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Abstract. Elastic parallel applications that can change the number
of processors while being executed promise improved application and
system performance, allow new classes of data and event-driven highly
dynamic parallel applications, as well as provide the possibility of pre-
dictive proactive fault tolerance via shrinkage in increasingly larger and
more complex HPC systems, where the mean time between component
failures is decreasing. There are several challenges for elastic application
to become mainstream: 1) a clear understanding of programming mod-
els for elastic applications, 2) adequate support from message passing
libraries, middleware, and resource management systems (RMS), and 3)
thorough investigation of scheduling algorithms. Scheduling elastic jobs
requires communication between running jobs and the RMS, keeping
track of pending jobs, and prioritizing jobs to expand or shrink at a cer-
tain point in time. These challenges make the task of finding an optimal
schedule challenging. We have proposed three different scheduling algo-
rithms to schedule elastic applications along with six different candidate
selection policies to prioritize the shrinkable applications and investi-
gated their impact on system and application performance. We have
studied the impact of workload characteristics and algorithms on per-
formance. Our simulations results indicate that workload characteristics
as well as the range of elasticity (flexibility) of the elastics applications
impact the system and application performance.
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1 Introduction

High Performance Computing (HPC) systems are growing in capacity, complex-
ity, and heterogeneity [5,23]. The upcoming and current large HPC systems have
hundreds of thousands of computing cores in addition to networking and other
components. On the other hand, parallel applications that generally run on such
systems are also growing increasingly complex. They are increasingly data and
event-driven and dynamic in nature. The current generation of message pass-
ing parallel applications can not change resources (grow or shrink in terms of
resource usage) once they start executing. According to Feitelson [8], a malleable
application can grow or shrink in response to commands by the resource man-
agement system and an evolving application can also grow or shrink, but the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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application itself decides when it needs to change size. We will refer to malleable
and evolving applications as elastic applications. Currently, there is no or limited
support from runtime libraries and/or resource management systems (RMS) for
such applications.

One use case for elastic applications is for dynamic applications whose com-
putational needs are not known when the application is launched. Consider an
application that simulates both airflows around an airplane and the stresses
on the frame from the airflow. If the stress simulation determines that a crack
appears then the computational needs to simulate the airflow may increase by
an order of magnitude. Using current inelastic (rigid) applications, the way to
deal with this would be to give the application the worst-case number of nodes
(which may be difficult to compute), wasting resources. An elastic application
could automatically request more nodes from the system at the time they are
needed. If no crack appears then there would be no need to waste resources
for that potentiality. Another potential benefit of elastic applications is that it
gives a way for applications to proactively respond to failures. If a node is giv-
ing signs of impending failures, such as temperatures running too hot, then the
system could instruct the application to shrink down, off the failing node. Elas-
tic applications provide a path to maximum possible utilization by expanding
or shrinking applications. Elastic applications would open up the potential for
new highly dynamic applications that are not developed as there is no support
for running them. There is no support because there are no applications that
need it. Breaking this cycle would allow opportunities for a new generation of
applications.

There are many challenges to realizing elastic applications. Current applica-
tions use a distributed memory model. Data is transferred by message passing.
The number of shared memory nodes remains fixed for the lifetime of the appli-
cation. Elastic applications will need to reorganize their data as they shrink
or grow. The nature of the reorganization would depend on the application. A
parameter sweep application might simply need to migrate some runs to a new
node. An iterative grid-based application might need to completely redistribute
the data to a new rectangular layout. The resource manager will need to com-
municate with running and the elastic applications in order to allocate more or
preempt (shrink) resources. Likewise, the application will need to be able to give
up or acquire more resources. Evolving applications will need to request more
resources. This may potentially involve multiple phases as the resource manager
offers resources and the application counteroffers. Current resource managers
only need to consider pending applications in the queue and keep track of used
and free nodes. An elastic job scheduler will need to make decisions about when
to grow or shrink malleable applications, as well as respond to evolving applica-
tions’ requests to grow or shrink. This will need to be done in a way that is fair
to inelastic and elastic applications.

