
HWGN2: Side-Channel Protected NNs
Through Secure and Private Function

Evaluation

Mohammad Hashemi1(B) , Steffi Roy2, Domenic Forte2, and Fatemeh Ganji1

1 Worcester Polytechnic Institute, Worcester, MA 01609, USA
{mhashemi,fgangi}@wpi.edu

2 University of Florida, Gainesville, FL 32611, USA
steffiroy@ufl.edu, dforte@ece.ufl.edu

https://www.ece.ufl.edu/people/faculty/domenic-forte/,

http://vernam.wpi.edu/

Abstract. Recent work has highlighted the risks of intellectual property
(IP) piracy of deep learning (DL) models from the side-channel leakage
of DL hardware accelerators. In response, fundamental cryptographic
approaches, specifically built upon the notion of secure and private func-
tion evaluation, could potentially improve the robustness against side-
channel leakage. To examine this and weigh the costs and benefits, we
introduce hardware garbled NN (HWGN2), a DL hardware accelerator
implemented on FPGA. HWGN2 also provides NN designers with the
flexibility to protect their IP in real-time applications, where hardware
resources are heavily constrained, through a hardware-communication
cost trade-off. Concretely, we apply garbled circuits, implemented using
a MIPS architecture that achieves up to 62.5× fewer logical and 66× less
memory utilization than the state-of-the-art approaches at the price of
communication overhead. Further, the side-channel resiliency of HWGN2

is demonstrated by employing the test vector leakage assessment (TVLA)
test against both power and electromagnetic side-channels.

Keywords: Side-channel analysis · Deep learning · Secure function
evaluation · Private function evaluation

1 Introduction

An ever-increasing number of applications are demanded from machine learn-
ing and, in particular, deep learning (DL). These applications, among other
compute-intensive services, have been supported by cloud platforms equipped
with hardware acceleration [9]; however, cloud platforms are not the only hosts of
DL algorithms and modules. IoT edge devices have embodied modules to perform
many tasks, for instance, image classification or speech recognition as required
by wearable devices for augmented reality and virtual reality [27]. In addition
to those, so-called mobile and wearable devices, low-cost DL chips (e.g., sensors
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2022, LNCS 13783, pp. 225–248, 2022.
https://doi.org/10.1007/978-3-031-22829-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22829-2_13&domain=pdf
http://orcid.org/0000-0002-1216-1552
https://doi.org/10.1007/978-3-031-22829-2_13


226 M. Hashemi et al.

or actuators) have been employed to support DL-inference in cameras, medi-
cal devices, appliances, autonomous surveillance, ground maintenance systems,
and even toys. Under DL-inference scenarios, trained neural networks (NNs) are
made available to users. To obtain such a trained NN, a large training dataset
is used in a time-consuming process to tune NN hyperparameters, which cannot
be repeated in a straightforward manner. Therefore, it can be tempting for an
adversary to target the DL-inference accelerator and extract those parameters.
Besides hyperparameters, the architecture of NNs is another asset to protect as
it may (even partially) reveal private information [16,17] or at least help the
adversary to reconstruct the NN [1,4]. Since physical access can make it further
easier for attackers to reverse-engineer and disclose the assets (i.e., architecture
and hyperparameters) corresponding to NNs, usual protections, e.g., blocking
binary readback, blocking JTAG access, code obfuscation, etc. could be applied
to prevent binary analysis [4]. These, of course, would not stop an attacker from
leveraging the information that leaks through side-channels [4,14,52,55].

These attacks have resulted in considerable efforts to devise countermeasures.
Intuitively, masking schemes developed to protect cryptographic modules against
SCA have been one of the first solutions discussed in the literature [12,13].
These methods come with their own set of challenges, e.g., being limited to
a pre-defined level of security associated with the masking order or even to a
particular modality. Moreover, evidently, masking cannot stop the attacker from
disclosing the architecture of the NN under attack. The natural question to
be asked is why fundamental cryptographic concepts that can provide NNs with
robustness against SCA have not yet been examined. Concretely, secure function
evaluation (SFE), specifically garbled circuits evaluation, has been considered to
prevent side-channel leakage cf. [21,33]. Nevertheless, in practice, SFE has not
been considered to stop side-channel attacks, perhaps, due to the high overhead
initially observed in [21]. Their implementation on a field-programmable gate
array (FPGA) is a combination of tamper-resistant hardware with Yao’s garbling
scheme [53], which comes with an overhead of about factor 106× compared to
an unprotected AES embedded in an FPGA.

Apart from the leakage properties of SFE and its realization garbled circuits,
they have been developed to ensure the security of users’ data, when two parties
jointly evaluate a known function. Therefore, in a natural way, garbled circuits
have been investigated to put forward the notion of privacy-preserving inference-
as-a-service [39,40]. In spite of these results, the gap between these studies is
evident: design of countermeasures against SCA, software implementation of
garbled NNs [20,39,41], and hardware implementations of garbled circuits [44].
To narrow this gap, this paper introduces HWGN2 (hardware garbled NN) and
contributes to the following aims.

– A secure and private DL-inference hardware accelerator, resilient to SCA. To
protect the NN model (including its architecture and parameters) against SCA,
HWGN2 relies on the principles of private function evaluation (PFE) and SFE,
realized through a general purpose processor cf. [44,46]. Interestingly enough,
as opposed to the argument in [21,33] suggesting the side-channel resiliency of



HWGN2: Side-Channel Protected NNs Through SFE/PFE 227

Fig. 1. HWGN2 framework: The process begins with training the NN as done for a
typical DL task. The second step corresponds to the implementation of the garbled
NN hardware accelerator along with running the OT protocol. The end-user poses the
accelerator and attempts to collect the side-channel traces to extract information on
the NN (architecture, hyperparameters, etc.).

garbled circuits, Levi et al. have recently demonstrated a side-channel attack
against garbling schemes leveraging the free-XOR optimization [28]. HWGN2

is not susceptible to this attack since PFE is taken into account to make the
function private. It is noteworthy that the privacy of the NN model is under-
studied even in existing software garbled DL-inference [2,39,41]. Our instruc-
tion set-based HWGN2 is model-agnostic. Moreover, in the most cost-efficient
setting with a DL-inference realized by using XNOR operators, our implemen-
tation does not require any modification to the NN, in contrast to what has
been proposed as software garbled DL-inference [39].

– Effectiveness and cost-efficiency of SCA protection relying on SFE/PFE. To
evaluate the feasibility of our approach, we identify two implementation sce-
narios, namely (1) resource- and (2) communication-efficient. In the first cat-
egory, compared to the unprotected NN, the overhead is up to 0.0011× and
0.018× more logical and memory hardware resources, respectively; however,
this relatively low overhead is achieved at the cost of communication between
the user and the inference service provider. If communication constitutes a
burden on the system, it can be dealt with, even though compared to the
unprotected design, the overhead increases to 52.4× and 40.8× more logi-
cal and memory hardware resources, respectively. However, even under the
communication-efficient scenario, HWGN2 utilizes up to 62.5× fewer logical
and 66× less memory, respectively, compared to the most relevant study [41].
Additionally, the side-channel resiliency of HWGN2 implementation on the
FPGA is assessed by applying T-test leakage detection.

