18] for the outdegree-one case came to the same conclusion: when allowing for
the selection of a varying number of vertices, the impossibility result of Holz-
man and Moulin [11] no longer holds. Tamura [17] subsequently characterized a
mechanism proposed by Tamura and Ohseto [18], which in some cases selects all
vertices, as the unique minimal mechanism satisfying impartiality, anonymity,
symmetry, and monotonicity.

Impartial mechanisms have finally been proposed for various problems other
than selection, including peer review [2,13,16,20], rank aggregation [12], progeny
maximization [3,21], and network centralities [19].
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2 Preliminaries

For n ∈ N, let [n] = {1, 2, . . . , n}, and let

Gn =

{
(V,E) : V = [n], E ⊆ (V × V ) \

⋃
v∈V

{(v, v)}
}

be the set of directed graphs with n vertices and no loops. Let G =
⋃

n∈N
Gn.

For G = (V,E) ∈ G and v ∈ V , let N+(v,G) = {u ∈ V : (v, u) ∈ E} be the
out-neighborhood and N−(v,G) = {u ∈ V : (u, v) ∈ E} the in-neighborhood
of v in G. Let δ+(v,G) = |N+(v,G)| and δ−(v,G) = |N−(v,G)| denote the
outdegree and indegree of v in G, and Δ(G) = maxv∈V δ−(v,G) the maximum
indegree of any vertex in G. When the graph is clear from the context, we will
sometimes drop G from the notation and write N+(v), N−(v), δ+(v), δ−(v),
and Δ. Let top(G) = max{v ∈ V : δ−(v) = Δ(G)} denote the vertex of G
with the largest index among those with maximum indegree. For n ∈ N and
d ∈ [n − 1], let Gn(d) = {(V,E) ∈ Gn : δ+(v) ≤ d for every v ∈ V } be the set of
graphs in Gn with maximum outdegree at most d, and G(d) = ⋃

n∈N
Gn(d).

A k-selection mechanism is then given by a family of functions f : Gn → 2[n],
one for each n ∈ N, mapping each graph to a subset of its vertices, where we
require that |f(G)| ≤ k for all G ∈ G. In a slight abuse of notation, we will
use f to refer to both the mechanism and to individual functions of the family.
Given G = (V,E) ∈ G and v ∈ V , let Nv(G) = {(V,E′) ∈ G : E \ ({v} × V ) =
E′ \ ({v} × V )} be the set neighboring graphs of G with respect to v, in the
sense that they can be obtained from G by changing the outgoing edges of v.
Mechanism f is impartial on G′ ⊆ G if on this set of graphs the outgoing edges of
a vertex have no influence on its selection, i.e., if for every graph G = (V,E) ∈ G′,
v ∈ V , and G′ ∈ Nv(G), it holds that f(G) ∩ {v} = f(G′) ∩ {v}. Given a k-
selection mechanism f and an aggregator function σ : 2R → R such that σ(∅) = 0
and, for every S ⊆ R with |S| ≥ 1, min{x ∈ S} ≤ σ(S) ≤ max{x ∈ S}, we say
that f is α-σ-additive on G′ ⊆ G, for α ≥ 0, if for every graph in G′ the function
σ evaluated on the choice of f differs from the maximum indegree by at most α,
i.e., if

sup
G∈G′

{
Δ(G) − σ

({δ−(v,G)}v∈f(G)

)} ≤ α.

We will specifically be interested in the cases where σ is the minimum, the
median, and the mean, and respectively call a mechanism α-min-additive, α-
median-additive, and α-mean-additive in these cases.

3 Plurality with Runners-Up

Focusing on the case with maximum outdegree one, Tamura and Ohseto [18]
proposed a mechanism they called plurality with runners-up. The mechanism,
which we describe formally in Algorithm 1, selects all vertices with maximum
indegree; if there is a unique such vertex, then any vertex with an outgoing edge
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Algorithm 1: Plurality with runners-up
Input: Digraph G = (V, E) ∈ Gn(1)
Output: Set S ⊆ V of selected vertices
Let S = {v ∈ V : δ−(v) = Δ(G)};
if S = {v} for some v ∈ V then

S ←− S ∪ {u ∈ V : δ−(u) = Δ(G) − 1 and (u, v) ∈ E}
end
Return S

to that vertex whose indegree is smaller by one is selected as well. The idea
behind this mechanism is that vertices in the latter category would be among
those with maximum degree if their outgoing edge was deleted, and thus any
impartial mechanism seeking to select the vertices with maximum degree would
also have to select those vertices. Plurality with runners-up is impartial on G(1),
and in any graph with n vertices selects between 1 and n vertices whose degree
is equal to the maximum degree or the maximum degree minus one. It is thus an
impartial and 1-min-additive n-selection mechanism on Gn(1) for every n ∈ N.
It is natural to ask whether a similar additive guarantee can be obtained for
more general settings. In this section, we answer this question in the affirmative,
and in particular study for which values of n, k, and d there exists an impartial
and 1-min-additive k-selection mechanism on Gn(d). We will see later, in Sect. 4,
that 1-min-additivity is in fact best possible for all cases covered by our result,
with the exception of the boundary case where n = 2.

While Tamura and Ohseto [18] do not limit the maximum number of selected
vertices, they discuss briefly a modification of their mechanism that retains
impartiality and 1-min-additivity but selects at most 2 vertices. Instead of all
vertices with maximum indegree, the modified mechanism breaks ties in favor of
a single maximum-degree vertex using a fixed ordering of the vertices. In order to
guarantee impartiality, the modified mechanism then also selects any vertex that
would be selected in the graph obtained by deleting the outgoing edge of that
vertex. The assumption that every vertex has at most one outgoing edge means
that at most one additional vertex is selected. There thus exists a 1-min-additive
k-selection mechanism on G(1) for every k ≥ 2.

Our first result generalizes this mechanism to settings with arbitrary outde-
grees, as long as the maximum number of selected vertices is large enough. To
this end we show that when the maximum outdegree is d, to achieve impartial-
ity, at most d vertices have to be selected in addition to the one with maximum
indegree and highest priority.1 We formally describe the resulting mechanism
in Algorithm2, and will refer to it as asymmetric plurality with runners-up and

1 In this mechanism and wherever ties are broken in the rest of the paper, we break
ties in favor of greater index, so top(G) is the vertex with maximum indegree and
highest priority in graph G. Naturally, any other deterministic tie-breaking rule could
be used instead.
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Algorithm 2: Asymmetric plurality with runners-up P(G)
Input: Digraph G = (V, E) ∈ Gn

Output: Set S ⊆ V of selected vertices
Let S = ∅;
for v ∈ V do

Let Gv = (V, E \ ({v} × V ));
if top(Gv) = v then

S ←− S ∪ {v}
end

end
Return S

denote its output on graph G by P(G). We obtain the following theorem, which
generalizes the known result for the outdegree-one case.

Theorem 1. For every n ∈ N, d ∈ [n − 1], and k ∈ {d + 1, . . . , n}, there exists
an impartial and 1-min-additive k-selection mechanism on Gn(d).

We will be interested in the following in comparing vertices both according
to their indegree and to their index, and we will use regular inequality symbols,
as well as the operators max and min, to denote the lexicographic order among
pairs of the form (δ−(v), v). The following lemma characterizes the structure
of the set of vertices selected by Algorithm 2, and provides the main technical
ingredient to the proof of Theorem 1.

Lemma 1. Let G = (V,E) ∈ G and v ∈ V . Then, v ∈ P(G) if and only if

(a) for every w ∈ V with (δ−(w), w) > (δ−(v), v) it holds (v, w) ∈ E; and
(b) one of the following holds:

(i) δ−(v) = Δ(G); or
(ii) δ−(v) = Δ(G) − 1 and v > w for every w ∈ V with δ−(w) = Δ(G).

Proof. We first show that, if v ∈ P(G) for a given graph G, then (a) and (b)
follow. Let G = (V,E) ∈ G, and let v ∈ P(G). To see (a), suppose there is
w ∈ V with (δ−(w,G), w) > (δ−(v,G), v). Since v ∈ P(G), we have v = top(Gv)
with Gv = (V,E \ ({v} × V )). This implies (δ−(v,Gv), v) > (δ−(w,Gv), w) and
therefore δ−(w,G) > δ−(w,Gv), because δ−(v,G) = δ−(v,Gv). Since G and Gv

only differ in the outgoing edges of v, we conclude that (v, w) ∈ E. To prove (b),
we note that for every w ∈ V we have

(δ−(v,G), v) = (δ−(v,Gv), v) > (δ−(w,Gv), w) ≥ (δ−(w,G) − 1, w), (1)

where the last inequality comes from the fact that each vertex has at most
one incoming edge from v. If there is no w ∈ V \ {v} with δ−(w) = Δ(G),
the maximum indegree must be that of v, so δ−(v) = Δ(G) and (i) follows.
Otherwise, for each w ∈ V \ {v} with δ−(w) = Δ(G), (1) yields (δ−(v,G), v) >
(Δ(G) − 1, w). We conclude that either δ−(v,G) > Δ(G) − 1, in which case (i)
holds, or both δ−(v) = Δ(G) − 1 and v > w, which implies (ii).
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4 2 1

6 5 3

Δ

Δ − 1

Fig. 1. Example of a set of vertices selected by Algorithm 2. In this illustration and
throughout the paper, vertices are arranged vertically according to indegree and hori-
zontally according to index, so that vertices on the left are favored in case of ties. The
vertices selected by the mechanism are drawn in white, those not selected in black.
Vertices with indegree below Δ − 1, as well as edges incident to such vertices, are not
shown. Denoting the graph as G = (V, E), and letting Gv = (V, E \ ({v}×V )) for each
vertex v, the selected vertices v are those for which top(Gv) = v. Specifically, vertices
2, 3, and 6 are not selected because top(G2) = 4, top(G3) = 4, and top(G6) = 1.

We now prove the other direction. Let G = (V,E) ∈ G and v ∈ V such
that both (a) and (b) hold. Let Gv = (V,E \ ({v} × V )). We have to show that
top(Gv) = v, i.e., that for every w ∈ V \ {v}, (δ−(v,Gv), v) > (δ−(w,Gv), w).
Let w be a vertex in V \ {v}. If (δ−(v,G), v) > (δ−(w,G), w), we can conclude
immediately since δ−(v,Gv) = δ−(v,G) and δ−(w,Gv) ≤ δ−(w,G). Otherwise,
we know from (a) that (v, w) ∈ E and thus δ−(w,Gv) = δ−(w,G) − 1. If v
satisfies (i), this yields

δ−(v,Gv) = δ−(v,G) = Δ(G) ≥ δ−(w,G) = δ−(w,Gv) + 1,

so (δ−(v,Gv), v) > (δ−(w,Gv), w). On the other hand, if v satisfies (ii), then

δ−(v,Gv) = δ−(v,G) = Δ(G) − 1 ≥ δ−(w,G) − 1 = δ−(w,Gv),

and v > w implies (δ−(v,Gv), v) > (δ−(w,Gv), w) as well. ��
Observe that Lemma 1 implies in particular that top(G) ∈ P(G) for every

graph G. Figure 1 provides an example of the characterization given by Lemma 1,
in terms of indegrees, tie-breaking order, and edges among selected vertices.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We show that for every n ∈ N and d ∈ [n − 1], asymmetric
plurality with runners-up is impartial and 1-min-additive on Gn(d), and that for
every G = (V,E) ∈ Gn(d), it selects at most d + 1 vertices. If this is the case,
then for every k ∈ {d + 1, . . . , n} the mechanism would satisfy the statement of
the theorem. Therefore, let n and d be as mentioned.

Impartiality follows from the definition of the mechanism, because the out-
going edges of a vertex are not taken into account when deciding whether the
vertex is taking part on the selected set or not. If we let G = (V,E), v ∈ V , and
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G′ = (V,E′) ∈ Nv(G), then the graphs Gv and G′
v constructed when running

the mechanism with each of these graphs G and G′ as an input, respectively, are
the same because by definition of Nv(G) we have E \ ({v}×V ) = E′ \ ({v}×V ).
Since v ∈ P(G) ⇔ top(Gv) = v, and v ∈ P(G′) ⇔ top(G′

v) = v, we conclude
v ∈ P(G) ⇔ v ∈ P(G′).

To see that the mechanism is 1-min-additive, let G ∈ Gn(d) and first note
that P(G) �= ∅ since Lemma 1 implies that top(G) ∈ P(G). From this lemma
we also know that for every v ∈ P(G), δ−(v) ≥ Δ(G) − 1. We conclude that
min{{δ−(v)}v∈P(G)} ≥ Δ(G) − 1, and since this holds for every G ∈ Gn(d), the
mechanism is 1-min-additive.

Finally, let G = (V,E) ∈ Gn(d), and suppose that |P(G)| > d+1. If we denote
vL = argminv∈P(G){(δ−(v), v)}, from Lemma1 we know that (vL, w) ∈ E for
every w ∈ V with (δ−(w), w) > (δ−(vL), vL), thus δ+(vL) ≥ |P(G)| − 1 > d, a
contradiction. We conclude that |P(G)| ≤ d + 1.

The following result, concerning mechanisms that may select an arbitrary
number of vertices, follows immediately from Theorem 1.

Corollary 1. For every n ∈ N, there exists an impartial and 1-min-additive
n-selection mechanism on Gn.

On Gn, i.e., in the case of unbounded outdegrees, this result can in fact be
improved slightly to guarantee 1-min-additivity while selecting only at most n−1
vertices. The improvement is achieved by a more intricate version of asymmetric
plurality with runners-up, which we call asymmetric plurality with runners-up
and pivotal vertices. We formally describe this mechanism in Algorithm3 and
denote its output for graph G by PP (G). Given a graph G = (V,E), call a vertex
u ∈ P(G) pivotal for v ∈ P(G) if there exists a graph Guv ∈ Nu(G) such that
v /∈ P(Guv), i.e., if the outgoing edges of u can be changed in such a way that
v is no longer selected by asymmetric plurality with runners-up. Asymmetric
plurality with runners-up and pivotal vertices then selects every vertex in P(G)
that is pivotal for every other vertex in P(G). The mechanism turns out to
inherit impartiality and 1-min-additivity, and to never select all vertices. The
proof is omitted due to space constraints.

Theorem 2. For every n ∈ N and k ∈ {n − 1, n}, there exists an impartial and
1-min-additive k-selection mechanism on Gn.

4 An Impossibility Result

When we established the existence of an impartial and 1-min-additive k-selection
mechanism on G(d) whenever k ≥ d+1, we claimed this result to be best possible
in the sense that the additive guarantee cannot be improved. We will prove
this claim, that impartiality is incompatible with the requirement to only select
vertices with maximum indegree, as a corollary of a more general result.

While selecting only vertices with maximum indegree is a natural goal for
mechanisms that select varying numbers of vertices, other natural objectives
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Algorithm 3: Asymmetric plurality with runners-up and pivotal vertices
PP(G)
Input: Digraph G = (V, E) ∈ Gn

Output: Set S ⊆ V of selected vertices with |S| ≤ n − 1
Let S ←− ∅;
for u ∈ P(G) do

if for every v ∈ P(G) \ {u} there exists Guv ∈ Nu(G) such that v /∈ P(Guv)
then

S ←− S ∪ {u}
end

end
Return S

exist for such mechanisms such as maximizing the median or mean indegree of
the selected vertices. For both of these objectives, the mechanisms discussed in
the previous section immediately provide upper bounds: if a k-selection mech-
anism always selects one vertex with maximum indegree and is α-min-additive
then it is clearly α-median-additive and

(
k−1
k α

)
-mean-additive; Theorem 1 thus

implies the existence of a 1-median-additive and k−1
k -mean-additive k-selection

mechanism on G(d), whenever k ≥ d + 1. To improve on 1-median-additivity,
it would be acceptable to select vertices with low indegree as long as a greater
number of vertices with maximum indegree is selected at the same time. To
improve on k−1

k -mean-additivity, it would suffice to select more than one vertex
with maximum indegree whenever this is possible, and to otherwise select only a
sublinear number in k of vertices with indegree equal to the maximum indegree
minus one. The following result shows that no such improvements are possible.

Theorem 3. Let n ∈ N, n ≥ 3, k ∈ [n], and d ∈ [n − 1]. Let f be an impartial
k-selection mechanism. If f is α1-median-additive on Gn(d), then α1 ≥ 1/2(1 +
1(d ≥ 3)). If f is α2-mean-additive on Gn(d), then α2 ≥ ⌊

d+1
2

⌋
/
(⌊

d+1
2

⌋
+ 1

)
.

Proof. Let n, k, and d be as in the statement of the theorem. In the following
we suppose that there is an impartial k-selection mechanism f which is either
α1-median-additive on Gn(d) with α1 < 1/2(1 + 1(d ≥ 3)), or α2-mean-additive
on Gn(d) with α2 <

⌊
d+1
2

⌋
/
(⌊

d+1
2

⌋
+ 1

)
.

We first prove the result for the case d = 1. We consider the graph G =
(V,E) ∈ Gn(1) with E = {(1, 2), (2, 3), (3, 1)}, consisting of a 3-cycle and n − 3
isolated vertices. We consider as well, for v ∈ {1, 2, 3}, the graph Gv = (V,Ev)
where v deviates from the 3-cycle by changing its outgoing edge to the previous
vertex in the cycle, i.e.,

E1 = {(1, 3), (2, 3), (3, 1)}, E2 = {(1, 2), (2, 1), (3, 1)}, E3 = {(1, 2), (2, 3), (3, 2)}.

Since f is α1-median-additive with α1 < 1/2 or α2-mean-additive with α2 < 1/2,
we have that f(G1) = {3}, f(G2) = {1}, and f(G3) = {2}. In particular, for
v ∈ {1, 2, 3}, v /∈ f(Gv). Since for each v ∈ {1, 2, 3} it holds Ev \ ({v} ×
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V ) = E \ ({v} × V ), we conclude by impartiality that v /∈ f(G), and thus
f(G) ∩ {1, 2, 3} = ∅. This implies that both the median and the mean indegree
of the vertices in f(G) are 0, which contradicts the additive guarantee of this
mechanism because Δ(G) = 1.

In the following, we assume d ≥ 2. We denote D = [d + 1] and consider in
what follows two families of graphs with n vertices, Kv for each v ∈ D and Kuv

for each u, v ∈ D,u �= v. They are constructed from a complete subgraph on D
but deleting the outgoing edges of v, in the case of Kv, and the outgoing edges
of u and v, in the case of Kuv. All the other vertices remain isolated. Formally,
taking V = [n] we define

Kv = (V, (D \ {v}) × D) for every v ∈ D,

Kuv = (V, (D \ {u, v}) × D) for every u, v ∈ D with u �= v.

If there is v ∈ D such that v /∈ f(Kv), then

median
({δ−(w,Kv)}w∈f(Kv)

) ≤ d − 1 = Δ(Kv) − 1,

mean
({δ−(w,Kv)}w∈f(Kv)

) ≤ d − 1 = Δ(Kv) − 1,

which is a contradiction, so the result follows immediately. Therefore, in the
following we assume that for every v ∈ D we have v ∈ f(Kv). We claim that for
every v ∈ D,

|{u ∈ D \ {v} : u ∈ f(Kv)}| ≥
⌊

d + 1
2

⌋
.

Let us see why the result follows if the claim holds. If this is the case, f selects
one vertex with maximum indegree d in Kv and at least

⌊
d+1
2

⌋
vertices with

indegree d − 1. This yields both

median
({δ−(w,Kv)}w∈f(Kv)

) ≤
{

d − 1
2 if d = 2

d − 1 otherwise,

and

mean
({δ−(w,Kv)}w∈f(Kv)

) ≤ d + (d − 1)
⌊
d+1
2

⌋
⌊
d+1
2

⌋
+ 1

= d −
⌊
d+1
2

⌋
⌊
d+1
2

⌋
+ 1

,

which is a contradiction since Δ(Kv) = d.
Now we prove the claim. Suppose that for every v ∈ D we have v ∈ f(Kv)

and

|{u ∈ D \ {v} : u ∈ f(Kv)}| <

⌊
d + 1
2

⌋
. (2)

Let v ∈ D and u ∈ D \ {v} such that u /∈ f(Kv). Observing that

((D \ {v}) × D) \ ({u} × V ) = ((D \ {u, v}) × D) \ ({u} × V ),

we obtain from impartiality that u /∈ f(Kuv). From the bounds on α1 or α2 that
f satisfies by assumption, this mechanism has to select a vertex with maximum
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indegree in this graph; otherwise, both the median and the mean of the selected
set would be at most Δ(Kuv) − 1. Since δ−(w) < Δ(Kuv) for every w /∈ {u, v},
it holds v ∈ f(Kuv). Using impartiality once again, we conclude v ∈ f(Ku). We
have shown the following property:

For every u, v ∈ D : u /∈ f(Kv) =⇒ v ∈ f(Ku). (3)

Consider now the graph H = (D,F ), where for each u, v ∈ D with u �= v,
(u, v) ∈ F if and only if u /∈ f(Kv). Property (2) implies that

δ−(v,H) > d −
⌊

d + 1
2

⌋
⇐⇒ δ−(v,H) ≥ d + 1 −

⌊
d + 1
2

⌋
for each v ∈ D. In particular, there has to be a vertex v∗ ∈ D such that
δ+(v∗,H) ≥ d + 1 − �(d + 1)/(2)� as well. For this vertex we have

δ+(v∗,H) + δ−(v∗,H) ≥ 2
(

d + 1 −
⌊

d + 1
2

⌋)
≥ d + 1.

Since H has d + 1 vertices, this implies the existence of w∗ ∈ D for which
{(v∗, w∗), (w∗, v∗)} ⊂ F , i.e., both v∗ /∈ f(Kw∗) and w∗ /∈ f(Kv∗). This contra-
dicts (3), so we conclude the proof of the claim and the proof of the theorem.

��
Figure 2 provides an illustration of Theorem 3 for the case where n = 3, Fig. 3

for the case where n = 4.
The median of any set of numbers is an upper bound on their minimum.

Therefore, if no impartial mechanism exists that is α-median-additive on G′ ⊆ G
for α < ᾱ, then no impartial mechanism can exist that is α-min-additive on G′

for α < �ᾱ�. We thus obtain the following impossibility result, which we have
claimed previously.

Corollary 2. Let n ∈ N, n ≥ 3, and k ∈ [n]. Let f be an α-min-additive
impartial k-selection mechanism on Gn. Then α ≥ 1.

The impossibility results imply that for k ≥ d+1, the mechanisms of Sect. 3
are best possible for the minimum and median objectives except in a few bound-
ary cases. When n = 2, selecting each of the two vertices if and only if it
has an incoming edge is impartial and achieves 0-min-additivity and 0-median-
additivity. When n = 3, it is possible to select in an impartial way at least one
vertex with maximum indegree and at most one vertex with indegree equal to
the maximum indegree minus one, thus guaranteeing 1/2-median-additivity. For
the mean objective, the mechanisms of Sect. 3 are best possible asymptotically
under the additional assumption that k = O(d).

It is worth pointing out that the proof of the impossibility result uses graphs
in which some vertices, in particular those with maximum indegree, do not have
any outgoing edges. However, the impossibility extends naturally to the case
where this cannot happen, corresponding to the practically relevant case in which
abstentions are not allowed, as long as n ≥ 4 and d ≥ 3. For this it is enough to
define D = [d], add a new vertex with outgoing edges to every vertex in D and
incoming edges from the vertices in D which do not have any outgoing edge, and
construct a cycle containing the vertices in V \ D.
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Fig. 2. Counterexample to the existence of an impartial 3-selection mechanism that is
α-median-additive or α-mean-additive on G3 for α < 1/2. Vertices drawn in white have
to be selected, vertices in black cannot be selected. For the graphs at the top, on the
left, and on the right, this follows from α-median-additivity or α-mean-additivity for
α < 1/2. An arrow with label v from one graph to another indicates that one can be
obtained from the other by changing the outgoing edges of vertex v; by impartiality,
the vertex thus has to be selected in both graphs or not selected in both graphs. It
follows that no vertices are selected in the graph at the center, a contradiction to the
claimed additive guarantee.

5 Trading Off Quantity and Quality

We have so far given impartial selection mechanisms for settings where the max-
imum outdegree d is smaller than the maximum number k of vertices that can
be selected, and have shown that the mechanisms provide best possible addi-
tive guarantees in such settings. We will now consider settings where d ≥ k,
such that asymmetric plurality with runners-up selects too many vertices and
therefore cannot be used directly. We obtain the following result.

Theorem 4. For every n ∈ N and k ∈ {2, . . . , n}, there exists an impartial and
(�(n − 2)/(k − 1)� + 1)-min-additive k-selection mechanism on Gn.

The result is obtained by a variant of asymmetric plurality with runners-
up in which some edges are deleted before the mechanism is run. In principle,
deleting a certain number of edges can affect the additive guarantee by the same
amount, if all of the deleted edges happen to be directed at the same vertex. By
studying the structure of the set of vertices selected by the mechanism, we will
instead be able to delete edges to distinct vertices and thus keep the negative
impact on the additive guarantee under control.

The modified mechanism, which we call asymmetric plurality with runners-up
and edge deletion, is formally described in Algorithm4. It deletes any edges from
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Fig. 3. Counterexample to the existence of an impartial 4-selection mechanism that
is α1-median-additive on G4(3) for α1 < 1 or α2-mean-additive on G4 for α2 < 2/3.
Vertices drawn in white have to be selected, vertices in black cannot be selected, and
vertices in gray may or may not be selected. For the graph on the left, this follows
from α1-median-additivity for α1 < 1 or α2-mean-additivity for α2 < 2/3: under these
assumptions at most one of the vertices with indegree 2 can be selected, which without
loss of generality we can assume to be vertex 1. For the other graphs, it then follows
by impartiality, and for the graph on the right yields a contradiction to the claimed
additive guarantees. (Color figure online)

a vertex to the �(n−2)/(k−1)� vertices preceding that vertex in the tie-breaking
order, and applies asymmetric plurality with runners-up to the resulting graph.
The following lemma shows that without such edges, the maximum number of
vertices selected is reduced to k.

Lemma 2. Let n ∈ N, k ∈ {2, . . . , n}, and r ∈ N with r ≥ �(n − 2)/(k − 1)�.
Let G = (V,E) ∈ Gn be such that for every u ∈ {1, . . . , n − 1} and every v ∈
{u + 1, . . . ,min{u + r, n}}, (u, v) /∈ E. Then, |P(G)| ≤ k.
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Algorithm 4: Asymmetric plurality with runners-up and edge deletion
PD(G)
Input: Digraph G = (V, E) ∈ Gn, k ∈ {2, . . . , n}
Output: Set S ⊆ V of selected vertices with |S| ≤ k
Let r = �(n − 2)/(k − 1)� ; // number of outgoing edges to remove
Let R =

⋃n−1
u=1

⋃min{u+r,n}
v=u+1 {(u, v)} ; // edges to be removed

Let Ḡ = (V, E \ R);
Return P(Ḡ)

Proof. We let Si = {v ∈ P(G) : δ−(v) = Δ(G) − i} and ni = |Si| for i ∈ {0, 1},
and we denote its elements in increasing order by vi

j for j ∈ [ni], i.e.,

Si = {vi
j}n

i

j=1 with vi
1 < vi

2 · · · < vi
ni for each i ∈ {0, 1}.

From Lemma1, we know that P(G) = S0 ∪ S1, that for i ∈ {0, 1} we have
(vi

j , v
i
k) ∈ E for every j, k with j < k, and that v1

1 > v0
n0 . This allows to define,

for i ∈ {0, 1},

S̄i = {v ∈ V \ Si : vi
1 < v < vini}, n̄i = |S̄i|,

such that S̄0 ∩ S̄1 = ∅.
Fix i ∈ {0, 1} and suppose that ni ≥ 2. Combining both the fact that

(vi
j , v

i
k) ∈ E for every j, k with j < k, and that for every u ∈ {1, . . . , n − 1} and

v ∈ {u+ 1, . . . ,min{u+ r, n}}, (u, v) /∈ E, we have that for every j ∈ [ni − 1] it
holds vi

j+1 − vi
j ≥ r+1. Summing over j yields vi

ni − vi
1 ≥ (ni − 1)(r+1), hence

n̄i = vi
ni − vi

1 + 1 − ni ≥ (ni − 1)(r + 1) + 1 − ni = (ni − 1)r,

where the first equality comes from the definition of the set S̄i. This implies
ni ≤ 1 + n̄i/r. We can now lift the assumption ni ≥ 2, since when ni = 1 we
have n̄i = 0 and the inequality holds as well, and write the following chain of
inequalities:

|P(G)| = n0 + n1 ≤ 2 +
n̄0 + n̄1

r
≤ 2 +

n − |P(G)|
r

,

where the last inequality comes from the fact that all the sets S0, S1, S̄0, S̄1

are disjoint and therefore their cardinalities sum up to at most n. This bounds
the number of selected vertices as |P(G)| ≤ (2r + n)/(r + 1).

Suppose now that |P(G)| ≥ k + 1. Using the previous bound, this yields

2r + n ≥ (k + 1)(r + 1) ⇐⇒ r ≤ n − k − 1
k − 1

=
n − 2
k − 1

− 1,

which contradicts the lower bound on r in the statement of the lemma. ��
Figure 4 illustrates the argument and notation of Lemma 2. We are now ready

to prove Theorem 4.
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Fig. 4. Illustration of Lemma2. There are no edges from a vertex to any of the r
vertices to its left, which means that for each vertex in S0 or S1, except for the left-
most vertex, there exist are at least r vertices outside these sets. Such vertices are not
arranged according to their indegrees, and edges from vertices in S1 to every vertex in
S0 have been omitted for clarity.

Proof of Theorem 4. We show that Algorithm4 satisfies the conditions of the
theorem. Let n ∈ N and k ∈ {2, . . . , n}. Impartiality follows from the fact that
Algorithm2 is impartial, thus the potential deletion of outgoing edges of a given
vertex cannot affect the fact of selecting this vertex or not. Formally, if G =
(V,E), v ∈ V and G′ = (V,E′) ∈ Nv(G), then defining Ḡ = (V, Ē) and Ḡ′ =
(V, Ē′) as the graphs constructed when running Algorithm 4 with G and G′ as
input graphs, respectively, we have

Ē \ ({v} × V ) = (E \ ({v} × V )) \
⎛
⎝n−1⋃

u=1

min{u+r,n}⋃
w=u+1

{(u,w)}
⎞
⎠

= (E′ \ ({v} × V )) \
⎛
⎝n−1⋃

u=1

min{u+r,n}⋃
w=u+1

{(u,w)}
⎞
⎠

= Ē′ \ ({v} × V ),

where we use that G′ ∈ Nv(G). Impartiality then follows directly from impartial-
ity of plurality with runners-up. For the following, let G = (V,E) ∈ Gn and define
r and Ḡ as in the mechanism. Since the first step of the mechanism ensures that
for every u ∈ {1, . . . , n−1} and every v ∈ {u+1, . . . ,min{u+r, n}}, (u, v) /∈ E,
Lemma 2 implies that |PD(G)| = |P(Ḡ)| ≤ k. Finally, in order to show the
additive guarantee we first note that, for every v ∈ V, δ−(v,G) ≤ δ−(v, Ḡ) + r,
since at most |{v − r, . . . , v − 1} ∩ V | ≤ r incoming edges of v are deleted when
defining Ḡ from G. In particular, Δ(G) ≤ Δ(Ḡ) + r. Using this observation
and denoting v∗ ∈ argminv∈PD(G){δ−(v,G)} an arbitrary element with mini-
mum indegree among those selected by asymmetric plurality with runners-up
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and edge deletion, we obtain that

δ−(v∗, G) ≥ δ−(v∗, Ḡ) ≥ Δ(Ḡ) − 1 ≥ Δ(G) − r − 1,

where the second inequality comes from Lemma 1, since v∗ belongs to P(Ḡ). We
conclude that the mechanism is (r+1)-min-additive for r = �(n−2)/(k −1)�. ��

It is easy to see that the previous analysis is tight from a graph G = (V,E)
where exactly r = �(n − 2)/(k − 1)� incoming edges of the top-voted vertex
are deleted, and a vertex with the second highest indegree u such that u >
top(G), (u, top(G)) ∈ E, and δ−(u) = Δ(G)− r − 1 is selected. However, we do
not know whether the tradeoff provided by Theorem 4 is best possible for any
impartial mechanism, and the question for the optimum tradeoff is an interesting
one. Currently, when d ≥ k a gap remains between the upper bound of �(n −
2)/(k−1)�+1 and a lower bound of 1, which is relatively large when the number
k of vertices that can be selected is small. We may, alternatively, also ask for
the number of vertices that have to be selected in order to guarantee 1-min-
additivity. Currently, the best upper bound on this number is n − 1.

In addition to the question about the performance of the mechanism intro-
duced in this section, the sole fact that sometimes it does not select vertices
with indegree strictly higher than the one of other selected vertices may seem
unfair. Unfortunately, this is unavoidable whenever d ≥ k and α-min-additivity
is imposed for some α < d, as one can see from a graph consisting of a complete
subgraph on d+ 1 vertices and n − (d+ 1) isolated vertices. For any k-selection
mechanism, a vertex in the complete subgraph is not selected, and impartiality
forces us to not select it either when its outgoing edges are deleted and it is the
unique top-voted vertex.
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Abstract. We study the two-agent single-item bilateral trade. Ideally,
the trade should happen whenever the buyer’s value for the item exceeds
the seller’s cost. However, the classical result of Myerson and Satterth-
waite showed that no mechanism can achieve this without violating
one of the Bayesian incentive compatibility, individual rationality and
weakly balanced budget conditions. This motivates the study of approx-
imating the trade-whenever-socially-beneficial mechanism, in terms of
the expected gains-from-trade. Recently, Deng, Mao, Sivan, and Wang
showed that the random-offerer mechanism achieves at least a 1/8.23
approximation. We improve this lower bound to 1/3.15 in this paper.
We also determine the exact worst-case approximation ratio of the seller-
pricing mechanism assuming the distribution of the buyer’s value satisfies
the monotone hazard rate property.

Keywords: Bilateral trade · Mechanism design · Approximation
algorithm

1 Introduction

Two-sided markets, with strategic players on both the sell-side and the buy-
side, has been an important research topic in economics. This paper considers
the simplest model of such market, the two-agent single-item bilateral trade.

1.1 Model

Suppose there is a single seller and a single buyer on the market. There is an item
held by the seller and to be sold to the buyer. The buyer’s private value for the
item is a random variable v with cumulative distribution function (CDF) F , and
the seller’s private cost of selling it out is a random variable c with CDF G. We
assume that v and c are independent, and that F and G have finite first moments.
We need to design a mechanism which, on input v and c, decides whether the
transaction should happen. Let x(·, ·) be a (Borel-measurable) function from R

2

to [0, 1], which denotes the trading probability decided by the mechanism, or
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the “allocation rule”. The gains-from-trade (GFT), or the expected social utility
gain from trading, is defined as

GFT := E
v∼F
c∼G

[(v − c) · x(v, c)] .

Thinking of F and G as given, what choice of the function x maximizes GFT?
It is clear that whatever F and G are, the quantity GFT is always maximized at
x∗(v, c) := 1{v ≥ c}. However, in reality, we have to take into consideration the
strategic behavior of both sides of the market. As in many mechanism design
problems, in order to make an allocation rule Bayesian incentive compatible
(BIC) and individually rational (IR), we need to include a “money transfer”
rule. But unlike in the case of one-sided auctions, the “payment” from the sell-
side can be negative in two-sided markets. Thus, in addition to the commonly
studied BIC and IR conditions, the “balance of budget” is another important
consideration in the design of bilateral trade mechanisms. In particular, we are
concerned with the following requirement:

Definition 1. If the payment from the buyer is always at least the revenue of
the seller, we say the mechanism is weakly budget balanced (WBB).

Myerson and Satterthwaite [12] show that for very general F and G, the ideal
allocation rule x∗(v, c) = 1{v ≥ c} cannot be made into a BIC, IR and WBB
mechanism. But on the other hand, this idealism does offer a benchmark which
we can try to approximate using mechanisms with these properties. We call the
gains-from-trade achieved by x∗(v, c) the first-best GFT. Namely, define

FB := E
v∼F
c∼G

[(v − c) · 1{v ≥ c}] .

The maximum GFT achievable by Bayesian incentive compatible, individ-
ually rational and weakly budget balanced mechanisms is denoted SB, or the
second-best. Myerson and Satterthwaite [12] also describe a BIC, IR and WBB
mechanism that actually achieves the second-best gains-from-trade. However,
this second-best mechanism is complicated and difficult to implement in prac-
tice. As a consequence, the understanding of the second-best mechanism and
the search for simple and practical alternatives have become major research
problems. The following are some of the most studied simple mechanisms:

• The fixed-price mechanism. A fixed price p is set and the transaction happens
iff v ≥ p ≥ c. Formally, the allocation rule is x(v, c) = 1{v ≥ p ≥ c} and the
buyer pays the seller the price p. The resulting gains-from-trade is

FixedP = sup
p∈R

∫ p

−∞

∫ +∞

p

(v − c) dF (v) dG(c).

The fixed price mechanism has the additional advantage that it’s dominant
strategy incentive compatible (DSIC).
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• The seller-pricing mechanism. The seller gets the right to set the price and the
buyer can only decide whether or not to buy the item and pay this price. The
buyer chooses to buy it iff v ≥ p. Knowing his private cost c, the seller sets
the price p that maximizes (p−c)(1−F (p−)), where F (p−) := limx→p− F (x).
The resulting gains-from-trade is

SellerP =

∫ +∞

−∞

∫ ∞

pc

(v − c) dF (v) dG(c), where pc ∈ arg max
p

(p − c)(1 − F (p−)).

• The buyer-pricing mechanism. The buyer gets the right to set the price and
the seller can only decide whether or not to sell the item and take this price.
The seller chooses to sell it iff c ≤ p. Knowing his private value v, the buyer
sets the price p that maximizes (v − p)G(p). The resulting gains-from-trade
is

BuyerP =
∫ +∞

−∞

∫ pv

−∞
(v − c) dG(c) dF (v), where pv ∈ arg max

p
(v − p)G(p).

• The random-offerer mechanism. Flip a fair coin to decide who gets to set the
price. This is a 50:50 mixture of the seller pricing mechanism and the buyer
price mechanism, which extracts a gains-from-trade of

RandOff =
1
2
SellerP +

1
2
BuyerP.

It’s well-known that the quantities BuyerP and SellerP are symmetric to each
other. To make it clear, we make the following formal statement:

Proposition 1. Let F and G be the CDFs of two distributions on R, each with
finite first moment. If we let F neg(x) = 1−F ((−x)−) be the CDF for the negated
distribution and similarly let Gneg = 1 − G((−x)−), we have

SellerP(G,F ) = BuyerP(F neg, Gneg)

and of course
FB(G,F ) = FB(F neg, Gneg).

Remark 1. Notice that in our description of the model, the distribution of the
buyer’s or the seller’s value is not assumed to be nonnegative, so negating them
will not be a problem.

Proof. Since

arg max
p

(v − p)Gneg(p)

= arg max
p

(v − p)
(
1 − G((−p)−)

)

= arg max
p

(
(−p) − (−v)

)(
1 − G((−p)−)

)

= − arg max
p

(
p − (−v)

)(
1 − G(p−)

)
,



Improved Approximation to First-Best Gains-from-Trade 207

for each possible function v �→ pv in the definition of BuyerP(F neg, Gneg), the
function c �→ −p−c is a valid function in the definition of SellerP(G,F ). So

SellerP(G,F ) =
∫ +∞

−∞

∫ ∞

−p−c

(v − c) dF (v) dG(c)

=
∫ +∞

−∞

∫ p−c

−∞
(−c − v) dF neg(v) dG(c)

=
∫ +∞

−∞

∫ pc

−∞
(c − v) dF neg(v) dGneg(c)

= BuyerP(F neg, Gneg).

Remark 2. The preceding proposition is obvious from the intuitive understand-
ing that in terms of gains-from-trade, the role of the buyer and the seller is
symmetric. It’s worth noting that if another well-studied quantity–the welfare
(see Sect. 1.4) is concerned, then the symmetry no longer holds.

1.2 Our Results

In this paper, we focus on the following problems:

Problem 1. Among all problems surrounding the bilateral trade setting, one
basic open problem is to determine the worst-case approximation ratio of SB
to FB, i.e.

inf
F,G

SB

FB
.

Problem 2. Seeing that the second best mechanism is usually too complex to be
practical, it’s natural to ask the same thing for simple mechanisms: Are there
some simple BIC, IR and WBB mechanisms that achieve good approximations
to the first best GFT?

It was not until the recent groundbreaking work of Deng, Mao, Sivan, and
Wang [6] that the second-best gains-from-trade was shown to provide a constant
approximation to the first-best, i.e. infF,G(SB/FB) > 0. In fact, they attack Prob-
lem 1 by attacking Problem 2 instead: they show that FB ≤ 8.23 · RandOff. Since
SB ≥ RandOff, this implies that FB ≤ 8.23 · SB. In other words, we can write

inf
F,G

SB

FB
≥ inf

F,G

RandOff

FB
≥ 1

8.23
≈ 0.121.

In the hardness direction, Leininger, Linhart, and Radner [9] and Blumrosen
and Mizrahi [3] exhibit distributions for which the ratio SB/FB is 2/e ≈ 0.736.
Babaioff, Dobzinski, and Kupfer [1] show that infF,G(RandOff/FB) ≤ 0.495. Cai,
Goldner, Ma, and Zhao [5] (in their arxiv version) independently give a proof
that infF,G(RandOff/FB) ≤ 1

2 − ε for some constant ε > 0.
This leaves a relatively large gap between the lower bound of 0.121 and the

upper bound of 0.736 for Problem 1. For the approximation ratio of RandOff,
the gap is left at [0.121, 0.495]. In Sect. 2, we improve the lower bounds of both
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problems from 1/8.23 ≈ 0.121 to 1/3.15 ≈ 0.317, as another step towards the
ultimate goal of closing the gaps.

Theorem 1. For any pair of distributions F and G, the inequality FB ≤ 3.15 ·
RandOff holds.

In contrast to the constant approximation provided by the random-offerer
mechanism, most of the other simple mechanisms, including the buyer-pricing
mechanism, the seller-pricing mechanism and the fixed-price mechanism, cannot
approximate FB in general. For the seller-pricing mechanism, it’s well known that
taking G to be a single point mass at 0 and F an equal-revenue-distribution
makes the ratio SellerP/FB tend to 0. Since BuyerP is symmetric to SellerP,
the buyer-pricing mechanism also has an approximation ratio of 0. The case
of the fixed-price mechanism follows from taking F and G to be exponential
distributions, as is shown by Blumrosen and Dobzinski [2]. Partly compensating
for this hardness of approximation, there is another type of results concerned
with the setting where F and G are subject to some restrictions. For example,
by McAfee [10] and Kang and Vondrák [7],

inf
F=G

FixedP

FB
=

1
2
.

As another example, Blumrosen and Mizrahi [3] consider a “monotone hazard
rate” condition (see Definition 2) on F , and prove that

0.368 ≈ 1
e

≤ inf
F∈MHR

G

SellerP

FB
.

In Sect. 3, we show that the approximation ratio of SellerP to FB assuming
monotone hazard rate of the buyer’s distribution can be determined exactly (to
be 1/(e − 1) ≈ 0.582):

Theorem 2. If F ∈ MHR, then FB ≤ (e−1) ·SellerP, and the constant (e−1)
is optimal.

1.3 Main New Ideas

The main new idea involved in our improvements is that the power of Fubini-
Tonelli theorem, or equivalently integration by parts, can be better utilized.

It is fair to say that Fubini-Tonelli theorem is visually “obvious”, but certainly
it’s not mathematically trivial. In a visual image of a double integral, applying the
theorem often represents a change of viewpoint, for example from the buyer’s point
of view to the seller’s (see Lemma 1, which already appears in [6]).

However, somewhat neglected is the power of successive applications of the
theorem. If, after a Fibini-type transformation, the same quantity can be repre-
sented in a different visual image, then another application of the theorem might
combine with the previous transformation into a deeper nontrivial effect, and
lead to unexpected new equality results. This is what happens in our Lemma 2.
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Our proof in Sect. 2 is based on the same framework as Deng, Mao, Sivan, and
Wang’s work [6], and our Lemma 1 is directly taken from their work. The difference
between this paper and theirs lies in our Lemma 2 and Lemma 3, which replace the
“Lemma 3.1” of their paper, which is the technically major part of the analysis.

The proof in Sect. 3 is relatively easier, as there is essentially only one visual
image where changes of integration order take place. To get a sense of the image,
see Fig. 1. Although the result is a sharpening of Blumrosen and Mizrahi’s work [3],
our proof in Sect. 3 is basically independent of their work, and most of the involved
equations and lemmas are new, except for one place, as explained in Remark 5.

1.4 More Related Work

One might also ask about how much gains-from-trade would be lost if we use
simple mechanisms instead of the known second-best mechanism. That is, the
worst-case approximation ratios of simple mechanisms to SB are also of interest.
Brustle, Cai, Wu, and Zhao [4] show that infF,G(RandOff/SB) = 1

2 .
There is also a line of research concerning the approximation of welfare,

instead of gains-from-trade. Since we have

Welfare = E
v∼F
c∼G

[
v · x(v, c) + c ·

(
1 − x(v, c)

)]
= E

c∼G
[c] + GFT,

maximizing welfare is equivalent to maximizing gains from trade. In addition,
providing a constant approximation to the first-best GFT also provides a con-
stant approximation to the first-best welfare (but not vice versa). Blumrosen
and Dobzinski [2] show that the fixed-price mechanism provides a

(
1 − 1

e

)
-

approximation to the first-best welfare (improved to 1− 1
e +0.0001 by Kang, Per-

nice and Vondrák [8]). Blumrosen and Mizrahi [3] show that the first-best welfare
is inapproximable to above a fraction of 0.934 by BIC, IR and WBB mechanisms.

2 Bounding the Approximation Ratio

In this section, we will prove the main result FB ≤ 3.15 · RandOff. As pointed
out by Deng, Mao, Sivan, and Wang [6], as far as SellerP,BuyerP and FB are
concerned, it is without loss of generality to assume that the distribution of v
and c are supported on [0, 1] and have continuous and positive densities.

2.1 Notational Preparations

1. The major advantage of assuming the existence of positive densities is that
we can define the following “quantile function”, a powerful tool for analysis
introduced by Deng, Mao, Sivan, and Wang [6]: for each x ∈ [0, 1], define μ(x)
to be the (1 − λ)-quantile of F |≥x, i.e.

μ(x) = F−1
(
1 − λ + λF (x)

)
,
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where λ ∈ (0, 1) is a parameter to be chosen. Since F is strictly increasing
and continuous on [0, 1], so are F−1 and μ. Then, since μ is strictly increasing
and continuous on [0,1], we can also define its inverse μ−1 on [μ(0), μ(1)] =
[μ(0), 1].

2. Let SProfit denote the maximum profit that the seller can gain in a seller-
pricing mechanism, and let BProfit denote the maximum utility that the buyer
can gain in a buyer-pricing mechanism. Obviously, SProfit ≤ SellerP and
BProfit ≤ BuyerP. Since the quantities SProfit and BProfit are much easier
to handle than SellerP and BuyerP, we will prove the result FB ≤ 3.15 ·(
1
2SellerP + 1

2BuyerP
)

by showing FB ≤ 3.15 · (
1
2SProfit + 1

2BProfit
)

instead.

2.2 Proof of Main Theorem

The main theme in the proof is to put everything as an integration over the
seller’s cost c. Note that the definition of SProfit is already of this form, and FB
can also easily be expressed in this form. Deng, Mao, Sivan, and Wang [6] notice
that BProfit can also be put into this form (at the expense of possibly shrinking
it a little). We state it as follows:

Lemma 1. Let μ be the quantile function defined by any λ ∈ (0, 1). Then
∫ 1

0

∫ 1

μ(c)

(
s − μ−1(s)

)
dF (s) dG(c) ≤ BProfit.

