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Preface

This volume contains the papers presented at the 35th Australasian Joint Conference
on Artificial Intelligence (AI 2022). The conference was held in hybrid mode during
December 5–9, 2022, and was hosted by the University of Western Australia in Perth,
Australia. This annual conference is one of the longest running conferences in artificial
intelligence,with the first conference held in Sydney in 1987. The conference remains the
premier event for artificial intelligence in Australasia, offering a forum for researchers
and practitioners across all subfields of artificial intelligence to meet and discuss recent
advances.

AI 2022 received 90 submissions and each submission was reviewed by at least
two Program Committee (PC) members or external reviewers in a double-blind process.
After a thorough discussion and rigorous scrutiny by the reviewers, 35 papers were
accepted for oral presentations and 21 papers were accepted for poster presentations in
the conference. In total, 56 submissions were accepted for publication as full papers in
this proceeding. AI 2021 had four keynote talks by the following distinguished scientists:

• MakotoYokoo,KyushuUniversity, Japan, onDecember 6, 2022, speaking on “Market
design for constrained matching”.

• Timothy Miller, University of Melbourne, on December 7, 2022, speaking on “The
state of explainable AI”.

• Bob Coeck, Chief Scientist, Quantinium, UK, on December 7, 2022, speaking on
“Quantum AI”.

• Stela Solar, Data61, Australia, on December 8, 2022, speaking on “The directions of
AI in Australasia”.

The following are notable aspects of the AI 2022 conference:

• AI 2022 was the first opportunity for a large face to face meeting of the Australasian
AI community since the beginning of the COVID-19 pandemic. Face to face meetings
and opportunities to meet and share ideas are critical to the research community. This
is especially the case in Australasia where large distances make such meetings all the
more important.

• TheWest Australian economy is powered by the resources and agriculture industries,
and these industries havemade large investments in automation, artificial intelligence,
and data science. AI 2022 included a day with a special industry focus in partnership
with the University of Western Australia Data Institute. Panel discussions allowed
industry and academia to share challenges and research directions.

• The AI 2022 program included three workshops, held on Friday, December 9:
The First Australasian Symposium on Artificial Intelligence for the Environment
(AI4Environment) organised by Guodong Long, Yanjun Zhang, and Tao Shen; The
First Workshop on Toxic Language Detection (TLD) organised by Jean Lee, Henry
Weld, KunzeWand, and Josiah Poon; and Federated Learning in Australasia: Towards
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Large-Scale AI Systems with Privacy-Preservation" organised by Jarrod Trevathan,
M A Hakim Newton, and Ashfaqur Rahman.

• The AI 2022 program included four special tutorials, held on Monday, December
5: Developments in Fair Resource Allocation presented by Haris Aziz, Xinhang Lu,
Mashbat Suzuki, and Toby Walsh; A Practical Guide to Knowledge Graph Construc-
tion from Technical Short Text presented by Michael Stewart; Memory-based Rein-
forcement Learning presented by Hung Le; and Joint Slot Filling and Intent Detection
for Natural Language Understanding presented by Henry Weld, Caren Han, Josiah
Poon, and Sharon Long.

• The program included aDoctoral Consortiumheld onMonday,December 5, tomentor
and assist postgraduate students developing their research, with mentorship provided
by research leaders.

We especially appreciate thework of themembers of the ProgramCommittee and the
external reviewers for their expertise and tireless effort in assessing the papers within a
strict timeline.We are also very grateful to themembers of the Organising Committee for
their efforts in the preparation, promotion, and organisation of the conference, especially
the general chairs, Wei Liu and Abdul Sattar, for coordinating the whole event. We
acknowledge the assistance provided by EasyChair for conference management.

Lastly, we thank the National Committee for Artificial Intelligence of the Australian
Computer Society, Springer, for the professional service provided by the Lecture Notes
in Computer Science editorial and publishing teams, and our conference sponsors: the
Commonwealth Scientific and Industrial Research Organisation; the UWA Data Insti-
tute; the UWA School of Physics, Mathematics and Computing; the UNSWAI Institute;
the Centre for Transforming Maintenance through Data Science; the WA Data Science
Innovation Hub; and DUG Technology.

December 2022 Haris Aziz
Débora Corrêa

Tim French
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Market Design for Constrained Matching

Makoto Yokoo

Kyushu University, Fukuoka, Japan
yokoo@inf.kyushu-u.ac.jp

http://https://sites.google.com/view/makoto-yokoo/

Abstract. The theory of two-sided matching (e.g., assigning residents to
hospitals, students to schools) has been extensively developed, and it has
been applied to design clearinghouse mechanisms in various markets in
practice, including resident matching programs and school choice pro-
grams. As the theory has been applied to increasingly diverse types of
environments, however, researchers and practitioners have encountered
various forms of distributional constraints. As these features have been
precluded from consideration until recently, they pose new challenges
for market designers. One example of such distributional constraints is a
minimum quota, e.g., school districts may need at least a certain number
of students in each school in order for the school to operate. In this talk,
I present an overview of research on designing mechanisms that work
under distributional constraints.

Keywords: Two-sided matching · Market design · Game theory

https://orcid.org/0000-0003-4929-396X


Are the Inmates Still Running the Asylum? Explainable
AI is Dead, Long Live Explainable AI!

Tim Miller

School of Computing and Information Systems,
The University of Melbourne, Parkville, VIC 3010

tmiller@unimelb.edu.au

Abstract. In this talk, Iwill discusswhy I believemanyof the assumptions
we have beenmaking about explainable AI for better decisionmaking are
misguided, and how we can address this issue. In the past, I have argued
that in the explainable AI community, maybe ‘the inmates are running
the asylum’, re-framing Alan Cooper. By this, I mean that experts in
artificial intelligence are not well placed to design explainability tools
and techniques that are intended for non-expert users, and we should
turn to the social sciences and human-computer interaction to mitigate
this. Iwill reviewdiscuss theories fromphilosophy, cognitive science, and
social& cognitive psychology that have been influential in explainableAI
in the last few years, improving explainable techniques. I’ll discuss that,
despite this progress, I believe the inmates have been running the asylum
all along without us knowing, but that by questioning our assumptions,
we can change direction to see improved outcomes.

Keywords: Explainable AI · Human-centred AI · Decision support
systems



From Quantum Picturalism to Quantum AI

Bob Coecke

Quantinuum, Compositional Intelligence Team, Oxford
bob.coecke@quantinuum.com

Abstract. In 2020 our Oxford-based Quantinuum team performed Quan-
tum Natural Language Processing (QNLP) on IBM quantum hardware
[1, 2, 3]. Key to having been able to achieve what is conceived as a heav-
ily data-driven task, is the observation that quantum theory and natural
language are governed by much of the same compositional structure [4,
5, 6] – a.k.a. tensor structure. Hence our language model is in a sense
quantum-native, and we provide an analogy with simulation of quantum
systems in terms of algorithmic speed-up. Meanwhile we have made all
our software available open-source, and with support [7].

We will also introduce the notion of compositional intelligence,
exploiting the fact that the compositionalmatch between natural language
and quantum extends to other domains as well, such as spatio-temporal
perception [8], we will argue that a new generation of AI can emerge
when fully pushing this analogy. The so-called ZX-calculus [9, 10] for
quantum theory (and linear algebra more generally) has been proven to
be complete, so can be conceived as a full-bodied reasoning system that
go hand-in-hand with modern machine learning.

Keywords: QNLP · Quantum picturalism · Compositional intelligence
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AI: Our Co-pilot in a Complex World

Stela Solar

Abstract. We live in a world of high complexity. From the data jungle
and increasing population, to process complexities and some of the most
existential challenges facing our society. In this context of grand chal-
lenges, we need a grand tool to help us navigate the complexity. AI is one
such tool. AI can be our co-pilot in this complex world, helping us lead
our lives in accordance with our human values.
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Abstract. This paper proposes a pipeline for the automated on-vehicle
data collection, filtering, and classification of road surface defects. The
proposed pipeline provides a flexible framework that allows for the inte-
gration of a variety of systems. The pipelines flexibly allow for various
sensors such as camera, 3D camera and lidar; computational resources
such as on-vehicle edge computing or cloud computing; data transfer
such as 5G or on-site upload; and data storage. The pipeline was tested
using an edge computer on board a contracted road sweeping vehicle
with an image taken every 10 s with image processing and evaluation
occurring between. Post installation, the pipeline required no input from
the driver of the sweeper vehicle besides turning on the road sweeper.
The data was transferred via WiFi as the road sweeper was pulling up
at the end of its shift. During operation around 21k road, defects were
identified with over 90% of these images containing road defects.

Keywords: Deep learning · Data collection · Edge computing

1 Introduction

There have been strong improvements in the camera sensing technology, and the
area of autonomous vehicles technology [12,18], with improved driver assistance,
and a better understanding of the road environments [2,8,10,11,13,14].

However, there is still a significant gap in using those technologies for auto-
matic road defects data collection and detection. Much of the research and devel-
opment in this area has been using data collected manually, with manual data
transfer and filtration steps that are not suitable for the large-scale automation
needed to detect the whole road network.

Performing these tasks post-data collection allows for greater flexibility that
is only limited by the computational resources available and the limitations of the
data itself. Whereas, performing these tasks on-vehicle available decreases the
available power resources which in turn decreases the computational potential.
However, there are several advantages, with real-time data collection allowing
for the filtering of data, as well as periodic or real-time reporting. In this context
can in inform when a section of the road has been significantly damaged and
needs to be fixed.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The paper aims to utilise the potential advantages gained from performing
data collection and detection on a collection vehicle while creating a flexible
pipeline that allows for the proposed approach to fit a wide variety of needs
and applications. The pipeline, in short consists of several modules, these being;
image capture, location tracking, image prepossessing, image evaluation, data
transfer, and data storage.

Initial validation of the approach is demonstrated by evaluating the image
evaluation module and testing its ability to perform detection. This is then
followed up using by running a case study utilising this model. The case study
consists of a real-world application, in which a road sweeper completes its normal
tasks while having the proposed application pipeline installed on the collection
vehicle. The desired outcome of the case study is that despite running data
collection and detection on-vehicle that the model is able to detect road defects
and do so in a reliable manner.

2 Method

This section covers two pipelines used in both training applications. In addition,
this section also covers the dataset used to train the image evaluation models
and the apparatus the overall apparatus used in the application pipeline (Fig. 1).

2.1 Pipeline

Fig. 1. Overview of the proposed pipeline.

Our approach consists of two pipelines. These are the training and application
pipelines. The training pipeline is responsible for training and evaluating the
model being used with the application pipeline. The application pipeline is the
pipeline used in practices and the case study, with it being is made up of several
modules, these being; image capture, location tracking, image prepossessing,
image evaluation, data transfer, and data storage.
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The image capture module’s responsibility is to capture images and to send
the captured images to the edge computer for preprocessing. For this, four imple-
mentations methods were considered:

(1) Wireless camera such as GoPro and communicate image collected over Blue-
tooth to edge computer.

(2) Smartphone powered via USB from the vehicle.
(3) Wired camera connected to the vehicle battery and communicating image

using power over ethernet (PoE) to edge computer.
(4) Wired camera connected and powered using USB to edge computer.

With implementation (4) being used in the application pipeline. Implementation
(1) is the most flexible on its face though it requires the battery of the wireless
device to be charged. In addition to this problem, a number of reliability issues
with the automatic pairing of a variety of wireless camera systems with the edge
computer after they had been turned off, thereby requiring a person to interact
with the system to ensure that the camera was charged and paired with the edge
computer. Implementation (2) was the cheapest of the four implementations.
However, like (1) there are several reliability issues such as image processing
slowing down and the unreliable image capture rate, with the likely cause of
these issues being due to wear and tear of the smartphone and overheating
after extensive use. Implementation (3) though is very similar to implementation
(4) because the increased power demand of the PoE made the powering of the
system less reliable. Implementation (4) mitigates the reliability issues of the
other implementations with there being no overheating, communication issues
or major power fluctuations.

For location tracking, a GPS receiver was connected to the edge computer to
provide the GPS position of the collection vehicle. This position information is
provided with the captured images as metadata so that detected problems can
be located.

For computation, a Intel NUC was selected, other options included low-power
small GPU systems such as Nvidia Jetson Nanoor Nvidia Jetson Xavier, or the
aforementioned smartphone. With the NUC over a GPU system because of cost
and availability.

For image prepossessing, the image was cropped to remove the sky and other
unrelieved features within the image and resized to the specification of the image
evaluation model.

After prepossessing, the image evaluation model evaluates the images, with
the responses sent to the data transfer and storage module. The evaluation model
is dependent on the type of sensor used to capture the image, the computational
resources available and the type of evaluation being performed. As performing
the evaluation on-vehicle limits the potentially available power; the available
computational resources were also limited.

The data transfer and storage module is responsible for transferring the image
and metadata from the edge computer on the vehicle to where the data is stored.
There are several methods to transfer the data from the edge computer. The
following implementations were considered:
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(1) 5G transfer direct from the edge computer to cloud storage.
(2) On board storage and manual retrieval and upload of the data.
(3) On-site WiFi connection with that data being transferred when the collec-

tion vehicle returns.

Implementation (1) allows for all of the collected images to be transferred from
the edge computer during collection and allows for the possibility of real-time
reporting, with the main limiting factor of this implementation being the cost
of using 5G infrastructure. Implementation (2) is the simplest from a technol-
ogy perspective. However, this would result in a lag in detection and reporting
time, as well as requiring someone to interact with the edge computer regularly.
Implementation 3 provides a compromise between the aforementioned imple-
mentations, allowing for a report per shift of the collection vehicle and requiring
no manual interaction with the edge computer. However, implementation (3)
does limit the number of images that can be transferred due to the bandwidth
limitation of transferring data over WiFi while the collection vehicle is leaving
and arriving from its station. To mitigate this, only the images (with associated
metadata) in which detections occurred are transferred, thereby significantly
decreasing the amount of data being transferred (Fig. 2).

2.2 Dataset

The dataset consists of 120k images collected around the South Island, New
Zealand, specifically Canterbury, Nelson, Otago and Tasman regions. The
dataset consists of all road segments of State-highways 65, 69, 73, 75, 85, and
87 and part of State-highways 1, 6, 7, 8 and 72, with the dataset encompassing
over 3000 Km. The annotated dataset is a subset of this, including 19k images
taken from these collections. The dataset was labelled with two classes, these
being potholes and other defects. During annotations, the images were labelled
with an encapsulating polygon. The images were labelled in two passes, with the
first labelling the image in a batch of 500 images and then a reviewer to confirm
their labels. On average each image took 20s to label with this being just over
30s including the second pass. Around 8% of the labelled images contained other
defects and less than 1% contained potholes.

2.3 Apparatus

The training pipeline uses a Nvidia RTX2080 Ti GPU to train the models run-
ning with python 3.8, TensorFlow 2.0 and CUDA 10.1.

In the application pipeline, the collection used a road sweeper vehicle that
was contracted to sweep roads around several suburbs in Christchurch, New
Zealand. To capture the images a Logitech USB web camera was used. For
computing, an Intel NUC with an I7 processor was used, with the NUC set to
start upon receiving power. The NUC receive power using the road sweeper’s
auxiliary power outlet. To provide location information for the images, GlobalSat
BU-353-S4 USB GPS receiver was used. Running on the NUC was python 3.8
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Fig. 2. Dataset examples. The top row consists of example images without defects and
the second row contains annotated images with defects.
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with TensorFlow 2.0 and Intel Optimization for TensorFlow to run the image
evaluation model. For data transfer, the data is transferred over WiFi at the
road sweeper station as the road sweeper is departs and arrives at the station.

The main limiting factor of the apparatus is the computing platform. The
NUC with an I7 processor [1] was chosen as a compromise between power con-
sumption and computation with lower computation processors such as Pen-
tium and I3 providing similar power requirements though with less computation
resources. A potentially better computation platform to use would a low power
consumption small GPU systems such as Nvidia Jetson Nano or Nvidia Jetson
Xavier. However, due to global supply chain issues, this was not possible at the
time.

2.4 Model Training

Two types of models were considered for the image evaluation model; these
being image classification and instance segmentation models. Image classification
models classify an image into a number of set classes, with each image having an
assorted class. Instance segmentation models provide an encapsulating polygon
or mask of all of the instances of the relevant objects within an image, as well
as classifying these objects. Each input of instance segmenting results in either
a set of polygons-class or image-class pairs to communicate what parts of the
image belong to each instance object and their assorted classes.

