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Abstract. Scene Graph Generation (SGG) serves a comprehensive rep-
resentation of the images for human understanding as well as visual
understanding tasks. Due to the long tail bias problem of the object
and predicate labels in the available annotated data, the scene graph
generated from current methodologies can be biased toward common,
non-informative relationship labels. Relationship can sometimes be non-
mutually exclusive, which can be described from multiple perspectives
like geometrical relationships or semantic relationships, making it even
more challenging to predict the most suitable relationship label. In this
work, we proposed the SG-Shuffle pipeline for scene graph generation
with 3 components: 1) Parallel Transformer Encoder, which learns to
predict object relationships in a more exclusive manner by grouping rela-
tionship labels into groups of similar purpose; 2) Shuffle Transformer,
which learns to select the final relationship labels from the category-
specific feature generated in the previous step; and 3) Weighted CE loss,
used to alleviate the training bias caused by the imbalanced dataset.

Keywords: Scene graph generation · Long-tailed bias · Unbiased
scene graph generation

1 Introduction

Scene Graph Generation (SGG) is a fundamental visual understanding task that
aims to encode image structure using the objects in the image as well as the
relationships between these objects into a more compact representation with
graphs [6]. Such representation allows for a more comprehensive understanding
of the visual scene and serves as an intermediate data structure for downstream
machine learning tasks between images and text, such as VQA [11] or Text-Image
Matching [10]. Significant progress has been made recently in SGG thanks to the
advancement of object detection [15]. However, due to the challenges of variation
in object-predicate type as well as the extremely long tail bias of objects and
predicates, efforts for SGG must be made so that scene graphs can be more effec-
tive for other visual understanding tasks. The traditional pipeline of SGG can
often be viewed as a design pattern that comprises 2 main parts, with the pred-
icate prediction built on top of the object detector, which generates object fea-
ture representation through convolution neural network structure. Most methods
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focus on leveraging contextual object features in images via a variety of message
propagation mechanisms such as LSTM [4,9,18,25] and GNN [7,13,23]. Such
methods include the biassed prediction of predicate labels towards the head cat-
egories with much lower performance in tail categories. This is a major problem
for the intended purpose of scene graphs; head categories frequently have generic
meanings but tail categories provide important information that can be used in
downstream tasks. Recent research has been conducted toward solving this long
tail bias by a number of debiasing methods: data augmentation [5,8], model
design [22,24], and bias disentangling [2,17]. These methods focus on making
use of predicates’ frequency and the hierarchy structure of predicates’ corre-
lation with object labels to make their models focus on infrequent predicates.
There has been a lack of research into non-correlated predicates, which are used
for different purposes but might have a non-mutually exclusive distribution of
objects and subjects. We argue that this leads to the problem where the model
needs to give attention to the classification between predicate labels of different
purposes and semantic features like “above,” which is used to describe posi-
tional relationships, and “holding,” which is used to describe an action. This
leads to less focus on differentiating between predicate labels of similar purpose
like “above” and “under”, which is already challenging due to the long tail biased
problem presented in the SGG task. The SGG model can learn the differences
between predicates with similar or contrasting semantic correlations and reduce
the bias of the tail class towards the head class of different semantic spaces.

To tackle the challenge, we propose the SG-Shuffle architecture that lim-
its the learning of classification between predicate labels in different semantic
spaces to improve classification between semantically correlated predicate labels.
In order to separate non-correlated predicate labels, we group correlated predi-
cates into four groups: Geometric, Possessive, Semantic, and Misc based on their
purpose and super-type following the description in the Neural Motif paper [25].
A stacked transformer encoder is adopted for feature refinement and contex-
tual information encoding of the object feature to generate the category-specific
predicate feature with fine-grained information that distinguishes predicate with
correlated semantics. A shuffle transformer structure based on Transformer [19]
and ShuffleNet [12] is proposed to fuse such fine-grained category-specific fea-
tures into a more universal feature that can classify between all predicates labels
in the dataset. This structure both fuses the fine-grained features generated
from the previous step and further propagates contextual information among
the scene graphs. We then applied the simple loss weighting strategy at the end
of the training process to further handle the long tail bias problem that also
exists within the predicate of the same category.

