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Abstract. Despite their recent popularity, deep and efficient Graph
Neural Networks remain a major challenge due to (a) over-smoothing,
(b) noisy neighbours (heterophily), and (c) the suspended animation
problem. Inspired by the attention mechanism’s ability to focus on selec-
tive information, and prior work on feature preserving mechanisms, we
propose FDGATII, a dynamic deep-capable model that addresses all
these challenges simultaneously and efficiently. Specifically, by combin-
ing Initial Residuals and Identity with the more expressive dynamic self-
attention, FDGATII effectively handles noise in heterophilic graphs and
is capable of depths over 32 with no over-smoothing, overcoming two
main limitations of many prior GNN techniques. By using edge-lists,
FDGTII avoids computationally intensive matrix operations, is paral-
lelizable and does not require knowing the graph structure upfront.
Experiments on 7 standard datasets show that FDGATII outperforms
the GAT and GCN based benchmarks in accuracy and performance on
fully supervised tasks. We obtain State-of-the-art (SOTA) on the highly
heterophilic Chameleon and Cornell datasets with 1 layer, and come only
0.1% short of Cora SOTA with zero graph pre processing. https://github.
com/gayanku/FDGATII
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1 Introduction

Recently, research on graphs has been receiving increased attention due to the
great expressive power and pervasiveness of graph structured data [29]. Many
interesting irregular domain tasks such as 3D meshes, social networks, telecom-
munication networks and biological networks involve data that are not repre-
sentable in grid-like structures [25]. As a unique non-Euclidean data structure for
machine learning, graphs can be used to represent diverse feature rich domains.

A Graph Neural Network (GNN) generalizes deep neural networks (DNNs)
from regular structures to irregular graph data. GNNs perform neighbourhood
structure aggregation and node feature transformation to map nodes to low dimen-
sional embeddings [15,17], mostly differing in how aggregation and combination
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is performed [4]: Graph Convolutional Network (GCN) [13] uses convolution [16];
GraphAttentionNetwork (GAT) [25] uses attention;GraphSage [8] usesmaxpool-
ing. Downstream tasks such as node classification, clustering, and link prediction
[8,22] use these aggregated low dimensional vectors [28].

Most graphs require the interaction between nodes that are not directly con-
nected, i.e., higher-order information which is achieved by stacking GNN layers [2].
However, stacking layers degrades the performance [5,20] due to over-smoothing:
node representations become indistinguishable with increasing number of layers
[6,13,26]. Further, GNNs in general are not able to handle long-range information
due to over-squashing: information from the exponentially growing receptive field
being compressed into fixed-length node vectors [2] due to its unfocused aggre-
gation mechanism. Finally, deeper models stop responding to training due to the
suspended animation problem [26], i.e. depth is a problem [6].

To avoid these problems, several works combine deep propagation with shal-
low neural networks; SGC [26] used the K-th power of the adjacency matrix
to capture higher-order information; H2GCN [29] aggregates higher-order infor-
mation at each round. However, this form of linear combination of neighbour
features at each layer looses the powerful expression ability of deep nonlinear
architectures, essentially making them shallow models [5].

In another attempt to address the problem and incorporate deeper layers,
JKNet [27] used dense skip connections, DropEdge [23] randomly removed graph
edges and GCNII [5] added a portion of Initial residual and Identity. GCNII
showed remarkable results for up to 64 layers and is the SOTA (Table 2) in Cora,
a homophilic benchmark dataset. However, all these are spectral approaches
based on the Laplacian eigenbasis and requires the whole graph structure [25].
The normalization used is computationally expensive and not scalable.

