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Preface

The 12th International Conference on Security, Privacy, and Applied Cryptography
Engineering 2022 (SPACE 2022), was held during December 9–12, 2022. This annual
event is devoted to various aspects of security, privacy, applied cryptography, and cryp-
tographic engineering. This is a challenging field, requiring expertise from diverse
domains, ranging from mathematics and computer science to circuit design. The event
was hosted by the Center for Cryptography, Cyber Security and Digital Forensics
(C3-SDF) at The LNM Institute of Information Technology, Jaipur, India.

This year we received 61 submissions from authors in many different countries,
mainly from Asia and Europe. The submissions were evaluated based on their signifi-
cance, novelty, technical quality, and relevance to the SPACE conference. The submis-
sions were reviewed in a double-blind mode by at least two members of the Program
Committee, which consisted of 47 members from all over the world. After an extensive
review process, 18 papers were accepted for presentation at the conference, leading to
an acceptance rate of 29.5%.

The program also included five keynotes and four tutorials on various aspects of
applied cryptology, security, and privacy delivered by world-renowned researchers:
Ingrid Verbauwhede, Nele Mentens, Jeyavijayan “JV” Rajendran, Chester Rebeiro,
Sanjay K. Jha, Łukasz Chmielewski, Sikhar Patranabis, Nitin Singh, and Matthias
Kannwischer. We sincerely thank the invited speakers for accepting our invitations in
spite of their busy schedules. As in previous editions, SPACE 2022 was organized in
cooperation with the International Association for Cryptologic Research (IACR). We
are grateful to general chairs Jayaprakash Kar and Debdeep Mukhopadhyay for their
willingness to host it physically at LMNIT Jaipur.

There is a long list of volunteers who invested their time and energy to put together
the conference. We are grateful to all the members of the Program Committee and their
sub-reviewers for all their hard work in the evaluation of the submitted papers. We thank
our publisher Springer for agreeing to continue to publish the SPACE proceedings as
a volume in the Lecture Notes in Computer Science (LNCS) series. We are grateful to
the local Organizing Committee who invested a lot of time and effort in order for the
conference to run smoothly.

Last, but not least, our sincere thanks go to all the authors who submitted papers to
SPACE 2022 and everyone who participated (either in person or virtually).

December 2022 Lejla Batina
Stjepan Picek

Mainack Mondal
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Modeling Large S-box in MILP
and a (Related-Key) Differential Attack

on Full Round PIPO-64/128

Tarun Yadav(B) and Manoj Kumar

Scientific Analysis Group, DRDO, Metcalfe House Complex, Delhi 110 054, India
{tarunyadav.sag,manojkumar.sag}@gov.in

Abstract. The differential characteristic search problem is converted
into mixed integer linear programming (MILP) model to get the bound
against differential attack. The difference distribution table is used
to write the linear inequalities for MILP modeling of S-box. To con-
struct a reduced set of such inequalities, we present the approaches
based on Quine-McCluskey(QM) and Espresso algorithms that are used
for active S-box minimization and probability optimization respectively.
These approaches are used to search the differential characteristics for
lightweight block cipher PIPO-64/128. There are 20621 inequalities in
23 variables corresponding to possible difference transitions in the DDT
and these are minimized to 6035 inequalities. MILP model based on
these inequalities is used to optimize the probability of differential and
impossible differential characteristics for PIPO-64/128 reduced to 9 and
4 rounds respectively. We construct an iterative 2-round related-key dif-
ferential characteristic with the probability of 2−4 and that is used to
present a full round related-key differential distinguisher with the prob-
ability of 2−24. We develop a key recovery attack using related keys on
full round PIPO-64/128 with the data complexity of 232. We present a
major collision in PIPO-64/128 which produces the same ciphertext (C)
by encrypting the plaintext (P ) under two different keys.

Keywords: Block cipher · Differential cryptanalysis · Lightweight
cryptography · MILP · S-box

1 Introduction

Differential attack is one of the most powerful techniques for the cryptanalysis
of block ciphers [4]. For new block ciphers, it is a mandatory design criterion
to provide proof of resistance against the differential attack [6]. The high prob-
ability relations between the input and output differences of a block cipher are
utilized to distinguish it from the uniform distribution [5]. We need a differ-
ential characteristic with the probability of 2−p, where p ≪ n, to mount the
attack on n-bit block cipher [16]. To estimate the strength of a block cipher
against differential attack, we calculate a lower bound on the number of active
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Batina et al. (Eds.): SPACE 2022, LNCS 13783, pp. 3–27, 2022.
https://doi.org/10.1007/978-3-031-22829-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22829-2_1&domain=pdf
http://orcid.org/0000-0002-5462-8253
http://orcid.org/0000-0001-6900-4075
https://doi.org/10.1007/978-3-031-22829-2_1
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S-boxes in a differential characteristic. Then, an upper bound on the probability
is estimated using this lower bound and maximum differential probability of the
S-box [18]. Initially, branch-and-bound based techniques were used to search the
high probability differential characteristics [19,23]. Nowadays, automated solvers
based on mixed integer linear programming (MILP) [24], satisfiability modulo
theory (SAT/SMT) [10], constraint programming (CP) problems [13,33], and
machine learning based techniques [14,34] are used to test the differential attack
resistance. In 2012, MILP-aided differential cryptanalysis for block ciphers was
proposed by Mouha et al. This technique proved to be very successful to mount
the differential attack on block ciphers.

Mixed integer linear programming is used frequently to solve optimization
problems. MILP deals with optimizing the objective function f(x1, x2, · · · , xn)
subject to a set of linear inequalities Ax ≤ b which involves decision variables
xi, 1 ≤ i ≤ n with restrictions on certain variables to take integer values. We
can convert the differential characteristic search problem into a MILP model [24].
Then, optimization problem solvers (viz. Gurobi [15] and CIPLEX [11]) are used
to solve the MILP model to get a lower bound on the number of active S-boxes
and search for high probability differential characteristics. The linear layers (viz.
key addition and permutation layer) of a block cipher are easily converted into
linear inequalities. The S-box is a non-linear component of the block cipher and
DDT of the S-box is used to write the linear inequalities satisfying each possible
propagation. This set contains a large number of inequalities and it becomes hard
to solve the MILP model based on this set. Therefore it is required to minimize
the number of inequalities to obtain the solution efficiently. Various methods
have been proposed in the literature to optimize the number of inequalities in
this set.

Mouha et al. showed the use of MILP in differential cryptanalysis of block
ciphers and used optimization solvers to get the security bounds [24]. They
presented a framework to get the least number of active S-boxes in a differen-
tial characteristic of word oriented ciphers. This technique was illustrated on
Advanced Encryption Standard (AES) and least number of active S-boxes in
4-round differential characteristic of AES were obtained by solving the MILP
model.

Sun et al. extended the use of MILP for bit oriented ciphers and two methods
based on logical condition modeling and convex hull computation were proposed
to get the MILP model of S-box [27,28]. The DDT of S-box was used to write
the linear inequalities for possible propagations using the SageMath tool [29].
Then greedy search algorithm was used to reduce the number of inequalities in
this model. For a 4-bit S-box, the reduced set contains about 30 inequalities.
Due to the limitation of SageMath, this method is not practical for the S-box
of size greater than 6-bit. Sasaki and Todo proposed another method for MILP
modeling of S-box to reduce the number of inequalities [30–32]. They proposed a
MILP based method to reduce the inequalities using impossible propagations in
the DDT. For a 4-bit S-box, this method provides around 20 linear inequalities
that are used to minimize the number of active S-boxes. This method was also
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used to model the MILP problem for lightweight block cipher WARP [20]. This
method uses SageMath to write the inequalities, therefore it also does not work
for S-boxes of size more than 6-bit.

For 8-bit S-box, 16 variables are needed to write the linear inequalities for
possible and impossible difference transitions in the DDT. For large S-boxes,
Abdelkhalek et al. generated the linear inequalities using Logic Friday [22] (based
on Espresso algorithm). The pb-DDT approach was proposed to optimize the
probability of a differential characteristic by separating the DDT into multiple
tables according to the probabilities. Boura and Coggia [8] proposed another
approach to generate and minimize the number of linear inequalities for 8-bit
S-boxes based on the impossible transitions in the DDT. This method was used
to minimize the number of linear inequalities for AES S-box in [8]. The time
complexity to get the 2882 linear inequalities for AES S-box was 22 d. They did
not mention about the number of linear inequalities for partial or full DDT that
will be required to optimize the probability of differential characteristics.

Our Contribution: The existing works focused on minimizing the number of
linear inequalities to represent the DDT of large S-boxes. Whereas, the time
complexity to minimize the number of inequalities for large S-boxes was several
days [8]. Our aim is to generate a minimized set of linear inequalities within the
practical time limit (≤5 h). We present a new method to generate the additional
set of linear inequalities using intermediate output of the QM algorithm and get
the minimized set of linear inequalities in practical time. We also solve the MILP
model to optimize the number of active S-boxes in PIPO using two different set of
linear inequalities. These experiments show that there is no significant difference
in the time complexity to solve the MILP problem using large or small set
of linear inequalities. For probability optimization part, we generate the linear
inequalities for full DDT using our tool MILES (based on Espresso). We show
the application of MILES to search the differential, impossible differential and
related-key differential characteristics of lightweight block cipher PIPO-64/128
[17]. We achieve the designer’s bound for differential and impossible differential
characteristics. We present the full round related-key differential distinguishers
and mount a key recovery attack on full round PIPO-64/128. Using MILES
and MILP modeling of related-key differential search, we show the collisions in
PIPO-64/128.

Organisation: The paper is organised as follows. In Sect. 2, we discuss MILP
modeling of block ciphers with 8-bit S-boxes. We present approaches based on
QM and Espresso algorithms to minimize the number of linear inequalities and
compare the results for AES, SKINNY and PIPO S-boxes. In Sect. 3, we show
the application of MILES to model the MILP problem to optimize the probabil-
ity of differential characteristics in lightweight block cipher PIPO-64/128. The
impossible differential characteristics search procedure is discussed and a full
round related-key differential attack is presented. The paper is summarised with
conclusion in Sect. 4.
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2 MILP Based Differential Characteristic Search

To search the differential characteristics of a block cipher, the problem of opti-
mizing the probability of differential characteristics is converted into the MILP
problem. The objective function is the optimization of probabilities subject to
the constraints based on linear inequalities. SPN and Feistel based block ciphers
mainly consist of round key addition, substitution and permutation layers. The
key addition layer does not contribute in the MILP model to search the dif-
ferential characteristics. The input and output variables corresponding to the
permutation layer are easily represented by linear inequalities. The substitution
layer uses a non-linear S-box which cannot be easily represented by linear inequal-
ities. SageMath is a popular tool that is used to obtain the linear inequalities
using possible difference transitions in the DDT. In [31,32], Sasaki and Todo
proposed the impossible transitions based approach to design a MILP problem
to minimize the number of linear inequalities. This approach was later used by
many researchers to design the MILP models of various 4-bit S-boxes [35]. The
linear inequalities of permutation and substitution layers are used to model the
MILP problem, that is solved by MILP solver GUROBI [15] or CPLEX [11].

In general, MILP based differential characteristics search is two stage process.
Firstly, number of active S-boxes is minimized and then probability of differen-
tial characteristic is optimized using these active S-boxes. The outer and inner
modules of MILP are designed corresponding to these stages. The outer mod-
ule minimizes the number of active S-boxes while inner module optimizes the
probabilities of differential characteristics.

2.1 Modeling Large S-box

An S-box is a non-linear component and its DDT is converted into linear inequali-
ties to model the MILP problem. SageMath is used to generate the linear inequal-
ities for DDT of the S-box. For m-bit S-box, the size of DDT is 2m × 2m and it
represents the number of occurrences of possible output differences correspond-
ing to each input difference. SageMath uses the H-representation of convex hull
to generate linear inequalities for the S-box. SageMath has practical-time lim-
itation on the dimension of such convex hulls, so this method can be used to
generate the linear inequalities for small S-boxes only. Therefore, this method
cannot be used to model the outer module of MILP problem for S-boxes of size
greater than 6 bits.

For large (8-bit) S-boxes, Abdelkhalek et al. [1] addressed this problem using
the Espresso based tool Logic Friday [22] that reduces the inequalities by min-
imizing the product of sum of boolean functions. Boura and Coggia [8] pro-
posed another method, inspired from QM algorithm, to reduce the number of
linear inequalities of AES [26] and SKINNY [9] S-boxes. The proposed methods
minimize the number of inequalities significantly in comparison to the existing
approaches but at the cost of time and resources. The minimization process may
take several days to get the reduced set of linear inequalities. The techniques
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presented in [1] and [8], were used to minimize the number of active S-boxes for
8-bit S-box based ciphers.

To optimize the probability of differential characteristic, Abdelkhalek et al.
used pb-DDT based approach by separating the DDT for each probability [1].
These DDTs are represented by 8-bit input difference and 8-bit output difference.
The method was proposed due to limitation of logic friday to process the input
with dimension more than 16. Although, this method is used to optimize the
probability of differential characteristic, it may not be efficient due to the of use
of pb-DDT instead of full DDT. Based on the full DDT of 4-bit S-box, Sun et
al. [28] suggested the method of using extra variable for each unique probability.
Using this method, linear inequalities will be generated in more than 16 input
variable for 8-bit S-box. As Logic Friday is unable to handle more than 16 input
variable, we use a Espresso based tool namely MILES1 (AppendixB and C)
that handles more than 16 variables to minimize the set of linear inequalities.
Linear inequalities generated from MILES are used to design the outer and
inner modules of MILP model which optimizes the probability of differential
characteristic.

2.2 Linear Inequalities for Minimization of Active S-boxes

Constructing linear inequalities for S-box is the first step towards the MILP
modeling of differential attack. To minimize the number of active S-boxes, the
MILP model requires linear inequalities corresponding to all possible transitions
in DDT. Some of the existing approaches e.g. H-representation of convex hull
and QM algorithm are not time efficient for large (n ≥ 8-bit) S-boxes due to
large dimension (2n). Espresso algorithm works efficiently for large S-boxes but
provides a large set of minimized inequalities. To minimize the set of inequal-
ities, Boura and Coggia [8] used prime implicants of QM algorithm to get an
initial set of inequalities and proposed an algorithm to introduce a new set of
inequalities. The combined set of linear inequalities is minimized by removing
the impossible transitions [8,28]. The proposed method reduces the number of
inequalities significantly but the time complexity to achieve this reduction is
very high. Although, smaller MILP model with lesser inequalities does not guar-
antee a faster solution, yet MILP model having less number of inequalities is a
preferred choice.

We present a new method2 to minimize the number of linear inequalities
for large S-box within the practical time limit. This method uses the output of
QM algorithm partially and introduce a novel approach to add a better set of
linear inequalities. The QM algorithm can be divided into three parts. In first
part (QM1), it constructs prime implicants from impossible transitions of the
DDT. In second part (QM2), prime implicants are reduced to get the essential
prime implicants. These essential prime implicants are further reduced using the

1 https://github.com/tarunyadav/MILES.
2 https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Ineq-Reduct

ion.

https://github.com/tarunyadav/MILES
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Ineq-Reduction
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Ineq-Reduction
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coverage approach in third part (QM3). In our method, we use the output of
QM2 and introduce an inequality corresponding to each essential prime impli-
cant a = (a0, a1, · · · , an−1) (Eq. 1). Our method is applied in four phases as
described in Algorithm 1. The set of initial inequalities (L) is constructed in
phase 1 and a new set of linear inequalities is introduced using L in phase 2.
For each impossible transition in DDT, we add the inequalities which remove
that impossible transition. We introduce an additional inequality corresponding
to all possible transitions in DDT. This inequality is constructed by adding all
the inequalities in the set L. This inequality with new linear inequalities (Lnew)
are combined with initial set (L) to get a larger set of inequalities. In phase
3, we construct the MILP model to minimize the number of linear inequalities
using the approach proposed in [28]. For each impossible transition, we add a
constraint such that at least one inequality removing this transition remains in
the minimized set. Using such constraints, we want to ensure that all impossible
transitions are removed using the minimum number of linear inequalities. The
objective of this MILP problem is minimization of the set of linear inequalities
(L). In phase 4, we solve the MILP model using GUROBI solver to get the
minimized set of linear inequalities (Lmin).

n−1∑

i=0

(1 − ai)xi + ai(1 − xi) ≥ 1 (1)

We compare the number of linear inequalities and time complexity of our
algorithm with existing results for 8-bit S-boxes of AES, SKINNY-128 and PIPO-
64/128 in Table 1. It is evident that our algorithm optimizes the trade-off between
number of inequalities and time efficiency. For PIPO-64/128, we have solved the
MILP model for active S-box minimization with 4476 inequalities constructed
by MILES and 3276 inequalities constructed using Algorithm1. The comparison
of time to reach the lower bound is presented in Table 2. TOB and TOS repre-
sent the time to reach the optimal bound(OB) and time to conclude that the
given optimal bound is the optimal solution respectively. It can be observed from
Table 2 that the TOS is always lesser for the larger set of inequalities(Model 1)
which suggests that more constraints speeds up the process to eliminate impossi-
ble space. There is no such relation in TOB that means smaller set of inequalities
may not reach the optimal bound faster. The comparison concludes that lesser
inequalities construct smaller model but may not always yield a faster solution.

2.3 Linear Inequalities for Optimization of Probability

Once active S-boxes are minimized, the next step is to optimize the probability
corresponding to these active S-boxes. To optimize the probability, construction
of linear inequalities corresponding to each possible probabilistic transition in
DDT is required. To construct such linear inequalities, Abdelkhalek et al. [1] used
the approach to construct separate DDT for each probability. These pb-DDTs are
used to construct linear inequalities in the same manner as described in Sect. 2.2.
Linear inequalities for each pb-DDT can be generated either using Espresso or
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Algorithm 1. Linear Inequalities Minimization for 8-bit S-boxes
Input: 8-bit Sbox
Output: Lmin = Set of minimized linear inequalities
1: DDT ← Difference Distribution Table of S-box

Phase 1 - Initial Set of Linear Inequalities

2: Prime Implicants ← QM1(Impossible Transitions of DDT)
3: Essential Prime Implicants ← QM2(Prime Implicants)
4: L ←Linear inequalities corresponding to each essential prime implicant (Eqn 1)

Phase 2 - Adding New Inequalities

5: Lnew ← φ
6: for all Impossible Transitions (X → Y ) in DDT do
7: Sineq ← {li, ∀li ∈ L and li(X, Y ) < 0}
8: Lnew ← Lnew ∪ {∑

Si ∀Si ∈ Sineq} � Addition of coefficients
9: end for

10: L ← L ∪ Lnew ∪ {∑
li ∀li ∈ L}

Phase 3 - MILP Modeling M (Objective and Constraints in Binary Vari-
ables)

11: M.constraints ← φ
12: for all Impossible Transitions (X → Y ) in DDT do
13: Z ← {Zi, ∀li ∈ L and li(X, Y ) < 0} � Zi is a binary variable
14: M.constraints ← M.constraints ∪ {∑

Z ≥ 1 }
15: end for
16: M.objective ← Min(

∑{Zi, ∀li ∈ L})

Phase 4 - Minimization using GUROBI Solver

17: Lmin ← M.optimize()

Table 1. Comparison of time required to minimize linear inequalities of S-box

Algorithm Output S-box

AES SKINNY PIPO

QM Lmin – 392 –

Time 5 h 7707 s 5 h

Espresso Lmin 8389 377 4474

Time 100 s 2 s 41 s

Algo 1 in [8] Lmin 7461 372 –

Time 20d 120 m –

Algo 3 in [8] Lmin 2882 302 –

Time Several days 120 m –

Algorithm 1 Lmin 5461 315 3276

Time 5 h 900 s 5 h
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Table 2. Comparison of time required (in seconds) to attain optimal bound/solution
for PIPO-64/128 osing different sets of linear inequalities

Round OB Model 1 Model 2

Inequalities of S-box = 4474 Inequalities of S-box = 3276

Size (KB) TOB TOS Size (KB) TOB TOS

1 1 4462 0.47 0.47 3902 0.81 0.81

2 2 8923 5.19 5.19 7802 2.00 9.32

3 4 13384 7.00 50.51 11704 4.00 745.23

4 6 17845 22.00 550.11 15602 28.00 8597.95

5 9 22305 208.00 – 19502 1546.00 –

6 11 26766 2290.00 – 23403 112.00 –

QM algorithm. QM based reduction depends on the characteristics of impossible
transitions of the S-box and it needs to run for several days to provide a result.
The algorithm proposed in [8] also suffers from similar drawback due to large
number of impossible transitions in pb-DDTs. Due to the use of essential prime
implicants in Algorithm 1, we get faster results than the existing approaches but
still lack the time efficiency. There are some cases (Table 3) where the Algorithm 1
is not able to produce the result due to lesser number of possible transitions in
DDT. The time complexity to produce the sets of minimized linear inequalities
for each pb-DDT using MILES is less but each set contains the large number
of inequalities. We compare the number of inequalities and execution time for
pb-DDTs of AES, SKINNY and PIPO in Table 3.

The pb-DDT approach was proposed to overcome the limitation of Logic Fri-
day since it becomes computationally infeasible to reduce the higher dimension
inequalities of full DDT using Logic Friday. MILES uses the Espresso in its orig-
inal form for reduction in higher dimension inequalities. Therefore, we can use
the full DDT of S-box instead of pb-DDT. We use the approach proposed in [28]
to construct the probability based possible transitions and introduce additional
variable for each probability. We use MILES to construct the linear inequalities
for these transitions and show that reduction using Espresso in higher dimension
is faster than pb-DDT approach. Although, the use of full DDT may produce
larger set of linear inequalities but it simplifies the MILP model as there is no
need to choose different pb-DDT each time for an active S-box. We have already
discussed (Table 2) that smaller set of linear inequalities doesn’t guarantee the
faster solution for optimal bound but may take more time to conclude the opti-
mal solution. For PIPO-64/128, we use the approach of additional variables to
utilize full DDT and apply the Espresso to construct a minimized set of inequal-
ities. These inequalities will be used to optimize the probability of differential
characteristics in the next section.
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Table 3. Comparison of time required (in seconds) to get minimized set of linear
inequalities to represent pb-DDT, p-TT and f -TT

Structure
(S-box)

Probability QM ([1])
(pb-DDT)

MILES
(p-TT)

Algo 1
(p-TT)

MILES
(f -TT)

Lmin Lmin Time Lmin Time Lmin Time

AES 2−7 - 8312 84 5542 14963 8720 220

2−6 - 349 1 327 12478

Total - 8661 85 5869 27441 8720 220

SKINNY 2−7 206 208 1 187 8928 799 305

2−6 275 281 0.5 192 3903

2−5.415037 33 34 0.3 - -

2−5 234 240 1.2 167 15903

2−4.415037 42 47 0.2 - -

2−4 147 155 1.2 - -

2−3.678071 15 15 0.2 - -

2−3.415037 24 26 0.2 - -

2−3.192645 15 15 0.1 - -

2−3 62 69 0.3 - -

2−2.678071 16 16 0.1 - -

2−2.415037 17 17 0.1 - -

2−2 37 38 0.1 - -

Total 1123 1161 5.5 - - 799 305

PIPO 2−7 - 3410 23 2464 14382 6035 2220

2−6 - 2211 24 1993 6446

2−5.415037 - 519 5 479 7046

2−5 - 355 7 294 10442

2−4.678072 - 26 0.2 24 1566

2−4.415037 - 20 0.1 20 1907

2−4 - 93 0.5 57 10115

Total - 6634 59.8 5331 51904 6035 2220

3 Application to Lightweight Block Cipher PIPO-64/128

Lightweight cryptography has become an important topic in cryptology [7] and
NIST has also called for a competition to design the lightweight cryptographic
primitives [25]. PIPO-64/128 is a lightweight block cipher which was recently
proposed by Kim et al. at ICISC 2020 [17]. The design highlights are its security
for side-channel protected and unprotected environments. Its diffusion layer is
designed to optimize the efficiency in hardware as well as software applications.
Its diffusion layer can be implemented in software using the cyclic shift rotations.
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For hardware applications, its diffusion layer can be visualised as bit permuta-
tion on 64 bits and can be implemented using wiring only. The 8-bit S-box is
specifically designed for PIPO-64/128 so that it can be represented using the
minimum number of non-linear equations. This also ensures the protection of
the design against side channel attacks.

3.1 Specification of PIPO-64/128

PIPO-64/128 is a 64-bit lightweight block cipher with 128 and 256 bits key sizes
[17]. It consists of 13/17 rounds for 128/256 bits key variants respectively. It
is based on substitution permutation network (SPN) structure. The lightweight
8-bit S-box, having differential branch number 3, is specifically designed to use
in the confusion layer of PIPO-64/128. For each 8-bit word, diffusion layer uses
a cyclic rotation with different shift values for each word. The round function
of PIPO-64/128 is explained by dividing it into an 8×8 matrix. It applies the
diffusion layer row-wise and 8-bit S-box is applied column-wise. For each vari-
ant, a simple key selection algorithm is used. For 128-bit key K = (K1 ‖ K0),
the rounds keys are selected as RKi = Ki(mod2), 0 ≤ i ≤ 13. For 256-bit key
K = (K3 ‖ K2 ‖ K1 ‖ K0), the rounds keys are selected as RKi = Ki(mod4),
0 ≤ i ≤ 17.

Algorithm 2. Encryption Algorithm of PIPO-64/128
Input: P and RKi, 0 ≤ i ≤ 13
Output: C = (c63, c62, · · · , c0)
1: U0 ← P ⊕ RK0

2: U0 = (u63, u62, · · · , u0)
3: for i=1 to 13 do
4: for j=0 to 7 do
5: (v56+j ‖ v48+j ‖ v40+j ‖ v32+j ‖ v24+j ‖ v16+j ‖ v8+j ‖ vj)
6: ← S8(u56+i ‖ u48+i ‖ u40+j ‖ u32+j ‖ u24+j ‖ u16+j ‖ u8+j ‖ uj)
7: end for
8: end for
9: Vi = (v63, v62, · · · , v0)

10: Ui ← BP (Vi) ⊕ RKi ⊕ i
11: Ui = (u63, u62, · · · , u0)

For MILP modeling, we describe the encryption algorithm of PIPO-64/128
in a different way (Algorithm 2). Round function is described using substitu-
tion layer, permutation layer and add round key operations. Substitution layer
applies 8-bit S-box (S) (Table 4) on 8 bits extracted from eight different posi-
tions of input and output bits from S-box are sent back to the same positions.
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Permutation layer uses a 64-bit permutation (BP ) (Table 5) on the output from
S-box layer. The round keys (RKi) and constants (i = roundnumber) are simply
XOR-ed with the output of diffusion layer.

Table 4. 8-bit S-box of PIPO-64/128

S8 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 5E F9 FC 00 3F 85 BA 5B 18 37 B2 C6 71 C3 74 9D

1 A7 94 0D E1 CA 68 53 2E 49 62 EB 97 A4 0E 2D D0

2 16 25 AC 48 63 D1 EA 8F F7 40 45 B1 9E 34 1B F2

3 B9 86 03 7F D8 7A DD 3C E0 CB 52 26 15 AF 8C 69

4 C2 75 70 1C 33 99 B6 C7 04 3B BE 5A FD 5F F8 81

5 93 A0 29 4D 66 D4 EF 0A E5 CE 57 A3 90 2A 09 6C

6 22 11 88 E4 CF 6D 56 AB 7B DC D9 BD 82 38 07 7E

7 B5 9A 1F F3 44 F6 41 30 4C 67 EE 12 21 8B A8 D5

8 55 6E E7 0B 28 92 A1 CC 2B 08 91 ED D6 64 4F A2

9 BC 83 06 FA 5D FF 58 39 72 C5 C0 B4 9B 31 1E 77

A 01 3E BB DF 78 DA 7D 84 50 6B E2 8E AD 17 24 C9

B AE 8D 14 E8 D3 61 4A 27 47 F0 F5 19 36 9C B3 42

C 1D 32 B7 43 F4 46 F1 98 EC D7 4E AA 89 23 10 65

D 8A A9 20 54 6F CD E6 13 DB 7C 79 05 3A 80 BF DE

E E9 D2 4B 2F 0C A6 95 60 0F 2C A5 51 6A C8 E3 96

F B0 9F 1A 76 C1 73 C4 35 FE 59 5C B8 87 3D 02 FB

Table 5. Bit permutation in PIPO-64/128

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BP (i) 0 1 2 3 4 5 6 7 15 8 9 10 11 12 13 14

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BP (i) 20 21 22 23 16 17 18 19 27 28 29 30 31 24 25 26

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

BP (i) 38 39 32 33 34 35 36 37 45 46 47 40 41 42 43 44

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

BP (i) 49 50 51 52 53 54 55 48 58 59 60 61 62 63 56 57
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Table 6. Difference distribution table of PIPO-64/128

�j →
�i ↓ 0 1 2 3 4 5 6 7 8 9 A B C D · · · FF

0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

2 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

3 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

6 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

7 0 0 0 0 0 16 0 0 0 0 0 0 0 0 · · · 0

· · · · · ·
8F 0 0 0 0 0 8 0 0 0 8 0 0 0 0 · · · 0

9F 0 0 16 0 0 0 0 4 2 0 0 0 0 0 · · · 0

AF 0 2 16 0 0 0 0 0 0 0 0 2 0 0 · · · 0

BF 0 2 0 0 0 0 0 4 0 0 0 2 0 0 · · · 0

CF 0 2 0 0 0 0 0 0 2 0 0 0 0 4 · · · 2

DF 0 2 16 0 0 0 0 4 0 0 4 0 0 4 · · · 2

EF 0 0 16 0 0 0 0 0 2 0 0 0 2 0 · · · 0

FF 0 0 0 0 0 0 0 4 0 0 2 0 0 0 · · · 2

3.2 MILP Modeling for PIPO-64/128

The model for valid differential propagations of PIPO-64/128 is constructed bit-
wise. In each round, subkey addition, S-box, and bit permutation operations are
used. Block size in PIPO-64/128 is 64-bit and it consists of 13 rounds. For 64-bit
plaintext difference, binary variables u63, u62, · · · u0 represent active or inactive
bits for first round. The variables to represent active or inactive bits in the differ-
ence after first round are updated to u127, u126, · · · u64 and so on. The variables
u832, u831, · · · u768 represent the active or inactive bits in the ciphertext differ-
ence after 13 rounds. In first round, the variables representing the bits of input
and output differences to S-box layer are represented as follows:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u7 u6 u5 u4 u3 u2 u1 u0

u15 u14 u13 u12 u11 u10 u9 u8

u23 u22 u21 u20 u19 u18 u17 u16

u31 u30 u29 u28 u27 u26 u25 u24

u39 u38 u37 u36 u35 u34 u33 u32

u47 u46 u45 u44 u43 u42 u41 u40

u55 u54 u53 u52 u51 u50 u49 u48

u63 u62 u61 u60 u59 u58 u57 u56

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u71 u70 u69 u68 u67 u66 u65 u64

u78 u77 u76 u75 u74 u73 u72 u79

u83 u82 u81 u80 u87 u86 u85 u84

u90 u89 u88 u95 u94 u93 u92 u91

u101 u100 u99 u98 u97 u96 u103 u102

u108 u107 u106 u105 u104 u111 u110 u109

u112 u119 u118 u117 u116 u115 u114 u113

u121 u120 u127 u126 u125 u124 u123 u122

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The permutation layer is applied on the output from S-box layer and output of
the permutation layer which acts as an input to the second round is represented
as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u71 u70 u69 u68 u67 u66 u65 u64

u79 u78 u77 u76 u75 u74 u73 u72

u87 u86 u85 u84 u83 u82 u81 u80

u95 u94 u93 u92 u91 u90 u89 u88

u103 u102 u101 u100 u99 u98 u97 u96

u111 u110 u109 u108 u107 u106 u105 u104

u119 u118 u117 u116 u115 u114 u113 u112

u127 u126 u125 u124 u123 u122 u121 u120

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We describe all possible propagation patterns for S-box with a system of linear
inequalities.

e.g.(u7, u6, u5, u4, u3, u2, u1, u0 → u71, u70, u69, u68, u67, u66, u65, u64)

The variables corresponding to bits having the difference takes ‘1’ and it takes ‘0’
otherwise. A constraint u0 +u1 + · · · +u63 ≥ 1 is added to ensure that plaintext
difference has at least one active bit.

Modeling 8-bit S-box. To model the 8-bit S-box of PIPO-64/128, we gener-
ate the DDT (Table 6) for each possible input and output difference (Δi,Δj)
using MILES. The entries (i, j) in the Table 6 corresponds to the number of
occurrences for output differences Δj when the input differences were set as Δi.
We get a 256× 256 DDT for an 8-bit S-box. The non-zero values in the DDT
corresponds to a possible difference propagation and zero values indicates an
impossible propagation.

Linear Inequalities for Outer Module of MILP Model. The DDT gener-
ated in previous step is used in MILES to derive the truth table (�-TT). The
�-TT of PIPO-64/128 contains 20621 entries which are further minimized by our
tool. MILES minimizes the �-TT to �-TTmin with 4474 entries. We convert each
entry of �-TTmin into a linear inequality. We represent each entry of �-TTmin

using 16 binary variables (x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7),
where first eight variables (x0, x1, x2, x3, x4, x5, x6, x7) represent the input dif-
ference and remaining variables (y0, y1, y2, y3, y4, y5, y6, y7) represent the output
difference. These linear inequalities are used as constraints in the outer module
and minimization of number of active S-boxes is used as objective function.

Linear Inequalities for Inner Module of MILP Model. Differential prob-
ability of S-box was used to design MILP model by Sun et al. in [27] and this
technique was also used by Zhu et al. to present the MILP based differential
attack on round-reduced GIFT in [35]. We optimize the probability of differen-
tial characteristics in the inner module of MILP model. For this purpose, we need
the linear inequalities for all non-zero entries in the DDT which corresponds to
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the possible difference propagation and their probabilities. In the DDT of PIPO-
64/128 S-box, there are seven different values for the probability of possible dif-
ference propagations i.e. 2−0, 2−4.00, 2−4.41, 2−4.67, 2−5.00, 2−5.41, 2−6.00, 2−7.00

(Table 7). This requires seven extra binary variables to represent the probability
of each possible propagation. MILES uses DDT to generate truth table (f -TT)
with 20621 entries. Each entry of the f -TT is represented by 23 binary variables
where 16 input variables (x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7)
represents the input and output differences. The remaining seven input vari-
ables (p0, p1, p2, p3, p4, p5, p6) represent the probabilities of corresponding differ-
ence propagations. MILES minimizes the f -TT to f -TTmin which results in 6035
entries in f -TTmin. Each entry of f -TTmin is converted into the linear inequal-
ity using Eq. 1. This set of linear inequalities is used to optimize the probability
of differential characteristics in the block cipher PIPO-64/128.

Table 7. Binary variables to encode the probabilities in DDT of PIPO-64/128

Pr[(x0, x1, · · · , x7) → (x8, x9, · · · , x15)] (p0, p1, · · · , p6)

1 = 2−0 (0,0,0,0,0,0,0)

2/256 = 2−7.00(Pr6) (0,0,0,0,0,0,1)

4/256 = 2−6.00(Pr5) (0,0,0,0,0,1,0)

6/256 = 2−5.41(Pr4) (0,0,0,0,1,0,0)

8/256 = 2−5.00(Pr3) (0,0,0,1,0,0,0)

10/256 = 2−4.67(Pr2) (0,0,1,0,0,0,0)

12/256 = 2−4.41(Pr1) (0,1,0,0,0,0,0)

16/256 = 2−4.00(Pr0) (1,0,0,0,0,0,0)

3.3 Differential Cryptanalysis of PIPO-64/128

We solve the MILP model using Gurobi solver [15] to optimize the probability
of differential characteristics for PIPO-64/128. In the outer-MILP module, the
objective function is to minimize the number of active S-boxes in the differential
characteristics. We get 13 active S-boxes for 7 rounds differential characteristics
in PIPO-64/128. The objective function for the inner-MILP module is to max-
imize the probability of differential characteristics using the positions of active
S-boxes obtained in the outer module. The objective function is defined as min-
imization of Eq. 2 over active S-boxes (AS).

∑

∀AS

6∑

i=0

− log2(Pri) × (p0 + p1 + p2 + p3 + p4 + p5 + p6) (2)



A (Related-Key) Differential Attack on Full Round PIPO-64/128 17

We constructed3 many differential characteristics for PIPO-64/128 reduced to
6/7 rounds. There does not exist any 6-round differential characteristic with the
probability better than 2−54.4 and best differential characteristics for 7-round
PIPO-64/128 exists with the probability of 2−65. We constructed the 7-round
differential characteristics for PIPO-64/128 using the inequalities generated with
MILES which is shown in Table 8.

Table 8. 7-round differential characteristics for PIPO-64/128

Round Input difference Probability

(r) (Δr)

0 0x0101000101000001 1

1 0x0000000000008000 2−4

2 0x0000000000080080 2−4

3 0x2011112000800080 2−11

4 0x404100408101c080 2−19

5 0x0000101000100000 2−16

6 0x0000000080000000 2−7

7 0x0001000004084000 2−4

3.4 Impossible Differential Cryptanalysis of PIPO-64/128

Impossible differential attack is opposite to differential attack. The basic idea is
to use zero probability differential characteristics in place of a high probability
characteristic to filter out the wrong keys [3]. For this purpose, the zero probabil-
ity characteristics are constructed by proving a contradiction between the two
differential characteristics of probability one each. This approach is known as
miss-in-the-middle technique to search an impossible differential characteristic.
Nowadays, the MILP based technique is used to search these zero probability
differential characteristics. The MILP model to search the high probability differ-
ential characteristics with some added constraint is used to search the impossible
differential characteristic.

To search the impossible differential, we iterate all (Δi,Δo) pairs with one
active bit in the input and output. For this purpose, additional constraints to
fix the input and output differences are added in the MILP model. The gurobi
solver is used to solve the outer module of MILP model as discussed in Sect. 3.2.
The input and output differences corresponding to infeasible solution are consid-
ered as impossible differential characteristic. Using this method4, we obtain the

3 https://github.com/tarunyadav/PIPO-MILP.
4 https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Impossible-

Differential.

https://github.com/tarunyadav/PIPO-MILP
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Impossible-Differential
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Impossible-Differential
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following 4-round impossible differential characteristics (Δ0,Δ4). However, our
bound for impossible differential attack is similar to that of the designers claim.

0000000000000000000000000000000000000000000000000000000000000001→
0000000000000000000000000000000000000000000000000000000000010000

3.5 Related-Key Differential Distinguisher for PIPO-64/128

Resistance to related-key attacks was not considered by the designers of PIPO-
64/128 and any security claim in the related-key setting is not provided. In
differential attack, the adversary is allowed to choose a difference in the plain-
texts and observe the differences in ciphertexts. In related-key differential attack,
the adversary is allowed to choose a relation (difference) in the key together a
relation (difference) in the plaintexts [2,21]. The adversary is allowed to get the
encryption of first plaintext using the secret key and a key related to this key
is used to encrypt the another plaintext. We model an MILP problem to search
the related-key differential characteristic in PIPO-64/128.

3.5.1 MILP Model for Related-Key Differential Characteristic. The
secret key K is divided into the two 64-bit keys K0 and K1 which are used as
round subkeys in PIPO-64/128. We model the similar MILP problem to search
the related-key differential characteristic as described in Sect. 3.2. Additionally,
we need to model the key addition layer and solve the MILP model in order to
get the optimal related-key characteristics in PIPO-64/128 [27].

Modeling Key Addition Layer. We need to introduce the additional con-
straints in the MILP model corresponding to the round keys. The 128 new vari-
ables are introduced corresponding to the 128-bit secret key. The 64 key variables
are added in one round and the other 64 key variables are added in the subse-
quent round. To add the constraints for key addition layer, for each bit of input
xi and key k, we follow the conditions on bit variables to exclude the impossible
patterns (Eq. 3). Here, xi and k refer to the input bit and corresponding key bit.
The bit variable xi+1 is an output of the XOR operation i.e. xi+1 = k ⊕ xi.

xi + k − xi+1 ≥ 0
xi − k + xi+1 ≥ 0

−xi + k + xi+1 ≥ 0
xi + k + xi+1 ≤ 2

(3)

3.5.2 Full-Round Related-Key Differential Distinguisher. We solve5

the MILP model to search the related-key differential characteristics using gurobi
solver. We get a 2-round iterative related-key characteristic with the probability

5 https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Related-Key-
Differential.

https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Related-Key-Differential
https://github.com/tarunyadav/PIPO-MILP/tree/main/PIPO-MILP-Related-Key-Differential
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of 2−4. The optimal related-key differential characteristic for full round PIPO-
64/128 is obtained with a probability of 2−24 using 2-round iterative character-
istic (Table 9). We also get full-round characteristics with probability of 2−28

under zero difference in the plaintext as well as in the ciphertext (Table 10).

3.5.3 Collisions in PIPO-64/128. The zero difference related-key charac-
teristics will lead to a collision in the hash function designed using PIPO-64/128.
We searched for the existence of input and output pairs under different keys
following zero difference characteristic (collision). We encrypt the 228 random
samples under related keys and one such pair is expected in each experiment.
Therefore, we can construct as many samples providing us the collision in the
input and output under the different keys. We have verified these plaintext and
ciphertext samples by using the designers program. One such collision in PIPO-
64/128 is presented in the Table 10. We have also provided other samples showing
a collision in the Appendix A.

Table 9. 13-round (related-key) differential characteristic for PIPO-64/128 with prob-
ability 2−24

Round Difference (Δr) Probability

(r) ΔK= 0x00200000200000000040000801001000

0 0x0040000801001000 1

1 0x0020000020000000 1

2 0x0000000000000000 2−4

3 0x0020000020000000 1

4 0x0000000000000000 2−4

5 0x0020000020000000 1

6 0x0000000000000000 2−4

7 0x0020000020000000 1

8 0x0000000000000000 2−4

9 0x0020000020000000 1

10 0x0000000000000000 2−4

11 0x0020000020000000 1

12 0x0000000000000000 2−4

13 0x0020000020000000 1
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Table 10. Zero difference characteristics with an example of collision

Round EK(Pr), K = (K1||K0) E
K

′ (P
′
r), K

′
= (K

′
1||K′

0) Difference Probability

(r) K1= 0x6DC416DD779428D2 K
′
1 =K1 ⊕ 0x0040000801001000 (Δr = Pr ⊕ P

′
r)

K0= 0x7E1D20AD2E152297 K
′
0 =K0 ⊕ 0x0020000020000000

0 0xFFEAF697D7FCE742 0xFFEAF697D7FCE742 0x0000000000000000 1

1 0xD76EFD65756940C0 0xD76EFD65756940C0 0x0000000000000000 2−4

2 0x4FA59C5858EDC4FF 0x4F859C5878EDC4FF 0x0020000020000000 1

3 0x8F6ACEC7A220C121 0x8F6ACEC7A220C121 0x0000000000000000 2−4

4 0x406AD151D57A997B 0x404AD151F57A997B 0x0020000020000000 1

5 0xC5F53C44C408AC2D 0xC5F53C44C408AC2D 0x0000000000000000 2−4

6 0xCFD8867C58BFCFD9 0xCFF8867C78BFCFD9 0x0020000020000000 1

7 0xC99B445F8E203697 0xC99B445F8E203697 0x0000000000000000 2−4

8 0xD12CCC87E5585504 0xD10CCC87C5585504 0x0020000020000000 1

9 0x01D75CDC373A6F41 0x01D75CDC373A6F41 0x0000000000000000 2−4

10 0x41C1CE1756D7C045 0x41E1CE1776D7C045 0x0020000020000000 1

11 0x388794675E6B5EDE 0x388794675E6B5EDE 0x0000000000000000 2−4

12 0x1FDB4194BF26AC3B 0x1FFB41949F26AC3B 0x0020000020000000 1

13 0xCDE57DF09ECF4F7D 0xCDE57DF09ECF4F7D 0x0000000000000000 2−4

3.6 Related-Key Differential Attack on Full-round PIPO-64/128

We use the related-key differential characteristic described in the Table 10 to
present a full-round differential attack on PIPO-64/128. We used 11-round dif-
ferential characteristics (Δ1 → Δ12) with the probability of 2−20and added one
round at the beginning as well as at the end of the characteristic (Table 11). Using
the 11-round differential characteristic, we can launch a key recovery attack on
the 13-round PIPO-64/128. The 11-round characteristic is chosen in particular
to maximize the number of recovered key bits. In each round, 64-bit round key is
required and it is extracted directly from the 128-bit key K = (K1,K0). The key
K0 is used for whitening and for even numbered rounds while the odd numbered
rounds use the key K1. We need to guess the round keys which correspond to
the actives S-boxes.

Table 11. Related-key differential attack on 13-round PIPO-64/128

ΔK1 → 0000 0000 0100 0000 0000 0000 0000 1000 0000 0001 0000 0000 0001 0000 0000 0000

ΔK0 → 0000 0000 0010 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000

Δ0 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000

⊕ΔK0 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000

S-Box 0000 0000 0010 0000 0000 0000 0010 0000 0010 0000 0000 0000 0010 0000 0000 0000

Permutation 0000 0000 0100 0000 0000 0000 0000 1000 0000 0001 0000 0000 0001 0000 0000 0000

Δ1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

.

.

.

Δ12 0000 0000 0010 0000 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000

S-Box 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000 00?0 0000

Permutation ?000 0000 0?00 0000 0000 0?00 0000 ?000 0000 000? 0000 00?0 000? 0000 00?0 0000

Δ13 ?000 0000 0?00 0000 0000 0?00 0000 ?000 0000 000? 0000 00?0 000? 0000 00?0 0000

Δ1 = Permutation ⊕ K1;Δ13 = Permutation ⊕ K1
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3.6.1 Data Collection
We can build 2n(n ≤ 56) structures corresponding to the fixed bits in the input
difference (Δ0). The objective is to minimize the value of n such that sufficient
number of right pairs are left for key guessing phase. Each structure traverses
the 8 undetermined (?) bits in Δ0 (Table 11). Thus, each structure generates
28∗2−1(= 215) pairs6 satisfying the differential. Therefore, the total number of
pairs generated by the 2n structures are 2n+15. In Table 11, such a pair will meet
the second round differential with an average probability of 2−8. The probability
of obeying the differential after 12th round for the pair encrypted with the right
key is 2−20. Therefore, the number of pairs satisfying the differential after 12th

round for a right key guess will be 2n+15×2−8×2−20(= 2n−13). Hence, we choose
n = 17 so that we could get at least 24(= 16) right pairs under the correct key
guessing.

3.6.2 Key Recovery
In this phase, we guess the key bits corresponding to the undetermined
bits(?) in Δ0 and Δ13 and nonzero fix difference. This guess includes
K5

0 ,K13
0 ,K21

0 ,K29
0 ,K37

0 ,K45
0 ,K53

0 ,K61
0 ,K12

1 ,K24
1 ,K35

1 ,K54
1 in 1st round and

K5
1 ,K12

1 ,K17
1 ,K24

1 ,K35
1 ,K42

1 ,K54
1 ,K63

1 in 13th round. Since K12
1 ,K24

1 ,K35
1 ,K54

1

are involved in 1st and 13th round, total 16 unique key bits are involved in the key
recovery phase. Hence, we construct 216 counters corresponding to the possible
values of 16 bits of the key.

With n = 17, we repeat the key guessing procedure for each of the 217+15(=
232) pairs. We experimented with 232 pairs and find that there are at least 24

pairs remaining after filtered by zero difference in Δ13. Therefore, the expected
counter value for a wrong key guess will be 24−8−8(= 2−12) after filtered by the
undetermined bits in Δ0 and Δ13. As discussed in Sect. 3.6.1, there are at least
16 right pairs remaining after 12th round. These right pairs will be used for key
guessing and a key with the highest counter value will be the correct key.

3.6.3 Complexity
There are 2n structures and 28 pairs(fixing the undetermined bits in Δ0) can be
generated for each structure. As discussed in Sect. 3.6.2, we need 232 pairs to get
24 right pairs. Therefore, we choose n(=24) structure and the data complexity of
the 13-round related-key differential attack on PIPO-64/128 becomes 224+8(=
232). We need to store the counters corresponding to 16 bits of the key, so the
memory complexity of the attack becomes 216. In the first round, for each of the
24 pairs, we need to guess the 12 bits of the key corresponding to the active S-box.
Therefore, time complexity of the first round becomes 24+12(= 216). Similarly
time complexity of the 13th round is 24+4(= 28) because four bits of the key
are already guessed in the first round. Hence, the time complexity of the whole
attack is bounded by the 232 chosen plaintexts.

6 In this calculation, we consider a pair (a, b) same as (b, a).
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4 Conclusion

In this paper, we have presented the approaches to construct the linear inequal-
ities corresponding to the DDT of 8-bit S-boxes. These inequalities are used
to minimize the number of active S-boxes in PIPO-64/128. The experimental
results indicate that there is no significant difference in the time complexity to
solve the MILP models with a smaller set of linear inequalities. Therefore, we
have used full DDT to construct a simplified MILP model for probability opti-
mization instead of using the existing pb-DDT approach. The linear inequalities
corresponding to the full DDT of PIPO-64/128 are constructed using the MILES
tool. These linear inequalities are used to model the MILP problem for searching
the differential, impossible differential and related-key differential characteristics.
We have presented the full-round related-key differential distinguisher and a key
recovery attack on full-round PIPO-64/128 with 232 data complexity. We have
also presented several collisions in the plaintext and ciphertext using different
keys.

Appendix

A C = E(P, K) = E(P, K
′
) where K

′
= K ⊕ ΔK

K =0x6DC416DD779428D27E1D20AD2E152297
ΔK =0x00400008010010000020000020000000

No. Plaintext (P ) Ciphertext (C)

1 0xFFEAF697D7FCE742 0xCDE57DF09ECF4F7D

2 0xFCFFE1E57B3EE1B0 0x964DFE673B256413

3 0xFE9DAF4B7CDF3C62 0x5A204F91F5B3BEE2

4 0xBFE622F4EDF3FF2A 0x2C41558C8D728AD0

5 0xE7FFA8E4E8F95AF5 0xEB10BDFF059CF6A0

6 0xBDFDE7BAFFF6E73E 0x009AEE178347B174

7 0x7FFB2EFE657B19E7 0xD387F51CC4D0755A

8 0x2FF9393C75FB73F1 0x46B43D51ABE5146D

9 0x6EFE60A8EFFF5F2F 0x4F687CEC564569ED

10 0xF8EFFEB4EFFC9A70 0x923B7FDBAE0812CC

11 0xFD976646A1A3B40C 0xC433269EE6751443

12 0x6FF431B77B748CB5 0x5041B64C120B2673

13 0xE3EBED217F6FEB3F 0x56072F13AA0DB152

14 0xE35BF593EB9D32F0 0x1046EFDED93A860F

15 0xFFF76DCC8F77FA1B 0x73D7C7FFE4A78EF6

16 0x77FF282B3F7F8121 0xAD7D75F547410892

17 0x3E6FAB372BFB5F23 0x17C097CDE69D86BA

18 0xEFFABDB4F6F7032E 0x98731593F9EFC0D7

19 0x75926BBA4F77726F 0xDF4974E78B9FEC13

20 0xEBE465797D6BAD63 0x7432FC827038315B
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B MILES: MInimized Linear inEqualities for Large S-Boxes

We present expresso based tool MILES to generate the linear inequalities for
larges S-boxes and this tool is based on the Espresso algorithm [12]. The S-
box is given as an input to the tool and it outputs a minimized set of linear
inequalities that is required to model the MILP problem. MILES is the first
tool that uses the full DDT of 8-bit S-box to generate the linear inequalities. In
MILES, there are four processes which are applied sequentially to generate the
minimized linear inequalities. These process are described as follows:

1. DDT generation. In this process, MILES takes m-bit S-box (m≥3) as input
and generates a DDT of the S-box. The DDT (2m × 2m) is 2-Dimensional
array where row indices (y-axis) define input difference while column indices
(x-axis) define the output difference. We define a function fi,j to represent the
DDT of S-box which provides the number of occurrences of output difference
Δj corresponding to input difference Δi (Eq. 1).

fi,j = FrequencyΔi→Δj
where 0 ≤ i, j ≤ m (4)

This DDT is used as an input in the next process.
2. DDT to truth table conversion. In this process, the input DDT is con-

verted into a truth table. This truth table specifies the input and output
points of the DDT as input variables. To simplify it, we specify only non-
zero entries of the DDT and corresponding output variable as 1. MILES can
generate three kinds of truth tables (�-TT,p-TT,f -TT) from the DDT. The
�-TT table corresponds to the non-zero entries in the DDT and p-TT cor-
responds to the non-zero entries in DDT for a specific probability (p). The
f -TT table corresponds to the non-zero entries with extra input variable for
each probability.

3. Truth table minimization. MILES interfaces with Espresso to perform
minimization of the truth table. The output of minimization is TTmin which
is used to generate the minimized linear inequalities. The TTmin is simi-
lar to the truth table and it contains an additional symbol (‘−’). The out-
put variable in TTmin is independent of input variable corresponding to this
additional symbol. The minimization process can be performed with various
modes available in Espresso algorithm. These options are chosen in MILES as
minimization strategy. These strategies are problem specific and a particular
strategy may not provide best solution for all problems. The minimized truth
tables corresponding to �-TT, p-TT, and f -TT are represented as �-TTmin,
p-TTmin, and f -TTmin respectively.

4. Linear inequalities generation. After minimization process, MILES gen-
erate the linear inequalities. Each linear inequality corresponds to one entry
in TTmin. If a value in the entry is 0 then it is expressed as variable x and
if it is 1 then it is expressed as 1 − x. The value ‘−’ in the TTmin does not
contribute in the inequality generation process.
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C Example: Linear Inequalities Generation using MILES

We describe the process to generate the linear inequalities for a 3-bit S-box
(Table 12). The DDT (Table 13), f -TT (Table 14), and f -TTmin (Table 15) are
generated using MILES. The set of minimized linear inequalities for this S-box
is given in Table 16.

Table 12. 3-bit S-box

x 0 1 2 3 4 5 6 7

S(x) 3 6 5 7 0 2 4 1

Table 13. DDT of S-box

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 0 4 0 0 4 0 0

2 0 2 0 2 2 0 2 0

3 0 2 0 2 2 0 2 0

4 0 2 0 2 2 0 2 0

5 0 2 0 2 2 0 2 0

6 0 0 0 0 0 4 0 4

7 0 0 4 0 0 0 0 4

Table 14. f -TT of DDT

x1 x2 x3 y1 y2 y3 p1 p2 f

0 0 0 0 0 0 0 0 1

0 0 1 0 1 0 1 0 1

0 0 1 1 0 1 1 0 1

0 1 0 0 0 1 0 1 1

0 1 0 0 1 1 0 1 1

0 1 0 1 0 0 0 1 1

0 1 0 1 1 0 0 1 1

0 1 1 0 0 1 0 1 1

0 1 1 0 1 1 0 1 1

0 1 1 1 0 0 0 1 1

0 1 1 1 1 0 0 1 1

1 0 0 0 0 1 0 1 1

1 0 0 0 1 1 0 1 1

1 0 0 1 0 0 0 1 1

1 0 0 1 1 0 0 1 1

1 0 1 0 0 1 0 1 1

1 0 1 0 1 1 0 1 1

1 0 1 1 0 0 0 1 1

1 0 1 1 1 0 0 1 1

1 1 0 1 0 1 1 0 1

1 1 0 1 1 1 1 0 1

1 1 1 0 1 0 1 0 1

1 1 1 1 1 1 1 0 1

Table 15. f -TTmin for f -TT

x1 x2 x3 y1 y2 y3 p1 p2 f

0 0 1 0 1 0 1 0 1

0 0 1 1 0 1 1 0 1

1 1 1 0 1 0 1 0 1

1 1 0 1 - 1 1 0 1

1 1 - 1 1 1 1 0 1

0 0 0 0 0 0 0 0 1

1 0 - 1 - 0 0 1 1

0 1 - 1 - 0 0 1 1

1 0 - 0 - 1 0 1 1

0 1 - 0 - 1 0 1 1
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Table 16. Linear inequalities generated from f -TTmin

1 x1 + x2 − x3 + y1 − y2 + y3 − p1 + p2 + 2 ≥ 0

2 x1 + x2 − x3 − y1 + y2 − y3 − p1 + p2 + 3 ≥ 0

3 −x1 − x2 − x3 + y1 − y2 + y3 − p1 + p2 + 4 ≥ 0

4 −x1 − x2 + x3 − y1 − y3 − p1 + p2 + 4 ≥ 0

5 −x1 − x2 − y1 − y2 − y3 − p1 + p2 + 5 ≥ 0

6 x1 + x2 + x3 + y1 + y2 + y3 + p1 + p2 − 1 ≥ 0

7 −x1 + x2 − y1 + y3 + p1 − p2 + 2 ≥ 0

8 x1 − x2 − y1 + y3 + p1 − p2 + 2 ≥ 0

9 −x1 + x2 + y1 − y3 + p1 − p2 + 2 ≥ 0

10 x1 − x2 + y1 − y3 + p1 − p2 + 2 ≥ 0
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Abstract. The widespread advent of the Internet-of-Things has moti-
vated new design strategies for lightweight block ciphers. In particu-
lar, security against traditional cryptanalysis should ideally be com-
plemented by resistance to side-channel attacks, while adhering to low
area and power requirements. In FSE 2018, Ghoshal et al. proposed
a dedicated design strategy based upon Cellular Automata (CA) for
S-Boxes that are amenable to side-channel secure threshold implemen-
tations. However, CA-based S-Boxes have some limitations concerning
the absence of BOGI properties and low branch numbers making them
vulnerable to classical cryptanalysis attacks. In this paper, we address
the vulnerabilities of these weak S-Boxes by complementing them with
an ultra-lightweight linear layer and subsequently building (Light but
Tight) LbT - the area-efficient and side-channel resilient family of block
ciphers. This super-optimal cellular automata (CA)-rule-based S-Box
layer is appropriately complemented with a linear layer consisting of
shuffle cells and matrix multiplication with an ultra-lightweight almost-
MDS matrix with only 6-XOR gates. This ensures high diffusion at the
cost of a minimal area overhead. Hence, we show that these vulnerable
S-Boxes are not weak but when complemented appropriately with proper
linear layer can lead to cryptographically strong as well as lightweight
cipher design. Overall, the TI-protected circuit of LbT requires an area
footprint of only 3063 GE, which is 12% lower than any first-order side-
channel protected implementation among all of the existing lightweight
block ciphers. Finally, we illustrate that LbT -64-128 obtains a reason-
able throughput when compared to other lightweight block ciphers.

Keywords: Block cipher · Lightweight · Side channel resistance ·
Cellular automata · Threshold implementation

1 Introduction

The advent of ubiquitous computing and the Internet of Things (IoT) has
resulted in billions of interconnected devices exchanging (potentially sensitive)
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messages over the network. This presents security researchers with the unique
challenge of enabling data protection and secure communication in devices
that are extremely resource-constrained. These devices are practically inca-
pable of supporting heavy cryptographic machinery, including even widely used
symmetric-key algorithms such as AES-128 [1] and the SHA family of hash func-
tions [29].

Lightweight Cryptography. The need for secure yet low area and power over-
head computing has motivated lightweight cryptography - a branch of cryptog-
raphy that is specially dedicated to designing cryptographic algorithms with
extremely efficient implementations, yet with the same level of security as tradi-
tional cryptographic algorithms. This presents significant theoretical and engi-
neering challenges, since the designer is significantly more constrained as com-
pared to the attacker, who continues to be all-powerful (albeit within the realm
of probabilistic polynomial-time computation).

The efficiency of a cryptographic implementation is typically measured in
terms of parameters such as area footprint, power, energy requirements, and
throughput. An “ideal” lightweight cryptographic algorithm should allow for an
implementation that is resource-efficient, concerning all these parameters, but
this is usually non-trivial to achieve. In most cases, depending on the target
application, a reasonable trade-off between the various parameters is aimed for;
often with special emphasis on ensuring low area and low energy requirements [3].

The study of lightweight cryptography has received a significant impetus with
the announcement of a lightweight cryptography project by NIST [24]. In recent
years, a number of lightweight symmetric-key cryptographic algorithms have
been proposed, and analyzed including (but not limited to) block ciphers [5,8,
13], hash functions [12,26], and specialized modes for lightweight authenticated
encryption [36].

Implementation-Level Attacks and Countermeasures. Implementation-
level attacks on crypto primitives, such as side-channel analysis attacks [31]
and fault injection analysis attacks [38], constitute a major threat to the secu-
rity of real-world systems. The threat is observed even when the underlying
cryptographic algorithms are (provably or heuristically) secure against known
cryptanalytic techniques. This threat is further amplified with the increased
deployment of lightweight cryptography to protect ubiquitous computing, since
a multitude of physically accessible inter-connected devices in the wild offer
numerous implementation-level attack avenues.

There are many possible strategies to protect cryptographic implementations
against side-channel and fault injection attacks. The most popularly deployed
one today is an “after-thought”-style strategy, where the initial focus is purely
on designing a cryptographic algorithm, ensuring security against “black-box”
cryptographic analysis. In this approach, protection against side-channel and
fault analysis is only achieved via additional implementation-level reinforce-
ments/countermeasures, which are incorporated on top of the original algorithm,
e.g., constant-time implementations, masked/threshold implementations [10,33,
37], and redundancy/error-correcting code-based implementations [40,41]).
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However, this approach has its drawbacks. In particular, the ad-hoc incor-
poration of countermeasures into existing cryptographic implementations often
leads to designs that are highly area and/or power-consuming. For example, ini-
tial studies on masked/threshold implementations of block cipher components,
such as S-Boxes, reveal a significant blow-up in area footprint and power/energy
consumption [27]. The same holds for generic implementations with redundancy
and error-correcting codes [30].

As a concrete example, consider the lightweight block cipher GIFT-128-128
(with 128-bit block size and 128-bit key size) proposed in [5]. In its vanilla
form, GIFT is significantly more lightweight as compared to AES-128. However,
a näıvely engineered end-to-end threshold implementation of GIFT has a greater
area footprint in hardware ((16170 GE as per [27]) as compared to AES ((14872
GE as per [19]). This clearly illustrates the fact that ad-hoc imposition of generic
countermeasures on top of cryptographic algorithms can be counterproductive
in lightweight applications.

1.1 Related Work

Over the past few years, since the announcement of the NIST competition, “spe-
cialized design”-based strategy for achieving cryptographic implementations that
are protected against side-channel and fault attacks have gained a lot of impetus.
For instance, in [42], the authors have proposed an Authenticated Encryption
called FRIET with integrated fault detection scheme. A collection of lightweight
S-Boxes having low AND-depth and AND-gate count, that are easier to mask,
have been proposed in [11]. The authors in [2,9,17,20] proposed cipher imple-
mentations with built-in low-cost side channel attack countermeasures. In [22],
Ghoshal et al. demonstrated a dedicated design strategy based upon Cellular
Automata (CA) for S-Boxes, that are amenable to side-channel secure threshold
implementations. They proposed highly optimized TI circuits for such S-Boxes,
that consume nearly 40% less area and power as compared to popular S-Boxes
such as PRESENT and GIFT. However, a major issue with all of the CA-derived
S-Boxes is that they have fixed-points and do not exhibit BOGI (Bad Output
must go to Good Input) [5] property; hence prone to various types of classical
cryptanalytic attacks. A prominent example of such a case is observed in the
case of NIST LWC candidate, TRIFLE1. Even though the structure of TRIFLE
AEAD scheme resisted standard cryptanalytic attacks, certain inherent weak-
nesses in the CA-derived S-Boxes made the structure prone to classical crypt-
analytic attacks [28]. Hence, in this work our main focus is to make CA-based
S-Boxes resistive against classical cryptanalysis attacks by complementing it with
appropriate diffusion layer and constitute an alternative to these approaches.

1.2 Our Contributions

In this work, we first propose a lightweight diffusion layer having a high branch
number that strengthens the weakness of CA-based S-Boxes and resists classical
1 https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/document

s/round-1/spec-doc/trifle-spec.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf


Light but Tight 31

cryptanalytic attacks. Then we propose a complete area-efficient and side-channel
resilient family of block ciphers, called LbT. These block ciphers protected with
composite-TI [22] employ substitution-permutation networks (SPN) with cellular
automata (CA)-rule-based substitution boxes (S-Boxes), that is combined with
the specially crafted ultra-lightweight almost-MDS matrix.

Area-Efficient CA-derived S-Boxes. It is typical of lightweight block ciphers
to have 4 × 4 S-Boxes to minimize area footprint. Hence, for our LbT-64-128
cipher family, we build on an approach introduced by Ghoshal et al. in [22]
that proposes lightweight S-Boxes from cellular automata (CA) rules. Our key
contribution lies in identifying how such S-Boxes can be efficiently yet securely
combined with a similarly lightweight and side-channel linear layer to achieve
adequate resistance against popular cryptanalytic attacks. To see why this is a
challenge, consider the space of all cryptographically optimal 4× 4 S-Boxes that
can be derived using CA rules. As reported in [22], all CA-derived S-Boxes have a
branch number as small as 2. In addition, they do not exhibit highly specialized
properties such as BOGI (Bad Output must go to Good Input) that S-Boxes
in other block ciphers such as GIFT imply [5]. This leads us to the following
question, which we investigate in this paper: How do we combine CA-derived
S-Boxes with a lightweight linear layer to achieve high linear and differential
characteristics in reasonably many rounds? This question has not been studied
in the lightweight cryptography literature to the best of our knowledge (even
without focus on side-channel resistance).

Super-Optimal S-Boxes and Almost-MDS Linear Layers. To address
this question, we start with super-optimal class of S-Boxes proposed in TRIFLE.
Intuitively, a super-optimal S-Box allows 1−1 differential and linear transitions,
while simultaneously ensuring that the probabilities for these 1 − 1 transitions
are significantly lower than the differential (respectively, linear) characteristic of
the S-Box. An example of such S-Box having difference distribution table (DDT)
is shown in Fig. 1(a), where Δin and Δout is the input and output difference
respectively. The numbers marked in red are the number of 1 − 1 transitions.
A quick check on the DDT table shows that there exists 4 Hamming weight 1
differential transitions, namely 1 → 2, 2 → 4, 4 → 8, 8 → 1. In other words,
regardless of the position of the single active bit input, there always exists a single
active bit output. Now, since these super optimal S-Boxes exhibit 1−1 differential
and linear transitions, it can lead to long 1 − 1 differential and linear trails as
shown in Fig. 1(b). Moreover, there exists a possibility of keyless decryption,
as shown in Fig. 1(c), where 2 of the 4 S-Boxes (red and blue) in the previous
round of cipher is not masked by any key material. We can readily combine such
S-Boxes with a carefully chosen lightweight almost-MDS linear layer to achieve
the desired linear and differential characteristic within a reasonable number of
rounds along with mitigating keyless decryption. The linear layer in the case of
our construction only takes 6-XOR gates.

Optimal State-Permutation and Round Constant. Next, we propose the
state-permutation and set of round constants for our LbT-64-128 cipher family.
We choose a state-permutation and a minimal set of round constants such that
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Fig. 1. (a) S-Box DDT (b) long 1− 1 differential characteristic (c) key-less decryption
(‘+’ denotes key XOR in that branch)

optimal diffusion can be achieved in four rounds, together with a good margin of
security against a special class of attacks called invariant subspace attacks [32].
This class of attack mainly arises due to presence of fixed points in an S-Box. In
our work we show that proper choice of round constants ensures that presence
of fixed points is not a serious cryptanalytic issue.

Side-Channel Resistance via composite-TI. Finally, we demonstrate that
our LbT-64-128 cipher family is highly amenable to side-channel secure imple-
mentations. More specifically, we show that any LbT-64-128 block cipher instance
can be protected against side-channel attacks using a highly area-efficient
composite-TI implementation. We use composite-TI implementation technique
proposed in [22], that allows for highly optimized TI designs of CA rules, in
comparison to direct sharing techniques. We establish the side-channel resis-
tance of this implementation via test vector leakage assessment (TVLA) over
100K leakage samples.

2 Ultra-lightweight Almost-MDS Matrix

In this section, we construct an ultra-lightweight diffusion layer to complement a
CA-based S-Box, in order to make it robust against classical cryptanalytic attacks.
A 4×4 CA-based S-Box consist of a demux, cyclic shifter and a CA-rule implemen-
tation [22]. At every clock cycle, the input bits are cyclically rotated and CA-rule
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is iterated to generate 1-bit of S-Box output. Hence, in four clock cycles, 4-bits
of S-Box output is produced. Let [X0X1X2X3]T represent 4-nibble state matrix
where Xi ∈ F

4
2 (0 ≤ i ≤ 3) and each Xi consist of 4-bits [xi3, xi2, xi1, xi0] where

xi0 and xi3 represents LSB and MSB respectively. Let Si (0 ≤ i ≤ 3) define 4 × 4
S-Boxes defined by CA-rule fi (0 ≤ i ≤ 3) such that

Si(Xi) = Si([xi3, xi2, xi1, xi0]) = Yi = [yi3, yi2, yi1, yi0]

where Yi is formed as

[yi3, yi2, yi1, yi0]

= [fi(xi3, xi2, xi1, xi0), fi(xi0, xi3, xi2, xi1), fi(xi1, xi0, xi3, xi2), fi(xi2, xi1, xi0, xi3)]

Similarly, [Y0Y1Y2Y3]T represents a 4-nibble state matrix where Yi ∈ F
4
2

(0 ≤ i ≤ 3) and each Yi consist of 4-bits (yi3, yi2, yi1, yi0) where yi0 and yi3 repre-
sents LSB and MSB respectively. The product of circulant matrix circ(0, 1, 1, 1)
(represented as M), defined over F

4
2, with state matrix [Y0Y1Y2Y3]T can be

expressed as follows where + denotes F
4
2 addition:

M([Y0Y1Y2Y3]
T ) =

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Y0

Y1

Y2

Y3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Y1 + Y2 + Y3

Y0 + Y2 + Y3

Y0 + Y1 + Y3

Y0 + Y1 + Y2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Y0 + Y1 + Y2 + Y3 + Y0

Y0 + Y1 + Y2 + Y3 + Y1

Y0 + Y1 + Y2 + Y3 + Y2

Y0 + Y1 + Y2 + Y3 + Y3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

(s3 + y03, s2 + y02, s1 + y01, s0 + y00)
(s3 + y13, s2 + y12, s1 + y11, s0 + y10)
(s3 + y23, s2 + y22, s1 + y21, s0 + y20)
(s3 + y33, s2 + y32, s1 + y31, s0 + y30)

⎤
⎥⎥⎦

where s0 = y00+y10+y20+y30, s1 = y01+y11+y21+y31, s2 = y02+y12+y22+y32
and s3 = y03+y13+y23+y33. This M layer has branch number 4 and is also used
as a diffusion layer in MIDORI [4]. As the CA-rule is iterated while input bits
are cyclically shifted to generate the S-Box outputs, this M layer multiplication
can also be achieved simultaneously, as shown in Fig. 2, with only 6 XOR-gates.
The bits generated at cycle 1, cycle 2, cycle 3, and cycle 4 are denoted by red,
blue, green, and brown colored fonts respectively. In our circuit, we prefer to use
one 3 input XOR-gate and one 2 input XOR-gate to generate si bit, rather than
three 2 input XOR-gates. This preference is based on the recommendation in [4]
that points out that in most of the standard cell libraries, the area footprint of
two 2 input XOR-gate is greater than one 3 input XOR-gate. Hence a combined
usage of 2 and 3 input XOR-gates during synthesis gives the most optimized area
footprint. The comparison of hardware overhead of our linear layer construction
with other lightweight linear layers is shown in Table 1. The critical path length
and the overall area of the circuit, shown in Fig. 2, are compared with the setup
where four LUT-based implementations of LbT S-Boxes are instantiated with
the linear layer of MIDORI [4] and is given in Table 2. From the table, it can be
seen that there is a saving of 10% area in the proposed setup when compared
to LUT-based implementation. Another interesting point to be noted here is
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Table 1. Hardware overhead comparison with other lightweight linear layers

Matrix # 3-input xor Gate # 2-input xor Gate
Ours 1 5

MIDORI [4] 16 4
PRINCE [4] 16 4
QARMA [4] 16 4
SKINNY [4] 12 0
Serial Matrix [39] 0 16

Table 2. Area, critical path length and clock-cycle requirement comparison for CA-
based and LUT-based implementation (S-box + linear layer)

Implementation Critical path length (ns) Area (GE) Clock cycle requirement

CA-Based 0.35 111.75 4

LUT-Based 1.28 124 1

that our proposed CA-based S-Box combined with the M layer takes lesser
time to execute i.e. 0.35 ns, while for naive implementation it is 1.24 ns. Then
the overall latency of our design is 0.35 × 4 = 1.4 ns (4 bits generated in 4
clock cycles) while that of naive implementation is 1.24 ns, thereby capping the
overall increase in latency to just 9% but with 10% area saving. If a designer
wants to develop an application that requires a very low area footprint and
low latency at the same time, then our proposal with double clock architecture
[39] is best suitable. We would like to point out that the lightweight bit-wise
rotation trick is not applicable directly for the block cipher decryption. Note
that the ordering of operations in case of decryption is S(M(x)), as compared to
M(S(x)) in case of encryption. Since bits are generated serially, we might need
an extra register for storing the bits which would make the circuit a bit costly in
terms of hardware. In this regard, we would like to emphasise that our proposed
design primarily targets inverse-free authenticated cipher modes. Note that an
authenticated encryption is called inverse-free if both the encryption and the
verified decryption algorithm do not invoke block-cipher inverse. This property is
particularly useful for area-efficient lightweight AE designs, especially when both
encryption and verified decryption are implemented in the same device. Note
that most of block cipher based AEAD constructions targeting area-efficiency,
proposed in the CAESAR or ongoing NIST LwC competition, such as SAEB [35],
OTR [34], Sundae [6], COFB [15], HyENA [14], are inverse-free. Our proposed
block cipher would be ideal for these authenticated cipher modes. In the next
section, we discuss how to combine our proposed lightweight almost-MDS layer
along with super-optimal S-Boxes to construct a cipher.
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3 LbT-n-κ: Specification and Design Rationale

In this section, we propose LbT-n-κ, a family of n bit (where we assume n = 64)
CA-based side-channel resistant block cipher with κ bit (we typically use κ =
128) key. It receives an n bit plaintext which can be viewed as n/4 many 4-bit
nibbles, represented as W = Wn/4−1‖Wn/4−2‖· · · ‖W0. Along with the plaintext,
the cipher also receives a 128-bit key K = K7‖K6‖· · · ‖K0 as the key state, where
each Ki is a 16-bit word.

DEMUX

4

DEMUX

4

DEMUX

4

DEMUX

4

4 4 4 4

1 1 1 1y10
y20
y30

y00

X0 X1 X2 X3

L([Y0Y1Y2Y3]T )

f0 f1 f2 f3

s0
s1
s2
s3

y11
y21
y31

y01
y12
y22
y32

y02
y13
y23
y33

y03

x01x02x03 x00 x10x11x12x13 x20x21x22x23 x30x31x32x33

almost-MDS (M)

Fig. 2. Linear layer M augmented with CA-based S-Box layer.

3.1 Formal Specification of LbT-64-128

LbT-64-128 is composed of 18 rounds and each round is composed of the following
operations:
SubCells. All the CA-based S-Boxes has branch number 2 and do not exhibit
special properties such as BOGI. LbT uses an invertible CA-based super-optimal
4-bit S-Box from (3, 2, 2) class as proposed in [22] and applies it to every nibble
of the cipher state. Description of the S-Box is given in Table 3.

Table 3. The LbT S-Box [22].

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 0 C 9 7 3 5 E 4 6 B A 2 D 1 8 F

Table 4. The LbT-64 ShuffleCell P16.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 5 10 15 0 9 14 3 4 13 2 7 8 1 6 11 12
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MixColumn. A circulant matrix circ(0,1,1,1) denoted as M defined over F
4
2 is

applied to each column of the state matrix for LbT-64-128 as:

[Wi+3Wi+2Wi+1Wi+0] = M × [Wi+3Wi+2Wi+1Wi+0]T and i = 0, 4, 8, 12

Note that M , shown in Fig. 3b, is an almost-MDS matrix, and hence has the
differential branch number 4.
ShuffleCell. LbT uses an optimal state permutation to create maximal diffusion
and resistance against invariant subspace attack [32] with lesser number of round
constants. This state mapping is presented in Table 4. Note that this permutation
maps state position i of the cipher to state position P (i).
AddRoundKey. In this step a 32 bit round key is extracted from the key state,
and the round key is xored with {X4i,X4i+1}i=0 ,... ,15 of the cipher state. The
round-keys are generated using a key scheduling algorithm which updates the
key state at each round using some simple word-wise rotations and bit-wise
rotations within a word. This key generation algorithm is similar to the one
used in GIFT-64 [5].

Fig. 3. (a) LbT round constants (b) almost MDS matrix M

AddRoundConst. In this step a 5 many 4-bit round constants are generated as
shown in Fig. 3a. The round constant C5 is constructed from C1, C2, C3 and C4

and is given as:

C5 = (C1[0]&C2[0])‖(C1[2]&C3[2])‖C3[0]|C4[0].

Recall that Ci[0] and Ci[3] denote the least significant bit and most significant bit
of the nibble Ci respectively. The round constants are xored with the following 5
cipher state nibbles: W11 ,W12 ,W13 ,W14 ,W15. The round constants for first 9
rounds are given. The round constants for round i is same as the round constants
for round (i − 9) for any i > 9. Complete specification of LbT is presented in
Algorithm 1.

3.2 Choice of the Linear Layer

As mentioned in previous sections that CA-based S-Boxes have branch number
2 and do not possess BOGI property, due to which there always exists a single
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long differential trail and at most one active S-Box per round of the cipher.
The attacker can choose a high probability differential trail in the first round
that propagates to a single active output bit with probability 2−2. From the
second round, having r such rounds the single bit differential trail holds with
probability 2−3r. Therefore, for r + 1-rounds, differential characteristic has a
maximum differential probability of 2−2−3r [28]. Therefore, with just a bit of
state permutation, a designer cannot remove such trails or increase the number
of active S-Boxes per round.

Use of Almost-MDS Matrix. To address the above-mentioned issue, there is
a need to augment a linear layer with a branch number of at least ≥2. In our
proposal, we express a circulant matrix circ(0, 1, 1, 1) defined over F

4
2 using a

lightweight hardware trick as described in Sect. 2 such that the hardware equiv-
alent of the expression when augmented to CA-rule blows up the overall branch
number preserving the low area footprint of CA-based S-Box.