2 Adversary Model

Valuable assets of NNs, as intellectual property (IP), include their NN architec-
tures, hyperparameters, and the parameters critical to achieving reasonable accu-
racy [4]. On the other hand, these NNs might be used in applications in which their
inputs contain sensitive information (e.g., medical or defense records [34]). Hence,
the security of inputs given to NNs along with the privacy of the networks them-
selves must be guaranteed. Note that here the definitions of security and privacy



228 M. Hashemi et al.

are borrowed from SFE- and private function evaluation- (PFE) related litera-
ture [6]. Classically, two threat models have been considered in prior works in the
contexts of SFE and PFE: (i) semi-honest (so-called Honest-but-curious (HbC))
and (ii) malicious (active) adversary. An HbC adversary is expected to follow the
protocol execution and does not deviate from the protocol specifications. To be
more specific, the HbC adversary may only be able to learn information without
interfering with the protocol execution. On the contrary, a malicious adversary
may attempt to cheat or deviate from the protocol execution specifications.

In our work, we consider the HbC adversary, whose role is played by Bob
(i.e., the evaluator), whereas Alice is the garbler [6,29] (see Fig. 1). Following
the definition of the attack model presented in the state-of-the-art (SOTA),
e.g., [12,13], the DL model provider (garbler) trains the DL model in an offline
fashion, and the evaluator performs the inference. It is important to stress that
the hardware implementation encompasses solely the evaluator engine, i.e., nei-
ther garbling nor encryption module is implemented on the hardware platform.
To evaluate the garbled DL accelerator, the evaluator feeds her garbled inputs
prepared in an offline manner. The evaluator can collect power/EM traces from
the device either via direct access or remotely, see e.g., [43,56]. For this, the eval-
uator follows a chosen-plaintext-type attack model, where she sends her inputs
to the device for classification and readily captures multiple traces. These traces
will be then used to launch power/EM-based side-channel attacks [8,10,25]. The
goal of the garbler is to protect the NN architectures, hyperparameters, and
parameters from the HbC evaluator. HWGN2 fulfills this requirement through
SFE/PFE techniques (see Sect. 5).

3 Related Work

3.1 SCA Against NNs

The main goals of SCA targeting DL hardware accelerators can be: (i) extrac-
tion of model architectures, and (ii) revealing NN parameters (i.e., weights and
biases). For this purpose, Xiang et al. [52] presented a power side-channel attack
to extract the model architectures. Using these power consumption models built
for different model components, an SVM-based classifier was trained to reveal the
model architectures running on the hardware accelerator. This line of research
has also been pursued by Batina et al. [4] who introduced an attack scenario
based on the EM and timing side-channel to extract the number of layers, the
number of neurons in each layer, weights, and activation functions (AF). First,
they modeled the timing side-channel of all possible AF (e.g., Relu or Tanh)
and extracted the AF used in the NN by comparing the response time of the
DL hardware accelerator when it executed the AF and the timing model of each
possible AF. This is followed by analyzing EM traces captured when the DL
hardware accelerator runs, where the EM patterns determine the number of lay-
ers and number of neurons in each layer. By feeding different random inputs
to the accelerator and capturing the EM traces, it was possible to launch a
Correlation Power Analysis (CPA) to reveal the weights. In another approach,



HWGN2: Side-Channel Protected NNs Through SFE/PFE 229

Table 1. SOTA approaches vs. HWGN2 (Parameters Secrecy of DL Model. Upgrade-
able to/supporting malicious security model. Architecture protection of DL model.
Constant-round complexity. Independence of a secondary server). Inspired by [39].

Approach P U A C I

DeepSecure [42] � � ✗ � �
Chameleon [40] � ✗ ✗ ✗ ✗

XONN [39] � � ✗ � �
BoMaNET [13] � ✗ ✗ � �
ModuloNET [12] � ✗ ✗ � �
TinyGarble2 [20] � � ✗ � �
RedCrypt [41] � � ✗ � ✗

HWGN2 [This paper] � � � � �

Breier et al. [7] have presented a reverse engineering attack to extract the DL
model weights and biases (parameters) with the help of fault injection on the
last hidden layer of the network (see Table 5 in Appendix A).

3.2 Security-Preserving DL Accelerators

To protect NNs against SCA, Liu et al. [32] introduced a shuffling and fake
memory-based approach to mitigate reverse engineering attacks that increase
the run time of a DL hardware accelerator when the depth of the NN increases.
Regarding the similarity between SCA launched against cryptographic imple-
mentations and DL accelerators, in a series of work, Dubey et al. have pro-
posed hiding and masking techniques to protect NNs [12–14]. Yet, the differ-
ences between these implementations make the adaptation of known side-channel
defenses challenging; for instance, integer arithmetic used in neural network com-
putations that is different from modular arithmetic in cryptography, which has
been addressed in [12,14]. Despite the impressive achievements presented in these
studies, the approaches suffer from the known limitations of masking, i.e., their
restriction to a specific side-channel security order. Furthermore, the implemen-
tation of masked DL models (i.e., a new circuit should be designed/implemented
for different NNs) would be a challenging task. Moreover, masking cannot protect
the architecture of DL models.

3.3 Garbled Accelerators

Among proposals put forward to make SFE practical, GarbledCPU [46] and
RedCrypt [41] are of great importance to our work since they consider a
hardware implementation of garbled circuits, whereas other relevant studies
such as [3,20,39,40,42,44] devoted to software-based garbling engine/evaluator
(other implementations have been compared in Table 6 in Appendix A). [46] has
demonstrated a hardware garbling evaluator implemented on general-purpose
sequential processors, where the privacy of NN architectures is also ensured.



230 M. Hashemi et al.

While benefiting from the simplicity of programming a processor, their design is
specific to Microprocessor without Interlocked Pipelined Stages (MIPS) archi-
tecture. This has been addressed by introducing ARM2GC framework, where
the circuit to be garbled/evaluated is the synthesized ARM processor circuit
that can support pervasiveness and conditional execution [45]. The efficiency in
terms of hardware resources and communication cost has been reported as well.

RedCrypt attempts to enable cloud servers to provide high-throughput and
power-efficient services to their clients in a real-time manner [41]. For this, FPGA
platforms (Virtex UltraSCALE VCU108) have been used as a garbling core to
present an efficient GC architecture with precise gate-level control per clock
cycle, which ensures minimal idle cycles. This results in a multiple-fold improve-
ment in the throughput of garbling operation compared to the previous hardware
garbled circuit accelerator [44,46]. In their scenario, a host CPU is involved in an
OT to communicate the evaluator labels/input with the client, which may need
high bandwidth. Although RedCrypt [41] has achieved significant improvement
in computational efficiency, the DL model implemented on the FPGA cannot
be easily diversified. Their proposed hardware DL accelerator suits a specific
type of DL model and is built on the assumption that the network architec-
ture is publicly available, which allows an adversary to launch an SCA attack
easier [4]. These shortcomings are tackled by HWGN2 that is NN-agnostic and
guarantees the privacy of the DL model, i.e., the secrecy of its architecture. A
qualitative comparison between SOTA approaches and HWGN2 is provided in
Table 1. HWGN2 shares similarities with TinyGarble2 [20], although they are
software and hardware accelerators, respectively.

4 Background

4.1 SFE/PFE Protocols

SFE protocols enable a group of participants to compute the correct output
of some agreed-upon function f applied to their secure inputs without reveal-
ing anything else. One of the commonly-applied SFE protocols is Yao’s gar-
bled circuit [53], a two-party computation protocol. To formalize this protocol,
we employ the notions and definitions provided in [6] to support modular and
simple but effective analyses. In this regard, a garbling algorithm Gb is a ran-
domized algorithm, i.e., involves a degree of randomness. Gb(f) is a triple of
functions (F, e, d) ← Gb(f) that accepts the function f : {0, 1}n → {0, 1}m
and the security parameter k. Gb(f) exhibits the following properties. The
encoding function e converts an initial input x ∈ {0, 1}n into a garbled input
X = e(x), which is given to the function F to generate the garbled output
Y = F (X). In this regard, e encodes a list of tokens (so-called labels), i.e., one
pair for each bit in x ∈ {0, 1}n: En(e, ·) uses the bits of x = x1 · · · xn to select
from e = (X1

0 ,X1
1 , · · · ,X0

n,X1
n) and obtain the sub-vector X = Xx1

1 , · · · ,Xxn
n .

