
Impact of Mathematical Norms on
Convergence of Gradient Descent

Algorithms for Deep Neural Networks
Learning

Linzhe Cai1(B) , Xinghuo Yu1 , Chaojie Li2 , Andrew Eberhard1 ,
Lien Thuy Nguyen1 , and Chuong Thai Doan1

1 School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
s3548838@student.rmit.edu.au

2 School of Electrical Engineering and Telecommunications, University of New South
Wales, Sydney, NSW 2052, Australia

Abstract. To improve the performance of gradient descent learning
algorithms, the impact of different types of norms is studied for deep
neural network training. The performance of different norm types used
on both finite-time and fixed-time convergence algorithms are compared.
The accuracy of the multiclassification task realized by three typical algo-
rithms using different types of norms is given, and the improvement of
Jorge’s finite time algorithm with momentum or Nesterov accelerated
gradient is also studied. Numerical experiments show that the infinity
norm can provide better performance in finite time gradient descent algo-
rithms and give strong robustness under different network structures.

Keywords: Infinity norm · Finite-time convergence · Norms
equivalence · Deep neural network

1 Introduction

For a machine learning model, increasing the model complexity can effectively
improve the learning ability. For models like neural networks, there are two obvi-
ous ways to increase complexity, one is to make the model wider and the other is
to make the model deeper [1]. Shallow networks require exponentially increasing
the number of units to achieve the same computational results compared with
deep networks. Additionally, shallow networks need a good feature extractor
that solves the selectivity-invariance dilemma [2], which can be avoided auto-
matically when a deeper structure instead. From the perspective of topology,
the transformation of a high-dimensional space by multiple activation functions

The authors were supported by the Australian Research Council (ARC) under Discov-
ery Program Grant DP200101197.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 131–144, 2022.
https://doi.org/10.1007/978-3-031-22695-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_10&domain=pdf
http://orcid.org/0000-0003-2420-3278
http://orcid.org/0000-0001-8093-9787
http://orcid.org/0000-0002-0557-1481
http://orcid.org/0000-0003-2977-3456
http://orcid.org/0000-0001-6426-5727
http://orcid.org/0000-0003-0893-5604
https://doi.org/10.1007/978-3-031-22695-3_10

132 L. Cai et al.

makes the multi-classification problem linearly separable [3], thus the study of
deep learning attracts more attention.

With the development of gradient descent-based algorithms, stochastic gra-
dient descent (SGD) [4] provides a trade-off between accuracy and speed by
modifying the size of the batch, while momentum [5] can help to meet dampen
oscillation requirements by considering past velocity when updating. Nesterov
accelerated gradient (NAG) [6] can further speed up the process by effectively
looking ahead, the gradient of parameters in which with respect to the approxi-
mate future position instead of the current one. Other than modifying the direc-
tion, Adagrad [7] adapts the learning rate to parameters based on past gradients,
reducing the learning rate when approaching the optimum. RMSprop [8] mod-
ifies the learning rate through dividing by an exponentially decaying average,
solving the dramatically dropping problem. Adam [9] keeps both the adaptive
learning rate like RMSprop and the direction adjustment like Momentum. How-
ever, most of them can only have asymptotic convergence, which means they
cannot complete their learning within a reasonable time.

To solve the problem mentioned above, Recently, a series of algorithms appear
to guarantee finite time convergence. Among them, Jorge first provides a kind
of finite-time convergent learning algorithm, in particular, gradient flow (con-
tinuous gradient descent) through the gradient over the Euclidean distance (L2

norm) of vectors [10]. After that, Wibisono gives a variant of which by adding
a fraction on the Euclidean distance (q rescaled gradient flow) [11]. Besides,
Romero and Benosman prove that it is indeed finite-time convergent [12]. Addi-
tionally, Garg proposes a fixed-time convergence algorithm that essentially splits
the q-RGD into two parts [13]. Although a growing body of research has access
to the mathematical norm on convergence, most of them only consider the
Euclidean distance (L2 norm) when rescaling the gradient flow. There is no
study focusing on the effect of different types of norms with respect to conver-
gence performance to the best of our knowledge.