Choice of the Cell Permutation. The Cell-Permutation Layer is chosen
accordingly to the Optimal Diffusion and Invariant Subspace Attack Resistance.
We performed an exhaustive search to find an optimal cell permutation such
that it satisfies the following two conditions:

1. A full diffusion is reached in 4 rounds.

Algorithm 1. LbT Block cipher Algorithm.

1: function LbT-64(K,X)

2: for i = 1 to 18 do

3: X ← SubCells(X)

4: X ← MixColumn(X)

5: X ← ShuffleCell(X)

6: (K,X) ← AddRoundKey(K,X)

7: X ← AddRoundConst(C, i,X)

8: return X

9: function SubCells(X)

10: (X15, . . . , X0)
4← X

11: for i = 0 to 15 do

12: Xi ← S-box(Xi)

13: return X

14: function MixColumn(X)

15: (X3, . . . , X0)
16← X

16: for i = 0 to 3 do

17: Xi ← M × (Xi)

18: return X

19: function ShuffleCell(X)

20: (X15, . . . , X0)
4← X

21: for i = 0 to 15 do

22: XP(i) ← Xi

23: return X

1: function AddRoundKey(K,X)

2: (K7, . . . , K0)
16← K

3: (X63, . . . , X0)
1← X

4: (U, V ) ← (K1, K0)

5: (U15, . . . , U0)
1← U

6: (V15, . . . , V0)
1← V

7: for i = 0 to 15 do

8: j ← 4i

9: Xj+1 ← Xj+1 ⊕ Ui

10: Xj ← Xj ⊕ Vi

11: K7‖· · · ‖K0 ← K≫2
1 ‖K≫12

0 ‖K7‖· · · ‖K2

12: return (K,X)

13: function AddRoundConstant(C, i,X)

14: (C5, . . . , C1)
4← RoundConstant(C, i)

15: (X15, . . . , X0)
4← X

16: for i = 1 to 5 do

17: X10+i ← X10+i ⊕ Ci

18: return X
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2. Minimize the number of round constants required to resist the cipher against
invariant subspace attack.

We undertake the row-based followed by column-based cell permutation
search option and found the following state permutation is optimum and satisfies
the above two conditions.

(s0, s1, . . . , s15) ← (s5, s10, s15, s0, s9, s14, s3, s4, s13, s2, s7, s8, s1, s6, s11, s12).

3.3 Choice of the Key Scheduling and Add Round Key Operations

The primary goal while designing the key schedule is to minimize the hardware
area, and hence we chose bit permutation which essentially is the shuffling of
wires and requires no hardware area at all. To make it software friendly, the
entire key state rotation is done in blocks of 16-bits, and bit rotations within
some 16-bit blocks. The key state blocks are updated only after it has been
extracted as a round key, as otherwise, it becomes redundant. To have the effect
of the entire key into the cipher state as fast as possible, the key state blocks
that are extracted as the round key are chosen such that all the key materials
are introduced into the cipher state in the least possible number of rounds.

We xor the round key to only half of the cipher state to optimize the hardware
performance. This saves a significant amount of hardware area in a round-based
implementation. To make it software friendly, we xor the round key at the same
i-th bit positions of each nibble. This makes the bit-slice implementation more
efficient. In addition, since all nibbles contain some key material, the entire state
will be dependent on the key after a SubCells operation.

Fig. 4. Variation of Dim WL(D) with D for our cell permutation

3.4 Choice of the Round-Constants

Here we justify our choice for the round constants. Let D = {c1, c2, . . . cn} ∈
F
4
2 be the set of xor differences between all possible round constants over the
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rounds under the same round key and WDL(D) denotes the smallest L-invariant
subspace of F4

2 that contains all elements of D, where DL is the linear layer in
matrix form. Then WDL(D) is given as:

WDL(D) = Dim({DLi ∗ c | i ∈ {0, 1, . . . ,Mo} and c ∈ {c1, c2, . . . , cn}})

where Mo is the multiplicative order of DL. In case of our design, DL layer is
state permutation layer combined with circ(0, 1, 1, 1) matrix. Using the theory
proposed by Beierle et al. [7], a design can guarantee resistance against invariant
subspace attack if WDL(D) = n − 1, unless S-Box has component of degree 1.
For LbT-64-128, a random set of round constants are generated and using the
above cell permutation, the cardinality of set D is found to be 8 for WDL(D) to
reach n − 1 i.e. 63, which is the minimum we could get as shown in Fig. 4.

4 Security Evaluation

Differential Cryptanalysis. The minimum number of active S-Boxes for the
differential trails is shown below in Table 5. It is easy to see that, 18 rounds
of the cipher would contain at least 68 active S-Boxes, and hence even with
very näıve calculation the differential probability of the full cipher is at most
(2−2)68 = 2−136. Therefore, to mount differential cryptanalysis on the cipher,
an attacker would require the order of 2136 known plaintexts/ciphertexts, which
exceed the available data limit. This ensures that the full round cipher should
resist differential attacks.

Table 5. Differential/linear characteristic of LbT-64-128.

Round number 2 3 4 5 6 7 8 16

# Active S-Boxes 4 7 16 17 20 23 32 64

Linear Cryptanalysis. The minimum number of active S-Boxes for the linear
trails are also shown in Table 5. It is easy to see that, 18 rounds of the cipher
would contain at least 68 active S-Boxes, and we can use it directly to bound
the maximal bias of a 18-round linear approximation by 267(2−2)68 = 2−69.
Therefore, linear cryptanalysis of the cipher would require of the order of 2136

known plaintext/ciphertexts, which exceed the available text, and hence we can
conclude that the cipher would not be secure from linear attacks.

Invariant Subspace Cryptanalysis. Let there be a cipher defined by round
function FKi

(P ) = C, where P , C and Ki are plaintext, ciphertext and round
key respectively. Assume there exist two constants u, v ∈ Fn

2 and subspaces
A1, A2 ⊆ Fn

2 such that S(u ⊕ A1) = v ⊕ A2, where S(.) is S-Box. If all subkeys
Ki ∈ u ⊕ v ⊕ (A1 ∩ A2), then following holds irrespective of number of rounds:

FKi
(v ⊕ A2) = S(v ⊕ A2 ⊕ Ki) = v ⊕ A2
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Hence, if P ∈ v⊕A2, then C ∈ v⊕A2 irrespective of number of rounds. The S-Box
of LbT-64-128 has 4 fixed points and some subspace transitions of the S-Box are
listed in Table 6. But, we guarantee resistance against invariant subspace attack
by carefully designing the round constants such that it satisfies the condition as
in [7], where WDL(D) should cover the whole input space as shown in Fig. 4.

Table 6. Some subspace transitions of LbT-64-128

A1 u v A2

{1,c,0,d} 0 1 {1,c,0,d}
{0,2,9,b} 9 2 {0,2,9,b}
{0,3,4,7} 4 7 {0,3,4,7}
{0,5,a,f} 5 0 {0,5,a,f}
{0,6,8,e} 0 0 {0,6,8,e}
{0,5} a f {0,5}
{0,f} 5 5 {0,f}
{0,a} 0 0 {0,a}
{0,6} 8 8 {0,e}

Impossible Differential Cryptanalysis. Impossible differential cryptanalysis
for r rounds exploits a pair of difference Δ1 and Δ2 such that the state difference
Δ1 never reaches the state difference Δ2 after r rounds. We have implemented
impossible differential search tool based on MILP [16], considering the differential
distribution through the S-Box. We have exhaustively tested input and output
differences satisfying the following conditions:

• The input difference activates exactly one of the 16 S-Boxes for LbT.
• The output difference also activates exactly one of the 16 S-Boxes LbT.

In case of LbT-64-128, we have performed the experiment with 16 many input
differences as well as 16 many output differences. Together, we have tested
16 × 16 = 256 pairs of input and output differences and the search results show
that 192 pairs are actually impossible for 2 rounds and 112 pairs are impossible
for 3 rounds. We extend the search for 4 rounds and have not found any impos-
sible differentials. Thus, our choice of optimal state-permutation ensures that
impossible differentials are present for only a few number of rounds. Hence, we
believe that full round cipher should be secure against these attacks.

Integral Cryptanalysis. Integral cryptanalysis, a higher-order differential
cryptanalysis, is a more generalized form of square attack [18]. The goal of inte-
gral cryptanalysis is to find a set of input and output bits, such that setting
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those input bits to all possible values will result in balanced property in the
set of output bits. We have followed the MILP approach mentioned in [43], to
find the distinguisher present in our design. LbT S-Box can be described via 10
inequalities given below to model its bit-based division property:

a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0
− b3 − b2 + 2b1 − b0 + 1 ≥ 0
− b3 − b2 − b1 + 2b0 + 1 ≥ 0

− a3 − a2 − a1 − a0 + 3b3 + 3b2 + 3b1 + 3b0 ≥ 0
− b3 + 2b2 − b1 − b0 + 1 ≥ 0

2b3 − b2 − b1 − b0 + 1 ≥ 0
− a3 − a1 − a0 + 2b3 + 3b2 + 3b1 + 3b0 ≥ 0
− a2 − a1 − a0 + 3b3 + 3b2 + 3b1 + 2b0 ≥ 0
− a3 − a2 − a1 + 3b3 + 3b2 + 2b1 + 3b0 ≥ 0
− a3 − a2 − a0 + 3b3 + 2b2 + 3b1 + 3b0 ≥ 0

The feasible solutions to these inequalities are exactly the 54 division trails of
LbT S-Box described in Table 7. We evaluated LbT-64-128 to find distinguishers
using the tool proposed in [21]. By varying 1-bits, 2-bits, 3-bits, 4-bits, 8-bits
and fixing 63-bits, 62-bits, 61-bits, 60-bits, 56-bits respectively, no integral dis-
tinguishers were found till 6-rounds.

5 Threshold Implementation in Hardware

In this section, we present an overview of the TI circuit for the LbT S-Box.
In particular, we first illustrate how the CA rule describing the S-Box can be
expressed as a composition of two CA rules of lower algebraic degrees. We then
present the overall hardware architecture, where the TI circuits corresponding
to these rules are cascaded in series to preserve functionality while ensuring
side-channel resistance.

5.1 CA Rule Decomposition

We define class (a, b, c) of CA-rule as a tuple of three elements, where a, b, and
c denote number of degree 3, degree 2, and degree 1 terms respectively in the
CA-rule. The CA-rule that describes our S-Box has an algebraic degree of 3
and we express a degree 3 function into a combination of degree 2 functions to
construct composite TI targeting low area footprint and power consumption. We
then identify uniform and non-complete sharing for each of these sub-functions
and finally cascade them to obtain the final output. We decompose the function
from degree 3 to degree 2 as shown below:
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Table 7. Division trail of LbT S-Box.

Input division property Output division property

(0,0,0,0) (0,0,0,0)

(0,0,0,1) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(0,0,1,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(0,0,1,1) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(0,1,0,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(0,1,0,1) (0,0,1,0),(0,1,0,0),(1,0,0,0)

(0,1,1,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(0,1,1,1) (0,0,1,0),(0,1,0,0),(1,0,0,0)

(1,0,0,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(1,0,0,1) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(1,0,1,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(1,0,1,1) (0,0,0,1),(0,0,1,0),(0,1,0,0)

(1,1,0,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)

(1,1,0,1) (0,0,1,0),(0,1,0,0),(1,0,0,0)

(1,1,1,0) (0,0,0,1),(0,0,1,0),(1,0,0,0)

(1,1,1,1) (0,0,1,0),(1,1,0,0)

f(x0, x1, x2, x3) = x0 ·x1 ·x2 ⊕x0 ·x2 ·x3 ⊕x1 ·x2 ·x3 ⊕x0 ·x2 ⊕x2 ·x3 ⊕x0 ⊕x1

f = f3(x2, f1, f2) = x2 · f1 ⊕ f2

f1(x0, x1, x3) = x0 · x1 ⊕ x0 · x3 ⊕ x1 · x3 ⊕ x0 ⊕ 1

f2(x0, x1, x2, x3) = x2 · x3 ⊕ x0 ⊕ x1 ⊕ x2

5.2 TI Decomposition

In this section, we illustrate the uniform three-share decomposition of every
function obtained in Sect. 5.1. Let si denotes the ith share. Then we follow the
below nomenclature to denote the shares:

x0 = x1
0 ⊕ x2

0 ⊕ x3
0, x1 = x1

1 ⊕ x2
1 ⊕ x3

1, x2 = x1
2 ⊕ x2
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3 ⊕ x3

3,
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1 ⊕ f2

1 ⊕ f3
1 , f2 = f1
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2 ⊕ f3

2 , f3 = f1
3 ⊕ f2
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3
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Fig. 5. Basic hardware architecture for LbT-n-128.

5.3 Implementation Results of the Full Cipher

Our main aim is to implement a full cipher that is area efficient with reasonable
throughput. Hence, we choose to implement round-based approach where we
integrate first-order protected CA-based S-Box with our lightweight linear layer.
The hardware architecture of the round-based implementation of LbT-64-128
is shown in Fig. 5. It uses k (k = 16) blocks where each block processes PT i
and Round op i (1 ≤ i ≤ 3) denotes i-th share of plaintext and round output
respectively. The cipher takes 8 clock cycles to complete each round, hence 18×
8 + 2 = 146 cycles for an encryption (2 extra cycles for loading plaintext and
final cipher text). The synthesis is done by setting 10 ns as clock period and
under this setting throughput is found to be 87.67 Mbps. We used Cadence
Genus version I-2013.12-SP5-4 for synthesis and for simulation we used Cadence
Ncverilog version I-2014.03-SP1-1. The standard cell library TSL18FS120 at
180 nm from Tower Semiconductor Ltd. is used during physical design synthesis.
The area overhead for all implemented circuits are measured in terms of gate
equivalents (GE), where a GE in our case is equal to the lowest area occupied
by a 2-input NAND gate of 1x drive of 180 nm technology. The area overhead
for LbT-64-128 occupies 11639.8 GE.

5.4 Resilience Against Probing Attacks

The single core block implementing the TI circuit for the CA rule as described
in [22] draws input shares by cyclically rotating the shift register. When the
register rotates, the input to the core TI block instantly changes which will
result in side channel leakage if the number of input shares is two. As an example,
consider X1Z1W2 as one of the terms of output share f in the CA rule of an S-Box
and assume two shares per input variable are used to evaluate the function. Let
{Xj , Zj ,Wj}j∈[1,2] denote the shares for the input bits X,Z and W , respectively.
A tracepoint during trace collection reflects the power consumption of a circuit
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Fig. 6. Two shares are vulnerable to leakages

between two rising or falling edges of a clock. As shown in Fig. 6, during the
rising edge of the first clock cycle, the circuit evaluates X1Z1W2 and during the
rising edge of the second clock cycle, the same circuit evaluates X2Z2W1, which
means the attacker can probe the leakage of the circuit which depends on both
shares of X, Z and W during the clock transition, thereby violating the non-
completeness property. However, as the number of input shares increases from
more than two, even if the attacker probes the leakage of the circuit during clock
transition only information about two shares is revealed. Since our scheme uses
three-share implementation, it is leakage resistant against such probing attacks.

5.5 Test Vector Leakage Analysis (TVLA)

To evaluate the security of LbT-64-128 we have tested it on the SAKURA-G
platform with Spartan-6 LX75 logic. We have performed non-specific Welch t-
test [23] on each of our designs by collecting 100, 000 traces, using Tektronix
MSO54-C011756 oscilloscope having a sampling frequency of 1.2 Gs/s and the
designs running at 45.4 Mhz. We collected power traces for one round cipher
operation having around 520 sample points and the t-test plot is shown in Fig. 7.
It is evident from the figure that the t-test(t) values for the cipher are within
the prescribed range of −4.5 ≤ t ≤ 4.5.

5.6 Comparative Study

In this section, we provide a comparison of the estimated area of the TI circuit of
our design with other prominent lightweight SPN-based block ciphers. To have
a fair comparison with the existing results, we skip the area required for the
key storage and key scheduling part. This is because, for most of these ciphers,
existing results on the TI circuit area do not include the key scheduling area.
In Table 8, we have compared popular lightweight block ciphers, the sum of
the total area footprint (using technology platform at 180 nm) of the 16 4 ×
4 S-Boxes along with their corresponding linear layer (typically almost-MDS
or bit permutation) and throughput as given in [22] with ours. For each of
the ciphers, their corresponding throughout is measured using the borderline
clock period at which the circuit passes the setup and hold time constraints. An
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Fig. 7. TVLA of composite TI circuits for LbT-64-128

interesting point to observe here is that due to induction of lightweight almost-
MDS layer full diffusion is reached in lesser rounds and hence the number of
round requirement is less when compared to GIFT cipher. In addition due to
low area footprint of our serialized S-Box, the critical path length of our design
is less compared to others. In that way, we get better throughput compared to
other lightweight ciphers. Moreover, even though the S-Box used in our cipher
construction is serial, the throughput value is reasonably better when compared
to other lightweight ciphers. It is worth mentioning here that the throughput
value in case of MIDORI is moderately more than LbT, as the number of rounds
in case of MIDORI is lesser than LbT-64-128. However, one must note that
MIDORI has been cryptanalytically broken using Invariant Subspace Attack by
the authors in [25].

Table 8. Area and throughput comparison for TI of 64-bit SPN based block ciphers

Block cipher # Rounds Area (GE) (w/o KS) Throughput (MBps)

LbT-64-128 18 3 133.79 [this paper] 87.67 [this paper]
PRESENT-64-80 31 4 451.15 61.41
GIFT-64-128 28 3 484.27 71.42
Skinny-64-128 32 5 356.46 62.5
Midori-64-128 16 6 093.26 125.0
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6 Conclusion

In this paper, we proposed the first area-efficient and side-channel resilient family
of block ciphers, called LbT. Our proposed family of block ciphers strengthens the
use of weak CA-based S-Boxes that is appropriately complemented with a linear
layer consisting of shuffle cells and matrix multiplication with an ultralightweight
almost-MDS matrix with just 6-XOR gates. This ensures high diffusion at the
cost of a minimal area overhead. We demonstrate the significance of the design by
providing a complete TI circuit and showing that our proposed cipher achieves
12% lower TI hardware area overhead concerning existing prominent lightweight
SPN-based block ciphers. Our proposed cipher brings out reasonable throughput
when compared with popular lightweight block ciphers.

An interesting future direction is to investigate whether we can make the
linear layer of LbT even more lightweight. As already discussed, one can not
achieve the desired security levels with a bit-permutation-based linear layer. An
interesting yet challenging question is whether it is possible to have an efficient,
secure and cheaper linear layer (say with differential branch number 3).
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C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

39. Sarkar, S., Syed, H., Sadhukhan, R., Mukhopadhyay, D.: Lightweight design choices
for LED-like block ciphers. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017.
LNCS, vol. 10698, pp. 267–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71667-1 14

40. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-performance concurrent error
detection scheme for AES hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85053-3 7
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Abstract. Hardware masking is an important countermeasure for cryp-
tographic schemes. In this paper, we study the hardware implementations
of the SKINNY SBox using first-order Boolean masking. We implement
the SKINNY 8-bit SBox using a wide range of masking schemes, and
show the different security goals achieved by each implementation using
formal verification. We develop and adapt a practical unit testing frame-
work based on the Sasebo-GII FPGA board, and identify an issue with all
the considered masking schemes. Based on the explanations in literature
to similar observations, we propose a new implementation of the SBox
that can be verified/validated using TVLA even in high SNR environ-
ments. We provide a full implementation of two of the Romulus AEAD
modes, which can be configured with any of the SBox implementations
proposed. We provide synthesis results using ASIC.

Keywords: Masking · Hardware · TVLA · Lightweight ·
Authenticated encryption · Romulus

1 Introduction

Boolean masking is one of the oldest, and yet most relevant, countermeasure
against statistical Side-Channel Analysis (SCA) of cryptographic implementa-
tions. Several efforts over the years have been performed to improve the secu-
rity and efficiency of masked ciphers. Moreover, the security models of masked
ciphers are also improving to better capture the side-channel leakage of real-
world implementations. Work on masked ciphers can be classified into 4 main
categories:

1. Design and implementation of secure masking schemes, such as Ishai-Sahai-
Wagner (ISW) [16], Threshold Implementations (TI) [6], Domain-Oriented
Masking (DOM) [15], Hardware Private Circuits (HPC) [9].
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2. Modeling hardware and software implementations in order to have better
understanding of their behavior, e.g. the probing model, Non-Interference
(NI), Strong Non-Interference (SNI) [2], Probe-Isolating Non-Interference
(PINI) [10].

3. Attacking masked implementations using SCA techniques, e.g. Differential
Power Analysis (DPA) [23], Correlation Power Analysis (CPA) [7].

4. Designing evaluation frameworks in order to measure the security order of
different circuits and implementations, e.g. maskVerif [1] and SILVER [22]
for formal verification of circuits and frameworks based on statistical test
(TVLA [27], χ2-test [25]) for assessing practical leakages.

However, one area that remains roughly under-studied is the hardware imple-
mentations of masked ciphers. Since the introduction of masking as a counter-
measure, researchers have shown shortcomings of the idealized security models.
Initially, masking schemes were designed to be secure in the probing model, i.e.,
a dth-order masked implementation should be secure as long as the adversary
can observe at most d internal wires (or probes) of the circuit. It was shown that
hardware glitches can lead to problems in this model [6]. By hardware glitches,
we refer to imbalances in the physical delay of different paths of the same circuit.
Such imbalances can lead to exposing more than d variables by observing only
≤ d wires. While some variants of probing model like robust probing models [13]
can handle glitches, it fails to address a few advanced attacks like horizontal
attacks [4]. In order to overcome such issues, new security models were intro-
duced, including Non-Interference (NI), Strong NI (SNI) and Probe-Isolated NI
(PINI). These new security models are based on the notion of composability of
smaller masked gadgets [2] which satisfy certain security properties. A gadget is
considered NI secure if and only if every set of at most d internal probes can be
simulated with at most d shares of each input. This is further extended to SNI,
where the attacker is allowed to also observe the outputs. It was shown that
NI gadgets do not offer composability and SNI offers composability to single-
output gadgets [2]. This issue was solved in PINI which can offer composability
for multiple output gadgets [10].

Glitches are not the only physical anomaly that leads to a gap between
theoretical models and physical implementations. Two problems that have been
observed in several works are transitions and coupling. Transitions refer to shared
variables being recombined due to the transition of values inside flip-flops, while
coupling refers to dependencies in the electric current of two or more wires that
are close to each other and that should carry independent variables. Coupling
in particular can be very problematic. The probing security model is built on a
fundamental assumption that the leakage observed from different independent
wires of the circuit are independent. However, it has been observed time and
time again that a correct masked implementation (of any order) experiences
first-order leakage [11] when implemented on FPGA. The authors of [11] have
analyzed this issue and provide explanations from a VLSI point of view. Besides,
the authors of [24] have shown that this issue can lead to attacks on masked
implementations. While ASIC implementations are less studied from this point
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of view, it is more conservative to assume the same issue will arise in an ASIC
implementation.

Another issue facing benchmarking of SCA-protected implementation is
defining and assigning a security order for a given implementation. A common
approach to assess first-order security is using Welch’s fixed vs. random t-test [14].
The test in its basic form compares two populations of samples; one with a fixed
plaintext and the other with randomly sampled plaintexts, against an equality
of mean assumption. The test statistic is given by

t =

∣
∣
∣
∣
∣
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√
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Nr

∣
∣
∣
∣
∣

A widely accepted threshold for the t-value is 4.5, where samples that lead to
higher values are said to exhibit observable first-order leakage. In other words,
first-order leakage is observable when the mean of observed samples is data-
dependent. When it comes to higher-order leakage, the definition becomes more
ambiguous. Two versions of the t-test are used to detect higher-order leakage.
The univariate higher-order test is performed in two steps. First, preprocessing
the samples, where for each sample Lx(i) in the population x ∈ {f, r},

L
′
x(i) = (Lx(i) − μx)o

where o is the order of the test. Second, the first-order t-test is performed on the
preprocessed samples.
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The other higher-order t-test is the multivariate t-test. The first step, is per-
formed as follows

L
′
x(Nx ∗ i + j) = (Lx(i) − μx) × (Lx(j) − μx)∀0 ≤ i, j ≤ (Nx − 1)

The two versions of the t-test differ in what they measure and also their compu-
tational cost. The univariate test captures leakage in higher statistical moments
of the samples (assuming parallel computation of shares), while the multivariate
test captures leakage that requires combining samples from different timestamps
(where share computation can be distributed over time). When it comes to com-
putational complexity, in the worst case, it involves calculating the mean of each
sample, exponentiation, and the t-test. If the cost of exponentiation is ce, the
length of each trace is s, and the cost of the first order test is c1, then the upper
bound of the cost of the univariate higher-order test is

co ≤ c1 + s · (Nf + Nr) · ce + s · (cµf
+ cµr

) ≤ 2 · c1 + s · (Nf + Nr) · ce

For small order, o and ce are small. Hence, the univariate higher-order test is
not significantly more complex than the first order variant, i.e. co ≤ a · c1, where
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a is a small constant. On the other hand, the multivariate test increases the
complexity significantly, since the number of samples per trace increases from s
to so. This exponential growth makes the test very expensive for higher orders.

Besides, the χ2-test has been proposed [25] to detect higher order univariate
leakage, i.e. leakage not based on the difference of means. The cost of χ2-test
is higher than, but comparable to, that of the univariate t-test. Hence, imple-
mentations that pass higher-order tests do not offer a significant security gains
compared to implementations that pass the first-order t-test but fail higher-order
tests. The difference between univariate and multivariate t-test is captured by
whether the combined information come from leakage at the same point in time
or not. In other words, univariate higher-order leakage can usually be observed
in implementations that processes the different shares of the masked implemen-
tation in parallel.

For a standardization project such the NIST lightweight cryptography
project, benchmarking has to be done on a variety of platforms. The main plat-
forms for hardware benchmarking are FPGA and ASIC. Since the manufacturing
cost of ASIC is too high and sometimes prohibitive for academic projects, ASIC
benchmarking is usually done at a pre-fabrication level. However, when it comes
to SCA, we need to question whether this high-level abstraction is sufficient. On
the other hand, FPGA are more accessible in a lab settings and FPGA boards
optimised for SCA evaluation are easily available. While FPGA do not represent
most of the use cases of lightweight cryptography, they can be used as a starting
point for evaluation.

Contributions. In this paper, we start from the literature on masked hardware
implementations of block ciphers and look at the challenges and inconsistencies
of implementing a masked Tweakable Block Cipher (TBC)-based Authenticated
Encryption with Associated Data (AEAD) scheme. While some masked imple-
mentations of the SKINNY TBC have been proposed [8], mainly using TI, they
have not been studied deeply and implementations using other masking schemes,
e.g. DOM and HPC have not been proposed. Besides, masked implementations of
Romulus, a finalist of the NIST lightweight cryptography, have not been properly
studied. Our contributions can be listed as follows:

1. We propose implementations of SKINNY using a variety of masking schemes,
including the first implementation for some of the masking schemes.

2. We study the security of the SKINNY 8-bit SBox using both formal verification
and practical side-channel testing.

3. We propose a new method of implementing the DOM in order to achieve
security against coupling.

4. We provide implementations of the Romulus-N and Romulus-M AEAD modes.
5. We discuss some of the issues related to benchmarking such implementations.

Our code is open-source and available at:
https://github.com/mustafa-khairallah/skinny 128 384 plus sca

https://github.com/mustafa-khairallah/skinny_128_384_plus_sca
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2 Background

In this section, we give a brief of introduction to some of the topics helpful for
understanding the paper.

2.1 Hardware Masking, Revisited [11]

De Cnudde et al. investigated the validity of long standing assumption that
power consumption or leakage from independent shares of a masking scheme are
also independent. They showed that such assumption is not true in FPGA where
activity in one power domain can have influence other power domains as well.
This can be further amplified by choosing favorable (for attacker) parameters
like higher supply voltage, lower shunt resistor, higher temperature etc. As a
result, they demonstrate first-order leakage in otherwise secure masking schemes
like TI [12] and DOM [15]. through extensive experimentation. Their findings are
further supported by arguments from the VLSI theory. As a potential solution to
implement secure masking on FPGA, De Cnudde et al. briefly proposed temporal
non-completeness i.e. process d-shares in sequence at the cost of performance.
No concrete implementation of this solution was provided. We develop on this
avenue and explore answers to “How to design a first order secure masking
implementation on FPGA at the register-tranfer level”?

2.2 SKINNY [5]

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function applies five different transformations: SubCells
(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns

(MC). [18]

SKINNY is a family of TBCs which support block size of 64-bits and 128-bits. It is
based on TWEAKEY framework [19]. We focus on the version with block size of
n = 128-bit block and tweakey size t = 384-bits (known as SKINNY-128/384+),
it being a building block of Romulus. Each round of SKINNY-128/384+ is
composed of five operations in the following order: SubCells, AddConstants,
AddRoundTweakey, ShiftRows and MixColumns (see Fig. 1). The 8 × 8 SBox
used in the SubCells library is depicted in Fig. 2. In total, SKINNY-128/384+
has 40 rounds. In [8], Caforio et al. studied first-order threshold implementations
of SKINNY. We refer to their paper for the details on the implementation. In
our study, we use their fastest implementation as a representative of threshold
implementations. We refer to it as TI33.
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MSB LSB

MSB LSB

Fig. 2. The SKINNY 8-bit SBox [18]
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Fig. 4. The Romulus-M AEAD scheme [17].

2.3 Romulus

Romulus [17] is a finalist of the NIST lightweight cryptography standardization
project. It involves TBC-based schemes. Originally, it consisted of two variants:
Romulus-N and Romulus-M. Romulus-N is a nonce-respecting variant, depicted in
Fig. 3, while Romulus-M, depicted in Fig. 4 is a two-pass nonce misuse resistant
scheme.
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2.4 SILVER Leakage Assessment Tool

SILVER [22] is an open-source formal verification tool proposed by Knichel et
al. to analyze and verify the masked implementations at the gate-level. It can be
applied on gate-level netlist of a given circuit and verify its security against differ-
ent security models. For each model, it returns whether it is secure with glitches
(+), secure only without glitches (y) or insecure (-). Security with glitches refers
to practical hardware scenarios while security without glitches refers to software-
based solutions. We use SILVER to formally verify a group of implementations
of the SKINNY SBox.

3 Masking the SKINNY SBox

The most critical task of masking any cipher is masking its non-linear blocks.
In this section we look at masking the SKINNY 8-bit SBox. We can untangle
the SKINNY 8-bit SBox, depicted in Fig. 2, into the following iterative process:

a0 ← ¬(b7 ∨ b6) ⊕ b4

a1 ← ¬(b3 ∨ b2) ⊕ b0

a2 ← ¬(b2 ∨ b1) ⊕ b6

a3 ← ¬(a0 ∨ a1) ⊕ b5

a4 ← ¬(a1 ∨ b3) ⊕ b1

a5 ← ¬(a2 ∨ a3) ⊕ b7

a6 ← ¬(a3 ∨ a0) ⊕ b3

a7 ← ¬(a4 ∨ a5)xx ⊕ b2

where b7...b0 are the 8 input bits, and the 8 output bits are s7s6 · · · s0, and
assigned using the following permutation

s6s5s2s7s3s1s4s0 ← a0a1a2a3a4a5a6a7

This modularity makes the task of masking the SBox easier in two regards.
First, we can focus on masking only the core function. Second, we can check the
dependency between the outputs of the core function and determine the way
to implement with the minimum number of flip-flops. We note that a0, a1 and
a2 depend only on input bits, so the can be computed in the first iteration in
parallel. a3 and a4 depend on the previous 3 bits and are independent of each
other, so the can be computed in the second iteration. Similarly, a5 and a6 are
computed in the third iteration, while a7 is computed in the fourth iteration.

A useful transformation to the core function is to change its representation to

a ← (¬x ∧ ¬y) ⊕ z

which computes exactly the same value, but helps visualize the impact of using
different masking schemes. Depending on the masking scheme used to mask the
core function, one iteration can consist of one or more cycles, leading to SBoxes
that require 4 or more cycles, respectively.
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We can also speed the latency on the SBox by flattening 3 of the logic func-
tions as follows

a3 ← ((¬b7) ∧ (¬b6) ∧ (¬b3) ∧ (¬b2))⊕
((¬b7) ∧ (¬b6) ∧ (¬b0))⊕
((¬b4) ∧ (¬b3) ∧ (¬b2))⊕

((¬b4) ∧ (¬b0)) ⊕ b5

a4 ← ((¬b3) ∧ (¬b2))⊕
((¬b0) ∧ (¬b3)) ⊕ b1

a7 ← ((¬a2) ∧ (¬a3) ∧ (¬a4))⊕
((¬b7) ∧ (¬a4)) ⊕ b2

which can be implemented using 2-input, 3-input and 4-input AND gates (AND2,
AND3 and AND4). Implementing AND2 using any masking scheme is straight-
forward. We call implementations based on this strategy “Rapid”.

4 Formal Verification

We implemented the SKINNY 8-bit SBox using most 2-share masking schemes,
with the results shown in Table 1. The schemes considered are Domain-Oriented
Masking (DOM) [15], Consolidated Masking Schemes (CMS) [26], ISW [16],
Hardware Private Circuits (HPC), PARA [3], and PINI [10]. We have also
included the 2-cycle 4-share threshold implementation proposed in [8]. For cir-
cuit utilizing AND3 and AND4 gates using DOM and CMS, the computational
cost for verifying the whole circuit was too high, so we only verified the individ-
ual gates, relying on composability assumptions to argue about the security of
the full circuit.

Our results show that DOM as originally defined (DOM1 in Table 1) does
not achieve any security with glitches. However, it achieves probing security with
glitches when the outputs of all the AND gates are registered (DOM1-Pipelined
in Table 1). DOM1-SNI achieves SNI security at the expense of doubling the clock
cycle count. CMS1 achieves NI security with glitches, making it one grade better
than DOM1-Pipelined. ISW1, HPC, HPC2 and PARA are one grade better than
CMS1, achieving SNI security with glitches. ISW1-PINI achieves the highest
possible security model, PINI-security with glitches, while HPC2 achieves PINI-
security but not SNI-security. However, the authors of [22] showed a similar
observation on another implementation of HPC2 and pointed out that PINI
security is more general than SNI security. For AND3 and AND4, we observe that
ANDx-DOM1 achieves NI security with glitches, while ANDx-CMS1 achieves
SNI security with glitches (x ∈ {3, 4}). The implementation of DOM1-Rapid and
CMS1-Rapid was too complex for SILVER to assess. DOM1-NC is a serialzed
version of DOM1-SNI which we describe in details in Sect. 5.3.
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Table 1. Formal verification of different SKINNY SBox implementations using SIL-
VER [22]. + means secure with glitches, y means secure without glitches and - means
not secure. R is the number of fresh random bits needed, while r is the maximum
number of random bits needed in one clock cycle.

Scheme Cycles Shares R r Probing NI SNI PINI

DOM1 4 2 8 3 y y y -

DOM1-Pipelined 4 2 8 3 + y y -

DOM1-SNI 8 2 8 3 + + + -

DOM1-Rapid 2 2 25 19 ? ? ? ?

CMS1 4 2 32 12 + + y -

CMS1-Rapid 2 2 76 56 ? ? ? ?

ISW1 8 2 8 3 + + + -

ISW1-PINI 12 2 16 6 + + + +

HPC 12 2 8 3 + + + -

HPC2 12 2 16 6 + + y +

PARA1 8 2 16 6 + + + -

PINI1 4 2 8 3 y y y y

TI33 2 4 0 0 + - - -

DOM1-NC 24 2 8 3 + + + -

AND3-DOM1 1 2 3 3 + + y -

AND4-DOM1 1 2 7 7 + + y -

AND3-CMS1 1 2 8 8 + + + -

AND4-CMS1 1 2 16 16 + + + -

5 Unit Testing

Unit-testing is the process of testing the building blocks of a digital circuits at
the early stages of design before the circuit is integrated, to make sure each unit
is operating correctly on its own. It is relevant to the concept of composability,
and should be part of the design flow of masked implementations for two reasons:

1. Unit-testing is part of the design process of digital circuits in general. In side-
channel analysis, unit-testing can help catch issues with the implementation
at an early stage, and help explain issues with the overall implementation in
general.

2. Composability is an important assumption in many masking schemes. The
overall circuit is assumed to be secure by virtue of the security of its smaller
components, and the assumption on the composability of these circuits.

While a lot of work focuses on these composability assumptions and their
shortcomings, which led to models such as glitch-extended probing and SNI, the
assumption requires that the building blocks are themselves secure. Hence, unit
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testing should be used at the early stages of design to validate it. The main
challenge to such approach is the test complexity. Consider a scenario where the
designer is choosing between 10 different building blocks; they would have to
evaluate each of these building blocks, which may require more time than the
project allows. Hence, techniques to accelerate the test for similar scenarios are
required.

5.1 Accelerated Test Set-Up

We have designed a unit testing framework for high speed testing of SBoxes at
the early phases of designing RTL code. The framework is shown in Fig. 5. A
Deterministic Random Bit Generator (DRBG) based on a low-latency imple-
mentation of the GIFT-128 block cipher in the counter mode is used to generate
the masked shares and decide whether the next sample is fixed or random. A
gardening period of 200 cycles is applied between generating the shares and
updating the SBox, to avoid leakage from DRBG circuit. The oscilloscope sends
a START command, which triggers the setup to calculate 15,000 samples. After
15,000 samples, the set-up halts, allowing the oscilloscope to synchronize and
store the acquired traces. The samples are calculated in less than a second, and
storing them requires about 18 s. Hence, it takes about 1 h to calculates and
process 3 million traces.

5.2 Amplification of SNR

On top of the high-speed set-up, in order to reduce the trace acquisition com-
plexity, we need to artificially raise the Signal-to-Noise Ratio (SNR). We propose
to do so by replicating the Unit-Under-Test (UUT) multiple times, forcing the
FPGA to perform the same logic multiple times simultaneously. This can have
an amplifying effect similar to computing the same trace multiple times and
averaging out the noise, which was proposed in [28]. However, it achieves the
same effect with a lot less traces. This enables very fast early testing of SBoxes,
where with 9× replications, a few thousand traces aare enough to highlight flaws
in most SBox variants.

5.3 The Practical Issue with Hardware Masking and How
to Address It

A common assumption is that the leakage observed by the adversary/evaluator
is the sum of independent leakage components. Hence, an adversary observing
the combined leakage

L = L0 + L1 + · · · + Ld−1

cannot detect any first-order leakage, as each of the components is indepen-
dently distributed. However, it was shown by De Cnudde et al. [11], that in
FPGA this assumption may not be true, due to what became later known as
coupling, where the power consumption and power supply noise from one share,
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Fig. 5. Amplifying SNR through replication.

e.g. L0 may impact the power consumption of the other shares. Consequently,
they observed first order leakage on FPGA for several circuits, including masked
AES MixColumn and SBox. In [24], it was shown that such coupling effects can
be exploited in SCA attacks, and is not just an observable leakage. The authors
of [11] proposed some suggestions on how to mitigate this issue, which include
VLSI-based solutions to isolate the power supplies of different shares and serial-
izing implementations in order to achieve “hardware non-completeness”, where
at any point in time only a single share is being processed.

While VLSI-based solutions may mitigate the coupling issue for first-order
leakage, we argue in this paper that for certifiable implementations, a.k.a imple-
mentations that claim a given security order, that hardware non-completeness
should be considered a goal.

Serializing masked implementation can lead to transitional leakage. For
example: A flip-flop holding the value x0 may be updated at some point with
x1, which can lead to leakage that depends on both shares. The same thing can
happen in logic gates, where unintended values can be processed by the logic
gates, leading to unintended share combining.

Power Gating. [20] Power-gating is a technique used for low-power digital design,
where a logic circuit that is not frequently used can be turned off by forcing all
its inputs and outputs to 0. It is usually combined with clock gating, where the
clock is turned off for flip-flops that are not being updated.

Non-Complete DOM (DOM1-NC) Implementation. In order to implement DOM
such that only one share of each variable is being processed at a time, we treat
each sub-share during the internal computation as a tiny power domain, having
its own enable/disable signal. The share computation operation is updated as
shown below.

s3 ← e0 ∧ ((e0 ∧ x1) ∧ (e0 ∧ y1) ⊕ (e0 ∧ z1)
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s2 ← e1 ∧ ((e1 ∧ x1) ∧ (e1 ∧ y0) ⊕ (e1 ∧ r))

s1 ← e2 ∧ ((e2 ∧ x0) ∧ (e2 ∧ y1) ⊕ (e2 ∧ r))

s0 ← e3 ∧ ((e3 ∧ x0) ∧ (e3 ∧ y0) ⊕ (e3 ∧ z0))

a0 ← e4 ∧ ((e4 ∧ s0) ⊕ (e4 ∧ s1))

a1 ← e5 ∧ ((e5 ∧ s2) ⊕ (e5 ∧ s3))

At any point in time, at most one of the signals e0, e1, e2, e3, e4 and e5 is set
to 1. Due to the structure of the circuit, it targets SNI security with glitches and
inherets the formal analysis of DOM-SNI. It helps reducing leakage in two ways:

1. Making sure both shares of the same variable are never carried by two adjacent
wires or gates and never stored into flip-flops at the same time, the coupling
effect is removed to a very large extent.

2. Reducing the power consumption of the SBox as a whole leads to less
exploitable leakage.

Fig. 6. TVLA output for DOM with 9
replicas after 7,784 traces.

Fig. 7. TVLA output for DOM-SNI with
9 replicas after 2,140 traces.

Fig. 8. TVLA output for TI33 with 9
replicas after 1,393 traces.

Fig. 9. TVLA output for TI33 with 1
replica after 62,924 traces.
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In Table 2, we show the SNR and number of traces required for each method
of implementing DOM. The results show that our proposed implementation
(DOM1-NC) is several orders of magnitude more secure than other methods.
It requires about 1000× more traces for the same number of replications and
10× higher SNR. With low SNR, the implementation did not show leakage even
with more than 200 million traces. The t-value outcome for each of the imple-
mentations is show in Figs. 6, 7, 8, 9, 10 and 11.

Fig. 10. TVLA output for NC with 9
replicas after 6,190,00 traces.

Fig. 11. TVLA output for NC with only
1 replica after 210,000,000 traces.

In order to verify our findings, we also performed the χ2 test on the same
data sets. All circuits that failed TVLA fail the χ2 test with less than 30, 000
traces, regardless of the number of replicas. On the other hand, the χ2 test passes
for DOM1-NC with 1 replica for 30 million traces. We did not run the test for
more traces due to its higher computational complexity.

Table 2. The masking schemes, number of UUT replicas, the SNR (μ
σ
) and number of

traces required to fail the TVLA test.

Scheme Replicas SNR Traces

Mask off

DOM1-SNI 1 174.3 823

TI33 1 172.3 1,536

Mask on

DOM 9 174.5 7,784

DOM-SNI 9 173.3 2,140

TI33 9 804.7 1,393

TI33 1 864.19 62,924

DOM1-NC 99 2028.44 5,913,875

DOM1-NC 9 1183.08 6,190,000

DOM1-NC 1 33.57 >200,000,000
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6 Implementation of the Full Romulus Modes

The designers of Romulus [17] proposed several design strategies for implement-
ing hardware accelerators for Romulus-N and Romulus-M, where the computation
is performed entirely based on the TBC implementation, without any extra stor-
age. These design strategies can be extended to the masked implementations,
as well. Figure 12 shows an architecture based on these strategies. The proposed
architecture is compliant with the lightweight cryptography hardware API pro-
posed in [21]. This choice is to allow fair comparison to other implementations
and to allow a full implementation that does not ignore any hidden costs such
as key storage, nonce storage or message padding. The architecture, depicted in
Fig. 12, is built based on 4 register files:

1. State Register File (SRF): consists of 8 words, each of 32 bits.
2. Key Register File (KRF): consists of 4 or 8 words, each of 32 bits.
3. Tweak Register File (TRF): consists of 8 words, each of 32 bits. Since the

tweak is always public, it does not need to be masked.
4. Counter Register File (CRF): consists of 128 bits.

The SRF is reset to 0 at the beginning a new encryption or decryption
instruction. It is loaded in the feedback mode, where the G function is applied
to the bottom word in a byte-wise fashion. It transforms each byte as follows:

(x0, x1, x2, x3, x4, x5, x6, x7) →
(x1, x2, x3, x4, x5, x6, x7, x0 ⊕ x7)

Control Unit
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input
ready
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secret
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· · ·
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Fig. 12. Architecture of the Romulus accelerator. Solid arrows are w-bit wide, where w
is the configurable bus width. The dotted arrows are control signals. Some of the control
signals are omitted from the diagram for simplicity including multiplexers’ selectors,
registers enables and resets. The red arrow is only needed for Romulus-M and can be
removed if Romulus-M support is not required. The blue multiplexer is used to switch
between encryption and decryption.
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The output of this transformation is XORed with the input word (from the
control unit) to generate the plaintext during encryption and the ciphertext
during decryption. The plaintext is XORed with bottom register to generate the
feedback word that get fed from the top, while all the other words are shifted
down. In order to support Romulus-M, a bypass connection is needed such that
the tag from the top operation in Fig. 4 is fed back into the SRF. This bypass
connection is shown in red in Fig. 12. The KRF and TRF are similar, where
they are loaded from the top down, with no feedback needed. The CRF is used
to hold the block counter and the domain separator; the constant part of the
public tweak. It does not need a load operation, as it is reset to the initial value
of the counter. Each register file can also be read and written in parallel, where
the masked SKINNY round function is represented in Fig. 12 by the combination
of TBC, Key Schedule, Tweak Schedule and Domain Separator Schedule.

During execution, the nonce will be stored in the TRF, while the secret
key will be stored in the KRF. There values will be changed, and needs to
be corrected, which is the purpose of the Secret Key Correction and Tweak
Correction circuits. These operations, alongside the Counter, are performed in
between the TBC calls, in parallel to loading the SRF.

Since the feedback function is linear and operates on each byte independently,
no area overhead is required, as shares are loaded and read serially (word by
word), and the feedback function is applied locally on each byte of the shares.
The key shares can be processed independently by applying the key schedule and
key correction functions on each one of the key shares, independently. Besides,
it is easy to choose whether the key is protected or not. On the other hand, the
tweak and counter do not need to be protected. This means that only the odd
blocks of A need to be shared. For Romulus-M, the situation is slightly different,
since some of the blocks M are also processed as tweak, then the designer can
decide whether to mask the tweak or not, based on the security assumptions.
By the same analysis of whether or not the key-schedule needs to be protected,
we can argue about the security of not masking the tweak. We only consider the
case where the tweak is not masked.

6.1 Double-Edged Implementations

Usually, hardware masking is considered on the primitive level, where the number
of clock cycles needed is determined by the number of flip-slop stages needed for
the masked circuit. We observe that these flip-flop stages can be be very short
in terms of the critical path of stage, with some stages consisting of 1 AND gate,
and the majority have very low depth. This means that the SBox implementation
can run at very high frequency. On the other hand, when a full AEAD mode
is implemented, the critical path of the overall circuit is slower, dominated by
the control FSM, which includes block counters, state registers, control signal
logic,...etc.. In order to reduce the impact of the lower frequency imposed by the
control circuits, we propose double-edged implementations of the SBox, where
odd flip-flop stages are clocked on the negative edge and even stages clocked
normally on the positive edge. For example, in case of DOM1, a0, a1, a2, a5 and
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a6 are clocked using the negative clock edge. This strategy cuts the latency of
the TBC by almost half, in the context of the overall scheme.

7 Synthesis Results

We have synthesized our implementations using the different SBox implementa-
tions with Synopsys Design Compiler and TSMC general purpose 65nm library.
The results are presented in Table 3. Each implementation requires 8 cycles to
load one plaintext block and 40 × (c + 1) cycles for each TBC call, where c is
the number of cycles needed for the SBox implementation. For DOM1-NC, i.e.
the power gated implementation, 40 × (c + 2) as it takes 2 cycles to compute
the linear layer of the cipher, 1 cycle per share. In Table 4, we show the latency,
throughput and area needed to encrypt 1600 bytes of A and M using different
masking schemes.

Table 3. Synthesis results of different implementations of the overall design using
Synopsys Design Compiler and TSMC 65 nm. The table shows area in GE. All imple-
mentations are synthesized for about 2 GHz († means less than 2 GHz).

Protected key Unprotected key

Implementation SE DE SE DE

DOM1 13395.97 15269.5† 11889.72 13579.51†
DOM1-Pipelined 14619.5 14886.5 13068.47 13276.52

DOM1-Rapid 20634.3 22230.6† 19103.47 20716.25†
DOM1-SNI 15818.3 15977.99 14481.73 14441.25

DOM1-Dep. 15557.2 18265.97† 13945 16670.49†
CMS1 15912.7 16165.97 14372.01 14595.28

CMS1-Rapid 23344 24570.5† 21811.74 22474.72†
HPC 18585 18830.76 17338.75 17234.76

HPC2 19344 19905.48 18397.22 18280.28

ISW 16055.5 16264.72 14667.01 14541.74

ISW-PINI 17626.5 17944.1 16422.01 16266.52

PARA 15048.3 15139.5 13589.2 13577.01

PINI 16286.7 17991.25 14625.97 16321.5

TI33 31137.99 34550.97 29433.27 33131.25

DOM1-NC 16455 17272.5 14825.1 15029.7
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Table 4. Comparison of Encrypt 1600 bytes of both A and M using Romulus-N using
different implementations. The goals stand for: - for unprotected, P for probing, NI,
SNI, and C for coupling resistance

Implementation Cycles Critical Throughput Area Goal

path (ns) (Gbps) (GE)

Unmasked, 4 rounds/cycle 2318 2 5.52 10124.24 –

Unmasked, 1 round/cycle 6048 1.11 3.81 7348.61 –

Masked, 1 cycle/round 8636 0.65 4.56 33131.25 P

Masked, 2 cycles/round 12088 0.6 2.35 20716.25 P

Masked, 3 cycles/round 18128 0.5 2.82 13276.52 P

Masked, 5 cycles/round 30208 0.5 1.69 14441.25 SNI

Masked, 7 cycles/round 42288 0.5 1.21 16266.52 PINI

Masked, 14 cycles/round 84568 0.5 0.6 15029.7 C

8 Concluding Thoughts

Boolean masking is an important countermeasure for hardware cryptographic
permutations. In this paper, we show that the application of such countermeasure
to symmetric-key schemes, and specifically TBC-based schemes is tricky. We con-
firm observations made by other researcher that almost all masking schemes are
based on assumptions that are not true for hardware implementations, mainly,
the independence of leakage from different shares and composability. The first
can be shown to not be true by analyzing the SBoxes using TVLA. The second
one is not violated in itself, but relies on sub-blocks, known as gadgets, being
secure, which depends on the level and nature of security required. On the other
side, since it is not clear if such leakage is exploitable, it is up to the system
designers to deploy extra countermeasures or assess the risk involved in using
such implementations. We do not claim that these implementations are of no
use in practice.

When it comes to Romulus, we showed in this paper that applying mask-
ing schemes to it incurs a significant overhead; between 2 times and 4 times
the area for first-order masking and a significant increase in latency. However,
using double-edged SBoxes we were able to reduce the latency by almost half
and using TI33 we were able to get an implementation that requires only 40
cycles per TBC (same as the unprotected round-based implementation). The
double-edge clocking strategy is helpful only for implementations that operate
on different SBox calls in parallel, as it requires the internal registers of the SBox
to be independent of the overall circuit control unit and in case of byte-serial
implementations, a lot of cycles are spent just to move bytes around.

TI33 requires 4 shares for the TBC state and does not require any extra
random bits to execute. It has almost 4× overhead compared to unprotected
implementations. However, since its SBox fails TVLA, we should be careful about
the conclusions we make. DOM1-NC, on the other hand, requires at least 14
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cycles per round. On the positive side, when area is the most important aspect,
the area overhead for DOM1-NC is about 2× only. This is since most of the
state of Romulus is either public tweaks or the secret key.

We should note that the overhead due to the high-level mode of Romulus is
almost negligible and almost all the cost comes from the underlying TBC. The
limitations and speed degradation of the scheme comes primarily from the inef-
ficiency of SKINNY when masked and the inability to use optimizations such as
round unrolling for masked implementations. This opens an important research
question regarding the design of masking friendly TBCs. While a small number
of proposals exist, they either have security weaknesses, not widely studied or
are not compatible with Romulus due to supporting only short tweaks.

Finally, in this paper we opted for evaluating the gadgets practically and
relying on composability for the security of the overall implementation. Part of
the future work is practically performing TVLA on full AEAD scheme.
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Abstract. At COSADE’2020, Carré et al. established a novel bias-
cancelling property of the AES MixColumns matrix that effectively cor-
rects any skewed output distribution of a state byte due to a faulty
substitution box. Consequently, any effected byte is rendered uniform
upon passing through the MixColumns layer.

In this work in progress paper, we revisit and generalize this result
and in the process identify a large class of matrices that exhibit this bias
cancellation phenomenon and conclude with a foray into how this prop-
erty is advantageous in the design of countermeasures against Persistent
Fault Injections.

Keywords: Block cipher · PFA · AES · MixColumns ·
Countermeasure

1 Introduction

Persistent faults in cryptographic algorithms attempt to bridge the gap between
short-lived and permanent faults as they remain intact over multiple encryptions
but vanish once the device is rebooted. The study of such faults, termed Per-
sistent Fault Analysis (PFA), gained traction at TCHES’18 in a work by Zhang
et al. [8]. Their attack exploits the statistical imbalance in a collected set of
ciphertexts, caused by one or more overwritten S-box elements, to recover the
last round key of substitution-permutation networks. The idea is based on the
fact that in most SPN ciphers, such as AES, a skewed substitution layer distri-
bution translates directly into a skewed ciphertext distribution. To see this, let
an S-box operation followed by a key addition during the last round. Suppose
the element u does not appear anymore in the S-box output due to the persistent
fault injection. As a consequence, u ⊕ k is an impossible ciphertext word, where
k is a last round key word. Hence, after enough collected ciphertexts from the
faulty device, k can be uniquely identified. The authors subsequently show that
approximately 1500 ciphertexts are sufficient to recover the last round-key of
AES in the presence of a single overwritten S-box element. They further demon-
strate how to use the Rowhammer attack [5] in order to provoke persistent fault
injections in the S-box of vulnerable AES software implementations.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The study of persistent faults was deepened in ensuing works that extended
the baseline attack to the setting of multiple persistent faults [3,7] and reverse
engineering endeavours [1]. At TCHES’20 Zhang et al. improved the overall com-
plexity of their white paper attack by choosing a different statistical angle [9] con-
cerning the analysis of the set of collected ciphertexts, which was subsequently
optimized by Carré et al. [2]. This attack took advantage of the fact that if the
statistical distribution of the of the bytes at the input of the faulty S-box was
uniform, then one byte at the output of the S-box was likely to occur twice as
much as any other byte. The attacker can leverage this fact to mount a more
efficient attack. It turns out that the input distribution of bytes at the beginning
of the last AES round is uniform due to a special bias-cancelling property of the
AES MixColumns matrix. In short, the bias cancellation property may be stated
as follows: let the four input bytes to the MixColumns matrix be drawn from
a skewed distribution D in which one specific byte y− occurs with zero prob-
ability, and another y+ occurs with double probability i.e., 2

256 , and all other
byte values occur with the same probability 1

256 (this distribution captures the
situation encountered doing PFA in which one S-box table entry is overwritten
by y+). Then the four output bytes of the MixColumns operation are uniformly
distributed.

Contributions and Organization. In the paper by Carré et al. [2], it was addi-
tionally observed that the inverse MixColumns matrix of AES does not exhibit
this bias-cancelling property. In a first step, we revisit this result and ultimately
generalize it in a manner that clearly characterizes a set of all possible matrices
that possess this trait. The ease of mounting a Persistent Fault attack and ulti-
mately its acute destructiveness are crucial issues that need to be addressed in
the form of an effective countermeasure. A preliminary treatment of this subject
was commenced in [1] which introduced a probabilistic counter-based hardware
structure enhancing an unprotected block cipher circuit. Although this solution
provided adequate protection for constructions with many rounds it was severely
lacking when it comes to AES. In the second part of this work, we explore the
design space of countermeasures that utilize the bias-cancelling property of the
class of matrices established in the first part in order to nullify Persistent Fault
Analysis where a single fault is affecting the S-box lookup table of an AES
implementation without relying on a probabilistic data structure. Ultimately,
we conclude this work in progress by mapping out open problems with respect
to stronger attack models.

This paper is organized in the following way: In Sect. 2, we prove a theorem
that identifies a large class of bias-cancelling matrices. Subsequently, in Sect. 3,
we explore PFA countermeasures that are based on this property. Section 4 con-
cludes this work with a list of open problems.

2 Bias Cancellation

For the remainder of the paper, we adhere to the fault model where the attacker
can inject a single fault in the AES S-box table that alters one entry thus skewing
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the output distribution. More formally, such a fault overwrites an element y−

with a new value y+, effectively duplicating it. This results in a bias in the
output distribution of the lookup table. Assuming a uniformly distributed input,
the value y− cannot be observed at all as the output, while the value y+ is
observed with an increased probability of 2

256 and other values are observed
with an unchanged probability of 1

256 . More formally, the output probability
distribution D is defined as:

Dy+,y−(y) =

⎧
⎪⎨

⎪⎩

0, if y = y−
2

256 if y = y+

1
256 otherwise.

(1)

Proposition 1 (MixColumns Bias Cancellation [2]). Let us denote by
y−, y+ ∈ F256 the overwritten and duplicated element after a persistent fault
injection and let the distribution D(y+, y−) be defined by Eq. (1). Denote by
B0, B1, B2, B3 ∈ F256 the four bytes representing an AES state column before
a MixColumns operation, independent and identically distributed according to
distribution D. Then each byte Z0, Z1, Z2, Z3 ∈ F256 representing an AES state
column after a MixColumns operation is uniformly distributed.

The above proposition ensures that any byte output of the MixColumn layer,
and thus every byte input to the Substitution layer, is uniformly distributed.
Through maximum likelihood arguments, it is then possible to extract the secret
key in significantly fewer encryption queries than originally suggested in the PFA
white paper. The authors further pointed out that not all matrices exhibit this
property. For example, the inverse MixColumns does not posses any bias cancel-
ling powers. In this work, we wanted to find out what the general characteristics
of matrices are that have this property, i.e., whether it is immediately identifiable
from its algebraic structure.

Theorem 1. Consider an arbitrary linear layer L : F4
256 → F256 defined as

L(B0, B1, B2, B3) = αB0 ⊕ βB1 ⊕ γB2 ⊕ δB3,

where α, β, γ, δ ∈ F256 \ {0} are non-zero coefficients of the MixColumns matrix.
Let each Bi be distributed according to the density function Dy+,y− in Eq. (1).
Then the byte Z = L(B0, B1, B2, B3) is distributed uniformly if and only if either
one of the four expressions hold:

1) α ⊕ β ⊕ γ = 0
2) α ⊕ β ⊕ δ = 0
3) α ⊕ γ ⊕ δ = 0
4) β ⊕ γ ⊕ δ = 0

Proof. The idea is to show that if B0, B1, B2, B3 are distributed according to
Dy+,y− , then each value of Z occurs equally frequently. Given two lists L1, L2
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of n-bit vectors over F2 such that the vector u ∈ F
n
2 appears in L1 a total of au

times and in L2 a total of bu times. If we make a combined list L1 ⊕ L2, of size
|L1|·|L2| by XORing each element if L1 with each element of L2, then the number
of times u appears in this combined list is given by cu =

∑
i∈F

n
2

ai · bi⊕u. This
kind of convolution can be calculated quickly using the Fast Walsh-Hadamard
Transform (FWHT).

If A,B,C are vectors of length 2n over the integers Z, containing the ai, bi

and ci respectively, then we have C = FWHT(FWHT(A) ∗ FWHT(B)), where
∗ represents element-wise integer multiplication. The above result can be also
extended to multiple lists, meaning that if Ai denotes the vector of frequencies in
the list Li then the corresponding frequency vector C in

⊕
Li, is similarly given

as C = FWHT(
∏

FWHT(Ai)). Let us now construct the lists L0, L1, L2, L3 in
the following way:

1. α · B0 ∈ L0, when B0 is a list of length 256 which has all other byte values
once, y+ twice but does not have y−.

2. β · B1 ∈ L1, when B1 is same as B0.
3. γ · B2 ∈ L2, when B2 is same as B0.
4. δ · B3 ∈ L3, when B3 is same as B0.

It can be easily seen, for example, that the list L0 does not contain α · y− but
α · y+ appears twice, and all other vectors appear exactly once. So we can write
A0 = U + T (α · y+, α · y−), where U is the all 1 vector and T (α · y+, α · y−)
is a vector with 1 at location α · y+, -1 at α · y−, and remaining locations 0.
Now we have C = FWHT(

∏3
i=0 FWHT(Ai)). For C to represent the uniform

distribution, then from the properties of FWHT, we know that
∏3

i=0 FWHT(Ai)
must have only one non-zero element (in the 0-th location). The remaining 2n−1
entries of this array must be 0. This is a characterizing condition: if C does not
represent the uniform distribution, then

∏3
i=0 FWHT(Ai) must have multiple

non-zero entries.
Now FWHT(A) is essentially a linear transform, and is given by the matrix-

vector product F · A over (Z). Here F is a matrix of size 2n × 2n over Z, and
the (i, j)-th element of F is given by (−1)〈i,j〉. The expression 〈i, j〉 denotes
the dot product between i, j over F2. For example, for n = 4, 〈0011, 1110〉 =
0 · 1 ⊕ 0 · 1 ⊕ 1 · 1 ⊕ 1 · 0 = 1. Therefore we have,

FWHT(A0) = F · A0

= F · U + F · T (α · y+, α · y−)
= (2n, 0, 0, . . . , 0) + Vα·y+ − Vα·y− .

Here, Vi represents the i-th column of F . Therefore the j-th element of Vi is
given as (−1)〈i,j〉. Therefore for non-zero j, the j-th element of FWHT(A0) is
(−1)<α·y+,j> − (−1)<α·y−,j>. Denote Δ = y+ ⊕ y−, then we have

FWHT(A0)[j] =

{
0, if 〈α · y+, j〉 = 〈α · y−, j〉 ⇒ 〈α · Δ, j〉 = 0
±2, if 〈α · y+, j〉 	= 〈α · y−, j〉 ⇒ 〈α · Δ, j〉 = 1
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We can make similar deductions about all the other FWHT(Ai). Let us
assume that one of the four conditions in the theorem statement holds. Without
loss of generality, let us say that α ⊕ β ⊕ γ = 0 holds. Note that any non-zero
j-th element of the product of

∏3
i=0 FWHT(Ai) is non-zero if and only if we

have a j 	= 0 such that

〈α · Δ, j〉 = 〈β · Δ, j〉 = 〈γ · Δ, j〉 = 〈δ · Δ, j〉 = 1 (2)

We can see that no such j can exist as 〈α · Δ, j〉 = 〈β · Δ, j〉 = 〈γ · Δ, j〉 = 1
implies that 〈(α ⊕ β ⊕ γ) · Δ, j〉 = 1 ⇒ 〈0, j〉 = 1, which is clearly not possible.
So all non-zero locations of

∏3
i=0 FWHT(Ai) must have 0, which implies that C

represents the uniform distribution.
To prove the only if part, let us assume that none of the four theorem

statements hold. We show that for such a set of coefficients C can not represent
the uniform distribution, in other words

∏3
i=0 FWHT(Ai) must have multiple

non-zero entries, thus Eq. (2) must have multiple non-zero solutions j. Consider
the matrix M of size 4 × n over F2 whose four rows are given by the vectors
α ·Δ,β ·Δ, γ ·Δ, δ ·Δ. Equation (2) is the same as saying that M ·j = (1, 1, 1, 1)T

has a solution, where j over here is seen as a column of n bits. If the rank of M
is 4, then the map j → M · j is obviously subjective over F4

2 and thus (1, 1, 1, 1)T
is surely in the image of M · j. This guarantees that Eq. (2) has a solution. If
not, consider the following cases:

– Case 1. If the rank of M is 1, which means that α = β = γ = δ, and the
four rows of M are identical. Since α · Δ is non zero there must be at least
one column (say k-th) of M which has all 1. Thus we can then select j to be
the column vector which has only one 1 in the k-th location and remaining
zeros.

– Case 2. If the rank of M is 2, then (up to a permutation of values) we
can either have coefficients of the form α = β = x and γ = δ = y, or
α = β = γ = x and δ = y, with x 	= y. Note that coefficients of the form
α = x, β = y and γ = x ⊕ y and δ = x or y or x ⊕ y are not permitted since
we will then have α ⊕ β ⊕ γ = 0. For the first sub-case, again since x · Δ 	= 0,
there must be one column of M (say k1-th) with first two entries 1. We then
construct j = j1 as in the previous case. If the other 2 entries of the k1-th
column are also 1, then we have M · j1 = (1, 1, 1, 1)T and we are done. If not
we have M · j1 = (1, 1, 0, 0)T . Since y · Δ 	= 0, we can similarly construct j2
such that M · j2 = (0, 0, 1, 1)T . This implies that M · (j1 ⊕ j2) = (1, 1, 1, 1)T .
The analysis for the second sub-case is exactly similar.

– Case 3. If the rank of M is 3, then (up to a permutation of values) we
have α = x, β = y, γ = z and δ = x ⊕ y ⊕ z/x/y/z. Again note that δ =
x ⊕ y/y ⊕ z/x ⊕ z are not permitted since then we would have one of the
3-wise sums of α, β, γ, δ equal to 0. Consider the matrix M ′ of size 3 × N ,
which is constructed by removing the δ ·Δ row from M . Clearly M ′ has rank
3, and so the map j′ → M ′ · j′ is obviously subjective over F

3
2. And so we

must have a j′ such that M ′ · j′ = (1, 1, 1)T . This means that

〈α · Δ, j′〉 = 〈β · Δ, j′〉 = 〈γ · Δ, j′〉 = 1.
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And so 〈(α⊕β⊕γ)·Δ, j′〉 = 1⊕1⊕1 = 1. This implies that M ·j′ = (1, 1, 1, 1)T

for all the four values of δ = x ⊕ y ⊕ z/x/y/z so we are done. The three cases
above prove that Eq. (2) must have a solution in all cases, and so C does not
represent the uniform distribution.

Corollary 1. It can be seen that for the AES MixColumns matrix α = 2, β =
3, γ = 1, δ = 1. We have that α ⊕ β ⊕ γ = 0 and so by the previous theorem,
this matrix has bias cancellation property. However, for the inverse MixColumns
matrix we have α = 0xe, β = 0xb, γ = 0xd, δ = 0x9. None of the 3-wise sums
for this set of coefficients result in 0, and hence the inverse AES MixColumns
matrix does not have the property of bias-cancellation.

3 Applications

We observe that PFA works because in the last AES round the MixColumns
operation is not performed. The biased output of the faulty S-box is directly
XORed with the last round key to produce the ciphertext bytes. Subsequently
the ciphertext can be accessed by the attacker to craft a statistical distinguisher.
Whereas the bias cancelling property of the AES MixColumns was actually used
by [2] to perform a more efficient PFA on AES, one can see that this same bias
cancelling property can completely prevent the attack, if one were to include the
MixColumns operation in the 10th and last AES round. With this particular
AES modification, any bias in the distribution of the bytes in last the S-box
layer would be cancelled by the MixColumns layer, making it hard to craft
a statistical distinguisher. To analyze the behavior of this countermeasure we
simulated again a single-fault PFA. Testing yields positive results; a modified
AES with an extra MixColumns operation before the last AddRoundKey is able
to prevent PFA as devised in [2,8].

Naturally the question arises as to whether modifying the 10th AES round to
include a MixColumns layer effectively thwarts any PFA. The answer is however
negative. An attack exists that targets single bytes at the S-box output of the
penultimate round and works by inverting the MixColumns operation during
the last round and performing 232 key guesses [4,6]. The attack is explained
diagrammatically in Fig. 1. Note all the distribution of bytes in the states in
pink/gray background are unbiased/biased respectively. The main idea is that
we guess one column of the 10th round key K10, and compute backwards. This
enables us to compute the first column of the states marked C,D and the main
diagonal of B. For a correct guess of the round-key column we are expected to
observe in the bias in the distribution of the bytes in B. We can use this as a
distinguisher to find the correct round key column.

To demonstrate this, we performed a single-fault PFA and found the secret
key of the modified AES after 10k encryptions. In conclusion, modifying AES
with an additional MixColumns prevents only the standard version of PFA and
forces the adversary to do additional encryption queries and incurs an increased
key guess complexity.
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SB SR MC

K10

A B C D CT

1. Guess

Biased Unbiased

2. Invert MC3. Invert SR

Fig. 1. Persistent Fault Analysis on an AES instance with a modified 10th round.

3.1 Adding an 11th Round

However one may think that adding an additional round after the modified 10th
encryption round may remove all bias in the distribution of the ciphertext bytes
and at the same time prevent the attack due to [6]. This additional round would
omit the substitution layer and consist of only ShiftRows, Forward MixColumns
and AddRoundKey operations. Owing to the bias cancellation property of the
forward MixColumns matrix, there would not exist any bias to exploit in the
distribution of the ciphertext bytes. An exploitable bias in distribution exists
only after the 10th round substitution layer. To exploit this bias, the attacker
would have to (a) guess the entire 11th round key and invert the key schedule
to compute the 10th round key, (b) then use the guessed key values to invert
the entire 11th round and part of the 10th round to compute the value of any
byte b just after the 10th substitution operation, (c) compute the distribution of
b over many collected ciphertexts. If the guessed key values are correct then the
attacker will observe bias in b as expected. However this requires guessing the
entire 11th round key and thus is not better than exhaustive search. The steps
are shown Fig. 2.

This looks promising, because guessing part of the 11th round key would be
insufficient to perform the attack. For example, if we guess only the first column
of K11, then we will only find the main diagonal of the state marked E in Fig. 2.
Now even if we guess the entire of K10, it is insufficient to find an entire column
of D, which prevents us from computing the inverse MixColumns operation to
find any byte of C.

Nevertheless, we can again demonstrate an attack on this structure with a
total complexity of 232 key guesses. This uses the fact that all operations after
the 10th round are completely linear. Thus functionally, one may bring forward a
linear multiple of the 11th round key and merge with the 10th round key addition
operation. The process is explained in Fig. 3. So if we define Lin = SR ◦ MC,
then we can basically mount the same attack as in Fig. 1, with the only difference
that we now guess a column of K10 ⊕ Lin−1(K11).
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Fig. 2. Modified 10th and 11th round of a PFA-protected AES instance.

3.2 Adding Non-Linearity

The above analysis is instructive in the sense that highlights the fact that even
after cancelling distribution bias by adding an additional MixColumns layer, the
construction can not prevent PFA without additional non-linearity injected into
it. The easiest way to do this on most software platforms is modular addition.
One can define a modular addition layer as follows: if c0 and c1 are two columns
then define c0 � c1 as modulo 256 addition between each of the individual bytes
of c0/c1. After this we can define a Modular Addition (MA) layer as

MA : (c0, c1, c2, c3) → (c0 � c1, c1 � c2, c2 � c3, c0 � c1 � c2)

The operation is invertible as given by

MA−1 : (c0, c1, c2, c3) → (c3 � c1, c0 � c1 � c3, c3 � c0, c0 � c2 � c3)

We chose this particular structure of MA as this is relatively efficient to imple-
ment in software, and is invertible. It is indeed possible to select other invertible
layers with similar efficiency in software. This allows us to begin the additional
11th round with a MA layer before the linear layers. The best attack on this
construction takes at least 264 key guesses to find one key column. The idea
is shown in Fig. 4. We move the 11th AddRoundkey operation before the Mix-
Columns layer and guess 2 diagonals of MC−1(K11) and one column of K10 get
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Fig. 3. Persistent Fault Analysis of the countermeasure proposed in Fig. 2.
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Fig. 4. Attacking an additional round equipped with non-linear modulo addition.

the bytes after the 10th round SubBytes. It may appear that the guess complex-
ity is 296. However, note that we can get the correct value of the column in the
state E, for incorrectly computed columns in F too. This is since, if f3 and f0
are the correct values of the columns in F , then f3 � Δ and f0 � Δ also lead to
the correct computation of the column in E for any Δ ∈ {0, 1}32. Thus around
232 guesses of the diagonals of MC−1(K11) lead to a successful attack. If we
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choose the diagonals randomly, then by birthday assumptions, 232 guesses of the
diagonal values are sufficient to mount a successful attack. We further observe
that adding a 12th similar round may make the complexity of PFA close to that
of exhaustive search.

4 Conclusion and Future Work

In this paper, we investigated the design space of countermeasures based on the
bias-cancelling matrices in the setting of a single Persistent Fault injection within
the S-box lookup table. However, in practice a fault injection may affect multiple
bytes of the S-box which subsequently can be exploited in a similar fashion. It
is straightforward to see that the class of matrices identified in Theorem 1 do
not cancel any bias occurring in two or more input bytes which subsequently
nullifies the countermeasure proposed in Sect. 3. Furthermore, the integration
of such a countermeasure requires a thorough study of the induced overhead
in both software and hardware environments. In summary, the following salient
directions are left as open problems.

– Prove a more general variant of Theorem 1 that allows the characterization
of matrices that allow for the cancellation of an arbitrary amount of biased
inputs bytes.

– Deepen the study of applications of this new class of matrices in terms of a
PFA countermeasure.

– Explore the implementation space of the proposed countermeasure in both
software and hardware with regard to efficiency.
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Abstract. With the advent of Malicious (Peyrin and Wang, Crypto’20),
the question of a cipher with an intentional weakness which is only known
to its designer has gained its momentum. In their work, the authors dis-
cuss how an otherwise secure cipher can be broken by its designer with
the help of a secret backdoor (which is not known to the user/attacker).
The contribution of Malicious is to propose a cipher-level construction
with a backdoor, where it is computationally infeasible to retrieve the
backdoor entry despite knowing how the mechanism works.

In this work, we revisit the work done by Peyrin and Wang in a
greater depth. We discuss the relevant aspects with more clarity, thereby
addressing some of the important issues connected to a backdoor con-
struction. The main contribution, however, comes as a new proof-of-
concept block cipher with an innate backdoor, named ZUGZWANG.
Unlike Malicious, which needs new/experimental concepts like partially
non-linear layer; our cipher entirely relies on concepts which are well-
established for decades (such as, using a one-way function as a Feistel
cipher’s state-update), and also offers several advantages over Malicious
(easy to visualise, succeeds with probability 1, and so on). Having known
the secret backdoor entry, one can recover the secret key with only 1
plaintext query to our cipher; but it is secure otherwise.

Keywords: Backdoor · Hash function · XOF · Block cipher · Feistel ·
Low-MC · Malicious · Low-MC-M · Provable security · SPRP ·
White-box

1 Introduction

One of the problems that comes with designing a cipher is to gain the collective
trust of the community. The cipher must satisfy certain security requirement with
sufficient margin to prevent a malicious attacker (who has the full knowledge of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the cipher specification) from getting information secured by the cipher under a
secret key. At the same time, it is also essential that the cipher designer will fail to
retrieve the data secured by the cipher under a secret key. Stated in other words,
the designers of a cipher have to convince the rest of the community that the cipher
does not have a hidden vulnerability that evades known cryptanalytic methods
(thus, it is known only to the designers). As we have seen, this is not always the
situation. Case in point, it has long been speculated that the SIMON and SPECK [4]
family of block ciphers have some form of hidden backdoor (see [9] or Schneier’s
blog1. among other sources2), which are only known to the designers3. Despite
years of speculation, the presence of any backdoor is not determined.

Amidst such situation, it is not surprising that the cryptographic community
will take interest in the prospect of designing a cipher with an implanted back-
door. We have recently seen this happening in the Crypto’20 paper [9] where the
designers take an otherwise secure cipher family and implant a backdoor in it.
They present their contribution in the form of a framework, named, Malicious.
It works by querying the cipher with a chosen tweak difference on a variant of
the LOWMC [1] family of ciphers (this tweak difference is secret and known only by
the cipher designer). Ultimately, this tweak difference propagates through the
cipher in such a way that the resulting ciphertext difference allows the cipher
designer to retrieve the secret key (the secret key is chosen by, and only known
to the user) with a certain probability. They also describe a Malicious based
tweakable block cipher, named LOWMC-M.

1.1 Contribution

A big part of the inspiration of our work goes to the Crypto’20 paper by Peyrin
and Wang [9]. More precisely, we take a deeper look at the Malicious framework
(and its instance LOWMC-M), and improve the state-of-the-art in a number of ways.

To begin with, we show a provably secure construction of backdoor that
improves from LOWMC-M [9]. Our method of the backdoor construction relies
entirely on pre-existing notions of security, which are well-known/well-analysed
for decades. The construction of Malicious is more on the experimental side,
that relies on lesser studied concepts such as partially non-linear layer. Apart
from that, our backdoor requires only 1 plaintext query (works with probabil-
ity 1), unlike the LOWMC-M that requires a number of chosen (plaintext, tweak)
queries. We do not need any tweak, and the overall idea is generic – it can be
implemented atop virtually any encryption and hash algorithm4. Thus, making
it possible to have a backdoor without any tweak and not tied to LOWMC [1].
1 https://www.schneier.com/blog/archives/2018/04/two nsa algorit.html.
2 It is also worth pointing out that problem is partly exacerbated due to the absence

of any cryptanalytic result in the introducing paper [4].
3 In this case, the designers are a group of researchers from the American government’s

National Security Agency (NSA), possibly hinting at a government-level initiative in
the background.

4 Depending on the hash output size and the state size of the encryption algorithm,
we may need to pad/truncate.

https://www.schneier.com/blog/archives/2018/04/two_nsa_algorit.html
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The coverage/contribution of our paper does not end there. We ask several
relevant questions, which have not been answered yet. We argue that no matter
how cleverly the backdoor is designed, it is not possible for the designer to
access it without the user’s cooperation (as the user can always cross-check if
some secret information is revealed – and if so – can deny the request); or one
backdoor entry cannot be used more than once (as the attacker will get to know
as soon as it is used). The elephant in the room, however, lurks in hiding the key
which is released as a result of the backdoor access—the key is not encrypted in
any way, meaning the attacker gets to know about it no later than the designer
does.

