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Abstract. Physically unclonable functions (PUFs) can be seen as hard-
ware circuits whose output does not only depend upon the inputs fed
to it, but also on the random variation in the integrated circuits (ICs)
during its manufacturing process. As a result of their unique hardware
fingerprinting, these circuits can be used to authenticate devices among
a population of identical silicon chips, much like a human being can be
authenticated by their biometrics. In ACM TECS 2019, two low-cost
reconfigurable Strong PUF designs namely XOR-based Reconfigurable
Bistable Ring PUF (XRBR PUF) and XOR-based Reconfigurable Ring
Oscillator PUF (XRRO PUF) have been proposed as a promising low-
cost solution for IoT security. The two notable features of these archi-
tectures are: i) both of them exploit the logic reconfigurability which is
efficient in terms of hardware cost, and ii) they exhibit good uniqueness
and reliability properties. These make XRRO and XRBR PUFs good
candidates for Strong PUF-based authentications and an interesting tar-
get for the machine learning (ML) adversaries as the machine learning
resiliency was never discussed for both the cases in the proposal. In
this paper, we develop a mathematical model for both of the designs by
exploiting a common flaw of not having any non-linear component in
the structure. Hence they are proven to be as vulnerable as their fore-
runner designs such as Configurable Ring Oscillator PUF and Bistable
Ring PUFs. Finally, we show through experimental analysis that 128-
bit XRBR PUFs can be broken with 10K CRPs with an accuracy of
approximately 99%. On the other hand, for 127-stage XRRO PUFs hav-
ing 8, 16, 32, 64 layers of XRROs can be broken with 200K, 1M, 3M, 8M
CRPs with an accuracy of approximately 97%–99%.

Keywords: Physically unclonable functions · Machine learning · XOR
gate · Bistable ring · Configurable Ring Oscillator

1 Introduction

Over the past two decades, Physically Unclonable Functions (PUFs) have gar-
nered significant attention from the research community worldwide [6,14]. They
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have been employed in a number of authentication protocols as building blocks.
As a component of hardware-based security primitive, PUFs create a distinct
digital fingerprint for a circuit or device using manufacturer process variations.
PUFs cannot be physically replicated because of its unpredictable, small-scale
manufacturing variances. Even the manufacturer is unable to deliberately dupli-
cate a PUF instance. As a result, producing physically identical specimens is
infeasible. PUFs use a challenge-response mechanism to serve as hardware prim-
itive. We provide the PUF with “challenge” (denoted as C), which act as a
trigger or excitation signal, causing them to react by producing a “response”
(denoted as RC). The produced response depends on the physical characteris-
tics of the PUF and the challenge fed to it. The challenge fed, and the response
generated by the PUF is called the challenge-response pair (CRP) of the PUF.
Based on the size of the challenge-response space of the PUF circuit, it can
classified in two categories, namely Weak PUFs and Strong PUFs.

– Weak PUFs: Weak PUFs [7,8,22,23], are generally used for on-device secret
key generation. It is generally assumed that the response generated by this
kind of PUFs never leave the hardware platform.

– StrongPUFs: Strong PUFs [4–6,16,25] possess huge challenge-response pairs
which are mainly used for device authentication. It is not feasible to construct
all the 2N challenge-response pairs (CRPs) for N -bit Strong PUF and to search
the particular response for any arbitrary challenge in polynomial time. In the
state-of-the-art literature, the Strong PUFs architectures such as Arbiter PUF
(APUF), XOR-Arbiter PUF (XOR-APUF), Configurable Ring Oscillator PUF
(CRO PUF) and Bistable Ring PUF (BR PUF) have proven to be versatile
cryptographic primitives with a wide set of applications, such as key establish-
ment and identification protocols [18]. However, the Strong PUFs suggested in
the literature consume significant hardware resources, and thus, are not scal-
able for lightweight applications in IoT framework. To address this problem,
recently two lightweight PUF architectures such as XOR-based Reconfigurable
Ring Oscillator PUF (XRRO PUF) and XOR-based Reconfigurable Bistable
Ring PUF (XRBR PUF) [13] have been proposed which incur lesser hardware
overhead while retaining good uniqueness and reliability values.

But, due to the emergence of classical and reliability-based machine learning
(ML) attacks, most of the PUF compositions are proven to be vulnerable in
recent state-of-the-art literature [3,17,19–21,24]. Ruhrmair et al. proposed the
first ML attacks against strong PUFs in 2010 [19,20], based on a mathematical
delay model [12] of the APUF, RO PUF, XOR-APUF, Feed Forward APUF,
and LSPUF. A similar kind of delay-based modelling is done for CRO PUF
in which the delays of the oscillation of the CROs are exploited [17]. Memory-
based Strong PUFs such as Bistable Ring PUF has also been modelled in which
the pull strengths of the logic gates are exploited [24]. Several machine learning
techniques, such as Support Vector Machine (SVM), Logistic Regression (LR),
and Covariance Matrix Adaptation Evolution Strategies(CMA-ES), have been
used to demonstrate these models [11,19]. Hence, while assessing the quality
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of a Strong PUF candidate, it is of paramount importance that we not only
estimate the uniqueness, uniformity and reliability properties of the design but
also evaluate the robustness of the circuit against ML-based attacks.

