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Abstract. The important process of choosing between algorithms and
their many module choices is difficult, even for experts. Automated
machine learning allows users at all skill levels to perform this process. It
is currently performed using aggregated total error, which does not indi-
cate whether a stochastic algorithm or module is stable enough to consis-
tently perform better than other candidates. It also does not provide an
understanding of how the modules contribute to total error. This paper
explores the decomposition of error for the refinement of genetic program-
ming. Automated algorithm refinement is examined through choosing a
pool of candidate modules and swapping pairs of modules to reduce the
largest component of decomposed error. It is shown that a pool of can-
didates that are not examined for diversity in targeting different com-
ponents of error can provide inconsistent module preferences. Manual
algorithm refinement is also examined by choosing refinements based on
their well-understood behaviour in reducing a particular error compo-
nent. The results show that an effective process should exploit both the
advantages of targeted improvements identified using a manual process
and the simplicity of an automated process by choosing a hierarchy of
the most important modules for reducing error components.

Keywords: Genetic programming · Automated machine learning ·
Algorithm refinement · Symbolic regression

1 Introduction

With the successful application of machine learning algorithms to many problem
domains [1–3], there is increasing interest from end users who are not experts
in machine learning. These applications of machine learning typically involve a
wide range of parameters or algorithm module choices [4,5]. This wide range
of choices provide a greater opportunity to produce a good predictive model,
given that a particular algorithm will not provide consistently better predictive
performance than all other candidates [6]. However, even for data scientists, the
process of choosing between a large number of algorithms and choosing appropri-
ate parameters/modules is difficult [7,8]. This is the motivation for automated
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machine learning (AutoML), which involves the data-driven algorithmic selec-
tion, composition and parameterisation of machine learning methods, usually in
order to minimise prediction error [9,10].

AutoML methods in the literature use only an aggregate measure of pre-
diction error for a continuous response variable (referred to in this paper as
total error) to examine combinations of algorithm modules. Performing AutoML
using only total error does not provide an understanding of how the modules
of the algorithm interact or the role each module plays in reducing total error.
Instead, decomposed error will allow an AutoML process to make more accu-
rate and informed decisions, in terms of the compatibility of algorithm module
combinations and their parameterisation, by targeting a reduction in the largest
component of error.

For a deterministic algorithm, using the same training data for each run
produces the same prediction model. These algorithms can be characterised by
decomposing error into bias and variance, where the single source of error due
to variance is associated with sampling of finite training data [11]. In contrast, a
stochastic algorithm involves multiple sources of error due to variance. Therefore,
the algorithm can be more fully characterised by splitting error due to variance
into error due to external variance (variance due to the training data) and error
due to internal variance (variance due to the algorithm itself) using an extended
error decomposition [12]. The extended decomposition of error and AutoML are
expected to be strongly compatible as they are both empirical processes.

Performing AutoML using “black-box” total error creates ambiguity about
which sources of error are being reduced and why a particular combination of
algorithm modules has been chosen. In contrast, decomposed error provides an
explanation of which error components are being minimised when choosing mod-
ules. Therefore, AutoML driven by decomposed error would provide more trans-
parency and an explanation of why a particular combination of modules has been
chosen, which are both important for AutoML [13]. This includes an understand-
ing of how the chosen algorithm is appropriate for a given problem. Explainabil-
ity is important for AutoML because end users need to have confidence and trust
in the performance/behaviour of an algorithm [14]; this confidence is gained by
understanding why the algorithm modules have been chosen.

In this paper, AutoML driven by an extended decomposition of error is
explored by performing algorithm refinement that targets the largest compo-
nent of error. This process is applied to the refinement of genetic programming
(GP) for symbolic regression, although any machine learning algorithm could
be refined using this process. Algorithm refinement is first performed using an
automated process to determine whether it can be reliable for stochastic algo-
rithms. This method focuses on refining the selection and variation operators
of GP, although the method could be used to refine all parts of the GP algo-
rithm. It is shown that error due to internal variance is not sufficiently stable to
provide consistent decisions about which module reduces prediction error. This
highlights the importance of choosing a diverse set of candidate modules that
provide targeted reductions in all components of error, particularly error due
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to internal variance. To confirm this, algorithm refinement is performed using a
manual process. In each iteration, new algorithm components are hand-picked
for their well-understood behaviour in terms of reducing the largest component
of error, which is shown to successfully reduce total error.