Furthermore, due to naive uniform aggregation of the neighbourhood, most
of these models, including GCNII, are more suitable for homophilic datasets,
where nodes linked to each other are more likely to belong in the same class, i.e.,
neighbourhoods with low noise. In practice, real-world graphs are also often noisy
with connections between unrelated nodes [12], resulting in poor performance
in current GNNs. As many popular GNN models implicitly assume homophily,
results may be biased, unfair or erroneous [19]. This can result in a ‘filter bubble’
phenomenon in a recommendation system (reinforcing existing beliefs/views, and
downplaying the opposite ones), or making minority groups less visible in social
networks [29]. As a result, despite GCNIIs SOTA in homophilic datasets (Cora),
its accuracy in heterophilic datasets (Texas, Wisconsin) is relatively poor [29].

On the other hand, [24] showed that self-attention is sufficient for achieving
SOTA performance. GAT [25] generalizes attention for graphs using attention-
based neighbourhood aggregation. Importantly, GAT improves on simple aver-
aging [13] and max pooling [8] by allowing every node to compute a weighted
average of its neighbours [4], which is a form of selective aggregation. The gener-
alization ability of the attention mechanism helps GNNs generalize to larger and
more noisy graphs [14]. By determining individual attention on each neighbour,
GAT ignores irrelevant neighbours and focuses on those that are relevant [2].

Surprisingly, yet, GATs heterophilic performance is poor (Table 2).
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A refinement, GATv2 [4], uses a more expressive dynamic attention, where
the ranking of attended nodes is better conditioned on the query node by replac-
ing the supposedly monotonic GAT attention function with a universal approx-
imator attention function that is strictly more expressive. However, GAT or
GATv2 alone, in its current form cannot handle heterophilic data due to the
still present essentially local aggregation operation [17].

In Table 2, under heterophily, only H2GCN outperforms a Multilayer Per-
ceptron (MLP) of 1 layer which uses only node features and no structural infor-
mation. Furthermore, most GNN models use simple graph convolution based
aggregation schemes [8,13], leading to filter incompleteness. While this can be
solved by using a more complex graph kernel [1], currently, even attention-based
models perform poorly given heterophilic data, despite the ability to focus on
the most “relevant” content.

Thus, it remains an open problem to design efficient GNN models that
effectively handle (a) over-smoothing, (b) suspended animation and (c) het-
erophily/noise simultaneously. As observed by [5], it is even unclear whether the
network depth is a resource or a burden when designing new GNNs. Motivated by
these limitations, we propose a generalizable, efficient, and parallelizable atten-
tion based deep-capable model that addresses aforementioned challenges simul-
taneously. Our main contributions are:

– We introduce a novel deep-capable GNN model, FDGATII, successfully com-
bining strengths of GCN and GAT worlds by using dynamic attention sup-
plemented with Initial residual and Identity, capable of handling the major
graph challenges: over-smoothing, noisy neighbours (heterophily) and sus-
pended animation simultaneously. To the best of our knowledge, this is the
first time a graph attentional model has demonstrated depths of up to 32, a
limitation of many prior GNN techniques, attention based or otherwise, and
show that dynamic attention is better suited for heterophilic datasets, if used
with modifications.

– FDGATII is computationally efficient. It does not require an adjacency matrix
as input nor its subsequent, expensive matrix operations or normalizations.
Further, its attention layers can be parallelized across edges while feature
computation can be parallelized across all nodes.

– FDGATII has the same complexity as SOTA GCN models, but uses signifi-
cantly fewer layers to achieve comparable or better results, yielding a superior
efficiency-to-accuracy ratio across homophilic and heterophilic datasets.