Our contributions are as follows: First, we addressed the SGG issue where
uncorrelated labels are classified against each other, which we tackled by cate-
gorising correlated labels and learning category-specific predicate features. Sec-
ond, we also proposed a Shuffle Transformer layer, which is used to fuse fea-
tures of different focuses to obtain the universal predicate feature for predicate
classification as part of our architecture, SG-Shuffle. Third, we evaluated the
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performance of the proposed SG-Shuffle to demonstrate its effectiveness in the
SGG task.

2 Related Works

Scene graphs received an attention in vision and language joint learning research
as they can serve as a structural representation of images and have the poten-
tial to benefit several downstream vision and language reasoning tasks, such as
image generation, image retrieval, visual question answering, and image cap-
tioning. Earlier works in scene graph generation involve making better use of
visual features. They leverage contextual information for object prediction and
predicate prediction using message passing [21], LSTMs [4,9,18,25], and GNN
[7,13,23]. Statistics correlation of object and predicate are also used in addi-
tion to give the models more information to enhance the results. [25] has used
GloVe for implicit statistics correlation, whereas [1] has explicitly used statistical
correlation as edges in GNN. While performance was improved, challenges still
remain due to the long-tailed data distribution which causes these models to
perform poorly on infrequent classes. Recent work has looked at several debias-
ing methods for unbiased scene graph generations which can mainly categorised
into three major types: re-sampling; loss re-weighting; and bias disentanglement
from biased results. [8] proposed to oversampling image instances while under-
sampling common predicates for balanced predicate distribution. [22] and [5] on
other hand suggest to use label correlation to realign their training loss while
other methods like [7,16,26] propose their additional training loss objectives to
reduce the bias problems. Other than re-sampling and loss re-weighting, bias dis-
entanglement is also commonly used, removing bias from biased model result for
unbiased scene graph. [17] propose to remove causal inference bias while missing
label bias is estimated from label frequency and removed in [2].

One of the challenge in computer vision is the channel sparse connection
problem in convolution neural networks for images, where each convolution only
operates on a single group of input channels due to the use of group convolu-
tions for reducing model complexity. ShuffleNet [12] was proposed to address
the problem by allowing for information exchange between channels of different
groups through the use of channel shuffle operations between group convolution
layers. Inspired by this, channel shuffling was used in multiple works in a variety
of different deep learning research works [3,20] to allow for information flow and
strengthen the correlation between components of their model. Based on the
success of ShuffleNet, we propose Shuffle Transformer containing the channel
shuffling operation for combining multiple category specific predicate features.

3 Methodology

The typical methods of SGG comprise a two-stage process: 1) detecting objects
within the images and 2) predicting the relationships between these objects. In
the first stage, a standard object detector like Faster RCNN [15] obtains a set



90 A. D. Bui et al.

of bounding boxes for the set of objects detected in the image. RoIAlign [15]
generates the visual feature of these bounding boxes and determines the initial
detection of the object label for each of the detected objects. The object bounding
boxes, which represent the position of the object in the image; object visual
features, which represent the shape, form, and pattern learned by the object
detector about the object; and object labels, which represent natural language
understanding of the object semantic, are predicted using the input image and
used as input for the next step. If ground truth information is used, as is the case
of PredCls or SGCls settings, the ground truth information is inserted at the step
where the information is intended to be used. In the second stage, the information
generated from the object detector is used to predict the predicate between
the predicted objects. As Faster RCNN is usually used for object detection,
SGG models generally focus on the second stage of the process, which is also
aligned with the main focus of our proposed SG-Shuffle. Our proposed model
for predicate prediction, in particular, consists of three steps: 1) Four individual
transformer sub-models are used to learn the category-specific representation of
the objects and predicates; 2) Shuffle Transformer layers are then used to merge
and allow information flow between the previous step’s output; and 3) Finally,
weighted cross-entropy (CE) loss is calculated and used for model optimization
as a way to reduce the long tail biased problem.