By reversing this process, the decoding function d generates the final output
y = d(Y ), which must be equal to f(x). In other words, f is a combina-
tion of probabilistic functions d ◦ F ◦ e. More precisely, the garbling scheme



HWGN2: Side-Channel Protected NNs Through SFE/PFE 231

G = (Gb,En,De,Ev, ev) is composed of five algorithms as shown in Fig. 2,
where the strings d, e, f , and F are used by the functions De, En, ev, and Ev
(see Sect. 5 for a concrete protocol flow in the case of NNs).

Security of Garbling Schemes: For a given scheme, the security can be
roughly defined as the impossibility of acquiring any information beyond the final
output y if the party has access to (F,X, d). Formally, this notion is explained
by defining the side-information function Φ(·). Based on the definition of this
function, an adversary cannot extract any information besides y and Φ(f) when
the tuple (F,X, d) is accessible. As an example of how the function Φ(·) is deter-
mined, note that for an SFE protocol, where the privacy of the function f is not
ensured, Φ(f) = f . Thus, the only thing that leaks is the function itself. On the
other hand, when a PFE protocol is run, Φ(f) is the circuit/function’s size, e.g.,
number of gates.

Oblivious Transfer (OT): This is a two party protocol where party 2 transfers
some information to party 1 (so-called evaluator); however, party 2 remains
oblivious to what information party 1 actually obtains. A form of OT widely
used in various applications is known as “chosen one-out-of-two”, denoted by
1-out-of-2 OT. In this case, party 2 has bits X0 and X1, and party 1 uses one
private input bit s. After running the protocol, party 1 only gets the bit Xs,
whereas party 2 does not obtain any information on the value of s, i.e., party 2
does not know which bit has been selected by party 1. This protocol can be
extended to support the n-bit case, where party 1 bits x1, · · · , xn are applied
to the input of party 2 X0

1 ,X1
1 , · · · ,X0

n,X1
n to obtain Xx1

1 , · · · ,Xxn
n . This is

possible by sequential repetition of the basic protocol [6]. It has been proven
that 1-out-of-2 OT is universal for 2-party SFE, i.e., OT schemes can be the
main building block of SFE protocols [24].

4.2 Neural Networks (NNs)

An NN is one of the main categories of machine learning, referring to learning a
non-linear function through multiple layers of neurons with the goal of predicting
the output corresponding to a given input. To perform such prediction, the input
is fed to the first layer of the network (so-called input layer), whereas in the
next layers (so-called hidden layers) the abstraction of the data takes place. For
a multi-layer perceptron (MLP) that is a fully connected NN, each layer’s input
(including the input layer) is multiplied by neuron weights, added to the bias,
and finally given to a commonly-applied activation functions at the output of
each layer (excluding the input layer), e.g., Sigmoid, Tanh, and Rectified Linear
Unit (ReLu). The activation functions that might be used in DL models include
linear, Sigmoid, and softmax.

5 Foundations of HWGN2

Protocol Flow: Here we provide insight into how SFE/PFE schemes can be tai-
lored to the needs of a secure and private DL accelerator. According to the general



232 M. Hashemi et al.

flow illustrated in Fig. 2, the goal of a garbling protocol G is to evaluate a function
f against some inputs x to obtain the output y. The evaluator (i.e., the attacker)
is never in possession of the raw NN binaries. Let f = fNN denote the function
corresponding to the NN. The attacker aims to obtain the information on fNN by
collecting the side-channel traces. To achieve this, here we give an example of SFE
protocol G that has OT at its core and follows Yao’s garbling principle, i.e., the
garbling protocol G = (Gb,En,De,Ev, ev) as shown in Fig. 2. To execute the pro-
tocol, the designer of the NN accelerator (garbler) conducts (F, e, d) ← Gb(1k, f)
on inputs 1k and f and parses (X1

0 ,X1
1 , · · · ,X0

n,X1
n) ← e. Afterward, the garbler

sends F to the evaluator, i.e., the attacker. In order to perform the function Ev,
the attacker and the garbler run the OT, where the former has the selection string
x and the latter party has already parsed (X1

0 ,X1
1 , · · · ,X0

n,X1
n). Hence, the eval-

uator can obtain X = Xx1
1 , · · · ,Xxn

n and consequently, y ← De(d,Ev(F,X)).
Note that even with the tuple (F,X, d) in hand, the attacker cannot extract any
information besides y and Φ(f). Moreover, although the NN provider has access
to (F, e, d), no information on x leaks. In an inference scenario, x represents the
evaluator’s input data. Nevertheless, if G is an SFE scheme, Φ(f) = f .

To construct a PFE scheme protecting the architecture, parameters, and
hyperparameters of the NN that relies on the scheme G, we first define a poly-
nomial algorithm Π that accepts the security parameter k and the (private) input
of the party [6]. The PFE scheme is a pair F = (Π, ev), where ev is as defined
for the garbling scheme (see Sect. 6 for more information about Π). The scheme
F enable us to securely compute the class of functions {ev(f, ·) : f ∈ {0, 1}∗},
i.e., any function that G can garble. The security of the PFE scheme F relies on
the security of the SFE protocol underlying F (see Sect. 4.1); however, Φ(f) is
the circuit size, i.e., the function f remains private when executing the SFE pro-
tocol. In other words, the NN, its architecture, parameters and hyperparameters
are now kept private from the attacker.

Oblivious Inference: Oblivious inference tackles the problem of running the
DL model on the user’s input without revealing the input or the result to the
other party (i.e., garbler in our case). For the latter, another interesting char-
acteristic of SFE/PFE schemes is their ability to adapt to specific scenarios,
where the output y should also be protected. This would not be interesting in
our case, where the security of the NN against SCA mounted by the evaluator
is the objective. Nonetheless, for the sake of completeness, if the decryption of
Y should be performed securely, the privacy of inference results can easily be
preserved by applying a one-time message authentication code (MAC) to the
output and XORing the result with a random input to hide the outcome. These
operations can be included in the design of the NN and naturally increase its size
and the input fed by the garbler; however, the increase is linear in the number
of output bits and considered inexpensive [30].

5.1 Implementation of HWGN2

When defining the PFE scheme F , it is mentioned that F can securely and
privately compute any function, which can be garbled by running the garbling



HWGN2: Side-Channel Protected NNs Through SFE/PFE 233

Fig. 2. A generic garbling scheme G = (Gb,En,De,Ev, ev) cf. [6]. Our proposed secure
and private DL accelerator is built upon G. For HWGN2, the blocks in orange show the
operations performed by the NN vendor, whereas the gray ones indicate the evaluator
operations. ev denotes the typical, unprotected evaluation of the function f against
the input x.

Fig. 3. Flow of HWGN2 (L: garbled wire labels, GT : garbled tables, e and d: encryption
and decryption labels, X: evaluator’s garbled input, Y : garbled output, Yi, Xi, GTi, Li:
garbled input, output, tables, wire labels corresponding to ith sub-netlist, respectively,
y: evaluator’s raw output).

scheme G. Our garbled universal circuit F depends on the fact that a universal
circuit is similar to a universal Turing machine [18], which can be realized by a
general purpose processor cf. [44,46]. Note the difference between our goal, i.e.,
realizing F , and one achieved in [50]: optimizing the emulation of an entire public
MIPS program. Although we implemented a MIPS-based scheme, the prototypes
can be extended to ARM processors. HWGN2 garbles the MIPS instruction set
with a minimized memory and logical hardware resource utilization (see Sect. 5.1).