This paper aims to study the impact of mathematical norms on the conver-
gence of gradient flow for deep neural networks. Section 2 provides a review of
different types of norms, the equivalence of norms, and convergence property.
Section 3 gives numerical applications comparing different norms used on spe-
cific algorithms, and the potential improvement after involving momentum or
NAG methods. Section 4 concludes.

2 Main Results

In this section, we first review the definition of mathematical norms and the
most popular used norm types in Sect. 2.1, then give the equivalence of norms as
well as the convergence property in Sect. 2.2. The qualitative analysis of different
norms based on the expression of algorithms is given in Sect. 2.3, and the related
works we used to compare in Sect. 3 are concluded in Sect. 2.4.

Impact of Mathematical Norms on Convergence for DNN Learning 133

2.1 Mathematical Norms

Mathematically, a norm is a function from a vector space to the real numbers
describing the distance from the origin, which is an abstract generalization of
length [14]. According to the definition, a norm on a vector space R

n is a real-
valued function ‖·‖ : Rn → R that meets the following properties [15]:

– Triangle Inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ R
n.

– Absolute Homogeneity: ‖sx‖ = |s| ‖x‖ for all x ∈ R
n and all scalars s.

– Positive Definiteness: for all x ∈ R
n, if ‖x‖ = 0, then x = 0.

There are some typical types of norms given as follows [16]:

– L1 norm (Taxicab norm): ‖x‖1 :=
∑n

i=1 |xi|.
– L2 norm (Euclidean norm): ‖x‖2 :=

√
x2
1 + x2

2 + ... + x2
n.

Both L1 and L2 norms are usually used as a regularization term to penal-
ize large weights during logistic regression against the overfitting issue. While
L1 regularization penalizes the sum of the absolute values, L2 regularization
encourages the sum of the square of parameters to be small [17].

– Lp norm (p ≥ 1): ‖x‖p := (
∑n

i=1 |xi|p)1/p.

According to [[18], Theorem 3.5.4], Lp is a norm for 1 ≤ p < ∞. However, it
will becomes a pseudo-norm for 0 < p < 1, as it violates the triangle inequality
property.

– L∞ (Infinity Norm): ‖x‖∞ := maxi |xi|.

The infinity norm is essential for the limit of the Lp norm for p → ∞. Accord-
ing to the expression of the Lp norm, we can figure out that the computation
burden increase with the increase of the subscript of the norm symbol. However,
after the functional limit operation, the computation of infinity norm as shown
in the L∞ norm only needs to iterate over through vector space once.

2.2 Equivalence of Norms

We recall from [[19], Definition 1.3] that two norms ‖·‖α and ‖·‖β on a vector
space R

n are called equivalent if and only if there exist positive real numbers C
and D such that for all x ∈ R

n:

C ‖x‖α ≤ ‖x‖β ≤ D ‖x‖α . (1)

A more precise relationship between different norms is obtained through Cauchy-
Schwarz inequality and Hoder’s inequality: for p > r > 1 on R

n [20], we have

‖x‖p ≤ ‖x‖r ≤ n1/r−1/p ‖x‖p . (2)

134 L. Cai et al.

In particular,
‖x‖2 ≤ ‖x‖1 ≤ √

n ‖x‖2 ,

‖x‖∞ ≤ ‖x‖2 ≤ √
n ‖x‖∞ .

(3)

According to [[19], Appendix A], the open subset of vector space R
n defined

by equivalent norms are the same, and the convergent sequences and their limits
in R

n defined by equivalent norms are the same. Similar statements are given in
[21]: two finite-dimensional linear normed spaces with the same dimension are
algebraically isomorphic and topologically homeomorphic. Thus, the convergence
property is unchanged no matter what type of norm instead compared with the
original algorithm under the Euclidean distance.

2.3 Different Norms Applications

As mentioned in Sect. 1, Jorge [10] and Wibisono [11] proposes finite-time con-
vergence algorithms, Garg [13] provides a fixed-time convergence algorithm, and
all of which are gradient flows involving the Euclidean norm (L2 norm).