3.1 Categories

To focus the attention of the model on distinguishing between predicate labels of
similar semantic space, we categorize the predicate labels into 4 groups based on
their super-type following the description of the Neural Motif [25]: Geometric,
Possessive, Semantic, and Misc as shown in Table 1. We limit the need of the
model to classify between predicates with different semantic purposes which can
often require attention to different aspects of the input, for example: mainly
object position for Geometric predicates, object label, and visual feature for
Possessive predicates, or a balanced combination of the three for Semantic and
Misc predicates. And this, in turn, allows the model to make use of the input
aspects selectively to classify between semantically correlated predicates of the
same category, which can be challenging for general scene graph models since
they are often represented close to each other in the feature space due to semantic
similarity, especially with the long tail biased problem of the SGG dataset.

3.2 Parallel Transformer Encoder

For each image, bounding boxes, corresponding object features, and object labels
are generated using Faster RCNN [15] as input to our relationship prediction
module. In order to incorporate object label information as input, object labels
are encoded using GloVe encoding [14]. As these inputs are still non-contextual
and are not specifically trained for relationship prediction, as shown in Fig. 1,
we made use of the transformer encoder architecture to transverse contextual
information as well as refine the feature vectors for relationship prediction. And
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Table 1. Predicate categories and predicate labels in each category

Category Predicate label

Geometric ‘above’, ‘across’, ‘against’, ‘along’, ‘at’, ‘behind’, ‘between’, ‘in front
of’, ‘near’, ‘on’, ‘on back of’, ‘over’, ‘under’, ‘in’ , ‘and’

Possessive ‘belonging to’, ‘has’, ‘part of’, ‘wearing’, ‘attached to’, ‘of’, ‘wears’,
‘with‘

Semantic ‘to’, ‘carrying’, ‘covered in’, ‘covering’, ‘eating’, ‘flying in’, ‘growing
on’, ‘hanging from’, ‘holding’, ‘laying on’, ‘looking at’, ‘lying on’,
‘mounted on’, ‘painted on’, ‘parked on’, ‘playing’, ‘riding’, ‘says’,
‘sitting on’, ‘standing on’, ‘using’, ‘walking in’, ‘walking on’, ‘watching’

Misc ‘for’, ‘from’, ‘made of’

since we needed 4 sub-models to learn the specific details about the relation-
ship categories, the 4 transformer encoders are trained with their own goal of
classifying relationships within each of the category groups. For simplicity, we
concatenate the three object information streams, including object bounding
box, object feature, and object label encoding, as input to our context encoder.

Input = Wo[pos(boxi), visuali, GloV e(labeli)] (1)

Our context encoder adopts the out-of-the-box architecture of the transformer
encoder as it has been shown to be relatively effective compare to RNN, or
CNN in both natural language and computer vision. It is composed of layers of
self-attention, feed-forward, and layer normalization stacked.

o′
c = LayerNorm(SelfAttention(oc) + oc) (2)

o′′
c = LayerNorm(FeedForward(o′

c) + o′
c) (3)

where oc is the input object feature o′
c is the output of the multi-head attention

and o′′
c is the output of the transformer encoder. The output of the contex-

tual encoder is combined with the bounding boxes and visual features of the
unions and intersections through concatenation to predict the category-specific
relationships, which calculates a category-specific loss using CE loss.

rc = Softmax(Concat(subjectc, objectc, vintersect, vunion)) (4)

where rc is the category specific predicate features, v is the visual feature while
subjectc and objectc are the output object features of the objects pair.