We have proposed three algorithms to schedule workloads containing elastic
as well as non-elastic (traditional rigid) jobs. Each algorithm has been evaluated
with a different policy to select a running malleable job to preempt resources.
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We have run a number of simulations to observe the impact of these different
policies on different types of workloads. We have used modified workload traces
from real systems [17,24] as well as synthetic workloads. Our simulation results
indicate that as the workload increases the impact of candidate selection policy
gradually becomes insignificant. We also found that the distribution of elastic
jobs in the workload impacts the performance gain. Our simulation results are
consistent with several previous works that the presence of elastic application in
the workload improves both system and application performance compared to
the same workload with rigid applications only.

The rest of the paper is organized as follows. Section 2 provides a brief dis-
cussion of related works found in the literature. Our elastic application model
is presented in Sect. 3, followed by a description of scheduling algorithms and
candidate selection policies in Sect. 4. The experimental results are presented in
Sect. 5. Finally, Sect. 6 presents our conclusion and planned future works.

2 Related Works

Research in the field of elastic parallel systems is not as extensive compared in
other HPC areas. The simplest way of expanding and shrinking is to checkpoint
the application state at some point in time and then again start the appli-
cation from that point with a different number of processors. This approach
has been implemented by Vadhiyar and Dongarra [27] as the Stop Restart Ser-
vices (SRS) framework. ReSHAPE, developed by Sudarsan et al. [25] combines
a scheduler with a reconfiguration library for iterative MPI applications. The
Parallel programming framework, AMPI [15], is built on top of Charm++ [13].
AMPI implements MPI as user level threads. Recently, Iserte et al. [11] have
designed a library DMRlib which provides a series of predefined communication
patterns for data-redistribution and communication with the RMS. They have
designed a communication API using which Nanos++ OmpSs [1] can commu-
nicate with the Slurm resource manager [28]. CooRMv2 is an RMS to ensure
efficient scheduling of non-predictable evolving applications developed by Klein
et al. [16]. Process Management Interface-exascale (PMIx) is an abstract set
of interfaces using which applications and tools can interact with the different
components of the System Management Stack (SMS) as well as different SMS
components can also interact with each other [3,19]. The PMIx standard pro-
vides APIs for applications to request allocation of additional resources, extend
the reservation on currently allocated resources, and release currently allocated
resources. These APIs are still being developed, yet to provide support for full
flexibility, and have not been adopted by production RMSs.

Kale et al. [14] have designed a simple scheduling algorithm for elastic job
schedulers where all jobs are initially allocated with their minimum number
of processors and the rest of the processes are shared equally among the jobs
considering the maximum allowable resources of a particular job. Utrera et al.
[26] have proposed an algorithm that mainly focuses on reducing the average
waiting time. Gupta et al. [10] have proposed a split-phase scheduling algorithm
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where shrinkage requests are performed asynchronously. D’Amico et al. [4] have
proposed a dynamic slowdown-driven (SD) policy to schedule rigid and malleable
jobs to reduce average response time. Iserte et al. [12] have modified Slurm and
implemented a reconfiguration policy using the moldable submission mechanism
of Slurm. Prabhakaran et al. [20] have proposed a scheduling algorithm to run
evolving jobs with rigid jobs but they have only considered expansion. They have
extended the algorithm to schedule rigid, malleable, and evolving jobs together
[21].

Research on scheduling elastic applications is at an early stage. Recent
research mainly focuses on the impact of different scheduling parameters on
performance, but how workload characteristics impact performance along with
scheduling algorithms has not been investigated adequately. Similarly, the com-
munication and negotiation aspect between RMS and elastic applications has
been under investigation.

3 Application Model

Before developing the scheduling algorithms, we developed a model for elastic
application and their interaction with the RMS. We made the following assump-
tions for our proposed model and algorithms:

– All applications in the workload are parallel applications.
– Only processors are considered as resources.
– The HPC system is homogeneous and communication time between any pair

of processors are identical.
– An elastic application can run on any number of processors between a prede-

fined minimum and maximum allowable processors (this may not hold true
for some applications).

– The overhead of interaction between a running application and the RMS is
negligible.

An elastic message-passing application consists of ph phases and the number
of resources allocated to the application does not change during a phase. Chang-
ing a phase involved a change in the number of resources either in response to
the application request or the RMS request.

A phase phi can be defined by three tuples-

< Ri,Wi, Ti >

where Ri is the allocation of phase i, Wi is the amount of computation done at
that phase and Ti is the execution time of the phase. The total runtime of the
application T is a summation of all Ti.

