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Abstract. Deep neural networks have been established by researchers
to perform significantly better than prior algorithms in multiple domains,
notably in computer vision. Naturally, this resulted in its deployment as
a perception module in modern Autonomous Vehicle (AV) and in general
for Advanced Driver Assistance Systems (ADAS). ADAS relies heavily
on perception module, which harnesses various sensors such as camera,
LiDAR, radar, ultrasonic sensor to make navigational decisions. By draw-
ing from the adversarial attacks, which undermine a lot of machine learn-
ing applications, recent research shows that the AV perception modules
are also vulnerable to adversarial attacks. Suggested countermeasures
for these attacks include increasing the number of sensors, which incurs
cost overhead and does not present any formal guarantee of protection.
Hence, in this paper, we study the robustness and practicality of such a
countermeasure. We demonstrate that it is still possible to spoof multiple
cameras through adversarial object though, the attack success consider-
ably reduces. Furthermore, the possibility of alternative countermeasures
like dimensionality reduction and feature squeezing are investigated. Our
study shows that these techniques, when applied together, significantly
enhances the robustness of the AV perception system.

Keywords: ADAS · AV · Neural network · Adversarial attack ·
Adversarial defense

1 Introduction

Recent decades have witnessed a booming in the automotive industry, espe-
cially with major technological breakthroughs in autonomous driving. The level
of automation in a vehicle has improved significantly, from manual operation
to high level of automation. This is achieved mainly with the help of machine
learning, which contributes to almost every modules of AV such as perception,
localization, planning, prediction, etc. Perception is a fundamental element of
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AVs, involving in most decisions made by other modules. In an AV’s perception,
sensors like cameras and LiDARs gather information about the surrounding envi-
ronment such as obstacles, pedestrians and traffic signs. One wrong information
from the perception module can lead to consequentially wrong decisions from
other modules, which can result in fatal outcomes. Thus, a considerable amount
of research on state-of-the-art deep neural networks (DNNs) have been carried
out since the introduction of AlexNet [17], winner of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012.

However, being equipped with state-of-the-art neural networks does not
ensure a perception system that is resilient against adversaries. Extensive
research is being done to identify various attack vectors in AV’s neural net-
works [6,14,25]. Many such attacks, however, target single perception source
like single camera or single LiDAR. On the contrary, many commercial AVs
provide multitude of sensors all working in conjunction [6]. With such a multi-
sensor setup and a realistic assumption that not all the perception modules are
attacked simultaneously, it is concluded in recent studies that multiple sensors
present a robust defense against a determined attacker. Cao et al. [6] explored
a very interesting way of attacking into both LiDAR and camera, using a 3D
printable adversarial object. The authors also believe that using more cameras
or LiDARs could improve the robustness of the perception model against this
attack.

The growth in usage of multiple sensors can be accredited to the improved
availability of public datasets published by major companies, such as [11],
nuScenes [5], Argoverse [28], etc. The new public datasets provide a full 360◦

view of the surroundings, creating many overlapping field-of-views (FoV). With
various viewing angles on a single object, it could increase the chance that an
object can be detected by the model, like the side of a vehicle as compared to
the front. An example of a production-grade AV being used on the road would
be the Electric Car company, Tesla. Tesla utilizes a series of modern cameras in
the Electric Vehicles for their Autonomous Driving (AD) capabilities [15].

In this paper, we investigate whether increasing the number of cameras helps
AV against adversarial object. Furthermore, we look into a few simple counter-
measures involving image feature manipulation such as dimensionality reduction
and color depth reduction. The rest of the paper is organized as follows: Sect. 3
and 4 details the attack methodology and proposed countermeasures, respec-
tively. Section 5 describes the experiments conducted. In Sect. 6, some limitations
of the presented study are discussed, and conclusions are drawn in Sect. 7.

2 Background

2.1 Adversarial Attacks on Image Recognition

Traditional attacks on image recognition systems used strong extra sources of
light to physically blind a camera [19,21]. Recently, as deep learning models
are becoming more powerful, research trends shifted to attacks on the DNNs
of perception system. The pioneering works from Szegedy et al. [27] discovered
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that state-of-the-art DNNs are susceptible to adversarial attacks. Since then,
more researchers investigated adversarial attacks in computer vision domain.
In 2017, researchers from Google used adversarial stickers called “Adversarial
Patch” [4] with particular properties that can fool machine learning models.
These “patches” can be attached to any objects on the street, e.g. road signs,
to cause camera perception system to make wrong decisions. In that same year,
Eykholt et al. [10] were able to generate robust adversarial perturbations in
the forms of only black and white stickers attached on stop signs. This attack
achieved high efficacy in both image and video sign classification tasks.

