
Automated On-Vehicle Road Defect Data
Collection and Detection

Zachary Todd(B) and Heyang Li

Department of Mathematics and Statistics, University of Canterbury, Christchurch,
New Zealand 8041

zachary.todd@pg.canterbury.ac.nz, thomas.li@canterbury.ac.nz

Abstract. This paper proposes a pipeline for the automated on-vehicle
data collection, filtering, and classification of road surface defects. The
proposed pipeline provides a flexible framework that allows for the inte-
gration of a variety of systems. The pipelines flexibly allow for various
sensors such as camera, 3D camera and lidar; computational resources
such as on-vehicle edge computing or cloud computing; data transfer
such as 5G or on-site upload; and data storage. The pipeline was tested
using an edge computer on board a contracted road sweeping vehicle
with an image taken every 10 s with image processing and evaluation
occurring between. Post installation, the pipeline required no input from
the driver of the sweeper vehicle besides turning on the road sweeper.
The data was transferred via WiFi as the road sweeper was pulling up
at the end of its shift. During operation around 21k road, defects were
identified with over 90% of these images containing road defects.

Keywords: Deep learning · Data collection · Edge computing

1 Introduction

There have been strong improvements in the camera sensing technology, and the
area of autonomous vehicles technology [12,18], with improved driver assistance,
and a better understanding of the road environments [2,8,10,11,13,14].

However, there is still a significant gap in using those technologies for auto-
matic road defects data collection and detection. Much of the research and devel-
opment in this area has been using data collected manually, with manual data
transfer and filtration steps that are not suitable for the large-scale automation
needed to detect the whole road network.

Performing these tasks post-data collection allows for greater flexibility that
is only limited by the computational resources available and the limitations of the
data itself. Whereas, performing these tasks on-vehicle available decreases the
available power resources which in turn decreases the computational potential.
However, there are several advantages, with real-time data collection allowing
for the filtering of data, as well as periodic or real-time reporting. In this context
can in inform when a section of the road has been significantly damaged and
needs to be fixed.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-22695-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_1&domain=pdf
http://orcid.org/0000-0002-1280-7800
http://orcid.org/0000-0001-9794-5075
https://doi.org/10.1007/978-3-031-22695-3_1


4 Z. Todd and H. Li

The paper aims to utilise the potential advantages gained from performing
data collection and detection on a collection vehicle while creating a flexible
pipeline that allows for the proposed approach to fit a wide variety of needs
and applications. The pipeline, in short consists of several modules, these being;
image capture, location tracking, image prepossessing, image evaluation, data
transfer, and data storage.

Initial validation of the approach is demonstrated by evaluating the image
evaluation module and testing its ability to perform detection. This is then
followed up using by running a case study utilising this model. The case study
consists of a real-world application, in which a road sweeper completes its normal
tasks while having the proposed application pipeline installed on the collection
vehicle. The desired outcome of the case study is that despite running data
collection and detection on-vehicle that the model is able to detect road defects
and do so in a reliable manner.

2 Method

This section covers two pipelines used in both training applications. In addition,
this section also covers the dataset used to train the image evaluation models
and the apparatus the overall apparatus used in the application pipeline (Fig. 1).

2.1 Pipeline

Fig. 1. Overview of the proposed pipeline.

Our approach consists of two pipelines. These are the training and application
pipelines. The training pipeline is responsible for training and evaluating the
model being used with the application pipeline. The application pipeline is the
pipeline used in practices and the case study, with it being is made up of several
modules, these being; image capture, location tracking, image prepossessing,
image evaluation, data transfer, and data storage.



Automated On-Vehicle Road Defect Data Collection and Detection 5

The image capture module’s responsibility is to capture images and to send
the captured images to the edge computer for preprocessing. For this, four imple-
mentations methods were considered:

(1) Wireless camera such as GoPro and communicate image collected over Blue-
tooth to edge computer.

(2) Smartphone powered via USB from the vehicle.
(3) Wired camera connected to the vehicle battery and communicating image

using power over ethernet (PoE) to edge computer.
(4) Wired camera connected and powered using USB to edge computer.

With implementation (4) being used in the application pipeline. Implementation
(1) is the most flexible on its face though it requires the battery of the wireless
device to be charged. In addition to this problem, a number of reliability issues
with the automatic pairing of a variety of wireless camera systems with the edge
computer after they had been turned off, thereby requiring a person to interact
with the system to ensure that the camera was charged and paired with the edge
computer. Implementation (2) was the cheapest of the four implementations.
However, like (1) there are several reliability issues such as image processing
slowing down and the unreliable image capture rate, with the likely cause of
these issues being due to wear and tear of the smartphone and overheating
after extensive use. Implementation (3) though is very similar to implementation
(4) because the increased power demand of the PoE made the powering of the
system less reliable. Implementation (4) mitigates the reliability issues of the
other implementations with there being no overheating, communication issues
or major power fluctuations.