1.2 Prerequisite

As discussed in [9, Section 1], the concept of backdoor itself is not new. In our con-
text, we directly follow [9]. For clarity, the terms/ideas used are briefly described
here.

Alice
User

(Sender)

Bob
User

(Recipient)

Eve
Attacker

Cipher

Derek
Cipher Designer

Fig. 1. Schematic of backdoor work-flow

The cipher designer, whom we refer to as Derek for simplicity, designs a
cipher with an intentional backdoor (which is known only by him). The cipher
(the public description of the cipher, to be more precise) is then used by the
users, Alice and Bob, to communicate sensitive information. The attacker, Eve,
watches the channel between Alice and Bob closely and knows all the (pub-
licly available) specification/cryptanalysis regarding the cipher. Figure 1 shows
a schematic representation.

Now, at some point during communication, Derek can use the backdoor to
retrieve sensitive information, this incidence (if happens) is indicated by back-
door access. The backdoor mechanism lets Derek to access sensitive information
(this works as a weakened version of the cipher). The mechanism is activated
with the help of a backdoor entry (e.g., a 128-bit string when used as the plain-
text to the cipher), which is known only to Derek (it will likely become a public
knowledge after it has been used once).
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For the interest of brevity, we assume the reader’s familiarity with the basic
terms/concepts, including; CSPRNG, LFSR, block cipher (along with padding,
and mode of operation like CTR), stream cipher (along with IV and nonce), hash
function, MAC, AE, AEAD; PRP, SPRP; OWF ; cipher families (Feistel, SPN
and ARX); and ciphers (DES, AES, RC4, RSA). We also use XOF5 (eXtended Out-
put Function). An XOF is a one-way function that takes a message of arbitrary
length and returns a message of desired length (i.e., {0, 1}� → {0, 1}�).

1.3 Organisation

The background information is covered in Sect. 2 (particularly Sect. 2.2 contains
some previously unreported observations). Section 3.1 goes through the practical
aspects of a backdoor, and Sect. 3.2 covers two related notions of security.

In Sect. 4, we present our block cipher named “ZUGZWANG”6 that has a back-
door7. After the fundamental idea is stated in Sect. 4.1, we show a concrete
instance by using AES-128 and SHAKE-1285 in Sect. 4.2. Apart from that, a com-
parison with Malicious is given in Sect. 4.3.

The conclusion can be found in Sect. 5. For more discussion (along with secu-
rity proof and test cases) one may refer to the extended version available at [3].

2 Background

2.1 Implementation Level and Cipher Level Backdoors

The term, ‘backdoor’ is generally more common in the cyber-security or hacking
communities. Here it typically refers to an intentionally implanted weakness8.
This process is done at the fabrication/implementation level and transparent at
the cipher design level9. See [10] for a recent example.

Our interest, however, lies on the other type of backdoor, which works at the
cipher design level. In this case, the cipher is so designed that, it has a secret
backdoor which is known only by its designers. It is long been speculated that
some ciphers, whose entire specification is available in public, may contain some
secret backdoor.

5 See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.
6 It is a German word (translates to ‘a compulsion to move’), used in context of Chess

to describe wherein all the available moves for a player make the situation worse.
7 As it has a backdoor, any practical application of ZUGZWANG is not recommended (to

be used mostly, if not only, as an interesting proof-of-concept).
8 For instance, one may look at the “politically correct” backdoor: https://www.kb.

cert.org/vuls/id/247371.
9 This is noted in [9, Section 1]: “There are two categories of backdoors. The first one is

the backdoor implemented in a security product at the protocol or key-management
level, which is generally considered in practice.”.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.kb.cert.org/vuls/id/247371
https://www.kb.cert.org/vuls/id/247371
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2.2 Context

The cipher level backdoors can be theoretically divided into the following cate-
gories:

(1) A cipher so craftily designed that nobody is able to find the presence of a
backdoor after few years of speculation and testing. So far it passes all the
known methods of cryptanalysis. It is not known whether there is actually
a backdoor or this is just a myth. If/when this cipher is made a standard
and adopted as a global standard, it is in theory possible for its designers to
access the backdoor and retrieve sensitive information.
The SIMON and SPECK [4] family contain few block ciphers which are sus-
pected to have this kind of backdoor (see, e.g., [9]). It is not known if there
is any backdoor, or how the backdoor mechanism works; if there is any in the
first place. If there is some backdoor in those ciphers, it is never accessed,
to the best of our knowledge/understanding.

(2) A cipher where the designers publicly claim there is a backdoor. The cipher is
secure except when the backdoor is accessed. The designers make no attempt
to hide the backdoor; rather they claim upfront that there is a backdoor –
this is how the backdoor mechanism works – so on and so forth.
This category is recently popularised through the Malicious framework [9].
This framework can create such a cipher by tinkering with some otherwise
secure cipher, given the base cipher satisfies some criteria. By accessing the
backdoor, the cipher designer can retrieve the key by analysing the cipher
output. The LOWMC-M [9] is an instance of this framework, which takes a
secure instance of LOWMC as the base cipher.
One may notice the following characterisation of this category:
(α) The presence of the backdoor is made public by the designers. This also

nullifies the question of whether it is hard to spot the presence of the
backdoor had it not been known10.

(β) Except when the backdoor is accessed, the cipher is secure. When the
backdoor is accessed, the secret key is released from the cipher output
(assuming the user does not prevent that, see Inference (B)) – at least
in theory, satisfying the “practicality” condition of [9, Section 2.2].

(γ) Though the backdoor mechanism is public, it is infeasible to find out
what the secret backdoor entry that activates the mechanism is. This is
called the “undiscoverability” condition [9, Section 2.2].

By observing the Category (2) design in the literature (namely, [9]), the
following inferences can be drawn (see Sect. 3.1 for more discussion):

(A) The backdoor can be accessed at most once. The backdoor mechanism is
public, therefore anyone can check the incoming requests to the user to see
if the backdoor is activated. Once it is found, the secret backdoor access

10 It may be hard to spot the backdoor for someone who does not know beforehand,
but here it does not matter as the designers have already made it public.
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becomes visible to everyone. Basically, one can monitor all the incoming
traffic to the user and attempt to reverse-engineer the backdoor entry, and
will eventually succeed as soon as the backdoor entry is used.
This can be done by the user (Alice) or the attacker (Eve11) alike. Though
Eve does not know the actual secret key (which is chosen and kept secret
by Alice), she can still choose an arbitrary key, and then follow-through the
steps of the backdoor mechanism to see if information about the arbitrarily
chosen key is released.

(B) It is not possible to extract the secret key without the user’s (Alice’s) coop-
eration. Alice can always keep an eye out for activation of the backdoor
mechanism. Based on that, she may return an invalid output or something
random (if the backdoor mechanism is activated), instead of the actual out-
put from the cipher.

(C) The key which is released from the cipher output (as a consequence of the
backdoor access) is not encrypted12, meaning pretty much everyone on the
network (including the attacker) can access it.

In this work, we aim at improving Category (2) backdoors; i.e., we are inter-
ested to create improved design that satisfies Criteria (2α), (2β) and (2γ). It
is important to note that those criteria are adopted from [9], and are not con-
ceived by us. It is perhaps worth noting that Inferences (A) and (B) violate the
“untraceability” condition which is described in [9, Section 2.2] (Inference (B)
is already acknowledged in [9, Section 5.3] as a violation of “untraceability”).
Whether or not it is possible to design a Category (1) backdoor is left as an
open problem.

Remark 1. The closest to Category (1) the designers of Malicious could have
gone is to present a new cipher/framework/mode and make a vague claim about
presence/absence of a backdoor. Then it would be up to the community to
figure out if there is a backdoor, how to activate the backdoor/how the backdoor
mechanism works, etc.

Remark 2. In theory, it is possible to design a cipher in Category (1) if the
designer manages to find an attack not yet known to the (mainstream) commu-
nity13. The backdoor in this case will be activated through this new attack, and
will (more than likely) be missed by the community (at least until this attack

11 As per [9, Section 2.1], the attacker/eavesdropper Eve is considered within the
Malicious framework.

12 If the released key is encrypted with another key, that means the cipher designer
and the user have to know the other key beforehand. In that case, they can simply
use any cipher (with the other key) to communicate the key released through the
backdoor instead, thus completely cutting off the need for a backdoor.

13 For instance, some of the public-key ciphers (including RSA) are now known to be
vulnerable against quantum computers, but those attacks were not known when
those ciphers were designed. In a less restricted sense, the quantum attacks can be
considered as backdoors to those ciphers.
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is discovered or the backdoor mechanism is reverse-engineered). For perspec-
tive, the construction of Malicious [9] depends on the well-studied differential
attack; thus the backdoor, in a very high likelihood, would be spotted by the
community (had it not been known already).

3 Basic Concepts

3.1 Practical Application of a Backdoor

Status Quo. The first problem that arises while talking about the practicality
of backdoor is to convince the users to adopt it. There is no shortage of efficient
ciphers in the public domain; with well-described design rationale and which
are well-analysed by the community. The users, Alice and Bob, may simply
refuse to adopt any new/experimental cipher (for example, any cipher from the
LOWMC family [1] altogether, or the unusual choice of using an XOF to design an
encryption as in LOWMC-M [9]), suspecting there could potentially be a backdoor.
Therefore, in a loose sense, they agree for the designer to retrieve the secret key
if they agree to adopt a new cipher. Thus, the design and study of backdoor
appears to be purely an academic interest than a pragmatic one.

Anyway, as far the technical problems are concerned with the current concept
of backdoor [9] (which we call Category (2), see Sect. 2.2), we note the following:
Since the identity of the cipher designer (whom we call Derek for simplicity,
as indicated in Sect. 1.2) is known to everybody in the network; including Alice
(sender), Bob (recipient) and Eve (attacker). Therefore Alice (as well as Bob) can
be extra cautious when a request comes from Derek, implying the limitations:

(i) Alice can simply deny any request from Derek, preventing him to access the
backdoor.

(ii) If Alice complies with Derek’s requests and lets him access the backdoor, this
can be noticed by Eve. Now the secret key is leaked through the response
from Alice and the key is not encrypted14, thus Eve can effectively recover
the key.

Overall, the Limitations (i) and (ii) mostly, if not fully, diminish any real-life
application for a Category (2) backdoor. The cipher designer (Derek) cannot
use it without active cooperation from the user (Alice or Bob). Even if Derek
can obtain anonymous identity or spoof a fake identity, it is still up to the
mercy of Alice. All the information is coming from Alice, so she can simply
check the output from the cipher before sending it15; and discard the request or
give a random output; should she suspect the backdoor is being accessed. On

14 There is practically no way to encrypt this key, at least within the realm of
symmetric-key cryptography; as this would require exchange of another secret key
between Alice and Derek. This invalidates the need for a backdoor in the first place.

15 For instance, Alice can check if the XOR of two consecutive cipher outputs equals to
the key. Given the backdoor mechanism is public, she already knows exactly what
to look out for.
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the other hand, if Alice agrees Derek to access the backdoor, they can instead
create a secure channel between them (no need for a backdoor). Besides, letting
Eve know the secret key is a miserable flaw, since the whole purpose of any
cryptographic system is to ensure the attacker cannot access the key.

The point to note here is, we are heavily implying that the notion of back-
door, at least in its current form, suffers from severe limitation that comes from
lack/absence of trust for Derek. If Alice does not respond to anyone she does
not trust, anonymous/fake identity by Derek is meaningless. We are not saying
either of the assumptions is objectively true/untrue. We are simply saying, in
order for Derek to succeed in utilising the backdoor; he needs to circumvent
those real-life problems at first, which may turn out to be challenging.

Uncertain Future Prospect. While it does not seem possible to extract the
secret key without cooperation from the user, it may be possible with some
cipher in the future where the designer can extract the key in a way that the
attacker cannot get it. One potential concept to achieve this in the future (that
may or may not work) can be stated as follows.

Suppose, instead of only one backdoor entry, it is split into q backdoor
shares16 (somewhat comparable with the concept of secret-sharing [11]), where
the cipher output from all the shares are required to retrieve the key. Say, by
querying with the bi backdoor entry, ci is obtained, for i = 0, . . . , q − 1. Each ci

contains some information about the secret key, but all of those are required to
get the key.

Not only that, each ci is connected in secret way (which is only known to
Derek) so that the connection is to be respected in order to find the key. With
some suspension of disbelief, say, k = f(cj0 , cj1 , . . . , cjq−1) where the function f
is secret (only known to Derek) and is not symmetric, for (j0, j1, . . . , jq−1) being
secret a permutation of (0, 1, . . . , q − 1). Thus, despite knowing all the public
information as Derek does, Eve may not be able to actually uncover the key
given certain regularity assumptions (like, q is sufficiently large) as she would
need to cover the search-space of q!.

This concept is shared here only to pique the interest of the future researchers.
Whether or not this will turn out to be a feasibility is unclear as of now.

3.2 Associated Notions of Security

Undetectability. The authors of Malicious in of [9, Section 2.2] mention one
desirable security notion for a Category (2) backdoor, “undetectability”. It is
defined as “the inability for an external entity to realize the existence of the
hidden backdoor”. Here we argue that this is a bit tricky.

Note from Criterion (2α), the backdoor designers of Malicious [9] have
already made the presence of the backdoor a public knowledge. Thus, it is a pre-
conceived knowledge that a backdoor exists, thus violating the “undetectability”.
16 Possibly something similar is laid out by Peyrin: https://thomaspeyrin.github.io/

web/assets/docs/invited/TII CRC 21 slides.pdf, Slide 63.

https://thomaspeyrin.github.io/web/assets/docs/invited/TII_CRC_21_slides.pdf
https://thomaspeyrin.github.io/web/assets/docs/invited/TII_CRC_21_slides.pdf
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We further notice that the notion about whether the cipher has an embed-
ded backdoor does not seem to hold either. This is because we are not aware
of any possible way to ascertain a cipher does not contain a backdoor (“How
do you know AES does not have a backdoor?”). The ciphers which are broken
can be (arguably) considered to have a backdoor, but it does not seem possi-
ble to comment on non-existence of a backdoor about those ciphers which are
deemed secure. As a consequence, it is not possible to say an arbitrary instance
of LOWMC-M does not contain a backdoor (regardless of an intentional backdoor
following Malicious is implanted or not).

Need for White-box Security. Given the analysis in Sects. 2.2 and 3.1; it
stands to reason that, Alice (as well as Bob) and Eve can reverse-engineer the
backdoor mechanism as soon as the first query is made by Derek as long as the
cipher specification is public. Indeed, no matter how the backdoor mechanism
works, it has to trigger something (such as, some variable has to become 0, some
loop has to terminate, and so on). If the cipher specification is known, then
anybody can utilise such information no later than the correct backdoor entry
is used.

Therefore, if we want the backdoor mechanism will not be revealed even after
a backdoor entry is queried with, a basic condition is that the cipher specification
is to be kept secret by Derek. However, this alone is not enough, since it is pos-
sible to reverse-engineer the cipher specification given its (unprotected) imple-
mentation (cf. the well-known cases of reverse-engineering RC417 or CRYPTO-1 in
Mifare Classic RFID tag [8]). Thus, the implementations of the cipher (which
are prepared and shared by Derek to Alice and Bob) practically have to be
secure against the white-box [5,6] attacks. In a white-box setting, the secret key
is embedded in the cipher implementation in a way that it cannot be recovered.
That said, one may notice the following differences from the usual white-box
setting (cf. obfuscation18):

1. The cipher specification itself is secret in a backdoor setting, which is a more
stringent requirement than usual white-box (where it is public).

2. The cipher designer supplies the implementations to the users, but he does
not know the secret key. This contrasts the usual white-box setting where the
implementer knows and embeds the key. It is not clear whether this is a more
stringent requirement.

At this point, it is perhaps safe to assume, there is no proper real-life appli-
cation of the concept of backdoor introduced in [9], at least in the mainstream
academic community. Somebody may still use a cipher like that if it is enforced19.
17 https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/

date/1994/09/msg00304.html.
18 https://www.esat.kuleuven.be/cosic/blog/program-obfuscation/.
19 One may compare with the government-issued (closed-source) applications to trace

COVID-19 to some extent, though there is no separate recipient (Derek = Bob) and
there is no secret key to recover.

https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html
https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html
https://www.esat.kuleuven.be/cosic/blog/program-obfuscation/
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For instance, assume the situation where there a push from the government to
implant some intentional backdoor to compromise the security of products used
by the common people. In that case, it is in theory possible to use a Category (2)
cipher, with its full specification being available in public (and with no white-box
protection). Our cipher ZUGZWANG can be in theory used in such a situation; but
as academic researchers with a moral compass, we do not condone that. To the
best of our finding, the only incident similar to this is rumoured in Australia
back in 2018, but it seems to be officially denied20.

4 ZUGZWANG: Constructing a Block Cipher with a Backdoor

One major observation from Malicious [9] is that, the only reason the
user/attacker cannot retrieve the backdoor is the one-way property of the XOF.
As it is known, a Feistel block cipher can use an OWF as its state-update (see,
DES for an example), we adopt the idea to finally extend it to ZUGZWANG. Whether
or not a similar construction is possible with SPN and ARX families, and whether
some other idea is possible that does not involve any OWF, are left open for
future research.

4.1 Fundamental Idea of ZUGZWANG

In its simplest form, ZUGZWANG is a 2-branch balanced Feistel network based block
cipher that runs for n rounds (counting of rounds goes from 0 to n − 1). It uses
fi(Ki, cL) as the round function for the ith round; where Ki is the corresponding
round key, cL is the plaintext or the intermediate ciphertext currently at the left
branch. Each fi has the property that it collapses if cL = p̂0 (if i is even) or
cL = p̂1 (if i is odd), for some predefined p̂0 and p̂1. In this case, p̂ = p̂0||p̂1
constitutes the secret backdoor. Also note that, the last Feistel round does not
have any swap operation between the two branches (so there are n − 1 branch
swaps).

Now, notice that, p̂0 and p̂1 cannot be used directly in the specification of fi’s
(those cannot be passed as parameters of fi’s); otherwise Alice and Eve would
trivially retrieve these. Thus, we run an OWF, H(·) first. This leads to pre-
computing and storing H(p̂0) (respectively, H(p̂1)) where i is even (respectively,
odd) in the cipher specification as constants. Now that H(·) is used to p̂0 and p̂1,
we need to apply it to cL too. Ultimately, instead of directly checking whether
cL = p̂0 or cL = p̂1, we are now checking if H(cL) = H(p̂0) or H(cL) = H(p̂1).

Although H(p̂0) and H(p̂1) are stored and accessible in the cipher specifica-
tion, the following claims hold due to the property of H(·):
• Pre-image resistance: It is hard to retrieve p̂0 and p̂1.
• Second pre-image resistance: It is hard to find another p̂i

′ (�= p̂i) such
that H(p̂i

′) = H(p̂i) for i = 0, 1.

20 https://www.homeaffairs.gov.au/about-us/our-portfolios/national-security/lawful-
access-telecommunications/myths-assistance-access-act.

https://www.homeaffairs.gov.au/about-us/our-portfolios/national-security/lawful-access-telecommunications/myths-assistance-access-act
https://www.homeaffairs.gov.au/about-us/our-portfolios/national-security/lawful-access-telecommunications/myths-assistance-access-act
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Notice that the birthday-bound security for collision does not apply here. These
claims constitute the secrecy of the backdoor entry given its H; i.e., no algorithm
better than the brute-force search is known.

Next, we need to use an encryption, EKi
(·) inside fi’s to make the overall

Feistel cipher secure. As some form of the check H(cL) = H(p̂j) for j = i
(mod 2) has to be inside fi, a natural choice is fi = EKi

(H(cL))⊕αi where αi =
EKi

(H(p̂j)). After n rounds of update are done, post-whitening keys (KL,KR)
are XORed to the branches.

Notice that when p̂0 and p̂1 are fed to the left and right branches respectively,
fi’s are always 0, and this holds irrespective of number of rounds. Basically, fi

(which is 0) is XORed to the right branch, making the content of the right branch
going to the left branch in the next round. As the content of the right branch
is what makes fi+1 collapse, the pattern continues. This allows us to create an
arbitrary number of rounds, though for proper security in two directions (and
with the assumption that E and H have desirable cryptographic properties) the
number of rounds is required to be ≥ 4. Therefore, when fed with the secret
backdoor p̂ = p̂0||p̂1, the ciphertext from the cipher does not depend on the
Feistel round keys (Ki’s). Rather it always follows the simple invariant relation-
ship with the post-whitening keys (KL,KR), which leads to direct key recovery
with 1 plaintext query as:

(cL, cR) =

{
(p̂0 ⊕ KL, p̂1 ⊕ KR) if number of Feistel rounds is odd,

(p̂1 ⊕ KL, p̂0 ⊕ KR) if number of Feistel rounds is even.

On the other hand, when a p (�= p̂) is used as the plaintext, the cipher works
as secure Feistel block cipher. At each round, the state update can be compared
to a Boolean derivative of E – it resembles a form of differential attack on E
(but weaker since H(p̂0) and H(p̂0) constants). Given E is secure, any differential
attack on E does not give any usable information. We thus conclude, 4 rounds
of the ZUGZWANG construction can be considered to provide adequate security in
two directions.

Extension to Other Symmetric-key Primitives. It may be possible to
extend the core idea of ZUGZWANG to other primitives in the symmetric-key cryp-
tography (viz., stream cipher, hash function, MAC, AE and AEAD). However,
it is not immediately apparent how such extension will pan out. For instance,
it is possible to get a stream cipher from a block cipher by using a number of
modes (e.g., CTR); but it is to be noted that the plaintext does not enter the
state of a stream cipher per-se. As such, we may have to use a secret IV/nonce
so that, (say) the key-stream becomes all-zero regardless of the secret key. This
requires elaborate discussion, and hence is kept out-of-scope for this work.

Feistel Types, Branches and Rounds. The basic idea can be generalised to
more Feistel branches, wherein the secret backdoor entry is split into multiple
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branches. In that case, one also needs to decide on the type of the Feistel Network
and the minimum number of rounds required. Analysis such such options is left
open for future research.

Table 1. Complexity of whitening key recovery in 128-bit ZUGZWANG construction

(a) 2-branch Feistel

Whitening Backdoor Complexity

#Pre #Post Encryption Decryption

0‡ 2‡ 20 2128

1 1 264 264

2 0 2128 20

2 2 2128 2128

‡: Instantiated in Sect. 4.2

(b) 4-branch Feistel

Whitening Backdoor Complexity

#Pre #Post Encryption Decryption

0 4 20 2128

1 3 232 296

2 2 264 264

3 1 296 232

4 0 2128 20

4 4 2128 2128

Location of Whitening Keys/Backdoor on Decryption. Note that, the
key recovery through backdoor access in ZUGZWANG does not retrieve any Feis-
tel round key, rather it retrieves the whitening keys (the post-whitening keys
for encryption, to be more precise). If we take all the Feistel branches have a
whitening key XOR (for maximum key recovery), then the question is whether
to use pre- or post-whitening keys.

For simplification of notation, assume that we have a 128-bit and 2-branch
ZUGZWANG construction with n-rounds. First, let us study the situation for encryp-
tion where the left branch has a pre-whitening key (K ′), the right branch does
not have a pre-whitening key. In this case, p̂0 does not make the fi’s collapse
for even rounds, but p̂0 ⊕ K ′ does. Since the designer does not know which K ′,
he has to brute-force over 64-bits. Therefore, he has to query with p̂0 ⊕ K ′||p̂1
for all possible 264 choices of K ′. The correct guess of K ′ can be identified by
the output at the end (which will depend on presence/absence of whitening keys
and if n is even/odd).

Reflecting on this, we observe that the construction with post-whitening keys
helps in backdoor access in encryption, but not in decryption. Similarly, pre-
whitening helps in decryption, but not in encryption. The invariant property
that the product of the complexities for the whitening key recovery at both
sides remains the same as the brute-force search. This is an inherent property
of the ZUGZWANG construction. As shown in Table 1, this cannot be improved by
increasing the number of Feistel branches. Improving the whitening key recov-
ery complexity from two sides can be considered as a future work. Further, as
indicated in Table 1, if both the pre- and post-whitening keys are used; this
particular backdoor mechanism ceases to exist.

To the best of our finding, no claim about the backdoor access from Bob’s
side (i.e., decryption) is available in Malicious [9]. Thus, the notion of “practica-
bility”, which is introduced in [9, Section 2.2], is unclear for Malicious/LOWMC-M
decryption.
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4.2 A Concrete Instance of ZUGZWANG (Using AES and SHAKE)

We show an instance of ZUGZWANG21 that uses a 2-branch balanced Feistel struc-
ture, 128-bit state, runs for 4 Feistel rounds, and uses 0 pre-whitening and 2
post-whitening keys. We choose AES-128 for encryption (E), and SHAKE-128 as
XOF (H). See Algorithm 1 for its formal description.

The basic construction for ZUGZWANG is as shown in Fig. 2. The 128-bit master
key K and the 128-bit backdoor entry p̂ are split into two 64-bit post-whitening
keys: K = K4||K5, p̂ = p̂0||p̂1 respectively. The 128-bit Feistel round keys (Ki

for i = 0, 1, 2, 3) are generated by running AES in CTR mode with key k (i.e., with
i as the plaintext).

As per the construction, the H(·) of p̂0 and p̂1 are computed and stored.
Since these are to be used as the plaintext for AES-128 (Line 10), we take 128-
bit output for these. Similarly, the plaintext/intermediate ciphertexts are to be
used in AES as plaintexts (Line 11), so the outputs from SHAKE for these are also
taken as 128 bits long. However, since each Feistel branch is 64 bits long (see
Line 12), we truncate the last 64 bits of these 128-bit SHAKE outputs.

If p̂ is not known, then we claim this concrete instance offers 128-bit security.
On the other hand, if queried with p̂ as the plaintext, then the post-whitening
keys (K4,K5) are revealed.

ZUGZWANG is not meant to be used in practice, rather its primary function is
to work as a proof-of-concept. Thus, we acknowledge the device footprint for the
concrete instance can be significantly lowered (say, using less number of rounds
for AES, replacing AES with a lightweight encryption, using an LFSR to generate
Feistel round keys, etc.) but do not make any attempt to do so. For the same
reason, we do not present any benchmark.

4.3 Comparison of ZUGZWANG with Malicious/LOWMC-M

In essence, the fundamental concept in Malicious [9] can be as described as fol-
lows. The backdoor entry is accessed through a (secret) difference at the (public)
tweak and the (public) plaintext. The backdoor access works by cancelling the
differences with one another in such a way that ultimately there is a high prob-
ability differential trail at the end, which potentially leaks the key. However, if
just this much would be implemented, the attacker/user would (likely) notice
the differences applied through the tweak and the plaintext, which would in
turn reveal the backdoor entry. To prevent the attacker/user from obtaining the
differences, the designers of Malicious [9] pass the differences through an XOF.

In essence, the fundamental concept in Malicious [9] can be as described as
follows. The backdoor entry is accessed through a (secret) difference at the (pub-
lic) tweak and the (public) plaintext. The backdoor access works by cancelling
the differences with one another in such a way that ultimately there is a high
probability differential trail at the end, which potentially leaks the key. How-
ever, if just this much would be implemented, the attacker/user would (likely)
21 We use the same term, ‘ZUGZWANG’, to indicate the overall construction idea as well

as the concrete instance.
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Fig. 2. ZUGZWANG (concrete instance/encryption)

notice the differences applied through the tweak and the plaintext, which would
in turn reveal the backdoor entry. To prevent the attacker/user from obtaining
the differences, the designers of Malicious [9] pass the differences through an
XOF.

The following comparative points can be noted:

1. Malicious is based on relatively novel and not so much analysed design
principles. It cannot be implemented atop of any pre-existing cipher. Effec-
tively, Malicious is reliant on the security of LOWMC [1]. Besides, being a new
design type, itself requires its own analysis (in particular, LOWMC-M is revised
in [9, Section 4.3] after a new analysis is presented in [7] where 7 instances
of LOWMC-M with original parameters are broken without finding backdoor
by algebraic attacks on LOWMC). ZUGZWANG can be designed using already
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Algorithm 1 : ZUGZWANG – concrete instance/encryption (128 bits, 2-branch
Feistel, 4 rounds; AES-128 as encryption, SHAKE-128 as XOF)
Input: p̂ (backdoor entry, 128 bits), p (plaintext, 128 bits), k (master key, 128 bits)
Output: Secure encryption with key k and plaintext p if p �= p̂; k if p = p̂
1: n ← 4 � Number of Feistel rounds
2: for i ← 0 to n − 1 do
3: Ki ← AESk(i) � Generate Feistel round keys by using AES in CTR mode

4: K4, K5 ← k[0 : 63], k[64 : 127] � Split k to use as post-whitening keys
5: p̂0, p̂1 ← p̂[0 : 63], p̂[64 : 127] � Split p̂ into 2 parts
6: Pre-compute and store SHAKE(p̂0), SHAKE(p̂1) � Both are of 128-bits
7: C0, C1 ← p[0 : 63], p[64 : 127] � Split p into 2 parts
8: for i ← 0 to n − 1 do � Iterate over Feistel rounds
9: j ← i (mod 2)

10: αi ← AESKi(SHAKE(p̂j))[0 : 63]
11: βi ← AESKi(SHAKE(C0))[0 : 63] � SHAKE(C0) is of 128-bits
12: fi ← βi ⊕ αi � fi = 0 when C0 = p̂j

13: C1 ← C1 ⊕ fi � Update right Feistel branch with fi
14: if i ≤ n − 2 then � No branch swap in last Feistel round
15: C0, C1 ← C1, C0 � Swap two Feistel branches

16: C0, C1 ← C0 ⊕ K4, C1 ⊕ K5 � XOR post-whitening keys
17: return C0||C1 � (C0, C1) = (p̂1 ⊕ K4, p̂0 ⊕ K5) when p = p̂

well-analysed primitives—all the concepts used in its construction/analysis
are known for decades. Its security can be formally proven.

2. Malicious requires a tweak. Tweak is said to be relatively new, less efficient,
and any standard does not appear to exist [2, Section II.B]. ZUGZWANG does
not require a tweak.

3. The key recovery using the secret backdoor entry in ZUGZWANG is deterministic
in nature, which requires only one call to the cipher with the secret backdoor
entry equated with the plaintext; whereas LOWMC-M requires multiple calls, and
the key recovery is not guaranteed even if its queries satisfy all the requisite
conditions.

4. The overall idea of ZUGZWANG is easier to visualise, analyse and implement.
It is not clear whether the designers [9] actually have constructed the full
cipher, or have left it as a wishful thinking – thus it is further not clear
whether Malicious would work in real life.

5 Conclusion

Taking inspiration from Peyrin and Wang’s Crypto’20 paper [9], we partake in
a deeper dive at backdoor construction and related security concerns. A major
contribution in our work is to present a block cipher concept, ZUGZWANG, that
has an internal backdoor it. We also show a concrete instance of the concept.
Our construction answers some of the open problems of Malicious/LOWMC-M [9],
thus considerably improving from it.
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To make ourselves clear, we do not support the government or any organisa-
tion forcing/tricking anybody to use any cipher that has a backdoor. We believe
the intentional design a cipher with a hidden backdoor should be done as an
academic curiosity (and not for any practical application).
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Abstract. TLS is ubiquitous in modern computer networks. It secures
transport for high-end desktops and low-end embedded devices alike. How-
ever, the public key cryptosystems currently used within TLS may soon be
obsolete as large-scale quantum computers, once realized, would be able to
break them. This threat has led to the development of post-quantum cryp-
tography (PQC). The U.S. standardization body NIST is currently in the
process of concluding a multi-year search for promising post-quantum sig-
nature schemes and key encapsulation mechanisms (KEMs). With the first
PQC standards around the corner, TLS will have to be updated soon. How-
ever, especially for small microcontrollers, it appears the current NIST
post-quantum signature finalists pose a challenge. Dilithium suffers from
very large public keys and signatures; while Falcon has significant hard-
ware requirements for efficient implementations.

KEMTLS is a proposal for an alternative TLS handshake protocol that
avoids authentication through signatures in the TLS handshake. Instead,
it authenticates the peers through long-term KEM keys held in the cer-
tificates. The KEMs considered for standardization are more efficient in
terms of computation and/or bandwidth than the post-quantum signa-
ture schemes.

In this work, we compare KEMTLS to TLS 1.3 in an embedded set-
ting. To gain meaningful results, we present implementations of KEMTLS
and TLS 1.3 on a Cortex-M4-based platform. These implementations are
based on the popular WolfSSL embedded TLS library and hence share
a majority of their code. In our experiments, we consider both protocols
with the remaining NIST finalist signature schemes and KEMs, except
for Classic McEliece which has too large public keys. Both protocols are
benchmarked and compared in terms of run-time, memory usage, traffic
volume and code size. The benchmarks are performed in network set-
tings relevant to the Internet of Things, namely low-latency broadband,
LTE-M and Narrowband IoT. Our results show that KEMTLS can reduce
handshake time by up to 38%, can lower peak memory consumption and
can save traffic volume compared to TLS 1.3.
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1 Introduction

Transport Layer Security (TLS) is ubiquitous in modern computer networks.
It adds confidentiality, authenticity and integrity to application-layer protocols.
We trust it, among other things, with securing connections to websites, emails,
instant messages and virtual private networks. In its most recent version, TLS
1.3 [31], ephemeral (elliptic curve) Diffie-Hellman is used to establish encryption
keys. Server (and optionally client) authentication is achieved by using digital
signatures. To verify the signatures, public keys are transmitted in certificates
during the TLS handshake. These certificates are in turn signed by certificate
authorities, which are pre-installed on the verifying device.

As TLS is an integral part of today’s internet security architecture, it is
vital to integrate post-quantum cryptography soon. This promises to mitigate
the increasingly grave threat of large quantum computers to cryptography.
The United States National Institute of Standards and Technologies (NIST)
launched a multi-year standardization project for post-quantum algorithms [28].
The project is calling for key encapsulation mechanisms (KEMs) and digital
signature algorithms that withstand large quantum computers.

While standardization of the primitives is ongoing, work on post-quantum
TLS (PQTLS) has also begun. This began with academic experiments in 2015,
demonstrating R-LWE key exchange in TLS 1.2 [5]. Like the previous work,
many have focused on the ephemeral key exchange in TLS, often using so-called
“hybrid” algorithms. These essentially perform a classic elliptic-curve key and a
post-quantum key exchange in parallel, to increase the confidence in the secu-
rity. Google and Cloudflare have already conducted large-scale industry stud-
ies employing hybrid algorithms within TLS [21–23]. Amazon already includes
experimental support for post-quantum schemes in its S2N TLS implementa-
tion and its Key Management Services product [16]. While previous works have
mainly focused on post-quantum confidentiality; there have been fewer experi-
ments deploying post-quantum authentication. Sikideris et al. [36] have measured
the performance of post-quantum signature schemes between servers in two data
centers. They concluded that out of the (NIST Round 2) schemes they tested,
only two (Falcon [30] and Dilithium [24]) seem viable for deployment in TLS 1.3.
Experiments by Cloudflare [38], that added dummy data to TLS connections to
measure the impact of the larger sizes of post-quantum signature schemes, seem
to support these results. Still, when using Dilithium as a drop-in replacement
for all of the signatures in TLS (which adds 17 kB to the handshake), Cloudflare
reports an expected 60–80% slowdown for the Linux default congestion window
of 10 packets. Falcon has much more favorable public key and signature sizes but
requires hardware support for double-precision floating-point operations. With-
out this, Sikideris et al. report signing handshakes with Falcon is not viable.

There has also been some work investigating embedded devices rather
than large-scale, high-performance computers. Bürstinghaus-Steinbach et al.
have experimented with Kyber and stateless hash-based signature scheme
SPHINCS+. They integrated SPHINCS+ in mbedTLS’s [25] TLS 1.2 implemen-
tation and showed the performance on various Arm boards [6]. More recently,
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George et al. have evaluated the performance of post-quantum TLS 1.3 on
embedded systems [13]. They investigated the performance of the NIST finalist
KEMs and the Dilithium and Falcon signature algorithms in WolfSSL’s TLS 1.3
implementation.

To mitigate the difficulties with post-quantum signatures, Wiggers et al. pro-
posedKEMTLS [33]. Instead of authenticating the handshake through a signature,
KEMTLS performs authentication through KEM key exchange with KEM public
keys in the certificates. As the KEMs currently considered for standardization are
generally smaller and/or more computationally efficient than the post-quantum
signature schemes, this can be more efficient. Additionally, it reduces the size of
the trusted code base: the code that facilitates the ephemeral key exchange can
also be used for authentication. Knowledge of the server’s long-term key is imag-
inable in e.g. session resumption, or perhaps in IoT applications where the clients
speak to a single server. We note that the certificates are still signed by a certifi-
cate authority using post-quantum signatures. We thus still need to verify post-
quantum signatures; we might however choose signature algorithms that are opti-
mized for size or verification time rather than signing time.

While KEMTLS and PQTLS have been compared, these studies focused on
high-end hardware and high bandwidth connections [7,33,34]. However, TLS is
used for more than just protecting web browsing on desktop computers. The
Internet of Things (IoT) increasingly interconnects embedded devices over the
internet. Especially device-to-cloud communication is an omnipresent IoT use
case. New communication protocols like Matter [10] (formerly Connected Home
over IP) mark a new trend by using IPv6 and forcing every embedded device to
establish its own end-to-end-secure connection. From a security perspective, this
makes perfect sense. However, for embedded software developers this poses a
challenge. Key establishment, digital signatures and certificate transmission are
already problematic for low-cost, resource-constrained devices. With the advent
of post-quantum cryptography, it will become even more challenging to establish
TLS connections from those embedded devices.

1.1 Contribution

This work investigates if KEMTLS’ advantages transfer to the embedded realm
by comparing KEMTLS and PQTLS in an embedded setting. For this purpose,
KEMTLS and PQTLS were implemented including all NIST finalist signature
schemes and KEMs, except for Classic McEliece which has too large public
keys. As the PQTLS and KEMTLS implementation share large parts of their
code base, a direct performance comparison is possible. Our analysis focuses on
the relevant trade-offs embedded systems engineers face. To our knowledge, this
is the first work to investigate KEMTLS in an embedded setting. We benchmark
runtime, memory usage, code size and bandwidth consumption of our KEMTLS
and PQTLS instantiations. The benchmark results were obtained by running our
implementations on a Cortex-M4-based platform. Our experiments were con-
ducted with a technology stack that is typically used in real-world deployments,
in which the embedded device is a TLS client talking to a TLS server running on a
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high-end computer. This computer also simulated different network technologies
throughout the experiments. After a brief introduction of post-quantum cryp-
tography, previous work and the ongoing standardization process, the PQTLS
and KEMTLS protocols will be presented. The differences between these proto-
cols will be outlined afterward. To support our results, the implementation and
experimental setup will then be explained in detail. Finally, the results will be
presented and concluded.

2 Background

In this section, we will give some background on the development of post-
quantum cryptography, providing some history and summarizing the NIST stan-
dardization process. We will also detail the impact post-quantum cryptography
has on TLS 1.3 and the development of KEMTLS.

2.1 Post-quantum Cryptography

In 1994 Peter Shor published his famous quantum algorithms for discrete log-
arithms and factoring [35]. Virtually all of today’s deployed public-key cryp-
tography is based on the difficulty of computing discrete logarithms or inte-
ger factorization. Shor’s algorithm, therefore, poses a severe threat to informa-
tion security. This affects key-exchange methods and signature algorithms alike.
Unfortunately, all of today’s TLS key exchange and signature algorithms would
be broken once an adversary has access to a large quantum computer. Moreover,
advances in quantum computing give reason to believe that the arrival of large
quantum computers is on the horizon [26,27]. Since development, standardiza-
tion and adaptation of cryptographic algorithms is a slow process, preparations
against quantum computers have to be started now.

The NIST standardization project for post-quantum cryptography started in
2017 [28]. From over 60 proposed candidates, four KEMs and three signature
algorithms have proceeded as finalists to the competition’s third round. There
are an additional five KEMs and three signature algorithms still in the competi-
tion as alternate candidates. NIST has announced that they will select at most
one of the lattice-based KEMs Kyber, SABER or NTRU as a standard, as well
as one of the two lattice-based signature schemes Falcon and Dilithium. They
will also be opening up an on-ramp for new signature schemes in the next round
for signature schemes based on other assumptions.

The algorithms in the NIST competition propose parameters at three security
levels, called I, III and V. Algorithms in these security levels should be at least as
hard to break as AES-128, AES-192 and AES-256. Due to the resource constraints
of embedded devices, we will only consider parameters of security level I.

NIST Finalists. Three signature schemes remained as finalists in the third
round of the NIST standardization project. Two of them are lattice-based con-
structions, and both were selected for standardization at the end of Round 3
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in July 2022. Falcon [30]’s security assumptions are based on NTRU, while
Dilithium [24]’s assumptions are based on the Module-LWE and the Short
Integer Solution problems. Rainbow [12] is a multivariate signature algorithm
that is a variant of UOV [18]. Its security is based on the hardness of finding solu-
tions to systems of equations in many variables over finite fields. Rainbow was
recently broken by Beullens [4], and later eliminated from the standardization
process. However, Rainbow is a good representative of UOV-based multivariate
signature schemes in terms of size and performance. In these schemes, public
keys are very large, but the very small signature sizes lead to interesting trade-
offs. Since other UOV-like multivariate schemes will likely be proposed during
NIST’s next call for post-quantum signatures, we choose to include Rainbow in
this our analysis.

Key encapsulation mechanisms (KEMs) are used for key exchange. Within
TLS they can serve the same role as the Diffie-Hellman ephemeral key exchange.
Similar to public-key encryption (PKE), a KEM public key is used to generate
an encapsulated shared secret key. Only the corresponding private key can then
decrypt this ciphertext into the right shared secret key.

Four KEMs proceeded as finalists into the third round of NIST’s PQC com-
petition. Among them are the lattice-based schemes Kyber [32], Saber [11]
and NTRU [8]. Although these schemes are all based on lattices, their under-
lying lattice structure and implementation details differ substantially. Classic
McEliece [3] is the only non-lattice-based finalist; its security relies on the hard-
ness of decoding random linear codes instead. Code-based cryptography has been
around since the 1970s. Therefore, it has a longer history of cryptanalysis than
lattice-based cryptography. Because of this body of literature around Classic
McEliece, it is often considered the most conservative choice. However, Classic
McEliece’s parameter choices make for very large public key sizes. Also in terms
of speed, it can not compete with the lattice-based algorithms. Kyber was cho-
sen to be the next NIST standard for key exchange in July 2022, while Classic
McEliece was moved forward into the fourth round of the competition [2].

PQC on Embedded Device. Public-key cryptography was already challeng-
ing for embedded systems in a pre-quantum setting. The more expensive post-
quantum algorithms will make this worse. To gain a better understanding of
PQC algorithm performance on embedded systems, the PQM4 [17] project col-
lects implementations for the Cortex-M4 platform and benchmarks them. Table 1
shows size and performance tradeoffs between the NIST PQC finalists based on
numbers from [17] and [9]. Here it is important to mention that these num-
bers are accomplished on a clocked-down Cortex-M4. Using such a slowed-down
embedded processor is customary for measuring algorithm run times because it
avoids flash wait states. In a real deployment, code would be fetched from a fast
ROM instead of a flash. For our experiments, we are not exclusively interested in
PQC algorithm run-time, but in the performance of the overall system. There-
fore, we do not clock down our CPU. The ramifications of this are detailed in
Subsect. 3.1.
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Table 1. Comparison of NIST PQC Round 3 finalists at security level I. We show
the size (in bytes) of data transmitted during a handshake (public key, signature and
ciphertext), offline data (secret keys) and operation timings (from [9,17]) on M4.

bytes transmitted stored computation (≈Kcycles)

Signatures pubkey sig sum secret keygen sign verify

Dilithium � 1 312 2 420 3 732 2 528 1 597 4 095 1 572

Falcon � 897 690 1 587 1 281 163 994 39 014 473

Rainbow † 161 600 66 161 666 103 648 94 907 238

KEMs pubkey ciph sum secret keygen encaps decaps

Kyber � 800 768 1 568 1 632 440 539 490

NTRU † 699 699 1 398 953 2 867 565 538

SABER † 672 736 1 408 1 568 352 481 453

�: Scheme was selected for standardization.
†: Scheme was eliminated from the NIST standardization project.

2.2 Post-quantumtls TLS

We will briefly explain how TLS 1.3 post-quantum can be made post-quantum
and summarize the KEMTLS proposal for an alternatively authenticated TLS
handshake.

(Post-quantumtls). TLS is a protocol that has seen widespread deployment,
famously as part of HTTPS. Its most recent iteration is TLS 1.3 [31]. In the
most common uses, it offers unilateral authentication of the server to the client.
Optionally, it also allows mutual, client-to-server authentication. The protocol
authenticates the peers through signatures, which are in turn verified using pub-
lic keys that are contained in (CA-signed) certificates. There is optional support
for pre-shared, symmetric keys in place of certificate authentication as well.

The unilateral, certificate-authenticated TLS 1.3 handshake consists of an
ephemeral, Diffie–Hellman (DH) key exchange followed by a signature over the
handshake to authenticate. Finally, the handshake is additionally authenticated
by a MAC. It is possible to make this handshake post-quantum, simply by
replacing the server’s DH key generation with KEMe.Encapsulate, to encapsulate
against the client’s ephemeral public key, and sending the ciphertext instead
of the server’s ephemeral DH public key. The client would derive the shared
secret by decapsulating the ciphertext. For authentication, we simply use post-
quantum signature algorithms in place of RSA or elliptic curve signatures. The
TLS 1.3 handshake has been very carefully designed to be very efficient in the
number of round-trips and is a single round-trip (1-RTT) protocol. As we can
see on the left-hand side of Fig. 1, the server can already send data to the client
in its first response flow. The client can send it first message after the server’s
first flow, after 1.5 RTT.
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Client Server
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Fig. 1. Simplified protocol flow diagrams of: (left) the TLS 1.3 handshake, using signa-
tures for server authentication; and (right) the KEMTLS handshake, using KEMs for
server authentication.

KEMTLS. The post-quantum KEMs and signature algorithms are further
apart than their classic variants were. KEMTLS is an alternative proposal for a
PQTLS handshake, which allows using KEMs (which are typically much smaller
and/or more computationally efficient than post-quantum signatures) instead of
signatures in the online handshake. In KEMTLS, the certificates contain public
keys for a KEM instead of a signature scheme. There are still signatures for
the verification of the certificate chain, but these only need to be verified. As
those signatures are done offline, it is also possible to use algorithms optimized
for public key and signature size, rather than signing time. For example, [33,
Appendix D] gives parameters for such a variant of XMSSMT.

KEMTLS is inspired by the OPTLS proposal by Krawczyk and Wee [19].
OPTLS was an early proposal for TLS 1.3, where the authentication would be
done via Diffie–Hellman key exchange. However, as observed by Kuhnen [20],
OPTLS requires the non-interactive key exchange properties of DH, which KEMs
do not offer. To authenticate a server via KEM, the client encapsulates a cipher-
text to the long-term public key contained in the server’s certificate. This would
naively result in a 2-RTT protocol. KEMTLS avoids the performance penalty
this would imply by observing that, in many applications including HTTP, for a
useful response from the server, it first needs to receive a request from the client.
For example, which page the client is requesting from the server. KEMTLS allows
the client to send its request in the same flow as it would in TLS 1.3, returning
the protocol to 1.5-RTT. This is achieved by encrypting the data with a key
that is derived from both the ephemeral key exchange and the shared secret
encapsulated to the server’s long-term key. This key is implicitly authenticated,
as the client can not be sure of the server’s presence before it receives a message
(ServerFinished) in which the server uses the encapsulated secret. The right-
hand side of Fig. 1 describes a simplified version of a (unilaterally authenticated)
KEMTLS handshake.
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3 Experimental Setup

The following section describes the experimental setup used to acquire our
results. Both protocols were benchmarked for handshake times, run-times of
algorithms, peak memory usage, code size, and network traffic. Handshake times
were measured in three network environments relevant to the IoT domain. This
includes regular “broadband” internet, as well as two low-power wide-area net-
work standards, LTE-Machine Type Communication (LTE-M) and Narrowband-
IoT (NB-IoT), developed by the 3rd Generation network Partnership Project
(3GPP). We give the characteristics employed for these environments in Table 2.
While the performance characteristics of LTE-M and NB-IoT are based on num-
bers of the 3GPP [1], the broadband scenario is based on realistic round-trip
times of client-to-cloud communication within West Europe using a consumer-
grade connection [29].

Table 2. Connection characteristics according to 3GPP [1]

Name Abbrev. Bandwidth RTT time

Broadband BB 1 Mbit 26 ms

LTE machine type communication LTE-M 1 Mbit 120 ms

Narrowband-IoT NB-IoT 46 kbit 3 s

Cryptographic Primitives. As KEMTLS is a post-quantum protocol, it is not
specifically designed for transitional security. Although KEMTLS does not pre-
clude their use, we do not consider mixed classic/post-quantum certificates or
hybrid (post-quantum plus elliptic curve) key-exchange methods in our experi-
ments. For comparability, our PQTLS implementation is also exclusively using
post-quantum algorithms. We evaluated all combinations of NIST finalists,
except for the KEM Classic McEliece. Classic McEliece’s public keys are too
large to fit into memory and do not fit in the ClientHello’s KeyShareEntry
extension [31, Sec. 4.2.8].

Both KEMTLS and PQTLS make use of a certificate authority (CA) that
signs certificates. The CA’s certificate, containing the CA’s public key used for
signature verification, is stored on the client device. Only leaf certificates, trans-
mitted by the server during the handshake, differ in KEMTLS and TLS 1.3. For
PQTLS they include the public key of a signature algorithm, in KEMTLS a KEM
public key.

We only evaluate primitives at the lowest security level, NIST level I. These
are the smallest and most efficient parametersets.

3.1 Implementation

All benchmarks were conducted on a Silicon Labs STK3701A board, also known
as the “Giant Gecko”. This board was chosen because it features a 72 MHz ARM
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Cortex-M4F embedded processor and offers large enough memory (2 MB flash
storage, 512 kB SRAM) to fit Rainbow public keys. As Cortex-M4 is the desig-
nated NIST PQC reference platform for embedded devices, there are optimized
assembly implementations available for most finalist algorithms. The PQM4
project collects these implementations and provides extensive benchmarks [17].
All PQC implementations used for benchmarking were taken from the PQM4
project. Only minor modifications, such as adding verify functions to signature
schemes, fixing alignment issues and name-spacing symbol names had to be con-
ducted. The code was compiled using GCC version 11.1, with the -O3 speed opti-
mization flag. In contrast to experiments run within the PQM4 project, we do not
clock down the processor to avoid wait states. Instead, the processor runs at full
speed. This makes sense since we are not exclusively interested in the run times
of the primitives, but the performance of the overall system. Running the pro-
cessor at full speed makes the PQC algorithms consume more cycles due to flash
wait states and higher costs of memory accesses. However, since the PQC algo-
rithms do not consume more wall-clock time, the actual handshake durations are
not negatively affected. The Giant Gecko board exclusively takes on the role of an
embedded (KEM)TLS client, wanting to connect to a backend server. To validate
certificates send in the handshake, we flash the CA’s root certificate into the Giant
Gecko’s persistent memory during setup. For efficiency, the CA directly signs the
server’s certificate. This avoids the need for transmitting intermediate CAs, reduc-
ing the size of the certificate chain. As both endpoints in embedded scenarios are
usually under some level of manufacturer control, this is a common deployment.
Communication to the backend server is done via the Giant Gecko’s Ethernet port,
which is directly connected to a high-end computer. This host computer simulates
different network environments by using Linux’s netem network emulation frame-
work [15]. The network emulation framework is set up to throttle bandwidth and
delay round trip times (RTTs) according to the aforementioned network environ-
ments. Wiggers’ original KEMTLS implementation [33,34] is used as server soft-
ware. When running an iteration of the experiment, the corresponding PQC algo-
rithms and the CA certificate are linked into the binary using Zephyr’sWest build
tool. We then flash the binary onto the board via JLink. Benchmark results are
received via serial communication.

Platform. To have a realistic setup, we employed a typical embedded systems
software stack. In our case that includes an embedded real-time operating sys-
tem (RTOS) with an open-source TCP/IP stack and added TLS support. For
reproducibility, we used the Apache-licensed Zephyr RTOS [39]. Zephyr supports
over 200 boards and is backed by the Linux Foundation and multiple large cor-
porations involved with developing embedded systems, such as NXP, NORDIC
or Memfault. It provides its own optimized embedded network stack and allows
cycle-accurate run time measurements (given a board’s hardware supports it).
Our application code runs as the exclusive Zephyr thread, eliminating scheduling
costs. PQTLS and KEMTLS support was added to the operating system via a
custom WolfSSL module. All code, including reproducible build system and
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server software, used in this work is publicly available.1 KEMTLS certificate
generation was conducted using a customized Python script based on Wig-
gers et al. code. Post-quantum certificates for PQTLS were generated using a
fork of OpenSSL’s command-line tool maintained by the Open Quantum Safe
project [37]. The TLS 1.3 cipher suite TLS_CHACHA20_POLY1305_SHA256 was
used in all experiments.

Wolfssl Integration. Previous work [6,13] also uses WolfSSL for running
benchmarks on embedded systems. We decided to use WolfSSL for the same
reasons as the mentioned works and to make comparisons with our results
easier. WolfSSL is designed to be memory efficient and fast on embedded sys-
tems. On top, it already supports TLS 1.3 and has a clean implementation of
TLS’s state machine. This makes it an ideal basis for implementing PQTLS and
KEMTLS. Adding post-quantum algorithms to WolfSSL is straightforward. Wolf-
SSL’s crypto provider, called WolfCrypt, has a clean API that can be extended
easily. As the KEM Kyber was already included in WolfSSL by [6], we did not
need to make changes to the TLS 1.3 state machine. Apart from including the
relevant ASN.1 object identifiers for KEMs and post-quantum signatures, only
small changes such as increasing the maximum size of certificates had to be
applied. Our embedded KEMTLS implementation is based on the same Wolf-
SSL version as our PQTLS implementation. The majority of the code is identi-
cal in the PQTLS and KEMTLS implementation. However, adding support for
KEMTLS to WolfSSL still required significant effort. Apart from altering the
certificate/ASN.1 parser to allow KEM keys in certificates (and using those),
WolfSSL’s internal state machine, key derivations and state structures had to be
modified. In both our PQTLS and KEMTLS experiments the client only performs
signature verification, so no code for signing was linked into the final binary.

4 Results

For developers of embedded systems, the trade-offs between ROM (code size),
RAM (memory usage), network traffic and CPU time (run-time of code) are
most crucial. In this section, we present our findings regarding the consumption
of these resources by KEMTLS and TLS 1.3 using NIST PQC finalists.

The run-time of algorithms impacts the device’s energy consumption. This
is especially relevant for battery-powered devices that rely on the possibility to
hibernate when inactive. Network traffic also affects energy consumption, as oper-
ating an antenna is usually a very energy-consuming operation. Depending on the
underlying wireless technology, network traffic can also be expensive in terms of
network provider fees. Our results are representative for Cortex-M4-based plat-
forms in general. Hence we focus on benchmarks that are independent of our spe-
cific evaluation board. As energy consumption varies heavily based on a board’s

1 Source code is available at https://github.com/rugo/wolfssl-kemtls-experiments/
tree/paperv1.

https://github.com/rugo/wolfssl-kemtls-experiments/tree/paperv1
https://github.com/rugo/wolfssl-kemtls-experiments/tree/paperv1
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design, choice of peripherals and transmission technology we did not include direct
energy measurements into our results. Instead, we present code size, consumed
memory, handshake traffic, handshake duration and run-time of PQC primitives.
All KEMTLS and PQTLS instantiations were run 1000 times, with each run using
a different CA and leaf certificate. The presented benchmarks are averaged over all
runs. The NIST signature finalist Rainbow, which is included as a representative
for multivariate-based cryptography, is only present in the KEMTLS results. This
is because Rainbow public keys are very large. There was not enough memory to
fit Rainbow as well as another signature scheme. It could therefore not be included
into the PQTLS benchmarks. We emphasize that all employed PQC algorithms
were optimized for speed, and not stack consumption.

4.1 Storage and Memory Consumption

Both protocol implementations are roughly the same size. Without post-
quantum primitives, they have a code size of around 111 kB. Table 3 shows
combinations of PQC algorithms with their measured code size. For KEMTLS,
only instantiations with one KEM used for both ephemeral key exchange and
authentication are shown. Including two KEMs does not give an advantage, but
increases code size. However, for completeness, a table with all combinations
can be found in Appendix A. Similarly, PQTLS instantiations with the same
signature algorithm used for CA and leaf certificates are shown. Additionally,
we include the combination of Dilithium and Falcon, where Dilithium is used as
the handshake signature algorithm. This combination was suggested by Sikideris
et al. [36] to make use of Dilithiums faster signing times for servers without hard-
ware support for Falcon’s double-precision floating-point operations.

The table also shows the PQC code’s share of the overall code size as a per-
centage. Also included in Table 3 is memory consumption. Shown is the peak of
consumed memory, in both heap and stack, during the handshake. This includes
the memory consumed by the protocol implementation and PQC primitives.

In contrast to TLS 1.3, KEMTLS uses a KEM encapsulation instead of a signa-
ture verification to authenticate the connection. KEMTLS, therefore, needs code
for KEM encapsulation, whereas TLS 1.3 does not. TLS 1.3 on the other hand
needs the code for two distinct verification algorithms if different signature algo-
rithms are used for CA and leaf certificates. Instantiations with NTRU ephemeral
key exchange are notable outliers in terms of code size, requiring over 200 kB of
code. This is in line with results reported by PQM4 [17]. Interestingly, this big
increase in code size can not be observed when NTRU is used exclusively for
authentication. This is because the client requires key generation and decapsu-
lation code for ephemeral key exchange, whereas authentication via KEM only
requires encapsulation functionality. Whenever Rainbow is used, the CA certifi-
cate containing a Rainbow public key takes up between 33% and 53% of the overall
consumed storage space. This, however, does not disqualify Rainbow from usage
on embedded systems, due to its small signature and very fast verification times
(see Sect. 4.2).

Further, the results show that the lattice-based schemes perform well in terms
of memory consumption. The consumed memory is mainly driven by stack usage
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Table 3. Code and CA certificate sizes (and as percentage of total ROM size), and
peak memory usage in the experiments. Parametersets used are NIST level I.

of the PQC signature algorithms. Only Rainbow is an exception here. With a
Rainbow-powered CA certificate, the very large public key has to be loaded into
memory and held during signature verification. This requires a large allocation of
heap space. In a custom certificate loader implementation it would be possible to
store the public key in an already usable form in flash. Then the public key could
directly be streamed in from flash (similar to [14]), without the need to hold it
in memory entirely. However, since we present comparable results of reusable
code, we did not include this kind of optimization for an individual algorithm.

4.2 Handshake Times

Apart from storage and memory consumption, handshake times are key in an
embedded environment. Table 4 shows handshake times for different transmission
technologies measured in millions of cycles. A complete table, with all possible
instantiations, can be found in Appendix A. In Fig. 2 we show the handshake
times and traffic for the broadband and NB-IoT scenarios. In a real deployment,
the device would likely go into a low power mode or sleep instead of actively
polling data during a slow transmission. This behavior however depends highly
on the specifics of the embedded system and its transmission technology. There-
fore, to achieve reproducible results, the CPU was running at a constant speed
of 72MHz during all experiments. This also makes a direct translation to wall
time possible. The table also shows the percentage of cycles spend on the under-
lying PQC primitives. The remaining cycles are spent in the TLS state machine,
memory operations or waiting for I/O.
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Time spent in crypto operations is significant in the broadband and LTE-
M setting. Whereas the NB-IoT transmission is so slow, that the share of
cycles spent in cryptographic operations is very low (0.8%–1.7%). In low-
bandwidth/high-RTT settings like NB-IoT, the transmission size of certificates
and public keys is the main driving factor of run time. Loading large public
keys from storage into memory is a relevant factor as well, slowing down the
otherwise fast Rainbow signature algorithm. Cycles spent to access memory
and storage also become increasingly negligible when using slow transportation
mediums. This is visible in Fig. 2b, where the instantiations with similarly sized
handshake traffic clearly form clusters.

Table 4. TLS handshake traffic and runtime for various scenarios. Parametersets used
are NIST level I.

Both PQTLS and KEMTLS use a KEM for key exchange. While the per-
formance of the module lattice KEMs Kyber and SABER is similar, they both
outperform NTRU for this task. This is mainly due to the rather slow key gen-
eration of NTRU increasing handshake time. Slow key generation is also the
reason why PQTLS and KEMTLS instantiations using NTRU have the highest
percentage of cycles spent in PQC operations.

All KEMs outperform Dilithium when used for authentication. This makes
sense as Dilithium’s verify routine is slower than the encapsulation routine of all
investigated KEMs. Dilithium’s performance also suffers from its large public key
and signature that increase the required transmission size. In slow, bandwidth-
constrained network environments, such as NB-IoT, this drawback becomes even
more apparent. Rainbow performs well in terms of handshake times when used as
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a CA certificate. Not only because it has a fast, bitsliced Cortex-M4 implemen-
tation. Since the large Rainbow public key is stored on the client device, only the
small signature has to be transmitted during the handshake. Rainbow’s small
signature and fast runtime make it a good fit for CA certificates if the storage
and memory demands can be afforded. The instantiations with Rainbow offer the
fastest KEMTLS handshake times throughout all transmission mediums. Addi-
tionally, the shortest NB-IoT handshake times use KEMTLS with Rainbow and
SABER. Falcon on the other hand performs very well on the Cortex-M4 platform
in our experiments. In terms of runtime, it even outperforms KEMs for server
authentication. However, this is only true for the client side. Signing operations
using Falcon are considerably more expensive than KEM decapsulations. But
these operations are conducted on the server side, increasing server load, which
is not part of our measurements. Additionally, Falcon’s public key and signature
sizes are comparable to the sizes of the KEM’s public keys and ciphertexts. So
it is not surprising that PQTLS instantiations using Falcon perform well. In the
broadband and LTE-M setting, PQTLS with Falcon and SABER performs as
well as KEMTLS with Rainbow and SABER.
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Fig. 2. Handshake times and traffic for instantiations of KEMTLS and PQTLS. Letters
represent the algorithms Dilithium, Falcon, Kyber, NTRU, Rainbow, and SABER in
the roles of ephemeral key exchange, handshake authentication and CA, in that order.

5 Discussion

Our results show that KEMTLS with server-only authentication uses less memory
than PQTLS and has similar code sizes. Due to Falcon’s verification algorithm
being very efficient, in terms of bandwidth and computation time, PQTLS with
Falcon performs as well as or better than any KEMTLS instantiation. The only
exception are the KEMTLS instantiations using SABER or NTRU with Rainbow,
where the ability of KEMTLS to use Rainbow due to lower memory usage saves
a few bytes and thus become the best-performing instantiations in the NB-IoT
scenario. Falcon also performs better than Dilithium on the client side, in any
scenario.
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Although we have not measured client authentication or an embedded server,
we can extrapolate from our results. As reported by PQM4 [17] and Sikideris
et al. [36], Falcon’s signing algorithm, especially without hardware support, is
significantly more costly than Dilithium’s or any of the KEM operations. This
suggests that Falcon is perhaps not generically suitable for post-quantum authen-
tication.

Sikideris et al. also suggested a combination of Dilithium and Falcon for
PQTLS, in scenarios where there is no hardware support for Falcon’s double-
precision floating-point operations. Dilithium would be put in the leaf certifi-
cate, to make use of its efficient signing times for online handshake signatures.
Falcon’s smaller public key and signature sizes would be beneficial for the CA
certificate algorithm, which signs the leaf certificate only once, but the signature
is transmitted many times. However, our results show that for embedded clients
that only need to do signature validation Falcon is preferable over Dilithium,
especially in very low bandwidth scenarios like NB-IoT.

6 Conclusion and Future Work

In this paper, we compared the performance of KEMTLS and TLS 1.3 using NIST
PQC finalists in an embedded environment. This environment was represented
by a Cortex-M4-based client communicating with a desktop-class server. We
showed that a KEMTLS client consumes less memory than TLS 1.3, due to
the smaller memory footprint of KEMs. The code size did not differ between
KEMTLS and TLS 1.3. Since only server authentication was used, both protocols
require a signature verify function and KEM for key exchange. Our run times
show that in both protocols PQC primitives require a significant amount of
computational time during the handshake, sometimes requiring over 50% of the
entire handshake time. Even in the LTE-M setting, the percentage of cycles spent
in PQC computations is considerable. However, in the bandwidth-constrained
NB-IoT setting, handshake times are mostly driven by handshake size. In these
conditions, Rainbow’s very small signatures are an advantage. While Dilithium is
generally outperformed by KEMs when used for authentication, Falcon performs
very well due to its efficient verification algorithm. However, signing in Falcon
is a very costly operation. Future work should therefore investigate KEMTLS
and TLS 1.3 using client authentication, and embedded KEMTLS and post-
quantum TLS 1.3 servers. In both of these applications, the embedded TLS 1.3
client needs to produce handshake signatures. This would increase the cost of
using signatures instead of KEMs significantly, leading to new trade-offs. Another
avenue of research is the pre-distributed key setting, where the client already
knows the server’s public key. In this setting, bandwidth can be reduced even
further, which may be compelling for the NB-IoT application.

Acknowledgements. This work has been supported by Neodyme AG, the European
Research Council through Starting Grant No. 805031 (EPOQUE) and by an NLnet
Assure grant for the project “Standardizing KEMTLS”.
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A Extended Benchmark Tables

In Table 5 we report code sizes, CA certificate sizes and memory usage for all
experiments we ran. Table 6 provides all results for the handshake traffic and
handshake timing metrics.

Table 5. Code and CA certificate sizes (and as percentage of total ROM size), and
peak memory usage in the experiments.
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Table 6. TLS handshake traffic and runtime for various scenarios
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Abstract. The Montgomery Ladder is widely used for implementing the
scalar multiplication in elliptic curve cryptographic designs. This algo-
rithm is efficient and provides a natural robustness against (simple) side-
channel attacks. Previous works however showed that implementations of
the Montgomery Ladder using Lopez-Dahab projective coordinates easily
leak the value of the most significant bits of the secret scalar, which led to
a full key recovery in an attack known as LadderLeak [3]. In light of such
leakage, we analyse further popular methods for implementing the Mont-
gomery Ladder. We first consider open source software implementations
of the X25519 protocol which implement the Montgomery Ladder based
on the ladderstep algorithm from Düll et al. [15]. We confirm via power
measurements that these implementations also easily leak the most signif-
icant scalar bits, even when implementing Z-coordinate randomisations.
We thus propose simple modifications of the algorithm and its handling of
the most significant bits and show the effectiveness of our modifications via
experimental results. Particularly, our re-designs of the algorithm do not
incurring significant efficiency penalties. As a second case study, we con-
sider open source hardware implementations of the Montgomery Ladder
based on the complete addition formulas for prime order elliptic curves,
where we observe the exact same leakage. As we explain, the most signifi-
cant bits in implementations of the complete addition formulas can be pro-
tected in an analogous way as we do for Curve25519 in our first case study.

Keywords: ECC · Montgomery Ladder · Curve25519 · Complete
addition formulas · Side-channel analysis

1 Introduction

Elliptic curve and isogeny based cryptographic implementations commonly make
use of the Montgomery Ladder for performing the scalar point multiplication
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[13,21]. The preference for the Montgomery Ladder comes from its efficiency
and also from its natural robustness against simple side channel attacks, such
as timing, simple power analysis (SPA), and simple electromagnetic analysis. Its
robustness comes from the fact that for each loop iteration, we always perform a
point addition followed by a point doubling, independent of the bit value we are
processing for the scalar (see Algorithm 1). Nevertheless, previous works have
shown that implementations of the Montgomery Ladder based on Lopez-Dahab
projective coordinates [22] easily leak at least one bit of the scalar via simple side
channel observations [3,9]. Lopez-Dahab projective coordinates represent the
points on the curve only by means of their x-coordinate in the form x = X

Z and
allow for fast computation of the Montgomery Ladder since no divisions need to
be performed during the main loop. The leakage in the implementations is caused
by the initialisation phase of the algorithm, where the projective representation
of the input point is defined as x = x

1 and thus one set of input variables of the
algorithm is initialised as X1 = x and Z1 = 1. The other input variables are
initialised with the values X2 = x4 + b and Z2 = x2. As we then enter the main
loop of the algorithm, we perform some multiplications with Z1 = 1 as operand.
However the number of such multiplications varies depending on the value of the
key bit we are processing: if the first loop iteration is performed for a key bit
with value 1, we perform only one multiplication with Z1 = 1 as operand. On the
other hand if the first loop iteration is performed for a key bit with value 0, then
we perform three multiplications with Z1 = 1 as operand. Multiplications with
operands with value 1 usually consume a notably smaller amount of power than
multiplications between two larger values.1 Thus, if we observe the region of a
power trace corresponding to the first loop iteration of the Montgomery Ladder
using Lopez-Dahab projective coordinates, we can easily tell the value of the key
bit being processed. This value corresponds to the second most significant bit of
the key, assuming that the most significant bit is always 1.

Algorithm 1. Montgomery Ladder
Inputs: k = (kn−1, ..., k0),
G = (Gx, Gy, Gz)
Output: R0 ← k · G

R0 ← O, R1 ← G
for i from n − 1 downto 0 do

if ki = 1 then
R0 ← R0 + R1, R1 ← 2R1

else
R1 ← R0 + R1, R0 ← 2R0

end if
end for

Although we are only talking
about one bit, the LadderLeak attack
[3] took advantage of this leakage
to fully break the ECDSA protocol
implemented in recent OpenSSL ver-
sions. They showed how this small
leakage can be exploited together with
advanced approaches for solving the
hidden number problem [11], leading
thus to a complete recovery of the
secret scalar. In an earlier work, the
authors of [9] also identified the same
leakage on a hardware implementa-

1 In this paper we will use the term balanced value to refer to large values or bitstrings
containing similar amounts of 0s and 1s. While we expect operations on such values
to consume a notably larger amount of power than operations on small values like
zero or one, this may not always be clearly visible due, e.g. to software optimisations.
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tion of the Montgomery Ladder. They showed the leakage via simulated power
traces and proposed a simple countermeasure: a re-design of the initialisation
phase of the algorithm as well as a special treatment of the first loop iteration.
The idea is that no registers are initialised with a value equal 1 and when the
loop is entered for the first time; we do not need to perform multiplications with
operands equal to 1 since the results of such operations are already known. The
authors showed that implementing the Montgomery Ladder in this alternative
way barely implies any additional costs in terms of execution time, area and
power consumption.

In this paper we consider further case studies of the Montgomery Ladder
when implemented with other projective coordinates or other point addition and
doubling algorithms. We consider both, software and hardware ECC implementa-
tions over prime fields and explore whether the aforementioned leakage is present.
We confirm its presence, even when Z-coordinate randomisation is employed, and
propose corresponding countermeasures to mitigate the easy extraction of the
most significant scalar bit(s). Our work is motivated by the results of the Lad-
derLeak attack, which showed how such leakage could be exploited, but also by
the fact that previous works showed that mitigating such leakage could be done
in a simple and efficient way. Below we elaborate on the implementations we
study and modify in this paper.

1.1 Software Implementations of Curve25519

We begin our studies with a software implementation of Curve25519 based on
the ladderstep algorithm introduced in [15] (see Algorithm 3 below). This algo-
rithm is a popular choice for implementing the X25519 key-exchange protocol in
software [7] (see [25] for alternative implementations of this algorithm and [14]
for a tutorial on implementations of Curve25519 on ARM Cortex-M0). Con-
cretely, we consider a recent open source implementation of X25519 from [4]2.
This implementation performs the scalar multiplications via the Montgomery
Ladder as described in Algorithm 2 and the ladderstep function is implemented
according to Algorithm 3.3 Note that Algorithm 2 does not assume that the
most significant bit of the scalar has a value equal to 1. Instead, the algorithm
initialises the registers X1, Z1,X2, Z2 with values corresponding to the point at
infinity and the input point xP respectively, and then the algorithm executes the
ladderstep function for the most significant bit of k, independently of its value.
Clearly, if the first loop iteration(s) is (are) executed for scalar bits with value
0, we know that the resulting outputs of the loops are basically equal to their
input values, and thus, such loop iterations are not really necessary. However,

2 The source code from [4] is located in the following repository: https://github.com/
sca-secure-library-sca25519/sca25519.

3 Note that in the X25519 protocol, the most significant (254th) bit of the secret
scalars is always set to 1; this is done by anding the most significant scalar byte with
0x7F|0x40 in [4]. However, since we consider the ECDSA protocol then the most
significant scalar bits can be 0 and we need to consider fully random scalars.

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
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the algorithm is implemented in this way with the scope of protecting the length
of the key with respect to timing and side channel attacks. That is, if we only
start executing the main loop of the algorithm once we’ve reached the first key
bit with value 1, we would obtain power traces of different sizes, depending on
where this first 1 is located. Implementing the Montgomery Ladder according
to Algorithm 2 also relaxes the assumption that the most significant bit of the
scalar is always 1, and thus we always talk about a key space of size 2|k| and not
of size 2|k|−1.

However as we show in this paper, this approach does not really protect
the values of the most significant bits (MSBs) of the scalar when considering
SPA. Namely, loop iterations for MSBs with value 0 can be easily distinguished
from the rest of the loop iterations, and thus it is easy for an adversary to
extract all MSBs of the scalar up to (and including) the first 1. This happens
because the loop iterations for MSBs with value 0 have a notably different power
consumption than the rest, given that many operations performed within those
loops use operands with the value 0 or 1. Such operands are only overwritten
with larger, balanced values once we finally iterate a loop for a key bit with
value 1.

Leakage on DPA-Protected Implementations. We also verify the presence of this
leakage on the second implementation from [4] (see their Algorithm 2), which
is an SCA-protected implementation of ephemeral X25519 that randomises the
projective representation of the input value. However, the leakage is still present
since the input coordinates representing the point at infinity are initialised with
the values of 0 and 1. We thus show that projective coordinate randomisation
does not protect the MSBs of Curve25519 implementations.

Countermeasure. We modify Algorithm 2 to remove the aforementioned leak-
age in a simple, but effective way (see Algorithm 6). Our approach relies on
always executing the ladderstep function using balanced operands as inputs. This
way, the corresponding measurements always have similarly looking patterns and
it is not easy to determine when the first loop iteration for a key bit with value
1 is executed. Our approach is implemented as follows. We initialise all input
variables X1, Z1,X2, Z2 with randomly chosen, balanced values. Additionally,
we use two new variables W1 and W2 initialised with values needed for the first
ladderstep execution for a scalar bit with value 1. These values are the result
of additions and subtractions with operands with value 1, and we pre-calculate
them to avoid performing such operations during ladderstep. Now, if the most
significant scalar bit is 0, we execute the normal ladderstep from Algorithm 3,
but with balanced input variables. Note also that the outputs of these loops are
irrelevant for the actual calculation of kP . We repeat this process for all key bits
until we reach the first scalar bit with value 1. For this scalar bit, we execute a
special version of ladderstep (see Algorithm 7), where we use the pre-calculated
W1 and W2. After this loop iteration, we finally have all variables X1, Z1,X2, Z2

overwritten with correct, balanced values. Thus from this point on, we can sim-
ply continue with the regular execution of the Montgomery Ladder using the
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standard ladderstep from Algorithm 3. We avoid potential operation leakage by
ensuring that the special and regular ladderstep both consist of the same opera-
tion sequence, and by using only constant-time operations.

For implementing the countermeasure described above, we consider two
alternative software techniques and compare the costs of each. First we make
use of arithmetic constant-time “conditional swap” operations (referred to as
cswap operations in this paper) for alternating between the two versions of the
ladderstep function as described above. The cswap(X,Y, c) routine simply swaps
the first two inputs if and only if c = 1. This is achieved without traditional
conditional statements in the following way. First c ∈ {0, 1} is converted to the
form c′ = −c (now c′ = 0 if c = 0 and c′ = 0xFF..., otherwise). Then, the condi-
tional swap on the first argument (and similarly on the second one) is performed
arithmetically: X ^= c′ & (X^Y ). Thus, the value of X remains the same for
c′ = 0 and is overwritten with Y , otherwise.

The resulting re-design using cswap, while secure, incurs a notable perfor-
mance penalty due to the extra arithmetic operations. However, our second re-
design alternative is based on secret-memory access and incurs a much smaller
performance penalty. Here, instead of doing a swap depending on c, we put X
and Y into an array and we access them through memory access depending
on the value of c. Note that in our implementation, c depends directly on the
secret scalar, hence the name secret-memory access. We note that the security
of our second re-design may be dependent on the architecture used for running
the code. Namely if memory access is not always constant-time (as is the case
for architectures equipped with memory caching, for example), some small key
dependencies may be visible on power consumption traces.

We would like to underline that the above countermeasures aim to efficiently
protect against SPA, but not against more sophisticated single-trace attacks,
like [26], for which extra costly countermeasures are required.

1.2 Hardware Implementations of the Complete Addition Formulas

Our second case study is performed analogously to our first one, but we consider
hardware implementations based on the complete addition formulas from Renes,
Costello and Batina [28]. These formulas gained popularity since they allow
addition of any two points on Weierstrass curves and avoid thus exceptions
during the computations. Moreover, these formulas can be used for implementing
both the point addition and point doubling operations within the main loop of
the Montgomery Ladder. We consider an open-source implementation presented
in [27] which is based on Algorithm 7 in [28]. This implementation does not
assume that the MSB of the scalar is equal to 1 and for each loop iteration,
it executes Algorithm 7 of [28] twice: once for a point addition and once for a
point doubling. As for our first case study on Curve25519, we show via power
consumption measurements that the MSBs of the scalar can be (very) easily
extracted from this hardware implementation. We believe that a countermeasure
in the same style as for Curve25519 can be proposed and we leave that for future
work.
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Algorithm 2. Montgomery Ladder for x-coordinate-based scalar multiplication
on E : y2 = x3 + 486662x2 + x [4]
Inputs: k ∈ {0, ..., 2255 − 1}, xP

X1 ← 1; Z1 ← 0; X2 ← xP ; Z2 ← 1; p ← 0
for i ← 254 downto 0 do

c ← k[i] ⊕ p; p ← k[i] � k[i] denotes bit i of k
(X1, Z1, X2, Z2) ← cswap(X1, Z1, X2, Z2, c)
(X1, Z1, X2, Z2) ← ladderstep(xp, X1, Z1, X2, Z2)

end for
return (X1, Z1)

Exploiting the Leakage. The leakage discussed int this paper may be par-
ticularly useful for preparing template [5,23] and single-trace horizontal attacks
[17,20], since it easily reveals the length of loop executions. It also may reveal
time interval cycles when specific operations such as multiplications take place,
which is useful information for performing fault injection [10]. On implemen-
tations of the complete addition formulas, the leakage might let an adversary
distinguish a point addition from a doubling (see Sect. 5). Finally, this leakage
can be used for zero value attacks [1,16], which require the knowledge of some
initial scalar bits.