The remainder of this paper is structured as follows: a brief overview of
algorithm refinement methods are discussed in Sect. 2; a description of how to
decompose error for the refinement of GP is outlined in Sect. 3; results for an
automated algorithm refinement process using decomposed error are discussed in
Sect. 3.1 and critiqued in Sect. 3.2; results for a manual algorithm refinement pro-
cess using decomposed error are discussed in Sect. 3.3 and critiqued in Sect. 3.4;
finally, conclusions and future work are discussed in Sect. 4.

2 Algorithm Refinement

A number of different methods have been used for AutoML. The combined
algorithm selection and hyperparameter optimisation (CASH) problem can be
viewed as a “single hierarchical hyperparameter optimisation problem”, with the
chosen type of algorithm being considered as a hyperparameter [9, p. 847]. Grid
search examines all possible combinations of hyperparameters [15]. While this is a
simple method, it is computationally expensive and potentially intractable if the
number of hyperparameters is large. Random search improves on grid search by
not examining the full distributions of hyperparameter values [15]. However, ran-
dom search is still potentially computationally expensive. Bayesian optimisation,
involving a probability surrogate model of objectives, is more computationally
efficient and is applicable to any type of objective function. Auto-WEKA [16]
involves Bayesian optimisation using tree-based models. Auto-SKLearn [17] also
uses Bayesian optimisation, extending Auto-WEKA in order to provide an initial
meta-learning step as well as automated ensemble construction. Evolutionary
computation has also been used for AutoML. RECIPE (REsilient ClassifIca-
tion Pipeline Evolution) uses grammar-based GP, with a grammar representing
an algorithm pipeline, i.e., a combination of algorithm modules [18]. RECIPE
provides a larger number of algorithm modules than both Auto-SKLearn and
Auto-WEKA. TPOT (Tree-Based Pipeline Optimization Tool) also uses a vari-
ant of GP to represent algorithm pipelines, allowing parallel processing by using
multiple copies of a data set [19].

When applied to regression problems, these AutoML methods involve the
same basic process. A portfolio of candidate algorithm modules and parameters
is chosen (although the reasons for including the selected module options are
not usually explained). During the hyperparameter optimisation process, com-
binations of these candidates are examined. All of the methods in the literature
use total prediction error (for test observations) to guide the improvement of the
combination of algorithm modules.

The goal of AutoML, for supervised machine learning, is to minimise total
prediction error. However, performing AutoML using total error can lead to a
lack of model parsimony and does not focus on an algorithm’s sensitivity to
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noise [20]. Also, AutoML provides no insight as to why a particular combina-
tion of algorithm modules should be chosen. Total error does not explain the
behaviour of the algorithm, providing a lack of confidence in the chosen algo-
rithm and a discrepancy between AutoML and the growing need for explainable
artificial intelligence [21]. It also does not illustrate the stability of the algorithm
and therefore the reliability of the AutoML process. Instead, decomposed error
should be used in AutoML to examine algorithm behaviour as it is important
to provide end users with greater insights into an algorithm’s behaviour and
therefore enhanced confidence in its performance [22,23]. Therefore, it needs to
be explored how decomposed error can be used to guide algorithm refinement.

3 Algorithm Refinement of Genetic Programming Using
Decomposed Error

Estimating decomposed prediction error involves splitting up total error into
components based on the potential sources of error. In a typical bias-variance
error decomposition, a total error measure (e.g., mean squared error) is decom-
posed into two primary components: a bias component quantifies the ability
of the method to learn the underlying generating function of a problem, while
a variance component quantifies the learning method’s sensitivity to stochas-
tic effects encountered during the learning process (e.g., the sampling of data)
[24]. To enable variance due to the sampling of training data (external variance)
as well as variance due to the algorithm (internal variance) to be represented,
the standard bias-variance decomposition can be further expanded, as shown in
[12]. Error due to internal variance captures the changes in model predictions
observed over multiple algorithm runs using the same training data. When fur-
ther decomposing the error, Tukey’s outlier removal is performed in order to
provide more stable decomposed error estimates [12]. The error is decomposed
using a set of 100 runs (10 training sets and 10 runs per training set). In order to
explore how decomposed error can be used to reliably and effectively refine the
GP algorithm, this is performed using both automated and manual processes.

