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Abstract. 3D point clustering is important for the LiDAR perception
system involved applications in tracking, 3D detection, etc. With the
development of high-resolution LiDAR, each LiDAR frame perceives
richer detail information of the surrounding environment but highly
enlarges the point data volume, which brings a challenge for cluster-
ing algorithms to precisely segment the point cloud while running with a
real-time processing speed. To meet this challenge, we innovate a multi-
view (bird’s eye view and front view) based clustering method, named
MVC. The method contains two stages. In the first stage, we propose
a density image based algorithm, PG-DBSCAN, to segment the point
cloud in bird’s eye view (BEV), which derives the preliminary division
with fairly low computation resources. Then in the second stage, a front
view (FV) clustering process is integrated to refine the under-segmented
clusters. Our method takes both the speed and precision advantages of
BEV and FV clustering, and this coarse-to-fine architecture reasonably
allocates the computation resources and shows a real-time outstanding
clustering performance. We evaluate the MVC algorithm both on the
publicly available dataset with 64-line LiDAR and our own dataset with
128-line LiDAR. Compared with other clustering methods, MVC is able
to derive more accurate clustering results. Specifically, toward the 128-
line LiDAR with large data volume, our method shows an outperforming
running speed, which perfectly fits on the LiDAR perception tasks.

Keywords: Point Cloud Segmentation · High Resolution LiDAR ·
PG-DBSCAN

1 Introduction

In the LiDAR perception system, Deep-Learning based 3D detection modules are
widely used to provide important evidences for the free driving space prediction.
However, sometimes such kind of modules may perform miss detection or incor-
rect detection when meeting untrained rare scenes, and further cause wrong
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drivable area prediction. That could be dangerous. For solving this problems,
engineers and researchers have been developing 3D object clustering methods
using as the back-up plan that is able to perceive the obstacle locations when
detection modules make wrong judgments.

With the development of laser sensors and electronic chips, the resolution
of LiDARs is designed higher and higher. For example, the LiDAR “Ruby”
from Robosence company1 is assembled with 128 lines and 0.2 ◦C horizontal
resolution. Such LiDAR is able to reflect over 2.3 million 3D points in each
frame and provides much richer 3D information of the surrounding environment
compared with the lower resolution LiDARs. But the denser the point clouds
are, the larger the data volume would be. So the high resolution LiDAR raises
more requirements for the processing speed while maintaining the segmentation
accuracy.

However, facing the dense LiDAR point cloud, the traditional clustering
methods, such as DBSCAN [6], Mean Shift [4], pose difficulties of high compu-
tational complexity and fail in real-time processing. The point cloud clustering
methods based on the range maps, such as [13] and [21], may be able to meet
the real-time running requirement, but would bring serious over-segmentation
issues when the LiDAR resolution goes up.

So, in this paper, in order to decrease the computational complexity and
achieve a satisfactory clustering performance, we propose a multi-view based 3D
point cloud clustering algorithm (MVC). This method is inspired by the real-
world spatial distribution of objects on the streets, that in the bird’s-eye view
(BEV), the majority of objects in the driving scenes are naturally separated.
Thus we project the point cloud in BEV and design a preliminary clustering
stage. In order to improve the processing speed, we down-sample the points in
BEV with polar grid maps. Meanwhile, we modify the traditional DBSCAN [6]
method and reduce the computational complexity. However, the BEV clustering
module cannot segment the objects located at the same place in BEV but differ-
ent places on the vertical direction, such as a billboard and the car below. Thus,
for improving the clustering accuracy, we introduce front-view (FV) refining
clustering stage to solve the vertical under-segmentation problem.

The main contributions of this paper are the following items.

– We innovate a new point cloud clustering method combining the BEV and
FV, which utilizes the point cloud geographical features to accurately segment
the 3D obstacles.

– We raise a PG-DBSCAN [6] algorithm which highly reduces the computa-
tional complexity for this 3D point clustering task.

– We compare our method with 4 effective traditional point cloud clustering
methods on both semanticKITTI dataset [1] and a self-collected 128-line
LiDAR dataset.

1 https://www.robosense.ai/en/rslidar/RS-Ruby.

https://www.robosense.ai/en/rslidar/RS-Ruby
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Fig. 1. A demonstration of MVC clustering result.

2 Related Work

In this section, through analysing existing technologies, we divide clustering
algorithms into two categories: free-trained methods and Deep-learning based
methods.