We applied CE loss to jointly optimise the sub-models in their respective
categories. The parameters of the sub-models are trained in parallel and opti-
mized as part of the training process. For each of the sub-models, object pairs
with relationships from other categories are not considered in the computation
of this loss.
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Fig. 1. Overall architecture of SG-Shuffle

3.3 Shuffle Transformer

In the second step of our relationship prediction pipeline, after the sub-model
learns the category-specific contextual information for each of the objects in the
image, these category-specific contextual object features are merged together
in order to classify the actual relationship of the objects pair in the original
relationship labels set. Therefore, in this stage, the outputs of the transformer
encoder sub-models are used. Furthermore, while the 4 categories used in the
previous step are from different semantic domains, they are still correlated as the
candidate relationship of the same pair of objects, and hence, information flow
between these sub-models is needed. In order for the aforementioned reasons
to be incorporated into the model, we need to ensure that all the outputs of
the sub-models are relevant in the prediction stage and the correlation between
these category-specific object features is taken into account to further improve
the prediction result. We proposed making use of the shuffle architecture, which
was proposed in ShuffleNet [12] to handle information flow between channels
of CNN for computer vision tasks for this purpose. As shown in Fig. 1, this
architecture specifically makes use of the channel shuffle operation to allow such
information flow. The original ShuffleNet is used with CNN for images and is not
directly applicable to our situation, so we replace their convolution layer with
a transformer encoder layer with the same architecture as in the previous step,
with shuffle layers in between similar to the shuffle net. For SG-Shuffle, since we
have 4 category-specific object features of 4 sub-models from the previous stage,
for simplicity, the same number of shuffle sub-models are used in our shuffling
stage. By using four shuffle sub-models, a quarter of the output features from
the previous layer are concatenated to be the input of the next layer.

o′
s = SelfAttention([partitions(o(k=1−→4))]) (5)

ofinal = Ws[o
final−1
(s=1−→4)] (6)

rfinal = Softmax(Concat(subjectfinal, objectfinal, vintersect, vunion)) (7)
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After a few shuffle layers, the output of the shuffle sub models are concatenated
and used to predict the predicate of the object pairs using the softmax function.

3.4 Weighted CE Loss

While categorizing the predicate labels into 4 different groups helps alleviate the
bias problem to a certain degree, there is still bias between predicates of the same
predicate group. To further remedy the long tail bias problem in the SGG, at the
end of the training process, we applied a simple re-weighted CE loss to balance
the learning process of each predicate label. Traditionally, for classification tasks
like predicate prediction in SGG, a network is trained to minimise the CE loss.
The predicted probability is obtained by applying the Softmax function to the
output of the final layer. This loss penalises errors of predicting each label equally
and therefore makes the model skew toward common labels due to the number
of instances they have in the dataset. The weighted CE loss is a simple modified
version of this CE loss with larger weights for the infrequent labels and lower
weights for the frequent labels and penalises error classification accordingly.

l(x, y) = L{l1, ..., lN}T , ln = −
C∑

c=1

wclog
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c (8)

4 Evaluation Setup

Dataset Details. We used the VG150 dataset [25], a subset of the large-scale
Visual Genome vision and language dataset. It is the pre-processed split which is
specifically used for SGG tasks, with the most frequent 150 object categories and
50 predicates categories. For object and predicate-super categories, we followed
[25] criteria to split the predicate classes into 4 super-classes based on their
semantic nature. Following the same testing strategy, as [17], we also use the
original split with 70% training set and 30% test set, as well as taking 5000
samples from the training set as a validation set for parameter adjustment.

Evaluation Metrics. We use the mean Recall@ K metric. This metric has
recently been used in place of regular recall due to the long tail bias problem in
the image dataset, which leads to the performance bias in this metric [17]. The
evaluation is done by predicting the relationship triplets in 3 settings: Predicate
Classification (PredCls): using the image with ground truth object label and
bounding box, Scene Graph Classification (SGCls): only ground truth bounding
box and Scene Graph Detection (SGDet): using only the ground truth image.

