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Abstract. With the rapid deployment of graph neural networks (GNNs)
based techniques in a wide range of applications such as link prediction,
community detection, and node classification, the explainability of GNNs
become an indispensable component for predictive and trustworthy deci-
sion making. To achieve this goal, some recent works focus on design-
ing explainable GNN models such as GNNExplainer, PGExplainer, and
Gem. These GNN explainers have shown remarkable performance in
explaining the predictive results from GNNs. Despite their success, the
robustness of these explainers is less explored in terms of vulnerabili-
ties of GNN explainers. Graph perturbations such as adversarial attacks
can lead to inaccurate explanations and consequently cause catastro-
phes. Thus, in this paper, we take the first step and strive to explore the
robustness of GNN explainers. To be specific, we first define two adver-
sarial attack scenarios—aggressive adversary and conservative adversary
to contaminate graph structures. We then investigate the impacts of the
poisoned graphs on the explainability of three prevalent GNN explain-
ers with three standard evaluation metrics: Fidelity+, Fidelity−, and
Sparsity. We conduct experiments on synthetic and real-world datasets
and focus on two popular graph mining tasks: node classification and
graph classification. Our empirical results suggest that GNN explain-
ers are generally not robust to the adversarial attacks caused by graph
structural noises.

Keywords: Graph neural networks · GNN explainers · Adversarial
attacks · Robustness

1 Introduction

Generally, a computation graph G can be represented as G = (V ,A,X), where
V is the node set, A ∈ {0, 1} denotes the adjacency matrix that Aij = 1
if there is an edge between node i and node j, otherwise Aij = 0, and X
indicates the feature matrix of the graph G. It is an ideal data structure for
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a variety of real-world datasets, such as chemical compounds [3], social circles
[21], and road networks [15]. Graph neural networks (GNNs) [5,26,29,33], with
the resurgence of deep learning, have become a powerful tool to model these
graph datasets and achieved impressive performance. However, a GNN model
is typically very complicated and how it makes predictions is unclear; while
unboxing the working mechanism of a GNN model is crucial in many practical
applications (e.g., criminal associations predicting [24], traffic forecasting [11],
and medical diagnosis [1,23]).

Recently, several explainers [19,20,30] have been proposed to tackle the prob-
lem of explaining GNN models. These attempts can be categorized into local
and global explainers according to their interpretation scales. In particular, if
the method provides an explanation only for a specific instance, it is a local
explainer. In contrast, if the method explains the whole model, then it is a
global explainer. Alternatively, GNN explainers can also be classified as either
transductive or inductive explainers based on their capacity to generalize to
extra unexplained nodes. We investigate a flurry of recent GNN explainers and
decide to use three most representative GNN explainers—GNNExplainer [30],
PGExplainer [20], and Gem [19]—in our experiments. GNNExplainer is chal-
lenging to be applied into inductive settings as its explanations are limited to a
single instance and it merely provides local explanations; while a trained PGEx-
plainer which constructs global explanations and Gem which generates both
local and global explanations can be used in inductive scenarios to infer expla-
nations for unexplained instances without the need of retraining the explanation
models. Table 1 summarizes the characteristics of these methods.

Table 1. The characteristics of GNN explainers.

GNNExplainer PGExplainer Gem

Interpretation
scale

Local explainer Global explainer Local & global
explainer

Transduction/
Induction

Transductive
explainer

Inductive explainer Inductive explainer

Applications Node classification Node classification Node classification

Graph classification Graph classification Graph classification

Link prediction

On the other hand, robustness is also an important topic in the community of
deep learning and has gained significant attention over years. Recently, there are
a large number of research studies focusing on the robustness of image classifica-
tion including adversarial robustness [27] and non-adversarial robustness [10,16].
In addition, researchers start to explore the robustness of GNN models in recent
years, having gained several crucial observations and insights [2,34]. Neverthe-
less, the robustness of GNN explainers is still under exploration. While in real
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world, graph datasets are never ideal and often contaminated by various nuisance
factors such as noises in node features and/or in graph structures. Therefore, one
natural question one might ask: are current GNN explainers robust against these
nuisance factors?

To answer this question, we in this paper take the first step to examine the
robustness of GNN explainers. To be specific, we explore two adversary scenarios
to contaminate graph datasets:

– Aggressive adversary. We introduce noises to graph structures without con-
sidering the characteristics of nodes–whether it is an important node or a
redundant node. To be more specific, we may pollute any nodes to have
edges with others regardless of the impact on the GNN models.

