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Abstract. Counterfactual Regret Minimisation (CFR) is the leading
technique for approximating Nash Equilibria in imperfect information
games. It was an integral part of Libratus, the first AI to beat professionals
at Heads-up No-limit Texas-holdem Poker. However, current implemen-
tations of CFR rely on a tabular game representation and hand-crafted
abstractions to reduce the state space, limiting their ability to scale to
larger and more complex games. More recently, techniques such as Deep
CFR (DCFR), Variance-Reduction Monte-carlo CFR (VR-MCCFR) and
Double Neural CFR (DN-CFR) have been proposed to alleviate CFR’s
shortcomings by both learning the game state and reducing the overall
computation through aggressive sampling. To properly test potential per-
formance improvements, a class of game harder than Poker is required,
especially considering current agents are already at superhuman levels.
The trading card game Yu-Gi-Oh was selected as its game interactions
are highly sophisticated, the overall state space is many orders of magni-
tude higher than Poker and there are existing simulator implementations.
It also introduces the concept of a meta-strategy, where a player strategi-
cally chooses a specific set of cards from a large pool to play. Overall, this
work seeks to evaluate whether newer CFR methods scale to harder games
by comparing the relative performance of existing techniques such as reg-
ular CFR and Heuristic agents to the newer DCFR whilst also seeing if
these agents can provide automated evaluation of meta-strategies.

Keywords: Artificial intelligence · Machine learning · Extensive-form
games

1 Introduction

Attempting to solve problems of increasing complexity is one of the main goals
of artificial intelligence (AI) research. Games are often used as a test bed for such
research, as they provide a reasonable environment to evaluate but can also be
applicable to the real world. Over time different techniques have been created
to address different classes of games, starting with simple perfect-information
(whole game state is known at all times) deterministic games like Tic-Tac-Toe,
to massive imperfect-information (partial unknown game state) extensive form
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games like Starcraft. In the case of perfect information games, Monte-Carlo Tree
Search (MCTS) [10] and deep neural networks have been used in AIs such as
Alpha Zero [21], which surpassed human levels of performance in Chess, Go,
and Shogi. In the case of imperfect information games, a technique called Coun-
terfactual Regret minimization (CFR) [6] was used in Libratus [9] to beat top
professionals at Heads-up No-limit Texas Holdem Poker. Given that superhuman
performance has been achieved at the hardest benchmark for imperfect informa-
tion games, new harder games are needed to increase benchmarks for existing
and future methods. Trading Card Games (TCGs) are a possible direction as,
despite having a larger state space, more complex card interactions, and the
concept of meta-strategies, they are still feasible to compute in comparison to
massive online games like StarCraft or League of Legends, and can still be easily
represented as a game tree. This paper will benchmark existing and new game
solving methods, such as Deep Counterfactual Regret Minimisation (DCFR) [8],
to see if they cope with the demands of more complex games like TCGs and
assess whether these methods can evaluate different meta-strategies.

1.1 Foundational Work

In general, games are classified by the following properties:

– Zero-sum: overall reward sums to zero or there is some concept of a winner
and loser.

– Information: whether the state is partially or fully known.
– Determinism: whether chance affects the game in any way.
– Sequential: whether actions occur one after another or simultaneously.
– Discrete: whether actions are applied in real time or not.

For simple deterministic perfect-information games with small state spaces,
the whole game tree can be evaluated with the classical Minimax [4]. However,
for most non-trivial games, an algorithm must decide what part of the game tree
to explore. Perhaps the most widely used algorithm is MCTS [10] which was used
in DeepMind’s AlphaGo [22] to beat the 18-time Go world champion. Instead of
hand-crafted game evaluation functions and state selection heuristics that would
be required to make Minimax feasible, the algorithm used in AlphaGo used a
deep neural network trained with self-play for state evaluation and a MCTS for
state selection. Along with its successor AlphaZero [21] AlphaGo serves as the
benchmark for perfect-information game playing performance.