A phase change may involve data re-distribution as the number of processors
changes. So, the total time of a phase consists of five components: computa-
tion time tw, parallel overhead to, data reorganization cost td, synchronization
cost ts, and other overhead such as process creation or terminations tp. So,
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Ti = twi + toi + tdi + tsi + tpi. The parallel overhead of an application in
general increases and computation time decreases as the number of processors
increases and vice versa when the workload remains constant. We have modeled
the parallel overhead as a certain percentage (x%) of total execution time before
any phase change. The remaining(1 − x%) time is required for computation. x
varies from application to application. Let us assume that, the application has
pi and pi+1 processors at phase i and phase i + 1. So,

toi+1 = toi/pi ∗ pi+1

twi+1 = twi ∗ pi/pi+1

Data-redistribution cost depends on two variables- the total number of pro-
cessors involved in change and change in the number of processors. The data dis-
tribution cost decreases if the total number of processors involved is increased.
Again, data redistribution cost increases with the increase in the difference in
the number of processors. For example, the data distribution cost of 8 to 16 pro-
cessors is lower than the data distribution cost of 4 to 16 processors. The total
number of processors involved is 24 and 20, and the difference in processors is 8
and 12, respectively. Synchronization cost varies from application to application
state and does not depend on the change in resources. Though synchronization
cost depends on the current resources of the application, we are ignoring that
for simplification.

tsi+1 = σ, where σ varies from application state to application state. Total
processor involved in phase change ptotal = pi + pi+1. Change in processor
pdifference = |pi − pi+1|. Then, data redistribution cost-

tdi+1 = α ∗ pdifference + β/ptotal.

Here, α and β are constants. Other overhead like processor creation or deletion
cost is directly proportional to the number of new processors. So,

tpi+1 = b ∗ pdifference

where b is the cost of one processor. We have used [9] as the execution model of
the elastic parallel application in this study.

4 Scheduling Algorithms

To simulate different scheduling algorithms and visualize their impact on dif-
ferent performance metrics, we have used a discrete event simulator. We have
followed the pattern from [9]. The following data structure is used in the algo-
rithms described in this section:

– system state:
• Idle processors (p c): Number of idle processors
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• total processors (p t): Number of total processors
• Running job list (J r): List of all currently running jobs
• Running malleable job list (J rm): List of all currently running malleable

jobs
• Pending job list (J p): List of all pending jobs yet to be scheduled

– Candidate schedule:
• List of job to start list (J s): Jobs that are scheduled to be started at this

time
• Agreement List (A): List of expansion and shrinkage that needs to be

done at this time
– Shrinkable malleable job list (J sm): List of malleable jobs that need to be

shrunk
– Required number of processors p r: Number of processors that are required

by a job for execution

The main scheduling algorithm is described in Algorithm 1.

Algorithm 1. Main Scheduling Algorithm (FCFS & easy backfilling with evolv-
ing request priority over pending job with maximizing throughput)
input: The current system state
output: A candidate schedule & system state

1: (schedule evolving request)#SatisfyEvolvingRequest()
2: (schedule initial allocation)#InitialAllocation()
3: if length(J p) > 0 and length(J rm) > 0 then
4: (schedule pending jobs by shrinking malleable jobs)#SchedulePendingJob()
5: end if
6: if p c > 0 and length(J rm) > 0 then
7: (expand running malleable jobs if possible)#ExpandRunningMalleableJobs()
8: end if
9: while length(A) do

10: Take the first agreement
11: Calculate negotiation cost (Similar to [9])
12: execute agreement
13: return J s and A
14: end while

Main Scheduling Algorithm

The algorithm SatisfyEvolvingRequest() is described in Algorithm 2. As evolving
requests are given the highest priority, first the algorithm tries to schedule the
evolving request with idle resources. If enough idle resources are not found,
the algorithm tries to allocate necessary resources by shrinking malleable jobs.
The candidate for shrinkage is chosen by select shrinkable job() algorithm. The
select shrinkable job() algorithm is described later in this section.

The initial allocation is based on FCFS with an easy backfilling schedul-
ing policy [18]. The algorithm is described in Algorithm 3. If there are jobs in
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Algorithm 2. SatisfyEvolvingRequest(system state)
input: system state
output: A & system state

1: if Shrinkage Request then
2: Add shrink to A
3: Update system state
4: else
5: Allocate idle resources
6: if Enough idle resources not found then
7: J sm = select shrinkable job()
8: if length(J sm) not zero then
9: Add the shrinkages to A

10: Add the expansion to A
11: Update system state
12: end if
13: end if
14: end if
15: return A and system state

the pending job list and running malleable job list, the algorithm then tries
to schedule pending jobs by shrinking running malleable jobs using the Sched-
ulePendingJob() algorithm. The algorithm is detailed in Algorithm 4.