2.1 Free-trained Point Cloud Clustering Methods

Clustering Method Based on Voxel/Grid Map. Most of Voxel/Grid map
based algorithms need minimal computational overhead and perform fast pro-
cessing speed through down-sampling the point cloud. So this kind of clustering
algorithms is widely utilized in the field of robots and unmanned vehicles due
to their real-time requirement. For example, in the 2007 DARPA Challenge
[19,20], many teams chose this kind of methods to separate objects from the
ground. [5] created hybrid elevation maps to extract the non-ground objects,
then down-sampled the non-ground point cloud by voxel cells and cluster the
points according to the voxel connectivity. Similarly, [9] utilized the BEV grid
map and 3D voxel to down-sample the non-ground points, then combined the
connectivity of the grids and the height difference between the voxels to further
cluster the point cloud [15] proposed the curved voxel clustering method con-
sidering the difference of horizontal and vertical angular resolutions for LiDAR.
However, the segmentation accuracy of these methods highly depends on the
size of grids or voxels, and some of the spatial information of point clouds is lost
due to the point down-sampling.

Clustering Method Based on Range Image. The point cloud clustering
methods based on the range image also attracted the interest of many researchers
[2] projected 3D point clouds into range images. They performed a N4-searching
by BFS algorithm and clustered the point cloud following a given angle threshold.
On the basis of [2,12] further increased the constraints of distance and reflection
intensity difference between adjacent points and reduced the over-segmentation
rate. [22] proposed the Scan Line Run (SLR) clustering method based on the
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range image. [8] combined density and connectivity information of the range
image to achieve real-time clustering performance.

Clustering Method Based on Graph Model. Applying graph theory to
achieve point cloud clustering is also a research direction. For example, [11]
proposed a clustering method based on Radially Bounded Nearest neighbours
(RBNN) graphs. They represented the 3D laser point clouds as directed graphs,
then cluster the LiDAR point clouds based on a given threshold [14] gener-
ated point cloud undirected graphs based on the scanning characteristics of the
mechanical rotating LiDAR. The point cloud is then separated according to the
local convexity criterion which is calculated based on the normal vector of the
nodes. Similarly, [3] considered the hardware parameters of Velodyne HDL-64
LiDAR when creating the undirected graphs. In order to balance the accuracy
and running speed of the algorithm, they used a 4-connected region growing
method to cluster 3D point clouds.

2.2 Deep-learning Based Point Cloud Clustering Methods

Pointnet [16] firstly generated Deeplearning network for solving the point cloud
classification and clustering problem. They used multilayer perceptrons followed
by max-pooling to extract the point feature and resulted a decent performance.
A novel work, [7] proposed a proposal-free point cloud clustering method by a
simplified framework with a Deeplearing-based solution. The method does not
rely on any post-process, and is able to reach a good performance [18] presented
a top-down Deep-learing based LiDAR segmentation architecture with a MASK
R-CNN instance head. The method also formulated a pseudo labeling framework
to enhance the clustering performance by training the network on unlabelled
dateset. [10] used cylinder convolution extract grid-level features for each LiDAR
frame and proposed Dynamic Shifting for complex point distributions then raised
Consensus-driven Fusion to finally derive instance preditions.

3 The Proposed Method

Our work mainly focuses on the non-ground targets clustering. So a rele-
vant ground segmentation method [14] is utilized for data preprocessing. The
pipeline of MVC is briefly demonstrated in Fig. 2, which follows a coarse-to-
fine architecture. It works with two stages: BEV coarse-segmentation and FV
fine-segmentation.

The details of MVC are described in the following subsections.

3.1 Preliminary Clustering Based on BEV Projection

The demonstration of the BEV clustering procedure is shown in Fig. 3.
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Fig. 2. The pipeline of MVC.

Fig. 3. (a) shows the BEV grids and the projected 2D points. We take the grids as
pixels and count the point number in each grid as pixel values, then generate the
density image as (b). The brightness of the color represents the density value. Using
the modified DBSCAN method, pixels are clustered as shown in (c) and the points
located in the grid with same color share the same cluster label.

Firstly, we project the object point cloud onto x − o − y plane in Polor
Coordinate {ρ, θ} by

ρ =
√

x2 + y2 (1)

θ = i × res (2)

where i is the horizontal index of the point anti-clockwise counted from the
positive direction of the x axis, and res is the horizontal angle between two
adjacent laser beams in the same scanning line. Clearly, the ρ is equal to the
range value of each target point.