Despite this excellent performance in perfect information games there are few
real-world scenarios that have perfect information. In fact, most real-world situ-
ations, such as business strategy, economic models or simple negotiation
can all be modelled as imperfect information games [15]. Whilst extensions can
be made to perfect information games to make them imperfect, such as imper-
fect Chess [19], and simple games like Bridge are used as teaching tools, Poker
is the canonical example of an imperfect information game.
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Attempting to apply the Minimax algorithm or raw MCTS to Poker will lead
to poor results as each game state has uncertainty and it is infeasible to enu-
merate all combinations. Instead, information sets (infoset) are used as a proxy
for game state and represent the set of all possible states that could be known
with the current information. Whilst MCTS can be modified to accommodate
information sets, Regret Matching (or regret minimisation) has been shown to
have better convergence and results in practise [24]

Intuitively, the action that you regret not taking the most is the one that
should have used. A mathematical representation of regret is the difference
between the reward of an action that was taken and the action that could have
been taken

regret = µ(possible action) − µ(action taken)

CFR [26] is an extension to regret matching. It deals with scenarios that have
multiple steps and allows an agent to know what the regret of not taking an
action is at each step. Instead of calculating the regret for an action, the regret
is calculated based on a counterfactual value, which is the value of a state mul-
tiplied by the probability of reaching that state.

CFR was used to play the hardest variation of Poker (Heads up no limit
Texas-holdem having approximately 10161 decision points) and successfully to
beat top-level human players [9]. Computing a strategy for this game was obvi-
ously infeasible. As such, treating groups of scenarios as strategically identical
was required. But, it came at the cost of fixing the implementation to a hand-
crafted abstraction and a tabular representation. Overall, this means the original
CFR techniques would not generalise well to other games, nor would they scale
to extremely large games.

1.2 Current Methods

One of the first methods to deal with both tabular solving and abstraction
was Deep CFR [8] (Deep CFR). It performed better than all the previously
mentioned approaches and stands as one of the few algorithms that can tackle
games whose state or action spaces are too large. It works by using a neural
network to approximate, with theoretical convergence, the behaviour of CFR.
The neural network architecture used can be seen in Fig. 1.

It is unique compared to the previous methods shown in that it does not
calculate and accumulate regrets at each infoset, rather it generalises across
similar infosets with the function approximation provided by deep neural net-
works. Unlike tabular CFR it does not require a hand crafted game abstraction
and, as such, learns through self-play.

For each iteration, Deep CFR performs a constant number of partial traver-
sals according to Monte-Carlo CFR [16]. At each infoset it plays its current
strategy, which was determined by regret matching the output of the neural net-
work. This neural network takes in information sets as input and has the goal of
approximating the regret that tabular CFR would have produced. Like regular
CFR, when a terminal node is reached, values are propagated back up the tree.
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Fig. 1. Neural network architecture of Deep CFR as presented in [8]

These instantaneous regrets are sampled and stored in memory. Then, before
the next iteration, a completely new network is trained to minimise the error
between the predicted regrets and the samples of regret that have been stored
in memory. Once this training is complete, the next iteration can begin.

Despite scaling better than tabular CFR, DCFR is not perfectly scaleable
either. The sampling strategies used are simplistic, and introducing more sophis-
ticated methods would likely result in high variance between sampled payoffs.
Extensions to Deep CFR such as Variance Reduction Monte-Carlo CFR (VR-
MCCFR) [20] and Double Neural CFR (DNCFR) [18] represent the state of the
art in solving massive imperfect information games.

Specifically, VR-MCCFR takes the per-iteration estimated value updates of
a MCTS and reformulates them as a function of sampled values and state-action
baselines whilst still being unbiased. It should be noted that plain Monte-Carlo
CFR (also known as chance sampled CFR) was the precursor to this method, but
it was only applied to small games and struggled to compete with tabular agents
[16]. A visual representation of the difference between MCCFR and VR-MCCFR
can be seen in Fig. 2

Fig. 2. The tree traversal of VR-MCCFR as compared to regular MCCFR and normal
CFR as presented in [20]
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VR-MCCFR was not investigated for implementation in this project due to
its inability to be accelerated by GPU compute (unlike DCFR and DNCFR),
meaning significantly more computational resources would be required for similar
results. Similarly, DNCFR was not investigated due to a lack of open source
reference implementations.

