
Modeling Large S-box in MILP
and a (Related-Key) Differential Attack

on Full Round PIPO-64/128

Tarun Yadav(B) and Manoj Kumar

Scientific Analysis Group, DRDO, Metcalfe House Complex, Delhi 110 054, India
{tarunyadav.sag,manojkumar.sag}@gov.in

Abstract. The differential characteristic search problem is converted
into mixed integer linear programming (MILP) model to get the bound
against differential attack. The difference distribution table is used
to write the linear inequalities for MILP modeling of S-box. To con-
struct a reduced set of such inequalities, we present the approaches
based on Quine-McCluskey(QM) and Espresso algorithms that are used
for active S-box minimization and probability optimization respectively.
These approaches are used to search the differential characteristics for
lightweight block cipher PIPO-64/128. There are 20621 inequalities in
23 variables corresponding to possible difference transitions in the DDT
and these are minimized to 6035 inequalities. MILP model based on
these inequalities is used to optimize the probability of differential and
impossible differential characteristics for PIPO-64/128 reduced to 9 and
4 rounds respectively. We construct an iterative 2-round related-key dif-
ferential characteristic with the probability of 2−4 and that is used to
present a full round related-key differential distinguisher with the prob-
ability of 2−24. We develop a key recovery attack using related keys on
full round PIPO-64/128 with the data complexity of 232. We present a
major collision in PIPO-64/128 which produces the same ciphertext (C)
by encrypting the plaintext (P ) under two different keys.

Keywords: Block cipher · Differential cryptanalysis · Lightweight
cryptography · MILP · S-box

1 Introduction

Differential attack is one of the most powerful techniques for the cryptanalysis
of block ciphers [4]. For new block ciphers, it is a mandatory design criterion
to provide proof of resistance against the differential attack [6]. The high prob-
ability relations between the input and output differences of a block cipher are
utilized to distinguish it from the uniform distribution [5]. We need a differ-
ential characteristic with the probability of 2−p, where p ≪ n, to mount the
attack on n-bit block cipher [16]. To estimate the strength of a block cipher
against differential attack, we calculate a lower bound on the number of active
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S-boxes in a differential characteristic. Then, an upper bound on the probability
is estimated using this lower bound and maximum differential probability of the
S-box [18]. Initially, branch-and-bound based techniques were used to search the
high probability differential characteristics [19,23]. Nowadays, automated solvers
based on mixed integer linear programming (MILP) [24], satisfiability modulo
theory (SAT/SMT) [10], constraint programming (CP) problems [13,33], and
machine learning based techniques [14,34] are used to test the differential attack
resistance. In 2012, MILP-aided differential cryptanalysis for block ciphers was
proposed by Mouha et al. This technique proved to be very successful to mount
the differential attack on block ciphers.

Mixed integer linear programming is used frequently to solve optimization
problems. MILP deals with optimizing the objective function f(x1, x2, · · · , xn)
subject to a set of linear inequalities Ax ≤ b which involves decision variables
xi, 1 ≤ i ≤ n with restrictions on certain variables to take integer values. We
can convert the differential characteristic search problem into a MILP model [24].
Then, optimization problem solvers (viz. Gurobi [15] and CIPLEX [11]) are used
to solve the MILP model to get a lower bound on the number of active S-boxes
and search for high probability differential characteristics. The linear layers (viz.
key addition and permutation layer) of a block cipher are easily converted into
linear inequalities. The S-box is a non-linear component of the block cipher and
DDT of the S-box is used to write the linear inequalities satisfying each possible
propagation. This set contains a large number of inequalities and it becomes hard
to solve the MILP model based on this set. Therefore it is required to minimize
the number of inequalities to obtain the solution efficiently. Various methods
have been proposed in the literature to optimize the number of inequalities in
this set.

Mouha et al. showed the use of MILP in differential cryptanalysis of block
ciphers and used optimization solvers to get the security bounds [24]. They
presented a framework to get the least number of active S-boxes in a differen-
tial characteristic of word oriented ciphers. This technique was illustrated on
Advanced Encryption Standard (AES) and least number of active S-boxes in
4-round differential characteristic of AES were obtained by solving the MILP
model.

Sun et al. extended the use of MILP for bit oriented ciphers and two methods
based on logical condition modeling and convex hull computation were proposed
to get the MILP model of S-box [27,28]. The DDT of S-box was used to write
the linear inequalities for possible propagations using the SageMath tool [29].
Then greedy search algorithm was used to reduce the number of inequalities in
this model. For a 4-bit S-box, the reduced set contains about 30 inequalities.
Due to the limitation of SageMath, this method is not practical for the S-box
of size greater than 6-bit. Sasaki and Todo proposed another method for MILP
modeling of S-box to reduce the number of inequalities [30–32]. They proposed a
MILP based method to reduce the inequalities using impossible propagations in
the DDT. For a 4-bit S-box, this method provides around 20 linear inequalities
that are used to minimize the number of active S-boxes. This method was also
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used to model the MILP problem for lightweight block cipher WARP [20]. This
method uses SageMath to write the inequalities, therefore it also does not work
for S-boxes of size more than 6-bit.

For 8-bit S-box, 16 variables are needed to write the linear inequalities for
possible and impossible difference transitions in the DDT. For large S-boxes,
Abdelkhalek et al. generated the linear inequalities using Logic Friday [22] (based
on Espresso algorithm). The pb-DDT approach was proposed to optimize the
probability of a differential characteristic by separating the DDT into multiple
tables according to the probabilities. Boura and Coggia [8] proposed another
approach to generate and minimize the number of linear inequalities for 8-bit
S-boxes based on the impossible transitions in the DDT. This method was used
to minimize the number of linear inequalities for AES S-box in [8]. The time
complexity to get the 2882 linear inequalities for AES S-box was 22 d. They did
not mention about the number of linear inequalities for partial or full DDT that
will be required to optimize the probability of differential characteristics.

Our Contribution: The existing works focused on minimizing the number of
linear inequalities to represent the DDT of large S-boxes. Whereas, the time
complexity to minimize the number of inequalities for large S-boxes was several
days [8]. Our aim is to generate a minimized set of linear inequalities within the
practical time limit (≤5 h). We present a new method to generate the additional
set of linear inequalities using intermediate output of the QM algorithm and get
the minimized set of linear inequalities in practical time. We also solve the MILP
model to optimize the number of active S-boxes in PIPO using two different set of
linear inequalities. These experiments show that there is no significant difference
in the time complexity to solve the MILP problem using large or small set
of linear inequalities. For probability optimization part, we generate the linear
inequalities for full DDT using our tool MILES (based on Espresso). We show
the application of MILES to search the differential, impossible differential and
related-key differential characteristics of lightweight block cipher PIPO-64/128
[17]. We achieve the designer’s bound for differential and impossible differential
characteristics. We present the full round related-key differential distinguishers
and mount a key recovery attack on full round PIPO-64/128. Using MILES
and MILP modeling of related-key differential search, we show the collisions in
PIPO-64/128.