Jorge’s finite-time convergence algorithm:

dw

dt
= − ∇wJ

‖∇wJ‖2
. (4)

Wibisono’s finite-time convergence algorithm:

dw

dt
= −ζ

∇wJ

‖∇wJ‖
q−2
q−1
2

, (5)

where q > 2.
Garg’s fixed-time convergence algorithm:

dw

dt
= −C1

∇wJ

‖∇wJ‖
p1−2
p1−1

2

− C2
∇wJ

‖∇wJ‖
p2−2
p2−1

2

, (6)

where p1 > 2 and 1 < p2 < 2.
As all components in the vector share the same denominator, the relative

size among different components in the vector has not changed. Thus, the back-
propagation mechanism still works as the core of gradient descent is to figure
out which component changes matter more.

According to the expressions of Eqs. (4), (5), and (6), all norms appear in
the denominator of gradient flow and only have magnitude but without any
direction. Thus, the potential step size when iteration operation will be inversely
proportional to the relationship of the magnitude of different norms.

According to Eq. (3), the infinity norm obtains the smallest magnitude among
all kinds of norms, which means it provides the largest potential step size after
involving gradient flow. We can easily change the norm type in all these algo-
rithms without changing the convergence property considering the convergence
property discussed in Sect. 2.2.

Impact of Mathematical Norms on Convergence for DNN Learning 135

2.4 Related Works

This section gives a brief review of the two most popular algorithms, stochastic
gradient descent (SGD) [4] and Adam [9], which will be used as the benchmark
for the first case study. Two direction adjustment methods, momentum [5] and
Nesterov accelerated gradient (NAG) [6], are also introduced, which will be used
to analyze the potential improvement for the second case study.

SGD [4] is an iterative approximation method calculated from a randomly
selected subset (50 < n < 256) achieving faster iterations in trade for a lower
convergence rate:

θ = θ − η · ∇wJ(θ;xi:i+n; yi:i+n). (7)

Momentum [5] accelerates SGD by adding a fraction (γ < 1) of the previous
update vector, which obvious effect dampens oscillation when the gradient in
one direction is larger than in others:

vt = γ · vt−1 + η · ∇wJ,

θ = θ − vt.
(8)

Nesterov [6] modifies the momentum one by calculating the gradient with
respect to the estimated future position (moved by γ ·vt−1) instead of the current
one. The so-called look ahead essential considers the second derivative informa-
tion of objective function:

vt = γ · vt−1 + η · ∇wJ(θ − vt),
θ = θ − vt.

(9)

Adam [9] computes adaptive learning rates, storing an exponentially decay-
ing average (β2) of past squared gradients and keeping another similar hyper-
parameter (β1) on past gradients themselves, which is commonly considered
fairly robust to hyperparameter selection:

mt = β1 · mt−1 + (1 − β1) · ∇wJ,

vt = β2 · vt−1 + (1 − β2) · ∇wJ
 ∇wJ.
(10)

Additionally, bias correction is considered to offset the shift to the initial
value at the beginning of the iteration:

m̂t =
mt

1 − βt
1

,

v̂t =
vt

1 − βt
2

,
(11)

thus,

θt+1 = θt − η√
v̂t + ε

· m̂t. (12)

where ε is a smoothing term that avoids singularity.

136 L. Cai et al.

3 Case Studies

As the Stanford vision and learning lab [22] summarizes that two recommended
updates to use for CNN learning in visual recognition are either SGD with Nes-
terov momentum or Adam. Two case studies with quantitative analysis apply to
comparing their performance with different norm-based finite-time algorithms.
Section 3.1 compares the accuracy of different norms used in three typical algo-
rithms under ResNet50 architecture, while Sect. 3.2 shows the improvement
of Jorge’s finite-time involving momentum and Nesterov accelerated gradient
(NAG) under a six-layers convolutional network.

3.1 Three Typical Algorithms Using Different Types of Norms

As one of the most popular used image classification databases, CIFAR100 [23]
is considered as an example, and the 50-layer ResNet learning framework [24]
is introduced to complete the task. We compare the performance of algorithms
mentioned in Sect. 2.3 using different types of norms (L1, L2, L3, and L∞) in
each respectively. SGD [4] and Adam [9] are attached as the benchmark. The η
and n for SGD in Eq. (7) are fixed at 0.01 and 128, while the η, β1, β2, and ε for
Adam in Eqs. (10), (11), and (12) are 0.001, 0.9, 0.999, and 10−8 respectively.