Fig. 3. ResNet Block, With the size of the output volume of each conv layer displayed
below each conv layer.

The ResNet [7] convolutional neural network (CNN) was selected as the
classification model. ResNet main feature is its residual block (Fig. 3), with the
block consisting of two parallel branches. The first is a branch is a series of
convolutional (conv) layers either two 3× 3 conv layers (B(3, 3)) or 1× 1, 3× 3
and 1 × 1 conv layers (B(1, 3, 1)) and the second branch make no changes and
passes the input volume froward to be added to the first branch. ResNet starts
with a 7 conv layer followed by a maxpool and then followed by fours stages
of residue blocks. The number of residual blocks per stage is different for each
ResNet variant. After each conv layer there is batch normalisation [9] followed
by ReLU activation [17]. After the fourth stage, there are two fully connected
layers to finish the network.
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Commonly used ResNet variants:

– ResNet18: block: B(3, 3), blocks per stage [2, 2, 2, 2]
– ResNet34: block: B(3, 3), blocks per stage [3, 4, 6, 3]
– ResNet50: block: B(1, 3, 1), blocks per stage [3, 4, 6, 3]
– ResNet101: block: B(1, 3, 1), blocks per stage [3, 4, 23, 3]
– ResNet152: block: B(1, 3, 1), blocks per stage [3, 8, 36, 3]

For the classification experiment, ResNet50 was selected as it is the largest of the
ResNet variant while meeting the computation limitation of the edge computer.

Fig. 4. Instance segmentation method structure.

For instance segmentation, three CNN models were considered; Mask RCNN,
Cascade RCNN, and Hybrid Task Cascade (HTC) [3,4,6]. All three methods
work similarly by using a backbone network such as ResNet to generate region
proposals and the difference in the overall structure is shown in Fig. 4. Mask
RCNN then uses a pooling layer to warp the variable size region proposals into
a predefined size shape. Finally, these pooled regions are then connected to a
head layer that predicts the class, bounding boxes and mask.

Cascade RCNN has two improvements over Mask RCNN these being cascade
bounding box (bbox) regression and cascade detection. The cascade bbox regres-
sion improves quality by providing a series of regressions with each regressor
having a stricter intersection over union (IoU) acceptance threshold. The cas-
cade detection resampling of the positive examples of previous regressors with a
higher IoU, as a regressor with an IoU threshold of µ, will produce bboxes with
IoU score higher than µ.

HTC interleaves mask and bbox detectors with each bounding box and masks
being connected and each aggressor feeding to the next regressor in the cascade.
HTC also used a separate spatial context branch for masks instead of using the
region proposal network.
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For the instance segmentation experiment, HTC with ResNet50 was selected.
This is because HTC has better results on large general datasets [15] than Cas-
cade RCNN and Mask RCNN while requiring amount a similar amount of com-
putational resources.

3 Experiments and Results

This section covers the experiments used to evaluate the selected models on
the dataset, as well as discusses the case study used to evaluate the application
pipeline.

3.1 Model Evaluation

For evaluation, the annotated dataset is split into two subsets with 80% being
used to train and 20% being used to test the models. Both the classification and
segmentation models use the AutoAugment [5] method to augment the annotate
dataset and AdamW optimiser [16] to optimise the gradient descent, and were
trained for 300 epochs.

The classification result as shown in Table 1 shows accuracy across all classes
of 91.4%. With none of the Pothole images being classified as ‘No Defect’ and

Table 1. Classification confusion matrix

No defect Pothole Other defect Total

No Defect 3202 14 297 3513

Pothole 0 32 8 40

Other Defect 15 2 338 355

Total 3217 48 643 3908

Fig. 5. Mask and Bounding box results
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Fig. 6. Detected defect examples, with pothole detection examples in the first two rows
and other defects detection examples in the last two rows.
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only 15 of the ’Other defect’ class being classed as ’No Defect’. These results
demonstrated that the model is able to distinguish between images that do and
do not contain defects, as well as distinguishing between defects that are and
are not potholes (Fig. 5).

The instance segmentation results show the HTC model on the test dataset
has a mask and bbox AP@50 (average precision using 0.5 IoU as the acceptance
threshold) of 0.69 and 0.71 respectively, and a mask and bbox AP@75 of 0.58
and 0.63 respectively, with there being a sharp drop-off in acceptance with an
IoU of 0.6. These results demonstrate that the detection and segmentation are
viable in most cases with almost 70% of the images having a greater than 50%
mask and bbox IoU.

3.2 Case Study

The computer, camera, and GPS receiver were placed inside and connected to
the road sweeper vehicle. The road sweeper ran as normal for a month collecting
data and running the application pipeline. The model used to determine if a
defect was present was ResNet50. Although the segmentation model performs
the classification method has a faster inference time as it does not have to run
the associated detection and segmentation components of HTC.

During operation, the only reliability issues experienced were interference
between the GPS receiver and a GPS receiver built into the collection vehicle.
This caused several of the detected defect images to not have assorted metadata.
Although this unreliability can easily be remedied in the case where a collection
vehicle has GPS then the image captured time code and the time code of the
collection vehicle GPS can be synced to get the location of the captured image.
During the month of operation over 21k images were identified with 92.4% con-
taining defects (Fig. 6).

4 Conclusion

The application pipeline demonstrates the viability of automating the detec-
tion of road defects in a flexible, accurate and reliable manner. The flexibility is
demonstrated in the relatively low complexity of the modules allowing for the
accommodation of a variety of sensors, computation platforms and data trans-
formation methods. The accuracy is demonstrated in the results on the training
dataset, as well as the presence of road defects within the case study. However,
the result that over 90% of the reported images have defects does not guarantee
that the result of the dataset has been able to transfer to the context of the
case study as there is not a full picture of the images that were determined to
not contain a defect. It does provide some confidence that this mapping between
the two similar contexts has occurred. Finally, the reliability of the application
pipeline is demonstrated by the reliability of the case study, with only minor
reliability issues such as the interference in the GPS receiver.
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A natural progression from these outcomes would be to increase both the
resolution of the problem from the perspective of both the types of road defects
being detected, as well as the complexity of reporting being performed by the
edge computer. Increasing the class resolution could achieve by training an eval-
uation model on more diverse classes, for example, adding road defect classes
such as cracking, surface defects and surface distress. Increasing the complexity
could be achieved by running an instance segmentation model to provide the
location and the size of defects within an image, as well as using an onboard
GPU to speed up the computation.
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Abstract. Visual Story-Telling is the process of forming a multi sen-
tence story from a set of images. Appropriately including visual variation
and contextual information captured inside the input images is one of
the most challenging aspects of visual storytelling. Consequently, stories
developed from a set of images often lack cohesiveness, relevance, and
semantic relationship. In this paper, we propose a novel Vision Trans-
former Based Model for describing a set of images as a story. The pro-
posed method extracts the distinct features of the input images using a
Vision Transformer (ViT). Firstly, input images are divided into 16×16
patches and bundled into a linear projection of flattened patches. The
transformation from a single image to multiple image patches captures
the visual variety of the input visual patterns. These features are used
as input to a Bidirectional-LSTM which is part of the sequence encoder.
This captures the past and future image context of all image patches.
Then, an attention mechanism is implemented and used to increase the
discriminatory capacity of the data fed into the language model, i.e. a
Mogrifier-LSTM. The performance of our proposed model is evaluated
using the Visual Story-Telling dataset (VIST), and the results show that
our model outperforms the current state of the art models.

Keywords: Storytelling · Vision transformer · Image processing

1 Introduction

Visual description or storytelling (VST) seeks to create a sequence of meaningful
sentences to narrate a set of images. It has attracted significant interest from the
vision to language field. However, compared to image [7,17] and video [18,24,28]
captioning, narrative storytelling [14,19,21] has more complex structures and
incorporates themes that do not appear explicitly in the given set of images.
Moreover, describing a set of images is challenging because it demands algorithms
to not only comprehend the semantic information, such as activities and objects
in each of the five images along with their relationships, but also demands fluency
in the phrases as well as the visually unrepresented notions.
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Fig. 1. An example of three vision description techniques includes a single picture
caption, story-like caption, and narrative storytelling, which is our aim.

Recent storytelling techniques utilise sequence-to-sequence (seq2seq) models
[14,20] to produce narratives based story on a set of images. The key idea behind
these approaches is to implement a convolutional neural network (CNN), (i.e, a
sequence encoder), to extract the visual features of the set of images. Then, com-
bining these visual features, a complete set of image representations is obtained.
The next step is to input this representational vector into a hierarchical long-
short-term memory (LSTM) model to form a sequence of sentences as a story.
This approach has dominated this area of research owing to its capacity to gen-
erate high-quality and adaptable narratives.

Figure 1 illustrates the technical challenges between single image captioning
style, isolation style, and storytelling style for a set of five images. For example,
the first sentence of all the three blocks in Fig. 1 annotations show the following:
“A picture of cars around.”, “The car is parked in the street.”, and “I went to
the park yesterday, and there were many cars there.”. The first description is
known as image captioning style which conveys the actual and physical picture
information. The second description is known as storytelling in-isolation style
which catches the image content as well, but it is not linked to the following
sentence. The final description is known as first-person storytelling style which
explains more inferences about the image as a story-based sentence and also
links to the subsequent sentence.
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In order to solve the above challenges and difficulties, we propose a novel
methodology that explores the significance of spatial dimension conversion and
its efficacy on Vision Transformer (ViT) [6] based model. Our method proceeds
by extracting the feature vectors from the given images by dividing them into
16X16 patches and feeding them into a Bidirectional-LSTM (Bi-LSTM). This
models the visual patches as a temporal link among the set of images. By using
the Bidirectional-LSTM, we represent the temporal link between patches in both
forward and backward directions. To preserve the visual-specific context and
relevance, we convert the visual features and contextual vectors from Bi-LSTM
into a shared latent space using a Mogrifier-LSTM architecture [22]. During the
first layer’s gated modulation, the initial gating step scales the input embed-
ding based on the ground truth context, producing a contextualized representa-
tion of the input. This combination of multi-view feature extraction and highly
context-dependent input information allows the language model to provide more
meaningful and contextual descriptions of the input set of images.
The following is a summary of the contributions presented in this paper:

– We propose a novel ViT sequence encoder framework, that utilises multi-
view visual information extraction for appropriate narrative based story on
the given set of images as input.

– We take into account the context of the past as well as the future and employ
an attention mechanism over the contextualized characteristics that have been
obtained from Vision Transformer (ViT) to construct semantically rich nar-
ratives from a language model.

– We propose to combine Mogrifier-LSTM with enriched visual characteristics
(patches) and semantic inputs to generate data-driven narratives that are
coherent and relevant.

– We demonstrate the utility of our proposed method through multiple evalua-
tion metrics on the largest known Visual Story-Telling dataset (VIST) [12]1.
In addition, we compare the performance of our technique with existing state
of the art techniques and show that it outperforms them on various evaluation
metrics.

2 Related Works

This section presents a review of literature on different visual captions that
directly relate to narrative storytelling techniques, followed by the literature on
visual storytelling methods.

2.1 Visual Understanding

Visual understanding algorithms, which include image and video captioning, are
the most significant sort of networks utilized to tackle the problem of narrative
storytelling. Since it is most relevant to our study, we briefly discuss the recent
1 https://visionandlanguage.net/VIST/.

https://visionandlanguage.net/VIST/
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literature on neural network-based image and video captioning. Typically, these
models extract a vector of visual features using a CNN and then transmit this
vector to a language model for caption synthesis.

Image Captioning (IC) consists of a single frame (i.e, an image) defined
by a single phrase. Approaches may be further classified as rule-based methods
[2,23] and deep learning-based methods [11,27]. The rule-based approaches apply
the traditional methodology of recognizing a restricted number of pre-defined
objects, activities and locations in the image, and describing them in natural
language using template-based techniques. On the other hand, due to recent
advances in deep learning, the vast majority of current methods are dependent on
deep learning as well as scientifically advanced techniques such as attention [31],
reinforcement learning [29], semantic attributes integration [15], and modeling
of subjects and objects [5]. However, none of these algorithms are designed to
produce a narrative-based description of a set or collection of images.

Video Captioning (VC) defined as multi-frame description that can explain
many frames (i.e, a video) in a single statement. VC and storytelling techniques
are quite similar as they both utilize an encoder-decoder framework. The encoder
is composed of a 2D/3D CNN that extracts visual information from a set of
input frames. This information is subsequently converted into normal language
phrases using a decoder or a language model based on either a recurrent neural
network [4,25] or a transformer network [13,16,33]. Although VC methods can
describe multi-frames in a single caption efficiently, it does not generate a story
or multi-sentence descriptions for a given set of images.

2.2 Storytelling Methods

Telling a story based on a set of images is an easy task for humans, but an
extremely difficult task for machines. Coherent, relevant, and grammatically cor-
rect sentences must be generated for a story-based description. For example, Park
et al. (2015) [26] illustrated that using bidirectional recurrent neural network
(BRNN) is more efficient than a usual recurrent neural network (RNN) because
BRNN captures forward and backward image features, which enables the model
to interact with the whole story’s sentences. Similarly, Sequence-to-Sequence
(Seq2Seq) techniques, which utilize CNN+Bi-LSTM [14]2 or CNN+GRU [30] as
an encoder and RNN as a decoder enhanced storytelling prediction from a set
of images.

In addition, the concept of designing composite rewards as a strategy for
storytelling problems was introduced [10]3, which improved the natural flow of
the generated story. A novel decoder-encoder framework using Mogrifier-LSTM
[20] was also proposed to improve the coherence, relevance, and information of

2 https://github.com/tkim-snu/GLACNet.
3 https://github.com/JunjieHu/ReCo-RL.

https://github.com/tkim-snu/GLACNet
https://github.com/JunjieHu/ReCo-RL
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the generated story. Recently, the object detection technique using YOLOv5 [21]
is embedded with the encoder to improve the relevance of the story sentences.

Different from previous works, our proposed method derives characteristics
from the multiple visual features (i.e., patch features) based on the human-
like approach to generate stories. This helps to propose an approach that is
both computationally efficient and capable of producing coherent, relevant, and
informative stories.

Fig. 2. An overview of our proposed model which consists of a sequence encoder and
decoder. The sequence encoder process is implemented by both the Vision Transformer
(ViT) and the Bidirectional-LSTM. The decoder process is performed by the Mogrifier-
LSTM as well as the standard LSTM.

3 Proposed Method

Figure 2 presents the overall architecture of our proposed model which comprises
of Vision Transformer (ViT), sequence encoder and decoder modules. In the
first step, the image features are extracted using ViT, which divides each image
into 16×16 patches and encodes them. Then all extracted image patch features
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are further encoded by Bidirectional-LSTM module which extracts the temporal
context of the images. The connection between the sequence encoding and image
features is captured by the Attention module on two levels: the patch level and
the image-set patch level. Finally, the decoder module is responsible for the
generation of a sequence of sentences as human story-like by making use of the
Mogrifier-LSTM architecture. The following discussion delves into the specifics
of the aforementioned three modules.

3.1 Vision Transformer (ViT)

A set of I images are fed by the data-loader as Is = (I1, I2, ..., Is), where

I = [I1, I2, ..., IN ] s.t. IN ∈ R
H×W×C , (1)

s ∈ {1, 2, 3, 4, 5} which is a set of five images with HxWxC (Height x Width
x Channels) shape that presents a unique representation of storytelling from
the dataset. To extract image features, we utilized Vision Transformer (ViT)
[6] which breaks the given I image into N equal-sized, non-overlapping patches
of shape (P, P, C) and linearly maps each patch to a visual representation. We
define the extracted features as the combination of patches from the ViT model
as follows:

I0 = [I1pE; I2pE; ...; IN
p E] s.t. E ∈ R

(P 2.C)×D (2)

where P is the defined parameter as in grid order (left to right, up to down) while
C represents the total number of channels. Then we flatten all patches which
produces n line feature vectors of shape (1, P 2�C). The patches that have been
flattened are multiplied by a trainable embedding tensor of shape (P 2�C,D),
which gains the ability to linearly project each flat patch to dimension D. As a
result, we produce rich embedded patches of shape n = (1,D) ∈ R

(1,D).