The higher level of automation in self-driving car leads to the use of multiple
kinds of sensor. Many AV makers nowadays use both cameras and LiDARs for
perception systems, adding more robustness to the object detection performance.
Many researchers have studied the vulnerability of LiDAR-based object detectors
to 3D adversarial objects. However, there were not a lot of such studies done
on the effect of 3D adversarial objects to camera-based object detectors until
2021. Abdelfattah et al. [1] proposed a kind of attack that when they place an
adversarial object on top of a car, that car evades being detected by both LiDAR-
based detector and camera-based detector. Another work from Cao et al. [6]
involves generating a 3D printable adversarial object that can deceive LiDAR-
based and camera-based perception models, causing vehicle crashing into it. In
most of these prior works, a common countermeasure suggestion is to increase
the number of cameras for detection. However, the question remains is whether
that suffices as a countermeasure and if yes, how many cameras do we need?

2.2 Motivation

The idea of fooling LiDAR-camera perception model with adversarial 3D
object [6] is recent and is a very active area of research. We try to find out
whether such kind of adversarial object is still effectively hidden from vehicle’s
perception system if we use more sources of sensing and manipulate input’s fea-
tures. In our study, we make use of multi-camera setup with overlapping FoVs.
One reason to use multiple cameras is that cameras are much more budget-
friendly than LiDARs. Furthermore, when an object appears in different camera
views, there are distortions in the textures such as color and lighting, which
might affect the attack efficacy. Using camera images also allows alternative
countermeasures such as feature squeezing and dimension reduction, which we
also study in this work.

2.3 Contributions

In this paper, we study the robustness of AV’s camera perception model in the
event of adversarial attacks. Then, we propose some countermeasures in order
to prevent AV’s camera perception model from being deceived by 3D adversarial
objects. In summary, this work makes the following contributions:
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– Studying the vulnerability of multi-camera system to 3D adversarial objects.
– Applying dimensionality reduction [7] and Feature Squeezing [29] to camera

images, as potential countermeasures.
– Fusing the above techniques into one unified pipeline for robust countermea-

sure.

3 Spoofing Multiple Cameras with Overlapping FOV

We use the original attack idea from Cao et al. [6] and extend it to check if it is
possible to spoof the perception module from various angles. The corresponding
object generation procedure is an optimization process, which is briefly explained
in the following subsections for completeness. Interested readers can refer to the
detailed methodology in [6]. The goal of this attack is to create an object that
is invisible to perception model, which is visualized in Fig. 1.

Fig. 1. Attack goal is to create an adversarial object that is invisible to camera model

3.1 Object Detection Output

Popular deep learning-based 2D object detectors can be classified into two cate-
gories: two-stage and one-stage detectors. For two-stage detectors, eminent net-
works are region-based detectors such as RCNN [13] and its more efficient vari-
ants, Fast RCNN [12] and Faster RCNN [23]. The two stages of these algorithms
can be divided into region proposal and object detection with bounding-box
regression. Two-stage detectors have good localization and object recognition
performance. However, regarding inference speed, one-stage detectors clearly
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outperform the two-stage counterparts. Some of the most prominent one-stage
detectors include YOLO and SSD. One-stage detectors jointly detect and localize
using one unified neural network, without the region proposal stage.

Due to their simplicity, one-stage detectors are suitable to be used in real-
time applications. Over the past years, recent improvements have enhanced one-
stage detectors’ performance, which makes them superior to two-stage ones in
terms of speed while preserving respectable accuracy. Some popular open-source
autonomous driving platforms employ one-stage detectors in their perception
modules, for example, Autoware [16] use YOLOv3 for their camera perception,
and Baidu Apollo [3] also utilizes the 3D version of YOLO for the same purpose.

As this attack targets YOLOv3 for camera models, we review a bit on its
output here. Given an image, YOLOv3 runs a single CNN to detect objects at
three different scale of the original image, aiming to handle small, medium and
big objects. At each scale, image is divided into S × S grid cells. And each cell
makes prediction for B different anchor boxes, whereas every box’s prediction
has 5 + C elements, representing:

– 4 values for box center offsets and width/height scales (x, y, w, h).
– 1 value for box confidence/objectness score P0.
– C values for class scores P1, P2, ..., PC .

Therefore, at every scale, the prediction’s output has the shape (S, S,B ×
(5 + C)). For YOLOv3, B = 3 because it uses 3 anchor boxes per scale. The
attack in [6] adds perturbation to the object’s shape so as to minimize the box
confidence score P0 in accordance with it, hence the object’s disappearance from
the camera object detector.