3.1 Automated Algorithm Refinement

A desirable option for algorithm refinement is to use an automated process.
Starting with traditional GP, alternative modules can be examined, choosing one
to minimise the largest component of error (reducing error due to bias, internal
variance or external variance). The process can be repeated a specific number of
times or until the largest component of error cannot be reduced. The process has
been illustrated by focusing on particular key parts of an evolutionary algorithm,
rather than examining all possible alternative modules.

The typical framework of an evolutionary algorithm is shown in Fig. 1. A
number of design choices present themselves at each block of the diagram, mean-
ing that there are potentially many choices to be made at each module. The
automated algorithm refinement process examined in this paper focuses on the
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Fig. 1. Modules involved in an evolutionary algorithm process for symbolic regression.

selection and variation (crossover and mutation) parts of the algorithm (shown in
red). However, in principle, any part of the algorithm could be examined using
this process. The sequential process of targeting the reduction of the largest
component of error was performed using these steps:

1. Run GP using an initial configuration of modules.
2. Decompose the error associated with the initial GP configuration.
3. Determine the largest component of error (i.e., error due to bias, internal

variance or external variance).
4. Run GP using the current combination of modules except for swapping in each

alternative module individually, calculating the decomposed error associated
with each combination of modules.

5. Determine which new combination of modules reduces the largest component
of error.

6. If the largest component of error cannot be reduced, stop the process and
return the current combination of modules. Otherwise, determine the new
largest component of error (i.e., repeating Step 3).

7. Repeat Steps 4 to 6 for n time steps (if the process has not already been
terminated).

Steps 1 and 4 involve multiple complete runs of GP in order to decompose the
error associated with each combination of modules that are examined. Modules
from traditional GP, Angle-Driven Geometric Semantic GP (ADGSGP ) [25] and
GP using semantic similarity [26] have been selected to refine GP. The following
individual modules were examined:

Selection Operators:

– Tournament selection (TS)
– TS and angle-driven selection (ADS) for crossover [25]
– Double tournament selection (DTS) [27]
– DTS and ADS for crossover

Crossover Operators:

– One point crossover (OPX)
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– Perpendicular crossover (PC) [25]
– Semantic similarity-based crossover (SSC) [26]

Mutation Operators:

– Uniform subtree mutation (UM) using full growth
– Random segment mutation (RSM) [25]
– Semantic similarity-based mutation (SSM) based on SSC [26]

The modules of ADGSGP were performed using the implementation of [25]. An
initial GP configuration of OPX, UM and TS was used as the starting point
for the refinement process, with a maximum of five steps. The refinement of the
GP algorithm is explored using a variant of the Keijzer-5 function [28]:

f(x, y, z) =
30(x − a)(z − a)

((x − a) − 10)(y − a)2
(1)

where a = 10 for x, z ∈ U [9, 11) and y ∈ U [11, 12). A similar adaptation of
the Keijzer-5 function is used by [29]. Equation (1) was used to generate 10
training folds of 100 observations and a test fold of 1000 observations. Algorithm
refinement driven by decomposed error will generalise to other problems because
decomposed error characterises the algorithm for the given problem and therefore
will guide the choice of modules for that problem. GP is performed using the
Distributed Evolutionary Algorithms in Python (DEAP) framework [30] and the
parameters that are not considered for refinement are shown in Table 1, which
are typical of those in recent work [31,32].

Table 1. Fixed parameters for GP

Parameter Value

Population size 100

Number of generations 100

Probability of crossover 0.3

Probability of subtree mutation 0.7

Maximum depth 17

Initial minimum depth 2

Initial maximum depth 6

Minimum depth of subtree mutation 2

Maximum depth of subtree mutation 6

Elitism Yes (1 individual)

Size of tournament 3

Function set {+,−,×,÷}

The decomposed error values associated with the steps taken to improve the
algorithm are shown in Fig. 2. After initially running GP (using OPX, UM and
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Fig. 2. Decomposed error for data generated by Eq. (1), using the automated algorithm
refinement process to change the combination of GP modules implemented.