3.2 Features Encoding

The purpose of visual storytelling is first to comprehend the flow of events
occurring in each image and then to produce a consistent narrative similar to
how humans narrate a story. As a set of P = P1, P2, ..., Pl, where P repre-
sents the total number of image patches included in I as well as the number
of corresponding contexts in each story. In order to represent these relation-
ship features, we utilize a Bidirectional-LSTM, which compiles the sequential
information of P patches in both forward and backward direction. Our sequence
encoder requires an input of image feature vector f i at every time step ‘t’ where
i ∈ {1, 2, .., 5}. Eventually, the sequence encoder part of the model encodes
the whole image set, comprising all the image patches and provides contextual
information hse = [

−→
hse;

←−
hse] through the final hidden-state at time step number

t = 5.
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3.3 Story Generation

Since modelling sequential inputs must lead to generating coherent sentences,
the solution to the challenge lies in how well the model learns the context.
This is particularly problematic for issues that need high levels of coherence
and relevance. To solve this, we utilize the standard LSTM [9], which forms
the current hidden state denoted by h〈t〉, based on the previous hidden state,
represented by hprev, and refreshes its memory state c〈t〉. Further, standard
LSTM utilizes input gates Γ i, forget gates Γ f , and output gates Γ o which are
determined as follows:

Γ
〈t〉
f = σ(Mf [hprev,wt] + Bf ), (3)

Γ
〈t〉
i = σ(M i[hprev,wt] + Bi), (4)

c̃〈t〉 = tanh (M c[hprev,wt] + Bc), (5)

c〈t〉 = Γ
〈t〉
f � c〈t−1〉 + Γ

〈t〉
i � c̃〈t〉, (6)

Γ 〈t〉
o = σ(Mo[hprev,wt] + Bo), (7)

h〈t〉 = Γ 〈t〉
o � tanh(c〈t〉) (8)

where w is the word vector embedded in the input at time step ‘t’ (for simplicity,
we eliminate t), M∗ represents the transformation matrix that is learned at
each state, B∗ are the biases, σ shows the logistic sigmoid function, and � is
the product of the vectors’ Hadamard transform. In our generation module, the
attention vector ζi from the sequence encoder output is used to set up the LSTM
hidden state h.

Furthermore, we boost the standard LSTM functionality to generate more
cohesive and relevant story-like sentences by integrating a Mogrifier-LSTM [22].
The two inputs, w and hprev, modulate each other in an odd and even fashion
before being sent into the standard LSTM. In order to accomplish this goal,
the Mogrifier-LSTM instead scales the columns of each of its weight matrices
throughout M∗ via Mogrifier-LSTM gated modulation. In formal terms, w is
gated based on the previous step hprev as gated input. A similar approach of
gating prior time step output is used with the previous gated input.

Following the completion of five rounds of mutual gating, as recommended
by Malakan et al. [21], the most highly indexed versions of w and hprev are sub-
sequently fed into the standard LSTM in the order shown in Fig. 2. Therefore, it
may also be stated as: mogrification (w, cprev,hprev) = LSTM(w↑, cprev,h↑

prev)
where w↑ and h↑

prev are the most significant possible indexed for the LSTM
inputs wi and hi

prev respectively. Mathematically,

wi = 2σ(M i
xhhi−1

prev) � wi−2, for oddi ∈ [1, 2, ..., r], (9)

hi
prev = 2σ(M i

hxwi−1) � hi−2
prev, for even i ∈ [1, 2, ..., r], (10)
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where Hadamard product is �, which w−1 = w, h0
prev = hprev = ζi and r

represents the total number of mogrification rounds which is a mogrifier hyper-
parameter. In addition, the default standard LSTM configuration, with r set to
0, operates without gated mogrification at the input stage. The use of matrix
multiplication with a constant of 2 ensures that the resulting transformations of
the matrices M i

xh and M i
hx are close to the identity matrix.

3.4 Data Pre-processing and Model Training

A vocab size of 6464 was extracted from the Visual Story-Telling dataset (VIST)
with a minimum word count threshold of 8. In addition, we used the size of 256
as a dimension of word embedding vectors. Then, all VIST images are resized to
224 × 224 pixels from the original size and used as an input to the pre-trained
Vision Transformer (ViT). For the training parameters, the Adam optimizer
was used, and the learning rate was set at 0.001, while the weight decay was
established at 1e-5. Also, a teacher-forcing strategy was utilized in our proposed
model to help the model train faster.

All of these settings were calibrated on our NVIDIA GPU, which has 12 GB
of memory. For the maximum possible usage of available memory, the batch size
was set to 8 during training. This ensured that we obtained the most out of
the memory that was available to us. It’s worth mentioning that greater GPU
memory provides increased batch sizes, which assist the model to train faster.
The model has been successfully trained for a total of 83 epochs utilizing about
390K steps. Finally, each epoch of our model was saved locally on our computer.
Then, the optimum performance of the model was carefully chosen from epoch
59 since, after epoch 59, the model began to overfit the data and the loss error
began to increase, resulting in decreased model accuracy.

4 Experiments and Results

First, we introduce the Visual Story-Telling dataset (VIST) used to evaluate
our proposed model. Next, we discuss the results of our proposed model and
compare them to other state of the art models. Finally, we give detailed analysis
of a few cases in terms of the generated stories and the scores.

4.1 Dataset

Visual Story-Telling dataset (VIST) [12]4 is the only publicly accessible dataset
that we are aware for storytelling problems. It comprises 210,819 distinct images
that can be found in 10,117 different albums on Flickr and is arranged in sets of
five different images. Two types of stories accompany each set of images. One is
called Description In Isolation (DII) and includes individual image descriptions
that can be useful for research in image captioning. The second one is called

4 https://visionandlanguage.net/VIST/.

https://visionandlanguage.net/VIST/
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Story In Sequence (SIS) which is more relevant to storytelling problems and
comprises a whole paragraph in precisely five sentences representing a story. In
all dataset statements, it is essential to note that the names of the individuals
are adjusted by “[male and female]”, places by “[location]”, and organizations
by “[organization]”.

4.2 Performance Comparison

Automatic evaluation metrics are the most common technique for estimating
the effectiveness of the automatically generated story. Therefore, we validate
our proposed model using automatic evaluation metrics, which also allows us
to compare it to the current state-of-the-art methods. Table 1 displays the most
recent frameworks used in storytelling challenges. These frameworks were pub-
lished since 2018 and obtained promising results on the VIST dataset. We com-
pare our proposed model using multiple evaluation metrics, which are: BLEU-1,
BLEU-2, BLEU-3, BLEU-4, CIDEr, METEOR, and ROUGE-L. The script for
computing the evaluation measures was released by [10]5.

From the experiments, we observe that our model performs better than the
state-of-the-art models on all of the given evaluation measures, except for the
BLEU-1, BLEU-4, and CIDEr. Table 1 presents the results for all of the men-
tioned models sorted by the year in which they were released. Overall, our pro-
posed model outperforms the compared models by 0.3 points in BLUE-2, 1.1
points in BLUE-3, 0.7 points in ROUGE-L and 0.2 points in METEOR.

4.3 Storytelling Example Analysis

Automatic metrics are not a perfect reflection of the accuracy of the stories.
Therefore, we conducted an in-depth analysis of the stories produced by our
proposed model and the ground truth. In addition, we compared our stories
with stories produced by the recently proposed CAMT 2021 model [20].

Figure 3 illustrates two different stories from a set of five images from our
proposed model, followed by the stories that were Generated using CAMT. The
highlighted text in green shows parts that are highly relevant to the story, while
the highlighted text in yellow indicates less relevant or general information that
is not obvious from the images. We also report the automatic evaluation metrics
below each story in Fig. 3.

Text Generation Analysis: Both selected models have shown a persuasive
example of a narrative that is representative of how humans write a story, and
both of these examples are captivating. In contrast to CAMT model, our pro-
posed model is able to extract more useful information from each input image.
For instance, the 3rd sentence in the first scenario shows more relevance to the
story, i.e. “they were so happy to be married,” as compared to CAMT model

5 https://github.com/JunjieHu/ReCo-RL.

https://github.com/JunjieHu/ReCo-RL
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Table 1. A comparison of our proposed model with the recently published methods
on the Visual Story-Telling dataset (VIST). Quantitative results were obtained using
seven different automated measures of evaluation. “–” indicates that the authors of
the corresponding study did not publish the results. The higher scores represent higher
accuracy and the results in bold represent the best scores.

Model B-1 B-2 B-3 B-4 CIDEr ROUGE-L METEOR

AREL 2018 [32] 0.536 0.315 0.173 0.099 0.038 0.286 0.352

GLACNet 2018 [14] 0.56 0.321 0.171 0.091 0.041 0.264 0.306

HCBNet 2019 [1] 0.59 0.348 0.191 0.105 0.051 0.274 0.34

HCBNet(w/o prev. sent. attention) [1] 0.59 0.338 0.180 0.097 0.057 0.271 0.332

HCBNet(w/o description attention) [1] 0.58 0.345 0.194 0.108 0.043 0.271 0.337

HCBNet(VGG) 2019 [1] 0.59 0.34 0.186 0.104 0.051 0.269 0.334

ReCo-RL 2020 [10] – – – 0.124 0.086 0.299 0.339

BLEU-RL 2020 [10] – – – 0.144 0.067 0.301 0.352

VS with MPJA 2021 [8] 0.601 0.325 0.133 0.082 0.042 0.303 0.344

CAMT 2021 [20] 0.64 0.361 0.201 0.184 0.042 0.303 0.335

Rand+RNN 2021 [3] – – 0.133 0.061 0.022 0.272 0.311

SAES Encoder-Decoder OD 2021 [21] 0.64 0.363 0.196 0.106 0.051 0.294 0.330

SAES Encoder-Decoder OD & Noun 2021 [21] 0.63 0.357 0.195 0.109 0.048 0.299 0.331

SAES Encoder OD 2021 [21] 0.65 0.372 0.204 0.12 0.054 0.303 0.335

Our Proposed Model 0.63 0.375 0.215 0.123 0.044 0.310 0.354

which predicted a less relevant sentence “they were very excited.” In addition, we
noticed that the third and the last sentences in the second examples, which are
“They were all smiling” and “Everyone was happy to be at the event.”; the two
sentences do not relate to the image itself in any manner, and the information
they provide seems to be generic and applicable to many images. On the other
hand, our proposed model generated a story that was more logically consistent
with the story and relevant to the images.

Generated Story Scores: It is essential to demonstrate the model’s perfor-
mance in contrast with traditional automated evaluation metrics. Each set of
images comes with a total of five different stories that were written by real
people (i.e., ground truth), as mentioned in Sect. 4.1. One of these stories was
extracted randomly and removed from the collection. Next, we compared the
story generated by our proposed model, CAMT model and the removed ground
truth story (we name this Human Generated Story or HGS) with the rest of the
four stories in the collection of VIST dataset. In BLEU-1, we found that our pro-
posed model obtains the highest score on the second example, with almost 0.17
points more than HGS and 0.65 points more than the CAMT model; in BLEU-2,
our generated story obtains over 0.14 points more than HGS and CAMT model;
in BLEU-3, our model obtains 0.9 points more than the HGS and CAMT model
in the first example, but the CAMT model receives 0.2 points more than ours
and 0.16 points over the HGS in the second example; in BLEU-4, CAMT obtains
almost 0.77 points more than our model and the HGS in the first example, while
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Fig. 3. Examples of our generated stories in comparison to the CAMT model [20] and
ground truth. Text highlighted in green indicates high relevance to the image/story,
while text highlighted in yellow means that it is not highly relevant but instead contains
general information. BLEU-1 (B-1), BLEU-2 (B-2), BLEU-3 (B-3), BLEU-4 (B-4),
ROUGE (R), and METEOR (M) scores are shown below each story, with bold scores
indicating the highest value.
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the HGS receives 0.74 points more than our model and 0.10 points over the
CAMT model in the second example; in ROUGE-L, we reported that our model
obtains almost 0.2 points more than both the HGS and the CAMT model in both
examples; and in METEOR, we find that our model obtains almost 0.7 points
more than both the HGS and the CAMT model in both examples. On the other
hand, the performance of our proposed model is sufficiently high across practi-
cally all of the automated evaluation metrics, with the exception of BLEU-4, as
is shown through Fig. 3.

5 Conclusion

This article presented a novel storytelling approach for describing a set of images
in a coherent manner. Our proposed framework is robust, which consists of a
sequence encoder that receives multi-view image patches from Vision Trans-
former (ViT) as an input to a Bidirectional-LSTM, and a decoder with a stan-
dard LSTM enhanced by Mogrifier-LSTM that has five rounds of mogrifircation.
Furthermore, we utilize an attention mechanism that enables our model to cap-
ture a specific significant context in response to a particular visual area while still
keeping the more significant story context in mind. We found that our proposed
model performs better on most of the automatic evaluation metrics than cur-
rent state-of-the-art approaches except for BLEU-1, BLEU-4 and CIDEr scores.
Additionally, we presented a comprehensive analysis of multiple examples, which
indicated that our generated stories are more relevant and coherent.
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Abstract. Generative adversarial networks have attained synthesised
results that are not distinguishable from real examples in domains such
as image, audio, text and video. While state-of-the-art image models
synthesise images with high and diverse quality in many domains, video
synthesis is more challenging and suffers from poor generalisation; more-
over, the generated videos are not diverse, especially if the network is
trained on a limited dataset. In such cases, the model overfits the train-
ing examples and performs poorly at inference time. Dataset collection,
in general, is a tedious task, and it is even more challenging for video
data due to its size and accessibility. Also, creating a video in the first
place requires more time and effort. In this paper, we expand a previ-
ously collected video dataset with a supporting image dataset. Then, we
apply a multiscale fusion method on multiple conditioned images to facil-
itate diverse video sample generation. We combine the multiscale fusion
model with an audio extractor; then, the encoded features are input to
a video decoder to generate videos synchronised with the audio signals.
We compare our multiscale fusion model with other image fusion models
on the Flowers, VGGFace and Animal Faces datasets. We also compare
the overall architecture with other audio-to-video models. Both experi-
ments show the effectiveness of our model over others, based on different
evaluation metrics such as FID, FVD and LPIPS.

Keywords: Audio-to-Video GAN · Diverse video synthesis model ·
Image fusion

1 Introduction

Generative adversarial networks (GAN) [12] have been flourishing in the syn-
thesis domain across multiple sectors such as medicine [38,39] and art [37] and
modalities such as images, audio and text and video. Video generation, however,
continues to suffer from many limitations. Video generation is a challenging task
in general as models deal with the multi-modal nature of video models [5]. Video
acquisition is also challenging due to the size and scarcity of video datasets. In
addition, when constructing a video dataset from scratch, recording a video
requires more time and effort than its counterpart in an image dataset. Train-
ing a video generation model on a limited dataset may result in a discriminator
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 29–42, 2022.
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overfitting problem. Video generation models are also complex with high data
capacity, therefore they tend to memorise the limited training examples so that
the back-propagation feedback becomes worthless [13,30]. The trained model, in
this case, does not generalise on real-world examples.

There are multiple ways to overcome the overfitting problem in GAN. Trans-
fer learning [33,33,41,46] could be used to overcome the memorising problem.
A model could be trained on one dataset; then, the trained model could be
trained further and fine-tuned on another dataset of limited size. Augmentation
is a popular method that is used in StyleGAN2 ADA [31] to overcome mem-
orisation of training examples. Different types of augmentation such as colour
transformations, rotation and scaling are used in the training examples without
leaking the augmentation to the generated examples. In this work, we propose
a different augmentation approach that first expands the video dataset with an
image dataset. For each video sample, there are multiple corresponding images
that share semantic similarity. Therefore, each video may be augmented by mul-
tiple supporting images. Then, we use a fusion method to fuse these images and
generate diverse videos. Image fusion was first introduced in the image genera-
tion field. Early methods such as GMN [10] and matchingGAN [6] have limited
capabilities and can only generate simple scenes. F2GAN [8] can generate more
realistic scenes by using a multilevel fused attention model. However, this model
might generate images with unwanted artifacts if the input images are not spa-
tially aligned. Gu et al. [9] overcame this limitation by fusing on a small scale.
In this work, we use a fusion technique similar to Gu et al. while taking into
account the fact that objects may be of any size. We first compute the mul-
tilevel features during the encoding phase. Then, we replace a feature map in
one image with other unified resized feature maps in the other images according
to the similarity map. Comparing a feature map in an image with multi-scale
features in the other images helps in finding better candidates for replacement
and results in better image generation.