Organisation: The paper is organised as follows. In Sect. 2, we discuss MILP
modeling of block ciphers with 8-bit S-boxes. We present approaches based on
QM and Espresso algorithms to minimize the number of linear inequalities and
compare the results for AES, SKINNY and PIPO S-boxes. In Sect. 3, we show
the application of MILES to model the MILP problem to optimize the probabil-
ity of differential characteristics in lightweight block cipher PIPO-64/128. The
impossible differential characteristics search procedure is discussed and a full
round related-key differential attack is presented. The paper is summarised with
conclusion in Sect. 4.
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2 MILP Based Differential Characteristic Search

To search the differential characteristics of a block cipher, the problem of opti-
mizing the probability of differential characteristics is converted into the MILP
problem. The objective function is the optimization of probabilities subject to
the constraints based on linear inequalities. SPN and Feistel based block ciphers
mainly consist of round key addition, substitution and permutation layers. The
key addition layer does not contribute in the MILP model to search the dif-
ferential characteristics. The input and output variables corresponding to the
permutation layer are easily represented by linear inequalities. The substitution
layer uses a non-linear S-box which cannot be easily represented by linear inequal-
ities. SageMath is a popular tool that is used to obtain the linear inequalities
using possible difference transitions in the DDT. In [31,32], Sasaki and Todo
proposed the impossible transitions based approach to design a MILP problem
to minimize the number of linear inequalities. This approach was later used by
many researchers to design the MILP models of various 4-bit S-boxes [35]. The
linear inequalities of permutation and substitution layers are used to model the
MILP problem, that is solved by MILP solver GUROBI [15] or CPLEX [11].

In general, MILP based differential characteristics search is two stage process.
Firstly, number of active S-boxes is minimized and then probability of differen-
tial characteristic is optimized using these active S-boxes. The outer and inner
modules of MILP are designed corresponding to these stages. The outer mod-
ule minimizes the number of active S-boxes while inner module optimizes the
probabilities of differential characteristics.

2.1 Modeling Large S-box

An S-box is a non-linear component and its DDT is converted into linear inequali-
ties to model the MILP problem. SageMath is used to generate the linear inequal-
ities for DDT of the S-box. For m-bit S-box, the size of DDT is 2m × 2m and it
represents the number of occurrences of possible output differences correspond-
ing to each input difference. SageMath uses the H-representation of convex hull
to generate linear inequalities for the S-box. SageMath has practical-time lim-
itation on the dimension of such convex hulls, so this method can be used to
generate the linear inequalities for small S-boxes only. Therefore, this method
cannot be used to model the outer module of MILP problem for S-boxes of size
greater than 6 bits.

For large (8-bit) S-boxes, Abdelkhalek et al. [1] addressed this problem using
the Espresso based tool Logic Friday [22] that reduces the inequalities by min-
imizing the product of sum of boolean functions. Boura and Coggia [8] pro-
posed another method, inspired from QM algorithm, to reduce the number of
linear inequalities of AES [26] and SKINNY [9] S-boxes. The proposed methods
minimize the number of inequalities significantly in comparison to the existing
approaches but at the cost of time and resources. The minimization process may
take several days to get the reduced set of linear inequalities. The techniques
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presented in [1] and [8], were used to minimize the number of active S-boxes for
8-bit S-box based ciphers.

To optimize the probability of differential characteristic, Abdelkhalek et al.
used pb-DDT based approach by separating the DDT for each probability [1].
These DDTs are represented by 8-bit input difference and 8-bit output difference.
The method was proposed due to limitation of logic friday to process the input
with dimension more than 16. Although, this method is used to optimize the
probability of differential characteristic, it may not be efficient due to the of use
of pb-DDT instead of full DDT. Based on the full DDT of 4-bit S-box, Sun et
al. [28] suggested the method of using extra variable for each unique probability.
Using this method, linear inequalities will be generated in more than 16 input
variable for 8-bit S-box. As Logic Friday is unable to handle more than 16 input
variable, we use a Espresso based tool namely MILES1 (AppendixB and C)
that handles more than 16 variables to minimize the set of linear inequalities.
Linear inequalities generated from MILES are used to design the outer and
inner modules of MILP model which optimizes the probability of differential
characteristic.

2.2 Linear Inequalities for Minimization of Active S-boxes

Constructing linear inequalities for S-box is the first step towards the MILP
modeling of differential attack. To minimize the number of active S-boxes, the
MILP model requires linear inequalities corresponding to all possible transitions
in DDT. Some of the existing approaches e.g. H-representation of convex hull
and QM algorithm are not time efficient for large (n ≥ 8-bit) S-boxes due to
large dimension (2n). Espresso algorithm works efficiently for large S-boxes but
provides a large set of minimized inequalities. To minimize the set of inequal-
ities, Boura and Coggia [8] used prime implicants of QM algorithm to get an
initial set of inequalities and proposed an algorithm to introduce a new set of
inequalities. The combined set of linear inequalities is minimized by removing
the impossible transitions [8,28]. The proposed method reduces the number of
inequalities significantly but the time complexity to achieve this reduction is
very high. Although, smaller MILP model with lesser inequalities does not guar-
antee a faster solution, yet MILP model having less number of inequalities is a
preferred choice.

We present a new method2 to minimize the number of linear inequalities
for large S-box within the practical time limit. This method uses the output of
QM algorithm partially and introduce a novel approach to add a better set of
linear inequalities. The QM algorithm can be divided into three parts. In first
part (QM1), it constructs prime implicants from impossible transitions of the
DDT. In second part (QM2), prime implicants are reduced to get the essential
prime implicants. These essential prime implicants are further reduced using the

1 https://github.com/tarunyadav/MILES.
2 https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Ineq-Reduct

ion.

https://github.com/tarunyadav/MILES
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Ineq-Reduction
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Ineq-Reduction
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coverage approach in third part (QM3). In our method, we use the output of
QM2 and introduce an inequality corresponding to each essential prime impli-
cant a = (a0, a1, · · · , an−1) (Eq. 1). Our method is applied in four phases as
described in Algorithm 1. The set of initial inequalities (L) is constructed in
phase 1 and a new set of linear inequalities is introduced using L in phase 2.
For each impossible transition in DDT, we add the inequalities which remove
that impossible transition. We introduce an additional inequality corresponding
to all possible transitions in DDT. This inequality is constructed by adding all
the inequalities in the set L. This inequality with new linear inequalities (Lnew)
are combined with initial set (L) to get a larger set of inequalities. In phase
3, we construct the MILP model to minimize the number of linear inequalities
using the approach proposed in [28]. For each impossible transition, we add a
constraint such that at least one inequality removing this transition remains in
the minimized set. Using such constraints, we want to ensure that all impossible
transitions are removed using the minimum number of linear inequalities. The
objective of this MILP problem is minimization of the set of linear inequalities
(L). In phase 4, we solve the MILP model using GUROBI solver to get the
minimized set of linear inequalities (Lmin).

n−1∑

i=0

(1 − ai)xi + ai(1 − xi) ≥ 1 (1)

We compare the number of linear inequalities and time complexity of our
algorithm with existing results for 8-bit S-boxes of AES, SKINNY-128 and PIPO-
64/128 in Table 1. It is evident that our algorithm optimizes the trade-off between
number of inequalities and time efficiency. For PIPO-64/128, we have solved the
MILP model for active S-box minimization with 4476 inequalities constructed
by MILES and 3276 inequalities constructed using Algorithm1. The comparison
of time to reach the lower bound is presented in Table 2. TOB and TOS repre-
sent the time to reach the optimal bound(OB) and time to conclude that the
given optimal bound is the optimal solution respectively. It can be observed from
Table 2 that the TOS is always lesser for the larger set of inequalities(Model 1)
which suggests that more constraints speeds up the process to eliminate impossi-
ble space. There is no such relation in TOB that means smaller set of inequalities
may not reach the optimal bound faster. The comparison concludes that lesser
inequalities construct smaller model but may not always yield a faster solution.