3.2 Formulation of Attack Objective

Fig. 2. Attack overview

Figure 2 visualizes the fundamental attack flow. An object is represented by its
face-vertex meshes (v−f). Let S denote the benign object and Sa the generated
adversarial object. Therefore, the objective of the optimization process is to



254 T. A. Ngo et al.

change the position of the object’s vertices to minimize the box confidence to
less than a threshold for it to be detected. The objective function is:

J = La(Sa,Rl,Rc,P,M) + λ.Lr(Sa, S)

Hence, the optimization problem is:

min
Sa

J (1)

subject to:
Δ(Sa, S) ≤ ε (2)

in which Rl, Rc are differentiable rendering functions for LiDAR and camera
respectively, P is the pre-processing approximation function and M is the Multi-
Sensor Fusion algorithm. The total loss J is the weighted sum of the two losses:
adversarial loss La for achieving attack goal, or to minimize the bounding box’s
confidence value mentioned in Sect. 3.1, and realizability loss Lr for improving
surface smoothness, which is useful for 3D-printing.

Equation 1 is a constrained optimization problem, to solve it, Cao et al. [6]
uses Projected Gradient Descent (PGD). The optimal value for this problem is
achieved by optimizing the shape of the adversarial object Sa, more specifically
by changing its vertices’ position. The constraint Eq. 2 is to ensure that Sa still
has a recognizable shape to human’s eye and does not deviate too much from
the original object S.

3.3 Robust Adversarial Object Generation

To improve robustness for this attack, it is necessary that the model can be
fooled from various angles and distances. Cao et al. [6] apply Expectation over
Transformation [2]. Equation 1 becomes

min
Sa

E
t∼T

J

in which T is a set of random 3D transformation to Sa, including rotation and
position shifting.

In [6], the authors slightly shift the object’s yaw angles to 5◦, 10◦, 15◦.
However, we could not find the EoT implementation from their public source
code. Hence, we implement the EoT concept from scratch. First, we render
the benign object in front of one front-center camera image. Let (x, y, ψ) be
a set containing the distance between the object and the vehicle, the object’s
horizontal distance and the angle of the object’s yaw rotation, respectively. In
every iteration, we generate five random sets of changes {(Δxi,Δyi,Δψi)|i ∈
N, i ∈ [1, 5]} that are applied to the object’s original position, resulting in five
positions {(x + Δxi, y + Δyi, ψ + Δψi)|i ∈ N, i ∈ [1, 5]}. We select a wider
range for yaw rotation changes since we want to produce a robust attack against
multiple cameras, specifically −40◦ ≤ Δψi ≤ 40◦.
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3.4 Spoofing Multiple Cameras

It is quite challenging for an adversary to fool the camera model from various
viewing angles. In [20], the author demonstrated that a stop sign cannot consis-
tently fool the camera model if it is viewed from various angles. However, with
the use of EoT, the attack robustness is improved significantly. To check the
attack efficacy, we randomly select 100 frames from Argoverse dataset. In each
frame, we place the object at 3 m / 4 m / 5 m / 6 m in front of the front center
camera and 0 m / 1 m to the right, hence a total of 800 (100×4×2) scenarios. We
calculate the attack success rate (ASR) over all scenarios. We also experiment
with the benign case in which we render the benign fire hydrant at the same
positions as in the adversarial case. Then, we evaluate the benign detection rate
(BDR) for the fire hydrant. In the following evaluations, a good result is the one
with high benign detection rate and low attack success rate.

(a) front center (b) front right

Fig. 3. Multi-cam setup is more robust but not sufficient: in some scenarios adversarial
object can fool both cameras

Table 1. Attack evaluation on multi-cam setup

Cam setup Benign det. rate (%) Attack success rate (%)

Front center 75.75 78

Front center, Front right 98.38 43.75

Table 1 shows that using multiple cameras with overlapping FoV is more
robust than just relying on one camera. We think it is still not enough to guard
the camera model from being fooled. Figure 3 shows a scenario when both front
center and front right camera cannot detect the fire hydrant. Therefore, we
explore a few additional countermeasures in the next section.
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4 Additional Countermeasures

In above section we demonstrate that fusing multiple cameras with overlap-
ping FoVs improve system’s robustness, however, there are rooms for improve-
ment. In this section, we discuss a couple of orthogonal countermeasures namely,
dimensionality reduction and feature squeezing. We focus on manipulating image
feature such as reducing image’s dimension or color, since these solutions were
shown effective against adversarial examples in the literature. Furthermore, these
countermeasures modify input features, which directly improves data band-
width/storage and more straightforward than modifying the neural network
architecture.