Previously reported image models [6,8–10] are in the image generation field.
To overcome the overfitting problem in the video realm, multiple methods such
as augmentation [36,40] have been used. To the best of our knowledge, this
paper is the first attempt to improve a fusion method [9] in the image domain
and apply it to the audio-to-video domain. In order to apply the fusion method,
we first augment our video dataset by adding an image dataset since it is easier
to acquire images. We use the collected images to help our model learn from
similar features and that results in higher quality and more diverse generations.

1.1 Contributions

In this work, we have made the following contributions:

1. We propose a novel model for audio-to-video synthesis that improves and
combines a fusion model from the image generation realm with an audio-to-
video synthesis model.

2. We expand the Phonics dataset with an image dataset to enrich the video
dataset with image samples, as collecting more video samples is not feasible.
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3. We compare our synthesis model with image and video models and across
multiple image and video datasets, using several evaluation metrics.

2 Related Work

This section reviews related works on generative adversarial networks, audio-to-
video generation and image fusion models.

2.1 Generative Adversarial Networks (GAN)

The usefulness of GAN [12] has been demonstrated in a variety of fields, including
picture synthesis [3,22], editing [22,44], denoising [1,43] and retargeting [7,42].
Early GAN models generated content based on noise vectors such as MoCo-
GAN [34], G3an [35] and ImaGINator [32]. Later models can generate content
given a condition such as image, video, audio, text or key-points. A GAN model
consists of two networks that compete with each other to improve the generated
results. In most cases, the training GAN continues until convergence, where
the generated samples are of sufficient quality and diversity. However, when the
training examples are limited, the model tends to overfit the training examples.
In other words, since generative models have high capacity, they seem to memo-
rise the examples that are not represented sufficiently in the training dataset, and
always generate the same examples. Using fusion models is one way to overcome
this limitation in a GAN model, as will be discussed in Subsect. 2.3.

2.2 Video Generation

Video generation is a complex task for several reasons. First, a video is made up
of multiple static images. Besides the spatial complexity, these models need to
generate videos with smooth temporal trajectories. In addition, when these mod-
els are conditioned on audio, they must generate motion-audio synchronisation.
This work focuses on the audio-to-video task. The state-of-the-art audio-to-video
models rely on supervised signals such as 3D mesh [14–17] or landmarks [18–
20,23,24]. These supporting signals help the model learn the changes in motion
along the time dimension. However, annotating videos with landmarks or 3D
meshes requires time and effort. Also, it is not possible to annotate some datasets
such as fireworks or ocean waves where that content has irregular shapes. Given
that these models depend on supervised signals, they are not covered in this
paper. The focus of this work instead is on pixel-level audio-to-video genera-
tion models [21,29,45]. However, the existing models do not account well for the
diversity of the generated examples. To address this issue, our proposed model
adopts a fusion method so that the generated frames have higher quality as the
model learns from the supporting images, as will be presented in Sect. 3.
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2.3 Image Fusion Methods

Image fusion models are used to combine images from one category at the feature
level and decode that to an image from the same category. Generative Matching
Network (GMN) [10] is one of the first attempts at fusion-based image gen-
eration. GMN consists of a matching network and a Variational AutoEncoder
(VAE). The matching network is responsible for projecting the noise vector and
the conditional images in a unified space and then calculating the similarity
score which is used to define the interpolation coefficient, which is proportional
to the information from each image to be fused to construct the generated image.
Because GMN uses VAE architecture, the generative capabilities are limited to
simple tasks as the model is implemented on a simple character dataset named
Omniglot [11]. MatchingGAN [6] replaces the VAE model in GMN with a GAN
to take advantage of GAN capabilities. MatchingGAN can produce more realistic
images, but the generated quality can be degraded for complex natural scenes.
F2GAN [8] uses multilevel local attention fusion modules with skip connections.
Each image participates in the generated image based on a random coefficient.
This method might not perform well when the input images are misaligned [9].
Recently, Gu et al. [9] introduced a different fusion methodology in LoFGAN.
They go through three steps, namely selection, matching and replacing. The first
step is to select local positions in one of the images and then find the best match
in the other images in the second step. In the last step, the best matches are
replaced by the original positions. The fused image is decoded to generate the
actual image.

Previous audio-to-video models [21,45] were conditioned on the input frame
to generate a video with frames quite similar to the input frame, but after
adjusting the objects according to the temporal features. This will result in
videos with low diversity. To produce more diversity in the generated videos, we
employ a fusion model to augment each video with similar images. To the best of
our knowledge, we are among the first to apply fusion images to expand a video
dataset and provide more diversity and higher quality in the generated videos.

3 Proposed Method

3.1 Audio-to-Video GAN Framework

The framework proposed in this work aims to generate diverse videos given a
few conditional images from the same category and an audio signal. The overall
architecture of the framework is illustrated in Fig. 1. The process begins by
encoding the first frame and multiple conditional images from the same category.
The image encoder produces features with different spatial sizes. After that, we
use a multiscale fusion model to combine the images at the feature level and
to gain more diversity, as described in Sect. 3.2. Meanwhile, the corresponding
audio signal for the first frame is transformed to a log Mel-spectrogram, and then
the signal is encoded using GRU units. Next, the fused image features, encoded
audio features and the class (see Sect. 4.2) are concatenated in the channel
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Fig. 1. The overall architecture of the proposed framework that consists of a generator
and two level discriminators. The generator has an image encoder, multiscale fusion
model, audio encoder and video decoder.

dimension. On the decoder side, the concatenated features are input to the first
layer and the class features are input in each decoding stage after reshaping the
class feature to the same dimension as the input. The class of a video is encoded
using one hot encoding to label a sample from a list of categories as described in
Sect. 4.2 There are two discriminators, one each for the image and video levels,
to determine whether the generated examples are realistic. While both image
and video discriminators evaluate the spatial aspect of a sample, the latter also
evaluates the temporal aspect of a video.

3.2 Multiscale Fusion Module

Objects in an image could be of any size. The proposed architecture deals with
this issue by seeking similarities in a multiscale manner. To be specific, the model
takes features of different sizes and then uses interpolation to resize them. After
obtaining all the feature maps of the same size, we look for the top similarity
between the base image and the references of all sizes according to cosine sim-
ilarity metrics. The last step is to replace the feature in the base image with
similar features in the reference images [9].

3.3 Loss Function

We trained our model using three loss functions. First, we use adversarial loss
that consists of video adversarial loss and image adversarial loss as in Eq. 1 and
2 respectively.

LV (DV,G) = EV ∼pdata
[logDV (V )] + EI,c,a∼pdata

[log(1 − DV (G(I, c, a))] (1)
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LI(DI,G) = Evi∼pdata
[logDI(vi)] + EI,c,a∼pdata

[log(1 − DI(x)] (2)

In our GAN architecture, a video discriminator DV evaluates the realism
of the generated video G(I, c, a) and real video V = v1, ..., vk, where k is the
number of frames. In contrast, the image discriminator DI is used to verify if
the input is a frame from a real video (vi) or is a fake one x∈ G(I, c, a). The
generator G has multiple inputs for different components. The audio a is input
to the audio encoder. The initial frame f ∈ v1, ..., vk and the supporting images
S = s1, ..., sn are concatenated to form I to be encoded in the image encoder.
Then, the class label c along with encoded audio a and image features I are
input to the decoder (See Fig. 1).

Generative models use reconstruction loss to enhance the quality of the gen-
erated content. However, different variations of the reconstruction loss have been
proposed with the introduction of fusion models [8,9]. Weighted reconstruction
loss [8] is one of the variations, but this loss might result in implausible arti-
facts due to comparison with the fused image that has misaligned objects. Local
fused reconstruction loss [9] produces higher quality results since it re-applies
the fusion model and projects the results at the pixel-level, to compare it with
generated images. We chose to apply Local Fused reconstruction loss [9] by using
L1, as in Eq. 3, to compare the fused images Fusion(I) with real frame f .

Lrec = ‖f − Fusion(I)‖1 (3)

The overall architecture is trained using the following loss function:

L = λILI + λV LV + λrecLrec (4)

4 Experiments

We compared our model with image and video models, as our model is built
upon a fusion approach that was first implemented in image models. We com-
pared our model with image fusion models such as GMN [10], MatchingGAN [6],
F2GAN [8] and LoFGAN [9] across multiple datasets such as Flowers [27],
Animal Faces [28] and VGGFace [25]. Also, another set of comparisons were
made in the video form and across multiple datasets such as Phonics audio-
video dataset [21,45] and VidTIMIT audio-video dataset [26]. We compared our
model with a audio-to-video model [21]. Since audio-to-video pixel-level models
are limited, we compared our model with a modified version of unconditional
video models such as MoCoGAN [34], G3an [35] and ImaGINator [32].

4.1 Implementation Details

In all experiments, the encoder has five 2D convolutional blocks. Each con-
volutional layer is followed by Leaky-ReLU activation and batch normalisation.
The encoder produces features with spatial sizes 32 * 32 and 16 * 16 besides the
bottleneck features that are used in the fusion model of size 8 * 8. We use the
Adam optimizer with a learning rate of 0.0002.
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In the video experiments, there are three conditional images: a frame from
a video, and two images from the supporting image dataset. The created videos
have 32 frames in total. The frames’ spatial dimension is 64× 64. Similar to the
video dimension, there are 32 audio segments in total, and each audio segment
is 64× 20 in size. The video decoder consists of 5 layers, and each layer has
ConvTranspose3d, BatchNorm3d and LeakyReLU. We used Tanh in the last
layer to replace LeakyReLU.

In the image experiments, there are three conditional images. We replaced
the video decoder with an image decoder. The decoder consists of 5 main layers.
Each layer has an up-sampling sub-layer, convolution 2D sub-layer and leaky-
ReLU activation. As in the video decoder, we apply Tanh in the last layer.

Fig. 2. Samples from our video and image datasets. The first three columns are from
the image dataset while the rest of the columns represent frames of a video.

4.2 Datasets

Phonics Dataset. This dataset consists of two parts: the video dataset and
the image dataset. The Phonics video dataset is publicly available [47] with 1570
samples. It is an audio-visual video dataset, which has a song about an alphabet
letter and a video of an object whose name begins with that letter. The video
is an animation of the letter and object that are moving or transforming in
different ways. This dataset has limited samples if used to train a high-capacity
GAN network directly. However, collecting more video samples requires time and
effort because of the pre-processing involved [21]. Moreover, there are limited
videos available in the wild. For these reasons, we have expanded the Phonics
video dataset by collecting the Phonics image dataset. For each object in a video,
we collected three image samples, see Fig. 2 illustrating a video and the three
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supporting image samples. The total number of image samples is 1533, and the
total number of object classes is 511, while the number of letter classes is 26.
For example, in the first row in Fig. 2, the object class is “road” while the letter
class is “R”. Collecting an image dataset does not require the pre-processing
steps and helps in increasing the quality and diversity of the generated videos.

The image dataset construction procedure starts by searching for the follow-
ing phrase: “x is for y” where x is the letter and y is the object that starts with
the letter x. Then, three images are downloaded and the class letter and object
are recorded for each sample. In addition, the corresponding letter and object
classes are recorded for each video sample in a CSV file. Thus, we can relate
each video sample with the images that share the same letter and object.

Other Evaluation Datasets. Besides using Phonics dataset in the video
experiments, we also trained our model on the VidTIMIT Audio-Video
dataset [26]. The videos feature 43 persons saying 10 brief sentences and were
taken from the head region. We used the person’s identity as a class label. There
are 430 videos in total. The model was conditioned on three images of the same
person. Because the data was gathered in a laboratory environment, there is not
much variation in the conditional images.

For the image experiments, we used Flowers dataset [27], Animal Faces
dataset [28] and VGGFace dataset [25]. The Flowers dataset is divided into
102 categories, where each category is limited to 40 images. The Animal Faces
dataset contains 149 categories, each with 100 images. The VGGFace dataset
has 2354 categories. Each category has 100 images.

Fig. 3. Images produced from LoFGAN and our proposed network and across multiple
datasets such as Flowers, Animal Faces and VGGFace. The first three columns are the
conditional images. The remaining columns are the results of inputting the same set
of images in multiple iterations.
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Fig. 4. The generated videos from our model and audio-ImaGINator. Our model is
conditioned on three images (the first three columns) while audio-ImaGINator inputs
one image (the first column). The remaining columns are the generated frames sampled
with time-step=2

Table 1. Utilising FID and LPIPS scores for quantitative analysis, our model performs
better in terms of quality and diversity of the images produced. The symbol (*) means
that the results are quoted from F2GAN [8].

Flowers Animal faces VGGFace

FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑
GMN* 200.11 0.0743 220.45 0.0868 136.21 0.0902

MatchingGAN* 143.35 0.1627 148.52 0.1514 118.62 0.1695

F2GAN* 120.48 0.2172 117.74 0.1831 109.16 0.2125

LoFGAN 79.33 0.3862 112.81 0.4964 20.31 0.2869

Our Model 60.17 0.4021 110.32 0.5022 19.43 0.2993

Table 2. Using FID and FVD scores for quantitative analysis, our model performs
better in terms of quality and diversity of the generated videos trained on Phonics
dataset.

MoCoGAN phonicsGAN G3an ImaGINator Our model

FID 59.81 46.82 36.93 35.23 31.22

FVD 1248.73 961.85 936.99 377.25 323.45
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4.3 Qualitative and Quantitative Evaluations

We compared our model with other image fusion models since the fusion app-
roach was first introduced in the image domain. A comparison between LoF-
GAN [9] and our network using the image decoder is shown in Fig. 3. Our model
shows better quality across three datasets. We noticed when we deal with a
dataset that has multiscale objects, such as flowers, our model surpassed other
models as shown in the first three rows in Fig. 3. We also used different evaluation
metrics such as Fréchet Inception Distance (FID) [4] and Learned Perceptual
Image Patch Similarity (LPIPS) [2] to compare our model with image fusion
models such as GMN [10], MatchingGAN [6], F2GAN [8] and LoFGAN [9]. FID
uses pre-trained inception-v3 to compare the distribution of real and fake images,
while LPIPS uses VGG, Alexnet or SqueezeNet to measure the perceptual sim-
ilarity between two images by comparing the activation of a certain convolution
layer. While a lower FID implies better sample quality, a higher LPIPS suggests
higher sample quality. In Table 1 the FID and LPIPS scores are shown. As visual
inspection suggests, the improvement is greater in the Flowers dataset than in
others. As mentioned earlier, the Flower dataset has flowers and leafs in different
sizes. As our network is designed to deal with this fact, it performers better than
other models in such datasets.

We also performed another set of experiments for two video datasets, and
Fig. 4 shows a comparison between our model and audio-ImaGINator. We chose
to compare our model with audio-ImaGINator since it has the second-best per-
formance in phonics and VidTIMIT datasets [45]. We did not compare the pro-
posed model with another reported in the literature [45] since the latter model
uses temporal augmentation, which is out of the scope of this work. We found
that the supporting images did help in learning the spatial features and gener-
ating higher quality objects. In some cases, we can see the effect of fusion in
the generated videos, as shown in Fig. 4 first row. However, most cases produce
results similar to the base image, since the variation in the conditional images
for the VidTIMIT dataset is not as large as in the other datasets such as flow-
ers. We used FID and Fréchet Video Distant (FVD) in the video experiments as
quantitative measures. FVD evaluates the temporal dimension of a video besides
the spatial dimension. Our model surpasses others in the spatial and temporal
dimension as shown by FID and FVD score in Table 2.

Fig. 5. Ablation studies: a comparison between our video model w/ and w/o the multi-
scale fusion component trained on the Phonics dataset and sampled with time-step=2.
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Fig. 6. Ablation studies: a comparison between our image model w/ and w/o the
multiscale fusion component trained on the Flowers dataset.

4.4 Ablation Study

We performed several ablation studies to evaluate the effectiveness of multiple
components. First, we removed the fusion model and trained the same architec-
ture by inputting the initial frame only instead of fusing multiple images. We
noticed that if we input only the initial frame, the videos produced have lower
quality, as shown in Fig. 5. This is because the decoder only decodes the image
features from one source, while with the fusion model the decoder produces an
image from multiple images, thereby enhancing the quality.