Similarities Between HWGN2 and TinyGarble2: One of the state-of-the-
art GC frameworks is TinyGarble2 [20] offering solely software DL inference,
without ensuring the privacy of the NN. HWGN2 remedies these shortcomings;
however, it shares similarities with TinyGarble2, namely regarding the flow of
the protocol. The technique presented in TinyGarble2 is based on the division
of a large netlist, such as DL models, into i smaller sub-netlists and evaluating
them one after another. The size of the sub-netlists could be either one gate or
equal to the total number of gates in the f netlist. The fewer gates included in
each sub-netlist, the less memory utilization the gates require to be evaluated.

Figure 3 illustrates the flow of HWGN2 in the presence of an HbC adversary.
First, the garbler chooses input encryption labels (e) (Step 1.1). Afterward,
instead of sending the complete set of GTs and L to the evaluator, in each cycle



234 M. Hashemi et al.

the garbler sends the evaluator a subset GTi, Li (Step 1.2), and either e (if the
sub-netlist includes the gate with the inputs connected to the f netlist) or Xi (the
garbled input corresponding to the sub-netlist). These subsets can be prepared
offline and independent from the input of the evaluator. The evaluator also gar-
bles her inputs as shown in Step 2, which is done offline as well. In the next step,
the evaluator evaluates the gate and sends the garbler the garbled output Yi,
i.e., garbled output of the ith sub-netlist (Step 3). This process repeats until all
i sub-netlists, excluding the gates whose output is connected to the NN outputs,
are evaluated. Then in Step 4, the garbler sends the garbled tables and labels
related to the gates that are connected to the NN output (so-called NN output
layer). After the evaluator evaluates all output layer-related gates, the garbler
sends the decryption label (Step 5) along with the concatenated garbled out-
puts to the evaluator. Finally, the evaluator decrypts the concatenated garbled
output Y and achieves his raw output y. Also, instead of sending the complete
set of GTs, L, and e through one OT interaction, TinyGarble2 requires one OT
interaction per sub-netlist. The trade-off of minimizing the memory utilization
using TinyGarble2 is the communication cost.

What Makes HWGN2 superior: Parallel and simultaneous evaluation of all
input gates might result in the side-channel leakages due to the secret collision;
therefore, all input gates must be evaluated one after another without paralleliza-
tion. However, the rest of the gates (without dependencies) have no informa-
tion about the secrets, and thus, they can be evaluated simultaneously. More-
over, we have noticed that each gate evaluation (excluding reading/writing its
inputs/output from/to the memory) requires one operation code (OP-code) which
is an 8-bit part of a MIPS instruction. As we have assigned the reading and writ-
ing tasks to the memory handler module, it is possible to combine a set of four
gates (non-input gates) and construct one modified MIPS instruction from them.
In doing so, in the evaluation phase, all these four OP-codes can be executed using
four parallel arithmetic logic units (ALU) on FPGA while this is an impracti-
cal task for central processing unit (CPU) due to its limited resources and oper-
ating system (OS) limitations. HWGN2, contrary to the previous software and
hardware accelerators including TinyGarble family [20,44], leverages these par-
allelization techniques. It also gives the flexibility of tuning the communication
costs and hardware resource utilization to the garbler (e.g., NN provider). In the
applications where communication cost poses a limitation (such as real-time appli-
cations), one can implement DL hardware accelerators by sending the complete
set of GTs, L, and e through one OT interaction. This minimizes the communica-
tion cost while hardware resources are utilized at the maximum amount. In con-
trast, in the application with the limitation of hardware resources, one can use
the HWGN2 that implements DL hardware accelerators with the sub-netlist size
of one or a small number of gates. As opposed to TinyGarble2, HWGN2 imple-
mentation is based on the garbled MIPS architecture, making the circuit private
(i.e., no information about the NN architecture leaks) as explained next.

MIPS Evaluator in HWGN2. As explained before, in order to ensure the
privacy of the NNs, the Boolean function representing the NN (so-called netlist)
is converted to a set of reduced instruction set computing (RISC) instruction



HWGN2: Side-Channel Protected NNs Through SFE/PFE 235

Fig. 4. Garbled MIPS evaluator, able to process any given number of instructions
instead of a determined number. The black modules are extended and improved versions
of memory and instruction handler in Lite MIPS architecture [44]: the instruction
handler prepares the controller sequence by comparing the garbled MIPS instructions
and the OP mapping. The controller runs the process sequence by generating the ALU
mode and executing the read and write operations.

set architecture (ISA) and evaluated on a core that executes the MIPS instruc-
tions [23]. It might be thought that a subset of instructions required to execute
the NN is sufficient to be garbled in order to reduce the overhead; however,
this could increase the probability of guessing which instructions are used and,
consequently, violates the privacy of the NN.

To implement HWGN2 on an FPGA, we modify Plasma [38] MIPS execution
core emulating a RISC instruction set on the FPGA, to act as the garbled MIPS
evaluator. Figure 4 illustrates the architecture of our garbled MIPS evaluator. The
garbled evaluator receives three inputs: (i) a set of garbled instructions, (ii) the
mapping for the instruction handler to fetch/decode the garbled instructions, and
(iii) the evaluator’s garbled input. The combination of the first and second ones (i,
ii) is the set of garbled tables and labels described before. Our garbled MIPS eval-
uator can evaluate the garbled MIPS instructions in two modes: (a) by receiving
only one instruction and the operation code (OP) mapping and its corresponding
instruction each cycle, i.e., the garbled evaluator with the capacity of one instruc-
tion per OT interaction, or (b) by receiving the complete set of instructions and
their corresponding OP mapping at once. To achieve the resource-efficient imple-
mentation (mode i), we have modified the Lite MIPS instruction handler module
in a way that the memory size related to the received garbled instructions (not
the OP code mapping) decreases from 128 cells to only one cell. The controller
is further enhanced by discarding the unnecessary scheduler, SCD storage mem-
ory and its parsing modules and tailoring the core to need of only one instruc-
tion conversion per OT. Moreover, we include the erase state in the instruction
MEM controller, which sets all memory blocks to 0 after converting each garbled
instruction to the OP code. To take advantage of the resource-efficient implemen-
tation, an extra step should be taken to divide the netlist into the sub-netlists with
the number of gates selected by the user. The sub-netlists are fed to HWGN2 in
the same order provided in the SCD file. This allows the user to make a trade-off
between the resource efficiency and performance of the HWGN2.



236 M. Hashemi et al.

Table 2. Hardware resource utilization and OT cost of approaches applied against
BM1.

Approach LUT FF OT interaction

Plasma [38] 1773 1255 N/A

GarbledCPU [46] 21229 22035 2

RedCrypt [41] (One MAC Unit) 111000 84000 2

BoMaNET [13] 9833 7624 N/A

ModulaNET [12] 5635 5009 N/A

HWGN2 (1 instruction per OT interaction) 1775 1278 2346

HWGN2 Complete set of instructions 94701 52534 2

Specifically, in mode (a), in the first step, the instruction handler module
receives one garbled instruction and OP mapping (all possible combinations of
garbled MIPS instructions necessary to follow SFE protocol), which are stored in
the instructions memory (MEM). In the next step, the instruction handler com-
pares the given garbled instructions with garbled instructions MEM information
and converts each garbled instruction to a set of OPs. Finally, the instruction han-
dler sends the OP to the arithmetic-logic unit (ALU), erase instructions MEM,
and repeats above-mentioned steps for the next garbled instructions. In mode (b),
however, the instruction handler module works similarly to the Lite MIPS archi-
tecture cf. [44]. As both instruction sets and decode mapping are garbled on the
garbler side, the evaluator cannot decrypt the garbled instructions. Therefore,
the garbler’s inputs and the DL model parameters are secure following the SFE
and PFE protocols.