Figure 1 gives the average value of training and testing accuracy of the
CIFAR100 database under ResNet50 architecture using three different algo-
rithms within different types of norms. According to Fig. 1a and 1b, Jorge’s
finite-time algorithm [10] using the L1 norm instead almost cannot converge
under the same step size, while L2 norm one obtains a reasonable convergent
speed. Infinity norm one can obtain the best performance. When focusing on the
training result given in Fig. 1a, the performance of SGD and Adam are between
L2 norm one and L3 norm, while for the testing result given in Fig. 1b, Adam
can beat the L3 norm after 30 epochs. Additionally, the advantage from infinity
one to L3 norm is more obvious in testing accuracy compared with the training
one.

Figures 1c and 1d give the accuracy using Wibisono’s finite time algorithm
[11] within different types of norms, and the q given in Eq. (5) is chosen as 6.
As we aim to figure out the improvement from the L2 norm to the infinity one,
only the consistency of the parameter chosen before and after changing the norm
types is necessary, while the parameters are not necessarily obtained the best
performance. When focusing on the training result given in Fig. 1c, the difference
accuracy between L2 norm one and Adam is relatively smaller compared with
Jorge’s one Fig. 1a, while the difference accuracy between L3 norm and infinity
one is relatively larger. However, the improvement from L2 norm to infinity one
in Wibisono’s finite-time is less significant compared with Jorge’s one.

Figures 1e and 1f give the performance of the CIFAR100 database under
ResNet50 architecture using Garg’s fixed-time algorithm [13] within different
types of norms, and the p1 and p2 given in Eq. (6) are chosen as 3 and 1.5
respectively. Again, we only maintain the parameter consistency before and after
changing the norm types but do not necessarily choose the optimal value. When

Impact of Mathematical Norms on Convergence for DNN Learning 137

Fig. 1. ResNet50 CIFAR100 performance under different norms

Table 1. Improvement from L2 norm to infinity one for different algorithms

Statistics Jorge Wibisono Garg Jorge-v Wibisono-v Garg-v

L∞ − L2

Max 0.6109 0.5492 0.2441 0.2372 0.2039 0.0562
Min 0.0596 0.0460 −0.0032 0.0274 0.0920 0.0179
Median 0.3154 0.2383 0.0269 0.1732 0.1687 0.0338
Mean 0.3209 0.2615 0.0739 0.1721 0.1636 0.0353

L∞−L2
L2

Max 721.43% 695.65% 51.29% 533.73% 528.45% 39.84%
Min 6.87% 4.88% −1.14% 61.81% 61.46% 7.65%
Median 77.92% 46.96% 4.18% 86.99% 82.24% 15.73%
Mean 169.30% 119.93% 16.64% 126.54% 108.38% 16.18%

138 L. Cai et al.

focusing on the training result given in Fig. 1e, the performance of the L2 norm
can almost beat the Adam one, while Fig. 1f shows that the improvement from
the L2 norm to infinity one in Garg’s fixed-time algorithm is limited. Specifically,
the performance of Garg’s fixed-time algorithm under almost all types of norms
(excluding the L1 one) is between SGD and Adam after 20 epochs, which means
that the improvement room from L2 norm to infinity one in Garg’s fixed-time
algorithm is further compressed.

Fig. 2. Accuracy of CIFAR100 database using different algorithms under L1 norm

According to Fig. 1, L1 norm-based iteration provides the worst performance
for the lowest accuracy for all three algorithms. To indicate they are convergent
slower instead of cannot obtain the convergence property, Fig. 2 extracts the
accuracy of different algorithms using the L1 norm from Figure 1. The darker
chroma of the same color represents the accuracy difference from training to
testing. According to Fig. 2, all three algorithms can converge but with a slower
step size, and the difference between the training database and the testing one
is relatively small. Although Garg’s fixed-time algorithm has a slightly higher
original accuracy, it provides the least improvement from the perspective of
absolute numerical.

Table 1 gives statistical data on the differences from L2 norm to infinity one at
corresponding iteration times for different algorithms respectively. The absolute
values indicate the absolute accuracy improvement from L2 to infinity norm,
while the relative values indicate the absolute differences over corresponding
L2 norm accuracy (percentage improvement). A positive value means that the
accuracy of the infinity norm used on the algorithm is higher than Euclidean one,
while the negative value implies that the L2 norm may have higher accuracy
at a specific iteration time. The algorithms without -v in the column express

Impact of Mathematical Norms on Convergence for DNN Learning 139

the training accuracy, while the algorithms with -v in the column express the
validation accuracy (testing datasets).