2.3 Linear Inequalities for Optimization of Probability

Once active S-boxes are minimized, the next step is to optimize the probability
corresponding to these active S-boxes. To optimize the probability, construction
of linear inequalities corresponding to each possible probabilistic transition in
DDT is required. To construct such linear inequalities, Abdelkhalek et al. [1] used
the approach to construct separate DDT for each probability. These pb-DDTs are
used to construct linear inequalities in the same manner as described in Sect. 2.2.
Linear inequalities for each pb-DDT can be generated either using Espresso or
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Algorithm 1. Linear Inequalities Minimization for 8-bit S-boxes
Input: 8-bit Sbox
Output: Lmin = Set of minimized linear inequalities
1: DDT ← Difference Distribution Table of S-box

Phase 1 - Initial Set of Linear Inequalities

2: Prime Implicants ← QM1(Impossible Transitions of DDT)
3: Essential Prime Implicants ← QM2(Prime Implicants)
4: L ←Linear inequalities corresponding to each essential prime implicant (Eqn 1)

Phase 2 - Adding New Inequalities

5: Lnew ← φ
6: for all Impossible Transitions (X → Y ) in DDT do
7: Sineq ← {li, ∀li ∈ L and li(X, Y ) < 0}
8: Lnew ← Lnew ∪ {∑

Si ∀Si ∈ Sineq} � Addition of coefficients
9: end for

10: L ← L ∪ Lnew ∪ {∑
li ∀li ∈ L}

Phase 3 - MILP Modeling M (Objective and Constraints in Binary Vari-
ables)

11: M.constraints ← φ
12: for all Impossible Transitions (X → Y ) in DDT do
13: Z ← {Zi, ∀li ∈ L and li(X, Y ) < 0} � Zi is a binary variable
14: M.constraints ← M.constraints ∪ {∑

Z ≥ 1 }
15: end for
16: M.objective ← Min(

∑{Zi, ∀li ∈ L})

Phase 4 - Minimization using GUROBI Solver

17: Lmin ← M.optimize()

Table 1. Comparison of time required to minimize linear inequalities of S-box

Algorithm Output S-box

AES SKINNY PIPO

QM Lmin – 392 –

Time 5 h 7707 s 5 h

Espresso Lmin 8389 377 4474

Time 100 s 2 s 41 s

Algo 1 in [8] Lmin 7461 372 –

Time 20d 120 m –

Algo 3 in [8] Lmin 2882 302 –

Time Several days 120 m –

Algorithm 1 Lmin 5461 315 3276

Time 5 h 900 s 5 h
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Table 2. Comparison of time required (in seconds) to attain optimal bound/solution
for PIPO-64/128 osing different sets of linear inequalities

Round OB Model 1 Model 2

Inequalities of S-box = 4474 Inequalities of S-box = 3276

Size (KB) TOB TOS Size (KB) TOB TOS

1 1 4462 0.47 0.47 3902 0.81 0.81

2 2 8923 5.19 5.19 7802 2.00 9.32

3 4 13384 7.00 50.51 11704 4.00 745.23

4 6 17845 22.00 550.11 15602 28.00 8597.95

5 9 22305 208.00 – 19502 1546.00 –

6 11 26766 2290.00 – 23403 112.00 –

QM algorithm. QM based reduction depends on the characteristics of impossible
transitions of the S-box and it needs to run for several days to provide a result.
The algorithm proposed in [8] also suffers from similar drawback due to large
number of impossible transitions in pb-DDTs. Due to the use of essential prime
implicants in Algorithm 1, we get faster results than the existing approaches but
still lack the time efficiency. There are some cases (Table 3) where the Algorithm 1
is not able to produce the result due to lesser number of possible transitions in
DDT. The time complexity to produce the sets of minimized linear inequalities
for each pb-DDT using MILES is less but each set contains the large number
of inequalities. We compare the number of inequalities and execution time for
pb-DDTs of AES, SKINNY and PIPO in Table 3.

The pb-DDT approach was proposed to overcome the limitation of Logic Fri-
day since it becomes computationally infeasible to reduce the higher dimension
inequalities of full DDT using Logic Friday. MILES uses the Espresso in its orig-
inal form for reduction in higher dimension inequalities. Therefore, we can use
the full DDT of S-box instead of pb-DDT. We use the approach proposed in [28]
to construct the probability based possible transitions and introduce additional
variable for each probability. We use MILES to construct the linear inequalities
for these transitions and show that reduction using Espresso in higher dimension
is faster than pb-DDT approach. Although, the use of full DDT may produce
larger set of linear inequalities but it simplifies the MILP model as there is no
need to choose different pb-DDT each time for an active S-box. We have already
discussed (Table 2) that smaller set of linear inequalities doesn’t guarantee the
faster solution for optimal bound but may take more time to conclude the opti-
mal solution. For PIPO-64/128, we use the approach of additional variables to
utilize full DDT and apply the Espresso to construct a minimized set of inequal-
ities. These inequalities will be used to optimize the probability of differential
characteristics in the next section.
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Table 3. Comparison of time required (in seconds) to get minimized set of linear
inequalities to represent pb-DDT, p-TT and f -TT

Structure
(S-box)

Probability QM ([1])
(pb-DDT)

MILES
(p-TT)

Algo 1
(p-TT)

MILES
(f -TT)