Extensive experiments on 7 benchmarks show that FDGATII outperforms GAT
and GCN based benchmarks in accuracy as well as on accuracy vs efficiency, on
fully supervised tasks. FDGATII achieves SOTA accuracy results on Chameleon
and Cornell datasets, beating H2GCN, a model specifically designed for het-
erophily. There is zero graph pre processing. FDGATII consumes over a magni-
tude less computational resources and is only –0.1% below SOTA for Cora, plac-
ing a close second. By not assuming homophily, FDGATII minimises its potential
negative effects: bias, unfairness and potential for filter bubbles. FDGATII is also
capable of inductive learning. Table 1 has a full feature comparison.
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Table 1. Feature comparison: GAT, GCN, GCNII and FDGATII. *Cham & Cornell

Feature GAT GCN GCNII FDGATII

No graph pre processing (ex: normalisation) Yes No No Yes

Does not require knowing graph structure upfront Yes No No Yes

Processing can be parallelized Yes No No Yes

Free from oversmoothing No No Yes Yes

Free from suspended animation No No Yes Yes

Heterophilic performance Poor Poor Good SOTA*

Capable of deep architectures (layers > 8) No No Yes Yes

Dynamic attention No No No Yes

Inductive learning Yes No Yes Yes

# layers for best Cora accuracy 2 2 64 2

2 Related Work

2.1 Notation

G = (V,E) is an undirected graph with n nodes vj ∈ V and m edges (vi, vj) ∈ E.
Ḡ = (V, Ē) is its self-looped graph. A is the adjacency matrix, D the degree
matrix of G. Adjacency matrix and degree matrix of Ḡ is Ā = A + I and
D̄ = D + I. The symmetric positive semi definite normalized graph Laplacian
matrix is given by L = In − D−1/2AD−1/2 with eigen-decomposition UΛUT . Λ
is its diagonal eigenvalue matrix, U ∈ Rn×n is the unitary eigenvector matrix.

2.2 Convolution and GCN

Given signal x and filter gγ(Λ) = diag(γ) the graph convolution operation is
gγ(L)∗x = Ugγ(Λ)UT x where γ ∈ Rn is the vector of spectral filter coefficients.
gγ(Λ) can be approximated by a truncated expansion of a Kth order Cheby-
shev polynomial [9], where θ ∈ RK+1 corresponds to a vector of polynomial
coefficients:

Ugθ (Λ)UT x ≈ U

(
K∑

l=0

θlΛl

)
UT x =

(
K∑

l=0

θlLl

)
x (1)

GCN [13] simplifies graph convolution by fixing K = 1, θ0 = 2θ and θ1 = −θ
to get gθ ∗ x = θ(I + D−1/2AD−1/2)x and uses a normalized adjacency matrix,
P̄ = D̄−1/2ĀD̄−1/2 = (D+In)−1/2(A+In)(D+In)−1/2. Each GCN layer (Eq. 2)
contains a nonlinear activation function σ, typically ReLU.

Hl+1 = σ
(
P̄HlWl

)
(2)

However, node embeddings are aggregated recursively layer by layer. Embed-
dings in the final layer requires all previous embeddings, resulting in high memory
cost. GCN gradient update in the full-batch training scheme needs storing all
intermediate embeddings, limiting scalability. As the learned filters depend on
the Laplacian eigenbasis, which depends on the entire graph structure, a model
trained on a graph cannot be directly applied to a different graph structure [25].
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2.3 GCNII

GCNII [5] extends the fixed coefficient GCN to a deep model by expressing the K
order polynomial filter as arbitrary coefficients using Initial residual and Identity
(II). Essentially, GCNII 1) combines the preprocessed (normalized) representa-
tion P̄Hl with an initial residual connection from the first layer H0; and 2) adds
an identity In to the l-th weight matrix Wl. By using a connection to the initial
residual H0, GCNII ensures that the final representation of each node retains at
least a αl fraction from the input layer.

However, as GCNII combines neighbour embeddings by uniformly averaging,
its heterophilic performance is relatively poor. GCNs preserve structure over
features, regardless of the graph’s heterophilic nature, resulting in original node
features being destroyed [11]. Further, [20] showed that GCNs tend to fail when
graphs are dense and do not always improve with more layers. Alternatively,
a selective aggregation of the neighbourhood allows focusing on relevant nodes
[29].

