
Chapter 2
Analog-to-Digital Conversion
Fundamentals

The tremendous popularity but also challenges of data converters as key interface
functions between the physical (analog) world and the electronic (digital) world
were discussed from a bird’s eye view in the previous chapter. Before delving into
advanced architectural and design details, this chapter will cover the fundamental
A/D conversion principles, some important performance metrics, as well as practical
limitations, serving as the foundation for the following chapters.

Section 2.1 serves as a theoretical background by reviewing the two main
functions in every A/D conversion: (1) sampling and (2) quantization. The major
error sources stemming from the individual blocks of practical converters are
identified and analyzed in Sect. 2.2, followed by a review of the most important
performance metrics and figures of merit in Sect. 2.3. Section 2.4 derives the impact
on the accuracy-speed-power for every major error source. This derivation leads to
the establishment of the fundamental limits on a converter’s performance, imposed
by circuits, by technology, and ultimately by physics. The limits in this chapter form
the basis of what may be theoretically achievable and, together with the architectural
overheads presented in Chap. 3, serve as guidelines to assist the design choices of
the prototypes in Chaps. 4–7. This chapter closes with an overview and conclusions
in Sect. 2.5.

2.1 Theoretical Background

As already mentioned, every analog signal is continuous both in time and in
amplitude. Therefore, two main processes are essential to obtain the final digital
waveform:

1. Sampling (to achieve the time discretization)
2. Quantization (to achieve the amplitude discretization)
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Fig. 2.1 Block diagram of an ideal A/D conversion (top) and the resulting waveforms at every
part of the chain (bottom)

Figure 2.1 depicts the block diagram of an ideal Analog-to-Digital (A/D)
conversion with its corresponding waveforms. The continuous time and amplitude
analog input signal (black waveform) is uniformly sampled with a period of Ts (or at
a sample rate1 of fs). The resulting time-discrete analog signal (orange waveform)
updates its value only at integer multiples of Ts. When the time is equal to an integer
multiple of Ts, the sampled signal is equal in value to the analog input at that instant
and keeps its value until the next multiple of Ts arrives. Between two consecutive
time instants, the sampled signal is held constant and can be further processed down
the conversion chain.

Next, the quantization takes place, where the sampled signal is discretized in
amplitude and its analog values are mapped onto a set of discrete levels (blue
waveform). The digital output, now discrete in both time and amplitude, is an
approximation of the initial analog input, with its approximation accuracy limited by
the number of the available discrete levels. During both sampling and quantization,
there is information loss since an error is introduced on the initial analog signal.
This error can be reduced by increasing the number of time samples and/or the
number of discrete levels. As we will see in the remainder of this book, guaranteeing
simultaneously both can be far from trivial.

2.1.1 Sampling

Sampling is the basic process that transfers a waveform from the continuous time
to the discrete time domain. The sampling process can be described mathematically

1 Throughout this book, the terms sample rate, sampling rate, sampling speed, and/or sampling
frequency will all refer to the same quantity fs.
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Fig. 2.2 Sampling a continuous-time signal using a Dirac pulse sequence

by means of the Dirac function δ(t), whose integral is equal to one at the integration
instant and zero elsewhere [12]. The required sampling time frame is determined
by a sequence of equidistant in time Dirac pulses, spaced by Ts. The time-discrete
signal is a result of the multiplication of the Dirac pulses with the original waveform,
with an amplitude equal to the amplitude of the waveform in the sampling instants
and undefined elsewhere (Fig. 2.2). The mathematical formula expressing the above
is given as

Vs(t) = V (t) ·
n=∞∑

n=−∞
δ(t − nTs) =

n=∞∑

n=−∞
V (nTs). (2.1)

Generally, the transformation of a signal from time domain to frequency domain
is done by means of its Fourier Transform (FT). For a time-discrete signal
specifically, this transformation in the frequency domain occurs by employing the
signal’s Discrete Fourier Transform (DFT). Taking into account that a multiplication
in time is a convolution in frequency, the spectrum of the time-discrete signal Vs(t)

is depicted in Fig. 2.3 and given by

Vs(f ) = 1

Ts
·

n=∞∑

n=−∞
V (f − nfs). (2.2)

The dual-sided band around zero with a frequency content within ±fin is attributed
to the original waveform. The replica or alias bands around multiples of fs result
from the multiplication of the original waveform with the repetitive by Ts = 1/fs
Dirac pulse sequence. The signal bands with the same frequency content around any
multiple of fs, after processing the spectrum with a Fast Fourier Transform (FFT)
algorithm become indistinguishable around zero. As a numerical example, single-
tone signals with 211 MHz, 789 MHz, 1.211 GHz, 1.789 GHz, and 2.211 GHz input
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Fig. 2.3 Frequency spectrum of a signal multiplied with a sequence of Dirac pulses
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Fig. 2.4 (a) Single-tone signals with different frequencies (b) fall in the same frequency location
after spectrum processing

frequencies (Fig. 2.4a) will all end up at the 211 MHz frequency location when
sampled at 1 GS/s (Fig. 2.4b).

If the band of the original waveform increases in width, so will its alias bands.
This will eventually lead to the bands overlapping, causing mixing of information
between them and making it impossible to isolate the information from each band
correctly. This irreversible situation is described as aliasing. In order to prevent
information loss due to aliasing and yield the sampling process reversible, the
following condition between the instantaneous signal bandwidth fin,bw and the
sample rate fs must be obeyed:
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Fig. 2.5 Dual-sided frequency spectrum highlighting different Nyquist zones
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Fig. 2.6 (a), (b) Two cases of signals with bands meeting the Nyquist criterion and (c) one
scenario where bands are overlapping leading to information loss

fs

2
> fin,bw. (2.3)

Known as the sampling theorem or Nyquist sampling criterion [13, 14], the above
expression can be translated to

A band-limited continuous-time signal can be sampled and perfectly recon-
structed if the sample rate is more than twice the signal’s instantaneous bandwidth.
The frequency band between zero and fs/2 is defined as the Nyquist bandwidth
or the 1st Nyquist zone. The total spectrum comprises an infinite number of
Nyquist zones, each with a width of fs/2. Figure 2.5 shows the first four Nyquist
zones in the spectrum, indicating their frequency allocation and width. For signals
originally residing in the odd-order zones, their bands after sampling are copied
to the 1st Nyquist zone as they are, while the bands of even-order zones are
mirrored. Under the assumption that Eq. (2.3) holds (Fig. 2.6a, b), the original signal
can be accurately reconstructed by a reconstruction filter. However, a violation
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Fig. 2.7 Anti-aliasing filter on a parasitic tone when (a) sampling at Nyquist rate (slightly
oversampled in practice) and (b) oversampling by M > 1

of the Nyquist criterion (Fig. 2.6c) will result in aliasing and render an accurate
reconstruction of the original signal impossible.

Even if the useful signal resides within the Nyquist bandwidth, different types of
undesired signals or interferers may appear at higher Nyquist zones, mixing up with
the useful signal after sampling in the 1st Nyquist zone. Examples of such undesired
signals are harmonic-related products of the main signal and/or interferers/noise
from parts in the signal chain preceding the sampling. To prevent these unwanted
signals from limiting the Dynamic Range (DR) of the chain, an anti-aliasing filter is
typically employed prior to sampling to remove any component outside the Nyquist
bandwidth. The specifications of this filter, whose implementation may include
active and/or passive components, heavily depend on how much attenuation it needs
to provide at which frequency distance with respect to fs/2. Given that typical filters
provide an attenuation of 20 dB/decade per order, a multi-order robust filter design
becomes increasingly challenging and expensive as the frequency band of interest
approaches fs/2. Figure 2.7a illustrates the case of attenuating a parasitic tone by a
finite-order anti-aliasing filter for a signal with fin < fin,bw sampled at the Nyquist
rate.
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One way to improve the filter attenuation for a certain order or relax the filter
order for a certain attenuation is to sample faster than the Nyquist criterion imposes.
Increasing the sample rate (oversampling) provides a trade-off between parasitic
tone attenuation and clock speed to sample and process data for a certain filter
order [15]. Figure 2.7b illustrates how oversampling by a factor of M significantly
improves the parasitic tone attenuation for the same filter order. However, for
very wideband signals, generating the clock for a certain oversampling becomes
equivalently challenging as increasing the filter order.