Lmin Lmin Time Lmin Time Lmin Time

AES 2−7 - 8312 84 5542 14963 8720 220

2−6 - 349 1 327 12478

Total - 8661 85 5869 27441 8720 220

SKINNY 2−7 206 208 1 187 8928 799 305

2−6 275 281 0.5 192 3903

2−5.415037 33 34 0.3 - -

2−5 234 240 1.2 167 15903

2−4.415037 42 47 0.2 - -

2−4 147 155 1.2 - -

2−3.678071 15 15 0.2 - -

2−3.415037 24 26 0.2 - -

2−3.192645 15 15 0.1 - -

2−3 62 69 0.3 - -

2−2.678071 16 16 0.1 - -

2−2.415037 17 17 0.1 - -

2−2 37 38 0.1 - -

Total 1123 1161 5.5 - - 799 305

PIPO 2−7 - 3410 23 2464 14382 6035 2220

2−6 - 2211 24 1993 6446

2−5.415037 - 519 5 479 7046

2−5 - 355 7 294 10442

2−4.678072 - 26 0.2 24 1566

2−4.415037 - 20 0.1 20 1907

2−4 - 93 0.5 57 10115

Total - 6634 59.8 5331 51904 6035 2220

3 Application to Lightweight Block Cipher PIPO-64/128

Lightweight cryptography has become an important topic in cryptology [7] and
NIST has also called for a competition to design the lightweight cryptographic
primitives [25]. PIPO-64/128 is a lightweight block cipher which was recently
proposed by Kim et al. at ICISC 2020 [17]. The design highlights are its security
for side-channel protected and unprotected environments. Its diffusion layer is
designed to optimize the efficiency in hardware as well as software applications.
Its diffusion layer can be implemented in software using the cyclic shift rotations.
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For hardware applications, its diffusion layer can be visualised as bit permuta-
tion on 64 bits and can be implemented using wiring only. The 8-bit S-box is
specifically designed for PIPO-64/128 so that it can be represented using the
minimum number of non-linear equations. This also ensures the protection of
the design against side channel attacks.

3.1 Specification of PIPO-64/128

PIPO-64/128 is a 64-bit lightweight block cipher with 128 and 256 bits key sizes
[17]. It consists of 13/17 rounds for 128/256 bits key variants respectively. It
is based on substitution permutation network (SPN) structure. The lightweight
8-bit S-box, having differential branch number 3, is specifically designed to use
in the confusion layer of PIPO-64/128. For each 8-bit word, diffusion layer uses
a cyclic rotation with different shift values for each word. The round function
of PIPO-64/128 is explained by dividing it into an 8×8 matrix. It applies the
diffusion layer row-wise and 8-bit S-box is applied column-wise. For each vari-
ant, a simple key selection algorithm is used. For 128-bit key K = (K1 ‖ K0),
the rounds keys are selected as RKi = Ki(mod2), 0 ≤ i ≤ 13. For 256-bit key
K = (K3 ‖ K2 ‖ K1 ‖ K0), the rounds keys are selected as RKi = Ki(mod4),
0 ≤ i ≤ 17.

Algorithm 2. Encryption Algorithm of PIPO-64/128
Input: P and RKi, 0 ≤ i ≤ 13
Output: C = (c63, c62, · · · , c0)
1: U0 ← P ⊕ RK0

2: U0 = (u63, u62, · · · , u0)
3: for i=1 to 13 do
4: for j=0 to 7 do
5: (v56+j ‖ v48+j ‖ v40+j ‖ v32+j ‖ v24+j ‖ v16+j ‖ v8+j ‖ vj)
6: ← S8(u56+i ‖ u48+i ‖ u40+j ‖ u32+j ‖ u24+j ‖ u16+j ‖ u8+j ‖ uj)
7: end for
8: end for
9: Vi = (v63, v62, · · · , v0)

10: Ui ← BP (Vi) ⊕ RKi ⊕ i
11: Ui = (u63, u62, · · · , u0)

For MILP modeling, we describe the encryption algorithm of PIPO-64/128
in a different way (Algorithm 2). Round function is described using substitu-
tion layer, permutation layer and add round key operations. Substitution layer
applies 8-bit S-box (S) (Table 4) on 8 bits extracted from eight different posi-
tions of input and output bits from S-box are sent back to the same positions.
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Permutation layer uses a 64-bit permutation (BP ) (Table 5) on the output from
S-box layer. The round keys (RKi) and constants (i = roundnumber) are simply
XOR-ed with the output of diffusion layer.

Table 4. 8-bit S-box of PIPO-64/128

S8 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 5E F9 FC 00 3F 85 BA 5B 18 37 B2 C6 71 C3 74 9D

1 A7 94 0D E1 CA 68 53 2E 49 62 EB 97 A4 0E 2D D0

2 16 25 AC 48 63 D1 EA 8F F7 40 45 B1 9E 34 1B F2

3 B9 86 03 7F D8 7A DD 3C E0 CB 52 26 15 AF 8C 69

4 C2 75 70 1C 33 99 B6 C7 04 3B BE 5A FD 5F F8 81

5 93 A0 29 4D 66 D4 EF 0A E5 CE 57 A3 90 2A 09 6C

6 22 11 88 E4 CF 6D 56 AB 7B DC D9 BD 82 38 07 7E

7 B5 9A 1F F3 44 F6 41 30 4C 67 EE 12 21 8B A8 D5

8 55 6E E7 0B 28 92 A1 CC 2B 08 91 ED D6 64 4F A2

9 BC 83 06 FA 5D FF 58 39 72 C5 C0 B4 9B 31 1E 77

A 01 3E BB DF 78 DA 7D 84 50 6B E2 8E AD 17 24 C9

B AE 8D 14 E8 D3 61 4A 27 47 F0 F5 19 36 9C B3 42

C 1D 32 B7 43 F4 46 F1 98 EC D7 4E AA 89 23 10 65

D 8A A9 20 54 6F CD E6 13 DB 7C 79 05 3A 80 BF DE

E E9 D2 4B 2F 0C A6 95 60 0F 2C A5 51 6A C8 E3 96

F B0 9F 1A 76 C1 73 C4 35 FE 59 5C B8 87 3D 02 FB

Table 5. Bit permutation in PIPO-64/128

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BP (i) 0 1 2 3 4 5 6 7 15 8 9 10 11 12 13 14

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BP (i) 20 21 22 23 16 17 18 19 27 28 29 30 31 24 25 26

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

BP (i) 38 39 32 33 34 35 36 37 45 46 47 40 41 42 43 44

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

BP (i) 49 50 51 52 53 54 55 48 58 59 60 61 62 63 56 57
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Table 6. Difference distribution table of PIPO-64/128

�j →
�i ↓ 0 1 2 3 4 5 6 7 8 9 A B C D · · · FF

0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

2 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

3 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

6 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

7 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

· · · · · ·
8F 0 0 0 0 0 8 0 0 0 8 0 0 0 0 · · · 0

9F 0 0 16 0 0 0 0 4 2 0 0 0 0 0 · · · 0

AF 0 2 16 0 0 0 0 0 0 0 0 2 0 0 · · · 0

BF 0 2 0 0 0 0 0 4 0 0 0 2 0 0 · · · 0

CF 0 2 0 0 0 0 0 0 2 0 0 0 0 4 · · · 2

DF 0 2 16 0 0 0 0 4 0 0 4 0 0 4 · · · 2

EF 0 0 16 0 0 0 0 0 2 0 0 0 2 0 · · · 0

FF 0 0 0 0 0 0 0 4 0 0 2 0 0 0 · · · 2

3.2 MILP Modeling for PIPO-64/128

The model for valid differential propagations of PIPO-64/128 is constructed bit-
wise. In each round, subkey addition, S-box, and bit permutation operations are
used. Block size in PIPO-64/128 is 64-bit and it consists of 13 rounds. For 64-bit
plaintext difference, binary variables u63, u62, · · · u0 represent active or inactive
bits for first round. The variables to represent active or inactive bits in the differ-
ence after first round are updated to u127, u126, · · · u64 and so on. The variables
u832, u831, · · · u768 represent the active or inactive bits in the ciphertext differ-
ence after 13 rounds. In first round, the variables representing the bits of input
and output differences to S-box layer are represented as follows:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u7 u6 u5 u4 u3 u2 u1 u0