Hence, in this paper, we try to answer the question that: Though XRRO and
XRBR PUFs are suitable for generating hardware fingerprints for lightweight
applications, how vulnerable are they against ML-based modelling attacks? The
intuition for modelling these PUF architectures is that they inherit the similar
flaws as CRO PUF and BR PUF that make them vulnerable against the ML
attacks [17,24]. Though the vulnerabilities are similar, but due to the change
in the construction of XRRO and XRBR PUF, the exact model for CRO PUF
and BR PUF might not be directly applied to these two architectures. Hence
the main crux of this work is to use the knowledge of the mathematical model
formation of the former and build the same specifically for the XRRO and XRBR
PUF. To the best of our knowledge, no prior works have been done to perform
a security analysis on XRRO and XRBR constructions so far.

Overall, this paper’s main contributions can be summed up as follows:

– We examine the security vulnerability and machine learning resiliency of
XRRO and XRBR PUF architecture which was missing in the actual pro-
posal [13]. We propose a mathematical model of the same to successfully
launch ML-based attacks.

– We also implement the attack on simulated XRRO and XRBR PUF and eval-
uate the security architectures against SVM and LR algorithms. We further
show the efficiency of the proposed attack by successfully modeling both the
designs with 97%–99% accuracy.

The rest of the paper is organized in the following manner. In Sect. 2 we
provide the background related to the proposed mathematical model and the
machine learning attacks. The novel mathematical model proposed in this paper
is illustrated in Sect. 3. The machine learning attacks and the experimental
results are presented in Sect. 4. Finally, we conclude the paper with Sect. 5.

2 Background

In this section, we first discuss the basic working principles of Configurable Ring
Oscillator PUF (CRO PUF) [16] and Bistable Ring PUF (BR PUF) [4]. Then we
briefly discuss mathematical models that are used to perform machine learning
attacks on these architectures.

2.1 CRO PUFs and BR PUFs

The basic building block of CRO PUF is a Ring oscillator PUF (RO PUF). The
RO PUF is generally made of an identically laid-out loop of an odd number of
logically inverting delay elements (as shown in Fig. 1). An RO generally continues
to oscillate between 0 and 1 when triggered because the output of the last buffer
is always the logical “NOT” of the input fed. An RO PUF [22] utilizes this
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non-settling property of RO to introduce randomness in the circuit and it can
be exploited for hardware fingerprinting. Figure 2 shows the circuit diagram of
a traditional RO PUF. There are two multiplexers MUX1 and MUX2, each
of which has N selection lines. There are 2N ROs that are connected to both
these multiplexers. The oscillating frequency of each oscillator in RO PUF is
unique across devices due to the manufacturing process variations and can not
be predicted apriori. The challenges are divided into two parts and provided to
the select lines of multiplexers of RO PUF respectively in order to select a pair
of ROs, and then, their frequencies are calculated using the counters. Finally,
these two counter values are compared to generate an output. If RO selected
by MUX1 has a higher oscillation frequency, the output is 1, otherwise, the
output is 0.

INV0 INV1 INV2 INV5INV3

Fig. 1. Traditional 5-stage RO.
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Fig. 2. Ring Oscillator PUF [22].

Now, from the implementation perspective, it has been found that if we
increase the challenge space, the number of ROs need to be added to the circuit
grows exponentially. Hence the hardware overhead will be very high if we try to
use RO PUF as a Strong PUF candidate. On the other hand, the RO PUFs have
higher reliability compared to other Strong PUF architectures [15]. To balance
this trade-off, the Configurable Ring Oscillator PUF(CRO PUF) circuit [16] has
been proposed as a variant of the RO PUF. We show its circuit design as well in
Fig. 3. Here each RO can be reconfigured by using a multiplexer to select one of
two inverters at each stage. The selection bit (Si) for the multiplexer at the ith

stage acts as a configurable signal which determines whether the upper or lower
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Fig. 3. The architecture of the CRO PUF [16].

delay element will be used at that stage. Finally, the output frequencies of the
two CROs are compared to derive the PUF response. The main advantage of
using CRO PUF is that we can do away with 2N layers of ROs as in RO PUF
(please ref to Fig. 2). Hence it is more efficient in terms of hardware overhead
and can be considered as a Strong PUF as well.