Algorithm 3. InitialAllocation(J p, system state)
input: J p, system state
output: J s, J p, system state

1: for each job in J p do
2: if p c == 0 then
3: return J s, J p, system state
4: end if
5: if job.p r ¡= p c then
6: add the job to J s
7: update system state
8: end if
9: end for

10: return J s, J p, system state

The ExpandRunningMalleableJob() algorithm expands running malleable
jobs if idle resources are available after scheduling pending jobs. As expanding
any job will result in higher system utilization, jobs with the highest runtime are
chosen for expansion with the motivation to reduce average turnaround time.

We have proposed three different algorithms to select the shrinkable malleable
jobs. Algorithm 5 does not look at any system or application state. It tries to
shrink jobs if enough resources are not found. For the rest of the paper, we
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Algorithm 4. SchedulePendingJob(J p)
Input: J p
Output: A, J s

1: for each job in J p do
2: if Job is malleable then
3: p r = minimum processor that is required to run the job
4: end if
5: (J sm), J s, system state = select shrinkable job()
6: if length(J sm)! = 0 then
7: Add shrinkages to agreement list
8: Add the job to job to start list and remove from pending queue
9: Update system state

10: end if
11: end for

will refer to it as “Default”. Algorithm 6 looks at the running applications first
and sees if any application ends in the next t seconds. If it is the case, then
the application waits for that application to finish before it shrinks any new
application. We will refer to this algorithm as “Application” for the rest of the
paper. Algorithm 7 looks at the system utilization before shrinking any job. If
the utilization is greater than u%, it does not shrink any job. For the rest of the
paper, we will refer to this algorithm as “System”. In each algorithm, malleable
jobs are sorted according to a certain priority. These techniques are described
later in this section. Algorithm 8 tries to shrink running malleable jobs and
allocate necessary resources. The technique to set these priorities is called the
candidate/ victim selection technique.

Algorithm 5. Algorithm 01 for selecting shrinkable jobs (SelectShrinkableJob
(J rm, p r))
input: J rm and p r
output: (J sm) , J s & system state

1: Sort the running malleable jobs according to priority
2: for each job in the sorted list do
3: J sm, J s, system state = AllocateResource(job, p r, system state)
4: end for
5: return empty list, J s, system state

Setting Priority of Malleable Jobs (Candidate/Victim Selection Tech-
niques)
We have used multiple policies to define the priority of malleable applications.
These are called candidates of victim selection techniques. The priorities are
described below:

– Random, r: Jobs are randomly selected without considering any parameter.
Jobs selected first have the highest priority.
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Algorithm 6. Algorithm 02 for selecting shrinkable jobs (SelectShrinkableJob
(J rm, p r))
input: J rm and p r
output: (J sm), J s & system state

1: if there is a job which is about to end in next t sec then
2: return empty list, J s, system state
3: end if
4: Sort the running malleable jobs according to priority
5: for each job in the sorted list do
6: if the job is not x% done then
7: J sm, J s, system state = AllocateResource(job,p r, system state)
8: end if
9: end for

10: return empty list, J s, system state

Algorithm 7. Algorithm 03 for selecting shrinkable jobs (SelectShrinkableJob
(J rm, p r))
input: J rm and p r
output: (J sm), J s & system state

1: if utilization is greater than u% then
2: if there is a job which is about to end in next t second then
3: return empty list, J s, system state
4: end if
5: end if
6: Sort the running malleable jobs according to priority
7: for each job in the sorted list do
8: J sm, J s, system state = AllocateResource(job, p r, system state)
9: end for

10: return empty list, J s, system state

Algorithm 8. AllocateResource(job, p r, system state)
input: job, p r, system state
output: (J sm), J s & system state

1: needed resource allocation = p r
2: if available shrinkable resources of job ≥ p r then
3: shrinkable resources = needed resource allocation
4: needed resource allocation = 0
5: add pending job to J s
6: else
7: needed resource allocation -= available shrinkable resources
8: shrinkable resources = available resource allocation
9: end if

10: Add the malleable job to J sm
11: if needed resource allocation = 0 then
12: Return J sm, J s, system state
13: end if
14: Return J sm, J s, system state
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– Gain, g: Initially, every job has a gain (g) value set to 0. Every time a job
expands or shrinks, the gain changes. For expansion, the number of expanded
cores is added to the gain. For shrinkage, the number of shrunk cores is
subtracted from gain. The job with the highest gain has the highest priority.