u15 u14 u13 u12 u11 u10 u9 u8

u23 u22 u21 u20 u19 u18 u17 u16

u31 u30 u29 u28 u27 u26 u25 u24

u39 u38 u37 u36 u35 u34 u33 u32

u47 u46 u45 u44 u43 u42 u41 u40

u55 u54 u53 u52 u51 u50 u49 u48

u63 u62 u61 u60 u59 u58 u57 u56

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u71 u70 u69 u68 u67 u66 u65 u64

u78 u77 u76 u75 u74 u73 u72 u79

u83 u82 u81 u80 u87 u86 u85 u84

u90 u89 u88 u95 u94 u93 u92 u91

u101 u100 u99 u98 u97 u96 u103 u102

u108 u107 u106 u105 u104 u111 u110 u109

u112 u119 u118 u117 u116 u115 u114 u113

u121 u120 u127 u126 u125 u124 u123 u122

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The permutation layer is applied on the output from S-box layer and output of
the permutation layer which acts as an input to the second round is represented
as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u71 u70 u69 u68 u67 u66 u65 u64

u79 u78 u77 u76 u75 u74 u73 u72

u87 u86 u85 u84 u83 u82 u81 u80

u95 u94 u93 u92 u91 u90 u89 u88

u103 u102 u101 u100 u99 u98 u97 u96

u111 u110 u109 u108 u107 u106 u105 u104

u119 u118 u117 u116 u115 u114 u113 u112

u127 u126 u125 u124 u123 u122 u121 u120

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We describe all possible propagation patterns for S-box with a system of linear
inequalities.

e.g.(u7, u6, u5, u4, u3, u2, u1, u0 → u71, u70, u69, u68, u67, u66, u65, u64)

The variables corresponding to bits having the difference takes ‘1’ and it takes ‘0’
otherwise. A constraint u0 +u1 + · · · +u63 ≥ 1 is added to ensure that plaintext
difference has at least one active bit.

Modeling 8-bit S-box. To model the 8-bit S-box of PIPO-64/128, we gener-
ate the DDT (Table 6) for each possible input and output difference (Δi,Δj)
using MILES. The entries (i, j) in the Table 6 corresponds to the number of
occurrences for output differences Δj when the input differences were set as Δi.
We get a 256× 256 DDT for an 8-bit S-box. The non-zero values in the DDT
corresponds to a possible difference propagation and zero values indicates an
impossible propagation.

Linear Inequalities for Outer Module of MILP Model. The DDT gener-
ated in previous step is used in MILES to derive the truth table (�-TT). The
�-TT of PIPO-64/128 contains 20621 entries which are further minimized by our
tool. MILES minimizes the �-TT to �-TTmin with 4474 entries. We convert each
entry of �-TTmin into a linear inequality. We represent each entry of �-TTmin

using 16 binary variables (x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7),
where first eight variables (x0, x1, x2, x3, x4, x5, x6, x7) represent the input dif-
ference and remaining variables (y0, y1, y2, y3, y4, y5, y6, y7) represent the output
difference. These linear inequalities are used as constraints in the outer module
and minimization of number of active S-boxes is used as objective function.

Linear Inequalities for Inner Module of MILP Model. Differential prob-
ability of S-box was used to design MILP model by Sun et al. in [27] and this
technique was also used by Zhu et al. to present the MILP based differential
attack on round-reduced GIFT in [35]. We optimize the probability of differen-
tial characteristics in the inner module of MILP model. For this purpose, we need
the linear inequalities for all non-zero entries in the DDT which corresponds to
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the possible difference propagation and their probabilities. In the DDT of PIPO-
64/128 S-box, there are seven different values for the probability of possible dif-
ference propagations i.e. 2−0, 2−4.00, 2−4.41, 2−4.67, 2−5.00, 2−5.41, 2−6.00, 2−7.00

(Table 7). This requires seven extra binary variables to represent the probability
of each possible propagation. MILES uses DDT to generate truth table (f -TT)
with 20621 entries. Each entry of the f -TT is represented by 23 binary variables
where 16 input variables (x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7)
represents the input and output differences. The remaining seven input vari-
ables (p0, p1, p2, p3, p4, p5, p6) represent the probabilities of corresponding differ-
ence propagations. MILES minimizes the f -TT to f -TTmin which results in 6035
entries in f -TTmin. Each entry of f -TTmin is converted into the linear inequal-
ity using Eq. 1. This set of linear inequalities is used to optimize the probability
of differential characteristics in the block cipher PIPO-64/128.

Table 7. Binary variables to encode the probabilities in DDT of PIPO-64/128

Pr[(x0, x1, · · · , x7) → (x8, x9, · · · , x15)] (p0, p1, · · · , p6)

1 = 2−0 (0,0,0,0,0,0,0)

2/256 = 2−7.00(Pr6) (0,0,0,0,0,0,1)

4/256 = 2−6.00(Pr5) (0,0,0,0,0,1,0)

6/256 = 2−5.41(Pr4) (0,0,0,0,1,0,0)

8/256 = 2−5.00(Pr3) (0,0,0,1,0,0,0)

10/256 = 2−4.67(Pr2) (0,0,1,0,0,0,0)

12/256 = 2−4.41(Pr1) (0,1,0,0,0,0,0)

16/256 = 2−4.00(Pr0) (1,0,0,0,0,0,0)

3.3 Differential Cryptanalysis of PIPO-64/128

We solve the MILP model using Gurobi solver [15] to optimize the probability
of differential characteristics for PIPO-64/128. In the outer-MILP module, the
objective function is to minimize the number of active S-boxes in the differential
characteristics. We get 13 active S-boxes for 7 rounds differential characteristics
in PIPO-64/128. The objective function for the inner-MILP module is to max-
imize the probability of differential characteristics using the positions of active
S-boxes obtained in the outer module. The objective function is defined as min-
imization of Eq. 2 over active S-boxes (AS).

∑

∀AS

6∑

i=0

− log2(Pri) × (p0 + p1 + p2 + p3 + p4 + p5 + p6) (2)
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We constructed3 many differential characteristics for PIPO-64/128 reduced to
6/7 rounds. There does not exist any 6-round differential characteristic with the
probability better than 2−54.4 and best differential characteristics for 7-round
PIPO-64/128 exists with the probability of 2−65. We constructed the 7-round
differential characteristics for PIPO-64/128 using the inequalities generated with
MILES which is shown in Table 8.