1.3 Game Selection

Imperfect information games are a harder class of games than perfect information
games due to the number of possible game states growing exponentially due
to uncertainty. Trading card games (TCG) are a more difficult class of game
because there is not only non-determinism in game state, but also uncertainty
in card interactions.Furthermore, instead of being completely turn-based games
like Poker, card interactions between players can happen on either player’s turn.
Specifically, many TCG cards have a logical description of the effect they have
on the game state, when this can be applied, and any uncertainty or random
conditions that need to be met to carry it out. Being significantly harder than
Poker, TCG’s could provide an environment to test more powerful imperfect
information solving methods. An example of a TCG is Yu-Gi-Oh. From Table 1
not only does Yu-Gi-Oh have a much larger card pool but also a significantly
larger number of possible actions.

Table 1. Comparison of Yu-Gi-Oh and Poker

Property Yu-Gi-Oh Poker

Move types 20 6

Players 2 2

Multi-interaction ✓ ✗

Deck size 40–60 52

Card pool 11,892 52

Even compared to other TGC’s Yu-Gi-Oh presents a few unique advantages,
such as not having mechanics to re-snuffle the starting hand at the beginning
of the game, a limited field size, and generally requires more card interactions
overall. This means any agent developed does not have to require a hand evalu-
ation system at the start of the game, can have its state represented efficiently,
and can learn common patterns of card interaction more easily.

A Brief Description of Yu-Gi-Oh. A player wins a game of Yu-Gi-Oh by
reducing their opponent’s life points to zero. Both players start with 8000 and
they can be reduced either by attacks from an opponent’s Monster or card
effects. A Monster card is one of the three main types of Yu-Gi-Oh cards. It
can be placed on the field, termed “summoning” by a player on their turn given
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certain conditions are met. A simple analogy would be Chess pieces, where a
Monster is a particular piece and a square on the Chess board is a Monster zone
on the field. There are also Spell and Trap cards which cannot directly harm
an opponent but do influence the state of the game. These cards are stored in a
Deck which can be between 40–60 cards of the players’ choice.

1.4 Similar Work

Most TCGs have large player bases, and some even have international competi-
tions. Such competitions are usually held in person with physical cards. Addi-
tionally, there is a dedicated AI competition in the case of Hearthstone [12],
but methods so far have focused on perfect information MCTS. This is also
the case for Magic the Gathering [25], where even ensemble MCTS tree search
methods showed poor results [11]. This is because MCTS, even with information
sets struggles to adequately address the inherent imperfect information nature
of the games. Some neural network methods have been attempted but have had
poor results [13]. At the time of writing there are no works investigating the
application of game solving methods to Yu-Gi-Oh.

1.5 Meta-strategies

The terms Meta-game or Meta-strategy have different interpretations depending
on context, but from the perspective of Yu-Gi-Oh the so called “meta” is the
specific decks that are the best or most successful. One of the most prudent
examples of “meta” is that of the 2013 or “Dragon Ruler” format in Yu-Gi-Oh
where 95% of all tournament wins and top positions were taken out by two decks,
Dragon Rulers and Spellbooks. Furthermore, the world championships of 2013
were comprised entirely of those two decks [5]. Playing any other deck at the
time put a player at a serious disadvantage.

Deciding on a good meta-strategy is a reflection of a player’s skill and is
not something that is directly addressed by modern card game AIs. Often when
playing an AI player their meta-strategy has been pre-determined and does not
change, such is the case with AIs provided with community Yu-Gi-Oh simulators
and the official Yu-Gi-Oh online games. Because MCTS, CFR and DCFR agents
all learn through some form of self-play and attempt to learn the optimal strategy
(or policy) given the deck they have, it should be possible to give one of them
different decks, train the same agent against itself, and use the results to draw
conclusions about the relative performance of those decks.