We also performed the same experiment for our image model. We removed
the fusion model, and input a single image to the model without fusion. The same
decoder and discriminator in our original experiment was used in this ablation
study. We found that every time we input the same image to our model without
fusion, the same result was produced. For example, in Fig. 6 first and third rows,
we input the same image to the model without fusion 10 times, and the output is
almost the same. However, in Fig. 6 second and fourth rows, each time we input
the same set of images to our model with fusion, we can see diverse generations.

5 Conclusion

In this work, we attempt to address the diversity of audio-to-video generation
results by using a fusion method from the image generation domain. We propose
a multiscale image fusion model that aims to overcome the problem of limited
video datasets by expanding the dataset with images to enrich the spatial aspect
of a video. By fusing multiple images, we can generate more diverse videos. We
compared our model with image fusion models and video models, and the results
support the effectiveness of the proposed framework.
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Abstract. Personality perception is an important process that affects
our behaviours towards others, with applications across many domains.
Automatic personality perception (APP) tools can help create more nat-
ural interactions between humans and machines, and better understand
human-human interactions. However, collecting personality assessments
is a costly and tedious task. This paper presents a new method for zero-
shot facial image personality perception tasks. Harnessing the latent psy-
chometric layer of CLIP (Contrastive Language-Image Pre-training), the
proposed PsyCLIP is the first zero-shot personality perception model
achieving competitive results, compared to state-of-the-art supervised
models. With PsyCLIP, we establish the existence of latent psychometric
information in CLIP and demonstrate its use in the domain of personality
computing. For evaluation, we compiled a new personality dataset con-
sisting of 41800 facial images of various individuals labelled with their
corresponding perceived Myers Briggs Type Indicator (MBTI) types.
PsyCLIP achieved statistically significant results (p<0.01) in predicting
all four Myers Briggs dimensions without requiring any training dataset.

Keywords: Personality · Personality perception · Personality
computing · Data-driven approach · Computational modeling ·
Transfer learning

1 Introduction

When seeing a person’s face for the first time, we instinctively form an impres-
sion of their personality [31]. While we may be taught at a young age to “not
judge a book by its cover”, psychology studies have shown that this innate
first perception yields considerable accuracy [6,21,30,43]. Indeed, face-reading
skills are critical in our daily lives. They are employed by salespersons to assess
prospective clients, film directors to choose the optimal actor, and even while
considering which stranger to ask for directions [36]. Regardless of its accuracy,
personality perception influences our behaviour towards others [39].

It is a major research area to determine if a computer may gain this capa-
bility. Personality perception [42] is the automatic perception of a subject’s per-
sonality based on their audio, visual, or other features. Rather than attempting
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to recognise an individual’s true personality as in personality recognition tasks,
automated personality perception seeks to predict the perceived personality or
how an individual’s personality is perceived by others.

Automatic personality perception (APP) [42] may be a critical first step
in developing a more affable conversational agents [34] that are perceived in
certain ways. In theoretical psychology, APP can help better understand social
interactions and group dynamics [20] In clinical psychology, it can serve as a
coaching system to assist socially challenged individuals such as those diagnosed
with autism spectrum disorder (ASD) and social anxiety disorder (SAD), in
understanding how their behaviours affect others’ perception, thus helping them
in coping with social norms. Furthermore, the ability to reliably infer personality
impressions from facial images enables us to employ it as a discriminator in an
adversarial network [15] for creating face images based on certain personality
attributes [12].

Currently, we can attain a high degree of object detection accuracy in some
domains [22], partially owing to the vast number of training datasets available
[46], such as the ImageNet [10] dataset with 14 million images. This is not the
case, however, in areas such as personality computing [18]. The state-of-the-
art model [19] of facial image personality perception has a training set of 28,230
images. In contrast, even the MNIST dataset [11], which is often used in beginner
deep learning courses, has 60,000 images.

The size of datasets used by cutting-edge deep learning models is ever increas-
ing, such as GPT-3 [8] with 410 billion training tokens. However, we have yet
to replicate the success of large datasets in personality computing [42]. Creating
an annotated dataset of psychometrics (i.e. personality measures) is far more
complex and costly, since it is considerably more difficult to label psychological
features [18].

This highlights the value and attraction of zero-shot classification in person-
ality perception tasks [42]. The introduction of contrastive language-image pre-
training (CLIP) [33] made zero-shot personality perception promising: Trained
on 400 million image-caption pairs, CLIP has been shown to grasp abstract clas-
sification labels [4]. We hypothesise that there is a potential way for CLIP to
comprehend cues meant to elicit personality attributes and hence be used in
personality perception tasks, by accessing a latent psychometric layer within the
CLIP model.

The goal of our study is to utilise CLIP to build a zero-shot model of per-
sonality perception from unlabelled images by harnessing latent psychometric
information from the CLIP pre-trained model. PsyCLIP (Psychometric-CLIP)
adopt the CLIP’s text/image encoder structure. As CLIP was pre-trained on
image-caption pairings, we translate each psychometric label into CLIP-style
text prompts (i.e., image captions). To find the optimal text-prompt, we first
generate a list of candidate prompts using GPT-3’s text-davinci-002 text com-
pletion engine [1]. We then proceed to eliminate biased prompts that favour a
particular personality trait and select the prompt that results in the highest accu-
racy. To evaluate the performance of PsyCLIP, we have created a large dataset of
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41800 facial images, labelled with Myers Briggs [29] personality types. The result
from PsyCLIP is encouraging: We achieved statistically significant results (p <
0.01) in all personality dimensions, which are comparable to those obtained by
the state-of-the-art supervised model [19]. With PsyCLIP, we make the following
contributions:

– Establish the existence of a latent psychometric layer in CLIP, and demon-
strate how it can be harnessed in the domain of personality computing.

– Provide a new personality dataset consisting of 41800 facial images of various
individuals labelled with their corresponding perceived MBTI personality.

– Introduce a novel approach in handling zero-shot personality perception tasks
that produces results comparable to those of a state-of-the-art supervised
model, without the need for any training sets.

PsyCLIP is significant because it provides a reasonable base model for com-
putational social scientists, potentially capable of perceiving any psychological
attribute [37]. It may serve as a playground for rapidly testing psychological
theories and sparking new psychological discoveries.

Fig. 1. Summary of our approach. We perform prompt engineering (i.e. translate
MBTI subscale traits into CLIP-style text prompt) for each MBTI subscale and encode
them using CLIP text encoders. We then assess the classification results of 16000
evaluation samples by encoding them with CLIP image encoders.

2 Related Work

2.1 CLIP

CLIP (Contrastive Language-Picture Pre-training) [33] combines image and
text encoding to anticipate appropriate image-text pairing of training instances.
Then, for zero-shot object classification, the classification labels are translated
to captions such as “a photograph of an extroverted person,” and CLIP predicts
the caption class that most closely matches the provided photograph. Although
CLIP is zero-shot, it outperforms some state-of-the-art supervised models.
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However, CLIP has been mostly used for standard object classification tasks,
and there is a dearth of research on CLIP’s performance with psychological
labels. Evidence suggests that CLIP might comprehend abstract prompts, as
seen in BigSleep [23] and DeepDaze [24] CLIP functions as a discriminator in
these projects, combining with a BigGAN [7] or SirenNetwork [38] to generate
abstract artworks from arbitrary inputs.

This leads to the hypothesis that there might be hidden information about
personality measures within the pre-trained CLIP model. This work explores
the effectiveness of CLIP in personality perception tasks and intends to spark
discussion on using pre-trained models in personality computing.

2.2 Personality Measures

Two psychometric instruments stand out among contemporary personality mod-
els: the Big Five [35] and the Myers-Briggs Type Indicator (MBTI) [29]. The Big
Five (the five-factor usually assessed using NEO Personality Inventory) is more
prominent in academia, whereas the MBTI is more prevalent in the consulting
and training industries [14]. Big Five model describes each person’s personality
across five dimensions: Extraversion, Openness, Agreeableness, Conscientious-
ness, and Neuroticism that are revealed from semantic analysis of personality
descriptors. However, MBTI indicates preferences in how people perceive the
world and make decisions [29] with four categories: Extraversion-introversion,
intuiting-sensing, thinking-feeling, and judging-perceiving. Studies show that
there is a strong correlation [14] between the MBTI and the four dimensions
of the Big Five, as shown in Table 1: The Big Five Extraversion is highly cor-
related with the MBTI Extraversion/Introversion (E-I) dimension; the Big Five
Openness is highly correlated with the MBTI Intuition/Sensing (N-S) dimen-
sion; and the Big Five Agreeableness is only associated with MBTI thinking;
The Big Five conscientiousness is associated with both the thinking-feeling (T-
F) and judging-perceiving (J-P) dimensions; Neuroticism as measured by the
NEO-PI is unrelated to any MBTI subscale score.

The primary distinction between MBTI and Big Five is that MBTI employs
a binary classification system (e.g., either extrovert or introvert), whereas Big
Five employs a linear scale (e.g., a number associated with each dimension)
[9]. As a result, MBTI naturally lends itself to classification tasks, whereas Big
Five dimensions lend themselves to regression. Therefore, MBTI was a more
natural choice for evaluating PsyCLIP’s performance, as CLIP was designed as
a classification model.

Another reason we choose MBTI is that the large dataset we gathered was in
MBTI. In practice, it is easier to collect big datasets of personality perceptions
using MBTI. We posit that APP on dichotomy-based datasets (such as the
MBTI) could be a necessary prelude to APP on scaling-based datasets (such as
Big Five).
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Table 1. The table shows how MBTI correlates to big five spectrums. [14]

MBTI Big Five

E-I Extraversion

N-S Openness

T-F Agreeableness, Conscientiousness

J-P Conscientiousness

2.3 Personality Perception

Personality perception [42] is the automatic perception of a subject’s personality
based on their audio, visual, or other features [26]. Recent personality percep-
tion work includes textual personality perception [13,25,44], audio personality
perception [27,41,45], visual perception from videos [5,16] and multimodal per-
ception [28].

2.4 Facial Image Perception

In the field of personality perception, there are fewer studies simply on the
basis of visual images. This can be ascribed in part to the difficulty inherent
in gathering sufficiently large image datasets for personality computation [18,
19] described a supervised model based on ResNet and multi-layer Perceptron.
It uses a person’s face image to predict their Big Five traits. It was trained
using 28,230 face images of 11,202 subjects. Although the connection between
predicted and true scores is modest, it can correctly predict the relative standing
of two randomly picked persons on a personality dimension in 58 % of situations
(as against the 50 % expected by chance).

In the current study, instead of using conventional supervised models, we
explores the possibility of Zero-Shot classificaton through large pretrained mod-
els like CLIP.

3 Method

To achieve zero-shot personality perception, We first translate MBTI subscale
traits into CLIP-style text prompt for each MBTI subscale and encode them
using CLIP text encoders. This is the primary distinction between PsyCLIP
and CLIP: rather than utilising classification labels directly, as is customary
in CLIP, we design psychological classification labels into text prompts that
capture the relevant features for each category. We then assess the classification
results of 16000 evaluation samples by encoding them with CLIP image encoders.
This section describes the dataset we used and all steps to perform a zero-shot
personality perception.
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3.1 Dataset

Although the proposed method does not require any training, it needs a dataset
to evaluate its performance. We have built a dataset from the largest online
MBTI database [3]. The website contains 51800 profiles of famous people and
characters. Each profile consists of a profile image of size 256× 256. The profile
has been scored by a number of voters for their perceived personality type. The
personality type of each profile is determined by the perceived personality type
with the highest vote. In post-processing, we took the top 1000 most voted
non-fictional profiles for each 16 MBTI personality types (e.g., INPT type for
Introvert, Intuition, Perceiving, Thinking) , resulting in a final sample size of
16000. The minimum number of votes per profile is 6, maximum is 5049, and
average is 87.

3.2 CLIP Encoders

As explained earlier CLIP assigns each input image to the encoded text prompt
that results in the highest similarity. In PsyCLIP we introduce prompts that are
pertinent to each personality type. The prompts are engineered using GPT-3 as
explained in the next section. The text and picture encoders in PsyCLIP were
built using the ViT32 CLIP model,which has shown to achieve the best perfor-
mance [33]. We retain the encoders in their current state in order to test CLIP’s
baseline performance against the MBTI evaluation dataset and to ascertain their
potential for discriminating psychological features.

As seen in Fig. 1, we evaluated the effectiveness of PsyCLIP across the four
MBTI dimensions. We apply a prompt engineering technique, detailed in the
next section, to determine the ideal prompt that best describes each Myers
Briggs subscale feature. For instance, we discovered that the prompt that best
captures the extroversion attribute is “extraverted, outgoing, sociable, talkative,
outspoken, gregarious, effervescent.” We next repeated the prompt engineering
procedure for each class of the four categories, resulting in a total of eight sub-
scale feature sets.

3.3 Prompt Engineering

Prompt Generation. We produce prompts for each dimension using Genera-
tive Pre-trained Transformer 3 (GPT-3) [8]. GPT-3 is the state-of-the-art text
generation model, trained on 499 billion tokens. We hypothesise that GPT-3
might assist us in converting psychological labels to CLIP-style instructions. We
employed a temperature of 0.7 and the text-davinci-002 text completion model
[1], and use the text completeion engine to complete the following: “list a series
of adjectives that describes MBTI extroversion.” This results in a list of poten-
tial candidates that capture the psychological qualities, as shown in Table 2. We
then evaluated the performance of the generated prompts against a small test
set of 100 samples per personality for prompt selection.
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Table 2. Sample prompts generated by GPT-3 text-davinci-002 engine with the input
“list a series of adjectives that describes MBTI Extraversion/Introversion/Thinking/
Feeling”.

Trait Generated prompts from GPT3

Extraversion Extraverted, Outgoing, Social, Chatty, Outspoken, Gregarious, Bubbly

Introversion Introverted, Reserved, Reflective, Introspective, Private, Unassuming, Quiet

Thinking Analytical, Logical, Rational, Objective, Introspective, Thoughtful

Feeling Empathetic, Compassionate, Sympathetic, Cooperative, Caring

Prompt Selection. After generating prompts, we proceed to finding the opti-
mal prompts. We begin by determining the accuracy of each prompt candidate’s
categorisation in a test pool of 100 randomly chosen candidates for each person-
ality type. The samples are randomly chosen amongst the set of 35800 profiles
that are not in the evaluation set. The findings are then utilised for eliminating
biased prompts. Biased prompts are prompts that result in skewed results in
favour of a certain sub-scale. For instance, if we use the raw GPT-3-generated
prompt “analytical, logical, rational, objective, introspective, thoughtful” for the
MBTI Thinking type and the raw GPT-3-generated prompt “empathetic, com-
passionate, sympathetic, cooperative, caring” for the MBTI Feeling type, the
result would heavily favour the thinking type. While it is 90.3% accurate in
identifying the thinking attribute of an INTP (introverted, intuiting, thinking,
perceiving), it is only 20.0 percent accurate in identifying the feeling trait of
an INFP (introverted, intuiting, feeling, perceiving). In this case, although the
average accuracy of INPs is 55.6% in this scenario, the result cannot be consid-
ered statistically significant. As a consequence, we reject prompts that result in
skewed outcomes and retain only those that result in above-expectation accuracy
in both sub-scales. After rejecting biased prompts, we then find the prompts that
would result in highest overall perception accuracy.

4 Results

The prediction accuracy for each MBTI category is shown in Tables 3, 4, 5 and 6.
Predictions for each category conditioned on other categories are also reported
to help better understand the model behaviour. Overall, PsyCLIP performed
above the 50% chance level in all four categories and is statistically significant
at p < 0.01 on the 16000-person sample size. This corroborates the hypothesis
that CLIP do contain latent psychometric information.

4.1 Comparison to Similar Models

In aggregate, the average accuracy is 56.95%. There is a dearth of research on
MBTI-based face personality perception with which to make direct comparisons.
However, we may still make comparisons to models based on Big Five [19]. In
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Table 3. Accuracy score for Thinking/Feeling classification. Result is signif-
icant at p < 0.001 against the baseline of 50% (chance level). For example, the first
entry means the model has 68.8% accuracy in classifying INTPs as Thinking amongst
1000 INTP samples.