Table 8. 7-round differential characteristics for PIPO-64/128

Round Input difference Probability

(r) (Δr)

0 0x0101000101000001 1

1 0x0000000000008000 2−4

2 0x0000000000080080 2−4

3 0x2011112000800080 2−11

4 0x404100408101c080 2−19

5 0x0000101000100000 2−16

6 0x0000000080000000 2−7

7 0x0001000004084000 2−4

3.4 Impossible Differential Cryptanalysis of PIPO-64/128

Impossible differential attack is opposite to differential attack. The basic idea is
to use zero probability differential characteristics in place of a high probability
characteristic to filter out the wrong keys [3]. For this purpose, the zero probabil-
ity characteristics are constructed by proving a contradiction between the two
differential characteristics of probability one each. This approach is known as
miss-in-the-middle technique to search an impossible differential characteristic.
Nowadays, the MILP based technique is used to search these zero probability
differential characteristics. The MILP model to search the high probability differ-
ential characteristics with some added constraint is used to search the impossible
differential characteristic.

To search the impossible differential, we iterate all (Δi,Δo) pairs with one
active bit in the input and output. For this purpose, additional constraints to
fix the input and output differences are added in the MILP model. The gurobi
solver is used to solve the outer module of MILP model as discussed in Sect. 3.2.
The input and output differences corresponding to infeasible solution are consid-
ered as impossible differential characteristic. Using this method4, we obtain the

3 https://github.com/tarunyadav/PIPO-MILP.
4 https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Impossible-

Differential.

https://github.com/tarunyadav/PIPO-MILP
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Impossible-Differential
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Impossible-Differential


18 T. Yadav and M. Kumar

following 4-round impossible differential characteristics (Δ0,Δ4). However, our
bound for impossible differential attack is similar to that of the designers claim.

0000000000000000000000000000000000000000000000000000000000000001→
0000000000000000000000000000000000000000000000000000000000010000

3.5 Related-Key Differential Distinguisher for PIPO-64/128

Resistance to related-key attacks was not considered by the designers of PIPO-
64/128 and any security claim in the related-key setting is not provided. In
differential attack, the adversary is allowed to choose a difference in the plain-
texts and observe the differences in ciphertexts. In related-key differential attack,
the adversary is allowed to choose a relation (difference) in the key together a
relation (difference) in the plaintexts [2,21]. The adversary is allowed to get the
encryption of first plaintext using the secret key and a key related to this key
is used to encrypt the another plaintext. We model an MILP problem to search
the related-key differential characteristic in PIPO-64/128.

3.5.1 MILP Model for Related-Key Differential Characteristic. The
secret key K is divided into the two 64-bit keys K0 and K1 which are used as
round subkeys in PIPO-64/128. We model the similar MILP problem to search
the related-key differential characteristic as described in Sect. 3.2. Additionally,
we need to model the key addition layer and solve the MILP model in order to
get the optimal related-key characteristics in PIPO-64/128 [27].

Modeling Key Addition Layer. We need to introduce the additional con-
straints in the MILP model corresponding to the round keys. The 128 new vari-
ables are introduced corresponding to the 128-bit secret key. The 64 key variables
are added in one round and the other 64 key variables are added in the subse-
quent round. To add the constraints for key addition layer, for each bit of input
xi and key k, we follow the conditions on bit variables to exclude the impossible
patterns (Eq. 3). Here, xi and k refer to the input bit and corresponding key bit.
The bit variable xi+1 is an output of the XOR operation i.e. xi+1 = k ⊕ xi.

xi + k − xi+1 ≥ 0
xi − k + xi+1 ≥ 0

−xi + k + xi+1 ≥ 0
xi + k + xi+1 ≤ 2

(3)

3.5.2 Full-Round Related-Key Differential Distinguisher. We solve5

the MILP model to search the related-key differential characteristics using gurobi
solver. We get a 2-round iterative related-key characteristic with the probability

5 https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Related-Key-
Differential.

https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Related-Key-Differential
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Related-Key-Differential
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of 2−4. The optimal related-key differential characteristic for full round PIPO-
64/128 is obtained with a probability of 2−24 using 2-round iterative character-
istic (Table 9). We also get full-round characteristics with probability of 2−28

under zero difference in the plaintext as well as in the ciphertext (Table 10).

3.5.3 Collisions in PIPO-64/128. The zero difference related-key charac-
teristics will lead to a collision in the hash function designed using PIPO-64/128.
We searched for the existence of input and output pairs under different keys
following zero difference characteristic (collision). We encrypt the 228 random
samples under related keys and one such pair is expected in each experiment.
Therefore, we can construct as many samples providing us the collision in the
input and output under the different keys. We have verified these plaintext and
ciphertext samples by using the designers program. One such collision in PIPO-
64/128 is presented in the Table 10. We have also provided other samples showing
a collision in the Appendix A.

Table 9. 13-round (related-key) differential characteristic for PIPO-64/128 with prob-
ability 2−24

Round Difference (Δr) Probability

(r) ΔK= 0x00200000200000000040000801001000

0 0x0040000801001000 1

1 0x0020000020000000 1

2 0x0000000000000000 2−4

3 0x0020000020000000 1

4 0x0000000000000000 2−4

5 0x0020000020000000 1

6 0x0000000000000000 2−4

7 0x0020000020000000 1

8 0x0000000000000000 2−4

9 0x0020000020000000 1

10 0x0000000000000000 2−4

11 0x0020000020000000 1

12 0x0000000000000000 2−4

13 0x0020000020000000 1
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Table 10. Zero difference characteristics with an example of collision

Round EK(Pr), K = (K1||K0) E
K

′ (P
′
r), K

′
= (K

′
1||K′

0) Difference Probability

(r) K1= 0x6DC416DD779428D2 K
′
1 =K1 ⊕ 0x0040000801001000 (Δr = Pr ⊕ P

′
r)