4.1 Dimensionality Reduction

This defense is inspired by the effect of the curse of dimensionality, which is one
of the key causes facilitating the creation of adversarial examples. In [7], dimen-
sion reduction is demonstrated effective against adversarial objects, especially in
classification problem. This has not been tested in object detection task, specifi-
cally when adversarial examples are to affect the bounding box confidence score.
Since this can be a potential countermeasure boosting the perception module
robustness, we applied the dimensionality reduction flow to camera images and
studied its efficacy.

4.2 Feature Squeezing: Color Depth Reduction

There is little research on the effects of color to deep learning models. In [9], color
quantization, which reduces color depth, is shown to affect the performance of
convolutional neural networks. One hypothesis is color distortions affect the way
neural networks perceive the input, due to the shift in image distribution. Indeed,
according to [29], a neural network perceives the input space as continuous due
to its differentiable manner. However, computers only support discrete represen-
tation of data. A digital image is represented by a pixel array, where each pixel
is represented by numbers as a color code. Color bit depth is a feature in image
representation that might affect the performance of a neural network. Therefore,
we consider of color depth reduction as a feasible countermeasure mitigating the
effect of adversarial examples. In general, color depth reduction is bracketed
within a family of countermeasures termed as feature squeezing [29].

5 Experiments

5.1 Dataset

Due to the lack of real-hardware setup, we make use of readily available datasets.
We choose Argo AI’s Argoverse 2 dataset [28], which is both open-source and
provided by reliable institutions for our experiment. We use the Sensor Dataset
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from Argoverse 2, which consists of 1,000 scenarios from 7 ring cameras, 2 stereo
cameras and 2 LiDARs. One notable feature from Argoverse dataset is that
each camera has overlapping FoV with it nearby camera. The overlapping areas
and the position shift between two neighbor cameras are big enough to make
two images disparate, which facilitates object detection from multiple viewing
angles. As visualized in Fig. 4, the ring front left camera and the ring front right
camera have significant overlapping FoVs with the ring front center camera. We
also considered other well-known datasets such as KITTI [11], Waymo Open
Dataset [26] and nuScenes [5]. However, there are some disadvantages of camera
features in these datasets that do not suit our approach. For example, KITTI
provides camera images with very limited position shifts, Waymo Open Dataset
and nuScenes do not really provide camera images with overlapping FoV.

(a) front left (b) front center (c) front right

Fig. 4. Views from Argoverse ring front cameras

5.2 Choice of Objects

The first step is to pick a 3D benign object that can be fed into our optimization
pipeline. Since we want to evaluate the object detection performance of one
particular model, we have to use the objects that appear in the training set on
which the model is trained. Here we evaluate our attack on YOLOv3 [22], which
is pre-trained on COCO dataset [18]. We prefer to choose objects with not too
complex texture and pretty symmetrical shape. There are quite a lot of websites
that provide 3D object models, such as https://free3d.com, which has both free
and paid 3D objects.

https://free3d.com
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After obtaining a 3D object, we slightly process it using Blender [8], an open-
source 3D graphics software.

5.3 Experimental Setup

Perception Models. This paper is inspired by the work from [6], which focuses
on white-box attack. The targeted object detection models we choose are Baidu
Apollo [3] for LiDAR and YOLOv3 [22] for cameras, the same as in original
work [6]. Baidu Apollo is one of the most prominent open-source AV platforms
and YOLOv3 is a popular real-time 2D object detector, which is still included
in open-source AV platforms such as Autoware.AI [16] and Baidu Apollo [3]. In
this study, our focus is on the vulnerability of multi-camera system, hence we use
Baidu Apollo v2.5 instead of more recent versions for the sake of better memory
usage. This is because the images and 3D point clouds in Argoverse 2 dataset
are much more detailed than those in KITTI, therefore, we need to utilize our
limited resources better.

Object Rendering and Placement. We experiment with attacking into the
ring front center and ring front right cameras using the Argoverse 2 Sensor
Dataset, as object can solely be visible to two cameras with overlapping FoVs at
a time. We do not make use of scenes from the two stereo cameras, as there is
no significant distinction between them. We render the object so that it appears
in front of the ring front center and ring front right camera. As the color of an
object also affects the detection performance, we mimic the typical color of real
fire hydrants, which is mostly red.

5.4 Evaluation

As mentioned in Sect. 3, we selected 100 frames from the Argoverse 2 Sensor
Dataset in which there are no objects with the same type as the injected object
and rendered it to the aforementioned positions. There are a total of 800 sce-
narios.