According to Table 1, the infinity norm used in all algorithms can have an
improvement from its original one (L2 norm). Among them, Garg’s fixed-time
algorithm provides the smallest improvement, and Jorge’s finite time algorithm
has slightly more improvement than Wibisono’s. Additionally, for a specific algo-
rithm, the improvement in training datasets is always more obvious than which
in testing one. The maximum improvement (7 times for Jorge’s and Wibisono’s
training and (7 times for Jorge’s and Wibisono’s testing) usually appear in the
first few iteration times, while the minimum differences (negative for Garg’s
training accuracy) arise at the latest few steps.

In summary, the effects on different types of norms are obvious for Jorge’s
finite-time algorithm, and the performance of which using infinity norm can
surpass SGD and Adam for training and testing accuracy during the overall
process. Although Wibisono’s finite-time algorithm with infinity norm also has
similar accuracy, the dependency on the parameter chosen weakens its advantage.

3.2 Jorge’s Finite-Time Algorithm with Momentum and Nesterov

According to the brief review of gradient descent-based optimization given in
Sect. 2.4, there are two mainstreams to refine an algorithm, namely iteration
direction (eg. Momentum [5]) and adaptive learning rate (eg. RMSprop [8]).
The finite time algorithm is essential one type of rescaled gradient flow, which
means the improvement from the perspective of adaptive learning rate is already
obtained. Thus, we are interested in whether the direction modification can
further improve learning performance.

The second case study focuses on the improvement of Momentum [5] and
Nesterov accelerated gradient (NAG) [6] methods used on finite time algorithms
with different types of norms. The network structure considered in the case study
is a six convolutional layers CNN (filter numbers 32, 32, 64, 64, 128, and 128)
with batch normalization and dropout layers attached. To reduce the puzzle
caused by the parameter chosen, Jorge’s finite-time algorithm is considered as
an example.

Figure 3 gives the testing accuracy of the CIFAR100 database using the L2

norm and L3 norm with different fractions of momentum (γ in Eq. (8)) or Nes-
terov (γ in Eq. (9)) accelerate respectively. SGD is still considered as a bench-
mark. As for the infinity norm, the different performance among different frac-
tions is too small to illustrate, more statistical details will give in Table 3.

According to Fig. 3, the difference between momentum (Figs. 3a, 3c, and 3e)
and corresponding Nesterov (Figs. 3b, 3d, and 3f) under the same fraction value
is not obvious. Besides, the improvement after involving momentum and Nes-
terov is outstanding on the L2 norm-based Jorge’s finite-time algorithm as seen
in Figs. 3c and 3d. However, the accelerated effect is reduced on the L3 norm-
based one as seen in Figs. 3e and 3f. The enhancement of SGD after adding
momentum is between the L2 norm and the L3 norm.

140 L. Cai et al.

Fig. 3. CIFAR100 testing accuracy under six convolutional layer structure

Table 2. Improvement of momentum and Nesterov for different types of norms

Statistic SGD-M SGD-N L2-M L2-N L3-M L3-N

f0.9 − f0

Max 0.2216 0.2085 0.2772 0.2993 0.1634 0.1977
Min 0.0113 0.0106 0.0567 0.0563 −0.0172 −0.0690
Median 0.0646 0.0571 0.1349 0.1356 0.0071 0.0134
Mean 0.0802 0.0773 0.1406 0.1499 0.0270 0.0277

f0.9−f0
f0

Max 248.24% 154.20% 413.87% 534.09% 540.54% 428.37%
Min 1.98% 1.86% 11.26% 11.01% −2.97% −25.89%
Median 12.64% 11.48% 31.25% 32.02% 1.27% 2.38%
Mean 24.71% 23.11% 56.46% 62.38% 12.61% 12.03%

Impact of Mathematical Norms on Convergence for DNN Learning 141

Table 2 concludes the improvement from no momentum to 0.9 fractions (best
performance under all subfigures) of both absolute and relative values for SGD,
L2 norm, and L3 norm respectively. The algorithms with M in the column indi-
cate adding momentum term, and the algorithms with N in the column indicate
adding Nesterov term.