– Shrinkable Resources, sr: If the application is running on Pcurrent processors
and the minimum processor for the application is Pmin, then the application
has Pcurrent − Pmin shrinkable resources (sr). The application with the high-
est sr has the highest priority. If two applications have the same shrinkable
resources, the application with the highest current resources has the highest
priority.

– No. of expansion, e: The job with the highest number of expansions (e) has
the highest priority.

– Adaptation Cost, a: The job with the lowest adaptation cost has the highest
priority.

– Time, t: The job with the lowest remaining runtime (t) has the highest pri-
ority.

4.1 Evaluation Metrics

We choose average turnaround time to measure application performance and
utilization to indicate system performance.

If the arrival time of a job i is Tai and completion time is Tci, and the
workload has total n jobs then average turn around time (TAT) is -

average TAT

n∑

i=1

Tci − Tai

n

System utilization indicates the fraction of CPU cycles that has been used during
the execution of the workload. If the scheduled span of a workload is SS and
total processors is p, then total cpu cycle, Ctotal = SS∗p. Let us assume that the
CPU cycle used by an application i is Ci. If the application has total ph phases
and the execution time and processor of phase p is Tp and Pp respectively then,

Ci =
ph∑

p=1

Tp ∗ Pp

If the workload has total n jobs then,

utilization =
n∑

i=1

Ci

Ctotal
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5 Experiment and Results

5.1 Workload

Selecting a workload to simulate a scheduling algorithm needs special attention.
The workload should emulate the workload running on a cluster. Input data
for simulating scheduling algorithms can be obtained in two ways. One is to
derive it from workload traces of the existing HPC system and the other is to
generate them using different workload models. For our study, we have used two
real workloads and one synthetic workload. We have chosen the LLNL Atlas
[17] and the KIT for HLR II [24] logs from the parallel workload archive [7].
We will refer to these two workloads as LLNL and KIT, respectively. For both
workloads, we have considered the first 10,000 jobs for simulation. In order to
increase the load and see the impact of that, we have further modified these two
workloads. We have created two shrunk versions of LLNL and KIT by shrinking
the inter-arrival time by 5% and 35% respectively. The modified workloads are
referred to as LLNL-shrunk and KIT-shrunk respectively. In addition to the real
workloads, one synthetic workload has been generated using Downey’s model
[6]. A workload containing 10,000 jobs was created with a cluster size of 10,000
processors. The model parameters to generate the workload are listed in Table 1.

Table 1. Parameters of Downey’s model to generate synthetic

#Jobs rho seed Job width (ln(Tr)) Job size (ln(P ))

10, 000 0.75 17 Min Max Min Max

5.69 9.91 0.69 8.51

Table 2 summarizes the workloads. The max processor and min processors are
the maximum and the minimum number of processors a job has in the workload,
respectively. The relevant parameters of the workloads are:

Table 2. Workloads for simulation

Workload # of jobs Max processor Min processor Total processors % of shrinkage in interarrival time

LLNL 10,000 9160 1 9,216 –

LLNL shrunk 10,000 9160 1 9,216 5%

KIT 10,000 10,240 1 24,048 –

KIT shrunk 10,000 10,240 1 24,048 35%

Synthetic 10,000 4994 2 10,000 –

– Id: A unique identifier for the jobs in the workload
– Type: A job can be of three types- rigid, malleable and evolving
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– Arrival, Ta: Job arrival time
– Runtime, Tr: Execution time of a job
– Processors, P: Number of desirable processor allocation
– Minimum Allowable processor, pmin: Minimum required resource allocation

for a job. pmin is equal to P for rigid jobs.
– Maximum Allowable Processor, pmax: Maximum allowable processor alloca-

tion of a job. pmax is equal to P for rigid jobs.