2 Background and Experimental Setup

In [24] Montgomery introduced efficient x-coordinate-only formulas for comput-
ing addition and doubling operations between points in elliptic curves. These for-
mulas would later be simply referred to as the Montgomery Ladder, described in
Algorithm 2. The ladderstep process corresponds to a point addition and a point
doubling operation. There exist different formulas for implementing the ladder-
step process using projective coordinates (e.g. [15,22,28]), and the choice of the
formulae is usually determined by the type of implementation we are considering
(software vs hardware, type of curve used, etc.). In [15] the authors proposed
Algorithm 3 for efficient software implementations of Curve25519. Implemen-
tations based on this algorithm only need to make use of two extra variables
(T1 and T2) for the ladderstep processes. Additionally, each ladderstep process
consists of only 6 multiplications and 4 squarings, plus a few addition and sub-
traction operations. This method of implementing the ladderstep has also been
embraced on a recent work [4], where the authors implement the X25519 key
exchange protocol in combination of a large amount of side-channel countermea-
sures.

Curve25519. The X25519 key-exchange protocol is based on Curve25519
defined over F2255−19 as: E : y2 = x3 + 486662x2 + x. The protocol uses 255 bit
long public and secret keys, where the secret key is a randomly generated scalar
k and the public key corresponds to a little-endian encoding of the x-coordinate
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Algorithm 3. Single Montgomery ladder step on Curve25519 from [15]
Inputs: xP , X1, Z1, X2, Z2

1: T1 ← X2 + Z2

2: X2 ← X2 − Z2

3: Z2 ← X1 + Z1

4: X1 ← X1 − Z1

5: T1 ← T1 · X1

6: X2 ← X2 · Z2

7: Z2 ← Z2 · Z2

8: X1 ← X1 · X1

9: T2 ← Z2 − X1

10: Z1 ← T2 · a24
11: Z1 ← Z1 +X1

12: Z1 ← T2 · Z1

13: X1 ← Z2 · X1

14: Z2 ← T1 − X2

15: Z2 ← Z2 · Z2

16: Z2 ← Z2 · xP

17: X2 ← T1 +X2

18: X2 ← X2 · X2

return (X1, Z1, X2, Z2)

of a point P on the curve. In the protocol, the shared secret corresponds to the
resulting point on the curve from the scalar multiplication of kP . For calculating
kP , we use the Montgomery Ladder algorithm. Note that in X25519, the most
significant scalar bit is always set to 1, and if the scalar needs to be a multiple
of word length (that is 256 bits for many architectures) then it is extended with
zeroes. However, note that Curve25519 is also used in EdDSA protocols, which
are ECC-based signature schemes [8].4 Here, the scalar is the resulting hash of
the message to be signed together with an auxiliary parameter b. Thus in this
case, the resulting scalar does not have a fixed value for its most significant bits.

Complete Addition Formulas. Renes et al. [28] introduced the complete
addition formulas for prime order elliptic curves, which are optimisations on
formulas presented earlier by Bosma and Lenstra in [12]. These formulas are said
to be complete on prime order Weirstrass curves of the form y2 = x3 + ax + b
since they can compute the sum of any two points on these curves. Moreover,
these addition formulas can be used for implementing both, the point addition
and point doubling operations within an implementation of the Montgomery
Ladder. It is believed that using the same addition formula for implementing
both operations may provide additional robustness in light of SCA attacks, since
it becomes more difficult to distinguish a point addition from a point doubling
operation, and behavioural effects of branching can be easily mitigated.

These formulas also use projective representation of the input points, in the
form P = (X,Y,Z). Thus, we additionally use the y-coordinate of the input
points for these formulas. The authors present one general addition formula and
further optimisations for special families of curves, in cases where the constant a
has the values −3 or 0. In this paper, we will focus on an open source implemen-
tation of Algorithm 7 of [28]. This flavour of the formula is applicable for short
Weierstrass curves which set the constant a = 0. As the authors explain, such a
curve has appeared in Certicom’s SEC-2 standard [29] which specifies the curve
secp256k1, used in the Bitcoin protocol.

4 We refer to EdDSA with the parameters of Curve25519 as Ed25519 [7].
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2.1 Experimental Setup and Side-Channel Evaluation

We perform our experiments and verifications with respect to three open source
implementations. The first two correspond to implementations from [4], which
are designs of X25519 using Montgomery Ladder for performing scalar multi-
plications. For simplicity and for obtaining a general result, we first focus on
the plain and unprotected design from the repository, which is an implementa-
tion of the Montgomery Ladder according to Algorithm 2, and implements the
ladderstep according to Algorithm 3. We will then show that the second design
from the repository, which implements some SCA countermeasures, also leaks
the most significant bits of the scalar. We run these designs on a Cortex-M4
on an STM32F407IGT6 board clocked at 168 MHz. For side-channel evaluation
of the designs, we measure current using the Riscure Current Probe [30] and
we collect the traces using the PicoScope 3406D oscilloscope with the sampling
frequency of 109 samples per second. Finally for side-channel analysis we use
the Inspector software by Riscure [31]. Subsequently, we re-design Algorithms 2
and 3 and propose countermeasures. We test our new designs by performing
experiments on the same experimental setup as described above.

We conduct our second case study on the hardware accelerator implementing
the Montgomery Ladder using the complete addition formulas [27]. We run the
design on an FPGA SAKURA-G board [19] and measure its power consumption
via a Teledyne Lecroy Waverunner 8404M oscilloscope with the sampling of
frequency 108 samples per second.

3 Leakage on Curve25519

In this section we analyse the Montgomery Ladder implemented according to
Algorithms 2 and 3 and explain how the most significant scalar bits can be
extracted via SPA. We confirm our intuitions via experimental results by mea-
suring the power consumption of the algorithm when running on a microcon-
troller.

3.1 Initial Loop Iterations

We now focus on Algorithm 2, whereby the ladderstep process is defined in
Algorithm 3. As we see, the input variables are initialised as X1 ← 1, Z1 ←
0,X2 ← xP , and Z2 ← 1. If the most significant scalar bit equals 0 then all
variables will hold these values when we enter the ladderstep process. Otherwise,
the cswap operation will be executed and the variables will have the values
X1 = xP , Z1 = 1,X2 = 1, Z2 = 0. We first focus on the former case. In the
following, we refer to k[0] as the most significant bit of the scalar. Observe that
in Algorithm 4 (and in all algorithms in this paper) “=” denotes only the equality
relation and “←” is used for assignment.

Case k[0] = 0. Algorithm 4 shows the explicit operand values that will be used
during the first execution of ladderstep if the most significant bit of the scalar
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Algorithm 4. Ladder step when entered just after the initialisation for k[0] = 0
Inputs: xP , X1 = 1, Z1 = 0, X2 = xp, Z2 = 1

1: T1 ← xP + 1
2: X2 ← xP − 1
3: Z2 ← 1 + 0
4: X1 ← 1 − 0
5: T1 ← T1 · 1
6: X2 ← X2 · 1
7: Z2 ← 1 · 1
8: X1 ← 1 · 1
9: T2 ← 1 − 1 = 0

10: Z1 ← 0 · a24

11: Z1 ← 0 + 1
12: Z1 ← 0 · 1
13: X1 ← 1 · 1
14: Z2 ← (xP + 1) − (xP − 1) = 2
15: Z2 ← 2 · 2 = 4
16: Z2 ← 4 · xP

17: X2 ← (xP + 1) + (xP − 1) = 2xP

18: X2 ← 2xP · 2xP = 4x2
P

return (X1 = 1, Z1 = 0);
(X2 = 4x2

P , Z2 = 4xP )

has a value of 0. We highlight in gray all operations that will be performed with
a variable with value 1 or 0 as operand, or operations where the variables are not
overwritten with any new values. Particularly interesting are the multiplications
performed in steps 5 through 8 and in step 13, which are all multiplications with
at least one operand with value 1. In steps 10 and 12, we perform multiplications
with operands with value 0. We can expect to see very small power consumption
peaks in the power trace regions corresponding to the execution of these steps.

Note that by the end of the process, i.e. by the end of this first loop iteration,
the variables X1 and Z1 preserve their values of 1 and 0 respectively. Moreover,
for X2 and Z2, note that X2

Z2
= 4x2

4x = x
1 , i.e. these projective coordinates preserve

their original value as well. Thus, the input values for the next loop iteration
(for the second bit of the scalar) are equivalent to the input values for the first
iteration. If the second loop iteration is executed again for a key bit with value
0, i.e. if k[1] = 0, we have basically the same situation as the one described in
Algorithm 4. Namely, although variable Z2 enters the loop with a value different
from 1, Z2 is quickly overwritten in step 3 with a value equal to 1. This holds
for all following loop iterations until we finally process a key bit with value 1.

Case k[0] = 1. We now analyse the first ladderstep execution for a key bit with
value equal to 1. Recall that when executing the ladderstep for a key bit with
value 1, we first swap the content of the variables via the cswap operation. Thus
the variables enter the loop with values X1 = xP , Z1 = 1,X2 = 1, Z2 = 0.
Recall that the values of X2 and Z2 may vary from xP and 1 respectively if the
ladderstep function was previously executed for a key bit with value 0. However,
the variables will retain the relation X1

Z1
= x

1 . For simplicity, we assume here that
Z1 = 1. Algorithm 5 shows the explicit operand values that will be used during
this loop execution. In this algorithm, the variables wi denote some operand
value larger than 1 (usually, some balanced operand value). As we can see, only
steps 5 and 6 consist of multiplications with operands with value 1.

We can expect higher power consumption peaks on the power trace region
corresponding to this execution of the ladderstep, in comparison to the regions
corresponding to the k[0] = 0 case. Moreover, note that by the end of the loop,
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Algorithm 5. Ladder step executed for the first scalar bit equal to 1 (k[i] = 1)
Inputs: xP , X1 = xP , Z1 = 1, X2 = 1, Z2 = 0

1: T1 ← 1 + 0
2: X2 ← 1 − 0
3: Z2 ← xP + 1
4: X1 ← xP − 1
5: T1 ← 1 · (xP + 1)
6: X2 ← 1 · (xP − 1)
7: Z2 ← (xP + 1) · (xP + 1) = (xP + 1)2

8: X1 ← (xP − 1) · (xP − 1) = (xP − 1)2

9: T2 ← (xP + 1)2 − (xP − 1)2 = w1

10: Z1 ← w1 · a24 = w2

11: Z1 ← w2 + (xP − 1)2 = w3

12: Z1 ← w1 · w3 = w4

13: X1 ← (xP + 1)2 · (xP − 1)2

14: Z2 ← (xP − 1) − (xP + 1) = w5

15: Z2 ← w5 · w5 = w6

16: Z2 ← w6 · xP

17: X2 ← (xP − 1) + (xP + 1) = w7

18: X2 ← w7 · w7 = w8

return
(X1 = (xP + 1)2 · (xP − 1)2, Z1 = w4);
(X2 = w8, Z2 = w6xP )

all variables have been overwritten with some more balanced values. Thus in all
following executions of ladderstep, we can expect to see high power consumption
peaks. Next, we verify our assumptions via power consumption measurements.

3.2 Experimental Verification

We run the implementation of the Montgomery Ladder with selected scalar
values, and record its power consumption as described in Sect. 2.1. We consider
cases where the most significant bit(s) of the scalar are 0s and cases where the
most significant bit of the scalar is 1. More concretely, we consider two keys
with the following values for their first bits: k1[0..7] = 0x04 = 00000100 and
k2[0..7] = 0x7F = 01111111.5 When comparing the power traces generated for
each key, we expect notably different power consumption profiles for the regions
corresponding to the processing of the first 5 bits of the scalars. After that, we
expect to see very similar power consumption profiles.

Figure 1 shows two power traces overlapped. The blue coloured trace corre-
sponds to the execution of the algorithm on k1 and a fixed input point P .6 The
yellow coloured trace corresponds to the execution with k2 and the same input
P . We mark in the red box the regions corresponding to the most significant bits
of the scalars. As we can observe, these regions differ notably from each other
and they do not align. The remaining regions of the power traces align very well
with each other, since they correspond to executions of the ladderstep where
we always use operands with balanced values. We repeated the experiment in a
similar setting but with random input points and the result was very similar.

In Fig. 2 we include power traces measured on the second implementation
from [4], which is also an implementation of Algorithm 2, but additionally
protected with projective Z-coordinate randomisation. We can observe a very

5 Note that 256th bit of the scalar is always set to 0 since p = 2255 − 19.
6 Px = 0x67C5590EF5591AEEE312308D155579DC042E497FEC764BB3CAF3DE88597B8C24.
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Fig. 1. Comparison of power profiles with scalars starting with 0x04 and 0x7F.

Fig. 2. Comparison of power profiles with scalars starting with 0x04 and 0x7F when
the Z-coordinate is randomized.

similar leakage as in Fig. 1.7 As explained in the introduction, the projective
randomisation is applied only to the variables corresponding to the input point
P , but not to the variables corresponding to the point at infinity and thus, many
operations with operands equal to 1 or 0 are performed during the initial loops.

4 Protecting the Most Significant Bits in Curve25519

We now present our proposed modification of the Montgomery Ladder, which
protects the most significant bits of the scalar.8 As mentioned before, our idea
consists on always using balanced operands during all executions of the ladder-
step process. For this, we initialise the input variables with dummy, balanced
values and use these values for all executions of the main loop until we reach
the first 1 of the scalar. For the loop iteration corresponding to the first 1 of the

7 We acknowledge that the traces in Fig. 2 look different than the ones collected from
the first implementation. This is caused not only by differences in implementations,
but also due to the fact that these new traces were collected later on with a new
physical setup (although probes and oscilloscopes were equivalent models).

8 We will provide a link to the code repository in the final version of the paper.
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Algorithm 6. Modified x-coordinate-based Montgomery Ladder
Inputs: k ∈ {0, ..., 2255 − 1}, xP

X1 ←$ Fp; Z1 ←$ Fp; X2 ←$ Fp; Z2 ←$ Fp;
W1 ← xP + 1; W2 ← xP − 1; p, s ← 0;
for i ← 254 downto 0 do

t ← (k[i] ∨ s) ⊕ s � k[i] denotes bit i of k
c ← k[i] ⊕ p; p ← k[i]
(X1, Z1, X2, Z2) ← cswap(X1, Z1, X2, Z2, c)
(X1, Z1, X2, Z2) ← ladderstep(xp, X1, Z1, X2, Z2, W1, W2, t)
s ← s ∨ t

end for
return (X1, Z1)

scalar, we execute a special version of the ladderstep, where we finally use the
operand values necessary for a correct calculation of kP .

Algorithm 6 describes our proposed modification of the Montgomery Lad-
der. All input variables X1, Z1,X2, and Z2 are initialised with randomly chosen
balanced values. These are 32-byte values which represent elements of Fp. Note
that these values can either be chosen at random for each execution, they can
be derived from the input point P or they can also just be hardcoded in the
implementation. Additionally, we also use two new variables W1 and W2 that
we initialise as follows: W1 ← xP + 1,W2 ← xp − 1. Both W1 and W2 contain
values needed when we execute ladderstep for the first 1 in the scalar. Note that
in Algorithm 5 these two values (xP + 1 and xP − 1) are obtained from an
addition and subtraction with value 1, performed in steps 3 and 4. These are
the first operations in the loop which actually depend on the input point value
xP . Moreover, these two values are used as operands in steps 7, 8, 14 and 17 in
Algorithm 5.

We now describe the operation flow of Algorithm 6 when processing the
scalar bits. If the most significant bit is 0 then we execute the normal ladderstep
as described in Algorithm 3. Note that in this case, the inputs to the ladderstep
process will be (dummy) balanced variables, set in the second line of the algo-
rithm. We repeat this process until we reach the first scalar bit with the value
1. When we reach the first 1 of the scalar, we execute a special variation of
the ladderstep function (Algorithm 7), where we make use of the pre-calculated
values W1 and W2. After this iteration, we have all variables X1, Z1,X2, Z2 over-
written with correct values and we simply continue the regular execution of the
Montgomery Ladder using the standard ladderstep function (Algorithm 3).

4.1 Implementing Our Proposed Modification

For implementing Algorithm 6, we need to take special care of the two follow-
ing aspects. First, we need to determine when we encounter the first non-zero
scalar bit so we can execute the modified ladderstep (for t = 1). Second, the
modified ladderstep loop should be executed only once. Naturally, all operations
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Algorithm 7. Single Montgomery ladder step for the case t = 1
Inputs: xP , X1, Z1, X2, Z2, W1, W2

1: T1 ← X2 + Z2

2: X2 ← X2 − Z2

3: Z2 ← X1 + Z1

4: X1 ← X1 − Z1

5: T1 ← T1 · X1

6: X2 ← X2 · Z2

7: Z2 ← W1 · W1

8: X1 ← W2 · W2

9: T2 ← Z2 − X1

10: Z1 ← T2 · a24
11: Z1 ← Z1 +X1

12: Z1 ← T2 · Z1

13: X1 ← Z2 · X1

14: Z2 ← W2 − W1

15: Z2 ← Z2 · Z2

16: Z2 ← Z2 · xP

17: X2 ← W2 +W1

18: X2 ← X2 · X2

return (X1, Z1, X2, Z2)

need to be implemented in constant-time, else we might observe small scalar-
dependent operation leakages in the power traces. In the following we explain
how we identify the first non-zero bit of the scalar and how we ensure that the
modified ladderstep algorithm (Algorithm 7) is executed only once and is hard
to distinguish from a regular ladderstep.

Note that the variable s is initialised to 0. Then, if k[0] = 0 (at the beginning
of the scalar multiplication), variable t is set to 0. This follows for all subsequent
scalar bits that equal to 0 because at the end of the loop s retains the value 0
(s = 0 ∨ 0). When k[i] = 1 for the first time, t is set to 1 right at the beginning
of the loop. Namely, s = 0 and thus we calculate t ← (1 ∨ 0) ⊕ 0. Now we will
execute the special case for ladderstep since t = 1. Note that at the end of this
loop, right after executing the special ladderstep, s will be set to 1: s ← 0∨1. In all
subsequent loops t will be set to 0 regardless the value of k[i] because (k[i]∨1)⊕1
always equals 0. By ensuring that t = 0 for all subsequent loop iterations, we
ensure that we execute the standard ladderstep process from Algorithm 3.

Note that the original ladder step (for t = 0) executes the exact same instruc-
tions as the modified one (for t = 1). Their only difference is the use of some
registers as operands as we explain in the next subsection. Thus, there may
still be data leakage present in the above operations, but there is no operation
leakage. Moreover, as we show later in Sect. 4.3 via side-channel evaluation, the
present data leakage is small and not visible by SPA means.

4.2 Implementations of the Ladder Step

Our proposed Montgomery Ladder described in Algorithm 6 needs to switch
seamlessly between both Algorithm 3 and Algorithm 7. Note that the algo-
rithms execute the same operations but differ only on how the following steps
are implemented: 7, 8, 14, and 17—see Table 1 for details. As we see from the
table, we need to seamlessly alternate between parameters Z2 and W1 in step 7,
X1 and W2 in step 8, and T1,X2 and W2,W1 in steps 14 and 17 respectively.

We now describe how we implement the ladderstep from Algorithm 6 alter-
nating smoothly between both versions of the ladderstep. Essentially, we want
to ensure that the same sequence of operations is always performed, regardless
of the used ladderstep version in order to stop SPA. To achieve this, we combine
Algorithms 3 and 7 into one software implementation since both algorithms use
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Table 1. Different Steps between Algorithm 3 and Algorithm 7.

Step Algorithm 3 Algorithm 7

7 Z2 ← Z2 · Z2 Z2 ← W1 · W1

8 X1 ← X1 · X1 X1 ← W2 · W2

14 Z2 ← T1 − X2 Z2 ← W2 − W1

17 X2 ← T1 + X2 X2 ← W2 + W1

the same sequence of operations and only their operands differ. When the most
significant scalar bit is 1, we choose operands as in Algorithm 7. When the bit
is 0, we choose operands as in Algorithm 3. We propose two alternatives for
implementing this operand switch:

1. a cswap-based implementation and
2. an implementation based on secret-memory accesses.

These methods differ in provided security guarantees and performance impact
as we explain bellow.

cswap Based Implementation. Our first design is based on conditional swap
(cswap). The cswap(X,Y, c) routine swaps the content of the inputs X and Y if
and only if c = 1. For the sake of simplicity let us consider 32-bit values. In this
case cswap can be implemented as follows:

c’ = - c; //now c’=0xFFFFFFFF if c=1 and 0 otherwise

TMP = X;

X ^= c’ & (X ^ Y);

Y ^= c’ & (TMP ^ Y);

Since in our implementation the operands are 255-bit values, the last 3 lines
need to be repeated multiple times to swap all words of the operands.

While this implementation is not very fast, it has the following advantage: the
sequence of addresses accessed by the algorithm does not depend on the secret
scalar. Therefore, the implementation is constant-time even on a target equipped
with data caching and we obtain a design which is constantly robust against
SPA, independently of the platform we are running it on. For implementing,
we use the same extra memory as for our secret memory access-based method
(described below), but instead of accessing the memory directly we perform
cswaps (depending on the t value from Algorithm 6) twice: just before and just
after the operations from Table 1.

Secret-Memory Accesses. Our second proposed re-design uses secret scalar-
dependent access to memory locations. The memory locations correspond to the
operands we are using within the loop. The bit t from Algorithm 6 indicates
which operands we use. We access the memory corresponding to the operands
from Algorithm 7 if t = 1, and according to Algorithm 3 otherwise.
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Table 2. Performance Evaluation.

Implementation Time (milliseconds): Extra Memory (bytes):

Unprotected Imp.: 5.62 -

Cswap-based Imp.: 7.6 (+35.2%) 8 ∗ 32 = 256

Secret-Memory Access Imp.: 5.81 (+3.4%) 8 ∗ 32 = 256

This implementation is fast but it is constant-time only if the access to the
memory by the microcontroller is constant-time. Thus, the robustness of this
countermeasure depends on the used platform. Since, our target, a Cortex-M4
on an STM32F407IGT6 board, does not have data caches, the memory access
is expected to be constant-time as long as the same SRAM region is accessed;9

as shown in [2] this target has 2 different regions with different characteristics.
To increase the probability that the memory accesses are to the same region, we
declare the alternating operands as global variables next to each other. In partic-
ular, we keep pairs of the values in an array with two elements and access either
the original value for t = 0 or W1 and W2 for t = 1. There are 4 values in total
for which we need to keep the corresponding pre-computed values. Additionally,
there are 4 balanced values that we pre-calculate and which are hard-coded in
our implementation. Thus, we increase the memory usage by 8 coordinates of
32-bytes each.

4.3 Evaluation of Our Countermeasures

We now present our benchmark results comparing our two proposed re-designs
with the original one from [4]. We later perform a side-channel evaluation and
confirm the effectiveness of our proposed countermeasures. All experiments pre-
sented in this section are performed as described in Sect. 2.1.

Performance Evaluation. The performance evaluation results are presented
in Table 2. We have checked that all implementations are constant-time. Some-
times, minimal jitter takes place due to instruction caching.10 As expected, the
SCA countermeasure against SPA comes at a cost in our re-designs since we are
performing additional arithmetic operations on each loop execution when setting
the values of the variables s and t. For our implementation using cswap opera-
tions, the overhead is of 35.2%. However for our re-design using secret memory
access, the overhead is only of about 3.4%. The memory overheard is small: for
both implementations it consists of 256 extra bytes, which come from 8 extra
global variables in the finite field Fp, where p = 2255 − 19.

9 The target has however an instruction cache. This caching mechanism is randomized,
but since the sequence of instructions is always the same in our algorithms, this
potential timing difference is independent from the scalar.

10 The sequence of instructions performed by our algorithms is always the same but
the instruction caching of our target seems to be random.
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Fig. 3. Comparison of power profiles scalars starting with 0x04 and 0x7F for the cswap-
based implementation (top) and the secret-memory access implementation (bottom).

Side-Channel Evaluation. We run both of our modified implementations
using the same inputs as in Sect. 3.2. Namely, we consider scalars k1 and k2
starting with 0x04 and 0x7F, and the same fixed point for each case. Figure 3
shows the resulting power traces for both implementations. We conduct the
experiment a total of 20 times for verification, obtaining always the same result
for both cases. The top plot in Fig. 3 shows that indeed the cswap-based imple-
mentation is protected against SPA. The bottom plot confirms that different
memory-access does not generate an SPA-detectable leakage on our evaluation
target. We also repeated the experiment in a similar setting but with random
input points and the result was very similar for both implementations. Therefore,
we can confirm the effectiveness of our designs.

Note that as expected (given our performance evaluation), the secret-memory
access implementation is visibly faster than the cswap-based one. This is visible
from the repeating pattern in the traces, which corresponds to a loop iteration
in the Montgomery Ladder. This pattern is notably longer in the traces corre-
sponding to the cswap-based implementation.

Evaluation Limitations. Since we only consider SPA, we use visual means
to determine the leakage. We are aware that even for our protected implemen-
tations, automated leakage detection like TVLA [6,18] would indicate leakage
exploitable by more advanced side-channel attacks. This is expected since we do
not use randomisations and we do not consider such attacks in this work.
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5 Leakage on the Complete Addition Formulas

We now analyse hardware implementations of the Montgomery Ladder based on
the complete addition formulas from [28]. We provide a more compact analysis
as for our previous case study, since the reasons for the leakage and its possible
mitigation can be explained and proposed analogous. We will focus on an open
source implementation from [27]. This design implements the point addition
and doubling operations based on Algorithm 7 in [28] (for space reasons we do
not include a description of the algorithm and refer the reader to the original
paper). For point addition, the inputs to the algorithm correspond to the points
we want to add (i.e. R0 and R1). For point doubling we provide the same point
twice as input and perform thus R0 +R0 or R1 +R1. This implementation also
relaxes the assumption that the most significant bit of the secret scalar is 1, and
performs a loop iteration for each MSB of the scalar, even if it has the value 0.
To this scope, the first register R0 is initialised with coordinates corresponding
to the point at infinity, i.e. R0 = (0, 1, 0), and the second register R1 is initialised
with coordinates corresponding to the input point P , i.e. R1 = (xP , yP , 1), (see
Section IV D in [27]). However as we explain next, this way of executing the
algorithm leads to the exact same side-channel vulnerability discussed so far in
this paper.

We now describe what happens if the MSB of the scalar has a value of 0,
with focus on the point doubling step, since this is the part of the algorithm
where the most leakage will be visible. If the MSB of the scalar is equal to
0, we will perform a point doubling with values corresponding to the point at
infinity. That is, both inputs to the algorithm will have the values R0 = (0, 1, 0).
Consequently, the first 5 operations of the algorithm are executed as follows:
t0 ← 0 · 0; t1 ← 1 · 1; t2 ← 0 · 0; t3 ← 0 + 1; t4 ← 0 + 1. We are thus performing
multiplications and additions exclusively with operands equal to 0 and 1 in the
beginning of the algorithm. Moreover, the registers t0 and t2 are overwritten
with 0 and registers t1, t3 and t4 are overwritten with a 1 which leads to a very
large amount of leaky additions, subtractions and multiplications throughout
the rest of the algorithm execution. Note that equally as for our previous case
studies, such a leakage will be visible in the next loop iteration if the next bit of
the scalar also has a value of 0, and the leakage will only be gone once we execute
a loop iteration for a key bit with a value of 1. Figure 4 shows power traces from
this implementation running first on a scalar whose initial bits are 0xFF and
then with a scalar whose initial bits are 0x08, both times with the same input
point. These power trace measurements confirm the presence of the leakage. We
repeated the experiment in a similar setting but with random input points and
also with enabled Z-coordinate randomisation. For all cases, the leakage was still
very present.
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Fig. 4. Power profiles of the hardware implementation using complete addition formu-
las with scalars starting with 0x08 (above) and 0xFF (below).

6 Conclusions and Future Work

In this paper we studied and verified an SCA leakage commonly found in ECC
implementations. We studied the leakage on implementations of Curve25519 and
proposed re-designs of its scalar multiplication algorithm with the goal of remov-
ing this leakage. We verified the effectiveness of our re-designs via experimental
results in Sect. 4.

It remains to propose a complete re-design for the implementations using the
complete addition formulas, which we studied in Sect. 5. To remove the leakage
of these implementations, we can outline a similar re-design as the one presented
for Curve25519. Namely, we can initialise all input registers with random values,
and execute “dummy” loops for all MSBs with value equal 0. Once we reach the
first key bit with value 1, we can perform a special variation of the loop iteration,
where we plug-in pre-calculated values depending on the input point P . We can
alternate between the two possible loop iterations by means of a final state
machine, as usually done for VHDL designs. We leave a complete description of
a re-design for our second case study (and its evaluation) as future work.
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Abstract. In this short paper we show how to apply Montgomery multi-
plication to the tag tracing variant of the Pollard rho algorithm applied to
prime order fields. This combines the advantages of tag tracing with those
of Montgomery multiplication. In particular, compared to the previous
version of tag tracing, the use of Montgomery multiplication entirely
eliminates costly modular reductions and replaces these with much more
efficient divisions by a suitable power of two.

Keywords: Cryptography · Discrete logarithm problem · Pollard’s
Rho · Tag tracing · Montgomery multiplication

1 Introduction

Let G be the finite cyclic group and g be a generator of G. The discrete logarithm
problem (DLP) in G is the following. Given a non-zero element h of G, find i
such that gi = h. This i is called the discrete logarithm of h to base g which
is written as i = logg h. Over suitably chosen groups, the DLP is considered to
be a computationally hard problem and forms the basis for security of various
cryptosystems.

The best known generic algorithm for solving the DLP is the Pollard rho
algorithm [5]. The resources required by the algorithm are O(

√
#G) time and

O(1) space. For the DLP on finite fields, faster algorithms, namely the function
field sieve and the number field sieve, are known. Nevertheless, improving the
performance of the Pollard rho algorithm in prime order fields can be relevant
for DLP computations in smaller prime fields, even though it does not improve
the state of the art of DLP cryptanalysis over finite fields.

Since its introduction, several variants of the Pollard rho algorithm have
been proposed. In particular, the tag tracing variant [2] showed the possibility
of obtaining practical speed-up of the Pollard rho algorithm for certain groups.
Concrete speed-ups were demonstrated for prime order subgroups of multiplica-
tive groups of finite fields. Two kinds of fields were considered in [2], namely,
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prime order fields and small characteristic, large extension degree fields. We focus
on the application of tag tracing to prime order fields.

Let p be a prime, Fp be the finite field of p elements. The group G where
DLP is considered is typically a prime order subgroup of F�

p.
The Pollard rho algorithm performs a pseudo-random walk. For solving DLP

in Fp, each step of the walk requires performing a multiplication in Fp. The
improvement achieved by the tag tracing method is to ensure that a field mul-
tiplication is required after every � steps for a suitable choice of the parameter
�. In the intermediate steps between two field multiplication steps, a special
computation is performed by the tag tracing method. This computation is sig-
nificantly faster than a field multiplication. So tag tracing speeds up the Pollard
rho algorithm by a factor of about �.

A field multiplication in Fp consists of two phases. The first phase is an
integer multiplication while the second phase is a reduction modulo p operation.
For primes p not having a special structure, the reduction operation can require
a substantial portion of the overall time for a field multiplication. The technique
of Montgomery multiplication [1,3] works with Montgomery representation of
elements and replaces a field multiplication by a Montgomery multiplication.
The advantage of Montgomery multiplication is that all divisions are by certain
powers of two and so can be implemented using right shift operations. The
expensive modulo p operation is no longer required.

In this work, we show how the Montgomery multiplication can be combined
with the tag tracing method. The goal is to retain the advantages achieved by
tag tracing and also simultaneously replace the field multiplications required
after every � steps by a Montgomery multiplication. All the time consuming
modulo p operations are completely eliminated. Consequently, the Montgomery
multiplication version of tag tracing achieves further speed-up compared to the
usual tag tracing algorithm. The combination of Montgomery multiplication and
tag tracing is achieved without any trade-offs. In particular, the storage space
required remains the same in both cases.

2 Background

We provide brief descriptions of the Pollard rho algorithm, tag tracing and Mont-
gomery multiplication.

The Pollard Rho Algorithm: The Pollard rho algorithm [5] is a well known
method for solving DLP in prime order fields. Several variants of this algorithm
have been studied. We briefly mention the variant introduced in [6].

Let r be a small positive integer. For i = 1, . . . , r, randomly choose integers
αi, βi ∈ {0, . . . , p−2} such that both αi and βi are not zeros. Define mi = gαihβi ,
i = 0, . . . , r − 1. A pre-computed table T stores the entries (i,mi, (αi, βi)) for
i = 0, . . . , r − 1. Define an indexing function s : G → {0, . . . , r − 1}. Using s, a
sequence of elements of G is defined as follows. Choose a0, b0 ∈ {0, . . . ,#G − 1}
and set g0 = ga0hb0 . For j ≥ 0, define gj+1 = gjms(gj). The computation of the
sequence g0, g1, g2, . . . is considered to be a pseudo-random walk on G.
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Writing gj = gaj hbj for j ≥ 0, we have aj+1 = aj + αs(gj) and bj+1 =
bj + βs(gj). So it is easy to obtain aj+1 and bj+1 from aj and bj . Since G is
finite, there must be some j and k, with j < k such that gj = gk, i.e., the
pseudo-random walk must lead to a collision. Denoting loggh by d, the condition
gj = gk leads to the relation aj + dbj = ak + dbk. Under the condition that
bj − bk is invertible modulo #G (which holds with high probability for large p
and appropriate group G), we have d = (aj − ak)(bk − bj)−1 mod #G.

There are several methods for detecting collisions. The distinguished point
method [4] is the most practical of these methods and allows parallelisation.

Tag Tracing: In the pseudo-random walk defining the Pollard rho algorithm, the
computation of gj+1 from gj is done by multiplying gj and ms(gj). So each step
requires a field multiplication. The tag tracing method was introduced in [2].
The essential idea is to increase the size of the pre-computed table so that a
field multiplication is required after every � steps for a suitable choice of the
parameter �. The computation done in the intermediate steps between two field
multiplications is significantly faster than a field multiplication.

The set of multipliers {mi : mi = gαihβi , i = 0, . . . , r −1} is defined as in the
case of the original Pollard rho algorithm. Choose a parameter � and let M� be
the set of all possible products of at most � elements from M. The elements of M�

can be indexed by vectors of the form (i1, . . . , ik) where i1, . . . , ik ∈ {0, . . . , r−1}
and 0 ≤ k ≤ �. Given x = (i1, . . . , ik), the element of M indexed by x is
mx = mi1 · · · mik

. Note that if x′ is obtained by permuting the components of x,
then mx′ = mx. So we will assume that the vector x satisfies i1 ≤ i2 ≤ · · · ≤ ik.
A pre-computed table Tab is created. The rows of Tab are as follows.

(x,mx, (a, b), (m̂0, . . . , m̂d−1))

where

– x = (i1, . . . , ik), with 0 ≤ k ≤ �, i1, . . . , ik ∈ {0, . . . , r − 1},
– mx = mi1 · · · mik

mod p,
– (a, b) is such that mx = gahb.

We explain the component (m̂0, . . . , m̂d−1) later. The table Tab is stored as a
hash table (or, some other suitable data structure), so that given an appropriate
vector x, it is easy to locate the corresponding row of Tab.

The indexing function s : G → {0, . . . , r−1} defines the pseudo-random walk.
Tag tracing requires an auxiliary indexing function s : G × M� → {0, . . . , r −
1} ∪ {fail}, such that

if s(y,m) �= fail, then s(y,m) = s(ym).

Suppose the element at the j-th step of the pseudo-random walk is gj . The
elements in the next � steps are gj+1, . . . , gj+�. For 1 ≤ i < �, recall that in the
Pollard rho algorithm gj+i = gj+i−1ms(gj+i−1). Iterating leads to the following.
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gj+i = gj+i−1ms(gj+i−1)

= gj+i−2ms(gj+i−2)ms(gj+i−1)

= · · ·
= gjms(gj)ms(gj+1) · · · ms(gj+i−1).

The goal of the tag tracing method is to avoid computing the intermediate ele-
ments gj+1, . . . , gj+�−1 and instead jump directly from gj to gj+�. This requires
obtaining the element ms(gj)ms(gj+1) · · · ms(gj+�−1) and so in particular, the index
values s(gj), s(gj+1), . . . , s(gj+�−1). Since gj is available, s(gj) can be directly
obtained. For i > 1, the value of s(gj+i) is obtained using the auxiliary tag
function s as

s(gj+i) = s(gjms(gj)ms(gj+1) · · · ms(gj+i−1))
= s(gj ,ms(gj)ms(gj+1) · · · ms(gj+i−1)).

The elements ms(gj)ms(gj+1) · · · ms(gj+i−1) for i = 0, . . . , �−1 are elements of M�

and are part of the pre-computed table.
In the tag tracing method, a tag set T is identified. The index function s

is defined as the composition of a tag function τ : G → T and a projection
function σ : T → {0, . . . , r − 1}, i.e., for y ∈ G, s(y) = σ(τ(y)). Similarly,
the auxiliary index function s is defined as the composition of an auxiliary tag
function τ : G×M� → T and a projection function σ : T → {0, . . . , r−1}∪{fail},
i.e., for y ∈ G and m ∈ M�, s(y,m) = σ(τ(y,m)).

The definitions of τ, σ, τ and σ depend on a number of parameters. The two
basic parameters are the prime p and the size of the index set r. The tag set is
T = {0, . . . , t − 1} which also defines the parameter t. The parameter u is taken
to be a suitable word size and d is defined to be d = 	logu(p − 1)
. An integer t
is chosen such that t > d(u− 1) and tt < p1/3. The parameter w is defined to be
w = tt. Finally, the parameter r is defined so that rr = t. As shown in [2], it is
possible to choose all the parameters (other than p) to be a power of 2. Based
on these parameters, the functions τ and σ are defined as follows.

τ(y) =
⌊

y mod p

tw

⌋
; σ(x) = �x/r�.

To define the function τ , elements of y ∈ F�
p are represented in base u as y mod

p = y0 + y1u + · · · + yd−1u
d−1. Given m ∈ M�, for i = 0, . . . , d − 1, define m̂i =

�(uim mod p)/w�. Since u is fixed, for each m ∈ M�, the values m̂0, . . . , m̂d−1 are
pre-computed and stored in the table Tab along with m (as mentioned earlier).

Given y ∈ G and m ∈ M�, the value of τ(y,m) is defined to be the following.

τ(y,m) =

⎢⎢⎢⎣
(∑d−1

i=0 yim̂i

)
mod w

t

⎥⎥⎥⎦ .
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Given x ∈ T , the function σ is defined as follows.

σ(x) =
{

fail if x ≡ −1 mod r,
�x/r� otherwise.

The proof of correctness of the tag tracing procedure based on the above defini-
tions of s and s is complex. We refer to [2] for details. The use of tag tracing for
the Pollard rho algorithm requires a suitable definition of distinguished point.
Again, we refer to [2] for details.

The computation of s has a chance of failure. In case of failure, a field mul-
tiplication is required. Otherwise, a field multiplication is required after every �
steps. The computation of s require the computations of τ and σ. The quantities
m̂0, . . . , m̂d−1 are part of the pre-computed table. So for the computation of τ ,
the d multiplications yim̂i, i = 0, . . . , d − 1 are required. Apart from these, all
other computations are divisions by w, t and r. Since these are chosen to be
powers of 2, such computations are very fast. Overall, the computation of s is
significantly faster than a field multiplication.

Our description of tag tracing has been in the context of DLP computation
in a multiplicative subgroup of F�

p as given in [2]. A general description of the
method applicable to any finite cyclic group for which suitable tag and projection
functions can be defined has been provided in [2]. Further, the application of
the method to small characteristic, large extension degree fields has also been
described in [2].

Montgomery Multiplication: Let x and y be two elements of Fp and the require-
ment is to compute the product x ·y ∈ Fp. Typically, this is a two-stage process,
where in the first stage the integer multiplication of x and y is carried out and
then the result is reduced modulo p. The reduction operation can take a sub-
stantial fraction of the total time to perform the field multiplication. This is
especially true if p does not have a special form. Montgomery multiplication
was introduced [3] to replace the costly reduction operation modulo p by much
cheaper divisions by powers of two. Below we provide a brief description of
Montgomery multiplication based on [1].

Following the notation used in the context of tag tracing, let u be a power
of two representing a word size and d be such that the elements of F�

p have a
d-digit representation to base u. Choose R = ud such that ud−1 ≤ p < ud. Since
p is odd and u is a power of two, there exists μ satisfying μ = −p−1 mod u.

The core of Montgomery multiplication is a procedure called Montgomery
reduction. Given an integer x having a d-digit representation to base u, Mont-
gomery reduction computes xR−1 mod p. The Montgomery multiplication is a
generalisation which given two integers x and y computes xyR−1 mod p. Sup-
pose x and y satisfy 0 ≤ x, y < R and x is written as x =

∑d−1
i=0 xiu

i with
0 ≤ xi < u for i = 0, . . . , d − 1. From [1], the basic Montgomery multiplication
procedure is the following.



Combining Montgomery Multiplication with Tag Tracing 143

z ← 0
for i = 0 to d − 1 do

z ← z + xiy
q ← μz mod u
z ← (z + pq)/u

end for
if z ≥ p then z ← z − p
output z.

It can be shown that the output z satisfies z ≡ xyR−1 mod p. For a proof of
this statement and for a discussion on improvements to the above algorithm, we
refer to [1]. The point to be noted here is that the only divisions in the above
procedure are by u which is a power of two. So these divisions are simply right
shift operations and are very fast.

Given two field elements x and y, one way to multiply them is to first con-
vert them to Montgomery representation by computing x̃ = xR mod p and
ỹ = yR mod p, then performing a Montgomery multiplication of x̃ and ỹ to
obtain z̃ = x̃ỹR−1 = xyR mod p and then performing a Montgomery reduc-
tion (or, performing Montgomery multiplication of z̃ and 1) on z̃ to obtain
z̃R−1 mod p = xy mod p. This procedure has the overhead of converting x and
y to Montgomery representation and at the end applying a Montgomery reduc-
tion to z̃. So for performing a single multiplication, this procedure is not very
useful. Instead, Montgomery multiplication turns out to be effective when a
sequence of multiplications can be done in the Montgomery representation.

3 Combining Montgomery Multiplication with Tag
Tracing

The Pollard rho algorithm in G consists of a sequence of multiplications modulo
p. So it is an ideal application case for Montgomery multiplication. Let us first
consider how this can be done.

As described earlier, the pseudo-random walk of the Pollard rho algorithm
starts with g0 and continues by computing g1, g2, . . ., where for j ≥ 0, gj+1 =
gjms(gj). Recall that for each i ∈ {0, . . . , r − 1}, the values αi and βi are known
such that mi = gαihβi . As before, a pre-computed table T stores (i,mi, (αi, βi))
for i = 0, . . . , r − 1.

To perform the Pollard rho algorithm using Montgomery multiplication, the
multipliers are converted to Montgomery representation. This requires a change
in the pre-computed table T. Denote the modified table by modT. Then the rows
of modT are (i, m̃i, (αi, βi)) for i = 0, . . . , r − 1, where m̃i = miR mod p.

As in the Pollard rho algorithm described above, randomly choose a0 and b0
and define z0 = ga0hb0 . Let z̃0 = z0R mod p be the Montgomery representation
of z0. For j ≥ 0, we define zj+1 = zjms(z̃j) mod p. Note that in this case, the
indexing function s is applied to z̃j instead of being applied to zj . This is because
the element computed at the (j + 1)-th step of the walk is z̃j+1. The quantity
z̃j+1 is computed by applying Montgomery multiplication to z̃j and m̃s(z̃j), i.e.,
z̃j+1 = z̃jm̃s(z̃j)R

−1 mod p = zjms(z̃j)R mod p = zj+1R mod p.
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With the above modification, all the multiplications required in the pseudo-
random walk are Montgomery multiplications. So at no stage the reduction oper-
ation modulo p is required.

The exponent information can be obtained from the walk. For j ≥ 0, let
zj = gaj hbj . Note that a0 and b0 are known. Let i = s(z̃j). Then from the
pre-computed table, it is possible to obtain (mi, αi, βi). By definition, we have
zj+1 = zjmi and so, aj+1 = aj + αi and bj+1 = bj + βi.

Now, suppose there is a collision in the pseudo-random walk, i.e., there are
j and k with j < k such that z̃j = z̃k. Using the definition of z̃j and z̃k, we
have zjR = zkR mod p implying zj = zk mod p since R is co-prime to p. Using
zj = zk mod p, we obtain aj + dbj = ak + dbk, where d = logg h. From this
relation, it is possible to obtain d as mentioned earlier.

The distinguished point method for detecting collisions can be applied to this
modified pseudo-random walk by defining distinguished points based on z̃j for
j ≥ 0.

The above description shows that using Montgomery multiplication to define
the pseudo-random walk for the Pollard rho algorithm results in replacing all
the relatively expensive modulo p operations with divisions by powers of two.
We next consider, how the tag tracing method can be applied to this version of
the Pollard rho algorithm.

Let us first consider the difficulties in applying Montgomery multiplication to
the setting of tag tracing. Suppose the pseudo-random walk is at an element z̃j

for some j ≥ 0. The goal of tag tracing is to perform a single field multiplication
to move to the element z̃j+�. For the intermediate points of the walk, the index
values s(z̃j), s(z̃j+1), . . . , s(z̃j+�−1) are required.

The goal is to replace the usual field multiplication with a Montgomery mul-
tiplication. On the other hand, recall that the function s is obtained from the
auxiliary function s, such that for y ∈ G and x ∈ M�, if s(y,m) �= fail, then
s(y · m) = s(y,m). The product y · m in the argument of s is the usual field
multiplication. So there are two apparently conflicting requirements. For the
movement from z̃j to z̃j+�, a Montgomery multiplication is to be applied, while
the indexing function s is defined with respect to the usual field multiplication.

We show a simple resolution of this problem. The first thing to note is that
the product in the argument of s is not actually performed. Instead, s(y · m) is
computed as s(y,m). For 1 ≤ i ≤ �, we have

s (z̃j+i) = s
(
z̃j+i−1m̃s(z̃j+i−1)R

−1 mod p
)

= s
(
z̃j+i−1ms(z̃j+i−1)RR−1 mod p

)
= s

(
z̃j+i−1ms(z̃j+i−1) mod p

)
= s

(
z̃j+i−2m̃s(z̃j+i−2)R

−1ms(z̃j+i−1) mod p
)

= s
(
z̃j+i−2ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
= · · ·
= s

(
z̃jms(z̃j) · · · ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
= s

(
z̃j ,ms(z̃j) · · · ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
.
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Let m = ms(z̃j) · · · ms(z̃j+i−2)ms(z̃j+i−1) mod p. The element m is in the set M�.
For computing τ , the quantities m̂0, . . . , m̂d−1 derived from m are required, but,
the actual value of m is not required. The fourth component of the pre-computed
table Tab corresponding to the entry for m has the values m̂0, . . . , m̂d−1. So using
the entries in Tab, it is possible to compute τ(z̃j ,m) and hence s(z̃j ,m) which
provides the value for s (z̃j+i).

Now let us consider the computation of z̃j+� from z̃j .

z̃j+� = z̃j+�−1m̃s(z̃j+�−1)R
−1 mod p

= · · ·
= z̃jms(z̃j) · · · ms(z̃j+�−2)ms(z̃j+�−1) mod p

= z̃jms(z̃j) · · · ms(z̃j+�−2)ms(z̃j+�−1)RR−1 mod p

= z̃jmRR−1 mod p

= z̃jm̃R−1 mod p

where m = ms(z̃j) · · · ms(z̃j+�−2)ms(z̃j+�−1). So z̃j+� is obtained by applying Mont-
gomery multiplication to z̃j and m̃. The element m is in the set M� and so is
in the pre-computed table Tab. Note however, the value of m̃ is required which
is not present in Tab. One may, of course, obtain m̃ from m by performing the
product mR mod p. This would be costly and would defeat the whole purpose
of utilising Montgomery multiplication. So a better option would be to include
the element m̃ in the table Tab as part of the entry corresponding to the row for
m. This would increase the size of the table Tab. Instead, we propose that in the
table Tab, the entry m̃ is to be stored in place of m.

Let us denote the modified table by modTab. Based on the above discussion,
the rows of the table modTab are as follows.

(x, m̃x, (a.b), (m̂0, . . . , m̂d−1))

where

– x = (i1, . . . , ik), with 0 ≤ k ≤ �, i1, . . . , ik ∈ {0, . . . , r − 1},
– mx = mi1 · · · mik

mod p and m̃x = mxR mod p,
– (a, b) is such that m = gahb,
– m̂i = �(uim mod p)/w� for i = 0, . . . , d − 1.

So modTab stores m̃ instead of m while the quantities m̂0, . . . , m̂d−1 in modTab
are derived from m and not from m̃. In particular, the only difference between
Tab and modTab is that Tab stores m whereas modTab stores m̃. All other entries
of Tab and modTab are identical. So the storage requirements of both Tab and
modTab are also the same.

Using modTab, tag tracing can proceed as follows. For the jump from z̃j to
z̃j+�, the entry m̃ is to be used, whereas for the computations of the outputs
of the function s, the entries m̂0, . . . , m̂d−1 are to be used. Consequently, the
advantage of tag tracing is retained, i.e., all computations required for computing
the output of s are divisions by powers of two. Additionally, there is an efficiency
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gain where the field multiplication required in tag tracing for the jump from the
j-th step of the walk to the (j+�)-th step of the walk is replaced by a Montgomery
multiplication. As explained earlier, this replaces the costly reduction operations
modulo p by inexpensive divisions by powers of two.
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Abstract. This paper shows a zero-knowledge proof protocol of a solu-
tion to ABC end view puzzle using physical cards. Card-based crypto-
graphic protocols are proposed to execute a secure multi-party calcu-
lation using physical cards instead of computers. This paper shows a
card-based zero-knowledge proof of the ABC end view puzzle. The puz-
zle needs a new technique to prove the nearest neighbor from an end.
We show a new zero-knowledge proof protocol to securely calculate the
nearest neighbor using physical cards.

Keywords: Card based cryptographic protocols · Zero-knowledge
proof · ABC end view · Nearest neighbor

1 Introduction

This paper shows a zero-knowledge proof protocol of a solution of ABC end
view puzzle [6] using physical cards. Card-based cryptographic protocols [2,18]
are proposed to execute a secure multi-party calculation using physical cards
instead of computers. These protocols can be used when the users cannot trust
the software on the computer. Many protocols were shown to calculate any
boolean functions [10,13,32] and specific problems such as voting [1,17] and
millionaires’ problem [14,20,21] and so on.

As another usage of card-based cryptographic protocols, zero-knowledge
proof of puzzle solutions was proposed. The protocol proves that a user has
a solution to the puzzle without leaking any information about the solution.

A zero-knowledge proof of Sudoku [8] was first considered. The proof has
a soundness error, thus improved zero-knowledge proofs were shown [26,31].
Zero-knowledge proofs of the other puzzles are shown, for example, Akari [3],
Flow Free [9], Heyawake [23], Hitori [23], Juosan [15], Kakuro [3,16], KenKen
[3], Makaro [4,29], Masyu [12], Nonogram [5,25], Norinori [7], Numberlink [27],
Nurikabe [23], Nurimisaki [24], Ripple Effect [28], Shikaku [30], Slitherlink [12],
Suguru [22], Takuzu [3,15], Topswops [11], and so on.

This paper shows a zero-knowledge proof of the ABC end view puzzle. The
proof needs a new technique to prove the nearest neighbor from an end. We show
a new protocol to securely calculate the nearest neighbor using physical cards.
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Section 2 shows the problem definition. Section 3 shows the protocol. Section 4
concludes the paper.

2 Definition of Problem

A zero-knowledge proof for a language L is a protocol executed by two players,
called prover P and verifier V . The prover has an element x.

– (Completeness) If x ∈ L, an honest verifier V is convinced that x ∈ L by an
honest prover P .

– (Soundness) If x �∈ L, no cheating prover P can convince an honest verifier
V that x ∈ L.

– (Zero-knowledge) If x ∈ L, no verifier V learns anything other than the fact
that x ∈ L.

For the problem of a solution to a puzzle, if the prover has a solution, an honest
verifier is convinced that the prover has a solution. If the prover does not have
a solution, the prover cannot convince an honest verifier that the prover has a
solution. By the execution of the protocol, the verifier has no information about
the solution.

ABC end view (aka “Easy as ABC” or “Last man standing”) [6] is a pencil
puzzle. The problem is given as a grid and a range of letters, for example, A-
E. Each different letter must occur exactly once in each row and column. The
letters outside the grid show which letter comes across first from that direction.
An example of the problem of a 5 * 5 grid and range A-C is shown in the left
of Fig. 1. The solution to the problem is shown on the right of Fig. 1, where “×”
means no letter is written in the space.

Fig. 1. An example of ABC end view problem and its solution

Card-based cryptographic protocols use physical cards to securely calculate
values. For calculations of boolean functions, two kinds of cards, ♣ and ♥ are
used. Cards of the same marks cannot be distinguished. In addition, the back of
both types of cards is ? . It is impossible to determine the mark on the back
of a given card of ? . Some additional cards are used for the zero-knowledge
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proof protocols. The first type of card is the number card, whose marks are
1 , 2 , . . . , n , where n is the size of the grid. The second type of card is the
letter card, whose marks are A , B , C , and so on. The last type of card is
the empty card, whose mark is × , which means “no letter”. Cards of the same
marks cannot be distinguished. In addition, the back of all types of cards is
? . Note that any kind of card can be represented by an appropriate encoding
using the two kinds of cards ♣ and ♥ . For example, a number card can be
represented by �log n� ♣ and ♥ cards. Each bit of the number is represented by
the encoding rule ♣ ♥ = 0 and ♥ ♣ = 1. For the letter cards and the empty
card, a similar encoding rule can be introduced and one card is represented by
several numbers of ♣ and ♥ cards. For the simplicity of the discussion, this
paper uses additional cards.

3 Protocol for ABC End View

Zero-knowledge proof of a solution to an ABC end view puzzle is executed as
follows. First, the prover P sets the solution of the given puzzle in a committed
manner, that is, V cannot see the values of the solution. Then P and V execute
the verification protocol to prove the solution is correct without knowing the
values. They need to prove the following two properties

– nearest neighbor property: The letter in the grid that is nearest to the letter
written outside of the grid must be correct.

– uniqueness property: Every row and column has just one letter for the given
range of letters.

For an example of the uniqueness property, if the range is A-C, A, B, and C
appear once in the squares of each row and column. All the other squares have
× as the example in Fig. 1.

Initially, we show card-based cryptographic protocols used in this paper.
One-bit data is represented by two cards as follows: ♣ ♥ = 0 and ♥ ♣ = 1.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?

︸ ︷︷ ︸

x

.

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be easily calculated.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?

︸︷︷︸

s1

?
︸︷︷︸

s2

?
︸︷︷︸

s3

. . . ?
︸︷︷︸

sn

.

A shuffle is executed on a sequence of cards S. Its parameter is (Π,F), where
Π is a set of permutations on S and F is a probability distribution on Π. For a
given sequence S, each permutation π ∈ Π is selected by the probability distri-
bution F and π is applied to S. If π is applied on S = s1, s2, . . . , sn, the result
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is sπ−1(1), sπ−1(2), . . . , sπ−1(n). Since π is selected from Π, the result is not deter-
ministic. Non-deterministic shuffles are necessary for card-based cryptographic
protocols to make the protocols secure at opening cards. As shown in the below
protocol, cards on each row are randomly shuffled and then opened to show that
A, B, and C appear once. If the shuffle is deterministic, the players know the
initial position where the A card was set as the answer. Therefore, a random
shuffle whose result is unknown to the players is necessary.

We show examples of shuffles used in the protocols shown below. A random
shuffle is randomly changing the positions of the cards for the given sequence
of cards. When S = s1, s2, s3, the result of a random shuffle is S1 = s1, s2, s3,
S2 = s1, s3, s2, S3 = s2, s1, s3, S4 = s2, s3, s1, S5 = s3, s1, s2, or S6 = s3, s2, s1.
The probability of obtaining each result is 1/|S|!.

A random bisection cut is swapping the left half and the right half of a given
even-length sequence. When S = s1, s2, s3, s4, s5, s6, the result of a random bisec-
tion cut is S0 = s1, s2, s3, s4, s5, s6 or S1 = s4, s5, s6, s1, s2, s3. The probability of
obtaining each result is 1/2. The random bisection cut is considered as selecting
a random bit b ∈ {0, 1} and obtaining Sb.

Next, we introduce piles of cards. A pile of cards is a sequence of cards whose
order cannot be changed using some additional tools such as clips or envelopes.
For example, consider a case when cards xi,j(i = 1, 2, . . . , n, j = 1, 2, . . . m)
are given. The players make piles of cards such that pliei = xi,1, . . . , xi,m(i =
1, 2, . . . , n) using clips or envelopes. The players treat each pile pilei just like
a single card during shuffle operations. The order of cards in a pile cannot be
changed because of the clip or envelope. For a pile y, let y(i) be i-th card in y.
Players can rearrange piles by removing clips, setting new sequences of cards,
and making new piles. Let y[2−] be the new pile that y(1) is removed from y.

The shuffles can be executed for piles of cards. Consider the case shuffle π
is executed on the above piles pilei(i = 1, 2, . . . , n). The result is pileπ−1(1),
pileπ−1(2), . . . , pileπ−1(n), where pileπ−1(i) = xπ−1(i),1, xπ−1(i),2, . . . , xπ−1(i),m.
Random shuffles on piles are called pile-scramble shuffles.

Next, we show logical AND and copy protocols used in this paper.

Protocol 1 (AND protocol) [19]
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Input commit(x) and commit(y) are set as Fig. 2 (a).
2. The positions of the cards are changed as Fig. 2 (b).
3. Execute a random bisection cut on the sequence of the cards. The result can

be written as follows: select a random bit b ∈ {0, 1}, that is unknown to the
players. If b = 0, there is no change in the order of the cards. If b = 1, the
left half and the right half are swapped as Fig. 2 (c).

4. Change the sequence of the cards as Fig. 2 (d).
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5. Open the left two cards. If the sequence is ♣ ♥ , the center two cards
are commit(x ∧ y). Otherwise, the right two cards are commit(x ∧ y), as
Fig. 2 (e).

0
(a) Setting inputs

1         2         3         4         5        6

1         3        4         2         5       6

Face down

(b) Rearrangement of cards 

1          3         4         2         5       6

b=0

b=1

1          3         4         2         5       6

2          5         6         1         3       4
(c) Random bisection cut 

1         3        4         2         5       6
2         5        6         1         3       4  

1        2         3         4         5       6
2        1         5         6         3       4  
(d) Rearrangement of cards 

(e) Opening left two cards 

Fig. 2. AND protocol in [19] .
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The protocol outputs

x ∧ y =
{

y if x = 1 (♥ , ♣ )
0 if x = 0 (♣ , ♥ )

(1)

That is, the output is the right two cards if x = 1. The output is the center two
cards if x = 0. The protocol opens two cards x ⊕ b. Since b is a random number
unknown to the players, the security of the private input data is achieved. The
detailed proof is shown in [19].

Next, we show copy protocol, which gives multiple copies of a given input
commitment.

Protocol 2 (copy protocol using random bisection cuts) [19]
Input: commit(x).
Output: two copies of commit(x).

1. Input commit(x) and two copies of commit(0) are set as Fig. 3 (a).
2. The positions of the cards are changed as Fig. 3 (b).
3. Execute a random bisection cut on the sequence of the cards. The result can

be written as follows: select a random bit b ∈ {0, 1}, that is unknown to the
players. If b = 0, there is no change in the order of the cards. If b = 1, the
left half and the right half are swapped as Fig. 3 (c).

4. Change the sequence of the cards as Fig. 3 (d).
5. Open the left two cards. If the sequence is ♣ ♥ , the remaining pairs are

commit(x). Otherwise, the remaining pairs are commit(x̄), as Fig. 3 (e). In
this case, commit(x) can be obtained by swapping the two cards of commit(x̄).

We show the zero-knowledge proof protocol for ABC end view in Algorithms
1–3. Algorithm 1 is the main routine and Algorithm 2 is the subroutine to
verify the nearest neighbor property. Algorithm 3 is the subroutine to verify the
uniqueness property. In the following protocol description, the corresponding
code at Line j of Algorithm i is written as “(L. j(i))”. The outline of the protocol
is as follows. Suppose that the grid is n ∗ n and the number of letters is c. In
the example in Fig. 1, n = 5 and c = 3. First, the prover P sets the solution
in a committed manner as follows. For the square at i-th row and j-th column
(denoted as square (i, j)), P puts face-down ♥ , ♣ , and L in this order if
the solution is letter L. P puts face-down ♣ , ♥ , and × in this order if the
solution is “no letter” (L. 3–5(1)). Thus the sequence ♥ , ♣ means the solution
is a letter. These cards are denoted as xi,j(1), xi,j(2), and xi,j(3) (L. 6(1)).
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(a) Setting inputs

  1         2         3         4         5        6

1         3        5         2         4       6
(b) Rearrangement of cards 

1          3         5         2         4       6

b=0

b=1

1          3         5 2         4       6

2          4 6         1         3       5
(c) Random bisection cut 

  1         3         5         2         4        6
  2         4         6         1         3        5

1 2         3 4         5 6
2        1         4        3         6        5
(d) Rearrangement of cards 

(e) Opening left two cards 

Fig. 3. Copy protocol in [19].

P and V set number cards to remember the positions of the cards, since the
positions are changed by the verification. P and V publically put face-up card
j to the right of three cards on square (i, j) and then face down the card (L.

9(1)). The card is denoted as xi,j(4)(L.10(1)). The four cards form a pile xi,j (L.
11(1)).
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Algorithm 1. Zero knowledge proof protocol of ABC end view
1: procedure main

2: Let k = n − c + 1
3: At square (i, j), P sets

4: face-down ♥ , ♣ , and L in this order if the solution is letter L,

5: face-down ♣ , ♥ , and × in this order if the solution is ‘no letter’.
6: These cards are denoted as xi,j(1), xi,j(2), and xi,j(3).
7: for i=1 to n do
8: for j=1 to n do

9: P and V put face-up card j to the right of three cards on square (i, j).
10: They face down the card. The card is denoted as xi,j(4).
11: The pile of cards at (i, j) is denoted as xi,j .
12: end for
13: if There is a letter at the left end of i-th row then
14: Execute nearestneighbor.
15: end if
16: if There is a letter at the right end of i-th row then
17: Execute nearestneighbor.
18: end if
19: Execute uniqueness at i-th row.
20: Face-down x′

j(1), x′
j(2), and x′

j(3) for each pile x′
j .

21: Execute pile scramble shuffle on x′
1, . . . , x

′
n.

22: Let the results be x′′
1 , . . . , x

′′
n.

23: Open x′′
j (4) of each pile.

24: If x′′
j (4) = l, put x′′

j (1), x′′
j (2), and x′′

j (3) to square (i, l).
25: end for/* Each row check is finished. */
26: for i=1 to n do
27: if There is a letter at the top end of i-th column then
28: Execute nearestneighbor.
29: end if
30: if There is a letter at the bottom of i-th column then
31: Execute nearestneighbor.
32: end if
33: Execute uniqueness at i-th column.
34: end for/* Each column check is finished. */
35: end procedure

First, we show the procedure to verify the neighborhood property(called at
L. 14(1), 17(1), 28(1), and 31(1)). Let i be the current row to verify and consider
the case when there is a letter L at the left end. Let k = n−c+1. The candidate
of the nearest square that has a letter is (i, 1), (i, 2) . . . (i, k), since the number
of “no letter” squares is n − c (L. 2(2)).
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Algorithm 2. Subroutine: nearest neighbor verification
1: procedure nearestneighbor

2: Select k plies on the squares in the current row or column.
3: Let yi(1 ≤ i ≤ k) be the piles, where y1 is the closest to the end.
4: Let z be yk.
5: for j = k − 1 downto 1 do
6: Execute copy protocol on (yj(1), yj(2)).
7: Let the obtained pair be (y′

j(1), y′
j(2)).

8: Execute AND protocol using (y′
j(1), y′

j(2), yj(1), yj [2−], z(1), z[2−]).

9: if The left two opened cards are ( ♣ , ♥ ) then
10: Set the right card-pile pair as new z.
11: Set the center card-pile pair as new yj+1.
12: else
13: Set the center card-pile pair as new z.
14: Set the right card-pile pair as new yj+1.
15: end if
16: end for
17: Open z(3) and verify that the letter is the same as the one written outside.
18: Face-down z(3) and set pile z to new y1.
19: Put y1, y2, . . . , yk to the original squares.
20: end procedure

Algorithm 3. Subroutine: uniqueness verification
1: procedure uniqueness

2: Let x1, . . . , xn be the piles in the current row or column.
3: Execute pile scramble shuffle on x1, . . . , xn.
4: Let the results be x′

1, . . . , x
′
n.

5: Open x′
j(1), x′

j(2), and x′
j(3) of each pile x′

j .

6: Verify that (1) if x′
j(3) is a letter, (x′

j(1), x′
j(2)) is ( ♥ , ♣ ), otherwise

(x′
j(1), x′

j(2)) is ( ♣ , ♥ ) and (2) all letters on the letter cards differ from each

other and the number of × cards is n − c.
7: end procedure

The procedure to obtain the nearest neighbor is as follows:

1. Let yj = xi,j(1 ≤ j ≤ k − 1) and z = yk.
2. For j = k − 1 down to 1 Do
3. If (yj(1), yj(2)) = (♥ , ♣ ) then z = yj

4. EndFor
5. Return z

Initially, the candidate z is yk, the farthest from the border (L. 4(2)). If the nearer
square has a letter (that is, (yj(1), yj(2)) = (♥ , ♣ )), replace the candidate.
After the test at j = 1 is finished, z has the nearest letter. For example, consider
the case when the players verify the left end “B” in the first row in Fig. 1. Since
k = 3, the players set yi = x1,i(1 ≤ i ≤ 2), and z = x1,3. Execute the for loop
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and when j = 2, (yj(1), yj(2)) = (♣ , ♥ ) and z is unchanged. When j = 1,
(yj(1), yj(2)) = (♥ , ♣ ) and z = y1 is executed. Thus the final z = y1 and the
letter is “B”.

We need to execute the above procedure without knowing the value
(yj(1), yj(2)). We use AND protocol to solve the problem. The if statement
in step 3 can be written as follows:

new z =
{

yj if yj = 1 (♥ , ♣ )
z if yj = 0 (♣ , ♥ )

(2)

Comparing this equation and Eq. (1), we can obtain the result using AND pro-
tocol if we set yj(1), yj(2), z(1), z[2−], yj(1), yj [2−] in this order1 at the first step
in Fig. 2(a) (L. 8(2)). We need a copy of (yj(1), yj(2)), thus the copy protocol is
executed to (yj(1), yj(2)) in advance (L. 6(2)). Another difference between the
AND protocol is that z[2−] and yj [2−] are a pile of cards. This change does not
reveal the secret random value b of the AND protocol, because the positions of
piles are the fourth and sixth positions in Fig. 2(b) and (c), The piles come to
the same positions when b = 0 and b = 1. Thus, the difference between a card
and a pile does not reveal the secret random value b.

When a new z is selected, the unused pile (old z or yj) is put to the square
(i, j + 1) for further verification from the other side(L. 11(2), L. 14(2)).

When the procedure is finished, the players open z(3) to see the final result
(L. 17(2)). If the letter on the card is the same as the letter written outside of
the grids, the verification succeeds.

The final z is put to the square (i, 1) (L.18(2)). Though the positions of the
piles differ from the initial position set by P , the change does not affect the next
verification from the other side. The reason is as follows. Pile z with some letter
might go left (to the position of the smaller index), but it will not go left further
to the position where another letter exists. If yj has a letter, new z becomes yj ,
and old z is put to the position of (i, j+1). Thus, the relative order of the letters
in the i-th row does not change. For example, consider the case when the players
verify the left end “B” in the first row in Fig. 1. After the verification, the letters
in the first row become “B A×C×”, but the relative order of “B” and “A” is
not changed. Thus, the verification for the right end works with this modified
sequence.

After the right and left nearest neighbor verifications of i-th row, uniqueness
verification of i-th row is executed(L. 19(1)). Note that the position of each
pile differs from the initial positions P set, but the change does not affect the
verification since the set of letters in i-th row does not change during the nearest
neighbor verifications.

The verification technique is just the same as the one used for Sudoku [31].
Execute a pile-scramble shuffle to the piles xi,1, . . . , xi,n in i-th row(L. 3(3)). Let
1 It is unnecessary to divide the piles as z(1) and z[2−]. We set yj(1), yj(2), z, yj in

this order, swap the second and the third, execute a random bisection cut, swap the
second and the third, open the left two cards, and obtain the result as the AND
protocol. The result is the same as the protocol shown in this paper.



Zero-Knowledge Proof of ABC End View 157

the results be x′
1, x

′
2, . . . , x

′
n (L. 4(3)). Then open x′

j(l)(1 ≤ j ≤ n, 1 ≤ l ≤ 3) (L.
5(3)). V verifies that all the letters in x′

j(3) differ and the number of × in x′
j(3)

is n − c. In addition, V checks the consistency of cards, that is, (x′
j(1), x′

j(2)) =
(♥ , ♣ ) or (♣ , ♥ ) must be satisfied. If (x′

j(1), x′
j(2)) = (♥ , ♣ ), x′

j(3) must
be a letter card, otherwise x′

j(3) must be × (L. 6(3)).
After the verification is finished, P and V face-down x′

j(l)(1 ≤ j ≤ n, 1 ≤ l ≤
3) (L. 20(1)). Then the players execute a pile-scramble shuffle on x′

1, x
′
2, . . . , x

′
n

(L. 21(1)). Let the results be x′′
1 , x′′

2 , . . . , x′′
n (L.22(1)). Then open x′′

j (4)(1 ≤ j ≤
n) (L.23(1)). If x′′

j (4) = l, put x′′
j to square (i, l) (L.24(1)). Each pile is moved

to the original square P set. Note that the number cards are no more necessary
for the verifications of each column because it is unnecessary to move the plies
to the original squares again.

For each column, execute the above nearest neighbor check and uniqueness
check (L.26–34(1)). The only difference is each pile consist of three cards. Since
the number cards are used only for resetting the positions of piles and are not
used in the verification itself, there is no change in the procedure.

(Example) We show the steps for the first row of the problem in Fig. 1. P
sets the solution by face-down cards as in Fig. 4 (a). Since the solution is “B×A
C×”, P sets (x1,1(1), x1,1(2), x1,1(3)) = (♥ , ♣ , B ), (x1,2(1), x1,2(2), x1,2(3)) =
(♣ , ♥ , × ), (x1,3(1), x1,3(2), x1,3(3)) = (♥ , ♣ , A), (x1,4(1), x1,4(2),
x1,4(3)) = (♥ , ♣ , C ), and (x1,5(1), x1,5(2), x1,5(3)) = (♣ , ♥ , × ) in the face-
down manner (Note that in Fig. 4, the sequence of cards at each square are
written from the top to bottom).

Then P and V sets x1,1(4) = 1 , x1,2(4) = 2 , x1,3(4) = 3 , x1,4(4) =
4 , and x1,5(4) = 5 . These cards are turned face-down. They make piles
x1,1, x1,2, x1,3, x1,4 and x1,5 as Fig. 4 (a). Then they execute the nearest neighbor
verification algorithm. Since n = 5 and c = 3, k = n − c + 1 = 3. Thus, the
players select three piles from the left end. y1 = x1,1, y2 = x1,2, and y3 = x1,3.
Then set z = y3. First, the modified AND protocol is executed between y2 and
z, as shown in Fig. 4(b). Execute the copy protocol on (y2(1), y2(2)). Note that
since the cards are face-down, the marks of the cards are unknown, but they
are written in Fig. 4(b) by small marks for the explanation. In this example,
(y2(1), y2(2)) = (♣ , ♥ ). Set sequence y2(1), y2(2), y2(1), y2[2−], z(1), z[2−] and
execute AND protocol. Suppose that b = 1 by the random bisection cut. In
the case, the final sequence becomes y2(2), y2(1), z(1), z[2−], y2(1), y2[2−]. The
left two cards are opened. Since they are (♥ , ♣ ), the center two elements are
selected as the new z. The left two elements are set as y3. In this case, z remains
at the position of z and y2 is moved to y3 as in Fig. 4(b).

Next, the players execute the modified AND protocol between z and y1. Since
(y1(1), y1(2)) = (♥ , ♣ ), y1 becomes the new z. Old z is moved to y2. The final
value of z is obtained. Since it is y1, B appears when z(3) is opened. Thus,
the verification succeeds. z is then set at the position of y1. The piles are then
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Fig. 4. Example of execution in the first row.

moved to the squares. Thus, the letter cards of (x1,1, x1,2, x1,3) are changed as
(B , A , × ).

Next, the players verify the right end card. k = 3 and y1 = x1,5, y2 = x1,4

and y3 = x1,3. Note that the letter card of x1,3 is currently × by the above
procedure. Initially, z = y3 and execute modified AND protocol between z and
y2. Since (y2(1), y2(2)) = (♥ , ♣ ), y2 becomes the new z. Old z is set as y3. Next,
the modified AND protocol is executed between z and y1. Since (y1(1), y1(2)) =
(♣ , ♥ ), z remains unchanged. y1 is set as new y2. Thus, when z(3) is opened,
the card is C and the letter is correct.
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Then the uniqueness verification is executed. After the nearest neigh-
bor verifications, the letter cards of (x1,1, x1,2, x1,3, x1,4, x1,5) are changed as
(B , A , × , × , C ), that is, the number cards are ( 1 , 3 , 2 , 5 , 4 ). Note that
in Fig 4(c), the numbers are written in a small font for the explanation, but
the players cannot see the cards. Then the players execute a pile-scramble
shuffle. The order of the piles is randomly changed. Suppose that the order
is changed as (5, 4, 1, 2, 3) as Fig. 4(c). Let the result as x′

1, x
′
2, x

′
3, x

′
4, x

′
5. The

players open xj(1), xj(2), and xj(3) for every j(j = 1, 2, . . . , 5). The play-
ers verify that the numbers of each card of A , B , and C are one. Pile xi

with a letter card has (xi(1), xi(2)) = (♥ , ♣ ). Pile xj with × card has
(xj(1), xj(2)) = (♣ , ♥ ). Thus the uniqueness verification is finished. The play-
ers face down the opened cards and make piles again. The players execute a
pile-scramble shuffle again. Let the result be x′′

1 , x′′
2 , x′′

3 , x′′
4 , x′′

5 . The players open
x′′

j (4) for every j(j = 1, 2, . . . , 5). If x′′
j (4) = i, x′′

j (1), x′′
j (2), x′′

j (3) are moved to
square (1, i). Each pile is moved to the original square P set as in Fig. 4(c). The
piles are used for the verification of each column.

The number of cards used by the algorithm is as follows: n2 + 4 cards for
each of ♥ and ♣ , n cards for each of A B , . . . , L card when the range of
letters is A − L. n2 − n ∗ c cards of × and one card for each of 1 , 2 , . . . , n .
Thus the total number of cards is 3n2 + n + 8.

Last, we show the correctness of the protocol.

Theorem 1. The procedure is a zero-knowledge proof of solutions to the ABC
end view problem.

(Proof)
(Completeness) When P has a solution to the given problem and correctly

sets the cards, the nearest neighbor verification and uniqueness verification suc-
ceeds in each row and column as shown above.

(Soundness) When P sets the cards that are not a solution, the fact can
be detected by V . The reason is as follows. At the uniqueness verification, all
cards in a row or a column are simultaneously opened. Thus, if the cards are
not correct, the fact can be detected by V . In addition, the nearest neighbor
verification protocol outputs the letter nearest to the end, thus if the letter is
not correct, V can detect that.

(Zero-knowledge) During the uniqueness verification, V gets no information
other than the fact that each row and column has one letter for each A-L. During
the nearest neighbor verification, V gets no information other than the nearest
letter is correct. The protocol uses AND protocol and copy protocol. They leak
no information from the opened cards, as shown in [19].

During the uniqueness verification protocol, all cards in a row or a column are
opened. However, they leak no information since the positions are randomized
by the pile-scramble shuffles. �
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4 Conclusion

This paper showed a card-based zero-knowledge proof of a solution of the ABC
end view puzzle. The nearest neighborhood calculation is a new technique to
solve the problem. Zero-knowledge proof to the other puzzle problems is one of
the further studies.
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Abstract. In fault injection attacks, the first step is to evaluate the tar-
get behavior for various fault injection parameters. Showing the results
of such a characterization (commonly known as target cartography) is
informative and allows researchers to assess the target’s behavior better.
Additionally, it helps understand the performance of new search meth-
ods or attacks. Thus, publishing obtained results is essential to provide
relevant information for reproducibility and benchmarking, improving
state-of-the-art results and general security. Unfortunately, publishing
the results also allows malicious parties to reverse engineer the informa-
tion and potentially mount an attack easier.

This work discusses how various transformations can be used to
occlude sensitive information but, at the same time, still be useful for
interested researchers. Our results show that even simple 2D transfor-
mations, such as rotation, scaling, and shifting, significantly increase the
effort required to reverse engineer the transformed data but maintain the
interesting data distribution. Consequently, this work provides a method
to allow publishers to share more data in a confidential setting.

Keywords: Fault injection · Target characterization · 2D
Transformations

1 Introduction

Secure hardware devices should be designed to operate with confidential data
so that the information does not leak and cannot be altered by an adversary.
While the algorithms running on such devices might be secure, it has been shown
that various attacks on hardware can be powerful [6,12]. Such attacks do not
attack the algorithms but the weaknesses in the implementation. Those attacks
are called implementation attacks and are commonly divided into side-channel
and fault injection (FI) attacks. While these attacks are powerful, there are still
challenges to improving the attacks to be more efficient.