2 Experimental Design

Being different to almost all games traditionally studied in game theory and
AI generally, the implementation of Yu-Gi-Oh for performing experiments will
both be distinct and more complicated. There are relatively few digital Yu-Gi-
Oh environments, and none that have been used in the context of AI. To play
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Yu-Gi-Oh online, players can either purchase the first party app [17] but must
unlock cards and cannot play freely with other players. They can go to the
website [1] where they are free to choose cards but must still play and perform
all the card interactions manually. The final option is a free and open source
simulator, EdoPro (formerly YGoPro) which is a C++ game engine that uses
Lua scripts to represent card logic. Being originally designed to function as a
game server it provides a reasonable API from which game state and available
actions can be captured, thus making it a suitable platform to build and train
an agent. Being a community built technology means it has the advantage of
being regularly updated and remarkably complete in comparison to the latest
release of the game. It is also quite fast, supporting Lua scripting for describing
card logic.

The overall simulator used for experiments in this project used parts of the
core game engine available [3] and a selection of card scripts from [2] as a base.
Parts of it were re-written and other parts were added to make tree searching
more practical with what was originally a completely linear state machine. On
top of this base, a Python abstraction layer was built and linked to the associated
algorithms. This Python layer also allowed for parallelisation across different
kinds of compute resources. Considering that the successful agents for Poker ran
on a supercomputer [9], to be able to achieve any reasonable results, a reduced
game was considered. The rule set, card pool and banned card list were all
restricted to the original release of the game. Furthermore, every agent used the
same pre-constructed deck. This version of the game still captures the complex
interactions and vast card pool without making the game overly complicated or
too large.

The following agents were implemented:

– Heuristic agent
The EdoPro simulator [3] provides some built-in AIs that are all heuristic
agents hard-coded to respond to certain combinations of cards. For example,
always attack the weakest monster, always set trap cards in main phase two,
and if the opponent’s monster is more powerful, set your own monsters to
defence position.

– ISMCTS Agent
A simple information set MCTS agent with the UCB [14] tree selection policy

– Plain CFR agent
A custom game abstraction was implemented and the different phases of a
Yu-Gi-Oh turn were divided into buckets

– Deep CFR agent
A deep regret matching network trained through partial iterations of MCCFR
[16]

For all experiments, a single duel setting was decided upon (where two players
play until one wins) as opposed to a match (best two out of 3 duels) to alleviate
the need for side decking and to simplify numerical analysis. The agents played
500 duels, and they both played with the same set of cards. They also started
with 8000 life-points, had a starting hand of 5 cards, drew one card per turn,
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and played under no ban list (as was the case for the Original Yu-Gi-oh release).
This round of 500 games was repeated three times for each pair of agents to
reduce variance further.

Constraints. To save computational resources, for the implementation of all
tree searching methods, the following additional constraints were placed on the
state of the game to save computational resources:

– What cards were in the graveyard and what order they were in was not
recorded.

– The cards that were in both players’ extra decks were not recorded.
– Only cards on the field were recorded not the specific placement or ordering

and the same for the hands of both players

Multiple instances of each agent were used for training but each referenced
the game memory (the game tree in the case of ISMCTS and counterfactual
memory for the CFR methods). In the case of ISMCTS random simulations
were limited to 100 actions before the evaluation function was applied.

Evaluation Function. Given the sometimes immense length of Yu-Gi-Oh
games, waiting until a terminal state in the roll out stage of ISMCTS and CFR
would lead to poor performance. As such, the simulated games were cut off and
an evaluation function was applied, which is meant to approximate the overall
value or result of that state.

The following function was used:

v(s) = 1.5 ∗ (cc − oc) + 2 ∗ mf +
cl

ol

where cc ∈ [0, 20] is the number of cards the agent controls oc ∈ [0, 20] is the
number of cards the opponent controls cl ∈ [0, 8000] is the agent’s life points,
ol ∈ [0, 8000] is the opponents’ life points and mf ∈ [0, 5] is the number of
Monsters the current player has on the field.

This function was chosen based on experience and preliminary testing. It
seemed to capture the three main aspects of Yu-Gi-Oh that led to an overall
advantage:

– Having more life points than the opponent.
– Having Monsters to attack the opponent with.
– Having more cards than the opponent to play with.

Time constraints limited empirical determination of good values for the
weighting of various factors, so crude values were chosen based on experience
with the game.