TS), it was determined that OPX should be swapped with PX in order to
reduce the largest component of error (internal variance). Despite this config-
uration change, internal variance remains the largest error component. In the
second iteration, TS was swapped with DTS + ADS in order to continue to
reduce error due to internal variance. Subsequent iterations were unable to find
combinations of modules that reduced error due to internal variance. Therefore,
the process terminated and the mutation operator remained unchanged. How-
ever, it is interesting to see that two modules from ADGSGP (PX and ADS for
crossover) have been selected using this process. While it is preferable to simul-
taneously minimise all components of error, the primary goal of each module
swap is to reduce the largest component of error, and therefore total error. The
process was effective in reducing error primarily due to internal variance but
also external variance. However, there was an apparent trade-off between error
due to variance and error due to bias. Swapping TS for DTS + ADS provided
a reduction in both types of error due to variance but with a slight increase in
error due to bias.

3.2 Critique of Automated Algorithm Refinement

The motivations for using this automated algorithm refinement process are clear.
First, by automating the process, the only human involvement required is in
determining the initial combination of modules examined, the candidate mod-
ules and the parameters associated with these modules. Second, the process of
changing only one module at each time step allows all candidate modules to be
applied without the computational expense of trying all possible combinations.
Finally, by choosing a combination of modules that appears to reduce the largest
component of error, total error can be reduced (see Fig. 2). However, it needs to
be determined whether the estimated decomposed error of GP provides stable
enough estimates in order to assess whether the inclusion of a particular module
reduces the largest component of error.
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For the initial GP configuration of modules {OPX, UM , TS} and the sub-
sequent chosen combination of modules {PX, UM , TS}, the 100 runs (M = 10
and R = 10) used to estimate the decomposed error were repeated 50 times.
The mean decomposed error values (and associated error bars representing one
standard deviation) from the 50 repetitions are shown in Fig. 3. The identifica-
tion of error due to internal variance as the largest component of error for both
combinations of modules is consistent across the 50 repetitions. However, the
mean internal variance value for the initial combination of {OPX, UM , TS}
is very similar to that for {PX, UM , TS}. Also, the error bars have signifi-
cant overlap, with the inclusion of OPX sometimes providing lower error values
compared to PX. While the magnitudes of error due to bias and error due to
external variance for OPX and PX are relatively stable across repetitions, this
is not the case for error due to internal variance. Across the 50 repetitions, some
of them determined that swapping OPX for PX reduces error due to internal
variance while other repetitions determined the opposite result (selecting a dif-
ferent module or terminating the process). OPX provided lower error 22 times,
larger error 16 times and similar error 12 times (an absolute difference of less
than 0.1). As it is not known which error component is targeted by choosing
either OPX or PX, it is possible that they both target a reduction in error due
to bias and therefore a reduction in error due to variance could not be achieved.

0.0

0.5

1.0

1.5

2.0

OPX UM TS PX UM TS
Combination

Er
ro

r

Component bias2 varext varint Total Error

Fig. 3. Mean decomposed error (and associated error bars representing one standard
deviation) for data generated by Eq. (1), for 50 repetitions of the first two combinations
of GP modules involved in the automated refinement process (see Fig. 2).

These results show that automatic algorithm refinement is associated with
difficulties in swapping algorithm modules in order to reduce the largest com-
ponent of error. In particular, a comparison of modules that exhibit similar
decomposed error does not help to substantially reduce the largest component
of error. This can also provide inconsistent results when performed for multiple
repetitions due to unstable estimates of error due to internal variance. Perform-
ing a manual algorithm refinement process might allow for more meaningful
comparisons of modules, as we can choose to examine modules with a prior
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understanding that they are expected or known to target the largest component
of error. Such a manual process is investigated in the next section.

3.3 Manual Algorithm Refinement

The motivation for a manual algorithm refinement process is to identify and
then target a reduction in the largest component of error using a module known
to successfully reduce that component of error. The automated algorithm refine-
ment process used in Sect. 3.1 was able to consistently determine the largest
component of error. However, individual runs gave inconsistent results as to
whether changing an operator reduced the largest component of error. There-
fore, it is plausible that the largest error component can be determined but
used within a manual algorithm refinement process as a heuristic for reduc-
ing the largest component of error. This was performed by examining a single
well-understood adaptation to an algorithm that targets the largest component
of error (or is hypothesised to reduce the largest component of error), rather
than blindly comparing alternative algorithm module combinations that involve
uncertainty and may be too similar in terms of their error reducing behaviour.