Fig. 4. Schematic diagram of a SRAM cell [8].

On the other hand, BR PUF is comprised of a cycle of an even number
of logically inverted delay elements. Its main principle is the same as that of
SRAM PUF [9] i.e. it exploits the unstable properties of SRAM cell transience.
Whenever it is powered on, every SRAM cell (as shown in Fig. 4) results in invari-
ably random deviations in the threshold voltages. This variation is extracted in
the startup values of “uninitialized” SRAM memory. Consequently, an SRAM
response produces a unique, random binary bit patterns. Now, A n-bit BR PUF
(as shown in Fig. 5) is composed of n stages, where each stage has two inverting
delay elements (e.g. NOR gates). The challenge bits {C0, C1, ..., Cn−1} applied
to the multiplexer and demultiplexer of every stage selects the NOR gates used
in each bistable ring configuration. Once triggered, the BR PUF works like a
memory cell and will enter either “101010...” or “010101...” as one of its two
stable states. An n-bit BR PUF can have a total of 2n different configurations
as each NOR gate has a distinct process variation and each challenge vector
generates a distinct bistable ring configuration.

Before allowing the ring to stabilise and produce a response, a synchronous
RESET signal is applied to every stage in order to start with an all-0 state. When
RESET is low and the ring starts to oscillate through the selected NOR gates,
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Fig. 5. Schematic diagram of a n-bit BR PUF [4,24]

the response is evaluated. Once the ring reaches a stable state, the outputs of any
two neighboring stages will be opposite to each other. In the ring configuration,
the noise and process variation of the NOR gates are utilised to determine which
of the two probable stable states of the ring is selected. Moreover, an output port
can be created at any node that connects two stages.

We next briefly discuss the mathematical models of CRO and BR PUFs.

2.2 ML Attacks on CRO PUFs and BR PUFs

ML-based modeling attacks on Strong PUF candidates are very prominent in
the state-of-the-art literature. The adversarial model that is assumed over here
is that a small subset of the challenge-response pairs (CRPs) are given to the
adversary for a particular PUF design. The hurdle is whether (s)he can build a
mathematical model of the same using the given CRPs to achieve high prediction
accuracy while guessing responses for an unknown challenge.

First we briefly discuss the mathematical model of the CRO PUF. Each
stage of a CRO PUF consists of four delay components: (δi1, δi2) for the upper
and lower delay line of the top CRO (as shown in Fig. 6) and (δ′

i1, δ
′
i2) for the

upper and lower delay line of the bottom CRO. Now the oscillation frequency
of the top and bottom CROs will be decided by the configuration of the paths
through which the signal propagates and their delay contributes to the overall
summation. And the choice of paths depends on the challenge bit selection. If the
upper CRO is faster, i.e., the oscillation frequency is more than the lower CRO,
we get a response of 1; otherwise, the response is 0. Now, the delay difference
for every stage can be formulated as given below [17]:
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Fig. 6. CRO PUF diagram showing delay components of upper CRO [17].

ΔD(i) = ΔDupper(i) − ΔDlower(i) (1)
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2
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i2) (3)

Please note that for i-th stage of the CRO, the challenge bits Ci ∈ {−1, 1} is
bipolar-encoded. Let,

δα
i = δi1 − δ′

i1

δβ
i = δi2 − δ′

i2

Now similar to the mathematical modelling of Arbiter PUF [21], the overall
delay difference between the oscillation of upper and lower CRO for an n-stage
CRO-PUF can be described as a linear sum of vector dot products.

ΔD =
n−1∑

i=0

ΔD(i) =
−→
Pα.

−→
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−→
Pβ .

−→
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where,
−→
Pα =
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2
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{
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2
,
1 + C1

2
...,

1 + Cn−1

2
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n−1

}



ML Attacks on Low-Cost Reconfigurable XRRO and XRBR PUF Designs 211

This model can be used to launch CMA-ES and LR based ML attacks on the
CRO PUF [17]. We have used the similar idea in Sect. 3 to model XRRO PUF
as proposed in [13].

Similarly, an additive model has been put forth in the literature for predict-
ing the resolution of metastability [10], with weights representing the strength
with which different cells pull toward a particular outcome. Using this idea, a
mathematical model of the BR PUF has been made [24]. Each gate in the BR
PUF has weight associated with it representing difference between the pull-up
strength and pull-down strength of the same. The overall response given a spe-
cific challenge(C) is determined by the summation of the weights across all the
gates in accordance with the path that the applied challenge has selected. A
positive sum indicates that the configured ring provides a “1”, whereas a neg-
ative sum indicates that ring provides “–1” value. As the pull-up strength of
even stages and the pull-down strength of odd stages favour a overall positive
response, the summation of weights requires negative and positive polarities.