Secondly, the grids of the BEV map are generated with a manually selected
angle unit size θthres and range unit size rthres. By using these grids we generate
density image and count the point number in each gird as the density value dv.
The reason why we choose Polar Coordinate in the BEV grid map is inspired by
a related work CVC [15] that in such Coordinate the grid area expands with the
range value increasing, which perfectly fits the near-dense-far-sparse geometrical
characteristic of the LiDAR points.

Based on the traditional DBSCAN [6], we propose a density-based clustering
method Polar-Grid-DBSCAN(PG-DBSCAN).



62 H. Jie et al.

Compared with the traditional DBSCAN [6], instead of going through each
point and calculating the surrounding data density for clustering, we go through
each of the pixel in the density image to segment the point cloud. Firstly the
pixels with density value dv lower than 4 are marked as noise pixels. For the
other pixels, we start from a random pixel as target and search its 8 neighbour
pixels. If the neighbour pixels are not noise pixels, these neighbours are marked
by the same label with the target. By recurrence, the whole density image is
segmented to different areas, and the points located in each area share the same
label.

Our PG-DBSCAN greatly accelerates the clustering speed compared with
the traditional DBSCAN [6]. While dealing with large-scale point cloud data, as
the area query operation of the traditional DBSCAN [6] is calculated based on
the Euclidean distance, the average running time complexity is O(log(n)), so the
average computational complexity of traditional DBSCAN [6] is O(n × log(n)),
where n is the number of the points. However, PG-DBSCAN finishes the region
query by inquiring the 8-neighbour of each pixel in the density image, so the
computational complexity of one point becomes to O(1), and the average com-
putational complexity of one frame is reduced to O(n), where n is the pixel
number of the density image.

After the operations mentioned above, we derive the preliminary segmenta-
tion result of the non-ground targets.

3.2 Refining Based on Range Image

Fig. 4. After BEV preliminary segmentation, we project each clustered point cloud to
a range image separately. The pixel brightness represents the range value of the points.
Pure black pixels means no point or the point out of the region.

After BEV segmentation, for each cluster, we calculate the height difference
ΔH between the highest point and lowest point. Only when ΔH is higher than
2 meters, we consider the cluster may be under-segmented that requires fine FV
clustering.

For FV segmentation, the preliminary cluster is projected into range images
[13], as Fig. 4.
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Fig. 5. The process of the modified N-4 neighbour searching. (a) indicates the searching
directions. (b) and (c) are the searching process. We go through the pixels following
the arrow directions and find the first non-zero-pixel specified by solid green blocks.
The shadow green blocks represent the zeros pixels that are ignored.

Here we introduce a modified N-4 neighbor searching, and define neighbors
of the target pixels as the adjacent pixels in the same row or column with the
non-zero pixel values shown as Fig. 5

With this neighbour searching method, we cluster the pixels by judging if the
height difference Δh and range difference Δr between the target and neighbour
pixels are within a given threshold γ. We consider the points to belong to the
same cluster on the condition that Δh and Δr meet Eq. (4) and Eq. (5). Here
r is directly derived from the pixel value and h is calculated by:

h = r × tan(α) (3)

Δr < γ (4)

Δh < γ (5)

where α is the vertical LiDAR beam angle which can be found from the LiDAR
product specification. Through recursive searching method, all pixels in the range
image are fine clustered, and the process is illustrated in Algorithm 1.

Algorithm 1: Refining based on Range Image
Input: An image in FV as img and its cluster as cluster
Output: cluster

foreach pi in img do
if pi.f lag! = is visited then

RecursiveClustering(pi,cluster)
Update(cluster)

else
continue

return cluster
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Function RecursiveClustering(pi, ci)
Input: A pixel of the image in FV as pi and its initialised cluster as ci
Output: ci

RecursiveClustering(pi, ci)
Neighbouri ← FindNeighbour(pi)
foreach ni in Neighbouri do

if is same cluster(ni,pi) then
Update(ci)
n.flag ← is visited
RecursiveClustering(ni, ci)

else
continue

4 Experiment

In this section, we test the proposed MVC algorithm and provide the experiment
setup and evaluation metrics. We report the comparisons with different clustering
methods on both SemanticKITTI dataset and our own dataset(NRS). Also, we
carry ablation study for better understanding the advantages of the clustering
processes of our method in the two views(BEV, FV).