Starting with the GP results for the initial combination of {OPX, UM , TS}
(see Fig. 3), the largest component of error is consistently error due to internal
variance. Therefore, an adaptation to the algorithm needs to be applied in order
to reduce this component of error. Bagging is well understood to reduce both
error due to internal and external variance. However, there is evidence that
bootstrapping of the training data is unnecessary when the error due to external
variance component is much smaller than the error due to internal variance
component [33]. Averaging the predictions from an ensemble of models without
bootstrapping will, like bagging, reduce error due to internal variance. Therefore,
an ensemble of 25 models (using the operator combination of {OPX, UM , TS}
and calculating the median value) was used to predict the test observations,
with each set of 100 runs (M = 10 and R = 10) being performed 30 times. The
mean and standard deviation of decomposed error for the ensemble algorithm
is compared to that of the initial combination of operators in the first two rows
of Table 2. An ensemble of models (without bootstrapping) provided a large
reduction in error due to internal variance, which is statistically significant (p <
0.0001) using the Wilcoxon signed-rank test for the difference between the error
due to internal variance components. The additional runs involved in model
averaging provided more accurate predictions with a reduction in error due to
bias as well as a reduction in error due to external variance.

The new largest error component associated with the operator combination
of {OPX, UM , TS} in an ensemble is error due to bias. This is consistent across
all 30 repetitions. Therefore, a different type of adaptation needs to be applied
in order to reduce error due to bias. As both GP with Z-Score standardisation
(of explanatory and response variables) and GP with linear scaling have been
shown to reduce error due to bias [31,34], GP was performed using a combination
of both standardisation and linear scaling (GPZ+LS). The decomposed error
of the ensemble algorithm without feature scaling is compared to the ensemble
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Table 2. Variants of GP examined using manual algorithm refinement

Variant bias2 varext varint Total error

OPX UM TS 0.1138 0.2289 1.0826 1.4253

±0.0005 ±0.0951 ±0.5985 ±0.6959

OPX UM TS Ens 0.0441 0.0263 0.0054 0.0759

±0.0005 ±0.0012 ±0.0008 ±0.0018

GPZ+LS OPX UM TS Ens 0.0029 0.0025 0.0002 0.0057

±0.0000 ±0.0001 ±0.0000 ±0.0001

GPZ+LS OPX UM TS 0.0031 0.0055 0.0232 0.0318

±0.0004 ±0.0024 ±0.0147 ±0.0174

algorithm using GPZ+LS in the second and third rows of Table 2 (with the lowest
error component values bolded in the third row). Using GPZ+LS provided a large
reduction in error due to bias, which is statistically significant (p < 0.0001)
using the Wilcoxon signed-rank test for the difference between the error due
to bias components. It also reduced error due to both external and internal
variance (with both differences statistically significant, both p < 0.0001). As
exhibited when creating an ensemble of models without bootstrapping, all error
components were reduced. Therefore, these wrapper methods have reduced total
error without exhibiting a trade-off between error due to bias and error due to
variance.

The new largest error component associated with an ensemble of models
(without bootstrapping) using GPZ+LS was still error due to bias (across all
30 repetitions). However, this component was only slightly larger than error
due to external variance, with both components being significantly reduced by
performing standardisation and linear scaling. Therefore, this manual refinement
process reached an appropriate stopping point for the examined data set.