2.4 Attention Mechanism and GAT

The DP (dot-product) attention mechanism (Equation 3) [18,24] has been widely
used in GNNs [12,28]. Different from DP, GAT [25] uses concatenation followed
by a 1-layer feed-forward network parameterized by a (Eq. 4).

e (hi,hj) = LeakyReLU((Whi)
T · Whj) (3)

e (hi,hj) = LeakyReLU
(
aT · [Whi ‖ Whj ]

)
(4)

In contrast to GCN, which weighs all neighbours j ∈ Ni with equal importance,
GAT computes a learned weighted average of the representations of Ni using
attention. Compared to GCN, assigning different weights for neighbours can
mitigate noise and achieve better results [28] while being more robust in the
presence of noisy “irrelevant” neighbours [2].

3 Proposed Architecture

Our proposed design (Fig. 1) is built upon a local embedding step that extracts
local node embeddings from feature vectors using GATv2. To extend GATv2 to
handle heterophilic and noisy data, we borrow two techniques from GCNII [5]
and H2GCN [29] with modifications, namely residual connection and identity.

However, the theoretical foundation of our model, which is grounded in the
spatial domain, is completely different from GCNII which is spectral. We do not
require edge values; only the presence or absence of an edge: i.e. a simple list of
edges. Using only the edge-list as [25], with self-loops as [10,13], we avoid compu-
tationally intensive matrix operations such as inversions or eigen-decompositions
and the need to know the graph structure upfront. Experiments show our design
is efficient, robust and generalizes well to homophilic and heterophilic datasets
alike.
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Fig. 1. FDGATII uses dynamic attention to combine relevant neighbours via edge-lists,
an α% of initial representation h0 projected via fc0 and a β% of Identity In at each
layer. Attention module concatenates source (row) and destination (column) features
of each edge, projects via Wn

H , applies a non-linearity (leaky-relu) and an exp() to
obtain the edgewise attentions before reshaping to a matrix suitable for softmax with
the query. After multiple layers, an fc1 projection and log softmax provides the node
classification.

Typically, GNN models follow an iterative learning approach:

h1+1
i = COMBINE

(
hl
i, AGG({hl

j : j ∈ Ni})
)
,

h0
i = Xi, and yi = arg max{softmax(hK

i )W}

where, AGG is a permutation invariant aggregation operator and COMBINE
is a learnable function. By adding self-nodes, we amalgamate COMBINE and
AGG to simplify the process and apply a more expressive attention operator
ATTN to both tasks simultaneously, defined by:

h1+1
i = ATTN({hl

j : j ∈ Ni ∪ i})

3.1 Initial Residual and Identity (II)

We incorporate initial representation H0 and identity In, in αl and βl fractions,
with edge-list Ē to formally define the (l + 1)-th layer of FDGATII as:

Hl+1 = σ
[(

(1 − αl) ATTN(Ē,Hl) + αlH
0
)

·
(
(1 − βl) In + βlW

l
)]

(5)

According to [10], identity mapping of the form Hl+1 = Hl(Wl + In), as in
Eq. 5, satisfies the following properties: 1) the optimal weight matrices Wl have
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small norms; 2) the only critical point is the global minimum. The first property
allows us to put strong regularization on Wl to avoid over-fitting, while the
latter is desirable in semi-supervised tasks where training data is limited.

Next, it is theoretically proven [20] that a K-layer GNN’s convergence rate
depends on sK , where s is the maximum singular value of the weight matrices
Wl, l = 0, . . . , K − 1. By replacing Wl with (1 − βl)In + βlWl and regularizing
Wl, resulting singular values of (1−βl)In +βlWl stay closer to 1, which implies
that sK is large, and the information loss is relieved.