Proof. By Fubini-Tonelli theorem, we can change the order of integration as
follows: ∫ 1

0

∫ 1

μ(c)

(
s − μ−1(s)

)
dF (s) dG(c)

=
∫ 1

μ(0)

∫ μ−1(v)

0

(
v − μ−1(v)

)
dG(c) dF (v)

=
∫ 1

μ(0)

(
v − μ−1(v)

)
G(μ−1(v)) dF (v)

≤
∫ 1

μ(0)

max
p

(v − p)G(p) dF (v)

≤BProfit.

In light of Lemma 1, we can now put all three quantities FB,SProfit and
BProfit into integrations over dG(c). The integrands are:

FB(c) :=
∫ 1

c

(v − c) dF (v),

SProfit(c) := max
p

(p − c)(1 − F (p)),

BProfit(c) :=
∫ 1

μ(c)

(
s − μ−1(s)

)
dF (s).
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We have (the first two directly follow from the definition of FB and SProfit, while
the third follows from Lemma 1)

FB =
∫ 1

0

FB(c) dG(c),

SProfit =
∫ 1

0

SProfit(c) dG(c),

BProfit ≥
∫ 1

0

BProfit(c) dG(c).

However, the expression of BProfit(c) looks nothing like FB(c) or SProfit(c). Our
next step is to transform it into a more familiar form:

Lemma 2. Let μ be the quantile function defined by any λ ∈ (0, 1). Then for
any c ∈ [0, 1],

BProfit(c) = (1 − λ) · FB(c) −
∫ μ(c)

c

(v − c) dF (v).

Proof. This follows from successive uses of Fubini-Tonelli theorem:

BProfit(c)

=

∫ 1

μ(c)

(s − μ−1(s)) dF (s)

=

∫ ∫
μ(c)≤s≤1

μ−1(s)≤t≤s

1 dt dF (s)

=

∫ ∫
c≤t≤μ(c)

μ(c)≤s≤μ(t)

1 dt dF (s) +

∫ ∫
μ(c)<t<1
t≤s≤μ(t)

1 dt dF (s)

=

∫ μ(c)

c

(
F (μ(t)) − F (μ(c))

)
dt +

∫ 1

μ(c)

(
F (μ(t)) − F (t)

)
dt

=

∫ μ(c)

c

(
F (μ(t)) − F (t)

)
dt −

∫ μ(c)

c

(
F (μ(c)) − F (t)

)
dt +

∫ 1

μ(c)

(
F (μ(t)) − F (t)

)
dt

=

∫ 1

c

(
F (μ(t)) − F (t)

)
dt −

∫ μ(c)

c

(
F (μ(c)) − F (t)

)
dt

=

∫ 1

c

(1 − λ)
(
1 − F (t)

)
dt −

∫ μ(c)

c

(
F (μ(c)) − F (t)

)
dt

= (1 − λ)

∫ 1

c

∫ 1

t

1 dF (v) dt −
∫ μ(c)

c

∫ μ(c)

t

1 dF (v) dt

= (1 − λ)

∫ 1

c

∫ v

c

1 dt dF (v) −
∫ μ(c)

c

∫ v

c

1 dt dF (v)

= (1 − λ)

∫ 1

c

(v − c) dF (v) −
∫ μ(c)

c

(v − c) dF (v)

= (1 − λ) · FB(c) −
∫ μ(c)

c

(v − c) dF (v).
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Remark 3. The work by Deng, Mao, Sivan, and Wang [6] also contains a major
part that transforms BProfit(c) into a nicer form. A key step in their transfor-
mation is to use summations to bound integrations, which incurs a loss in the
constant. In comparison, our Lemma 2 only involves integrations and is com-
pletely lossless.

Note that the minuend on the right hand side of the preceding lemma is already
a fraction of FB(c). The next lemma shows that the diminution caused by the
subtrahend is under control:

Lemma 3. Let μ be the quantile function defined by any λ ∈ (0, 1). Then for
any c ∈ [0, 1], ∫ μ(c)

c

(v − c) dF (v) ≤ ln
1
λ

· SProfit(c).

Proof. We resort to the definition of SProfit(c):

∫ μ(c)

c

(v − c) dF (v) ≤
∫ μ(c)

c

1
1 − F (v)

· max
p

(p − c)(1 − F (p)) dF (v)

= SProfit(c) ·
∫ μ(c)

c

dF (v)
1 − F (v)

= SProfit(c) · ln
(

1 − F (c)
1 − F (μ(c))

)

= ln
1
λ

· SProfit(c)

Now we can prove the theorem by combining the preceding three lemmas.

Theorem 3. FB ≤ 3.15 · RandOff.

Proof. Let μ be the quantile function defined by any λ ∈ (0, 1). We have

FB(c) =
1

1 − λ

(
(1 − λ) · FB(c) −

∫ μ(c)

c

(v − c) dF (v)

)
+

1

1 − λ

∫ μ(c)

c

(v − c) dF (v)

≤ 1

1 − λ
BProfit(c) +

1

1 − λ
ln

1

λ
· SProfit(c) (By Lemma 2 and Lemma 3).

Therefore,

FB =
∫ 1

0

FB(c) dG(c)

≤ 1
1 − λ

∫ 1

0

BProfit(c) dG(c) +
1

1 − λ
ln

1
λ

∫ 1

0

SProfit(c)

≤ 1
1 − λ

BProfit +
1

1 − λ
ln

1
λ

· SProfit

≤ 1
1 − λ

BuyerP +
1

1 − λ
ln

1
λ

· SellerP.



Improved Approximation to First-Best Gains-from-Trade 213

By the symmetry described in Remark 1, we also have

FB ≤ 1
1 − λ

SellerP +
1

1 − λ
ln

1
λ

· BuyerP.

Adding up the preceding two inequalities, we get

FB ≤
(

1
1 − λ

+
1

1 − λ
ln

1
λ

) (
1
2
SellerP +

1
2
BuyerP

)

=
(

1
1 − λ

+
1

1 − λ
ln

1
λ

)
RandOff.

Note that the above holds for all λ ∈ (0, 1). Thus the conclusion follows by
calculating

min
0<λ<1

(
1

1 − λ
+

1
1 − λ

ln
1
λ

)
≈ 3.1462.

3 Approximation Ratio Under the MHR Condition

In Sect. 2, we use the quantities SProfit and BProfit to lower-bound SellerP and
BuyerP, a (painful) compromise we make in the face of the difficulty in analyzing
SellerP and BuyerP themselves. In this section, we will see that by imposing a
restriction on the distribution of the buyer’s value, one can significantly reduce
the difficulty of analysis.

3.1 Preliminaries

We state the definition of the hazard rate and the virtual value function, which
are commonly studied in auction theory since the work of Myerson [11].

Definition 2. A distribution on [0, 1] with CDF F and continuous and positive
density function f is said to have the monotone hazard rate (MHR) property if
the hazard rate

h(x) =
f(x)

1 − F (x)

is a monotone non-decreasing function of x.

Definition 3. Define the virtual value function of the buyer to be

ϕ(x) = x − 1 − F (x)
f(x)

.

It can be seen from this definition that the MHR property of F implies that ϕ is
strictly increasing, and hence its inverse function ϕ−1 exists on [ϕ(0), 1] ⊃ [0, 1].
What greatly reduces the difficulty of analysis is the following fact:
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Proposition 2. If the distribution of the buyer’s value satisfies the MHR prop-
erty, then the price pc that the seller would set given his cost c is exactly ϕ−1(c).

Proof. This is immediate from Myerson’s auction theory [11]. Here we give a
short explanation, for the sake of completeness. Given c ∈ [0, 1], we have for
each p ∈ [c, 1]

d
dp

(p − c)(1 − F (p)) = (1 − F (p)) − (p − c)f(p) = f(p)(c − ϕ(p)).

Since ϕ is strictly increasing, the function p �→ (p − c)(1 − F (p)) has a unique
maximum p∗ = ϕ−1(c).

Let MHR be the collection of all MHR distributions on [0, 1]. Our goal in this
section is to show that

inf
F∈MHR

G

SellerP

FB
=

1
e − 1

.

In Sect. 3.2, we will prove that when F ∈ MHR, the inequality FB ≤ (e −
1) · SellerP holds. Then, in Sect. 3.3 we will prove that the constant (e − 1) is
optimal in the above inequality.
Remark 4. We can assume that the distribution defined by G is sup-
ported on [0, 1] as well. Indeed, if we “truncate” G into Gtruncate(x) =⎧⎪⎨
⎪⎩

0 if x < 0
G(x) if 0 ≤ x < 1
1 if x ≥ 1

, the ratio SellerP/FB will not increase. Since we are con-

cerned with the infimum of this ratio, this truncation is without loss of generality.

3.2 Proof of Lower Bound

In light of Proposition 2, we can define

SellerP(c) =
∫ 1

ϕ−1(c)

(v − c) dF (v),

and from the definition of SellerP we have

SellerP =
∫ 1

0

SellerP(c) dG(c).

Since we also have

FB =
∫ 1

0

FB(c) dG(c),

it suffices to show that FB(c) ≤ (e − 1) · SellerP(c) for each c ∈ [0, 1]. Integrating
by parts, we have

FB(c) =
∫ 1

c

(v − c) dF (v) = (1 − c) −
∫ 1

c

F (v) d(v − c) =
∫ 1

c

(1 − F (v)) dv

=
∫ ϕ−1(c)

c

(1 − F (v)) dv +
∫ 1

ϕ−1(c)

(1 − F (v)) dv

(1)
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and

SellerP(c) =
∫ 1

ϕ−1(c)

(v − c) dF (v)

= (1 − c) −
(
ϕ−1(c) − c

)
F

(
ϕ−1(c)

) −
∫ 1

ϕ−1(c)

F (v) d(v − c)

=
∫ 1

c

1 dv −
∫ ϕ−1(c)

c

F
(
ϕ−1(c)

)
dv −

∫ 1

ϕ−1(c)

F (v) dv

=
∫ ϕ−1(c)

c

(
1 − F

(
ϕ−1(c)

) )
dv +

∫ 1

ϕ−1(c)

(1 − F (v)) dv.

(2)

Note that the right hand sides of Eq. 2 and Eq. 1 already have the second term
in common. The next lemma relates their first terms also to each other.

Lemma 4. When 0 ≤ c ≤ v ≤ ϕ−1(c), we have

1 − F (v)
1 − F (ϕ−1(c))

≤ exp
(

ϕ−1(c) − v

ϕ−1(c) − c

)
.

Proof. By definition of the function ϕ,

c = ϕ
(
ϕ−1(c)

)
= ϕ−1(c) − 1

h (ϕ−1(c))
.

Hence we get a nice expression for the hazard rate at ϕ−1(c):

h
(
ϕ−1(c)

)
=

1
ϕ−1(c) − c

.

Define a function H(x) = − ln(1 − F (x)) on [0, 1) (known as the cumulative
hazard function), we have for each x ∈ [c, ϕ−1(c)]

H ′(x) =
f(x)

1 − F (x)
= h(x) ≤ h

(
ϕ−1(c)

)
=

1
ϕ−1(c) − c

.

Integrating with respect to x both sides of the above inequality from v to ϕ−1(c),
we get

H
(
ϕ−1(c)

) − H(v) ≤ ϕ−1(c) − v

ϕ−1(c) − c
,

or
1 − F (v)

1 − F (ϕ−1(c))
≤ exp

(
ϕ−1(c) − v

ϕ−1(c) − c

)
.

Remark 5. The proof in Blumrosen and Mizrahi’s paper [3] also contains a step
that is equivalent to the special case v = c of the preceding lemma, but they
apply it in a different way to a different framework of analysis.
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Theorem 4. When F ∈ MHR, the inequality FB ≤ (e − 1) · SellerP holds.

Proof. By Lemma 4, for each 0 ≤ c < 1 and c ≤ v ≤ ϕ−1(c),

(1 − F (v)) ≤ exp
(

ϕ−1(c) − v

ϕ−1(c) − c

)
·
(
1 − F

(
ϕ−1(c)

) )
.

Integrating with respect to v the above inequality from c to ϕ−1(c), we get
∫ ϕ−1(c)

c

(1 − F (v)) dv

≤
(
1 − F

(
ϕ−1(c)

) )
·
∫ ϕ−1(c)

c

exp

(
ϕ−1(c) − v

ϕ−1(c) − c

)
dv

=
(
1 − F

(
ϕ−1(c)

) )
·
(
ϕ−1(c) − c

)
·
∫ 1

0

exp(x) dx

(
substituting x =

ϕ−1(c) − v

ϕ−1(c) − c

)

= (e − 1) ·
∫ ϕ−1(c)

c

(
1 − F

(
ϕ−1(c)

) )
dv.

Therefore, combining the above with Eq. 1 and Eq. 2, we have for each c ∈ [0, 1]

FB(c) =
∫ ϕ−1(c)

c

(1 − F (v)) dv +
∫ 1

ϕ−1(c)

(1 − F (v)) dv

≤ (e − 1)
∫ ϕ−1(c)

c

(
1 − F

(
ϕ−1(c)

) )
dv +

∫ 1

ϕ−1(c)

(1 − F (v)) dv

≤ (e − 1)
∫ ϕ−1(c)

c

(
1 − F

(
ϕ−1(c)

) )
dv + (e − 1)

∫ 1

ϕ−1(c)

(1 − F (v)) dv

= (e − 1) · SellerP(c).

It follows that FB ≤ (e − 1) · SellerP.

3.3 Proof of Upper Bound

Theorem 5. The constant (e − 1) in Theorem 4 is optimal.

Proof. We need only to construct examples of F and G such that the ratio
FB/SellerP can be infinitely close to (e − 1). Let G be a single point mass at 0,
and F be the piecewise function:

F (x) =

{
1 − e−x if x ≤ 1 − δ

1 − e−1+δ(1 − x)
(

1−δ
δ2 x − 1−3δ+δ2

δ2

)
if 1 − δ ≤ x ≤ 1

,

where δ > 0 is very close to 0. The function F is defined to be the CDF of an
exponential distribution on [0, 1 − δ] and a quadratic function on [1 − δ, 1] that
smoothly connects the exponential part and the point F (1) = 1:
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Fig. 1. The CDF of the distribution F

For x ≤ 1 − δ, the CDF F has a constant hazard rate f(x)/(1 − F (x)) =
e−x/e−x = 1, while on [1− δ, 1], the function F ′ = f is monotone increasing and
hence the hazard rate of F is monotone increasing on [1 − δ, 1]. Thus F , as is
defined above, satisfies the MHR property. For x ≤ 1 − δ,

ϕ(x) = x − 1 − F (x)
f(x)

= x − 1 < 0,

and hence we must have ϕ−1(0) > 1 − δ. This implies that

SellerP = SellerP(0) =

∫ 1

ϕ−1(0)
(v − 0) dF (v) ≤

∫ 1

1−δ
v dF (v) ≤

∫ 1

1−δ
1 dF (v) = F (1) − F (1 − δ) = e

−1+δ
,

which tends to e−1 as δ → 0. But we also have according to Equation 1

FB = FB(0) =
∫ 1

0

(1 − F (v)) dv,

which clearly tends to
∫ 1

0
e−x dx = 1 − e−1 when δ → 0. This shows that

inf
F∈MHR

G

SellerP

FB
≤ e−1

1 − e−1
=

1
e − 1

.

Remark 6. Note that the hard case given above is actually when the seller has
no cost. In this case, the gains-from-trade is equal to the welfare. Since any
lower bound of the gains-from-trade approximation ratio always applies to the
welfare approximation ratio as well, we can combine this observation with the
lower bound proved in Sect. 3.2 to conclude that, assuming MHR of the buyer’s
distribution, the welfare approximation ratio of the seller-pricing mechanism to
the first-best mechanism is also equal to (e − 1).

Remark 7. If we take the buyer’s CDF F to be the one in the preceding
proof, and the seller’s CDF to be G(x) = 1 − F (1 − x), it’s easy to find that
RandOff/FB → 1 − 1/e when the parameter δ → 0. Combining this with the
lower bound in Sect. 3.2, we have

0.582 ≈ 1
e − 1

≤ inf
F,GR∈MHR

RandOff

FB
≤ 1 − 1

e
≈ 0.632,
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where GR := 1−G(1−x). This shows that infF,GR∈MHR(RandOff/FB) is strictly
larger than infF,G(RandOff/FB), which lies in [0, 317, 0.495] (see Sect. 1.2).

Acknowledgement. The author would like to thank Kangning Wang and Zhaohua
Chen for reading an earlier draft, discussion about the content, and their helpful sug-
gestions on the presentation of the paper.
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Abstract. Submodular over signal (SOS) defines a family of interesting func-
tions for which there exist truthful mechanisms with constant approximation to
the social welfare for agents with interdependent valuations. The best-known
truthful auction is of 4-approximation and a lower bound of 2 was proved. We
propose a new and simple truthful mechanism to achieve an approximation ratio
of 3.315. In particular, we first generalize the random sampling auction in [9].
Then, we proposed a brand new auction that is simple, efficient to implement and
easy to verify the truthfulness. We call our mechanism the contribution-based
mechanism. Our proposed mechanism with better approximation runs a convex
combination of the above two mechanisms. Since the random sampling mecha-
nism performs well when the second largest value is comparable to the largest
one while contribution-based mechanism performs well when the largest one is
much larger than all other values, their combination achieves a good balance for
all instances. The approximation of our final mechanism is 3.315. This improves
the previous 4-approximation mechanism for the first time. Besides the new auc-
tion, we also investigate the relation with SOS and strong-SOS, a stronger notion
of SOS which was also introduced in [9]. We build a reduction and prove that
strong-SOS is as difficult as SOS in terms of approximation ratio for single item
setting. This means that it is fine to design mechanisms for strong-SOS valuation
only if it is easier since the mechanism can be transformed to a mechanism for
general SOS valuations with almost same approximation ratio. The full version
of our paper can be found here: https://arxiv.org/abs/2210.06507.

Keywords: Mechanism design · Combinatorial auction · Approximation
algorithms

1 Introduction

In most study of auction theory, it is assumed that valuations are agents’ private infor-
mation and they know their own values when they submit their bids to the auctioneer.
However, this is not usually the case in real life. For example, when one buys a house
or an art work by auction, his valuation largely depends on other’s valuations since they
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will impact the item’s resale value later on. When an advertiser bids an impression or
click in internet, the value largely depends on that particular customer for which other
bidders may have more information. To describe the valuation interdependence between
different bidders, a model is proposed by Milgrom and Weber [19]. Each bidder i holds
some private information about the item, denoted by a signal si ∈ R

+. Agent i’s val-
uation when receiving the item is a public-known function vi(s) that depends on the
signals of all bidders. This has become the standard model for interdependent value
settings (IDV) and has been studied in the economics literature for a few decades [4,7–
10,12,14,20].

For this model without any restriction on the valuation functions, it is impossible
to design a truthful auction1 with good social welfare guarantee [15]. This is in strong
contrasts to the private valuation model, for which the VCG mechanism can achieve
truthfulness and optimal welfare simultaneously [6,13,18,21]. A natural extension of
VCG mechanism only works when the valuation functions satisfy a technical condi-
tion called single-crossing condition [2,3,5,16,22]. However, there are many relevant
settings where the single-crossing condition does not hold [7,8,17].

A different and beautiful perspective is proposed by Eden et al. [9]. They intro-
duced a new condition of the valuation functions called submodular over signal (SOS)
property. Submodular captures a natural diminishing returns property, which is very
common in economics settings. They designed a simple random sampling auction to
achieve an approximation of 4 and proved that no truthful auction can do better than
2-approximation.

This 4-approximation remains the state-of-art for general SOS settings. The only
improvement was made for the very special case of binary signal, where the signal
for each agent only has two possible values. For this special binary signal setting, it is
proved that there exists a tight 2-approximation auction [1]. It is an existential proof
rather than an efficient design. To construct such a 2-approximation auction may need
exponential time.

Our Contributions

Firstly, we generalize the random sampling auction in [9]. In [9], they evenly divided
the agents into two sets and their analysis paired a set of agents with its complement
to prove their approximation ratio. We generalize this to sampling with arbitrary prob-
ability p and get a similar approximation ratio in terms of p. Although the result is as
expected, the proof is completely new since the original pairing trick does not work
for biased sampling. We also get a more careful analysis of the approximation with a
term involving the ratio of the largest and second largest values. This part is easy but
crucial to the final improvement of the mechanism. The observation is quite intuitive:
the random sampling mechanism performs much better when the second largest value
is comparable to the largest one.

1 The truthfulness notion here is ex-post IC & IR rather than DSIC since DSIC is not possible
for interdependent valuation.
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Secondly, we proposed a brand new auction. Our mechanism is very simple, it allo-
cates the item to agent i with the probability

1
2

(
1 − maxj∈[n],j �=i vj(s−i, 0)

maxj∈[n] vj(s)

)
.

We call our mechanism the contribution-based mechanism. The intuition and the mean-
ing of the name will be discussed in Sect. 3. This mechanism is simple, efficient to
implement and easy to verify the truthfulness since the allocation rule is monotone.
However, the tricky part is to verify that it is indeed a well-defined mechanism, namely
the overall allocation probability cannot exceed one. This proof crucially uses the prop-
erty of SOS. In particular, we obtain a lemma from the SOS property which is the key
of the proof. This lemma may be of independent interests. For example, the lemma is
used in the analysis of the random sampling auction. This contribution-based mecha-

nism’s approximation ratio is at least 1
2

(
1 − v(2)(s)

v(1)(s)

)
, where v(1)(s) and v(2)(s) are the

largest and the second largest values respectively given the signal profile s. From this
expression we can see that it achieves good ratio when the largest value is much larger
than others. This is in the opposite direction with the random sampling mechanism.

Finally, we run a convex combination of the above two mechanisms. Since the ran-
dom sampling mechanism performs well when the second largest value is comparable
to the largest one while contribution-based mechanism performs well when the largest
one is much larger than all other values, their combination achieves a good balance for
all instances. The approximation of our final mechanism is 3.315. This improves the
previous 4-approximation mechanism for the first time.

Besides the new auction, we also investigate the relation with SOS and strong-SOS,
a stronger notion of SOS which was also introduced in [9]. We build a reduction and
prove that strong-SOS is as difficult as SOS in terms of approximation ratio for single
item setting. This means that it is fine to design mechanisms for strong-SOS valuation
only if it is easier since the mechanism can be transformed to a mechanism for general
SOS valuations with almost same approximation ratio. In [9], a better approximation
ratio was given for strong-SOS when the size of signal space is restricted. This does not
contradict to our result since our reduction will enlarge the signal space greatly.

Related Works

In this paper, we only focus on the canonical single item setting. The original paper [9]
studied SOS valuations in a much broader combinatorial auction setting. Their 4-
approximation works for any single-parameter downward-closed setting with single-
dimensional signals and SOS valuations. They also studied multi-dimensional signal
with separable SOS valuations and gave a 4-approximation. We defined an extend ver-
sion of SOS called d-SOS. We are not going to define all these extended versions but
focus on single item and SOS valuation for simplicity. Interested readers can find these
extensions in paper [9]. The above mentioned 2-approximation auction [1] can extend
to systems with matroid constraints. A recent paper also studied single item setting
but with private SOS valuations [11]. In our setting, the signals are private while the
valuation functions are public.
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2 Preliminaries

We consider a single-item auction with n bidders. In the interdependent setting, each
bidder i holds some private information about the item, denoted by a signal si ∈ R

+.
The signals of all bidders participating in the auction can be collected as a vector s =
(s1, s2, · · · , sn). We sometimes use (s−i, si) to emphasize the signal of agent i. The
signal space is denoted by S. By convention, we assume that si = 0 is the minimum
signal in each agent i’s signal space.

Agent i’s valuation when receiving the item is a public-known function vi(s) that
depends on the signals of all bidders. By convention, we assume that vi(s) is non-
negative, weakly increasing in all signals and strongly increasing in bidder i’s signal.
v(k)(s) denotes the kth largest valuation of a single agent when the signals of all bidders
is s. We focus on the case where the valuation function for each agent is submodular
over signals (SOS):

Definition 1 (Submodularity over signals). A valuation function v(s) is submodular
over signals if for all bidders i, s′

−i � s−i and s′
i ≥ si,

v(s′
−i, s

′
i) − v(s′

−i, si) ≤ v(s−i, s
′
i) − v(s−i, si).

A mechanism M = (x,p) decides the allocation rule x and payment p. Without
loss of generality, we consider direct mechanisms where bidders report their private
signals s̃ as bids. The mechanism then allocates the item to bidder i with probability
xi(s̃) and asks for payment pi(s̃). x satisfies feasibility constraint

∑
i∈[n] xi(s) ≤ 1 for

all signal profiles s.
Throughout our analysis, we adopt the solution concepts of ex-post IC & IR mech-

anisms, defined as follows:

Definition 2. An ex-post incentive compatible (IC) mechanism means that each bidder
does not regret reporting his private signal si truthfully after knowing all the other
bidders’ reported signals s−i. Formally, let the signal profile be s = (si, s−i). For all
signals s′

i,

xi(s−i, si)vi(s) − pi(s−i, si) ≥ xi(s−i, s
′
i)vi(s) − pi(s−i, s

′
i)

An ex-post individual rational (IR) mechanism satisfies

xi(s−i, si)vi(s) − pi(s−i, si) ≥ 0

In this paper, we mainly focus on the allocation rule since our goal is to maximize
social welfare. The following characterization allows us to design allocation rule alone
with an additional monotone constraint. The payment can be deviated from the alloca-
tion rule by the standard method and will be omitted in this paper [20].

Lemma 1. For an allocation rule x, there exists a payment rule p to make the mech-
anism M = (x,p) ex-post IC & IR iff it satisfies the following monotonicity: for any
bidder i, s−i and s′

i > si, we have xi(s−i, s
′
i) ≥ xi(s−i, si).
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3 Contribution-Based Mechanism

Let agent i∗ be the agent with the maximum valuation at signal s. The optimal social
welfare is vi∗(s). However, we do not view that this social welfare is contributed by
the agent i∗ alone since it also depends on other agents’ signals. We view the con-
tribution of agent i ∈ [n] (including i∗) as vi∗(s) − maxj∈[n],j �=i vj(s−i, 0), where
maxj∈[N ],j �=i vj(s−i, 0) is the optimal social welfare when agent i is not in the game
(his signal is “zeroed out" and his valuation is excluded). This difference of social wel-
fare is the contribution brought by agent i to the game. We want to allocate the item
to the agents proportional to their contributions. That is why we call our mechanism
Contribution-Based Mechanism. The ideal allocation probability for agent i should be
vi∗ (s)−maxj∈[n],j �=i vj(s−i,0)

vi∗ (s) . Unfortunately, this is not a valid mechanism since the total
probability may exceed 1. However, we are able to prove that the total probability will
never exceed 2 due to the SOS property of the functions. Therefore, we can half the
probability and get a valid mechanism.
Contribution-Based Mechanism: Let agent i∗ be the agent with maximum valuation
at signal s. For every agent i, we allocate the item to him with the probability

xi(s) =
vi∗(s) − maxj∈[n],j �=i vj(s−i, 0)

2vi∗(s)

Before we prove that it is indeed a valid mechanism and analyse its approximation,
we first prove an important property of the SOS functions. (This is also discovered
in [11].)

Lemma 2. Let T ⊆ [n] be a subset of bidders. Signals s and s′ satisfy ∀t ∈ T, s′
t ≤ st

and s−T = s′
−T . For each bidder i ∈ [n],

∑
t∈T

(vi(s) − vi(s−t, s
′
t)) ≤ vi(s)

Proof. Denote T = {t1, t2, · · · , t|T |}.

|T |∑
j=1

(
vi(s) − vi(s−tj

, s′
tj
)
)

≤
|T |∑
j=1

vi

(
s−{t1,··· ,tj−1}, s′

t1 , · · · , s′
tj−1

)
− vi

(
s−{t1,··· ,tj}, s′

t1 , · · · , s′
tj

)

=vi(s) − vi(s′)
≤vi(s)

The first inequality comes from the SOS property.

Theorem 1. Contribution-Based Mechanism is an ex-post IC & IR mechanism with
1
2

(
1 − v(2)(s)

v(1)(s)

)
-approximation, where v(1)(s) and v(2)(s) are the largest and the sec-

ond largest values respectively given the signal profile s.
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Proof. Correctness: We prove that
∑

i∈[n] xi(s) ≤ 1. It is clear that xi∗(s) ≤ 1/2. So
we only need to show that

∑
i∈[n],i �=i∗ xi(s) ≤ 1/2.

∑
i∈[n],i �=i∗

xi(s) =
∑

i∈[n],i �=i∗

vi∗(s) − maxj∈[n],j �=i vj(s−i, 0)
2vi∗(s)

≤
∑

i∈[n],i �=i∗

vi∗(s) − vi∗(s−i, 0)
2vi∗(s)

=

∑
i∈[n],i �=i∗(vi∗(s) − vi∗(s−i, 0))

2vi∗(s)

≤ vi∗(s)
2vi∗(s)

=
1
2

The second inequality comes from Lemma 2.

Monotonicity: For any agent i, any s−i and two signals s′
i ≥ si, by the weak mono-

tonicity of valuation functions, we have

max
j∈[n]

vj(s−i, s
′
i) ≥ max

j∈[n]
vj(s−i, si).

As a result

xi(s−i, s
′
i) =

maxj∈[n] vj(s−i, s
′
i) − maxj∈[n],j �=i vj(s−i, 0)

2maxj∈[n] vj(s−i, s′
i)

≥ maxj∈[n] vj(s−i, si) − maxj∈[n],j �=i vj(s−i, 0)
2maxj∈[n] vj(s−i, si)

= xi(s−i, si)

Therefore, our mechanism always assigns a higher probability to agent i when its
signal is stronger. There exists a payment rule to make it ex-post IC and IR.

Approximation:We simply verify that the agent i∗ get the item with the probability at

least 1
2

(
1 − v(2)(s)

v(1)(s)

)
since vi∗(s) is the targeted optimal social welfare. By definition,

we have v(1)(s) = vi∗(s) and

v(2)(s) = max
j∈[n],j �=i∗

vj(s) ≥ max
j∈[n],j �=i∗

vj(s−i∗ , 0).

Therefore,

xi∗(s) =
1
2

(
1 − maxi∈[n],i �=i∗ vi(s−i∗ , 0)

vi∗(s)

)
≥ 1

2

(
1 − v(2)(s)

v(1)(s)

)
.
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4 Random Sampling Auction

Our random sampling auction is a generalization of the auction in [9]. Their auction is
a special case of ours by choosing p = 0.5.
Random Sampling Mechanism

– Each agent i is allocated to set A with probability p and set B with probability 1−p.
– For i ∈ B, let wi = vi(sA, si,0B\{i}).
– Allocate to bidder argmaxi∈B wi

It is clear that this is an ex-post IC & IR mechanism since the allocation rule is
monotone. In [9], they proved that the approximation ratio of the Random Sampling
Mechanism is 1/4 when p = 1/2. We shall prove that the ratio is p(1 − p) for general
p and further refine the ratio in terms of

v(2)(s)

v(1)(s)
.

Theorem 2. For every signal s, Random Sampling Mechanism is an ex-post IC & IR
mechanism with the approximation ratio of

p(1 − p)
(
1 + p · v(2)(s)

v(1)(s)

)
.

We start with the following lemma.

Lemma 3. For any a ∈ [n − 2] and i ∈ [n],

1
a · (

n−1
a

) ∑
A:|A|=a

vi(sA,0B , si) ≥ 1
(a + 1) · (n−1

a+1

) ∑
A:|A|=a+1

vi(sA,0B , si).

Proof. Before the formal proof, let us give some intuition. 1

(n−1
a )

∑
A:|A|=a vi(sA,

0B , si) is the expected value of vi(sA,0B , si) when A is an uniform random set of
size a. So, 1

a·(n−1
a )

∑
A:|A|=a vi(sA,0B , si) can be viewed as an amortized expected

value. This lemma says that this amortized expected value decreases in terms of the set
size a. This is not surprising given the SOS property of the valuation function.

Now we prove it formally. After canceling common factors in the binomial coeffi-
cients of both sides, the inequality is equivalent to the following one

∑
A:|A|=a

vi(sA,0B , si) ≥ a

n − 1 − a

∑
A:|A|=a+1

vi(sA,0B , si).

We shall prove this inequality in the remaining of the proof. First we have

∑
A:|A|=a

vi(sA,0B , si) =
1

n − 1 − a

∑
A:|A|=a+1

∑
j∈A

vi(sA\{j},0B∪{j}, si). (1)

This identity holds since each term in the LHS is counted n−1−a times in RHS. Every
set of size a can be extended to n − 1 − a different sets of size a + 1.



226 P. Lu et al.

By applying Lemma 2, we get

∑
j∈A

(vi(sA,0B , si) − vi(sA\{j},0B∪{j}, si)) ≤ vi(sA,0B , si).

After rearranging the terms we get

∑
j∈A

vi(sA\{j},0B∪{j}, si) ≥ (|A| − 1)vi(sA,0B , si). (2)

Connecting (1) and (2), we get

∑
A:|A|=a

vi(sA,0B , si) ≥ a

n − 1 − a

∑
A:|A|=a+1

vi(sA,0B , si)

This concludes the proof.

We can keep applying this monotonicity lemma and bound all these summations by
the value of vi(s).

Corollary 1. For any 0 ≤ a ≤ n − 1

∑
A:|A|=a

vi(sA,0B , si) ≥ a · (
n−1

a

)
n − 1

vi(s)

Proof. This inequality is trivial when a = n − 1. For a ∈ [n − 2], we can keep using
the above lemma to get the proof.

1
a · (

n−1
a

) ∑
A:|A|=a

vi(sA,0B , si)

≥ 1
(a + 1) · (n−1

a+1

) ∑
A:|A|=a+1

vi(sA,0B , si)

≥ · · ·
≥ 1

(n − 1) · (
n−1
n−1

) ∑
A:|A|=n−1

vi(sA,0B , si)

=
1

n − 1
vi(s).

Lemma 4. Let A be a random subset of [n] \ {i}, where each bidder in A is chosen
with probability p, and let B := ([n] \ {i}) \ A. For any s,

EA[vi(sA,0B , si)] ≥ p · vi(s)
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Proof.

EA[vi(sA,0B , si)]

=
∑
A

p|A|(1 − p)|B| · vi(sA,0B , si)

=
n−1∑
a=1

pa(1 − p)n−1−a ·
∑

A:|A|=a

vi(sA,0B , si)

≥
n−1∑
a=1

pa(1 − p)n−1−a · a

n − 1

(
n − 1

a

)
vi(s)

= p · vi(s) ·
n−1∑
a=1

pa−1(1 − p)n−1−a

(
n − 2
a − 1

)

= p · vi(s) · (p + (1 − p))n−2

= p · vi(s)

Proof of Theorem 2. Without loss of generality, we assume that the agent 1 and 2 achieve
the largest and the second largest values respectively given the signal profile s. We
calculate the social welfare of the auction from two disjoint events 1 ∈ B and 2 ∈
B ∧ 1 ∈ A.

E

[
max
i∈B

wi

]

≥E

[
max
i∈B

wi · 11∈B

]
+ E

[
max
i∈B

wi · 12∈B∧1∈A

]

=E
[
w1 · 11∈B

]
+ E

[
w2 · 12∈B∧1∈A

]
=E

[
v1(s1, sA, 0B−1 ) | 1 ∈ B

]
· Pr(1 ∈ B) + E

[
v2(s2, sA, 0B−2 ) | 2 ∈ B ∧ 1 ∈ A

]
· Pr(2 ∈ B ∧ 1 ∈ A)

≥ p · v1(s) · (1 − p) + p · v2(s) · p(1 − p),

where the last inequality uses Lemma 4.
Since the optimal social welfare is v(1)(s), the approximation ratio of the random

sampling mechanism is at least

p(1 − p)
(
1 + p · v(2)(s)

v(1)(s)

)
.

	


5 Mechanism

Theorem 3. For agents with SOS valuations, there is a polynomial time, ex-post IC &
IR mechanism that gives 3.31543-approximation to the optimal welfare.
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Proof. The final mechanism is a convex combination of the above two mechanisms: run
the contribution-base mechanism with probability q and the random sampling mecha-
nism with probability 1 − q. We note that the sampling probability p within the ran-
dom sampling mechanism and this combination probability q are two parameters of the
mechanism to be fixed later.

It is obvious that this mechanism is polynomial time and ex-post IC & IR since both
contribution base mechanism and random sampling mechanism are.

The approximation ratio is just the convex combination of the two mechanisms.

1
2

(
1 − v(2)(s)

v(1)(s)

)
q + p(1 − p)

(
1 + p · v(2)(s)

v(1)(s)

)
(1 − q)

=
q

2
+ p(1 − p)(1 − q) +

(
p2(1 − p)(1 − q) − q

2

) v(2)(s)
v(1)(s)

.

By choosing q = 2p2(1−p)
1+2p2(1−p) , The coefficient of

v(2)(s)

v(1)(s)
vanishes since p2(1−p)(1−

q) − q
2 = 0. The approximation ratio is then

q

2
+ p(1 − p)(1 − q) =

p(1 − p2)
1 + 2p2(1 − p)

.

Let p be the non-negative real solution of 2x4 − 4x3 + 5x2 − 1 = 0 (p ≈ 0.54056
and thus q ≈ 0.21167), we get the final approximation ratio 0.30162 = 1

3.31543 . This
concludes the proof of our main result.

6 Strong-SOS

In [9], a stronger notion called Strong-SOS was also proposed.

Definition 3 (Strong-SOS). A valuation function v(s) is strong submodular over sig-
nals if for all bidders i, s′ � s and δ ≥ 0,

v(s′
−i, s

′
i + δ) − v(s′

−i, s
′
i) ≤ v(s−i, si + δ) − v(s−i, si).

Although these two definitions look similar and seem to only differ in a small tech-
nical condition, we shall argue that the concept of SOS is much more natural and robust
than strong-SOS. Signal is an abstract of some private information of the agents and
the number represents the strength of the signal. In many cases, only the relative order
of different signals rather than their concrete numbers matter since different represen-
tations of the signal may have complete different numbers. In particular, if there is a
monotone mapping φi : Si → S ′

i to change one representation of the signals to another,
this should not change the problem at all since a mechanism for one representation
can be directly transformed to the other with exactly the same performance and behav-
ior. The property of SOS is also invariant for different representations: the valuation is
SOS before the monotone mapping iff it is SOS after the mapping. This is desirable
and shows the robustness of the definition. However, this invariant does not hold for
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the definition of strong-SOS. As a result, strong-SOS is not a property for the valu-
ation function alone but a property for valuation function combined with a particular
representation of the signal space.

Another advantage for the definition of SOS is that it does not require any addi-
tional structure or property in the signal space other than the ordering structure. For
strong-SOS, it requires an additional metric structure so that we can define addition.
Furthermore, it requires the space to be continuous such as an interval of real numbers
or integer numbers, otherwise it may trivialize the definition. For example, if the space
contains four numbers Si = {0, 1, 3, 7}, there does not exists any s′

i = si ∈ Si and
δ = 0 such that both s′

i + δ and si + δ are in Si. When δ = 0, the condition in the
strong-SOS property is trivial; when s′

i = si, the property degenerates to SOS.
The above observation says that the property of strong-SOS crucially depends on

the property of the signal space. So, it may not be that robust and widely applicable.
In the following, we argue that it is not that special either. The informal statement is
that for any SOS valuation, there exists a monotone mapping of the signal space such
that it becomes strong-SOS after the mapping. The take away here is that one may
abandon the concept of strong-SOS and focus mainly on SOS. On the other hand, we
can also interpret it positively: one can make use of the strong-SOS property freely
when designing mechanisms if it is helpful. Then the mechanism can be transformed to
general SOS functions.

Theorem 4. If there exists a mechanism with α-approximation for strong-SOS valua-
tions, then there exists one with (1−O(ε))α-approximation for general SOS valuations
with finite discrete signal spaces.

We only prove the result for finite discrete signal spaces for simplicity. We believe
that it also holds for continuous space (maybe under some smoothness condition for
the valuation functions such as Lipschitz condition). The detailed formal proof below
is not that informative since most of the technical effort is to deal with the oddness for
the definition of strong-SOS. The high level idea is simple: just find a mapping. As long
as this mapping grows very fast (so we choose exponential functions here), it becomes
strong-SOS. However, the space is not continuous after the mapping. We need to fill the
holes, we use convex combination to fill the holes.

Proof. Assume that in the auction, each bidder’s valuation function vi is SOS. First,
we convert the SOS valuation functions {vi}i∈[n] into a new set of strong-SOS val-
uation functions {v̄i}i∈[n]. Based on the results of x̄ on {v̄i}i∈[n], we construct a new
mechanism M that achieves α(1−O(ε))-approximation for the original SOS valuation
functions {vi(s)}i∈[n].

We first show the construction for {v̄i}i∈[n]. For finite discrete signal spaces Si, it
is without loss of generality to assume that they are simply consecutive integers starting
from zero. Our idea is to extend the original signal space of each bidder Si to S̄i =
[
∑|Si|−1

k=0 ck], where c = �maxs∈S v(1)(s)

ε � + 1 correlates to the maximum valuation of
a single bidder over all signals. The signal space of all bidders is thus S̄ =

∏
i∈[n] S̄i.

Specifically, each signal si ∈ Si is mapped to an exponential signal csi
=

∑si−1
k=1 ck ∈

S̄. We define the set {cs =
∑s

k=1 ck}s∈[maxi∈[n] |Si|] as C. Signal s̄i /∈ C is a convex
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combination of its two closest signals in C. Formally, for each signal s̄i ∈ S̄i, let �(s̄i) =
maxsi∈S,csi

≤s̄i
si and (s̄i) = minsi∈S,csi

≥s̄i
si be the two closest integers smaller and

larger than s̄i separately. Notice that �(s̄i) = (s̄i) when s̄i ∈ C, and �(s̄i) + 1 =
(s̄i) otherwise. For the convenience of notation, we define this convex decomposition
μ(s̄i) : S̄i → ΔSi

as a distribution where P (�(s̄i)) =
c�(s̄i)+1−s̄i

c�(s̄i)+1−c�(s̄i)
and P (�(s̄i)+1) =

s̄i−c�(s̄i)

c�(s̄i)+1−c�(s̄i)
. The decomposition of a signal profile μ(s̄) is the joint distribution over

the decomposition of each bidder’s signal s̄i, i.e., μ(s̄) =
∏n

i=1 μ(s̄i).
We construct valuation function v̄i(s̄) as the expectation over μ(s̄) plus a small

number, defined as the following

v̄i(s̄) = Es∼μ(s̄) [vi(s) + ε · ‖s‖1]
.

Lemma 5. For any i ∈ [n], the constructed valuation function v̄i : S̄ → R is strong-
SOS.

Proof. We will first show that v̄i is an SOS valuation function. Next, we will show that
for any s̄−j , v̄i(s̄−j , s̄j) is a convex sequence in s̄j , i.e., v̄i(s̄−j , s̄j +1)− v̄i(s̄−j , s̄j) ≤
v̄i(s̄−j , s̄j)− v̄i(s̄−j , s̄j −1). This implies that for any s′

j ≤ sj and δ ≥ 0, v̄i(s̄−j , s̄j +
δ) − v̄i(s̄−j , s̄j) ≤ v̄i(s̄−j , s̄

′
j + δ) − v̄i(s̄−j , s̄

′
j). By combining these two results, we

can conclude that v̄i is strong-SOS.
We start by proving a useful claim.

Claim. For any � ∈ [S − 1] and s̄′
j ≤ s̄j ,

v̄i(s̄−jk, s̄j , c�+1) − v̄i(s̄−jk, s̄j , c�) ≤ v̄i(s̄−jk, s̄′
j , c�+1) − v̄i(s̄−jk, s̄′

j , c�)

Proof. If r(s̄j) − 1 = �(s̄′
j),

(
v̄i(s̄−jk, s̄j , c�+1) − v̄i(s̄−jk, s̄j , c�)

) − (
v̄i(s̄−jk, s̄′

j , c�+1) − v̄i(s̄−jk, s̄′
j , c�)

)

=
s̄j − s̄′

j

c�(s̄′
j)+1 − c�(s̄′

j)

(
v̄i(s̄−jk, c�(s̄j)+1, c�+1) − v̄i(s̄−jk, c�(s̄j)+1, c�)

)
+

s̄′
j − s̄j

c�(s̄′
j)+1 − c�(s̄′

j)

(
v̄i(s̄−jk, c�(s̄j)

, c�+1) − v̄i(s̄−jk, c�(s̄j)
, c�)

)

=
s̄j − s̄′

j

c�(s̄′
j)+1 − c�(s̄′

j)

[(
v̄i(s̄−jk, c�(s̄j)+1, c�+1) − v̄i(s̄−jk, c�(s̄j)+1, c�)

)
−

(
v̄i(s̄−jk, c�(s̄j)

, c�+1) − v̄i(s̄−jk, c�(s̄j)
, c�)

)]

=
s̄j − s̄′

j

c�(s̄′
j)+1 − c�(s̄′

j)

Es−jk∼μ(s̄−jk)

[(
vi(s−jk, �(s̄j) + 1, � + 1) − vi(s−jk, �(s̄j) + 1, �) + ε

) −
(
vi(s−jk, �(s̄j), � + 1) − vi(s−jk, �(s̄j), �) + ε

)]

≤0
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s̄j−s̄′
j

c�(s̄j)+1−c�(s̄j)
≥ 0 since s̄′

j ≤ s̄j . For each s−jk ∼ μ(s̄−jk), since vi is

SOS, vi(s−jk, �(s̄j) + 1, � + 1) − vi(s−jk, �(s̄j) + 1, �) ≤ vi(s−jk, �(s̄j), � + 1) −
vi(s−jk, �(s̄j), �). By linearity of expectation, the second part of equation is negative.

If r(s̄j) − 1 > �(s̄′
j),

v̄i(s̄−jk, s̄j , c�+1) − v̄i(s̄−jk, s̄j , c�)
≤ v̄i(s̄−jk, c�(s̄j), c�+1) − v̄i(s̄−jk, c�(s̄j), c�)

≤ v̄i(s̄−jk, c�(s̄j)−1, c�+1) − v̄i(s̄−jk, c�(s̄j)−1, c�)

≤ ...

≤ v̄i(s̄−jk, c�(s̄′
j)+1, c�+1) − v̄i(s̄−jk, c�(s̄′

j)+1, c�)

≤ v̄i(s̄−jk, s̄′
j , c�+1) − v̄i(s̄−jk, , s̄′

j , c�)

With the result from Claim 6, we are ready to show that v̄i is SOS.