When we look at the absolute difference, while the improvement of the L2

norm is almost double compared with which in SGD, the mean value of SGD
is triple compared with the L3 norm on average and quadruple compared with
which median value. As for the relative value, the average improvement of SGD
is only double compared with the L3 norm, but the median value difference
between them is five times. Again, the maximum improvement usually appears
in the first few iteration times, while the minimum differences arise at the latest
few steps. As the extreme value has relatively greater contingency, the statistical
significance of which is weakened.

Although SGD, L2 norm, and L3 norm obtain the best performance when
fractions equal to 0.9, the same fraction gives the worse performance when it
comes to the infinity norm, while other fractions almost have no effect on it (as
seen in Table 3), which may be caused by the radical acceleration in the same
direction, as the increased dimensions almost doubled.

Table 3. Effect of momentum and NAG for infinity norm with different fraction

Values Statistic f = 0.1 f = 0.3 f = 0.5 f = 0.7 f = 0.9

M
fx − f0

Mean 0.0042 0.0006 0.0046 −0.0192 −0.0254
Median 0.0015 0.0003 0.0051 −0.0213 −0.0205

fx−f0
f0

Mean 1.33% 0.51% 0.88% −3.16% −5.04%
Median 0.27% 0.06% 0.91% −3.72% −3.57%

N
fx − f0

Mean 0.0033 0.0005 −0.0017 −0.0006 −0.0143
Median 0.0051 0.0009 −0.0022 −0.0017 −0.0098

fx−f0
f0

Mean 0.46% 0.11% −0.22% 0.03% −3.05%
Median 0.89% 0.15% −0.38% −0.29% −1.72%

Table 3 concludes the influence of momentum and Nesterov for infinity norm
gradient flow under different fractions, where fx represents the fraction value
(γ) in Eqs. (8) and (9).

Among all fraction choices, 0.1 obtain the best performance while the
improvement is still limited. The influence is negligible when the fraction is
chosen between 0.3 and 0.5. When the fraction comes to 0.7, momentum shows
negative effects and even worst when 0.9 is chosen. NAG effectively mitigates
the negative effect of momentum by looking ahead effectively. When close to the
optimum value, the gradient current time should be smaller than the previous
one, and there is reason to believe that it will continue to be smaller, which
justifies the radical acceleration deduction.

142 L. Cai et al.

To have a more intuitive comparison, Fig. 4 concludes the best performance
of each norm from Fig. 3 (L2 norm and L3 norm with 0.9 fraction Nesterov, SGD
with 0.9 fraction momentum, and infinity norm without fraction).

Fig. 4. Highest accuracy of CIFAR100 using different types of norms (Color figure
online)

According to Fig. 4, the L2 norm gives the worst performance (in yellow)
while the infinity norm gives the best (in red), while the L3 norm and the SGD
are between the two mentioned above. Although the improvement of the L2

norm after involving momentum is significant, it cannot surpass the infinity
one, which can be imaged as an invisible ceiling existing (infinity norm gradient
flow without momentum) no matter what type of norm choose. Thus, the less
improvement of the L3 norm given in Figs. 3e and 3f can be explained as the
difference between the L3 norm and the infinity one being small, thus there
is no room for momentum and Nesterov to improve the performance. In other
words, the better the performance without momentum or Nesterov acceleration,
the less it can be improved through the dampens oscillation methods. Thus,
the infinity norm used on Jorge’s finite-time algorithm can cover the benefits of
Momentum without introducing the updated velocity in the past time, which
saves computing costs.

The performance of Adam is also plotted in Fig. 4. Although the accuracy
of Adam (in black) and infinity norm gradient flow (in red) is similar, there
are no hyperparameters that needed to be adjusted (Jorge’s finite-time) related
to the infinity norm gradient flow (INGF), and no memory requirement (no
momentum or NAG need). Specifically, the average running time of Adam is
13.4% longer than which of the INGF (914.75 s and 806.62 s respectively) under
the same GPU model (NVIDIA GeForce RTX 2080 Super with Max-Q Design

Impact of Mathematical Norms on Convergence for DNN Learning 143

under CUDA 10.0 support). From that perspective, INGF is superior to Adam
which needs not only adaptive learning rates (computational burden) but also
history records (memory burden).