3.2 Selection of Proper Attention

It has been shown that GAT is better at learning label-agreement between a tar-
get node and its neighbors than DP attention [12]. Variance of GAT depends only
on the norm of features, while the DP variance depends on the variance of the
input’s dot-product and the expectation of the square of the input’s dot-product.
As a result, with more layers, more features of i and j correlating resulting in
a larger dot-product and the subsequent softmax normalization which increases
the larger values further, DP is only able to attend to a small set of neighbours.

3.3 Dynamic Attention (GATv2)

According to [4], the main problem in the standard GAT scoring function (Eq. 4)
is that the learned layers W and a are applied consecutively, and thus can be
collapsed into a single linear layer. GATv2 replaces the linear approximator with
a universal approximator (Eq. 6) and has been shown to perform better on noisy
data [4]. Further, theoretically, DP is strictly weaker than GATv2. We use this
form of dynamic attention for our aggregation function.

Specifically, a scoring function e : Rd × Rd → R computes a score for every
edge (j, i), which indicates the importance of the features of the neighbour j to
the node i:

e (hi,hj) = aT · LeakyReLU (W [hi ‖ hj ]) , (6)

where attention scores a ∈ R2d
′

and weights W ∈ Rd
′×d are learned. ‖

denotes vector concatenation. We capture the graph structure using edges, com-
puting ei,j for all j ∈ Ni neighbourhood of node i. Attention scores are normal-
ized across all connected sparse neighbours j ∈ Ni using softmax.

αij = softmaxj (e (hi,hj)) =
exp (e (hi,hj))∑

j
′ ∈Ni

exp
(
e
(
hi,hj

′
)) (7)

Finally, we compute the weighted average of the transformed features of the
neighbour nodes (followed by a nonlinearity σ) as the new representation of i,
using the normalized attention coefficients:

ATTN
′
i = σ

⎛
⎝ ∑

j∈Ni

αijWhj

⎞
⎠ (8)
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In addition to Eq. 5, following [5], we also propose FDGATII* with dual weight
matrices for smoother representation, defined as:

Hl+1 = σ
[
(1 − αl)ATTN(Ē,Hl)

(
(1 − βl)In + βlW

l
1

)

+αlH
0
(
(1 − βl)In + βlW

l
2

)] (9)

GCNII [5] uses βl is to ensure the decay of the weight matrix adaptively
increases with more layers. While FDGATII typically achieves best accuracy
early with a few layers, we still adopt the same mechanism, βl = log

(
λ
l + 1

) ≈ λ
l ,

where λ is a hyperparameter, for robustness at high depth. Following [27], we
add skip connections in the form of initial representations H0 as in [5].

FDGATII differs from existing models with respect to its use of a modi-
fied attention mechanism. Notably, we demonstrate competitive performance of
GATv2+II with only a few layers in non-homophilous networks. Using edge-lists
avoids computationally intensive matrix operations. Table 1 summarizes how
FDGATII accumulates all benefits from GCN and GAT worlds with none of the
drawbacks.

3.4 Datasets and Experiments

Homophily is the fraction of edges which connect two nodes of the same label
[17]. A higher value (1) indicates strong homophily; a lower value (0) indicates
strong heterophily.

We evaluate FDGATII against SOTA GNNs on benchmark graph datasets
for fully supervised classification. Following [5,21], we use 7 datasets (Table 5).
Cora, Citeseer and Pubmed are homophilic citation networks where nodes cor-
respond to documents, and edges correspond to citations. The remaining four
are heterophilic datasets of web networks, where nodes and edges represent web
pages and hyperlinks, respectively. Node feature vectors are bag-of-word repre-
sentations of the document. Following [5,21] we use the same data splits, 60:20:20
nodes for training:validation:testing, learning rate = 0.01, hidden units = 64 and
measure the average performance on the 10 splits for each dataset.

We choose GCNII [5] as our performance and accuracy benchmark as it is
(a) more current; (b) most similar to our work in the use of initial representation
and identity; (c) actively attempts to solve over smoothing (d) is the SOTA in
Cora (a prominent dataset for GNN model comparison) and most importantly
(d) it is a deep-capable model. We also compare with H2GCN [29] which is the
SOTA for Cornel, Texas and Wisconsin; highly heterophelic datasets, but note
that H2GCN is a shallow model.