Let ti and bi represent the difference in the pull-up and pull-down strength of
the top and bottom NOR gates in the ith stage respectively (please ref to Fig. 5).

The total strength pulling toward the positive response for a given n-bit
challenge is the summation of n number of ti or bi weights (depending on whether
Ci is +1 or −1) and can be given as [24],

RC = sgn(
n−1∑

i=0

(
−1i.

ti − bi

2

)
+ Ci

(
−1i.

ti + bi

2

)
(5)

where Ci is the challenge bit of the ith stage and is bipolar-encoded i.e. Ci ∈
{−1, 1}. The sign of RC could be used to predict the response. For convenience,
αi and βi can be defined as

(−1i. ti−bi
2

)
and

(−1i. ti+bi
2

)
respectively. Then,

RC = sgn(
n−1∑

i=0

αi + Ci.βi) (6)

Given that the weights αi and βi are not known and since a BR PUF has only
two possible responses, The response prediction of a BR PUF can be converted
into a classification problem based on the given equation. We have exploited
similar notion in Sect. 3 to model XRBR PUF.

3 Modelling XOR-Based Reconfigurable PUFs

In this section we first briefly describe the working principle of XRBR PUF and
XRRO PUF followed by our proposed mathematical models for the same.

To start with, XOR gate is the basic building block for both the designs. It
has a property that it can act as both buffer and inverter relying on the input
values. The mechanism of XOR-based Reconfigurable PUFs [13] is based the
above property of XOR gates. Let A and B be the inputs to an XOR gate.
When B = “0”, the XOR gate acts as a buffer relaying the input value A to the
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output following a delay. When B = “1”, the XOR gate’s output value is the
logic inverse of the input A, hence it acts as an inverter. Thus by controlling
one of its bits, an XOR gate can be switched from a buffer to an inverter and
vice-versa.

3.1 Mechanism of XRBR PUF

As discussed in Sect. 2.1, every stage of BR PUF consists of two inverting delay
elements. The gate is chosen in each bistable ring configuration by providing
the challenge bit at the select line of the MUX and DEMUX of that particular
stage (please refer to Fig. 5). The XRBR PUF replaces each stage of BR PUF
with an XOR gate (as shown in Fig. 7). The stages of XRBR PUF thus can be
configured as buffers or inverters by controlling one of the inputs to the XOR
gate of that stage. The selection bit is provided to each stage of a XRBR PUF
to configure it into a unique circuit. As the number of stages in the BR PUF
is even which makes it act like a memory circuit, The XOR gates configured
as inverters in the XRBR PUF must be even in number. It implies that the
configuration bits to the XRBR PUF should have an even number of 1’s, which
in turn configures an even number of XOR gates as inverters befitting it to
behave like a memory circuit similar to BR PUF. Now there are variations due
to the hardware intrinsic properties such as delay and driving capabilities of the
XOR gate for every buffers and inverters of the XRBR PUF. This property is
absolutely similar to SRAM PUF as the impurities are induced in the platform
due to the random process variations in the manufacturing phase. Additionally,
different configuration of the XRBR PUF adds to the variation in the output to
the circuit and results in different responses of the PUF instance.

Bn-1

Q

Bm-1

Bn-2 Bm

B0B1Bm-2

Bm+1

Fig. 7. The schematic diagram of an n-bit XRBR PUF [13].

The uniqueness and reliability values for the XRBR PUF are 40.67% and
98.22% respectively as shown in [13], which are very close to the ideal values. The
comparison between the uniqueness and reliability values of BR PUF and XRBR
PUF in [13] shows that XRBR PUF achieves better values. Also, XRBR PUF
is a low-cost PUF design. As a memory-based PUF, the XRBR PUF is feasible,
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and it can generate a comparably higher number of CRPs while reducing the
hardware overheads. Now we proceed with the modelling attack.

3.2 Modelling XRBR PUF

The intuition behind the modeling of XRBR PUF will be of using an additive
model for predicting the response. We have used an additive model where each
XOR gate has weights that correspond to the difference between its pull-up
strength and pull-down strength. To find the overall favoured response for a
specific challenge, the weights are summed across all the XOR gates configured
as an inverter. A higher preference for a positive response is indicated by a
positive sum. The overall positive response is favoured by the pull-up strength of
even positioned inverters and the pull-down strength of odd positioned inverters.
Thus, the summation of weights requires negative and positive polarities.

Cm-1

Cn

Cm-2 C1 C0

Cm+1 CmCn-2

Q

Fig. 8. XRBR PUF diagram showing the pull strengths of an XOR gate at each stage.