6 Evaluation of HWGN2

6.1 Resource Utilization

To understand the interplay between communication cost, hardware resources
utilization, and performance, we have synthesized the garbled evaluator with
the capacity of 1 and 2345 (complete set of instructions) garbled MIPS instruc-
tions per one OT interaction. We have used Xilinx Vivado 2021 to synthesize
our design and generate a bittsream. To ensure the bitstream correctness, we
have disabled place-and-route optimization and also utilize the DONT-TOUCH
attribute. The garbling framework considered in our implementations is Just-
Garble [5], also embedded in TinyGarble2 framework [20], which enjoys garbling
optimization techniques such as Free-XOR [26], Row Reduction [36], and Gar-
bling with a Fixed-key Block Cipher [5]. Our implementation is applied against
three typical MLPs: the first one, with 784 neurons in its input layer, three hid-
den layers each with 1024 neurons, and an output layer with 10 neurons that
is trained on MNIST (hereafter called BM1). The results for applying SOTA
approaches against BM1 have been presented in [12,41,46]. The second MLP,



HWGN2: Side-Channel Protected NNs Through SFE/PFE 237

Table 3. Execution time and communication cost comparison between HWGN2 and
the SOTA approaches (for BM1). Results for [46] and HWGN2 are reported based on
FPGA with clock frequency equals to 12.5MHz. (N/R: not reported, inst.: instruc-
tions).

Approach Time (Sec) Communication (MB)

GarbledCPU [46] 1.74 N/R

RedCrypt [41] 0.63 5520

HWGN2 (Complete set of inst. per OT interaction) 0.68 619

TinyGarble2 [20] 9.1 7.16

HWGN2 (1 inst. per OT interaction) 3.25 12.39

BM2, has 784, 5, 5, and 10 neuron in its input, 2 hidden, and output layers,
respectively. The third MLP, BM3, consists of 784, 6, 5, 5, and 10 neurons in
its input, 3 hidden, and output layers, respectively.

Table 2 shows a comparison between the hardware utilization and OT cost
of an unprotected MIPS evaluator core (Plasma [38]), HWGN2 and the SOTA
approaches applied to BM1. To give an insight into how much overhead cost the
protection approaches impose, we have implemented Plasma core, an unprotected
MIPS evaluator core on an Artix-7 FPGA. Note that we choose this architecture
for the sake of a better comparison with the SOTA solutions, e.g., [12]. It is also
worth mentioning that since the ultimate goal of our paper is to demonstrate the
applicability of garbling techniques for side-channel resiliency, the network men-
tioned above is chosen to serve as a proof of concept. As the HWGN2 processes
the garbled instructions and inputs with the width of 32-bits, to have a fair com-
parison, we include the 32-bit MAC unit [41] in the resource utilization reported
in Table 2.

In Table 2, BoMaNET and ModulaNET do not use OT to exchange their
inputs. RedCrypt uses two OT interactions, one for the evaluator’s input and
another for the evaluator’s output. However, in HWGN2, in addition to the input
and output labels exchange OT requirement, HWGN2 requires M more OT inter-
actions, where M is the number of sub-netlists. There is an important observation
made from Table 2: HWGN2 with the capacity of one instruction per OT interac-
tion utilizes 0.0011× and 0.018× more logical and memory hardware resources,
respectively, compared to an unprotected MIPS evaluator. The reason behind
this efficiency is the size of instruction memory which stores only one instruction
per OT interaction instead of the complete set of instructions. As mentioned in
Sect. 5.1, to minimize resource utilization, one should sacrifice the communication
cost, leading to an increased execution time. Hence, we set the size of the sub-
netlist to just one gate, and every four gates are converted to a garbled instruction:
M = Ngate/4, where Ngate is the number of gates in the netlist. In this setting,
HWGN2 requires 2 + 9380/4 = 2346 OT interactions, where 9380 is the number
of gates included in the BM1 netlist. In real-time applications where the execu-
tion time is the bottleneck, the OT interactions must be minimum [41]. Therefore,
in Table 2, we also have reported the hardware resource utilization in two cases:



238 M. Hashemi et al.

Table 4. Execution time and communication cost of HWGN2 applied to BM1 accel-
erator and its XNOR-based implementation.

Architecture #Instructions OT Interaction Execution Time (Sec) Communication (MB)

BM1 2345 2346 3.25 12.39

XNOR-based BM1 1629 1631 2.31 9.71

(i) when the number of OT interactions is maximum (6th row) and (ii) when the
number of OT interactions is minimum (7th row). The results in Table 2 are for the
implementation of BM1. As shown in Table 3, HWGN2 with the maximum per-
formance is 2.5× faster than GarbledCPU [46]. Performance of HWGN2 is close
to the performance of Redcrypt [41], the fastest SOTA approach, while utilizing
62.5× fewer logical and 66× less memory than Redcrypt [41].

Execution Time and Communication Cost Evaluation. To evaluate the
cost of HWGN2 in terms of execution time, we have used a machine with Intel
Core i7-7700 CPU @ 3.60 GHz (GHz), 16 Gigabyte (GBs) RAM, and Linux
Ubuntu 20 as the garbler and an ARTIX7 FPGA board as the evaluator, which
has a clock frequency of 12.5 MHz (MHz). All the garbled instructions, their
MEM values, and labels are generated offline and not included in the execution
time. To communicate with the FPGA, for the sake of comparison, we have
used HostCPU presented in [41]. Note that in a real-world application, where
the communication is performed over high latency links, the protocol execution
remains fast due to the constant number of rounds in Yao’s GC underlying our
design cf. [22,31]. Moreover, we have used the EMP-toolkit [51] to establish
the OT interaction between the garbler and the HostCPU. Table 3 shows the
execution time and communication cost comparison between HWGN2 and the
SOTA approaches employed against BM1. The memory footprint of classical GC
approaches is O(I + Ngate), where I is the number of input wires and Ngate is
the number of gates in the netlist. In contrast, the memory footprint of HWGN2

and TinyGarble2 is the same: O(I + Ngate,m + im) where Ngate,m is the number
of gates in the largest among sub-netlists included in the design, and im is the
number of inputs of the sub-netlist, which equals 1 and 2, respectively, in the
case of HWGN2 with the instruction capacity 1 per OT interaction.

To compare the execution time and communication cost of TinyGarbled2
with our approach, we have chosen the semi-honest mode when using their frame-
work. HWGN2 outperforms the TinyGarble2 implemented on CPU thanks to the
parallel implementation made possible by the FPGA. On the other hand, when
minimizing the OT interactions by investing more hardware resource utilization,
HWGN2 has a performance close to the RedCrypt with 62.5× fewer logical and
66× less memory utilization.

As an optimization technique, we have implemented the XNOR-based BM1.
As the XOR operation is free in the garbling protocol [26], it is possible to
decrease the size of the garbled netlists, which results in fewer instructions to
be executed. Table 4 shows a comparison between two architectures. Using an



HWGN2: Side-Channel Protected NNs Through SFE/PFE 239

XNOR-based implementation of a DL hardware accelerator decreases the num-
ber of instructions, leading to a less OT cost and execution time. The only
limitation of this optimization is that the weights of the DL model must be
binarized, and such binarization may slightly decrease the DL hardware acceler-
ator output accuracy. Nevertheless, there are methods devised to deal with this,
which can be adopted to bring significant benefits to garbled DL accelerators in
terms of both OT cost and execution time.