For training and inference time measurements we perform GPU warm-up and
synchronization prior to measurements. We take the average time for 1000 infer-
ences to lower any possibility of errors and to be more reflective of real-world use
of models. We ignore pre processing times, but point out, unlike the benchmarks,
FDGATII has no expensive full graph eigen operations or normalizations.



FDGATII: Fast Dynamic Graph Attention 81

Table 2. Mean classification accuracy of full-supervised node classification. (a)
reported by [5], (b) reported by [29], (c) best results running GCNII (official author
implementation) and H2GCN (public pytorch repo: github.com/GitEventhandler/
H2GCN-PyTorch) on data splits of [5], (d): our FDGATII, with same splits. Best
is bold and second underlined. # of layers in parenthesis.

Dataset Cora Cite. Pumb. Cham. Corn. Texa. Wisc.

Hormophily % 0.81 0.74 0.8 0.23 0.30 0.11 0.21

MLPb 74.75(1) 72.41(1) 86.65(1) 46.36(1) 81.08(1) 81.89(1) 85.29(1)

GCNa 85.77 73.68 88.13 28.18 52.70 52.16 45.88

GATa 86.37 74.32 87.62 42.93 54.32 58.38 49.41

Geom-GCN-Ia 85.19 77.99 90.05 60.31 56.76 57.58 58.24

GraphSAGEb 86.90 76.04 88.45 58.73 81.18 82.43 75.95

MixHopb 87.61 76.26 85.31 60.50 75.88 77.84 75.88

H2GCN-1b 86.92 77.07 89.40 57.11 82.16 84.86 86.67

APPNPa 87.87 76.53 89.40 54.3 73.51 65.41 69.02

JKNeta 85.25(16) 75.85(8) 88.94(64) 60.07(32) 57.30(4) 56.49(32) 48.82(8)

JKNet(Drop)a 87.46(16) 75.96(8) 89.45(64) 62.08(32) 61.08(4) 57.30(32) 50.59(8)

Incep(Drop)a 86.86(8) 76.83(8) 89.18(4) 61.71(8) 61.62(16) 57.84(8) 50.20(8)

GCNIIa 88.49(64) 77.08(64) 89.57(64) 60.61(8) 74.86(16) 69.46(32) 74.12(16)

GCNII*a 88.01(64) 77.13(64) 90.30(64) 62.48(8) 76.49(16) 77.84(32) 81.57(16)

H2GCN-1c 77.3038 74.5220 87.5887 49.0351 73.7838 78.9189 79.0196

GCNIIc 88.2696 76.9325 90.3499 63.7500 77.2973 78.3784 79.8039

FDGATIId 88.3903(2) 76.3082(1) 90.5502(2) 66.1184(1) 84.3243(1) 83.7838(1) 86.0784(1)

Table 3. Inductive learning - F1 (micro) on PPI. (1): Results from [5]. (2): Our results
with identical settings and Eq. 5. Note, we do not require any data pre processing