Let the the pull-up strength, pull-down strength and the difference between
them for the ith stage XOR gate be pi(u), pi(d) and pi respectively (as shown in
Fig. 8). On feeding the challenge (C) to the PUF circuit, the XOR gate of each
stage will either be configured as a buffer or an inverter. The XOR gates that
are configured as buffers will not contribute toward the response in any way. The
XOR gates that are configured as inverters will contribute depending upon their
position in the circuit. If an ith stage XOR gate (configured as an inverter) is also
an even positioned inverter in the PUF circuit, then it contributes towards the
positive response with strength pi, otherwise it contributes towards the positive
response with strength −pi.

Let us assume that the challenge bit for the ith stage Ci ∈ [−1, 1] is bipolar-
encoded. Then we define the parity bit corresponding to the challenge bit as,
Φi = −1si .(1 + Ci)/2. Here, si is the number of stages configured as inverters
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till stage i. This provides the even or odd positioning of the stages that are
configured as inverters.

The strength toward the positive response for any stage given a challenge bit
Ci will be ΔS(i) and is given in Eq. 7,

ΔS(i) = pi.(−1si
1 + Ci

2
) =⇒ ΔS(i) = pi.Φi (7)

where the variable si is defined as:

si =

{
1+Ci

2 if i = 0
si−1 + 1+Ci

2 if i = 1, ..., n − 1

The above mentioned notation not only nullifies the contribution of the stage
configured as a buffer, but also lets the stage configured as an inverter contribute
according to its position in the PUF circuit. For any challenge vector C =
{C0, C1, ..., Cn−1}, the summed strengths toward the positive response is given
in Eq. 8,

ΔS =
n−1∑

i=0

ΔS(i)

ΔS = p0.Φ0 + p1.Φ1 + ... + pn−1.Φn−1

ΔS = p.ΦT (8)

where the feature vector Φ is defined as parity of challenge bits C:

Φi = −1si .
1 + Ci

2

The weight vector p is defined as follows:

p = {p0, p1, ..., pn−1}
According to our formulation, if the weight vector p (pull strengths) was

known explicitly, then the sign of RC could be used to predict the PUF response
(Eq. 9).

RC = sgn(p.ΦT ) (9)

We will be using this additive model to simulate XRBR PUF and to evaluate it
against SVM and LR algorithms in Sect. 4.

3.3 Mechanism of XRRO PUF

Next we proceed with the working principle of XRRO PUF. As discussed in
Sect. 2.1, in CRO PUF, both the rings have stages consisting of two inverting
delay elements and a multiplexer. The use of a inverter in a stage is dependent on
the selection bit of the multiplexer of that stage. Now, to reduce the hardware
overhead, XRRO PUF [13] employs single XOR gate at every stage in place
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Fig. 9. The schematic diagram of an XRRO [13].
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Fig. 10. The architecture of the XRRO PUF [13].

of the two inverters and a multiplexer. One input to the XOR gate acts as
a configuration signal and the other input is connected to the output of the
previous XOR gate, forming an XOR-based Ring Oscillator (as shown in Fig. 9).

Now, as shown in Fig. 1, a RO is generally made of odd number of logically
inverting delay components. Thus the output of the last component is always log-
ical “NOT” of the first input. Therefore the output of the RO oscillates between
0 and 1. Similarly for an XRRO, to oscillate, the number of inverting compo-
nents should be odd. That is why, the configuration bits to all the XOR gates
of an XRRO ring must contain an odd number of 1’s so that odd number of
XOR gates can be configured as inverters. The XRRO can construct up to 2n/2
different ROs from different configuration patterns, where n is the number of
stages in the XRRO.

The architecture of the XRRO PUF is given in Fig. 10. We consider 2m num-
ber of XRRO layers and all of them are configured using the same configura-
tion signals (S0, S1, ..., Sn−1). The selection bits for both top (C0, C1, ..., Cm−1)
and bottom (C ′

0, C
′
1, ..., C

′
m−1) multiplexers chooses two different XRROs. The

selected pair of XRROs only participate in the response generation process.
The oscillation frequencies for both of them are compared based on which the
response gets generated. If an XRRO selected by MUX1 has more oscillation
frequency than the one selected by MUX2, response 1 is generated, otherwise
response 0 is generated.
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The uniqueness and reliability values for the XRRO PUF are 48.76% and
97.72% respectively as shown in [13], which are very close to the ideal values.
The comparison between uniqueness and reliability values of RO PUF, CRO
PUF and XRRO PUF in [13] shows that, XRRO PUF achieves better values.

3.4 Modelling XRRO PUF

Output

En
Cn-1

C1
C0

(a) Delay components of upper XRRO.

Output

En
Cn-1

C1
C0

(b) Delay components of lower XRRO.

Fig. 11. Delay components of the selected XRROs.