– Conservative adversary. In contrast to aggressive adversary, we introduce
noises to graph datasets in a more cautious way such that we hope the injected
noises would not affect the GNN model itself. To achieve this goal, we have
to take the characteristics of graph dataset itself into account (e.g., whether
the node is an important node or an unimportant node). We then only alter
the graph structure by adding edges among unimportant nodes. By doing so,
the underlying essential subgraph, which determines the prediction of GNN
models, is untouched.

We first use the aforementioned adversary scenarios to contaminate the graph
datasets. We then use these generated noisy graph datasets to evaluate the
robustness of the GNN explainers. For the baseline, we refer to the performance
of the GNN explainers on original (clean) graph datasets. Thus, we track and
compare the difference in the performance of GNN explainers between original
and polluted graph datasets. Our contributions can be summarized as followings:

– For the sake of comprehensive evaluations, we propose to generate noisy graph
data under two scenarios—aggressive adversary and conservative adversary.

– We empirically investigate the robustness of GNN explainers against these
perturbations through two different applications including node classification
and graph classification.

– We find that GNN explainers in general are not robust to these perturba-
tions, implying that robustness is another essential factor one should take
into account when evaluating GNN explainers.

2 Related Work

2.1 GNNs and the Robustness of GNNs

Graph neural networks (GNNs) have shown their effectiveness and obtained
the state-of-the-art performance on many different graph tasks, such as node
classification, graph classification, and link prediction. Since graph data widely
exist in different real-world applications, such as social networks [25], chem-
istry [8], and biology [6], GNNs are becoming increasingly important and useful.
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Despite their great performance, GNNs share the same drawback as other deep
learning models; that is, they are usually treated as black-boxes and lack human-
intelligible explanations. Without understanding and verifying the inner working
mechanisms, GNNs cannot be fully trusted, which prevents their use in critical
applications pertaining to fairness, privacy, and safety [4].

On the other hand, the robustness evaluation for GNNs has received a great
deal of attention recently. In recent years, some adversarial attacks and back-
door attacks against GNNs are proposed [7,9,28,34]. Specially, in [28], Yang et al.
propose a transferable trigger to launch backdoor attack against different GNNs.
In [34], authors propose an efficient algorithm NETTACK exploiting incremen-
tal computations. They concentrate on adversarial perturbations that target the
node’s characteristics and the graph structure, therefore taking into account the
interdependencies between instances. In addition, they ensure that the pertur-
bations are undetectable by keeping essential data features. Ghorbani et al. [9]
demonstrate how to generate adversarial perturbations that produce perceptively
indistinguishable inputs that are assigned the same predicted label, yet have very
different interpretations. They prove that systematic perturbations can result in
drastically different interpretations without modifying the label. Fox et al. [7]
investigate that GNNs are not robust to structural noise. They focus on inserting
addition of random edges as noise in the node classification without distinguish
important and unimportant nodes. On the contrast, we focus on injecting conser-
vative structure noise into unimportant nodes/subgraphs. Overall, in our research,
we propose to infuse aggressive and conservative structure noise individually into
graph data in order to examine the robustness of GNN explainers.

2.2 GNN Explainers

GNNs incorporate both graph structure and feature information, which results
in complex non-linear models, rendering explaining its prediction remain a chal-
lenging task. Besides, models explanations could bring a lot of benefits to users
(e.g., improving safety and promoting fairness). Thus, some popular works has
emerged in recent years focusing on the explanation of GNN models by leverag-
ing the properties of graph features and structures. There are some popular GNN
explainers developing explaining strategies based on graph intrinsic structures
and features. We will briefly review three different GNN explainers: GNNEx-
plainer, PGExplainer, and Gem.

GNNExplainer [30] is a seminal method in the field of explaining GNN mod-
els. It provides local explanations for GNNs by identifying the most relevant
features and subgraphs, which are essential in the prediction of a GNN. PGEx-
plainer [20] introduces explanations for GNNs with the use of a probabilis-
tic graph. It provides model-level explanations for each instance and possesses
strong generalizability. Gem [19] is able to provide both local and global expla-
nations and it is also operated in an inductive setting. Thus, it can explain
GNN models without retraining. Particularly, it adopts a parameterized graph
auto-encoder with Graph Convolutional Network(GCN) [14] layers to generate
explanations.
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3 Method

In this paper, we examine the robustness of GNN explainers under two adversary
scenarios—aggressive adversary and conservative adversary. In this section, we
provide the details of our method. Particularly, we first introduce how we inject
noises into graph data and construct noisy graph data (see Sect. 3.1), and we
then depict our evaluation flow (see Sect. 3.2).