Statistical Significance. Independent sample t-tests were performed to com-
pare two agents in each of the three experiment runs.
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Meta-strategy Evaluation. A way of assessing whether CFR methods can
evaluate decks at a high level would be to compare them to human evaluations
of decks. A common notion among the Yu-Gi-Oh player base is tiers, where if a
deck is in tier 1, it is one of the best and is expected to win most major events. If
a deck is in tier 3, it is not expected to win much, but is still competitive. In the
early history of Yu-Gi-Oh there were no real archetypes (groups of cards that
followed a theme and worked well together), so there were only a few popular
decks that people played with subtle variations from player to player. Because
of this, and the fact that records of top performances during the early 2000s are
difficult to find, decks from that time period cannot be used.

The first format to have reasonable records and well defined tiers is that
of early 2011. Table 2 shows which decks were selected after compiling popular
decks from the Pojo community forums [23] and what tier they are.

Table 2. Decks chosen for Meta-Strategy evaluation and their relative performance

Deck Tier

Agents 1

Tengu-Plants 1

GraveKeepers 2

Six Samurai 2

Worms 3

Gem-Knights 3

A DCFR agent was trained for each deck. Training consisted of instances of
the six agents playing against a random opponent (who was one of the six decks)
for a period of four days. They were then placed in a tournament scenario which
closely resembles real-life Yu-Gi-Oh tournaments.

3 Results

A summary of the overall win percentages of playing various agents against each
other can be seen in Table 3.

3.1 Baseline

Overall the Heuristic Agent beat the random Agent 75% of the games. As was
expected, reasonable heuristics crafted by an expert player easily outperformed
random play. The difference between the agents was significant; t (4) = 10.885,
p < 0.001. This experiment provided a baseline for the examination of the other
agents (Table 4).
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Table 3. Overall head to head win percentage of three 500 game matches between
different agents.

Deck Random Heuristic ISMCTS CFR DCFR

Random 50% 30% 45% 39% 22%

Heuristic 70% 50% 70% 61% 47%

ISMCTS 55% 30% 50% 42% 35%

CFR 61% 39% 65% 50% 37%

DCFR 78% 53% 65% 63% 50%

Table 4. Number of wins, mean and variance of three 500 game matches between the
Custom Heuristic Agent and a random Agent

Agent Round 1 Round 2 Round 3 μ σ

Random 125 170 130 142 24

Heuristic 375 330 350 352 22

These results are likely due to the fact that heuristics are effective at playing
most scenarios with simple decks and most of the actions available do not involve
the more complex game mechanics that would require more detailed heuristics.

3.2 Existing Methods

The ISMCTS Agent won 55% of the games when playing the Random Agent
(Table 5). The differences between ISMCTS, Random and Heuristic agents were
all statistically significant. It fared significantly worse against the Heuristic Agent
only winning around 30% of the games played on average. Whilst the ISMCTS
Agent was slightly better than random play, it was no match for the expert
heuristics, indicating raw MCTS methods are not a good fit for solving Yu-Gi-
Oh. The CFR Agent won 61% of the games against the Random Agent (Table 5).
However, it was also easily beaten by the Heuristic Agent, only winning 37% of
the games. The differences between CFR, Random and Heuristic Agents were
all significant. These results indicate that the CFR Agent performs better than
the ISMCTS Agent in both random and heuristic scenarios. Therefore, it is still
not an ideal fit for Yu-Gi-Oh, especially considering the large training resources
required.
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Table 5. Number of wins, mean, variance and t score of three 500 game matches
between the ISMCTS Agent, CFR Agent, Heuristic Agent and a Random Agent

Match Round 1 Round 2 Round 3 μ σ t (p < 0.001)

ISMCTS/Random 275/225 270/230 280/220 275/225 5 12.247

ISMCTS/Heuristic 150/350 141/359 152/348 148/352 6 −42.779

ISMCTS/CFR 175/325 173/357 177/323 175/325 2 13.272

CFR/Random 305/195 306/194 300/200 304/196 3.2 40.894

CFR/Heuristic 200/300 159/341 190/310 183/317 21 −9.9625

3.3 Deep Counterfactual Regret Minimisation Agent

Deep CFR performed the best out of all the agents, winning 53% of games against
the Heuristic Agent and 78% against the Random Agent (Fig. 3). The difference
between Deep CFR and the Random agent was significant. However, the nar-
row difference between Deep CFR and the Heuristic Agent was not statistically
significant; t (4) = 2.746, p < 0.052 (Table 6).