Method PPI(reported)1 Method PPI(our tests)2

GraphSAGE 61.2 FDGATII (2 layers) 98.51

GAT 97.3 FDGATII (3 layers) 98.91

JKNet 97.6 FDGATII (4 layers) 99.18

GeniePath 98.5 FDGATII (5 layers) 99.17

Cluster-GCN 99.36 FDGATII (6 layers) 99.24

GCNII (9 layers) 99.53 GCNII (9 layers) 99.52

GCNII* (9 layers) 99.56 GCNII* (9 layers) 99.53

4 Results and Discussion

4.1 Fully Supervised Node Classification

Table 2 reports the mean classification accuracy. We reuse the metrics already
reported by [5] and [29]. We observe that FDGATII demonstrates SOTA results
on heterophilic datasets while still being competitive on the homophilic datasets.
Further, FDGATII exhibits significant accuracy increases over its attention based
predecessor, GAT. This result suggests that dynamic attention with initial resid-
uals and identity improves the predictive power whilst keeping the layer count
(and hence the model parameters and computational requirements) low.
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Fig. 2. Accuracy, epochs, training and inference time comparison. For variants, we
use the lowest average time taken to run all 10 standard splits. Efficiency = 1/time.
Original GCNII is in pytorch. Original H2GCN is in TF. A public pytorch H2GCN is
used to eliminate any framework effects. Tested on Google colab with GPU.

Table 4. Ablation study w/0 II and w/0 dynamic attention. * Eq. 5, ** Eq. 9. Hyper-
parameter settings from [5]. L1 and L2 are 1 and 2 layers, respectively.

Metric Cora Cite. Pumb. Cham. Corn. Texa. Wisc.

Without II, L1 86.90 75.65 87.01 65.18 65.95 62.16 54.51

Without II, L2 86.74 74.45 86.19 49.78 58.92 57.30 51.76

With II*, L1 87.06 75.07 89.96 61.34 76.76 70.00 81.96

With II*, L2 87.79 74.88 90.35 47.82 79.19 79.73 83.53

With II*, L2 w/o dynamic attention 87.53 75.01 90.34 46.00 79.73 81.90 82.54

With II**, L1 84.91 75.28 89.48 49.12 80.27 78.65 84.12

With II**, L2 86.52 75.14 90.12 44.34 80.81 82.16 84.90

With II**, L2 w/o dynamic attention 85.98 74.48 90.03 43.99 80.80 80.54 85.49

4.2 Inductive Learning

We use the PPI dataset and follow [8] using 20:2:2 graphs for train:validation:test.
For settings, we follow [5]: 2048 hidden units, learning rate 0.001. Similar to [5,25],
we add a skip connection from layer l to l+1. Table 3 reports the F1 (micro) scores.
Results show that FDGATII is capable of competitive inductive learning.

4.3 Ablation Study

In this section, along with Table 4, we consider the effect of various design strate-
gies. Our 1 or 2-layer models, without Initial residual and Identity (II), is the-
oretically equivalent to GAT(static attention)/GATv2(dynamic attention). The
ablation study indicates that the addition of II together with dynamic attention
results in improvements on the heterophilic dataset performance. This result sug-
gests that both II and dynamic attention techniques are needed to solve the prob-
lem of over-smoothing and data heterophily. Figure 4 also confirms GAT/GATv2
cannot handle heterophily or depth unaided, while FDGATII shows significant
and consistently better results.
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Fig. 3. Efficiency vs accuracy, on GPU with warm-up. left: average inference time
for 1000 iterations. right: average training efficiency for 10 iterations. Efficiency =
log(1/time). Top-right is better.

4.4 Performance and Efficiency

Figure 3 summarizes the high accuracy-to-computational-time-efficiency ratio of
FDGATII clearly indicating its superior performance mix. The proposed archi-
tecture performs consistently better across noisy and diverse datasets with com-
parable or better accuracy (Table 2) while exhibiting superiority in training
and inference times, specifically 12x faster training speeds and up to 9x faster
inference speeds over our chosen deep-capable SOTA benchmark, GCNII [5].
FDGATII is 3x faster than H2GCN [29] on Citeseer. Our dynamic attention
achieves higher expressive power with fewer layers paying selective attention to
nodes, while the II supplements self-node features in highly heterophilic datasets.

By using edge-lists, FDGATII avoids computationally intensive eigen decom-
positions and matrix operations as well as the need to know the graph structure
upfront. Also, output feature computation can be parallelized across nodes while
the attention computation can be parallelized across all edges. While FDGATII
has the same time complexity of GCNII, by using significantly fewer layers
(Table 2 and Table 5), it achieves comparable or better results with superior
efficiency-to-accuracy ratios. Note, in Fig. 2, the graph pre processing (inver-
sion, normalization) times for benchmarks were not taken into account due to
focus on model training and inference. FDGATII has zero graph pre processing.