Implementation Details. We use the Faster RCNN as the object detector to
focus on the performance of the predicate prediction and stay consistent with
previous work. It is pre-trained on ImageNet and fine-tuned on VG150 by [17]
with ResNeXt-101-FPN being the backbone for region proposals. For consistency
with previous works, the parameters of the object detector were kept frozen dur-
ing the training and evaluation period. The stacked encoder used as the category
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sub-models contains 6 layers of transformer encoder with 4 attention heads each.
For the weighted CE loss, we applied the inversed square root of predicate fre-
quency as mentioned in [2] as weight for the loss function. We optimised the
proposed model using the Adam optimizer with an initial learning rate of 0.001
and the warm-up and decay strategy suggested by [17]. The experiment was
conducted on the NVIDIA T4 GPU.

5 Performance Analysis

5.1 Quantitative Evaluation

We compare SG-Shuffle with other SGG methods to demonstrate the ability of
the proposed SG-Shuffle architecture to improve upon the feature refinement of
objects and relationships in SGG while also displaying that it can be used with
debiasing methods for unbiased SGG.

Table 2. Performance evaluation on VG150.

PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

Without debiasing IMP (2017) 9.80% 10.50% 5.80% 6.00% 3.80% 4.80%

Motif (2018) 13.30% 14.40% 7.10% 7.60% 5.30% 6.10%

KERN (2019) 17.70% 19.20% 9.40% 10.00% 6.40% 7.30%

VCTree (2019) 17.90% 19.40% 10.10% 10.80% 6.90% 8.00%

Our model 24.39% 25.94% 13.00% 13.90% 10.94% 12.01%

With debiasing Motif + TDE (2020) 25.50% 29.10% 13.10% 14.90% 8.20% 9.80%

PCPL (2020) 35.20% 37.80% 18.60% 19.60% 9.50% 11.70%

Motif + DLFE (2021) 26.90% 28.80% 15.20% 15.90% 11.70% 13.80%

BGNN (2021) 30.40% 32.90% 14.30% 16.50% 10.70% 12.60%

Our Model/w Weighted Loss 35.57% 38.67% 17.96% 19.24% 13.52% 14.91%

Firstly, we compare SG-Shuffle without weighted CE loss to other biased
SGG baselines, including IMP [21], Motif [25], KERN [1], VCTree [18]. These
models aims to generate better objects feature representations by traversing con-
text information between objects in the images. We compare SG-Shuffle without
weighted CE with these baselines to demonstrate the effectiveness of SG-Shuffle
in generating informative feature representation. As shown in the first part of
Table 2, the mR@100 of our model is 6.5% higher in the PredCLS setting, 3.1%
higher in the SGClS setting, and 4.0% higher in the SGDet setting comparing to
the VCTree, which is the best performing model among models without debias-
ing methods. These models worked on the large label set at once, a challenging
task since the distance between the predicate label are not uniform in the fea-
ture space. SG-Shuffle was able to gain better performance by learning in-depth
features that differentiate predicate with close semantic nature.

Secondly, we compare SG-Shuffle with weighted CE loss with the more recent
unbiased SGG models such as TDE [17], PCPL [22], DLFE [2], and BGNN [8],
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which use debiasing strategies to solve the long-tailed bias problem in the SGG
task. We observed that with simple weighted CE loss, SG-Shuffle outperforms
baseline models in the PredCls setting and SGDet setting, in which our PredCls
score is 0.87% higher than PCPL and 5.77% higher than DLFE in mR@100 score.
It only comes slightly lower than only PCPL in SGCls by a minor 0.3%. Among
the baseline models, strategy used by PCPL also involve learning a better rep-
resentation of predicates by modeling the relationship between predicate labels.
Compare to our model and PCPL, other models in the baseline are designed to
reduce the training bias by removing biased probability or re-sampling, to out-
perform models without debiasing. But without in-depth learning of predicate
representation, their performance is generally lower than the models with this
feature like PCPL and our model.

5.2 Hyper Parameter Tuning

While increasing the number of layers is often advantageous in the early layers
of deep learning models, at a higher number of layers, it could also lead to
diminishing gradient and optimization issues. We conducted hyper-parameter
testing with it being tested with a varying number of shuffling layers.