Lemma 6. For any s̄−j ∈ S̄−j , s′
j ≤ sj and δ ≥ 0,

v̄i(s̄−j , s̄j + δ) − v̄i(s̄−j , s̄j) ≤ v̄i(s̄′
−j , s̄j + δ) − v̄i(s̄′

−j , s̄j)

Proof. We will first show that v̄i is SOS when �(s̄i) = �(s̄i + δ), and then prove the
more generalized result. Specifically, let us define � = �(s̄i) = �(s̄i + δ).

v̄i(s̄−j , s̄j + δ) − v̄i(s̄−j , s̄j)

=
s̄j + δ − c�

c�+1 − c�
v̄i(s̄−j , c�+1) +

c�+1 − (s̄j + δ)
c�+1 − c�

v̄i(s̄−j , c�)−
s̄j − c�

c�+1 − c�
v̄i(s̄−j , c�+1) − c�+1 − s̄j

c�+1 − c�
v̄i(s̄−j , c�)

=
δ

c�+1 − c�
(v̄i(s̄−j , c�+1) − v̄i(s̄−j , c�))

≤ δ

c�+1 − c�

(
v̄i(s̄−{1,j}, s̄′

1, c�+1) − v̄i(s̄−{1,j}, s̄′
1, c�)

)

≤ δ

c�+1 − c�

(
v̄i(s̄−{1,2,j}, s̄′

1, s̄
′
2, c�+1) − v̄i(s̄−{1,2,j}, s̄′

1, s̄
′
2, c�)

)
≤ · · ·
≤ δ

c�+1 − c�

(
v̄i(s̄′

−j , c�+1) − v̄i(s̄′
−j , c�)

)

=
s̄j + δ − c�

c�+1 − c�
v̄i(s̄′

−j , c�+1) +
c�+1 − (s̄j + δ)

c�+1 − c�
v̄i(s̄′

−j , c�)−
s̄j − c�

c�+1 − c�
v̄i(s̄′

−j , c�+1) − c�+1 − s̄j

c�+1 − c�
v̄i(s̄′

−j , c�)

= v̄i(s̄′
−j , s̄j + δ) − v̄i(s̄′

−j , s̄j)

The inequality above is from Claim 6.
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We will next show that v̄i is SOS when �(s̄j) and �(s̄j + δ) could possibly be
different, i.e., �(s̄j) ≤ �(s̄j + δ).

v̄i(s̄−j , s̄j + δ) − v̄i(s̄−j , s̄j)

=
(
v̄i(s̄−j , c�(s̄j)+1) − v̄i(s̄−j , s̄j)

)
+

(
v̄i(s̄−j , c�(s̄j)+2) − v̄i(s̄−j , c�(s̄j)+1)

)
+ · · ·+(

v̄i(s̄−j , s̄j + δ) − v̄i(s̄−j , c�(s̄j+δ))
)

≤ (
v̄i(s̄′

−j , c�(s̄j)+1) − v̄i(s̄−j , s̄j)
)
+

(
v̄i(s̄′

−j , c�(s̄j)+2) − v̄i(s̄′
−j , c�(s̄j)+1)

)
+ · · ·+(

v̄i(s̄′
−j , s̄j + δ) − v̄i(s̄′

−j , c�(s̄j+δ))
)

= v̄i(s̄′
−j , s̄j + δ) − v̄i(s̄′

−j , s̄j)

Next, we will show that for any signal profile s̄, v̄i(s̄−j , s̄j + 1) − v̄i(s̄−j , s̄j) ≤
v̄i(s̄−j , s̄j) − v̄i(s̄−j , s̄j − 1).

When �(s̄j − 1) = �(s̄j) = �, v̄i(s̄−j , s̄j + 1) − v̄i(s̄−j , s̄j) and v̄i(s̄−j , s̄j) −
v̄i(s̄−j , s̄j −1) both can be rewritten as 1

c�+1−c�
(v̄i(s̄−j , c�+1) − v̄i(s̄−j , c�)) and thus,

v̄i(s̄−j , s̄j + 1) − v̄i(s̄−j , s̄j) = v̄i(s̄−j , s̄j) − v̄i(s̄−j , s̄j − 1)

Otherwise, �(s̄j − 1) < �(s̄j) implies that �(s̄j − 1) = �(s̄j) − 1. s̄j ∈ C.

v̄i(s̄−j , s̄j + 1) − v̄i(s̄−j , s̄j)

=
1

c�(s̄j)+1 − c�(s̄j)

(
v̄i(s̄−j , c�(s̄j)+1) − v̄i(s̄−j , c�(s̄j)) + ε

)

=
1

c�(s̄j)

(
Es−j∼μ(s̄−j) (vi(s−j , �(s̄j) + 1) − vi(s−j , �(s̄j))) + ε

)

≤ 1
c�(s̄j)

(
max
s∈S

v(1)(s) + ε

)

≤ ε

c�(s̄j)−1

≤ 1
c�(s̄j)−1

(
Es−j∼μ(s̄−j) (vi(s−j , �(s̄j)) − vi(s−j , �(s̄j) − 1)) + ε

)

=
1

c�(s̄j−1)+1 − c�(s̄j−1)

(
v̄i(s̄−j , c�(s̄j)) − v̄i(s̄−j , c�(s̄j)−1) + ε

)

= v̄i(s̄−j , s̄j) − v̄i(s̄−j , s̄j − 1)

Therefore, vi(s−j , sj) forms a convex sequence on sj . We can then conclude that
for any δ > 0,

v̄i(s̄−j , s̄j + δ) − v̄i(s̄−j , s̄j) ≤ v̄i(s̄−j , s̄
′
j + δ) − v̄i(s̄−j , s̄

′
j)

Combining the two results we conclude our proof.

v̄i(s̄−j , s̄j + δ)− v̄i(s̄−j , s̄j) ≤ v̄i(s̄−j , s̄
′
j + δ)− v̄i(s̄

′
−j , s̄j) ≤ v̄i(s̄

′
−j , s̄

′
j + δ)− v̄i(s̄

′
−j , s̄

′
j)
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Finally, we show our reduction and prove the approximation result. Suppose mecha-
nism M̄ = (x̄, p̄) is ex-post IC & IR and achieves α-approximation on any strong-SOS
valuation function. We will show that there exists a monotone allocation rule x such
that x achieves α(1 − O(ε))-approximation on any SOS valuation setting. x(s) simply
takes the allocation rule of signal cs ∈ S̄ , i.e., x(s) = x̄(cs). The monotonicity of x̄(s̄)
directly implies that x(s) is monotone: for any bidder i ∈ [n], signals s−i and si ≥ s′

i,

xi(s−i, si) = x̄(cs1 , cs2 , · · · , csi , · · · , csn) ≥ x̄(cs1 , cs2 , · · · , cs′
i
, · · · , csn) = xi(s−i, s

′
i)

Since x̄ achieves α-approximation on strong-SOS valuation functions {v̄i}i∈[n], we
have

min
s∈S

∑
i xi(s) · (vi(s) + ε · ‖s‖1)

v(1)(s) + ε · ‖s‖1
= min

s∈S

∑
i x̄i(cs) · v̄i(cs)

v̄(1)(cs)
≥ min

s̄∈S̄

∑
i x̄i(s̄) · v̄i(s̄)

v̄(1)(s̄)
≥ α

Based on our construction that v̄i(s̄) = Es∼μ(s̄) [vi(s) + ε · ‖s‖1],

min
s∈S

∑
i xi(s) · vi(s)

v(1)(s)

≥min
s∈S

∑
i xi(s) · vi(s)

v(1)(s) + ε · ‖s‖1
≥ min

s∈S

∑
i xi(s) · (vi(s) + ε · ‖s‖1)

v(1)(s) + ε · ‖s‖1 · min
s∈S

∑
i xi(s) · vi(s)∑

i xi(s) · (vi(s) + ε · ‖s‖1)

≥α · min
s∈S,i∈[n]

vi(s)
vi(s) + ε · ‖s‖1

≥α · 1

1 + ε · maxs∈S‖s‖1
mins∈S v(1)(s)

=α ·
(
1 − maxs∈S

mins∈S v(1)(s)
· ε

)

Therefore, x has (1 − O(ε))α-approximation on {vi(s)}i∈[n]

References

1. Amer, A., Talgam-Cohen, I.: Auctions with interdependence and sos: improved approxima-
tion. In: SAGT (2021)

2. Athey, S.: Single crossing properties and the existence of pure strategy equilibria in games
of incomplete information. Econometrica 69(4), 861–889 (2001)

3. Ausubel, L.: A Generalized Vickrey Auction. Econometric Society World Congress 2000
Contributed Papers 1257, Econometric Society, August 2000

4. Chawla, S., Fu, H., Karlin, A.: Approximate revenue maximization in interdependent value
settings. In: EC 2014 (2014)

5. Che, Y.K., Kim, J., Kojima, F.: Efficient assignment with interdependent values. J. Econ.
Theory 158, 54–86 (2015)



234 P. Lu et al.

6. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11, 17–33 (1971)
7. Dasgupta, P., Maskin, E.: Efficient Auctions. Q. J. Econ. 115(2), 341–388 (2000)
8. Eden, A., Feldman, M., Fiat, A., Goldner, K.: Interdependent values without single-crossing.

In: EC 2018 (2018)
9. Eden, A., Feldman, M., Fiat, A., Goldner, K., Karlin, A.R.: Combinatorial auctions with

interdependent valuations: Sos to the rescue. In: EC 2019 (2019)
10. Eden, A., Feldman, M., Talgam-Cohen, I., Zviran, O.: Poa of simple auctions with inter-

dependent values. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35(6), pp. 5321–5329 (2021)

11. Eden, A., Goldner, K., Zheng, S.: Private interdependent valuations. In: Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2920–2939

12. Gkatzelis, V., Patel, R., Pountourakis, E., Schoepflin, D.: Prior-free clock auctions for bidders
with interdependent values (2021)

13. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)
14. Ito, T., Parkes, D.C.: Instantiating the contingent bids model of truthful interdependent value

auctions. In: AAMAS 2006, pp. 1151–1158 (2006)
15. Jehiel, P., Moldovanu, B.: Efficient design with interdependent valuations. Econometrica

69(5), 1237–1259 (2001)
16. Li, Y.: Approximation in mechanism design with interdependent values. In: EC 2013 (2013)
17. Maskin, E.: Auctions and Privatization, pp. 115–136. J.C.B. Mohr Publisher (1992)
18. McLean, R., Postlewaite, A.: Implementation with interdependent valuations. Theoret. Econ.

10(3), September 2015
19. Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econometrica

50(5), 1089–1122 (1982)
20. Roughgarden, T., Talgam-Cohen, I.: Optimal and robust mechanism design with interdepen-

dent values. ACM Trans. Econ. Comput. 4(3), June 2016
21. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 16(1),

8–37 (1961)
22. Vohra, R.V.: Mechanism design: a linear programming approach (2011)



Social Choice



On Best-of-Both-Worlds Fair-Share
Allocations

Moshe Babaioff1, Tomer Ezra2(B), and Uriel Feige1,3

1 Microsoft Research, Herzliya, Israel
moshe@microsoft.com

2 Sapienza University of Rome, Rome, Italy
tomer.ezra@gmail.com

3 Weizmann Institute, Rehovot, Israel
uriel.feige@weizmann.ac.il

Abstract. We consider the problem of fair allocation of indivisible items
among n agents with additive valuations, when agents have equal enti-
tlements to the goods, and there are no transfers. Best-of-Both-Worlds
(BoBW) fairness mechanisms aim to give all agents both an ex-ante
guarantee (such as getting the proportional share in expectation) and an
ex-post guarantee. Prior BoBW results have focused on ex-post guaran-
tees that are based on the “up to one item” paradigm, such as envy-free
up to one item (EF1). In this work we attempt to give every agent a
high value ex-post, and specifically, a constant fraction of her maximin
share (MMS). There are simple examples in which previous BoBW mech-
anisms give some agent only a 1

n
fraction of her MMS.

Our main result is a deterministic polynomial-time algorithm that
computes a distribution over allocations that is ex-ante proportional,
and ex-post, every allocation gives every agent at least half of her MMS.
Moreover, the ex-post guarantee holds even with respect to a more
demanding notion of a share, introduced in this paper, that we refer
to as the truncated proportional share (TPS). Our guarantees are nearly
best possible, in the sense that one cannot guarantee agents more than
their proportional share ex-ante, and one cannot guarantee all agents
value larger than a n

2n−1
-fraction of their TPS ex-post.

Keywords: Fair division · Best-of-both-worlds · Maximin share ·
Truncated proportional share

1 Introduction

In this paper we consider fair allocation of indivisible items to agents with
additive valuations. An instance I = (v,M,N ) of the fair allocation prob-
lem consists of a set M of m indivisible items, a set N of n agents, and vector
v = (v1, v2, . . . , vn) of non-negative additive valuations, with the valuation of
agent i ∈ N for set S ⊆ M being vi(S) =

∑
j∈S vi(j), where vi(j) denotes the

value of agent i for item j ∈ M. We assume that the valuation functions of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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agents are known to the social planer, and that there are no transfers (no money
involved). We further assume that all agents have equal entitlement to the items.
An allocation A is a collection of n disjoint bundles A1, . . . , An (some of which
might be empty), where Ai ⊆ M for every i ∈ N . A randomized allocation
is a distribution over deterministic allocations. We wish to design randomized
allocations that enjoy certain fairness properties.

Before discussing some standard fairness properties, we briefly motivate the
best of both worlds (BoBW) framework, that considers both ex-ante and ex-post
properties of randomized allocations. Consider an instance I1 with two agents
and one indivisible item. Giving the item to one of the agents arbitrarily may
be considered to be ex-post fair (because whatever allocation is chosen, it is
unavoidable that some agent receives no item), but not ex-ante fair (as there
was no a-priori reason to discriminate against the agent not receiving the item).
Ex-ante fairness can be accomplished (while still maintaining ex-post fairness)
by having an unbiased lottery to decide which agent gets the item. Consider
now an allocation instance I2 with two agents and two equally valued items. We
can have a lottery for I2, and have the winner receive both items. This would
be ex-ante fair, but ex-post (with respect to the final allocation) it would not
be fair (as there are allocations that give every agent one item). For I2, giving
each agent one item is fair both ex-ante and ex-post. Examples such as those
above illustrate why we want our allocation mechanism to concurrently enjoy
both ex-ante and ex-post fairness guarantees, as each guarantee by itself seems
not to be sufficiently fair.

For the purpose of defining ex-ante fairness properties of randomized allo-
cations, we assume that agents are risk neutral. That is, the ex-ante value that
an agent derives from a distribution over bundles is the same as the expected
value of a bundle selected at random from this distribution. Consequently, when
considering a distribution D over allocations (of M to N ), we also consider the
expectation of this distribution, which can be interpreted as a fractional alloca-
tion. In this fractional allocation, the fraction of item i given to agent j exactly
equals the probability with which agent i receives item j under D. We natu-
rally extend the additive valuation functions of agents to fractional allocations,
by considering the expected valuation, that is, an additive valuation where the
value of a fraction qj of item j to agent i is qj · vi(j).

1.1 Brief Review of Terminology and Notation

We briefly review some properties of allocations from the literature, properties
that are most relevant to the current work and to prior related work.

We start with standard share definitions. The proportional share of agent i

is PSi = vi(M)
n . We say that an allocation A = (A1, . . . , An) is proportional if

every agent i gets value at least PSi (that is, vi(Ai) ≥ vi(M)
n = PSi), and a

fractional (randomized) allocation is ex-ante proportional if she gets her propor-
tional share in expectation. We say that an allocation A is proportional up to one
item (Prop1) if for every agent i it holds that vi(Ai) ≥ PSi − maxj∈M\Ai

vi(j).
The maximin share MMSi of agent i is the maximum value that i could secure
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if she was to partition M into n bundles, and receive the bundle with the lowest
value under vi.

We next discuss envy. An allocation is envy free (EF) if every agent (weakly)
prefers her own bundle over that of any other agent, and a fractional (random-
ized) allocation is ex-ante envy free if for every agent, the expected value of her
own allocation is at least as high as the expected value of the allocation of any
other agent. Note that an allocation that is ex-ante envy free is ex-ante propor-
tional. An allocation is envy-free up to one good (EF1) (envy-free up to any good
(EFX), respectively) if every agent weakly prefers her own bundle over that of
any other agent, up to the most (least, respectively) valuable item in the other
agent’s bundle. Note that EF1 implies Prop1. Finally, an allocation is envy-free
up to one good more-and-less (EF 1

1 ) if no agent i envies another agent j after
removing one item from the set j gets, and adding one item (not necessarily the
same item) to i. Note that EF 1

1 is weaker than EF1.
Finally, we consider notions of efficiency. An (fractional) allocation Pareto

dominates another (fractional) allocation if it is weakly preferred by all agents,
and strictly so by at least one. An integral allocation is Pareto optimal (PO) if
no integral allocation Pareto dominates it. An allocation (integral or fractional)
is fractionally Pareto optimal (fPO) if it is Pareto optimal, and moreover, no
fractional allocation Pareto dominates it. Another notion of efficiency is that of
Nash Social Welfare maximization. The Nash Social Welfare (NSW) of allocation

A = (A1, . . . , An) is
(∏

i∈N vi(Ai)
) 1

n . In case of fractional allocations, we use
the notation fNSW.

1.2 Previous BoBW Results for Additive Valuations

The state of the art BoBW results for additive valuations are presented in the two
recent papers of [18], and [3]. Both of these works are based on the well known
paradigm that we call here “faithful implementation of a fractional allocation”:
a distribution over deterministic allocations is a faithful implementation of the
fractional allocation if the ex-ante (expected) value of every agent under the
distribution is the same as it is in the fractional allocation, and ex-post (for any
realization) it is the same as the expectation, up to the value of one item. Both
papers use versions of the result of [13] showing that any fractional allocation
can be faithfully implemented. Various versions of these results were presented in
the past, and in the full version [5] we survey those results. In Sect. 2 we formally
present a version of “faithful implementation” that summarizes the prior results,
stated as Lemma 1.

By “faithful implementing” the fractional allocation that is the outcome of
multiple executions of the probabilistic serial mechanism (a.k.a. eating mecha-
nism) of [11] till there are no more items, the following BoBW result was proved
in [3]. (The same theorem was established earlier in [18], but with a different
proof.)

Theorem 1 ([3,18]). There is a deterministic polynomial-time faithful imple-
mentation of a fractional allocation that is ex-ante envy free (and thus ex-ante
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proportional), and the implementation is supported on allocations that are (ex-
post) EF1.

By “faithful implementing” the fractional allocation that maximizes the frac-
tional Nash Social Welfare, the following BoBW result was proved in [18].

Theorem 2 ([18]). There is a deterministic polynomial-time faithful imple-
mentation of a fractional allocation that is ex-ante fPO and ex-ante proportional,
and the implementation is supported on allocations that are (ex-post) fPO, Prop1,
and EF 1

1 .

The “up to one item” paradigm used in the ex-post guarantees of Theorems 1
and 2 is most useful when a difference of one item does not make a big difference
in value. However, when items do have large values, it does not guarantee agents
a high ex-post value. In contrast, we aim to give each agent “high enough value”
ex-post, where value is measure compared to “what the agent deserves”, cap-
tured by her fair share. Specifically, we aim to give every agent a large fraction
(“an approximation”) of her “fair share”, e.g. half the agent’s MMS. The follow-
ing allocation instance shows that neither Theorem 1 nor Theorem 2 provide a
constant approximation for the MMS ex-post, and both are supported only on
allocations that are intuitively very unfair. Moreover, in this instance the MMS
equals the proportional share, and hence one cannot dismiss this example as one
in which the MMS is too small for the agents to care about.

Consider an instance with n identical items, each of value n. In this case it
is clear each agent should get one item ex-post. Now, suppose that one of those
big items is split into n small items, each of value 1. In this case we want one
agent to get all of these small items, and each other agent to get one of the big
items. Our next example shows that once these small items are not completely
identical, but rather each agent slightly prefers a different one of them, then in
both prior BoBW results, in every realization, one of the agents ends up getting
only a small fraction of her MMS.

Example 1. The instance has 2n − 1 items {s1, s2, . . . , sn} ∪ {b1, b2, . . . , bn−1}.
For some small ε > 0, for every agent i ∈ N , the additive valuation function vi

is as follows:

– vi(si) = 1 + ε.
– vi(sj) = 1 − ε

n−1 for every 1 ≤ j ≤ n such that j �= i.
– vi(bj) = n for every 1 ≤ j ≤ n − 1.

The MMS of every agent is n: one bundle contains all small items {s1, . . . , sn},
and the remaining bundles each contain one of the remaining, big, items. The
proportional share of every agent is also n.

In every allocation, at least one agent does not receive a big item, as there
are fewer big items than agents. The algorithm of Theorem 1 gives every agent
at most � |M|

n 	 items. Hence the agent that does not receive a big item receives
a value of at most 2 − ε, whereas her MMS is n.
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The algorithm of Theorem 2 starts with a fractional allocation that maxi-
mizes the fractional Nash Social Welfare. This fractional allocation necessarily
allocates the small item si integrally to agent i, for every i ≤ n. Consequently,
also ex-post, every agent i gets the respective item si. By the pigeon-hole prin-
ciple, in an ex-post allocation there is an agent that receives no item among the
big items {b1, b2, . . . , bn−1}. This agent i receives only the small item si, and
hence only a 1+ε

n fraction of her MMS.

1.3 Our Contributions

In this paper we aim for a Best-of-Both-Worlds fairness result: a randomized
allocation that gives every agent at least her proportional share ex-ante, and
some guaranteed value ex-post. The ex-post guarantee we give is at least half
the MMS, and in fact, stronger. We introduce a new notion of share that we
refer to as the truncated proportional share (TPS), which we believe might be of
independent interest. We show that the TPS is at least as large as the MMS, and
our BoBW result guarantees half of the TPS ex-post (and thus half the MMS
ex post), while also giving each agent her proportional share ex-ante.

The Truncated Proportional Share. We next define the Truncated Propor-
tional Share of an agent with an additive valuation. It equals the proportional
share after the values of items of exceptionally high value have been truncated
(hence the name truncated proportional share). As we will see later, this share
has two advantages over MMS: it is at least as high as the MMS, and while
the MMS is NP-hard to compute, the TPS is easy to compute. We alert the
reader that in this paper we define TPS only with respect to additive valuation
functions (while the definition of MMS extends without change beyond additive
valuations).

Definition 1. For a setting with n agents and a set of items M, the truncated
proportional share TPSi = TPSi(n,M, vi) of agent i with additive valuation
function vi is the largest value t such that 1

n

∑
j∈M min[vi(j), t] = t.

We note that the TPS is well defined, as t = 0 satisfies the equality, and
the maximum is obtained as the RHS is linear, while the LHS is piece-wise-
linear with finitely many segments (at most m). From the definition of TPS
it is immediate to see that TPSi ≤ PSi. The TPSi is smaller than PSi if and
only if there is at least one over-proportional item, an item that by itself gives
agent i value larger than PSi. For example, whenever there are less items than
agents (e.g. a single item and two agents that desire it) then for every agent
TPSi = MMSi = 0 while PSi > 0. Moreover, regardless of the presence of
over-proportional items, TPSi ≥ MMSi. This is because taking t = MMSi

satisfies 1
n

∑
j∈M min[vi(j), t] ≥ t (as every one of the n bundles in the partition

that determines MMSi contributes at least t to the sum), which implies that t in
Definition 1 is at least as large as MMSi. Hence MMSi ≤ TPSi ≤ PSi. In par-
ticular, guarantees with respect to the TPS imply at least the same guarantees
with respect to MMS, and sometimes better.
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The following example illustrates the TPS definition:

Example 2. There are n = 4 agents and m = 5 items. The values of the items
for agent i are 2, 3, 4, 5, 6. Her proportional share PSi equals 2+3+4+5+6

4 = 5,
and her truncated proportional share TPSi can be seen to be 4.5. Her TPS is
at least 4.5 since 2+3+4+4.5+4.5

4 = 4.5. Her TPS is at most 4.5 since for every
t > 4.5, it holds that 2+3+4+min(5,t)+min(6,t)

4 ≤ 9+2t
4 < t.

The TPS is a more tractable object than the MMS. The TPS can be com-
puted by the following recursive procedure (see proof in the full version [5]):
when n = 1 then TPSi = TPSi(1,M, vi) = vi(M), and when n ≥ 2 then TPSi

is the minimum among vi(M)
n , the proportional share of agent i, and her TPS

in a reduced instance in which an item j of highest value is removed as well as
one of the agents, that is, TPSi in this case is TPSi(n − 1,M \ {j}, vi). This
procedure provides a simple polynomial time algorithm for computing the TPS:
if the proportional share of the reduced instance is smaller than that of the orig-
inal instance, compute TPSi for the reduced instance. If not, then TPSi is the
proportional share of the original instance. (In contrast, computing the MMS is
NP-hard.)

Moreover, consider ρTPS , the highest fraction such that in every instance,
there is an allocation giving every agent a ρTPS fraction of her TPS. It is easy
to determine the exact value of ρTPS , which turns out to be n

2n−1 . (In contrast,
the exact value of the corresponding ρMMS is unknown [20,23].) To see that
ρTPS ≥ n

2n−1 , we observe that a polynomial time allocation algorithm of [25]
gives every agent a n

2n−1 fraction of her TPS. (For more details in the full version
[5].) To see that ρTPS ≤ n

2n−1 , consider an instance with 2n − 1 items, each of
value 1. The TPS of every agent is 2n−1

n , but in every allocation, at least one of
the agents gets at most one item, and hence value at most 1.

The example above also shows that the TPS of an agent can be factor 2n−1
n

larger than her MMS. This ratio is tight, because MMSi ≥ n
2n−1TPSi for

every agent i. This follows by considering n agents with the same valuation
function vi, and recalling that there is an allocation that gives every agent at
least a n

2n−1 fraction of her TPS. The n bundles of this allocation each have a
value of at least n

2n−1TPSi, and hence they form a partition of M that shows
that MMSi ≥ n

2n−1TPSi. We summarize the above discussion in the following
proposition:

Proposition 1. For any setting with n agents and any additive valuation vi it
holds that

PSi ≥ TPSi ≥ MMSi ≥ n
2n−1 · TPSi

Moreover, each of the above inequalities is strict for some instance, and holds as
equality for some other instance.
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Our Best-of-Both-Worlds Result. We now return to present our main result.
Example 1 and Proposition 2 (to follow shortly) illustrate the difficulties of fol-
lowing the paradigm of starting with a simple to describe fractional allocation,
and then faithfully implementing it (using Lemma 1). Consequently, instead of
using this paradigm, we design an algorithm that generates a distribution over
allocations that each gives every agent at least half of her TPS, with the addi-
tional property that every agent gets at least her proportional share in expecta-
tion. Along the way, we do use Lemma 1, but we apply it on fractional allocations
that involve only carefully selected subsets of M, rather than a fractional allo-
cation that involves all of M. Our main result is the following.

Theorem 3. For every allocation instance with additive valuations, there is a
randomized allocation that is ex-ante proportional, and gives each agent at least
half of her TPS ex-post (and hence also at least half of her MMS), as well as being
Prop1 ex-post. Moreover, there is a deterministic polynomial time algorithm that,
given the valuation functions of the agents, computes such a randomized alloca-
tion, supported on at most n allocations.

Theorem 3 is nearly the best possible in the following senses. First, it is
not possible to guarantee every agent value that is strictly larger than her pro-
portional share ex-ante (e.g., if all agents have the same valuation function).
Second, the highest possible fraction of the truncated proportional share that
can be guaranteed ex-post is at most n

2n−1 = 1
2 + 1

4n−2 (recall the example above
with the 2n − 1 identical items), which tends to half as n grows large, and the
theorem indeed ensures a fraction of half. We also remark that for the instance
in Example 1, while in the BoBW results from prior work [3,18] there is always
an agent that gets only a small fraction of her MMS, the algorithm of Theorem 3
gives every agent her TPS (and her MMS) ex-post.

Another aspect in which Theorem 3 cannot be improved is with respect to its
Pareto properties. While the prior result of [18] present a BoBW result (Theorem
2) with a distribution over allocations that is ex-ante fPO, our result does not
give ex-ante fPO. We next show that if we want every agent to receive ex-post
at least a constant fraction of her maximin share, getting the guarantee of ex-
ante fPO is impossible. Moreover, this conflict between ex-ante fPO and half the
MMS concerns every ex-post allocation that might potentially be in the support,
not just one of them.

Proposition 2. For every n ≥ 2 and every ε > 0 there are allocation instances
with additive valuations, with the following property: for every ex-ante Pareto
optimal (fPO) randomized allocation (whether ex-ante proportional or not),
every allocation in its support gives some agent at most a 1+ε

n fraction of her
maximin share.

The proof of Proposition 2 is based on Example 1, and can be found in the
full version [5].

We thus see that we cannot hope to improve our result to also guarantee
ex-ante fPO. How about the weaker condition of ex-post PO? The polynomial



244 M. Babaioff et al.

time algorithm referred to in Theorem 3 does not necessarily produce Pareto
efficient allocations. However, the existential result in the theorem does hold
simultaneously with a Pareto efficiency requirement, for the simple reason that
ex-post replacement of an allocation by an allocation that Pareto dominates it
cannot reduce the received fraction of the (ex-post) truncated proportional share
(and ex-ante proportional share) of any of the agents. It is not clear whether this
reallocation can be done in polynomial time. (For NP-hardness results associated
with Pareto efficient reallocation, see [4,16].)

Corollary 1. For every allocation instance with additive valuations, there is
a randomized allocation that is supported on at most n allocations, is ex-ante
proportional, and ex-post it gives every agent at least half of her TPS (and hence
also at least half her MMS), as well as being ex-post PO.1

1.4 Additional Related Work

The maximin share was introduced by [12]. In [23] it is shown that for agents
with additive valuations, an allocation that gives each agent her MMS may not
exist. A series of papers [2,9,19–21,23] considered the best fraction of the MMS
that can be concurrently guaranteed to all agents, and the current state of the art
(for additive valuations) is a 3

4 + Θ( 1
n )-fraction of the MMS (whereas there are

instances in which more than a 39
40 fraction of the MMS cannot be achieved [17]).

For the case of arbitrary (non-equal) entitlements, [7] define a share named
the AnyPrice share (APS), which is the value the agent can guarantee herself
whenever her budget is set to her entitlement bi (when

∑
i bi = 1) and she

buys her highest value affordable set when items are adversarially priced with
a total price of 1. To approximate the APS, they extend our definition of the
TPS to the case of unequal entitlements. For additive valuations they show that
TPSi ≥ APSi and that the inequality is strict for some instances.

The fairness notion of Prop1 was introduced by [15]. The fairness notion of
EF1 was implicitly used in [25], and was formally defined in [12]. EFX (envy-free
up to any good) was introduced in [14] The notion of envy-free up to one good
more-and-less (EF 1

1 ) was defined in [8], relaxing EF1.
For a subclass of additive valuations, that of additive dichotomous valuations,

very strong BoBW results are known [3,6,22], which among other properties, are
EF ex-ante, EFX ex-post, maximize welfare, and the underlying allocation mech-
anism is universally truthful. Such a strong combination of results is impossible
to achieve for general additive valuations. In particular, the results of [1] imply
that every universally truthful randomized allocation mechanism for two agents
that allocates all items must sometimes not give an agent more than a 2

m fraction
of her MMS ex-post. In the full version [5], we give a more extensive discussion
on truthfulness.

In Sect. 1.2 we already discussed some previous BoBW results. We further
remark that in [18] they present an instance for which there is no randomized
1 The improvement to a PO allocation might not maintain the Prop1 property, yet

each agent’s value never decreases under that improvement.
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allocation that is ex-ante proportional, ex-post EF1 and ex-post fPO. For the
same instance, there is no randomized allocation that is ex-ante proportional, is
ex-post fPO, and gives every agent a positive fraction of her MMS.

2 Preliminaries

The first paragraph of the introduction describes the basic setting and notation
used in this paper.

As we shall be dealing with randomized allocations, let us introduce termi-
nology that we shall use in this context. A random allocation is a distribution D
over integral allocations A1, A2, . . .. It induces an expected allocation A∗, where
A∗

ij specifies for agent i and item j the probability that agent i receives item
j, when an allocation is chosen at random from the underlying distribution D.
These probabilities can be interpreted as fractions of the item that an agent
receives ex-ante. Hence the expected allocation A∗ can be viewed as a fractional
allocation, in which items are divisible. Conversely, we say that the distribution
D (namely, the random allocation) implements the fractional allocation A∗ when
the expectation of D is A∗. Finally, we note that an additive valuation function
can be extended in a natural way from allocations to fractional allocations, by
considering the expected valuation. That is, the value of a pj fraction of item j
to agent i is pj · vi(j), and the value of a fractional allocation A∗ to agent i is∑

j∈M A∗
ij · vi(j).

For the issue of computing randomized allocations there are two different
notions of polynomial time computation. In a random polynomial time imple-
mentation, there is a randomized polynomial time algorithm that samples an
allocation from the distribution D. In a polynomial time implementation, there
is a deterministic polynomial time algorithm that lists all allocations in the sup-
port of D (implying in particular that the support contains at most polynomially
many allocations), together with their associated probabilities.

2.1 Faithful Implementation

For general additive valuations, there is a very useful lemma that greatly sim-
plifies the design of BoBW allocations. We refer to it here as the faithful imple-
mentation lemma. The lemma (sometimes with slight variations) was previously
stated and used in BoBW results [3,13,18,22], and was used even earlier in
approximation algorithms for maximizing welfare [26]. Restricted variants of it
were introduced for scheduling problems [24], and were later used for allocation
problems [10]. For an extensive discussion of the faithful implementation lemma,
as well as its proof (presented for completeness), see the full version [5].

Lemma 1. Let A∗ be a fractional allocation of m items to n agents with additive
valuations, and let f denote the number of strictly fractional variables in A∗

(number of pairs (i, j) such that in A∗, the fraction of item j allocated to agent
i is strictly between 0 and 1). Then there is a deterministic polynomial time
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implementation of A∗, supported only on allocations in which every agent gets
value (ex-post) equal her ex-ante value (in the fractional allocation A∗), up to
the value of one item. (For agent i, the corresponding one item is the item
most valuable to i, among those items that are assigned to i under A∗ in a
strictly fractional fashion. Moreover, the values that the agent gets in any two
allocations differ by at most the value of this single item.) The distribution of
the implementation is supported over at most f + 1 allocations.

Using Lemma 1, one trivially gets the following BoBW result (implicit in
previous work), which is a baseline against which other BoBW results can be
compared.

Proposition 3. There is a deterministic polynomial time implementation of a
fractional allocation that is ex-ante envy free, and the implementation is sup-
ported on allocations that are (ex-post) Prop1.

Proof. Consider the uniform fractional allocation, that assigns a fraction of 1
n

of every item to every agent. It is ex-ante envy free, as all agents get the same
fractional allocation. Applying Lemma 1, it is implemented in deterministic poly-
nomial time by allocations that are Prop1. 
�

3 Main Result: The Best of both Worlds

In this section we prove our main result, Theorem 3. The main arguments appear
below, missing details can be found in the full version [5]. We start with an
overview of the proof.

Let I = (v,M,N ) be an input instance. For any instance I we denote the
proportional share and the truncated proportional share of agent i by PSi(I)
and TPSi(I) respectively. For the original instance, we omit the instance and
denote the proportional share and the truncated proportional share of agent i
by PSi and TPSi, respectively.

To prove the theorem we present a deterministic polynomial time algorithm
that, given the input instance I = (v,M,N ), computes an implementation of
a randomized allocation that gives every agent at least her proportional share
ex-ante, and at least half of her truncated proportional share ex-post, and is
supported on at most n allocations. Items that each by itself gives an agent her
TPS will play a central role in our algorithm. We say that item j is exceptional
for agent i if vi(j) ≥ TPSi. Our algorithm has several phases:

1. Find a distribution over 4n matchings. Each of these matchings partitions
the agents to two disjoint sets N1 and N2, and the items to three disjoint sets
M(N1),M(N2) and M3 (M = M(N1)∪M(N2)∪M3, |N1| = |M(N1)| and
|N2| = |M(N2)|). Each agent in N1 is matched with an item in M(N1), and
each agent in N2 is matched with an item in M(N2). The distribution over
these matchings is computed in two steps:
(a) Compute a distribution in which in every matching, every agent in N1 is

matched to an item that is exceptional for him in M(N1) and such that:
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i. No unallocated item (an item in M \ M(N1)) is exceptional to any
agent in N2 = N \ N1.

ii. The distribution over these (at most) 4n matchings gives each agent
her proportional share conditioned on every agent in N2 eventually
getting her TPS in expectation (as indeed is guaranteed by 1(b)ii
below).

This step is accomplished using the linear program LP1 (see Sect. 3.1).
(b) Complete each partial matching to a complete matching by matching each

agent in N2 to an item in M(N2), such that:
i. Each agent prefers the item matched to him over any unmatched item

(item in M3).
ii. For the unmatched items, there still is a fractional allocation of M3

such that for each agent in N2, her expected value for the combination
of her matched item and her fractional allocation is at least her TPS.

This step is accomplished by setting up and solving an appropriate max-
imum weight matching instance (see Sect. 3.1).

2. For each matching above, find a distribution over m + 1 deterministic alloca-
tions that allocate M3, the unmatched items, with the following properties:
(a) in each allocation in the support, every agent in N2 gets (in total, over

the matched item and the remaining allocation) at least half her TPS.
(b) In expectation, every agent in N2 gets (in total) her TPS.
This step is accomplished using the linear program LP2 (see Sect. 3.1).

3. From the distribution over (at most) 4n(m+1) allocations defined above, find
a distribution over at most n of these allocations that is ex-ante proportional
(all ex-post properties are preserved). This step is accomplished using the
linear program LP3 (which can be found in the full version [5]).

Before elaborating on the above steps, we remark that there is some flexibility
as to how they can be implemented. In particular, for the linear programs LP1
and LP2 described below, only their constraints matter, whereas their objective
functions can be replaced by other objective functions without affecting the main
claims of this paper.

3.1 The Algorithm and the Proof

We next move to formally describe all the steps of the algorithm and prove the
theorem. In the full version [5] we give an example illustrating the steps of our
algorithm.

Phase 1a: Maximal allocation of exceptional items.
We start by transforming the input instance I into a new instance I1. In I1,

we add n auxiliary items to M, and denote them by a1, . . . , an, thus obtaining a
set M1 = M ∪ {a1, . . . , an}. For every i ∈ N , we modify the original valuation
function vi to the following unit demand valuation function ui.

– For every item j ∈ M, if vi(j) ≥ TPSi(I) then ui(j) = vi(j).
– For every item j ∈ M, if vi(j) < TPSi(I) then ui(j) = 0.
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– ui(ai) = TPSi(I).
– ui(aj) = 0 for j �= i.
– ui is unit demand. Namely, ui(S) = maxj∈S ui(j) for every S ⊆ M1.

We now set up a linear program that finds a fractional allocation that max-
imizes welfare in I1, subject to the constraint that the fractional value received
by every agent i is at least PSi(I) (hence at least 1, due to our scaling). Variable
xij denotes the fraction of item j received by agent i. Variable si denotes the
value that agent i derives from the fractional allocation. We refer to the following
linear program as LP1.

Maximize
∑

i∈N si subject to:

1.
∑

i∈N xij ≤ 1 for every item j ∈ M1. (Every item is fractionally allocated at
most once.)

2.
∑

j∈M1
xij = 1 for every agent i ∈ N . (Agent i gets item fractions that sum

to one item).
3. si =

∑
j∈M1

ui(j)xij for every agent i ∈ N . (Agent’s i value is the sum of
fraction of values that she receives from the fractional allocation.)

4. si ≥ PSi(I) for every agent i ∈ N . (Agent’s i value is at least as high as
PSi(I).)

5. xij ≥ 0 for every agent i ∈ N and item j ∈ M1.

Proposition 4. LP1 is feasible.

Proof. Let Ei denote the set of items that are exceptional for agent i in the
original instance I. As there cannot be more than n items worth more than the
proportional share, we have that |Ei| ≤ n. Consider a solution for LP1 with
xij = 1

n for every i ∈ N and j ∈ Ei, and xiai
= 1 − ∑

j∈Ei
xij = 1 − |Ei|

n .
It clearly satisfies constraints 1, 2, 3 and 5. In remains to establish that this
solution satisfies constraint 4, that is, the constraint si ≥ PSi(I).

We shall use the facts that PSi(I) = 1
nvi(Ei)+ 1

nvi(M\Ei) and TPSi(I) =
vi(M\Ei)

n−|Ei| . We can see that constraint 4 is satisfied by this solution:

si =
1
n

vi(Ei) +
(

1 − |Ei|
n

)

ui(ai) =
1
n

vi(Ei) +
n − |Ei|

n
TPSi

=
1
n

(vi(Ei) + vi(M \ Ei)) = PSi(I)

We solve LP1, and find an optimal basic feasible solution for it, and denote
it by A∗. It can be shown (see details in the full version [5]) that being a basic
feasible solution, the number of positive xij variables in A∗ is at most 4n − 1.

We perform faithful randomized rounding on A∗. The following proposition
follows immediately from the properties of A∗ and Lemma 1, and hence its proof
is omitted.

Proposition 5. The faithful randomized rounding of A∗ produces a distribution
over allocations with the following properties:
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1. In every allocation, every agent i gets exactly one item from M1. This item
is either one of her exceptional items, or her auxiliary item ai. In either case
the ui value of that item is least TPSi(I).

2. The distribution is supported on at most 4n allocations.
3. In expectation, every agent i gets value si with respect to ui. Recall that si ≥

PSi(I).

Consider now an arbitrary allocation A′ in the support of the faithful ran-
domized rounding of A∗. With respect to A′, let N1 = N1(A′) denote the set
of agents that receive an item that was exceptional for them, and let N2 denote
the set of agents that receive their auxiliary item. (Note that N1 ∪ N2 = N .)

The first phase ends by giving each agent of N1 the item that she receives
under A′, and not giving agents of N2 any item (as the auxiliary items do not
really exist). Thus we have that M(N1) is the set of items matched to agents in
N1. Observe that every agent i ∈ N1 gets at least TPSi ex-post. The remaining
phases will ensure that agents in N2 get at least half their TPS ex-post. They
will also ensure that ex-ante, every agent gets at least her proportional share
(this will make use of item 3 of Proposition 5).

Phase 1b: Completing the matching.
If N2 is empty, we go directly to Phase 2. Hence here we assume that N2 is

non-empty.
Let M2 ⊂ M denote the subset of original items (not including the auxiliary

items) that remain unallocated in A′ (those items not allocated to N1). Let I2

denote the allocation instance that has M2 as its set of items, N2 as its set of
agents, and the valuation function of every agent i ∈ N2 remains vi (restricted
to the items in M2). As I2 is obtained from I by removing |N1| agents and |N1|
items, it holds that TPSi(I2) ≥ TPSi(I) for every agent i ∈ N2.

Importantly, recall that we may assume without loss of generality that M2

has no item that according to instance I was exceptional for an agent of N2. (If
M2 contains an item j that is exceptional for i ∈ N2, then in A′, give j instead
of ai to agent i, by this moving agent i out of N2 and into N1.) The fact that
TPSi(I2) ≥ TPSi(I) (for i ∈ N2) implies that also in I2, M2 has no item that
is exceptional for an agent of N2. Consequently, we infer that for every agent
i ∈ N2:

– TPSi(I2) = vi(M2)
|N2| , and consequently also vi(M2)

|N2| ≥ TPSi(I).
– There are strictly more than |N2| items j ∈ M2 with vi(j) > 0. (This holds

because vi(j) < TPSi(I2) for every j ∈ M2.)

Let Bi ⊂ M2 denote the set of |N2| items of highest value to agent i ∈ N2,
breaking ties arbitrarily. Let Wi = vi(Bi). As M2 has more than |N2| items of
positive value for i, it follows that Wi < vi(M2).

We now transform the instance I2 into a new instance I ′
2. The set of items

in I ′
2 is M2, and the set of agents is N2. Every agent i ∈ N2 has a unit-demand

valuation function wi, defined as follows. For j ∈ Bi we have wi(j) = vi(j)
vi(M2)−Wi

(observe that the denominator is positive), and for j �∈ Bi we have wi(j) = 0.
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In the matching completion phase, we find a welfare maximizing allocation
B∗ in I ′

2. Observe that this can be done in polynomial time, because agents are
unit demand, and hence finding B∗ amounts to solving an instance of maximum
weight matching in a bipartite graph G, with N2 as the set of left side vertices,
M2 as the set of right side vertices, and weight wi(j) for edge (i, j). In B∗, every
agent i ∈ N2 receives an item from her respective set Bi (this follows because
|Bi| ≥ |N2|). We have that M(N2) is the set of items matched to agents in N2.

By the end of the matching phase, every agent holds one item. Agents in N1

received their item in Phase 1a (under A′), whereas agents in N2 received their
item in Phase 1b (under B∗). Let ei denote the item that has been allocated to
agent i, and let M3 = M \ {e1, . . . , en} denote the set of items that are not yet
allocated. A key property established by the first two phases is summarized in
the following proposition.

Proposition 6. For every agent i ∈ N it holds that vi(ei) ≥ maxj∈M3 vi(j).

Proof. For an agent i ∈ N1, the proposition follows from the optimality of the
fractional allocation A∗. If there is an item j ∈ M3 with vi(j) > vi(ei), then
in A′ item j could replace item ei for agent i, thus increasing the welfare of A′.
This would imply that LP1 has a fractional solution of value higher than that
of A∗, contradicting the optimality of A∗.

For an agent i ∈ N2, the proposition follows from the fact that B∗ is a
maximum weight matching: no unmatched item can be valued by an agent more
than the item matched to her. 
�

We are now ready to move to the next phase of our algorithm.

Phase 2: Allocating unmatched items.
In this phase, for each matching computed before, we allocate the items of

M3, the items not in the matching. Every agent i ∈ N has her original valuation
function vi (with vi(M) = n).

We first compute a fractional allocation for the items of M3. This is done by
solving a linear program that we refer to as LP2. In LP2, variable xij denotes
the fraction of item j ∈ M3 allocated to agent i, and si denotes the value that
agent i derives from the fractional allocation (under valuation function vi). The
parameters fi are treated as constants in LP2. Their values are computed based

on Phase 1b. Specifically, fi =
vi(M2)
|N2| −vi(ei)

vi(M2)−Wi
for i ∈ N2 (where ei is the item

allocated to agent i in Phase 1b, and Wi = vi(Bi), as defined in Phase 1b). We
now present LP2.

Maximize
∑

i∈N si subject to:

1.
∑

i∈N xij ≤ 1 for every item j ∈ M3. (Every item is fractionally allocated at
most once.)

2. si =
∑

j∈M3
vi(j)xij for every agent i ∈ N . (Agent’s i value is the sum of

the fractions of values that she receives from the fractional allocation.)
3. si ≥ fivi(M3) for every agent i ∈ N2. (This is the key constraint that ties

LP2 with the allocation B∗ of Phase 1b. It applies only to agents in N2.)
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4. xij ≥ 0 for every agent i ∈ N and item j ∈ M3.

Note that LP2 may fractionally allocate items from M3 to agents in N1, but
only after each agent in N2 receives items of sufficiently high value as dictated
by Constraint 3.

Lemma 2. LP2 is feasible.

Proof. Constraints 2 and 4 are satisfied by every solution in which xij ≥ 0
(for all i and j). It remains to show that constraints 1 and 3 can be satisfied
simultaneously.

Recall the bipartite graph G from Phase 1b. In G, consider a fractional
matching F = {yij}, where yij = 1

|N2| for every agent i ∈ N2 and item j ∈ Bi,
and yij = 0 if j �∈ Bi. Observe that for every agent i ∈ N2 we have

∑
j∈B2

yij = 1
and for every item j ∈ M2 we have

∑
i∈N2

yij ≤ 1
|N2| |N2| = 1. Hence indeed F

defines a fractional matching. In I2 the fractional matching F gives agent i ∈ N2

fractional value
∑

j∈Bi
yijvi(j) = 1

|N2|vi(Bi) = Wi

|N2| .
Being a fractional matching, F can be represented as a distribution D over

integral matchings. In every one of these integral matchings, every agent i ∈ N2

is matched, because i is fully matched in F . Select a matching at random
from the distribution D. Then in expectation, agent i gets an item of value∑

j∈Bi
yijvi(j) = Wi

|N2| . Using ED to denote expectation over choice from distri-
bution D, and denoting by ei the item received by i, we have that ED[vi(ei)] =
Wi

|N2| . Hence the expectation of fi is ED

[
vi(M2)
|N2| −vi(ei)

vi(M2)−Wi

]

=
vi(M2)
|N2| − Wi

|N2|
vi(M2)−Wi

= 1
|N2| . By

linearity of expectation, ED[
∑

i∈N2
fi] = 1. This implies that there is a matching

in G under which the sum of the respective fi satisfies
∑

i∈N2
fi ≤ 1. The match-

ing that maximizes
∑

i∈[n]
vi(ei)

vi(M2)−Wi
(which is B∗ that we use in the matching

step, because we defined wi(j) to be vi(j)
vi(M2)−Wi

) also minimizes
∑

i∈N2
fi, and

hence has
∑

i∈N2
fi ≤ 1. This implies that the solution with xij = fi for every

i ∈ N2 and j ∈ M3, and xij = 0 for every i ∈ N1, is feasible for LP2. 
�
Let C∗ be a fractional allocation of M3 that is an optimal solution to LP2.