T(%) F(%) Overall(%)

INP 68.8 53.8 57.1

INJ 68.4 46.0 61.3

ENP 66.1 55.1 60.6

ENJ 57.1 54.0 55.6

ISJ 63.8 52.7 58.2

ISP 65.6 47.7 56.7

ESJ 54.3 68.1 61.2

ESP 54.4 60.5 57.2

Overall 58.5

Table 4. Accuracy score for Judging/Perceiving classification. Result is sig-
nificant at p < 0.001 against the baseline of 50% (chance level). For example, the first
entry means the model has 51.6% accuracy in classifying INTJs as Judging amongst
1000 INTJ samples.

J(%) P(%) Overall(%)

INT 51.6 60.9 56.3

ENT 53.9 64.4 59.2

ESF 31.7 72.7 52.0

ISF 43.2 70.9 57.1

EST 49.7 66.5 58.1

IST 54.3 60.3 57.3

ENF 38.0 74.2 56.1

INF 46.4 65.8 56.1

Overall 56.5

58% of situations (as opposed to the 50% anticipated by chance), the supervised
model [19] can correctly predict the relative standing of two randomly picked
persons on a personality dimension, which could be used as a reference point
for comparison. Unfortunately, the dataset used in [19] is not publicly available,
making direct comparisons of PsyCLIP’s performance difficult. We plan to make
the evaluation dataset for PsyCLIP publicly accessible, so that other researchers
can test their model and we can make a direct comparison to PsyCLIP
performance.
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Table 5. Accuracy score for introversion/extraversion classification. Result
is significant at p < 0.001 against the baseline of 50% (chance level). For example, the
first entry means the model has 55.1% accuracy in classifying INTJs as Introverted
amongst 1000 INTJ samples.

I(%) E(%) Overall(%)

NTJ 55.1 44.9 50.0

NTP 54.3 63.3 57.5

SFJ 29.4 82.3 55.3

SFP 42.5 61.4 51.8

STP 35.4 68.3 51.9

STJ 65.6 47.7 55.6

NFJ 54.3 68.1 64.9

NFP 54.4 60.5 67.8

Overall 56.9

Table 6. Accuracy score for Sensing/Intuiting classification. Result is signif-
icant at p < 0.001 against the baseline of 50% (chance level). For example, the first
entry means the model has 65.8% accuracy in classifying INTJs as Intuitive amongst
1000 INTJ samples.

N(%) S(%) Overall(%)

ITJ 65.8 41.3 53.6

ETJ 60.0 49.1 54.6

ITP 58.8 61.5 60.2

ETP 55.4 59.9 57.7

IFP 49.4 61.6 55.5

EFP 45.1 63.2 54.2

EFJ 57.3 52.5 54.9

IFJ 62.0 50.4 56.2

Overall 55.9

4.2 Comparison Amongst Predictors in Each Dimension

The top performing dimension is the thinking/feeling subscale 2, where Psy-
CLIP attained an overall accuracy level of 58%. With a prediction accuracy of
55.9%, the intuiting/sensing dimension is the lowest predictor. Interestingly this
is consistent with the supervised model [19], which attained the highest accuracy
scores for Big Five conscientiousness and the lowest accuracy score for openness.
(For inter-scale relationships, see Table 1.) According to their work [19], the
attributes most associated with cooperation (conscientiousness and agreeable-
ness) should be more easily represented in the human face from an evolutionary
standpoint. Our results add to the evidence supporting this theory.
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Fig. 2. Percentage accuracy of PsyCLIP with respect to each MBTI dimen-
sion. The classification accuracy exceeds the 50% prediction baseline in all personality
dimensions.

4.3 Significance

The significance of the result can be interpreted in three ways:

– It is competitive to SOTA model, without any training set. PsyCLIP
is competitive to the state-of-the-art model out of the box without any fine-
tuning, hence it has much potential when datasets are fed into it.

– It is highly generalisable. The model is not conditioned on a particular
set of psychometric prompts nor designed specifically for MBTI. This means
the model has a potential to be a good base model for any image-based
psychometric classification task.

– It is statistically significant as a proof of concept. It proves the exis-
tence of a psychometric layer within contrastive language-image pretraining
models. We hope it can inspire more affective computing research utilising
large pretrained models.

5 Ethical Impact

5.1 Societal Value

On the positive side, automatic personality perception is of significant societal
value:

– In affective computing (AC), automatic personality perception is a necessary
step in creating a social AI. To be social, an AI must understand how human
perceive one another. The perception can be used to create a social avatar, or
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to build social conversational agents that are perceived in certain way, among
other things.

– In clinical psychology, it can serve as a coaching system to assist socially
challenged individuals such as those diagnosed with autism spectrum disor-
der (ASD) and social anxiety disorder (SAD), in understanding how their
behaviours affect others’ perception, thus helping them in coping with social
norms.

– In theoretical psychology, computational models of such complex perception
processes could potentially provide new insights or evidences into psychology
theories. For example, as elaborated in Result section, our paper provided
a data point to theory that the attributes most associated with cooperation
(conscientiousness and agreeableness) should be more easily represented in
the human face from an evolutionary standpoint [19]

5.2 Potential Misuses

The abuse of personality computing and its repercussions have been graphically
described in several fictions [17] involving a dystopian society in which people
are mercilessly evaluated and classified by a computer system.

Beyond fiction, there have been reports [32,40] of HR departments use AI
to analyse a candidate’s personality based on their web footprint. It would be
devastating if PsyCLIP or a similar technology were utilised in this manner to
assess a person’s personality based on their appearances.

PsyCLIP was not designed for such purposes. One argument is that since
PsyCLIP was trained for perception rather than recognition, it is only capable
of predicting an applicant’s perceived personality and hence has little use for
candidate screening.

However, as individual researchers, we have little influence over whether a third
party will recognise the delicate distinction between personality detection and
apparent personality perception, or how third parties would use such technology.

Does this, however, imply that we should never do research on computer
modelling of the human psychological traits? Is this to indicate that AIs are
meant to be heartless machines forbidden the knowledge of human emotions,
personality, or psychology? One may argue that if research into automated per-
sonality perception is halted, we will never be able to build a social AI [2].

We call upon the community to come together and come up with ethical
frameworks and regulations on the usage of personality computing technologies,
especially in sensitive areas such as recruitment, user profiling and surveillance.

We are also concerned about the potential biases in the dataset. Although
by theory [29] all sixteen personalities are equal in value and none are preferable
to another, the dataset is labelled by humans, who could be typing a person
based on their racial or cultural stereotype. We attempted to mitigate this issue
by only evaluating data points that received at least ten votes. Additionally, we
would make the dataset and model available to the public upon publication, as
we believe that increased transparency and openness are critical in identifying
and combating such biases.
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6 Conclusion

Based on our experiments, we provide new evidence on the correlation between
personality and the facial image. With a sample size of 16000, the findings are
statistically significant at p < 0.01 and consistently better than the baseline
across all four dimensions.

The effectiveness of CLIP in personality perception, along with its zero-shot
nature, offers up new possibilities for personality computing applications. It is
a complement to conventional supervised models and opens a new direction in
study of personality perception phenomenon. With some improvements, compu-
tational psychologists now can have a simple model that can be used to predict
any perceived personality attributes and use it to better understand the semantic
associations between words/phrases and personality types.

One area for future study is to investigate how consensus among personal-
ity voting influences PsyCLIP’s performance. There may be a difference between
forecast outcomes for persons with a high personality voting consensus and those
with a low voting consensus. Another possibility is to broaden the scope of Psy-
CLIP’s examination beyond MBTI to include additional psychological qualities.
Finally, the concept of fine-tuning the PsyCLIP model against a certain person-
ality scale is intriguing and worth exploring.
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6. Borkenau, P., Brecke, S., Möttig, C., Paelecke, M.: Extraversion is accurately per-
ceived after a 50-ms exposure to a face. J. Res. Pers. J. Res. Pers. 43(4), 703–706
(2009). https://doi.org/10.1016/j.jrp.2009.03.007

7. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis (2019)

8. Brown, T.B., et al.: Language Models are Few-Shot Learners. arXiv (2020).
arxiv.org/2005.14165v4

9. Celli, F., Lepri, B.: Is big five better than mbti? a personality computing challenge
using twitter data. In: CLiC-it (2018)

10. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR
2009, pp. 248–255 (2009)

https://beta.openai.com/docs/engines/gpt-3
https://europarl.europa.eu/thinktank/en/document/EPRS_STU634452
https://europarl.europa.eu/thinktank/en/document/EPRS_STU634452
www.personality-database.com/vote
http://arxiv.org/abs/2110.14810
https://doi.org/10.1016/j.jrp.2009.03.007
http://arxiv.org/abs/2005.14165v4


Zero-shot Personality Perception From Facial Images 55

11. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Sign. Process. Mag. 29(6), 141–142 (2012)

12. Durupinar, F.: Personality-Driven Gaze Animation with Conditional Generative
Adversarial Networks. arXiv (2020). arxiv.org/2012.02224v1

13. Farnadi, Get al.: Computational personality recognition in social media. User
Model. User-Adapt. Interact. 26(2–3), 109–142 (2016)

14. Furnham, A.: The of big five versus the big four: the relationship between the
myers-briggs type indicator (mbti) and neo-pi five factor model personality. Pers.
Individ. Differ 21(2), 303–307 (1996)

15. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst.
27 (2014)

16. Gürpınar, F., Kaya, H., Salah, A.A.: Combining deep facial and ambient features
for first impression estimation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS,
vol. 9915, pp. 372–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49409-8 30

17. Hermann, I.: Artificial intelligence in fiction: between narratives and metaphors.
AI Soc. 1–11 (2021)

18. Junior, J.C.S.J., et al.: First impressions: a survey on vision-based apparent per-
sonality trait analysis. IEEE Trans. Affect. Comput. 1 (2019). https://doi.org/10.
1109/TAFFC.2019.2930058

19. Kachur, A., Osin, E., Davydov, D., Shutilov, K., Novokshonov, A.: Assessing the
big five personality traits using real-life static facial images. Sci. Rep. 10(8487),
1–11 (2020). https://doi.org/10.1038/s41598-020-65358-6

20. Kenny, D.A.: Person: a general model of interpersonal perception. Pers. Soc. Psy-
chol. Rev. 8(3), 265–280 (2004)

21. Kramer, R.S., King, J.E., Ward, R.: Identifying personality from the static, nonex-
pressive face in humans and chimpanzees: evidence of a shared system for signaling
personality. Evol. Hum. Behav. 32(3), 179–185 (2011)

22. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.:
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Abstract. 3D point clustering is important for the LiDAR perception
system involved applications in tracking, 3D detection, etc. With the
development of high-resolution LiDAR, each LiDAR frame perceives
richer detail information of the surrounding environment but highly
enlarges the point data volume, which brings a challenge for cluster-
ing algorithms to precisely segment the point cloud while running with a
real-time processing speed. To meet this challenge, we innovate a multi-
view (bird’s eye view and front view) based clustering method, named
MVC. The method contains two stages. In the first stage, we propose
a density image based algorithm, PG-DBSCAN, to segment the point
cloud in bird’s eye view (BEV), which derives the preliminary division
with fairly low computation resources. Then in the second stage, a front
view (FV) clustering process is integrated to refine the under-segmented
clusters. Our method takes both the speed and precision advantages of
BEV and FV clustering, and this coarse-to-fine architecture reasonably
allocates the computation resources and shows a real-time outstanding
clustering performance. We evaluate the MVC algorithm both on the
publicly available dataset with 64-line LiDAR and our own dataset with
128-line LiDAR. Compared with other clustering methods, MVC is able
to derive more accurate clustering results. Specifically, toward the 128-
line LiDAR with large data volume, our method shows an outperforming
running speed, which perfectly fits on the LiDAR perception tasks.

Keywords: Point Cloud Segmentation · High Resolution LiDAR ·
PG-DBSCAN

1 Introduction

In the LiDAR perception system, Deep-Learning based 3D detection modules are
widely used to provide important evidences for the free driving space prediction.
However, sometimes such kind of modules may perform miss detection or incor-
rect detection when meeting untrained rare scenes, and further cause wrong
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drivable area prediction. That could be dangerous. For solving this problems,
engineers and researchers have been developing 3D object clustering methods
using as the back-up plan that is able to perceive the obstacle locations when
detection modules make wrong judgments.

With the development of laser sensors and electronic chips, the resolution
of LiDARs is designed higher and higher. For example, the LiDAR “Ruby”
from Robosence company1 is assembled with 128 lines and 0.2 ◦C horizontal
resolution. Such LiDAR is able to reflect over 2.3 million 3D points in each
frame and provides much richer 3D information of the surrounding environment
compared with the lower resolution LiDARs. But the denser the point clouds
are, the larger the data volume would be. So the high resolution LiDAR raises
more requirements for the processing speed while maintaining the segmentation
accuracy.

However, facing the dense LiDAR point cloud, the traditional clustering
methods, such as DBSCAN [6], Mean Shift [4], pose difficulties of high compu-
tational complexity and fail in real-time processing. The point cloud clustering
methods based on the range maps, such as [13] and [21], may be able to meet
the real-time running requirement, but would bring serious over-segmentation
issues when the LiDAR resolution goes up.

So, in this paper, in order to decrease the computational complexity and
achieve a satisfactory clustering performance, we propose a multi-view based 3D
point cloud clustering algorithm (MVC). This method is inspired by the real-
world spatial distribution of objects on the streets, that in the bird’s-eye view
(BEV), the majority of objects in the driving scenes are naturally separated.
Thus we project the point cloud in BEV and design a preliminary clustering
stage. In order to improve the processing speed, we down-sample the points in
BEV with polar grid maps. Meanwhile, we modify the traditional DBSCAN [6]
method and reduce the computational complexity. However, the BEV clustering
module cannot segment the objects located at the same place in BEV but differ-
ent places on the vertical direction, such as a billboard and the car below. Thus,
for improving the clustering accuracy, we introduce front-view (FV) refining
clustering stage to solve the vertical under-segmentation problem.

The main contributions of this paper are the following items.

– We innovate a new point cloud clustering method combining the BEV and
FV, which utilizes the point cloud geographical features to accurately segment
the 3D obstacles.

– We raise a PG-DBSCAN [6] algorithm which highly reduces the computa-
tional complexity for this 3D point clustering task.

– We compare our method with 4 effective traditional point cloud clustering
methods on both semanticKITTI dataset [1] and a self-collected 128-line
LiDAR dataset.

1 https://www.robosense.ai/en/rslidar/RS-Ruby.

https://www.robosense.ai/en/rslidar/RS-Ruby
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Fig. 1. A demonstration of MVC clustering result.

2 Related Work

In this section, through analysing existing technologies, we divide clustering
algorithms into two categories: free-trained methods and Deep-learning based
methods.

2.1 Free-trained Point Cloud Clustering Methods

Clustering Method Based on Voxel/Grid Map. Most of Voxel/Grid map
based algorithms need minimal computational overhead and perform fast pro-
cessing speed through down-sampling the point cloud. So this kind of clustering
algorithms is widely utilized in the field of robots and unmanned vehicles due
to their real-time requirement. For example, in the 2007 DARPA Challenge
[19,20], many teams chose this kind of methods to separate objects from the
ground. [5] created hybrid elevation maps to extract the non-ground objects,
then down-sampled the non-ground point cloud by voxel cells and cluster the
points according to the voxel connectivity. Similarly, [9] utilized the BEV grid
map and 3D voxel to down-sample the non-ground points, then combined the
connectivity of the grids and the height difference between the voxels to further
cluster the point cloud [15] proposed the curved voxel clustering method con-
sidering the difference of horizontal and vertical angular resolutions for LiDAR.
However, the segmentation accuracy of these methods highly depends on the
size of grids or voxels, and some of the spatial information of point clouds is lost
due to the point down-sampling.

Clustering Method Based on Range Image. The point cloud clustering
methods based on the range image also attracted the interest of many researchers
[2] projected 3D point clouds into range images. They performed a N4-searching
by BFS algorithm and clustered the point cloud following a given angle threshold.
On the basis of [2,12] further increased the constraints of distance and reflection
intensity difference between adjacent points and reduced the over-segmentation
rate. [22] proposed the Scan Line Run (SLR) clustering method based on the



60 H. Jie et al.

range image. [8] combined density and connectivity information of the range
image to achieve real-time clustering performance.