3.4 Critique of Manual Algorithm Refinement

Estimating which component of error is the largest component gave consistent
results over multiple repetitions of the runs required to decompose error. This
provides confidence in determining what type of adaptation to the algorithm
needs to be made in order to reduce the largest component of error and there-
fore total error. While this process requires human involvement after performing
multiple runs of each adaptation of the algorithm, it allows domain knowledge
and targeted decision making to be exploited. It also provides an explainable
refinement process by understanding the purpose of selecting particular mod-
ules in terms of decomposed error. The two adaptations to the algorithm (see
Table 2) were successful in targeting the largest component of error, and therefore
total error. However, it needs to be confirmed whether both adaptations were
necessary to reduce total error and error due to internal variance in particular.
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The final combination of modules before stopping the manual refinement pro-
cess (GPZ+LS using an ensemble of 25 models) is compared to GPZ+LS without
ensembling in the third and fourth rows of Table 2. The results show that a single
model provides a statistically significant increase in error due to internal variance
(p < 0.0001) compared to the ensemble model, using the Wilcoxon signed-rank
test for the difference between the error due to internal variance components.
This makes it clear that while standardisation and linear scaling provide lower
error due to internal variance than the initial set of modules (without stan-
dardisation and linear scaling), they do not sufficiently target the component.
An ensemble model is needed to target error due to internal variance as stan-
dardisation and linear scaling specifically target error due to bias. The standard
deviation is also larger for error due to bias and error due to external variance
for a single model.

By considering a small set of candidate algorithm adaptations that are known
or expected to target the reduction of a specific error component, this man-
ual process requires fewer runs of GP. Instead of performing many runs across
many different algorithm adaptations, the focus can be on multiple repetitions
of the same algorithm to determine the consistency of both the overall predic-
tive performance and the magnitude of the error components. A small set of
candidate algorithms is sufficient if, between them, they capture a reduction in
all error components. This algorithm refinement process is not trying to find
the algorithm with the best possible predictive performance but instead find
an algorithm that provides reasonable performance as well as stable and well-
understood behaviour. While only wrapper adaptations to the algorithm have
been examined (feature scaling and ensemble models), adaptations internal to
the algorithm can also be examined using this manual process. A set of can-
didate algorithm adaptations or modules with known or expected behaviour, in
terms of targeting a reduction of the largest component of decomposed error, is a
desirable characteristic of an AutoML process. By understanding the behaviour
of algorithm adaptations or modules, the set of candidate options can be chosen
more carefully in order to provide a diverse range of behaviour, leading to a more
effective and explainable reduction of error.

4 Conclusion

This paper introduces the use of decomposed error for performing algorithm
refinement. It has been applied to the refinement of GP using both automatic
and manual processes. The results for the automatic algorithm refinement pro-
cess show that comparing algorithm modules with similar decomposed error
values makes it difficult to target a reduction of the largest error component.
This is particularly the case for algorithms like GP than can exhibit a large
and/or unstable error due to internal variance component and therefore can pro-
vide inconsistent conclusions about candidate algorithm adaptations. In order to
make more meaningful comparisons, the manual refinement process focuses on
choosing a candidate algorithm adaptation or module that is known to reduce
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the largest component of error, determined by manually examining the estimated
decomposed error of the algorithm at each step in the process.

For the manual algorithm refinement process, the sequence of algorithm adap-
tations was successful in reducing the largest component of error, with the type
of the largest error component changing throughout the process. Therefore, a
set of candidate algorithm adaptations or modules need to provide diversity in
reducing different components of decomposed error. Many traditional AutoML
processes choose a set of candidate algorithm adaptations or modules without
prior examination of their diversity in terms of reducing different components of
error. Therefore, choosing candidate modules that coincidentally target a reduc-
tion of the same component of error will significantly limit the ability to improve
the predictive performance of an algorithm. A greater understanding of how an
algorithm module reduces prediction error, and the module’s interaction with
other modules, can be provided using the extended error decomposition. A more
strategically chosen set of candidate algorithm modules, in terms of providing
diverse behaviour in reducing different components of error, can then be applied
to an automated algorithm refinement process. It is particularly important for
the set of candidates to include a module that reduces error due to internal
variance. This allows for the prediction error associated with an algorithm to
be stabilised, if required, before being able to make reliable further refinements
that target other components of error.

Although the manual algorithm refinement process was more successful than
the automated process in reducing the largest component of error (and there-
fore total error), the motivations for automating algorithm refinement are still
clear and important. Therefore, mapping the successful elements of the manual
algorithm refinement process into an AutoML framework should be explored
in future work. This would involve choosing a hierarchy of modules that are
most important for reducing a diverse range of error components. This provides
efficiency in reducing the search space of hyperparameters while providing con-
fidence in the behaviour of the module combinations. The examination of algo-
rithm refinement in this paper focused on the overall algorithm module structure
rather than the tuning of parameters; this should be examined in future work.

Acknowledgment. Thank you to Dr Qi Chen for kindly allowing your ADGSGP
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