Phase 2 ends by performing faithful randomized rounding of C∗. The following
proposition follows immediately from the properties of C∗ and Lemma 1, and
hence its proof is omitted.

Proposition 7. The faithful randomized rounding of C∗ produces a distribution
over allocations of the items of M3, with the following properties:

1. The distribution is supported on at most m + 1 allocations. (The number of
constraints in LP2 is |M3| + n + |N2|. In a basic feasible solution, at least
|N2| of the si variables are positive, and so at most |M3| + n = m of the xij

variables are positive.)
2. Every agent i ∈ N2 gets ex-ante value si ≥ fi · vi(M3).
3. Every agent i ∈ N2 gets ex-post value at least si, up to one item. That is, at

least si − maxj∈M3 [vi(j)].
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The allocation algorithm above computes a distribution over 4n matchings
in Phases 1a and 1b, and for each such matching, in Phase 2 it computes a
distribution over m + 1 allocations of M3. We thus have a distribution over
4n(m + 1) allocations and we next prove that it satisfies the requirements of
Theorem 3 (except the support reduction to n allocations, that is handled in
Phase 3 in the full version [5]).

Every Agent Gets her Proportional Share Ex-ante. By item 3 of Propo-
sition 5, with respect to A∗, every agent i gets value at least PSi(I) ex-ante.
However, this value might have been attained by being allocated the respec-
tive auxiliary item ai, of value TPSi(I). In this case, agent i does not actually
get ai, but is instead included in N2. Hence we need to show that for every
agent i ∈ N2, her combined ex-ante value from Phases 1b and 2 is at least
TPSi(I). This ex-ante value is at least vi(ei)+fi ·vi(M3). We claim that indeed
vi(ei) + fi · vi(M3) ≥ TPSi(I).

Recall that fi =
vi(M2)
|N2| −vi(ei)

vi(M2)−Wi
. Observe also that vi(M2) − Wi ≤ vi(M3),

because the total value of i for the |N2| items allocated under B∗ cannot be larger
than Wi = vi(Bi) (as Bi contains the |N2| items of highest value). Combining
these observations we have that:

fi =
vi(M2)

|N2| − vi(ei)

vi(M2) − Wi
≥

vi(M2)
|N2| − vi(ei)

vi(M3)
=

vi(M2) − |N2| · vi(ei)
|N2| · vi(M3)

We can now establish the claim.

vi(ei)+fivi(M3) ≥ vi(ei)+
vi(M2) − |N2| · vi(ei)

|N2| · vi(M3)
vi(M3) =

vi(M2)
|N2| ≥ TPSi(I)

(for the last equality, see discussion in Phase 1b).

Every Agent Gets at Least Half her TPS Ex-post. For agents in N1, this
holds by definition. For agents i ∈ N2, we have already shown that ex-ante they
get at least TPSi(I). Item 3 of Proposition 7 implies that ex-post agent i gets
a value of at least TPSi(I) − maxj∈M3 [vi(j)]. If maxj∈M3 [vi(j)] ≤ TPSi(I)

2 ,
then at least a value of TPSi(I)

2 remains. If maxj∈M3 [vi(j)] > TPSi(I)
2 , then also

vi(ei) ≥ TPSi(I)
2 (by Proposition 6), and hence i gets half her TPS already after

Phase 1b.

The Allocation is Prop1 Ex-post. If there is an item that is exceptional for
agent i, then an item that i values most, denoted as item j, necessarily satisfies
vi(j) ≥ PSi (if vi(j) < PSi then TPSi = PSi, and then j is not exceptional for
i). In this case, every allocation gives i her proportional share, up to the item j.
If there is no item that is exceptional for agent i, then TPSi(I) = PSi(I), and
also, i ends up in N2. Item 3 of Proposition 7 ensures that she gets TPSi(I) up
to one item, which in this case is equivalent to PSi(I) up to one item.
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The Randomized Allocation is Supported on n Allocations. The com-
bination of item 2 of Proposition 5 and item 1 of Proposition 7 implies that
the randomized allocation is supported over at most 4n(m + 1) allocations. In
Phase 3 of our algorithm (described in the full version [5], for lack of space), we
reduce this number to n.

The Randomized Allocation is Computed in Polynomial Time. This
can be verified by inspection of the allocation algorithm (see details in the full
version [5]).

4 Discussion

In the full version [5] we discuss directions in which it may be desirable to
improve our results, presenting impossibilities of some natural extensions, as
well as some open problems. In particular, we discuss incorporating additional
considerations of economic efficiency in BoBW results, incentive compatibility
issues, and we present BoBW results for allocation of indivisible chores (items of
negative values). We also discuss other fairness guarantees that one may desire
in BoBW results.
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4. Aziz, H., Biró, P., Lang, J., Lesca, J., Monnot, J.: Optimal reallocation under addi-
tive and ordinal preferences. In: Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, pp. 402–410. ACM (2016)

5. Babaioff, M., Ezra, T., Feige, U.: Best-of-both-worlds fair-share allocations. arXiv
preprint arXiv:2102.04909 (2021)

https://doi.org/10.1007/978-3-030-64946-3_24
http://arxiv.org/abs/2102.04909


254 M. Babaioff et al.

6. Babaioff, M., Ezra, T., Feige, U.: Fair and truthful mechanisms for dichotomous
valuations. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 5119–
5126. AAAI Press (2021)

7. Babaioff, M., Ezra, T., Feige, U.: Fair-share allocations for agents with arbitrary
entitlements. In: EC ’21: The 22nd ACM Conference on Economics and Compu-
tation, p. 127. ACM (2021)

8. Barman, S., Krishnamurthy, S.K.: On the proximity of markets with integral equi-
libria. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp.
1748–1755 (2019)

9. Barman, S., Krishnamurthy, S.K.: Approximation algorithms for maximin fair divi-
sion. ACM Trans. Econ. Comput. (TEAC) 8(1), 1–28 (2020)
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Abstract. We study coverage problems in which, for a set of agents
and a given threshold T , the goal is to select T subsets (of the agents)
that, while satisfying combinatorial constraints, achieve fair and efficient
coverage among the agents. In this setting, the valuation of each agent
is equated to the number of selected subsets that contain it, plus one.
The current work utilizes the Nash social welfare function to quantify
the extent of fairness and collective efficiency. We develop a polynomial-
time (18 + o(1))-approximation algorithm for maximizing Nash social
welfare in coverage instances. Our algorithm applies to all instances
wherein, for the underlying combinatorial constraints, there exists an
FPTAS for weight maximization. We complement the algorithmic result
by proving that Nash social welfare maximization is APX-hard in cov-
erage instances.

1 Introduction

Coverage problems, with a multitude of variants, are fundamental in theoretical
computer science, combinatorics, and operations research. These problems cap-
ture numerous resource-allocation applications, such as electricity division [2,22],
sensor allocation [20], program testing [18], and plant location [9].

Coverage problems entail identifying—for a given threshold T ∈ Z+ and a
set of elements [n]—a collection of subsets, F1, F2, . . . , FT ⊆ [n], that respect
particular combinatorial constraints. Here, the problem objective is specified
by considering, for each element i ∈ [n], the number of selected subsets, Ft-
s, that contain i. For instance, in the classic maximum coverage problem [16],
the subsets, F1, . . . , FT , are constrained to be from a given set family and the
objective is to maximize the number of elements i ∈ [n] that are contained in at
least one of the Ft-s, i.e., maximize | ∪t Ft|.

We study coverage problems where the ground set corresponds to a popu-
lation of n agents and the cardinal valuation of each agent i ∈ [n] depends on
the number of selected subsets that contain i, i.e., the valuation of i depends
on the coverage that i receives across the Ft-s. Our overarching goal is to select
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subsets that, while satisfying combinatorial constraints, achieve fair and efficient
coverage among the n agents.

Before detailing the model, we describe a stylized example that illustrates
the applicability of the coverage framework. Consider an electricity grid operator
tasked with apportioning electricity for T time periods among a set of n agents
(consumers with varying electricity requirements). In a time period t ∈ [T ], the
total demand of the n agents can exceed the available supply and, hence, the grid
operator must select a subset of agents, Ft ⊆ [n], whose electricity consumption
can be fulfilled–agents in the subset Ft receive electricity during the tth time
period and the remaining agents do not. An important desideratum in such load
shedding scenarios is to achieve fairness along with economic efficiency; see the
motivating work of Baghel et al. [2] for a thorough treatment of load shedding and
its connections with the fair division literature. Indeed, the coverage framework
provides an abstraction for this load shedding environment: for each t ∈ T ,
the selected subset Ft must satisfy a knapsack constraint1 and the cardinal
preference of each agent i ∈ [n] is captured by the number of subsets that
contain i, i.e., the number of time periods that i receives electricity.

Combinatorial Constraints. We study a coverage framework wherein, for each
t ∈ [T ], the tth selected subset, Ft ⊆ [n], must belong to a set family It, i.e., each
It ⊆ 2[n] specifies the possible choices for the tth selection. Our results do not
require the families It-s to be given explicitly as input. Our results hold for any
It-s that admit a fully polynomial-time approximation scheme (FPTAS) for the
weight maximization problem: given weights w1, . . . , wn ∈ R+, for the n agents,
find arg maxX∈It

∑
i∈X wi.

For instance, if each It contains the subsets that satisfy a knapsack con-
straint, then an FPTAS for weight maximization is known to exist [26]; in such
a case weight maximization corresponds to the standard knapsack problem.2

Furthermore, if the families It-s are independent sets of matroids, then one can
exactly solve the weight maximization problem in polynomial time [24]. It is
relevant to note that matroids provide an expressive construct for numerous
combinatorial constraints, e.g., cardinality and partition constraints. Hence, the
coverage framework with matroids provides, by itself, an encompassing class of
instances. Also, in instances wherein the sizes of the families It-s are polynomi-
ally large, weight maximization can be efficiently solved by direct enumeration.

In addition, our result applies to settings that entail two-sided matchings: say,
for each t ∈ [T ], we have a bipartite graph G = (L∪R,E), with L∪R = [n], and
the goal is to select a matching, i.e., agents covered by the matching constitute
the tth selected subset. We can express this matching setting in the current
framework by including, in each It, every subset of agents (i.e., subset of vertices
in G) that is covered by some matching in G. Notably, such a formulation models

1 In particular, the total demand of the agents in Ft should be at most the supply at
time period t.

2 Recall that in the electricity division example, the subsets Ft-s had to satisfy knap-
sack constraints.
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two-sided markets [14,25] such as (i) ridesharing platforms, wherein the agent set
consists of both the vehicle drivers and the passengers and (ii) recommendation
engines, in which producers are recommended to consumers. Our result holds in
such matching settings, since here weight maximization can be optimally solved
in polynomial time via a maximum-weight matching algorithm.3

Agents’ Valuations. As mentioned previously, we address settings in which each
agent’s valuation depends on the number of times it is covered among the selected
subsets Ft-s. Specifically, for a solution F = (F1, . . . , FT ) ∈ I1 × . . . × IT , agent
i’s valuation is defined as vi(F) := |{t ∈ [T ] : i ∈ Ft}|+1. Note that the valuation
of each agent is smoothed by adding 1. This smoothing enables us to achieve
meaningful (multiplicative) approximation guarantees by shifting the valuations
and, hence, the collective welfare away from zero. We also note that valuation
smoothing has been considered in prior works in fair division; see, e.g., [10,12],
and [17].

Nash Social Welfare. With the overarching aim of achieving fairness along with
economic efficiency in coverage instances, we address the problem of maximizing
Nash social welfare (NSW). This welfare function is defined as the geometric
mean of agents’ valuations and it achieves a balance between the extremes of
social welfare (a well-studied objective for economic efficiency) and egalitarian
welfare (a prominent fairness notion). NSW stands as a fundamental metric
for quantifying the extent of fairness in numerous resource-allocation contexts;
indeed, in recent years, NSW has been extensively studied in the fair division
literature; see, e.g., [5,7,15,19,23] and many references therein.

Nash social welfare satisfies key fairness axioms, including scale freeness, sym-
metry, and the Pigou-Dalton transfer principle [21]. The Pigou-Dalton principle
requires that the collective welfare should increase under a bounded transfer of
value from a well-off agent i to a worse-off agent j. NSW satisfies this principle,
since the geometric mean of a more balanced valuation profile (of the n agents)
is higher than that of a skewed one. At the same time, if the increase in agent
j’s value is significantly less than the drop experienced by i, then NSW does
not increase. That is, NSW prefers solutions4 that have reduced inequality and,
simultaneously, it accommodates for economic efficiency.

Furthermore, in various fair division contexts, prior works have shown that
a solution that maximizes NSW satisfies additional fairness properties, e.g.,
[1,7,10,13,15]. Critically, the fact that Nash optimal solutions bear additional
guarantees does not undermine the relevance of finding solutions with as high
a Nash social welfare as possible. NSW cardinally ranks the solutions and, con-
forming to a welfarist perspective, one prefers solutions with higher NSW. There-
fore, developing approximation guarantees for NSW maximization is a well-
justified objective in and of itself.
3 One can also address one-sided matching—with agents on one side and, say, indivis-

ible slots on the other—as a transversal matroid.
4 In the current context, a solution is a collection of T subsets F1, . . . , FT that are

contained in the underlying set families I1, . . . , IT , respectively.
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1.1 Our Results and Techniques

We develop a constant-factor approximation algorithm for maximizing Nash
social welfare in fair coverage instances. Given a set of n agents and threshold
T ∈ Z+, our algorithm (Algorithm 1) computes in polynomial time a solu-
tion F = (F1, . . . , FT ) ∈ I1 × . . . × IT whose Nash social welfare, NSW(F) =
(
∏n

i=1 vi(F))
1
n , is at least 1

18+o(1) times the optimal (Theorem 1). As mentioned
previously, the algorithm only requires blackbox access to an FPTAS for weight
maximization over the set families I1, . . . , IT ⊆ 2[n].

The algorithm starts with an arbitrary solution and iteratively performs
updates till it essentially reaches a local maximum of the log social welfare
ϕ(F) :=

∑n
i=1 log (vi(F)). Here, for any solution F = (F1, . . . , FT ), a local

update corresponds to replacing—for some τ ∈ [T ]—the subset Fτ with some
other subset Aτ ∈ Iτ . The algorithm performs the local updates by invoking, as
a subroutine, the FPTAS for weight maximization.

It is relevant to note that while the algorithm is simple in design, its analysis
entails novel insights. In particular, the domain of solutions, I1×. . .×IT , is com-
binatorial and, hence, it is not obvious if a local maximum solution of ϕ upholds
any global approximation guarantees for ϕ, let alone for NSW. Furthermore, a
multiplicative approximation bound for ϕ does not translate into a multiplicative
guarantee for NSW: for any solution F , we have 1

nϕ (F) = log (NSW(F)). Hence,
even though a solution that (globally) maximizes ϕ also maximizes NSW, mul-
tiplicative approximation guarantees get exponentially worse when one moves
from ϕ to NSW. This observation also implies that one cannot directly utilize
the approximation guarantee known for the so-called concave coverage problem
[3] to obtain a commensurate approximation ratio for NSW maximization.

Interestingly, in lieu of developing local-to-global approximation guarantees,
we rely on counting arguments to establish the approximation ratio. We prove
that, at a local maximum solution F (of the function ϕ) and for any integer
α ≥ 4, the number of α-suboptimal agents is at most n/α; here, an agent i is
said to be α-suboptimal iff i’s current valuation vi(F) is (about) 1/α times
less than her optimal valuation. We complete the analysis by proving that
these Markov-like bounds ensure that the computed solution F achieves an
(18 + o(1))-approximation guarantee for NSW maximization.

In addition, we complement the algorithmic result by proving that, in fair
coverage instances, NSW maximization is APX-hard (Theorem 2). This inap-
proximability result rules out a polynomial-time approximation scheme (PTAS)
for NSW maximization in fair coverage instances.

1.2 Additional Related Work and Applications

The coverage framework generalizes the well-motivated setup of public decision
making [8], albeit for agents that have binary additive valuations. The public
decision making setup captures settings wherein decisions have to be made on T
social issues, that can impact many of the n agents simultaneously. Specifically,
each issue t ∈ [T ] is associated with a set of alternatives At = {a1

t , a
2
t , . . . , a

�t
t }
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and every agent i ∈ [n] has an additive valuation over the issues. That is, for
any outcome A = (a1, a2, . . . , aT ) ∈ A1 × A2 × . . . × AT , agent i’s utility is
ui(A) =

∑T
t=1 ut

i(at); here ut
i(at) ∈ R+ is the utility that i gains from the

alternative at ∈ At.
Indeed, for agents i ∈ [n] with binary additive valuations (i.e., ut

i(a) ∈ {0, 1}
for all t and a ∈ At) the coverage framework generalizes public decision making:
for every t ∈ [T ], define the set family It by including in it the set Fa := {i ∈
[n] : ut

i(a) = 1} for each a ∈ At. In particular, It contains a set Fa, for each
alternative a ∈ At, where Fa is the set of agents that value alternative a. This
reduction gives us set families of polynomial size (|It| = |At|) and, hence, our
results specialize to this case.

In the public decision making context, Conitzer et al. [8] obtain fairness guar-
antees in terms of relaxations of proportionality. They also show that Nash opti-
mal solutions bear particular fairness properties. Complementing these results
and for agents with (smoothed) binary additive valuations, the current work
obtains approximation guarantees for NSW in public decision making.

The coverage framework also encompasses the standard fair division setting
that entails allocation of m indivisible goods among n agents that have binary
additive valuations. Multiple prior works have studied NSW in this discrete fair
division setting; see, e.g., [6,15]. Here, each agent i ∈ [n] prefers a subset of the
goods Vi ⊆ [m] and agent i’s valuation ui(S) = |S ∩ Vi|, for any S ⊆ [m]. One
can express this setting as a coverage instance by considering T = m set families
each comprised of singleton subsets. Specifically, for each good g ∈ [m], we have
a set family Ig that includes all singletons {i} with the property that g ∈ Vi, i.e.,
subset {i} is included in Ig iff agent i values good g. As in the public decision
making setting, here we obtain a coverage instance with polynomially large It-s.

With Nash welfare as a notion of fairness, Fluschnik et al. [12] study fair
selection of indivisible goods under a knapsack constraint.5 By contrast, the
current work addresses combinatorial constraints over subsets of agents.

2 Notation and Preliminaries

An instance of a fair coverage problem is specified as a tuple 〈[n], T, {It}T
t=1〉,

where [n] = {1, 2, . . . , n} denotes the set of agents and T ∈ Z+ denotes the
number of subsets (of the agents) to be selected. Here, for each t ∈ [T ], the tth
selected subset (say Ft ⊆ [n]) is constrained to be from the family It, i.e., each
It ⊆ 2[n] specifies the possible choices for the tth selection. It is not necessary
that the set families It-s are given explicitly; our algorithmic result only requires
a blackbox access to an FPTAS for weight maximization over It-s.

For a fair coverage instance 〈[n], T, {It}T
t=1〉, a solution F = (F1, F2, . . . , FT )

is a tuple with the property that Ft ∈ It for all t ∈ [T ]. We address settings
wherein the valuation of each agent depends on the number of times it is covered

5 Fluschnik et al. [12] also highlight connections between NSW and proportional
approval voting.
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among the selected subsets. Specifically, for a solution F = (F1, F2, . . . , FT ), the
coverage value vi(F), of agent i ∈ [n], is defined as vi(F) := |{t ∈ [T ] : i ∈
Ft}| + 1. Note the coverage value of each agent is smoothed by adding 1. This
smoothing ensures that the Nash social welfare of any solution is nonzero. We,
in fact, show that if each agent’s value is equated to exactly the number of times
it is covered among the subsets, then one cannot achieve any multiplicative
approximation guarantee for Nash social welfare maximization (refer to the full
version [4]).

The Nash social welfare (NSW) of a solution F is defined as the geometric

mean of the agents’ coverage values, NSW (F) :=
(

n∏

i=1

vi(F)
) 1

n

. We will write

F∗ = (F ∗
1 , F ∗

2 , . . . , F ∗
T ) to denote a solution that maximizes the Nash social wel-

fare in a given fair coverage instance. Furthermore, a solution F̂ is said to achieve
a γ-approximation guarantee for the Nash social welfare maximization prob-
lem iff NSW(F̂) ≥ 1

γNSW (F∗). The current work develops a constant-factor
approximation algorithm for NSW maximization in fair coverage instances.

As mentioned previously, the algorithm works with a blackbox access to an
FPTAS for weight maximization over It-s. Specifically, with parameter β :=

1
64nT 2 , we will write ApxMaxWt to denote a subroutine (blackbox) that takes
as input weights w1, . . . , wn ∈ R+, along with an index t ∈ [T ], and finds a (1−β)-
approximation to max

X∈It

∑

i∈X

wi. The assumption that weight maximization over

It-s admits an FPTAS implies that a (1 − β)-approximation (with β = 1
64nT 2 )

can be computed in polynomial time.
For any solution F = (F1, . . . , FT ), index t ∈ [T ], and subset X ∈ It, write

(X,F−t) to denote the solution obtained by replacing Ft with X, i.e., (X,F−t) :=
(F1, , . . . , Ft−1,X, Ft+1, . . . , FT ). Finally, we will write ϕ(F) to denote the log

social welfare of the agents under solution F , i.e., ϕ(F) :=
n∑

i=1

log (vi(F)). Here,

the logarithm is to the base e, i.e., we consider the natural logarithm of coverage
values.

3 Approximation Algorithm for Nash Social Welfare

This section develops an (18 + o(1))-approximation algorithm for maxi-
mizing Nash social welfare in fair coverage instances. Given any instance
〈[n], T, {It}T

t=1〉, our algorithm Alg (Algorithm 1) starts with an arbitrary solu-
tion F = (F1, . . . , FT ) ∈ I1 × . . . × IT and iteratively performs local updates
as long as it experiences a sufficient (additive) increase in the log social wel-
fare ϕ. Here, for any solution F = (F1, . . . , FT ), a local update corresponds to
replacing—for some τ ∈ [T ]—the subset Fτ with some other subset Aτ ∈ Iτ .
For updating a solution F and with ϕ as a guiding objective, the algorithm
addresses the problem of finding, for every t ∈ [T ], a subset At ∈ It that achieves
max
X∈It

ϕ(X,F−t)−ϕ(F). Notably, we reduce this problem to that of weight max-

imization over It-s, by setting appropriate weights wt
i , for each agent i ∈ [n] and
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each index t ∈ [T ]. In particular, for a current solution F = (F1, . . . , FT ), the
algorithm sets the weights as follows

wt
i =

{
log (vi(F)) − log (vi(F) − 1) if i ∈ Ft

log (vi(F) + 1) − log (vi(F)) otherwise, if i ∈ [n] \ Ft.

We note that for each agent i ∈ Ft, the coverage value vi(F) ≥ 2; this follows
from the inclusion of ‘+1’ in the definition of coverage value. Hence, the weights
(specifically, the terms log (vi(F) − 1) for i ∈ Ft) are well defined. This is a
relevant implication of smoothing the coverage values.

Moreover, this weight assignment ensures that, for every subset X ⊆ [n],
its weight

∑
i∈X wt

i = (ϕ(X,F−t) − ϕ(F)) +
∑

j∈Ft
wt

j (see Claim 3). Since the
weight of the current subset Ft (i.e.,

∑
j∈Ft

wt
j) is fixed, finding a subset X ∈ It

with maximum possible weight is equivalent to finding a subset that maximizes
ϕ(X,F−t)−ϕ(F). In fact, we show that an FPTAS for this weight maximization
suffices. As mentioned previously, we denote by ApxMaxWt(t, wt

1, . . . , w
t
n) a

subroutine (blackbox) that takes as input weights wt
1, . . . , w

t
n ∈ R+ and finds a

(1 − β)-approximation to max
X∈It

∑

i∈X

wt
i ; where the parameter β = 1

64nT 2 .

Hence, for updating the solution F = (F1, . . . , FT ), the algorithm invokes
ApxMaxWt to obtain candidate subsets A1, A2, . . . , AT . If, for some index
τ ∈ [T ], replacing Fτ by Aτ leads to a sufficient additive increase ϕ, then Alg
updates the solution to (Aτ ,F−τ ). Specifically, the algorithm sets parameter
ε := 1

16nT and if ϕ (Aτ ,F−τ ) − ϕ(F) ≥ εn
8T , then it updates the solution (see

Lines 4 and 5 in Algorithm 1). Otherwise, if for all the candidate subsets the
increase in ϕ is less than εn

8T , the algorithm terminates.
Note that, for any solution F̂ , the log social welfare ϕ(F̂) is at most

n log(T + 1).6 This observation, and the fact that in every iteration of Alg the
log social welfare of the maintained solution increases by at least εn

8T , imply that
the algorithm terminates in polynomial time (Lemma 3). Overall, the algorithm
efficiently finds a local maximum of ϕ.

We establish the approximation ratio via counting arguments. In the analysis,
for each maintained solution F , we consider the agents i whose current coverage
value, vi(F), is sufficiently smaller than their optimal coverage value, vi(F∗);
recall that F∗ denotes a Nash optimal solution. In particular, for a solution F
and any integer α ∈ Z+, we will write SF

α to denote the subset of agents whose
coverage value is α(2.25 + ε) times less than their optimal, where, ε = 1

16nT .
Formally, for any α ∈ Z+, the set of α-suboptimal agents is defined as7

SF
α :=

{

i ∈ [n] : vi(F) <
1

α(2.25 + ε)
vi(F∗)

}

. (1)

First, we prove that, for any solution F and any integer α ≥ 4, if the number of
α-suboptimal agents is more than n

α , then there necessarily exists a local update

6 Indeed, for any solution ̂F , we have vi( ̂F) ≤ T + 1, for all agents i ∈ [n].
7 Here, the constant 2.25 is selected to achieve the desired approximation ratio.
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Algorithm 1. Alg

Input: Instance 〈[n], T, {It}T
t=1〉.

Output: A solution F = (F1, . . . , FT ).

1: Initialize F = (F1, F2, . . . , FT ) ∈ I1 ×I2 × . . .×IT to be an arbitrary solution and,
for all agents i ∈ [n], set coverage value vi = vi(F). Set parameter ε := 1

16nT
.

2: For each t ∈ [T ] and all agents i ∈ [n], set weight

wt
i =

{

log vi − log(vi − 1) if i ∈ Ft

log(vi + 1) − log vi if i ∈ [n] \ Ft.

3: For each t ∈ [T ], set At = ApxMaxWt(t, wt
1, w

t
2, . . . , w

t
n).

4: while there exists τ ∈ [T ] such that ϕ (Aτ , F−τ ) − ϕ(F) ≥ εn
8T

do
5: Update F ← (Aτ , F−τ ), i.e., update Fτ ← Aτ .
6: For all agents i ∈ [n], update coverage value vi = vi(F).
7: For each t ∈ [T ] and all agents i ∈ [n], set weights wt

i as in Line 2.
8: Set At = ApxMaxWt(t, wt

1, w
t
2, . . . , w

t
n) for all t ∈ [T ].

9: end while
10: return solution F

that increases ϕ by a sufficient amount (Lemma 2). Contrapositively, we obtain
that, for the solution finally obtained by Alg and for any α ≥ 4, the number of
α-suboptimal agents is at most n/α. We complete the analysis by proving that
this guarantee ensures that Alg achieves a constant-factor approximation ratio
for NSW maximization; more formally, we will establish the following theorem
(in Sect. 3.2).

Theorem 1 (Main Result). Given any fair coverage instance 〈[n], T, {It}T
t=1〉,

with blackbox access to an FPTAS for weight maximization over It-s, Alg (Algo-
rithm 1) computes—in polynomial time—an

(
18 + 1

2nT

)
-approximate solution for

the Nash social welfare maximization problem.

3.1 Algorithm’s Analysis

The following claim bounds the change in log social welfare ϕ when a solution
is updated.

Claim 1. For a solution F = (F1, . . . , FT ), let value vi := vi(F) for all agents
i ∈ [n]. Then, for any subset X ⊆ [n] and any index t ∈ [T ], we have

ϕ(X,F−t) − ϕ(F) ≥
∑

i∈X

1
vi + 1

−
∑

j∈Ft

1
vj − 1

.

The proof of Claim 1 is deferred to the full version of the paper. Note that
here, for each agent j ∈ Ft, the coverage value vj(F) ≥ 2 and, hence, the
subtracted terms, 1

vj−1 , in the claim are well defined.
Next, we bound the expected change in ϕ when—for any solution F =

(F1, . . . , FT )—we replace Ft by F ∗
t , for a t ∈ [T ] chosen uniformly at random.
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Lemma 1. For any solution F = (F1, . . . , FT ) and a Nash optimal solution
F∗ = (F ∗

1 , . . . , F ∗
T ), let values vi := vi(F) and v∗

i := vi(F∗), for all agents
i ∈ [n]. Then, uniformly sampling index t from the set [T ], we obtain

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥ 1
T

n∑

i=1

(
v∗

i − 1
vi + 1

)

− n

T
.

Proof. Invoking Claim 1, with X = F ∗
t for each t ∈ [T ], we obtain

Et∈R[T ]

[
ϕ(F ∗

t , F−t) − ϕ(F)
]

≥ Et∈R[T ]

⎡
⎣ ∑

i∈F ∗
t

1

vi + 1
−

∑
j∈Ft

1

vj − 1

⎤
⎦

= Et∈R[T ]

⎡
⎣ ∑

i∈[n]

1{i ∈ F ∗
t } 1

vi + 1

−
∑

j∈[n]:vj≥2

1{j ∈ Ft} 1

vj − 1

⎤
⎦

(since vj ≥ 2, for all j ∈ Ft)

=
∑

i∈[n]

P{i ∈ F ∗
t } 1

vi + 1
−

∑
j∈[n]:vj≥2

P{j ∈ Ft} 1

vj − 1
. (2)

Index t is selected uniformly at random from the set [T ]. Also, by definition, v∗
i is

equal to 1 plus the number of subsets that contain i in the Nash optimal solution
F∗ = (F ∗

1 , . . . , F ∗
T ). Hence, the probability P{i ∈ F ∗

t } = v∗
i −1
T , for all agents

i ∈ [n]. Similarly, for the solution F = (F1, . . . , FT ), we have P{j ∈ Ft} = vj−1
T ,

for all j ∈ [n]. These equations and inequality (2) give us

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥
∑

i∈[n]

v∗
i − 1
T

· 1
vi + 1

−
∑

j∈[n]:vj≥2

vj − 1
T

· 1
vj − 1

≥ 1
T

∑

i∈[n]

(
v∗

i − 1
vi + 1

)

− n

T
.

The lemma stands proved.

Next, we show that if, under a solution F , the number of α-suboptimal agents
is large, then the log social welfare can be sufficiently increased by replacing Fτ

with F ∗
τ , for some τ ∈ [T ]. Recall that F∗ = (F ∗

1 , . . . , F ∗
T ) denotes a Nash optimal

allocation and SF
α denotes the set of α-suboptimal agents under solution F ; see

Eq. (1).

Lemma 2. For any solution F = (F1, . . . , FT ) and any α ≥ 4, if the number
of α-suboptimal agents is at least n

α (i.e., |SF
α | > n

α), then there exists an index
τ ∈ [T ] such that

ϕ(F ∗
τ ,F−τ ) − ϕ(F) ≥ εn

2T
.



Nash Welfare Guarantees for Fair and Efficient Coverage 265

Proof. Consider any solution F and integer α ≥ 4 such that |SF
α | > n

α . For each
agent i ∈ [n], write vi := vi(F) and v∗

i = vi(F∗). Now, Lemma 1 gives us

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥ 1
T

n∑

i=1

(
v∗

i − 1
vi + 1

)

− n

T

≥ 1
T

∑

i∈SF
α

(
v∗

i − 1
vi + 1

)

− n

T

≥ 1
T

∑

i∈SF
α

(
α(2.25 + ε)vi − 1

vi + 1

)

− n

T
.

(by definition of SF
α )

Claim 2. For parameter ε ∈ (0, 1) along with any integers α ≥ 4 and v ≥ 1, we
have

α(2.25 + ε)v − 1
v + 1

≥
(
1 +

ε

2

)
α.

Claim 2 (proof appears in the full version [4]) shows that α(2.25+ε)v−1
v+1 ≥

(
1 + ε

2

)
α, for all integers α ≥ 4 and v ≥ 1. Therefore, the above-mentioned

inequality simplifies to

Et∈R[T ]

[
ϕ(F ∗

t ,F−t) − ϕ(F)
]

≥ 1
T

∑

i∈SF
α

(
1 +

ε

2

)
α − n

T

>
1
T

n

α

(
1 +

ε

2

)
α − n

T
(since |SF

α | > n
α )

=
εn

2T
.

Therefore, there exists a τ ∈ [T ] such that

ϕ(F ∗
τ ,F−τ ) − ϕ(F) ≥ εn

2T
.

This completes the proof of the lemma.
Using Lemma 2, we will establish in Corollary 1, below, that the algorithm

continues to iterate as long as the number of α-suboptimal agents is more than
n/α. The proof of the corollary also utilizes the following claim.

Claim 3. Let F = (F1, . . . , FT ) be any solution considered in Alg (Algo-
rithm 1) and, for all indices t ∈ [T ] and agents i ∈ [n], let wt

i-s be the cor-
responding weights set in Lines 2 or 7. Then, the weight of any subset X ⊆ [n]
satisfies

∑

i∈X

wt
i = (ϕ(X,F−t) − ϕ(F)) +

∑

j∈Ft

wt
j .

The proof of this claim appears in the full version of the paper.
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Corollary 1. For any solution F = (F1, . . . , FT ) considered in Alg (Algo-
rithm 1) and any α ≥ 4, if the number of α-suboptimal agents is at least n

α (i.e.,
|SF

α | > n
α), then the execution condition in the while-loop (Line 4) of Alg holds.

Proof. Consider any solution F in Alg and integer α ≥ 4 such that |SF
α | > n

α .
In such a case, we will show that there exists an index τ ∈ [T ] for which the
subset Aτ returned by the subroutine ApxMaxWt(τ, wτ

1 , . . . , wτ
n) (in Line 8)

satisfies ϕ(Aτ ,F−τ ) − ϕ(F) ≥ εn
8T . Hence, the while-loop continues to iterate.

The desired index is in fact the one identified in Lemma 2. In particular,
Lemma 2 ensures that for an index τ ∈ [T ] we have

ϕ(F ∗
τ ,F−τ ) − ϕ(F) ≥ εn

2T
. (3)

Now, Claim 3 (with X = F ∗
τ ) gives us

∑

i∈F ∗
τ

wτ
i = (ϕ(F ∗

τ ,F−τ ) − ϕ(F)) +
∑

i∈Fτ

wτ
i

≥ εn

2T
+

∑

i∈Fτ

wτ
i . (via inequality (3))

Therefore,

max
X∈Iτ

{
∑

i∈X

wτ
i

}

≥
∑

i∈Fτ

wτ
i +

εn

2T
. (4)

Recall that ApxMaxWt(τ, wτ
1 , . . . , wτ

n) returns a set Aτ ∈ Iτ with the property
that

∑

i∈Aτ

wτ
i ≥ (1 − β)

(

max
X∈Iτ

∑

i∈X

wτ
i

)

. (5)

Here, parameter β = 1
64nT 2 . Since ε = 1

16nT , we have β = ε
4T . Inequalities (4)

and (5) give us

∑

i∈Aτ

wτ
i ≥ (1 − β)

(
∑

i∈Fτ

wτ
i +

εn

2T

)

=
∑

i∈Fτ

wτ
i +

εn

2T
− β

∑

i∈Fτ

wτ
i − βεn

2T

≥
∑

i∈Fτ

wτ
i +

εn

2T
− βn − βεn

2T
(since

∑
i∈Fτ

wτ
i ≤ n)

=
∑

i∈Fτ

wτ
i +

εn

2T
− εn

4T
− βεn

2T
(since β = ε

4T )

≥
∑

i∈Fτ

wτ
i +

εn

2T
− εn

4T
− εn

8T
(since β ≤ 1

4 )

=
∑

i∈Fτ

wτ
i +

εn

8T
.
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Applying Claim 3, with X = Aτ , we get ϕ(Aτ ,F−τ ) − ϕ(F) ≥ εn
8T . Therefore,

the execution condition in the while-loop of Alg holds. This establishes the
corollary.

We conclude the section by showing that the algorithm runs in polynomial
time.

Lemma 3 (Runtime Analysis). Given any fair coverage instance 〈[n], T,
{It}T

t=1〉 with blackbox access to an FPTAS for weight maximization over It-s,
Alg (Algorithm 1) terminates in time that is polynomial in n and T .

Proof. For any solution F , the coverage values vi(F) ≥ 1, for agents i ∈ [n].
Hence, for the initial solution (arbitrarily) selected by the algorithm, we have

ϕ(F) =
n∑

i=1

log(vi(F)) ≥ 0. In addition, since the coverage values of the agents

under any solution are at most T +1, the log social welfare ϕ across all solutions
is upper bounded by n log(T + 1). Furthermore, note that in every iteration
of Alg the log social welfare of the maintained solution increases additively
by at least εn

8T . These observations imply that the algorithm terminates after
O

(
nT 2 log T

)
iterations; recall that ε = 1

16nT . Since each iteration executes in
polynomial time, the time complexity of the algorithm is polynomial in n and
T . The lemma stands proved.

3.2 Proof of Theorem 1

This section establishes the approximation ratio of Alg. For the given fair cov-
erage instance, let F = (F1, . . . , FT ) be the solution returned by Alg and
F∗ = (F ∗

1 , . . . , F ∗
T ) be a Nash optimal allocation. Note that vi(F) ≥ 1 and

vi(F∗) ≤ T +1, for all agents i ∈ [n]. Hence, for each agent i ∈ [n], the following
bound holds: vi(F) ≥ 1

T+1vi(F∗).
We partition the set of agents [n] considering the multiplicative gap between

the coverage values under F and F∗. Specifically, for each integer d ∈
{2, 3, . . . , 
log(T + 1)�}, define the set

X2d :=
{

i ∈ [n] :
1

2d+1

vi(F∗)
(2.25 + ε)

≤ vi(F) <
1
2d

vi(F∗)
(2.25 + ε)

}

.

Furthermore, write X ′ := [n]\
(

�log (T+1)�⋃

d=2

X2d

)

. Since all agents i satisfy vi(F) ≥
1

T+1vi(F∗), the subset X ′ only contains agents j ∈ [n] with the property that

vj(F) ≥ 1
4

vj(F∗)
(2.25+ε) . Also, note that the subsets X2d -s and X ′ form a partition of

the set of agents [n]; in particular, |X ′| +
∑

d≥2 |X2d | = n.
Recall that SF

α denotes the set of α-suboptimal agents (see Eq. (1)). Also,
note that, with α = 2d, we have Xα ⊆ SF

α . Moreover, by the contrapositive of
Corollary 1, for the solution F = (F1, . . . , FT ), returned by Alg, we have

|X2d | ≤ ∣
∣SF

2d

∣
∣ ≤ n

2d
for all 2 ≤ d ≤ 
log (T + 1)� (6)
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For any subset of agents Y ⊆ [n], write ρ(Y ) :=
∏

i∈Y
vi(F)
vi(F∗) , if subset Y �= ∅.

Otherwise, if Y = ∅, define ρ(Y ) := 1. To bound the approximation ratio of the
algorithm, we consider

NSW(F)
NSW(F∗)

=

⎛

⎝ρ(X ′)
�log(T+1)�∏

d=2

ρ(X2d)

⎞

⎠

1
n

≥
⎛

⎝
(

1
9 + 4ε

)|X′| ∏

d≥2

ρ(X2d)

⎞

⎠

1
n

(vj(F) ≥ 1
4(2.25+ε)vj(F∗) for all j ∈ X ′)

≥
⎛

⎝
(

1
9 + 4ε

)|X′| ∏

d≥2

(
1

2d+1(2.25 + ε)

)|X2d |
⎞

⎠

1
n

(vi(F) ≥ 1
2d+1(2.25+ε)

for all i ∈ X2d)

=
1

9 + 4ε

⎛

⎝
∏

d≥2

(
1

2d−1

) |X
2d |
n

⎞

⎠ (since |X ′| +
∑

d≥2 |X2d | = n)

≥ 1
9 + 4ε

⎛

⎝
∏

d≥2

(
1

2d−1

) 1
2d

⎞

⎠ . (via inequality (6))

Claim 4. For any integer 	 ≥ 2, we have
�∏

d=2

(
1

2d−1

) 1
2d ≥ 1

2 .

The proof of Claim 4 appears in the full version of the paper. Hence, the stated
approximation ratio follows

NSW(F)
NSW(F∗)

≥ 1
9 + 4ε

⎛

⎝
�log(T+1)�∏

d=2

(
1

2d−1

) 1
2d

⎞

⎠ ≥ 1
9 + 4ε

· 1
2

=
1

18 + 8ε
.

4 APX-Hardness of Fair Coverage

This section shows that NSW maximization in fair coverage instances is APX-
hard. In particular, we prove that there exists an absolute constant γ > 1
such that it is NP-hard to approximate the problem within factor γ. Hence,
a constant-factor approximation is the best one can hope for NSW maximiza-
tion in fair coverage instances, unless P = NP. The hardness result is obtained
via an approximation preserving reduction from the following gap version of the
maximum coverage problem.
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Maximum k-Coverage [11]: Given a universe of elements U = {1, 2, . . . , n}, a
threshold k ∈ Z+, and a set family S =

{
S� ⊆ [n]

}N

�=1
, it is NP-hard to distin-

guish between

– YES Instances: There exists a collection of k subsets in S that covers all the
elements, i.e., the union of the k subsets is equal to [n].

– NO Instances: Any collection of k subsets from S covers at most
(
1 − 1

e

)
n

elements, i.e., the union of any k subsets from S has cardinality at most(
1 − 1

e

)
n.

This hardness result of Feige [11] holds even for instances that satisfy the
following properties: (i) all the subsets in S have the same size τ , i.e., |S�| = τ
for all subsets S� ∈ S, and (ii) the threshold k = n/τ . Properties (i) and (ii) will
be utilized in our approximation preserving reduction.8

The APX-hardness result is established next. Notably, this negative result
is applicable even for fair coverage instances in which the set families It-s are
explicitly given as input.

Theorem 2. In fair coverage instances, it is NP-hard to approximate the max-
imum Nash social welfare within a factor of 1.092.

Proof. Given an instance of the maximum k-coverage problem with universe
U = {1, 2, . . . , n} and set family S = {S1, S2, . . . , SN} of τ -sized subsets of [n],
we construct a fair coverage instance with n agents and T = k. Since threshold
k = n

τ , we have T = n
τ . To complete the construction and obtain an instance

〈[n], T, {It}T
t=1〉, we set the families It = S, for all t ∈ [T ].

First, we show that if the underlying maximum coverage instance is a YES
instance, then the optimal NSW in the constructed fair coverage instance is
at least 2. Note that in the YES case there exists a size-k collection S ′ =
{S′

1, S
′
2, . . . , S

′
k} ⊆ S that covers all of [n]. Also, by construction, T = k and

It = S for all 1 ≤ t ≤ k. Hence, for each t ∈ [T ], we have S′
t ∈ It. Therefore, the

tuple F ′ = (S′
1, S

′
2, . . . , S

′
k) is a solution under which vi(F ′) ≥ 2, for all agents

i ∈ [n].9 This bound on the coverage value of the agents implies that in the
current case, the optimal Nash social welfare is at least 2.

Now, we show that in the NO case the optimal NSW is at most c, for an
absolute constant c < 2. Here, consider any solution F = (F1, . . . , FT ) in the
constructed fair coverage instance. We have T = k = n

τ and, by construction,
Ft ∈ S. Furthermore, given that we are in the NO case, the collection of subsets
{F1, F2, . . . , FT } ⊆ S covers at most (1 − 1

e )n elements. Let L denote the set of
agents not covered by the subsets Ft-s and write 	 := |L| ≥ n

e . Since each agent
i ∈ L is not covered under F , we have vi(F) = 1 for all i ∈ L. Furthermore, note
8 The properties also ensure that in the YES case there is a collection of k = n

τ
subsets

that are pairwise disjoint and they cover all of [n]. That is, in the YES case there
exists a perfect cover.

9 In fact, for each agent i the coverage value vi(F ′) = 2, since i is contained in exactly
one of the subsets S′

t-s. Recall that properties (i) and (ii) ensure that S ′ is a perfect
cover.
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that the agents in the set Lc := [n] \ L are covered by the T = k = n
τ subsets

F1, . . . , FT , and each of these subsets is of size τ . Therefore,

∑

j∈Lc

vj(F) =
n/τ∑

t=1

|Ft| + |Lc|

=
n

τ
τ + |Lc| (since |Ft| = τ for each t)

= n + (n − 	). (	 = |L|)

Hence, the average social welfare among agents in Lc satisfies 1
|Lc|

∑
j∈Lc

vj(F) = 2n−�
n−� . This bound and the AM-GM inequality give us

∏

j∈Lc

vi(F) ≤
(

2n−�
n−�

)|Lc|
. Therefore, we can bound the Nash social welfare of F as follows

NSW(F) =

⎛

⎝
∏

i∈L

vi(F)
∏

j∈Lc

vj(F)

⎞

⎠

1
n

≤ 1
�
n

(
2n − 	

n − 	

)n−�
n

=
(

2 − 	/n

1 − 	/n

)(1− �
n )

(7)

Note that the function f(x) :=
(

2−x
1−x

)(1−x)

is decreasing in the interval x ∈
[
1
e , 1

)
. Hence, using the fact that 	 ≥ n

e and inequality (7), we get

NSW(F) ≤
(

2 − 1/e

1 − 1/e

)1− 1
e

≤ 1.83 (8)

Since, in the NO case, inequality (8) holds for all solutions F , we get that the
optimal NSW is at most 1.83.

Overall, we get that in the YES case the optimal NSW is at least 2 and in
the NO case it is at most 1.83. This multiplicative gap of 2

1.83 > 1.092 implies
that a 1.092-approximation algorithm for NSW maximization can be used to
distinguish between the two cases. Since this differentiation is NP-hard, a 1.092-
approximation is NP-hard as well. The theorem stands proved.

5 Conclusion and Future Work

The current paper extends the scope of coverage problems from combinatorial
optimization to fair division. In this setting, we develop algorithmic and hardness
results for maximizing the Nash social welfare. The coverage framework consid-
ered in this work accommodates expressive combinatorial constraints and, hence,
it models a range of applications. The framework also generalizes public decision
making among agents that have binary additive valuations.

It would be interesting to extend the coverage framework to settings in which
each agent i has value vt

i for getting covered by the tth selected subset and her
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valuation is additive across the T selections. Online version of fair coverage is
another interesting direction for future work.
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Abstract. Consider a round-robin tournament on n teams, where a
winner must be (possibly randomly) selected as a function of the results
from the

(
n
2

)
pairwise matches. A tournament rule is said to be k-SNM-

α if no set of k teams can ever manipulate the
(
k
2

)
pairwise matches

between them to improve the joint probability that one of these k teams
wins by more than α. Prior work identifies multiple simple tournament
rules that are 2-SNM-1/3 (Randomized Single Elimination Bracket [17],
Randomized King of the Hill [18], Randomized Death Match [6]), which
is optimal for k = 2 among all Condorcet-consistent rules (that is, rules
that select an undefeated team with probability 1).

Our main result establishes that Randomized Death Match is 3-SNM-
(31/60), which is tight (for Randomized Death Match). This is the first
tight analysis of any Condorcet-consistent tournament rule and at least
three manipulating teams. Our proof approach is novel in this domain:
we explicitly find the most-manipulable tournament, and directly show
that no other tournament can be more manipulable.

In addition to our main result, we establish that Randomized Death
Match disincentivizes Sybil attacks (where a team enters multiple copies
of themselves into the tournament, and arbitrarily manipulates the out-
comes of matches between their copies). Specifically, for any tournament,
and any team u that is not a Condorcet winner, the probability that u
or one of its Sybils wins in Randomized Death Match approaches 0 as
the number of Sybils approaches ∞.