Creating Elastic Workload. All the workloads mentioned in Sect. 5.1 are
rigid. We have generated an elastic workload by randomly selecting jobs to be
elastic. If in a certain workload x% of jobs are elastic, then x/2% of them are
malleable, and x/2% of jobs are evolving. For every workload, we have made
in total 10 elastic versions with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% elastic
jobs. Every elastic job has maximum and minimum processor requirements. We
have selected 800% of P to be the maximum (pmax) and 50% of P to be the
minimum (pmin) allowable resources.

Evolving jobs make expansion and shrinkage requests to the simulator. We
refer to these requests as evolving requests. We choose the total number of evolv-
ing requests submitted by an evolving job chosen randomly from a predefined
maximum and minimum. We have selected the event type (expansion or shrink-
age) from a Bernoulli Distribution with a higher probability to be expansion.
Then, we have chosen the number of processors involved in the evolving event
from a predefined maximum and minimum. The time of occurrence of each
evolving event is selected at a percentage of the remaining computation. The
percentage is also chosen from a predefined minimum and maximum.

5.2 Experimental Setup

The discrete event simulator has been implemented using Python 3.4.1. Results
shown in this section reflect the average of 10 runs. We have chosen the predefined
parameters used in this simulation from an educated guess. Parameters were
chosen to be the following:

– t in Algorithm 6 and 5 is set to be 5 s.
– u in Algorithm 5 is set to be 80.
– Maximum negotiation cost is set to be 0.05 s and minimum negotiation cost

is set to be 0.005 s.
– Parallel overhead defined in the mathematical model (Sect. 3) is set to be

between 0.5% to 1%.
– α and β defined in the mathematical model of Sect. 3 are randomly chosen

from a uniform random distribution of 0.005 to 0.05.
– Synchronization cost defined in the mathematical model of Sect. 3 is randomly

chosen from a uniform random distribution of 0.015 s to 0.1 s.
– Maximum and minimum evolving events requested by an evolving application

are set to be 4 and 1 respectively.
– Probability of an evolving event to be an expansion event is set to be 0.8
– Expansion event can occur anytime when 30% to 60% of work is left.
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5.3 Results

In all cases, including elastic application into the workload improves perfor-
mance over only rigid workload. The performance of the only rigid workload is
shown in the dotted line in all the plots of this section. Figures 1, and 2 show
the comparison of algorithm System, Application, and Default in terms of aver-
age turnaround time, and system utilization of KIT workload, respectively. The
algorithm System attains the best system utilization for all candidate selection
techniques but performs worst in terms of average turnaround time. Algorithms
Application and Default perform in a similar manner.

Fig. 1. Average turnaround time of KIT
workload with different algorithms

Fig. 2. System utilization with KIT
workload and different algorithms

Fig. 3. Average turnaround time of
KIT shrunk workload with different
algorithms

Fig. 4. System utilization with
KIT shrunk workload and different
algorithms

Figures 3, and 4 show the comparison of Algorithm System, Application,
and Default in terms of average TAT, and system utilization of KIT shrunk
workload, respectively. Random performs the best in terms of utilization for
all three algorithms. The algorithm System attains the best system utilization
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Fig. 5. Average turnaround time of
LLNL workload with different algorithms

Fig. 6. System utilization with LLNL
workload and different algorithms

for all candidate selection Algorithms but performs the worst in terms of aver-
age turnaround time. The algorithm Application performs the best in terms of
average turnaround time (see Fig. 3).

Figures 5 and 6 show the comparison of algorithm System, Application, and
Default in terms of average turnaround time, and system utilization of LLNL
workload respectively. The algorithm System has the worst average TAT in the
case of adaptation, expansion, and gain. The algorithm Default has the worst
average TAT in the case of random, resource, and time. The algorithm Appli-
cation provides the best TAT in all cases. In terms of utilization, the algorithm
System gets the best turnaround time for adaptation, expansion, gain, and ran-
dom. Algorithm Default generates the best utilization for resources and time.
The worst TAT comes from the algorithm Application in case of adaptation,
expansion, resource, and time, and from the algorithm Default in case of gain
and random.

Fig. 7. Average turnaround time of
LLNL shrunk workload with different
algorithms

Fig. 8. System utilization with
LLNL shrunk workload and differ-
ent algorithms

Figures 7 and 8 show the comparison of Algorithm System, Application,
and Default in terms of average turnaround time, and system utilization of



186 D. H. Lina et al.

LLNL shrunk workload respectively. The algorithm System generates the worst
TAT everywhere except random and resource. For random and resource, algo-
rithm Default is the worst. The algorithm Application performs best in terms of
average TAT for all candidate selection techniques except expansion and gain. In
terms of utilization, the algorithm System performs the best and the algorithm
Application performs the worst in all cases.