K0= 0x7E1D20AD2E152297 K
′
0 =K0 ⊕ 0x0020000020000000

0 0xFFEAF697D7FCE742 0xFFEAF697D7FCE742 0x0000000000000000 1

1 0xD76EFD65756940C0 0xD76EFD65756940C0 0x0000000000000000 2−4

2 0x4FA59C5858EDC4FF 0x4F859C5878EDC4FF 0x0020000020000000 1

3 0x8F6ACEC7A220C121 0x8F6ACEC7A220C121 0x0000000000000000 2−4

4 0x406AD151D57A997B 0x404AD151F57A997B 0x0020000020000000 1

5 0xC5F53C44C408AC2D 0xC5F53C44C408AC2D 0x0000000000000000 2−4

6 0xCFD8867C58BFCFD9 0xCFF8867C78BFCFD9 0x0020000020000000 1

7 0xC99B445F8E203697 0xC99B445F8E203697 0x0000000000000000 2−4

8 0xD12CCC87E5585504 0xD10CCC87C5585504 0x0020000020000000 1

9 0x01D75CDC373A6F41 0x01D75CDC373A6F41 0x0000000000000000 2−4

10 0x41C1CE1756D7C045 0x41E1CE1776D7C045 0x0020000020000000 1

11 0x388794675E6B5EDE 0x388794675E6B5EDE 0x0000000000000000 2−4

12 0x1FDB4194BF26AC3B 0x1FFB41949F26AC3B 0x0020000020000000 1

13 0xCDE57DF09ECF4F7D 0xCDE57DF09ECF4F7D 0x0000000000000000 2−4

3.6 Related-Key Differential Attack on Full-round PIPO-64/128

We use the related-key differential characteristic described in the Table 10 to
present a full-round differential attack on PIPO-64/128. We used 11-round dif-
ferential characteristics (Δ1 → Δ12) with the probability of 2−20and added one
round at the beginning as well as at the end of the characteristic (Table 11). Using
the 11-round differential characteristic, we can launch a key recovery attack on
the 13-round PIPO-64/128. The 11-round characteristic is chosen in particular
to maximize the number of recovered key bits. In each round, 64-bit round key is
required and it is extracted directly from the 128-bit key K = (K1,K0). The key
K0 is used for whitening and for even numbered rounds while the odd numbered
rounds use the key K1. We need to guess the round keys which correspond to
the actives S-boxes.

Table 11. Related-key differential attack on 13-round PIPO-64/128

ΔK1 → 0000 0000 0100 0000 0000 0000 0000 1000 0000 0001 0000 0000 0001 0000 0000 0000

ΔK0 → 0000 0000 0010 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000

Δ0 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000

⊕ΔK0 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000

S-Box 0000 0000 0010 0000 0000 0000 0010 0000 0010 0000 0000 0000 0010 0000 0000 0000

Permutation 0000 0000 0100 0000 0000 0000 0000 1000 0000 0001 0000 0000 0001 0000 0000 0000

Δ1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

.

.

.

Δ12 0000 0000 0010 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000

S-Box 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000

Permutation ?000 0000 0?00 0000 0000 0?00 0000 ?000 0000 000? 0000 00?0 000? 0000 00?0 0000

Δ13 ?000 0000 0?00 0000 0000 0?00 0000 ?000 0000 000? 0000 00?0 000? 0000 00?0 0000

Δ1 = Permutation ⊕ K1;Δ13 = Permutation ⊕ K1
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3.6.1 Data Collection
We can build 2n(n ≤ 56) structures corresponding to the fixed bits in the input
difference (Δ0). The objective is to minimize the value of n such that sufficient
number of right pairs are left for key guessing phase. Each structure traverses
the 8 undetermined (?) bits in Δ0 (Table 11). Thus, each structure generates
28∗2−1(= 215) pairs6 satisfying the differential. Therefore, the total number of
pairs generated by the 2n structures are 2n+15. In Table 11, such a pair will meet
the second round differential with an average probability of 2−8. The probability
of obeying the differential after 12th round for the pair encrypted with the right
key is 2−20. Therefore, the number of pairs satisfying the differential after 12th

round for a right key guess will be 2n+15×2−8×2−20(= 2n−13). Hence, we choose
n = 17 so that we could get at least 24(= 16) right pairs under the correct key
guessing.

3.6.2 Key Recovery
In this phase, we guess the key bits corresponding to the undetermined
bits(?) in Δ0 and Δ13 and nonzero fix difference. This guess includes
K5

0 ,K13
0 ,K21

0 ,K29
0 ,K37

0 ,K45
0 ,K53

0 ,K61
0 ,K12

1 ,K24
1 ,K35

1 ,K54
1 in 1st round and

K5
1 ,K12

1 ,K17
1 ,K24

1 ,K35
1 ,K42

1 ,K54
1 ,K63

1 in 13th round. Since K12
1 ,K24

1 ,K35
1 ,K54

1

are involved in 1st and 13th round, total 16 unique key bits are involved in the key
recovery phase. Hence, we construct 216 counters corresponding to the possible
values of 16 bits of the key.

With n = 17, we repeat the key guessing procedure for each of the 217+15(=
232) pairs. We experimented with 232 pairs and find that there are at least 24

pairs remaining after filtered by zero difference in Δ13. Therefore, the expected
counter value for a wrong key guess will be 24−8−8(= 2−12) after filtered by the
undetermined bits in Δ0 and Δ13. As discussed in Sect. 3.6.1, there are at least
16 right pairs remaining after 12th round. These right pairs will be used for key
guessing and a key with the highest counter value will be the correct key.

3.6.3 Complexity
There are 2n structures and 28 pairs(fixing the undetermined bits in Δ0) can be
generated for each structure. As discussed in Sect. 3.6.2, we need 232 pairs to get
24 right pairs. Therefore, we choose n(=24) structure and the data complexity of
the 13-round related-key differential attack on PIPO-64/128 becomes 224+8(=
232). We need to store the counters corresponding to 16 bits of the key, so the
memory complexity of the attack becomes 216. In the first round, for each of the
24 pairs, we need to guess the 12 bits of the key corresponding to the active S-box.
Therefore, time complexity of the first round becomes 24+12(= 216). Similarly
time complexity of the 13th round is 24+4(= 28) because four bits of the key
are already guessed in the first round. Hence, the time complexity of the whole
attack is bounded by the 232 chosen plaintexts.

6 In this calculation, we consider a pair (a, b) same as (b, a).
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4 Conclusion

In this paper, we have presented the approaches to construct the linear inequal-
ities corresponding to the DDT of 8-bit S-boxes. These inequalities are used
to minimize the number of active S-boxes in PIPO-64/128. The experimental
results indicate that there is no significant difference in the time complexity to
solve the MILP models with a smaller set of linear inequalities. Therefore, we
have used full DDT to construct a simplified MILP model for probability opti-
mization instead of using the existing pb-DDT approach. The linear inequalities
corresponding to the full DDT of PIPO-64/128 are constructed using the MILES
tool. These linear inequalities are used to model the MILP problem for searching
the differential, impossible differential and related-key differential characteristics.
We have presented the full-round related-key differential distinguisher and a key
recovery attack on full-round PIPO-64/128 with 232 data complexity. We have
also presented several collisions in the plaintext and ciphertext using different
keys.