When considering fault injection, one main challenge is improving the target
characterization. Indeed, to mount a successful fault injection campaign, one
needs to recognize where the fault should be inserted. Due to the many param-
eters that need to be tested, this problem can become a very challenging task.
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New, more powerful attacks are needed to improve state-of-the-art research and
contribute to the further security and more efficient evaluation of products. Find-
ings should be shared in a reproducible manner to enable this process. There are
cases where the research is done on open public targets, and the results can be
shared entirely without restrictions. However, sometimes the data and the actual
vulnerabilities of the products must be kept secret as sharing them could pose an
economic, privacy, or security threat to target stakeholders. At the same time,
it becomes difficult to reproduce the results or even fairly compare them against
others without providing sufficient details. Thus, there is a need to enable the
community to share the findings publicly without compromising stakeholders.

In this work, we consider sharing data from FI target characterization. We
showcase our proposals on data from several types of fault injection - electro-
magnetic fault injection (EMFI) [19], laser fault injection (LFI) [27], and voltage
glitching [3]. Usually, the results of target characterization are shown in a 2D figure
with specific FI parameters on the x and y axis. For example, x − y location of
the laser or EM probe, or pulse width and intensity of the laser. We propose sev-
eral methods to alter the obtained data from the characterization. Accordingly,
we allow sharing results publicly while hiding the real vulnerabilities so malicious
adversaries cannot directly abuse published information. Publishers can choose
the modifications they desire to perform on the data. In this manner, the results
of the fault injections and attacks can be published and discussed while the data
remains secret. At the same time, transformed data should maintain the original
distribution to remain relevant. We propose to use two known metrics to measure
the similarity and relation to actual data. Our main contributions are:

1. We showcase that it is easy to recover the exact data points from the cartog-
raphy (target characterization) figures.

2. We discuss several possible transformations and their effects. We define spe-
cific 2D transformations to transform data from 2D plots. We also propose
polynomial transformations for transforming more dimensions when not con-
sidering the visual representation of the results.

3. We provide two techniques to evaluate the similarity of the original and trans-
formed data and discuss how difficult it would be to reverse engineer the
transformed data.

2 Background

2.1 Fault Injection and Target Characterization

Fault injection (FI) can be done physically at the hardware level [5]. Additionally,
nowadays, it can also be done on software. However, we focus on fault injection
for introducing faults at the hardware level. The idea is to expose the device to
various harmful conditions and observe the behavior to determine its response.
There are multiple ways to introduce the faults. For example, there are voltage [3]
and clock glitching [2,9], temperature variations [26], optical injections [27], and
electromagnetic radiation [22,25]. These techniques differ in equipment and cost,
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precision, and the number of parameters necessary to tune for a successful attack.
Once the target is subjected to abnormal conditions (i.e., the external stimuli are
introduced), we observe the effects on the device’s behavior. Specifically, as ana-
lysts, we are interested in at what point the device would fail so that the device
can be designed to be more resilient. That is especially important for security-
critical devices, such as smartcards. Using previously mentioned techniques for
injecting faults, the attacker can change the memory state in a device, cause a
mistake in the computation (intermediate values), or skip instructions. Then, the
attackers can exploit the faulty results to extract information about confidential
data. Examples of these attacks are differential fault analysis (DFA) [4], fault sen-
sitivity analysis (FSA) [15], differential fault intensity analysis (DFIA) [10], and
statistical fault attacks (SFA) [8]. Not all faults can be used to reach the malicious
goal with these attacks. Thus, the attackers must find a way to inject a fault that
can be exploited. Consequently, the fault injection procedure can be divided into
two phases: finding faults and using those faults to achieve some (malicious) goal.
In this work, we need to be familiar with the first step of finding parameters from
the search space that cause faults, i.e., producing the target characterization.

Numerous parameters must be defined for injecting the faults for all the men-
tioned injection methods. Optimal parameters (parameters that cause the target
to show faulty behavior) can be searched manually or with an exhaustive or ran-
dom search. However, manual testing and a random search are unreliable, as the
optimal solutions can be easily overlooked. On the other hand, the exhaustive
search is usually very time-consuming. There are many proposed alternatives
for finding the optimal set of parameters for different types of fault injection.
For example, methods from evolutionary optimization are utilized to improve
voltage glitching [7,20,21], EMFI [16], and LFI [13]. Other techniques were also
used, e.g., hyperparameter optimization techniques [28] and reinforcement learn-
ing [17]. However, while these methods provide a good approximation of specific
points (regions), the search space for FI is complex. The issue when using such
(intelligent) approaches is that the problem of coverage remains. The obtained
optimal parameters are also specific to the setup and target. Finally, the methods
need adjustments between different FI techniques. Improvements for conducting
target characterization are also proposed in [29]. The methodology is based on
finding a sensitivity curve whose generation is fast and compatible with differ-
ent FI techniques and targets. Additionally, the authors discussed an approach
based on deep learning to predict the complete target characterization based on
limited data from the sensitivity curve.

2.2 Polynomial Functions

A polynomial with a single indeterminate x can be written in the form:

anxn + an−1x
n−1 + · · · + a2x

2 + a1x + a0 =
n∑

k=0

akx
k, (1)

where a0, . . . , an are coefficients of the polynomial, and x is indeterminate and
can be replaced by any value. For example, x can be substituted with the FI
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parameters we desire to transform. Thus, we consider a function defined by the
polynomial where x is the function’s argument and is referred to as a variable:

f(x) =
n∑

k=0

akx
k. (2)

2.3 Kullback-Leibler Divergence (KLD)

Kullback-Leibler Divergence (KLD) measures how one probability distribution
differs from a second, reference probability distribution [14]. For example, one
can consider two probability distributions, P and Q. P usually represents the
data, the observations, or a measured probability distribution. On the other
hand, distribution Q represents a theory, a model, or an approximation of P .
KL divergence calculates how one distribution differs from another and is not
symmetrical. Calculating the divergence for distributions P and Q would give a
different score from Q and P . KLD is the non-negative measure that equals 0
if and only if P = Q. For discrete probability distributions P and Q defined on
the same probability space, X , KLD is defined as:

DKL(P ‖ Q) =
∑

x∈X
P (x) log

(
P (x)
Q(x)

)
. (3)

2.4 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is a method of correlating linear rela-
tionships between two multidimensional variables [11]. Proposed by Hotelling in
1936, CCA can be seen as the problem of finding basis vectors for two sets of
variables. The correlations between the projections of the variables onto these
basis vectors are mutually maximized. However, it has been used for measuring
the similarity between different neural network layers [18,23]. CCA is invariant
to linear transformations and can find shared structures across superficially dis-
similar representations. If CCA converges to one, the two compared variables
are highly correlated.

3 Motivation and Application

Let us assume that an Evaluator wants to share target characterization data with
the general public, including interested researchers in academia, evaluation and
certification labs, companies, and malicious parties. The Evaluator can be from
academia, an evaluation lab, or a company. They want to either share that they
successfully found vulnerabilities in a system previously considered secure or
propose new methods for FI target analysis or attack. Sharing all the data helps
the community find countermeasures and solutions for the observed vulnerabili-
ties. Consequently, we improve the security of existing systems. Additionally, it
is crucial for a fair comparison of the new methods. The data can be used for
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a public database with realistic data that can help to generalize solutions and
benchmark methods and attacks. We can opt for using open public targets, but
often these do not represent realistic scenarios. Therefore, the community tends
to use targets used by the general public to work in a more realistic and rele-
vant setting. The manufacturer can limit the amount of information shared from
such research, which also applies to internal evaluation labs. Sharing data that
directly exposes vulnerabilities to malicious parties can raise public concerns and
economic threats.

To bridge this gap, we propose to use transformations and explore them
in FI analysis. The data in the FI setup is the mentioned target characteri-
zation results, parameter values, and device responses to injections with those
parameters. This data can be accompanied by target and bench setup informa-
tion, parameter intervals, and utilized method. Sharing target information and
parameter intervals with target characterization data directly reveals vulnera-
bilities for exploitation and are usually kept secret. With transformations, we
motivate to share data at this level as it enables reproducibility and fair com-
parison. If data is transformed, the attacker cannot directly abuse reported data
and speed up the attack process. They will still have to search the parameter
space.

In our examples, we consider using brute force for reversing the transforma-
tions, as we assume that the authors provide all information on the transforma-
tions they applied and fault injection data. However, in a realistic scenario, we
expect the author to report that the data is transformed. Still, we do not deem
it necessary to report which specific transformations were used as long as data
distribution remains close to the original.

4 Proposed Transformations

We consider transformations for altering and hiding results from fault injections.
Multiple parameters define the injection during target characterization with any
type of FI. For example, in LFI, the parameters can be x, y, delay, pulse width,
and intensity. Usually, the results of target characterization are published in a
2D plot with two selected FI parameters on the x and y-axis [13,16,21]. We aim
to hide the real vulnerabilities of the target with transformations, but we want
to keep the transformed data relevant for publication. We propose 2D transfor-
mations on the interesting (vulnerable) points to keep their relative positions
(shape they create), but we scale, rotate, and translate the shape.

Since we change only the interesting points, depending on the data, replacing
the interesting data with a non-interesting class or randomizing non-interesting
points over the whole region will be necessary. We consider both cases in the
experiments and explain the choices. Another issue to consider when apply-
ing transformations is the possible assumptions that could exist between two
parameters that are displayed. Thus, we adjust the transformations so that the
resulting transformed data still conforms to the assumptions. For example, ana-
lysts expect normal behavior from the device with low absolute values for glitch
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voltage and length in voltage glitching. Contrary, with high values, we expect the
device to reset or stop communication. Interesting responses are usually found
between the two regions, and described relative positioning should be kept in
transformed data. In our experiments, we use voltage glitching to showcase the
changes in the transformations.

These transformations are only used for the selected two parameters shown as
the target cartography in a 2D graph. However, we mentioned that all FI types
have multiple parameters to set, so if we want to transform all of them and use
more than two dimensions, then we propose to use polynomial transformations.
These transformations keep the fault class distribution but randomize the data.
Therefore, these are unsuitable for cases where we visually must keep the relative
position of the classes as in the described voltage glitching case.

In the FI campaign, usually, an interval is defined for each of the parameters
with a corresponding step. The step size usually corresponds to the physical
properties of the setup. Consequently, we cannot use any value from the interval
but only those allowed according to the step size. For the proposed transfor-
mations, to ensure we use the specific values, we transform the index of the
parameter value instead of the value itself. The code is publicly available1.

4.1 2D Transformations

Every point in the 2D plot is defined with the x and y coordinates. Note that any
two parameters of any FI technique can be set on the x and y-axis. This can be
intensity and pulse width in LFI or EMFI, or x and y location of the laser spot
or EM probe on the target. As mentioned, we will rotate, scale, and translate
our interesting area (shape) over the target area. We perform rotation with
expressions xt = x cos θ − y sin θ and yt = x sin θ + y cos θ. Here, θ is the angle of
the rotation. While rotation can be done around any specified point, this formula
and what we use in our transformations rotate points around the coordinate
system’s (0, 0) point. We allow scaling to a minimum of 20% of the entire range
for x and y, so the area does not become overly small. For the maximum, we can
scale the interesting set of parameters to the entire area. However, we do not
necessarily scale equally on both axes, so we can also get the stretching effect.
The percentage for the minimum size can be adjusted depending on the real
results. To perform the scaling and shifting, we select the starting points (lower
bounds) for x and y. The upper bound is then defined with the lower bound and
interval size. This way, depending on the lower bound, we have the shift, and
depending on the interval, we have scaling.

As mentioned, we need to adjust the transformations for the cases where
we must conform to the assumptions we described. Firstly, we limit the angles
for the rotation of the interesting area. Secondly, instead of scale and shift, we
stretch over both axes and cause a more dense area on other parts. We show this
in our experiments with the voltage glitching results, and the reasons are more
apparent when we can see the effects visually in the plotted results.

1 The code is available at https://github.com/marinakrcek/transformations FI.

https://github.com/marinakrcek/transformations_FI
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4.2 Polynomial Transformations

The explained 2D transformations are used only on two FI parameters shown
in a 2D graph within the publication. However, if we want to consider altering
the data using all the parameters, then we propose polynomial transformations.
We consider these transformations to randomize the non-interesting points or
interesting points to lose shape but keep the distribution of fault classes.

We can transform each parameter using a polynomial with different coeffi-
cients. We refer to these transformations as local transformations. These are used
to break the relative positioning of the points. We can also run a global transfor-
mation that simultaneously transforms all data using the same coefficients for
the whole set of parameter combinations. These are used to shift and scale the
points. During transformations, the values may get out of bounds, so we have
three options for resolving those situations. First, we can clip the values, mean-
ing that if the transformed index is out of bounds, we clip it to a lower or higher
bound depending on which is closer. Another option is the modulo operation
(remainder of a division), where if the value is out of bounds, we will calculate
a modulo with the number of possible values. Lastly, we have scale, where the
values are scaled to the original parameter interval. While modulo and clip can
be done immediately after transforming each parameter combination, scaling
is done after we transform all the data. This way, we obtain the transformed
intervals for the parameters used to scale to the original intervals.

To define the polynomial, the user sets the degree of the polynomial, and
the coefficients are selected uniformly at random from user-defined intervals or
expressions to define the interval. We can also define a specific polynomial func-
tion that controls the output of the transformation, but as we want to randomize
the data, we keep the coefficients random. We report the coefficient intervals we
used in the presented experimental results. We have a coefficient a0 not multi-
plied by the variable x, allowing larger values for this coefficient. We limit the
possible values by a maximum of 20% of the allowed values of the parameter.
Thus, there is a different interval for the coefficient for each parameter. For
global transformation, we use a parameter with the least possible values. For
the next coefficient, a1, we set the allowed interval to [−2, 2). The issue is that
the changes will be small with the small indexes, even if the number of allowed
values for that parameter is large. We, therefore, allow negative coefficients, as
we can still have larger changes depending on the chosen way of handling the
out-of-scope values. Other coefficients are defined to achieve lower coefficients for
higher polynomial coefficients with the expression 0.5(degree−2−i), where degree
is the defined polynomial degree. We add the term −2 as intervals for coefficients
a1 and a0 are already defined. i is the counter from degree − 2 to zero. These
coefficients must get smaller as x has larger exponents because, in our case, x is
an index, a positive value that can get rather large as the exponents get larger.

We noticed that the polynomial of degree 1 is sufficient, and larger polyno-
mial degrees do not change the data in any other different pattern than visible
with the polynomial of degree 1. The difference is that the changes are more
significant, which is quite prominent with clipping, as more points get clipped
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to maximum or minimum values for the parameters. We tested several other
combinations of the coefficient intervals and expressions with smaller and larger
values. Our search is not exhaustive, but we noticed similar behavior with larger
coefficients as with larger polynomial degrees. Also, the benefit of using the
global transformation after the local one is that the data is not spread over the
whole parameter 2D space but usually occupies a smaller region of a rectangular
or oval shape.

5 Utilized Data Examples

To allow evaluation of the proposed transformations, we need relevant examples
of target characterizations. We do not use real confidential data because we
cannot show the original data and its transformed data. Instead, we use published
work and one simulated example.

First, we use an example from [16] with a graph of Electromagnetic FI
(EMFI) showing x-y locations on the target and corresponding fault classes. The
authors use RESET, NORMAL, CHANGING, and SUCCESS fault classes. Since
we investigate different examples, we use the fault class names MUTE, PASS,
CHANGING, and FAIL, which correspond to the mentioned fault classes. As
we did not have the original data, we extracted it from the pixels of the image.
Similarly, attackers could obtain results from published figures to get precise
data points. Note that the attacker can take the interval and search only in that
area, which is more efficient than mounting a complete characterization. How-
ever, extracting from the pixels is more specific and speeds up an attack. With
transformations, we want to prevent this. Additionally, we show another example
that corresponds well with possible LFI or EMFI campaign results, showing x-y
locations on the target in the 2D plots. For this example, we also show 3D plots
with intensity on the z-axis. The third example is somewhat different, where
glitch voltage and length are on the x and y-axis. The data is obtained in the
same manner as for the EMFI data example from [21]. This example represents
parameters for which analysts have some assumptions. Specifically, in this case,
the assumption is that we expect normal behavior from the device (PASS) with
a low values combination of those parameters. Contrary, with high values for
that combination of parameters, one would expect the device to reset or stop
communication (MUTE). The interesting FAIL responses are usually situated
on a border between the two regions which analysts try to find during character-
ization. Another example of such parameters would be laser intensity and pulse
width for LFI.

Reverse Engineering Data Points from Figures. There are online tools,
such as Webplotdigitizer2 [24] or PlotDigitizer3 [1], where one can upload an
image, and after aligning the x and y axes, it is possible to extract the information

2 https://automeris.io/WebPlotDigitizer/.
3 https://plotdigitizer.com/.

https://automeris.io/WebPlotDigitizer/
https://plotdigitizer.com/
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about certain points from the plot. However, we used Python Imaging Library
to read the pixels as it was easier to save the data for later transformations.
Each pixel defined with its location has an RGB (Red Green Blue) code - an
array with three values for determining the color. From the legend, we can learn
the color of each fault class in the plot. From the range information on each
axis, we can scale the data from pixels to the actual scope of the parameters. In
this manner, we obtain the parameter values from the image and the device’s
response per parameter combination.

6 Experimental Results

6.1 Electromagnetic Fault Injection (EMFI) Case

Transformations. We start with the EMFI case, where the authors pre-
sented information about the device, its size, used intervals, and the obtained
results [16]. The results from the original paper are presented in Fig. 1a. As previ-
ously explained, we extracted the data from pixels in the image, and the result is
visible in Fig. 1b. As mentioned, we recommend polynomial transformations for
randomizing the data, and they are specifically useful for more than two dimen-
sions when we do not care about visual results. Nevertheless, we first show results
using polynomial transformations to showcase their issue when using them for
the visual representation of the results. Transformed data is visible in Fig. 2. We
transform the interesting points while the non-interesting (PASS) remain the
same. In Fig. 2a, we show a polynomial of degree 1 with the clip method for val-
ues out of bounds. Here, the original interesting area is visible as an empty area
as we did not replace the points, neither we alter the rest of the non-interesting
points. The clip method is noticeable in the edges of the rectangular shape. In
the setting without global transformation, the values are on the borders of the
plot. The global transformation translated and scaled the interesting area after
local transformations. With larger polynomial degrees (2 and 3), more values

(a) Original plot from [16]. (b) Extracted data from Figure 1a.

Fig. 1. Original cartography from [16] and extracted data from the image.
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(a) Polynomial of degree 1 with clip
method and global transformation.

(b) Polynomial of degree 1 with scale
method and global transformation.

Fig. 2. Polynomial transformations on cartography shown in Fig. 1.

are clipped and end in the image’s corners. Next, we show the results with the
scale method in Fig. 2b, which rounds the interesting points around the central
point in the image. Also, we replace the interesting points in the original data
with a non-interesting class as we want to cover the empty space in the plot
that indicates where the interesting points were located. The difference between
results with and without global transformations is the translation of the central
point and scaling. The points converge more to the central point with a higher
polynomial degree and larger coefficients. We also tested the modulo method
with the same example. The transformation results with modulo are that the
data is fully randomized over the whole area if global transformation is not used.
Similarly, global transformation can shift and scale the area, and the interest-
ing area can become a smaller rectangular shape. The resulting shapes of the
interesting area are very different from the original data. Still, if we do not con-
sider the visual shapes, we can use the transformations on more dimensions for
statistical analysis.

We now show two different 2D transformations on the extracted data
from [16]. First, we have the transformation results shown in Fig. 3a we refer
to as transformation T1. The issue with the result of T1 is the overlap with
the interesting area in the original cartography. An example without such an
overlap is preferred and visible in Fig. 3b as transformation T2. Non-interesting
points replace the original interesting area as before. Transformation preserves
the shape from the original cartography, but it is rotated, scaled, and moved to
another region. Thus, the attacker could focus on the area shown in the figure
and miss the actual interesting area. Finally, the actual values of x and y on
corresponding axes are hidden by normalizing the data. Without knowing the
parameter intervals, we do not know if the whole target was tested or only a
specific smaller part.
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(a) T1: Angle of rotation is 165 x is in
the interval [0.01, 0.99], and y in [0.28,
0.99].

(b) T2: Angle of rotation is 310 x is in
the interval [0.05, 0.32], and y in [0.55,
0.93].

Fig. 3. 2D transformations on cartography shown in Fig. 1.

Note that x-y target characterizations can end in different unique shapes.
Therefore, one can consider that knowing the shape can still help the attackers
make more efficient attacks. So, depending on the wanted level of security, we can
change the shape with local polynomial transformations or with more specific
transformations for different shapes.

Reversing Transformed Data. Now, we discuss how an attacker could find
the correct transformation presented in a certain work. We consider that the
attacker knows what transformations are used, and we also assume that the
attacker knows the intervals for the parameters. We investigate how many pos-
sible transformations there are and how long it would take to reach the original
cartography with a brute-force approach.

Since we use rotations on the interesting area, we have 360 possible rota-
tions. For scale and shift, the number of possibilities depends on the number of
possible values of the parameters for the x and y axes. The number of possible
transformations is calculated with the following formula for each parameter:

n(n + 1)
2

, n = �0.8 · nb values� + 1. (4)

nb values is the number of possible values for a specific parameter. As previously
explained, we select the interval size and the lower bound to define the shift and
scaling. The possibilities for the interval size are between 20% of the possible
values and all possible values. Depending on the selected size, there are more
or fewer possibilities to set the lower bound of the new interval. For example, if
we uniformly at random select that the size of the interval is 20% of all possible
values for that parameter, then the number of possibilities for the lower bound
is the highest - 80% of the total number of possible values for the parameter. If,
on the other hand, the selected size is all the possible values of the parameter,
then there is only one possibility for choosing the lower bound. In the end, we
have a sum of options calculated with the expression above.
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In the case of EMFI cartography, with 481 possible values for both x and y,
we have 74 691 possibilities for each, which in combination gives ≈ 5.58 × 109

options. With rotations, we have ≈ 2.01 × 1012 possible transformations in this
setting. If it takes 1 ms to test one possible transformation, it will take around
63 years to test all combinations. Therefore, if we consider the attack setting as
described, it would take too long for the attacker to test all transformations and
find the correct one in a reasonable time.

6.2 Simulated Case

We test the transformations on another example of a specific shape found with
a fault injection campaign. We consider it to represent the x-y cartography of
the EMFI or LFI campaign. The example does not correspond to any target or
real cartography but is a good example as it highlights possible issues with the
current transformations.

Transformation. We refer to the cartography presented in Fig. 4a as the orig-
inal cartography, and we transform the data shown in that plot. We initially
transform the data in the same way as in the previous example, and the result is
visible in Fig. 4b. We replace the originally interesting area with a non-interesting
area. However, since the area has a specific shape and many interesting points
when replaced by a non-interesting fault class, we still see where the previous
location was. In the following transformation in Fig. 4c, we do not replace the
interesting area with a non-interesting fault class. Additionally, the interesting
area is far from the original, interesting area, which is the desired result. How-
ever, we still notice that the non-interesting points are denser in the area close
to the originally interesting area, which could help attackers find the real vulner-
abilities. Since polynomial transformations are good for randomizing the data,
we perform the local polynomial transformation of degree 1 with the modulo
method, but only for the non-interesting fault class. We selected modulo as it
was shown in our previous experiments that it had the best ability to spread
the points over the entire target area. The result is a plot in Fig. 4d, where we
see that the points are randomized over the whole target area, and there are
no particularly dense areas to attract attention. In this transformation, the new
interesting area is again not close to the actual interesting area hiding the real
vulnerable locations. Here, we do not disclose the coefficients of the polynomials
as they are selected uniformly at random from previously described intervals for
each non-interesting x-y combination.

Reversing Transformed Data. In this setting, we have 32 896 interval com-
binations for x, and 61 075 for y, which equals ≈ 2.01 × 109 combinations in
total. Again, we add the rotations and reach ≈ 7.23 × 1011 combinations. In
this case, we would need 22.94 years to test all transformation combinations if
testing one transformation takes 1 ms. While we need less time to test all the
transformations, it is still unreasonable to consider brute force.
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(a) Simulated cartography.

(b) x is
in the interval [0, 0.97], and y in [0.01,
0.95].

(c) x is in
the interval [0.14, 0.56], and y in [0.08,
0.28].

(d)

T1: Angle of rotation is ,

T2: Angle of rotation is ,
T3: Angle of rotation is , x is

in the interval [0.17, 0.99], and y in
[0.01, 1]. The polynomial transforma-
tion is used for non-interesting points.

Fig. 4. Simulated cartography with its transformations.

3D Plot. Additionally, we show that we can transform data for figures that
display three different parameters in a 3D plot. We use transformed data shown
in a 2D plot in Fig. 4c and add the intensity to the z-axis. Figure 5a shows the
data in 3D with the original intensity values without showing the non-interesting
points for better visibility of the interesting area. As with other parameters, we
also normalize the data for the z-axis. Hiding the actual intensity values by
normalizing them could be enough. If we do not specify the range we used and
disclose the information about the bench and the laser, it would be hard for an
attacker to reverse the intensity values. However, we can randomize the intensity
as well. Figure 5b shows the transformation of intensity in a way that for every
point, a new random intensity was selected. On the other hand, in Fig. 5c, we
map all possible values of the intensity to another intensity value. Then, the
original intensity value gets replaced by the preselected random intensity value
for every point. The values of the intensity can repeat in this setting. Thus, we
add another option where we create unique mappings and use those to alter the
intensity values. This transformation is visible in Fig. 5d.
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(a) Original intensity values.
(b) Intensity values set uniformly at
random for each data point.

(c) Intensity values mapped to inten-
sity values with possible repetition.

(d) Intensity values mapped to unique
intensity values.

Fig. 5. T2 (Fig. 4c) of simulated cartography with transformations for the intensity on
z-axis.

6.3 Voltage Glitching Case

The last use case is based on voltage glitching experiments presented in [21].
The original results are in Fig. 6a. There is glitch voltage on the x-axis, and
on the y-axis is the glitch length. In this case, contrary to x-y locations, there
are generally applicable assumptions for the target’s responses depending on
the glitch voltage/length values we already described. The analysts search for
the boundary between the two regions. Therefore, we want to adhere to the
assumptions by keeping the relations with transformed data but hiding the actual
border between the classes where the device behaves as expected (PASS) and
resets or stops communication (MUTE).
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(a) Original plot from [21]. (b) Extracted data from Figure 6a.

Fig. 6. Original cartography from [21] and extracted data from the image.

Transformation. First, we extract the data from the original plot (Fig. 6a), and
the result is visible in Fig. 6b. Note that the real parameter values are visible
in the original plot, but we display plots with normalized values. Considering
the assumptions, we care about absolute values, so the value −5 for the glitch
voltage is replaced with 1.

The issue with the transformation we used for x-y characterization is that
the boundary between interesting and non-interesting areas would not align with
the mentioned assumptions. Suppose we can rotate the interesting area with any
of the 360 angles. In that case, we can get a transformation where the border
is not between the regions but at the plot’s far left. On the other hand, if we
rotate all the points, we can get a plot indicating the opposite response of the
target - lowest values lead to MUTE and highest to PASS class. Moreover, it
might be enough for these types of parameters to normalize the data. If we do
not specify the range we used, it would be hard for an attacker to reproduce the
injections. However, we still slightly adjusted the transformations by limiting
the possibilities of previous transformations to conform with the assumptions
for the glitch voltage-length parameters. Firstly, we do not allow all possible
angle rotations but only from [−80◦, 30◦], which we defined using the trial-and-
error approach by visually checking if the assumptions still hold. The parameter
combinations with FAIL fault class stay close to the border with a non-interesting
area and do not invert to the opposite side using defined rotations. Previously,
if we scaled and shifted only the interesting area, we lost the relative positioning
of the MUTE and PASS classes. Instead, we make data points more dense or
sparse by splitting the data below and above certain values on the x and y-
axis. Then, we select new splitting x and y values and scale the data. Scaling is
done so that the points above the first selected value remain above the newly
selected splitting value and analogously for points below the selected values. Let
us assume we selected a value x1 and then x2. In this case, the points below
x1 will be scaled from 0 to x2. The value of x2 can be lower or higher than the
x1. If x2 is lower than x1, the points will be denser; otherwise, the points will
be more stretched as the interval increases. The results of these transformations
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are visible in Fig. 7. We can see that the relative positions of the different areas
remain in both figures. In the T1 transformation in Fig. 7a, the FAIL points are
close to the original border but rotated so that lower glitch length leads to those
points. In the T2 transformation, the MUTE area is stretched, while the PASS
area is denser since the border is moved to the right. As the data is stretched,
the points become sparse in some areas. The exploration with algorithms is
usually random over the whole search space, so one cannot expect such sparse
testing in specific regions. Thus, we need to consider this for publishing the
results. However, an algorithm used in this example converges to FAIL outcomes.
The sparseness is explained by convergence in the algorithm, also visible in the
original cartography.

(a)
change on x. y moved from 0.36 to 0.44.

(b)
T1: Angle of rotation is No

T2: Angle of rotation is x
moved from 0.67 to 0.31 and y from
0.44 to 0.27.

Fig. 7. Transformations of the glitching example (Fig. 6a).

Reversing Transformed Data. With the described transformations, we have
even fewer possible transformations. The reason is fewer possible values for the
parameters and limited possibilities because the transformations need to conform
to the assumptions. We allow 110 possible rotations, and the splitting points are
between 20% and 80% of all possible voltage or glitch length values. From 100
possible values for voltage, we allow 60, and from 75 possibilities for length, we
have 45. In total, that is 7.29×106 possibilities, and after adding the rotations we
have 8.019 × 108 possible transformations. It will take 9.28 days to try all com-
binations if one takes 1ms. That is much less time to test all combinations than
in the previous examples. However, as already mentioned, hiding the parameter
ranges, in this case, could be enough.

6.4 Evaluating the Effect of Transformations

To evaluate the effect of transformation, we use Kullback-Leibler divergence
(KLD) and Canonical Correlation Analysis (CCA). KLD and CCA evaluate how
similar the transformed data is to the original data. KLD is used to compare the
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distribution of fault classes and data points between original and transformed
data, while CCA indicates the level of correlation between the two data sets.
Since our transformations use randomness, with CCA, we measure if the trans-
formed data has been randomized to a point where there is almost no correlation
with the original data. While this was more critical for polynomial transforma-
tions, we kept it for the 2D transformations. Note that the implementation of
CCA is taken from the public GitHub repository4 [18,23].

Using the notation from the previous KLD definition, we consider the data
from true cartography (target characterization) as the reference probability P
and the probability of the transformed data as Q. We compute how the distri-
bution from the transformed data differs from the true data for fault classes and
utilized parameter values. The probability distribution for KLD is obtained by
finding the frequency of each possible value for parameters in true and trans-
formed data. We calculate KLD for each parameter and show the mean KLD
in Table 1. Similarly, we calculate the KLD for fault class distribution. On the
other hand, since we replace the original interesting area with a non-interesting
fault class in some examples, we effectively add the newly transformed data to
the existing one. For this reason, there is a different number of data points in
the original and transformed data, and to calculate the CCA, we need to have
the same number of data points. In most cases, we only transform the inter-
esting area, so we calculate the CCA only on the interesting points. However,
when possible, we show CCA on all data points, which is visible in the same
Table 1. Occasionally, there could be overlaps and, with that, a possible change
in fault class distribution, but this remains low, as visible by the KLD in all
cases. The difference between the data’s original and transformed distribution of
parameter values remains low in the EMFI example. In the simulated example,
with each transformation, the KLD increased. In T1, the original interesting
area was replaced with non-interesting points. Then in T2, we removed this, and
KLD increased. Lastly, we used polynomials to randomize the PASS fault class,
resulting in a higher KLD because all the points have been modified. However,
the worst situation is in the example with voltage glitching, as KLD is very high.
This example’s number of data points is lower than in other examples. Thus,
many possible points are not tested, so the difference in the value distributions
is high. CCA converges nicely to one, meaning original and transformed data are
highly correlated. However, with the simulated example, when we calculate CCA
for the interesting points, it is below 0.5. For T2, CCA calculated on all data
points is close to 1 as points of the PASS class remain the same. On the other
hand, with T3 transformation, CCA is almost zero because as the PASS is ran-
domized, all data points are different. The issue might be the specific shape and
the number of altered points. Visual inspection still provides the best indication
for publishing, but these metrics offer good insight into the performed modifi-
cations. Metrics show that the transformations keep the fault class distributions
and remain correlated with the original data.

4 https://github.com/google/svcca.

https://github.com/google/svcca
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Table 1. Kullback-Leibler Divergence (KLD) and Canonical Correlation Analysis
(CCA). By default, CCA is calculated only on data points of interesting fault classes.

EMFI Simulated Voltage glitching

KLD for
classes

KLD for
parameter
values

CCA on
interesting
data

KLD for
classes

KLD for
parameter
values

CCA on
interesting
data

CCA on
all data
points

KLD for
classes

KLD for
parameter
values

CCA on
interesting
data

CCA on
all data
points

T1 0.0039 0.0138 0.9999 0.0069 0.0053 0.4243 / 0.0035 10.679 0.9953 0.9221

T2 0.0186 0.0275 0.9999 0.0045 0.2172 0.2895 0.9355 0.0035 4.6081 0.9851 0.8684

T3 / / / 0.0001 0.3503 0.3738 0.0275 / / / /

7 Conclusion and Future Work

This work provides several techniques for transforming the target characteriza-
tion results to hide sensitive information. Indeed, we show that from a figure (a
typical representation of a characterization experiment), one could easily obtain
the exact data points leading to a fault. We discuss various transformations and
analyze the results for three different scenarios showing that using transforma-
tions significantly hinders the possibility of reverse-engineering the data from
graphs. Additionally, we show that our transformations maintain the correct
information about the data distribution and are highly correlated with the orig-
inal data, making the transformed figures relevant. We show these transforma-
tions provide additional layers of hiding confidential data. We discuss potential
cases where such transformations could be useful, and with that, we try to moti-
vate Evaluators to share more data as it can lead to improved benchmarking
and, consequently, the security of different systems against fault injections.

Proposed transformations are rather simple, which makes them easy to apply.
However, more research should be done to provide guarantees on the effort to
reverse the data. Furthermore, we aim to explore how to make automated trans-
formations. Current experiments still require an expert with knowledge about the
nature of parameters to select appropriate transformations. Building a rule-based
system that can transform the data while maintaining the relevant assumptions
would be interesting.
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Abstract. Acoustic side channel attack (SCA) is a type of SCA which
exploits the sounds emitted by computers or other devices to retrieve the
sensitive information, without requiring the adversary to perform any
mathematical cryptanalysis. Recently, acoustic SCA has been exploited
by attackers to breach the security of mobile devices. A malicious applica-
tion installed in the mobile devices can access and take control of system
components such as microphone, gyroscope, camera, etc. As users may
not be aware of the security guarantee of the malicious applications, they
can blindly trust and download such applications in their mobile phones
and grant access to unnecessary permission. This security vulnerabil-
ity can be exploited by an attacker to retrieve user sensitive information
and compromise the user privacy. In this paper, a novel Dual-Tone Multi-
Frequency (DTMF) assisted acoustic side channel attack is proposed to
retrieve dialled call log from mobile devices. In this attack, an adversary
can infer the call log or phone numbers dialed by the victims on their
devices by gaining access to the in-built microphone. To the best of our
knowledge, the proposed acoustic SCA is the first work in the literature
that exploits the standards of DTMF to uniquely identify each key/digit
dialed on the dialling keypad. In the proposed acoustic SCA methodol-
ogy, we infer the keys/digits dialed by the victims by first analyzing the
recordings of sounds produced from dialed digits and then finding the fre-
quency distribution for each digit using Fast Fourier Transform (FFT).
Further, the characteristic frequencies of the keys/digits are matched
against the DTMF specifications to uniquely identify them. Further, we
have trained the machine learning (ML) models to facilitate the pre-
diction of the call log or the phone numbers dialed by the victim. The
proposed attack is device-independent and is capable of predicting the
phone numbers dialed in one device while training the ML models on
the other. The prediction accuracy of the proposed approach is achieved
to be 100% because of exploiting the standards of DTMF which are
common for all the communication devices across the globe.
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1 Introduction

Side Channel Attacks (SCAs) have been analyzed rigorously and launched suc-
cessfully on hardware and embedded systems to leak the secret key over the past
two decades. Side channels bring forth the state information about the imple-
mentation which might not be captured by the classical adversaries [1]. For
example, crypto-processors generally have variable execution time to process
the data-dependent operations. By using the timing side channel, an adversary
can measure the time required for the secret key operation and retrieve some
important information about the secret key which can help the adversary to
launch a successful SCA. In [2], it was shown that the adversary can extract
the secret key of RSA [3] and Diffie-Hellman [4] key exchange by analyzing the
timing information with known ciphertext. Similarly, other types of side chan-
nels can be exploited to leak some secret information (e.g. key) such as power
side channel [5] and electromagnetic radiations (EM) etc. In power side chan-
nel [5], an adversary measures the power consumption of a hardware platform
while running the cryptographic algorithms and try to relate it with the secret
key (Simple Power Attacks) or the differential of an intermediate state between
two consecutive rounds of the cipher depending upon the secret key (Differential
Power Attacks). In EM side channel, an attacker tries to extract the secret key
by collecting the EM radiations of an embedded system during the execution of
the cipher using EM probe. Then the secret key can be extracted using the EM
side channel traces.

Sometimes, the device platforms are so vulnerable that an attack can be
launched to breach the privacy without even touching the crypto-module. This
is possible because of some other types of side channels such as acoustic [6],
thermal emission [7], magnetic [8] etc. Among these, acoustic-channels may be
formed of audible or non-audible signals which are produced by a transmit-
ter/speaker or executing specific processes on the processing unit of the com-
puter [9]. Acoustic side channel attack leverages computer or device acoustics
to get sensitive information without mathematical cryptanalysis. Recently, it
has been found that the acoustic emanations produced by electronic devices
can be used to infer the operations and data entered by the users in their sys-
tems and can present a serious threat to user privacy. Some existing works have
highlighted that the sounds resulting from keyboard typing can be exploited to
learn information about the entered data [10]. Asonov and Agrawal [11] have
showed that the frequency features from the sound emanations of various key-
board clicks can be extracted to infer the different keys. Whereas in an another
work, an acoustic side channel attack has been launched on additive manufac-
turing systems like 3D printers to infer the object that is being printed [12].
However, the above mentioned approaches of acoustic SCA did not target the
security of smartphones or mobile devices. Instead, a number of techniques that
leverage built-in smartphone sensors to leak users’ private information through
side channel attacks have been proposed in the literature [13–22]. However, some
hardware, operating-system and application-level mechanisms can be employed
to block this attack more effectively [22]. Moreover, these approaches also do



DTMF Assisted Acoustic Side Channel Attack to Retrieve Dialled Call Log 187

not target the retrieval of ‘call log’ or ‘10-digit phone numbers’ unlike the our
proposed approach.

To be more specific, in [22], the acoustic SCA of retrieving the
PINs/characters on mobile phones is device dependent. This is because, they
have used the time-difference-of-arrival as the feature to classify the entered char-
acters. The time-difference-of-arrival is measured between the signals received at
the two microphones of the device which will vary across the devices. This leads
to a question: Can we can launch an attack that is generic to all mobile devices
(i.e. system independent) and less complex to apply? In order to cater the above
mentioned issue, we have proposed a novel acoustic SCA which is independent
of the type of mobile device as long as it supports dialling and calling function
and have at least one microphone. In addition, the complexity of retrieving the
dialed digits is comparatively lesser than the existing acoustic SCA on smart-
phones [22]. This is because in the proposed technique, the ML model needs to
be trained only once and later it can be used to launch the attack on any type
of device. Whereas in [22], the model is required to be trained separately for the
type of device on which the attack is intended to be launched leading to higher
implementation complexity and attack time.

The role of DTMF standards and ML models in the proposed approach are
briefly described as follows:

– Dual-tone multi-frequency (DTMF) is used to produce the sound that is
unique to each key on the dialling keypad. DTMF is a signaling system which
is used for communication through telephone systems and mobile devices.
It defines certain frequencies which are used to produce unique sound upon
dialling each key. These frequencies are common across all the mobile devices
which support calling function. Each key is composed of a pair of low fre-
quency and high frequency which is unique and have no relation with other
frequencies. Hence, it is possible to detect the key by analyzing the sound
produced by that key. Table 1 shows the low and high frequencies associated
with each key.

– In the proposed approach, we trained the ML models such as support vector
machine (SVM), Random Forest, Artificial Neural Network (ANN) on only
one device and the trained ML models are capable of predicting the phone
numbers dialed on any type of device, making our attack device independent.

1.1 Main Intuition and Contributions

Further, the major intuitions behind the proposed attacking methodology are
described as follows.

– When a user dials a phone number on dial pad, each key produces a sound
which is composed of the frequencies specified by DTMF standards.

– If we record the sound through in-built microphone and analyze the frequen-
cies present in it, we can predict the key which generated this sound.
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– To do so, the recorded sound is converted from its time-domain to frequency-
domain representation to find the frequencies present in it. We used a Discrete
Fourier Transform (DFT) method to decompose a signal into its frequency
components.

– Fast Fourier Transform (FFT) is an efficient algorithm to compute the dis-
crete Fourier transform of a signal. Thus we can find the magnitude of each
frequency present in the recorded signal.

– By finding the two frequencies which have the highest magnitudes, we can
predict the key.

The top two frequencies will not be always exactly equal to what is shown in
the Table 1, because of the noise present in the surrounding and limitations of
the microphone hardware. However, the frequencies will certainly be somewhere
around the characteristic frequencies with slight deviations. The frequencies cor-
responding to one key are unique and have no relation with the frequencies of
the other keys. Now the problem statement boils down to a traditional classi-
fication problem wherein we classify the keys based on the frequencies present
in them. In the proposed work, we trained several machine learning models to
learn the mapping from frequencies to keys which accounts for the deviations
in the frequencies as well. These models are later used to predict the keys by
analyzing their sound recordings.

We performed this attack successfully on various devices like Samsung M31,
Realme GT, Motorola, Lenovo Tablet and IPhone. The operating systems of all
of the above devices are Android except for IPhone which uses iOS operating
system. We used python libraries librosa and numpy to work with the recorded
sound signals. The Numpy provides a function which computes the FFT of the
given signal in order to find the magnitude of each frequency present in the
recorded signal.

Table 1. DTMF keypad frequencies for each key

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D

In summary, the major contributions of our work are as follows:

– We have proposed a novel acoustic side channel attack methodology to
retrieve the dialled call log by exploiting the in-built components of the vic-
tim’s device such as microphone.

– The proposed approach leveraged the DTMF standards, to uniquely identify
the phone number that is being dialed by the victim. The DTMF standards
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being common across all the devices makes our proposed attack device inde-
pendent, which we have also shown in the experimental results section.

– We have shown the use of ML models such as SVM, Random Forest and
ANN for training with a number of samples of sounds corresponding to dialed
digits and predicting the 10 digit phone number dialed by the victim with
100% accuracy.

The rest of the paper is organized as follows. In Sect. 2, we provide the back-
ground of the working principles of DTMF and FFT. We describe our attack
methodology in Sect. 3 and provide the experimental setup and results of our
work in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Background

This section briefly discusses the important terminologies used in the proposed
methodology of acoustic SCA, such as DTMF, FFT and different ML models.
First we discuss some background about DTMF and how it defines the frequen-
cies for each key. Next, we discuss the FFT technique followed by the ML models
such as SVM, Random Forest and ANN.

2.1 Dual-Tone Multi-Frequency (DTMF) Signals

DTMF is a signaling system which is used in communicating devices like tele-
phone systems and mobile devices. The standards for DTMF signals have been
developed by the Bell System Inc., US. These standards have been specified in
the International Telecommunication Union ITU-T Recommendation Q.23 [27].
DTMF tones are produced by adding two sinusoidal signals having frequencies
among the 8 defined frequencies. Each key is composed of a pair of low and high
frequencies as shown in Table 1. The mathematical function to generate a pure
DTMF tone for a particular key is given below.

x(t) = Acos(2πfLT + φ) + Acos(2πfHT + φ) (1)

Where, A is the amplitude of the signal, fL and fH are the low and the high
frequencies respectively from which the key signal is formed, 1/T is the sampling
rate of the signal and φ is the phase of the signal. Figure 1 shows the time-domain
representations of the DTMF tones of digit ‘0’ and digit ‘1’. The DTMF tone
corresponding to digit ‘0’ is formed by combining signals of two distinct frequen-
cies viz. 941Hz and 1336 Hz whereas the DTMF tone corresponding to digit ‘1’
is composed of the 697 Hz and 1209 Hz. As shown in Fig. 1, the combination of
different frequencies results into distinct dial tones (signals) for different digits.
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Fig. 1. Combination of two sine waves to produce (a) DTMF ‘0’ and (b) DTMF ‘1’.

2.2 Fast Fourier Transform (FFT)

In this paper, we have employed the FFT to obtain the corresponding frequency-
domain representation of the recorded dial tone in order to facilitate the features
extraction for performing the attack. The FFT is an efficient algorithm to com-
pute the discrete Fourier transform (DFT) of a signal. DFT is a method to
decompose a signal into its frequency components. It is one of the easiest and
commonly applied methods to get the frequency-domain representation of a
given signal from its time-domain representation. The formula to compute the
DFT of the sequence x[n], corresponding to the continuous time signal x(t), is
given below.

x̂(k) =
N−1∑

n=0

x(n)e
−2πink

N , k = 0, ..., N − 1 (2)

Where, x̂(k) is a complex number in the form of (a + ib) which represents
the magnitude and the phase of the frequency F (k) in the original signal x(t).
N is the number of samples in x[n] and n is the sample number. The different
frequencies given by F (k) can be derived using the following equation.

F (k) =
k.Sr

N
(3)

where, Sr is the sampling rate of the signal. The time complexity of finding
Fourier transform using Eq. (2) is O(N2). However, it reduces to O(NlogN)
because of applying the FFT. We employ the FFT in our approach to translate
the recorded dial tone into the corresponding frequency representation.
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2.3 Machine Learning Models

The proposed work employs machine learning (ML) models to facilitate the
prediction of the phone number digits dialed by the victim. Here, the objective
of using an ML model is to classify the given sample into one of the 10 classes
(10 digits from 0 to 9) which is a supervised learning task. Therefore, we have
selected the classifiers namely, SVM, Random Forest and ANN which are widely
used to solve classification problems.

The objective of SVM technique is to establish the best line or decision
boundary that can divide n-dimensional space into classes, allowing us to quickly
classify fresh data points in the future. A hyperplane is the name given to this
optimal decision boundary. SVM selects the extreme vectors and points that
aid in the creation of the hyperplane. Support vectors, which are used to repre-
sent these extreme instances, form the basis for the SVM method [23]. Further,
random forest is also another supervised machine learning algorithm which is
employed in classification problems. On various samples, it constructs decision
trees and uses their majority vote to decide the class of the data point [24].
Additionally, we have also employed ANN based supervised learning model. A
computational network based on biological neural networks, which create the
structure of the human brain, is typically referred to as an Artificial Neural
Network (ANN) [25]. It learns the weights for the edges connecting the neurons
from one layer to the next layer to minimize the prediction loss/error at the
output layer. We have used the softmax activation function in the output layer
to predict the class of the sample. The formula for softmax activation function
in given below.

σ(−→z )i =
ezi

∑K
j=1 ezi

(4)

Here, σ is softmax, −→z is the input vector, ezi is standard exponential function
for input vector, K is the number of classes in multi-class classifier (10 in our
case) and ezj is standard exponential function for output vector. This softmax
function outputs the probability distribution for all K classes.

Having this background on the core terminologies viz. DTMF, FFT and ML
models used in our work, we present the proposed acoustic SCA methodology
in the next section.

3 Proposed Acoustic Side Channel Attack Methodology

In this section, we present the acoustic SCA methodology of retrieving the ‘call
log’ or inferring a ‘10-digit phone number’ while being dialed by the victim
on his mobile device. The main intuition behind the attacking methodology is



192 A. Revskar et al.
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Fig. 2. The execution flow of the proposed attack methodology

based on the fact that the dial tone corresponding to each digit of a phone
number is composed of the distinct frequencies specified by DTMF standards.
Hence, if the frequencies present in the recorded dial tones are analyzed then
the corresponding digit or key can be predicted by an attacker.

Adversarial Model: The adversarial model of our approach assumes that the
victim downloads the malicious applications in his mobile phone and grants
access to unnecessary permissions. For example, the victim can grant access
to the device’s microphone that in turn leads to recording of digits sound. We
also assume that the sound of dialing digits on the device is enabled to get the
tones. The malicious application installed in the mobile devices can access and
take control of system’s microphone. We assume that the malicious application
which has been given the access to the microphone of victim’s device sends the
recording of dialling of a phone number by the victim to the adversary over
the internet. This adversarial model is practical and complies with the standard
adversarial models assumed for the state of the art attacks on smartphones [26].

The basic flow of our attack methodology is depicted in Fig. 2. This method-
ology is discussed in three major phases viz. (i) data collection and feature
extraction (ii) training of ML models (ii) inference of dialed digits by attacker.
In the data collection and features extraction phase, recording of the dialed dig-
its are subjected to FFT technique followed by the features extraction with the
help of DTMF standards. Further in the training phase, we use the features
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extracted in previous phase to train the ML models. Finally, in prediction phase,
the recordings from the victim’s device are processed and fed to the models to
predict or infer the phone number dialed by the victim. The methodology is
discussed in detail below.

3.1 Data Collection and Feature Extraction

We have collected 210 samples of recordings corresponding to 10 digits on the
keypad with 21 samples for each digit from a mobile device which acts as the
adversary’s device. All these samples represent the signals in time-domain where
we have time on the x-axis and amplitude on the y-axis as shown in Fig. 3.

Application of FFT: Since the attack exploits the features of recorded sounds
in the from of fundamental frequency components, therefore we first need to
perform translation of recorded signals from time-domain to frequency-domain.
To do so, we apply the FFT technique which computes the DFT of the given
signal. Applying FFT on the signal from time-domain gives us the frequency
distribution in the signal. This frequency distribution tells us the magnitude of
each frequency that is present in the original signal. The frequency-domain rep-
resentation has frequencies on the x-axis and magnitude on the y-axis. Figure 3
(a) and (b) represents the time-domain representation of a sample recording
when a user dials the key ‘0’ and key ‘1’ on the dial pad respectively. When
we apply the FFT on this signal, we obtain its corresponding frequency-domain
representation which is shown in Fig. 4 (a) and (b).

Role of DTMF: Each key will have different frequency-domain representation
where the two frequencies that define the DTMF tone of the key will have higher
magnitude as compared to any other frequency. Figure 4 (b) shows the frequency-
domain representation of a sample recording when a user dials the key ‘1’. As
shown, the two frequencies with the higher magnitudes lie somewhere around
700 Hz and 1200 Hz and the frequencies which represent the DTMF ‘1’ are 697
Hz and 1209 Hz. If we calculate the exact values from the above representation,
they come out to be 696 Hz and 1208 Hz which is very close to the DTMF
standards. This property holds for every key on the keypad and is common
across all the mobile devices. Hence, this property enables an attacker to detect
the keys by training the models on only one device. This makes the attack
device-independent.

Feature Extraction: Once we have the frequency-domain representation of the
recorded samples, the next step is to extract the two characteristic frequencies
based on the DTMF standards for each of the 210 samples. To do so, we find the
frequency positions/indices which have the highest magnitudes and then find the
frequencies which are present at these positions/indices. After extracting these
two frequencies, we created a dataset with these frequencies as the features. In
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Fig. 3. Time-domain representation of (a) DTMF ‘0’ and (b) DTMF ‘1’

this dataset, the key/digit which corresponds to these frequencies acts as the
label for classification. Thus, we have 10 classes (one for each key) to classify the
collected samples. A row in our dataset has 3 values (fL,fH ,label) representing
the low and high frequencies and the actual label of the sample.

Fig. 4. Frequency-domain representation of (a) DTMF ‘0’ and (b) DTMF ‘1’

3.2 Training ML Models with Extracted Features

Post obtaining the features of the recorded samples, we have trained our ML
models viz. SVM, Random forest and ANN using the corresponding dataset. For
SVM, we have used linear kernel for classification because our data is linearly
separable. In other words, the data can be separated using a single line. Training
an SVM with linear kernel is much faster than any other kernel. In Random forest
regression, we have used 10 decision trees to classify the samples and then the
majority prediction from these 10 decision trees is used as the final label for
the sample. For ANN model, we have created a neural network with 3 hidden
layers with 2-dimensional input layer and 10-dimensional output layer. ANN is
widely used when the testing data is not much different than the training data
and same is the case for our attack methodology, hence we decide to incorporate
this model into our attack strategy.
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3.3 Inference of Dialed Digits by Attacker

In the final phase of the acoustic SCA methodology, the trained models are used
to predict the 10-digit phone number dialed by the victim. The prediction is
accomplished in the following steps.

– The malicious application that has been granted the permission to access the
microphone of victim’s device can record while the victim is dialling a phone
number.

– This recording can be sent to the adversary over the internet and then the
adversary can perform the required operations on this recording to depict the
phone number. Specifically, the recording contains a series of 10 DTMF tones
representing the 10-digit phone number.

– Now, we need to separate the 10 DTMF tones from this recording and predict
the digit for each tone. To do so, we have plotted the recorded signal in time-
domain and observed the time instance at which a particular tone starts and
ends.

– Further, we extract the signal containing only one tone from this original
signal on the basis of these start and end times. We perform this process for
all the 10-digits by observing their respective starting and ending times.

– Once we have the signal for one DTMF tone representing a digit from the
phone number, we perform the steps viz. conversion into frequency-domain
representation and feature extraction on this signal. These steps are similar
to what we performed in the training phase discussed in the Sect. 3.2.

– Once we have created a feature vector from the test sample, we feed it as an
input to the ML model to predict the respective key/digit.

Thus, the proposed SCA attack methodology is capable to infer a digit of the
phone number in this phase. Similarly, we infer all the remaining digits of the
phone number by following the same process.

4 Experimental Setup and Results

This section first discusses the required experimental setup to perform the pro-
posed acoustic SCA for retrieving phone number from mobile devices. As dis-
cussed earlier, our attack methodology is performed in the different phases viz.
data collection and feature extraction, training and inference. The necessary
experimental setup in these phases has been discussed in this section. Later, we
illustrate the results of our approach in terms of the accuracy of prediction of
the dialed digits and implementation complexity or estimated attack time of the
proposed acoustic SCA methodology using different ML models.
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4.1 Experimental Setup for Data Collection, Feature Extraction
and Training

We have recorded 210 samples of dialling a digit (21 samples for each digit) in one
mobile device which will act as the adversary’s device. In our case, we have used
Samsung Galaxy M31 as the adversary’s device. We have used the usual sound
recorder application which comes pre-installed in almost all the devices. The
recordings are sampled at a sampling rate of 44.1 kHz, which is very common in
recent mobile applications. We recorded the samples in mono mode of recording
which records from the main or default microphone. We have worked with these
samples using python libraries (i) librosa which is very famous library for music
and audio analysis, (ii) numpy to generate the frequency-domain representation
from the time-domain representation using FFT method, (iii) matplotlib to plot
various signal representations and results of our work.

Post obtaining the samples, we have transferred them to the machine on
which all the processing will happen. Each acoustic signal (sample) has a dura-
tion of nearly one second which is long enough to capture the behavior of the
signal. We then follow the below mentioned steps to create the dataset from the
recorded samples.

– The time-domain signal is converted to frequency-domain by the FFT method
of numpy.

– The frequency-domain representation of the signal has an array of frequen-
cies present in the signal along with their magnitudes. We choose the two
frequencies having the highest magnitudes.

– We have created a row in the dataset containing these two frequencies as the
features and the key/digit to which these frequencies belong as the label.

We have performed the above steps for all the recorded samples and obtained
a dataset in a comma separated values (csv) format which will be used to train
the ML models. The dataset is of size 210×3 representing 210 samples, each hav-
ing 3 values namely, low frequency, high frequency and its label. A few samples
from the dataset have been shown in Fig. 5.

Once the dataset is obtained, it is used to train our ML models i.e. SVM,
Random Forest and ANN. The SVM and Random forest models have training
and testing data in 80 : 20 ratio. For ANN model, we have used 3 hidden layers
with 100 neurons in each layer. The input layer is 2-dimensional and the output
layer is 10-dimensional, representing 10 classes. We have used rectified linear
activation function or ReLU for the input and the hidden layers while softmax
function for the output layer. The softmax function outputs the probability
distribution for each of the 10 classes. The class with the highest probability is
chosen as the label for the given sample. We have split the dataset into 9 : 1
ratio representing the training and the testing set to train the ANN model. The
number of epochs are taken as 100 which means that we feed the training data
100 times to the neural network and each time the weights are updated such
that the loss will be minimized. We have saved all these models in .sav format
using python library pickle so that we can directly use them in the future for
prediction without having to train all of them again.
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Index Low
Frequency

High
Frequency Label

0 944 1336 0

1 944 1336 0

... ... ... ...

22 696 1208 1

23 701 1208 1

... ... ... ...

208 851 1477 9

209 851 1477 9

Fig. 5. An excerpt of our Dataset used for training

4.2 Experimental Set-up for Inferring the Digits of a Phone
Number

We assume that the malicious application which has been given the access to the
microphone of victim’s device sends the recording of dialling of a phone number
by the victim to the adversary over the internet. We have recorded the dialling
of phone numbers on a number of devices like Realme GT, Motorola, Iphone
and Lenove tablet to validate the attack. These recordings contain a sequence of
10-digit DTMF tones for the 10 digits in a phone number. A typical recording
of dialling a 10-digit phone number looks like that in Fig. 6. We can see multiple
peaks in the signal, each of which represents a certain digit in the dialed phone
number.

Further, we separate these 10 peaks by estimating their start and end time.
We then obtain the frequency-domain representation of each peak/digit using
FFT followed by finding the two characteristic frequencies that represent this
digit. We also load the models which were saved after the training phase. When
we obtain the two characteristic frequencies for each digit, we treat them as the
test data for our models and feed them to the models to get their predicted digit
as the output. When this process is repeated for each of the 10 digits, we retrieve
the full 10-digit phone number which was dialed by the victim. The Fig. 7 shows
the flow of proposed attack of inferring the phone digits that are being dialed in
the victim’s device. As shown, the recording of phone number retrieved by the
malicious app from the victim’s device is sent to the adversary’s machine over
the internet where the adversary executes the attack and predicts the phone
number from the received recording.
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Fig. 6. Recording of a typical phone number

4.3 Accuracy of Prediction of the Dialed Digits Using the Proposed
Acoustic SCA Methodology

The accuracy is measured as the ratio of the number of samples predicted cor-
rectly to the total number of samples in the testing set.

Accuracy =
No. of samples predicted correctly

Total no. of samples
(5)

Figure 8 shows the loss and accuracy for all the 100 epochs in case of the ANN
model. We have used the cross entropy loss as the loss function in our model and
the optimizer we used is the adam optimizer. As shown in Fig. 8, the accuracy
for this model reaches to 100% and the loss decreases to 0 when the training
phase ends. The reported accuracy for all three models is 100%. For the accuracy
analysis, we have varied the number of samples per digit from 3 to 21. However
for each case, we are achieving 100% accuracy. The underlying reason is as
follows. The two characteristic frequencies in the dial tone of corresponding
digits differ by a large value. More explicitly, low frequencies are 70 Hz apart
and high frequencies are 120 Hz apart. Therefore, it is highly unlikely that a
digit would be predicted incorrectly. For example, the characteristic frequencies
‘770 Hz and 1209 Hz’ corresponding to the digit ‘4’ cannot be predicted to be
any other digit by the model as its corresponding frequencies are far away from
that of other digits. However, we still need to train the classifiers to capture the
small difference between the frequencies. For example, in case of the digit ‘1’
the low frequency might vary 697 Hz to 771 Hz due to the noise present in the
recorded signal or the limitations of the device’s microphone which might result
in predicting it incorrectly. Hence, the goal of the classifiers is to capture these
small differences using decision boundary and these differences will be captured
better if we train with large number of samples.
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Victim's Device

Recording of phone no.
(retrieved by malicious app)

Adversary's machine 
which executes the attack

Sent over internet

9012345678

Predicted Phone No.

Trained ML
Models

(SVM,RF,ANN)

Feature
Extraction

FFT

Received Recording

Fig. 7. The proposed attack flow of inferring the phone number from recording

Since, the DTMF tones and their corresponding fundamental frequencies
remain the same irrespective of the type of mobile device. Hence, all the 10 digits
predicted by the models represent the exact phone number dialed by the vic-
tim. We have successfully retrieved the dialed phone numbers on all the devices
mentioned earlier by following this method. Hence, we propose that our attack
methodology is device independent.

4.4 Implementation Complexity (Estimated Attack Time)
of the Proposed Methodology

We have executed this attack on a system having 8 GB of RAM, AMD PRO
A4-3350B APU 2 GHz Processor. The overall implementation complexity of the
proposed attack methodology is divided in the following three time slices:

– implementation run time of finding FFT and feature extraction (Tf ).
– implementation run time of training ML models (Tt).
– implementation run time of predicting dialed digits (Tp).

Hence, the total implementation complexity or overall attack time (TA) is given
using the following equation:

TA = Tf + Tt + Tp (6)

The implementation run time of finding FFT and feature extraction (Tf ) is
12.49 s. This process is performed only once and is common for all the ML
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Fig. 8. Training loss and accuracy for ANN model

models. Further, the time required (in seconds) for training all the three ML
models after performing the feature extraction and then testing them to predict
the dialed digits is given in Table 2. Finally, the Table 2 also presents the total
attack time computed using Eq. 6. The implementation complexity of retrieving
the dialed digits is achieved to be very less. This is because, the ML model
needs to be trained only once and later it can be used to launch the attack on
any type of device. It does not required to be trained separately for the type of
device on which the attack is intended to be launched. Hence, it leads to lower
implementation complexity or attack time.

Table 2. Implementation run times in seconds (s) of the proposed attack for three
different ML models

Model Training
time (Tt)

Testing
time (Tp)

Overall attack
time (TA)

SVM 0.12 s 0.20 s 12.81 s

Random forest 0.08 s 0.28 s 12.85 s

ANN 9.17 s 0.75 s 22.41 s
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5 Conclusion

Acoustic side channel attack has recently come up as a potential threat as it
can breach the security of mobile devices and leak the user’s sensitive data. In
this work, we have shown how a malicious application in the victim’s device
can retrieve the phone numbers that are being dialed by him/her by recording
the sounds through in-built microphone of the device. Since the DTMF tones of
the keys/digits are common across all mobile devices, the adversary can exploit
this property to launch a successful attack on the mobile devices making this
attack device independent. The adversary just needs to train a machine learning
model on his/her device to make this attack successful. The experimental results
implied that an adversary can retrieve the phone number digits using the ML
models with 100% accuracy. Moreover, the implementation complexity or the
overall attack time of the proposed acoustic SCA methodology is very less. For
a user to be less likely to fall victim to this kind of attack, he or she needs to pay
close attention to the hardware and software requirements of the applications
he or she wants to install. Demanding access by an application to an irrelevant
component of the mobile device can be a big giveaway of such an attack.
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Abstract. Physically unclonable functions (PUFs) can be seen as hard-
ware circuits whose output does not only depend upon the inputs fed
to it, but also on the random variation in the integrated circuits (ICs)
during its manufacturing process. As a result of their unique hardware
fingerprinting, these circuits can be used to authenticate devices among
a population of identical silicon chips, much like a human being can be
authenticated by their biometrics. In ACM TECS 2019, two low-cost
reconfigurable Strong PUF designs namely XOR-based Reconfigurable
Bistable Ring PUF (XRBR PUF) and XOR-based Reconfigurable Ring
Oscillator PUF (XRRO PUF) have been proposed as a promising low-
cost solution for IoT security. The two notable features of these archi-
tectures are: i) both of them exploit the logic reconfigurability which is
efficient in terms of hardware cost, and ii) they exhibit good uniqueness
and reliability properties. These make XRRO and XRBR PUFs good
candidates for Strong PUF-based authentications and an interesting tar-
get for the machine learning (ML) adversaries as the machine learning
resiliency was never discussed for both the cases in the proposal. In
this paper, we develop a mathematical model for both of the designs by
exploiting a common flaw of not having any non-linear component in
the structure. Hence they are proven to be as vulnerable as their fore-
runner designs such as Configurable Ring Oscillator PUF and Bistable
Ring PUFs. Finally, we show through experimental analysis that 128-
bit XRBR PUFs can be broken with 10K CRPs with an accuracy of
approximately 99%. On the other hand, for 127-stage XRRO PUFs hav-
ing 8, 16, 32, 64 layers of XRROs can be broken with 200K, 1M, 3M, 8M
CRPs with an accuracy of approximately 97%–99%.

Keywords: Physically unclonable functions · Machine learning · XOR
gate · Bistable ring · Configurable Ring Oscillator

1 Introduction

Over the past two decades, Physically Unclonable Functions (PUFs) have gar-
nered significant attention from the research community worldwide [6,14]. They
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have been employed in a number of authentication protocols as building blocks.
As a component of hardware-based security primitive, PUFs create a distinct
digital fingerprint for a circuit or device using manufacturer process variations.
PUFs cannot be physically replicated because of its unpredictable, small-scale
manufacturing variances. Even the manufacturer is unable to deliberately dupli-
cate a PUF instance. As a result, producing physically identical specimens is
infeasible. PUFs use a challenge-response mechanism to serve as hardware prim-
itive. We provide the PUF with “challenge” (denoted as C), which act as a
trigger or excitation signal, causing them to react by producing a “response”
(denoted as RC). The produced response depends on the physical characteris-
tics of the PUF and the challenge fed to it. The challenge fed, and the response
generated by the PUF is called the challenge-response pair (CRP) of the PUF.
Based on the size of the challenge-response space of the PUF circuit, it can
classified in two categories, namely Weak PUFs and Strong PUFs.

– Weak PUFs: Weak PUFs [7,8,22,23], are generally used for on-device secret
key generation. It is generally assumed that the response generated by this
kind of PUFs never leave the hardware platform.

– StrongPUFs: Strong PUFs [4–6,16,25] possess huge challenge-response pairs
which are mainly used for device authentication. It is not feasible to construct
all the 2N challenge-response pairs (CRPs) for N -bit Strong PUF and to search
the particular response for any arbitrary challenge in polynomial time. In the
state-of-the-art literature, the Strong PUFs architectures such as Arbiter PUF
(APUF), XOR-Arbiter PUF (XOR-APUF), Configurable Ring Oscillator PUF
(CRO PUF) and Bistable Ring PUF (BR PUF) have proven to be versatile
cryptographic primitives with a wide set of applications, such as key establish-
ment and identification protocols [18]. However, the Strong PUFs suggested in
the literature consume significant hardware resources, and thus, are not scal-
able for lightweight applications in IoT framework. To address this problem,
recently two lightweight PUF architectures such as XOR-based Reconfigurable
Ring Oscillator PUF (XRRO PUF) and XOR-based Reconfigurable Bistable
Ring PUF (XRBR PUF) [13] have been proposed which incur lesser hardware
overhead while retaining good uniqueness and reliability values.

But, due to the emergence of classical and reliability-based machine learning
(ML) attacks, most of the PUF compositions are proven to be vulnerable in
recent state-of-the-art literature [3,17,19–21,24]. Ruhrmair et al. proposed the
first ML attacks against strong PUFs in 2010 [19,20], based on a mathematical
delay model [12] of the APUF, RO PUF, XOR-APUF, Feed Forward APUF,
and LSPUF. A similar kind of delay-based modelling is done for CRO PUF
in which the delays of the oscillation of the CROs are exploited [17]. Memory-
based Strong PUFs such as Bistable Ring PUF has also been modelled in which
the pull strengths of the logic gates are exploited [24]. Several machine learning
techniques, such as Support Vector Machine (SVM), Logistic Regression (LR),
and Covariance Matrix Adaptation Evolution Strategies(CMA-ES), have been
used to demonstrate these models [11,19]. Hence, while assessing the quality
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of a Strong PUF candidate, it is of paramount importance that we not only
estimate the uniqueness, uniformity and reliability properties of the design but
also evaluate the robustness of the circuit against ML-based attacks.

Hence, in this paper, we try to answer the question that: Though XRRO and
XRBR PUFs are suitable for generating hardware fingerprints for lightweight
applications, how vulnerable are they against ML-based modelling attacks? The
intuition for modelling these PUF architectures is that they inherit the similar
flaws as CRO PUF and BR PUF that make them vulnerable against the ML
attacks [17,24]. Though the vulnerabilities are similar, but due to the change
in the construction of XRRO and XRBR PUF, the exact model for CRO PUF
and BR PUF might not be directly applied to these two architectures. Hence
the main crux of this work is to use the knowledge of the mathematical model
formation of the former and build the same specifically for the XRRO and XRBR
PUF. To the best of our knowledge, no prior works have been done to perform
a security analysis on XRRO and XRBR constructions so far.

Overall, this paper’s main contributions can be summed up as follows:

– We examine the security vulnerability and machine learning resiliency of
XRRO and XRBR PUF architecture which was missing in the actual pro-
posal [13]. We propose a mathematical model of the same to successfully
launch ML-based attacks.

– We also implement the attack on simulated XRRO and XRBR PUF and eval-
uate the security architectures against SVM and LR algorithms. We further
show the efficiency of the proposed attack by successfully modeling both the
designs with 97%–99% accuracy.

The rest of the paper is organized in the following manner. In Sect. 2 we
provide the background related to the proposed mathematical model and the
machine learning attacks. The novel mathematical model proposed in this paper
is illustrated in Sect. 3. The machine learning attacks and the experimental
results are presented in Sect. 4. Finally, we conclude the paper with Sect. 5.

2 Background

In this section, we first discuss the basic working principles of Configurable Ring
Oscillator PUF (CRO PUF) [16] and Bistable Ring PUF (BR PUF) [4]. Then we
briefly discuss mathematical models that are used to perform machine learning
attacks on these architectures.

2.1 CRO PUFs and BR PUFs

The basic building block of CRO PUF is a Ring oscillator PUF (RO PUF). The
RO PUF is generally made of an identically laid-out loop of an odd number of
logically inverting delay elements (as shown in Fig. 1). An RO generally continues
to oscillate between 0 and 1 when triggered because the output of the last buffer
is always the logical “NOT” of the input fed. An RO PUF [22] utilizes this
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non-settling property of RO to introduce randomness in the circuit and it can
be exploited for hardware fingerprinting. Figure 2 shows the circuit diagram of
a traditional RO PUF. There are two multiplexers MUX1 and MUX2, each
of which has N selection lines. There are 2N ROs that are connected to both
these multiplexers. The oscillating frequency of each oscillator in RO PUF is
unique across devices due to the manufacturing process variations and can not
be predicted apriori. The challenges are divided into two parts and provided to
the select lines of multiplexers of RO PUF respectively in order to select a pair
of ROs, and then, their frequencies are calculated using the counters. Finally,
these two counter values are compared to generate an output. If RO selected
by MUX1 has a higher oscillation frequency, the output is 1, otherwise, the
output is 0.

INV0 INV1 INV2 INV5INV3

Fig. 1. Traditional 5-stage RO.
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Fig. 2. Ring Oscillator PUF [22].

Now, from the implementation perspective, it has been found that if we
increase the challenge space, the number of ROs need to be added to the circuit
grows exponentially. Hence the hardware overhead will be very high if we try to
use RO PUF as a Strong PUF candidate. On the other hand, the RO PUFs have
higher reliability compared to other Strong PUF architectures [15]. To balance
this trade-off, the Configurable Ring Oscillator PUF(CRO PUF) circuit [16] has
been proposed as a variant of the RO PUF. We show its circuit design as well in
Fig. 3. Here each RO can be reconfigured by using a multiplexer to select one of
two inverters at each stage. The selection bit (Si) for the multiplexer at the ith

stage acts as a configurable signal which determines whether the upper or lower
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Fig. 3. The architecture of the CRO PUF [16].

delay element will be used at that stage. Finally, the output frequencies of the
two CROs are compared to derive the PUF response. The main advantage of
using CRO PUF is that we can do away with 2N layers of ROs as in RO PUF
(please ref to Fig. 2). Hence it is more efficient in terms of hardware overhead
and can be considered as a Strong PUF as well.

Fig. 4. Schematic diagram of a SRAM cell [8].

On the other hand, BR PUF is comprised of a cycle of an even number
of logically inverted delay elements. Its main principle is the same as that of
SRAM PUF [9] i.e. it exploits the unstable properties of SRAM cell transience.
Whenever it is powered on, every SRAM cell (as shown in Fig. 4) results in invari-
ably random deviations in the threshold voltages. This variation is extracted in
the startup values of “uninitialized” SRAM memory. Consequently, an SRAM
response produces a unique, random binary bit patterns. Now, A n-bit BR PUF
(as shown in Fig. 5) is composed of n stages, where each stage has two inverting
delay elements (e.g. NOR gates). The challenge bits {C0, C1, ..., Cn−1} applied
to the multiplexer and demultiplexer of every stage selects the NOR gates used
in each bistable ring configuration. Once triggered, the BR PUF works like a
memory cell and will enter either “101010...” or “010101...” as one of its two
stable states. An n-bit BR PUF can have a total of 2n different configurations
as each NOR gate has a distinct process variation and each challenge vector
generates a distinct bistable ring configuration.

Before allowing the ring to stabilise and produce a response, a synchronous
RESET signal is applied to every stage in order to start with an all-0 state. When
RESET is low and the ring starts to oscillate through the selected NOR gates,
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Fig. 5. Schematic diagram of a n-bit BR PUF [4,24]

the response is evaluated. Once the ring reaches a stable state, the outputs of any
two neighboring stages will be opposite to each other. In the ring configuration,
the noise and process variation of the NOR gates are utilised to determine which
of the two probable stable states of the ring is selected. Moreover, an output port
can be created at any node that connects two stages.

We next briefly discuss the mathematical models of CRO and BR PUFs.

2.2 ML Attacks on CRO PUFs and BR PUFs

ML-based modeling attacks on Strong PUF candidates are very prominent in
the state-of-the-art literature. The adversarial model that is assumed over here
is that a small subset of the challenge-response pairs (CRPs) are given to the
adversary for a particular PUF design. The hurdle is whether (s)he can build a
mathematical model of the same using the given CRPs to achieve high prediction
accuracy while guessing responses for an unknown challenge.

First we briefly discuss the mathematical model of the CRO PUF. Each
stage of a CRO PUF consists of four delay components: (δi1, δi2) for the upper
and lower delay line of the top CRO (as shown in Fig. 6) and (δ′

i1, δ
′
i2) for the

upper and lower delay line of the bottom CRO. Now the oscillation frequency
of the top and bottom CROs will be decided by the configuration of the paths
through which the signal propagates and their delay contributes to the overall
summation. And the choice of paths depends on the challenge bit selection. If the
upper CRO is faster, i.e., the oscillation frequency is more than the lower CRO,
we get a response of 1; otherwise, the response is 0. Now, the delay difference
for every stage can be formulated as given below [17]:
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Fig. 6. CRO PUF diagram showing delay components of upper CRO [17].

ΔD(i) = ΔDupper(i) − ΔDlower(i) (1)

ΔDupper(i) =
1 − Ci

2
δi1 +

1 + Ci

2
δi2

ΔDlower(i) =
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δ′
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(2)

ΔD(i) =
1 − Ci
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(δi2 − δ′

i2) (3)

Please note that for i-th stage of the CRO, the challenge bits Ci ∈ {−1, 1} is
bipolar-encoded. Let,

δα
i = δi1 − δ′

i1

δβ
i = δi2 − δ′

i2

Now similar to the mathematical modelling of Arbiter PUF [21], the overall
delay difference between the oscillation of upper and lower CRO for an n-stage
CRO-PUF can be described as a linear sum of vector dot products.

ΔD =
n−1∑

i=0

ΔD(i) =
−→
Pα.

−→
Wα +

−→
Pβ .

−→
Wβ (4)

where,
−→
Pα =

{
1 − C0

2
,
1 − C1

2
...,

1 − Cn−1

2

}

−→
Pβ =

{
1 + C0

2
,
1 + C1

2
...,

1 + Cn−1

2

}

−→
Wα =

{
δα
0 , δα

1 , ..., δα
n−1

}
,
−→
Wβ =

{
δβ
0 , δβ

1 , ..., δβ
n−1

}
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This model can be used to launch CMA-ES and LR based ML attacks on the
CRO PUF [17]. We have used the similar idea in Sect. 3 to model XRRO PUF
as proposed in [13].

Similarly, an additive model has been put forth in the literature for predict-
ing the resolution of metastability [10], with weights representing the strength
with which different cells pull toward a particular outcome. Using this idea, a
mathematical model of the BR PUF has been made [24]. Each gate in the BR
PUF has weight associated with it representing difference between the pull-up
strength and pull-down strength of the same. The overall response given a spe-
cific challenge(C) is determined by the summation of the weights across all the
gates in accordance with the path that the applied challenge has selected. A
positive sum indicates that the configured ring provides a “1”, whereas a neg-
ative sum indicates that ring provides “–1” value. As the pull-up strength of
even stages and the pull-down strength of odd stages favour a overall positive
response, the summation of weights requires negative and positive polarities.

Let ti and bi represent the difference in the pull-up and pull-down strength of
the top and bottom NOR gates in the ith stage respectively (please ref to Fig. 5).

The total strength pulling toward the positive response for a given n-bit
challenge is the summation of n number of ti or bi weights (depending on whether
Ci is +1 or −1) and can be given as [24],

RC = sgn(
n−1∑

i=0

(
−1i.

ti − bi

2

)
+ Ci

(
−1i.

ti + bi

2

)
(5)

where Ci is the challenge bit of the ith stage and is bipolar-encoded i.e. Ci ∈
{−1, 1}. The sign of RC could be used to predict the response. For convenience,
αi and βi can be defined as

(−1i. ti−bi
2

)
and

(−1i. ti+bi
2

)
respectively. Then,

RC = sgn(
n−1∑

i=0

αi + Ci.βi) (6)

Given that the weights αi and βi are not known and since a BR PUF has only
two possible responses, The response prediction of a BR PUF can be converted
into a classification problem based on the given equation. We have exploited
similar notion in Sect. 3 to model XRBR PUF.