As a final note on sampling, it is worth mentioning that the Nyquist criterion is
still satisfied and aliasing is not an issue for a signal residing in any of the Nyquist
zones, as long as it is band-limited within one. In fact, this sampling property is
utilized in the increasingly popular sub-sampling ADCs in communication systems.
Directly sampling Intermediate Frequency (IF)/Radio Frequency (RF) signals in
higher Nyquist zones and processing them digitally allow simplification of the signal
chain by eliminating several frequency down-conversion blocks, such as a mixer,
an IF amplifier, and filters. However, this increases the sub-sampling Analog-to-
Digital Converter (ADC)’s bandwidth and spectral purity requirements at higher
Nyquist zones. Chapter 6 of this book introduces circuit and architecture techniques
for efficiently realizing wideband RF sampling ADCs.

2.1.2 Ideal Quantization

An ideal quantizer is a memoryless non-linear block, which uses B bits to translate
the sampled signal to a digital word of binary format (0s and 1s). B represents
the aggregate resolution with which the digital output resembles the analog input.
Figure 2.8 shows the conceptual model and transfer characteristic of an ideal B-
bit quantizer. Each signal value is compared against 2B discrete levels, and its
amplitude is rounded to the nearest level. The output Encoding Logic (ENC) decides
how the rounding is done. The maximum input amplitude is defined as the Full-
Scale (FS), and the difference between two adjacent transition levels (a.k.a. the step
width), �, is quantified in the analog domain as the Least Significant Bit (LSB) such
that � = FS/2B .

The digital word can be back-converted to a discrete amplitude analog signal Vq
by multiplying each bit with its assigned binary weight, provided that the analog
value of � is known

Vq = � ∗
(

B−1∑

i=0

bit0 ∗ 20 + bit1 ∗ 21 + bit2 ∗ 22 + . . . + bitB−1 ∗ 2B−1

)
. (2.4)

Due to the rounding process, there is a quantization error εq added to the original
signal Vin, with a value ideally within ±�/2 for signals inside FS, while growing out
of bounds outside FS (Fig. 2.8). The minimum error power is achieved for uniformly
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Fig. 2.8 Conceptual model and transfer characteristic of an ideal quantizer

Fig. 2.9 Sawtooth
approximation of εq as a
function of time

+Δ/2

-Δ/2

Time

q(t)

slope

spaced discrete levels [16]. The back-converted signal relation with the original
signal is expressed as

Vq = Vin + εq. (2.5)

Strictly speaking, εq is a deterministic quantity, heavily depending on the
properties of the signal at hand. For a linear ramp signal that contains several LSBs,
εq can be approximated in time domain by a sawtooth waveform with a peak-to-peak
amplitude of �, as shown in Fig. 2.9

εq(t) = slope · t, − �

2
� slope · t � �

2
. (2.6)

Due to the signal periodicity, an integration over a single period of Tp suffices to
calculate the Root-Mean-Square (RMS) value of the error
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�

∫ Tp
2

− Tp
2

(
�

Tp

)2

tdt = �2

12
⇒ εq = �√

12
. (2.7)

If a more statistical approach is followed, considering that over a long time span all
values within ±�/2 will show up with the same probability, εq assumes a uniform
Probability Density Function (PDF) within that same region as is illustrated in
Fig. 2.10. The necessary conditions for the validity of this approach are:

• The signal is sufficiently large or the quantizer resolution is large, such as to
cover an adequate amount of levels

• The input is uncorrelated with the quantization error or the input frequency is not
harmonically linked to the sample rate

• The signal is limited to FS, such that there is no quantizer overloading

If the above conditions hold, εq may be allocated a zero mean μεq and a variance
σ 2

εq
that can be calculated as in [17]

σ 2
εq

= ε2
q = 1

�

∫ �
2

− �
2

ε2
qdεq = �2

12
, (2.8)

which matches the result of Eq. (2.7). As pointed out in [17], this quantization
“noise” upon sampling shows a uniform spread across the entire Nyquist bandwidth.
In case the input frequency is harmonically linked to the sample rate, there exists
a relation between the input and εq resulting in the energy being accumulated
in the harmonics of the signal. When performing a spectral analysis through
FFT, this correlation can be avoided by choosing an integer number of signal
periods (coherent sampling) and relatively prime number of periods and points [18].
Appendix A describes such an FFT setup.

As the quantizer resolution decreases, the non-linear nature of the quantization
process dominates over its noise-like approximation, resulting in a distortion
dominated spectrum rather than the flat noise-like. Figure 2.11 plots the spectra of
an ideally quantized 77 MHz input signal coherently sampled at 1 GS/s for various
resolutions. A reduction of about 8–9 dB per added bit is seen in the odd harmonic
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Fig. 2.11 Frequency spectra of an ideally quantized with various resolutions 77 MHz signal
sampled at 1 GS/s (NFFT = 1024)

spurs [19]. This is understood by the fact that for every added bit �2/12 reduces
by 6 dB, while the additional 3 dB results from preserving the same total harmonic
energy with twice the number of harmonics.
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Table 2.1 Comparison
between calculated and
simulated SQNR for
different B

Number of bits [B] Calculated SQNR Simulated SQNR

1 7.78 dB 6.31 dB

2 13.80 dB 13.30 dB

3 19.82 dB 19.53 dB

4 25.84 dB 25.61 dB

5 31.86 dB 31.66 dB

6 37.88 dB 37.73 dB

7 43.90 dB 43.84 dB

8 49.92 dB 49.84 dB

10 61.96 dB 61.92 dB

12 74.00 dB 73.98 dB

Having determined the conditions under which εq is considered white noise, the
Signal-to-Quantization-Noise Ratio (SQNR) within the Nyquist bandwidth can be
computed for a FS input sinusoid with a peak-to-peak amplitude of VFS

SQNR = 10 log

[
(

VFS
2
√

2
)2

(
VFS√
12·2B )2

]
= 10 log(1.5 · 22B)

= 6.02 · B + 1.76.

[dB] (2.9)

As anticipated, due to the non-linear nature of εq, the validity of the above
expression may be questionable as the resolution decreases or for a signal that
doesn’t uniformly occupy a sufficient range [12]. Table 2.1 compares the calculated
ideal SQNR against the simulated value for different resolutions. The noise
approximation leading to Eq. (2.9) provides an overestimation, which reduces as
the resolution increases, eventually matching the simulated value.

Finally, if the utilized signal bandwidth fin,bw does not include the complete
Nyquist band, such that the sampling happens at a higher rate than Nyquist, there is
an improvement in SQNR equivalent to the oversampling ratio fs/(2 ·fin,bw). In this
case, an extra term known as the processing gain needs to be included in Eq. (2.9),
which now becomes

SQNR = 6.02 · B + 1.76 + 10 log

[
fs

2 · fin,bw

]
. [dB] (2.10)

Oversampling combined with quantization error shaping and digital filtering to
remove out-of-band noise are fundamental concepts in �� converters [20].
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2.2 Error Sources

Although ideally εq sets the theoretical single conversion error source, imperfections
of electronic components utilized in a real A/D conversion introduce several noise
and distortion sources to the signal. The sampling network comes with thermal
noise, non-linear distortion, and aperture jitter. The actual quantizer introduces
further thermal noise and both integral and differential non-linearity on top of its
existing quantization noise. For very wide bandwidth, if an additional analog front-
end needs to be utilized, it adds extra thermal noise and non-linear distortion. Figure
2.12 illustrates the model of a real converter including the aforementioned error
sources.

2.2.1 Noise

The wideband internal circuits in a converter produce a certain amount of thermal
noise due to Brownian motion of charges. Although the instantaneous value of noise
cannot be predicted, its Gaussian nature allows for the construction of a statistical
model by means of a distribution. To measure its RMS value a large number of
output samples are collected and plotted as a histogram, from where the mean μ

and the standard deviation σ (or variance σ 2) can be calculated2 [21]. The RMS
noise voltage is equal to σ and can be expressed either with respect to an LSB or as
an RMS absolute voltage.