Appendix

A C = E(P, K) = E(P, K
′
) where K

′
= K ⊕ ΔK

K = 0x6DC416DD779428D27E1D20AD2E152297
ΔK = 0x00400008010010000020000020000000

No. Plaintext (P ) Ciphertext (C)

1 0xFFEAF697D7FCE742 0xCDE57DF09ECF4F7D

2 0xFCFFE1E57B3EE1B0 0x964DFE673B256413

3 0xFE9DAF4B7CDF3C62 0x5A204F91F5B3BEE2

4 0xBFE622F4EDF3FF2A 0x2C41558C8D728AD0

5 0xE7FFA8E4E8F95AF5 0xEB10BDFF059CF6A0

6 0xBDFDE7BAFFF6E73E 0x009AEE178347B174

7 0x7FFB2EFE657B19E7 0xD387F51CC4D0755A

8 0x2FF9393C75FB73F1 0x46B43D51ABE5146D

9 0x6EFE60A8EFFF5F2F 0x4F687CEC564569ED

10 0xF8EFFEB4EFFC9A70 0x923B7FDBAE0812CC

11 0xFD976646A1A3B40C 0xC433269EE6751443

12 0x6FF431B77B748CB5 0x5041B64C120B2673

13 0xE3EBED217F6FEB3F 0x56072F13AA0DB152

14 0xE35BF593EB9D32F0 0x1046EFDED93A860F

15 0xFFF76DCC8F77FA1B 0x73D7C7FFE4A78EF6

16 0x77FF282B3F7F8121 0xAD7D75F547410892

17 0x3E6FAB372BFB5F23 0x17C097CDE69D86BA

18 0xEFFABDB4F6F7032E 0x98731593F9EFC0D7

19 0x75926BBA4F77726F 0xDF4974E78B9FEC13

20 0xEBE465797D6BAD63 0x7432FC827038315B
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B MILES: MInimized Linear inEqualities for Large S-Boxes

We present expresso based tool MILES to generate the linear inequalities for
larges S-boxes and this tool is based on the Espresso algorithm [12]. The S-
box is given as an input to the tool and it outputs a minimized set of linear
inequalities that is required to model the MILP problem. MILES is the first
tool that uses the full DDT of 8-bit S-box to generate the linear inequalities. In
MILES, there are four processes which are applied sequentially to generate the
minimized linear inequalities. These process are described as follows:

1. DDT generation. In this process, MILES takes m-bit S-box (m≥3) as input
and generates a DDT of the S-box. The DDT (2m × 2m) is 2-Dimensional
array where row indices (y-axis) define input difference while column indices
(x-axis) define the output difference. We define a function fi,j to represent the
DDT of S-box which provides the number of occurrences of output difference
Δj corresponding to input difference Δi (Eq. 1).

fi,j = FrequencyΔi→Δj
where 0 ≤ i, j ≤ m (4)

This DDT is used as an input in the next process.
2. DDT to truth table conversion. In this process, the input DDT is con-

verted into a truth table. This truth table specifies the input and output
points of the DDT as input variables. To simplify it, we specify only non-
zero entries of the DDT and corresponding output variable as 1. MILES can
generate three kinds of truth tables (�-TT,p-TT,f -TT) from the DDT. The
�-TT table corresponds to the non-zero entries in the DDT and p-TT cor-
responds to the non-zero entries in DDT for a specific probability (p). The
f -TT table corresponds to the non-zero entries with extra input variable for
each probability.

3. Truth table minimization. MILES interfaces with Espresso to perform
minimization of the truth table. The output of minimization is TTmin which
is used to generate the minimized linear inequalities. The TTmin is simi-
lar to the truth table and it contains an additional symbol (‘−’). The out-
put variable in TTmin is independent of input variable corresponding to this
additional symbol. The minimization process can be performed with various
modes available in Espresso algorithm. These options are chosen in MILES as
minimization strategy. These strategies are problem specific and a particular
strategy may not provide best solution for all problems. The minimized truth
tables corresponding to �-TT, p-TT, and f -TT are represented as �-TTmin,
p-TTmin, and f -TTmin respectively.

4. Linear inequalities generation. After minimization process, MILES gen-
erate the linear inequalities. Each linear inequality corresponds to one entry
in TTmin. If a value in the entry is 0 then it is expressed as variable x and
if it is 1 then it is expressed as 1 − x. The value ‘−’ in the TTmin does not
contribute in the inequality generation process.
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C Example: Linear Inequalities Generation using MILES

We describe the process to generate the linear inequalities for a 3-bit S-box
(Table 12). The DDT (Table 13), f -TT (Table 14), and f -TTmin (Table 15) are
generated using MILES. The set of minimized linear inequalities for this S-box
is given in Table 16.

Table 12. 3-bit S-box

x 0 1 2 3 4 5 6 7

S(x) 3 6 5 7 0 2 4 1

Table 13. DDT of S-box

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 4 0 0 4 0 0

2 0 2 0 2 2 0 2 0

3 0 2 0 2 2 0 2 0

4 0 2 0 2 2 0 2 0

5 0 2 0 2 2 0 2 0

6 0 0 0 0 0 4 0 4

7 0 0 4 0 0 0 0 4

Table 14. f -TT of DDT

x1 x2 x3 y1 y2 y3 p1 p2 f

0 0 0 0 0 0 0 0 1

0 0 1 0 1 0 1 0 1

0 0 1 1 0 1 1 0 1

0 1 0 0 0 1 0 1 1

0 1 0 0 1 1 0 1 1

0 1 0 1 0 0 0 1 1

0 1 0 1 1 0 0 1 1

0 1 1 0 0 1 0 1 1

0 1 1 0 1 1 0 1 1

0 1 1 1 0 0 0 1 1

0 1 1 1 1 0 0 1 1

1 0 0 0 0 1 0 1 1

1 0 0 0 1 1 0 1 1

1 0 0 1 0 0 0 1 1

1 0 0 1 1 0 0 1 1

1 0 1 0 0 1 0 1 1

1 0 1 0 1 1 0 1 1

1 0 1 1 0 0 0 1 1

1 0 1 1 1 0 0 1 1

1 1 0 1 0 1 1 0 1

1 1 0 1 1 1 1 0 1

1 1 1 0 1 0 1 0 1

1 1 1 1 1 1 1 0 1

Table 15. f -TTmin for f -TT

x1 x2 x3 y1 y2 y3 p1 p2 f

0 0 1 0 1 0 1 0 1

0 0 1 1 0 1 1 0 1

1 1 1 0 1 0 1 0 1

1 1 0 1 - 1 1 0 1

1 1 - 1 1 1 1 0 1

0 0 0 0 0 0 0 0 1

1 0 - 1 - 0 0 1 1

0 1 - 1 - 0 0 1 1

1 0 - 0 - 1 0 1 1

0 1 - 0 - 1 0 1 1
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Table 16. Linear inequalities generated from f -TTmin

1 x1 + x2 − x3 + y1 − y2 + y3 − p1 + p2 + 2 ≥ 0

2 x1 + x2 − x3 − y1 + y2 − y3 − p1 + p2 + 3 ≥ 0

3 −x1 − x2 − x3 + y1 − y2 + y3 − p1 + p2 + 4 ≥ 0

4 −x1 − x2 + x3 − y1 − y3 − p1 + p2 + 4 ≥ 0

5 −x1 − x2 − y1 − y2 − y3 − p1 + p2 + 5 ≥ 0

6 x1 + x2 + x3 + y1 + y2 + y3 + p1 + p2 − 1 ≥ 0

7 −x1 + x2 − y1 + y3 + p1 − p2 + 2 ≥ 0

8 x1 − x2 − y1 + y3 + p1 − p2 + 2 ≥ 0

9 −x1 + x2 + y1 − y3 + p1 − p2 + 2 ≥ 0

10 x1 − x2 + y1 − y3 + p1 − p2 + 2 ≥ 0
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