1 Introduction

Consider a tournament on n teams competing to win a single prize via
(
n
2

)

pairwise matches. A tournament rule is a (possibly randomized) map from these(
n
2

)
matches to a single winner. In line with several recent works [1,2,6,17,18],

we study rules that satisfy some notion of fairness (that is, “better” teams should
be more likely to win), and non-manipulability (that is, teams have no incentive
to manipulate the matches).

More specifically, prior work identifies Condorcet-consistence (Definition 4)
as one desirable property of tournament rules: whenever an undefeated team
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, pp. 273–291, 2022.
https://doi.org/10.1007/978-3-031-22832-2_16
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exists, a Condorcet-consistent rule selects that team as the winner with proba-
bility 1. Another desirable property is monotonicity (Definition 6): no team can
unilaterally increase the probability that it wins by throwing a single match.
Arguably, any sensible tournament rule should at minimum satisfy these two
basic properties, and numerous such simple rules exist.

[1,2] further considered the following type of deviation: what if the same
company sponsors multiple teams in an eSports tournament, and wants to max-
imize the probability that one of them wins the top prize?1 In principle, these
teams might manipulate the outcomes of the matches they play amongst them-
selves in order to achieve this outcome. Specifically, they call a tournament rule
k-Strongly-Non-Manipulable (k-SNM, Definition 5), if no set of k teams can suc-
cessfully manipulate the

(
k
2

)
pairwise matches amongst themselves to improve the

probability that one of these k teams wins the tournament. Unfortunately, even
for k = 2, [1,2] establish that no tournament rule is both Condorcet-consistent
and 2-SNM.

This motivated recent work in [6,17,18] to design tournament rules which are
Condorcet-consistent as non-manipulable as possible. Specifically, [17] defines a
tournament rule to be k-SNM-α if no set of k teams can manipulate the

(
k
2

)

pairwise matches amongst themselves to increase total probability that any of
these k teams wins by more than α (see Definition 5). These works design several
simple Condorcet-consistent and 2-SNM-1/3 tournament rules, which is optimal
for k = 2 (see [17]). In fact, the state of affairs is now fairly advanced for k = 2:
each of [6,17,18] proposes a new 2-SNM-1/3 tournament rule. [18] considers
a stronger fairness notion that they term Cover-consistent, and [6] considers
probabilistic tournaments (see Sect. 1.3 for further discussion).

However, significantly less is known for k > 2. Indeed, only [18] analyzes
manipulability for k > 2. They design a rule that is k-SNM-2/3 for all k, but
that rule is non-monotone, and it is unknown whether their analysis of that rule
is tight. Our main result provides a tight analysis of the manipulability of Ran-
domized Death Match (first defined in [6]) when k = 3. We remark that this is:
a) the first tight analysis of the manipulability of any Condorcet-consistent tour-
nament rule for k > 2, b) the first analysis establishing a monotone tournament
rule that is k-SNM-α for any k > 2 and α < 1, and c) the strongest analysis
to-date of any tournament rule (monotone or not) for k = 3. We overview our
main result in more detail in Sect. 1.1 below.

Beyond our main result, we further consider manipulations through a Sybil
attack (Definition 9). As a motivating example, imagine that a tournament rule
is used as a proxy for a voting rule to select a proposal (voters compare each
pair of proposals head-to-head, and this constitutes the pairwise matches input
to a tournament rule). A proposer may attempt to manipulate the protocol
with a Sybil attack, by submitting numerous nearly-identical clones of the same
proposal. This manipulates the original tournament, with a single node u1 corre-
sponding to the proposal, into a new one with additional nodes u2, . . . , um cor-

1 Similarly, perhaps there are multiple athletes representing the same country or uni-
versity in a traditional sports tournament.
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responding to the Sybils. Each node v /∈ {u1, . . . , um} either beats all the Sybils,
or none of them (because the Sybil proposals are essentially identical to the
original). The questions then become: Can the proposer profitably manipulate
the matches within the Sybils? Is it beneficial for a proposer to submit as many
Sybils as possible? We first show that, when participating in Randomized Death
Match, the Sybils can’t gain anything by manipulating the matches between
them. Perhaps more surprisingly, we show that Randomized Death Match is
Asymptotically Strongly Sybil-Proof : as the number of Sybils approaches ∞, the
collective probability that a Sybil wins RDM approaches zero (unless the orig-
inal proposal is a Condorcet winner, in which case the probability that a Sybil
wins is equal to 1, for any number of Sybils > 0).

1.1 Our Results

As previously noted, our main result is a tight analysis of the manipulability of
Randomized Death Match (RDM) for coalitions of size 3. Randomized Death
Match is the following simple rule: pick two uniformly random teams who have
not yet been eliminated, and eliminate the loser of their head-to-head match.

Informal Theorem 1 (See Theorem 6). RDM is 3-SNM- 3160 . RDM is not 3-
SNM-α for α < 31

60 .

Recall that this is the first tight analysis of any Condorcet-consistent tour-
nament rule for any k > 2 and the first analysis establishing a monotone,
Condorcet-consistent tournament rule that is k-SNM-α for any k > 2, α < 1.
Recall also that previously the smallest α for which a 3-SNM-α (non-monotone)
Condorcet-consistent tournament rule is known is 2/3.

Our second result concerns manipulation by Sybil attacks. A Sybil attack is
where one team starts from a base tournament T , and adds some number m−1 of
clones of their team to create a new tournament T ′ (they can arbitrarily control
the matches within their Sybils, but each Sybil beats exactly the same set of
teams as the cloned team) (See Definition 9). We say that a tournament rule r is
Asymptotically Strongly Sybil-Proof (Definition 10) if for any tournament T and
team u1 ∈ T that is not a Condorcet winner, the maximum collective probability
that a Sybil wins (under r) over all of u1’s Sybil attacks with m Sybils goes to
0 as m goes to infinity. See Sect. 2 for a formal definition.

Informal Theorem 2 (See Theorem 8). RDM is Asymptotically Strongly
Sybil-Proof.

1.2 Technical Highlight

All prior work establishing that a particular tournament rule is 2-SNM-1/3 fol-
lows a similar outline: for any T , cases where manipulating the {u, v} match
could potentially improve the chances of winning are coupled with two cases
where manipulation cannot help. By using such a coupling argument, it is plau-
sible that one can show that RDM is 3-SNM-(12 + c) for a small constant c.
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However, given that Theorem 6 establishes that RDM is 3-SNM-31/60, it is
hard to imagine that this coupling approach will be tractable to obtain the
exact answer.

Our approach is instead drastically different: we find a particular 5-team
tournament, and a manipulation by 3 teams that gains 31/60, and directly prove
that this must be the worst case. We implement our approach using a first-step
analysis, thinking of the first match played in RDM on an n-team tournament
as producing a distribution over (n − 1)-team tournaments.

The complete analysis inevitably requires some careful case analysis, but is
tractable to execute fully by hand. Although this may no longer be the case for
future work that considers larger k or more sophisticated tournament rules, our
approach will still be useful to limit the space of potential worst-case examples.

1.3 Related Work

There is a vast literature on tournament rules, both within Social Choice Theory,
and within the broad CS community [3,8–12,14,19]. The Handbook of Compu-
tational Social Choice provides an excellent survey of this broad field, which we
cannot overview in its entirety [15]. Our work considers the model initially posed
in [1,2], and continued in [6,17,18], which we overview in more detail below.

[1,2] were the first to consider Tournament rules that are both Condorcet-
consistent and 2-SNM, and proved that no such rules exist. They further
considered tournament rules that are 2-SNM and approximately Condorcet-
consistent. [17] first proposed to consider tournament rules that are instead
Condorcet-consistent and approximately 2-SNM. Their work establishes that
Randomized Single Elimination Bracket is 2-SNM-1/3, and that this is tight.2
[18] establish that Randomized King of the Hill (RKotH) is 2-SNM-1/3,3 and [6]
establish that Randomized Death Match is 2-SNM-1/3. [18] show further that
RKotH satisfies a stronger fairness notion called Cover-consistence, and [6]
extends their analysis to probabilistic tournaments. In summary, the state of
affairs for k = 2 is quite established: multiple 2-SNM-1/3 tournament rules are
known, and multiple different extensions beyond the initial model of [17] are
known.

For k > 2, however, significantly less is known. [17] gives a simple example
establishing that no rule is k-SNM-k−1−ε

2k−1 for any ε > 0, but no rules are known
to match this bound for any k > 2. Indeed, [18] shows that this bound is not
tight, and proves a stronger lower bound for k → ∞. For example, a corollary
of their main result is that no 939-SNM-1/2 tournament rule exists. They also
design a non-monotone tournament rule that is k-SNM-2/3 for all k. Other
than these results, there is no prior work for manipulating sets of size k > 2.

2 Randomized Single Elimination Bracket iteratively places the teams, randomly, into
a single-elimination bracket, and then ‘plays’ all matches that would occur in this
bracket to determine a winner.

3 Randomized King of the Hill iteratively picks a ‘prince’, and eliminates all teams
beaten by the prince, until only one team remains.
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In comparison, our work is the first to give a tight analysis of any Condorcet-
consistent tournament rule for k > 2, and is the first proof that any monotone,
Condorcet-consistent tournament rule is k-SNM-α for any k > 2, α < 1.

Regarding our study of Sybil attacks, similar clone manipulations have
been considered prior in Social Choice Theory under the name of composition-
consistency. [13] introduces the notion of a decomposition of the teams in a tour-
nament into components, where all the teams in a component are clones of each
other with respect to the teams not in the component. [13] defines a deterministic
tournament rule to be composition-consistent if it chooses the best teams from
the best components4. In particular, composition-consistency implies that a los-
ing team cannot win by introducing clones of itself or any other team. [13] shows
that the tournament rules Banks, Uncovered Set, TEQ, and Minimal Covering
Set are composition-consistent, while Top Cycle, the Slater, and the Copeland
are not. Both computational and axiomatic aspects of composition-consistency
have been explored ever since. [7] studies the structural properties of clone sets
and their computational aspects in the context of voting preferences. In the con-
text of probabilistic social choice, [4] gives probabilistic extensions of the axioms
composition-consistency and population-consistency and uniquely characterize
the probabilistic social choice rules, which satisfy both. In the context of scor-
ing rules, [16] studies the incompatibility of composition-consistency and rein-
forcement (stronger than population-consistency) and decomposes composition-
consistency into four weaker axioms. In this work, we consider Sybil attacks on
Randomized Death Match. Our study of Sybil attacks differs from prior work
on the relevant notion of composition-consistency in the following ways: (i) We
focus on a randomized tournament rule (RDM), (ii) We study settings where
the manipulator creates clones of themselves (i.e. not of other teams), (iii) We
explore the asymptotic behavior of such manipulations (Definition 10, Theorem
8).

1.4 Roadmap

Section 2 follows with definitions and preliminaries, and formally defines Ran-
domized Death Match (RDM). Section 3 introduces some basic properties and
examples for the RDM rule as well as a recap of previous work for two manipu-
lators. Section 4 consists of a proof that the manipulability of 3 teams in RDM
is at most 31

60 and that this bound is tight. Section 5 consists of our main results
regarding Sybil attacks on a tournament. Section 6 concludes.

2 Preliminaries

In this section we introduce notation that we will use throughout the paper
consistent with prior work in [6,17,18].

4 For a full rigorous mathematical definition see Definition 10, [13].
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Definition 1 (Tournament). A (round robin) tournament T on n teams is
a complete, directed graph on n vertices whose edges denote the outcome of a
match between two teams. Team i beats team j if the edge between them points
from i to j.

Definition 2 (Tournament Rule). A tournament rule r is a function that
maps tournaments T to a distribution over teams, where ri(T ) := Pr(r(T ) = i)
denotes the probability that team i is declared the winner of tournament T under
rule r. Let S be a set of teams. We use the shorthand rS(T ) :=

∑
i∈S ri(T ) to

denote the probability that a team in S is declared the winner of tournament T
under rule r.

Definition 3 (S-adjacent). Let S be a set of teams. Two tournaments T, T ′

are S-adjacent if for all i, j such that {i, j} �⊆ S, i beats j in T if and only if i
beats j in T ′.

In other words, two tournaments T, T ′ are S-adjacent if the teams from S
can manipulate the outcomes of the matches between them in order to obtain a
new tournament T ′.

Definition 4 (Condorcet-Consistent). Team i is a Condorcet winner of
a tournament T if i beats every other team (under T ). A tournament rule r
is Condorcet-consistent if for every tournament T with a Condorcet winner i,
ri(T ) = 1 (whenever T has a Condorcet winner, that team wins with probability
1).

Definition 5 (Manipulating a Tournament). For a set S of teams, a tour-
nament T and a tournament rule r, we define αr

S(T ) be the maximum winning
probability that S can possibly gain by manipulating T to an S-adjacent T ′. That
is:

αr
S(T ) = max

T ′:T ′ is S-adjacent to T
{rS(T ′) − rS(T )}

For a tournament rule r, define αr
k,n = supT,S:|S|=k,|T |=n{αr

S(T )}. Finally,
define

αr
k = sup

n∈N

αr
k,n = sup

T,S:|S|=k

{αr
S(T )}

If αr
k ≤ α, we say that r is k-Strongly-Non-Manipulable at probability α or k-

SNM-α.

Intuitively, αr
k,n is the maximum increase in collective winning probability

that a group of k teams can achieve by manipulating the matches between them
over tournaments with n teams. And αr

k is the maximum increase in winning
probability that a group of k teams can achieve by manipulating the matches
between them over all tournaments.

Two other naturally desirable properties of a tournament rule are monotonic-
ity and anonymity.

Definition 6 (Monotone). A tournament rule r is monotone if T, T ′ are
{u, v}-adjacent and u beats v in T , then ru(T ) ≥ ru(T ′)
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Definition 7 (Anonymous). A tournament rule r is anonymous if for every
tournament T , and every permutation σ, and all i, rσ(i)(σ(T )) = ri(T )

Below we define the tournament rule that is the focus of this work.

Definition 8 (Randomized Death Match). Given a tournament T on n
teams the Randomized Death Match Rule (RDM) picks two uniformly random
teams (without replacement) and plays their match. Then, eliminates the loser
and recurses on the remaining teams for a total of n − 1 rounds until a single
team remains, who is declared the winner.

Below we define the notions of Sybil Attack on a tournament T , and the
property of Asymptotically Strongly Sybil-Proof (ASSP) for a tournament rule
r, both of which will be relevant in our discussion in Sect. 5.

Definition 9 (Sybil Attack). Given a tournament T , a team u1 ∈ T and an
integer m, define Syb(T, u1,m) to be the set of tournaments T ′ satisfying the
following properties:

1. The set of teams in T ′ consists of u2 . . . , um and all teams in T
2. If a, b are teams in T , then a beats b in T ′ if and only if a beats b in T .
3. If a �= u1 is a team in T and i ∈ [m], then ui beats a in T ′ if and only if u1

beats a in T
4. The match between ui and uj can be arbitrary for each i �= j

Intuitively, Syb(T, u1,m) is the set of all Sybil attacks of u1 at T with m
Sybils. Each Sybil attack is a tournament T ′ ∈ Syb(T, u1,m) obtained by start-
ing from T and creating m Sybils of u1 (while counting u1 as a Sybil of itself).
Each Sybil beats the same set of teams from T\u1 and the matches between
the Sybils u1, . . . , um can be arbitrary. Every possible realization of the matches
between the Sybils gives rise to new tournament T ′ ∈ Syb(T, u1,m) (implying
Syb(T, u1,m) contains 2(

m
2 ) tournaments).

Definition 10 (Asymptotically Strongly Sybil-Proof). A tournament
rule r is Asymptotically Strongly Sybil-Proof (ASSP) if for any tournament T ,
team u1 ∈ T which is not a Condorcet winner,

lim
m→∞ max

T ′∈Syb(T,u1,m)
ru1,...,um

(T ′) = 0

Informally speaking, Definition 10 claims that r is ASSP if the probability that
a Sybil wins in the most profitable Sybil attack on T with m Sybils, goes to zero
as m goes to ∞.

3 Basic Properties of RDM and Examples

In this section we consider a few basic properties of RDM and several exam-
ples on small tournaments. We will refer to those examples in our analysis later.
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Throughout the paper we will denote RDM by r and it will be the only tour-
nament rule we consider. We next state the first-step analysis observation that
will be central to our analysis throughout the paper. For the remainder of the
section let for a match e denote by T |e the tournament obtained from T by
eliminating the loser in e. Let S|e = S\x, where x is the loser in e. Let dx denote
the number of teams x loses to and T\x the tournament obtained after removing
team x from T .

Observation 3 (First-step analysis). Let S be a subset of teams in a tour-
nament T . Then

rS(T ) =
1

(
n
2

)
∑

e

rS|e(T |e) = 1
(
n
2

)
∑

x

dxrS\x(T\x)

(if S = {v}, then we define rS\v(T\v) = 0, and if x �∈ S, then S\x = S)

Proof. The first equality follows from the fact that after we play e we are left
with the tournament T |e and we sum over all possible e in the first round. To
prove the second equality, notice that for any x the term rS\x(T\x) appears
exactly dx times in

∑
e rS|e(T |e) because x loses exactly dx matches.

This first-step analysis observation can be used to show that adding teams that
lose to every other team does not change the probability distribution of the
winner.

Lemma 1. Let T be a tournament and u ∈ T loses to everyone. Then for all
v �= u, we have rv(T ) = rv(T\u).

Proof. See full version [5] for a proof.

As a natural consequence of Lemma 1 we show that the most manipulable
tournament on n + 1 teams is at least as manipulable as the most manipulable
tournament on n teams.

Lemma 2. αr
k,n ≤ αr

k,n+1

Proof. See Appendix A.1 of [5] for a proof.

We now show another natural property of RDM, which is a generalization of
Condorcet-consistent (Definition 4), namely that if a group of teams S wins all
its matches against the rest of teams, then a team from S will always win.

Lemma 3. Let T be a tournament and S ⊆ T a group of teams such that every
team in S beats every team in T\S. Then, rS(T ) = 1.

Proof. See Appendix A.1 of [5] for a proof.

As a result of Lemma 3 RDM is Condorcet-Consistent. As expected, RDM
is also monotone (See Definition 6).

Lemma 4. RDM is monotone.
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Proof. See Appendix A.1 of [5] for a proof.

Lemma 1 tells us that adding a team which loses to all other teams does not
change the probability distribution of the other teams winning. Lemmas 1, 2, 3,
4 will be useful in our later analysis in Sects. 4 and 5. Now we consider a few
examples of tournaments and illustrate the use of first-step analysis (Observation
3) to compute the probability distribution of the winner in them.

1. Let T = {a, b, c}, where a beats b, b beats c and c beats a. By symmetry of
RDM, we have ra(T ) = rb(T ) = rc(T ) = 1

3 .
2. Let T = {a, b, c} where a beats b and c. Then clearly, ra(T ) = 1 and rb(T ) =

rc(T ) = 0.
3. By Lemma 1, it follows that the only tournament on 4 teams whose prob-

ability distribution cannot be reduced to a distribution on 3 teams is the
following one T = {a1, a2, a3, a4}, where ai beats ai+1 for i = 1, 2, 3, a4 beats
a1, a1 beats a3 and a2 beats a4. By using what we computed in (1) and (2)
combined with Lemma 1 we get by first step analysis

ra1(T ) =
1
6
(ra1(T\a2) + 2ra1(T\a3) + 2ra1(T\a4)) =

1
6
(
1
3
+

2
3
+ 2) =

1
2

ra2(T ) =
1
6
(ra2(T\a1) + 2ra2(T\a3) + 2ra2(T\a4)) =

1
6
(1 +

2
3
) =

5
18

ra3(T ) =
1
6
(ra3(T\a1) + ra3(T\a2) + 2ra3(T\a4)) =

1
6
(
1
3
) =

1
18

ra4(T ) =
1
6
(ra4(T\a1) + ra4(T\a2) + 2ra4(T\a3)) =

1
6
(
1
3
+

2
3
) =

1
6

The above examples are really important in our analysis because: a) we will
use them in later for our lower bound example in Sect. 4.1, and b) they are a
short illustration of first-step analysis.

In the following subsection, we review prior results for 2-team manipulations
in RDM, which will also be useful for our treatment of the main result in Sect. 4.

3.1 Recap: Tight Bounds on 2-Team Manipulations in RDM

[6] (Theorem 5.2) proves that RDM is 2-SNM- 13 and that this bound is tight,
namely αRDM

2 = 1
3 . We will rely on this result in Sect. 4.

Theorem 4 (Theorem 5.2 in [6]). αRDM
2 = 1

3

[17] (Theorem 3.1) proves that the bound of 1
3 is the best one can hope to

achieve for a Condorcet-consistent rule.

Theorem 5 (Theorem 3.1 in [17]). There is no Condorcet-consistent tourna-
ment rule on n players (for n ≥ 3) that is 2-SNM-α for α < 1

3

We prove the following useful corollary, which will be useful in Sect. 4.



282 A. Dinev and S. M. Weinberg

Corollary 1. Let T be a tournament and u, v ∈ T two teams such that there is
at most one match in which a team in {u, v} loses to a team in T\{u, v}. Then

ru,v(T ) ≥ 2
3

Proof. See full version [5] for proof.

4 Main Result: αRDM
3 = 31/60

The goal of this section is to prove that no 3 teams can improve their probability
of winning by more than 31

60 and that this bound is tight. We prove the following
theorem

Theorem 6. αRDM
3 = 31

60

Our proof consists of two parts:

– Lower bound: αRDM
3 ≥ 31

60 , for which we provide a tournament T and a set
S of size 3, which can manipulate to increase their probability by 31

60
– Upper bound: αRDM

3 ≤ 31
60 , for which we provide a proof that for any tourna-

ment T no set S of size 3 can increase their probability of winning by more
than 31

60 , i.e. RDM is 3-SNM- 3160

4.1 Lower Bound

Let r denote RDM. Denote by Bx the set of teams which team x beats. Consider
the following tournament T = {u, v, w, a, b}:

Ba = {u, v, b}, Bb = {u, v}, Bu = {v, w}, Bv = {w}, Bw = {a, b}
Let S = {u, v, w}. By first-step analysis (Observation 3) and by using our knowl-
edge in Sect. 3 for tournaments on 4 teams we can show that ru,v,w(T ) = 29

60
(see full version [5] for full analysis) Let u and v throw their matches with
w. i.e. T ′ is S-adjacent to T , where in T ′, w beats u and v and all other
matches have the same outcomes as in T . Then, since w is a Condorcet win-
ner, ru,v,w(T ′) = rw(T ′) = 1. Therefore,

αRDM
3 ≥ ru,v,w(T ′) − ru,v,w(T ) = 1 − 29

60
=

31
60

Thus, αRDM
3 ≥ 31

60 as desired.

4.2 Upper Bound

Suppose we have a tournament T on n ≥ 3 vertices and S = {u, v, w} is a set of
3 (distinct) teams, where S will be the set of manipulator teams. Let I be the
set of matches in which a team from S loses to a team from T\S. Our proof for
αRDM

k ≤ 31
60 will use the following strategy
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– In the following section we introduce the first-step analysis framework by
considering possible cases for the first played match. In each of these cases
the loser of the match is eliminated and we are left with a tournament with
one less team. We pair each match in T with its corresponding match in
T ′ and we bound the gains of manipulation in each of the following cases
separately (these correspond to each of the terms A,B, and C respectively in
the analysis in the next section).

• The first match is between two teams in S (there are 3 such matches).
• The first match is between a team in S and a team in T\S and the team

from S loses in the match (there are |I| such matches).
• The first match is any other match not covered by the above two cases

– We prove that if |I| ≤ 4, then αRDM
S (T ) ≤ 31

60 (i.e. the set of manipulators
cannot gain more than 31

60 by manipulating).
– We prove that if T is the most manipulable tournament on n vertices (i.e.

αRDM
S (T ) = αRDM

3,n ), then αRDM
S (T ) ≤ |I|+7

3(|I|+3)

– We combine the above facts to finish the proof of Theorem 6

We first introduce some notation that we will use throughout this section.
Suppose that T ′ and T are S-adjacent. Recall from Sect. 3 that for a match
e = (i, j), T |e is the tournament obtained after eliminating the loser in e. Also
dx is the number of teams that a team x loses to in T . For x ∈ S, let �x denote
the number of matches x loses against a team in S when considered in T and
let �′

x denote the number of matches that x loses against a team in S when
considered in T ′. Let d∗

x denote the number of teams in T\S that x loses to.
Notice that since T and T ′ are S-adjacent, x ∈ S loses to exactly d∗

x teams in
T ′\S when considered in T ′. Let G = I ∪ {uv, vw, uw} be the set of matches in
which a team from S loses.

The First Step Analysis Framework. Notice that in the first round of RDM,
a uniformly random match e from the

(
n
2

)
matches is chosen. If e ∈ G then we

are left with T\x where x loses in e for some x ∈ S. If e �∈ G, we are left with
T |e and all teams in S are still in the tournament. For x ∈ S, there are �x

matches in which they lose to a team from S and d∗
x matches in which they lose

to a team from T\S. We consider each of these cases and use first-step analysis
(Observation 3) for both T and T ′ to obtain (see full version [5] for details)

ru,v,w(T ′) − ru,v,w(T ) =
1

(
n
2

) (A + B + C) (1)

where

A =
∑

x∈{u,v,w}
�′
xr{u,v,w}\x(T ′\x) − �xr{u,v,w}\x(T\x)

B =
∑

x∈S

d∗
x(r{u,v,w}\x(T ′\x) − r{u,v,w}\x(T\x))

C =
∑

e/∈G

ru,v,w(T ′|e) − ru,v,w(T |e)
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Upper Bounds on A, B and C. We now prove some bounds on the terms A,
B and C (defined in Sect. 4.2) which will be useful later. Recall that I denotes
the set of matches in which a team from S loses from a team from T\S. We
begin with bounding A in the following lemma

Lemma 5. For all S-adjacent T and T ′, we have A ≤ 7
3 . Moreover, if |I| ≤ 1,

then A ≤ 1.

Proof. See Appendix A.2 in [5] for a proof.

Next, we show the following bound on the term B.

Lemma 6. For all S-adjacent T, T ′ we have

B ≤ d∗
u + d∗

v + d∗
w

3
=

|I|
3

Moreover, if |I| ≤ 1, then B = 0

Proof. See Appendix A.2 in [5] for a proof.

We introduce some more notation. For n ∈ N, define Mn(a1, a2, a3) as the maxi-
mum winning probability gain that three teams {u, v, w} can achieve by manip-
ulation in a tournament T of size n, in which there are exactly ai teams in T\S
each of which beats exactly i teams of S. Formally,

Mn(a1, a2, a3) = max
{

rS(T ′) − rS(T )|T, T ′ are S-adjacent, |T | = n, |S| = 3,

ai teams in T\S beat exactly i teams in S
}

Additionally, let Li be the set of teams in T\S each of which beats exactly i
teams in S. Let Q be the set of matches in which two teams from Li play against
each other or in which a team from Li loses to a team from S for i = 1, 2, 3.
Notice that |Q| = 2a1 + a2 +

(
a1
2

)
+

(
a2
2

)
+

(
a3
2

)
if there are ai teams in S\T each

of which beat i teams from S.
With the new notation, we are now ready to prove a bound on the term C.

Recall that
C =

∑

e/∈G

ru,v,w(T ′|e) − ru,v,w(T |e)

where G = I ∪ {uv, vw, uw} is the set of matches in which a team from S loses.
Then we have the following bound on C.

Lemma 7. For all S-adjacent T and T ′ we have that C is at most

(2a1 +
(

a1

2

)
)Mn−1(a1 − 1, a2, a3) + (a2 +

(
a2

2

)
)Mn−1(a1, a2 − 1, a3)

+
(

a3

2

)
Mn(a1, a2, a3 − 1) +

∑

e/∈G∪Q

ru,v,w(T ′|e) − ru,v,w(T |e)
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Proof. See Appendix A.2 in [5] for a proof.

The Case |I| ≤ 4. We summarize our claim when |I| ≤ 4 in the following
lemma

Lemma 8. Let T be a tournament, and S a set of 3 teams. Suppose that there
are at most 4 matches in which a team in S loses to a team in T\S (i.e. |I| ≤ 4).
Then αRDM

S (T ) ≤ 31
60

Proof. We will show that Mn(a1, a2, a3) ≤ f(a1, a2, a3) by induction on n ∈ N

for the values of (a1, a2, a3) and f(a1, a2, a3) given in Table 1 below. Notice that
when there are at most 4 matches between a team in S and a team in T\S, in
which the teams from S loses, then we fall into one of the cases shown in the
table for (a1, a2, a3).

Table 1. Upper bounds on Mn(a1, a2, a3)

(a1, a2, a3) f(a1, a2, a3)

(0, 0, 0) 0
(1, 0, 0) 1

6

(2, 0, 0) 23
60

(3, 0, 0) 407
900

(4, 0, 0) 4499
9450

(0, 1, 0) 1
2

(0, 2, 0) 31
60

(1, 1, 0) 1
2

(2, 1, 0) 131
260

(0, 0, 1) 0
(1, 0, 1) 11

27

1. Base case. Our base case is when n = 3. If we are in the case of 3
teams then S wins with probability 1, so the maximum gain S can achieve by
manipulation is clearly 0, which satisfies all of the bounds in the table.

2. Induction step. Assume that Mk(a1, a2, a3) ≤ f(a1, a2, a3) hold for all
k < n and a1, a2, a3 as in Table 1. We will prove the statement for k = n. By
using the upper bounds on A,B,C in Lemmas 5–7 and the inductive hypothesis
we can show that (see [5] for full analysis)
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Mn(a1, a2, a3) ≤ 1
(
n
2

)

[

A′ + B′ + (2a1 +
(

a1

2

)
)f(a1 − 1, a2, a3)

+ (a2 +
(

a2

2

)
)f(a1, a2 − 1, a3) +

(
a3

2

)
f(a1, a2, a3 − 1)

+ (
(

n

2

)
− 3(1 + a1 + a2 + a3) −

(
a1

2

)
−

(
a2

2

)
−

(
a3

2

)
)f(a1, a2, a3)

]

( Δ )

where A′ = 1 and B′ = 0 if |I| ≤ 1 and A′ = 7
3 and B′ = |I|

3 if |I| ≥ 2. Next, we
apply the formula (Δ) to each of the cases in Table 1, to obtain Mn(a1, a2, a3) ≤
f(a1, a2, a3). We defer the reader to [5] for full details.

This finishes the induction and the proof for the bounds in Table 1. Note that
f(a1, a2, a3) ≤ 31

60 for all a1, a2, a3 in Table 1 and this bounds is achieved when
(a1, a2, a3) = (0, 2, 0) i.e. there are 2 teams that beat exactly two of S as is the
case in the optimal example in Sect. 4.1. Thus,we get that if there are at most
4 matches that a team from S loses from a team in T\S, then αRDM

S (T ) ≤ 31
60 .

This finishes the proof of the lemma.

General Upper Bound for the Most Manipulable Tournament

Lemma 9. Suppose that αRDM
S (T ) = αRDM

3,n . Let I be the set of matches a team
of S loses to a team from T\S. Then

αRDM
3,n = αRDM

S (T ) ≤ |I| + 7
3(|I| + 3)

Proof. Let T and T ′ be S-adjacent tournaments on n vertices such that S =
{u, v, w} and

αRDM
3,n = αRDM

S (T ) = rS(T ′) − rs(T )

I.e. T is the “worst” example on n vertices. By (1) we have

αRDM
3,n =

1
(
n
2

) (A + B + C)

where A,B and C were defined in Sect. 4.2. By Lemma 5 we have

A ≤ 7
3

and by Lemma 6

B ≤ d∗
u + d∗

v + d∗
w

3
=

|I|
3
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Let e /∈ G. Notice that both T ′|e and T |e are tournaments on n − 1 vertices
and by definition of G, u, v, w are not eliminated in both T ′|e and T |e. Moreover,
T ′|e and T |e are S-adjacent. Therefore, for every e /∈ G, we have by Lemma 2

ru,v,w(T ′|e) − ru,v,w(T |e) ≤ αRDM
3,n−1 ≤ αRDM

3,n

By using the above on each term in C and the fact that |G| = 3 + |I|, we get
that

C ≤ (
(

n

2

)
− (3 + |I|))αRDM

3,n

By using the above 3 bounds we get

αRDM
3,n ≤ 1

(
n
2

) (
7
3
+

|I|
3

+ (
(

n

2

)
− (3 + |I|))αRDM

3,n )

⇐⇒ (|I| + 3)αRDM
3,n ≤ |I| + 7

3

⇐⇒ αRDM
3,n = αRDM

S (T ) ≤ |I| + 7
3(|I| + 3)

as desired.

Proof of Theorem 6. Suppose that T is the most manipulable tournament on
n vertices i.e. it satisfies αRDM

S (T ) = αRDM
3,n . If |I| ≤ 4, then by Lemma 8, we

have that
αRDM
3,n = αRDM

S (T ) ≤ 31
60

If |I| ≥ 5, then by Lemma 9

αRDM
3,n = αRDM

S (T ) ≤ |I| + 7
3(|I| + 3)

≤ 5 + 7
3(5 + 3)

=
1
2

where above we used that x+7
3(x+3) is decreasing for x ≥ 5. Combining the above

bounds, we obtain αRDM
3,n ≤ 31

60 for all n ∈ N. Therefore,

αRDM
k = max

n∈N

αRDM
k,n ≤ 31

60

which proves the upper bound and finishes the proof of Theorem 6.

5 Sybil Attacks on Tournaments

5.1 Main Results on Sybil Attacks on Tournaments

Recall our motivation from the Introduction. Imagine that a tournament rule is
used as a proxy for a voting rule to select a proposal. The proposals are com-
pared head-to-head, and this constitutes the pairwise matches in the resulting
tournament. A proposer can try to manipulate the protocol with a Sybil attack



288 A. Dinev and S. M. Weinberg

and submit many nearly identical proposals with nearly equal strength relative
to the other proposals. The proposer can choose to manipulate the outcomes
of the head-to-head comparisons between two of his proposals in a way which
maximizes the probability that a proposal of his is selected. In the tournament T
his proposal corresponds to a team u1, and the tournament T ′ resulting from the
Sybil attack is a member of Syb(T, u1,m) (Recall Definition 9). The questions
that we want to answer in this section are: (1) Can the Sybils manipulate their
matches to successfully increase their collective probability of winning? and (2)
Is it beneficial for the proposer to create as many Sybils as possible?

The first question we are interested in is whether any group of Sybils can
manipulate successfully to increase their probability of winning. It turns out
that the answer is No. We first prove that the probability that a team that is
not a Sybil wins does not depend on the matches between the Sybils.

Lemma 10. There exists a function q that takes in as input integer m, tourna-
ment T , team u1 ∈ T , and team v ∈ T\u1 with the following property. For all
T ′ ∈ Syb(T, u1,m), we have

rv(T ′) = q(m,T, u1, v)

where the dependence on u1 is encoded as the outcomes of its matches with the
rest of T .

Proof. See Appendix A.3 in [5] for a full proof.

Note that by Lemma 10 rv(T ′) = q(m,T, u1, v) does not depend on which
tournament T ′ ∈ Syb(T, u1,m) is chosen. Now, we prove our first promised
result. Namely, that no number of Sybils in a Sybil attack can manipulate the
matches between them to increase their probability of winning.

Theorem 7. Let T be a tournament, u1 ∈ T a team, and m and integer. Let
T ′
1 ∈ Syb(T, u1,m). Let S = {u1, . . . , um}. Then

αRDM
S (T ′

1) = 0

Proof. Let T ′
1 and T ′

2 be S-adjacent. By Definition 9, T ′
2 ∈ Syb(T, u1,m). There-

fore by Lemma 10, rv(T ′
1) = rv(T ′

2) = q(m,T, u1, v) for all v ∈ T\u1. Using this
we obtain

rS(T ′
1) = 1 −

∑

v∈T\u1

rv(T ′
1) = 1 −

∑

v∈T\u1

rv(T ′
2) = rS(T ′

2)

Therefore, rS(T ′
1) = rS(T ′

2) for all S-adjacent T ′
1, T

′
2, which implies the desired

result.

We are now ready to prove our second main result. Namely, that RDM is
Asymptotically Strongly Sybil-Proof (Definition 10). Before we present the result
(Theorem 8) we will try to convey some intuition for why RDM should be ASSP.
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Let u1 be a team to create Sybils of (u1 is not Condorcet Winner). Let A be
the set of teams which u1 beats and B the set of teams which u1 loses to in
T . Observe that the only way a Sybil can win is when all the teams from B
are eliminated before all the Sybils. The teams from B can only be eliminated
by teams from A. However, as m increases there are more Sybils and, thus, the
teams from A are intuitively more likely to all lose the tournament before the
teams from B. When there are no teams from A left and at least one team from
B left, no Sybil can win. In fact, this intuition implies something stronger than
RDM being ASSP: the collective winning probability of the Sybils and the teams
from A converges to 0 as m converges to ∞ (or, equivalently, the probability that
a team from B wins goes to 1). This intuition indirectly lies behind the technical
details of the proof of Theorem 8. Let p(m,T, u1) be the collective probability
that any Sybil or a team in A wins. It is not hard to see that by Lemma 10 it
doesn’t depend on the matches between the Sybils (see [5] for full details). Then
we have the following theorem.

Theorem 8. Randomized Death Match is Asymptotically Strongly Sybil-Proof.
In fact a stronger statement holds, namely if u1 ∈ T is not a Condorcet winner,
then

lim
m→∞ p(m,T, u1) = 0

Proof. See Appendix A.3 in [5] for a full proof.

5.2 On a Counterexample to an Intuitive Claim

We will use Theorem 8 to prove that RDM does not satisfy a stronger version
of the monotonicity property in Definition 6. First, we give a generalization of
the definition for monotonicity given in Sect. 3

Definition 11 (Strongly monotone). Let r be a tournament rule. Let T and
let C ∪D be any partition of the teams in T into two disjoint sets. A tournament
rule r is strongly monotone for every (u, v) ∈ C × D, if T ′ is {u, v}-adjacent to
T such that u beats v in T ′ we have rC(T ′) ≥ rC(T )

Intuitively, r is Strongly monotone if whenever flipping a match between a team
from C and a team from D in favor of the team from C makes C better off. Notice
that if |C| = 1 this is the usual definition of monotonicity (Definition 6), which is
satisfied by RDM by Lemma 4. However, RDM is not strongly monotone, even
though strong monotonicity may seem like an intuitive property to have.

Theorem 9. RDM is not strongly monotone

Proof. See [5] for a proof.
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6 Conclusion and Future Work

We use a novel first-step analysis to nail down the minimal α such that RDM is
3-SNM-α. Specifically, our main result shows that αRDM

3 = 31
60 . Recall that this

is the first tight analysis of any Condorcet-consistent tournament rule for any
k > 2, and also the first monotone, Condorcet-consistent tournament rule that
is k-SNM-α for any k > 2, α < 1. We also initiate the study of manipulability
via Sybil attacks, and prove that RDM is Asymptotically Strongly Sybil-Proof.

Our technical approach opens up the possibility of analyzing the manip-
ulability of RDM (or other tournament rules) whose worst-case examples are
complicated-but-tractable. For example, it is unlikely that the elegant coupling
arguments that work for k = 2 will result in a tight bound of 31/60, but our app-
roach is able to drastically reduce the search space for a worst-case example, and
a tractable case analysis confirms that a specific 5-team tournament is tight. Our
approach can similarly be used to analyze the manipulability of RDM for k > 3,
or other tournament rules. However, there are still significant technical barriers
for future work to overcome in order to keep analysis tractable for large k, or for
tournament rules with a more complicated recursive step. Still, our techniques
provide a clear approach to such analyses that was previously non-existent.
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Abstract. We consider the participatory budgeting problem where each
of n voters specifies additive utilities over m candidate projects with
given sizes, and the goal is to choose a subset of projects (i.e., a commit-
tee) with total size at most k. Participatory budgeting mathematically
generalizes multiwinner elections, and both have received great attention
in computational social choice recently. A well-studied notion of group
fairness in this setting is core stability : Each voter is assigned an “entitle-
ment” of k

n
, so that a subset S of voters can pay for a committee of size

at most |S| · k
n
. A given committee is in the core if no subset of voters

can pay for another committee that provides each of them strictly larger
utility. This provides proportional representation to all voters in a strong
sense. In this paper, we study the following auditing question: Given a
committee computed by some preference aggregation method, how close
is it to the core? Concretely, how much does the entitlement of each voter
need to be scaled down by, so that the core property subsequently holds?
As our main contribution, we present computational hardness results for
this problem, as well as a logarithmic approximation algorithm via linear
program rounding. We show that our analysis is tight against the linear
programming bound. Additionally, we consider two related notions of
group fairness that have similar audit properties. The first is Lindahl
priceability, which audits the closeness of a committee to a market clear-
ing solution. We show that this is related to the linear programming
relaxation of auditing the core, leading to efficient exact and approxi-
mation algorithms for auditing. The second is a novel weakening of the
core that we term the sub-core, and we present computational results for
auditing this notion as well.
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1 Introduction

The participatory budgeting problem [1,6,12,19,24] is motivated by real-world
elections where voters decide which projects a city should fund subject to a
budget constraint on the total cost of these projects. In this problem, there
are m candidate projects forming a set C, and n voters. Each candidate j is
associated with a size/cost sj .

The multiwinner election problem [2,9,14,18,36] is commonly seen in prac-
tice, and has received significant research attention recently. Mathematically, it
is a specialization of the participatory budgeting problem, where each candidate
is of the same unit size.

In both settings, our goal is to pick a subset T ⊆ C of candidates – which we
call a committee – with total size at most a given value k, that is,

∑
j∈T sj ≤ k.

Each voter i has a utility function Ui(T ) over subsets T ⊆ C of candidates. In
this paper, we assume the utility functions {Ui} are additive across candidates.
For some of our results, we also look at the more restricted case of multiwinner
elections with approval (i.e. 0/1-additive) utilities: Each candidate is of unit size;
each voter i “approves” a subset Ai ⊆ C of candidates, and for any committee T ,
the utility function of voter i is simply Ui(T ) = |T ∩Ai|, the number of approved
candidates in the committee. We call this the Approval Election setting.

Core Stability. In both multiwinner elections and participatory budgeting, the
methods used to aggregate preferences of voters are typically very simple, for
instance, choosing the candidates who receive the most approval votes. This
leads to a tension of such rules with fairness of the resulting outcome in terms
of proportional representation of minority opinions, and a social planner may
want to quantify this tension for any given election.

A notion of fairness in this context, which has been studied for over a cen-
tury, is that of core stability [17,20,29,35,36]. This captures a strong notion of
proportional representation. Given a committee W of size k, think of k as a
budget, and split it equally among the n voters, so that each voter is entitled to
a budget of k

n . For any subset S ⊆ [n] of voters, their total entitlement is |S| · k
n .

If there is another committee T of size at most the entitlement |S| · k
n , such that

each voter i ∈ S strictly prefers T to W , i.e., Ui(T ) > Ui(W ) for all i ∈ S, then
these voters would have a justified complaint with W . A committee W where
no subset S ⊆ [n] of voters have a justified complaint is termed core stable.

The core has a “fair taxation” interpretation [23,29]. The quantity k
n can be

thought of as the tax contribution of a voter, and a committee in the core has
the property that no sub-group of voters could have spent their share of tax
money in a way that all of them were better off. It subsumes notions of fairness
such as Pareto-optimality, proportionality, and various forms of justified repre-
sentation [3,4,22] that have been extensively studied in multiwinner election and
fairness literature. Note that the core is oblivious to how the demographic slices
are defined – it attempts to be fair to all subsets of voters. This is a desirable fea-
ture in practice, since demographic slices are often not known upfront, and there
could be hidden sub-groups that can only be inferred from voter preferences.
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Approximate Stability. The core is a very appealing group fairness notion; how-
ever, even in very simple settings, the core could be empty [20]. This motivates
approximation, where the entitlement k

n of each voter is scaled by a factor of θ.

Definition 1. For θ ≤ 1, a committee W of size at most k lies in the θ-
approximate core if for all S ⊆ [n], there is no deviating committee T with
size at most θ · |S| · k

n , such that for all i ∈ S, we have Ui(T ) > Ui(W ).

It is known [25] that a 1
32 -approximate core solution always exists for very

general utility functions of the voters.

Auditing for Approximate Stability. Though the existence of approximate core
solutions is a strong positive result, the algorithms for finding such solutions are
often complex. Indeed, even in settings where the core is known to be always
non-empty, for instance when candidates can be chosen fractionally [23], the non-
emptiness is an existence result that needs an expensive fixed point computation.
On the other hand, in practice, what are implemented are typically the simplest
and most explainable social choice methods such as Single Transferable Vote
(STV). Therefore, from the perspective of a societal decision maker, such as a
civic body running a participatory budgeting election, it becomes important to
answer the following auditing question for any given election:

Given a committee W of size at most k found by some implemented pref-
erence aggregation method, how close is it to being core stable, i.e., what
is the smallest value of θc such that W does not lie in the θc-approximate
core for that instance?

Note that if a committee W lies in the core, then θc > 1, else θc ≤ 1. Such an
auditing question is useful even if the decision maker themselves is not sensitive
for fairness because it allows for review of implemented decision rules via a third
party or government agency. Further, the set of deviating voters that correspond
to the θc-approximation yield a demographic that are unhappy with the current
outcome, and this can be analyzed further by policy makers.

We term the above question as the core auditing problem. In this paper, we
study the computational complexity of core auditing. In that process, we define
both stronger and weaker notions of fairness and audit these notions as well.

1.1 Our Results

Hardness and Approximation Algorithm. We show in Sect. 3 that for Approval
Elections, the value of θc in the core auditing problem is NP-Hard to approx-
imate to a factor better than 1 + 1

e > 1.367. We further show that this APX-
Hardness persists even when voters are allowed to choose a fractional deviating
committee. We also show that the problem remains NP-Hard when each voter
approves a constant number of candidates, and each candidate is approved by
a constant number of voters. These results significantly strengthen the NP-
Hardness result presented in [11].
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On the positive side, in Sect. 4, we design an O(min(logm, log n)) approxima-
tion algorithm for the value θc, where m and n are the number of candidates and
voters respectively. We do this via linear program rounding. Our program (and
indeed, our auditing question itself) is an interesting generalization of the densest
subgraph problem [15], where the goal is to choose a subgraph with maximum
average degree. Given a graph, treat voters as edges and candidates as vertices
that are approved by the incident edges; further assume any voter needs utility
2 (that is, both end-points) in a feasible deviation. Then, the value of θc is pre-
cisely the density of the densest subgraph (to scaling). We combine ideas from
the rounding for densest subgraph (where the rounding produces the integer
optimum without approximation) with that from maximum coverage to design
our rounding scheme. We further show that our linear program has an integral-
ity gap of Ω(min(logm, log n)), showing that we cannot do any better against
an LP lower bound. Our proof in Sect. 4 applies to the Approval Election
setting. We extend this to general candidate sizes and arbitrary additive utili-
ties via knapsack cover inequalities in Sect. 5, leading to an O(min(logm, log n))
approximation factor. In the full paper [31], we show that both our hardness
and approximation results easily extend to settings where candidates can be
fractionally chosen in the committees.

It is an interesting question to close the gap between our hardness result
(constant factor) and our approximation ratio. The difficulty lies with density
problems in general, where hardness of approximation results have been hard to
come by; see for instance, the k-densest subgraph problem [27].

Lindahl Priceability. A closely related notion of fairness, considered in [23,29,
32,33] is that of committees that can be supported by market clearing prices.
The notion of Lindahl equilibrium is a pricing scheme that strengthens the core,
meaning that if the former exists, it lies in the core. In this scheme, each voter
i is assigned price pij for candidate j, and these prices are such that for any
candidate, the total price is equal to its size. If a voter buys their optimal set
of candidates subject to the total price paid being at most their entitlement,
k/n, then all voters choose the same committee. This is therefore a market
clearing notion with per-voter prices such that the optimal voter action given
these prices and equal entitlements results in a common committee being chosen.
If committees could be chosen fractionally, it is known via a fixed point argument
that the Lindahl equilibrium always exists [23]. However, these need not exist
when considering integer committees.