Three main noise sources can be identified in a converter chain (Fig. 2.12),
namely, thermal noise from the sampling network; thermal noise due to the
quantizer; and aperture jitter during the sampling instants.

Analog
Input

Digital
Output

eq

LNI LND

Vthermal
2

Vjitter
2

Vthermal
2 Non-linear

Distortion
+ INL

Non-linear
Distortion

+ INL

Sampling QuantizationAnalog Front-end

Vthermal
2

Fig. 2.12 Conceptual model of a real converter including error sources from the different blocks

2 In the subsequent calculations, the noise variance will be expressed as voltage squared.
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Fig. 2.13 (a) Simple model of a sampler and (b) its noise spectrum

Sampler Thermal Noise
The simplest implementation of a sampler comprises a switch S (Metal-Oxide-
Semiconductor (MOS) device) and a capacitor CS, as illustrated in Fig. 2.13a. When
S is turned on, the MOS device is operating in triode region; therefore, it exhibits an
on-resistance RS. RS produces white noise with a spectral density (single-sided) of

V 2
RS

= 4kT RS, [V2/Hz] (2.11)

where k = 1.38 · 10−23 J/K is the Boltzmann constant and T is the absolute temper-
ature.3 The RC network of the sampler shows a first-order low-pass characteristic
with a cut-off frequency of

f−3dB = 1

2πRSCS
, [Hz] (2.12)

which shapes the noise spectrum of RS as shown in Fig. 2.13b. The sampler noise

power can then be calculated by integrating V 2
RS

over the entire noise bandwidth

V 2
n,samp = αFE

∫ ∞

0

4kT RS

(2πf RSCS)2 + 1
df = αFE

kT

CS
, αFE � 1, [V2] (2.13)

where αFE accounts for any excess noise in the presence of an analog front-end.

Quantizer Thermal Noise
A typical 1-bit quantizer employs a dynamic latch-based comparator (see Chap. 4)
in some form and combination. To provide a simple expression as a basis for the
noise of the quantizer, we construct the model shown in Fig. 2.14a. It assumes a
two-stage comparator with a gm,L latch output and a gm,I integrator input [22] to
provide some gain prior to regeneration and lower the noise of the latch. Ignoring
large signal behavior and considering the latch as a settling stage with a gm,L noise

3 Throughout this book, T is set to 323 K (50 °C), unless explicitly stated otherwise.
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Fig. 2.14 (a) Simple quantizer model and (b) its allowed operation time

contribution equivalent to an effective resistor of 1/gm,L [23], the latch noise power
at VI is given by

V 2
gm,L

= 4kT γ

gm,L
· gm,L

4CL
= kT

CL
, [V2] (2.14)

where γ is the thermal noise excess factor.4 The input stage integrates its own
noise over a noise bandwidth proportional to 1/2TI, where TI is the integration
time allowed for the quantizer (Fig. 2.14b). Its input noise power can be calculated
similarly to [25] and is given by

V 2
gm,I

= 4kT

gm,I
· 1

2TI
= κ

kT

ACI
, [V2] (2.15)

where κ depends on the integration time, the integration voltage on VI, and the
relative biasing of the input devices. Assuming for simplicity equal values for CI
and CL, the total input-referred noise power can be approximated as

V 2
n,quant = V 2

gm,I
+ 1

A2 V 2
gm,L

≈ kT

ACI
, [V2] (2.16)

where in the last step we substituted κ = 1 and A = 4 for the input stage.5

4 In literature, values of γ for short-channel devices span between 0.7 and 2.9 [24]. In this book,
the value of 1 will be used unless otherwise stated.
5 The maximum gain for a gm – C integrator cannot exceed the gmRo of a differential pair, which
in a 28 nm bulk Complementary Metal-Oxide-Semiconductor (CMOS) process can reach values
of 4 (12 dB) at GHz operation.
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Fig. 2.15 (a) Sampler with jitter and (b) time to voltage error translation

Aperture Jitter
During ideal sampling (Sect. 2.1.1), the continuous-time input signal is sampled
precisely at instants equally spaced by Ts. However, noise and mismatch in the
devices of a real sampling network result in random variations in the clock edge
(Fig. 2.15a), leading to sampling uncertainty, known as aperture uncertainty or
aperture jitter. It is generally measured in picoseconds RMS. Jitter in time (�t)
translates into an output voltage error (�V ), whose value is strongly related to the
slope of the input signal, as illustrated in Fig. 2.15b. It is worth mentioning that
jitter on the sampling clock or on the analog input produce exactly the same type
of error. In fact, assuming that the sources are uncorrelated, they simply add in a
Root-Sum-Square (RSS) fashion to yield the total error at the output.

The voltage error due to jitter can be easily calculated for a sinusoidal input of
Vin(t) = 0.5VFSsin(2πfint).6 Since this error depends on the slope of the signal, it
is maximum at the zero crossings

�Vmax = d

dt
Vin(t) · �t

∣∣∣
t=0

= 2πfin
VFS

2
cos(2πfint) · �t

∣∣∣
t=0

= πfinVFS · �t. (2.17)

Since �t is assumed to be random with a standard deviation of tjit, the integrated
error noise power can be approximated as

V 2
n,jitter = 1

Tsig

∫ Tsig
0

(
d
dt

Vin(t)
)2

dt · t2
jit

= 1
2 (πfinVFS)2 · t2

jit,
[V2] (2.18)

6 The calculation is done with respect to a peak-to-peak signal amplitude to preserve consistency
with all our subsequent calculations.
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where Tsig is the integration period, which for a sinusoid can be chosen as the signal
period.

As a final note on jitter, special care must be taken across the entire input and
clock chains to minimize the accumulative contribution of every added block. In
Chap. 6, we will present an ultra-low jitter clock chain that shows how such a
minimization can be achieved.

Now that we derived all the major noise contributions referred to the residue
node (quantizer input), they can be summed and added to εq to yield a first-order
total quantization and noise power (single-ended)

V 2
εq+n,total = �2

12
+ αFE

kT

CS
+ kT

ACI
+ 1

2
(πfinVFS)2 · t2

jit. [V2] (2.19)

One quick observation arising from the above expression is that V 2
n,jitter increases

with fin, whereas both V 2
n,samp and V 2

n,quant are to a first-order input frequency

independent. Additionally, to reduce both V 2
n,samp and V 2

n,quant the capacitors at
the corresponding band-limiting nodes must increase, adversely affecting the
bandwidth. Section 2.4 analyzes the accuracy degradation of a converter due to
the above noise sources and establishes some fundamental accuracy-speed-power
limits.

2.2.2 Non-linearity

The non-linearity of the circuit elements utilized in a real converter will make
its transfer characteristic deviate from an ideal equal step width linear curve. As
illustrated in Fig. 2.16, these deviations manifest themselves both locally in each
step (Fig. 2.16a) and globally across the entire characteristic (Fig. 2.16b). The two
main types of non-linearity encountered in a real converter are characterized by the
Differential Non-Linearity (DNL) and the Integral Non-Linearity (INL)

DNL quantifies the individual deviation of each step’s width from the ideal value
� (1 LSB) according to the following expression:

DNLi = (Vi+1 − Vi) − �

�
, ∀i = 0 . . . (2B − 2). (2.20)

For each step, the relative deviation of its width from � is uncorrelated with
the equivalent deviation of the previous and next steps. Positive or negative DNL
implies a larger or smaller step compared to �, respectively. A value of −1 LSB is
the smallest possible and indicates that a step was completely skipped, a situation
described as a missing code (Fig. 2.16a). In the presence of a noisy signal, such
that the transition levels carry noise comparable to �, this noise can affect the
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Fig. 2.16 (a) DNL in transfer characteristic with corresponding curve and (b) INL in transfer
characteristic with corresponding curve

DNL true value and potentially hide missing codes [26, 27]. Therefore, its value
alone should not be trusted blindly. DNL is due exclusively to the quantizer, and the
ENC (Fig. 2.8) determines how its errors spread across the transfer curve. Strictly
speaking, these errors result in distortion products at the converter output, which
depend both on the amplitude of the signal and on their relative position along the
transfer curve. However, similar to εq , under the assumption of a uniform DNL
spread across the FS, its effect can be seen more as random noise rather than
distortion. In that case, the degradation in SQNR can be estimated if a DNL within
±d is added to the signal, resulting in a worst-case total quantization + DNL error
within ±1/2(� + d). Adding this to Eq. (2.9) results in the Signal-to-Quantization-
and-DNL-Noise Ratio (SQDNR)

SQDNR = 10 log

[
(

VFS
2
√

2
)2

(
(1+d)VFS√

12·2B )2

]
= 10 log

(
1.5 · 22B

(1+d)2

)

= 6.02 · B − 1.76, if d = 0.5.