6.2 Side-Channel Evaluation

Side-Channel Measurement Setup. HWGN2 has been implemented on
Artix-7 FPGA device XC7AT100T with package number FTG256. We have cap-
tured the power and EM traces (see Appendix C) using Riscure setup, including
LeCroy wavePro 725Zi as the setup oscilloscope. We have set our design fre-
quency to 12.5 MHz, the maximum possible clock frequency of Chipwhisperer
CW305 target board, and the oscilloscope sampling frequency to 12.5 GHz. For
each clock cycle, we have acquired 8100 sample points. Acquiring high-resolution
side-channel traces made our design execution time 3.25 s for each classification
performed by BM1. For this network, acquiring side-channel traces in the order
of millions has high time complexity. Therefore, similar to [12], another MLP
architecture, namely, BM2 is used for traces collection. The changes in MLP
architecture hyperparameters allowed us to execute each classification in 31 ms.
As HWGN2 executes each instruction separately in a sequential manner and the
nature of the NNs is repetitive, we argue that the smaller MLP architecture can
represent a larger one in terms of leakage.

Leakage Evaluation. We have used a common methodology, namely Test
Vector Leakage Assessment (TVLA) test, to evaluate HWGN2 leakage resiliency.
Although the TVLA test is subject to two disadvantages – false positive/negative
results and limited ability to reveal all points of interests [15,35,47] – it is still
the most common methodology used in recent papers to evaluate the resiliency
of the approach against side-channel leakage.

In the TVLA test methodology, Welch’s t-test is used to check the similarity
between two trace groups captured from two populations of inputs. Welch’s t-
test calculates the t-score as t = (μ1 − μ2)/

√
(s21/n2

1) + (s22/n2
2), where μ1 and

μ2 are the means, s1 and s2 are the standard deviations, and n1 and n2 are the
total number of the captured traces for first and second population, respectively.
Based on the null-hypothesis, if two populations are chosen from one distribution,
their corresponding t-score must be less that ±4.5. Exceeding t-score magnitude
of 4.5 (so-called null-hypothesis) means the design is subject to side-channel
leakage with probability greater than 99.99%. In our setup, we choose the non-
specific fixed vs. random t-test in a way that our setup, first, captures the power
consumption/EM traces from a fixed input computation for all the traces; then,
the experiment repeats for a set of randomly generated inputs. Based on the two
captured traces, for fixed and random inputs, our setup calculates the t-score
based on the aforementioned equation.



240 M. Hashemi et al.

Power Side-Channel Leakage Assessment. To illustrate the side-channel
protection offered by HWGN2, we have mounted the TVLA test on power traces
of an unprotected MIPS core, Plasma core presented by Opencores projects [38],
and HWGN2, with the capacity of one instruction per OT interaction. Figure 5
(a) and (b) shows the TVLA results of an unprotected MIPS core and HWGN2,
with the capacity of one instruction per OT interaction, respectively. The t-scores
are calculated based on 10000 captured traces, 5000 for each fixed and random
input population. As one can observe, an unprotected MIPS core t-score has
exceeded the ±4.5 threshold with only 10000 traces, while the HWGN2’s t-score
remains below the threshold.

To have a design with leakage resiliency, the t-score results must remain below
the threshold with the traces populations in the order of millions [11,12,35,47].
Hence, in the next experiment, we have captured a total of 2 million (2M) traces,
1M traces for each fixed and random input populations. A low t-score, less
than ±4.5, calculated from a trace population in the order of millions confirms
the protection strength of HWGN2. It should be noted that these traces are
captured in the low-noise setup (i.e., more optimistic for the attacker) while in
the actual scenario, the number of traces to break the garbling scheme should
be significantly higher due to more noisy environments.

As a proof of concept that HWGN2 side-channel resiliency is independent of
the function or architecture we also mount the TVLA test on two more imple-
mentations: XNOR-based DL hardware accelerator and DL hardware accelera-
tor. Figure 5, (c) and (e), illustrates the t-score of HWGN2 applied to XNOR-
based BM2, with the capacity of complete set of instructions per OT interaction
and one instruction per OT, respectively. As can be seen, the t-scores of HWGN2

stay below the threshold of ±4.5 for different cases of instruction capacity per
OT interaction and the function or architecture implemented on an FPGA using
HWGN2. The t-scores in Fig. 5, (d) and (f), indicate that not only HWGN2 with
the capacity of one instruction per OT interaction provides a strong protection
against power side-channel attacks but also changes in the number of instruction
capacity per OT interaction does not affect this protection (for results of EM
leakage detection, see Appendix C).

Can we see the Architecture-Related Patterns? Based on the attack pre-
sented by Batina et al. [4], revealing the DL model architecture can enhance
the attacker’s ability to obtain DL model parameters. They showed that the
EM trace captured from an unprotected DL model implementation on Atmel
ATmega328P microcontroller, which follows the MIPS architecture same as
HWGN2, with three hidden layers containing 6, 5, and 5 neurons, respectively,
has a pattern in which the number of layers and neurons can be revealed. They
have used LeCroy WaveRunner 610Zi oscilloscope and RF-U 5-2 near-field EM
probe to capture EM traces. To examine if we observe the same patterns as
reported in [4], we have implemented the same DL model, BM3, and captured
100K EM traces. Figure 6(a) illustrates the captured EM traces from an Atmel
ATmega328P microcontroller taken from [4], whereas Fig. 6(b) show the traces
collected from our unprotected MIPS evaluator core [38], and Fig. 6(c) presents



HWGN2: Side-Channel Protected NNs Through SFE/PFE 241

Fig. 5. TVLA test results for implementation of BM2 on (a) an unprotected MIPS
core and (b) HWGN2 with the capacity of one instruction per OT (calculated for 10K
traces) (c) HWGN2 applied to XNOR-based BM2 (capacity whole set of instructions
per OT) (d) BM2 with the capacity of complete set of instructions per OT interaction,
(e) HWGN2 applied to XNOR-based BM2 (capacity 1 instruction per OT), and (f)
BM2 with the capacity of 1 instruction per OT (calculated for 2M power traces).

Fig. 6. A randomly chosen EM trace pattern captured from the implementation of BM3
on (a) Atmel ATmega328P microcontroller [4] (b) FPGA with unprotected MIPS eval-
uator [38] (c) with HWGN2. Red lines correspond to time-samples, where the unpro-
tected evaluators start the next layer evaluation.

the captured EM traces of HWGN2 for a randomly chosen EM trace. From Fig. 6,
it is observable that there exists a pattern, in which the number of the layers
and neurons can be seen, similar to the observation made by Batina et al. [4]:
the red lines indicate the borders when MIPS evaluator starts the next hidden
layer evaluation and the red squares correspond to the EM peak of Sigmoid
AF evaluation. In the case of the HWGN2, EM traces do not follow a pattern,
which could result in revealing the DL model architecture. The reason behind
these irregular patterns is that each garbled instruction is encrypted; therefore,
in the evaluation phase, the HWGN2 treats them as two nonidentical instruc-



242 M. Hashemi et al.

tions, although the generated OP corresponding to them is the same. Note that
in addition to this observation, we further conduct t-tests, where no EM leakage
is detected (see Appenddix C).

7 Conclusion

In this paper, we have examined the feasibility of garbling to prevent attackers
from launching SCA attacks against DL hardware accelerators. We have imple-
mented HWGN2 as a garbled DL hardware accelerator on an Artix-7 FPGA.
By tailoring the concepts known only for software garbled DL accelerator [20]
to the needs of a hardware DL accelerator, the implementation of such accel-
erator is enhanced: HWGN2 requires up to 62.5× fewer logical and 66× less
memory utilization compared to the state-of-art approaches. This is indeed pos-
sible at the price of more communication overhead. HWGN2 provides users the
flexibility to protect their NN IP both in real-time applications and in applica-
tions where the hardware resources are limited by hardware resource utilization
or communication cost. As our leakage evaluation results indicated, for both
EM and power side-channels, the t-scores are below the threshold (±4.5), which
shows the side-channel leakage resiliency of HWGN2 with trace population in
the order of millions. Another strength of HWGN2 is the DL model architecture
thanks to the SFE/PFE protocol realized through MIPS instructions.