3.1 Adversary Generation

Without loss of generality, we consider generating aggressive and conservative
adversaries in a graph classification task. For a graph Gi = (V i,Ai,Xi) with
label Li, we have the prediction f(Gi) of a GNN model, and the explanation
E(f(Gi),Gi) from a GNN explainer.

Fig. 1. The instance of generating aggressive structure noise. The orange nodes denote
important nodes, while the rest means unimportant nodes in the graph. In this scenario,
we do not take the node property into account and we randomly select nodes. (Color
figure online)

Aggressive Adversary Generation. The aggressive adversary disregards the role
of nodes and radically incorporates structure noises into nodes without consid-
ering their impacts on the GNN models. For a particular graph Gi, we randomly
choose ε = {10%, 30%, 50%, 80%} nodes from the set V i, then generate edges
among these selected nodes by using random graph generation model with gen-
erating edges probability 0.1, meaning that the number of edges is equal to 10%
of the number of selected nodes. Figure 1 shows a toy example of aggressive
adversary generation. After generating aggressive structure noises, we obtain
a new noisy graph ̂Gi = (V i, ̂Ai,Xi) with label Li, and further obtain the
GNN prediction f(̂Gi) on this new noisy graph as well as its the explanation
E(f(̂Gi), ̂Gi). As we have aggressively changed the structure of the graph, the
probability of f(̂Gi) is expected to be lower, implying that the aggressive struc-
ture noises also affect the performance of the GNN models. Furthermore, pre-
dictions of GNN model is another input to GNN explainers, which is another
factor to influence explanations of GNN explainers.
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Conservative Adversary Generation. The conservative adversary selectively
appends structure noise into unimportant nodes. Particularly, in conservative
adversary, we build a structure noise which would not alter the prediction of
GNN models. For a particular graph Gi, we obtain the unimportant nodes set
N i with the similar ratio of ε = {10%, 30%, 50%, 80%} we used in the setting
of aggressive adversary. Then, we use random graph generation model to gener-
ate edges among N i with the generating edges probability 0.1. Similarly, Fig. 2
shows a toy example of conservative adversary generation. After developing con-
servative structure noise, we get a noisy graph G

′
i = (V i,A

′
i,Xi) with label Li.

Therefore, we are able to obtain the GNN prediction f(G
′
i) and the explana-

tion E(f(G
′
i),G

′
i). In conservative adversary, since the significant subgraph that

determines the prediction of GNN models is unmodified, there is a high possi-
bility that f(G

′
i) would make the correct predictions. Thus, the prediction of

GNN as a parameter in GNN explainers inputs keeps stable and unchanged.
Therefore, one should expect that the GNN explainers would be more robust
against conservative adversary than aggressive adversary.

Fig. 2. The instance of generating conservative structure noise. The orange nodes
denote important nodes, while the rest are unimportant nodes in the graph. We only
select unimportant nodes. (Color figure online)

3.2 Robustness Evaluation Framework

For a GNN model, GNN explainers are used to unveil why the GNN model makes
its predictions. Thus, it is intriguing to explore whether these explanations really
make sense, especially when the graph data is not clean and polluted by noises,
which is often the case in real-world datasets. The contamination can occur in
many ways such as during the process of data collection, the defects of sensors,
data transmission through network, and many others. In this paper, we insert
noises into the original clean graph data to examine whether the explanation of
GNN explainers would be affected.

Specifically, in our experiments, we target to investigate the robustness of
the GNN explainer to structure noises. We introduce two types of structure
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noises to graph datasets, of which the detailed information can be found in
Sect. 3.1. After obtaining noisy graph dataset, we feed it into a pre-trained GNN
that is trained by the original clean graph dataset and get its corresponding
predictions. Then a GNN explainer conducts its explanations and we obtain its
explanation performance and further conduct comparisons with the explanations
on the original graph dataset. The pipeline of our robustness evaluation method
is shown in Fig. 3. We further show an example of our experimental flow under
the conservative adversary in Fig. 4.