[dB] (2.21)
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INL quantifies the overall deviation of the actual converter transfer characteristic
from a straight line passing through the first and last transitions. Alternatively, if we
draw a line passing through all the real transitions (Fig. 2.16b), its deviation from
the ideal straight line (Fig. 2.16a) reveals INL. In each step, INL can be calculated
as follows:

INLi = (Vi,real − Vi,ideal)

�
, ∀i = 0 . . . (2B − 1). (2.22)

In contrast to the DNL, INL has a cumulative nature adding up errors from the
consecutive steps to move the transfer curve with respect to the straight line,
therefore resulting in an integral error. As such, its “purity” is affected less than
the DNL in the presence of noise, making its value more trustworthy. It can
be shown that INL from the quantizer only in each step can be calculated by
a cumulative summation of the individual DNLs up to the previous step by the
following expression:

INLj =
j−1∑

i=0

DNLi. (2.23)

The total converter INL is a summation in RSS of different contributions from all
the blocks in the chain that generate distortion, including the sampling network and
the analog front-end (if utilized) (Fig. 2.12). It is not exclusively a quantizer property
like DNL. Overall, INL results in input signal-dependent distortion products at the
converter output, making it hard sometimes to identify which one of the individual
contributors is dominant.

Non-monotonicity describes a special situation, where an increasing/decreasing
input signal results in a decreasing/increasing step in the transfer curve, making the
width of that step (hence its DNL) “ill-defined” [26]. This situation is especially
important for converters used in closed-loop configurations; therefore, it should be
avoided by design. It can be shown that a sufficient but not necessary condition for
INL to prevent non-monotonicity is given below

|INLi | � 0.5 LSB, ∀i, (2.24)

which then results in an equivalent condition for DNL as follows:

|DNLi | � 1 LSB, ∀i. (2.25)
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2.2.3 Calibration

Generally speaking, any type of non-linearity error, including DNL and INL,
originate from circuit imperfections (mismatch [28], leakage, incomplete settling,
voltage-temperature variations, etc.) and/or technology limitations to achieve a
required performance. Their contribution can be minimized by proper design (e.g.,
device up-scaling) and/or architectural choices, which often increase the power
consumption and area while compromising speed.

Alternatively, deterministic errors that are not associated with random noise
but stem from circuit or technology imperfections may be compensated by means
of calibration techniques. Such techniques can potentially yield a better overall
performance with a reduced impact on the power consumption. The compensation
process primarily comprises the following steps:

1. Error detection by measuring circuits’ parameters that are considered for modi-
fication

2. Error correction by modifying the parameters to desired values by the correction
circuitry, such that the errors are minimized or eliminated

The error detection can be implemented either in the analog or in the digital
domain. The optimal implementation depends on the type and magnitude of errors
as well as the application, performance, and technology at hand. Additional circuits
and test signals are often necessary to perform the detection; however, it can be also
performed by a statistical analysis without requiring extra hardware or modifications
to the core circuitry. The error correction can be also performed either in the
analog or in the digital domain (or a combination of both), with the two having
distinct differences regarding the end result of the calibration and circuitry used. For
example, if correction is performed in the analog domain, modifications in the core
circuits are necessary in order to re-adjust the parameters (e.g., by changing biasing
voltages/currents or adding/subtracting tunable loads) and eliminate the error. The
loading effects of such modifications on the core circuits’ performance must then
be taken into account. If digital correction is performed, the core circuits are left
untouched, and the inverse of the error function is digitally created and applied to
the digital output to reduce the error. In this case, the calibration accuracy may
be somewhat inferior due to rounding effects but with increasing power and speed
benefits moving into finer CMOS processes.

A final difference lies with how often the calibration is performed and how
disruptive it is to the normal operation. In case of the so-called “foreground”
calibration, the converter operation is halted, and once the calibration is performed,
it becomes available again to continue its operation. In the case of “background”
calibration, the converter errors are corrected simultaneously to its normal operation,
and the calibration is integrated ideally seamlessly into the core functionality. As
expected, both methods have advantages and drawbacks in terms of hardware, signal
range utilization, correction accuracy, and error tractability. Therefore, the optimal
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choice depends on the nature of errors and the specific application requirements and
tolerances.

2.3 Performance Evaluation

A converter’s achievable performance can be evaluated in the time domain and in
the frequency domain [3, 12, 15], and several metrics exist for such evaluations.
Below, we will limit ourselves to the frequency domain evaluation by means of an
FFT [29] and define the metrics that will be used in the following chapters.

2.3.1 Metrics

Nth-order Harmonic Distortion (HDn) is normally specified in dBc (decibels
below carrier) and is the reciprocal of the ratio between the RMS value of the
fundamental signal and the RMS value of its nth-order harmonic. The harmonics
of the input signal can be distinguished from other distortion products because of
their location in the frequency spectrum at integer multiples of the input frequency.
HDn is generally specified for input signals near FS since for much smaller signals,
there may be other error mechanisms that dominate.

Total Harmonic Distortion (THD) is the inverse ratio of the RMS value of the
fundamental signal to the mean RSS value of its harmonics. Depending on the
specific design and application, the first five to seven harmonics are considered
significant. For a FS input sinusoid with a peak-to-peak amplitude of VFS and
harmonics’ amplitude of Vharm,n, n = 2, 3,. . . ,7, THD is evaluated by the following
expression:

T HD = −10 log

⎡

⎢⎣
(

VFS

2
√

2
)2

√
V 2

harm,2 + . . . + V 2
harm,7

2

⎤

⎥⎦ . [dB] (2.26)

Signal-to-Noise Ratio (SNR) is the ratio of the RMS signal amplitude to the mean
RSS value of all noise-related spectral components, including quantization (plus
DNL), thermal, and jitter. For a FS input sinusoid with a peak-to-peak amplitude of
VFS, its value is evaluated as
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SNR = 10 log

⎡

⎢⎣
(

VFS

2
√

2
)2

√
ε2

q+DNL + V 2
thermal + V 2

jitter

2

⎤

⎥⎦ . [dB] (2.27)

Signal-to-Noise-and-Distortion Ratio (SNDR) or SINAD is the ratio of the RMS
signal amplitude to the mean RSS value of all spectral components, including
quantization error, noise, and harmonics. Again, for a FS input sinusoid with a peak-
to-peak amplitude of VFS, the following expression evaluates SNDR:

SNDR = 10 log

⎡

⎢⎣
(

VFS

2
√

2
)2

√
V 2

noise + V 2
harmonics

2

⎤

⎥⎦ . [dB] (2.28)

There exists a relation between THD, SNR, and SNDR provided all of them are
characterized under the same input signal conditions (amplitude and frequency)
[30]. This relation is summarized with the equations below

T HD = −10 log
[
10-(SNDR/10) − 10-(SNR/10)

]
, [dB] (2.29)

SNR = −10 log
[
10-(SNDR/10) − 10-(THD/10)

]
, [dB] (2.30)

SNDR = −10 log
[
10-(SNR/10) + 10-(THD/10)

]
. [dB] (2.31)

Effective Number of Bits (ENOB) is the actual converter accuracy after adding
up all error sources. It can be calculated by using Eq. (2.9) and solving for B after
substituting SNDR for SQNR

ENOB = SNDR − 1.76

6.02
. (2.32)

Spurious Free Dynamic Range (SFDR) is one of the most important specifica-
tions in ADCs for communications applications. It is quantified as the ratio of the
RMS value of the fundamental signal to the RMS value of the largest undesired
spectral content. It may be specified either in dBc or in dBFS (decibels below FS).
For input signals near FS, it typically coincides with the largest HDn. There might
be cases though, where some other distortion product determines SFDR (e.g., an
error tone due to interleaving; see Sect. 3.7 from the next chapter).
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Analog Bandwidth (BW) is defined as the frequency at which the output power of
the reconstructed fundamental drops by 3 dB below its low-frequency value. It does
not contain any useful information regarding the spectral purity of the converter at
that frequency.