Next, we build up the mathematical model of the XRRO PUF. For upper and
lower XRRO, there are two XOR gates. Every XOR gate contributes four delay
elements corresponding to input values of ‘00’, ‘01’, ‘10’ and ‘11’. So, every stage
of XRRO PUF contains total eight delay elements based on the input values of
the two XOR gates. Let the delay elements associated with stage i of the upper
XRRO of be δU00

i
, δU01

i
, δU10

i
and δU11

i
for the inputs AB = “00”, “01”, “10”

and “11” respectively (as shown in Fig. 11a). Similarly for stage i of the lower
XRRO, the delays be, δL00

i
, δL01

i
, δL10

i
and δL11

i
(as shown in Fig. 11b). Consider

the input Ci to the XOR gates be the configuration bit.
Now the main crux of our attack is to find out how the computation of the

oscillation frequency of XRRO is different from RO/CRO PUF. In RO/CRO
PUF, whatever be the input signal (0/1), it simply gets passed through the
buffer depending on the multiplexer selection. But this is not the case in XRRO.
Here two inputs of the XOR gate are involved at every stage. Now, selection
bit is fixed for a particular stage, i.e. either 0/1. Now, depending on the output



ML Attacks on Low-Cost Reconfigurable XRRO and XRBR PUF Designs 217

of the previous stage, the inputs of the current stage can be either [00/10] or
[01/11] and XOR logic is evaluated. And for every input pattern, the delay
will be different. Thus two consecutive oscillation delays for the XRRO will be
different due to the complement of the previous input. Finally, the frequency
of the XRRO will be determined by the sum of the delay components that are
selected by the configuration bits in two consecutive oscillations.

Hence, the delays selected for stage i for both upper and lower XRRO in two
consecutive oscillations is given by the following equation where a challenge bit
Ci ∈ [−1, 1] is bipolar-encoded.

ΔDupper(i) =
1 − Ci

2
(δU00

i
+ δU10

i
) +

1 + Ci

2
(δU01

i
+ δU11

i
)

ΔDlower(i) =
1 − Ci

2
(δL00

i
+ δL10

i
) +

1 + Ci

2
(δL01

i
+ δL11

i
)

(10)

The total delays across stages for both upper and lower XRROs will be (for two
consecutive oscillations),

ΔDupper =
n−1∑

i=0

[
1 − Ci

2
(δU00

i
+ δU10

i
) +

1 + Ci

2
(δU01

i
+ δU11

i
)
]

ΔDlower =
n−1∑

i=0

[
1 − Ci

2
(δL00

i
+ δL10

i
) +

1 + Ci

2
(δL01

i
+ δL11

i
)
] (11)

The XRRO PUF response is generated by the comparison of ΔDupper and
ΔDlower, generating a binary 1 if ΔDupper has lesser value than ΔDlower and 0
if it is the opposite. Let the difference be ΔD,

ΔD =
n−1∑

i=0

[
1 − Ci

2
(δU00

i
+ δU10

i
) +

1 + Ci

2
(δU01

i
+ δU11

i
)
]

−
n−1∑

i=0

[
1 − Ci

2
(δL00

i
+ δL10

i
) +

1 + Ci

2
(δL01

i
+ δL11

i
)
]

(12)

ΔD =

[
n−1∑

i=0

1 − Ci

2
(δU00

i
+ δU10

i
) −

n−1∑

i=0

1 − Ci

2
(δL00

i
+ δL10

i
)

]

+

[
n−1∑

i=0

1 + Ci

2
(δU01

i
+ δU11

i
) −

n−1∑

i=0

1 + Ci

2
(δL01

i
+ δL11

i
)

]
(13)

ΔD =

[
n−1∑

i=0

1 − Ci

2
(δU00

i
+ δU10

i
− δL00

i
− δL10

i
)

]

+

[
n−1∑

i=0

1 + Ci

2
(δU01

i
+ δU11

i
− δL01

i
− δL11

i
)

]
(14)
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Let us assume,

αi = δU00
i

+ δU10
i

− δL00
i

− δL10
i

, βi = δU01
i

+ δU11
i

− δL01
i

− δL11
i

Then,

ΔD =
n−1∑

i=0

1 − Ci

2
(αi) +

n−1∑

i=0

1 + Ci

2
(βi)

For convenience, we define
−→
X and

−→
Y such that,

ΔD =
−→
X

−→
Wα +

−→
Y

−→
Wβ (15)

where,

−→
X =

{1 − C0

2
,
1 − C1

2
, ...,

1 − Cn−1

2

}
,

−→
Y =

{1 + C0

2
,
1 + C1

2
, ...,

1 + Cn−1

2

}

−→
Wα =

{
α0, α1, ..., αn−1

}
,

−→
Wβ =

{
β0, β1, ..., βn−1

}

In terms of a single weight vector and a single parity vector, the linear additive
delay model of an XRRO PUF can be defined as,