For location tracking, a GPS receiver was connected to the edge computer to
provide the GPS position of the collection vehicle. This position information is
provided with the captured images as metadata so that detected problems can
be located.

For computation, a Intel NUC was selected, other options included low-power
small GPU systems such as Nvidia Jetson Nanoor Nvidia Jetson Xavier, or the
aforementioned smartphone. With the NUC over a GPU system because of cost
and availability.

For image prepossessing, the image was cropped to remove the sky and other
unrelieved features within the image and resized to the specification of the image
evaluation model.

After prepossessing, the image evaluation model evaluates the images, with
the responses sent to the data transfer and storage module. The evaluation model
is dependent on the type of sensor used to capture the image, the computational
resources available and the type of evaluation being performed. As performing
the evaluation on-vehicle limits the potentially available power; the available
computational resources were also limited.

The data transfer and storage module is responsible for transferring the image
and metadata from the edge computer on the vehicle to where the data is stored.
There are several methods to transfer the data from the edge computer. The
following implementations were considered:



6 Z. Todd and H. Li

(1) 5G transfer direct from the edge computer to cloud storage.
(2) On board storage and manual retrieval and upload of the data.
(3) On-site WiFi connection with that data being transferred when the collec-

tion vehicle returns.

Implementation (1) allows for all of the collected images to be transferred from
the edge computer during collection and allows for the possibility of real-time
reporting, with the main limiting factor of this implementation being the cost
of using 5G infrastructure. Implementation (2) is the simplest from a technol-
ogy perspective. However, this would result in a lag in detection and reporting
time, as well as requiring someone to interact with the edge computer regularly.
Implementation 3 provides a compromise between the aforementioned imple-
mentations, allowing for a report per shift of the collection vehicle and requiring
no manual interaction with the edge computer. However, implementation (3)
does limit the number of images that can be transferred due to the bandwidth
limitation of transferring data over WiFi while the collection vehicle is leaving
and arriving from its station. To mitigate this, only the images (with associated
metadata) in which detections occurred are transferred, thereby significantly
decreasing the amount of data being transferred (Fig. 2).

2.2 Dataset

The dataset consists of 120k images collected around the South Island, New
Zealand, specifically Canterbury, Nelson, Otago and Tasman regions. The
dataset consists of all road segments of State-highways 65, 69, 73, 75, 85, and
87 and part of State-highways 1, 6, 7, 8 and 72, with the dataset encompassing
over 3000 Km. The annotated dataset is a subset of this, including 19k images
taken from these collections. The dataset was labelled with two classes, these
being potholes and other defects. During annotations, the images were labelled
with an encapsulating polygon. The images were labelled in two passes, with the
first labelling the image in a batch of 500 images and then a reviewer to confirm
their labels. On average each image took 20s to label with this being just over
30s including the second pass. Around 8% of the labelled images contained other
defects and less than 1% contained potholes.

2.3 Apparatus

The training pipeline uses a Nvidia RTX2080 Ti GPU to train the models run-
ning with python 3.8, TensorFlow 2.0 and CUDA 10.1.

In the application pipeline, the collection used a road sweeper vehicle that
was contracted to sweep roads around several suburbs in Christchurch, New
Zealand. To capture the images a Logitech USB web camera was used. For
computing, an Intel NUC with an I7 processor was used, with the NUC set to
start upon receiving power. The NUC receive power using the road sweeper’s
auxiliary power outlet. To provide location information for the images, GlobalSat
BU-353-S4 USB GPS receiver was used. Running on the NUC was python 3.8



Automated On-Vehicle Road Defect Data Collection and Detection 7

Fig. 2. Dataset examples. The top row consists of example images without defects and
the second row contains annotated images with defects.



8 Z. Todd and H. Li

with TensorFlow 2.0 and Intel Optimization for TensorFlow to run the image
evaluation model. For data transfer, the data is transferred over WiFi at the
road sweeper station as the road sweeper is departs and arrives at the station.

The main limiting factor of the apparatus is the computing platform. The
NUC with an I7 processor [1] was chosen as a compromise between power con-
sumption and computation with lower computation processors such as Pen-
tium and I3 providing similar power requirements though with less computation
resources. A potentially better computation platform to use would a low power
consumption small GPU systems such as Nvidia Jetson Nano or Nvidia Jetson
Xavier. However, due to global supply chain issues, this was not possible at the
time.

2.4 Model Training

Two types of models were considered for the image evaluation model; these
being image classification and instance segmentation models. Image classification
models classify an image into a number of set classes, with each image having an
assorted class. Instance segmentation models provide an encapsulating polygon
or mask of all of the instances of the relevant objects within an image, as well
as classifying these objects. Each input of instance segmenting results in either
a set of polygons-class or image-class pairs to communicate what parts of the
image belong to each instance object and their assorted classes.