Effective Resolution Bandwidth (ERBW) is defined as the frequency at which
there is a 3 dB drop in SNDR (or a 0.5 bit drop in ENOB) compared to its low-
frequency value. For reasons that will become obvious in the following chapter, it is
highly desirable (but not always easily achievable) that both the analog BW and the
ERBW are above the Nyquist frequency.

Noise Spectral Density (NSD) is another important frequency domain metric that
measures the noise per unit bandwidth at a given frequency. It may be specified
either in V2/Hz or in dB/Hz. Assuming a flat NSD over a certain band, the SNR
within this bandwidth is linked with the NSD via the expression

NSD = −SNR − 10 log(BW). [dB/Hz] (2.33)

Nth-order Intermodulation Distortion (IMn) is the equivalent HDn when apply-
ing two closely spaced sinusoidal inputs at frequencies f1 and f2. The amplitude of
each tone is backed off by at least 6 dB compared to a one-tone to avoid clipping
upon in-phase addition of the two tones. The second-order and third-order products
are usually the dominant ones. The second-order products are located at f2 ± f1 and
can be removed by filtering. The third-order products contain two pairs located at
2f1 ± f2 and 2f2 ± f1, respectively. The ones at 2f1 – f2 and 2f2 – f1 are of special
interest since they fall close to the two fundamentals and properly characterize the
converter’s spectral purity.

Multi-Tone Power Ratio (MTPR) can be seen as an evaluation metric for the in-
band SFDR when multiple sinusoidal inputs are applied. This metric is particularly
useful in multi-channel communication systems such as Orthogonal Frequency
Division Multiplexing (OFDM) [31]. A large number of tones equal in amplitude
and in frequency spacing are applied, and one of them is eliminated from the input
signal leaving an empty bin [32]. However, due to the converter’s distortion, a
small signal appears in that bin. The ratio between the RMS value of one of the
fundamental signals and the RMS value of the undesired spectral content in the
empty bin yields the MTPR.

2.3.2 Figures of Merit

Some of the metrics described in Sect. 2.3.1 can be used in different combinations
and ratios in order to compare the performance of different converters covering
similar applications. For this reason, the Figure-of-Merit (FoM) concept has been
introduced, serving to measure the power efficiency of a converter with respect
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to other specifications, with speed (sample rate) and accuracy the dominant ones.
Although many different FoMs exist, two are extensively used in literature and will
be summarized below.

Walden’s FoM Originally proposed in [33] for Nyquist converters and later
adjusted to also cover oversampled converters [34], FoMW is defined as

FoMW = Power

2ENOB · min{2BW, fs} [J/conv.-step] (2.34)

and quantifies the energy spent by a converter to achieve a certain accuracy
while performing the conversion at a certain speed. Its units are energy (in J)
per conversion step. As Eq. (2.34) suggests, for every extra bit of ENOB, power
increases by 2×. This trend is not obeyed by noise-limited converters, whose power
would need to increase by 4× (see Sect. 2.4), which is an important limitation of this
FoM.

Schreier’s FoM To alleviate the limitation regarding noise-limited converters,
FoMS was proposed, initially ignoring distortion [20] and later adjusted to include
both noise and distortion [35]. It is defined as

FoMS = SNDR + 10 log

[
min{BW, fs/2}

Power

]
. [dB] (2.35)

Its units are accuracy (in dB) and it depicts more correctly the 4× higher energy per
6 dB of SNDR increase, which is the prevailing trend in the highest-performance
designs of recent years. An extensive ADC performance survey by gathering data
from works published at the major scientific venues for more than 20 years has been
carried out by Prof. Boris Murmann of Stanford University and can be found in [36].

2.4 Accuracy-Speed-Power Limits

In Sect. 2.3.2, it was argued that a converter’s performance is a trade-off between
accuracy, speed,7 and power. The key challenge lies in maximizing the product
with accuracy and bandwidth in the numerator and power in the denominator or
minimizing its reciprocal by simultaneously pushing all the three parameters as far
as possible toward the desired directions.

7 It is assumed that for a certain sample rate (speed), the converter needs to achieve the required
accuracy for a bandwidth of at least half of that sample rate, and this assumption is used in the
equations and plots to follow.
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↑
[↑ Accuracy · Speed ↑

Power ↓
]

⇐⇒
[

Power ↓
↑ Accuracy · Speed ↑

]
↓ . (2.36)

Several error sources were identified in Sect. 2.2, which degrade the accuracy of
a real converter below the ideal quantization error. As discussed in the previous
section, errors that are associated with mismatch8 or non-linearity can be compen-
sated either by design or by calibration with a small overhead on the other two
parameters. On the other hand, errors stemming from thermal noise introduce a
more fundamental trade-off on Eq. (2.36); improving one of its parameters will most
likely result in an analogous degradation of the other two. The significance of such
errors on the accuracy-speed-power are analyzed, and some fundamental limits on
a converter’s performance are established.

2.4.1 Sampler Noise Limit

In Sect. 2.2, Eq. (2.13) was derived for the single-ended sampler thermal noise. We
repeat this expression here for a differential configuration,9 which is the start for our
derivations, assuming an ideal noiseless front-end (αFE = 1)

V 2
n,samp = 2kT

CS
, [V2] (2.37)

The accuracy degradation due to V 2
n,samp can be calculated by combining Eqs. 2.27

and 2.32 and considering a differential peak-to-peak signal swing of VFS-diff

ENOBn,samp = 1

6.02
·
[

10 log

(
1

8

V 2
FS-diff

ε2
q + V 2

n,samp

)
− 1.76

]

= 1

6.02
·

⎡

⎢⎢⎣10 log

⎛

⎜⎜⎝
1

8

V 2
FS-diff

ε2
q

· 1

1 + V 2
n,samp

ε2
q

⎞

⎟⎟⎠− 1.76

⎤

⎥⎥⎦ (2.38)

= B − 1

6.02
· 10 log

⎛

⎝1 + 24 kT
CS

V 2
FS-diff
22B

⎞

⎠ .

8 A comprehensive analysis on the implications of mismatch in the design of analog circuits can
be found in [37].
9 For differential signaling, the signal power increases by 4×, while the noise increases by 2×,
leading to a 3 dB SNR improvement. Furthermore, the even-order harmonics are ideally fully
suppressed, leading to an SFDR boost. On the downside, the power increases by 2×.
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Fig. 2.17 Simple sampler
model with input termination
network

Vin Vout

CS

RS

Ri,int

Ri,src

Ri,eqVsrc

The minimum capacitance for a tolerable ENOB reduction can then be obtained for
a certain input swing. It is evident from the above expression that to minimize the
accuracy degradation due to V 2

n,samp, CS must be maximized. On the other hand,
Eq. (2.12) implies that in order to maximize the bandwidth, CS must be minimized
(for a fixed RS). To quantify this fundamental trade-off more completely, we add in
the simple sampler model (Fig. 2.13) the basic input termination network, as shown
in Fig. 2.17, which in some form is a given in every converter measurement system.
CS can then be written as

CS = 1

2π [(Ri,src//Ri,int) + RS]fin
= 1

π(0.5Ri,int + RS)fs
, [F] (2.39)

where Ri,src = Ri,int and represent the external source resistance and the internal
termination, respectively. Employing Eq. (2.28) with V 2

n,samp the sole noise contri-
bution, and combining Eqs. (2.37) and (2.39), we reach to the final accuracy-speed
limit

SNDRn,samp = 10 log

[
V 2

FS-diff

8πkT (0.5Ri,int + RS)fs

]
. [dB] (2.40)

The outcome of the above expression is that for a fixed termination network and
CS value, the only optimization “knob” in preserving the Nyquist SNDRsamp as the
sample rate increases is to reduce RS accordingly. In Chap. 5, a sampling circuit that
outperforms existing circuits in minimizing RS will be presented.