Fig. 9. Average turnaround time of syn-
thetic workload with different algorithms

Fig. 10. System utilization with syn-
thetic workload and different algorithms

Figures 9 and 10 show the comparison of algorithm System, Application, and
Default respectively in terms of average TAT, and system utilization of Synthetic
workload, respectively. In terms of average TAT and utilization, the results of the
algorithm Application and Default are clustered together. The algorithm System
is the best in terms of utilization and the worst in terms of average TAT.

5.4 Analysis

Table 3 shows comparisons between different candidate selection techniques for
the scheduling algorithms for different workloads. For each metric, the best and
the worst performing techniques along with the maximum difference between the
best and the worst are presented. Table 3 shows that the maximum improvement
gained over different candidate selection techniques of LLNL shrunk workload
is less than that of LLNL workload. It can be said that the results of different
candidate selection techniques of LLNL shrunk workload are more clustered than
that of LLNL workload (see Figs. 5, 6, 7 and 8). A similar pattern is found in KIT
and KIT shrunk workloads. So, we can conclude that if the workload is high,
the difference in performance between different candidate selection techniques
becomes insignificant. Table 3 also shows that in terms of average TAT gain
performs the best and random performs the worst in most of the cases. In terms
of utilization, random performs the best, and resource performs the worst in
most cases.

The performance of Synthetic workload increases as the percentage of elastic
jobs increases. For other workloads, the increase saturates and stops at some
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Table 3. Maximum improvement achieved by using different candidate selection tech-
niques at any percentage of elastic jobs

Workload Algorithm Average TAT Utilization

Best Worst Max difference Best Worst Max difference

LLNL Application Gain Random 2.62% at 40% elastic jobs Random Resource 8.075% at 70% elastic jobs

System Gain Resource 2.09% at 100% elastic jobs Random Resource 3.65% at 70% elastic jobs

Default Random Resource 3.08% at 30% elastic jobs Random Resource 9.0% at 90% elastic jobs

LLNL shrunk Application Adaptation Random 1.45% at 70% elastic jobs Random Time 3.23% at 90% elastic jobs

System Gain Random 2.19% at 60% elastic jobs Random Time 1.65% at 90% elastic jobs

Default Resource Random 2.36% at 100% elastic jobs Random Gain 2.49% at 90% elastic jobs

KIT Application Gain Random 3.21% at 70% elastic jobs Random Resource 10.25% at 50% elastic jobs

System Adaptation Random 3.04% at 20% elastic jobs Random Resource 3.11% at 40% elastic jobs

Default Gain Random 5.7% at 70% elastic jobs Random Resource 10.9% at 50% elastic jobs

KIT shrunk Application Gain Random 1.23% at 80% elastic jobs Random Resource 0.85% at 90% elastic jobs

System Gain Time 1.66% at 100% elastic jobs Random Resource 1.33% at 60% elastic jobs

Default Gain Random 2.84% at 100% elastic jobs Random Resource 1.31% at 90% elastic jobs

Synthetic Application Gain Random 1.51% at 60% elastic jobs Random Resource 8.58% at 80% elastic jobs

System Gain Time 1.09% at 90% elastic jobs Random Resource 3.6% at 70% elastic jobs

Default Gain Random 1.79% at 90% elastic jobs Random Resource 3.47% at 70% elastic jobs

point. Figures 11 and 12 shows the distribution of total jobs and the elastic jobs
of KIT shrunk workload and Synthetic workload when 30% and 60% of the work-
load are elastic respectively. The distribution for KIT, LLNL, and LLNL shrunk
workloads is similar to KIT shrunk workloads. From these figures, we can see
that in the case of Synthetic workload there are always elastic jobs present in
the workload which is not the case for other workloads. For this reason, the Syn-
thetic workload shows constant improvement with the increase in the percentage
of elastic jobs.