Fig. 3. ResNet Block, With the size of the output volume of each conv layer displayed
below each conv layer.

The ResNet [7] convolutional neural network (CNN) was selected as the
classification model. ResNet main feature is its residual block (Fig. 3), with the
block consisting of two parallel branches. The first is a branch is a series of
convolutional (conv) layers either two 3× 3 conv layers (B(3, 3)) or 1× 1, 3× 3
and 1 × 1 conv layers (B(1, 3, 1)) and the second branch make no changes and
passes the input volume froward to be added to the first branch. ResNet starts
with a 7 conv layer followed by a maxpool and then followed by fours stages
of residue blocks. The number of residual blocks per stage is different for each
ResNet variant. After each conv layer there is batch normalisation [9] followed
by ReLU activation [17]. After the fourth stage, there are two fully connected
layers to finish the network.



Automated On-Vehicle Road Defect Data Collection and Detection 9

Commonly used ResNet variants:

– ResNet18: block: B(3, 3), blocks per stage [2, 2, 2, 2]
– ResNet34: block: B(3, 3), blocks per stage [3, 4, 6, 3]
– ResNet50: block: B(1, 3, 1), blocks per stage [3, 4, 6, 3]
– ResNet101: block: B(1, 3, 1), blocks per stage [3, 4, 23, 3]
– ResNet152: block: B(1, 3, 1), blocks per stage [3, 8, 36, 3]

For the classification experiment, ResNet50 was selected as it is the largest of the
ResNet variant while meeting the computation limitation of the edge computer.

Fig. 4. Instance segmentation method structure.

For instance segmentation, three CNN models were considered; Mask RCNN,
Cascade RCNN, and Hybrid Task Cascade (HTC) [3,4,6]. All three methods
work similarly by using a backbone network such as ResNet to generate region
proposals and the difference in the overall structure is shown in Fig. 4. Mask
RCNN then uses a pooling layer to warp the variable size region proposals into
a predefined size shape. Finally, these pooled regions are then connected to a
head layer that predicts the class, bounding boxes and mask.

Cascade RCNN has two improvements over Mask RCNN these being cascade
bounding box (bbox) regression and cascade detection. The cascade bbox regres-
sion improves quality by providing a series of regressions with each regressor
having a stricter intersection over union (IoU) acceptance threshold. The cas-
cade detection resampling of the positive examples of previous regressors with a
higher IoU, as a regressor with an IoU threshold of µ, will produce bboxes with
IoU score higher than µ.

HTC interleaves mask and bbox detectors with each bounding box and masks
being connected and each aggressor feeding to the next regressor in the cascade.
HTC also used a separate spatial context branch for masks instead of using the
region proposal network.



10 Z. Todd and H. Li

For the instance segmentation experiment, HTC with ResNet50 was selected.
This is because HTC has better results on large general datasets [15] than Cas-
cade RCNN and Mask RCNN while requiring amount a similar amount of com-
putational resources.

3 Experiments and Results

This section covers the experiments used to evaluate the selected models on
the dataset, as well as discusses the case study used to evaluate the application
pipeline.

3.1 Model Evaluation

For evaluation, the annotated dataset is split into two subsets with 80% being
used to train and 20% being used to test the models. Both the classification and
segmentation models use the AutoAugment [5] method to augment the annotate
dataset and AdamW optimiser [16] to optimise the gradient descent, and were
trained for 300 epochs.

The classification result as shown in Table 1 shows accuracy across all classes
of 91.4%. With none of the Pothole images being classified as ‘No Defect’ and

Table 1. Classification confusion matrix

No defect Pothole Other defect Total

No Defect 3202 14 297 3513

Pothole 0 32 8 40

Other Defect 15 2 338 355

Total 3217 48 643 3908

Fig. 5. Mask and Bounding box results



Automated On-Vehicle Road Defect Data Collection and Detection 11

Fig. 6. Detected defect examples, with pothole detection examples in the first two rows
and other defects detection examples in the last two rows.



12 Z. Todd and H. Li

only 15 of the ’Other defect’ class being classed as ’No Defect’. These results
demonstrated that the model is able to distinguish between images that do and
do not contain defects, as well as distinguishing between defects that are and
are not potholes (Fig. 5).

The instance segmentation results show the HTC model on the test dataset
has a mask and bbox AP@50 (average precision using 0.5 IoU as the acceptance
threshold) of 0.69 and 0.71 respectively, and a mask and bbox AP@75 of 0.58
and 0.63 respectively, with there being a sharp drop-off in acceptance with an
IoU of 0.6. These results demonstrate that the detection and segmentation are
viable in most cases with almost 70% of the images having a greater than 50%
mask and bbox IoU.