We conduct experiments on a desktop with an Intel Xeon(R) CPU E3-1231
v3 @ 3.40 GHz × 8, 32 Gb RAM.

4.1 Experiment on SemanticKITTI

A Related work, [23] evaluated 4 different clustering methods on the
SemanticKITTI dataset using Panoptic Quality(PQ) as evaluation metrics. For
comparing the clustering performance of MVC with those 4 methods, we apply
the same clustering process and the evaluation metrics. The result is shown in
Table 1.

Table 1. Comparison between our method and the methods reported in [23] on
SemanticKITTI dataset.

Methods Settings PQ

Euclidean cluster dth = 0.5 m 56.9

Supervoxel cluster
Supervoxel cluster

wc, ws, wn = 0.0, 1.0, 0.0
wc, ws, wn = 0.0, 1.0, 0.5

52.8 52.7

Depth cluster θ = 10◦ 55.2

Scan-line run thrun, thmerge = 0.5, 1.0 57.2

Ours θthres, rthres, γ =
2, 0.5, 0.6

58.8
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Performance Evaluation. Following [23], all the clustering methods work as
a post-process step after a semantic segmentation method, [24]. The experiment
setting of the upper four methods remain same as in [23].

The experiment result shows that our method outperforms in the comparison
group. It is worth mentioning that in this experiment, we abandon the ground
point removing process, since the semantic segmentation process has already
removed the ground point. Moreover, this pre-process also removes other back-
ground points, such as trees, which consequently deletes almost all the objects
with large vertical size. However, our FV clustering processing happens only
when the clusters from BEV segmentation are higher than 2 m. Thus, the FV
clustering process seldom works in this experiment, but MVC still derives the
best performance among all the methods.

4.2 Experiment on Self-Recorded Dataset

Importantly, for meeting engineering design requirements and feeding the needs
from customers, it is necessary to test MVC method on our own dataset(NRS).
NRS dataset is collected with RS-Ruby 128-line LiDAR sensor in the company
NEUSOFT REACHAUTO2 including the scenarios on the campus roads at Neu-
soft headquarters and the street of Shenyang city(China). However, because of
the different labeling method between SemanticKITTI and NRS datasets, we
have to change the evaluation metric from PQ to the method reported in [13,17].

We adopt the over-segmentation, under-segmentation and precision as crite-
ria to evaluate the proposed algorithm. Further, we introduce four states of clus-
tering results to quantify the clustering performance: Precision (P), True Positive
(TP), Over-segmentation-rate (OSR) and Under-segmentation-rate (USR).

– TP is the number of clustered objects that are successfully segmented.
– OS is the total number of over-segmentation clusters.
– US is the total number of under-segmentation clusters.

Using the above-mentioned states, the following three metrics are formulated
as:

OSR = 1 − TP

TP + OS
, (6)

USR = 1 − TP

TP + US
, (7)

P =
TP

TP + OS + US
(8)

According to the related works, most of the previous algorithms are tested
and validated via 64-beam LiDARs or even fewer. To the best of our knowledge,
this paper is the first attempt to evaluate a clustering algorithm using a 128-line
LiDAR.

2 https://www.reachauto.com/.

https://www.reachauto.com/
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Table 2. Experimental settings of different methods

Euclidean cluster dth = 0.5m

Supervoxel cluster wc, ws, wn = 0.0, 1.0, 0.0

Depth cluster θ = 5◦

Scan-line run thrun, thmerge = 0.3, 0.5

Ours θthres, rthres, γ = 1, 0.2, 0.5

Performance Evaluation. Considering the point on NRS is denser than that
on SemanticKITTI, we delicately adjust the coefficients of the methods for better
performance, as shown in Table 2.

We separate NRS dataset into 3 scenario types: Easy, Medium and Hard.
Easy type only consists of some sparse road participates without the vertical
structure either, Fig. 6(a); Medium type has a dense road participates distribu-
tion, but there are not many vertical structures in this type of point clouds,
Fig. 6(b); Hard type point cloud has crowded road participates and also objects
with vertical structures such as trees and cars below, Fig. 6(c).

Since the NRS dataset does not have semantic segmentation labels, we cannot
train a good segmentation network for pre-processing. So we choose a free-trained
ground removing method to pre-process the point cloud.