ΔD =
−→
Z

−→
W (16)

where,

−→
Z =

{1 − C0

2
,
1 − C1

2
, ...,

1 − Cn−1

2
,
1 + C0

2
,
1 + C1

2
, ...,

1 + Cn−1

2

}

−→
W =

{
α0, α1, ..., αn−1, β0, β1, ..., βn−1

}

The frequency for the upper and lower XRRO selected of the XRRO PUF is
given to be Fupper = 2/ΔDupper and Flower = 2/ΔDlower respectively. If upper
XRRO has a greater frequency then the binary response will be 1, else it will be
0. Thus, the response depends on the difference in the total delays for the two
consecutive oscillations of both the XRROs(ΔD). This model has been used in
Sect. 4 below to simulate an XRRO PUF and to evaluate it against the SVM
and LR based attacks. Please note that we have to follow the same procedure as
mentioned above for every pair of XRROs and create an instance of SVM/LR
model. The collaborative accuracy of all such models provide us the ultimate
accuracy of the XRRO PUF instance.

4 Machine Learning Attacks on XOR-Based
Reconfigurable PUFs

Now we present our experimental set up and results on the prediction accuracy
of modelling attacks on XRRO and XRBR PUFs.
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Table 1. SVM attack on XRBR PUF.

Training CRPs 32 bit XRBR PUF 64 bit XRBR PUF 128 bit XRBR PUF

1000 92.40% 91.40% 90.20%

3000 95.76% 94.96% 93.76%

5000 96.32% 95.86% 93.94%

8000 96.60% 96.68% 95.36%

10000 97.55% 96.27% 95.73%

Table 2. SVM attack on XRRO PUF with 8 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

10000 87.21% 83.94% 75.21%

40000 91.65% 90.11% 86.97%

70000 94.25% 93.88% 89.69%

100000 95.32% 94.17% 91.38%

120000 96.18% 94.67% 93.16%

150000 96.14% 94.97% 92.81%

200000 96.57% 95.41% 94.00%

Table 3. SVM attack on XRRO PUF with 16 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

50000 86.33% 83.18% 78.88%

100000 90.55% 87.12% 81.98%

200000 93.96% 90.88% 87.49%

400000 93.90% 94.37% 90.71%

600000 95.76% 95.24% 92.95%

800000 96.27% 95.52% 93.59%

1000000 96.59% 95.61% 94.31%

SVM Attacks: A SVM classifies data by finding the best hyperplane that
separates all data points belonging to one class from those belonging to the
other class. The best hyperplane for an SVM is the one with the largest margin
between the two classes. The SVM implementation in scikit-learn library is used
for this work which can be found here [2].

Using the mathematical model discussed in Sect. 3.2, the SVM attack is per-
formed on the XRBR PUF by training the model on the given CRP samples.
The feature vector Φ is determined given the challenge vector (C) in the CRP,
and the model is trained on that feature vectors and the associated responses.
The response of the XRBR PUF(RC) for the challenge vector C was formulated
as RC = sgn(p.ΦT ) where p was defined as {p0, p1, ..., pn−1}. In SVM formu-
lation, the pi terms do not appear explicitly as the classifier simply works to



220 M. Kojage et al.

find the hyperplane with the largest margin to separate the challenges into two
classes based on their responses. Table 1 shows the prediction rates for a 32,
64, and 128 bit XRBR PUF using the SVM method with training sample sizes
(CRPs) ranging from 1000 to 10,000. Given 10,000 training CRPs, it is possible
to predict the XRBR PUF design with greater than 95% accuracy, even for a
large 128 bit XRBR PUF.

Table 4. SVM attack on XRRO PUF with 32 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

500000 91.83% 88.23% 84.60%

1000000 94.35% 92.12% 88.93%

1500000 94.35% 93.64% 90.45%

2000000 95.39% 94.23% 92.26%

3000000 96.27% 95.27% 93.61%

Table 5. SVM attack on XRRO PUF with 64 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

1000000 88.24% 84.78% 79.41%

1500000 90.27% 87.05% 81.84%

2000000 91.41% 88.50% 84.01%

3000000 92.93% 90.49% 86.98%

5000000 95.02% 92.60% 89.82%

8000000 96.24% 94.239% 92.14%

Table 6. LR attack on XRBR PUF.