4.5 Suspended Animation and Over Smoothing

Responding to training indicates absence of suspended animation [26], while
effectively handling higher receptive fields indicates robustness to over-smoothing
[6]. Figure 4 shows FDGATII’s performance for 3 selected datasets under increas-
ing layer depth. There is no evidence of performance degradation from suspended
animation or over smoothing even at depth of 32. Accuracy is achieved early
and sustained over higher depths. In Cora, the drop is 0.1 for 32 layers. H2GCN
reported OOM for depths over 8.
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Fig. 4. Accuracy vs layer depth (on Goole Colab with GPU). FDGATII is consistent.
H2GCN OOM after 8 layers. Depth and heterophily degrades GAT/GATv2 accuracy.

4.6 Broader Issues Related to Heterophily

Many popular GNN models implicitly assume homophily, producing results that
may be biased, unfair or erroneous [29]. This can result in the so-called ‘filter bub-
ble’ phenomenon in a recommendation system (reinforcing existing beliefs/views,
and downplaying the opposite ones), or make minority groups less visible in social
networks, creating ethical implications [7]. FDGATII’s novel self-attention mech-
anism, where dynamic attention supplemented with II for feature preservation,
reduces the filter bubble phenomenon and its potential negative consequences,
ensuring fairness and less bias.

This offers new possibilities for future research into data where ‘opposites
attract’, in which the majority of linked nodes are different, such as social and
dating networks (the majority of persons of one gender connect with the opposite
gender), chemistry and biology (amino acids bond with dissimilar types in pro-
tein structures), e-commerce (sellers with promoters and influencers), and dark
web and other cybercrime related activities [29]. In a typical dark web social
network, fraudsters are more likely to connect to intermediaries and prospective
victims than to other fraudsters. Illicit actors will form ties with other actors
who play different roles [3], resulting in heterophilic characteristics.

Table 5. Final model hyperparameters.

Dataset H% Clases Nodes Edges Features α Dropout λ Layers Varient WD

Cora 0.81 7 2,708 5,429 1,433 0.3 0.6 0.2 2 Eq 5 1e–4

Citeseer 0.74 6 3,327 4,732 3,703 0.5 0.6 1 1 Eq 9 1e–6

Pubmed 0.80 3 19,717 44,338 500 0.2 0.3 1 2 Eq 5 5e–5

Chameleon 0.23 4 2,277 36,101 2,325 0.1 0.3 0.2 1 Eq 5 5e–4

Cornell 0.30 5 183 295 1,703 0.1 0.5 1 1 Eq 9 5e–4

Texas 0.11 5 183 309 1,703 0.3 0.6 1.5 1 Eq 9 5e–4

Wisconsin 0.21 5 251 499 1,703 0.4 0.3 0.2 1 Eq 9 5e–4

PPI 121 56,944 818,716 50 0.5 0.2 1.0 7 Eq 5 0.0
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5 Conclusion

We propose FDGATII, a novel efficient dynamic attention-based model that
combines attentional aggregation with dual feature preserving mechanisms based
on Initial residual and Identity. FDGATII successfully combines strengths of
both GCN and GAT worlds with none of the drawbacks, is inductive, able to
handle noise in graphs and achieves depths of upto 32; a first for any attentional
model and a limitation of many prior GNN techniques. Extensive experiments on
a wide spectrum of benchmark datasets show that FDGATII achieves SOTA or
second-best accuracy on benchmark fully supervised tasks. FDGATII has excep-
tional accuracy and efficiency whilst simultaneously addressing over-smoothing,
suspended animation and heterophily prevalent in real world datasets.
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