3 Modelling XOR-Based Reconfigurable PUFs

In this section we first briefly describe the working principle of XRBR PUF and
XRRO PUF followed by our proposed mathematical models for the same.

To start with, XOR gate is the basic building block for both the designs. It
has a property that it can act as both buffer and inverter relying on the input
values. The mechanism of XOR-based Reconfigurable PUFs [13] is based the
above property of XOR gates. Let A and B be the inputs to an XOR gate.
When B = “0”, the XOR gate acts as a buffer relaying the input value A to the
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output following a delay. When B = “1”, the XOR gate’s output value is the
logic inverse of the input A, hence it acts as an inverter. Thus by controlling
one of its bits, an XOR gate can be switched from a buffer to an inverter and
vice-versa.

3.1 Mechanism of XRBR PUF

As discussed in Sect. 2.1, every stage of BR PUF consists of two inverting delay
elements. The gate is chosen in each bistable ring configuration by providing
the challenge bit at the select line of the MUX and DEMUX of that particular
stage (please refer to Fig. 5). The XRBR PUF replaces each stage of BR PUF
with an XOR gate (as shown in Fig. 7). The stages of XRBR PUF thus can be
configured as buffers or inverters by controlling one of the inputs to the XOR
gate of that stage. The selection bit is provided to each stage of a XRBR PUF
to configure it into a unique circuit. As the number of stages in the BR PUF
is even which makes it act like a memory circuit, The XOR gates configured
as inverters in the XRBR PUF must be even in number. It implies that the
configuration bits to the XRBR PUF should have an even number of 1’s, which
in turn configures an even number of XOR gates as inverters befitting it to
behave like a memory circuit similar to BR PUF. Now there are variations due
to the hardware intrinsic properties such as delay and driving capabilities of the
XOR gate for every buffers and inverters of the XRBR PUF. This property is
absolutely similar to SRAM PUF as the impurities are induced in the platform
due to the random process variations in the manufacturing phase. Additionally,
different configuration of the XRBR PUF adds to the variation in the output to
the circuit and results in different responses of the PUF instance.

Bn-1

Q

Bm-1

Bn-2 Bm

B0B1Bm-2

Bm+1

Fig. 7. The schematic diagram of an n-bit XRBR PUF [13].

The uniqueness and reliability values for the XRBR PUF are 40.67% and
98.22% respectively as shown in [13], which are very close to the ideal values. The
comparison between the uniqueness and reliability values of BR PUF and XRBR
PUF in [13] shows that XRBR PUF achieves better values. Also, XRBR PUF
is a low-cost PUF design. As a memory-based PUF, the XRBR PUF is feasible,
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and it can generate a comparably higher number of CRPs while reducing the
hardware overheads. Now we proceed with the modelling attack.

3.2 Modelling XRBR PUF

The intuition behind the modeling of XRBR PUF will be of using an additive
model for predicting the response. We have used an additive model where each
XOR gate has weights that correspond to the difference between its pull-up
strength and pull-down strength. To find the overall favoured response for a
specific challenge, the weights are summed across all the XOR gates configured
as an inverter. A higher preference for a positive response is indicated by a
positive sum. The overall positive response is favoured by the pull-up strength of
even positioned inverters and the pull-down strength of odd positioned inverters.
Thus, the summation of weights requires negative and positive polarities.

Cm-1

Cn

Cm-2 C1 C0

Cm+1 CmCn-2

Q

Fig. 8. XRBR PUF diagram showing the pull strengths of an XOR gate at each stage.

Let the the pull-up strength, pull-down strength and the difference between
them for the ith stage XOR gate be pi(u), pi(d) and pi respectively (as shown in
Fig. 8). On feeding the challenge (C) to the PUF circuit, the XOR gate of each
stage will either be configured as a buffer or an inverter. The XOR gates that
are configured as buffers will not contribute toward the response in any way. The
XOR gates that are configured as inverters will contribute depending upon their
position in the circuit. If an ith stage XOR gate (configured as an inverter) is also
an even positioned inverter in the PUF circuit, then it contributes towards the
positive response with strength pi, otherwise it contributes towards the positive
response with strength −pi.

Let us assume that the challenge bit for the ith stage Ci ∈ [−1, 1] is bipolar-
encoded. Then we define the parity bit corresponding to the challenge bit as,
Φi = −1si .(1 + Ci)/2. Here, si is the number of stages configured as inverters
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till stage i. This provides the even or odd positioning of the stages that are
configured as inverters.

The strength toward the positive response for any stage given a challenge bit
Ci will be ΔS(i) and is given in Eq. 7,

ΔS(i) = pi.(−1si
1 + Ci

2
) =⇒ ΔS(i) = pi.Φi (7)

where the variable si is defined as:

si =

{
1+Ci

2 if i = 0
si−1 + 1+Ci

2 if i = 1, ..., n − 1

The above mentioned notation not only nullifies the contribution of the stage
configured as a buffer, but also lets the stage configured as an inverter contribute
according to its position in the PUF circuit. For any challenge vector C =
{C0, C1, ..., Cn−1}, the summed strengths toward the positive response is given
in Eq. 8,

ΔS =
n−1∑

i=0

ΔS(i)

ΔS = p0.Φ0 + p1.Φ1 + ... + pn−1.Φn−1

ΔS = p.ΦT (8)

where the feature vector Φ is defined as parity of challenge bits C:

Φi = −1si .
1 + Ci

2

The weight vector p is defined as follows:

p = {p0, p1, ..., pn−1}
According to our formulation, if the weight vector p (pull strengths) was

known explicitly, then the sign of RC could be used to predict the PUF response
(Eq. 9).

RC = sgn(p.ΦT ) (9)

We will be using this additive model to simulate XRBR PUF and to evaluate it
against SVM and LR algorithms in Sect. 4.

3.3 Mechanism of XRRO PUF

Next we proceed with the working principle of XRRO PUF. As discussed in
Sect. 2.1, in CRO PUF, both the rings have stages consisting of two inverting
delay elements and a multiplexer. The use of a inverter in a stage is dependent on
the selection bit of the multiplexer of that stage. Now, to reduce the hardware
overhead, XRRO PUF [13] employs single XOR gate at every stage in place
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XOR

AND
OUTPUT

En
Sn-1

S1
S0

Fig. 9. The schematic diagram of an XRRO [13].

XRRO 1

XRRO 3

XRRO 2

XRRO 2m

MUX1

MUX2

{S0, S1, S2, S3,...Sn-1 } {C0, C1, C2,...Cm-1, C'0, C'1, C'2,...C'm-1}

Counter

Counter

>?
Output

0 or 1

Fig. 10. The architecture of the XRRO PUF [13].

of the two inverters and a multiplexer. One input to the XOR gate acts as
a configuration signal and the other input is connected to the output of the
previous XOR gate, forming an XOR-based Ring Oscillator (as shown in Fig. 9).

Now, as shown in Fig. 1, a RO is generally made of odd number of logically
inverting delay components. Thus the output of the last component is always log-
ical “NOT” of the first input. Therefore the output of the RO oscillates between
0 and 1. Similarly for an XRRO, to oscillate, the number of inverting compo-
nents should be odd. That is why, the configuration bits to all the XOR gates
of an XRRO ring must contain an odd number of 1’s so that odd number of
XOR gates can be configured as inverters. The XRRO can construct up to 2n/2
different ROs from different configuration patterns, where n is the number of
stages in the XRRO.

The architecture of the XRRO PUF is given in Fig. 10. We consider 2m num-
ber of XRRO layers and all of them are configured using the same configura-
tion signals (S0, S1, ..., Sn−1). The selection bits for both top (C0, C1, ..., Cm−1)
and bottom (C ′

0, C
′
1, ..., C

′
m−1) multiplexers chooses two different XRROs. The

selected pair of XRROs only participate in the response generation process.
The oscillation frequencies for both of them are compared based on which the
response gets generated. If an XRRO selected by MUX1 has more oscillation
frequency than the one selected by MUX2, response 1 is generated, otherwise
response 0 is generated.
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The uniqueness and reliability values for the XRRO PUF are 48.76% and
97.72% respectively as shown in [13], which are very close to the ideal values.
The comparison between uniqueness and reliability values of RO PUF, CRO
PUF and XRRO PUF in [13] shows that, XRRO PUF achieves better values.

3.4 Modelling XRRO PUF

Output

En
Cn-1

C1
C0

(a) Delay components of upper XRRO.

Output

En
Cn-1

C1
C0

(b) Delay components of lower XRRO.

Fig. 11. Delay components of the selected XRROs.

Next, we build up the mathematical model of the XRRO PUF. For upper and
lower XRRO, there are two XOR gates. Every XOR gate contributes four delay
elements corresponding to input values of ‘00’, ‘01’, ‘10’ and ‘11’. So, every stage
of XRRO PUF contains total eight delay elements based on the input values of
the two XOR gates. Let the delay elements associated with stage i of the upper
XRRO of be δU00

i
, δU01

i
, δU10

i
and δU11

i
for the inputs AB = “00”, “01”, “10”

and “11” respectively (as shown in Fig. 11a). Similarly for stage i of the lower
XRRO, the delays be, δL00

i
, δL01

i
, δL10

i
and δL11

i
(as shown in Fig. 11b). Consider

the input Ci to the XOR gates be the configuration bit.
Now the main crux of our attack is to find out how the computation of the

oscillation frequency of XRRO is different from RO/CRO PUF. In RO/CRO
PUF, whatever be the input signal (0/1), it simply gets passed through the
buffer depending on the multiplexer selection. But this is not the case in XRRO.
Here two inputs of the XOR gate are involved at every stage. Now, selection
bit is fixed for a particular stage, i.e. either 0/1. Now, depending on the output
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of the previous stage, the inputs of the current stage can be either [00/10] or
[01/11] and XOR logic is evaluated. And for every input pattern, the delay
will be different. Thus two consecutive oscillation delays for the XRRO will be
different due to the complement of the previous input. Finally, the frequency
of the XRRO will be determined by the sum of the delay components that are
selected by the configuration bits in two consecutive oscillations.

Hence, the delays selected for stage i for both upper and lower XRRO in two
consecutive oscillations is given by the following equation where a challenge bit
Ci ∈ [−1, 1] is bipolar-encoded.

ΔDupper(i) =
1 − Ci

2
(δU00

i
+ δU10

i
) +

1 + Ci

2
(δU01

i
+ δU11

i
)

ΔDlower(i) =
1 − Ci

2
(δL00

i
+ δL10

i
) +

1 + Ci

2
(δL01

i
+ δL11

i
)

(10)

The total delays across stages for both upper and lower XRROs will be (for two
consecutive oscillations),

ΔDupper =
n−1∑

i=0

[
1 − Ci

2
(δU00

i
+ δU10

i
) +

1 + Ci

2
(δU01

i
+ δU11

i
)
]

ΔDlower =
n−1∑

i=0

[
1 − Ci

2
(δL00

i
+ δL10

i
) +

1 + Ci

2
(δL01

i
+ δL11

i
)
] (11)

The XRRO PUF response is generated by the comparison of ΔDupper and
ΔDlower, generating a binary 1 if ΔDupper has lesser value than ΔDlower and 0
if it is the opposite. Let the difference be ΔD,

ΔD =
n−1∑

i=0

[
1 − Ci

2
(δU00

i
+ δU10

i
) +

1 + Ci

2
(δU01

i
+ δU11

i
)
]

−
n−1∑

i=0

[
1 − Ci

2
(δL00

i
+ δL10

i
) +

1 + Ci

2
(δL01

i
+ δL11

i
)
]

(12)

ΔD =

[
n−1∑

i=0

1 − Ci

2
(δU00

i
+ δU10

i
) −

n−1∑

i=0

1 − Ci

2
(δL00

i
+ δL10

i
)

]

+

[
n−1∑

i=0

1 + Ci

2
(δU01

i
+ δU11

i
) −

n−1∑

i=0

1 + Ci

2
(δL01

i
+ δL11

i
)

]
(13)

ΔD =

[
n−1∑

i=0

1 − Ci

2
(δU00

i
+ δU10

i
− δL00

i
− δL10

i
)

]

+

[
n−1∑

i=0

1 + Ci

2
(δU01

i
+ δU11

i
− δL01

i
− δL11

i
)

]
(14)
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Let us assume,

αi = δU00
i

+ δU10
i

− δL00
i

− δL10
i

, βi = δU01
i

+ δU11
i

− δL01
i

− δL11
i

Then,

ΔD =
n−1∑

i=0

1 − Ci

2
(αi) +

n−1∑

i=0

1 + Ci

2
(βi)

For convenience, we define
−→
X and

−→
Y such that,

ΔD =
−→
X

−→
Wα +

−→
Y

−→
Wβ (15)

where,

−→
X =

{1 − C0

2
,
1 − C1

2
, ...,

1 − Cn−1

2

}
,

−→
Y =

{1 + C0

2
,
1 + C1

2
, ...,

1 + Cn−1

2

}

−→
Wα =

{
α0, α1, ..., αn−1

}
,

−→
Wβ =

{
β0, β1, ..., βn−1

}

In terms of a single weight vector and a single parity vector, the linear additive
delay model of an XRRO PUF can be defined as,

ΔD =
−→
Z

−→
W (16)

where,

−→
Z =

{1 − C0

2
,
1 − C1

2
, ...,

1 − Cn−1

2
,
1 + C0

2
,
1 + C1

2
, ...,

1 + Cn−1

2

}

−→
W =

{
α0, α1, ..., αn−1, β0, β1, ..., βn−1

}

The frequency for the upper and lower XRRO selected of the XRRO PUF is
given to be Fupper = 2/ΔDupper and Flower = 2/ΔDlower respectively. If upper
XRRO has a greater frequency then the binary response will be 1, else it will be
0. Thus, the response depends on the difference in the total delays for the two
consecutive oscillations of both the XRROs(ΔD). This model has been used in
Sect. 4 below to simulate an XRRO PUF and to evaluate it against the SVM
and LR based attacks. Please note that we have to follow the same procedure as
mentioned above for every pair of XRROs and create an instance of SVM/LR
model. The collaborative accuracy of all such models provide us the ultimate
accuracy of the XRRO PUF instance.

4 Machine Learning Attacks on XOR-Based
Reconfigurable PUFs

Now we present our experimental set up and results on the prediction accuracy
of modelling attacks on XRRO and XRBR PUFs.
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Table 1. SVM attack on XRBR PUF.

Training CRPs 32 bit XRBR PUF 64 bit XRBR PUF 128 bit XRBR PUF

1000 92.40% 91.40% 90.20%

3000 95.76% 94.96% 93.76%

5000 96.32% 95.86% 93.94%

8000 96.60% 96.68% 95.36%

10000 97.55% 96.27% 95.73%

Table 2. SVM attack on XRRO PUF with 8 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

10000 87.21% 83.94% 75.21%

40000 91.65% 90.11% 86.97%

70000 94.25% 93.88% 89.69%

100000 95.32% 94.17% 91.38%

120000 96.18% 94.67% 93.16%

150000 96.14% 94.97% 92.81%

200000 96.57% 95.41% 94.00%

Table 3. SVM attack on XRRO PUF with 16 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

50000 86.33% 83.18% 78.88%

100000 90.55% 87.12% 81.98%

200000 93.96% 90.88% 87.49%

400000 93.90% 94.37% 90.71%

600000 95.76% 95.24% 92.95%

800000 96.27% 95.52% 93.59%

1000000 96.59% 95.61% 94.31%

SVM Attacks: A SVM classifies data by finding the best hyperplane that
separates all data points belonging to one class from those belonging to the
other class. The best hyperplane for an SVM is the one with the largest margin
between the two classes. The SVM implementation in scikit-learn library is used
for this work which can be found here [2].

Using the mathematical model discussed in Sect. 3.2, the SVM attack is per-
formed on the XRBR PUF by training the model on the given CRP samples.
The feature vector Φ is determined given the challenge vector (C) in the CRP,
and the model is trained on that feature vectors and the associated responses.
The response of the XRBR PUF(RC) for the challenge vector C was formulated
as RC = sgn(p.ΦT ) where p was defined as {p0, p1, ..., pn−1}. In SVM formu-
lation, the pi terms do not appear explicitly as the classifier simply works to
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find the hyperplane with the largest margin to separate the challenges into two
classes based on their responses. Table 1 shows the prediction rates for a 32,
64, and 128 bit XRBR PUF using the SVM method with training sample sizes
(CRPs) ranging from 1000 to 10,000. Given 10,000 training CRPs, it is possible
to predict the XRBR PUF design with greater than 95% accuracy, even for a
large 128 bit XRBR PUF.

Table 4. SVM attack on XRRO PUF with 32 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

500000 91.83% 88.23% 84.60%

1000000 94.35% 92.12% 88.93%

1500000 94.35% 93.64% 90.45%

2000000 95.39% 94.23% 92.26%

3000000 96.27% 95.27% 93.61%

Table 5. SVM attack on XRRO PUF with 64 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

1000000 88.24% 84.78% 79.41%

1500000 90.27% 87.05% 81.84%

2000000 91.41% 88.50% 84.01%

3000000 92.93% 90.49% 86.98%

5000000 95.02% 92.60% 89.82%

8000000 96.24% 94.239% 92.14%

Table 6. LR attack on XRBR PUF.

Training CRPs 32 bit XRBR PUF 64 bit XRBR PUF 128 bit XRBR PUF

1000 97.10% 96.40% 94.30%

3000 98.80% 98.50% 98.40%

5000 99.22% 98.76% 98.30%

8000 99.12% 98.95% 98.97%

10000 99.53% 99.40% 99.06%

For attacking the XRRO PUF, We have created an instance of SVM model
for each pair of XRROs. For each challenge provided, we separate the selection
bits of both the multiplexers and the configurable bits to the XRROs. Identi-
fying the pair of XRROs selected by the selection bits (of both multiplexers),
we train the corresponding SVM model to the pair of XRROs selected. The
training is been done on the configuration bits of the XRROs (i.e., C as going
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by the notation discussed in Sect. 3.4). The feature vector
−→
Z is derived from

the vector C and the model is trained with the feature vectors and the associ-
ated responses. In the SVM formulation, no weight terms αi or βi (please ref to
Sect. 3.4) appear explicitly as the classifier simply works to find the hyperplane
with the largest margin to separate the challenges (Here challenges refers to the
configuration signals to the XRROs) into two classes based on their responses.
For the experimental purpose, we have chosen 8, 16, 32 and 64 layer XRRO PUF
where every XRRO is of 31, 63 and 127 stage long. Table 2, 3, 4, 5 shows the
prediction rates for a 31, 63, and 127 stage XRRO PUF having 8, 16, 32 and 64
layers respectively.

LR Attacks: LR method builds a linear model of the system using the corre-
lation between an independent and dependent variable of a known training set.
The LR implementation in scikit-learn library is used for this work [1].

Table 7. LR attack on XRRO PUF with 8 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

10000 90.96% 88.75% 82.65%

40000 97.31% 95.58% 93.48%

70000 98.03% 97.20% 95.29%

100000 98.53% 97.81% 96.99%

120000 98.71% 98.13% 97.17%

150000 98.94% 98.56% 97.42%

200000 99.09% 98.79% 98.30%

Table 8. LR attack on XRRO PUF with 16 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

50000 93.29% 90.64% 85.03%

100000 95.18% 93.36% 90.39%

200000 97.21% 95.87% 93.76%

400000 98.56% 97.81% 96.79%

600000 98.89% 98.37% 97.56%

800000 99.10% 98.71% 97.72%

1000000 99.21% 98.85% 98.29%

Table 9. LR attack on XRRO PUF with 32 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

500000 95.97% 94.25% 91.45%

1000000 96.94% 96.78% 94.95%

1500000 98.36% 97.61% 96.12%

2000000 98.65% 98.04% 97.00%

3000000 99.11% 98.59% 97.76%
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Table 10. LR attack on XRRO PUF with 64 layers of XRROs.

Training CRPs 31 stage XRRO PUF 63 stage XRRO PUF 127 stage XRRO PUF

1000000 93.49% 91.02% 86.29%

1500000 95.64% 92.95% 88.90%

2000000 96.29% 94.22% 90.96%

3000000 97.04% 95.85% 93.34%

5000000 98.21% 96.97% 95.89%

8000000 99.02% 98.06% 97.07%

For attacking the XRBR PUF, The training is done on the CRPs set after
transforming the challenge bits as discussed in Sect. 3.2. The model is then
trained on the transformed CRPs set. Table 6 shows the prediction rates for
a 32, 64, and 128 bit XRBR PUF using the LR method with training sample
sizes(CRPs) ranging from 1000 to 10,000. Given 10,000 training CRPs, it is pos-
sible to predict the XRBR PUF design with greater than 99% accuracy, even for
a large 128 bit XRBR PUF.

Similarly, using the modelling of XRRO PUF discussed in Sect. 3.4, we have
performed the LR attack on XRRO PUF. Table 7, 8, 9, 10 shows the prediction
rates for a 31, 63, and 127 stage XRRO PUF having 8, 16, 32 and 64 layers
respectively. Finally we can conclude from the above mentioned results that LR
method provides better prediction accuracy than SVM method in the case of
both XRBR and XRRO PUF.

5 Conclusion

In this work, we investigate the security metrics of XRBR and XRRO PUFs
which are recently proposed for generating hardware fingerprints in the resource
constrained devices for IoT frameworks. Though the PUF architectures demand
very low hardware overhead by maintaining substantial uniformity and reliability
properties, the strengths of these designs against mathematical modeling was yet
unexplored. To the best of our knowledge, this is the first work that tries to make
predictive models for the same and scrutinises the vulnerabilities against machine
learning attacks. We leverage a common flaw of not incorporating any non-linear
elements in the designs and show how that makes both schemes prone to ML
attacks. Hence these designs are not any better than a simple RO PUF or BR
PUF design. Finally with the experimental validation we have shown that both
the designs can be broken using SVM and LR algorithms with the accuracy
of approximately upto 99%. Overall, reducing the hardware overhead of such
architectures without being prone to ML attacks could be a very challenging
research area and can be a potential direction for future work.
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Abstract. Recent work has highlighted the risks of intellectual property
(IP) piracy of deep learning (DL) models from the side-channel leakage
of DL hardware accelerators. In response, fundamental cryptographic
approaches, specifically built upon the notion of secure and private func-
tion evaluation, could potentially improve the robustness against side-
channel leakage. To examine this and weigh the costs and benefits, we
introduce hardware garbled NN (HWGN2), a DL hardware accelerator
implemented on FPGA. HWGN2 also provides NN designers with the
flexibility to protect their IP in real-time applications, where hardware
resources are heavily constrained, through a hardware-communication
cost trade-off. Concretely, we apply garbled circuits, implemented using
a MIPS architecture that achieves up to 62.5× fewer logical and 66× less
memory utilization than the state-of-the-art approaches at the price of
communication overhead. Further, the side-channel resiliency of HWGN2

is demonstrated by employing the test vector leakage assessment (TVLA)
test against both power and electromagnetic side-channels.

Keywords: Side-channel analysis · Deep learning · Secure function
evaluation · Private function evaluation

1 Introduction

An ever-increasing number of applications are demanded from machine learn-
ing and, in particular, deep learning (DL). These applications, among other
compute-intensive services, have been supported by cloud platforms equipped
with hardware acceleration [9]; however, cloud platforms are not the only hosts of
DL algorithms and modules. IoT edge devices have embodied modules to perform
many tasks, for instance, image classification or speech recognition as required
by wearable devices for augmented reality and virtual reality [27]. In addition
to those, so-called mobile and wearable devices, low-cost DL chips (e.g., sensors
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or actuators) have been employed to support DL-inference in cameras, medi-
cal devices, appliances, autonomous surveillance, ground maintenance systems,
and even toys. Under DL-inference scenarios, trained neural networks (NNs) are
made available to users. To obtain such a trained NN, a large training dataset
is used in a time-consuming process to tune NN hyperparameters, which cannot
be repeated in a straightforward manner. Therefore, it can be tempting for an
adversary to target the DL-inference accelerator and extract those parameters.
Besides hyperparameters, the architecture of NNs is another asset to protect as
it may (even partially) reveal private information [16,17] or at least help the
adversary to reconstruct the NN [1,4]. Since physical access can make it further
easier for attackers to reverse-engineer and disclose the assets (i.e., architecture
and hyperparameters) corresponding to NNs, usual protections, e.g., blocking
binary readback, blocking JTAG access, code obfuscation, etc. could be applied
to prevent binary analysis [4]. These, of course, would not stop an attacker from
leveraging the information that leaks through side-channels [4,14,52,55].

These attacks have resulted in considerable efforts to devise countermeasures.
Intuitively, masking schemes developed to protect cryptographic modules against
SCA have been one of the first solutions discussed in the literature [12,13].
These methods come with their own set of challenges, e.g., being limited to
a pre-defined level of security associated with the masking order or even to a
particular modality. Moreover, evidently, masking cannot stop the attacker from
disclosing the architecture of the NN under attack. The natural question to
be asked is why fundamental cryptographic concepts that can provide NNs with
robustness against SCA have not yet been examined. Concretely, secure function
evaluation (SFE), specifically garbled circuits evaluation, has been considered to
prevent side-channel leakage cf. [21,33]. Nevertheless, in practice, SFE has not
been considered to stop side-channel attacks, perhaps, due to the high overhead
initially observed in [21]. Their implementation on a field-programmable gate
array (FPGA) is a combination of tamper-resistant hardware with Yao’s garbling
scheme [53], which comes with an overhead of about factor 106× compared to
an unprotected AES embedded in an FPGA.

Apart from the leakage properties of SFE and its realization garbled circuits,
they have been developed to ensure the security of users’ data, when two parties
jointly evaluate a known function. Therefore, in a natural way, garbled circuits
have been investigated to put forward the notion of privacy-preserving inference-
as-a-service [39,40]. In spite of these results, the gap between these studies is
evident: design of countermeasures against SCA, software implementation of
garbled NNs [20,39,41], and hardware implementations of garbled circuits [44].
To narrow this gap, this paper introduces HWGN2 (hardware garbled NN) and
contributes to the following aims.

– A secure and private DL-inference hardware accelerator, resilient to SCA. To
protect the NN model (including its architecture and parameters) against SCA,
HWGN2 relies on the principles of private function evaluation (PFE) and SFE,
realized through a general purpose processor cf. [44,46]. Interestingly enough,
as opposed to the argument in [21,33] suggesting the side-channel resiliency of
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Fig. 1. HWGN2 framework: The process begins with training the NN as done for a
typical DL task. The second step corresponds to the implementation of the garbled
NN hardware accelerator along with running the OT protocol. The end-user poses the
accelerator and attempts to collect the side-channel traces to extract information on
the NN (architecture, hyperparameters, etc.).

garbled circuits, Levi et al. have recently demonstrated a side-channel attack
against garbling schemes leveraging the free-XOR optimization [28]. HWGN2

is not susceptible to this attack since PFE is taken into account to make the
function private. It is noteworthy that the privacy of the NN model is under-
studied even in existing software garbled DL-inference [2,39,41]. Our instruc-
tion set-based HWGN2 is model-agnostic. Moreover, in the most cost-efficient
setting with a DL-inference realized by using XNOR operators, our implemen-
tation does not require any modification to the NN, in contrast to what has
been proposed as software garbled DL-inference [39].

– Effectiveness and cost-efficiency of SCA protection relying on SFE/PFE. To
evaluate the feasibility of our approach, we identify two implementation sce-
narios, namely (1) resource- and (2) communication-efficient. In the first cat-
egory, compared to the unprotected NN, the overhead is up to 0.0011× and
0.018× more logical and memory hardware resources, respectively; however,
this relatively low overhead is achieved at the cost of communication between
the user and the inference service provider. If communication constitutes a
burden on the system, it can be dealt with, even though compared to the
unprotected design, the overhead increases to 52.4× and 40.8× more logi-
cal and memory hardware resources, respectively. However, even under the
communication-efficient scenario, HWGN2 utilizes up to 62.5× fewer logical
and 66× less memory, respectively, compared to the most relevant study [41].
Additionally, the side-channel resiliency of HWGN2 implementation on the
FPGA is assessed by applying T-test leakage detection.

2 Adversary Model

Valuable assets of NNs, as intellectual property (IP), include their NN architec-
tures, hyperparameters, and the parameters critical to achieving reasonable accu-
racy [4]. On the other hand, these NNs might be used in applications in which their
inputs contain sensitive information (e.g., medical or defense records [34]). Hence,
the security of inputs given to NNs along with the privacy of the networks them-
selves must be guaranteed. Note that here the definitions of security and privacy
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are borrowed from SFE- and private function evaluation- (PFE) related litera-
ture [6]. Classically, two threat models have been considered in prior works in the
contexts of SFE and PFE: (i) semi-honest (so-called Honest-but-curious (HbC))
and (ii) malicious (active) adversary. An HbC adversary is expected to follow the
protocol execution and does not deviate from the protocol specifications. To be
more specific, the HbC adversary may only be able to learn information without
interfering with the protocol execution. On the contrary, a malicious adversary
may attempt to cheat or deviate from the protocol execution specifications.

In our work, we consider the HbC adversary, whose role is played by Bob
(i.e., the evaluator), whereas Alice is the garbler [6,29] (see Fig. 1). Following
the definition of the attack model presented in the state-of-the-art (SOTA),
e.g., [12,13], the DL model provider (garbler) trains the DL model in an offline
fashion, and the evaluator performs the inference. It is important to stress that
the hardware implementation encompasses solely the evaluator engine, i.e., nei-
ther garbling nor encryption module is implemented on the hardware platform.
To evaluate the garbled DL accelerator, the evaluator feeds her garbled inputs
prepared in an offline manner. The evaluator can collect power/EM traces from
the device either via direct access or remotely, see e.g., [43,56]. For this, the eval-
uator follows a chosen-plaintext-type attack model, where she sends her inputs
to the device for classification and readily captures multiple traces. These traces
will be then used to launch power/EM-based side-channel attacks [8,10,25]. The
goal of the garbler is to protect the NN architectures, hyperparameters, and
parameters from the HbC evaluator. HWGN2 fulfills this requirement through
SFE/PFE techniques (see Sect. 5).

3 Related Work

3.1 SCA Against NNs

The main goals of SCA targeting DL hardware accelerators can be: (i) extrac-
tion of model architectures, and (ii) revealing NN parameters (i.e., weights and
biases). For this purpose, Xiang et al. [52] presented a power side-channel attack
to extract the model architectures. Using these power consumption models built
for different model components, an SVM-based classifier was trained to reveal the
model architectures running on the hardware accelerator. This line of research
has also been pursued by Batina et al. [4] who introduced an attack scenario
based on the EM and timing side-channel to extract the number of layers, the
number of neurons in each layer, weights, and activation functions (AF). First,
they modeled the timing side-channel of all possible AF (e.g., Relu or Tanh)
and extracted the AF used in the NN by comparing the response time of the
DL hardware accelerator when it executed the AF and the timing model of each
possible AF. This is followed by analyzing EM traces captured when the DL
hardware accelerator runs, where the EM patterns determine the number of lay-
ers and number of neurons in each layer. By feeding different random inputs
to the accelerator and capturing the EM traces, it was possible to launch a
Correlation Power Analysis (CPA) to reveal the weights. In another approach,
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Table 1. SOTA approaches vs. HWGN2 (Parameters Secrecy of DL Model. Upgrade-
able to/supporting malicious security model. Architecture protection of DL model.
Constant-round complexity. Independence of a secondary server). Inspired by [39].

Approach P U A C I

DeepSecure [42] � � ✗ � �
Chameleon [40] � ✗ ✗ ✗ ✗

XONN [39] � � ✗ � �
BoMaNET [13] � ✗ ✗ � �
ModuloNET [12] � ✗ ✗ � �
TinyGarble2 [20] � � ✗ � �
RedCrypt [41] � � ✗ � ✗

HWGN2 [This paper] � � � � �

Breier et al. [7] have presented a reverse engineering attack to extract the DL
model weights and biases (parameters) with the help of fault injection on the
last hidden layer of the network (see Table 5 in Appendix A).

3.2 Security-Preserving DL Accelerators

To protect NNs against SCA, Liu et al. [32] introduced a shuffling and fake
memory-based approach to mitigate reverse engineering attacks that increase
the run time of a DL hardware accelerator when the depth of the NN increases.
Regarding the similarity between SCA launched against cryptographic imple-
mentations and DL accelerators, in a series of work, Dubey et al. have pro-
posed hiding and masking techniques to protect NNs [12–14]. Yet, the differ-
ences between these implementations make the adaptation of known side-channel
defenses challenging; for instance, integer arithmetic used in neural network com-
putations that is different from modular arithmetic in cryptography, which has
been addressed in [12,14]. Despite the impressive achievements presented in these
studies, the approaches suffer from the known limitations of masking, i.e., their
restriction to a specific side-channel security order. Furthermore, the implemen-
tation of masked DL models (i.e., a new circuit should be designed/implemented
for different NNs) would be a challenging task. Moreover, masking cannot protect
the architecture of DL models.

3.3 Garbled Accelerators

Among proposals put forward to make SFE practical, GarbledCPU [46] and
RedCrypt [41] are of great importance to our work since they consider a
hardware implementation of garbled circuits, whereas other relevant studies
such as [3,20,39,40,42,44] devoted to software-based garbling engine/evaluator
(other implementations have been compared in Table 6 in Appendix A). [46] has
demonstrated a hardware garbling evaluator implemented on general-purpose
sequential processors, where the privacy of NN architectures is also ensured.
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While benefiting from the simplicity of programming a processor, their design is
specific to Microprocessor without Interlocked Pipelined Stages (MIPS) archi-
tecture. This has been addressed by introducing ARM2GC framework, where
the circuit to be garbled/evaluated is the synthesized ARM processor circuit
that can support pervasiveness and conditional execution [45]. The efficiency in
terms of hardware resources and communication cost has been reported as well.

RedCrypt attempts to enable cloud servers to provide high-throughput and
power-efficient services to their clients in a real-time manner [41]. For this, FPGA
platforms (Virtex UltraSCALE VCU108) have been used as a garbling core to
present an efficient GC architecture with precise gate-level control per clock
cycle, which ensures minimal idle cycles. This results in a multiple-fold improve-
ment in the throughput of garbling operation compared to the previous hardware
garbled circuit accelerator [44,46]. In their scenario, a host CPU is involved in an
OT to communicate the evaluator labels/input with the client, which may need
high bandwidth. Although RedCrypt [41] has achieved significant improvement
in computational efficiency, the DL model implemented on the FPGA cannot
be easily diversified. Their proposed hardware DL accelerator suits a specific
type of DL model and is built on the assumption that the network architec-
ture is publicly available, which allows an adversary to launch an SCA attack
easier [4]. These shortcomings are tackled by HWGN2 that is NN-agnostic and
guarantees the privacy of the DL model, i.e., the secrecy of its architecture. A
qualitative comparison between SOTA approaches and HWGN2 is provided in
Table 1. HWGN2 shares similarities with TinyGarble2 [20], although they are
software and hardware accelerators, respectively.

4 Background

4.1 SFE/PFE Protocols

SFE protocols enable a group of participants to compute the correct output
of some agreed-upon function f applied to their secure inputs without reveal-
ing anything else. One of the commonly-applied SFE protocols is Yao’s gar-
bled circuit [53], a two-party computation protocol. To formalize this protocol,
we employ the notions and definitions provided in [6] to support modular and
simple but effective analyses. In this regard, a garbling algorithm Gb is a ran-
domized algorithm, i.e., involves a degree of randomness. Gb(f) is a triple of
functions (F, e, d) ← Gb(f) that accepts the function f : {0, 1}n → {0, 1}m
and the security parameter k. Gb(f) exhibits the following properties. The
encoding function e converts an initial input x ∈ {0, 1}n into a garbled input
X = e(x), which is given to the function F to generate the garbled output
Y = F (X). In this regard, e encodes a list of tokens (so-called labels), i.e., one
pair for each bit in x ∈ {0, 1}n: En(e, ·) uses the bits of x = x1 · · · xn to select
from e = (X1

0 ,X1
1 , · · · ,X0

n,X1
n) and obtain the sub-vector X = Xx1

1 , · · · ,Xxn
n .

By reversing this process, the decoding function d generates the final output
y = d(Y ), which must be equal to f(x). In other words, f is a combina-
tion of probabilistic functions d ◦ F ◦ e. More precisely, the garbling scheme
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G = (Gb,En,De,Ev, ev) is composed of five algorithms as shown in Fig. 2,
where the strings d, e, f , and F are used by the functions De, En, ev, and Ev
(see Sect. 5 for a concrete protocol flow in the case of NNs).

Security of Garbling Schemes: For a given scheme, the security can be
roughly defined as the impossibility of acquiring any information beyond the final
output y if the party has access to (F,X, d). Formally, this notion is explained
by defining the side-information function Φ(·). Based on the definition of this
function, an adversary cannot extract any information besides y and Φ(f) when
the tuple (F,X, d) is accessible. As an example of how the function Φ(·) is deter-
mined, note that for an SFE protocol, where the privacy of the function f is not
ensured, Φ(f) = f . Thus, the only thing that leaks is the function itself. On the
other hand, when a PFE protocol is run, Φ(f) is the circuit/function’s size, e.g.,
number of gates.

Oblivious Transfer (OT): This is a two party protocol where party 2 transfers
some information to party 1 (so-called evaluator); however, party 2 remains
oblivious to what information party 1 actually obtains. A form of OT widely
used in various applications is known as “chosen one-out-of-two”, denoted by
1-out-of-2 OT. In this case, party 2 has bits X0 and X1, and party 1 uses one
private input bit s. After running the protocol, party 1 only gets the bit Xs,
whereas party 2 does not obtain any information on the value of s, i.e., party 2
does not know which bit has been selected by party 1. This protocol can be
extended to support the n-bit case, where party 1 bits x1, · · · , xn are applied
to the input of party 2 X0

1 ,X1
1 , · · · ,X0

n,X1
n to obtain Xx1

1 , · · · ,Xxn
n . This is

possible by sequential repetition of the basic protocol [6]. It has been proven
that 1-out-of-2 OT is universal for 2-party SFE, i.e., OT schemes can be the
main building block of SFE protocols [24].

4.2 Neural Networks (NNs)

An NN is one of the main categories of machine learning, referring to learning a
non-linear function through multiple layers of neurons with the goal of predicting
the output corresponding to a given input. To perform such prediction, the input
is fed to the first layer of the network (so-called input layer), whereas in the
next layers (so-called hidden layers) the abstraction of the data takes place. For
a multi-layer perceptron (MLP) that is a fully connected NN, each layer’s input
(including the input layer) is multiplied by neuron weights, added to the bias,
and finally given to a commonly-applied activation functions at the output of
each layer (excluding the input layer), e.g., Sigmoid, Tanh, and Rectified Linear
Unit (ReLu). The activation functions that might be used in DL models include
linear, Sigmoid, and softmax.

5 Foundations of HWGN2

Protocol Flow: Here we provide insight into how SFE/PFE schemes can be tai-
lored to the needs of a secure and private DL accelerator. According to the general
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flow illustrated in Fig. 2, the goal of a garbling protocol G is to evaluate a function
f against some inputs x to obtain the output y. The evaluator (i.e., the attacker)
is never in possession of the raw NN binaries. Let f = fNN denote the function
corresponding to the NN. The attacker aims to obtain the information on fNN by
collecting the side-channel traces. To achieve this, here we give an example of SFE
protocol G that has OT at its core and follows Yao’s garbling principle, i.e., the
garbling protocol G = (Gb,En,De,Ev, ev) as shown in Fig. 2. To execute the pro-
tocol, the designer of the NN accelerator (garbler) conducts (F, e, d) ← Gb(1k, f)
on inputs 1k and f and parses (X1

0 ,X1
1 , · · · ,X0

n,X1
n) ← e. Afterward, the garbler

sends F to the evaluator, i.e., the attacker. In order to perform the function Ev,
the attacker and the garbler run the OT, where the former has the selection string
x and the latter party has already parsed (X1

0 ,X1
1 , · · · ,X0

n,X1
n). Hence, the eval-

uator can obtain X = Xx1
1 , · · · ,Xxn

n and consequently, y ← De(d,Ev(F,X)).
Note that even with the tuple (F,X, d) in hand, the attacker cannot extract any
information besides y and Φ(f). Moreover, although the NN provider has access
to (F, e, d), no information on x leaks. In an inference scenario, x represents the
evaluator’s input data. Nevertheless, if G is an SFE scheme, Φ(f) = f .

To construct a PFE scheme protecting the architecture, parameters, and
hyperparameters of the NN that relies on the scheme G, we first define a poly-
nomial algorithm Π that accepts the security parameter k and the (private) input
of the party [6]. The PFE scheme is a pair F = (Π, ev), where ev is as defined
for the garbling scheme (see Sect. 6 for more information about Π). The scheme
F enable us to securely compute the class of functions {ev(f, ·) : f ∈ {0, 1}∗},
i.e., any function that G can garble. The security of the PFE scheme F relies on
the security of the SFE protocol underlying F (see Sect. 4.1); however, Φ(f) is
the circuit size, i.e., the function f remains private when executing the SFE pro-
tocol. In other words, the NN, its architecture, parameters and hyperparameters
are now kept private from the attacker.

Oblivious Inference: Oblivious inference tackles the problem of running the
DL model on the user’s input without revealing the input or the result to the
other party (i.e., garbler in our case). For the latter, another interesting char-
acteristic of SFE/PFE schemes is their ability to adapt to specific scenarios,
where the output y should also be protected. This would not be interesting in
our case, where the security of the NN against SCA mounted by the evaluator
is the objective. Nonetheless, for the sake of completeness, if the decryption of
Y should be performed securely, the privacy of inference results can easily be
preserved by applying a one-time message authentication code (MAC) to the
output and XORing the result with a random input to hide the outcome. These
operations can be included in the design of the NN and naturally increase its size
and the input fed by the garbler; however, the increase is linear in the number
of output bits and considered inexpensive [30].

5.1 Implementation of HWGN2

When defining the PFE scheme F , it is mentioned that F can securely and
privately compute any function, which can be garbled by running the garbling
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Fig. 2. A generic garbling scheme G = (Gb,En,De,Ev, ev) cf. [6]. Our proposed secure
and private DL accelerator is built upon G. For HWGN2, the blocks in orange show the
operations performed by the NN vendor, whereas the gray ones indicate the evaluator
operations. ev denotes the typical, unprotected evaluation of the function f against
the input x.

Fig. 3. Flow of HWGN2 (L: garbled wire labels, GT : garbled tables, e and d: encryption
and decryption labels, X: evaluator’s garbled input, Y : garbled output, Yi, Xi, GTi, Li:
garbled input, output, tables, wire labels corresponding to ith sub-netlist, respectively,
y: evaluator’s raw output).

scheme G. Our garbled universal circuit F depends on the fact that a universal
circuit is similar to a universal Turing machine [18], which can be realized by a
general purpose processor cf. [44,46]. Note the difference between our goal, i.e.,
realizing F , and one achieved in [50]: optimizing the emulation of an entire public
MIPS program. Although we implemented a MIPS-based scheme, the prototypes
can be extended to ARM processors. HWGN2 garbles the MIPS instruction set
with a minimized memory and logical hardware resource utilization (see Sect. 5.1).

Similarities Between HWGN2 and TinyGarble2: One of the state-of-the-
art GC frameworks is TinyGarble2 [20] offering solely software DL inference,
without ensuring the privacy of the NN. HWGN2 remedies these shortcomings;
however, it shares similarities with TinyGarble2, namely regarding the flow of
the protocol. The technique presented in TinyGarble2 is based on the division
of a large netlist, such as DL models, into i smaller sub-netlists and evaluating
them one after another. The size of the sub-netlists could be either one gate or
equal to the total number of gates in the f netlist. The fewer gates included in
each sub-netlist, the less memory utilization the gates require to be evaluated.

Figure 3 illustrates the flow of HWGN2 in the presence of an HbC adversary.
First, the garbler chooses input encryption labels (e) (Step 1.1). Afterward,
instead of sending the complete set of GTs and L to the evaluator, in each cycle



234 M. Hashemi et al.

the garbler sends the evaluator a subset GTi, Li (Step 1.2), and either e (if the
sub-netlist includes the gate with the inputs connected to the f netlist) or Xi (the
garbled input corresponding to the sub-netlist). These subsets can be prepared
offline and independent from the input of the evaluator. The evaluator also gar-
bles her inputs as shown in Step 2, which is done offline as well. In the next step,
the evaluator evaluates the gate and sends the garbler the garbled output Yi,
i.e., garbled output of the ith sub-netlist (Step 3). This process repeats until all
i sub-netlists, excluding the gates whose output is connected to the NN outputs,
are evaluated. Then in Step 4, the garbler sends the garbled tables and labels
related to the gates that are connected to the NN output (so-called NN output
layer). After the evaluator evaluates all output layer-related gates, the garbler
sends the decryption label (Step 5) along with the concatenated garbled out-
puts to the evaluator. Finally, the evaluator decrypts the concatenated garbled
output Y and achieves his raw output y. Also, instead of sending the complete
set of GTs, L, and e through one OT interaction, TinyGarble2 requires one OT
interaction per sub-netlist. The trade-off of minimizing the memory utilization
using TinyGarble2 is the communication cost.

What Makes HWGN2 superior: Parallel and simultaneous evaluation of all
input gates might result in the side-channel leakages due to the secret collision;
therefore, all input gates must be evaluated one after another without paralleliza-
tion. However, the rest of the gates (without dependencies) have no informa-
tion about the secrets, and thus, they can be evaluated simultaneously. More-
over, we have noticed that each gate evaluation (excluding reading/writing its
inputs/output from/to the memory) requires one operation code (OP-code) which
is an 8-bit part of a MIPS instruction. As we have assigned the reading and writ-
ing tasks to the memory handler module, it is possible to combine a set of four
gates (non-input gates) and construct one modified MIPS instruction from them.
In doing so, in the evaluation phase, all these four OP-codes can be executed using
four parallel arithmetic logic units (ALU) on FPGA while this is an impracti-
cal task for central processing unit (CPU) due to its limited resources and oper-
ating system (OS) limitations. HWGN2, contrary to the previous software and
hardware accelerators including TinyGarble family [20,44], leverages these par-
allelization techniques. It also gives the flexibility of tuning the communication
costs and hardware resource utilization to the garbler (e.g., NN provider). In the
applications where communication cost poses a limitation (such as real-time appli-
cations), one can implement DL hardware accelerators by sending the complete
set of GTs, L, and e through one OT interaction. This minimizes the communica-
tion cost while hardware resources are utilized at the maximum amount. In con-
trast, in the application with the limitation of hardware resources, one can use
the HWGN2 that implements DL hardware accelerators with the sub-netlist size
of one or a small number of gates. As opposed to TinyGarble2, HWGN2 imple-
mentation is based on the garbled MIPS architecture, making the circuit private
(i.e., no information about the NN architecture leaks) as explained next.

MIPS Evaluator in HWGN2. As explained before, in order to ensure the
privacy of the NNs, the Boolean function representing the NN (so-called netlist)
is converted to a set of reduced instruction set computing (RISC) instruction
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Fig. 4. Garbled MIPS evaluator, able to process any given number of instructions
instead of a determined number. The black modules are extended and improved versions
of memory and instruction handler in Lite MIPS architecture [44]: the instruction
handler prepares the controller sequence by comparing the garbled MIPS instructions
and the OP mapping. The controller runs the process sequence by generating the ALU
mode and executing the read and write operations.

set architecture (ISA) and evaluated on a core that executes the MIPS instruc-
tions [23]. It might be thought that a subset of instructions required to execute
the NN is sufficient to be garbled in order to reduce the overhead; however,
this could increase the probability of guessing which instructions are used and,
consequently, violates the privacy of the NN.

To implement HWGN2 on an FPGA, we modify Plasma [38] MIPS execution
core emulating a RISC instruction set on the FPGA, to act as the garbled MIPS
evaluator. Figure 4 illustrates the architecture of our garbled MIPS evaluator. The
garbled evaluator receives three inputs: (i) a set of garbled instructions, (ii) the
mapping for the instruction handler to fetch/decode the garbled instructions, and
(iii) the evaluator’s garbled input. The combination of the first and second ones (i,
ii) is the set of garbled tables and labels described before. Our garbled MIPS eval-
uator can evaluate the garbled MIPS instructions in two modes: (a) by receiving
only one instruction and the operation code (OP) mapping and its corresponding
instruction each cycle, i.e., the garbled evaluator with the capacity of one instruc-
tion per OT interaction, or (b) by receiving the complete set of instructions and
their corresponding OP mapping at once. To achieve the resource-efficient imple-
mentation (mode i), we have modified the Lite MIPS instruction handler module
in a way that the memory size related to the received garbled instructions (not
the OP code mapping) decreases from 128 cells to only one cell. The controller
is further enhanced by discarding the unnecessary scheduler, SCD storage mem-
ory and its parsing modules and tailoring the core to need of only one instruc-
tion conversion per OT. Moreover, we include the erase state in the instruction
MEM controller, which sets all memory blocks to 0 after converting each garbled
instruction to the OP code. To take advantage of the resource-efficient implemen-
tation, an extra step should be taken to divide the netlist into the sub-netlists with
the number of gates selected by the user. The sub-netlists are fed to HWGN2 in
the same order provided in the SCD file. This allows the user to make a trade-off
between the resource efficiency and performance of the HWGN2.
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Table 2. Hardware resource utilization and OT cost of approaches applied against
BM1.

Approach LUT FF OT interaction

Plasma [38] 1773 1255 N/A

GarbledCPU [46] 21229 22035 2

RedCrypt [41] (One MAC Unit) 111000 84000 2

BoMaNET [13] 9833 7624 N/A

ModulaNET [12] 5635 5009 N/A

HWGN2 (1 instruction per OT interaction) 1775 1278 2346

HWGN2 Complete set of instructions 94701 52534 2

Specifically, in mode (a), in the first step, the instruction handler module
receives one garbled instruction and OP mapping (all possible combinations of
garbled MIPS instructions necessary to follow SFE protocol), which are stored in
the instructions memory (MEM). In the next step, the instruction handler com-
pares the given garbled instructions with garbled instructions MEM information
and converts each garbled instruction to a set of OPs. Finally, the instruction han-
dler sends the OP to the arithmetic-logic unit (ALU), erase instructions MEM,
and repeats above-mentioned steps for the next garbled instructions. In mode (b),
however, the instruction handler module works similarly to the Lite MIPS archi-
tecture cf. [44]. As both instruction sets and decode mapping are garbled on the
garbler side, the evaluator cannot decrypt the garbled instructions. Therefore,
the garbler’s inputs and the DL model parameters are secure following the SFE
and PFE protocols.

6 Evaluation of HWGN2

6.1 Resource Utilization

To understand the interplay between communication cost, hardware resources
utilization, and performance, we have synthesized the garbled evaluator with
the capacity of 1 and 2345 (complete set of instructions) garbled MIPS instruc-
tions per one OT interaction. We have used Xilinx Vivado 2021 to synthesize
our design and generate a bittsream. To ensure the bitstream correctness, we
have disabled place-and-route optimization and also utilize the DONT-TOUCH
attribute. The garbling framework considered in our implementations is Just-
Garble [5], also embedded in TinyGarble2 framework [20], which enjoys garbling
optimization techniques such as Free-XOR [26], Row Reduction [36], and Gar-
bling with a Fixed-key Block Cipher [5]. Our implementation is applied against
three typical MLPs: the first one, with 784 neurons in its input layer, three hid-
den layers each with 1024 neurons, and an output layer with 10 neurons that
is trained on MNIST (hereafter called BM1). The results for applying SOTA
approaches against BM1 have been presented in [12,41,46]. The second MLP,
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Table 3. Execution time and communication cost comparison between HWGN2 and
the SOTA approaches (for BM1). Results for [46] and HWGN2 are reported based on
FPGA with clock frequency equals to 12.5MHz. (N/R: not reported, inst.: instruc-
tions).

Approach Time (Sec) Communication (MB)

GarbledCPU [46] 1.74 N/R

RedCrypt [41] 0.63 5520

HWGN2 (Complete set of inst. per OT interaction) 0.68 619

TinyGarble2 [20] 9.1 7.16

HWGN2 (1 inst. per OT interaction) 3.25 12.39

BM2, has 784, 5, 5, and 10 neuron in its input, 2 hidden, and output layers,
respectively. The third MLP, BM3, consists of 784, 6, 5, 5, and 10 neurons in
its input, 3 hidden, and output layers, respectively.

Table 2 shows a comparison between the hardware utilization and OT cost
of an unprotected MIPS evaluator core (Plasma [38]), HWGN2 and the SOTA
approaches applied to BM1. To give an insight into how much overhead cost the
protection approaches impose, we have implemented Plasma core, an unprotected
MIPS evaluator core on an Artix-7 FPGA. Note that we choose this architecture
for the sake of a better comparison with the SOTA solutions, e.g., [12]. It is also
worth mentioning that since the ultimate goal of our paper is to demonstrate the
applicability of garbling techniques for side-channel resiliency, the network men-
tioned above is chosen to serve as a proof of concept. As the HWGN2 processes
the garbled instructions and inputs with the width of 32-bits, to have a fair com-
parison, we include the 32-bit MAC unit [41] in the resource utilization reported
in Table 2.

In Table 2, BoMaNET and ModulaNET do not use OT to exchange their
inputs. RedCrypt uses two OT interactions, one for the evaluator’s input and
another for the evaluator’s output. However, in HWGN2, in addition to the input
and output labels exchange OT requirement, HWGN2 requires M more OT inter-
actions, where M is the number of sub-netlists. There is an important observation
made from Table 2: HWGN2 with the capacity of one instruction per OT interac-
tion utilizes 0.0011× and 0.018× more logical and memory hardware resources,
respectively, compared to an unprotected MIPS evaluator. The reason behind
this efficiency is the size of instruction memory which stores only one instruction
per OT interaction instead of the complete set of instructions. As mentioned in
Sect. 5.1, to minimize resource utilization, one should sacrifice the communication
cost, leading to an increased execution time. Hence, we set the size of the sub-
netlist to just one gate, and every four gates are converted to a garbled instruction:
M = Ngate/4, where Ngate is the number of gates in the netlist. In this setting,
HWGN2 requires 2 + 9380/4 = 2346 OT interactions, where 9380 is the number
of gates included in the BM1 netlist. In real-time applications where the execu-
tion time is the bottleneck, the OT interactions must be minimum [41]. Therefore,
in Table 2, we also have reported the hardware resource utilization in two cases:
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Table 4. Execution time and communication cost of HWGN2 applied to BM1 accel-
erator and its XNOR-based implementation.

Architecture #Instructions OT Interaction Execution Time (Sec) Communication (MB)

BM1 2345 2346 3.25 12.39

XNOR-based BM1 1629 1631 2.31 9.71

(i) when the number of OT interactions is maximum (6th row) and (ii) when the
number of OT interactions is minimum (7th row). The results in Table 2 are for the
implementation of BM1. As shown in Table 3, HWGN2 with the maximum per-
formance is 2.5× faster than GarbledCPU [46]. Performance of HWGN2 is close
to the performance of Redcrypt [41], the fastest SOTA approach, while utilizing
62.5× fewer logical and 66× less memory than Redcrypt [41].

Execution Time and Communication Cost Evaluation. To evaluate the
cost of HWGN2 in terms of execution time, we have used a machine with Intel
Core i7-7700 CPU @ 3.60 GHz (GHz), 16 Gigabyte (GBs) RAM, and Linux
Ubuntu 20 as the garbler and an ARTIX7 FPGA board as the evaluator, which
has a clock frequency of 12.5 MHz (MHz). All the garbled instructions, their
MEM values, and labels are generated offline and not included in the execution
time. To communicate with the FPGA, for the sake of comparison, we have
used HostCPU presented in [41]. Note that in a real-world application, where
the communication is performed over high latency links, the protocol execution
remains fast due to the constant number of rounds in Yao’s GC underlying our
design cf. [22,31]. Moreover, we have used the EMP-toolkit [51] to establish
the OT interaction between the garbler and the HostCPU. Table 3 shows the
execution time and communication cost comparison between HWGN2 and the
SOTA approaches employed against BM1. The memory footprint of classical GC
approaches is O(I + Ngate), where I is the number of input wires and Ngate is
the number of gates in the netlist. In contrast, the memory footprint of HWGN2

and TinyGarble2 is the same: O(I + Ngate,m + im) where Ngate,m is the number
of gates in the largest among sub-netlists included in the design, and im is the
number of inputs of the sub-netlist, which equals 1 and 2, respectively, in the
case of HWGN2 with the instruction capacity 1 per OT interaction.

To compare the execution time and communication cost of TinyGarbled2
with our approach, we have chosen the semi-honest mode when using their frame-
work. HWGN2 outperforms the TinyGarble2 implemented on CPU thanks to the
parallel implementation made possible by the FPGA. On the other hand, when
minimizing the OT interactions by investing more hardware resource utilization,
HWGN2 has a performance close to the RedCrypt with 62.5× fewer logical and
66× less memory utilization.

As an optimization technique, we have implemented the XNOR-based BM1.
As the XOR operation is free in the garbling protocol [26], it is possible to
decrease the size of the garbled netlists, which results in fewer instructions to
be executed. Table 4 shows a comparison between two architectures. Using an
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XNOR-based implementation of a DL hardware accelerator decreases the num-
ber of instructions, leading to a less OT cost and execution time. The only
limitation of this optimization is that the weights of the DL model must be
binarized, and such binarization may slightly decrease the DL hardware acceler-
ator output accuracy. Nevertheless, there are methods devised to deal with this,
which can be adopted to bring significant benefits to garbled DL accelerators in
terms of both OT cost and execution time.

6.2 Side-Channel Evaluation

Side-Channel Measurement Setup. HWGN2 has been implemented on
Artix-7 FPGA device XC7AT100T with package number FTG256. We have cap-
tured the power and EM traces (see Appendix C) using Riscure setup, including
LeCroy wavePro 725Zi as the setup oscilloscope. We have set our design fre-
quency to 12.5 MHz, the maximum possible clock frequency of Chipwhisperer
CW305 target board, and the oscilloscope sampling frequency to 12.5 GHz. For
each clock cycle, we have acquired 8100 sample points. Acquiring high-resolution
side-channel traces made our design execution time 3.25 s for each classification
performed by BM1. For this network, acquiring side-channel traces in the order
of millions has high time complexity. Therefore, similar to [12], another MLP
architecture, namely, BM2 is used for traces collection. The changes in MLP
architecture hyperparameters allowed us to execute each classification in 31 ms.
As HWGN2 executes each instruction separately in a sequential manner and the
nature of the NNs is repetitive, we argue that the smaller MLP architecture can
represent a larger one in terms of leakage.

Leakage Evaluation. We have used a common methodology, namely Test
Vector Leakage Assessment (TVLA) test, to evaluate HWGN2 leakage resiliency.
Although the TVLA test is subject to two disadvantages – false positive/negative
results and limited ability to reveal all points of interests [15,35,47] – it is still
the most common methodology used in recent papers to evaluate the resiliency
of the approach against side-channel leakage.

In the TVLA test methodology, Welch’s t-test is used to check the similarity
between two trace groups captured from two populations of inputs. Welch’s t-
test calculates the t-score as t = (μ1 − μ2)/

√
(s21/n2

1) + (s22/n2
2), where μ1 and

μ2 are the means, s1 and s2 are the standard deviations, and n1 and n2 are the
total number of the captured traces for first and second population, respectively.
Based on the null-hypothesis, if two populations are chosen from one distribution,
their corresponding t-score must be less that ±4.5. Exceeding t-score magnitude
of 4.5 (so-called null-hypothesis) means the design is subject to side-channel
leakage with probability greater than 99.99%. In our setup, we choose the non-
specific fixed vs. random t-test in a way that our setup, first, captures the power
consumption/EM traces from a fixed input computation for all the traces; then,
the experiment repeats for a set of randomly generated inputs. Based on the two
captured traces, for fixed and random inputs, our setup calculates the t-score
based on the aforementioned equation.
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Power Side-Channel Leakage Assessment. To illustrate the side-channel
protection offered by HWGN2, we have mounted the TVLA test on power traces
of an unprotected MIPS core, Plasma core presented by Opencores projects [38],
and HWGN2, with the capacity of one instruction per OT interaction. Figure 5
(a) and (b) shows the TVLA results of an unprotected MIPS core and HWGN2,
with the capacity of one instruction per OT interaction, respectively. The t-scores
are calculated based on 10000 captured traces, 5000 for each fixed and random
input population. As one can observe, an unprotected MIPS core t-score has
exceeded the ±4.5 threshold with only 10000 traces, while the HWGN2’s t-score
remains below the threshold.

To have a design with leakage resiliency, the t-score results must remain below
the threshold with the traces populations in the order of millions [11,12,35,47].
Hence, in the next experiment, we have captured a total of 2 million (2M) traces,
1M traces for each fixed and random input populations. A low t-score, less
than ±4.5, calculated from a trace population in the order of millions confirms
the protection strength of HWGN2. It should be noted that these traces are
captured in the low-noise setup (i.e., more optimistic for the attacker) while in
the actual scenario, the number of traces to break the garbling scheme should
be significantly higher due to more noisy environments.

As a proof of concept that HWGN2 side-channel resiliency is independent of
the function or architecture we also mount the TVLA test on two more imple-
mentations: XNOR-based DL hardware accelerator and DL hardware accelera-
tor. Figure 5, (c) and (e), illustrates the t-score of HWGN2 applied to XNOR-
based BM2, with the capacity of complete set of instructions per OT interaction
and one instruction per OT, respectively. As can be seen, the t-scores of HWGN2

stay below the threshold of ±4.5 for different cases of instruction capacity per
OT interaction and the function or architecture implemented on an FPGA using
HWGN2. The t-scores in Fig. 5, (d) and (f), indicate that not only HWGN2 with
the capacity of one instruction per OT interaction provides a strong protection
against power side-channel attacks but also changes in the number of instruction
capacity per OT interaction does not affect this protection (for results of EM
leakage detection, see Appendix C).

Can we see the Architecture-Related Patterns? Based on the attack pre-
sented by Batina et al. [4], revealing the DL model architecture can enhance
the attacker’s ability to obtain DL model parameters. They showed that the
EM trace captured from an unprotected DL model implementation on Atmel
ATmega328P microcontroller, which follows the MIPS architecture same as
HWGN2, with three hidden layers containing 6, 5, and 5 neurons, respectively,
has a pattern in which the number of layers and neurons can be revealed. They
have used LeCroy WaveRunner 610Zi oscilloscope and RF-U 5-2 near-field EM
probe to capture EM traces. To examine if we observe the same patterns as
reported in [4], we have implemented the same DL model, BM3, and captured
100K EM traces. Figure 6(a) illustrates the captured EM traces from an Atmel
ATmega328P microcontroller taken from [4], whereas Fig. 6(b) show the traces
collected from our unprotected MIPS evaluator core [38], and Fig. 6(c) presents
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Fig. 5. TVLA test results for implementation of BM2 on (a) an unprotected MIPS
core and (b) HWGN2 with the capacity of one instruction per OT (calculated for 10K
traces) (c) HWGN2 applied to XNOR-based BM2 (capacity whole set of instructions
per OT) (d) BM2 with the capacity of complete set of instructions per OT interaction,
(e) HWGN2 applied to XNOR-based BM2 (capacity 1 instruction per OT), and (f)
BM2 with the capacity of 1 instruction per OT (calculated for 2M power traces).

Fig. 6. A randomly chosen EM trace pattern captured from the implementation of BM3
on (a) Atmel ATmega328P microcontroller [4] (b) FPGA with unprotected MIPS eval-
uator [38] (c) with HWGN2. Red lines correspond to time-samples, where the unpro-
tected evaluators start the next layer evaluation.

the captured EM traces of HWGN2 for a randomly chosen EM trace. From Fig. 6,
it is observable that there exists a pattern, in which the number of the layers
and neurons can be seen, similar to the observation made by Batina et al. [4]:
the red lines indicate the borders when MIPS evaluator starts the next hidden
layer evaluation and the red squares correspond to the EM peak of Sigmoid
AF evaluation. In the case of the HWGN2, EM traces do not follow a pattern,
which could result in revealing the DL model architecture. The reason behind
these irregular patterns is that each garbled instruction is encrypted; therefore,
in the evaluation phase, the HWGN2 treats them as two nonidentical instruc-
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tions, although the generated OP corresponding to them is the same. Note that
in addition to this observation, we further conduct t-tests, where no EM leakage
is detected (see Appenddix C).

7 Conclusion

In this paper, we have examined the feasibility of garbling to prevent attackers
from launching SCA attacks against DL hardware accelerators. We have imple-
mented HWGN2 as a garbled DL hardware accelerator on an Artix-7 FPGA.
By tailoring the concepts known only for software garbled DL accelerator [20]
to the needs of a hardware DL accelerator, the implementation of such accel-
erator is enhanced: HWGN2 requires up to 62.5× fewer logical and 66× less
memory utilization compared to the state-of-art approaches. This is indeed pos-
sible at the price of more communication overhead. HWGN2 provides users the
flexibility to protect their NN IP both in real-time applications and in applica-
tions where the hardware resources are limited by hardware resource utilization
or communication cost. As our leakage evaluation results indicated, for both
EM and power side-channels, the t-scores are below the threshold (±4.5), which
shows the side-channel leakage resiliency of HWGN2 with trace population in
the order of millions. Another strength of HWGN2 is the DL model architecture
thanks to the SFE/PFE protocol realized through MIPS instructions.
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Appendix A. Summary of Relevant Studies

This appendix covers recent attacks mounted against NNs as well as the simi-
larities and differences between HWGN2 and garbled DL accelerators proposed
to offer security of users’ data in Tables 5 and 6.

Appendix B. TinyGarble-Based Implementation of
HWGN2

TinyGarble [44] is a garbling framework that supports Yao’s protocol and uses
hardware-synthesis tools to generate circuits for secure computation automati-
cally. The main advantage of TinyGarble is the scalability enabled by exploiting
a sequential circuit description for garbled circuits and garbling optimization
techniques such as Free-XOR [26], Row Reduction [36], and Garbling with a
Fixed-key Block Cipher [5]. Figure 7a illustrates the flow of HWGN2 following
TinyGarble [44] approach. At first, garbler chooses input encryption labels (e)
(Step 1.1) and constructs the GC of function f by generating garbled tables
(GT ) of all gates, garbled labels (L) of all wires, and a custom circuit descrip-
tion (SCD) file (Step 1.2), which is the mapping between the GC and function f .
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Table 5. Summary of most recent side-channel attacks against DL accelerators.

Paper Targets Side-channel
modality

Attack scenario Implementation
platform

Xiang
et al. [52]

DL Model
Architecture

Power • Modeling the power consumption of dif-
ferent DL hardware accelerator compo-
nents based on the number of additions
and multiplications
• Trained a classifier to reveal the DL
Model architecture based on the captured
power consumption traces

Raspberry Pi

DeepEM [55] DL Model
Architecture

EM • Presumption of a layer computations
• Finding the number of parameters
through each layer based on EM traces

Pynq-Z1

CSI NN [4] DL Model
Architecture
+Weights +AF

Timing + EM • Modeling all possible AF timing side-
channel
• Extracting the AF used in the DL Model
Architecture
• Distinguishing the EM patterns to find
the number of layers and neurons
• Launching CPA to reveal the weights

ARM Cortex-M3
+ Atmel
ATmega328P

Dubey
et al. [14]

DL Model
Weights

Power • Capturing the power consumption traces
from changing status of pipeline registers
• Launching a CPA based attack to
reveal weights

SAKURA-X
FPGA board

Yoshida
et al. [54]

DL Model
Weights

Power • Launching a CPA based attack to
reveal weights

Xilinx
Spartan3-A

Table 6. Summary of garbled DL accelerators and their features.

Paper Adversary
model

Approach Contribution Implementation
platform

DeepSecure [42] HbC Garbling • Presentation of pre-processing app-
roach
• pre-processing step would reveal
some information about the network
parameters and structure of data
cf. [39]

Intel Core i7
CPUs

Chameleon [40] HbC Hybrid • Performs linear operations using
additive secret sharing and nonlinear
operations using Yao’s Garbled Circuits

8-Core AMD
CPU 3.7GHz

Ball et al. [2] HbC Hybrid • Improvement of the BMR scheme [3]
to support Non-linear operations

Intel Core
i7-4790 CPUs

XONN [39] HbC Garbling • Support Binary NNs
• Conversion of Matrix Multiplication
to XNOR PopCount

Intel Xeon CPU
E5-2650

TinyGarble2 [20] HbC +
Malicious

Garbling • Provision of protection against mali-
cious adversary
• Alleviation garbling memory cost

Intel Xeon CPU
E5-2650

GarbledCPU [46] HbC Garbling • Presentation of FPGA accelerator for
GC evaluation

Virtex-7 FPGA

RedCrypt [41] HbC Garbling • Minimizing the hardware architecture
idle cycles to achieve scalable garbling

Virtex
UltraSCALE
VCU108
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Fig. 7. TinyGarble-based implementation [44] of HWGN2 (L: wires garbled labels, GT :
garbled tables, e: encryption labels, d: decryption labels, x: evaluator’s raw input, X:
evaluator’s garbled input, Y : garbled output, Yi, Xi, GTi, Li: garbled input, output,
garbled tables, wire labels corresponding to ith sub-netlist, respectively, y: evaluator’s
raw output, and SCD: A custom circuit description which allows TinyGarble to eval-
uate the Boolean circuit).

Fig. 8. TVLA test results (a) HWGN2 applied to XNOR-based BM2 (capacity whole
set of instructions per OT) (b) BM2 with the capacity of complete set of instructions
per OT interaction, (c) HWGN2 applied to XNOR-based BM2 (capacity 1 instruction
per OT), and (d) BM2 with the capacity of 1 instruction per OT (calculated for 2M
EM traces).

GT,L, SCD, e are sent through one OT interaction to the evaluator for further
garbling protocol process. e is then used by the evaluator to generate garbled
input X from the evaluator’s input x (Step 2). Afterward in Step 3.1, GT , L, and
SCD are used by the evaluator to evaluate the GC based on the given X sequen-
tially using the scheduler module (cf. [44] for more information). In the final step
(Step 3.2), output decryption labels (d) are sent to the evaluator to decrypt the
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evaluator core’s garbled output Y and obtain its raw output y. The sequential
evaluation supported by TinyGarble provides the GC protocol the scalability of
evaluation of larger netlists. However, when one implements the DL hardware
accelerator in the garbled format which has a large netlist, memory and logi-
cal resource utilization become burdens for DL hardware accelerators [21] (see
Sect. 6.1).

Appendix C. TVLA Test Evaluation of EM Side-Channel

One of the first studies that has compared the capabilities of attackers launch-
ing power vs. EM SCA is [37], where it is suggested that the EM leakage can
provide more information than the power consumption of the same chip cf. [48].
This has been further justified in [48] through the evaluation of the information
theoretic and security metrics [49]. Therefore, it might be thought that the EM
side-channel could offer some information about the secret, i.e., the weights of
the garbled NN. To collect the EM traces, it has been already verified that mea-
surements from the frontside of a chip can offer a high signal-to-noise ratio [19];
hence, we stick to this setting to perform measurements. Our setup described in
Sect. 6.2 is equipped with HP EM probe 125 (SN126 0.2 mm). Figure 8 shows
the t-scores computed for HWGN2 applied against BM2. As shown in Fig. 8, the
t-scores of EM traces are below the threshold (±4.5) which is the proof of the
EM leakage resiliency of HWGN2.
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Abstract. Deep neural networks have been established by researchers
to perform significantly better than prior algorithms in multiple domains,
notably in computer vision. Naturally, this resulted in its deployment as
a perception module in modern Autonomous Vehicle (AV) and in general
for Advanced Driver Assistance Systems (ADAS). ADAS relies heavily
on perception module, which harnesses various sensors such as camera,
LiDAR, radar, ultrasonic sensor to make navigational decisions. By draw-
ing from the adversarial attacks, which undermine a lot of machine learn-
ing applications, recent research shows that the AV perception modules
are also vulnerable to adversarial attacks. Suggested countermeasures
for these attacks include increasing the number of sensors, which incurs
cost overhead and does not present any formal guarantee of protection.
Hence, in this paper, we study the robustness and practicality of such a
countermeasure. We demonstrate that it is still possible to spoof multiple
cameras through adversarial object though, the attack success consider-
ably reduces. Furthermore, the possibility of alternative countermeasures
like dimensionality reduction and feature squeezing are investigated. Our
study shows that these techniques, when applied together, significantly
enhances the robustness of the AV perception system.

Keywords: ADAS · AV · Neural network · Adversarial attack ·
Adversarial defense

1 Introduction

Recent decades have witnessed a booming in the automotive industry, espe-
cially with major technological breakthroughs in autonomous driving. The level
of automation in a vehicle has improved significantly, from manual operation
to high level of automation. This is achieved mainly with the help of machine
learning, which contributes to almost every modules of AV such as perception,
localization, planning, prediction, etc. Perception is a fundamental element of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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AVs, involving in most decisions made by other modules. In an AV’s perception,
sensors like cameras and LiDARs gather information about the surrounding envi-
ronment such as obstacles, pedestrians and traffic signs. One wrong information
from the perception module can lead to consequentially wrong decisions from
other modules, which can result in fatal outcomes. Thus, a considerable amount
of research on state-of-the-art deep neural networks (DNNs) have been carried
out since the introduction of AlexNet [17], winner of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012.

However, being equipped with state-of-the-art neural networks does not
ensure a perception system that is resilient against adversaries. Extensive
research is being done to identify various attack vectors in AV’s neural net-
works [6,14,25]. Many such attacks, however, target single perception source
like single camera or single LiDAR. On the contrary, many commercial AVs
provide multitude of sensors all working in conjunction [6]. With such a multi-
sensor setup and a realistic assumption that not all the perception modules are
attacked simultaneously, it is concluded in recent studies that multiple sensors
present a robust defense against a determined attacker. Cao et al. [6] explored
a very interesting way of attacking into both LiDAR and camera, using a 3D
printable adversarial object. The authors also believe that using more cameras
or LiDARs could improve the robustness of the perception model against this
attack.

The growth in usage of multiple sensors can be accredited to the improved
availability of public datasets published by major companies, such as [11],
nuScenes [5], Argoverse [28], etc. The new public datasets provide a full 360◦

view of the surroundings, creating many overlapping field-of-views (FoV). With
various viewing angles on a single object, it could increase the chance that an
object can be detected by the model, like the side of a vehicle as compared to
the front. An example of a production-grade AV being used on the road would
be the Electric Car company, Tesla. Tesla utilizes a series of modern cameras in
the Electric Vehicles for their Autonomous Driving (AD) capabilities [15].

In this paper, we investigate whether increasing the number of cameras helps
AV against adversarial object. Furthermore, we look into a few simple counter-
measures involving image feature manipulation such as dimensionality reduction
and color depth reduction. The rest of the paper is organized as follows: Sect. 3
and 4 details the attack methodology and proposed countermeasures, respec-
tively. Section 5 describes the experiments conducted. In Sect. 6, some limitations
of the presented study are discussed, and conclusions are drawn in Sect. 7.

2 Background

2.1 Adversarial Attacks on Image Recognition

Traditional attacks on image recognition systems used strong extra sources of
light to physically blind a camera [19,21]. Recently, as deep learning models
are becoming more powerful, research trends shifted to attacks on the DNNs
of perception system. The pioneering works from Szegedy et al. [27] discovered
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that state-of-the-art DNNs are susceptible to adversarial attacks. Since then,
more researchers investigated adversarial attacks in computer vision domain.
In 2017, researchers from Google used adversarial stickers called “Adversarial
Patch” [4] with particular properties that can fool machine learning models.
These “patches” can be attached to any objects on the street, e.g. road signs,
to cause camera perception system to make wrong decisions. In that same year,
Eykholt et al. [10] were able to generate robust adversarial perturbations in
the forms of only black and white stickers attached on stop signs. This attack
achieved high efficacy in both image and video sign classification tasks.

The higher level of automation in self-driving car leads to the use of multiple
kinds of sensor. Many AV makers nowadays use both cameras and LiDARs for
perception systems, adding more robustness to the object detection performance.
Many researchers have studied the vulnerability of LiDAR-based object detectors
to 3D adversarial objects. However, there were not a lot of such studies done
on the effect of 3D adversarial objects to camera-based object detectors until
2021. Abdelfattah et al. [1] proposed a kind of attack that when they place an
adversarial object on top of a car, that car evades being detected by both LiDAR-
based detector and camera-based detector. Another work from Cao et al. [6]
involves generating a 3D printable adversarial object that can deceive LiDAR-
based and camera-based perception models, causing vehicle crashing into it. In
most of these prior works, a common countermeasure suggestion is to increase
the number of cameras for detection. However, the question remains is whether
that suffices as a countermeasure and if yes, how many cameras do we need?

2.2 Motivation

The idea of fooling LiDAR-camera perception model with adversarial 3D
object [6] is recent and is a very active area of research. We try to find out
whether such kind of adversarial object is still effectively hidden from vehicle’s
perception system if we use more sources of sensing and manipulate input’s fea-
tures. In our study, we make use of multi-camera setup with overlapping FoVs.
One reason to use multiple cameras is that cameras are much more budget-
friendly than LiDARs. Furthermore, when an object appears in different camera
views, there are distortions in the textures such as color and lighting, which
might affect the attack efficacy. Using camera images also allows alternative
countermeasures such as feature squeezing and dimension reduction, which we
also study in this work.

2.3 Contributions

In this paper, we study the robustness of AV’s camera perception model in the
event of adversarial attacks. Then, we propose some countermeasures in order
to prevent AV’s camera perception model from being deceived by 3D adversarial
objects. In summary, this work makes the following contributions:
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– Studying the vulnerability of multi-camera system to 3D adversarial objects.
– Applying dimensionality reduction [7] and Feature Squeezing [29] to camera

images, as potential countermeasures.
– Fusing the above techniques into one unified pipeline for robust countermea-

sure.

3 Spoofing Multiple Cameras with Overlapping FOV

We use the original attack idea from Cao et al. [6] and extend it to check if it is
possible to spoof the perception module from various angles. The corresponding
object generation procedure is an optimization process, which is briefly explained
in the following subsections for completeness. Interested readers can refer to the
detailed methodology in [6]. The goal of this attack is to create an object that
is invisible to perception model, which is visualized in Fig. 1.