Training CRPs 32 bit XRBR PUF 64 bit XRBR PUF 128 bit XRBR PUF

1000 97.10% 96.40% 94.30%

3000 98.80% 98.50% 98.40%

5000 99.22% 98.76% 98.30%

8000 99.12% 98.95% 98.97%

10000 99.53% 99.40% 99.06%

For attacking the XRRO PUF, We have created an instance of SVM model
for each pair of XRROs. For each challenge provided, we separate the selection
bits of both the multiplexers and the configurable bits to the XRROs. Identi-
fying the pair of XRROs selected by the selection bits (of both multiplexers),
we train the corresponding SVM model to the pair of XRROs selected. The
training is been done on the configuration bits of the XRROs (i.e., C as going



ML Attacks on Low-Cost Reconfigurable XRRO and XRBR PUF Designs 221

by the notation discussed in Sect. 3.4). The feature vector
−→
Z is derived from

the vector C and the model is trained with the feature vectors and the associ-
ated responses. In the SVM formulation, no weight terms αi or βi (please ref to
Sect. 3.4) appear explicitly as the classifier simply works to find the hyperplane
with the largest margin to separate the challenges (Here challenges refers to the
configuration signals to the XRROs) into two classes based on their responses.
For the experimental purpose, we have chosen 8, 16, 32 and 64 layer XRRO PUF
where every XRRO is of 31, 63 and 127 stage long. Table 2, 3, 4, 5 shows the
prediction rates for a 31, 63, and 127 stage XRRO PUF having 8, 16, 32 and 64
layers respectively.

LR Attacks: LR method builds a linear model of the system using the corre-
lation between an independent and dependent variable of a known training set.
The LR implementation in scikit-learn library is used for this work [1].

Table 7. LR attack on XRRO PUF with 8 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

10000 90.96% 88.75% 82.65%

40000 97.31% 95.58% 93.48%

70000 98.03% 97.20% 95.29%

100000 98.53% 97.81% 96.99%

120000 98.71% 98.13% 97.17%

150000 98.94% 98.56% 97.42%

200000 99.09% 98.79% 98.30%

Table 8. LR attack on XRRO PUF with 16 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

50000 93.29% 90.64% 85.03%

100000 95.18% 93.36% 90.39%

200000 97.21% 95.87% 93.76%

400000 98.56% 97.81% 96.79%

600000 98.89% 98.37% 97.56%

800000 99.10% 98.71% 97.72%

1000000 99.21% 98.85% 98.29%

Table 9. LR attack on XRRO PUF with 32 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

500000 95.97% 94.25% 91.45%

1000000 96.94% 96.78% 94.95%

1500000 98.36% 97.61% 96.12%

2000000 98.65% 98.04% 97.00%

3000000 99.11% 98.59% 97.76%
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Table 10. LR attack on XRRO PUF with 64 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

1000000 93.49% 91.02% 86.29%

1500000 95.64% 92.95% 88.90%

2000000 96.29% 94.22% 90.96%

3000000 97.04% 95.85% 93.34%

5000000 98.21% 96.97% 95.89%

8000000 99.02% 98.06% 97.07%

For attacking the XRBR PUF, The training is done on the CRPs set after
transforming the challenge bits as discussed in Sect. 3.2. The model is then
trained on the transformed CRPs set. Table 6 shows the prediction rates for
a 32, 64, and 128 bit XRBR PUF using the LR method with training sample
sizes(CRPs) ranging from 1000 to 10,000. Given 10,000 training CRPs, it is pos-
sible to predict the XRBR PUF design with greater than 99% accuracy, even for
a large 128 bit XRBR PUF.

Similarly, using the modelling of XRRO PUF discussed in Sect. 3.4, we have
performed the LR attack on XRRO PUF. Table 7, 8, 9, 10 shows the prediction
rates for a 31, 63, and 127 stage XRRO PUF having 8, 16, 32 and 64 layers
respectively. Finally we can conclude from the above mentioned results that LR
method provides better prediction accuracy than SVM method in the case of
both XRBR and XRRO PUF.

5 Conclusion

In this work, we investigate the security metrics of XRBR and XRRO PUFs
which are recently proposed for generating hardware fingerprints in the resource
constrained devices for IoT frameworks. Though the PUF architectures demand
very low hardware overhead by maintaining substantial uniformity and reliability
properties, the strengths of these designs against mathematical modeling was yet
unexplored. To the best of our knowledge, this is the first work that tries to make
predictive models for the same and scrutinises the vulnerabilities against machine
learning attacks. We leverage a common flaw of not incorporating any non-linear
elements in the designs and show how that makes both schemes prone to ML
attacks. Hence these designs are not any better than a simple RO PUF or BR
PUF design. Finally with the experimental validation we have shown that both
the designs can be broken using SVM and LR algorithms with the accuracy
of approximately upto 99%. Overall, reducing the hardware overhead of such
architectures without being prone to ML attacks could be a very challenging
research area and can be a potential direction for future work.
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