The absolute minimum power required to charge CS can be calculated in a similar
fashion as in [38]. We assume that the charging occurs within half a period of fs
and the signal utilizes an input swing VFS equal to the supply voltage VDD. Keeping
the SNDRsamp as a measure of accuracy, the minimum power to achieve a certain
accuracy dictated by the sampler noise is given by

Pn,samp = VDD · Isamp = 2 · 8 · VFS
2 · fs · CS

= 16kTfs · SNDRn,samp,
[W] (2.41)

where we substitute SNDRn,samp = V 2
FS/V 2

n,samp. The above expression gives the
accuracy-power limit due to the sampler noise. We can obtain the same result by
allocating a full quantization noise contribution to the sampler and substituting CS
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Fig. 2.18 Fundamental limits due to sampler noise: (a) accuracy-speed and (b) accuracy-power

in the above expression. The fundamental limits described by Eqs. 2.40 and 2.41 are
plotted in Fig. 2.18 sweeping different parameters.

It is worth mentioning that recently published works [39–41] have shown
progress in attempting to “break” the V 2

n,samp fundamental limits described above.
The underlying principle is to either decouple the generating noise source from
the sampling bandwidth or sample the noise and then somehow cancel it. As
such, these techniques necessitate additional components (resistors, capacitors,
switches, amplifiers) in either open-loop or closed-loop configurations. When
going at very high sample rates (> GHz), achieving the necessary amplification
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and/or generating extra clocks (including associated routing overhead) for complex
switching schemes, to bring down the noise, might take away some or all of the
power, bandwidth, and area benefits of scaling down CS. These might explain why
such designs have yet to achieve sample rates beyond several MS/s.

2.4.2 Quantizer Noise Limit

The quantizer thermal noise introduces a second fundamental converter accuracy-
speed-power limit. It is mainly defined by the input integrator stage preceding the
final latch, as we also derived for our simple model of Fig. 2.14. This also makes
the quantizer analysis easier, separating the noise critical input from the bandwidth
critical latch (see Sect. 2.4.3). The two stages will be analyzed separately as they
both impose different limits, and their contributions will be quantified. The noise
power with all the assumptions from our basic model is written here in its differential
form to start our derivations and given by

V 2
n,quant = 2kT

ACI
. [V2] (2.42)

The accuracy reduction due to V 2
n,quant can be calculated by combining Eqs. 2.27

and 2.32 and considering a differential peak-to-peak signal swing of VFS-diff
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= B − 1

6.02
· 10 log

⎛

⎝1 + 24 kT
CI

V 2
FS-diff
22B

⎞

⎠ ,

which yields the minimum capacitance at the integrator output for a targeted
reduction in ENOB and a given signal swing. To minimize this reduction, CI

10 must
be maximized, which adversely affects the input integrator’s operating frequency,
expressed as

10 Our model assumed CI = CL, which is not far from a realistic design scenario in 28 nm CMOS
(see Chap. 4).
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fI = II

CI�VI
= gm,IVGT,I

2CI�VI
. [Hz] (2.44)

�VI is the common-mode voltage rise/fall at the integrator output to build a certain
gain, and II follows the basic MOS equation [42]

gm

ID
= 2

VGT
, VGT =

⎧
⎨

⎩

2nkT /q ≈ 60 − 80 mV, Weak - Inversion
VGS − VTH, Strong - Inversion
2 (VGS − VTH), Velocity - Saturation

. (2.45)

As with the sampler, we allocate half a period of fs to the quantizer; thus, this is the
maximum available time for the integrator. Combining Eqs. (2.42) and (2.44) and

employing Eq. (2.28) with V 2
n,quant its only noise contribution, the accuracy-speed

limit is derived

SNDRn,quant = 10 log

[
gm,IVGT,IV

2
FS-diff

32kT �VIfs

]
. [dB] (2.46)

The minimum necessary power to charge CI can be calculated with a similar
method as for Eq. (2.41), following the same assumptions about the input signal.

Additionally, by allocating a maximum value of �2/12 to V 2
n,quant for convenience,11

the minimum power to achieve a certain accuracy dictated by the quantizer noise
(accuracy-power limit) can be found as

Pn,quant = VDD · II = 2 · VFS · fs · CI · �VI

= 4 · VFS · fs · 12kT

V 2
FS

· 22ENOBn,quant · VFS
2

= 24kTfs · 22
SNDRn,quant−1.76

6.02 ,

[W] (2.47)

where Eq. (2.32) is used, VDD is assumed to be equal to VFS, and �VI is assumed
to be half VFS at the end of the integration. The fundamental limits described by
Eqs. (2.46) and (2.47) are plotted in Fig. 2.19 sweeping different parameters. In
Sect. 2.4.7, all limits will be plotted together for comparison.

2.4.3 Metastability Limit

In addition to the noise, metastability is another fundamental error source associated
with the output latch stage of the quantizer. The latch regenerates exponentially on

11 In high-speed converters, it is general practice to design the various thermal noise sources in the
same order as the quantization noise.
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(a)

(b)

Fig. 2.19 Fundamental limits due to quantizer noise: (a) accuracy-speed and (b) accuracy-power

an input according to the following expression:

Vout = AVin · e
TL
τ = AVin · e

gm,LTL
CL , [V] (2.48)

where A is the integrator’s gain (see Sect. 2.2.1), while the time constant τ =
CL/gm,L is a measure of the latch’s bandwidth. Metastability refers to the situation
where the quantizer differential input is so small (e.g., a fraction of an LSB), such
that for the allowed operation time, the latch of the quantizer cannot produce a
sufficiently large differential output for the following circuitry to unambiguously



44 2 Analog-to-Digital Conversion Fundamentals

Fig. 2.20 Quantizer output for a valid (gray) and a metastable (black) case

perceive it as a clear logical level. This scenario, portrayed in Fig. 2.20, results in
a conversion error, therefore leading to accuracy degradation. For a certain input
voltage and a fixed gain A, this error can be reduced either by allowing more time
to the quantizer to produce a sufficiently large output difference or by minimizing
τ .

The error due to metastability may be interpreted as an increased quantization
noise floor with a variance ε2

q multiplied by a certain probability of occurrence
PR(meta) [43]. The total converter noise may be then written as

V 2
q+meta = ε2

q · [1 + PR(meta)]. [V2] (2.49)

The second term inside the square brackets denotes the excess noise due to
metastability. If we consider a differential input signal uniformly distributed within
±VFS-diff/2, then the probability of a metastable occurrence, otherwise known as
Bit Error Rate (BER), can be seen as the ratio of the smallest input the latch can
correctly regenerate on its given time divided by the full input range. For a B-bit
quantizer with an equal probability of showing metastability in any of the 2B steps,
utilizing Eq. (2.48), PR(meta) can be expressed as

PR(meta) = BER · 2Bmeta = 2BmetaVin,min
VFS-diff

2Bmeta+1

= 22Bmeta · e−TL/τ

A
, (2.50)

where it is assumed that the quantizer latch regenerates to VFS and B = Bmeta.
PR(meta) has an exponential dependency on τ ; therefore, minimizing it is
extremely desirable. Further, if we re-write τ lumping the total capacitance at the
quantizer output, we can see that the technology ultimately dictates the minimum
achievable value

τ ≈ Cgg

gm,L
≈ 1

2πfT
, (2.51)
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where fT is the cut-off frequency for which the current gain is unity. In order to
take into account practical limitations (e.g., layout parasitics), a more realistic value
of 1/πfT is adopted for τ , in all the subsequent analysis. Substituting Eqs. (2.50)
and (2.51) into (2.49), we have

V 2
q+meta = ε2

q · [1 + 22Bmeta · e−πfT/2fs

A
], [V2] (2.52)

where half a period of fs is allocated for latch regeneration.12 By allocating a
certain small LSB fraction aer < 1 to the error due to the excess noise in the
above expression, and employing Eq. (2.32), the accuracy-speed limit imposed by
metastability can be derived for various fT values

SNDRmeta = 6.02

[
log2(aerA)

2
+ πfT

4fs ln 2

]
+ 1.76. [dB] (2.53)

The take from the above expression is that if the quantizer resolution increases while
preserving the same fs and fT, there is an increased excess noise due to metastability
on the total quantization noise.