Fig. 1. Attack goal is to create an adversarial object that is invisible to camera model

3.1 Object Detection Output

Popular deep learning-based 2D object detectors can be classified into two cate-
gories: two-stage and one-stage detectors. For two-stage detectors, eminent net-
works are region-based detectors such as RCNN [13] and its more efficient vari-
ants, Fast RCNN [12] and Faster RCNN [23]. The two stages of these algorithms
can be divided into region proposal and object detection with bounding-box
regression. Two-stage detectors have good localization and object recognition
performance. However, regarding inference speed, one-stage detectors clearly
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outperform the two-stage counterparts. Some of the most prominent one-stage
detectors include YOLO and SSD. One-stage detectors jointly detect and localize
using one unified neural network, without the region proposal stage.

Due to their simplicity, one-stage detectors are suitable to be used in real-
time applications. Over the past years, recent improvements have enhanced one-
stage detectors’ performance, which makes them superior to two-stage ones in
terms of speed while preserving respectable accuracy. Some popular open-source
autonomous driving platforms employ one-stage detectors in their perception
modules, for example, Autoware [16] use YOLOv3 for their camera perception,
and Baidu Apollo [3] also utilizes the 3D version of YOLO for the same purpose.

As this attack targets YOLOv3 for camera models, we review a bit on its
output here. Given an image, YOLOv3 runs a single CNN to detect objects at
three different scale of the original image, aiming to handle small, medium and
big objects. At each scale, image is divided into S × S grid cells. And each cell
makes prediction for B different anchor boxes, whereas every box’s prediction
has 5 + C elements, representing:

– 4 values for box center offsets and width/height scales (x, y, w, h).
– 1 value for box confidence/objectness score P0.
– C values for class scores P1, P2, ..., PC .

Therefore, at every scale, the prediction’s output has the shape (S, S,B ×
(5 + C)). For YOLOv3, B = 3 because it uses 3 anchor boxes per scale. The
attack in [6] adds perturbation to the object’s shape so as to minimize the box
confidence score P0 in accordance with it, hence the object’s disappearance from
the camera object detector.

3.2 Formulation of Attack Objective

Fig. 2. Attack overview

Figure 2 visualizes the fundamental attack flow. An object is represented by its
face-vertex meshes (v−f). Let S denote the benign object and Sa the generated
adversarial object. Therefore, the objective of the optimization process is to
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change the position of the object’s vertices to minimize the box confidence to
less than a threshold for it to be detected. The objective function is:

J = La(Sa,Rl,Rc,P,M) + λ.Lr(Sa, S)

Hence, the optimization problem is:

min
Sa

J (1)

subject to:
Δ(Sa, S) ≤ ε (2)

in which Rl, Rc are differentiable rendering functions for LiDAR and camera
respectively, P is the pre-processing approximation function and M is the Multi-
Sensor Fusion algorithm. The total loss J is the weighted sum of the two losses:
adversarial loss La for achieving attack goal, or to minimize the bounding box’s
confidence value mentioned in Sect. 3.1, and realizability loss Lr for improving
surface smoothness, which is useful for 3D-printing.

Equation 1 is a constrained optimization problem, to solve it, Cao et al. [6]
uses Projected Gradient Descent (PGD). The optimal value for this problem is
achieved by optimizing the shape of the adversarial object Sa, more specifically
by changing its vertices’ position. The constraint Eq. 2 is to ensure that Sa still
has a recognizable shape to human’s eye and does not deviate too much from
the original object S.

3.3 Robust Adversarial Object Generation

To improve robustness for this attack, it is necessary that the model can be
fooled from various angles and distances. Cao et al. [6] apply Expectation over
Transformation [2]. Equation 1 becomes

min
Sa

E
t∼T

J

in which T is a set of random 3D transformation to Sa, including rotation and
position shifting.

In [6], the authors slightly shift the object’s yaw angles to 5◦, 10◦, 15◦.
However, we could not find the EoT implementation from their public source
code. Hence, we implement the EoT concept from scratch. First, we render
the benign object in front of one front-center camera image. Let (x, y, ψ) be
a set containing the distance between the object and the vehicle, the object’s
horizontal distance and the angle of the object’s yaw rotation, respectively. In
every iteration, we generate five random sets of changes {(Δxi,Δyi,Δψi)|i ∈
N, i ∈ [1, 5]} that are applied to the object’s original position, resulting in five
positions {(x + Δxi, y + Δyi, ψ + Δψi)|i ∈ N, i ∈ [1, 5]}. We select a wider
range for yaw rotation changes since we want to produce a robust attack against
multiple cameras, specifically −40◦ ≤ Δψi ≤ 40◦.
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3.4 Spoofing Multiple Cameras

It is quite challenging for an adversary to fool the camera model from various
viewing angles. In [20], the author demonstrated that a stop sign cannot consis-
tently fool the camera model if it is viewed from various angles. However, with
the use of EoT, the attack robustness is improved significantly. To check the
attack efficacy, we randomly select 100 frames from Argoverse dataset. In each
frame, we place the object at 3 m / 4 m / 5 m / 6 m in front of the front center
camera and 0 m / 1 m to the right, hence a total of 800 (100×4×2) scenarios. We
calculate the attack success rate (ASR) over all scenarios. We also experiment
with the benign case in which we render the benign fire hydrant at the same
positions as in the adversarial case. Then, we evaluate the benign detection rate
(BDR) for the fire hydrant. In the following evaluations, a good result is the one
with high benign detection rate and low attack success rate.

(a) front center (b) front right

Fig. 3. Multi-cam setup is more robust but not sufficient: in some scenarios adversarial
object can fool both cameras

Table 1. Attack evaluation on multi-cam setup

Cam setup Benign det. rate (%) Attack success rate (%)

Front center 75.75 78

Front center, Front right 98.38 43.75

Table 1 shows that using multiple cameras with overlapping FoV is more
robust than just relying on one camera. We think it is still not enough to guard
the camera model from being fooled. Figure 3 shows a scenario when both front
center and front right camera cannot detect the fire hydrant. Therefore, we
explore a few additional countermeasures in the next section.
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4 Additional Countermeasures

In above section we demonstrate that fusing multiple cameras with overlap-
ping FoVs improve system’s robustness, however, there are rooms for improve-
ment. In this section, we discuss a couple of orthogonal countermeasures namely,
dimensionality reduction and feature squeezing. We focus on manipulating image
feature such as reducing image’s dimension or color, since these solutions were
shown effective against adversarial examples in the literature. Furthermore, these
countermeasures modify input features, which directly improves data band-
width/storage and more straightforward than modifying the neural network
architecture.

4.1 Dimensionality Reduction

This defense is inspired by the effect of the curse of dimensionality, which is one
of the key causes facilitating the creation of adversarial examples. In [7], dimen-
sion reduction is demonstrated effective against adversarial objects, especially in
classification problem. This has not been tested in object detection task, specifi-
cally when adversarial examples are to affect the bounding box confidence score.
Since this can be a potential countermeasure boosting the perception module
robustness, we applied the dimensionality reduction flow to camera images and
studied its efficacy.

4.2 Feature Squeezing: Color Depth Reduction

There is little research on the effects of color to deep learning models. In [9], color
quantization, which reduces color depth, is shown to affect the performance of
convolutional neural networks. One hypothesis is color distortions affect the way
neural networks perceive the input, due to the shift in image distribution. Indeed,
according to [29], a neural network perceives the input space as continuous due
to its differentiable manner. However, computers only support discrete represen-
tation of data. A digital image is represented by a pixel array, where each pixel
is represented by numbers as a color code. Color bit depth is a feature in image
representation that might affect the performance of a neural network. Therefore,
we consider of color depth reduction as a feasible countermeasure mitigating the
effect of adversarial examples. In general, color depth reduction is bracketed
within a family of countermeasures termed as feature squeezing [29].

5 Experiments

5.1 Dataset

Due to the lack of real-hardware setup, we make use of readily available datasets.
We choose Argo AI’s Argoverse 2 dataset [28], which is both open-source and
provided by reliable institutions for our experiment. We use the Sensor Dataset



Adversarial Attacks and Countermeasures for Robust AV’s Perception 257

from Argoverse 2, which consists of 1,000 scenarios from 7 ring cameras, 2 stereo
cameras and 2 LiDARs. One notable feature from Argoverse dataset is that
each camera has overlapping FoV with it nearby camera. The overlapping areas
and the position shift between two neighbor cameras are big enough to make
two images disparate, which facilitates object detection from multiple viewing
angles. As visualized in Fig. 4, the ring front left camera and the ring front right
camera have significant overlapping FoVs with the ring front center camera. We
also considered other well-known datasets such as KITTI [11], Waymo Open
Dataset [26] and nuScenes [5]. However, there are some disadvantages of camera
features in these datasets that do not suit our approach. For example, KITTI
provides camera images with very limited position shifts, Waymo Open Dataset
and nuScenes do not really provide camera images with overlapping FoV.

(a) front left (b) front center (c) front right

Fig. 4. Views from Argoverse ring front cameras

5.2 Choice of Objects

The first step is to pick a 3D benign object that can be fed into our optimization
pipeline. Since we want to evaluate the object detection performance of one
particular model, we have to use the objects that appear in the training set on
which the model is trained. Here we evaluate our attack on YOLOv3 [22], which
is pre-trained on COCO dataset [18]. We prefer to choose objects with not too
complex texture and pretty symmetrical shape. There are quite a lot of websites
that provide 3D object models, such as https://free3d.com, which has both free
and paid 3D objects.

https://free3d.com
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After obtaining a 3D object, we slightly process it using Blender [8], an open-
source 3D graphics software.

5.3 Experimental Setup

Perception Models. This paper is inspired by the work from [6], which focuses
on white-box attack. The targeted object detection models we choose are Baidu
Apollo [3] for LiDAR and YOLOv3 [22] for cameras, the same as in original
work [6]. Baidu Apollo is one of the most prominent open-source AV platforms
and YOLOv3 is a popular real-time 2D object detector, which is still included
in open-source AV platforms such as Autoware.AI [16] and Baidu Apollo [3]. In
this study, our focus is on the vulnerability of multi-camera system, hence we use
Baidu Apollo v2.5 instead of more recent versions for the sake of better memory
usage. This is because the images and 3D point clouds in Argoverse 2 dataset
are much more detailed than those in KITTI, therefore, we need to utilize our
limited resources better.

Object Rendering and Placement. We experiment with attacking into the
ring front center and ring front right cameras using the Argoverse 2 Sensor
Dataset, as object can solely be visible to two cameras with overlapping FoVs at
a time. We do not make use of scenes from the two stereo cameras, as there is
no significant distinction between them. We render the object so that it appears
in front of the ring front center and ring front right camera. As the color of an
object also affects the detection performance, we mimic the typical color of real
fire hydrants, which is mostly red.

5.4 Evaluation

As mentioned in Sect. 3, we selected 100 frames from the Argoverse 2 Sensor
Dataset in which there are no objects with the same type as the injected object
and rendered it to the aforementioned positions. There are a total of 800 sce-
narios.

Dimensionality Reduction: One popular method to reduce dimension is Sin-
gular Value Decomposition (SVD). From Chart 5, it can be observed that dimen-
sionality reduction does not help much in guarding the model against adversarial
attack. With less singular values, the model fails to recognize not only adversarial
object, but also the benign one. Keeping just a small number of singular val-
ues drastically lowers the detection performance on both adversarial and benign
objects. Retaining more singular values is safer for detection performance, how-
ever, it is still not useful against adversarial objects.

Color Depth Reduction: We use color quantization technique to reduce a 24-
bit image to 8-bit image. The results are consistent for the reduction of various
number of colors. From Chart 6, it is obvious that color quantization does indeed
resist against adversarial objects, to some extent. Note that if the number of
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Fig. 5. Dimensionality reduction using SVD
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Fig. 6. Color depth reduction

colors is drastically reduced, then the object detection performance also drops
accordingly. Hence, a hybrid approach of combining both 24-bit and 8-bit image
is adopted (Table 2).

Table 2. Using both color depth reduction and multiple-camera system

Benign det. rate (%) Attack success rate (%)

Color depth Single-cam Multi-cam Single-cam Multi-cam

24-bit (orig.) 75.75 98.38 78 43.75

8-bit 51.88 84.38 39 17.6

24-bit, 8-bit 78.75 99 37.25 13

A Unified Countermeasure Pipeline: Due to the low effectiveness of dimen-
sion reduction, we only combine color depth reduction and multi-camera setup
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as one unified countermeasure. One downside of YOLOv3 is that it does not
perform well on small objects. In our study, the farther the object’s distance
to the vehicle is, the higher chance it is not detected by YOLOv3. This is the
reason why in the benign case, there are scenarios where the model misses the
fire hydrant, which results in a detection rate of merely 75.75%. Regarding color
depth reduction, our study shows that it can mitigate the ASR in adversarial
case. However, for benign fire hydrant, the detection performance drops dramat-
ically to 51.88% if we only use the 8-bit images. We decide to fuse the original
image (24-bit) and the 8-bit one together: whenever there is a detection happens
in either image - it is considered a true detection. Regarding the multiple-camera
setup, we find it more robust to guard the camera model than the single camera
setup. Our results show that combining multiple-camera setup and color depth
reduction technique together leads to a much more robust camera perception
system, results in 99% benign detection rate and just 13% attack success rate in
the adversarial case.

6 Limitations

Physical-World and Simulated Experiment. In this work, we extend the
original work [6] and use multi-camera perception system as an attack vector
as well as a feasible defense. One major drawback of our study is that we did
not try out our concept on a real AV in the physical world due to cost concerns.
Furthermore, we did not have the chance to experiment with AV simulators such
as LGSVL [24] due to limited time, and due to LG’s announcement that they
will suspend active development of SVL Simulator from 2022.

Multi-camera Object Projection. In Argoverse 2 Sensor Dataset, like other
public datasets, all the calibration parameters and matrices are provided along
the data itself. When we render the object with 3D information into 2D images
from the dataset, we have to make use of the calibration matrices. We observed
that when projecting the object onto side cameras, the final image might not
completely reflect the true position of the object. In our belief, it is likely because
there are some auxiliary parameters that we did not take into account or there
are some misalignment in the cross-camera projection. This flaw does not affect
the experiment, at large; nevertheless, it is still worth mentioning as we believe
this projection can be improved for the sake of precision.

7 Conclusions

This paper demonstrates our study on two defenses against 3D adversarial
object. Even though this attack originally aims to fool both LiDARs and cam-
eras, we focus on defending camera model since a robust camera model leads to
a robust perception system in general. Our study shows that feature squeezing
methods such as color depth reduction alleviates the attack efficacy, however, it
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increases the risk of model cannot perform well on other objects. If we also lever-
age original images, the results are promising. In terms of dimensionality reduc-
tion technique, we find it ineffective in our study. Turning to multiple-camera
setup, this paper shows that using multiple cameras with overlapping FoVs is
more robust compare to the single-camera setup. Furthermore, this setup is also
budget-friendly, unlike LiDARs, which are prohibitively expensive. Leveraging
color depth reduction and multiple-camera setup at the same time tremendously
diminishes attack success rate, from 78% down to only 13%, according to our
experiments. Considering the safety of AV perception models, we hope our con-
tributions pave the way for the development of effective and economical defenses.
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Abstract. Smart metering is a mechanism through which fine-grained
power consumption profiles of the consumers are collected periodically
in a Smart grid. However, a growing concern in this regard is that the
leakage of consumers’ consumption data may reveal their daily life pat-
terns as the state-of-the-art metering strategies lack adequate security
and privacy measures. Since Smart grid communication infrastructure
supports low bandwidth, it prohibits the usage of computation-intensive
cryptographic solutions. Among different privacy-preserving smart meter
streaming methods, data manipulation techniques can easily be imple-
mented in smart meters and do not require installing any storage devices
or alternative energy sources. While these proposals are attractive to the
privacy-aware smart meter design community, rigorous security evalua-
tions of such schemes highlight their infeasibility by determining indi-
vidual consumption patterns efficiently, thus compromising their privacy
guarantees. Keeping in mind the inadequacies of these schemes, we pro-
pose a load signature modification technique, namely Obfuscate-Load-
Signature that obscures the input power profile utilizing an information-
theoretic metric to bound the inherent private information present in
the metering stream. Along with providing the coveted privacy guaran-
tees, the privacy preserved output time series profile generated due to
our methodology also ensures excellent system utility by providing no
aggregation and billing errors over constant tariff. In summary, we high-
light how the aggregated metering information can be transformed to
obscure individual consumption patterns without affecting the intended
semantics of Smart grid operations. Finally, we present a rigorous exper-
imental validation of our proposed methodology using a real-life dataset
and suitable Hardware-In-the-Loop testbed.

Keywords: Smart Grid Privacy · Privacy preserving smart meter
streaming · Satisfiability Modulo Theory (SMT) · Hardware-In-Loop
test-bed

1 Introduction

Smart grids are large scale Cyber Physical Systems (CPS) comprising genera-
tion and distribution systems, metered loads, system state sensors and support
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for multiple real-time protocols. Modern electric grids implement distributed con-
trol techniques supported by a bi-directional communication network. The design
and implementation principles of this kind of CPS are significantly different from
other embedded systems because of the tight coupling of real-valued and dense
time system dynamics with software-based discrete automated control. Exponen-
tial growth in electricity consumption with limited generation capabilities calls
for efficient energy management and load balancing using real-time pricing con-
trol and demand response in Smart grids. Such primitives require advanced meter-
ing infrastructures which sample and transmit consumer consumption data using
smart meters and provide real-time metering signals for enabling different oper-
ational primitives like billing, load monitoring, demand response based energy
management, etc. [13]. While consumers’ fine-grained consumption data is essen-
tial for such functionalities, smart meter streams open up serious privacy concerns.
Meter reading streams can be analysed to determine consumers’ home presence,
appliance usage patterns, running time, “ON/OFF” status, etc., leading to severe
breaches of customer’s social behaviour and daily life routines [4,16]. Simultane-
ously, assorted non-intrusive load monitoring algorithms [15,32] can disaggregate
the power usage profiles over a period to estimate the power consumption read-
ings of the appliances and its corresponding timings, thus compromising the user
privacy. The National Institute of Standards and Technology (NIST) highlights
these potential privacy concerns that can arise from the collection and use of smart
metering data [1]. Also, as shown in [4], on April 28, 2013, no peak power consump-
tion reading for a Naperville resident signifies their home absence on that partic-
ular day, leaving them more vulnerable to burglary attacks. Due to such concerns,
customers are reluctant to participate in metering and providing their fine-grained
measurements to the utility providers (UPs). UPs propose incentives in the form
of 1) rewarding schemes by offering incentives to users for their participation,
2) Incentive-based Demand Response schemes to make users reduce their power
consumption whenever possible. Such incentive-based demand response schemes
mainly rely on trusted third parties (TTP), trusted platform modules (TPM) or
cryptographic primitives [14]. These solutions are prohibitive because of computa-
tional constraints in metering setups and also their allowance to TTP to track the
bidding history of all associated participants, which pose a severe threat to cus-
tomer privacy. The authors of [29] addressed these privacy issues by providing a
TPM-based solution using trusted remote entities to establish trust between cus-
tomers and UPs. However, apart from the accompanying cost, the demerit of the
proposal is the single point of trust which becomes a coveted target for attacks [33].
The above-mentioned problems motivate the search for lightweight privacy pre-
serving schemes which try to hide individual consumption patterns without using
the TTP, TPM or traditional cryptography. Various subsequent solutions pro-
posed the injection of random tolerable or zero average noise through components
like batteries into the original or aggregated meter readings to obfuscate the input
streams. Unfortunately, these schemes are not viable as they trade off aggregation
and billing errors for desired privacy. To address this, in [16], the authors propose
a low-cost privacy preserving streaming algorithm to modify consumer’s smart
meter reading profiles by quantifying and bounding the appliances’ information
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leakages, simultaneously keeping low aggregation and billing errors over constant
tariff. Here, if we see from the perspective of a näıve observer, the presence of many
to many mappings between the input readings and the corresponding privacy pre-
served output readings in [16] makes it difficult to break the privacy formulation.
However, the authors of [12] presented an efficient attacking strategy that helps
an adversary to reduce the input search space associated with each privacy pre-
served output reading drastically, thus violating its privacy claims. Furthermore,
they also leverage an interesting invariant property of the privacy transformation
to remove the unsatisfactory readings from these input reading choices. In this
paper, we mainly focus on the compromised fundamental building blocks of this
scheme and offer a more viable solution that can overcome its shortcomings. We
target minimizing the inherent private information present in the metering stream
and bound it by the desired privacy level irrespective of the adversarial model. As
a summary, the major contributions of this work are as follows:

1. We propose a new privacy preserving streaming algorithm, Obfuscate-Load-
Signature, which obscures appliance’s usage patterns to mitigate the attacking
methodology of [12] without incurring any aggregation and billing errors over
constant tariff. We also provide the necessary privacy analysis of the proposed
methodology to highlight its inherent strong privacy guarantees.

2. We perform a rigorous information-theoretic evaluation of our proposed
scheme against the proposal of [16] using real-life datasets to justify our pri-
vacy claims. Subsequently, we show the real-time feasibility and capability of
our proposed privacy preserving scheme to conceal individual consumption
patterns by executing it on a Hardware-In-the-Loop test-bed.

Organization. The rest of the paper is organized as follows. Sect. 2 reviews
the related works on this topic. We describe our adapted system model and
adversarial model in Sect. 3. We discuss the existing privacy preserving streaming
model of [16] and its drawbacks in Sect. 4. We follow this by presenting our novel
privacy preserving streaming algorithm to eliminate such kind of shortcomings in
Sect. 5. We provide evaluations of our scheme in Sect. 6. Finally, Sect. 7 provides
concluding remarks and future work directions.

2 Related Work

Over the past couple of decades, various privacy models are proposed for the
privacy preservation of the smart metering infrastructure. In this section, we
brief these conventional protection methodologies and subsequently highlight
their shortcomings as follows

Secure Communication. Many proposed solutions use Diffie-Hellman key
exchange and bilinear-mapping to establish secure communication flow between
the grid entities [10,19]. Furthermore, [8] used symmetric key and public key
cryptography to defend against semi-honest adversaries and malicious attack-
ers. This paper assumes that the keys are already located among all the smart
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meters and the UPs which makes the solution hard to scale and computation-
ally expensive. Attribute based encryption [17] and multiparty computation
based schemes [24,25] are also being used to mitigate these challenges under the
assumption of secured and authenticated communication channels among the
grid entities. Solutions based on secure communication between the customers
and the utility may provide the overall grid infrastructure better security guar-
antee, but fails to protect user privacy by leaking original power profiles to the
service providers.

Power Profile Reshaping. In an alternative line of work, the overall energy
consumption curve is reshaped using storage devices and alternative energy
sources (capacitor, batteries, solar cells) to hide the original power consumption
profile [28,39]. Though, these devices are used to maintain an obfuscated load
profile by periodically charging and discharging, they require high implementa-
tion and maintenance costs. Finally, reduction of the sampling rate of measure-
ments to generate less amount of fine-grained data has also been looked upon
as a solution [9]. However it potentially trades off the measurement accuracy.
Another possible way to ensure privacy in meter streams can be manipulation
of meter data without modifying the original power consumption.

Data Manipulation. Most of the data manipulation based privacy preserving
smart metering methodologies highly rely on partially homomorphic encryp-
tion [20,21,26,27] and paillier cryptosystem [38] due to their additive fea-
tures. Furthermore, the infrastructure described in [35] introduces a set of
functional entities named privacy preserving nodes to collect encrypted cus-
tomer data by exploiting the homomorphic properties of Shamir’s secret sharing
scheme [36]. The high computational cost of these aggregation based homo-
morphic schemes [11] and their inability to support many real-life Smart grid
applications [15] leaves major concerns for practical implementation with lim-
ited resources. In [6], tolerable noise has been inserted into smart meter reading
streams to guarantee the covet privacy. But data injection based privacy schemes
can hamper the grid utility by destabilizing grid functionalities such as billing,
load forecasting etc. TTP based anonymization solutions can also offer aggrega-
tion of fine-grained user level measurements before being sent to the UPs [7,30].
But due to the questionable trust of the TTPs, these proposals lack feasibility.
The data manipulation based privacy preserving scheme proposed in [16] tries
to overcome the above mentioned problems by introducing a privacy notion (ε,
δm)-Uncertainty to quantify and bound the information leakage through the input
metering stream, where ε, δ, m represent three input privacy parameters of the
privacy model. However, as shown in [12], the inherent privacy formulation of
this scheme can easily be compromised to obtain the original input meter read-
ings with very low guessing entropy. In subsequent sections, we highlight the
shortcomings of this scheme to design an alternate methodology that mitigates
such issues. However, we first present the adapted system and adversarial models
in the next section.
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3 System Assumptions

3.1 System Model

The system architecture we have assumed here is that each smart meter reading
is generated by summing up the power consumption by individual appliances of
each associated household. Now, it is evident that if this stream is sent to the
UPs in plaintext, then it can potentially leak critical information such as the
“ON/OFF” status of the appliances and the user’s home presence. We further
assume that these smart meters have sufficient computational capabilities to
execute privacy preserving streaming models (as in [16]). These models period-
ically convert the original power consumption profile of a household to privacy
preserved output readings and eventually hide the associated power information
of each consumer. The smart meters provide these privacy preserved reading
streams to nearby Data Concentrator Units (DCUs) as shown in Fig. 1. The
DCUs collect these energy usage profiles along with other parameters such as
time of day energy data, maximum demand etc., and transmit them to the UPs
through the communication channels. The UPs manage services such as billing,
electricity usage, load monitoring, demand response etc. using these information.
For example, Time-of-Use based (TOU) pricing plans are used as fixed tariffs by
the UPs in our assumed system model. In this pricing scheme, electricity tariffs
may vary at different times based on peak and off-peak power consumption.

Appliances

Smart meter

Appliances

Smart meter

Appliances

Smart meter

Appliances

Smart meter

Appliances

Smart meter
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Fig. 1. System Model comprising UP, DCUs, dedicated smart meters and its corre-
sponding appliances. The picture also depicts the attack points that make the system
vulnerable.

3.2 Adversarial Model

In our adapted layered Smart grid system model illustrated in Fig. 1, we highlight
the vulnerable attack points. Here, the intermediate communication nodes and
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the DCUs, are generally controlled by commercial enterprises, and their primary
role is to help the UPs attain Smart grid functionalities. In the adversarial model,
these nodes and UPs are regarded as semi-honest entities. They intend to collect
each consumer’s consumption data and sell it to another marketing business on a
regular basis. They may also preserve all of their consumption data and analyse it
to get more information about specific statistics. In addition, as shown in Fig. 1,
we assume that external adversaries can also eavesdrop on the communication
network or conduct collusion-based attacks amongst several nodes in order to
obtain fine-grained raw metering data.

4 Privacy Preserving Streaming Model of [16]

In this subsection, we discuss the privacy preserving streaming model proposed
in [16] and subsequently highlight the design drawbacks of this scheme based on
the attacking methodology discussed in [12]. We further use these shortcomings
to strengthen our privacy preserving metering design philosophy.

4.1 Description of the Privacy Preserving Streaming Model

A smart meter reading stream is basically the power consumption profile of
a household that can potentially leak critical information about appliances’
“ON/OFF” status and the consumer’s home presence. A privacy-preserved
streaming algorithm (e.g., in [16]) periodically converts the original power con-
sumption profile to privacy preserved output readings. We denote the vector
Rin = 〈Rin(1), · · · , Rin(j), · · · , Rin(k)〉 as a k length meter reading stream
obtained over a time interval of length kh (k ∈ N). The proposed privacy
scheme of [16] introduces a privacy formulation named (ε, δm)-Uncertainty to
quantify and bound each appliance’s information leakage by desired privacy
levels. Here ε, δ, m are the three privacy parameters of the proposed model
and are unknown to the adversary. The privacy preserved streaming algo-
rithm of [16] generates a (ε, δm)-Uncertainty compliant output stream Rout =
〈Rout(1), · · · , Rout(j), · · · , Rout(k)〉. This resulting output stream satisfies four
properties as summarized below:

– Individual Reading Boundness: For each meter reading, this property
tries to bound the information leakage through every associated appliance
by the input privacy parameter ε. This ensures that the information leakages
through each output reading of Rout for all the appliances are bounded by
the input privacy parameter ε.

– m-Consecutive Individual Reading Boundness: For sequential usage
patterns in multiple readings, the information leakage can be higher than
individual reading leakages due to their mutual correlations. This property
aims to bound the information leakage through each appliance due to m
consecutive readings by the privacy parameter δ.
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– m-Consecutive Pairwise Reading Boundness: Multiple appliances can
run sequentially or simultaneously. In such cases, the information leakage
can be higher than their original leakages due to their mutual correlation in
consecutive readings. This property ensures that these information leakages
for all the appliances are bounded by the privacy parameter δ.

– Closest Safe Reading: This property ensures lower reading errors between
original input readings of Rin and its corresponding privacy preserved output
readings from Rout. Here, each Rout(j), ∀j ∈ [1, k] is the closest reading from
Rin(j), ∀j ∈ [1, k], such that the output reading Rout(j) satisfies the above
three properties of (ε, δm)-Uncertainty privacy notion.

Furthermore, to minimize the aggregation and billing errors under a fixed
tariff, two possible roll over schemes, Cyclic Reading Conversion (CRC) and
Dynamic Reading Conversion (DRC) are proposed. Please refer to [16] for more
details on these roll over techniques. However, for the current work detailed
explanation of these schemes is not necessary.

Observations: From the privacy model presented above, we can deduce that
for a näıve observer, as the Rout(j) is associated with a large number of possible
combinations of the appliances, the number of possible input readings will be
similar in size to the candidate reading set. Due to such many-to-one possible
mappings between the input readings and the corresponding output readings, it
is very difficult for any supervised or unsupervised Non-Intrusive Load Monitor-
ing (NILM) tool to train or guess the precise input stream correctly. On the other
hand, with an increasing number of appliances, the size of the candidate set will
also increase exponentially. These factors show that the above proposal helps
customers maintain privacy, albeit at some incremental cost of the customer’s
billing cycle over a constant tariff. However, in the next section, we explain the
drawbacks of such approaches (as discussed in [12]) in the formulation of privacy
preserving metering solutions.

4.2 Drawbacks of Privacy Preserving Streaming Model of [16]

In this section, we highlight the key points that have made the existing privacy
preserving scheme of [16] vulnerable to the attacking methodology proposed
in [12]. We jot down these loopholes as follows.

– Bounding Information Leakage from each Meter Reading: The Indi-
vidual Reading Boundness property tries to hide the information leakage from
each input reading by converting each reading to privacy preserved output
reading. The leakage through the corresponding output reading is validated
against a predefined privacy parameter ε. However, this approach comes with
a great cost. If any privacy formulation follows this approach, the adversary
can easily compute the lower bound of the privacy parameter ε. To obtain the
lower bound of ε, the adversary can find the maximum achieved information
leakage among all the output readings. Hence, the initial privacy condition
of (ε,δm)-Uncertainty is easily compromised. This obtained lower bound on ε
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can later be utilized to find the unsatisfied readings, thus reducing the initial
search space for each input reading, from the candidate reading set to this
unsatisfied reading set.

– Reducing Reading Errors by Obtaining Closest Readings: Many pro-
posed privacy preserving approaches try to keep the reading errors between
input readings and their corresponding output readings as minimal as possi-
ble while satisfying the required privacy formulation. This property helps to
maintain better system utility, such as lower aggregation and billing errors
over constant tariffs. However, the closest safe reading approach provides very
high “Coefficient of determination” values (as shown in Table 1 in Sect. 6)
between the input and output reading stream, signifying greater information
leakage. This property also helps the adversary to find the closest readings
from each output reading that do not satisfy the (ε,δm)-Uncertainty privacy
formulation, thus constructing a possible candidate set of input readings for
each output reading [12].

– Invariant Property of ( ε,δm)-Uncertainty Privacy Notion: As high-
lighted in [12], the ordering among the (ε, δm)-Uncertainty compliant output
reading pairs are preserved for the corresponding input reading pairs in two
possible scenarios1. These relation orderings help the adversary to remove
more unsatisfactory readings from the possible input candidate reading sets;
thus violating the inherent privacy guarantees of (ε,δm)-Uncertainty privacy
formulation.

Keeping these inadequacies in mind, we motivate our proposed formulation and
subsequently, in the next section, present a new privacy-preserving smart meter-
ing algorithm, Obfuscate-Load-Signature to counteract those vulnerabilities.

5 Proposed Privacy Preserving Smart Meter Streaming
Algorithm

In this section, we describe our proposed privacy preserving meter stream-
ing methodology that mitigates the above-discussed drawbacks of the existing
scheme [16] and also provide the necessary privacy analysis of the proposed
scheme.

5.1 Privacy Formulation

We propose an alternative method to generate privacy preserved output streams
without inducing any billing or aggregation error over a constant tariff by using
a Satisfiability Modulo Theories (SMT) solver. Our approach is based upon a
load signature modification technique that obfuscates the original power profile
of the meter by inducing noises in the meter readings introduced through the
SMT solver. This helps us to create an undetectability problem [31] that hides the

1 Please refer to [12] for more details on these conditions.
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original input meter readings from the adversary. Simultaneously, from a privacy
point of view, we consider that the privacy is protected when the adversary is
not able to distinguish among the original load events of the appliances, given an
output power profile. If the amount of private information available for learning
is measured, then the information leakage can be bounded by the desired level,
independent of the attacking mechanism. The information-theoretic metric helps
us to quantify this inherent information available for exploitation by measuring
the amount of original information present in the noisy data. If the protection
method satisfies privacy in information-theoretic sense, then the achieved pri-
vacy can be considered acceptable. Hence, it is useful to quantify privacy using
information-theoretic metrics. In our work, we consider coefficient of determina-
tion (denoted as R2) to quantify the obtained privacy for our proposed scheme.
For a simple linear regression of the form Rout(j) = α+βRin(j)+σ, the predicted
value R̂out(j) = α + βRin(j) is affected by some noise σ, where the α and β are
defined by the intersection point and the slope factor [22]. We try to analyze
the degree to which Rout(j) predicts Rin(j) using this linear model [18]. Using
simple linear regression, it can be shown that the value of R2 is the same as of
the square of the correlation coefficient [22]. For the above described regression
and predicted model, we can write the coefficient of determination as follows.

R2 =
[
∑k

j=1(Rin(j) − Rin)(Rout(j) − Rout)]
2

∑k
j=1(Rin(j) − Rin)

2 ∑k
j=1 (Rout(j) − Rout)

2
(1)

Here, Rin and Rout signify the means of the input reading stream and the corre-
sponding output reading stream respectively. R2 = 1 states that the predictions
of the model are fully explained, although R2 = 0 indicates highest privacy
protection. With increasing noise, the value of the coefficient of determination
decreases thus providing higher privacy. Due to the comparatively high compu-
tation cost of evaluating R2 for higher order regression models, we reduce the
privacy metric function using the described linear regression model only. Fur-
ther, the property of zero aggregation error between the input and output power
profiles implies that the means of the corresponding profiles are equivalent. This
helps us to rewrite Eq. 1 as follows.

R2=
[
∑k

j=1(Rin(j)Rout(j)) − kR
2

in]
2

(
∑k

j=1 Rin(j)2 − kR
2

in)(
∑k

j=1 Rout(j)
2 − kR

2

in)
(2)

In the next section, we utilize Eq. 2 to quantify and bound the obtained privacy
level from the privacy preserved output stream generated through our proposed
algorithm.

5.2 Detailed Description of the Proposed Algorithm

We present the high level strategy of our proposed privacy scheme in Algo-
rithm 1 to generate privacy preserved smart meter output streams that over-
comes the three vulnerabilities mentioned in Sect. 4.2. The algorithm takes an
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Algorithm 1. Obfuscate-Load-Signature()
1: Inputs: Pricing signal P , input reading stream Rin, privacy parameter τ , metering stream size

k;
2: Output: Privacy preserved output stream Rout;
3: Initialize: TotalPrice ← 0, sumInOut ← 0, squareIn ← 0, squareOut ← 0, bounds ←

true, privacyMetric ← 0 ;
4: TotalPrice ← Total billing of input stream Rin under the constant tariff P ;
5: aggregate ← Overall consumption of the input stream Rin;
6: maxInput ← Maximum reading in Rin;
7: minInput ← Minimum reading in Rin;
8: noiseInBounds ← noiseGenerator() ; � noiseGenerator() provides a random number

suitable for cryptographic use
9: for j = 1; j <= k; j++ do
10: bounds ← bounds ∧ ((minInput − noiseInBounds) ≤ Rout(j)) ∧ (Rout(j) ≤ (maxInput +

noiseInBounds));

11: φ ← assert((sum(Rout) = aggregate) ∧ ((
∑k

j=1(Rout(j) × P (j))) = TotalPrice) ∧ bounds);

12: while (1) do
13: if Rout ← isSatisfiable(φ) then privacyMetric ← computePrivacyLevel(Rin, Rout);
14: if privacyMetric ≤ τ then return Rout;
15: φ ← φ ∧ ¬Rout ;

16: function computePrivacyLevel (Rin, Rout)
17: for j = 1; j <= k; j++ do
18: sumInOut ← sumInOut + (Rin(j) × Rout(j));
19: squareIn ← squareIn + Rin(j)2;
20: squareOut ← squareOut + Rout(j)

2;

21: privacyMetric ← (sumInOut − kR
2
in)

2

(squareIn − kR
2
in)(squareOut − kR

2
in)

;

22: return privacyMetric;

input stream Rin, constant pricing signal P , data window k and the privacy
parameter τ as inputs and generates privacy preserved output stream Rout.
With increasing privacy levels, the aggregation and billing errors due to the
privacy algorithm of [16] increase. Contemplating this scenario, we formulate
separate SMT clauses to maintain the total aggregation and billing produced
through the output stream, same as the corresponding input stream. We evalu-
ate the total billing and power consumption over the data window of the input
stream in Lines 4 and 5 respectively of Algorithm 1. Thereafter, we compute the
maximum and minimum power consumption of the input stream to restrict the
solver’s non-deterministic choice space by bounding possible upper and lower
values of each reading in the output stream. However, direct assignment of these
bounds may leak some information regarding the minimum and maximum val-
ues of the input stream as the transformed readings of the output stream never
cross the envelop of the actual input stream. Hence, we need to obfuscate these
bounds in the resulting output streams such that the adversary can not obtain
any information regarding the corresponding input reading streams. In this con-
text, function noiseGenerator() (Line number 8) utilizes /dev/urandom that
provides an interface to the OS-specific randomness source. It produces a ran-
dom data from a constantly reseeded Deterministic Random Number Generator
(DRNG) which is cryptographically secure [23]. We use this number as a noise
to formulate the bounds for the output readings by subtracting and adding this
noise to the minimum and maximum values of the input stream. Such relational
constraints for all the readings are collected as SMT clauses in Lines 9-10. The
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SMT formula φ, thus created using the above clauses (Line 11), is solved to find
satisfiable assignments in the while loop of Lines 12-15. For each unique solution,
we compute our privacy metric (Lines 17-21), the coefficient of determination
using Eq. 2 to quantify the achieved privacy level from the output stream w.r.t.
the original metering stream. We check its boundness against the desired privacy
level τ that can be adapted in run time. Essentially, for each unsuccessful solu-
tion, we add the negation of the result as a clause to the solver to get a different
answer than before, as shown in Line 15. Successful computation of Algorithm 1
finally provides a privacy preserved output reading stream Rout satisfying the
required privacy formulation. In the next section, we proceed with the privacy
analysis of our proposed scheme.

5.3 Privacy Analysis

Here, we analyse the privacy guarantees of our proposed privacy preserved smart
metering scheme based on three unique properties as explained below.

– Protected Privacy Level: As discussed in Sect. 4.2, the privacy parameter ε
of the privacy notion (ε,δm)-Uncertainty is easily compromised due its unsound
formulation. Here, we do not consider the information leakage from each
output reading; rather, we focus on altering the whole meter reading stream
by bounding the information leakage with the desired privacy level. As a
result, the privacy parameter τ can not be compromised by utilizing the
attacking methodology of [12].

– Unpredictability of Output Profiles: The existing privacy formulation
of [16] based on the (ε,δm)-Uncertainty privacy notion is likely to provide
the same privacy preserved output profiles for each input stream in multi-
ple independent runs of the algorithm (due to absence of randomness in the
privacy formulation). As a result, the resulting output streams for multiple
corresponding input profiles are easily distinguishable. However, in our pro-
posed privacy formulation, the resulting output streams for the same input
profile vary due to the solver’s non-deterministic choices in each indepen-
dent run of the algorithm. We provide the empirical evaluation of the same
in Sect. 6.3.3. This phenomenon hinders the adversary’s capability to utilize
the previously discussed shortcomings of (ε,δm)-Uncertainty privacy notion,
such as the closest reading based approach and the invariant property of the
scheme. Hence, strong privacy protection can be guaranteed along with pro-
viding higher utility (with respect to aggregation and billing errors) for the
Smart grid infrastructure.

– High Computational Complexity: Algorithm 1 provides a very high com-
putational complexity against identifying the correct metering stream from
the generated privacy preserved output stream. Our load signature modifi-
cation technique does not guarantee the uniqueness towards determining the
satisfiable solutions during privacy transformation. Thus, for a data window
of size k, if an attacker tries to construct a rainbow table to find the possible
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multiset that could generate an output stream during the execution of pri-
vacy preserving streaming algorithm, the table size will have a loose upper
bound of 2nk which is significantly large, where n is the number of available
appliances and 2n is the total number of unique power consumption readings.
It is to be noted that a rainbow table is a precomputed table that is generally
used to crack password hashes. For this context, the adversary constructs this
table to identify the original input reading stream given the output stream.
We assume that the attacker can find a way to access the table efficiently.
Given the output stream, let us consider M to be a list of multisets that can
be used as inputs to generate the same output stream. The attacker will try to
find these possible multisets in the rainbow table from the observed stream.
Let M [j] be the jth possible input stream that can generate the corresponding
output stream during the execution of the privacy preserving algorithm. We
consider that, this input sequence contains t number of different values with
multiplicity mi, ∀i ∈ [1, t]. From the concept of permutations of multisets, we

know that the number of possible permutations of M [j] is
(
∑t

i=1 mi)!
∏t

i=1 mi!
. For a

simple scenario where every value of the input sequence is different from each
other, there exists up to k! permutations for each candidate solution M [j].
Therefore, this ensures that even if an attacker seeks to use the rainbow tables
to identify the probable input multiset that resulted into the output sequence
during privacy transformation, they still cannot perceive the exact ordering
of the values in the input reading stream.

6 Experimental Results

In this section, we describe the experimental setup and provide results for eval-
uation of our proposed privacy preserving scheme Obfuscate-Load-Signature as
described in Sect. 5.

6.1 Experimental Setup

We analyze our proposed privacy preserving model using the UK dataset pro-
vided by Richardson et. al. [34]. For the present work, the sanitized dataset is
obtained from the UK data archive after following the due process. It is available
for academic purposes and has been used for smart meter research purposes in
many existing works (like in [16]). This dataset consists of 22 consumers’ con-
tinuous smart meter energy consumption profile over 2008 and 2009 in East
Midlands, UK with a sampling period of one minute. To highlight the efficiency
of our scheme, we implement the existing privacy scheme of [16] using a total 25
number of appliances, each with different consumption rates. We choose three
distinct combinations of (ε, δ,m) i.e. (0.7, 0.7, 3), (0.6, 0.6, 3), (0.5, 0.5, 2) for our
experiment to show the impact of different privacy levels with respect to our
proposal. We consider the power profiles of the first consumer on 1st, 4th, 5th,
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6th, 10th January 2008 from 2:03 AM to 2:17 AM for our experimental pur-
poses (same as [12]). We use these five power profiles to generate different output
streams leveraging the privacy algorithm of [16]. For fixed tariffs, Time-of-Use
based pricing plans offered by Alectra utilities [5] are used in our methodology.

6.2 Platform

All the experiments were performed on a system with Intel i5 2.20 GHz processor
and 4GB RAM, running Ubuntu 18.04 LTS based Operating System.

6.3 Evaluation of “Obfuscate-Load-Signature” Scheme

Here, we evaluate our proposed Obfuscate-Load-Signature procedure using the
UK dataset mentioned in Sect. 6.1 and our Hardware-In-the-Loop (HIL) simu-
lation test-bed to illustrate its effectiveness and real-time performance.

6.3.1 Evaluation Using the UK Dataset: We consider the previously men-
tioned five power profiles of the UK dataset to evaluate our proposed privacy
preserving streaming method Obfuscate-Load-Signature (Algorithm 1). We exe-
cute Algorithm 1 with these five power consumption profiles with privacy levels
τ = 0.5, 0.4 and 0.3. We can execute the same for any other privacy levels
too. We then compare the resulting coefficient of determination values of these
privacy preserved streams against the output streams computed using the pri-
vacy model of [16] under the privacy level of (0.5, 0.5, 2). The privacy scheme
of [16] when applied to these five power profiles, guarantees maximum privacy
protection under the privacy level of 0.5 (as stated in [12]). Thus, we consider
the privacy level of 0.5 and both CRC and DRC roll over schemes in this sce-
nario. Table 1 lists the coefficient of determination values for both the privacy
schemes under different privacy levels as mentioned. The values obtained from
the scheme in [16] are significantly higher than our proposed Algorithm 1 as
shown in Table 1. This signifies lesser privacy protection using the methodology
of [16] compared to our Obfuscate-Load-Signature scheme.

Table 1. “Coefficient of determination” values for both privacy schemes under different
privacy levels.

Privacy scheme Privacy level Coefficient of determination

January 1 January 4 January 5 January 6 January 10

(ε,δm)-Uncertainty [16] ε = 0.5, δ = 0.5 (CRC) 0.99967 0.99003 0.59395 0.99982 0.92683

ε = 0.5, δ = 0.5 (DRC) 0.99929 0.98997 0.54545 0.99988 0.87503

Obfuscate-Load-Signature
(Proposed privacy
algorithm)

τ = 0.5 0.34819 0.02187 0.0 0.21091 0.00979

τ = 0.4 0.10453 0.02187 0.0 0.22376 0.00979

τ = 0.3 0.11722 0.02187 0.0 0.22920 0.00979
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Fig. 2. Our IEEE 5-bus power system model with connected loads.

6.3.2 Evaluation Using Hardware In the Loop (HIL) Test-bed: We eval-
uate the real-time performance of our privacy scheme by employing a Hardware-
In-the-Loop (HIL) simulation test-bed. Our experimental HIL is an OPAL-RT
real-time simulator connected with a PC having RT-LAB and Matlab/Simulink
software. The host PC based RT-LAB software allows users to edit and modify
various power system models, view model data, execute the model and load it
into the target simulator i.e. the OPAL-RT.

Power System Modeling Details: For our experiments, we implement a five-
bus power system network as shown in Fig. 2. The proposed microgrid power
system model comprises three important parts - 1) generation units, 2) a five-bus
power system distribution network [2], 3) electrical loads consisting of a Vehicle-
to-Grid (V2G) charging system and three building loads. The generation unit
consists of a 150 MW power plant and a 9 MW wind farm. The power plant
is created using a 13.8 kV synchronous generator which is connected with the
120 kV bus through a 13.8 kV/120 kV transformer. The simplified model of
the wind farm produces electrical power using a 9 MW asynchronous generator
which is connected to a 25 kV distribution feeder, exporting power to the 120
kV network. The V2G block describes a system where the grid communicates
with plug-in electric vehicles to exchange demand response services either by
supplying the electricity back to the grid or reducing their charging rate. In
Fig. 2, we have multiple electrical vehicles in the base model of V2G system, each
having an electrical capacity of 40 KW. Along with that, the grid system consists
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of three buildings, each having multiple appliances. As shown in our model, these
appliances comprise heavy loads like air conditioner (3800 W), electric heater
(18000 W), electric dryer (3000 W) etc. along with lighter loads like Incandescent
bulb (100 W). The power consumption values have been taken from the standard
home appliances power consumption table [3]. We have elaborated this in Fig. 2
for Building 1 that has been used for our experiment.

HIL Test-Bed: Each building is fitted with one smart meter which measures
and transmits the aggregated power consumption of building appliance loads
in each sampling period. The purpose of this experiment is to generate time
stamped sequences of aggregated building load consumption profiles and process
them in real-time on a low power single board compute (SBC) platform which
is suitable for packaging with privacy enabled future metering systems. The
electrical modeling of building loads and real-time power system simulation helps
us in that objective rather than always relying on third party metering dataset.
Here, we consider one of the building loads in our test-bed. For this building
model, we provide a variable load profile signal for switching on/off each of the
building appliances. At each such sampling instant, the subsets of loads which
will be “ON” are selected by the variable load profile input as shown in Fig. 3 in
“User Interface” block. Accordingly, the overall load consumption is aggregated
and output as a real-time electrical signal by the OPAL-RT HIL system. These
active power measurements are passed to an analog to digital converter (ADC)
through a DB37 connector of the OPAL-RT using its analog output I/O ports,
thus generating a time stamped stream of aggregated measurement data. This
serves as a real-time input to our privacy transformation (i.e. Algorithm 1)
executing on a Raspberry pi 4 model B SBC. Given an input reading stream of
length k, obtained over some time interval kh (where h is the meter sampling
period), we consider our privacy preserving transformation scheme feasible if the
execution time required for generating the privacy preserved output stream is
bounded by kh.

Variable load
profile

IEEE 5-bus electric
system model with

loads

Analog to
Digital

Converter
Algorithm 1

Real time power
measurements

Time stamped Input
Stream Output Stream

Raspberry Pi Platform

Privacy parameter (

Fig. 3. Overview of HIL setup.

Measurements and Evaluations: For the current smart metering system, the
sampling interval and stream size are set as h = 1 sec and k = 15 respectively.
Using our setup, we generate a stream of 195 measurements and execute Algo-
rithm 1 in real-time for thirteen consecutive instances with a periodicity of 15
sec for τ values of 0.05 and 0.2. The average execution time of the algorithm in
each case was found to be 1.0789 and 1.0498 seconds for τ = 0.05 and 0.2 respec-
tively. This justifies the suitability of our mechanism in a real-time deployment
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(a) Privacy preserved output stream with τ = 0.05

(b) Privacy preserved output stream with τ = 0.2

Fig. 4. Results of Algorithm 1 in HIL test-bed

setting. Moreover, with this solution, τ can be a tunable parameter which can
be set depending on the criticality of building loads. Also, for the same building,
τ can be adapted in run time based on privacy critical operational periods.

Figure 4 provides the generated input stream of 195 readings and the cor-
responding privacy preserved output streams computed in real-time. Figure 4a
and Fig. 4b show the output streams generated by Algorithm 1 for privacy levels
of τ = 0.05 and τ = 0.2 respectively. The privacy preserved output streams pre-
serve the total aggregation and billing under a constant tariff, whereas previously
reported privacy algorithms like [16] incurs such errors.

6.3.3 Unpredictability of Output Profiles: Let us consider an original k-
length smart meter reading stream 〈x1, x2, · · · , xk〉, obtained over k succes-
sive sampling windows. Upon executing our proposed Obfuscate-Load-Signature
scheme on this input stream, a k-length privacy preserving output stream is
generated. We perform L such independent executions of our scheme, such that
in the ith execution, the resulting output stream 〈xi

1, xi
2, · · · , xi

k〉 is produced.
After obtaining these L number of output reading streams, we can construct L
length output traces associated with each original input reading xj , ∀j ∈ [1, k].
For the original meter readings xj , this output trace can be represented as
〈x1

j , x2
j , · · · , xL

j 〉. As discussed in Sect. 5, due to the solver’s non-deterministic
choices, these resulting output traces 〈x1

j , x2
j , · · · , xL

j 〉 are likely to be unique
and significantly different from the original meter reading xj .
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Empirical Evaluation: For this experiment, we consider a k = 15 length
meter reading stream generated through our HIL test-bed and executes L =
5000 independent runs of our proposed Obfuscate-Load-Signature scheme on this
power profile. Figure 5 illustrates the privacy preserved output traces for the
original meter readings x1 = 22.122 KW and x15 = 8.812 KW, along with the
ranges of their privacy preserved traces. As shown in Fig. 5, the original meter
readings are significantly distinct from their privacy preserved output traces.
Simultaneously, the output traces are also spread over a wide range of possible
values. These properties in the output profile hinder the adversary’s capability
to execute various attacking methodologies. For example, the invariant property
present in the existing metering scheme of [16] is absent from our proposed
methodology. As a result, the attacking philosophy of [12] will not be applicable
against our proposed Obfuscate-Load-Signature scheme.

Fig. 5. Privacy preserved output traces of the first (22.122 KW) and last meter (8.812
KW) readings in 5000 independent executions of Obfuscate-Load-Signature scheme.

7 Conclusion and Future Work

In this paper, we provide a novel SMT based privacy preserving transforma-
tion without aggregation and billing errors over constant tariff, a feature absent
in existing schemes. The proposed Obfuscate-Load-Signature scheme also elimi-
nates the privacy vulnerabilities present in the existing scheme of [16]. We also
highlight its strong privacy guarantees against existing attacking methodolo-
gies (such as [12]) on non-cryptographic smart metering schemes. Finally, we
demonstrate its usefulness using suitable statistical measures and effectiveness
in real-time executions using the HIL test-bed.

The performance of Real Time Pricing (RTP) algorithms are known to be
sensitive to disturbances in measurement data [37]. We consider characterizing
the impact of such transformations on the performance and stability of RTP
algorithms as a possible future work.
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Abstract. Field-programmable gate arrays (FPGA) are increasingly
used in network security applications for high-throughput measurement
solutions and attack detection systems. One class of algorithms that
are heavily used for these purposes, are approximate membership query
(AMQ) data structures, which provide a mechanism to check, with a cer-
tain false positive rate, if an element is present in the data structure or
not. AMQ data structures are used, for example, in distributed denial-
of-service (DDoS) attack detection. They are typically designed to work
efficiently on general-purpose processors, but when the high through-
put of FPGAs is required, hardware-friendly implementations of AMQ
modules are indispensable. A hardware-unfriendly AMQ module would
considerably slow down the overall system and compromise the security
when it is required to operate at line rate in a high-bandwidth network.
Hence, choosing a suitable data structure and hardware architecture is
of utmost importance. In this work, we propose FPGA architectures for
various well-known AMQ data structures and analyze their hardware
implementation properties. This work serves as a guideline on FPGA-
based AMQ architectures for researchers and practitioners working on
high-throughput network security applications on FPGA.

Keywords: Approximate membership query · FPGA · Network
security

1 Introduction

As of 2022, every day approximately 5.6 billion Google searches are made, 90
million photos are shared on Instagram, 720,000 h of videos are uploaded to
YouTube, 500 million tweets are posted, and a total of 2.5 Quintilian bytes of
data are generated [1]. Increasing data rates induce hefty storage and computa-
tion costs. This issue becomes even more important in networking applications
where data need to be processed at line rate, i.e., the rate at which data are
transmitted in the network. The advent of Terabit Ethernet, i.e. Ethernet with
speeds above 100 Gigabits per second (Gbps), leads to stringent throughput
constraints, which are difficult to meet on resource-limited platforms.
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Approximate membership query (AMQ) data structures are used for lookups
in networking and database applications with strict speed requirements, memory
limitations and/or power constraints [34]. As opposed to exact lookup architec-
tures, AMQ algorithms have a small false positive rate. In a typical application,
as shown in Fig. 1, AMQ data structures provide an estimate of whether an ele-
ment (s), also called a key, is present in the data structure (S) not. AMQ data
structures can be employed standalone when it is only necessary to know the
presence of the key s. When a value needs to be read out as well, AMQ solutions
are used in key-value storage mechanisms.

Fig. 1. Role of an AMQ data structure for lookup applications

In distributed denial-of-service (DDoS) attack detection systems, the lookup
(AMQ) module checks if the parsed flow identifier or flow ID (f) of the incoming
network flow is present in the blacklist or not. This is shown in Fig. 2. The
flow is dropped if f is present in the blacklist. If f is not present, a detection
module, based on, e.g., pattern matching, probabilistic algorithms or machine
learning, examines the flow. Here, false positives of the AMQ lookup structure
causes legitimate flows to be labelled as malicious. Therefore, the false positive
rate (FPR) of the data structure becomes as important as speed. An example of
a DDoS detection system that relies on a setup as shown in Fig. 2, is proposed
by Scherrer et al. [33].

Membership queries or dictionary lookups have always been a challenging
problem. This is even more so when the number of unique elements to be stored,
commonly referred to as the cardinality, is very large. AMQ structures perform
very well when the data set is static and the cardinality is known upfront. In this
paper, our focus is on single and static data sets where the cardinality is already
known or predictable. Data structures based on this criterion are the prime
requirement for applications such as large flow detection mechanisms, which are
used for DDoS detection, where measuring the network flow is stipulated to a
specific measurement epoch. In network applications, the flow ID is the key for
the lookup and the size of the flow ID is fixed. An IPv4 flow ID is characterised
by the 5-tuple 〈source address, destination address, source port, destination port,
protocol〉 and can be any combination of the 5-tuple. In this paper, the flow ID
is taken as a combination of source and destination IP addresses and ports. We
ignore the protocol field to keep the size of the flow ID to 96 bits. This means
that the key input to the lookup or key-value storage mechanism is 96 bits in
the scenario that we consider.
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Fig. 2. Role of AMQ data structures for lookups in network attack detection systems

1.1 Challenges in Membership Query Data Structures on Hardware

On software platforms, a dictionary is the easiest solution for storing data as
key-value pairs. However, a data structure similar to dictionaries would be very
inefficient on hardware. The best available solution without any loss in accuracy
for lookup data structures are Content Addressable Memories (CAM), which are
too expensive for resource-constrained devices [31]. The operating frequency of
a CAM decreases with increasing size, which is a problem when large amounts
of data need to be processed at line rate. A large improvement over exact data
structures, like CAMs, is offered by probabilistic lookup and key-value storage
data structures, i.e., those that can have a small false positive rate in exchange
for reduced lookup delay, resources and power consumption. Examples of proba-
bilistic data structures are hash tables (in which false positives can be eliminated
through chaining mechanisms), Cuckoo hash tables, and other hash-based tech-
niques. Most AMQ data structures are improved versions of Cuckoo filters, which
are derived from Cuckoo hash tables, or Bloom filters.

Even though probabilistic architectures come with many advantages such
as lower memory requirements and lower lookup latency, the accuracy and
hardware-friendliness are an important concern. When it comes to processing
data at line rate on hardware, a number of challenges have to be addressed in
order to maximize the accuracy and the lookup speed, and minimize the memory
utilization. Data structures such as hash tables employed with linear probing or
chaining as collision resistant mechanisms, would be difficult to implement on
hardware as the size of the table would keep changing and the feasibility of
pipelining is almost naught. Dynamic insertion is another requirement for net-
work security applications, where a full set of flow IDs are not available at the
time of construction and new flow IDs need to be added at runtime. Hence, static
architectures are not preferred, unless all the required keys or rules which are to
be stored are already available such as in regular expression matching.

In this work, we analyze existing probabilistic architectures to find a suitable
probabilistic alternative for CAMs on hardware for network security applications.
Our approach is to evaluate how suitable the algorithms are to be transformed
into a hardware architecture, with a specific focus on achieving a speed-up on
FPGA. The efficiency in software of these algorithms does not necessarily give us
an idea of which algorithms perform the best in hardware. There are a plethora
of such data structures available and analyzing each and every data structure
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would be too much for this paper. Nevertheless, most of the well-performing
data structures are derived from Bloom filters, Cuckoo filters, or hash tables, so
we focus on the efficiency of these basic data structures in hardware. Our goal
is to evaluate the hardware friendliness in terms of lookup latency, operating
frequency, resource consumption, and suitability for pipelining.

2 An Insight into AMQ Data Structures

Starting from hash tables, numerous AMQ data structures have been proposed.
The best known AMQ data structures are hash tables, Bloom filters [4] and
Cuckoo filters [10]. Most of the prominent AMQ structures are either derived or
optimized versions of these structures. Note that hash tables can be turned into
exact lookup mechanisms when linear probing or chaining is applied. Besides
the classification into Bloom filter based, Cuckoo filter based and hash table
based data structures, there can be other ways of classifying, such as fingerprint-
based/non-fingerprint based or static/dynamic architectures. Fingerprint-based
data structures store either a short digest of the key or the entire key itself
whereas non-fingerprint based data structures do not store the key/digest. Static
architectures require the whole set of keys to be available at the time of construc-
tion, where dynamic architectures can support insertion and deletion of items
on-the-fly. The term ‘dynamic’ may also be used to represent the data structures
where resizing of the table at run-time is possible. However, in this paper we do
not consider the dynamic resizing of the table at run-time. This is because of the
fact that a complete reconstruction or rehashing of the data structure is required
for dynamic resizing. This we try to avoid on hardware because it is purely an
overhead and does not allow for a fair comparison.

Since we categorize all data structures into three types: hash table based,
Bloom filter based and Cuckoo filter based, the remainder of this section elab-
orates on these three types. Table 1 shows a number of the prominent features
of the basic data structures, which are relevant in network security applications.
The table gives an average of the features from all three types. It is noted that
there might be exceptions to these generalizations.

Table 1. Features of basic AMQ data structures

Data structure Stores Stores Supports Supports Supports Unlimited

key fingerprint deletion lookups key-value store insertions

Hash table ✓ ✗ ✓ ✓ ✓ ✗

Bloom filter ✗ ✗ ✗ ✓ ✗ ✓

Cuckoo filter ✗ ✓ ✓ ✓ ✗ ✗

2.1 Hash Table and Its Variants

Hash tables are the simplest and most conventional way to implement a lookup
or key-value storage architecture. To add an item x to a hash table with m
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locations, a hash function h(x) is used to map the item to the table, where the
key, value, or key-value pair are to be stored. A simple representation of the
hash table is shown in Fig. 3(a). Before we dive deep into the details, we should
clarify the difference between a hash table and a hash map. In a hash table the
key is mapped to a location in the table using a hash function and the key is
stored in that location. Hash map follows the same process but stores a key-value
pair instead of a key. In this paper we use the term ‘hash table’ invariably for
representing both hash table and hash map, and we refer to hash tables without
collision resistance mechanisms in the form of linear probing or chaining.

Compared to exact associative array architectures such as CAMs, a hash table
requires less memory for storing the same set of elements. However, hash tables
are prone to collisions. Occurrences of hash collisions cause two different keys to be
mapped to the same location in the table which causes data loss. The load factor
α of hash table n

m must be kept to a low value to reduce the collisions, where n
and m are the total number of items to be added and the number of buckets in
the hash table respectively. A bucket is a hash-indexed location in the table which
could store one or more entries. The probability of at least a single collision in a
hash table is m!

(m−n)!mn and the total average number of collisions is ≈ n2

2m . This
means that there will be an average of ≈50% collisions if n = m. Hence, α must
be lower than 0.5 to keep the collisions to a minimum, which would eventually
cause under-utilization of memory. The memory efficiency of a hash table can be
configured when the number of elements to be stored is known upfront.

There are many different techniques to minimize the effect of hash collisions,
such as chaining, linear/quadratic probing, and double hashing. Chaining is the
process where collided items are stored as linked lists, and linear probing searches
through the locations in the table sequentially to find an empty slot. Double
hashing uses two hash functions where the second hash function is used as an
offset to probe for an empty slot in case of a collision. However, techniques such
as chaining and linear probing are not really suitable on hardware as the size
of the table can increase indefinitely. Also, these techniques worsen the time
complexity of hash tables as it may be required to probe over all of the inserted
elements in the worst case scenario.

Robin Hood Hashing: Robin hood hashing [6] is a hashing technique to com-
pensate collisions in hash tables. The principle of Robin hood hashing is to keep
the keys which are subjected to collisions close to the originally hashed slots, as
shown in Fig. 3(b). It uses probe sequence lengths (PSL) to find a slot during inser-
tion. PSL is the number of probes made by an item before it finds a slot, and the
PSL has to be stored along with the key. During a collision, probing starts and
if a key in the non-empty slot has a lower PSL it is swapped with the key to be
inserted. This probing continues until an empty slot is found for the swapped keys.

The most prominent variants of Robin hood hashing are the Quotient fil-
ter (QF) [3] and the Counting Quotient Filter (CQF) [26]. QF is practically a
linear probing hash table to reduce collisions and QF does not store the whole
key but a short fingerprint of the key in a chained manner. Both QF and CQF
support deletion and resizing and both exhibit better cache locality. Each finger-
print is divided into quotient and remainder where the remainder is stored in the
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location indexed by the quotient. The collisions cause the stored remainders to be
shifted to the subsequent slots linearly. In, CQF some of the remaining slots are
dedicated for counters, which improve the performance of QFs on skewed datasets.
Similar to hash tables, linear probing in quotient filters makes it unsuitable for
hardware because of the complexity of implementation, dynamic resizing, and
unpredictability of the number of cycles required for insertion. Shifting the ele-
ments in a linear fashion in memory is also not preferred on hardware as only one
location can be read/write in a single cycle. Moreover, the performance declines
as the occupancy of the QF becomes high, especially after 60% occupancy.

d-Choice Hashing and d-Left Hashing: Chained hash tables embrace a com-
pletely random approach to find a bucket and links the collided keys to the same
bucket which could adversely affect the update/query time complexity as the
length of the chain in a random bucket becomes longer. d-choice hashing [29] intro-
duced load balancing in the hash table of size m by applying d hash functions and
the key is inserted into the bucket which has the lowest load. At the instance of a
tie when all the hashed buckets have the same load, a bucket is chosen randomly
for insertion. d-left hashing [24] improved the load balancing by using d separate
hash tables with each table is associated with a single hash function. In 2-left hash-
ing there are 2 tables of size m/2 and the key is hashed to both the tables and the
key is inserted to the left table if the hashed bucket in the left table has the lowest
load or if there is a tie. Compared to d-choice hashing, the occurrence of ties is less
in d-left hashing as the left hash table always has equal or more load compared to
the right table. A graphical representation of 2-choice hashing and 2-left hashing
is shown in Fig. 3(e) and Fig. 3(f) respectively.

(a) Conventional hashing, (b) Robin hood hashing, (c) Cuckoo hashing, (d) Peacock
hashing, (e) 2-choice hashing, (f) 2-left hashing

Fig. 3. Various hashing schemes
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Cuckoo Hashing: The issue with most of the hash tables is the worst case
query time when enabling collision avoidance techniques. In linear probing and
double hashing, the worst case lookup time is O(log n), where n is the num-
ber of elements inserted. In chained hashing, the worst case lookup time is
O(log n/log log n), whereas in two way chaining it is O(log log n). The best
way to eliminate such long lookup times is to use perfect hashing where there
are no collisions, but that is more of a hypothetical scenario. A hashing tech-
nique that can provide a worst case lookup time of O(1) is Cuckoo hashing [25].
Cuckoo hashing-based data structures provide better collision resistance than
hash tables while offering a worst case lookup time of O(1).

A Cuckoo hash table (CHT) uses two tables and two hash functions and each
key is stored in only one both tables. A graphical representation of CHT is shown
in Fig. 3(c). In case of collisions during insertion, the already existing key in the
table is swapped with the incoming key and the swapped key is hashed again
and relocates to the hash indexed location if empty. If the relocated index is not
empty, this process of kicking out the existing keys continues until it reaches a
maximum allocated loop value. If the maximum allocated loop value is reached
and insertion fails, the CHT needs to be resized and all the elements should be
rehashed with a new hash function. CHT provides a faster query time and better
space-occupancy, but the memory requirement is still high as it is required to
store the full key in the table. One way to overcome this issue is partial-key
Cuckoo hashing, which is the basic principle of Cuckoo filters. A more detailed
description of partial-key Cuckoo hashing is given in Sect. 2.3.

Peacock Hashing: Peacock hash table (PHT) is another form of linked/chained
hash tables. Peacock hashing [19] is probably the best hardware-friendly solution
to chained hash tables. PHT employs multiple hash tables where there is a main
table followed by multiple backup tables. The size of subsequent backup tables
is scaled down by a scaling factor. All the tables use different hash functions.
A graphical representation of PHT is shown in Fig. 3(d). The incoming keys are
directed to the larger tables first and if there are collisions, the keys are sent
to backup tables. If a predefined probing value is reached and still no empty
slot is found, the key is discarded. In order to make the querying faster, a fast
filter-preferably a Bloom filter-is associated with each of the backup tables in the
on-chip memory and the hash tables are stored in the off-chip memory. Despite
being a chained hash table, the number of probes due to collision is limited
to the number of tables. The worst case update and query time complexity is
O(log log m), where m is the size of the main table.

2.2 Bloom Filter and Its Variants

A Bloom filter [4] is a space-efficient probabilistic data structure which is com-
monly employed to perform constant-time membership queries in a set S of n
elements, {x1, x2, ..., xn}, such that S ⊆ U where U is a universal set. Proposed
by Howard Bloom in 1970, standard Bloom filters (SBF) became an integral
part of most of the applications where conventional membership queries turned
out to be impractical given that the amount of data to be handled is large. A
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Bloom filter is composed of a single-bit array of m bits and all bits are initialized
to 0. A simple representation of a SBF is shown in Fig. 4. A set of k independent
hash functions are used to map an input x to k locations.

Compared to hash tables, the use of multiple hash functions in Bloom filters
somewhat eliminates the requirement of hash-collision avoidance mechanisms. To
insert a new element into the filter, all the bits in the k hash-indexed locations
are set to 1. While querying for x, the Bloom filter returns x ∈ S if all the k
hash-indexed locations return 1. If any one of the bits in the k hashed locations
are not 1, the filter returns x /∈ S. Bloom filters are simple, easy to construct,
and memory-efficient, but still have some limitations such as no support for
deletion. Many different variants of Bloom filters have been proposed to address
these limitations [13]. There exist more than 50 variants of Bloom filters and
a lot more optimized Bloom filter architectures, but there is always a trade-off
between memory, accuracy, and speed among these variants and most of the
variants are a workaround to eliminate the limitations of Bloom filters.

Support for Deletion: As Bloom filters cannot support deletion, Counting
Bloom filter (CBF) [11] is introduced to enable deletions in a BF, but at the
cost of a higher space utilization. A CBF follows the same structure of SBF but
each single-bit slot in the BF is replaced by a counter to keep track of insertions.
Whenever an item is inserted, the hash-indexed counters are incremented by
one and during deletion the corresponding counters are decremented by one.
Numerous variants and optimizations to CBF have been proposed in recent
times to improve CBF. Deletable Bloom filter (DIBF) [30] tries to address the
higher memory requirement of CBF while offering the support for deletion. DIBF
divides the bit array of size m into r regions and keeps a bitmap of size r-bits to
encode whether or not a region is collision free. Each bit in the bitmap represents
the collision status of each region. However the trade-off is a higher FPR as the
size of each region is a small fraction of m. Moreover, the deletion becomes
impossible when every region has at least one collision and DIBF acts like a
normal BF with a worsened FPR. Spectral Bloom filters [8] and Space-code
Bloom filters [18] also support deletions by following a similar approach as CBF,
but targets multi-sets.

Dynamicity: SBF supports unlimited insertions at the cost of a higher FPR,
but does not support dynamic resizing where it resizes the existing filter on
the run while retaining the same FPR. Dynamic Bloom filter (DBF) [16] and
Scalable Bloom filter (SCBF) [2] propose dynamic resizing of the filter adapting
to dynamic datasets. Both dynamic and scalable Bloom filters follow the same
data structure which consists of a series of small SBFs appended sequentially
and the difference being the sizes of the incremental SBFs. DBF has the same
size m for all the SBFs whereas the ith SBF of SCBF has a size equal to m×ai−1,
where a is a positive integer. Both approaches are slower and have a lower FPR
for the same amount of memory, compared to SBF. SCBF has a lower FPR
compared to DBF while DBF is faster than SCBF as it uses homogeneous SBFs
while SCBF employs heterogeneous SBFs.
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Enhanced FPR: SBF, being a simple data structure which enhances the FPR
without a trade-off, is difficult. Retouched Bloom filter (RBF) [9] improves the
FPR of the Bloom filter by trading for some false negatives. The removal of false
positives in RBF is achieved by clearing the corresponding bits.

Speed Optimizations: The larger size of a Bloom filter compared to the size of
the cache line, causes cache misses. This issue along with the poor data locality
of Bloom filters is addressed by Blocked Bloom filter (BBF) [27]. A BBF has b
small sized standard Bloom filters, each of which has a size less than or equal to
the cache line. An SBF block is chosen using a hash function and each item is
mapped to that SBF using k hash values. This improves the speed, but at the
cost of a higher false positive rate as a small single SBF can be filled quickly.
This, in fact, results in a need to increase the size of the filter. The optimization
in BBF is to improve the run-time performance on a hardware platform, but
not a hardware-oriented design that may leverage the same performance when
translated on to hardware. Another technique to enhance the speed is to reduce
the hash computations. Through double-hashing Bloom filter, Kirsch et al. [17]
have shown that only two independent hash functions are enough to generate all
the required hash values in the form of h1(x) + i ∗ h2(x) without any increase in
the asymptotic FPR, where h1(x) and h2(x) are hash values of the item x and
i is an arbitrary value.

Some of the optimizations on Bloom filters focus on reducing the latency to
a single memory access cycle in the likes of Bloom-1 [28] and Parallel Bloom
filter (PBF) [32]. Bloom-1 uses a memory array of size m where each location
contains a membership word of 32 or 64 bits and an item is mapped to any
one of the membership word using k hash functions. Bloom-1 has a lower false
positive rate than SBF because of a smaller of the membership word size and
require more hardware resources. PBF on, the other hand, is faster and requires
less hash bits compared to SBF. PBF splits the memory block of size m into
k sub-blocks of size m/k called a Uni-SBF and each memory block is a single
hash function. The FPR of a Uni-SBF is 1 − e−kn/m and the FPR of the PBF
is (fpr(Uni-SBF ))k which is equal to the FPR of the SBF. A representation of
PBF is shown in Fig. 4. PBF is able to achieve an update and query complexity
of O(1) compared to a complexity O(k) of SBF.

Fig. 4. Bloom and Cuckoo filters
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2.3 Cuckoo Filter and Its Variants

A cuckoo hash table stores the keys in the hash-indexed buckets which con-
tributes to a larger memory footprint when the key size is large. When it is
required to perform processing at line-rate, constraining the lookup architec-
tures within the on-chip memory is of utmost importance. Partial key Cuckoo
hashing [21] helps to resolve this issue by storing only a fingerprint of the key.
Cuckoo filter (CF) [10] is based on partial key cuckoo hashing which is very
much similar to cuckoo hashing but instead of storing a full key, only a finger-
print/short digest of the key is stored. Figure 4 depicts a representation of the
Cuckoo filter. It is composed of a memory block having m locations where each
location is termed as a bucket which is indexed by hash value. Each bucket is
having b entries and b is set to 4 which provides the best space-efficiency. Every
item mapped to two buckets. The indices of the bucket Bi for each item xi are
i1 and i2, where i1 = hash(xi) and i2 = i1 ⊕ hash(f), where f is the fingerprint
of xi and is generated using another hash function. During an insertion, if either
bucket B1 or B2 has an empty slot, the item is inserted to that slot. If none
of the slots are empty, a bucket and entry is chosen randomly and the existing
item is swapped with the incoming item. This process of swapping the item is
called kicking. The bucket index of the swapped item fs is then computed using
i ⊕ hash(fs), where i is the existing location of fs. fs is then tried to add to the
new slot and if that slot is not empty, this process of kicking continues until it
finds a new slot or the maximum value of probing is reached. Cuckoo filter can
deny an insertion if either the table is full or the maximum loop value of kicking
is reached. In such cases resizing and rehashing is required which is not feasible
when the processing is at line-rate.

Compared to Bloom filters, Cuckoo filter is faster, more space efficient, and
supports deletions. Irrespective of all the advantages, there are some drawbacks
which are very critical when implementing on hardware. Other than the com-
plexity of implementation on hardware, the insertion length is indefinite because
of kicking as the load factor of the filter increases. The number of kicks could
reach the maximum value of the loop, which is set to an arbitrary value of 500
by Fan et al. [10]. Another disadvantage is the insertion limit where no more
insertions are possible once the filter is full. Insertion of duplicate items can
affect adversely on the false positive rate and will limit the number of unique
items that can be entered into the filter. However, denying the insertion of dupli-
cates is not feasible because two different items with the same fingerprint can
be mapped to a single bucket due to collisions and denying the insertion would
cause removal of the only existing fingerprint during deletion.

Many different variants of Cuckoo filters have been proposed to enhance the
performance of Cuckoo filters on various aspects such as space efficiency, FPR,
and speed. Nevertheless, there is always a trade-off between these aspects more
often than not. Some of the important variants which are worth mentioning are
included here.

Enhancing Speed: Morton filter [5] is a compressed version of Cuckoo filter
(CF) in which the storage of data is more dense. Morton filter is able to achieve
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an improved memory access time by efficiently utilizing the cache which also
helps to achieve a higher insertion, lookup and deletion throughput on ARM
architecture compared to CF. However, reduced support to various fingerprint
sizes limits the application range of Morton filter. Vertical CF [12] also reduces
the insertion time of the CF by increasing the number of buckets for each item.
Vacuum filter [35] is also more space efficient and faster than Bloom and Cuckoo
filters while achieving the same false positive rate (FPR) as CF. Vacuum filters
follow the same data structure as CF but with better data locality which is
achieved by dividing the table into multiple chunks similar to Blocked BF and
with two different insertion algorithms based on the number of entries to be
stored. This division also helps to keep the table size not a power of two in
contrast to Cuckoo filter. This is efficient when the number of elements to be
stored is not a power of two. Nevertheless, keeping the size of the filter non-
powers of two makes things more difficult on hardware.

Enhancing FPR: Adaptive CF [23] improves the FPR of CF by removing the
false positives that already occurred. This halts the repeating occurrence of the
same false positives. Length-aware CF [20] is also able to reduce the FPR but
with added storage requirements. D-ary CF [36] improves the space utilization
with a sacrifice on the insertion, deletion, and query performances. D-ary CF
uses d hash functions and can achieve a better FPR for the same amount of
memory compared to CF, but a decline in speed makes it unfavourable to be a
better replacement of CF.