Fig. 11. Distribution of elastic job in
KIT shrunk workload

Fig. 12. Distribution of elastic job in
synthetic workload

For KIT workload and KIT shrunk workload, no algorithm can achieve uti-
lization above 91% (see Figs. 2 and 4). The possible reason for this can be frag-
mentation and/or adaptation and negotiation overhead. Elastic jobs have a limit
on how much they can expand. As a result, fragmentation can still exist even
after the full expansion of all running elastic jobs. Again, the job distribution
over time may be in such a way that at any point in time, there may not be any
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elastic job running at the cluster, and the cluster may remain underutilized. Also,
adaptation cost and negotiation cost cause some utilization loss. To investigate
this further, we have created another version of KIT and KIT shrunk workload
where every elastic job has a maximum resource of 24048 (equal to cluster size)
and a minimum resource of 1. We refer to this phenomenon as 100% flexibility.
We call these versions KIT full workload and KIT shrunk full workload, respec-
tively. Figures 13 and 14 show the utilization of KIT full and KIT shrunk full
workloads, respectively. Utilization of KIT full workload saturates at 90%, but
utilization of KIT shrunk full workload saturates at 98.5%. This proves that the
KIT full workload still has fragmentation as the inter-arrival time is high as well
as adaptation and negotiation overhead. On the other hand, KIT shrunk full
workload losses 1.5% utilization due to adaptation cost and negotiation cost.
Also, from the figures, a knee is visible in the utilization curve. After a certain
point, utilization saturates and does not improve with the increase in percentage
elastic jobs. At 100% flexibility, improvement in utilization saturates at a certain
percentage of elastic jobs.

Fig. 13. Utilization of KIT full workload Fig. 14. Utilization of KIT shrunk full
workload

The key findings of this research are as follows:

– When the load is high, the performance difference between many candidate
selection techniques is insignificant.

– Impact of elastic jobs not only depends on the percentage of elastic jobs but
also depends on the distribution of elastic jobs over time. The more uniform
the distribution of elastic jobs over time is, the more evident the impact is.

– Even introducing 100% flexibility, utilization may not be 100% due to adap-
tation cost, negotiation cost, and fragmentation. Fragmentation may still
remain due to the limit on the expansion capability of running elastic jobs.

– Algorithm System (Algorithm 7) always gets the highest system utilization.
In most of the cases, the Algorithm Application (Algorithm 6) gets the lowest
average TAT.
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– In terms of average TAT, the case study shows that gain performs the best
and random performs the worst in most cases. In terms of utilization, random
performs the best and resource performs the worst in most cases.

– In all cases even a low percentage of elastic jobs (as low as 10% of the total
job) improves the performance.

6 Conclusion and Future Works

The main objective of our research is to propose and evaluate different scheduling
strategies for elastic applications under different workloads. We have proposed
three different scheduling algorithms, and for every algorithm, we have proposed
six candidate selection techniques to prioritize shrinkable jobs. We have evalu-
ated the proposed algorithms using modified workload traces from real systems
as well as synthetic workloads. The following are the main observations from our
study: 1) With the increased workload, the difference in performance improve-
ment between the proposed candidate selection techniques becomes insignificant.
2) The impact of elasticity not only depends on the number of elastic jobs but
also depends on their distribution over time in the workload. The more uniform
the distribution of elastic jobs over time is, the more constant the improve-
ment will be with the increase in elasticity. 3) We have observed that even
with 100% flexibility, 100% utilization can not be achieved. Adaptation and
negotiation overhead limits the maximum achievable utilization. 4) In all cases,
workload with elastic applications improves both system and application perfor-
mance compared to the same workload with rigid workload only. 5) Even with a
very small percentage of elasticity (as low as 10%), both system and application
performance improved.

One of the limitations of the study is that the HPC systems we derived the
workload traces for our simulation no longer represent current large HPC systems
such ORNL Summit, Fugaku, etc., or upcoming systems like ORNL Frontier. In
addition, simulation parameters such as adaptation cost used for simulation were
derived from educated estimates based on sample runs of an iterative structured
grid application running on a medium-size cluster. Experiments with the real
application at scale should be used to estimate the value of such parameters.
These limitations are mostly due to time, effort, allocation and access to large
HPC systems, and availability of real workload traces from systems like Summit.
Our planned future work includes: 1) investigating candidate selection policies
for job expansion, 2) the impact of the ratio of malleable and evolving jobs in the
workload on performance (all our workload has 50% malleable 50% evolving).
It is difficult to estimate the execution time of an application if the number of
processors is changed in the middle of execution. There exists some model to
estimate the total execution time of an application on different sets of processors
[2,22]. Further exploration/extension of such models for estimation of execution
time on a different number of processors can be investigated.
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