Clustering Method Based on Graph Model. Applying graph theory to
achieve point cloud clustering is also a research direction. For example, [11]
proposed a clustering method based on Radially Bounded Nearest neighbours
(RBNN) graphs. They represented the 3D laser point clouds as directed graphs,
then cluster the LiDAR point clouds based on a given threshold [14] gener-
ated point cloud undirected graphs based on the scanning characteristics of the
mechanical rotating LiDAR. The point cloud is then separated according to the
local convexity criterion which is calculated based on the normal vector of the
nodes. Similarly, [3] considered the hardware parameters of Velodyne HDL-64
LiDAR when creating the undirected graphs. In order to balance the accuracy
and running speed of the algorithm, they used a 4-connected region growing
method to cluster 3D point clouds.

2.2 Deep-learning Based Point Cloud Clustering Methods

Pointnet [16] firstly generated Deeplearning network for solving the point cloud
classification and clustering problem. They used multilayer perceptrons followed
by max-pooling to extract the point feature and resulted a decent performance.
A novel work, [7] proposed a proposal-free point cloud clustering method by a
simplified framework with a Deeplearing-based solution. The method does not
rely on any post-process, and is able to reach a good performance [18] presented
a top-down Deep-learing based LiDAR segmentation architecture with a MASK
R-CNN instance head. The method also formulated a pseudo labeling framework
to enhance the clustering performance by training the network on unlabelled
dateset. [10] used cylinder convolution extract grid-level features for each LiDAR
frame and proposed Dynamic Shifting for complex point distributions then raised
Consensus-driven Fusion to finally derive instance preditions.

3 The Proposed Method

Our work mainly focuses on the non-ground targets clustering. So a rele-
vant ground segmentation method [14] is utilized for data preprocessing. The
pipeline of MVC is briefly demonstrated in Fig. 2, which follows a coarse-to-
fine architecture. It works with two stages: BEV coarse-segmentation and FV
fine-segmentation.

The details of MVC are described in the following subsections.

3.1 Preliminary Clustering Based on BEV Projection

The demonstration of the BEV clustering procedure is shown in Fig. 3.
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Fig. 2. The pipeline of MVC.

Fig. 3. (a) shows the BEV grids and the projected 2D points. We take the grids as
pixels and count the point number in each grid as pixel values, then generate the
density image as (b). The brightness of the color represents the density value. Using
the modified DBSCAN method, pixels are clustered as shown in (c) and the points
located in the grid with same color share the same cluster label.

Firstly, we project the object point cloud onto x − o − y plane in Polor
Coordinate {ρ, θ} by

ρ =
√

x2 + y2 (1)

θ = i × res (2)

where i is the horizontal index of the point anti-clockwise counted from the
positive direction of the x axis, and res is the horizontal angle between two
adjacent laser beams in the same scanning line. Clearly, the ρ is equal to the
range value of each target point.

Secondly, the grids of the BEV map are generated with a manually selected
angle unit size θthres and range unit size rthres. By using these grids we generate
density image and count the point number in each gird as the density value dv.
The reason why we choose Polar Coordinate in the BEV grid map is inspired by
a related work CVC [15] that in such Coordinate the grid area expands with the
range value increasing, which perfectly fits the near-dense-far-sparse geometrical
characteristic of the LiDAR points.

Based on the traditional DBSCAN [6], we propose a density-based clustering
method Polar-Grid-DBSCAN(PG-DBSCAN).
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Compared with the traditional DBSCAN [6], instead of going through each
point and calculating the surrounding data density for clustering, we go through
each of the pixel in the density image to segment the point cloud. Firstly the
pixels with density value dv lower than 4 are marked as noise pixels. For the
other pixels, we start from a random pixel as target and search its 8 neighbour
pixels. If the neighbour pixels are not noise pixels, these neighbours are marked
by the same label with the target. By recurrence, the whole density image is
segmented to different areas, and the points located in each area share the same
label.

Our PG-DBSCAN greatly accelerates the clustering speed compared with
the traditional DBSCAN [6]. While dealing with large-scale point cloud data, as
the area query operation of the traditional DBSCAN [6] is calculated based on
the Euclidean distance, the average running time complexity is O(log(n)), so the
average computational complexity of traditional DBSCAN [6] is O(n × log(n)),
where n is the number of the points. However, PG-DBSCAN finishes the region
query by inquiring the 8-neighbour of each pixel in the density image, so the
computational complexity of one point becomes to O(1), and the average com-
putational complexity of one frame is reduced to O(n), where n is the pixel
number of the density image.

After the operations mentioned above, we derive the preliminary segmenta-
tion result of the non-ground targets.

3.2 Refining Based on Range Image

Fig. 4. After BEV preliminary segmentation, we project each clustered point cloud to
a range image separately. The pixel brightness represents the range value of the points.
Pure black pixels means no point or the point out of the region.

After BEV segmentation, for each cluster, we calculate the height difference
ΔH between the highest point and lowest point. Only when ΔH is higher than
2 meters, we consider the cluster may be under-segmented that requires fine FV
clustering.

For FV segmentation, the preliminary cluster is projected into range images
[13], as Fig. 4.
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Fig. 5. The process of the modified N-4 neighbour searching. (a) indicates the searching
directions. (b) and (c) are the searching process. We go through the pixels following
the arrow directions and find the first non-zero-pixel specified by solid green blocks.
The shadow green blocks represent the zeros pixels that are ignored.

Here we introduce a modified N-4 neighbor searching, and define neighbors
of the target pixels as the adjacent pixels in the same row or column with the
non-zero pixel values shown as Fig. 5

With this neighbour searching method, we cluster the pixels by judging if the
height difference Δh and range difference Δr between the target and neighbour
pixels are within a given threshold γ. We consider the points to belong to the
same cluster on the condition that Δh and Δr meet Eq. (4) and Eq. (5). Here
r is directly derived from the pixel value and h is calculated by:

h = r × tan(α) (3)

Δr < γ (4)

Δh < γ (5)

where α is the vertical LiDAR beam angle which can be found from the LiDAR
product specification. Through recursive searching method, all pixels in the range
image are fine clustered, and the process is illustrated in Algorithm 1.

Algorithm 1: Refining based on Range Image
Input: An image in FV as img and its cluster as cluster
Output: cluster

foreach pi in img do
if pi.f lag! = is visited then

RecursiveClustering(pi,cluster)
Update(cluster)

else
continue

return cluster
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Function RecursiveClustering(pi, ci)
Input: A pixel of the image in FV as pi and its initialised cluster as ci
Output: ci

RecursiveClustering(pi, ci)
Neighbouri ← FindNeighbour(pi)
foreach ni in Neighbouri do

if is same cluster(ni,pi) then
Update(ci)
n.flag ← is visited
RecursiveClustering(ni, ci)

else
continue

4 Experiment

In this section, we test the proposed MVC algorithm and provide the experiment
setup and evaluation metrics. We report the comparisons with different clustering
methods on both SemanticKITTI dataset and our own dataset(NRS). Also, we
carry ablation study for better understanding the advantages of the clustering
processes of our method in the two views(BEV, FV).

We conduct experiments on a desktop with an Intel Xeon(R) CPU E3-1231
v3 @ 3.40 GHz × 8, 32 Gb RAM.

4.1 Experiment on SemanticKITTI

A Related work, [23] evaluated 4 different clustering methods on the
SemanticKITTI dataset using Panoptic Quality(PQ) as evaluation metrics. For
comparing the clustering performance of MVC with those 4 methods, we apply
the same clustering process and the evaluation metrics. The result is shown in
Table 1.

Table 1. Comparison between our method and the methods reported in [23] on
SemanticKITTI dataset.

Methods Settings PQ

Euclidean cluster dth = 0.5 m 56.9

Supervoxel cluster
Supervoxel cluster

wc, ws, wn = 0.0, 1.0, 0.0
wc, ws, wn = 0.0, 1.0, 0.5

52.8 52.7

Depth cluster θ = 10◦ 55.2

Scan-line run thrun, thmerge = 0.5, 1.0 57.2

Ours θthres, rthres, γ =
2, 0.5, 0.6

58.8
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Performance Evaluation. Following [23], all the clustering methods work as
a post-process step after a semantic segmentation method, [24]. The experiment
setting of the upper four methods remain same as in [23].

The experiment result shows that our method outperforms in the comparison
group. It is worth mentioning that in this experiment, we abandon the ground
point removing process, since the semantic segmentation process has already
removed the ground point. Moreover, this pre-process also removes other back-
ground points, such as trees, which consequently deletes almost all the objects
with large vertical size. However, our FV clustering processing happens only
when the clusters from BEV segmentation are higher than 2 m. Thus, the FV
clustering process seldom works in this experiment, but MVC still derives the
best performance among all the methods.

4.2 Experiment on Self-Recorded Dataset

Importantly, for meeting engineering design requirements and feeding the needs
from customers, it is necessary to test MVC method on our own dataset(NRS).
NRS dataset is collected with RS-Ruby 128-line LiDAR sensor in the company
NEUSOFT REACHAUTO2 including the scenarios on the campus roads at Neu-
soft headquarters and the street of Shenyang city(China). However, because of
the different labeling method between SemanticKITTI and NRS datasets, we
have to change the evaluation metric from PQ to the method reported in [13,17].

We adopt the over-segmentation, under-segmentation and precision as crite-
ria to evaluate the proposed algorithm. Further, we introduce four states of clus-
tering results to quantify the clustering performance: Precision (P), True Positive
(TP), Over-segmentation-rate (OSR) and Under-segmentation-rate (USR).

– TP is the number of clustered objects that are successfully segmented.
– OS is the total number of over-segmentation clusters.
– US is the total number of under-segmentation clusters.

Using the above-mentioned states, the following three metrics are formulated
as:

OSR = 1 − TP

TP + OS
, (6)

USR = 1 − TP

TP + US
, (7)

P =
TP

TP + OS + US
(8)

According to the related works, most of the previous algorithms are tested
and validated via 64-beam LiDARs or even fewer. To the best of our knowledge,
this paper is the first attempt to evaluate a clustering algorithm using a 128-line
LiDAR.

2 https://www.reachauto.com/.

https://www.reachauto.com/
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Table 2. Experimental settings of different methods

Euclidean cluster dth = 0.5m

Supervoxel cluster wc, ws, wn = 0.0, 1.0, 0.0

Depth cluster θ = 5◦

Scan-line run thrun, thmerge = 0.3, 0.5

Ours θthres, rthres, γ = 1, 0.2, 0.5

Performance Evaluation. Considering the point on NRS is denser than that
on SemanticKITTI, we delicately adjust the coefficients of the methods for better
performance, as shown in Table 2.

We separate NRS dataset into 3 scenario types: Easy, Medium and Hard.
Easy type only consists of some sparse road participates without the vertical
structure either, Fig. 6(a); Medium type has a dense road participates distribu-
tion, but there are not many vertical structures in this type of point clouds,
Fig. 6(b); Hard type point cloud has crowded road participates and also objects
with vertical structures such as trees and cars below, Fig. 6(c).

Since the NRS dataset does not have semantic segmentation labels, we cannot
train a good segmentation network for pre-processing. So we choose a free-trained
ground removing method to pre-process the point cloud.

Table 3 reports the comparison results as well as the processing speed of the
group. In the Easy scenarios, all the methods have similar precision rate because
of the dense point clouds but sparse objects. In the medium and hard scenarios,
the precision gap between ours and the other methods becomes larger. Euclidean
Cluster, Supervoxel Cluster and Scan-line Run suffer from under-segmentation
caused by the background points (trees, traffic lights and etc.). Depth Cluster
shows higher over-segmentation rate because smaller objects near the LiDAR
would block the laser beams and truncate the big objects, which cannot be
handled by this angle based clustering method. While being beneficial from the
view combination in MVC, the performance of our method experiences a slight
going down but still remain a decent precision rate.

Besides, we also report the clustering speed by frame-per-second (FPS) of
all the methods in these three scenarios without taking the pre-processing stage
of ground points removal into account. As the amount of points becomes larger,
our method stably runs in a high speed at about 10 ms per frame, which satisfies
the real-time requirement.
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Fig. 6. A demonstration of the three scenario types in NRS dataset.

Table 3. Segmentation results on NRS dataset

Scenarios Algs OS US TP OSR USR P FPS

Easy Ours 34 44 1088 0.030 0.039 0.933 110

Euclidean cluster 15 108 965 0.015 0.100 0.887 73

Supervoxel cluster 18 143 927 0.019 0.134 0.852 24

Depth cluster 109 31 948 0.103 0.032 0.871 70

Scan-line run 75 35 978 0.071 0.035 0.899 54

Medium Ours 104 217 2908 0.035 0.069 0.900 100

Euclidean cluster 85 322 2822 0.029 0.102 0.874 67

Supervoxel cluster 73 419 2737 0.026 0.133 0.848 16

Depth cluster 346 90 2793 0.110 0.031 0.865 63

Scan-line run 114 263 2852 0.084 0.038 0.883 54

Hard Ours 190 407 2922 0.061 0.122 0.830 98

Euclidean cluster 242 811 2276 0.096 0.263 0.684 63

Supervoxel cluster 105 1126 2098 0.048 0.349 0.630 12

Depth cluster 597 485 2248 0.210 0.177 0.675 60

Scan-line run 383 391 2555 0.130 0.133 0.767 54

4.3 Ablation Study

The ablation study mainly focuses on assessing the clustering process in differ-
ent views. We evaluate the clustering performance and running speed in this
experiment and report the statistics in Table 4.

Table 4. The ablation study of different modules in MVC

Group OS US TP OSR USR P FPS

1. BEV(PG-DBSCAN)+FV 104 217 2908 0.035 0.069 0.900 100

2. BEV(PG-DBSCAN) 63 1052 2014 0.028 0.332 0.655 250

3. BEV(DBSCAN [6])+FV 97 236 2886 0.032 0.075 0.897 2

4. FV 328 81 2820 0.104 0.028 0.873 18
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FV Clustering Module. As shown in Table 4, we compare the performance
of FV clustering removed MVC (Group 2) with the original MVC (Group 1).
Without the FV clustering, the number of over-segmentation vehicles slightly
goes down and OSR remains steady, however, the amount of under-segmentation
rate increases sharply. Because, in some scenes, background points may combine
different target objects together, as show in Fig 7. Without FV clustering pro-
cess, the points from these objects are clustered into the same cloud and cause
under-segmentation.

Fig. 7. Left image shows only the BEV clustering result, and the right image is the
result of whole MVC algorithm

BEV Clustering Module. In this part, we analyse the importance of BEV
clustering process. Comparing Group 1 with Group 4 in Tab. 4, we conclude that
PG-DBSCAN efficiently accelerates the clustering process and slightly improve
clustering precision.

Also, from Group 3 and 1, we can see that, with nearly same clustering
precision, the running speed of MVC with traditional DBSCAN [6] is 50 times
slower than that with PG-DBSCAN.

5 Conclusion

In this paper, a multi-view based clustering method is proposed for the 3D
point cloud. The algorithm adopts the coarse-to-fine architecture. First, the non-
ground point cloud is projected to the BEV density image and down-sampled.
We propose PG-DBSCAN based on the traditional DBSCAN [6] for the prelim-
inary segmentation. Then we further separate the under-segmented clusters on
vertical direction based on range images. We compare our method with 4 tra-
ditional clustering algorithms on both SemanticKITTI and NRS dataset. The
experiment results show the real-time performance, stability and accuracy of the
MVC algorithm, and prove that this method is suitable for clustering the dense
point clouds in various driving scenes.
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Abstract. Despite their recent popularity, deep and efficient Graph
Neural Networks remain a major challenge due to (a) over-smoothing,
(b) noisy neighbours (heterophily), and (c) the suspended animation
problem. Inspired by the attention mechanism’s ability to focus on selec-
tive information, and prior work on feature preserving mechanisms, we
propose FDGATII, a dynamic deep-capable model that addresses all
these challenges simultaneously and efficiently. Specifically, by combin-
ing Initial Residuals and Identity with the more expressive dynamic self-
attention, FDGATII effectively handles noise in heterophilic graphs and
is capable of depths over 32 with no over-smoothing, overcoming two
main limitations of many prior GNN techniques. By using edge-lists,
FDGTII avoids computationally intensive matrix operations, is paral-
lelizable and does not require knowing the graph structure upfront.
Experiments on 7 standard datasets show that FDGATII outperforms
the GAT and GCN based benchmarks in accuracy and performance on
fully supervised tasks. We obtain State-of-the-art (SOTA) on the highly
heterophilic Chameleon and Cornell datasets with 1 layer, and come only
0.1% short of Cora SOTA with zero graph pre processing. https://github.
com/gayanku/FDGATII

Keywords: Dynamic attention · Heterophily · Over-smoothing

1 Introduction

Recently, research on graphs has been receiving increased attention due to the
great expressive power and pervasiveness of graph structured data [29]. Many
interesting irregular domain tasks such as 3D meshes, social networks, telecom-
munication networks and biological networks involve data that are not repre-
sentable in grid-like structures [25]. As a unique non-Euclidean data structure for
machine learning, graphs can be used to represent diverse feature rich domains.