Table 6. Number of wins, mean and variance of three 500 game matches between the
Deep CFR Agent, the Heuristic Agent and a Random Agent

Match Round 1 Round 2 Round 3 μ σ t (p < 0.001)

DCFR/Random 390/110 387/113 385/115 387/112 2 133.670

DCFR/Heuristic 265/235 250/250 270/230 262/238 10 N/A

Deep CFR Random

390

110

387

113

385

115

Run 1 Run 2 Run 3

Deep CFR Heuristic

265

235
250 250

270

230

Run 1 Run 2 Run 3

Fig. 3. Visualisation of the number of wins of three 500 game matches between the
Deep CFR agent, the Heuristic Agent and a Random Agent
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Given this lack of significance, a further test run of three 1000 game matches
between the same DCFR and Heuristic agents was run (See Table 7). This run
was statistically significant with t (4) = 0.0154, p < 0.001 confirming the superior
performance of the DCFR agent.

Table 7. Number of wins, mean and variance of three 1000 game matches between the
Deep CFR Agent and the Heuristic Agent

Agent Round 1 Round 2 Round 3 μ σ

DCFR 565 542 560 555 12.1

Heuristic 435 458 440 444 12.1

3.4 Meta-strategy Evaluation

Agents Tengu-plant Gravekeepers Six Samurai Worms Gem Knights

195

170
180

165
155

135

Tier 1 Tier 2 Tier 3

Fig. 4. Number of tournament wins of various decks

The most dominant deck, Agents, won the most games by a reasonable margin
(See Fig. 4). However, the tier two deck Gravekeepers came in second place,
followed by the other tier one deck, Tengu-Plant. Whilst this slightly matches
the trend indicated by Table 2, the tier 1 decks are not as dominant and the tier
3 decks are not completely overpowered.

4 Discussion

4.1 Game Abstractions

The game abstraction used for the CFR agent was both simplistic and small.
Looking at some of the Duel replays, it is apparent it hindered the agents’
performance in some areas. For example, when the opponent had a powerful
Monster like the CFR player would attempt to play a card that only destroys
spell cards, thinking it was one that destroyed all cards, leading to a worse



The Feasibility of Deep Counterfactual Regret Minimisation 157

position. Furthermore, as the general preprocessing was hand crafted, it is not
applicable to other Decks making the agents less general.

Future experiments should incorporate larger game abstractions such as the
hierarchical methods outlined in [7] and post-processing methods.

4.2 Agent Results

According to the results against the Heuristic agent, Deep CFR is the most scal-
able and best performing agent. There are a few factors that were responsible for
this success. The first is how it uses the computational resources. Both MCCFR
and CFR were limited to using only the CPU for calculations and storage of
regret values, whilst the Deep CFR agent was able to make use of 2 GPU’s for
training its neural networks and some storage, putting it at a significant advan-
tage. This is especially the case when compared to the MCTS agent, which ran
out of memory during training and struggled to complete enough iterations to
become competitive in terms of win rate. As Yu-Gi-Oh cannot easily be rep-
resented as a vector with reasonable memory requirements and hence a matrix
game, being able to scale some component of the system to better hardware
could be considered a desirable quality in the case of Deep CFR.

In the case of the CFR agent, having a more efficient variant such as CFR+
or Linear CFR could have led to much better results. However, it is likely that
both a sampling strategy and advanced abstraction will be required for the best
results. These will help alleviate memory issues as the standard CFR agent ran
out of memory on multiple occasions and had to cut nodes from the game tree
in some cases. Overall, despite being the fastest computationally, CFR does not
provide a path to scale to the full game.