Acknowledgements. This work was supported partially by Semiconductor Research
Corporation (SRC) under Task IDs 2991.001 and 2992.001.

Appendix A. Summary of Relevant Studies

This appendix covers recent attacks mounted against NNs as well as the simi-
larities and differences between HWGN2 and garbled DL accelerators proposed
to offer security of users’ data in Tables 5 and 6.

Appendix B. TinyGarble-Based Implementation of
HWGN2

TinyGarble [44] is a garbling framework that supports Yao’s protocol and uses
hardware-synthesis tools to generate circuits for secure computation automati-
cally. The main advantage of TinyGarble is the scalability enabled by exploiting
a sequential circuit description for garbled circuits and garbling optimization
techniques such as Free-XOR [26], Row Reduction [36], and Garbling with a
Fixed-key Block Cipher [5]. Figure 7a illustrates the flow of HWGN2 following
TinyGarble [44] approach. At first, garbler chooses input encryption labels (e)
(Step 1.1) and constructs the GC of function f by generating garbled tables
(GT ) of all gates, garbled labels (L) of all wires, and a custom circuit descrip-
tion (SCD) file (Step 1.2), which is the mapping between the GC and function f .



HWGN2: Side-Channel Protected NNs Through SFE/PFE 243

Table 5. Summary of most recent side-channel attacks against DL accelerators.

Paper Targets Side-channel
modality

Attack scenario Implementation
platform

Xiang
et al. [52]

DL Model
Architecture

Power • Modeling the power consumption of dif-
ferent DL hardware accelerator compo-
nents based on the number of additions
and multiplications
• Trained a classifier to reveal the DL
Model architecture based on the captured
power consumption traces

Raspberry Pi

DeepEM [55] DL Model
Architecture

EM • Presumption of a layer computations
• Finding the number of parameters
through each layer based on EM traces

Pynq-Z1

CSI NN [4] DL Model
Architecture
+Weights +AF

Timing + EM • Modeling all possible AF timing side-
channel
• Extracting the AF used in the DL Model
Architecture
• Distinguishing the EM patterns to find
the number of layers and neurons
• Launching CPA to reveal the weights

ARM Cortex-M3
+ Atmel
ATmega328P

Dubey
et al. [14]

DL Model
Weights

Power • Capturing the power consumption traces
from changing status of pipeline registers
• Launching a CPA based attack to
reveal weights

SAKURA-X
FPGA board

Yoshida
et al. [54]

DL Model
Weights

Power • Launching a CPA based attack to
reveal weights

Xilinx
Spartan3-A

Table 6. Summary of garbled DL accelerators and their features.

Paper Adversary
model

Approach Contribution Implementation
platform

DeepSecure [42] HbC Garbling • Presentation of pre-processing app-
roach
• pre-processing step would reveal
some information about the network
parameters and structure of data
cf. [39]

Intel Core i7
CPUs

Chameleon [40] HbC Hybrid • Performs linear operations using
additive secret sharing and nonlinear
operations using Yao’s Garbled Circuits

8-Core AMD
CPU 3.7GHz

Ball et al. [2] HbC Hybrid • Improvement of the BMR scheme [3]
to support Non-linear operations

Intel Core
i7-4790 CPUs

XONN [39] HbC Garbling • Support Binary NNs
• Conversion of Matrix Multiplication
to XNOR PopCount

Intel Xeon CPU
E5-2650

TinyGarble2 [20] HbC +
Malicious

Garbling • Provision of protection against mali-
cious adversary
• Alleviation garbling memory cost

Intel Xeon CPU
E5-2650

GarbledCPU [46] HbC Garbling • Presentation of FPGA accelerator for
GC evaluation

Virtex-7 FPGA

RedCrypt [41] HbC Garbling • Minimizing the hardware architecture
idle cycles to achieve scalable garbling

Virtex
UltraSCALE
VCU108



244 M. Hashemi et al.

Fig. 7. TinyGarble-based implementation [44] of HWGN2 (L: wires garbled labels, GT :
garbled tables, e: encryption labels, d: decryption labels, x: evaluator’s raw input, X:
evaluator’s garbled input, Y : garbled output, Yi, Xi, GTi, Li: garbled input, output,
garbled tables, wire labels corresponding to ith sub-netlist, respectively, y: evaluator’s
raw output, and SCD: A custom circuit description which allows TinyGarble to eval-
uate the Boolean circuit).

Fig. 8. TVLA test results (a) HWGN2 applied to XNOR-based BM2 (capacity whole
set of instructions per OT) (b) BM2 with the capacity of complete set of instructions
per OT interaction, (c) HWGN2 applied to XNOR-based BM2 (capacity 1 instruction
per OT), and (d) BM2 with the capacity of 1 instruction per OT (calculated for 2M
EM traces).

GT,L, SCD, e are sent through one OT interaction to the evaluator for further
garbling protocol process. e is then used by the evaluator to generate garbled
input X from the evaluator’s input x (Step 2). Afterward in Step 3.1, GT , L, and
SCD are used by the evaluator to evaluate the GC based on the given X sequen-
tially using the scheduler module (cf. [44] for more information). In the final step
(Step 3.2), output decryption labels (d) are sent to the evaluator to decrypt the



HWGN2: Side-Channel Protected NNs Through SFE/PFE 245

evaluator core’s garbled output Y and obtain its raw output y. The sequential
evaluation supported by TinyGarble provides the GC protocol the scalability of
evaluation of larger netlists. However, when one implements the DL hardware
accelerator in the garbled format which has a large netlist, memory and logi-
cal resource utilization become burdens for DL hardware accelerators [21] (see
Sect. 6.1).

Appendix C. TVLA Test Evaluation of EM Side-Channel

One of the first studies that has compared the capabilities of attackers launch-
ing power vs. EM SCA is [37], where it is suggested that the EM leakage can
provide more information than the power consumption of the same chip cf. [48].
This has been further justified in [48] through the evaluation of the information
theoretic and security metrics [49]. Therefore, it might be thought that the EM
side-channel could offer some information about the secret, i.e., the weights of
the garbled NN. To collect the EM traces, it has been already verified that mea-
surements from the frontside of a chip can offer a high signal-to-noise ratio [19];
hence, we stick to this setting to perform measurements. Our setup described in
Sect. 6.2 is equipped with HP EM probe 125 (SN126 0.2 mm). Figure 8 shows
the t-scores computed for HWGN2 applied against BM2. As shown in Fig. 8, the
t-scores of EM traces are below the threshold (±4.5) which is the proof of the
EM leakage resiliency of HWGN2.