Dimensionality Reduction: One popular method to reduce dimension is Sin-
gular Value Decomposition (SVD). From Chart 5, it can be observed that dimen-
sionality reduction does not help much in guarding the model against adversarial
attack. With less singular values, the model fails to recognize not only adversarial
object, but also the benign one. Keeping just a small number of singular val-
ues drastically lowers the detection performance on both adversarial and benign
objects. Retaining more singular values is safer for detection performance, how-
ever, it is still not useful against adversarial objects.

Color Depth Reduction: We use color quantization technique to reduce a 24-
bit image to 8-bit image. The results are consistent for the reduction of various
number of colors. From Chart 6, it is obvious that color quantization does indeed
resist against adversarial objects, to some extent. Note that if the number of
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Fig. 5. Dimensionality reduction using SVD
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Fig. 6. Color depth reduction

colors is drastically reduced, then the object detection performance also drops
accordingly. Hence, a hybrid approach of combining both 24-bit and 8-bit image
is adopted (Table 2).

Table 2. Using both color depth reduction and multiple-camera system

Benign det. rate (%) Attack success rate (%)

Color depth Single-cam Multi-cam Single-cam Multi-cam

24-bit (orig.) 75.75 98.38 78 43.75

8-bit 51.88 84.38 39 17.6

24-bit, 8-bit 78.75 99 37.25 13

A Unified Countermeasure Pipeline: Due to the low effectiveness of dimen-
sion reduction, we only combine color depth reduction and multi-camera setup
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as one unified countermeasure. One downside of YOLOv3 is that it does not
perform well on small objects. In our study, the farther the object’s distance
to the vehicle is, the higher chance it is not detected by YOLOv3. This is the
reason why in the benign case, there are scenarios where the model misses the
fire hydrant, which results in a detection rate of merely 75.75%. Regarding color
depth reduction, our study shows that it can mitigate the ASR in adversarial
case. However, for benign fire hydrant, the detection performance drops dramat-
ically to 51.88% if we only use the 8-bit images. We decide to fuse the original
image (24-bit) and the 8-bit one together: whenever there is a detection happens
in either image - it is considered a true detection. Regarding the multiple-camera
setup, we find it more robust to guard the camera model than the single camera
setup. Our results show that combining multiple-camera setup and color depth
reduction technique together leads to a much more robust camera perception
system, results in 99% benign detection rate and just 13% attack success rate in
the adversarial case.

6 Limitations

Physical-World and Simulated Experiment. In this work, we extend the
original work [6] and use multi-camera perception system as an attack vector
as well as a feasible defense. One major drawback of our study is that we did
not try out our concept on a real AV in the physical world due to cost concerns.
Furthermore, we did not have the chance to experiment with AV simulators such
as LGSVL [24] due to limited time, and due to LG’s announcement that they
will suspend active development of SVL Simulator from 2022.

Multi-camera Object Projection. In Argoverse 2 Sensor Dataset, like other
public datasets, all the calibration parameters and matrices are provided along
the data itself. When we render the object with 3D information into 2D images
from the dataset, we have to make use of the calibration matrices. We observed
that when projecting the object onto side cameras, the final image might not
completely reflect the true position of the object. In our belief, it is likely because
there are some auxiliary parameters that we did not take into account or there
are some misalignment in the cross-camera projection. This flaw does not affect
the experiment, at large; nevertheless, it is still worth mentioning as we believe
this projection can be improved for the sake of precision.

7 Conclusions

This paper demonstrates our study on two defenses against 3D adversarial
object. Even though this attack originally aims to fool both LiDARs and cam-
eras, we focus on defending camera model since a robust camera model leads to
a robust perception system in general. Our study shows that feature squeezing
methods such as color depth reduction alleviates the attack efficacy, however, it



Adversarial Attacks and Countermeasures for Robust AV’s Perception 261

increases the risk of model cannot perform well on other objects. If we also lever-
age original images, the results are promising. In terms of dimensionality reduc-
tion technique, we find it ineffective in our study. Turning to multiple-camera
setup, this paper shows that using multiple cameras with overlapping FoVs is
more robust compare to the single-camera setup. Furthermore, this setup is also
budget-friendly, unlike LiDARs, which are prohibitively expensive. Leveraging
color depth reduction and multiple-camera setup at the same time tremendously
diminishes attack success rate, from 78% down to only 13%, according to our
experiments. Considering the safety of AV perception models, we hope our con-
tributions pave the way for the development of effective and economical defenses.
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