A small number of games were played between the Deep CFR Agent and
a human player. The Deep CFR Agent was able to win some of these games
and made relatively few obvious mistakes, which, whilst expected due to the
stochastic nature of Yu-Gi-Oh and the simplified game, is a promising indicator
that the agent had achieved a level of human-like play. Future experiments should
aim to play more games against humans, perhaps making use of the online
facilities provided by EdoPro [3], to ascertain how competitive Deep CFR and
agents like it are.

4.3 Meta-strategy Evaluation

Whilst the results are promising for meta-strategy evaluation, there are a few
issues that likely led to less than perfect results. The first is training the DCFR
agent on much more complicated decks. In the simplified game, the agents hardly
ever had to deal with chained effects or extra deck Monsters, yet for the 2011
decks, the usage of extra deck Monsters was critical. This partially explains why
the Tengu-Plant deck did not perform as well as expected. Being a strategy
that heavily revolves around the extra deck and requires complicated card com-
binations to be successful, it was probably too much for the Deep CFR agent
to learn perfectly. This could also explain why the Gravekeeper deck did better
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than expected, coming in second place, as its strategy revolves more around con-
trolling the field and playing as few cards as possible. Seeing that the Deep CFR
agent prefers more simple strategies, it raises the question of what improvements
could be made algorithmically. A possible solution could be focusing on expand-
ing more of the game tree related to the current player’s turn as opposed to
the opponent’s move to encourage exploration of combination moves on a single
turn. Despite its shortcomings, the fact that Tengu-Plants came in 3rd place is
an indication that Deep CFR can learn complex strategies, and if improvements
to the algorithm were made, or if more computational resources were applied, it
is likely that it would perform even better.

5 Conclusion

Current CFR methods are almost universally tested using the game of Poker
which, whilst providing a complex stochastic imperfect information environ-
ment, does not capture complex logic interactions between cards or players.
Yu-Gi-Oh, in contrast, is in a class of harder games where card interactions can
be stochastic, conditional, or temporally inter-dependent at the same time, and
player interaction incredibly situational. These properties make Yu-Gi-Oh a bet-
ter representation of real world strategic interactions and more apt at addressing
modern challenges in AI, such as complex logic, massive state space and hidden
information, than Poker. To test Yu-Gi-Oh using CFR, within the bounds of
modern computational power, a slightly simplified version of the game that still
captures the logic and state space requirements was constructed.

Of the methods tested, Deep CFR and a simple Heuristic Agent performed
the best. This indicates that techniques such as MCTS and tabular CFR with
custom abstractions are not well suited to address the amount of hidden infor-
mation Yu-Gi-Oh presents and that even custom abstractions do not capture
the relationships between information sets well. Also of concern is that, with the
exception of the Heuristic Agent all methods struggled under the CPU, mem-
ory, and disk resource limitations of the experimental environment. Future work
should look at scaling the experiments to larger computational resources to inves-
tigate if MCTS and CFR can perform better under such conditions, especially
in the case of sampling variants such as CFR+ and VR-MCCFR.

In the case of using CFR as a way of evaluating meta-strategy, the results
are positive but inconclusive. Using Deep CFR as the evaluation system results
in similar trends as in real tournament play. Considering that the decks and
rules used in those experiments were far more advanced than the simple deck
and that each agent had to learn how to play against multiple meta-strategies,
the fact that the best deck in the format came out on top is promising. Future
work, similarly to the evaluation of CFR methods, should look at what the
algorithms do with more training time but also at how different algorithms
learn to play different meta-strategies or combinations of them. Furthermore,
advanced variants such as Single Deep CFR and Double Neural Deep CFR should
be considered for their better computational performance and ability to utilise
computational accelerators.
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Overall, CFR methods appear to be able to handle the demands of larger and
more complicated games. They can produce competitive results when compared
to a tuned domain-specific agent by learning similar general behaviours and, if
given more resources, would likely outperform them. Furthermore, CFR methods
appear to be a promising tool for investigating the construction and evaluation of
meta-strategies and, with future research, could lead to intelligent systems that
are both able to calculate what resources are required to solve a problem as well
as how to best use them when doing so. Such systems do not currently exist for
imperfect information contexts, but if they did, they could be revolutionary for
business and military strategy, negotiation interactions, and complex planning
problems.
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