Table 3 reports the comparison results as well as the processing speed of the
group. In the Easy scenarios, all the methods have similar precision rate because
of the dense point clouds but sparse objects. In the medium and hard scenarios,
the precision gap between ours and the other methods becomes larger. Euclidean
Cluster, Supervoxel Cluster and Scan-line Run suffer from under-segmentation
caused by the background points (trees, traffic lights and etc.). Depth Cluster
shows higher over-segmentation rate because smaller objects near the LiDAR
would block the laser beams and truncate the big objects, which cannot be
handled by this angle based clustering method. While being beneficial from the
view combination in MVC, the performance of our method experiences a slight
going down but still remain a decent precision rate.

Besides, we also report the clustering speed by frame-per-second (FPS) of
all the methods in these three scenarios without taking the pre-processing stage
of ground points removal into account. As the amount of points becomes larger,
our method stably runs in a high speed at about 10 ms per frame, which satisfies
the real-time requirement.
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Fig. 6. A demonstration of the three scenario types in NRS dataset.

Table 3. Segmentation results on NRS dataset

Scenarios Algs OS US TP OSR USR P FPS

Easy Ours 34 44 1088 0.030 0.039 0.933 110

Euclidean cluster 15 108 965 0.015 0.100 0.887 73

Supervoxel cluster 18 143 927 0.019 0.134 0.852 24

Depth cluster 109 31 948 0.103 0.032 0.871 70

Scan-line run 75 35 978 0.071 0.035 0.899 54

Medium Ours 104 217 2908 0.035 0.069 0.900 100

Euclidean cluster 85 322 2822 0.029 0.102 0.874 67

Supervoxel cluster 73 419 2737 0.026 0.133 0.848 16

Depth cluster 346 90 2793 0.110 0.031 0.865 63

Scan-line run 114 263 2852 0.084 0.038 0.883 54

Hard Ours 190 407 2922 0.061 0.122 0.830 98

Euclidean cluster 242 811 2276 0.096 0.263 0.684 63

Supervoxel cluster 105 1126 2098 0.048 0.349 0.630 12

Depth cluster 597 485 2248 0.210 0.177 0.675 60

Scan-line run 383 391 2555 0.130 0.133 0.767 54

4.3 Ablation Study

The ablation study mainly focuses on assessing the clustering process in differ-
ent views. We evaluate the clustering performance and running speed in this
experiment and report the statistics in Table 4.

Table 4. The ablation study of different modules in MVC

Group OS US TP OSR USR P FPS

1. BEV(PG-DBSCAN)+FV 104 217 2908 0.035 0.069 0.900 100

2. BEV(PG-DBSCAN) 63 1052 2014 0.028 0.332 0.655 250

3. BEV(DBSCAN [6])+FV 97 236 2886 0.032 0.075 0.897 2

4. FV 328 81 2820 0.104 0.028 0.873 18
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FV Clustering Module. As shown in Table 4, we compare the performance
of FV clustering removed MVC (Group 2) with the original MVC (Group 1).
Without the FV clustering, the number of over-segmentation vehicles slightly
goes down and OSR remains steady, however, the amount of under-segmentation
rate increases sharply. Because, in some scenes, background points may combine
different target objects together, as show in Fig 7. Without FV clustering pro-
cess, the points from these objects are clustered into the same cloud and cause
under-segmentation.

Fig. 7. Left image shows only the BEV clustering result, and the right image is the
result of whole MVC algorithm

BEV Clustering Module. In this part, we analyse the importance of BEV
clustering process. Comparing Group 1 with Group 4 in Tab. 4, we conclude that
PG-DBSCAN efficiently accelerates the clustering process and slightly improve
clustering precision.

Also, from Group 3 and 1, we can see that, with nearly same clustering
precision, the running speed of MVC with traditional DBSCAN [6] is 50 times
slower than that with PG-DBSCAN.

5 Conclusion

In this paper, a multi-view based clustering method is proposed for the 3D
point cloud. The algorithm adopts the coarse-to-fine architecture. First, the non-
ground point cloud is projected to the BEV density image and down-sampled.
We propose PG-DBSCAN based on the traditional DBSCAN [6] for the prelim-
inary segmentation. Then we further separate the under-segmented clusters on
vertical direction based on range images. We compare our method with 4 tra-
ditional clustering algorithms on both SemanticKITTI and NRS dataset. The
experiment results show the real-time performance, stability and accuracy of the
MVC algorithm, and prove that this method is suitable for clustering the dense
point clouds in various driving scenes.
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