It is important to clarify that the above limit is derived under the assumption of
fs being the sample rate of a standalone non-pipelined non-interleaved quantizer.
As such, it is the reciprocal of the standalone quantizer’s latch delay TL to achieve
a certain resolution. Pipelining can improve this limit by reducing the quantizer
resolution per pipeline stage, therefore increasing the overall resolution for the same
total fs or increasing the total fs for the same overall resolution. Interleaving can
also improve this limit, as discussed in the next chapter. By multiplexing several
quantizers in time, each running at a lower standalone fs, the aggregate fs can be
increased by the interleaving factor while also preserving the resolution.

In order to estimate the minimum power required by the latch to resolve within
half a period of fs a certain small input AVFS-diff/2Bmeta+1 (A = 4 = 22) and
regenerate to VFS, we start the derivation by substituting this value in Eq. (2.48) and
solve for gm,L

gm,L = 2(Bmeta − 2) · ln 2 · fs · CL. [S] (2.54)

This gm,L will require a minimum current IL, and these two are related through
the basic MOS Eq. (2.45). Before we reach to the final expression for the power,
we need to substitute CL from the latch noise Eq. (2.14) and assume that the
input-referred latch noise voltage is at least 4× smaller than the input that leads
to metastability. This assumption aligns well with our two-stage quantizer model

12 In a practical design, the input stage and the latch will each occupy a portion of the quantizer
allocated time. Our simplification will affect our derivations by about 2×, which is tolerable for
first-order generic derivations.
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Fig. 2.21 Fundamental limits due to metastability of a standalone quantizer: (a) accuracy-speed
and (b) accuracy-power

and allows to a first-order a proper metastability assessment. Finally, utilizing a
supply voltage VDD = 1 V equal to VFS, we obtain the minimum power dictated by
metastability, translating to the accuracy-power limit

Pmeta = VDD · IL

= 24(Bmeta − 2) · ln 2 · fs · kT · VGT
VFS

· 22Bmeta .
[W] (2.55)

The fundamental metastability limits described by Eqs. (2.53) and (2.55) are
plotted in Fig. 2.21 for different values of fT and aer.
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2.4.4 Aperture Jitter Limit

Equation (2.18), from which the error noise power for a sinusoidal signal was
obtained, can be adjusted to yield the differential jitter noise power for a differential
peak-to-peak signal swing of VFS-diff

V 2
n,jitter = 1

2
(πfinVFS-diff)

2 · t2
jit. [V2] (2.56)

The accuracy reduction due to V 2
n,jitter can be calculated in a similar way as in

Eqs. (2.38) and (2.43)

ENOBn,jitter = 1

6.02
·
⎡

⎣10 log

⎛

⎝1

8

V 2
FS,diff

ε2
q + V 2

n,jitter

⎞

⎠− 1.76

⎤

⎦ (2.57)

= B − 1

6.02
· 10 log

(
1 + 22B · 6(πfin)

2 · t2
jit

)
,

from which the jitter value is obtained for a tolerable ENOB degradation and at
a certain input frequency. The voltage error due to jitter is an increasing function
of the frequency. This can be intuitively understood by the fact that a fixed error
in time results in a larger voltage error when reflected to a signal with a faster
slope compared to a slower slope signal. If we substitute Eq. (2.56) in the SNDR

expression (Eq. (2.28)) and consider V 2
n,jitter the only noise source, the accuracy-

speed limit due to jitter can be obtained

SNDRn,jitter = 10 log

[
1

4(πfin)2 · t2
jit

]
, [dB] (2.58)

which is an already known expression [26], re-verified here by our analysis.
The minimum power to achieve a certain accuracy imposed by jitter noise is

not entirely straightforward because strictly speaking, this power is not dissipated
in the core converter parts (sampler and quantizer) but in the clock generation.
Nevertheless, since the clock is an imperative part in any converter,13 we are
including it in our fundamental limits for a comparison point.

To provide a first-order estimation of the clock power for a certain jitter, we
model the clock generation as a single gm,CK unity gain buffer (Fig. 2.22) and
assume linear operation for the entire clock swing, which is equal to VDD. To
simplify the analysis, we also assume that the dominant source leading to jitter is the

13 In the case of continuous-time ADCs [44, 45], although the input is not sampled, sampling is still
performed along the chain (quantizer, back-end, reconstruction filter) to align with a synchronous
clock. Depending on the part of the chain, jitter requirements can be different.
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Fig. 2.22 Simple model for
clock power estimation for a
certain jitter

CCKCLKsrc

gm,CK CLK
Vn,CK

2clean
clock

jittery
clock

buffer thermal noise V 2
n,CK, which, due to the unity gain, can be directly referred to

the output. This noise can be calculated in a similar way as the quantizer noise (see
Sect. 2.2.1, Eq. (2.16)). The buffer needs to charge CCK

14 to VDD, and we allocate a
maximum of a quarter period of fs to allow sufficient time for the actual sampling
within half a period of fs. The minimum required power consumed in the clock is
then given as

Pjitter = VDD · ICK = 4V 2
DD · fs · CCK

= 4V 2
DD · fs · kT ·T 2

s
16V 2

DD·t2
jit

,
[V2] (2.59)

where the Slew Rate (SR), which translates V 2
n,CK to t2

jit, has been written as

voltage/time to provide VDD within 0.25Ts. By substituting t2
jitter from Eq. (2.56)

for an input swing VFS equal to VDD and a Nyquist input frequency, the minimum
power for a certain jitter is obtained

Pjitter = π2

2
kTfs · SNDRn,jitter, [V2] (2.60)

where SNDRn,jitter = V 2
FS/V 2

n,jitter. Despite the several assumptions made to sim-
plify the analysis, the above expression yields to a first-order a correct accuracy-
power limit due to jitter, which is on par with the equivalent limits from the sampler
and quantizer noise. The jitter-imposed limits of Eqs. (2.58) and (2.60) are plotted
in Fig. 2.23 for several different parameters.

2.4.5 Mismatch Limit

At the beginning of this section, it was argued that errors associated with mismatch
can be compensated with a small overhead, thus not introducing a fundamental
trade-off between accuracy, speed, and power. Nevertheless, it is insightful to
quantify the accuracy-speed and accuracy-power limits imposed by mismatch and

14 This capacitor includes the intrinsic buffer load and the sampling switch gate load.
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Fig. 2.23 Fundamental limits due to aperture jitter: (a) accuracy-speed and (b) accuracy-power

compare them to the derived ones imposed by noise, especially since the former are
process dependent.

Similar to noise, mismatch is a random process as well, with a mean μM and
a standard deviation σM (or variance σ 2

M). Assuming a differential pair with a
mismatch dominated by the random variation in VTH between the two devices, from
Pelgrom’s law [28], we obtain the variance

σ 2
M = A2

VTH

WL
, [V2] (2.61)
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where AVTH is a mismatch constant that depends on the process. σ 2
M is inversely

proportional to the area. Assuming also that the devices of the differential pair are
biased in strong inversion, the input capacitance CM is found

CM = (2/3)WLCox = 2A2
VTH

Cox

3σ 2
M

. [F] (2.62)

This capacitance together with the source and internal termination resistances
creates an upper limit to the input bandwidth, as shown in Eq. (2.39) if CS is
replaced by CM. If we then combine Eqs. (2.28), (2.39), and (2.62) and consider
a 3σM confidence interval for the mismatch contribution, we finally reach to the
accuracy-speed limit

SNDRσ,match = 10 log

[
V 2

FS-diff

48πA2
VTH

Cox(0.5Ri,int + RS)fs

]
. [dB] (2.63)

The minimum power required to charge CM can be derived similarly to the one
for charging CS in the sampler noise limit. We allocate half a period of fs for the
operation and assume an input swing VFS equal to the supply voltage. If we also
consider a 3σM mismatch confidence interval, re-employing Eq. (2.41) and keeping
SNDRσ,match as a measure of accuracy, we end up with the accuracy-power limit
due to mismatch

Pσ,match = VDD · Imatch = 2 · 8 · VFS
2 · fs · CM

= 48A2
VTH

Coxfs · SNDRσ ,match,
[W] (2.64)

Comparing the above two expressions with Eqs. (2.40) and (2.41) giving the
equivalent limits due to noise, we see A2

VTH
Cox in the denominator instead of kT ,

plus an extra multiplication factor depending on the targeted σM confidence interval.
Both AVTH and Cox are technology-dependent parameters, indicating the effect of
the process on the matching limit, in contrast to the baseline noise limit. Table 2.2
shows typical values of these parameters for three different process nodes [12],
while the derived mismatch limits are plotted in Fig. 2.24.