4 Conclusion

In this paper, the comparison of different types of norms used in finite-time
convergence algorithms is obtained. Qualitative analysis after the equivalence of
norms with the help of convergence property verifies the convergence rate. The
performance of three typical algorithms using different types of norms is quan-
titatively analyzed for image classification using the CIFAR100 database under
the ResNet50 architecture. Jorge’s finite-time algorithm gives the maximum
improvement after changing the Euclidean norm to the infinity one. The improve-
ment of Jorge’s finite-time algorithm with momentum and Nesterov is studied.
Although the better original performance, the less improvement after momentum
or Nesterov acceleration involving, infinity norm gradient flow (INGF) without
momentum still keeps overwhelming superiority. Although INGF can not always
be superior to Adam in accuracy, no hyper-parameters adjustment and no mem-
ory requirement of INGF can keep its favorable position in time-consuming com-
pared with Adam. According to the results given in case studies, we have rea-
son to believe that Jorge’s finite-time algorithm with infinity norm can provide
reliable performance (higher accuracy and less time) for CNN learning tasks,
especially visual recognition.

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

3. Olah, C.: Neural networks, manifolds, and topology. Blog post (2014)
4. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Advances in

Neural Information Processing Systems 20 (2007)
5. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural

Netw. 12(1), 145–151 (1999)
6. Nesterov, Y.: A method for unconstrained convex minimization problem with the

rate of convergence o (1/k̂ 2). In: Doklady an ussr, vol. 269, pp. 543–547 (1983)
7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res. 12(7) (2011)
8. Tieleman, T., Hinton, G.: Neural networks for machine learning. Technical report

(2011). http://www.cs.toronto.edu/tijmen/csc321/slides/lectureslideslec6.pdf
9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
10. Cortés, J.: Finite-time convergent gradient flows with applications to network con-

sensus. Automatica 42(11), 1993–2000 (2006)
11. Wibisono, A., Wilson, A.C., Jordan, M.I.: A variational perspective on accelerated

methods in optimization. Proc. Natl. Acad. Sci. 113(47), E7351–E7358 (2016)

http://www.cs.toronto.edu/tijmen/csc321/slides/lectureslideslec6.pdf
http://arxiv.org/abs/1412.6980

144 L. Cai et al.

12. Romero, O., Benosman, M.: Finite-time convergence in continuous-time optimiza-
tion. In: International Conference on Machine Learning, pp. 8200–8209. PMLR
(2020)

13. Garg, K., Panagou, D.: Fixed-time stable gradient flows: applications to
continuous-time optimization. IEEE Trans. Autom. Control 66(5), 2002–2015
(2020)

14. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. Academic
Press (2014)

15. Pugh, C.C.: Real Mathematical Analysis, vol. 2011. Springer, Cham (2002).
https://doi.org/10.1007/978-0-387-21684-3

16. Weisstein, E.W.: Vector norm (2002). https://mathworld.wolfram.com/
17. Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In:

Proceedings of the Twenty-First International Conference on Machine learning, p.
78 (2004)

18. Wassermann, A.J.: Functional analysis (1999)
19. Conrad, K.: Equivalence of norms. In: Expository Paper, University of Connecticut,

Storrs, heruntergeladen von, vol. 17, no. 2018 (2018)
20. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2013)
21. Gongqing, Z., Yuanqu, L.: Functional Analysis Lecture Notes. Peaking University

Press (1990). (in Chinese)
22. Karpathy, A.: Cs231n convolutional neural networks for visual recognition (2017).

cs231n.github.io. Dostopno na. http://cs231n.github.io
23. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny

images (2009)
24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

https://doi.org/10.1007/978-0-387-21684-3
https://mathworld.wolfram.com/
http://cs231n.github.io

	Impact of Mathematical Norms on Convergence of Gradient Descent Algorithms for Deep Neural Networks Learning
	1 Introduction
	2 Main Results
	2.1 Mathematical Norms
	2.2 Equivalence of Norms
	2.3 Different Norms Applications
	2.4 Related Works

	3 Case Studies
	3.1 Three Typical Algorithms Using Different Types of Norms
	3.2 Jorge's Finite-Time Algorithm with Momentum and Nesterov

	4 Conclusion
	References