Table 3. Performance with shuffle layers in PredCLS, SGCLS, and SGDET.

# of shuffle layers PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

4 30.00% 32.43% 14.72% 15.87% 10.59% 11.90%

5 35.09% 37.68% 17.96% 19.24% 13.52% 14.91%

6 35.57% 38.67% 16.64% 17.81% 11.46% 12.78%

7 32.13% 35.04% 14.89% 16.03% 9.92% 11.23%

In Table 3, we tested the model with 4, 5, 6, and 7 layers of shuffled trans-
former in all three SGG settings: PredCls, SGCls, and SGDet, and compare the
performance using the mR@100 and mR@50 metrics. As shown in the table,
the performance of the model increases significantly when the number of shuffle
layers goes from 4 to 5 and goes down from 6 to 7. At this depth, challenge in
optimization outweighs the performance gain of further layer depth increase. The
model performs best with the PredCls setting when using 6 layers of shuffling,
while 5-layered models perform best in the SGCls and SGDet settings.

5.3 Alternate Shuffle Layer

In order to learn how the level of connection between the sub-models in the
shuffling layer of the model affects the final performance, we also tested a pair-
to-pair shuffling layer which is shown in Fig. 2. In this setting, the output features
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Table 4. Performance of SG-shuffle with full shuffle layers and pairwise shuffle layers

PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

No shuffle 27.53% 29.85% 14.94% 16.32% 6.13% 7.54%

Pair-to-pair shuffle 29.23% 31.62% 13.93% 15.14% 10.89% 12.18%

Full shuffle 35.57% 38.67% 16.64% 17.81% 11.46% 12.78%

from the previous layer are each partitioned into halves and each half is com-
bined with a half from a different sub models and used as input for the current
layer. After a few layers of shuffling, the category specific context information
is shared in all 4 sub-models pathways. As shown in Table 4, while the pair to
pair shuffling procedure does increase performance when compared to the model
without any shuffling by 2% in PredCls setting and 5% in SGDet setting, the
performance increase was lower than the full channel shuffling. We attribute the
higher performance of the full shuffling layer over the pair-to-pair shuffling layer
to the direct connection with all 4 sub-model from previous layer that allows
it to learn important aspects from the previous layers at a faster rate and give
better feature representation for relationship prediction.

Fig. 2. Full channel shuffling and pair to pair shuffling layer

5.4 Ablation Study

Ablation Testing. We performed an ablation study on our model by removing
the shuffling layer or weighted CE, and comparing them with the full model
to show the effectiveness of each component. Compare with the model without
weighted CE loss, the full model has nearly a 13% increase in performance in the
PredCls setting when using the mR@100 metric. Long-tail bias plays a major
part in SGG, and with no debiasing methodology, models are generally highly
affected by the training bias introduced by the highly imbalanced dataset.

When debiasing is included, the weighted CE loss model also has much lower
performance than the full model by around 8% mR@100 in the PredCls setting.
This is due to the availability of shuffle layers, which allow information to flow



SG-Shuffle: Multi-aspect Shuffle Transformer for Scene Graph Generation 97

Table 5. Ablation result of SG-shuffle with mR@100 and mR@50

Shuffle Weighted
CE loss

PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

� – 24.39% 25.94% 13.00% 13.90% 10.94% 12.01%

– � 27.53% 29.85% 14.94% 16.32% 6.13% 7.54%

� � 35.57% 38.67% 16.64% 17.81% 11.46% 12.78%

more freely between the sub-models in the full model. Comparing the shuffled
only model and the weighted CE loss only model, the weighted CE loss has
the advantage of debiasing and has higher performance in PredCls and SGCls
but loses out in the SGDet setting in which object position was omitted. This
omission leads the model to rely on its own predicted object position for SGG,
which is less reliable than ground-truth information and harder to refine without
the use of shuffle layer. As shown in Table 5, both of the components of the SG-
Shuffle are necessary to achieve higher performance in unbiased SGG.