Fig. 3. In this diagram, different lines denote distinct flows. The black lines denote
initial flow that generates explanations for the original dataset. The green lines denote
flow that generates a noisy graph data from the original graph data as well as its
explanations. Finally, we can compare “noisy” explanations with “original” explana-
tions. (Color figure online)

Furthermore, we use accuracy to quantitatively measure the influence of
structure noises to the GNN model. We assume that the performance of GNN
model would rarely be affected if the prediction accuracy on the noisy graph
dataset is roughly the same as the accuracy on the original clean graph dataset.
We further assume that if the GNN model itself is not confused by the injected
noises, then the GNN explainers would yield similar explanations between orig-
inal clean graph data and noisy graph data.

Fig. 4. The instance of generating explanation for noisy graph with conservative adver-
sary. The orange nodes denote important nodes, while the rest means unimportant
nodes in the graph. The orange nodes and edges are expected to be as an explanation
from GNN explainers. However, after injecting structure noise which is highlighted
in red colour, the GNN explainers can not get the true important subgraph, which
demonstrates that the GNN explainers are not robust to structure noises. (Color figure
online)
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4 Experiments

In this section, we conduct experiments to inspect the robustness of GNN
explainers against structure noises. We first describe the details of the imple-
mentation, datasets, and metrics we used in Sect. 4.1. After that, we present and
analyze the experimental results for aggressive adversary scenario and conser-
vative adversary scenario in Sect. 4.2 and Sect. 4.3, respectively.

4.1 Implementation Details, Datasets, and Metrics

Implementation Details. In this paper we choose GCN as the classification clas-
sifier. For GNN explainers, we choose GNNExplainer [30], PGExplainer [20],
and Gem [19]. In order to obtain the pre-trained GCN models, we split the
datasets into percentages of 80/10/10 as the training, validation, and test set,
respectively. We follow the experimental settings in Gem [19]. Specifically, we
firstly train a three-layer GCN model based on BA-Shapes dataset, Tree-Cycles
dataset, and Mutagenicity dataset, respectively. We choose Adam [13] as the
optimizer. After that, we utilize the pre-trained GCN models and the explain-
ers to obtain the explanations for both the original clean graph datasets and
the noisy graph datasets. Furthermore, by analyzing the experiment settings
and results in [19], we note that explainers obtain different levels of accuracy
when selecting different top-important edges as explaining edges. Therefore, one
should choose an appropriate number of top important edges when evaluating
explainers. In our paper, we select top 6 edges for synthetic datasets (BA-Shapes
and Tree-Cycles) and top 15 edges for Mutagenicity dataset.

Datasets. We focus on two widely used node classification datasets, including
BA-Shapes and Tree-Cycles [18,31], and one graph classification dataset, Muta-
genicity [12]. Statistics of these datasets are shown in Table 2. For BA-Shapes
and Tree-Cycles datasets the nodes which define a motif structure such as a
house or cycle are considered as important nodes. For Mutagenicity datasets,
Carbon rings with chemical groups NH2 or NO2 are known to be mutagenic.
Carbon rings however exist in both mutagen and nonmutagenic graphs, which
are not discriminative. Thus, we simply treat carbon rings as the shared base
graphs and NH2, NO2 as important subgraphs for the mutagen graphs.

Table 2. Dataset information.

Node classification Graph classification

BA-shapes Tree-cycles Mutagenicity

# of Graphs 1 1 4,337

# of Edges 4110 1950 266,894

# of Nodes 700 871 131,488

# of Labels 4 2 2
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In addition, explainers—GNNExplainer, PGExplainer, and Gem—can obtain
higher accuracy when used to explain only important nodes or subgraphs. While
in our experiments, we may alter the nodes as well as the subgraph structures,
thus we have to explain all nodes or subgraphs (important or unimportant),
which may lead to suboptimal accuracy. However, this is not a major issue for
us as our goal in this paper is to compare the performance change of GNN
explainers on graph datasets before and after adding noises.

Noisy Datasets. Following the noise generation pipeline described in Sect. 3, we
inject aggressive and conservative structure noises into these graph datastes to
generate aggressive and conservative noisy datasets, respectively. For conserva-
tive structure noisy datasets, we only inject noises into unimportant nodes to
minimize the affection of structure noise on GNN prediction. By doing so, we
attempt to maintain GNN predictions on conservative structure noise datasets.