References

1. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hack-
ing smart machines with smarter ones: How to extract meaningful data from
machine learning classifiers. Int. J. Secur. Netw. 10(3), 137–150 (2015)

2. Ball, M., Carmer, B., Malkin, T., Rosulek, M., Schimanski, N.: Garbled neural
networks are practical. Cryptology ePrint Archive (2019)

3. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for boolean and arithmetic
circuits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 565–577 (2016)

4. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: 28th USENIX
Security Symposium (USENIX Security 2019), pp. 515–532 (2019)

5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE (2013)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 784–796 (2012)

7. Breier, J., Jap, D., Hou, X., Bhasin, S., Liu, Y.: SNIFF: reverse engineering of
neural networks with fault attacks. IEEE Trans. Reliab. (2021)

8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

https://doi.org/10.1007/978-3-540-28632-5_2


246 M. Hashemi et al.

9. Chakraborti, A., et al.: Cloud computing security: foundations and research direc-
tions. Found. Trends R© Privacy Secur. 3(2), 103–213 (2022)

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

11. De Cnudde, T., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 123–148 (2018)

12. Dubey, A., Ahmad, A., Pasha, M.A., Cammarota, R., Aysu, A.: Modulonet: neural
networks meet modular arithmetic for efficient hardware masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 506–556 (2022)

13. Dubey, A., Cammarota, R., Aysu, A.: Bomanet: boolean masking of an entire
neural network. In: 2020 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–9. IEEE (2020)

14. Dubey, A., Cammarota, R., Aysu, A.: Maskednet: the first hardware inference
engine aiming power side-channel protection. In: 2020 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), pp. 197–208. IEEE
(2020)

15. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 10

16. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: an {End-to-End} case study of personalized warfarin dosing.
In: 23rd USENIX Security Symposium (USENIX Security 2014), pp. 17–32 (2014)

17. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210. PMLR
(2016)

18. Herken, R.: The Universal Turing Machine: A Half-Century Survey. Springer, Hei-
delberg (1988)

19. Heyszl, J., Merli, D., Heinz, B., De Santis, F., Sigl, G.: Strengths and limitations
of high-resolution electromagnetic field measurements for side-channel analysis.
In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 248–262. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9 17

20. Hussain, S., Li, B., Koushanfar, F., Cammarota, R.: TinyGarble2: smart, efficient,
and scalable Yao’s garble circuit. In: Proceedings of the 2020 WKSP on Privacy-
Preserving Machine Learning in Practice, pp. 65–67 (2020)

21. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for
leakage-resilience: hardware implementation and evaluation of one-time programs.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 383–397.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 26

22. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: {GAZELLE}: a low latency
framework for secure neural network inference. In: 27th USENIX Security Sympo-
sium (USENIX Security 2018), pp. 1651–1669 (2018)

23. Kane, G.: MIPS RISC Architecture. Prentice-Hall Inc. (1988)
24. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the

Annual ACM Symposium on Theory of Computing, pp. 20–31 (1988)
25. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-642-37288-9_17
https://doi.org/10.1007/978-3-642-15031-9_26
https://doi.org/10.1007/3-540-48405-1_25


HWGN2: Side-Channel Protected NNs Through SFE/PFE 247

26. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

27. LeCun, Y.: 1.1 deep learning hardware: past, present, and future. In: 2019 IEEE
International Solid-State Circuits Conference-(ISSCC), pp. 12–19. IEEE (2019)

28. Levi, I., Hazay, C.: Garbled-circuits from an SCA perspective: free XOR can be
quite expensive. Cryptology ePrint Archive (2022)

29. Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert adver-
saries. J. Cryptol. 29(2), 456–490 (2016)

30. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

31. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant-round multi-party
computation combining BMR and SPDZ. J. Cryptol. 32(3), 1026–1069 (2019)

32. Liu, Y., Dachman-Soled, D., Srivastava, A.: Mitigating reverse engineering attacks
on deep neural networks. In: 2019 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pp. 657–662. IEEE (2019)

33. Mantel, H., Scheidel, L., Schneider, T., Weber, A., Weinert, C., Weißmantel, T.:
RiCaSi: rigorous cache side channel mitigation via selective circuit compilation. In:
Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp.
505–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5 25

34. Mittal, S., Gupta, H., Srivastava, S.: A survey on hardware security of DNN models
and accelerators. J. Syst. Archit. 117, 102163 (2021)

35. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with
the x2-test. IACR Trans. Cryptogr. Hardw. Embed. Syst. 209–237 (2018)

36. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp.
129–139 (1999)

37. Peeters, E., Standaert, F.X., Quisquater, J.J.: Power and electromagnetic analysis:
improved model, consequences and comparisons. Integration 40(1), 52–60 (2007)

38. Rhoads, S.: Plasma - most MIPS I(TM) opcodes (2001). https://opencores.org/
projects/plasma. Accessed 9 Mar 2022

39. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K., Koushanfar, F.:
{XONN}:{XNOR-based} oblivious deep neural network inference. In: 28th
USENIX Security Symposium (USENIX Security 2019), pp. 1501–1518 (2019)

40. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: a hybrid secure computation framework for machine learning
applications. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pp. 707–721 (2018)

41. Rouhani, B.D., Hussain, S.U., Lauter, K., Koushanfar, F.: ReDCrypt: real-time
privacy-preserving deep learning inference in clouds using FPGAs. ACM Trans.
Reconfigurable Technol. Syst. (TRETS) 11(3), 1–21 (2018)

42. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: Deepsecure: scalable provably-secure
deep learning. In: Proceedings of the 55th Annual Design Automation Conference,
pp. 1–6 (2018)

43. Schellenberg, F., Gnad, D.R., Moradi, A., Tahoori, M.B.: An inside job: remote
power analysis attacks on FPGAs. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1111–1116. IEEE (2018)

https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-030-65411-5_25
https://opencores.org/projects/plasma
https://opencores.org/projects/plasma


248 M. Hashemi et al.

44. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
garble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE
Symposium on Security and Privacy, pp. 411–428. IEEE (2015)

45. Songhori, E.M., Riazi, M.S., Hussain, S.U., Sadeghi, A.R., Koushanfar, F.:
ARM2GC: succinct garbled processor for secure computation. In: Proceedings of
the 56th Annual Design Automation Conference 2019, pp. 1–6 (2019)

46. Songhori, E.M., Schneider, T., Zeitouni, S., Sadeghi, A.R., Dessouky, G., Koushan-
far, F.: GarbledCPU: a MIPS processor for secure computation in hardware. In:
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6.
IEEE (2016)

47. Standaert, F.-X.: How (not) to use Welch’s T-test in side-channel security evalu-
ations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp.
65–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2 5

48. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

49. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

50. Wang, X., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of MIPS
machine code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 99–117. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45741-3 6

51. Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the
single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 14

52. Xiang, Y., et al.: Open DNN box by power side-channel attack. IEEE Trans. Cir-
cuits Syst. II: Express Br. 67(11), 2717–2721 (2020)

53. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

54. Yoshida, K., Kubota, T., Okura, S., Shiozaki, M., Fujino, T.: Model reverse-
engineering attack using correlation power analysis against systolic array based
neural network accelerator. In: 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5. IEEE (2020)

55. Yu, H., Ma, H., Yang, K., Zhao, Y., Jin, Y.: DeepEM: deep neural networks model
recovery through EM side-channel information leakage. In: 2020 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST), pp. 209–218.
IEEE (2020)

56. Zhao, M., Suh, G.E.: FPGA-based remote power side-channel attacks. In: 2018
IEEE Symposium on Security and Privacy (SP), pp. 229–244. IEEE (2018)

https://doi.org/10.1007/978-3-030-15462-2_5
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-56617-7_14

	HWGN2: Side-Channel Protected NNs Through Secure and Private Function Evaluation
	1 Introduction
	2 Adversary Model
	3 Related Work
	3.1 SCA Against NNs
	3.2 Security-Preserving DL Accelerators
	3.3 Garbled Accelerators

	4 Background
	4.1 SFE/PFE Protocols
	4.2 Neural Networks (NNs)

	5 Foundations of HWGN2
	5.1 Implementation of HWGN2

	6 Evaluation of HWGN2
	6.1 Resource Utilization
	6.2 Side-Channel Evaluation

	7 Conclusion
	References