Categories Breakdown. In Table 6, we look at the effect of the model compo-
nent with respect to each category of predicate label by comparing the PredCls
mR@100 of the models in each of the 4 categories. For the geometric category, the
full model has the highest performance, while the weighted CE loss only model
has only slightly higher performance than the shuffle only model. Since there
are both common and uncommon relationships in this category, so the debias-
ing advantage of the weighted CE loss in uncommon classes is matched by the
shuffle-only model, which performs better in common classes. In the possessive
category, which is dominated by the common predicate classes the shuffle-only
model has a slightly higher performance than the other two models.

Table 6. Effect on different categories using PredCLS setting with mR@100

Shuffle Weighted CE loss Geometric Possessive Semantic Misc Overall

� – 21.27% 31.33% 29.71% 4.73% 25.94%

– � 22.06% 30.10% 37.16% 9.66% 29.85%

� � 28.11% 31.11% 48.97% 29.29% 38.67%

The main difference in the overall mR@100 lies in the semantic category with
the largest number of predicates, which are both informative and comparably
uncommon in the dataset. There is a large gap between the three models’ per-
formances in this category. The shuffle-only model suffered from the long-tailed
bias, which affects the uncommon predicate in this category and performs the
lowest of the three models. Between the full model and the weighted CE loss only
model, the full model has the advantage of the shuffle transformer with more
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informative feature representation and much higher performance in the seman-
tic category than the other two ablations tested models. Similarly, the mR@100
of the full SG-Shuffle model also has higher performance in the Misc category,
which has uncommon predicate labels, than the ablation-tested models.

5.5 Qualitative Analysis and Case Study

We visualize several scene graphs generated in the PredCls setting using the
Ablation Tested Models in Fig. 3. We selected 4 samples for the case study based
on the objects presented in the images: A person’s portrait; B) a person in a
large background; C) a building; and D) animal with plants in the background.

Fig. 3. Sample scene graph generated from ablation tested models. Correct relationship
is marked with black arrows and incorrect relationship is marked with red arrows (Color
figure online)

Observing samples A and B, between three models, the shuffle only model
prefers more common predicates like “on” or “has”, but cannot predict less
frequent predicates like geometric relationship “near”, or semantic relationship
“using”. The long-tailed bias present in the dataset to heavily affect the predic-
tion of the model. The weighted CE loss only model, on the other hand, favors
the infrequent relationship “wear” over the more common but same meaning
“wearing”. The SG-Shuffle model perform better than the other two models in
both common possessive relationships like “has” as well as infrequent semantic
relationships like “sitting on” or “using”. Similarly, in sample C, the shuffle only



SG-Shuffle: Multi-aspect Shuffle Transformer for Scene Graph Generation 99

model misclassified infrequent relationship “near”, the weighted CE loss only
does the opposite, misclassified common relationship “on”, while the SG-Shuffle
correctly classifies both. However, weighted CE loss could not predict the every
infrequent semantic relationship as shown in sample D, where “growing on” was
misclassified as “on”. Comparatively, the full model was able to associate “grow-
ing on” with object “tree” thanks to the improved feature representation from
jointly learning from category-specific object features.

6 Conclusion

In this paper, we propose the SG-Shuffle model for unbiased SGG by addressing
non correlation problem of relationship labels in the existing SGG dataset. We
proposed to categorise the set of predicate labels to four category “Geometric”,
“Possessive”, “Semantic”, and “Misc” in a divide and conquer approach which
is learned as part of the SG-Shuffle SGG pipeline by Transformer Encoder in
parallel to provide category-specific context for further SGG. We also propose a
shuffle transformer layer, which apply channel wise shuffling operation in com-
bination with the Transformer Encoder architecture to allow information flow
between sub-models and merge together the learned category-specific feature
representation. We demonstrated the effectiveness of SG-Shuffle in the VG150
dataset in comparison with other state-of-the-art SGG models.
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