In this paper, we consider an integer version of this concept that we term
Lindahl priceability. We show that this notion implies the core. As with the core,
in Sect. 6, we define the approximation factor θ� to which a given committee
satisfies Lindahl priceability, via scaling the entitlement k/n of each voter by
that factor. We show via LP duality not only that the quantity θ� can be audited
in polynomial time for approval elections, but also that this computation
coincides with the LP relaxation to the core auditing program. This results in
a novel and somewhat surprising connection between the Lindahl priceability
and the core for Approval elections, where the approximation factor θ� for
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Lindahl priceability is found via the LP relaxation to the program that computes
the approximation factor θc for the core. Further, our approach easily extends
to show computational results for general utilities and sizes.

Our notion is related to the cost efficient Lindahl equilibrium proposed
recently in [33] for Approval elections. However, there is a crucial difference:
While they translate the fractional Lindahl equilibrium to the integer case, we
translate the gradient optimality conditions implied by the fractional equilib-
rium to the integer case. To illustrate that our definition is different, note that
while there are simple instances of Approval elections on which the former
notion does not exist, we do not know such an instance for our definition.

Weak Priceability and Sub-core. In Sect. 7, we finally connect our work to another
notion of priceability first studied in [34]. This notion is a relaxation of Lindahl
priceability for Approval elections, where voters cannot greedily augment the
current committee given the prices and their entitlement. We term this “weak
priceability” and use this to define a new relaxation of the core, termed sub-core,
which only allows voters to deviate and gain utility from super-sets. We show
that weakly priceable committees lie in the sub-core. Further, though the sub-
core appears like a weak notion of fairness, we show that it remains NP-Hard to
audit. We finally present an O(min(logm, log n)) approximation to the auditing
question using same techniques as for auditing the core.

In practice, committees found by social choice rules are likely to be much
better approximations to the sub-core compared to the core. Hence, it is desirable
to show a practitioner closeness to weaker notions of fairness such as the sub-core
in addition to closeness to the core.

Omitted Proofs. For lack of space, all omitted proofs are in the full paper [31].

1.2 Related Work

Proportionality in Social Choice. The earliest work that considers propor-
tional representation dates back to the late 1800’s [17], and several voting rules
attempting to achieve it, such as PAV [36] and Phragmén [10] rules also date
back to then. There has been resurgence of interest in axiomatizing proportion-
ality [3,4,8,14,22,30] partly driven by real-world applications of such elections
to areas such as participatory budgeting [1,6,24], and partly due to local bodies
and countries implementing rules such as ranked choice voting that attempt to
achieve proportionality, in their elections. These advances have made auditing
fairness notions such as closeness to the core and weaker group fairness notions
imperative in these settings.

Notions of Approximate Core. In addition to the notion of approximation pre-
sented in Definition 1, a different notion allows deviating voters to use their entire
entitlement, but requires them to extract at least a factor θ > 1 larger utility on
deviation. Under this notion, it is shown in [34] that a classic voting rule called
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PAV [36] achieves a 2-approximation. This result was generalized to show a con-
stant approximate core for arbitrary submodular utility functions and general
candidate sizes in [32]. An analogous result for clustering was presented in [16].
Our work directly shows that this notion of approximation can be audited in a
bicriteria fashion as follows: If the given committee is a c-approximation without
violating entitlements, we can determine if it is a c-approximation had entitle-
ments been violated by a factor of O(logm). It is an interesting open question
to remove the bicriteria nature of this result.

Auditing for Fairness. The question of auditing has become salient given the
increasing democratization of societal decision making, for instance via pro-
cesses like participatory budgeting. In the context of social choice, there are
natural properties that are easy to achieve algorithmically but hard to audit. For
instance, checking if an arbitrary outcome is Pareto-optimal is computationally
hard [5], while achieving it via some algorithm is easy. We take a further step
in this direction by studying the approximate audit of arguably the strongest
possible group fairness notion, the core, as well as related fairness properties.

Going beyond social choice, the notion of auditing for group fairness has
gained prevalence in machine learning. Here, the “voters” are data points, and the
“committee” is a classifier. We wish to audit if the classifier provides comparable
accuracy for various demographic slices. The work of [26] formulates and presents
algorithms for this problem.

2 Mathematical Program for θc

For most of this paper, we consider the Approval Election setting. Recall that
in this setting, each voter i “approves” a set Ai ⊆ C of unit-sized candidates,
and its utility for a committee T ⊆ C is simply Ui(T ) = |Ai ∩ T |. Our hardness
results hold even for this simple setting, while our approximation algorithms
hold for general additive utilities and sizes (see Sect. 5).

We first present a mathematical program that computes θc given a committee
W ⊆ C of size at most k, as in Definition 1. In this program, there is a variable
zi ∈ {0, 1} that captures whether voter i deviates, and a variable xj ∈ {0, 1} that
captures whether candidate j is present in the deviating committee. If this is a
feasible deviation, then the utility of each voter for which zi = 1 must strictly
increase, which means ∀i ∈ [n],

∑
j∈Ai

xj ≥ (Ui(W ) + 1) · zi.
Next, let R = n

k . Then, the budget available to the deviating voters is
1
R

∑
i zi, while the size of the committee to which they deviate is

∑
j∈C xj .

This means the entitlement k/n of each voter must be scaled by a factor of
R ·

∑
j∈C xj

∑
i zi

, so that the voters with zi = 1 do not have enough entitlement to
pay for this deviating committee. Since the goal is to have no deviations at all,
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the value θc is simply the solution to the following mathematical program:

Minimize R ·
∑

j∈C xj
∑

i zi
, s.t.

∀i ∈ [n],
∑

j∈C∩Ai

xj ≥ zi · (Ui(W ) + 1);

∀i ∈ [n], ∀j ∈ [m], xj , zi ∈ {0, 1}.

The above program attempts to maximize the ratio of the number of con-
straints satisfied via setting zi to 1, to the number of xj variables set to 1.

3 Hardness of Auditing the Core

As mentioned before, all hardness results in this section apply to the Approval
election setting, where the utilities are binary, and candidate sizes are unit.
We first show that the core auditing problem, that is, the problem of computing
θc for a given committee W , is NP-Hard even in a “constant degree” setting.
This strengthens an NP-Hardness result for the core in [11].

Theorem 1. Deciding whether a committee W does not lie in the core (that is,
deciding whether its θc ≤ 1) is NP-Hard when each voter approves at most 6
candidates (that is, |Ai| ≤ 6 for all voters i ∈ [n]), and each candidate lies in at
most 2 of the sets Ai.

We now show that the core auditing problem is in fact APX-Hard.

Theorem 2. For any constant γ > 0, approximating θc to within a factor of
1 + 1

e − γ is NP-Hard.

We will reduce from the maximum set coverage problem on regular instances.

Lemma 1 (Regular Maximum Coverage [21]). The universe contains qd
elements. There are ξ sets, each with d elements. It is NP-Hard to distinguish
between the following two cases:

1. “YES” instances: There exist q sets that cover the universe.
2. “NO” instances: No collection of q sets can cover (1 − 1/e+ ε) · qd elements.

Proof (Proof of Theorem 2). For each instance of the regular Max Covering
Problem, there are qd elements and ξ sets. We construct the following instance
for auditing the core:

– There are ξ main candidates. Each candidate corresponds to a set. There are
1
e (q − 1)qd dummy candidates.

– There are two group of voters. The first group contains 1
e · qd voters. They

each approve q − 1 disjoint dummy candidates, and all the main candidates.



Auditing for Core Stability in Participatory Budgeting 299

– The second group contains qd voters. Each of these voters corresponds to an
element of the covering instance. She approves the main candidates whose
corresponding set contains her corresponding element. Therefore, there are
(1 + 1/e)qd voters. Add dummy voters who do not approve any candidates,
so that the total number of voters is n = q(q − 1)d2.

– The budget for committee selection is k = (q − 1)qd. The current committee
W contains all the dummy candidates. All voters in the first group have utility
q − 1 while all voters in the second group have utility 0 in W .

– Note that each voter is assigned a budget of 1
R = k

n = (q−1)qd
q(q−1)d2 = 1

d .

If the maximum coverage instance is a “YES” instance, choose as the deviating
committee the q main candidates whose corresponding sets cover the universe.
We call a voter “satisfied” if her utility has strictly increased compared to the
current committee W . From the program in Sect. 2, θc is R = d times the mini-
mum ratio of the total number of selected candidates to the number of satisfied
voters. Since we have selected q candidates, the voters in the first group receive
utility q and are therefore satisfied. Moreover, since the chosen candidates’ cor-
responding sets cover the universe of qd elements, the voters in the second group
receive utility at least one, and are therefore satisfied. Therefore,

θc ≤ R · q

qd · (1 + 1/e)
=

1
1 + 1/e

.

Suppose the maximum coverage instance is a “NO” instance. We will show
that θc ≥ 1 − o(1). First suppose a deviating committee is composed of s < q
main candidates. These candidates can cover at most ds voters from the second
group. For the first group, they provide utility s to each voter. If t of these voters
are satisfied, we must have chosen (q − s)t dummy candidates. This means the
scaling factor needed is at least

R · s + (q − s)t
ds + t

=
s + (q − s)t

s + t/d
> 1.

If the number of main candidates in the deviating committee is at least
q, the voters in the first group are all satisfied and we don’t need to choose
dummy candidates. Consider an arbitrary q-candidate subset of these selected
candidates. All voters in the first group are satisfied by these candidates, since
they receive utility q from them. Since the coverage instance is a “NO” instance,
no more than (1 − 1/e + ε) · kd voters in the second group are satisfied by this
subset. Suppose there are r remaining candidates in the deviation, each candidate
can only increase the number of satisfied voters by at most r · d. Therefore,

θc ≥ R · q + r

r · d + (1 − 1/e + ε) · q · d + (1/e) · q · d
=

R

d
· q + r

r · d + q · d · (1 + ε)
≥ 1

1 + ε
.

Since the gap of θc between the constructed auditing instance from “YES”
instances and from “NO” instances is at least 1+1/e

1+ε , approximating θc to within
this factor is NP-Hard.
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Hardness of Auditing Fractional Committees. One natural question is whether
the above hardness stems from the integrality requirement on the committee (the
xj variables in the program in Sect. 2) or the voters (the zi variables). In the
full paper [31], we show that the auditing problem remains hard to approximate
to constant factors even when the committees can be chosen fractionally. This
corresponds to allowing the variables {xj} to be fractional in [0, 1]. This shows
that the hardness of the problem stems mainly from insisting {zi} be integral.
The proof of this result is similar to the previous proof.

4 A Logarithmic Approximation for Auditing the Core

Our main result in this section is the following theorem, which we prove for the
Approval Election setting. The proof for general candidate sizes and general
additive utilities is presented in Sect. 5.

Theorem 3. Given a committee W of size at most k, its θc value can be com-
puted within O(min(logm, log n)) factor in polynomial time, where m,n are the
total number of candidates and voters respectively.

4.1 LP Relaxation

Given a committee W , we start with the mathematical program from Sect. 2
and relax the variables to be fractional. This yields the following program. To
see that this is a relaxation, if zi = 0 for some i, then the first constraint is
trivially satisfied. On the other hand, if zi = 1, then we can increase all yij so
that yij = xj , thereby recovering the constraint in the integer program from
Sect. 2. Therefore, any solution to the integer program is a feasible solution to
the program below.

Minimize R ·
∑m

j=1 xj
∑n

i=1 zi
, s.t.

∀i ∈ [n],
∑

j∈Ai

yij ≥ zi · (Ui(W ) + 1);

∀i ∈ [n], ∀j ∈ Ai, yij ≤ xj ;
∀i ∈ [n], ∀j ∈ Ai, yij ≤ zi;

∀i ∈ [n], j ∈ [m], xj , zi, yij ≥ 0.

This can be written as a LP if we omit the denominator from the objective and
add the constraint

∑
i zi ≥ 1, and hence can be solved in polynomial time.

Denote ui = Ui(W ). For the committee W , we further denote

θp = R ·
∑m

j=1 xj
∑n

i=1 zi
(1)

where the variables are set based on the optimal solution to the linear relaxation.
Therefore, θp ≤ θc.
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4.2 Proof of Theorem 3

We will show that θp is an O(logm) approximation to θc. The proof of the
O(log n) approximation is similar and presented in the full paper [31].

By scaling the LP, we can assume that maxi{zi} = 1. Therefore, all yij ≤
zi ≤ 1 and xj = mini:j∈Ai

{yij} ≤ 1: all the variables are in the range [0, 1].

O(logm) Approximation. Given the fractional solution, we note that yij =
min(xj , zi). We now construct an integral solution by the following steps:

1. Pick α ∈ [0, 1] uniformly at random. If zi > α, set ẑi = 1; else ẑi = 0.
2. Let x′

j = max{ 1
2m2 , xj}.

3. If 2x′
j > α, then set x̂j = 1; else set x̂j = 1 with probability 2x′

j/α. We round
each x̂j independently.

4. If ẑi = 1, check if
∑

j∈Ai
min{x̂j , ẑi} ≥ ui. If so, set ˆ̂zi = 1; else set ˆ̂zi = 0.

Suppose the largest zi is zi∗ = 1, we have
∑

j∈Ai∗
yij ≥ 1. Therefore, for

some j, yi∗j ≥ 1/m. Therefore
∑m

j=1 xj ≥ 1
m . Since Step 2 increases

∑
j xj by

at most 1
2m , we have

∑
j x′

j∑
j xj

≤ 3/2.

We first bound the expectation of x̂j . If x′
j < 1/2, since x′

j ≥ 1
2m2 , we have:

E[x̂j ] =
∫ 2x′

j

α=0

1 dα +
∫ 1

α=2x′
j

2x′
j/α dα = 2x′

j + 2x′
j · lnα

∣
∣
∣
1

2x′
j

≤ 2x′
j · (1 + 2 lnm).

Therefore, we have

E

[ ∑

j

x̂j

]
≤ 2(1 + 2 lnm)

∑

j

x′
j ≤ 3(1 + 2 lnm)

∑

j

xj .

We now bound E

[∑
i
ˆ̂zi

]
. Let Pi � {j ∈ Ai : 2x′

j < α}, Qi � {j ∈ Ai : 2x′
j ≥

α}. Since x̂j = 1 for j ∈ Qi, conditioned on ẑi = 1, we have:

Pr
(
ˆ̂zi = 0

)
= Pr

⎛

⎝
∑

j∈Ai

min{x̂j , ẑi} < ui + 1

⎞

⎠ = Pr

⎛

⎝
∑

j∈Pi

x̂j < ui + 1 − |Qi|
⎞

⎠ .

By the constraints in the optimization and since yij = min(xj , zi), we have
∑

j∈Pi

min{xj , zi} +
∑

j∈Qi

min{xj , zi} ≥ zi · (ui + 1).

Since the second term is capped by zi · |Qi|, we have
∑

j∈Pi
xj ≥ zi · ((ui + 1)−

|Qi|
)
. When ẑi = 1, we have α < zi, and thus

E

⎡

⎣
∑

j∈Pi

x̂j

⎤

⎦ ≥ 2 ·
⎛

⎝
∑

j∈Pi

x′
j

⎞

⎠
/
α ≥ 2 ·((ui+1)−|Qi|

) ·zi/α ≥ 2 ·((ui+1)−|Qi|
)
.
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By Chernoff Bounds on the independent binary random variables {x̂j}, we have

Pr

⎛

⎝
∑

j∈Pi

x̂j < ui + 1 − |Qi|
∣
∣
∣ ẑi = 1

⎞

⎠ <

(
e−1/2

√
1/2

)2

= 2/e.

Therefore, we have

E

[
∑

i

ˆ̂zi

]

=
∑

i

E

[
ẑi · (

1 − Pr(ˆ̂zi = 0
)] ≥

∑

i

E

[
ẑi · (1 − 2

e
)
]

≥ (1 − 2
e
) ·

∑

i

zi.

Since {x̂j} and {ˆ̂zi} form a valid solution to the program in Sect. 2, there
exists a setting of these variables such that

∑
j x̂j

∑
i
ˆ̂zi

≤ E[
∑

j x̂j ]

E[
∑

i
ˆ̂zi]

≤ 3(1 + 2 lnm)
1 − 2/e

·
∑

j xj
∑

i zi
=

3(1 + 2 lnm)
1 − 2/e

· θp.

Therefore, we have θp ≤ θc ≤ 3(1+2 lnm)
1−2/e ·θp, completing the proof of the O(logm)

approximation. The proof of the O(log n) approximation is in the full paper [31].

4.3 Integrality Gap Instance

In the full paper [31], we prove the following theorem, which shows the analysis
in Sect. 4.2 is tight.

Theorem 4. There exists a committee s.t. θp = O
(

1
logmin(m,n)

)
and θc = Θ(1).

5 Extension to Arbitrary Utilities and Sizes

We now extend the result in the previous section to the setting where the can-
didates have general sizes sj , and voters have arbitrary additive utilities over
candidates. We assume voter i has utility uij ∈ Z+ ∪ {0} for candidate j.
Given a committee W of size at most k, the utility of voter i for the com-
mittee is Ui(W ) =

∑
j∈W uij . We restrict the utilities to be integral, so that if

Ui(T ) > Ui(W ), then Ui(T ) ≥ Ui(W ) + 1. Let Ai = {j ∈ C | uij > 0}.

LP Formulation. A natural modification to the program in Sect. 2 for θc has
unbounded integrality gap. We make two modifications to the linear program.
First, in the optimal integer solution, we guess the candidate j∗ with largest size.
This means we set xj = 0 for all j such that sj > sj∗ , and delete these items.
Since the numerator in the objective is at least sj∗ , we can set xj = 1 for all j
with sj <

sj∗
m , and this only increases the numerator by a constant factor. Let

S denote the set of these “small” items; we ignore these items, and set Ui(W ) to
be Ui(W ) − Ui(S ∩ Ai). If the latter quantity is smaller than zero, then we can
set zi = 1 and delete this voter from further consideration; this only lowers the



Auditing for Core Stability in Participatory Budgeting 303

objective. We let m denote the number of candidates and n denote the number
of voters in the residual instance. We now scale the sizes so that the remaining
items have sizes in

[
1
m , 1

]
. Let R = n

k .
Next, we add knapsack cover constraints [13,28]. Let Ûi(S) =

max(0, Ui(W ) + 1 − Ui(S)), and let uijS = min(uij , Ûi(S)) The resulting LP
is presented below. In this LP, first set of constraints can be interpreted as fol-
lows: Even if the xj for j ∈ S are all set to 1, so that voter i already has utility
Ui(S), if voter i is chosen by the integer program, the remaining {yij} must push
the total utility above Ui(W ). Further, any utility value uij on the LHS can be
truncated at Ûi(S) and the constraint should still hold. This constraint is clearly
true for any S in the integer program; the LP encodes the fractional version of
all of them.

Minimize R ·
∑m

j=1 sjxj
∑n

i=1 zi
, s.t.

∀i ∈ [n], S ⊆ [m],
∑

j∈Ai\S

uijSyij ≥ zi · Ûi(S);

∀i ∈ [n], ∀j ∈ Ai, yij ≤ min(xj , zi);
∀i ∈ [n], j ∈ [m], xj , zi, yij ≥ 0.

This LP has exponentially many constraints. For any given solution (x, y, z)
and fixed voter i, we divide the first set of constraints by zi and use the
polynomial-time dynamic programming procedure exactly as in [13] to find the
most violated constraint to a (1+ε) approximation, for constant ε > 0. Omitting
standard details, this implies the LP can be solved to a (1 + ε) approximation
in polynomial time via the Ellipsoid algorithm.

Rounding. The rounding is similar to Sect. 4.2, leading to the following theorem,
whose proof is presented in the full paper [31].

Theorem 5. For the setting with arbitrary additive utilities and sizes, θc can
be approximated to an O(min(logm, log n)) factor in polynomial time.

6 Auditing Lindahl Priceability

In this section, we study fairness of a committee in terms of closeness to market
clearing. The concept is motivated by Lindahl equilibrium [23,29], a market
clearing concept for public goods. Such market clearing notions have been widely
studied as fairness concepts in Economics [7,37]. Our main result is the following
novel connection to the core – auditing the approximation of a committee to
Lindahl priceability reduces to the LP relaxation for auditing for core stability,
hence leading to a polynomial time auditing algorithm.

We consider the Approval Election setting below. The extension to arbi-
trary utilities and sizes is presented in the full paper [31].
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6.1 Lindahl Priceability

As in the definition of core stability, we first scale the entitlements so that the
entitlement of each voter is set to 1 instead of k/n. Each candidate now requires
R = n/k entitlement to be paid for. A feasible committee of size k corresponds
to a total entitlement of n in this scaling.

A committee W of size at most k is Lindahl priceable if there exists a price
system {pij} from voters to candidates, such that the following hold:

1. ∀j ∈ [m],
∑

i pij ≤ R, and
2. ∀i ∈ [n], T ⊆ C, if |T ∩ Ai| ≥ |W ∩ Ai| + 1, then

∑
j∈T pij > 1.

The first condition above means that for each candidate, the prices from all
voters sum up to at most R = n/k, so that each candidate is not “over-paid”.
Note that the first set of constraints can be made equalities by raising the prices
{pij}, so the candidates are exactly paid for. The second condition means a voter
cannot afford any committee that she strictly prefers to W .

Lindahl priceability can be viewed as an integral version of the gradient
optimality conditions in the fractional Lindahl equilibrium [23]. As mentioned
before, this makes our definition subtly different from a related concept in [33].
Analogous to the fractional Lindahl equilibrium, the following proposition holds,
and we present a proof later in this section.

Proposition 1. If a committee is Lindahl priceable, it lies in the core.

6.2 Auditing via Duality

As with core stability, we now define the best approximation to Lindahl price-
ability achievable by a committee W . Formally, we only allow a voter to use
θp < 1 endowment if they want to deviate to a committee with larger utility.

Definition 2 (θ-Approximate Lindahl Priceability). A committee W of
size at most k is θ-approximate Lindahl priceable if there exists a price system
{pij} from voters to candidates, such that the following conditions hold:

1. ∀j ∈ [m],
∑

i pij ≤ R, and
2. ∀i ∈ [n], T ⊆ C, if |T ∩ Ai| ≥ |W ∩ Ai| + 1, then

∑
j∈T pij > θ.

The Lindahl priceability ratio of a committee W is the smallest θ for which
the committee is not θ-approximate Lindahl priceable. Our main result is the
following theorem that ties Lindahl priceability ratio to the fractional relaxation
of θc. As a corollary, this shows that determining if a committee W is Lindahl
priceable is polynomial time solvable.

Theorem 6. For a committee W , its Lindahl priceability ratio is θp from Eq.
(1).
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Proof. For simplicity, let ui = Ui(W ). Let the Lindahl priceability ratio of the
instance be θ�. Fix the prices {pij} achieving this. Then the minimum entitlement
needed for a voter i to deviate to a committee of utility larger than ui is captured
by the following linear program:

Minimize
∑

j∈Ai

pijγij , s.t.

∑

j∈Ai

γij ≥ ui + 1;

∀j ∈ Ai, γij ≤ 1;
∀j ∈ Ai, γij ≥ 0.

Here, the variable γij corresponds to the fraction to which this voter chooses
candidate j. In the optimal solution, these variables will be integers. Since the
Lindahl priceability ratio is θ�, Condition (2) of Definition 2 implies objective of
the above LP is at least θ� for any i ∈ [n].

Now take the dual of the above, where the dual variable for the first constraint
is λi and the dual variable for the second constraint is αij . We obtain:

Maximize θi, s.t.
∀j ∈ Ai, λi − αij ≤ pij ;

(ui + 1)λi −
∑

j∈Ai

αij ≥ θi;

∀j ∈ [m], λi, αij ≥ 0.

Since the optimal θi ≥ θ�, this solution satisfies (ui + 1)λi − ∑
j∈Ai

αij ≥ θ�.
Since {pij} satisfy Condition (1) in Definition 2, {pij}, {αij}, {λi} and θ = θ�

are feasible for the following program:

Maximize θ, s.t.
∀i ∈ [n], j ∈ Ai, λi − αij ≤ pij ;

∀i ∈ [n], (ui + 1)λi −
∑

j∈Ai

αij ≥ θ;

∀j ∈ [m],
∑

i∈Tj

pij ≤ R;

∀i ∈ [n], j ∈ [m], λi, αij , pij ≥ 0.

We now claim that the optimal solution to the above program must be exactly θ�.
If it is larger, this larger value θ′ must be feasible for the per-voter duals, which
means the per-voter primals have value at least θ′. Then the Lindahl priceability
is at least θ′, contradicting the definition of θ�.
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Finally, take the dual for the LP above, let yij , zi, xj respectively be the dual
variable of the three constraints. The dual is the following:

MinimizeR ·
m∑

j=1

xj , s.t.

∀i ∈ [n],
∑

j∈Ai

yij ≥ zi · (ui + 1);

∀i ∈ [n], ∀j ∈ Ai, yij ≤ xj ;
∀i ∈ [n], ∀j ∈ Ai, yij ≤ zi;

∑

i

zi ≥ 1;

∀i ∈ [n], j ∈ [m], zi, xj , yij ≥ 0.

This optimal value (which is θ�) is also the definition of θp, completing the proof.

Note that if θ� > 1, then since θc ≥ θp = θ� > 1, we have θc > 1. Therefore,
if a committee is Lindahl priceable, it lies in the core, showing Proposition 1.

7 Sub-core for Approval Elections

Given our approximation results for auditing the core, we can ask if such results
can also be derived for weaker fairness notions. Such an auditing notion would
be interesting to a practitioner in addition to auditing the core, since it is quite
likely an implemented rule and resulting committee would be closer to satisfying
a weaker but still reasonable notion of fairness compared to the core. We present
a new weakening of the core for Approval elections, that we term the sub-
core, that we show also admits approximate auditing. Note that this result is
not implied by our results for the core; indeed, there are weakenings of the core,
such as EJR, that we do not know how to efficiently audit.

7.1 Weak Priceability

In the multiwinner election setting, suppose the final condition in Lindahl price-
ability is relaxed so that each voter is only allowed to add candidates to its
deviating committee, we get the following relaxed version of priceability. Recall
that R = n/k, where n is the total number of voters.

Definition 3 (Weak Priceability). A committee W of size at most k is
weakly priceable if there exists a set of prices {pij} from each voter vi to each
candidate cj, such that the following two conditions hold:

1. ∀j ∈ [m],
∑

i pij ≤ R.
2. ∀i ∈ [n], d ∈ Ai \ W,pid +

∑
j∈Ai∩W pij > 1.

This notion is equivalent to “priceability” as proposed in [34]. Unlike Lindahl
priceability, there are many natural and greedy voting rules, such as the Phrag-
mén rule [10], that satisfy weak priceability, making it a desirable property to
study in practice.
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7.2 Sub-core

If we proceed as in the proof of Theorem 6 and take the dual of the weak
priceability ratio, we obtain a new concept of fairness that we call the sub-core.

Definition 4 (Sub-core). A committee W lies in the sub-core if there is no
S ⊆ V and committee T with |T | ≤ |S|

n · k, s.t. Ai ∩ W � Ai ∩ T for all i ∈ S.

The sub-core prevents any group of voters from deviating to a new committee in
which each voter’s approved candidates forms a proper superset of the approved
candidates in the original committee.

Clearly, any committee that lies in the core also lies in the sub-core. The
following proposition shows the sub-core is a weakening of weak priceability.

Proposition 2. If a committee is weakly priceable, then it lies in the sub-core.

Since weakly priceable committees can be easily found by greedy proce-
dures [34], this shows that the sub-core is always non-empty.

Hardness of Auditing Sub-core. Though the sub-core seems like a weak and
satisfiable fairness condition (it insists voters have no greedy deviation to a
better committee), we show that deciding if a given committee W lies in the
sub-core is actually NP-Hard. Towards this end, we observe that the core and
sub-core coincide when each voter approves at most 2 candidates (i.e., for all
voters i, we have |Ai| ≤ 2). To see this, suppose the original committee was W
and a subset of voters deviate to T . If a deviating voter had original utility zero,
then Ai ∩ W = ∅, so that Ai ∩ T � Ai ∩ W . Similarly, if |Ai ∩ W | = 1 and
|Ai ∩ T | = 2, then Ai ∩ T = Ai � Ai ∩ W . This shows any deviation satisfies the
sub-core property, so that the core coincides with the sub-core.

Theorem 7. If each voter only approves at most two candidates, deciding
whether a committee W does not lie in the sub-core (or core) is NP-Complete.

Approximately Auditing Sub-core Property. Similar to θc, we can now define a
parameter θsc showing how close a committee is to the sub-core.

Definition 5. For θ ≤ 1, a committee W of size k lies in the θ-approximate
sub-core if for all subsets of voters T ⊆ [n], there is no deviating committee T ′

with size at most θ · |T | · k
n , such that for all i ∈ T , we have Ai ∩ W � Ai ∩ T ′.

Given a committee W , θsc is defined as the smallest θ such that W is not
in the θ-approximate sub-core. The following theorem shows the sub-core can
be approximately audited. This positive result on auditing makes the sub-core
a desirable weakening of the core property.

Theorem 8. Given any committee W , θsc has an O(min(logm, log n)) approx-
imation in polynomial time, where m,n are the total number of candidates and
voters respectively.
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8 Conclusion

Note that our theoretical approximation results for auditing are worst case guar-
antees. In practice, the linear program value θp will provide a lower bound on
θc, and if this can be rounded so that the integer solution has value αθp for some
small α ≥ 1, then this sandwiches θc ∈ [θp, αθp]. Further, the rounding outputs
a deviating set of voters and their chosen committee, which will be of interest
as a demographic that is not well-represented by the current committee.

The main open question arising from this work is closing the gap between
the positive and hardness results for auditing the core. As mentioned before,
showing such results for density objectives is challenging [27]. A related question
is existence results: A major open question in social choice is whether there is
a committee in the core for Approval Elections. Though there are voting
rules that find committees in the approximate core [16,25,34], these results do
not translate to the exact core. Even more specifically, it is an open question
whether there is always a committee that is Lindahl priceable.

Finally, it would be interesting to use the techniques in this paper to approx-
imately audit other notions of fairness or efficiency in social choice. For instance,
consider the notion of extended justified representation (or EJR, [5]), where a
group of t · n/k voters can only deviate if they all approve at least t candi-
dates in common. Since this notion is weaker than the core, it is easier to show
existence – indeed the PAV rule [36] satisfies EJR but fails the core. However,
imposing restrictions on the deviation does not necessarily make it easier to
audit such notions [33], and we do not know how to audit EJR approximately.
We showed a particular weakening of the core, the sub-core, that can be approx-
imately audited, and it would be interesting to study the landscape of efficient
auditing more systematically.
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Abstract. We study the setting of committee elections, where a group of indi-
viduals needs to collectively select a given-size subset of available objects. This
model is relevant for a number of real-life scenarios including political elections,
participatory budgeting, and facility-location. We focus on the core—the clas-
sic notion of proportionality, stability and fairness. We show that for a number
of restricted domains including voter-interval, candidate-interval, single-peaked,
and single-crossing preferences the core is non-empty and can be found in poly-
nomial time. We show that the core might be empty for strict top-monotonic
preferences, yet we introduce a relaxation of this class, which guarantees non-
emptiness of the core. Our algorithms work both in the randomized and discrete
models. We also show that the classic known proportional rules do not return
committees from the core even for the most restrictive domains among those we
consider (in particular for 1D-Euclidean preferences). We additionally prove a
number of structural results that give better insights into the nature of some of the
restricted domains, and which in particular give a better intuitive understanding
of the class of top-monotonic preferences.

1 Introduction

We consider the model of committee elections, where the goal is to select a fixed-size
subset of objects based on the preferences of a group of individuals. The objects and the
individuals are typically referred to as the candidates and the voters, respectively, a con-
vention that we follow in our paper. Yet, the candidates do not need to represent humans.
For example, the model of committee elections describes the problems of (1) locat-
ing public facilities—there the candidates correspond to possible physical locations in
which the facilities can be built [21,31], (2) presenting results by a search engine in
response to a user query—there, the candidates are web-pages, and voters are potential
users searching for a given query [32], (3) selecting validators in the blockchain, where
the candidates are the users of the protocol [9,10]. For more examples that fall into the
category of committee elections see the recent book chapter [20] and survey [23].

In numerous applications that fit the model of committee elections it is critical to
select a subset of candidates, hereinafter called a committee, in a fair and proportional
manner. Proportionality is one of the fundamental requirements of methods for select-
ing representative bodies, such as parliaments, faculty boards, etc. Yet, even in the con-
text of facility location the properties that corresponds to proportionality are desirable:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, pp. 311–329, 2022.
https://doi.org/10.1007/978-3-031-22832-2_18
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more objects should be built in densely populated areas, ideally ensuring that the distri-
bution of the locations of the built facilities resembles the distribution of the locations
of the potential users. In case of searching, the returned results should contain items
that are interesting to different types of users, or—in other words—the preferences of
each minority of users should be represented in the returned set of results. Finally, the
validators in the blockchain should proportionally represent the protocol users in order
to make validation robust against coordinated attacks of malicious users. In all these
examples it is important to select a proportional committee, yet it is not entirely clear
what it means that the committee proportionally reflects the opinions of the voters, let
alone how to find such a committee.

The problem of formalizing the intuitive idea of proportionality has been
often addressed in the literature and a plethora of axioms have been proposed
(see [23][Section 5] and [20][Section 2.3.3]). Among them, the notion of the core is par-
ticularly interesting. This concept, borrowed from cooperative game theory [11,26] can
be intuitively described as follows: assume our goal is to select a committee of k can-
didates based on the ballots submitted by n voters. Then, a group of n/k voters should
intuitively have the right to select one committee member, and—analogously—a group
of � · n/k voters should be able to decide about � members of the elected committee.
This intuition is formalized as follows: we say that a committee W is in the core if no
group S of � · n/k voters can propose a set of � candidates T such that each voter from
S prefers T over W .

The notion of the core is intuitively appealing, universal, and strong. It applies to dif-
ferent types of voters’ ballots, in particular to the ordinal and approval ones. In the ordi-
nal model the voters rank the candidates from the most to the least preferred one, while
in the approval model, each voter only marks the candidates that she find acceptable—
we say that the voter approves such candidates. Being in the core implies numerous
other fairness-related properties, among them properties which are rather strong on their
own. For example, in the approval model the core implies the properties of extended
justified representation (EJR) [2], proportional justified representation (PJR) [30], and
justified representation (JR) [2]. For ordinal ballots, being in the core implies the proper-
ties of unanimity, consensus committee, and solid coalitions [15], as well as Dummett’s
proportionality [13] and proportionality for solid coalitions (PSC) [4]. In the full version
of our paper [28] we also explain that for ordinal ballots being in the core is equivalent
to satisfying full local stability [3].

While core-stability—the property of a voting rule that requires that each elected
committee should belong to the core—is highly desired, it is also very demanding.
For ordinal ballots there exists no core-stable rule, and for approval ballots it is one
of the major open problems in computational social choice to determine whether the
property is satisfiable. Given the property is so demanding, so far the literature focussed
on its relaxed versions—either the weaker properties which we mentioned before, or the
approximate [22,27] and the randomized [12] variants of the core have been extensively
studied.

In our work we explore a different, yet related approach. Our point is that before
we look at how a voting rule works in the general case, at the very minimum we shall
ensure that it behaves well on well-structured preferences. Thus, the main question
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that we state in this paper is whether core-stability can be satisfied for certain natural
restricted domains of voters’ preferences, and what is the computational complexity of
finding committees that belong to the core given elections where the voters’ preferences
come from restricted domains. The idea to restrict the scope only to instances in which
the preferences are somehow well-structured is not new [17], yet to the best of our
knowledge it has never been considered in the context of the core.

Our Contribution

Our work contributes to two areas of computational social choice. First, we prove a
number of structural theorems that describe existing domain restrictions. In particu-
lar, our results give a more intuitive explanation of the class of top-monotonic pref-
erences. The original definition of this class is somewhat cumbersome. We show two
independent conditions that provide alternative characterisations of top-monotonic pref-
erences provided the voters’ preference rankings have no ties. We also introduce two
new domain restrictions which are natural, and which provide sufficient conditions for
the existence of core-stable rules. One of our new classes generalizes voter-interval and
candidate-interval domains [16], and the other class is a weakening of the domain of
top-monotonic preferences; yet our class still includes single-peaked [6] and single-
crossing preferences [25,29].

Second, we prove the existence of core-stable rules under the assumption that the
voters’ preferences come from certain restricted domains, in particular from domains of
voter-interval, candidate-interval, single-peaked, and single-crossing preferences. Inter-
estingly, we show a single algorithm that is core-stable for all four aforementioned
domains. At the same time, we show that if we restrict our attention to top-monotonic
elections no core-stable rule exists.

The idea of our algorithm is the following. We first find a fractional (randomized)
committee that is in the core. We pick those candidates that have been selected with
probability equal to one. We choose the remaining candidates using a variant of the
median rule applied to the truncated instance of the original election. Thus, our results
hold both in the discrete and in the probabilistic case.

2 Preliminaries

For each t ∈ N, we set [t] = {1, 2, . . . , t}.

2.1 Elections, Preferences, and Committtees

An election is a tuple E = (N,C, k), where N = [n] is a set of n voters, C is a set
of m candidates, and k is the desired committee size. Each voter i ∈ N submits her
weak ranking �i over the candidates—for each i ∈ N and a, b ∈ C, we say that voter
i weakly prefers candidate a over candidate b if a �i b. We set a ∼i b if a �i b and
b �i a, and we write a �i b if a �i b and a �i b. For a voter i ∈ N and j ∈ [m],
by posi(j) we denote the equivalence class of candidates ranked on the j-th position
by voter i. Formally, a candidate c belongs to posi(j) if there are (j − 1) candidates
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a1, . . . , aj−1 such that a1 �i a2 �i . . . �i aj−1 �i c and if there exist no j candidates
a1, . . . , aj for which a1 �i a2 �i . . . �i aj �i c. By di we denote the number of the
nonempty positions in the i-th voter’s preference list. For each j ∈ [di], by posi([j]) we
denote

⋃
q�j posi(q). For each i ∈ N , by topi and boti we denote the sets of candidates

ranked respectively at the highest and the lowest position (note that topi = posi(1) and
boti = posi(di)).

We distinguish two specific types voters’ preferences.

Approval preferences. The preferences are approval, if for each candidate c ∈ C and
each voter i ∈ N either c ∈ topi or c ∈ boti. We say that i approves c if c ∈ topi.

Strict preferences. The preferences are strict, if for all a, b ∈ C (a �= b) and each
i ∈ N it holds that a �i b.

We call k-element subsets of C size-k committees, or in short committees, if the size
k is clear from the context. We extend this notion to the continuous model as follows:
a fractional committee is a function p : C → [0, 1] that assigns to each candidate from
c ∈ C a value p(c) such that 0 � p(c) � 1; intuitively p(c) can be thought of as
the probability that candidate c is a member of the selected committee. We extend this
notation to sets, defining p(T ) =

∑
c∈T p(c) for each T ⊆ C. The value of p(C) is the

size of the fractional committee. If for a candidate c it holds that p(c) = 1, then we say
that c is elected, otherwise she is unelected. If for an unelected candidate c it holds that
p(c) > 0, then c is partially elected. If there are no partially elected candidates in p,
then we say that p is a discrete committee (or simply a committee) and associate it with
the set {c ∈ C : p(c) = 1}.

A voting rule is an algorithm that takes as input an election, and returns a nonempty
set of committees, hereinafter called winning committees.1 A fractional voting rule is
an algorithm that given an election returns a fractional committee.

The notion of a fractional committee is similar to several probabilistic concepts
considered in the literature. For instance, in probabilistic social choice (see the book
chapter [7]) we also assign fractional values to candidates. The main difference is that
in probabilistic social choice, the whole value that we want to divide among the can-
didates can be assigned to fewer than k candidates; in particular it is feasible to set
p(c) = k for one candidate and p(c′) = 0 for all c′, c′ �= c. Thus, intuitively, in prob-
abilistic social choice each candidate is divisible and appears in an unlimited quantity.
Viewed from this perspective, probabilistic social choice extends the discrete model
of approval-based apportionment [8]. Several works have considered axioms of pro-
portionality for probabilistic social choice [1,18], yet unfortunately their results do not
apply to fractional committees.

Another concept related to fractional committees is where we assign probabilities
to committees instead of individual candidates. The notions of proportionality in this
setting have been considered, e.g., in [12]. It is worth noting that fractional committees
can induce probability distributions over committees, e.g., by applying sampling tech-
niques, such as dependent rounding [33], that ensure we always select k candidates. Yet,
there is no one-to-one equivalence between the two settings, thus the results of [12] do
not apply to fractional committees.

1 Typically a voting rule would return a single winning committee, but ties are possible.
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2.2 The Core as a Concept of Proportionality

There are numerous axioms that aim at formalizing the intuitive idea of proportionality.
In this paper we focus on one of the strongest such properties, the core [2]. The idea
behind the definition of the core is the following: a group of voters S should be allowed
to decide about a subset of candidates that is proportional to the size of S; for example
a group consisting of 70% of voters should have the right to decide about 70% of the
elected candidates. The core prohibits situations where a group S can propose a propor-
tionally smaller set of candidates T such that each voter from S would prefer T to the
committee at hand.

Definition 1 (The core). Given an election instance E = (N,C, k), we say that a
committee W is in the core, if for each S ⊆ N and each subset of candidates T with
|T | � k · |S|/n there is a voter v ∈ S weakly preferring W to T .

In the above definition we still need to specify how the voters compare committees,
i.e., how their preferences over individual candidates can be extended to the preferences
over committees. For each voter i ∈ N by �i we denote the partial order over 2C being
the result of extending the preference relation of i. Throughout the whole paper we use
the lexicographic extension, both in case of discrete and fractional committees, defined
formally as follows for discrete ones:

W �i T ⇐⇒ ∃σ ∈ [di]. |posi(σ) ∩ W | > |posi(σ) ∩ T |
and ∀� < σ. |posi(�) ∩ W | = |posi(�) ∩ T |.

and for fractional ones:

p �i p′ ⇐⇒ ∃σ ∈ [di]. p(posi(σ)) > p′(posi(σ))
and ∀� < σ. p(posi(�)) = p′(posi(�)).

Note that for approval preferences it boils down to counting approved candidates in
T and T ′ (since in Definition 1 |W | � |T |, a voter weakly prefers W over T whenever
she approves at least as many candidates in W as in T ). An alternative preference
extension is considered in the full version of our paper [28].

Definition 1 naturally extends to fractional committees.

Definition 2 (The core (for fractional committees)). Given an election instance E =
(N,C, k), we say that a fractional committee p is in the core, if for each S ⊆ N and
each fractional committee p′ with p′(C) � k · |S|/n, there exists a voter i ∈ S such that
i weakly prefers p over p′.

We say that a voting rule is core-stable if it always returns committees in the core.

3 Restricted Domains

A voting rule specifies an outcome of an election independently of what the voters’
preferences look like. Similarly, core-stability puts certain structural requirements on
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the selected committees that should be satisfied in every possible election. However,
the space of all elections is rich and it might be too demanding to expect a voting rule
to satisfy a strong property in each possible case. (This is the case for the core: there
are elections with strict rankings where no non-fractional committee belongs to the
core [12,19]; the question whether the core is always non-empty assuming approval
preferences is still open.) Instead, what is often desired is that a voting rule should sat-
isfy strong notions of proportionality when the voters’ preferences are in some sense
logically consistent. This motivates focusing primarily on election instances where
the voters’ preferences are well-structured, or—in other words—come from certain
restricted domains.

To the best of our knowledge, none of the known voting rules is core-stable, even
for more restricted domains than considered in our work (see the full version of our
paper [28] for a few examples).

In this section we describe several known and introduce one new preference domain.
We also provide alternative conditions characterising some of the considered domains.
These results will help us in our further analysis of voting methods, but are also inter-
esting on their own.

3.1 Strict Preferences

For strict ordinal preferences we start by recalling the definitions of the following two
classes.

Definition 3 (Single-crossing preferences). Given an election instance E =
(N,C, k), we say that E has single-crossing preferences if there exists a linear order
� over voters such that for each voters x � y � z and candidates a, b ∈ C such that
a �y b we have that b �x a =⇒ a �z b.

Intuitively, we say that preferences are single-crossing if the voters can be ordered
in such a way that for each pair of candidates, a, b ∈ C, the relative order between a
and b changes at most once while we move along the voters.

Definition 4 (Single-peaked preferences). Given an election instanceE = (N,C, k),
we say that E has single-peaked preferences if there exists a linear order � over can-
didates such that for each voter i ∈ N and candidates a � b � c we have that
topi = a =⇒ b �i c and topi = c =⇒ b �i a.

We will now recall the definition of the top monotonic domain [5]. This domain is
defined assuming the voters submit their preferences as weak orders. For strict pref-
erences it generalizes both the single-peaked and single-crossing domain. We call all
candidates that are ranked in the top position by at least one voter top-candidates.

Definition 5 (Top monotonicity (TM)). Given an electionE = (N,C, k), we say that
E has top monotonic preferences if there exists a linear order � over the candidates
such that the two following conditions hold:
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1. for all candidates a, b, c and voters i, j such that a ∈ topi and b ∈ topj it holds
that:

a � b � c or

c � b � a
=⇒

{
b �i c if c ∈ topi ∪ topj
b �i c otherwise

2. the same implication holds also for all top-candidates a, b, c and voters i, j such that
a �i b, c and b �j a, c.

The definition of top-monotonic preferences is complex and somewhat counterintu-
itive. We will first show that for strict orders this definition can be equivalently charac-
terized by two much simpler and more intuitive conditions.

Definition 6 (Single-top-peaked preferences). Given an election E = (N,C, k), we
say that E has single-top-peaked (STP) preferences if there exists a linear order � over
the candidates such that for all candidates a � b � c such that b is a top-candidate,
and each voter i it holds that topi = a =⇒ b �i c and topi = c =⇒ b �i a.

Proposition 1. For strict rankings, single-top-peakedness is equivalent to top-
monotonicity.

Proof. Observe that the first condition in the definition of TM implies STP. Now, we
will show the reverse implication. Consider an STP election. We will show that it satis-
fies the two conditions specified in Definition 5.

Note that in the strict model if the premise of the first condition is satisfied, then
topi = {a} and topj = {b} and c /∈ topi ∪ topj . Hence, the first condition follows
from the condition for STP.

Consider now the second condition. If a �i b, c and b �j a, c, then in the strict
model it holds that a �i b, c and b �j a, c. Let us consider two cases: first assume that
a � b � c. We know that topi = {d} for some d ∈ C\{b, c}. If d � b, then b �i c
follows from the definition of STC (for voter i and candidates d, b, c). Suppose now that
b � d. But then from the definition of STP (for voter i and candidates a, b, d) we obtain
that b �i a, a contradiction. The reasoning for the case when c � b � a is analogous.

It is clear that the definition of STP is closely connected to the definition of single-
peaked preferences (only the condition is partially weakened to the candidates that are
ranked top by some voter). One could also consider the analogous weakening for single-
crossing preferences.

Definition 7 (Single-top-crossing preferences). Given an election E = (N,C, k), we
say that E has single-top-crossing (STC) preferences if there exists a linear order �
over voters such that for all voters x � y � z and a candidate a ∈ C, we have that
a �x topy =⇒ topy �z a.

Although the definitions of STC and STP look different, they are in fact equivalent.

Proposition 2. For strict rankings, single-top-peakedness is equivalent to single-top-
crossingness.
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Proof. Consider an STC election E and a linear order � over voters given by the def-
inition of STC. We say that i preceds j if j � i. We construct the linear order over
candidates as follows: consider some a, b ∈ C such that a is the top preference for
some voter i ∈ N . From the definition of STC, we know that voters preferring b to a
can all either succeed or precede i. If they succeed i, then we add constraint b � a,
otherwise we add constraint a � b. If there are no voters prefering b to a, we add no
constraint. We repeat this step for each pairs a, b ∈ C. Finally, if after the previous step
some pairs are still uncomparable, we complete the order in any transitive way.