3.2 Case Study

The computer, camera, and GPS receiver were placed inside and connected to
the road sweeper vehicle. The road sweeper ran as normal for a month collecting
data and running the application pipeline. The model used to determine if a
defect was present was ResNet50. Although the segmentation model performs
the classification method has a faster inference time as it does not have to run
the associated detection and segmentation components of HTC.

During operation, the only reliability issues experienced were interference
between the GPS receiver and a GPS receiver built into the collection vehicle.
This caused several of the detected defect images to not have assorted metadata.
Although this unreliability can easily be remedied in the case where a collection
vehicle has GPS then the image captured time code and the time code of the
collection vehicle GPS can be synced to get the location of the captured image.
During the month of operation over 21k images were identified with 92.4% con-
taining defects (Fig. 6).

4 Conclusion

The application pipeline demonstrates the viability of automating the detec-
tion of road defects in a flexible, accurate and reliable manner. The flexibility is
demonstrated in the relatively low complexity of the modules allowing for the
accommodation of a variety of sensors, computation platforms and data trans-
formation methods. The accuracy is demonstrated in the results on the training
dataset, as well as the presence of road defects within the case study. However,
the result that over 90% of the reported images have defects does not guarantee
that the result of the dataset has been able to transfer to the context of the
case study as there is not a full picture of the images that were determined to
not contain a defect. It does provide some confidence that this mapping between
the two similar contexts has occurred. Finally, the reliability of the application
pipeline is demonstrated by the reliability of the case study, with only minor
reliability issues such as the interference in the GPS receiver.



Automated On-Vehicle Road Defect Data Collection and Detection 13

A natural progression from these outcomes would be to increase both the
resolution of the problem from the perspective of both the types of road defects
being detected, as well as the complexity of reporting being performed by the
edge computer. Increasing the class resolution could achieve by training an eval-
uation model on more diverse classes, for example, adding road defect classes
such as cracking, surface defects and surface distress. Increasing the complexity
could be achieved by running an instance segmentation model to provide the
location and the size of defects within an image, as well as using an onboard
GPU to speed up the computation.

References

1. Comparison charts for intel R© coreTM desktop processor family. https://www.intel.
com/content/www/us/en/support/articles/000005505/processors.html

2. Agrawal, R., Chhadva, Y., Addagarla, S., Chaudhari, S.: Road surface classification
and subsequent pothole detection using deep learning. In: 2021 2nd International
Conference for Emerging Technology (INCET), pp. 1–6. IEEE (2021)

3. Cai, Z., Vasconcelos, N.: Cascade r-cnn: high quality object detection and instance
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1483–1498 (2019)

4. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4974–4983 (2019)

5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning
augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

6. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-CNN. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). IEEE (2017). https://doi.org/
10.1109/iccv.2017.322

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2016)

8. Hu, Y., Furukawa, T.: Degenerate near-planar 3d reconstruction from two over-
lapped images for road defects detection. Sensors 20(6), 1640 (2020)

9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

10. Jung, J., Bae, S.H.: Real-time road lane detection in urban areas using lidar data.
Electronics 7(11), 276 (2018)

11. Kim, J., Kim, J., Jang, G.J., Lee, M.: Fast learning method for convolutional neural
networks using extreme learning machine and its application to lane detection.
Neural Netw. 87, 109–121 (2017)

12. Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms.
In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168. IEEE (2011)

13. Li, H.T., Todd, Z., Bielski, N.: Equirectangular image data detection, segmenta-
tion and classification of varying sized traffic signs: a comparison of deep learning
methods (2022)

14. Li, H.T., Todd, Z., Bielski, N., Carroll, F.: 3d lidar point-cloud projection operator
and transfer machine learning for effective road surface features detection and
segmentation. Visual Comput. 38(5), 1759–1774 (2022)

15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

https://www.intel.com/content/www/us/en/support/articles/000005505/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005505/processors.html
http://arxiv.org/abs/1805.09501
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/iccv.2017.322
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-3-319-10602-1_48


14 Z. Todd and H. Li

16. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: ICML, pp. 807–814 (2010). https://icml.cc/Conferences/2010/
papers/432.pdf

18. Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous
driving: common practices and emerging technologies. IEEE Access 8, 58443–58469
(2020)

http://arxiv.org/abs/1711.05101
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf

	Automated On-Vehicle Road Defect Data Collection and Detection
	1 Introduction
	2 Method
	2.1 Pipeline
	2.2 Dataset
	2.3 Apparatus
	2.4 Model Training

	3 Experiments and Results
	3.1 Model Evaluation
	3.2 Case Study

	4 Conclusion
	References