Table 2.2 Typical process parameters and comparison with kT

Process [nm] AVTH [mV–µm] Cox [fF/µm2] A2
VTH

Cox/kT

130 5 11 61.7

65 4 13 46.7

28 2 25 22.4
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Fig. 2.24 Limits imposed by mismatch: (a) accuracy-speed and (b) accuracy-power

2.4.6 Heisenberg Uncertainty Principle

To complete our analysis, the Heisenberg uncertainty principle is also discussed
based on [33], as the ultimate accuracy-speed limit in a converter’s performance,
ultimately imposed by physics. The original principle [46] limiting what can be
simultaneously known about the position and momentum of a quantum particle also
applies to the energy-time complementary set stating
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Fig. 2.25 Fundamental accuracy-speed limit due to Heisenberg

The more precisely the energy of a particle in a certain state is known, the greater
the uncertainty in the interval of time, in which the particle possesses that particular
energy.

The principle is described by the mathematical formula

�E · �T � h

4π
, (2.65)

where �E may be interpreted as the required energy to be within ± LSB/2 of a
quantization level, �T is the time required to move from one level to another and
assumed half a period of fs, and h = 6.62617 · 10−34 J·s is the Planck constant.
Under these assumptions and using Ri,src from the model of Fig. 2.17, the above
expression for a differential configuration can be written as

V 2
pp-diff

22ENOBHeis · 8Ri,src
· 1

(2fs)2
� h

4π
⇒ 2ENOBHeis · fs �

Vpp-diff

2
√

2hRi,src
. (2.66)

Finally, the maximum achievable SNDR dictated by the Heisenberg uncertainty
principle can be obtained by utilizing Eq. (2.32) (Fig. 2.25)

SNDRHeisenberg = 6.02 log2

(
Vpp-diff

2fs
√

2hRi,src

)
+ 1.76. [dB] (2.67)
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2.4.7 Putting It All Together

To finalize our analysis, in Fig. 2.26, we plot all the previously derived accuracy-
speed and accuracy-power limits for certain design choices and parameters. As
seen in Fig. 2.26, the quantizer metastability for an aer of 1e–5 is the dominant
accuracy limitation when increasing the sample rate above about 25 GS/s. Below
this frequency, aperture jitter of 50 fs dominates the accuracy degradation down
to about 4 GS/s. At lower sample rates, mismatch is the main limitation to the
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Fig. 2.26 Fundamental limit curves from all the error sources analyzed in this chapter: (a)
accuracy-speed and (b) accuracy-power
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achievable resolution. Assuming that mismatch is compensated, thermal noise
starts limiting the achievable resolution for sample rates below 500 MS/s, with the
quantizer as the dominant error source based on our derivations. This is expected at
very low sample rates due to the steeper slope of the jitter-limited resolution. The
physical Heisenberg uncertainty principle limitation is about 30 dB above the next
limitation.

Regarding Fig. 2.26b, our simplified derivations indicate a maximum of about
half an order of magnitude power consumption difference between the various
noise and metastability limitations. For a 28 nm process, mismatch imposes a power
consumption limit of about two orders of magnitude higher than the rest. In reality,
the power of the sampler is expected to increase in the presence of an analog front-
end with a certain settling requirement. Also, the power estimation for a certain
jitter neglects multiple stages in the chain of Fig. 2.22 to realize a certain clock edge
steepness, which will inevitably increase this power. Nevertheless, the important
take from this first-order power analysis is that every contribution in a converter
necessitates an equally careful optimization and/or compensation to yield the best
overall results.

2.5 Conclusion

This chapter laid out the fundamental concepts of the A/D conversion process. Its
two primary concepts of sampling (time discretization) and quantization (amplitude
discretization) were thoroughly discussed. In order to prevent loss of information
and yield the sampling process reversible, the Nyquist criterion dictates that the
sample rate be at least twice the instantaneous bandwidth of the signal under
sampling. The signal may be located in any of the Nyquist zones, and as long as
it is band-limited within one, the Nyquist criterion is satisfied. Each sampled value
is compared against 2B discrete levels, and its amplitude is rounded to the nearest
level by the quantizer. This rounding process introduces a deterministic quantization
error εq, which under certain conditions can be approximated as white noise, and
imposes the ideal single conversion error source. From this analysis, the maximum
possible accuracy of a B-bit converter was derived in terms of its SQNR. The major
error sources from the circuit blocks in a practical converter chain were identified
to deteriorate the performance beyond the quantization error threshold. In the form
of noise, these include the sampler thermal noise, the quantizer thermal noise, and
the aperture jitter from the clock and input of the sampler. Simple models were
introduced, and closed-form expressions were developed to quantify these errors
in terms of design parameters. In the form of non-linearity, DNL and INL from
the quantizer as well as INL and harmonic distortion from the other blocks in the
chain (sampler and a potential front-end) were identified as the main contributors.
Generally, any type of non-linearity originates from circuit imperfections and
can be minimized either by proper design choices or by calibration, which was
briefly overviewed as well. Further, several critical performance evaluation metrics,



2.5 Conclusion 55

including THD, SNR, SNDR, SFDR, as well as the two widely used figures of merit,
FoMW and FoMS, were briefly discussed.

Equations serving as first-order guidelines were developed, which established
the fundamental accuracy-speed-power limits imposed by (1) the sampler noise,
(2) the quantizer noise, (3) the quantizer metastability, (4) the aperture jitter, and (5)
ultimately physics under certain assumptions. The limits imposed by mismatch were
also quantified and compared to the aforementioned ones. The derived equations
provided an insight as to what may be ultimately achievable from the elementary
building blocks in a converter and what has to be traded-off to maximize the
ratio accuracy · speed ÷power . It was concluded that the contribution from every
block needs to be equally carefully optimized and/or compensated to reach the best
possible performance. More importantly, this insight allows a better circuit design
optimization, avoiding excessive over-design or under-design that could potentially
lead to poor power and/or speed performance for a certain accuracy.

Appendix A: Proper FFT Evaluation Setup

Assume we would like to sample at an fs rate a one-tone sine wave with an input
frequency fin and evaluate its frequency spectrum by means of an FFT with NFFT
points. The total FFT evaluation time is found as

TFFT = NFFT · 1/fs. (2.68)

The resolution bandwidth or FFT bin size is then given by

fbin = 1/TFFT = fs/NFFT. (2.69)

For coherent sampling without using windowing, and to avoid spectral leakage,
we must ensure an integer number of signal periods NPER. The input frequency
is therefore found as

fin = NPER · fbin = NPER · fs/NFFT. (2.70)

The same setup can be followed for a two-tone sine wave15 with input frequencies
fin1 and fin2 as well, provided that these frequencies fall exactly within FFT bins.
One of many ways to guaranteeing this is the following:

fin1 = NPER · fbin − 2 fbin = NPER · fs/NFFT − 2 fs/NFFT

fin2 = NPER · fbin + 2 fbin = NPER · fs/NFFT + 2 fs/NFFT.
(2.71)

15 It can be generalized to an m-tone sine wave with fin1,2,...,m.
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Finally, NPER and NFFT must be relatively prime, meaning that their only positive
common divisor is 1. To give a numerical example, for an fs = 1 GS/s and NFFT =
1024, NPER = 79 satisfies the above requirements, leading to an fin = 77.1484 MHz
for a one-tone and fin1 = 75.1953 MHz and fin2 = 79.1016 MHz for a two-tone sine
wave, respectively.
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