Dynamicity: Similar to BF, various approaches were proposed to enable
dynamic resizing in CF. Dynamic CF (DCF) [7] appends multiple homogeneous
CFs together similar to dynamic Bloom filters when it is required to extend the
size of the filter. Moreover, it can merge the under-utilized CFs to further opti-
mize the space utilization. While DCF can support dynamic resizing, the lookup
performance is worse compared to CF as it is required to access multiple linked
CFs. Consistent CF (CCF) [22] is a further improved variant of dynamic CF,
where each CCF is composed by attaching multiple index-independent Cuckoo
filter (I2CF), where each I2CF can have k buckets and the value of k is a vari-
able depending on the cardinality. The sparse I2CF can also be compressed.
Nevertheless, dynamic resizing is applicable only for multi-sets and makes the
implementation task more cumbersome on hardware.

Other Filters Which are More Space Efficient than Cuckoo Filters:
Xor filter [14] and Binary fuse filter [15] offer smaller memory footprint than
Cuckoo filters. The update time of Xor filters and Binary fuse filters is more
than Bloom and cuckoo filter, but has a faster query time. However, these filters
are immutable, which means that dynamic or in-line updates are not possible,
which makes it ill-suitable for streaming applications. In order to update a new
set of keys, the filter has to be rebuilt and the full set of keys is required at the
time of construction.

To conclude this brief description of these data structures, a summary of the
time complexities and FPR of important data structures are shown in Table 2.
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We can infer from the table that the best-case update/query complexity of struc-
tures derived from hash table and cuckoo filter are O(1), and the worst-case
update/query could increase as the table is filling up. In contrast, Bloom filter
based data structures have a constant update/query complexities irrespective of
the load.

3 Hardware Architectures

3.1 Choosing a Suitable Architecture

The requirements of lookup and key-value stores are not the same for every
application. This has to be taken into consideration while choosing the best data
structures. Our main focus is on network applications where the cardinality is
predictable and the size of the key/flow ID is constant throughout. The most
suitable data structures from the existing ones are filtered, based on the above
said criteria for hardware evaluation.

Table 2. FPR and time complexities of data structures

Datastructure False positive rate Time complexity (Update) Time complexity (Query)

Best case Worst case Best case Worst case

Hash table NA O(1) O(n) O(1) O(n)

Cuckoo Hashing NA O(1) O(n) O(1) O(1)

Peacock hashing NA O(1) O(log log m) O(1) O(log log m)

2-choice hashing NA O(1) O(log log n) O(1) O(log log n)

Quotient Filter 1/2r* O(1) O(log m) O(1) O(log m)

Bloom Filter (1 − e−k.n/m)k O(k) O(k) O(k) O(k)

Counting Bloom Filter (1 − e−k.n/m)k O(k) O(k) O(k) O(k)

Dynamic Bloom Filter 1 − (1 − e−k(n−c�n�/c)/m)k O(k) O(k) O(k.s) O(k.s)

Deletable Bloom Filter (1 − (1 − (1/(m − r)))k∗n)k O(k) O(k) O(k) O(k)

Parallel Bloom Filter (1 − e−k.n/m)k O(1) O(1) O(1) O(1)

Bloom-1 Filter Refer [31] O(1) O(1) O(1) O(1)

Retouched Bloom filter (1 − e−k.n/m)k ∗ (1 − z/p1.m)k O(k) O(k) O(k) O(k)

Double-hashing BF (1 − e−k.n/m)k O(k) O(k) O(k) O(k)

Cuckoo Filter 2−(C∗α−2) O(1) O(n) O(1) O(1)

Morton filter 1 − (1 − 1/2f )αL.B.S O(1) O(n) O(1) O(1)

Vacuum filter 2bα/2f O(1) NA O(1) O(1)

D-ary CF k/2f O(1) O(n) O(1) O(1)

Dynamic Cuckoo filter 2.b.s/2f O(1) O(n) O(1) O(2.b.s)

Consistent CF s.k.b/2f O(1) O(N.log m) O(1) O(k.b.s.log m)

m = No. of buckets; n = No. of items; f = Fingerprint size; k = No. of hash functions;
b = No. of entries in a bucket; s = No. of filters
c = capacity of a single BF; r = No. of regions in the BF; p1 = 1 − e−kn/m; z = No. of
bits reset in BF; αL = logical load factor
α = load factor; C = Bits per item; B = buckets accessed per negative lookup; S = logical
slots per bucket; N = max probes allowed;

Lookups: For lookups, where the requirement is only the presence of an item,
Hash tables and hash table variants are probably a luxury in terms of mem-
ory requirement and implementation complexity. Hash tables are required to
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store the key which consumes a large amount of memory when the cardinality
is large. Moreover, the requirement of collision resistant mechanisms makes it
slower where fast lookup is a necessity when considering processing at line-rate.
With inherent collision resistant mechanisms, Bloom filters and Cuckoo filters
along with their numerous variants offers the best possible accuracy within the
lowest memory requirement.

Key-Value Store: For applications where getting the presence of an element
is not enough and either the key or value has to be stored and/or returned,
Bloom and Cuckoo filters are limited. Bloom filters do not store keys or values
and recovering the key from a Bloom filter is impossible. Cuckoo filters store a
fingerprint, but the possibility of recovering the key from the fingerprint is also
zero. The case is similar to all the data structures which store only a hashed
digest. This makes hash tables and its variants more suitable for probabilis-
tic key-value stores. Nevertheless, hash tables must be associated with collision
resistant mechanisms. Looking from a hardware perspective, hardware suitabil-
ity of mechanisms such as chaining and linear probing is low. Probing in the
form of Peacock hashing and Cuckoo hashing are more hardware friendly as the
size of the table is fixed and are suitable for static data sets.

3.2 Implementation Details

Optimized Hashing. Hashing is one of the most important building block of
AMQ data structures as the overall throughput of the system can be affected by
the speed of the hash computation. Non-cryptographic hashes with satisfactory
avalanche properties are preferred as it is faster and has a low logical depth
compared to cryptograhic hashes. Work by Sateesan et al. [31] proposed a fast
non-cryptographic hash function Xoodoo-NC, which is derived from the Xoodoo
permutation. In this work, Xoodoo-NC is used to generate the required hash bits
and these hash bits are then split into required hash values. Xoodoo-NC can
generate outputs as multiples of 96-bits. Recent works [28,32] have shown that
this method of splitting the hash output to generate Bloom filter hash values
has negligible effect on the false positive rate (FPR) of the filter and can achieve
multi-fold improvement in latency.

Even though the key size is fixed to 96-bit in our evaluations, a varying key-
size will only have a negligible effect on the AMQ algorithms. The FPR is not
affected by the size of the input as observed from Table 2 as long as the hash
function satisfies the required avalanche properties.

Hash Table. The representation of the hash table (HT) is shown in Fig. 3(a).
The implementation of hash table is very straightforward and is implemented
using block RAMS (BRAM) as a memory block having depth m and width equal
to the size of the key and value. In a naive, straightforward implementation of
the hash table, collisions are not addressed, and is implemented as a basic unit
for comparisons.
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Cuckoo Hash Table. A representation of the Cuckoo hash table (CHT) is
shown in Fig. 3(c). Unlike in the figure, the tables Ti and T2 are implemented
as separate BRAM blocks where each memory block is having one entry of each
bucket. Such an implementation halves the word-length of one bucket which is
equal to 2 ∗ (size of the key + size of the value). Since both the memories can
be accessed in parallel, the latency to access a bucket is still a single clock cycle.

Peacock Hash Table. To implement Peacock hash table (PHT), the main
table and all the backup tables as shown in Fig. 3 are implemented as separate
BRAM blocks. The size of the main table is m and scaling factor r = 2, which
the is most appropriate value of r for hardware. Since our goal is to analyze the
performance of only the hash table, no fast lookup mechanisms are employed as
presented by Kumar et al. [19]. PHT has (1 + log1/rm) tables and the last table
has only one location. The last table is eliminated in the implementation as it is
not possible to generate a BRAM block with only 1 location. All memories are
accessed in parallel to keep the update/query latency to a bare minimum unlike
the original algorithm in which the ith table is accessed only when the results
are not found with the (i − 1)th table.

Bloom Filter and Parallel Bloom Filter. Standard Bloom filter (SBF)
is straightforward and implementation is hassle-free. The data structure as
depicted in Fig. 4, is implemented with a BRAM block of depth m and width
1-bit. The number of hash functions k is 8 and these hashes are generated using
Xoodoo-NC. SBF with 8 hash functions requires a total of 136 hash bits, and
Xoodoo-NC generates an 192-bit output and this output is split into 8 hash val-
ues of sizes log2m bits each. For parallel Bloom filter (PBF), all the k sub-blocks
of size m/k are implemented separately using BRAM. Each sub-block is accessed
in parallel, which keeps the memory access latency to a single cycle. Xoodoo-NC
is used to generate k hash values for PBF in a similar way as it is for SBF.

Cuckoo Filter. In contrast to Bloom filter, implementing cuckoo filter on hard-
ware requires a bit more effort and engineering. The data structure of CF is
shown in Fig. 4. The whole table of CF is implemented as a single BRAM block.
The depth of the memory is m and the width of the memory is b ∗ f , where
f is the size of the fingerprint and b is the number of buckets. The memory is
implemented as true dual port RAM with dedicated ports for reading and writ-
ing. It requires two clock cycles to read the contents in both the buckets. CF is
optimized for the number of memory accesses in such a way that one bucket is
read at first in parallel with the computation of the address of the second bucket
and the second bucket is read only if no empty slots are found in the first bucket
during an update. Similar search is applied during query also, which makes the
best case memory accesses to a single cycle both during update and query.

The hardware architecture diagrams of all the implemented data structures
except the Bloom filter architectures are presented in Appendix A. The archi-
tectures presented in [32] are followed for Bloom filter implementations.
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4 Evaluation

The evaluation is performed separately for lookup and key-value store data struc-
tures. The analysis is performed in terms of FPR or accuracy, latency, hardware
resource usage, speed, insertion throughput, and implementation complexity.
Some additional analysis on throughput, memory access cycles and insertion
failures are presented in Appendix B.

4.1 Evaluation of Lookup Architectures

For the evaluation, the architectures chosen are Cuckoo filter (CF), standard
Bloom filter (SBF), and Parallel Bloom filter (PBF). A total of 16 KB memory
is allocated to all the data structures and the size of the tables of each structure
is determined based on the allocated memory. The number of bits per item is
fixed to 12, the number of items n to be inserted equals 10922. This value of n
makes the load factor α of CF to be 0.67 and m = 4096. The CF consists of 2
buckets and each bucket is having b = 4 entries and the fingerprint size is set to 8-
bits. The maximum kick value is set as 500, which is the optimal value employed
in the original article [10]. In the evaluation, memory access cycles refers to the
sum of memory read and write cycles. The number of hash functions for Bloom
filters are k = 8 which makes m = 131,072 for SBF and PBF. Size of a single block
of PBF is m/k = 16384. The hardware evaluation is performed using synthetic
datasets on a Virtex UltraScale+ (xcvu9p-flga2104-2L-e) platform.

False Positive Rate and Space-Occupancy. For a fixed bits/item, the FPR
ε of CF is better than Bloom filters as shown in Table 3, which means better
space-occupancy. CF can have 2*b duplicate entries, where b is the number of
entries in a bucket. In order to store similar number of duplicates, a CBF would
require a 3-bit counter in each location which results in 3 times more memory
requirement compared to SBF. However, allowing duplicates will deplete the
space and cause higher false positives for CF, which does not happen with SBF.

Latency. The query time complexity of CF is O(1) and of SBF and CBF is O(k).
However, PBF outperforms CF in all other aspects, except in terms of number
of hash bits and FPR for a fixed number of bits per item. Both the update
and query time complexity of PBF is O(1), thanks to the parallel accessing
of memory blocks. Memory access cycles to insert an element is constant for
Bloom filters irrespective of the load factor. CF consumes more memory access
cycles for insertion due to probing/kicking when the filter starts filling up. The
analysis given on Table 3 shows that the percentage of memory access cycles due
to probing is only around 5.7% more than the actual requirement if the load
factor is 75%. However, probing memory accesses increases to 14.2% when load
factor is 85% and then a sudden spike to 48.2% when the load factor is 95.5%.
The total number of memory access cycles required for PBF is less than that of
CF for a load factor up to 85%, and is only less than half than that of CF when
the load factor is 95.5%.
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Table 3. FPR and latency vs various load factors for lookup data structures

Load factor False positve rate Total memory access cycles Total probe % of cycles for

CF SBF, PBF SBF PBF CF cycles (CF) probing (CF)

35% 9.8x10−7 5.5x10−5 91,200 11,400 11,480 6 0.05%

50% 1.0x10−4 6.0x10−4 131,200 16,400 16,801 72 0.43%

65% 1.1x10−3 2.7x10−3 170,400 21,300 22,709 500 2.20%

75% 3.4x10−3 6.0x10−3 196,560 24,570 27,699 1,568 5.66%

85% 7.8x10−3 1.1x10−2 222,800 27,850 35,361 5,036 14.24%

95.5% 1.6x10−2 2.0x10−2 250,320 31,290 67,658 32,584 48.16%

Average of 1000 runs; Total memory = 16KB, # of items = 16384 (at α = 1.0)
CF-Cuckoo filter, SBF-Standard Bloom filter, PBF-Parallel Bloom filter

Performance on Hardware. The performance results on FPGA are shown in
Table 4. The hardware resource requirements and maximum operating frequency
of SBF and PBF are better than CF while maintaining the same number of bits
per item, but with a lower FPR and more hash bits. CF requires more than
2 times the number of LUTs compared to the Bloom filter counterparts. CF
requires 2 cycles for hashing as the second hash computation is dependant on
the first. Nevertheless, CF can still achieve a best case query latency of 2 cycles
if the memory read of one bucket can be performed in parallel while computing
the second hash index. Since the number of probes during insertion can vary up
to 500 as α increases, pipelining becomes difficult. PBF has a constant query
latency of only 2 cycles (1 cycle for hashing, 1 cycle for memory read) irrespective
of the load. Even though SBF is the simplest to implement on hardware, it
requires 9 cycles for querying. In terms of throughput, PBF has an edge over
CF and delivers the best insertion throughput while BF and CBF has a very
low throughput due to its low latency.

Table 4. Performance of Lookup architectures on FPGA

Cuckoo
filter (CF)

Bloom
filter (SBF)

Counting
Bloomfilter
(CBF)

Parallel
Bloom
filter (PBF)

Load Factor (α) 0.67 – – –

FPR (ε) 0.0015 0.0031 0.3124 0.0031

# of hash bits 24 136 136 112

Best case query Latency 2 cycles 9 cycles 9 cycles 2 cycles

LUT 930 402 412 336

FF 267 259 288 259

BRAM 4 4 4.5 4

Max. frequency 435MHz 476MHz 435MHz 488MHz

Insertions/second (Million) 138 28 26 163

Implementation complexity ++++ + ++ ++

Memory = 16KB, # of items = 10922 (at α = 0.67), bits per item = 12
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Discussion. Even though CF has some clear advantages over SBF and most of
the other variants of Bloom filter (BF), the achievable parallelism in BF helps to
generate better results on hardware. PBF helps to achieve an update and query
memory access latency of a single clock cycle. While BF has no insertion limit,
CF can deny an entry if the number of kicks exceeds the maximum kick value.
Incrementing the size of the filter or re-hashing all the elements (when it comes
to cuckoo hashing) dynamically is a cumbersome task in hardware, especially
for online processing. Duplicate entries have no effect on BF, but drastically
worsens the load factor, space occupancy, and FPR of CF. The maximum num-
ber of duplicates that CF can accommodate is 2*b, where b is the number of
entries in a bucket. Trying to insert duplicates after 2*b times would result in
a infinite kicking loop until the max kick length is reached. In network security
applications, an attacker can exploit this vulnerability of CF. Deletion support
is one of the prominent feature of CF which BF cannot provide. CBF can pro-
vide deletion support, but with much higher memory usage. In conlusion, if the
choice is for low-latency, lightweight lookup architecture on hardware with the
support for pipelining, PBF is the best choice over CF. For a better bits per
item with deletion support, where pipelining is not a primary requirement and
given that the insertion of duplicates is minimal, CF is the preferred option.

4.2 Evaluation of Key-Value Stores

For the evaluation, Conventional hash table (HT), Cuckoo hash table (CHT),
and Peacock hash table (PHT) are compared as discussed in Sect. 3.1. The mem-
ory allotted are fixed to 224KB for each data structure. CHT has two tables and
each table has a size m = 8192 buckets and each bucket has 1 entry each per
table. The memory accesses are optimized for CHT similar to the optimizations
in CF as discussed in Sect. 4.1. The maximum kick value is set to 500. The size
m of the main table in PHT is set as 8192 and the scaling factor r = 0.5. The
total number of tables t in PHT is 13 with each ith backup table having a size
of m/(1r )i where 1 ≤ i ≤ t − 1. HT has a size m of 16384 buckets. The key
size is 96-bits and value size is 16-bits. The load factors of CHT is n/2m, PHT
is m(1 − rt)/(1 − r), and HT is n/m. In the evaluation, accuracy refers to the
ratio of number of correctly queried items from the table and the total number
of items inserted to the table.

Loading the Table and Accuracy The accuracy and probing cycles in hash
tables increase with increasing load factor α as shown in Table 5. In HT, the
probability of failure in inserting an item is high as no collision resistant mech-
anisms are employed. PHT has an accuracy close to 100% when α = 0.6 and the
accuracy and number of failed insertions worsens as α > 0.6. For CHT, the accu-
racy is close to 100% even at α = 0.88. The accuracy of CHT can be improved
by increasing the number of entries in each bucket. Then, the table depth must
be reduced accordingly to keep the memory requirement constant.



304 A. Sateesan et al.

Table 5. FPR and latency vs various load factors for key-value stores

Load factor Accuracy Total memory access cycles % of cycles for probing

HT(%) PHT(%) CHT(%) HT PHT CHT PHT CHT

35% 84.5 100.0 100.0 11,468 13,635 12,052 18.9 1.9

50% 78.6 100.0 100.0 16,384 21,246 18,751 29.7 7.5

65% 73.6 99.5 100.0 21,300 30,959 29,720 45.3 21.8

75% 70.3 97.4 100.0 24,576 39,928 45,909 62.5 40.3

85% 67.3 93.7 100.0 27,852 51,518 106,891 84.9 70.2

90% 65.9 91.3 99.3 29,492 58,719 328,079 99.1 89.6

95% 64.5 88.9 96.4 31,130 66,185 847,033 112.6 95.8

Average of 1000 runs; Total memory = 16KB, # of items = 16384 (at α = 1.0)
HT-Hash table, PHT-Peacock hash table, CHT-Cuckoo hash table

Latency CHT has a worst case query complexity of O(1), whereas the query
complexities of other hash tables vary with the chain/probe lengths. CHT has
an average update time complexity of O(1), but the probing length increases as
α increases. When α > 0.5, the number of probes increases drastically for CHT
and can go up to a maximum probe length of 500 as set. PHT is very much like
a chained hash table, but since the table size is fixed in PHT, the maximum
probe length is limited to the total number of tables in PHT. The number of
memory access cycles also increases for CHT due to probing as α increases. For
example, the increase is ≈4417% when the load factor increases from 0.5 to 0.95.
The increase in memory access cycles are considerably lower for PHT, which is
an increase of ≈211% when the load factor increases from 0.5 to 0.95.

Performance on Hardware. The performance results on FPGA are given in
Table 6. All the tables in PHT and CHT can be accessed in parallel, which makes

Table 6. Performance of hash table architectures on FPGA

HT CHT PHT

Accuracy at α=0.95 64.5% 96.4% 88.9%

# of hash bits 14 26 91

Best case Query Latency 2 cycle 2 cycle 2 cycle

LUT 606 1745 1399

FF 268 971 267

BRAM 50 50 79

Max. frequency 357MHz 322MHz 232MHz

Insertions/second (Million)(α=0.75) 119 68 42

Implementation complexity + ++++ ++

Memory = 224KB, # of items = 15565 (at α = 0.95), bits per
item = 118
HT-Hash table, PHT-Peacock hash table, CHT-Cuckoo hash
table
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the query latency of all three architectures equal to 2 clock cycles which include
hashing and memory access cycles. It is evident from the table that there is
always a trade-off among space occupancy, speed, and accuracy. Conventional
hash table is the least accurate, but it is faster and consumes the least amount of
resources. The memory footprint is higher for PHT as the memory is split into
many smaller blocks which takes a lot more memory than a large single block.
This is because of the fact that the targeted FPGA can construct the memory
only with either 18Kb/36Kb block RAM (BRAM) modules. Moreover, these
blocks, spread around the main logic, cause the routing delay to increase which
eventually causes the maximum operating frequency to dip. One remedy is to
keep a limited number of tables, but this would cause the accuracy to decline
because of the increased number of insertion fails as the probing during collision
is limited by the number of blocks. For example, keeping the total number of
tables to 4 and each table having equal sizes of 4096 buckets would cause the
accuracy to drop to 46% when the load factor is 1.0 compared to 86% of the
conventional PHT. In a way, CHT employs the same principle as PHT which
probes for an empty slot during a collision, but with a better space occupancy.
However, the complexity of the architecture is high for CHT when implementing
on hardware. This results in a higher resource consumption in terms of LUTs.
Nevertheless, CHT leverages significantly better operating frequency than PHT.
In terms of throughput, CHT has better insertion throughput until α = 0.75, but
the throughput drops drastically for CHT and is only 6 M items/s when α = 0.95
whereas PHT still maintains a throughput equal to 30 M items/s at α = 0.95.

Partial Key Cuckoo Hashing for Better Performance. Partial key cuckoo
hashing is one way to compromise the high resource and memory requirement
of CHT and improve the operating frequency if storing/retrieving the key is
not required. This can be implemented by storing the value along with the
fingerprints in a CF. However, it is required to have an optimal fingerprint size
to mitigate the adverse effect on FPR to some extent. The empirical results show
that storing values in a CF, using an 8-bit fingerprint, can leverage the similar
accuracy as CHT while CF only uses ≈21% of the memory that is required by
CHT. Moreover, CF can run at a significantly higher operating frequency and
insertion throughput compared to CHT. Table 7 shows the results of employing
CF as a partial key-value store.

Table 7. Results of partial key cuckoo hashing as partial key-value store

Accuracy
(α = 0.95)

Total
cycles

% of extra cycles
for probing

LUT BRAM Max
frequency

Insertions/second
(Million)(α = 0.75)

100% 62,740 44.47% 1442 11 417 MHz 128

Memory = 48KB, # of items = 15565 (at α = 1.0), bits per item = 25, Throughput in
Million item/s

Discussion. When choosing the best possible key-value store scheme for hard-
ware, PHT might be having a slight edge over CHT in terms of better probing
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length at higher load factors and low cardinality. Even though the accuracy is
comparatively higher for CHT as observed in Table 5, it comes at a high cost
of an extremely large amount of probing cycles when α > 0.5. However, as the
cardinality increases, implementing peacock hashing becomes hefty as it has to
manage a large number of tables, which results in an increased time complexity
and much reduced operating frequency. Irrespective of the increased cardinality,
query time complexity is always constant with CHT and the operating frequency
is also much higher. Hence it can be concluded that PHT is preferable only for
a lower cardinality if the criterion is minimal probing cycles whereas CHT can
be preferred for any other criteria assuming that the load factor of CHT is kept
small. Moreover, if storing/retrieving keys are not required, there is no better
alternative than partial key cuckoo hashing to store values.

5 Conclusion

In this paper, various AMQ schemes as well as hash-based probabilistic schemes
are analyzed and evaluated based on their hardware-friendliness for network
security applications on high-speed networks. A comparison of these schemes
is performed in terms of memory efficiency, accuracy, latency, implementation
complexity, and throughput. The evaluation results help to identify a suitable
data structure for network security applications. Moreover, this analysis also
sheds light on the shortcomings of the existing membership query data structures
when implemented in hardware, which was unexplored earlier.
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Appendices

A Hardware Architectures

A.1 Cuckoo Hash Table and Cuckoo Filter

The hardware architecture of Cuckoo filter implementation is shown in Fig. 5.
Two hash functions, two copies of Xoodoo-NC, are used for generating the hash
values. Due to the low logical depth of Xoodoo-NC, there is negligible effect
on the overall computation and latency overhead. Cuckoo filter has two buckets
with each bucket having four entries. The first hash function is used to generate
the address of the first bucket as well as the fingerprint by hashing the incom-
ing key. The hash output is split to generate the required memory addresses
and fingerprint. The second hash function is used to generate the address of the
second bucket by hashing the fingerprint. The second hash function is re-used
for generating the address of the bucket from the fingerprint during kick opera-
tions. A multiplexer determines whether the input to the second hash function
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is a kicked fingerprint or not. Even though a single hash function is enough to
perform all the hashing operations, addition of a second hash function makes
pipelining easier and helps to achieve a best case memory access latency of a
single clock cycle. The fingerprint is padded with zeroes at the MSB to make a
96-bit input to the hash function. An Finite State Machine (FSM) is employed
as the control logic, which controls all the memory read/write operations and
the kick operations. The kick logic co-ordinates all the kick operations during
the occurrence of a collision. A single dual port BRAM is used as the table and
each location in the memory (a bucket) holds four entries.

Fig. 5. Hardware architecture of Cuckoo filter

The hardware architecture of Cuckoo hash table (CHT) is very much similar
to Cuckoo filter and is shown in Fig. 6. Cuckoo filter employs partial-key cuckoo
hashing where a fingerprint of the key is used to generate the second memory
address as discussed in Sect. 2.3, whereas CHT hashes the key to generate both
addresses. CHT has two buckets and each bucket contains two entries. Since
both hash values can be computed in parallel, two copies of Xoodoo-NC and
two separate memory blocks are used to access both the buckets in parallel
which limits the read/write latency to a single clock cycle. Each memory block
has one entry in each bucket, which also helps to limit the word-length of the
memory. The second hash function is re-used to generate the hash values during
kick operations and a multiplexer determines whether the input to the second
hash function is a kicked key or not. All other operations and logic are similar
to the Cuckoo filter architecture.
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Fig. 6. Hardware architecture of Cuckoo hash table

A.2 Peacock Hash Table

The implementation of Peacock hash table (PHT) is very straightforward and
the the hardware architecture is shown in Fig. 7. For an allocated memory size of
224KB, PHT employs a total of thirteen memory blocks as described in Sect. 4.2.
In order of minimize the computational as well as latency overhead, a single hash
function Xoodoo-NC is used to generate all the required memory addresses. The
key is hashed to generate all the required hash bits and a split logic splits the
hash output bits to required memory addresses. The probe logic co-ordinates
the probing operations during the occurrence of a collision.

Fig. 7. Hardware architecture of Peacock hash table

B Additional Analysis

B.1 Memory Access Cycles

The total memory access cycles during the insertion of elements for various
data structures is depicted in Fig. 8 and 9. Load factor (α) plays an important
role when it comes to number of the memory access cycles of hashing-based
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data structures such as CHT, PHT, and CF. With increased load factor, the
memory access cycles increases for CHT, PHT, and CF because of the kick/probe
operations due to collisions. As observed from Fig. 8, there is an exponential
increase in the memory access cycles for CHT when α > 0.75. Nevertheless, the
increase is minimal for PHT because the maximum number of probes is limited
by the number of tables. There is a gradual increase in memory access cycles for
CF as shown in Fig. 9, but significantly lesser because of the more number of
entries per bucket compared to CHT. For Bloom filters, the increase in memory
access cycles are constant because of the fact that the number of cycles per
insertion is constant throughout irrespective of the load factor.

Fig. 8. Memory access cycles for hash
tables

Fig. 9. Memory access cycles of Cuckoo
and Bloom filters

B.2 Insertion Throughput

The insertion throughput defines the maximum number of insertions possible
per second. The insertion throughput is computed as 1

(total latency/n)) , where n

is the number of elements inserted and the latency is measured in nanoseconds.
The throughput is constant for Bloom filters since the the number of cycles
for each insertion is constant. However, the throughput for hashing-based data
structures varies with varying load factor because of the extra hash computa-
tion and memory access cycles required due to kick/probe operations during a
collision. The insertion throughput in terms of million insertions per second of
Cuckoo filter (CF), Cuckoo hash table (CHT), and Peacock hash table (PHT)
are depicted in Fig. 10.
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CHT-Cuckoo hash table, PHT-Peacock hash table, CF-Cuckoo filter

Fig. 10. Insertion throughput

CF exhibits significantly higher throughput than CHT, thanks to the higher
operating frequency and significantly lesser number of probe cycles compared to
CHT. The amount of probing increases drastically for CHT as the load factor
increases. Having four entries in each bucket helps to reduce the number of
probes for CF, whereas CHT has only two entries in each bucket and this results
in a much higher probing cycles compared to CF. Adding 4 entries in a bucket
can help to minimize the probing cycles for CHT, but a large memory footprint
would still limit the operating frequency. The limited memory footprint of CF
contributes to minimal routing delay and hence a higher operating frequency.
The throughput of PHT is minimum, even for small load factors, as a result of
the lower operating frequency. Yet, the throughput of PHT is almost constant
throughout even for higher load factors as the total amount of probing per
insertion is limited by the number of tables.

B.3 Insertion Failures

Hash table collisions cause insertion failures while adding elements to the table.
Figure 11 shows the insertion failures in hashing-based data structures. It can be
seen that insertion failures are very much dependent on the load factor. There
are no collision resistant mechanisms such as chaining/probing are employed
for the hash table (HT) and it is very much evident from the figure that the
collisions are maximum for HT even for lower load factors. When the load factor
is 1, the insertion failures for HT is almost 37%. For PHT, the insertion failures
start increasing gradually when the load factor is greater than 0.62. For Cuckoo
hashing, insertion failures start increasing only after a load factor of 0.87 and the
overall failures in CHT is considerably lower than PHT. When the load factor
is 1, the insertion failure is around 7% for CHT, whereas it is close to 14% for
PHT.
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CHT-Cuckoo hash table, PHT-Peacock hash table, HT-Hash table

Fig. 11. Insertion failures in hash tables
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Abstract. The critical infrastructure’s (CI) environment is complex and
dynamic in nature. The normal behaviour of physical devices changes due
to time-dependent operational features and infrastructure component
needs. The sensors capturing the changed device behaviour generates
measurements in a different operating range due to the time dependent
variation in the normal behaviour. Such normal variation in the sen-
sors measurements are called operational drift (OD). The state-of-the-
art process-level intrusion detection systems (IDSs) are based on offline
training, which leads to repeated false alarms for the ODs. Frequently
retraining the offline-based IDS model may be a solution, but it’s costly
and challenging. To overcome the limitation of offline training, we pro-
pose an online learning-based IDS named RemOD. Instead of retrain-
ing the entire model, RemOD can adapt the ODs to update itself in
online fashion. Updating the RemOD for ODs significantly reduces the
false alarms in such dynamic environments. We validate the proposed
method on two benchmark datasets: SWaT (dynamic environment) and
C-town (stationary environment). On SWaT dataset, RemOD generates
6.88 times lower false alarms than the baseline methods such as PASAD.

Keywords: Critical infrastructure security · Intrusion detection
system · Online learning · Operational drift · Security of cyber-physical
systems

1 Introduction

Cyber attack on Critical Infrastructures (CIs) compromises the nation’s econ-
omy, public security, social well-being and even human lives in some cases. The
CIs are mostly maintained by Industrial Control System (ICS), which is an
integration of supervision and production network. An ICS has many compo-
nents such as Supervisory Control and Data Acquisition systems (SCADA), Pro-
grammable Logic Controllers (PLC), sensors and actuators. These components
are inter-connected through the operation technology (OT) network. SCADA is
a software application in Cyber Physical System (CPS) that gather sensors and
actuators data from remote locations to indirectly control the physical compo-
nents through local controllers and check their working conditions. There are
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many well-known cyber attacks on CIs is reported worldwide, such as the Ira-
nian nuclear plant in 2009 [1], German steel mill in 2014 [2], Saudi petroleum
refinery in 2017 [3], and Ukrainian power grid in 2015-16 [4]. A CI is protected
with several layers of network segregation and segmentation by adhering to the
firewall filter at each network boundary. However, such protections are still being
breached by several intelligent and stealthy attackers. An attacker may breach
and bypass layers of security but cannot harm the physical devices or resources
until the sensor measurements get manipulated. The malicious activities cause
statistical changes in the normal behaviour of the sensor measurements [5]. A
process-level intrusion detection system (IDS) is deployed at SCADA to monitor
the sensor measurements. It detects attacks which induce statistical changes and
raises an attack alarm to protect CI as a last layer security solution.

1.1 The Problem of Intrusion Detection in Presence of Operational
Drift

Several process-level IDS have been developed recently, giving the best perfor-
mance in various measures [6–9]. But existing IDSs are restricted to be trained
only in offline settings. These IDSs assume that the timeseries measurements gen-
erated by sensors are stationary, i.e., statistical features such as mean, standard
deviation etc., remains same throughout the training, testing and implementa-
tion. Restriction of offline training is one of the major limitations of state-of-
the-art IDSs protecting CIs. According to [10], it is unrealistic to assume that
a plant’s normal operating range cannot change. Attack is not the only reason
behind the statistical changes in the sensors measurements. A CI is normally
operated under time dependent variations. It can vary by season (summer and
winter), volatility of demand, availability of resources and raw materials, main-
tenance etc. An operator may modify the operating range of a selected com-
ponent to meet the requirement [10]. As a result, the statistical feature of the
sensor measurements gets changed and form a non-stationary time series. Such
statistical changes in the normal measurements are called as operational drift
(OD). Traditional IDSs perform well with stationary data streams but unable
to adapt ODs, as a result, generates numerous false alarms for non-stationary
data streams. Therefore, an online learning based IDS is needed that can adapt
to ODs in real-time to reduce the false alarm rate.

The existing IDSs are trained in an offline fashion over a time window of mea-
surements. There are computational limitations for training the model on a long
timeseries collected dataset. A few day’s training datasets cannot cover entire
non-stationary timeseries. An IDS trained on non-stationary timeseries in offline
fashion generates continuous false alarm for the ODs and fails to distinguish any
attack. Retraining for every ODs can be one solution for existing IDSs. But, it
is impractical as the batch training (training the IDS on every ODs with old
training datasets) is costly computation. Therefore, the primary motivation of
this research is to develop an efficient and accurate IDS which can adapt to the
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ODs. To fulfill the gap, we propose RemOD1 (Remember Operational Drifts)
that adapts to ODs in online fashion and reduces the false alarm rate. RemOD
saves every suspected operational drift and its statistical information until it
gets investigated by the analyst team and get verified whether that is an OD or
an attack-induced abnormality. If no attack is involved, then RemOD adapts to
the OD and remember the changed normal behaviour.

1.2 The Proposed Approach

The proposed IDS RemOD continuously monitors the timeseries (periodically
generated sensor measurements) and facilitates the adaptation to ODs. The
adaption capability of RemOD remembers the changed normal behaviors. Ini-
tially, RemOD learns a base model in offline fashion. It collects important sta-
tistical features of a normal measurements into an optimal feature space. The
feature space is used as the memory of RemOD to remember all the normal
behaviors of sensor measurements throughout. To test a sensor measurement, we
project its statistical feature into the feature space and approximate its density.
We implement Multivariate Kernel Density Estimations (MVKDE) to approxi-
mate the testing measurement density in feature space, giving an anomaly score
for the testing point. If the projected test point falls into a sparse region, then its
anomaly score is computed high as compared to the points in the dense region.
An attack alarm is raised if the anomaly score crosses a certain threshold.

The RemOD is based on the two thresholds– classifier and maintainer. The
classifier threshold is a higher threshold, and the maintainer threshold is a lower
threshold. RemOD raises the alarm when the anomaly score exceeds the classifier
threshold. The maintainer threshold suspects the ODs. If the anomaly score
crosses the maintainer threshold, then its statistical information is saved into
a queue for further investigation. Such suspected measurements are named as
suspected operational drifts (SODs). Any abnormalities in the sensor-generated
measurements are a serious concern for a CI. Even if it is modified by operator, it
must be investigated within time. Therefore we maintain a buffer queue to save
each SODs until it gets investigated by analysts. Based on the investigation, if it
is found that the point in the queue is because of an OD only, then we update the
model by adding the statistical feature into the feature space otherwise dropped.
An OD causes high anomaly score for the successive measurements that saves
repeated entries into the buffer queue. Updating the feature space for a few
points in the queue can learn the entire changes.

RemOD is evaluated on two standard datasets, SWaT [11] and C-town
datasets [12]. The Secure Water Treatment (SWaT) plant dataset provides
testbed sensor measurements which has numerous ODs. The SWaT dataset is
suitable for validating an IDS on non-stationary timeseries. The C-town water
distribution network dataset provides stationary timeseries data for a nine-
month-long duration. The dataset validates an IDS for long testing duration and

1 https://github.com/8biskit/RemOD-Operational-Drift-adaptive-Intrusion-
Detection.

https://github.com/8biskit/RemOD-Operational-Drift-adaptive-Intrusion-Detection
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stationary distribution. We show the RemOD’s result in both online and offline
modes. In offline mode, we do not update the model called offline RemOD. Fur-
ther, we compare performance with the state-of-the-art PASAD method [7]. The
experimental results show that RemOD improves upon PASAD for both online
and offline modes. Online RemOD improves the average accuracy by 10.69% and
0.47% on the SWaT and C-town datasets, respectively. RemOD is developed for
the non-stationary dataset to reduce the false alarms rate and provides more
accurate result on the SWaT dataset. The false alarm rate on the SWaT dataset
is reduced from 12.5% to 1.8%. Moreover, the offline RemOD’s is trained over
the same training data as the baseline and performs slightly better.

1.3 Contribution

The key contributions of our work are listed as follows:

– We analyse the challenges of operational drifts for the existing offline training-
based IDS as they can fail by generating repeated false alarms in the non-
stationary environment.

– We present a novel online learning-based IDS suitable for adapting the opera-
tional drifts generated in an non-stationary environment of CI. The adaptive
capability of the RemOD significantly reduces the false alarms.

– Similar to the baseline method, we also evaluated RemOD in the offline setting
when we do not update it during online testing. Still, its performance is
slightly better.

– RemOD is evaluated on two datasets containing diverse attack types and
diverse sensor readings of stationary and non-stationary environments.

Organization: In the Sect. 2, we explain the methodology to build RemOD.
The characteristic of datasets used for validation is described in the Sect. 3. The
Sect. 4 empirically evaluate RemOD and discusses the results. Section 5 presents
the limitation of RemOD. The Sect. 6 discusses the related works and research
gap. The manuscript is concluded along with possible future work in the Sect. 7.

2 RemOD: Remember Operational Drift

RemOD is an online learning, time-series analysis and density estimation-based
IDS, capable of adapting the ODs in the timeseries during online testing. The
methodology of RemOD is developed as follows. We first discuss all the prelim-
inaries concepts developed for the RemOD in the Sect. 2.1. Then we discuss the
stepwise offline training of RemOD in the Sect. 2.2, presents a base model ready
to deploy for online testing. In the Sect. 2.3, we discuss stepwise implementation
for online testing and update. The parameters used to implement RemOD are
described in the Sect. 2.4. In Sect. 2.5, we discuss the computation cost of RemOD.

2.1 Preliminaries Concepts

This section discusses the essential preliminaries concepts used to develop
RemOD.
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Multivariate Kernel Density Estimations (MVKDE): MVKDE simulate
a kernel density function (KDF) that approximates a random data point in a
multidimensional sample space [13,14] (we call it to feature space because it
collects statistical features). Suppose x1, x2, ..., xk are the feature vectors in a
feature space X̂ , then the MVKDE function f̂ for a d-variate random vector
x ∈ Rd is defined as:

f̂H(x/X̂ ) =
1
k

k∑

i=1

KH(x − xi) (1)

K is a d-variate kernel function that satisfies the property of being radially
symmetric and

∫
KH(x)dx = 1. There are many known kernel functions which

satisfy the above properties. Among them, the standard Gaussian kernel function
(cf. Eq. 2) is a popular choice for MVKDE [13,15,16].

K(x) = (2π)−d/2|H|−1/2exp(−1
2
xTH−1x) (2)

H is a covariance matrix, which is the symmetric positive definite. There are
many choices of H [13,14] depends on the application. In this paper, we use a
scalar covariance matrix H = hId (cf. Sect. 2.4).

Anomaly Score: MVKDE function (f̂) gives a higher score if point x belongs
to the dense region. However, RemOD intends to detect the abnormal points
which belong to the sparse region of X̂ . Therefore, we reverse the MVKDE to
define anomaly score ψ(x) (cf. Eq. 3), where MAX = KH(�0) is the maximum
possible score of the MVKDE function. And, �0 is a zero vector.

ψ(x) = MAX − f̂H(x/X̂ ) (3)

Thresholds: RemOD model is based on two thresholds: maintainer threshold
θm and classifier threshold θc (θc > θm). The θm is used for training and updating
RemOD. The θc is dedicated to raise the alarm when ψ(x) > θc.

θm = MAX − KH(r1) (4)

θc = MAX − KH(r2) (5)

where r1, r2 ∈ Rd (cf. Sect. 2.4 for experimental choice) are any points in the
radically symmetric kernel space K at ||r1|| and ||r2|| distance respectively from
�0 vector such that ||r1|| < ||r2||.



RemOD: Operational Drift-Adaptive IntrusionDetection 319

2.2 Offline Training

The RemOD is being trained in two phases: offline and online training. In the
offline training phase, it is trained entirely over a sub-sequence of measurements
collected for some time window. The offline training learns a base model, which
further gets updated for every ODs that occurs during online testing. The offline
training returns an efficient feature space used during online testing.

Consider a univariate real-valued timeseries T = m1,m2, ...,mT ,mT+1, ...,
where mt represents measurement at time t. Initial sub-sequences of timeseries
T of length T are considered to train the RemOD. Remaining from mT+1 onward
are streaming measurements used for testing. The offline training phase of the
RemOD has the following three steps.

Embedding: Consider a training sequence T = m1,m2, ...,mT . A lag parame-
ter L is used to select a L length sub-sequence of T . Therefore, total K = T−L+1
sub-sequence are used for training. Each sub-sequences (T [t − L : t]) computes
feature vector xt to get embedded into the feature space X .

Each coordinate of xt represents a statistical feature of sub-sequence T [t −
L : t], such as mean, standard deviation, skewness, Kurtosis, percentile, etc. In
this paper, we experimented RemOD with two features2: mean and standard
deviation. Therefore xt = [mean(T [t − L : t]), std(T [t − L : t])]. The collection
of every xt defines a feature space X = {xt : L ≤ t ≤ T}.

Normalization: Since ICS consist of multiple types of sensors and actuators,
each may have a different range of measurements that derives a different scale
of feature vectors. Hence, we need to normalize the feature vectors to represent
them on the same scale. We use the min-max technique to normalize the sample
space X in the range of [0,1].

Sampling: A sensors generated timeseries are mostly repeated within a normal
range. When we take the statistical feature of every L length sub-sequences, most
of them are repeated, leads to huge redundancy in X . To remove the redundant
feature vectors, we use random sampling without replacement algorithm. The
reduced feature space is defined as X̂ . Random sampling can miss some impor-
tant feature vectors of X in X̂ . A feature vector x ∈ X is said to be important
feature vector if it belongs to the sparse region of X̂ . To recover the missed fea-
ture vectors, we use the maintainer threshold and check the importance of every
removed feature vectors (xi) in (X − X̂ ). If xi, ψ(xi) > θm then we include it
into X̂ .

X̂ = {X̂ ∪ {xi} : xi ∈ (X − X̂ ), ψ(xi) > θm} (6)

2 More features overhead the computation cost. We will include the others feature by
implementing using self-balancing multi-dimensional tree as future work.
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2.3 Online Testing and Updates

In this phase, we test the behaviour of every newly generated measurement and
update the model if any ODs are found. We follow the following steps to test a
measurement mt generated at timestamp t.

Algorithm 1: RemOD framework: online test and update
Input : Feature space matrix X̂ , Normalizer, Lag parameter L.
Output: Attack Alarm
Data: A testing timeseries T

1 determine θm and θc; // thresholds
2 Q ← An empty queue;
3 for t ← 1 to do
4 m̃ ← T [t − L : t]; // lag vector
5 x ← [mean(m̃), std(m̃)] ; // feature vector
6 x ← nomrmalizer(x);
7 score ← f̂(x) ; // anomaly score by eq. 1
8 if score ≥ θc then
9 Generate an attack alarm

10 end
11 if score ≥ θm then
12 Q.enque(x,t); // add the suspected OD in Q
13 end
14 updateSample(Q,t);
15 end

16 Function updateSample(Q,t):
17 x’,t’=Q.get(); // get the rear element of Q
18 if t − t′ ≥ τ then
19 Q.deque(); // remove the rear element
20 score′ = f̂(x′);
21 if score′ ≥ θm and verified normal then
22 X̂ ← append(X̂ , x′) ; // update the feature space
23 end
24 end
25 End Function

Testing a Sub-sequence: To test the measurement mt RemOD prepare a L
length lag vector m̃t with the help of preceding measurements; m̃t = mt−L+1, ...,
mt−1,mt. RemOD computes feature vector xt = [mean(m̃t), std(m̃t)] and nor-
malizes them. If the alarm score ψ(xt) (cf. Eq. 3) crosses the classifier threshold
(ψ(xt) > θc), then the attack alarm is raised.

Enqueue: If the anomaly score of a test measurement mt crosses the main-
tainer threshold (ψ(xt) > θm), then mt is considered as SOD, which needs to
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be investigated further. Therefore we maintain a buffer queue Q. The feature
vector xt and time stamp t of SOD (mt) is saved in Q i.e., if ψ(xt) > θm then
Q.enque(xt, t). The investigation time of the SODs in Q can vary in the real
environment. In RemOD’s experimental setup, we use a sufficiently long time τ
and assume that the SODs get verified within τ .

Update the Feature Space: To update the feature space, we get the SOD
element (xt′ , t′ = Q.get()) of Q. If it has been in the queue for more than τ ,
i.e., |t − t′| > τ , then RemOD dequeues it to verify the SOD. We use the level
of the dataset to verify the SOD in our experimental setup. If the measurement
at timestamp t′ and its previous L measurements (the measurements used for
computing the feature vector xt′) are marked as normal, then we consider it as
OD to update the feature space; otherwise, drop it. Now we update the OD by
adding its feature vector xt′ into the feature space X̂ when ψ(xt′) > θm. Since
the OD causes to change every successive measurement which gets added in Q.
But the most of them have similar statistical features. Therefore updating only
a few x′

t are sufficient to adapt the OD. If a similar statistic is present in X̂ ,
then the anomaly score of x′

t, which was added in the queue because of its high
anomaly score is changed to lower anomaly score. Therefore before updating
X̂ , we check the anomaly score ψ(x′

t). If ψ(x′
t) < θm, then there is no need to

update.

2.4 Choice of Parameters

There are a total of five parameters that are needed in RemOD: The lag param-
eter L, the number of nearest points k the bandwidth parameter h, the sam-
pling ratio sr, and radius r (to find thresholds). In [17], the authors suggest a
lag parameter L should be long enough to describe the system’s dynamics and
L < N/2. RemOD estimates density on the k nearest neighbours which is chosen
to be around 5% of the number of points in feature space after offline training.
The kernel smoothing parameter h is the variance (

√
h is standard deviation)

of each co-ordinate of kernel function f̂ as our feature space X̂ is normalized
between [0, 1]. According to the authors in [13,14], the standard deviation of√

h = 0.5 is wide enough to estimate the entire X̂ very smoothly, i.e. h < 0.25.
RemOD estimates density on the k nearest points only which shrink the width
of estimation. Therefore, Estimating a different Gaussian kernel for each point
in the space needs very small h, i.e. h << 0.25. The choice of sampling ratio ‘sr’
is inversely proportional to the initial number of points in the feature space. The
base RemOD is trained over a small duration of measurements having similar
statistics. Therefore many repeated statistical features are present in X . How-
ever, only a few points are needed to describe the feature space. Therefore we
choose sr to keep only a few points N in X̂ . Parameters ||r1|| and ||r2|| are the
radius of the kernel function f̂ computes the thresholds. If a test point’s kernel
density estimation is more than kernel value at r1 distance, then it is classified as
operation drift by the maintainer threshold θm. If a test points kernel density is
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more than kernel value at r2 distance point, then the alarm is raised by classifier
threshold θc. The maintainer threshold aims to remember all the statistics in
which the ideal value is zero. But implying r1 is close to zero vector adds many
points and slows down the computation. Therefore some slack must be provided
to make it computationally practical. Similarly, the classifier threshold also be
at the right place to accurately classify the attack and normal data points. We
use ||r1|| = 0.1 and ||r2|| = 0.3 during our experiments.

2.5 Computation Cost

The offline training phase first collects all the feature vectors in the feature space
whose computational complexity is O(T ) (T is length of training measurements).
Then, the sample is randomly reduced to size O(N). Recovering the lost points
needs to check the anomaly score and compare with the θm, which has a compu-
tational complexity of O(T ·N2). Since the offline training is a one time job, and
RemOD is initially trained over a small size data. Therefore training complexity
O(T · N2) is practical.

The pseudo-code of online testing and update is shown in Algorithms 1. Com-
puting the anomaly score f̂ is the most costly step. It needs to find k nearest
local points from the test point in the feature space of size N . Hence, the time
complexity is O(k·N2) ≈ O(N2) to test one measurement. Since the N is already
reduced to very small, therefore the testing computational complexity of O(N2)
is practical to implement. The computation cost can be further improved by
implementing using multi-dimensional tree instead on matrix data structure as
the future work. The time taken by RemOD in training and testing with the
evaluation dataset is given in the Table 3.

3 Validation Datasets

In this section, we use datasets of two different infrastructures to validate the
RemOD, one is from the Secure Water Treatment (SWaT) testbed [11], and
another is from the C-town network of water distribution plants [12].

3.1 Dataset 1: The Secure Water Treatment (SWaT) Testbed

The SWaT dataset [11] is a real-time water treatment plant testbed dataset
provided by the iTrust research center for ICS cyber security. The SWaT plant
produces 5 US gallons/hr of filtered water, which is operated by ICS. SWaT
testbed was continuously operational for 11 days: 6 days in normal, and the
remaining 5 days attack scenarios. The measurements are generated periodically
after a second. In the attack phase, there are a total of 36 different attacks
launched. A traditional IDS generates high false alarm for SWaT dataset as it
has several ODs in the sensor measurements.
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3.2 Dataset 2: C-town Network Dataset

The BATADAL dataset [12] is generated by simulating the C-Town water dis-
tribution network with the epanetCPA framework [18]. It generates stationary
time-series of sensor measurements. The dataset provides three files collected
under: normal operation for one year, normal and mixed with 7 different attacks
for six months, normal and mixed with 7 different attacks for six months. As
our model needs only normal measurements for initial offline training, therefore
we use both attack datasets to test all 14 different attacks. The dataset con-
tains the timeseries of 43 sensors/actuators measurements. The measurements
are generated periodically after an hour.

4 Experiment and Result

In this section we first discuss the assumptions to perform the experiments in
Sect. 4.1 and the evalution matrix in the Sect. 4.2. This section is consists of five
experiments used to validate RemOD from various perspective. In the first two
experiments Sects. 4.3, and 4.4, we applied RemOD on SWaT (cf. Sect. 3.1), and
C-Town dataset (cf. Sect. 3.2). Experiment 4.3 validates RemOD on non station-
ary timeseries, and the experiment Sect. 4.4 validate on stationary timeseries. In
4.5, we experiment RemOD in offline mode. In Sect. 4.6, shows the comparison of
RemOD with baseline method PASAD. In Sect. 4.7, we discuss the computation
cost of RemOD in the experiments Sects. 4.3 and 4.4.

4.1 Assumptions

Following two assumption used for experimenting RemOD:

Assumption 1: We assume that the features of SODs present in the buffer
queue are verified using the dataset label after a significant time τ . If it is labelled
normal, then we consider it as OD otherwise attack.

Assumption 2: Sensors measurement during an attack reach the abnormal
state and takes some time to return to the normal even if the attack is dis-
abled. Also, we are preparing the L length lagged vector feature with the help
of the previous features. The measurements marked normal just after the attack
includes attack measurements which may raise false alarms. Therefore we do not
consider false alarms up to 2L length just after the attack for evaluation matrix.
The same assumption is also applied in the baseline implementation.

4.2 Evaluation Matrix

Along with the visual demonstration results of a few sensors, we present precision
and false alarm rate to evaluate RemOD and baseline. Since the true level of
the dataset for the sensor measurements is unknown. An attack manipulates the
measurements of only a few sensors, not every sensor. Therefore computing the
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recall for every sensor may not be a suitable parameter. We present a few plots
of sensor measurement visual representations cf. Figs. 1, 2, 3, 4,5 for the attack
detection capability and the following evaluation matrix for the accuracy of the
alarms.

precision =
TA

TA + FA
× 100 (7)

false alarm rate =
FA

NTM
× 100 (8)

Fig. 1. Application of RemOD on a non-stationary timeseries. The Subfigure (a) repre-
sents the sensors (PIT502) generated measurements of SWaT dataset. The initial sub-
series (green colour) is used for training RemOD in the offline mode and the remaining
(black and green) are for testing. The figure shows that statistics of the timeseries is not
same during training and testing generates a non-stationary timeseries. During testing,
four attack measurements are significantly manipulated. The subfigure (b) represents
the corresponding anomaly score generated by RemOD on the entire timeseries. The
anomaly score (green scores) during training appearing above the maintainer threshold
are the part of training. The changed statistical features of the timeseries cause high
anomaly score which are adapted by RemOD and detects the four attack with only a
few false alarms. (Color figure online)

where TA (true alarms) is correctly detected alarms, FA (false alarms) is alarms
raised for normal measurements, and NTM (normal test measurements) is the
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number of normal test measurements. Since RemOD is motivated to reduce
false alarms and increase true alarm’s confidence. Therefore evaluating alarms
in terms of their precision and false alarm rate provides better evaluation matrix.
An ideal IDS should have high alarm precision to raise a confident alarm.

Fig. 2. Application of RemOD on a stationary timeseries. The Subfigure (a) represents
the sensors (FIT301) generated measurements of SWaT dataset. The initial subseries
(green colour) is used for training RemOD in the offline mode and the remaining (black
and green) are for testing. The figure shows that statistics of the timeseries are the same
during training and testing generates a stationary timeseries. Visually, only one attack
is appearing manipulated and other are hidden in between the normal measurements
range. The subfigure (b) represents the corresponding anomaly score generated by
RemOD on the entire timeseries. The anomaly score (green scores) during training
appearing above the classifier threshold are the part of training. The figure shows that
the anomaly score of the normal measurements are remain below the maintainer that
do not needs to update the model. There are seven attack mostly hidden within the
normal margin are detected without any false alarms. (Color figure online)

4.3 Exp.1: Evaluation on SWaT Dataset

In this experiment, we run RemOD on every process variable of a SWaT dataset.
We demonstrate two sensor variables which are PIT502 and FIT301 in the Fig. 1
and 2. Figure 1(a) represent a non-stationary timeseries that includes multiple
ODs, while Fig. 2(a) shows a stationary timeseries. As shown in Figs. 1(a), 2(a),
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initial measurements of green colour are used for offline training, and the remain-
ing are used for testing. As the Fig. 1(a) belongs to the non-stationary time-series
causes anomaly score crosses the maintainer threshold many times initially. Even
it raises two false alarms, shown in Fig. 1(b). When the model adapt to every
ODs and becomes stationary after a while. Then no more adaptation is needed
and it keeps working without any false alarms. In Fig. 1, there are four attacks
are showing a significant deviation from the normal measurements detected by
RemOD. We efficiently detect the attacks because of the adaptive nature of
the RemOD otherwise it would be mixed with the false alarms and could not
be distinguished. Another scenario (cf. Fig. 2) is a stationary timeseries of the
SWaT dataset. As the statistical distribution of the timeseries is the same during
the training and testing. The base model has all the information of the normal
statistics present during testing. Therefore no need to update RemOD during
testing as no significant statistical is changed in measurements causes to cross
the maintainer threshold. In Fig. 2, there are seven attacks hidden in the normal
range of sensor measurement have been detected by RemOD. The summary of
the performance of RemOD on each timeseries on SWaT dataset is given in the
Table 1.

Fig. 3. Application of RemOD on the ‘PJ14’ sensor of C-Town network. RemOD
detects five attacks and not raising any false alarm. Anomaly score on a few normal
measurements are above the maintainer threshold gets adapted with time.
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4.4 Exp.2: Evaluation on C-town Dataset

In this experiment, we applied RemOD to every process variable of the C-Town
dataset. The experiment is performed similarly to the experiment Sect. 4.3.
C-Town dataset contains stationary timeseries sensor measurements. Figure 3
shows that the RemOD can detect 4 attacks reflected in the sensor PJ14. There
are a few measurements initially slightly differing from the training measure-
ments cross the maintainer threshold, which RemOD adapts. The performance
summary on the C-town dataset is given in the Table 1.

4.5 Exp.3: Offline RemOD

In this experiment, we evaluate RemOD on both SWaT and C-town datasets
when there is no online update is performed. We train the model only once
during offline training using the training measurements (green measurements)
and apply the model on the testing measurements without any further updates.
RemOD’s better attack detection capability (cf. Figs. 5) slightly improve the
result even in offline mode. The average alarm’s accuracy of offline RemOD on
the both dataset is given in the Table 1.

Table 1. RemOD and PASAD performance comparison on SWaT and C-Town dataset

Method Precision (%) False alarm rate (%)
SWaT C-Town SWaT C-Town

RemOD Online 96.3 99.9 1.8 0.1
RemOD Offline 86.8 99.8 11.3 0.1
PASAD 85.6 99.4 12.5 0.6

Table 2. Choice of parameters for experiments by RemOD

Experiment L h k τ sr

C-town 75 0.08 10 1week 0.3
Exp.3 200 0.08 10 NA 0.3

4.6 Exp.4: Comparison with PASAD

We compare RemOD with the state-of-the-art method PASAD [7] as the base-
line. We applied PASAD on each process-variables of SWaT and C-Town datasets
by following the guidelines provided in the paper [7]. We used the same training
and testing sequences on both models (RemOD and PASAD) for a fair com-
parison. We show two visual demonstrations of non-stationary and stationary
distribution in Fig. 4 and 5. In the non-stationary distribution, measurements
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Fig. 4. Comparison of RemOD with PASAD on a non-stationary timeseries sensor-
variable ‘AIT202’ of SWaT dataset. A scenario when the statistics of the measurements
are continuously changing. RemOD keep adapting the changes to down the anomaly
score. When all the statistics are adapted it do not raise false alarms anymore. While
PASAD could not adapt the changes continuously raising false alarms.

of AIT202 (cf. Fig. 4) is continuously increasing, which is normal for this sen-
sor. Since the baseline method is restricted to offline, it could not adapt to the
changes and continue raising false alarms. On average of every sensors of the
SWaT dataset PASAD raise 12.5% false alarms. Another hand, RemOD’s adap-
tive capability make it possible to adapt to the change. After a while, RemOD
adapts all the ODs and minimize the false alarm rate. In this way, RemOD
reduces the average false alarms to 1.8%, which is 6.88 times lower than the
baseline method. However, the offline RemOD raises equivalent but slightly lower
false alarms than the baseline.

In Fig. 5, we are demonstrating another sensor measurements of the SWaT
dataset which shows the detection capability of RemOD. RemOD can detect six
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Fig. 5. Comparison of RemOD with PASAD on sensor-variable ‘MV303’ of SWaT
dataset. A stationary timeseries when PASAD fails to detect may attacks. Even Pasad’s
anomaly score is close to zero for the attack manipulates the measurements to contin-
uously generating only one value. While RemOD detects the five attacks in the same
scenario.

attacks in MV303, while the baseline method fails to detect most of them. In
such a way, RemOD has more capability to detect an attack, resulting higher
precision shown in the Table 1. The strong attack detection capability and its
adaptive nature leads to improve the alarm’s accuracy by 10.69% for the SWaT
dataset. The false alarm rate on the C-town dataset is already small because of
stationary distribution. Still, RemOD (both online and offline) is raising lower
number of false alarms as compared to the baseline. The average accuracy on
the C-Town dataset is equivalent (slightly improved by 0.47%) to the baseline
as it has stationary distribution. When we don’t update RemOD during online
testing, then its (offline RemOD’s) performance is closer but slightly better than
the baseline.
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4.7 Exp.5: Computation Cost of RemOD

An important concern of the RemOD is that it should be computationally effi-
cient to produce the test result before the next measurement gets generated.
The training and testing computation cost for the three experiments is given in
the Table 3. As the model is trained by just collecting the dataset, it can quickly
train the base model within a few seconds. Since the adaptation process during
testing is applied for a long duration, therefore it takes more time than training.
Still, it tests SWaT sensor measurements generated in the duration of six days
within 122.5 s. For the C-town dataset, training and testing cost are within a
second. The average time to compute the sensor measurements generated dur-
ing the time period of nine months took only 0.84 s. Since the measurements
of the C-town dataset gets available less frequently (takes one hour to generate
a measurement) than the SWaT (generates at every sec). This results in lesser
computation on C-town as model processes fewer measurements with smaller
lag parameters. The small training and testing computation cost of RemOD on
the both validation datasets shows that it is computationally realistic to build
and deploy. The computation time is noted while experimenting on processor:
‘Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz’, operating system: ‘64-bit Ubuntu
16.04 LTS’, RAM size: 16 GB, implemented in ‘Python 3.6.5 :: Anaconda, Inc’
with libraries: numpy, random, math etc.

Table 3. Average training and testing time of RemOD

Experiment Training cost Testing cost Duration

SWaT 26.54 s 122.5 s 6 Days
C-town 0.23 s 0.84 s 9 Months

5 Limitation

Complete automation of adapting to the OD is a challenging task for an IDS.
An adaptive-intelligent attacker can compromise fully automated adaptive IDS
by the data poisoning attack. In targeted attacks, attackers can manipulate the
sensor measurements during the OD to poison the training data. When RemOD
adapts to such poisoning data, it remembers the attack measurements as normal
and misclassifies them as normal during further testing. Therefore, RemOD is a
semiautomatic IDS, which gets updated only for the manually verified normal
measurements to avoid the data poisoning attack. It may add some delay if the
attack is not verified within the stipulated time. The data poisoning attack is a
challenge for most of the available IDS. They also assume the training dataset
to be poisoning free.
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6 Related Work

Over the past few years, several machine learning-based process level IDS has
been proposed for anomaly-based intrusion detection. In [19], the authors use
k-means clustering method with the algorithms discussed in [20] and named it
y-mean clustering method for network intrusion detection. In [21], authors used
one-class SVM with kernel PCA to detect attacks in the Gas Pipeline testbed
and water treatment plant [22]. Authors of [23] improved the SVM method by
using PCA and the genetic algorithm. In [24], the authors proposed hierarchical
monitoring with distributed and parallel PCA. Many authors have also pro-
posed deep learning based IDS [25–28]. In [25], authors implement RNN models
for fault detection in Tennessee Eastman Process chemical plant [29]. Abokifa
et al. [26] employ PCA with an artificial neural network. Authors of [27] use
an unsupervised generative deep learning model. In [30], authors applied ensem-
ble method by combining multiple anomaly detection method such as statistical
fences, FFNN model and PCA. Li et al. [28] proposed a Generative Adversar-
ial Networks (GANs) based unsupervised anomaly detection method, which is
validated using the SWaT dataset. [11]. There are a few univariate solutions are
found most effective [6,7,9]. In [9], authors proposed an auto regression-based
model to detect abnormal sensors measurements. Aoudi et al. [7] demonstrate
singular spectrum analysis (SSA) based noise effective and computationally effi-
cient univariate IDS. Authors of [6] leverage SSA with the ellipsoid decision
boundary to improve [7] and introduced a new micro stealthy attacks(MSSA).
They presented improved IDS to make more accurate for detecting MSSA.

All of the above discussed methods are offline training based and assume
stationary distribution of the senors measurements during training, testing,
and implementation. These state-of-the-art methods fail to detect operational
drifts in the normal behaviour and raise numerous false alarms. In [10], authors
depicted the need for an IDS to adapt ODs for real-time implementation in order
to reduce the false alarms. To the best of our knowledge, there is no research
available to adapt the ODs in IDS. Therefore we propose RemOD– a univariate,
process level, and online learning based IDS. An adaptive IDS can provide a more
layer of security to CI and reduce disruption in CI function, as continuous false
alarm may disrupt CI functionality for some time. RemOD quickly detect the
abnormal structural changes and adapt the ODs to reduce the false alarms. We
consider state-of-the-art method PASAD as baseline to compare performance.
The comparison is present in Sect. 4.6 and result is found in support of RemOD.
Result shows that RemOD is highly accurate and generates few false alarms
comparatively.

7 Conclusion

It is an unrealistic assumption to consider a stationary environment always in
CI. This paper presents the cases when the statistics of the normal measure-
ments can change because of genuine reasons during testing. The traditional



332 V. Maurya et al.

IDSs are offline learning-based, fail in the non-stationary environment. To over-
come this limitation of offline IDS, we propose RemOD. RemOD is fully auto-
matic for intrusion detection and semi-automatic for OD adaptation. We validate
RemOD on two benchmark datasets that show RemOD is accurate in detect-
ing attacks and adapting the ODs to reduce the false alarms significantly. The
proposed method RemOD is a semi-supervised that assumes the training mea-
surements belong to the normal class. The future direction of the research is
to develop robust online learning-based unsupervised IDS. A robust model can
ignore the noise and poisoned data (attack mixed within the normal measure-
ments). Along with robustification, we would like to extend RemOD to improve
performance by implementing additional statistical features and a self-balancing
multi-dimensional tree.
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Security and Cyber Security for Cyber-Physical Systems) at IIT Kanpur for partially
funding this research project.
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Abstract. In this short note, we show that a Delaunay Quadrangle based Finger-
print authentication system proposed in a 2014 IEEE-TIFS paper has issues in it.
Specifically, the authors of the proposed system use a so called Topology Code to
compare quadrangles in the context of Fingerprint authentication. We show that
there are shortcomings in this proposal. As the original proposal along with its
deficiencies has been utilized and built upon in further research, there is a need
to further correct the record and motivate changes to the original proposal as well
as the papers that built upon the original proposal.

Keywords: Authentication · Biometric security · Delaunay triangulation ·
Delaunay Quadrangle · Topology code

1 Introduction

In the July 2014 edition of the IEEE Transactions on Information Forensics and Secu-
rity, a paper titled A Delaunay Quadrangle-Based Fingerprint Authentication System
With Template Protection Using Topology Code for Local Registration and Security
Enhancement [1] was published. Hereafter we refer to this paper as the Delaunay Quad-
rangle paper or DQ for short. In this article, we focus on a major issue in the DQ paper.
While we refer the readers to the DQ paper for complete details about Delaunay Quad-
rangulations, we provide a very brief background here to motivate the discussion of this
issue.

A well known technique from Computational Geometry [6] commonly used by
researchers in fingerprint biometrics is Delaunay Triangulation. For example, the
authors in [7] studied the utility of Delaunay Triangulation in fingerprint identification.
An overview of Triangulation in Fingerprint Biometrics is provided in [8]. The authors
of the DQ paper intended to generalize this idea beyond trianglulation. They use a 4-
sided polygon (quadrilateral) instead of a 3-sided polygon (triangle). Whilst motivating
the use of quadrangles for fingerprint biometrics, the authors of the DQ paper write.
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We propose a Delaunay quadrangle based fingerprint authentication system to deal
with nonlinear distortion-induced local structural change that the Delaunay triangle-
based structure suffers. Fixed-length and alignment-free feature vectors extracted from
Delaunay quadrangles are less sensitive to nonlinear distortion and more discriminative
than those from Delaunay triangles and can be applied to existing template protection
directly. Furthermore, we propose to construct a unique topology code from each Delau-
nay quadrangle. Not only can this unique topology code help to carry out accurate local
registration under distortion, but it also enhances the security of template data . . . .

It is this so called topology code referred to by the authors of the DQ paper that will
be the focus of this article. In the next section, we show that there is a flaw in the usage
of this topology code and that it is not appropriate to use the topology code to compare
quadrangles.

While we do not provide an alternative to the utility of topology code in this paper,
we highlight the need for further work to correct the DQ paper and as well as other
literature that builds upon the DQ paper.

2 Topology Code for Delaunay Quadrangles

The topology code is a mathematical property used by the authors of the DQ paper to
compare quadrangles. The authors of the DQ paper write

A unique topology code is derived from each Delaunay quadrangle.

They also write that the topology code should satisfy the following two properties:

(1) it should uniquely describe the different shape of each Delaunay quadrangle;
(2) it should reflect the impact of different starting point selections. The second prop-
erty of such a descriptor is highly critical in helping us to decide the starting point of a
Delaunay quadrangle in local registration

To explain what the topology code is, instead of paraphrasing the authors of the DQ
paper, we repeat the example provided by the authors in the DQ paper (Fig. 1). The
example consists of a pair of quadrangles which the authors denote as Q(ABCD) and
Q(A′B′C′D′). The authors focus on finding the starting vertex for comparing the two
quadrangles in Fig. 1. The authors consider the absolute value of the four angles in the
quadrangles and write.

. . . using absolute geometric measurement in deciding a starting point under distor-
tion is inaccurate. Naturally the quantization operation is expected to solve this issue
because it can make angle values insensitive to small-scale differences . . .
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Fig. 1. Delaunay quadrangles (sourced from the DQ paper)

The 4 angles in each of the quadrangles above are first quantized with a quantization
step size of π/6. For instance, an angle of 20◦ is quantized as 1 and an angle of 40◦ is
quantized as 2. Thus in Fig. 1, ∠A is quantized to 2 and so is ∠B. To show how the
Topology code is calculated, we again quote the authors of the DQ paper below:

The angles, ∠A, ∠B, ∠C and ∠D, of Q(ABCD) are quantized into ‘2’, ‘2’, ‘4’ and
‘5’, respectively. We observe that, by changing the starting point from A to D and count-
ing the quantized angle values sequentially in clock-wise direction, four different code
strings, 2-2-4-5, 2-4-5-2, 4-5-2-2 and 5-2-2-4, can be generated. Similarly, four code
strings, 2-2-4-5, 2-4-5-2, 4-5-2-2 and 5-2-2-4, can also be produced for Q(A’B’C’D’).
We shall now seek a descriptor from each Delaunay quadrangle that owns two proper-
ties: (1) it should uniquely describe the different shape of each Delaunay quadrangle;
(2) it should reflect the impact of different starting point selections. The second prop-
erty of such a descriptor is highly critical in helping us to decide the starting point of
a Delaunay quadrangle in local registration. In order to make each quadrangle corre-
spond to a unique descriptor, we use an equation from [2] as follows:

TC = p1Γ 3+ p2 ×Γ 2+ p3 ×Γ 1+ p4 ×Γ 0 (1)

where {pi}4i=1 are the quantized angle values of the Delaunay quadrangle and Γ =
max(p1, p2, p3, p4)+ 1. Using Eq. (1), we calculate a value for each of the four code
strings and choose the smallest value to be the descriptor of the Delaunay quadrangle
under consideration. The descriptor obtained by Eq. (1) is unique and the proof of the
uniqueness of this descriptor can be found in [2]. Since the descriptor TC describes
the shape feature of the Delaunay quadrangle, we call it topology code in this paper.
According to the topology code TC generation rule, each Delaunay quadrangle can be
indexed by a unique value. For example, it follows from Eq. (1) that the resulting values
of the four code strings, 2-2-4-5, 2-4-5-2, 4-5-2-2 and 5-2-2-4, from Q(ABCD) are 533,
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608, 1058 and 1168, respectively. Hence, the smallest value 533, which corresponds
to the starting point of A, is chosen as the topology code of Q(ABCD). Similarly, the
topology code of Q(A’B’C’D’) is also calculated to be 533, which is corresponding to
the starting point A’. The starting points A of Q(ABCD) and A’ of Q(A’B’C’D’) are just
the correct corresponding points that we want to find. By this means, accurate local
registration is achieved and the mistake that point B’ is considered as the starting point
of Q(A’B’C’D’) by using the absolute geometrical measurement can be avoided.
There are multiple problems with the above approach in the DQ paper.

In Fig. 1(a), say if we change ∠A from 54◦ to 59◦ and ∠C from 100◦ to 95◦, and
adopt the above approach provided in the DQ paper to obtain the code strings, the
resulting values of the code strings are 2-2-4-5, 2-4-5-2, 4-5-2-2 and 5-2-2-4. The TC
will be associated with the code string 2-2-4-5 beginning with A. Now, if in Fig. 1(b),
if we change ∠A′ to 61◦, ∠B′ to 58◦, ∠C′ to 93◦ and ∠D′ to 148◦, and adopt the above
approach again to obtain the code strings, the values of the code strings will be 3-2-4-5,
2-4-5-3, 4-5-3-2 and 5-3-2-4. The smallest topology code in this case will be associated
with the code string 2-4-5-3 corresponding to the starting vertex of B′. However, as per
the description above provided by the authors of the DQ paper, this is exactly the result
that was not wanted.

The reason for the above problem is this: As the authors in the DQ paper write,
Eq. (1) was adapted from a paper titled Matching Perspective Views of a Polyhedron
Using Circuits [2], authored by Gu, Yang and Huang and published in the May 1987
edition of the IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).
Hereafter, we refer to this paper as the PAMI paper. The PAMI paper provides with a
method of comparing two polygons and while there is nothing wrong with the PAMI
paper, there is a problem in the adaptation and usage of Eq. (1) in the DQ paper. To see
this problem, we first illustrate the usage of this equation in the PAMI paper. This is
best done by quoting the authors of the PAMI paper:

Because of the scaling and shape distortions between the two line drawings caused
by perspective changes, the absolute geometrical measurements of a circuit in a draw-
ing such as its area and perimeter, line lengths, and the angle values between two adja-
cent lines can hardly be used to identify the corresponding circuit in the other drawing.

Our motivation here is to seek a descriptor of the circuit shape which is more invari-
ant. RLCC code proposed by us is a boundary shape code, which describes the main
shape features of a circuit but is invariant to scaling, rotation and to some extent per-
spective distortions. RLCC code is the abbreviation for “run length code of convex and
concave angle strings around a circuit,” the circuit being traced in a counterclockwise
direction for one cycle.
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Fig. 2. Illustrating RLCC code (image sourced from the PAMI paper)

For example, in Fig. 2, starting from vertex 1, we can get a circuit 1 2 3 4 5 6 7 8
and the angle string is “+ + + + - + + -,” where “ +” stands for a convex angle and
“−” stands for a concave angle, so that the RLCC code of the circuit is 4121. In this
code word the first digit “4” means the first string is a convex angle string with length
4, the second digit “1” means the second string is a concave angle string with length
1, and so on. In order to make a circuit correspond to an RLCC code uniquely, two
stipulations are made: 1) We always start a code with a convex string. 2) If there are
several separate convex angle strings around a circuit, then we pick the starting convex
string in such a way that the code value (defined below) is maximized.

Definition: Let a1a2..ai..aN be an RLCC code of a circuit, the corresponding code value
(CV) is

CV =
N

∑
i=1

aiB
n−i (2)

where N is the length of the code word which equals to the number of separate (convex
and concave) angle strings around a circuit for a cycle, ai is the value of the digit in the
code located at the ith position, B is the base value, and

B= max{ai}i=1...N +1 (3)

Further, after proving theorems related to uniqueness, the authors of the PAMI paper
write

Assume that for a circuit there are m separate convex angle strings. Among the m
codes we select the code with the largest code value as the normalized RLCC code
(NRLCC code) of the circuit.
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Fig. 3. Illustrating RLCC code (image sourced from the PAMI paper)

As an example, for the circuit of Fig. 3, there are four separate convex strings 13 14
15, 1 2 3, 5, and 8 9 10. Using each of these strings as the first string for encoding, there
will be four corresponding codes: 3 1 1 2 3 2 3 2, 1 2 3 2 3 2 3 1, 3 2 3 2 3 1 1 2, and 3 2
3 1 1 2 3 2. For calculating these code values, the base value B= max{ai}i=1...N +1=
3+ 1 = 4, therefore the code values of the four codes, according to (1), are 44022,
28397, 61142, 52592, respectively. So the NRLCC code of the circuit of Fig. 5 is 3 2 3
2 3 1 1 2. The starting point for the encoding is at vertex 8 in the circuit.

There is a small typo in the above content reproduced from the PAMI paper. The
corresponding codes for the convex strings ‘1 2 3’ and ‘5’ have been swapped.

Now Eq. (1) referred to above in the DQ paper is the same as that of Eq. (2) referred
to above in the PAMI paper. From the above reproduced content from the PAMI paper,
we can see that the number of terms in Eq. (2) is the same as the number of separate
angle strings and this can vary depending on the shape of the object. However, Eq. (1) in
the DQ paper always has a fixed set of terms equal to the number of sides in the polygon
under consideration. Equation (1) in the DQ paper is about the size of the angles in a
Quadrangle, whereas the corresponding equation in the PAMI paper is about the shape
of any polygon under consideration in terms of convex and concave angles. Thus, it is
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inaccurate and not appropriate to use the Topology code in the DQ paper to compare
two 4-sided polygons.

From the above considerations, it can be noted that the NRLCC code for the Quad-
rangles in Fig. 1 is always 4 as per the PAMI paper. This is different from the topology
code for these polygons as per the DQ paper.

3 Conclusion

In this article, we showed that it is not appropriate to use the so called Topology code
to compare Quadrilaterals in the context of Biometrics. When we contacted the authors
of the DQ paper with our concerns, we were informed that they are not working on this
topic anymore, as this area of work is apparently saturated and thus cannot provide us
with any comments. However for the sake of correctness of the DQ paper (which has
been cited 75 times) and other papers that have built their work based on the DQ paper,
it is worth documenting the issues described in this paper.

In the literature, a paper [3] published in 2016 has very similar content as in the
DQ paper published in 2014. There is unfortunately a very large overlap between the
two papers and [3] does not even cite the DQ paper. Further, in another paper, [4] the
authors build upon the idea of using a 4-sided polygon in the DQ paper and extend it to
a 5-sided one. They too use the idea of the Topology code and adapted exactly the same
method as in the DQ paper. Thus their method to compare pentagons is not appropriate
as well. Building on the idea of using a 4 sided polygon, the authors of yet another
paper in [5] extend this to a 6 sided polygon, but they too adapted the same method as
in the DQ paper and hence their method to compare hexagons is not appropriate too.

There is thus a need to do further work to suitably correct the DQ paper and the
subsequent papers that depend and build on the DQ paper.

Acknowledgements. Many thanks to the anonymous reviewers of SPACE 2022 for their valu-
able feedback.
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