We will show that the constraints placed during the first step of the procedure are
transitive. Indeed, consider (for the sake of contradiction) three candidates a, b, c such
that the procedure placed constraints a � b, b � c and c � a. Hence, we know that at
least two out of these three candidates are top-candidates. Assume without the loss of
generality that a and b are top-candidates. Let ia, ib be voters ranking top respectively
a and b (naturally, ia � ib). We know that all the voters preceding ia prefer a to c and
all the voters preceding ib prefer c to b. There exists at least one voter i preferring c
to b (as otherwise constraint b � c would not be added) and ib � i. By transitivity
of the preference relation, we know that i prefers a over b. Consequently, ia, ib and i
together with candidate a witness STC violation. The obtained contradiction shows that
the order � is indeed transitive.

We will now prove that such linear order � over candidates satisfies the conditions
of STP. Indeed, consider any three candidates a � b � c such that b is a top-candidate
and a voter i ∈ N . Let topi = {a}. As b is a top-candidate, there exists a voter j
such that topj = {b}. As a � b, it holds that i � j. Then if we had that c �i b, our
procedure would place constraint c � b, a contradiction. Hence b �i c. The proof for
the case topi = {c} is analogous.

Now we will prove the reverse implication. Let E be an STP election with a linear
order � over the candidates. Consider the following linear order � over the voters: for
each i, j ∈ N we have that if topi � topj then i � j. Now consider three voters
x, y, z and a candidate a such that a �x topy . Suppose that a � topy . Then from
the properties of top monotonicity and the fact that topy � topz , we have that z has
preference ranking topz �z topy �z a. Suppose now that topy � a. But since topx �
topy � a, the fact that a �x topy leads to the contradiction with the definition of top
monotonicity, which completes the proof.

Recall that single-crossingness implies single-peakedness for narcissist domains,
i.e., under the assumption that each candidate is ranked top at least once [14]. Since for
narcissist domains a single-peaked profile is also single-top-peaked, we get a corollary:
single-peakedness is equivalent to single-top-crossingness assuming narcissist prefer-
ences.

The class of top monotonic preferences (TM) puts a focus on the top positions in the
voters’ preference rankings. For example, an election in which the voters unanimously
rank a single candidate as their most preferred choice is top-monotonic, independently
of how the other candidates are ranked. This suggests that TM offers a combinatorial
structure that might be useful in the analysis of single-winner elections, but which might
not help to reason about committees. Indeed, below we define a new class which is a
natural strengthening of TM. In Sect. 4 we show that the core is always nonempty for
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elections belonging to our newly defined class, and we show that this is not the case for
the original class of TM.

Definition 8 (Recursive single-top-crossing (r-STC) preferences). Given an election
E = (N,C, k), we say that E has recursive single-top-crossing preferences if every
subinstance of E obtained by removing some candidates from E is STC.

Although r-STC is stricter than STC, it still contains both single-peaked and
single-crossing preferences. This follows from the fact that both single peaked and
single-crossing preferences are top monotonic and that single-peakedness and single-
crossingness is preserved under the operation of removing candidates from the election.

3.2 Approval Elections

In the approval model we first recall the definitions of two classic domain restrictions,
the voter-interval and the candidate-interval models [16].

Definition 9 (Voter-interval (VI) preferences). Given an approval election instance
E = (N,C, k), we say that E has voter-interval preferences if there exists a linear
order � over N such that for all voters v1, v2, v3 ∈ N and for each candidate c ∈
topv1

∩ topv3
, we have that v1 � v2 � v3 =⇒ c ∈ topv2

. Intuitively, each candidate
is approved by a consistent interval of voters.

Definition 10 (Candidate-interval (CI) preferences). Given an approval election
instance E = (N,C, k), we say that E has candidate-interval preferences if there
exists a linear order � over C such that for each voter i ∈ N and all candidates
a, c ∈ topi, b ∈ C we have that a � b � c =⇒ b ∈ topi. Intuitively, each voter
approves a consistent interval of candidates.

Below we introduce a new class that generalizes both CI and VI domains. In
Sect. 4.2 we will prove that the core is always nonempty if preferences come from this
new domain.

Definition 11 (Linearly consistent (LC) preferences). Given an approval election
instance E = (N,C, k), we say that E has linearly consistent preferences, if there
exists a linear order � over N ∪ C such that for each voters i, j ∈ N (i � j) and
candidates a, b ∈ C (a � b), if a ∈ topj , then a �i b. In words, if i approves b and j
approves a, then i approves a.

Proposition 3. Each VI or CI election is LC.

Proof. The case of voter-interval preferences. Let � be a linear order over N that wit-
nesses that preferences are voter-interval. Let us sort N by this order. For each candidate
c, by firstc we denote max{i ∈ N : c ∈ topi}. Let us now associate each candidate
c to firstc (breaking the tie between c and firstc arbitrarily). If two candidates a, b are
associated to the same point, we also break the tie between them arbitrarily. In such a
way we obtained an order � over N ∪ C. For simplicity, for each x, y ∈ N ∪ C by
x � y we denote “x � y or x = y”.
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Consider two voters, i and j, with i � j, and two candidates, a and b, with a � b.
Assume i approves b and j approves a. We will prove that i approves a. Since a � b,
by our definition firsta � firstb. Since i approves b, firstb � i, and so firsta � i. If
i = firsta, then i approves a. Otherwise, firsta � i. Consequently, firsta, i, and j are
three voters, such that firsta � i � j. Since the preferences are voter-interval we infer
that i approves a.

The case of candidate-interval preferences. Let � be a linear order on C witnessing
the candidate-interval property. Let us sort C by this order. We associate each voter
i ∈ N with (max topi), again breaking all the ties arbitrarily. Consider two voters,
i and j with i � j, and two candidates a and b, with a � b. Further, assume that
i approves b and j approves a. Since i � j, we get that (max topi) � (max topj),
and since j approves a, we have (max topj) � a. Consequently, (max topi) � a. If
(max topi) = a, then i approves a. Otherwise, (max topi), a and b are three candidates,
such that (max topi) � a � b. Given that preferences are candidate-interval, and that i
approves b, we get that i approves a.

In the full version of our paper [28] we compare the domain of linearly consis-
tent preferences with the one of seemingly single-crossing (SSC) preferences [17]—yet
another known class that generalizes VI and CI domains.

4 Finding Core-Stable Committees for Restricted Domains

In this section, we describe an algorithm for finding committees that takes as input
preferences represented as weak orders. We will show that if the preferences are
approval linearly consistent (LC), or strict recursive single-top-crossing (r-STC), then
the returned committee belongs to the core. Our algorithm works in polynomial time,
assuming that we are given the linear order � over N ∪ C, provided by the definitions
of these preference classes. For approval preferences, such an order can be found in
polynomial time for candidate-interval and voter-interval domains [17]. It is not known
whether it is the case for general LC preferences—hence, for this class we show only
the non-emptiness of the core. However, LC is mainly a technical domain, allowing
us to present a coherent algorithm for both voter-interval and candidate-interval prefer-
ences. In case of r-STC preferences, the linear order witnessing this class is the same as
the one witnessing top monotonicity which can be found in polynomial time [24].

Hereinafter we assume that the fraction n/k is integral. It is without loss of generality
due to the following remark:

Remark 1. Consider an election E and the instance E′ obtained from E by multiplying
each voter k times. If a committee is not in the core for E, it is not in the core for E′.

The algorithm, which we call CORECOMMITTEE, consists of two phases: first we
construct a fractional committee and then we discretize it. The first phase (further called
the BESTREPRESENTATIVE algorithm) is the following: imagine that each voter has an
equal probability portion k/n to distribute, and that we want to choose one candidate
(her representative) who gets this portion. Initially, the fractional committee p is empty.
We iterate over the set of voters, sorted according to the relation �. Let Pi denote the set



Core-Stable Committees Under Restricted Domains 321

of unelected candidates at the moment of considering voter i ∈ N . The representative
of i is defined as a candidate ri ∈ Pi such that for each c ∈ Pi it holds that either
ri �i c or that ri ∼i c and ri � c. Next, p(ri) is increased by k/n. Note that, as n/k is
integral, the election probability of each candidate does not exceed 1.

In Sect. 4.1 we prove that after this phase the obtained fractional committee p is
in the core for all strict elections and all LC approval elections. Denote by W1 the set
of candidates c such that p(c) = 1. Before the second phase of the algorithm, remove
candidates from W1 from the election together with the voters who are represented
by them, obtaining a smaller election E2 = (N2, C2, k2). By k2 we denote k − |W1|
(remaining seats in the committee) and by n2 we denote n − |W1| · n/k (remaining
voters). Renumerate the voters so that they are numbers from [n2] (and in case of r-
STC elections, resort them so that E2 is still r-STC). Note that by definition n2/k2 =
(n−|W1|·n/k)/(k−|W1|) = n · (1−|W1|/k)/(k−|W1|) = n/k.

The second phase (further called the MEDIANRULE algorithm) is simple: for each
q ∈ [k2] denote by mq the (q − 1) · n/k+1st voter. Further we will refer to these voters
as median voters. Then elect committee W2 = {rmq

: q ∈ [k2]}.
Finally, we return the committee W = W1 ∪W2. In Sect. 4.2 we show that the final

committee W belongs to the core for LC and r-STC preferences.

4.1 Core Stability for Fractional Committees

We will now show that the committee elected by BESTREPRESENTATIVE is always
in the core for LC approval elections and for all elections with strict preferences. The
proof is the same for those two models; we only use the following property:

Definition 12. Given an election E = (N,C, k), we say that E is well-ordered, if
there exists a linear order � over N ∪ C such that for all voters i, j ∈ N (i � j) and
candidates a, b ∈ C (a � b), if a ∼j b and a, b /∈ botj , then a �i b.

It is clear that every strict election is well-ordered for every order � (the premise is
never satisfied). For approval elections this definition is a weakening of Definition 11
(because for approval elections a ∈ topj =⇒ a /∈ botj), hence every LC election is
well-ordered.

For convenience, for i ∈ N by pi we denote the fractional committee p after con-
sidering voter i. Let σi ∈ [m] be the number such that ri ∈ posi(σi). From how the
algorithm BESTREPRESENTATIVE works, we have that for every voter i ∈ N and a
candidate c ∈ posi([σi − 1]) it holds that pi−1(c) = 1 (and also pj(c) = 1 for every
j � i).

Theorem 1. Each fractional committee elected by BESTREPRESENTATIVE belongs to
the core for well-ordered elections.

Proof. Let us start from the following remark, obtained naturally from the very con-
struction of the algorithm.

Remark 2. For each i ∈ N and c ∈ C, there exists q ∈ [n/k] such that pi(c) = q · k/n.
In particular, q is the number of voters for whom c is a representative.
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We will prove the following invariant: for each i ∈ N , pi satisfies the condition of
the fractional core (see Definition 2) with the additional restriction that S ⊆ [i]. We will
prove the invariant by induction.

For the first voter the invariant is clearly true. Assume, there exists i ∈ N satisfying
the invariant. We will prove that the invariant holds also for voter (i + 1).

For the sake of contradiction suppose that there exists a group S ⊆ [i+1] and a frac-
tional committee p′

i+1 such that for each v ∈ S we have that v prefers lexicographically
p′
i+1 to pi+1.

First, note that if (i + 1) /∈ S, then the invariant does not hold also for i, a contra-
diction. This is the case because the election probability of no candidate is decreased
during a loop iteration. Hence, (i + 1) ∈ S.

By the definition of BESTREPRESENTATIVE we have that for each � < σi+1 and
c ∈ posi+1(�) it holds that pi+1(c) = 1. From that, in particular we have the following
equation:

∀� < σi+1. p′
i+1(posi+1(�)) � |posi+1(�)| = pi+1(posi+1(�))

Hence, as (i + 1) prefers lexicographically p′ to p:

∀� < σi+1. p′
i+1(posi+1(�)) = pi+1(posi+1(�)) (1)

It also needs to hold that:

p′
i+1(posi+1([σi+1])) > pi+1(posi+1([σi+1])) (2)

We can conclude that σi+1 < di+1, as otherwise voter (i+1) could not prefer p′
i+1

over pi+1. Consequently:
ri+1 /∈ boti+1 (3)

Suppose that p′
i+1(ri+1) = 0. From (2) and the fact that for all c ∈ posi+1(σi+1)

with c � ri+1 we have p(c) = 1, we infer that there exists a ∈ posi+1(σi+1) such
that ri+1 � a and p′

i+1(a) > 0. From Remark 2 we have that p′
i+1(a) � k/n. Now we

modify p′
i+1 by moving the fraction of k/n from a to ri+1. By Definition 12 and (3) we

have that for every v ∈ S (naturally, v � (i + 1)) it holds that ri+1 �v a. Thus, after
the change p′

i+1 still witnesses core violation for S.
Now consider a fractional committee p′

i obtained from p′
i+1 by decreasing the prob-

ability portion of ri+1 by k/n. We will show that p′
i together with S\{(i + 1)} witness

the core violation for pi. Indeed, the election probability of no candidate except ri+1

changed, and the election probability of ri+1 changed in the same way: in pi+1 and
p′
i+1 it is higher by k/n than in pi and p′

i, respectively. Hence, if for a voter v ∈ S it
holds that p′

i+1 �v pi+1, then also p′
i �v pi. Besides, we have that p′

i(C) � k · |S−1|/n,
so we obtain a contradiction with our inductive assumption.

4.2 Core Stability for Discrete Committees

In this section we present our main result: that the committee W elected by CORECOM-
MITTEE is in the core for LC and r-STC preferences. The algorithm for these two
restricted domains is the same, but the proof techniques used for these models differ
significantly.

The proof for LC elections heavily relies on the following two technical lemmas:



Core-Stable Committees Under Restricted Domains 323

Lemma 1. Given an LC election CORECOMMITTEE elects exactly k candidates.

Proof. We will show that MEDIANRULE elects exactly k2 candidates. Suppose for the
sake of contradiction that there are two median voters i, j in E2 such that ri = rj . With-
out loss of generality assume i � j. Consider now any voter v between these median
voters. If rv � ri then from the definition of LC, i approves rv , and so rv should be
selected as i’s representative, a contradiction. If rj = ri � rv , then from the definition
of LC, v approves rj , and so rj should be selected as v’s representative, a contradiction.
Hence, rv = ri. But then we have that after running BESTREPRESENTATIVE, ri was a
representative for at least n/k voters and was not elected, a contradiction.

Lemma 2. Let W be the committee elected by CORECOMMITTEE. For each i ∈ N ,
|W ∩ topi| + 1 > p(topi).

Proof. Let us start with the following remark.

Remark 3. Consider an LC election E and two voters i, j who were not removed from
the election after the first phase, such that i � j. Then either ri = rj or ri � rj .

Indeed, towards a contradiction assume that rj � ri. From LC we have that i approves
rj and rj should be i’s representative.

Consider a voter i ∈ N . Define parti as p(topi) − |W1 ∩ topi|. As W1 contains
all candidates c such that p(c) = 1, then parti is intuitively the joint sum of election
probabilities of partially elected candidates in topi. From Remark 2 we have that:

parti = q · k/n (4)

where q is the number of voters for whom a candidate from topi\W1 is a representative.
Naturally, such voters could not be removed from the election after the execution of
BESTREPRESENTATIVE.

We will prove that parti < |W2 ∩ topi|+1. From the fact that W = W1 ∪ W2 and
W1∩W2 = ∅, it will imply the desired statement. We will now focus on upper-bounding
q from (4).

Consider three voters v1, v2, v3 such that v1 � v2 � v3 and rv1 , rv3 ∈ topi. We
will prove that then also rv2 ∈ topi. Indeed, from Remark 3 we have that either rv2 ∈
{rv1 , rv3} (and the statement is true) or rv1 � rv2 � rv3 . First, consider the case, when
v2 � i. Since i approves rv1 by LC applied to voters v2, i and candidates rv1 and rv2 ,
we get that also v2 approves rv1 , a contradiction with Remark 3. Second, we look at the
case when i � v2. From LC applied to v2, i and candidates rv2 and rv3 and by the fact
that i approves rv3 we get that i also approves rv2 , which is what we wanted to prove.

Hence, these q voters from (4) need to form a consistent interval among all non-
removed voters. Besides, we know that there is no more than |W2 ∩ topi| median voters
inside this interval and that between each two median voters there is n/k − 1 non-
removed voters. Hence:

q � (|W2 ∩ topi| + 1) · (n/k − 1) + |W2 ∩ topi| = (|W2 ∩ topi| + 1) · n/k − 1

and:
parti = q · k/n < (|W2 ∩ topi| + 1) · n/k · k/n = |W2 ∩ topi| + 1

which completes the proof.
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Theorem 2. For LC elections, CORECOMMITTEE elects committees from the core.

Proof. We know that fractional committee p elected by BESTREPRESENTATIVE

belongs to the core. Suppose now that W is not in the core. Hence, there exists a
nonempty set S ⊆ N and a committee T of size |S| · k/n such that |W ∩ topi| <
|T ∩ topi| for each i ∈ S—alternatively, |W ∩ topi| + 1 � |T ∩ topi|.

From Lemma 2 we know that for each i ∈ S we have p(topi) < |W ∩ topi| + 1 �
|T ∩ topi|. Let us define a fractional committee p′ such that p′(c) = 1 for c ∈ T and
p′(c) = 0 otherwise. Hence, S and p′ witness the violation of the core for p, which is
contradictory with Theorem 1.

For r-STC elections, we again start with proving two technical lemmas:

Lemma 3. CORECOMMITTEE for strict r-STC election E elects exactly k candidates.

Proof. We need to show that MEDIANRULE elects exactly k2 candidates. Suppose for
the sake of contradiction that there are two median voters i, j in E2 such that ri = rj .
From STC it follows that rv = ri. But this means that after running BESTREPRESEN-
TATIVE, ri was a representative for at least n/k voters and was not elected, a contradic-
tion.

Lemma 4. Consider an STC election E = (N,C, k) and apply MEDIANRULE to E to
obtain the committee W . If |W | = k, then W is in the core.

Proof. Towards a contradiction suppose that the statement of the lemma is not true.
Without loss of generality, assume that E is an election with the smallest k among
those for which the statement of the lemma does not hold. Let S and T be subsets
of voters and candidates, respectively, that witness that the committee returned by the
median rule does not belong to the core.

Observe that there are at least two candidates from W that do not belong to T .
Indeed, if there were only one such candidate, we would have that |T | = |W | (as T\W
is nonempty) and |S| = n. In particular, in such a case all median voters would belong
to S. Consequently, the most preferred candidates of the median voters would belong
to T , hence W ⊆ T , a contradiction.

Let us fix a candidate a ∈ W\T that is elected by the greatest median voter (i·n/k+
1). In particular, i �= 0. For a candidate b ∈ T by Sb ⊆ S we denote the subset of voters
in S preferring b to a. Since E is single-top-crossing, it holds that either Sb ⊆ [i · n/k]
or Sb ⊆ N\[i · n/k].

Now we split E into two smaller elections Elow = ([i · n/k], C, i) and Egrt =
(N\[i · n/k], C, k − i). By Wlow and Wgrt we denote the committees elected by the
median rule for Elow and Egrt, respectively. Observe that Wlow � Wgrt = W .

Let us also split S and T into two parts, as follows:

Slow = S ∩ [i · n/k], Sgrt = S ∩ (N\[i · n/k]),
Tlow = {c ∈ T : Sc ⊆ [i · n/k]}, Tgrt = {c ∈ T : Sc ⊆ N\[i · n/k]}.

Note that Slow ∪ Sgrt = S and Tlow ∪ Tgrt = T . Hence, if we had that both |Tlow| >
|Slow| ·n/k and |Tgrt| > |Sgrt| ·n/k = (|S|−|Slow|) ·n/k, then we would have also |T | >
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|S|·n/k, a contradiction. Hence, for at least one of the pairs (Slow, Tlow), (Sgrt, Tgrt) the
opposite inequality holds. Without the loss of generality, assume that |Tlow| � |Slow| ·
n/k.

We claim that the pair (Slow, Tlow) witnesses the core violation for Elow and com-
mittee Wlow.

Consider a voter j ∈ Slow. We know that there exists a candidate c ∈ T\W such that
c �j W\T . First observe that Wlow and Tgrt are disjoint—indeed, for every candidate
b ∈ Tgrt we have that Sb ⊆ N\[i · n/k]. As a result, there is no median voter in [i · n/k]
who prefers b to a, hence b /∈ Wlow. From this fact we conclude that Wlow\Tlow =
Wlow\T ⊆ W\T . Consequently, c �j Wlow\Tlow.

Further, observe that c ∈ Tlow. Indeed, voter j prefers c to W\T , thus in particular
j prefers c to a. Consequently, j ∈ Sc, and thus Sc ⊆ Slow, from which we get that
c ∈ Tlow. Since c ∈ Tlow and c �j Wlow\Tlow, we get that j prefers lexicographically
Tlow to Wlow.

Finally, we obtain that if the core was violated for E, it also needs to be violated for
Elow, which is contradictory to our assumption that E minimizes the value of k.

Theorem 3. For r-STC elections, CORECOMMITTEE elects committees from the core.

Proof. From Lemma 4, we conclude that in CORECOMMITTEE algorithm, W2 is in the
core for E2.

For the sake of contradiction suppose that the statement of the theorem is not true.
Then there exist a set S ⊆ N and a set T ⊆ C witnessing the violation of the condition
of the core. For every candidate c ∈ C, by R(c) we denote set {i ∈ N : ri = c}. Note
that for a candidate c ∈ W1 and a voter i ∈ S such that i ∈ R(c), we have c ∈ T .
Hence, S ∩⋃

c∈T∩W1
R(c) = S ∩⋃

c∈W1
R(c). Consider now sets S ∩N2 and T ∩C2.

It holds that:

|T ∩ C2| = |T | − |T ∩ W1| � |S| · k/n −
∣
∣
∣
∣
∣

⋃

c∈T∩W1

R(c)

∣
∣
∣
∣
∣
· k/n

� |S| · k/n − |S ∩
⋃

c∈T∩W1

R(c)| · k/n

� |S\
⋃

c∈W1

R(c)| · k/n = |S ∩ N2| · k/n = |S ∩ N2| · k2/n2.

Further, for each voter i ∈ S ∩ N2 we have that (T �i W ) ∧ (W1 ⊆ T ) =⇒
(T ∩ C2) �i W2. Consequently, S ∩ N2 and T ∩ C2 witness the violation of the core
condition for committee W2, which is contradictory to Lemma 3 and Lemma 4.

Corollary 1. The core is always nonempty and can be found in polynomial time for the
following classes of voters’ preferences: (1) voter-interval, (2) candidate-interval, and
(3) recursive single-top-crossing. For linearly consistent voters’ preferences, the core is
always nonempty.

In Theorem 4 below we show that the condition of recursiveness in the definition
of the class of r-STC preferences is necessary for the nonemptyness of the core. Thus,



326 G. Pierczyński and P. Skowron

in a way Theorem 3 gives a rather precise condition on the existence of the core-stable
committees for strict voters’ preferences. For approval preferences one cannot easily
argue that the conditions are precise, since it is still a major open question whether a
core-stable committee exists in each approval election.

Theorem 4. There exists a top-monotonic election with strict preferences, where the
core is empty.

Proof. Let A be a Condorcet cycle of r = 100 candidates:

a1 � a2 � . . . � ar

a2 � a3 � . . . � ar � a1

. . .

ar � a1 � a2 � . . . � ar−1

Now let B,C,D,E and F be five clones of A. Thus in A ∪ B ∪ . . . ∪ F we have
6r = 600 candidates. We add two more candidates, namely g and h.

Consider the following profile with 600 voters:

g � A � B � C � D � E � F � h

g � B � C � A � E � F � D � h

g � C � A � B � F � D � E � h

h � D � E � F � A � B � C � g

h � E � F � D � B � C � A � g

h � F � D � E � C � A � B � g

For example, the first two votes in this profile are:

g � a1 � . . . � ar � b1 � . . . � br � . . . � f1 � . . . � fr � h

g � a2 � . . . � ar � a1 � b2 � . . . � br � b1 � . . . � f2 � . . . � fr � f1 � h

The above profile is single-top-crossing since there are only two top-candidates, g and
h, and each of them crosses with each other candidate only once.

Let k = 7, and consider a committee W . We will show that W does not belong to
the core. Without loss of generality, we can assume that g, h ∈ W , as there exists more
than 600/7 voters who rank each of these candidates as their favourite one. Further, since
the profile is symmetric, without loss of generality we can also assume that it contains
at most two candidates from A∪B ∪C. If the two candidates belong to the same clone,
say A, then we take a candidate c ∈ C, and observe that 200 voters (the second and
the third group) prefer {c, g} over W . Otherwise, if the two candidates are from two
different clones, say A and B (the situation is symmetric), then we take the clone which
is preferred by the majority (in this context A) and select the candidate a ∈ A that is
preferred by r − 1 voters to the member of W ∩ A. There are 2r − 2 = 198 voters who
prefer {g, a} to W . Thus, W does not belong to the core.
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5 Conclusions and Open Questions

In this work we have determined the existence of core-stable committees for a number
of restricted domains both in the approval and in the ordinal models of voters’ prefer-
ences. We have additionally presented a number of results that give better insights into
the structures of the known domains. In particular, our results give a better understand-
ing of the class of top-monotonic preferences. Let us conclude with two open questions
that we find particularly important.

In the full version of our paper [28] we show that classic committee election rules
that are commonly considered proportional are not core-stable even if the voters’ pref-
erences come from certain restricted domains. Since these domains are natural and can
be intuitively explained, one would expect a good rule to behave well for such well-
structured elections. This leads us to the following important open question.

Question 1. Is there a natural voting rule that satisfies the strongest axioms of propor-
tionality, and which at the same time satisfies the core for restricted domains?

The requirement that a rule should be “natural” says in particular that its definition
cannot conditionally depend on whether the election at hand comes from a restricted
domain. Question 1 is valid for both approval and ordinal preferences.

Additionally, it would be interesting to check how often the classic rules violate
the core, especially in the case of restricted domains. One can make such a quantitative
comparison via experiments. This however raises the algorithmic questions of how hard
it is to verify if a given committee (in our case the committee returned by the particular
rule) belongs to the core.

Question 2. What is the computational complexity of deciding whether a given com-
mittee belongs to the core?

This question is interesting in the general case, and as well as for each preference
domain studied in this work.
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Abstract. The computational complexity of winner determination is a
classical and important problem in computational social choice. Previous
work based on worst-case analysis has established NP-hardness of winner
determination for some classic voting rules, such as Kemeny, Dodgson,
and Young.

In this paper, we revisit the classical problem of winner determination
through the lens of semi-random analysis, which is a worst average-case
analysis where the preferences are generated from a distribution chosen
by the adversary. Under a natural class of semi-random models that are
inspired by recommender systems, we prove that winner determination
remains hard for Dodgson, Young, and some multi-winner rules such
as the Chamberlin-Courant rule and the Monroe rule. Under another
natural class of semi-random models that are extensions of the Impartial
Culture, we show that winner determination is hard for Kemeny, but
is easy for Dodgson. This illustrates an interesting separation between
Kemeny and Dodgson.

Keywords: Computational social choice · Winner determination ·
Semi-random complexity

1 Introduction

Voting is one of the most popular methods for group decision-making. In large-
scale, high-frequency group decision-making scenarios, it is highly desirable that
the winner can be computed in a short amount of time. The complexity of winner
determination under common voting rules is thus not only a classic theoretical
problem in computational social choice [15, chapter 4, 5], but also an important
consideration in practice.

In this paper, we focus on several classic voting rules: the Kemeny rule, the
Dodgson rule, and the Young rule, whose winner determination problems are
denoted as KemenyScore, DodgsonScore, and YoungScore, respectively.
The Kemeny rule, which is closely related to the Feedback Arc Set problem [1,2],
is a classical method for recommender systems and information retrieval [19].
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The Dodgson rule and the Young rule have also been extensively studied in the
literature [15,16,23,34].

Previous work has established the (worst-case) NP-hardness of winner deter-
mination under the Kemeny rule, the Dodgson rule, and the Young rule [5,34].
Using average-case analysis, McCabe-Dansted et al. [28] and Homan and Hemas-
paandra [25] showed that DodgsonScore admits an efficient algorithm that
succeeds with high probability, where each ranking is generated i.i.d. uniformly,
known as the Impartial Culture (IC) assumption in social choice. Unfortunately,
IC or generally any i.i.d. distribution has been widely criticized of being unrealis-
tic (see, e.g., [30, p. 30], [22, p. 104], and [26]). It remains unknown whether there
exists an efficient algorithm for DodgsonScore beyond IC. This motivates us
to ask the following question:

What is the complexity of winner determination beyond worst-case analysis and IC?

One promising idea is to tackle this question through the lens of smoothed
complexity analysis [6,37], a beautiful and powerful framework for analyzing
the performance of algorithms in practice. Smoothed analysis can be seen as
a worst average-case analysis, where the adversary first arbitrarily chooses an
instance, and then Nature adds random noise (perturbation) to it, based on
which the expected runtime of an algorithm is evaluated. Smoothed analysis
explains why the simplex method is fast despite its worst-case exponential time
complexity [36]. It has been successfully applied to many fields to understand the
practical performance of algorithms, see the survey by Spielman and Teng [37].

Smoothed analysis belongs to the more general approach of complexity anal-
ysis under semi-random models [9,20], where the problem instance contains
an adversarial component and a random component. In this paper, we adopt
the semi-random model called the single-agent preference model [38], where
the adversary chooses a preference distribution for each agent from a set Π
of distributions. Note that if Π consists of only the uniform distribution, then
the model is equivalent to IC. By varying Π, the model can provide a smooth
transition from average-case analysis to worst-case analysis. Under this model,
Xia and Zheng [41] proved the semi-random hardness of computing Kemeny
ranking and Slater ranking with mild assumptions. However, their hardness
results do not imply hardness of KemenyScore under the same model, because
KemenyScore is easier than computing the Kemeny ranking (see Definition 2).
The semi-random complexity of the Dodgson rule and the Young rule were also
left as open questions [41].

Our Contributions. We provide the first set of results on the computational
complexity of winner determination under the following two classes of semi-
random models.

The first class of models are inspired by recommender systems and informa-
tion retrieval, where the number of alternatives m can be very large and it is
inefficient for an intelligent system to learn the total ranking. In such cases, one
often uses top-K ranking algorithms that only recover the top-K ranking with
high accuracy for K = o(m) [17,29]. Similarly in social choice, the collected
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preference from an agent is more robust over her few top-ranked alternatives
and may be much more noisy over the remaining alternatives (see Example 1).
Formally, we capture such features in Assumption 1. Then, we prove in The-
orem 1 and Theorem 2 that DodgsonScore and YoungScore remain hard
under Assumption 1 unless NP = ZPP. Similar semi-random hardness results
also hold for some multi-winner rules, i.e., the Chamberlin-Courant rule and the
Monroe rule (Theorem 3).

The second class of semi-random models are called α-Impartial Culture (α-
IC for short, see Definition 4) where α ∈ [0, 1]. They are a relaxation of IC
such that a single ranking receives probability 1 − α and the other rankings
are uniformly distributed. When α is 1

O(poly(m)) away from 1, we illustrate an
interesting separation between the complexity of KemenyScore and that of
DodgsonScore: winner determination is hard for KemenyScore (Theorem 4)
while being easy for DodgsonScore (Theorem 5).

1.1 Related Works and Discussions

Smoothed and Semi-random Analysis. Semi-random models have been
widely adopted to analyse the performance of algorithms in practice and to cir-
cumvent worst-case computational hardness in the field of combinatorial opti-
mization [11,21], mathematical programming [36], and recently in algorithmic
game theory [3,10,13,14,33]. We refer the readers to recent surveys of semi-
random models [20] and beyond worst-case analysis [35] for a comprehensive
literature review. We mention here that the partial alternative randomization
model in Example 1 is inspired by the partial bit randomization model which
has been applied to smoothed complexity analysis [4] and smoothed competitive
ratio analysis [7].

Recently, semi-random analysis has also been proposed in the field of social
choice [6,38]. The smoothed probability of paradoxes and ties, and strategyproof-
ness in voting are studied [18,38–40]. As mentioned above, Xia and Zheng [41]
studied complexity of computing Kemeny and Slater rankings under semi-
random models. We are not aware of other semi-random complexity results in
computational social choice, which motivates this work.

Beier and Vöcking [8] studied the case of the integer linear programs (ILPs)
over the unit cube and showed that a problem has polynomial smoothed com-
plexity if and only if it admits a pseudo-polynomial algorithm. Since winner
determination under voting rules studied in this paper can also be formulated
as ILPs, one might be tempted to think that the results in [8] also apply to
the single-agent preference model. However, this is not true because they only
considered continuous perturbation for real numbers, while the set of rankings
is discrete. Their conclusion works for discrete combinatorial optimization prob-
lems only if the continuous noise is added to the so-called stochastic parameters
that are real numbers, so that the problem’s combinatorial structure remains
unchanged, which is not the case of our setting.
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Complexity of Winner Determination. There is a large body of liter-
ature on worst-case computational complexity of winner determination under
various voting rules. Bartholdi et al. [5] proved that computing Dodgson-
Score and YoungScore are NP-hard, respectively. They also provided the
NP-completeness of KemenyScore, which holds even for only four voters [19].
The problem of computing Dodgson winner, Young ranking, and Kemeny rank-
ing were proved to be ΘP

2 complete [23,24,34].

2 Model and Preliminaries

Basics of Voting. Let Am = {a1, . . . , am} denote the set of m alternatives
and L(Am) the set of rankings (linear orders) over Am. A (preference) profile
P ∈ L(Am)n is a collection of n agents’ rankings, which is also called their
preferences. Throughout the paper, we assume without loss of generality that
m ≥ 3 since winner determination is easy for 2 alternatives. For any ranking
R ∈ L(Am), we denote TopK(R) the top-K ranking of R. For a permutation
σ over Am and any distribution π over L(Am), we denote σ(π) the permuted
distribution where Prσ(π)(σ(R)) = Prπ(R) for all R ∈ L(Am).

The Dodgson Rule, the Young Rule and the Kemeny Rule. The Con-
dorcet winner of preference profile P is defined as the alternative a ∈ Am who is
preferred to every b ∈ Am by strictly more than half of the agents. The Dodgson
score of a in P is defined as the smallest number of sequential exchanges of adja-
cent alternatives in rankings of P to make a the Condorcet winner. The Young
score of a in P is defined as the size of the largest subset of preferences where
a is the Condorcet winner. The Dodgson rule chooses the alternatives with the
lowest Dodgson score as winners, and the Young rule chooses the alternatives
with the highest Young score as winners. The winner determination problems of
the Dodgson rule and the Young rule are defined as follows.

Definition 1 (DodgsonScore and YoungScore). Given P ∈ L(Am)n, a ∈
Am, and t ∈ N, in DodgsonScore (respectively, YoungScore), we are asked
to decide whether the Dodgson score (respectively, Young score) of a in P is at
most (respectively, at least) t.

The Kendall’s Tau distance (KT distance) between two linear orders R,R′ ∈
L(A), denoted by KT(R,R′), is the number of pairwise disagreements between
R and R′. Given a profile P and a linear order R, the KT distance between
R and P is defined to be KT(P,R) =

∑
R′∈P KT(R,R′). The Kemeny score

of an alternative a in P is defined as the minimum KT distance between any
linear order that ranks a at the top. The Kemeny rule chooses the alternatives
with the lowest Kemeny score. Besides, the Kemeny ranking is defined as the
ranking with minimum KT distance to P . The winner determination problem
of the Kemeny rule is defined as follows:

Definition 2 (KemenyScore). Given P ∈ L(Am)n and t ∈ N, in
KemenyScore, we are asked to decide if there exists an alternative a ∈ Am

whose Kemeny score is at most t.
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If we can compute the Kemeny ranking, then we can compute its KT distance to
P in polynomial time and then decides KemenyScore. Thus KemenyScore
is easier than computing the Kemeny ranking.

Semi-random Complexity Analysis. We use the following semi-random
model, proposed in [38] and used for semi-radom complexity analysis in [41].

Definition 3 (Single-agent preference model [38]). A single-agent prefer-
ence model for m alternatives is denoted by Mm = (Θm,L(Am),Πm). Πm is a
set of distributions over L(Am) indexed by a parameter space Θm such that for
each parameter θ ∈ Θm, πθ ∈ Πm is its corresponding distribution.

We say Mm is P-samplable if there exists a poly-time sampling algorithm for
each distribution in Πm. It is the “most natural restriction” on general dis-
tributions, which is less restrictive than the commonly-studied P-computable
distributions [12, p. 17,18]. We say Mm is neutral if for any π ∈ Πm and any
permutation σ over Am, we have σ(π) ∈ Πm. Note that winner determina-
tion under all the above voting rules is in P when m is bounded above by a
constant. Therefore, we are given a sequence of single-agent preference models
�M = {Mm = (Θm,L(Am),Πm) : m ≥ 3}. We say �M is P-samplable (respec-

tively, neutral) if Πm is P-samplable (respectively, neutral) for any m ≥ 3.
We introduce the following generalization of the Impartial Culture model,

which is P-samplable and neutral.

Definition 4 (α-Impartial Culture). Fix α ∈ [0, 1]. α-Impartial Culture (α-
IC) is a single-agent preference model Mm = (Θm,L(Am),Πm) such that Θm =
L(Am) and for each R ∈ L(Am), distribution πR is defined as

Pr
R′∼πR

[R′] =
α

m!
+ (1 − α)1[R′ = R],

where 1[R′ = R] = 1 if R = R′ and 1[R′ = R] = 0 otherwise. Fix �α = (αm)m≥3

such that αm ∈ [0, 1] for all m ≥ 3. Denote �α-IC the sequence of models {αm-IC :
m ≥ 3}. It is easy to see that �α-IC is P-samplable and neutral.

The semi-random profile P according to Mm is generated as follows. First,
the adversary chooses �π = (π1, . . . , πn) ∈ Πn

m. Then agent j’s ranking will be
independently (but not necessarily identically) generated from πj for any j ∈ [n].
The semi-random version of winner determination under �M is defined as follows,
which is similar to the definition in a recent paper on smoothed hardness of two-
player Nash equilibrium [13].

Definition 5 (Semi-Random-DodgsonScore). Fix a sequence of single-
agent preference models �M. Given alternative a ∈ Am, t ∈ N and a semi-random
profile P drawn from Mm, we are asked to decide whether the Dodgson score of
a is at most t, with probability at least 1 − 1

m .1

1 The algorithm is allowed to return “Failure” with probability at most 1
m

. However,
when it returns YES or NO, the answer must be correct. Our hardness results hold
even for algorithms that are only required to succeed with probability o(1).
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Definition 6 (Semi-Random-KemenyScore). Fix a sequence of single-agent
preference models �M. Given t ∈ N and a semi-random profile P drawn from
Mm, we are asked to decide whether there exists an alternative whose Kemeny
score of a is at most t, with probability at least 1 − 1

m .

The definition of Semi-Random-YoungScore is similar.

3 Semi-random Hardness of DODGSONSCORE

and YOUNGSCORE

In many applications, such as recommender systems and information retrieval,
the number of alternatives m can be very large and it is inefficient for an intel-
ligent system to learn the total ranking. In such cases, one often uses Top-K
ranking algorithms which only recover the top-K ranking with high accuracy
for K = o(m) [17,29]. Similarly, the collected preference from an agent is more
robust over her few top-ranked alternatives and can be much more noisy over
the remaining alternatives. Such features are captured by Assumption 1 below.
Informally, Assumption 1 states that there exists a distribution in Πm that does
not significantly “perturb” one top-K ranking for K = Θ(m

1
d ) where d ≥ 1.

Assumption 1 (Top-K concentration). A series of single-agent preference
models �M is P-samplable, neutral, and satisfies the following condition: there
exists a constant d > 1 such that for any sufficiently large m and K = �m 1

d �,
there exists A′ ⊆ Am, R′ ∈ L(A′), and π ∈ Πm, such that |A′| = K and

Pr
R∼π

(TopK(R) = R′) ≥ 1 − 1
K

.

The following partial alternative randomization model, in the spirit of partial bit
randomization model [4,7], satisfies Assumption 1. The partial bit randomization
model applies to m-bits non-negative integer by randomly flipping its m − K
least significant bits while keeping its K most significant bits unchanged.

Example 1. The partial alternative randomization model is denoted by Mm(K)
and has parameter space L(Am). For any R ∈ L(Am), the distribution πR

is obtained by uniformly at random perturbing the order of the m − K least
preferred alternatives in R and keeping the top-K ranking unchanged. For any
constant d and K ≥ m

1
d , the model is P-samplable, neutral and satisfies Assump-

tion 1. Note that in such model, each ranking receives probability at most
1

(m−K)! = 1
Ω(expm) .

We show that for models that satisfying Assumption 1, winner determina-
tion under the Dodgson rule and the Young rule is hard unless NP = ZPP.
Note that NP �= ZPP is widely believed to hold in complexity theory. The
high-level idea is to combine the existence of a top-K concentration distribu-
tion guaranteed by Assumption 1 and neutrality, to show that for any possible
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input of a NP-complete problem, the adversary is able to construct a distri-
bution of voting profile such that efficient semi-random winner determination
implies a coRP algorithm for the NP-complete problem. Thus NP⊆ coRP and it
implies NP = ZPP by the following reasoning. Recall that RP ⊆ NP. Therefore,
RP ⊆NP⊆ coRP, which means that RP = RP ∩ coRP. Recall that RP ∩ coRP
=ZPP. We have RP = ZPP, which means that coRP = coZPP. Since coZPP =
ZPP, it follows that NP⊆ coRP = coZPP = ZPP.

Theorem 1 (Semi-random hardness of DodgsonScore). For any serie
of single-agent preference models �M that satisfies Assumption 1, there exists no
polynomial-time algorithm for Semi-Random-DodgsonScore under �M unless
NP = ZPP.

Proof. Overview of the proof. We leverage the reduction in [5] that reduces
the NP-complete problem Exact Cover by 3-Sets (X3C) to Dodgson-
Score. An instance of X3C is denoted by (U, S) including a q-element set U
such that q is divisible by 3 and a collection S of 3-element subsets of U . We are
asked to decide whether S contains an exact cover for U , i.e., a subcollection S′

of S such that every element of U occurs in exactly one member of S′.
Suppose that Semi-Random-DodgsonScore has a polynomial-time algo-

rithm, denoted as Alg. We will use Alg to construct a coRP algorithm for X3C.
Formally, the proof proceeds in two steps. For any instance of X3C, in Step 1,
we follow the original reduction to construct a profile P1. Then we construct a
parameter profile PΘ using the semi-random model �M based on P1. Note that
a parameter profile corresponds to distribution over profiles. In Step 2, we show
that Alg can be leveraged to Algorithm 1 to prove that X3C is in coRP, which
implies NP = ZPP as shown above.

Let (U, S) be any instance of X3C such that U = {u1, u2, · · · , uq} and S =
{S1, S2, · · · , Ss} is a collection of s distinct 3-element subsets of U . We assume
without loss of generality that q/3 ≤ s ≤ q3/6 because (U, S) must be a NO
instance if s < q/3 and there are at most

(
q
3

) ≤ q3/6 distinct 3-element subsets
of U .

Step 1. Construct Profile P1 and Parameter Profile PΘ. We first use the
reduction by Bartholdi et al. [5] to construct a voting profile P1 ∈ L(Am1)

n of
polynomial-size in q. The proof of Lemma 1 can be found in the full version.

Lemma 1. We can construct a profile P1 ∈ L(Am1)
n with m1 = 2q + s + 1 =

O(q3), n ≤ 2(q + 1)s + 1 = O(q4), and an alternative c such that (P1, c,
4q
3 ) is

a YES instance of DodgsonScore if and only if (U, S) is a YES instance of
X3C. The construction can be done in polynomial time in q.

The following observation of the Dodgson rule is crucial for the proof. We
introduce one more notation here. For any profile P ∈ L(Am)n, we denote
AppLast(P,m′) the set of profiles obtained from P by appending m′ extra
alternatives to the bottom of each agent’s preferences in any order. It follows
that |AppLast(P,m′)| = (m′!)n.
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Lemma 2. For any profile P1 ∈ L(Am)n, any integer m′ ≥ 1 and profile P2 ∈
AppLast(P1,m

′), the following holds for any alternative a ∈ Am:

– If a is Dodgson winner in P1, then a is also Dodgson winner in P2.
– The Dodgson score of a in P1 is equal to that in P2.

The proof of Lemma 2 follows by definition and can be found the full version.
Informally, Lemma 2 states that by appending alternatives at the bottom of
each agent’s preference order, the winner and score under the Dodgson rule are
robust.

Let m = (2m1n)d = poly(q), where d is the constant defined in Assump-
tion 1. We create a set of m − m1 dummy alternatives called D. The total
alternative set is set as Am = Am1 ∪ D. Denote P1 = (R1

i )i∈[n]. We define
P := AppLast(P1,m − m1) = (Ri)i∈[n] by appending the dummy alternatives
in D. We remark that by the definition of AppLast, each ranking Ri in P is of
the form

Ri = Am1 �Ri
D

where the order of Am1 in Ri is the same as R1
i .

Now we construct the parameter profile PΘ based on P such that each param-
eter corresponds to a preference order in P . According to Assumption 1, there
exists K = �m 1

d � ≥ m1, A′ ⊆ Am, R′ ∈ L(A′), and π ∈ Πm, such that |A′| = K
and PrR∼π(TopK(R) = R′) ≥ 1 − 1

K . Let

R∗ := A′ �R∗ (Am \ A′)

where the order in A′ is the same as R′ and the order in Am \ A′ is arbitrary.
Denote the parameter corresponding to this specific distribution π ∈ Πm as θ.
For every i ∈ [n], we can find a permutation σi over L(Am) such that σi(R∗) =
Ri. We then apply permutation σi to the predefined distribution π and get a
new distribution σi(π) which is also in Πm since Mm is neutral. Now we define
the parameter profile PΘ := (θi)i∈[n], where θi is the parameter corresponding
to σi(π). Since K ≥ m1, we have

Pr
R∼πθi

(Topm1
(R) = R1

i ) ≥ 1 − 1
K

and the construction of PΘ can be done in polynomial time of q.
Step 2. Use Alg to solve X3C . For a profile P ∈ L(Am)n, we denote TopK(P )
the collection of top-K ranking of each preference order in P . We now prove that
we can construct a coRP Algorithm for X3C based on Alg.

Claim 1. If Topm1
(P ′) = P1, then (P ′, c, 4q/3) is a YES instance for Dodg-

sonScore if and only if (U, S) is a YES instance for X3C.

Proof. We know that P ′ ∈ AppLast(P1,m − m1) by definition. According to
Lemma 2, we know that the Dodgson score of c in P ′ is the same as the Dodgson
score of c in P1. Therefore, (P ′, c, 4q

3 ) is a YES instance of DodgsonScore if and
only if (P1, c,

4q
3 ) is a YES instance of DodgsonScore, which is also equivalent

to (U, S) is a YES instance by Lemma 1. �
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Algorithm 1. Randomized Algorithm for X3C

Input: AnX3C instance (U, S) and Alg forDodgsonScore

1: Construct profile P1 and parameter profile P Θ according to Step 1.
2: Sample a profile P ′ from �Mm given P Θ.
3: if Topm1

(P ′) �= P1 then
4: Return YES.
5: end if
6: Run Alg on (P ′, c, 4q/3).
7: if Alg returns YES then
8: Return YES.
9: else

10: Return NO.
11: end if

Notice that sampling P ′ from PΘ takes polynomial time because �M is P-
samplable (Assumption 1). It follows that Algorithm 1 is a polynomial-time
algorithm. Recall that A coRP algorithm always returns YES to YES instances,
and returns NO with constant probability to NO instances. Since Algorithm
1 returns NO only if Topm1

(P ′) = P1 and (P ′, c, 4q/3) is a NO instance, by
Claim 1 it is clear that if (U, S) is a YES instance then Algorithm 1 returns
YES. Therefore, to prove that Algorithm 1 is an coRP algorithm it suffices to
prove that if (U, S) is a NO instance then Algorithm 1 returns NO with constant
probability.