Metrics. Good metrics should evaluate whether the explanations are faithful
to the model. After comparing the characteristic of each quantitative met-
ric [17,32], we chose Fidelity+ [31], Fidelity− [31], and Sparsity [22] as our
evaluation metrics. The Fidelity+ metric indicates the difference of predicted
probability between the original predictions and the new prediction after remov-
ing important input features. In contrast, the metric Fidelity− represents pre-
diction changes by keeping important input features and removing unimportant
structures. Besides, Sparsity measures the fraction of features selected as impor-
tant by explanation methods. The Fidelity+, Fidelity−, and Sparsity can be
defined as:

Fidelity+ =
1
N

N
∑

i=1

(f(Gi)yi
− f(G1−mi

i )yi
), (1)

Fidelity− =
1
N

N
∑

i=1

(f(Gi)yi
− f(Gmi

i )yi
), (2)

Sparsity =
1
N

N
∑

i=1

(1 − |si|
|Si|total ), (3)

where N is the total number of samples and yi is the class label. f(Gi)yi
and

f(G1−mi
i )yi

are the prediction probabilities of yi when using the original graph
Gi and the occluded graph G1−mi

i , which is gained by occluding important fea-
tures found by explainers from the original graph. Thus, a higher Fidelity+ (↑)
is desired. f(Gmi

i )yi
is the prediction probabilities of yi when using the explana-

tion graph Gmi
i , which is obtained by important structures found by explainable

methods. Thus a lower Fidelity− (↓) is desired. Furthermore, the |Si|total rep-
resents the total number of features (e.g., nodes, nodes features, or edges) in the
original graph model; while |si| is the size of important features/nodes found
by the explainable methods and it is a subset of |Si|. Note that higher sparsity
values indicate that explanations are sparser and likely to capture only the most
essential input information. Hence, a higher Sparsity (↑) is desired.
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4.2 Vulnerable to Aggressive Adversary

To measure the robustness of GNN explainers against aggressive structure noises,
we estimate the differences in performance of GNN explainers between original
and aggressive noisy datasets. We first obtain the explanation performance of
each explainers on original clean graph datasets, which serves as our baseline.
We then obtain the corresponding explanation performance of each explainers
on noisy graph datasets with aggressive adversary. For reference, we also report
the GCN accuracy.

Fig. 5. The results of aggressive adversary in terms of Fidelity+, Fidelity−, and
Sparsity.

GNN Explainers Are Not Robust to Aggressive Adversary. Figure 5 shows the
results of the robustness of GNN explainers against aggressive noise. One can
observe that: 1) As the noise level increases, all explanation performance metrics
including Fidelity+, Fidelity−, and Sparsity consistently become worse, imply-
ing that aggressive noises do have negative impacts on the GNN explainers; 2)
The accuracy of GCN keeps decreasing as the noise level increases, implying that
the aggressively injected noises also affect the performance of GCN itself, which
is consistent with the findings in [7,34]; 3) The findings mentioned above are
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consistent across different datasets and different tasks, suggesting the generality
of our findings.

4.3 Vulnerable to Conservative Adversary

Now, we start to explore how conservative adversary affect the GNN explainers.
We follow the exact pipeline in Sect. 4.2 expect that we here inject noises in a
more cautious way. We believe this conservative adversary would yield negligible
impacts on the GCN itself while it may still negatively affect the explanation
quality of GNN explainers (see Sect. 3 for more details).

Fig. 6. The results of conservative adversary in terms of Fidelity+, Fidelity−, and
Sparsity.

GNN Explainers Are Not Robust to Conservative Adversary. Figure 6 shows
the experimental results for the setting of conservative adversary. As expected,
the accuracy of the GNN is quite stable and does not change much even when
the noise level increases, implying that the noises injected in this way do not
alter the essential structures of graph datasets. However, in term of Fidelity+,
Fidelity−, and Sparsity, we see a similar trend as the aggressive adversary
(Sect. 4.2) although the impacts here are much benign, which further demon-
strates the fragility of GNN explainers to graph noises.
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5 Conclusion

In this paper, we attempt to identify the robustness issue of GNN explainers.
We propose two types of structure noises—aggressive adversary and conservative
adversary—to construct noisy graphs. We evaluate three recent representative
GNN explainers including GNNExplainer, PGExplainer, and Gem, which vary
in terms of interpretation scales and generality. We conduct experiments on two
different tasks—node classification with BA-Shapes and Tree-Cycles datasets
and graph classification with Mutagenicity dataset. Through experiments, we
find that the current GNN explainers are fragile to adversarial attacks as the
quality of their explanations is significantly decreased across different severity
of noises. Our findings suggest that robustness is a practical issue one should
take into account when developing and deploying GNN explainers in real-world
applications. In our future work, we would develop algorithms and models to
improve the robustness of GNN explainers against these adversaries.
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