Claim 2. Pr
(
Topm1

(P ′) = P1

) ≥ 1/2.

Proof. P ′ = (R′
i)i∈[n] is sampled from PΘ = (θi)i∈[n]. Recall that m = (2m1n)d

and K = m
1
d . Thus K ≥ m1 and we know that by construction in Step 1 and

Assumption 1 that for all i ∈ [n],

Pr
R′

i∼πθi

(
Topm1

(R′
i) = R1

i

) ≥ Pr
R′

i∼πθi

(
TopK(R′

i) = R1
i

) ≥ 1 − 1
K

= 1 − 1
2m1n

.

Thus we can derive

Pr
P ′∼P Θ

(
Topm1

(P ′) = P1

) ≥
n∏

i=1

(

Pr
R′

i∼πθi

(
TopK(R′

i) = R1
i

)
)

≥ (1 − 1
2m1n

)n ≥ 1 − 1
2m1

≥ 1
2
. �

When (U, S) is a NO instance of X3C, Alg(P ′, c, 4q
3 ) returns NO with proba-

bility at least 1 − 1
m by definition 5. Note that Algorithm 1 returns YES when

Topm1
(P ′) �= P1 which happens with probability at most 1

2 by Claim 2. There-
fore, for any profile P ′ ∈ L(Am)n such that Topm1

(P ′) = P1}, Alg(P ′, c, 4q
3 )

succeeds with probability at least 1 − 2
m ≥ 1

3 . According to Claim 1 and 2, we
know that Algorithm 1 returns NO for any NO instance with probability at least
1
2 × 1

3 = 1
6 . This completes the proof.

We prove a similar result for YoungScore with proof in the full version. �
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Theorem 2 (Semi-random hardness of YoungScore). For any single-
agent preference model �M that satisfies Assumption 1, there exists no
polynomial-time algorithm for Semi-Random-YoungScore under �M unless
NP=ZPP.

Proof sketch. We first extend Lemma 2 for the Dodgson rule to the Young rule.
With that in hand, the proof is then very similar to that of Theorem 1. The
main difference is now that we use the reduction in [16] to construct the profile
in Step 1 and then a coRP algorithm for the NP-complete problem X3C, which
leads to NP = ZPP. �

3.1 Extension to Multi-winner Voting Rules

A multi-winner voting rule selects a winning k-committee, which is a k-size subset
of alternatives. We consider the Chamberlin-Courant (CC) rule and the Monroe
rule that assign each k-committee a score and choose the k-committee with the
highest (respectively, lowest) score as the winner. Definitions of the two voting
rules and their corresponding winner determination problems and the proof of
the following theorem can be found in the full version. We remark that winner
determination under the CC rule and the Monroe rule are both NP-hard [27,32].

Theorem 3 (Semi-random hardness of CC and Monroe). For any
single-agent preference model �M that satisfies Assumption 1, there exists no
polynomial-time algorithm for the semi-random version of the winner determi-
nation problems of the CC rule and the Monroe rule under �M unless NP =
ZPP.

Proof sketch. We first prove counter parts of Lemma 2 for the CC rule and the
Monroe rule. Then the proof follows the same idea in the proof of Theorem 1,
except that we use different reductions to construct the profile in Step 1. �

4 KEMENYSCORE v.s. DODGSONSCORE

In this section, we present to two results regarding the Kemeny and Dodg-
son rule under the �α-IC model. In Theorem 4, we show that Semi-Random-
KemenyScore has no polynomial time algorithm under (1 − 1

m )-IC unless
NP = ZPP. In contrast, we provide an efficient algorithm for Semi-Random-
DodgsonScore under (1 − 1

m )-IC when n = Ω(m2 log2 m) (Theorem 5). The
two results together provide an interesting separation of the semi-random com-
plexity of winner determination under different NP-hard rules.

4.1 Semi-random Hardness of KEMENYSCORE

KemenyScore is NP-complete and is easier than computing the Kemeny rank-
ing, which is ΘP

2 -complete [24]. Thus hardness result for computing the Kemeny
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ranking [41] does not imply the semi-random hardness of KemenyScore. Never-
theless, under the same assumption made in [41], we can prove the semi-random
hardness of KemenyScore. To better illustrate the separation of semi-random
complexity between Kemeny and Dodgson, we state the result in a special case
under the �α-IC model first. The formal statement of the general assumption and
theorem as well as its proof are defered to Sect. 4.3.

Theorem 4. For any constant d ≥ 0 and �α = (αm)m≥3 such that αm ∈ [0, 1 −
1

md ] for any sufficiently large m, there exists no polynomial-time algorithm for
Semi-Random-KemenyScore under �α-IC unless NP = ZPP.

Note that for d ≥ 0, (1 − 1
md )-IC is close to the average case in the sense

that any distribution in Πm is only O( 1
md ) away from the uniform distribution

in total variation distance. Therefore, Theorem 4 shows that KemenyScore
remains hard even for models that are close to the average case.

4.2 Semi-random Easiness of DODGSONSCORE

In contrast to the Kemeny rule, we prove that winner determination under the
Dodgson rule is tractable under models close to the average case, i.e., (1 − 1

m )-
IC. We remark here that although (1 − 1

m )-IC is close to IC, (1 − 1
m )-IC may

concentrate on a single ranking with probability as large as Θ( 1
m ), while every

ranking in IC has probability exactly 1
m! = o( 1

exp(m) ).
Since 1-IC is equivalent to IC, the following theorem that works for any

α ∈ [1 − 1
m , 1] thus generalizes previous results that only work for IC [25,28].

Theorem 5 (Semi-random easiness of DodgsonScore). For any �α =
(αm)m≥3 such that αm ∈ [1 − 1

m , 1] for sufficiently large m, there exists a
polynomial-time algorithm for Semi-Random-DodgsonScore under �α-IC that
succeeds with probability at least 1 − 2(m − 1) exp

(− n
72m2

)
.

Proof. The algorithm runs the polynomial-time greedy algorithm, denoted as
Greedy in [25] as a subroutine. Given (P, a), the output of Greedy(P, a)
belongs to Z × (“definitely”, “maybe”) such that if Greedy(P, a) outputs
(s, “definitely”), then s is the Dodgson score of a in P . Given DodgsonScore
instance (P, a, t), the algorithm runs Greedy(P, a) first. Then if Greedy(P, a)
outputs (s, “definitely”), the algorithm outputs YES or NO based on whether
s ≤ t. Otherwise the algorithm declares failure. Therefore, it suffices to prove
that when P is generated from �α-IC, Greedy(P, a) outputs with “definitely”
with high probability.

The following lemma, a simple extension of [25, Theorem 4.1.1], gives a suffi-
cient condition under which Greedy(P, a) outputs with “definitely”. We intro-
duce some new notations here. For two distinct alternatives a, b and voter i, by
a ≺i b we mean voter i prefers b to a. By a �i b we mean that not only voter i
prefers b to a, but also there is no other alternative c such that voter i prefers b
to c and prefers c to a i.e., a ≺i c ≺i b.
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Lemma 3. Given P = (≺i)i∈[n]. For each alternative a ∈ Am, if for all b ∈
Am \ {a} there exists β > 0 such that |{i ∈ [n] : a ≺i b}| ≤ n

2 + β and |{i ∈ [n] :
a �i b}| ≥ β then Greedy(P, a) outputs with “definitely”.

We give a sketch of the proof for Lemma 3 here. Recall that the Dodgson
score of an alternative a is the smallest number of exchanges between adjacent
alternatives that makes a a Condorcet winner. Now consider alternative b �= a
such that a needs extra β votes to defeat b. If |{i ∈ [n] : a �i b}| ≥ β, then a
defeats b after exactly β exchanges, which is also necessary. If this is the case for
any alternative b �= a, then we can decide in polynomial time the Dodgson score
of a with certainty.

Claim 3. For any profile P = (�i)i∈[n] generated from αm-IC, alternatives
a, b ∈ Am, and β = (34 − 1

2m ) n
m > 0, We have

– Pr
[|{i ∈ [n]|a ≺i b}| > n

2 + β
]

< exp
(− n

72m2

)
;

– Pr [|{i ∈ [n]|a �i b}| < β] < exp
(− n

72m2

)
.

Proof. Due to the space limit, we only prove the first inequality and leave the
proof of the second inequality in the full version. We need the following techni-
cal lemma, which is a straightforward application of Hoeffding’s inequality for
bounded random variables, hence we omit the proof.

Lemma 4. Let X1, · · · ,Xn be a sequence of mutually independent random vari-
ables. If there exist q, p ∈ [0, 1] such that q ≤ p and for each i ∈ {1, · · · , n},

Pr[Xi = 1 − p] = q and Pr[Xi = −p] = 1 − q,

then for all d > 0, we have Pr[
∑n

i=1 Xi > d] < e−2d2/n.

Fix any i ∈ [n]. Denote πi ∈ Πm the preference distribution of agent i. Since
αm ≥ 1 − 1

m , we know Prπi
[R] ≥ m−1

m·m! for any preference order R ∈ L(Am).
Note that there are exactly m!

2 rankings in L(Am) such that a is ranked above
b. Therefore, we have

Pr[a ≺i b] = 1 − Pr[b ≺i a] ≤ 1 − m!
2

· m − 1
m · m!

=
m + 1
2m

For each i ∈ [n], define Xi as

Xi =

{
m−1
2m if a ≺i b

−m+1
2m otherwise

It follows that |{i ∈ [n]|a ≺i b}| > n
2 + β only if

n∑

i=1

Xi >
m − 1
2m

(n

2
+ β

)
− m + 1

2m

(n

2
− β

)
=

(
1
4

− 1
2m

)
n

m
≥ n

12m
(m ≥ 3)
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Note that Pr[Xi = m−1
2m ] = Pr[a ≺i b] ≤ m+1

2m . The claim follows by setting
d = n

12m and p = m+1
2m in Lemma 4. �

Applying union bound for all m − 1 alternatives in Am − {a} to Claim 3, we
have

Pr
[

∀b �= a, |{i ∈ [n] : a ≺i b}| >
n

2
+ β or |{i ∈ [n] : a �i b}| < β

]

≤ 2(m − 1) exp
(
− n

72m2

)

According to Lemma 3, with probability at least 1 − 2(m − 1) exp
(− n

72m2

)
,

Greedy(P, a) outputs with “definitely”. This completes the proof. �
According to Theorem 5, we know that under (1 − 1

m )-IC, Semi-Random-
DodgsonScore is in P when n = Ω(m2 log2 m). By Theorem 4, Semi-
Random-KemenyScore has no polynomial time algorithm under (1 − 1

m )-IC
unless NP = ZPP. The two results together provide an interesting separation of
the semi-random complexity of winner determination under different NP-hard
rules.

4.3 Proof of Theorem 4

We introduce some notations before the statement of assumption and the proof.
For a profile P ∈ L(Am)n, its weighted majority graph WMG(P) is a weighted
directed graph, and its vertices are represented by Am. For any pair of alterna-
tives a, b ∈ Am, the weight on edge a → b is the number of agents that prefer
a to b minus the number of agents that prefer b to a. For a distribution π over
rankings, we define its weighted majority graph WMG(π) similarly: For any pair
of alternatives a, b ∈ Am, the weight on edge a → b is the probability that a
ranking prefers a to b minus the probability that a ranking prefers b to a. For
each 3-cycle a → b → c → a, its weight is defined as the sum of the weights on
its three edges a → b, b → c, and c → a.

Assumption 2 ([41]). �M is P-samplable, neutral, and satisfies the following
condition: there exist constants k ≥ 0 and A > 0 such that for any m ≥ 3, there
exist π3c ∈ Πm such that WMG(π3c) has a 3-cycle G3c with weight at least A

mk

Assumption 2 is weaker than Assumption 1. That’s because in the distri-
bution π guaranteed by Assumption 1, the top-K ranking remains unchanged
with probability at least 1 − 1

K , which implies that the 3-cycle formed by the
top-3 alternatives has weight ≥ 1 − 2

K with K = m
1
d for constant d. For

αm ∈ [0, 1− 1
md ], the model αm-IC has a 3-cycle with weight at least O( 1

md ) and
thus also satisfies Assumption 2. We prove in Theorem 6 the smoothed hardness
of Kemeny under Assumption 2 which implies Theorem 4.

Theorem 6 (Smoothed Hardness of Kemeny). For any single-agent pref-
erence model �M that satisfies Assumption 2, there exists no polynomial-time
algorithm for Semi-Random-KemenyScore unless NP=ZPP.
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Proof. Suppose that Semi-Random-KemenyScore has a polynomial-time
algorithm, denoted as Alg. We use it to construct a coRP algorithm for the NP-
complete problem Eulerian Feedback Arc Set (EFAS) [31], which implies
NP = ZPP as discussed in the proof of Theorem 1. An instance of EFAS is
denoted by (G, t), where t ∈ N and G is a directed unweighted Eulerian graph,
which means that there exists a closed Eulerian walk that passes each edge
exactly once. We are asked to decide whether G can be made acyclic by remov-
ing no more than t edges.

Given a single-agent preference model, a (fractional) parameter profile PΘ ∈
Θn

m is a collection of n > 0 parameters, where n may not be an integer. Note
that PΘ naturally leads to a fractional preference profile, where the weight on
each ranking represents its total weighted “probability” under all parameters
in PΘ. We include an illustrating example of fractional parameter profile and
fractional preference profile in the full version.

Let (G = (V,E), t) be any EFAS instance, where |V | = m.

Claim 4 ([41]). We can construct a fractional preference profile PΘ
G in polyno-

mial time in m such that there exists a constant k

– |PΘ
G | = O(mk+2),

– PΘ
G consists of O(m5) types of parameters,

– WMG(PΘ
G ) = G.

Let K = 13 + 2k, which means that K > 12. We first define a parameter profile
PΘ∗

G of n = Θ(mK) parameters that is approximately mK

|P Θ
G | copies of PΘ

G up to

O(m5) in L∞ error. Formally, let

PΘ∗
G =

⌊

PΘ
G · mK

|PΘ
G |

⌋

(1)

Let n = |PΘ∗
G |. Because the number of different types of parameters in PΘ∗

G is
O(m5), we have n = mK−O(m5), ‖WMG(PΘ∗

G )−WMG(PΘ
G · mK

|P Θ
G | )‖∞ = O(m5),

and ‖WMG(PΘ∗
G ) − G · mK

|P Θ
G | )‖∞ = O(m5). Let f(G,R) denote the number of

backward arcs of linear order R in a directed graph G. The following useful claim
calculates the KT distance between R and the parameter profile PΘ

G · mK

|P Θ
G | . The

proof of Claim 5 can be found in the full version.

Claim 5. For any linear order R ∈ L(Am), the KT distance between R and the
fractional parameter profile PΘ

G · mK

|P Θ
G | is KT

(
PΘ

G · mK

|P Θ
G | , R

)
= M + mK

|P Θ
G | ·f(G,R),

where M = mK

2

((
m
2

) − |E|
|P Θ

G |
)
.

We now prove that Alg returns the correct answer to (G, t) with probability
at least 1 − exp(−Ω(m)). Let Gn = G · mK

|P Θ
G | . The following claim bounds the

probability that WMG(P ′) is different from Gn by more than Ω(m
K+1

2 ).
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Algorithm 2. Algorithm for EFAS.
Input: EFAS Instance (G, t), Alg

1: Compute a parameter profile P Θ∗
G according to (1).

2: Sample a profile P ′ from �Mm given P Θ∗
G .

3: if ‖WMG(P ′) − Gn‖1 >
(

m
2

) · m
K+1

2 then
4: Return YES.
5: end if
6: Run Alg on

(
P ′, M + t · mK

|P Θ
G

| + mk+10
)
.

7: if Alg returns NO then
8: Return NO.
9: else

10: Return YES.
11: end if

Claim 6 ([41]). Pr
[
‖WMG(P ′) − Gn‖1 >

(
m
2

) · m
K+1

2

]
< exp(−Ω(m)).

Claim 7. If ‖WMG(P ′) − Gn‖1 ≤ (
m
2

) · m
K+1

2 ,

then
(
P ′,M + t · mK

2|P Θ
G | + mk+10

)
is a YES instance of KemenyScore if and

only if (G, t) is a YES instance of EFAS.

Proof. If (G, t) is a YES instance of EFAS, then there exists a linear order R
such that there are at most t backward arcs in G according to R. Considering
R as a ranking over alternatives, we have KT

(
PΘ

G · mK

|P Θ
G | , R

)
≤ M + t · mK

|P Θ
G | . By

assumption we know |KT(P ′, R) − KT(PΘ
G · mK

|PΘ
G | , R)| = O(m

K+5
2 ). Therefore,

the kemeny score of ranking R is at most

KT(P ′, R) ≤ KT
(

PΘ
G · mK

|PΘ
G | , R

)

+ O(m
K+5

2 ) < M + t · mK

|PΘ
G | + mk+10,

which means
(
P ′,M + t · mK

|P Θ
G | + mk+10

)
is a YES instance.

If (G, t) is a NO instance of EFAS, then for any linear order R of |V |, there
are at least t+1 backward arcs in G according to R. We have for any R ∈ L(Am),
KT

(
PΘ

G · mK

|P Θ
G | , R

)
≥ M +(t+1) · mK

|P Θ
G | . Therefore, for any R ∈ L(Am), we have

KT(P ′, R) ≥ KT
(

PΘ
G · mK

|PΘ
G | , R

)

− O(m
K+5

2 )

≥ M + t · mK

|PΘ
G | +

mK

|PΘ
G | − O(m

K+5
2 )

= M + t · mK

|PΘ
G | + Θ(mk+11) − O(mk+9)

> M + t · mK

|PΘ
G | + mk+10,
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which means
(
P ′,M + t · mK

|P Θ
G | + mk+10

)
is a NO instance of KemenyScore.

Note that Algorithm 2 only returns NO in line 8, when ‖WMG(P ′)−Gn‖1 >
(
m
2

) · m
K+1

2 and Alg returns NO. By Claim 7, we know that Algorithm 2 never
returns NO for any YES instance of EFAS, or equivalently, it always returns
YES for YES instance. Since ‖WMG(P ′) − Gn‖1 ≤ (

m
2

) · m
K+1

2 holds with
probability at least 1 − exp(−Ω(m)) and Alg returns with probability at least
1 − 1

m , we know that Algorithm 2 returns NO for NO instance of EFAS with
at least constant probability. This proves that EFAS is in coRP and completes
the proof. �

5 Conclusion

In this paper, we conduct semi-random complexity analysis of winner determi-
nation under various voting rules. We give the first semi-random complexity
results for the Dodgson rule, the Young rule, the Chamberlin-Courant rule, and
the Monroe rule. We also prove a hardness result for the Kemeny rule and
a semi-random easiness result for the Dodgson rule, illustrating an interesting
separation between the semi-random complexity of winner determination under
different NP-hard voting rules.

As for future direction, an ambitious goal is to develop a dichotomy theorem
for the semi-random complexity of winner determination: winner determination
is efficient if and only if the semi-random model satisfies certain conditions. The
semi-random complexity of winner determination under models beyond Assump-
tion 1 is a natural and interesting problem. We also conjecture that under the
average-case analysis, YoungScore is easy to decide with high probability but
KemenyScore remains hard.

Acknowledgements. We thank anonymous reviewers for helpful feedback and sug-
gestions. LX acknowledges NSF #1453542 and a gift fund from Google for support.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5) (2008). Article No. 23

2. Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20, 137–142 (2006)
3. Bai, Y., Feige, U., Gölz, P., Procaccia, A.D.: Fair allocations for smoothed utilities.

In: Proceedings of EC (2022)
4. Banderier, C., Beier, R., Mehlhorn, K.: Smoothed analysis of three combinatorial

problems. In: Proceedings of MFCS (2003)
5. Bartholdi, J., III., Tovey, C., Trick, M.: Voting schemes for which it can be difficult

to tell who won the election. Soc. Choice Welfare 6, 157–165 (1989)
6. Baumeister, D., Hogrebe, T., Rothe, J.: Towards reality: smoothed analysis in

computational social choice. In: Proceedings of AAMAS (2020)



346 L. Xia and W. Zheng

7. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Schäfer, G., Vredeveld, T.:
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Abstract. We focus on a simple, one-dimensional collective decision
problem (often referred to as the facility location problem) and explore
issues of strategyproofness and proportional fairness. We present several
characterization results for mechanisms that satisfy strategyproofness
and varying levels of proportional fairness. We also characterize one of the
mechanisms as the unique equilibrium outcome for any mechanism that
satisfies natural fairness and monotonicity properties. Finally, we identify
strategyproof and proportionally fair mechanisms that provide the best
welfare-optimal approximation among all mechanisms that satisfy the
corresponding fairness axiom.
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Abstract. This paper studies which misspecified models are likely to persist
when the decision maker compares her model with competing models. I present
a framework where the agent learns about an action-dependent data-generating
process and makes decisions repeatedly. Aware of potential model misspecifi-
cation, she uses a Bayes factor criterion to switch between models according to
how well they fit the data. The main result provides a characterization of per-
sistent models based on the model-induced equilibrium, properties of the
learning process such as priors and the switching threshold, and the set of
competing models that may arise. I show that misspecified models can be robust
against a wide range of competing models—including the true data-generating
process, despite the agent having an infinite amount of data. Moreover, simple
misspecified models with entrenched priors may have even better robustness
properties than correctly specified models. I use these results to provide learning
foundations for the persistence of systemic biases in two canonical applications:
first, in a natural class of effort-choice problems, overconfidence in one's ability
is more robust than underconfidence; second, an oversimplified binary view in
politics trumps a correct view and leads to polarization when individuals con-
sume media without fully recognizing the media bias.

Keywords: Robust misspecified models � Learning with misspecified models �
Self-confirming equilibrium � Berk-Nash equilibrium
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Abstract. This paper studies information design in the context of allo-
cation with costly verification à la [1]. Particularly, a principal who val-
ues an object allocates it to one or more agents. Agents learn private
information (signals) from an information designer about the allocation
payoff to the principal. Monetary transfer is not available but the prin-
cipal can costly verify agents’ private signals. The information designer
can influence the agents’ signal distributions, based upon which the prin-
cipal maximizes the allocation surplus. An agent’s utility is simply the
probability of obtaining the good.

With a single agent, we characterize (i) the agent-optimal information,
(ii) the principal-worst information, and (iii) the principal-optimal infor-
mation. For concrete examples, making the signal distribution the least
informative is principal-worst and the most informative being principal-
optimal. An agent-optimal information pools information above a cutoff
signal and fully reveals information below the cutoff. Even though the
objectives of the principal and the agent are not directly comparable,
any agent-optimal information is principal-worst, but not the converse.

With multiple agents, agent-optimal information maximizes the total
probability of agents’ obtaining the good. Compared with the prior dis-
tribution, under some agent-optimal information, all agents can be bet-
ter off; while under some other agent-optimal information, some agents
get worse off. Moreover, agent-optimal informations may deliver different
payoffs to the principal, which implies that an agent-optimal information
need not be principal-worst.

The principal’s payoff under the principal-worst information provides
an upper bound for the payoff that can be achieved by a “robust” mech-
anism which does not depend on details of the agent’s type distribution.
We find a robust mechanism that does achieve such an upper bound pay-
off, which is therefore an optimal robust mechanism. Moreover, allowing
for correlated distributions does not affect the result.
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Abstract. To take advantage of strategy commitment, a useful tactic
of playing games, a leader must learn enough information about the fol-
lower’s payoff function. However, this leaves the follower a chance to
provide fake information and influence the final game outcome. Through
a carefully contrived payoff function misreported to the learning leader,
the follower may induce an outcome that benefits him more, compared
to the ones when he truthfully behaves.

We study the follower’s optimal manipulation via such strategic
behaviors in extensive-form games. Followers’ different attitudes are
taken into account. An optimistic follower maximizes his true utility
among all game outcomes that can be induced by some payoff func-
tion. A pessimistic follower only considers misreporting payoff functions
that induce a unique game outcome. For all the settings considered in
this paper, we characterize all the possible game outcomes that can be
induced successfully. We show that it is polynomial-time tractable for
the follower to find the optimal way of misreporting his private payoff
information. Our work completely resolves this follower’s optimal manip-
ulation problem on an extensive-form game tree.

Full version of the paper can be found at https://arxiv.org/abs/2206.
13119.

Keywords: Stackelberg equilibrium · Strategic behavior · Private
information manipulation · Extensive-form games
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Abstract. In this work, we study semi-personalized pricing strategies
where a seller uses features about their customers to segment the mar-
ket, and customers are offered segment-specific prices. In general, finding
jointly optimal market segmentation and pricing policies is computation-
ally intractable, with practitioners often resorting to heuristic segment-
then-price strategies. In response, we study how to optimize and analyze
feature-based market segmentation and pricing under the assumption
that the seller has a trained (noisy) regression model mapping features to
valuations. First, we establish novel hardness and approximation results
in the case when model noise is independent. Second, in the common
cases when the noise in the model is log-concave, we show the joint seg-
mentation and pricing problem can be efficiently solved, and characterize
a number of attractive structural properties of the optimal feature-based
market segmentation and pricing. Finally, we conduct a case study using
home mortgage data, and show that compared to heuristic approaches,
our optimal feature-based market segmentation and pricing policies can
achieve nearly all of the available revenue with only a few segments.

The full paper can be found at https://papers.ssrn.com/sol3/papers.
cfm?abstract id=4151103.

Keywords: Market segmentation · Personalized pricing · Third degree
price discrimination · Regression
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Abstract. Contest depicts a scene in which many players compete for
several designed prizes, capturing many realistic game-theoretical set-
tings involving competition, and is an important part of mechanism
design theory, which has attracted the attention of many researchers
from the past to the present. So far, most of the research literature in
contest theory has focused on the setting of a single contest and aimed
to design the rewarding policy to achieve some specific goals. With the
emergence of crowdsourcing competitions, contests are becoming increas-
ingly popular. More and more contests are run in parallel nowadays.

In this paper, we investigate the model of multiple contests held in
parallel, where each contestant selects one contest to join and each con-
test designer decides the prize structure to compete for the participation
of contestants. We first analyze the strategic behaviors of contestants
and completely characterize the symmetric Bayesian Nash equilibrium.
As for the strategies of contest designers, when other designers’ strategies
are known, we show that computing the best response is NP-hard and
propose a fully polynomial time approximation scheme (FPTAS) to out-
put the ε-approximation best response. When other designers’ strategies
are unknown, we perform a worst-case analysis of one designer’s strat-
egy. An upper bound on the worst-case utility of any strategy is derived
and taken as a benchmark. We propose a method to construct a strategy
whose utility can guarantee a constant ratio of the benchmark.

The full version is available at https://arxiv.org/abs/2210.06866.

Keywords: Competition · Parallel contests · Equilibrium behavior ·
Best response · Safety level
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Abstract. We consider a multi-period, multi-product revenue manage-
ment problem where in each period the seller has a fixed inventory of
multiple substitutable products to sell over a fixed time horizon. In each
time period, the seller chooses which subset of products to retire and also
selects a customer to visit. When a product is retired, it becomes unavail-
able to all future customers. When a customer is selected, all available
products – non-retired products with positive remaining inventory – are
offered for the customer to choose from. The objective of the seller is to
dynamically retire products and select customers in order to maximize
the total expected revenue over a fixed time horizon. Such product retire-
ment decisions are essential when the seller is not able to personalize the
set of products offered to each customer.

When customers choose according to the same multinomial logit
model, we show that a deterministic product retirement policy is asymp-
totically optimal as the inventories grow large. For multiple customer
types, we give an asymptotically optimal policy for product retirement
and customer selection when the upper bound linear program has an
optimal solution with specific structure. We show that such solution
can always be found when there are only two products. In the gen-
eral case with multiple customer types and products, we design a lin-
ear programming-based policy that guarantees a constant fraction of the
optimal dynamic retirement-selection policy. Finally, we show that our
policies perform well in numerical experiments calibrated with real data,
compared to natural benchmarks.

Full paper: https://papers.ssrn.com/sol3/papers.cfm?abstract
id=4033922.

Work of this author was conducted while employed by IBM Research.
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Abstract. Motivated by hiring pipelines, we study two order selection
problems in which applicants for a finite set of positions must be inter-
viewed or made offers sequentially. There is a finite time budget for inter-
viewing or making offers, and a stochastic realization after each decision,
leading to computationally-challenging problems.

In the first problem we study sequential interviewing. In this setting, a
firm must interview candidates to fill out k job positions. There is a pool
of n candidates, and the values obtained by the firm from hiring each
one of them are non-negative random variables sampled from known,
independent distributions. The firm can interview candidates to learn
the realization of their values. Up to T interviews can be sequentially
carried out, after which k out of the T interviewed candidates are chosen
for hire. We show that a computationally tractable, non-adaptive policy
that must make offers immediately after interviewing is approximately
optimal, assuming offerees always accept their offers.

In the second problem, there are again k positions but we assume that
the n applicants have already been interviewed. They accept offers inde-
pendently according to known probabilities. Moreover, offers can be sent
in parallel, under the constraint that at each of the T time periods the
amount of offers sent does not exceed the amount of positions remain-
ing. We develop a computationally tractable policy that makes offers for
the different positions in parallel, which is approximately optimal even
relative to a policy that can make kT offers sequentially.

Our two results both generalize and improve the guarantees in the
work of Purohit et al. [1] on hiring algorithms, from 1/2 and 1/4 to
approximation factors that are at least 1− 1/e ≈ 63.2%. Our algorithms
work by solving LP relaxations of the corresponding problems, and then
rounding the optimal solutions to decide which candidates to interview
and send offers to.

Keywords: Hiring · Order selection · Stochastic probing · Adaptivity
gap
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A full version of this paper can be found in https://arxiv.org/abs/2210.04059.
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Patients requiring kidney transplant may have proxy donors: people who want
to donate a kidney to the patient, but can’t due to medical incompatibility. p
is called a proxy patient of d if d is a proxy donor of p. Some patients, called
overloaded, have multiple proxy donors. The pool of a patient is the set of her
proxy donors. Patients can swap proxy donors, so that each swapping patient
ends up with a compatible donor. A matching is a set of planned transplants
resulting from swaps, altruistic donations from donors without proxy patients,
and donations to the waiting list of patients without proxy donors. Cmax is the
maximum cycle size allowed, and Λmax is the maximum number of donations
allowed from a pool.

In practice, many planned transplants get canceled. Cancellation of a trans-
plant from donor d to patient p can be direct—due to reasons involving d and p,
or indirect—due to cancellation of a transplant to d’s proxy patient. We assume
that donors in directly-but-not-indirectly canceled transplants are redirected to
donate to the waiting list. We want matchings to maximize the objective of the
expected number of actually executed transplants. Exact maximization intro-
duces perverse incentives for overloaded patients, who can increase the proba-
bility they receive a kidney by hiding some of their proxy donors.

We design the SuperGreedy Algorithm, which incentivizes patients to fully
reveal their pools: each patient maximizes the probability of receiving a kid-
ney by full revelation. We then assume a uniformly constant direct cancel-
lation probability 1 − α for all transplants. When α < 1

Λmax
, we prove a

bound of Λmax
1−Λmaxα max {(1 + 2α − 2α2), (1− α)(1 + Cmaxα)} on SuperGreedy’s

approximation ratio. Next, we implement SuperGreedy via integer program-
ming, and simulate it on realistic data. Our results show much better perfor-
mance than our theoretical bound. Specifically, we get an upper bound on the
average approximation ratio of 1.142 when Λmax = 1 and α = 0.3; as Λmax

increases and α decreases, the bound decreases, down to 1.016 when Λmax = 4
and α = 0.1. A full version is available at http://www.itaifeigenbaum.com/
WINEStrategicCancellations.pdf.
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We study the problem of maximizing Nash welfare (MNW) while allocating
indivisible goods to asymmetric agents. The Nash welfare of an allocation is the
weighted geometric mean of agents’ utilities, and the allocation with maximum
Nash welfare is known to satisfy several desirable fairness and efficiency prop-
erties. However, computing such an MNW allocation is NP-hard, even for two
agents with identical, additive valuations. Hence, we aim to identify tractable
classes that either admit a PTAS, an FPTAS, or an exact polynomial-time algo-
rithm. To this end, we design a PTAS for finding an MNW allocation for the
case of asymmetric agents with identical, additive valuations, thus generalizing
a similar result for symmetric agents [2]. We also extend our PTAS to compute
a nearly Nash-optimal allocation which also satisfies the best fairness guarantee
offered by the optimal MNW allocation (a weighted relaxation of envy-freeness);
showing we do not need to compromise fairness for tractability. Our techniques
can also be adapted to give (i) a PTAS for the problem of computing the optimal
p-mean welfare, and (ii) a polynomial time algorithm for computing an MNW
allocation for identical agents with k-ary valuations when k is a constant, where
every agent has at most k different values for the goods. Next, we consider the
special case where every agent finds at most two goods valuable, and show that
this class admits an efficient algorithm, even for general monotone valuations. In
contrast, we note that when agents can value three or more goods, maximizing
Nash welfare is NP-hard, even when agents are symmetric and have additive
valuations, showing our algorithmic result is essentially tight. Finally, we show
that for constantly many asymmetric agents with additive valuations, the MNW
problem admits an FPTAS. The full version of the paper is available at [1].

Work supported by the NSF Grant CCF-1942321 and ERC Starting Grant ScaleOpt.
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Abstract. We consider a principal agent project selection problem with
asymmetric information. There are N projects and the principal must
select exactly one of them. Each project provides some profit to the prin-
cipal and some payoff to the agent and these profits and payoffs are the
agent’s private information. If the principal could use transfers, it could
essentially sell the firm to the agent and extract the entire surplus. If
transfers are not feasible and the agent is unconstrained in its report-
ing, the principal can do no better than to choose the ex-ante optimal
project. However, the agent’s ability to manipulate may be constrained
due to environmental factors, or because it may be required to furnish
evidence in support of its claims. Motivated by such considerations, we
consider the problem under a natural partial verifiability constraint of
no-overselling wherein the agent cannot report a project to be more prof-
itable than it actually is.

To study this problem, we first characterize the set of implementable
mechanisms. As we show, every implementable mechanism can be decom-
posed into two functions. The first maps each vector of reported profits
π to a subset of projects, and the second maps each subset of projects
T and vector of reported agent payoffs α to the agent-preferred project
in T . The first function can be understood as determining the set of
projects the principal makes available for the agent to choose from. We
show that such a function corresponds to an implementable mechanism
if and only if it is increasing: if every project’s reported profit under π′ is
(weakly) higher than under π, then every project made available when
π is reported must also be made available when π′ is reported.

Using this characterization, we study the principal’s problem of find-
ing an optimal mechanism for two different objectives: maximizing
expected profit and maximizing the probability of choosing the most
profitable project. For both objectives, we find that in the case of two
projects, the optimal mechanism takes the form of a simple cutoff mech-
anism. The simple structure of the optimal mechanism also allows us
to find evidence in support of the well-known ally-principle which says

The full version of the paper is available at https://arxiv.org/abs/2007.00907.
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that the principal delegates more authority to an agent who shares their
preferences. In particular, we find the optimal cutoff for the case where
principal agent payoffs are distributed bivariate normal and show that it
decreases as the payoffs become more correlated.

Keywords: Mechanism design · Partial verifiability · Cutoff
mechanisms
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Abstract. Many online platforms adopt a price alert mechanism to
facilitate customers tracking the price changes. This mechanism allows
customers to register their valuation to the system when they find the
price is larger than the valuation on their arrival period. Once the price
drops below the customers’ registered price, a message will be sent to
notify them. In this paper, we study the optimal pricing problem under
this mechanism. First, when the customer’s waiting time is one period, we
show that it is optimal for the seller to use a threshold to decide whether
to accept or reject a registered price, and the price trajectory under the
optimal policy has a stochastic cyclic decreasing structure. When the
customer’s valuation is a uniform distribution, the analytical form of the
optimal policy is further obtained. When the customer’s patience level
is two periods, we obtain the structure of the optimal policy by showing
the asymmetric role each registered price plays in the optimal policy.
Then we consider the case when the customer can stay in the system for
an infinite number of periods. We derive an asymptotic optimal policy
for this case. We find that adopting the price alert mechanism always
increases social welfare; however, it may hurt the customer surplus when
the seller has a large discount factor. Finally, we consider the case when
the customers can strategically react to the price alert mechanism by tim-
ing their purchases and reporting false valuations. Using a Stackelberg’s
game model, we obtain the seller’s optimal threshold type of policy. We

Link to the full paper: https://papers.ssrn.com/sol3/papers.cfm?abstract id=4154861.
The first author’s research is supported by the National Natural Science Founda-
tion of China (Grants 72171141, 72150001 and 11831002), and Program for Innova-
tive Research Team of Shanghai University of Finance and Economics. The second
author’s research is partly supported by the National Science Foundation of China
(NSFC) Grant 72150002.
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show that the price alert mechanism can still be helpful to the seller,
although the advantage diminishes when customers are very strategic.

Keywords: Price alert mechanism · Threshold property · Stochastic
cyclic decreasing price · Strategic customer
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Traffic congestion imposes a huge economic loss to the economy. As such, there
has been a huge effort to understand congestion using theoretical models. The
dynamic model that gained most attention for modelling traffic is the determin-
istic fluid queuing model, already introduced by Vickrey [4]. A common draw-
back of most of the models is the simplified assumption that road network users
only aim for minimizing their arrival time [1,2]. However, in traffic networks
in particular, users are not always that single-minded. In this paper we extend
the state-of-the-art game theoretic traffic models with a multi-criteria objective
function. We assume that users try to minimize costs subject to arriving at the
sink before a given deadline. Here, costs could be thought of as an intrinsic pref-
erence a user has regarding the different route choices and queuing dynamics
only play a role for the arrival time of a user.

We determine the existence and the structure of Nash flows over time and
fully characterize the price of anarchy for this model, which measures the ratio
of the quality of the Nash flow and the optimal flow. We evaluate the quality
both with respect to the throughput for a given deadline and the makespan for a
given amount of flow. We prove the following three results. (i) In series-parallel
graphs, both prices of anarchy are unbounded. (ii) In parallel path graphs the
throughput-PoA is at most 2, or at most e/(e−1) if all transit times are 0. Both
bounds are tight. (iii) In parallel path graphs the makespan-PoA is at most
e/(e − 1), independent of transit times, and this is tight. All our upper bounds
are also valid for dynamic equilibria in the deterministic fluid queuing model.

The full version of the paper can be found in [3].
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Abstract. In this paper we study estimating Generalized Linear Mod-
els (GLMs) in the case where the agents (individuals) are strategic or
self-interested and they concern about their privacy when reporting data.
Compared with the classical setting, here we aim to design mechanisms
that can both incentivize most agents to truthfully report their data
and preserve the privacy of individuals’ reports, while their outputs
should also close to the underlying parameter. In the first part of the
paper, we consider the case where the covariates are sub-Gaussian and
the responses are heavy-tailed where they only have the finite fourth
moments. First, motivated by the stationary condition of the maximizer
of the likelihood function, we derive a novel private and closed form esti-
mator. Based on the estimator, we propose a mechanism which has the
following properties via some appropriate design of the computation and
payment scheme for several canonical models such as linear regression,
logistic regression and Poisson regression: (1) the mechanism is o(1)-
jointly differentially private (with probability at least 1 − o(1)); (2) it is
an o( 1

n
)-approximate Bayes Nash equilibrium for a (1− o(1))-fraction of

agents to truthfully report their data, where n is the number of agents;
(3) the output could achieve an error of o(1) to the underlying parame-
ter; (4) it is individually rational for a (1−o(1)) fraction of agents in the
mechanism; (5) the payment budget required from the analyst to run the
mechanism is o(1). In the second part, we consider the linear regression
model under more general setting where both covariates and responses
are heavy-tailed and only have finite fourth moments. By using an �4-
norm shrinkage operator, we propose a private estimator and payment
scheme that have similar properties as in the sub-Gaussian case.

Di Wang is supported in part by King Abdullah University of Science and Technology
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Jinyan Liu is partially supported by National Natural Science Foundation of China
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The full version of the paper is available at https://arxiv.org/pdf/
2209.07815.pdf.

Keywords: Generalized linear models · Bayesian game · Differential
privacy · Sub-gaussian and heavy-tailed data · Truthful mechanism
design

https://arxiv.org/pdf/2209.07815.pdf
https://arxiv.org/pdf/2209.07815.pdf


Algorithmic Challenges in Ensuring Fairness at
the Time of Decision

Jad Salem1(B), Swati Gupta1, and Vijay Kamble2

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
{jsalem7,swatig}@gatech.edu

2 University of Illinois Chicago, Chicago, IL 60607, USA
kamble@uic.edu

Abstract. Algorithmic decision-making in societal contexts such as
retail pricing, loan administration, recommendations on online platforms,
etc., often involves experimentation with decisions for the sake of learn-
ing, which results in perceptions of unfairness amongst people impacted
by these decisions. It is hence necessary to embed appropriate notions
of fairness in such decision-making processes. The goal of this paper
is to highlight the rich interface between temporal notions of fairness
and online decision-making through a novel meta-objective of ensuring
fairness at the time of decision. Given some arbitrary comparative fair-
ness notion for static decision-making (e.g., students should pay at most
90% of the general adult price), a corresponding online decision-making
algorithm satisfies fairness at the time of decision if the said notion of
fairness is satisfied for any entity receiving a decision in comparison to all
the past decisions. We show that this basic requirement introduces new
methodological challenges in online decision-making. We illustrate the
novel approaches necessary to address these challenges in the context
of stochastic convex optimization with bandit feedback under a com-
parative fairness constraint that imposes lower bounds on the decisions
received by entities depending on the decisions received by everyone in
the past. The paper showcases novel research opportunities in online
decision-making stemming from temporal fairness concerns.

Keywords: Fairness · Online learning · Bandit convex optimization
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Abstract. There is a shortage in the supply of cadaveric organs in most
countries, but many successfully procured and medically tenable organs
are currently being discarded. This wastage of cadaveric organs exacer-
bates the shortage in organ supply and the financial strains on healthcare
systems. Many reforms have been or are currently being implemented to
address the wastage problem. However, we show that waste will still
be a problem as long as the allocation mechanism continues to priori-
tize patients by their waiting times, which incentivizes patients to reject
organs of reasonable quality now to wait for better offers in the future.
Such waiting is risky, as the patients’ health conditions may deteriorate
while they wait, and they may no longer be fit to receive transplants
when the ideal offers come. Through analyzing a theoretical model, we
show that the necessary and sufficient conditions to eliminating waste
are to disincentivize waiting by allocating over-demanded organ types
only to the patients who recently signed up for transplantation, and to
give the patients who are not allocated their ideal organs an opportunity
to take another offer. However, such a policy may be contentious as it
no longer prioritizes patients by waiting times. Moreover, it may reduce
the welfare of the patients who are most willing to wait. The benefits of
eliminating waste should be weighed against these costs when making
policy decisions.

Keywords: Market design · Matching markets · Organ allocation ·
Wait-list

Link to the full paper:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=4069084

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, p. 372, 2022.
https://doi.org/10.1007/978-3-031-22832-2

http://orcid.org/0000-0002-1057-795X
http://orcid.org/0000-0002-9950-5281
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4069084
https://doi.org/10.1007/978-3-031-22832-2


Matrix-Exact Covers
of Minimum-Cost-Spanning-Tree Games

Zhibin Tan , Zhigang Cao , and Zhengxing Zou(B)

School of Economics and Management, Beijing Jiaotong University,
No. 3 Shangyuancun, Beijing 100044, China
{tanzhibin,zgcao,zhxzou}@bjtu.edu.cn

Abstract. The minimum-cost-spanning-tree (m.c.s.t.) game is a clas-
sical cooperative game model that has been extensively studied. Many
important solutions for m.c.s.t. games depend on certain pruning opera-
tions that construct a new m.c.s.t. game by reducing the costs of certain
edges such that the new game is simpler, and its core is a subset of
the core of the original game. Examples include the classical irreducible
graph, based on which the irreducible core (Bird, 1976), the Folk rule
(Feltkamp et al., 1994; Bergantiños and Vidal-Puga, 2007), and the DK
rule (Dutta and Kar, 2004) are defined, and the cycle-complete graph
(Trudeau, 2012). However, these operations often make the relevant solu-
tions use very little information of the original cost matrix. As criticized
by Bogomolnaia and Moulin (2010), “this drastic pruning of the cost
data throws away much information relevant to the fairness of the even-
tual cost sharing”.

To answer this criticism, we address the problem of decreasing the con-
nection costs as much as possible in an m.c.s.t. game such that its core
does not change. We define the desired m.c.s.t. game as the matrix-exact
cover of the original m.c.s.t. game, and show its existence and unique-
ness by providing an explicit formula. Our results also imply that the
set of all m.c.s.t. games with the same core possesses a meet-semilattice
structure: if two m.c.s.t. games have the same core, and we construct
a new m.c.s.t. game by defining the cost of each edge as the minimum
between the corresponding connection costs of the two games, then the
new game has the same core too.

Keywords: Cooperative games · Core · Exact games · Matrix-exact
games · Meet-semilattice

A full version is available at https://papers.ssrn.com/sol3/papers.cfm?abstract
id=4238837
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Abstract. In this paper, we introduce a consumer choice model in which
each consumer’s utility is affected by the purchase probabilities of his/her
neighbors in a network. Such a consumer choice model is a general model
to characterize consumer choice under network effect. We first character-
ize the choice probabilities under such a choice model. Then we consider
the associated personalized assortment optimization problem. Particu-
larly, the seller is allowed to offer a personalized assortment to each con-
sumer, and the consumer chooses among the products according to the
proposed choice model. We show that the problem is NP-hard even if the
consumers form a star network. Despite of the complexity of the prob-
lem, we show that if the consumers form a star network, then the optimal
assortment to the central consumer cannot be strictly larger than that
without network effects; and the optimal assortment to each peripheral
consumer must be a revenue-ordered assortment that is a subset of the
optimal assortment without network effect. We also present a condition
when revenue-ordered assortments can achieve a provable performance.
Then in view of the fact that each node in a network can represent a
group of consumers, we propose a novel idea in which the sellers are
allowed to offer “randomized assortments” to each node in the network.
We show that allowing for randomized assortments may further increase
the revenue, and under certain conditions, the optimal assortment for the
central consumer must be a combination of two adjacent revenue-ordered
assortments and thus efficient algorithm can be developed. Finally, we
extend the results to directed acyclic graphs (DAGs), showing that a
mixture of adjacent revenue-ordered assortments is optimal under cer-
tain conditions.

Keywords: Revenue management · Consumer choice models ·
Network effects · Assortment optimization

Link to the full paper: https://papers.ssrn.com/sol3/papers.cfm?abstract id=3788880.
The second author’s research is partly supported by the National Science Foundation
of China (NSFC) Grant 72150002.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. A. Hansen et al. (Eds.): WINE 2022, LNCS 13778, p. 374, 2022.
https://doi.org/10.1007/978-3-031-22832-2

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3788880
https://doi.org/10.1007/978-3-031-22832-2


Exploring the Tradeoff Between Competitive
Ratio and Variance in Online-Matching Markets
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Abstract. In this paper, we propose an online-matching-based model to
study the assignment problems arising in a wide range of online-matching
markets, including online recommendations, ride-hailing platforms, and
crowdsourcing markets. It features that each assignment can request a
random set of resources and yield a random utility, and the two (cost
and utility) can be arbitrarily correlated with each other. We present two
linear-programming-based parameterized policies to study the tradeoff
between the competitive ratio (CR) on the total utilities and the vari-
ance on the total number of matches (unweighted version). The first one
(SAMP) is to sample an edge according to the distribution extracted
from the clairvoyant optimal, while the second (ATT) features a time-
adaptive attenuation framework that leads to an improvement over the
state-of-the-art competitive-ratio result. We also consider the problem
under a large-budget assumption and show that SAMP achieves asymp-
totically optimal performance in terms of competitive ratio.

Here is the arXiv link to the full version: http://arxiv.org/abs/2209.
07580.
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