A Graph Neural Network (GNN) generalizes deep neural networks (DNNs)
from regular structures to irregular graph data. GNNs perform neighbourhood
structure aggregation and node feature transformation to map nodes to low dimen-
sional embeddings [15,17], mostly differing in how aggregation and combination

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 73–86, 2022.
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is performed [4]: Graph Convolutional Network (GCN) [13] uses convolution [16];
GraphAttentionNetwork (GAT) [25] uses attention;GraphSage [8] usesmaxpool-
ing. Downstream tasks such as node classification, clustering, and link prediction
[8,22] use these aggregated low dimensional vectors [28].

Most graphs require the interaction between nodes that are not directly con-
nected, i.e., higher-order information which is achieved by stacking GNN layers [2].
However, stacking layers degrades the performance [5,20] due to over-smoothing:
node representations become indistinguishable with increasing number of layers
[6,13,26]. Further, GNNs in general are not able to handle long-range information
due to over-squashing: information from the exponentially growing receptive field
being compressed into fixed-length node vectors [2] due to its unfocused aggre-
gation mechanism. Finally, deeper models stop responding to training due to the
suspended animation problem [26], i.e. depth is a problem [6].

To avoid these problems, several works combine deep propagation with shal-
low neural networks; SGC [26] used the K-th power of the adjacency matrix
to capture higher-order information; H2GCN [29] aggregates higher-order infor-
mation at each round. However, this form of linear combination of neighbour
features at each layer looses the powerful expression ability of deep nonlinear
architectures, essentially making them shallow models [5].

In another attempt to address the problem and incorporate deeper layers,
JKNet [27] used dense skip connections, DropEdge [23] randomly removed graph
edges and GCNII [5] added a portion of Initial residual and Identity. GCNII
showed remarkable results for up to 64 layers and is the SOTA (Table 2) in Cora,
a homophilic benchmark dataset. However, all these are spectral approaches
based on the Laplacian eigenbasis and requires the whole graph structure [25].
The normalization used is computationally expensive and not scalable.

Furthermore, due to naive uniform aggregation of the neighbourhood, most
of these models, including GCNII, are more suitable for homophilic datasets,
where nodes linked to each other are more likely to belong in the same class, i.e.,
neighbourhoods with low noise. In practice, real-world graphs are also often noisy
with connections between unrelated nodes [12], resulting in poor performance
in current GNNs. As many popular GNN models implicitly assume homophily,
results may be biased, unfair or erroneous [19]. This can result in a ‘filter bubble’
phenomenon in a recommendation system (reinforcing existing beliefs/views, and
downplaying the opposite ones), or making minority groups less visible in social
networks [29]. As a result, despite GCNIIs SOTA in homophilic datasets (Cora),
its accuracy in heterophilic datasets (Texas, Wisconsin) is relatively poor [29].

On the other hand, [24] showed that self-attention is sufficient for achieving
SOTA performance. GAT [25] generalizes attention for graphs using attention-
based neighbourhood aggregation. Importantly, GAT improves on simple aver-
aging [13] and max pooling [8] by allowing every node to compute a weighted
average of its neighbours [4], which is a form of selective aggregation. The gener-
alization ability of the attention mechanism helps GNNs generalize to larger and
more noisy graphs [14]. By determining individual attention on each neighbour,
GAT ignores irrelevant neighbours and focuses on those that are relevant [2].

Surprisingly, yet, GATs heterophilic performance is poor (Table 2).
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A refinement, GATv2 [4], uses a more expressive dynamic attention, where
the ranking of attended nodes is better conditioned on the query node by replac-
ing the supposedly monotonic GAT attention function with a universal approx-
imator attention function that is strictly more expressive. However, GAT or
GATv2 alone, in its current form cannot handle heterophilic data due to the
still present essentially local aggregation operation [17].

In Table 2, under heterophily, only H2GCN outperforms a Multilayer Per-
ceptron (MLP) of 1 layer which uses only node features and no structural infor-
mation. Furthermore, most GNN models use simple graph convolution based
aggregation schemes [8,13], leading to filter incompleteness. While this can be
solved by using a more complex graph kernel [1], currently, even attention-based
models perform poorly given heterophilic data, despite the ability to focus on
the most “relevant” content.

Thus, it remains an open problem to design efficient GNN models that
effectively handle (a) over-smoothing, (b) suspended animation and (c) het-
erophily/noise simultaneously. As observed by [5], it is even unclear whether the
network depth is a resource or a burden when designing new GNNs. Motivated by
these limitations, we propose a generalizable, efficient, and parallelizable atten-
tion based deep-capable model that addresses aforementioned challenges simul-
taneously. Our main contributions are:

– We introduce a novel deep-capable GNN model, FDGATII, successfully com-
bining strengths of GCN and GAT worlds by using dynamic attention sup-
plemented with Initial residual and Identity, capable of handling the major
graph challenges: over-smoothing, noisy neighbours (heterophily) and sus-
pended animation simultaneously. To the best of our knowledge, this is the
first time a graph attentional model has demonstrated depths of up to 32, a
limitation of many prior GNN techniques, attention based or otherwise, and
show that dynamic attention is better suited for heterophilic datasets, if used
with modifications.

– FDGATII is computationally efficient. It does not require an adjacency matrix
as input nor its subsequent, expensive matrix operations or normalizations.
Further, its attention layers can be parallelized across edges while feature
computation can be parallelized across all nodes.

– FDGATII has the same complexity as SOTA GCN models, but uses signifi-
cantly fewer layers to achieve comparable or better results, yielding a superior
efficiency-to-accuracy ratio across homophilic and heterophilic datasets.

Extensive experiments on 7 benchmarks show that FDGATII outperforms GAT
and GCN based benchmarks in accuracy as well as on accuracy vs efficiency, on
fully supervised tasks. FDGATII achieves SOTA accuracy results on Chameleon
and Cornell datasets, beating H2GCN, a model specifically designed for het-
erophily. There is zero graph pre processing. FDGATII consumes over a magni-
tude less computational resources and is only –0.1% below SOTA for Cora, plac-
ing a close second. By not assuming homophily, FDGATII minimises its potential
negative effects: bias, unfairness and potential for filter bubbles. FDGATII is also
capable of inductive learning. Table 1 has a full feature comparison.
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Table 1. Feature comparison: GAT, GCN, GCNII and FDGATII. *Cham & Cornell

Feature GAT GCN GCNII FDGATII

No graph pre processing (ex: normalisation) Yes No No Yes

Does not require knowing graph structure upfront Yes No No Yes

Processing can be parallelized Yes No No Yes

Free from oversmoothing No No Yes Yes

Free from suspended animation No No Yes Yes

Heterophilic performance Poor Poor Good SOTA*

Capable of deep architectures (layers > 8) No No Yes Yes

Dynamic attention No No No Yes

Inductive learning Yes No Yes Yes

# layers for best Cora accuracy 2 2 64 2

2 Related Work

2.1 Notation

G = (V,E) is an undirected graph with n nodes vj ∈ V and m edges (vi, vj) ∈ E.
Ḡ = (V, Ē) is its self-looped graph. A is the adjacency matrix, D the degree
matrix of G. Adjacency matrix and degree matrix of Ḡ is Ā = A + I and
D̄ = D + I. The symmetric positive semi definite normalized graph Laplacian
matrix is given by L = In − D−1/2AD−1/2 with eigen-decomposition UΛUT . Λ
is its diagonal eigenvalue matrix, U ∈ Rn×n is the unitary eigenvector matrix.

2.2 Convolution and GCN

Given signal x and filter gγ(Λ) = diag(γ) the graph convolution operation is
gγ(L)∗x = Ugγ(Λ)UT x where γ ∈ Rn is the vector of spectral filter coefficients.
gγ(Λ) can be approximated by a truncated expansion of a Kth order Cheby-
shev polynomial [9], where θ ∈ RK+1 corresponds to a vector of polynomial
coefficients:

Ugθ (Λ)UT x ≈ U

(
K∑

l=0

θlΛl

)
UT x =

(
K∑

l=0

θlLl

)
x (1)

GCN [13] simplifies graph convolution by fixing K = 1, θ0 = 2θ and θ1 = −θ
to get gθ ∗ x = θ(I + D−1/2AD−1/2)x and uses a normalized adjacency matrix,
P̄ = D̄−1/2ĀD̄−1/2 = (D+In)−1/2(A+In)(D+In)−1/2. Each GCN layer (Eq. 2)
contains a nonlinear activation function σ, typically ReLU.

Hl+1 = σ
(
P̄HlWl

)
(2)

However, node embeddings are aggregated recursively layer by layer. Embed-
dings in the final layer requires all previous embeddings, resulting in high memory
cost. GCN gradient update in the full-batch training scheme needs storing all
intermediate embeddings, limiting scalability. As the learned filters depend on
the Laplacian eigenbasis, which depends on the entire graph structure, a model
trained on a graph cannot be directly applied to a different graph structure [25].
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2.3 GCNII

GCNII [5] extends the fixed coefficient GCN to a deep model by expressing the K
order polynomial filter as arbitrary coefficients using Initial residual and Identity
(II). Essentially, GCNII 1) combines the preprocessed (normalized) representa-
tion P̄Hl with an initial residual connection from the first layer H0; and 2) adds
an identity In to the l-th weight matrix Wl. By using a connection to the initial
residual H0, GCNII ensures that the final representation of each node retains at
least a αl fraction from the input layer.

However, as GCNII combines neighbour embeddings by uniformly averaging,
its heterophilic performance is relatively poor. GCNs preserve structure over
features, regardless of the graph’s heterophilic nature, resulting in original node
features being destroyed [11]. Further, [20] showed that GCNs tend to fail when
graphs are dense and do not always improve with more layers. Alternatively,
a selective aggregation of the neighbourhood allows focusing on relevant nodes
[29].

2.4 Attention Mechanism and GAT

The DP (dot-product) attention mechanism (Equation 3) [18,24] has been widely
used in GNNs [12,28]. Different from DP, GAT [25] uses concatenation followed
by a 1-layer feed-forward network parameterized by a (Eq. 4).

e (hi,hj) = LeakyReLU((Whi)
T · Whj) (3)

e (hi,hj) = LeakyReLU
(
aT · [Whi ‖ Whj ]

)
(4)

In contrast to GCN, which weighs all neighbours j ∈ Ni with equal importance,
GAT computes a learned weighted average of the representations of Ni using
attention. Compared to GCN, assigning different weights for neighbours can
mitigate noise and achieve better results [28] while being more robust in the
presence of noisy “irrelevant” neighbours [2].

3 Proposed Architecture

Our proposed design (Fig. 1) is built upon a local embedding step that extracts
local node embeddings from feature vectors using GATv2. To extend GATv2 to
handle heterophilic and noisy data, we borrow two techniques from GCNII [5]
and H2GCN [29] with modifications, namely residual connection and identity.

However, the theoretical foundation of our model, which is grounded in the
spatial domain, is completely different from GCNII which is spectral. We do not
require edge values; only the presence or absence of an edge: i.e. a simple list of
edges. Using only the edge-list as [25], with self-loops as [10,13], we avoid compu-
tationally intensive matrix operations such as inversions or eigen-decompositions
and the need to know the graph structure upfront. Experiments show our design
is efficient, robust and generalizes well to homophilic and heterophilic datasets
alike.
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Fig. 1. FDGATII uses dynamic attention to combine relevant neighbours via edge-lists,
an α% of initial representation h0 projected via fc0 and a β% of Identity In at each
layer. Attention module concatenates source (row) and destination (column) features
of each edge, projects via Wn

H , applies a non-linearity (leaky-relu) and an exp() to
obtain the edgewise attentions before reshaping to a matrix suitable for softmax with
the query. After multiple layers, an fc1 projection and log softmax provides the node
classification.

Typically, GNN models follow an iterative learning approach:

h1+1
i = COMBINE

(
hl
i, AGG({hl

j : j ∈ Ni})
)
,

h0
i = Xi, and yi = arg max{softmax(hK

i )W}

where, AGG is a permutation invariant aggregation operator and COMBINE
is a learnable function. By adding self-nodes, we amalgamate COMBINE and
AGG to simplify the process and apply a more expressive attention operator
ATTN to both tasks simultaneously, defined by:

h1+1
i = ATTN({hl

j : j ∈ Ni ∪ i})

3.1 Initial Residual and Identity (II)

We incorporate initial representation H0 and identity In, in αl and βl fractions,
with edge-list Ē to formally define the (l + 1)-th layer of FDGATII as:

Hl+1 = σ
[(

(1 − αl) ATTN(Ē,Hl) + αlH
0
)

·
(
(1 − βl) In + βlW

l
)]

(5)

According to [10], identity mapping of the form Hl+1 = Hl(Wl + In), as in
Eq. 5, satisfies the following properties: 1) the optimal weight matrices Wl have
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small norms; 2) the only critical point is the global minimum. The first property
allows us to put strong regularization on Wl to avoid over-fitting, while the
latter is desirable in semi-supervised tasks where training data is limited.

Next, it is theoretically proven [20] that a K-layer GNN’s convergence rate
depends on sK , where s is the maximum singular value of the weight matrices
Wl, l = 0, . . . , K − 1. By replacing Wl with (1 − βl)In + βlWl and regularizing
Wl, resulting singular values of (1−βl)In +βlWl stay closer to 1, which implies
that sK is large, and the information loss is relieved.

3.2 Selection of Proper Attention

It has been shown that GAT is better at learning label-agreement between a tar-
get node and its neighbors than DP attention [12]. Variance of GAT depends only
on the norm of features, while the DP variance depends on the variance of the
input’s dot-product and the expectation of the square of the input’s dot-product.
As a result, with more layers, more features of i and j correlating resulting in
a larger dot-product and the subsequent softmax normalization which increases
the larger values further, DP is only able to attend to a small set of neighbours.

3.3 Dynamic Attention (GATv2)

According to [4], the main problem in the standard GAT scoring function (Eq. 4)
is that the learned layers W and a are applied consecutively, and thus can be
collapsed into a single linear layer. GATv2 replaces the linear approximator with
a universal approximator (Eq. 6) and has been shown to perform better on noisy
data [4]. Further, theoretically, DP is strictly weaker than GATv2. We use this
form of dynamic attention for our aggregation function.

Specifically, a scoring function e : Rd × Rd → R computes a score for every
edge (j, i), which indicates the importance of the features of the neighbour j to
the node i:

e (hi,hj) = aT · LeakyReLU (W [hi ‖ hj ]) , (6)

where attention scores a ∈ R2d
′

and weights W ∈ Rd
′×d are learned. ‖

denotes vector concatenation. We capture the graph structure using edges, com-
puting ei,j for all j ∈ Ni neighbourhood of node i. Attention scores are normal-
ized across all connected sparse neighbours j ∈ Ni using softmax.

αij = softmaxj (e (hi,hj)) =
exp (e (hi,hj))∑

j
′ ∈Ni

exp
(
e
(
hi,hj

′
)) (7)

Finally, we compute the weighted average of the transformed features of the
neighbour nodes (followed by a nonlinearity σ) as the new representation of i,
using the normalized attention coefficients:

ATTN
′
i = σ

⎛
⎝ ∑

j∈Ni

αijWhj

⎞
⎠ (8)
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In addition to Eq. 5, following [5], we also propose FDGATII* with dual weight
matrices for smoother representation, defined as:

Hl+1 = σ
[
(1 − αl)ATTN(Ē,Hl)

(
(1 − βl)In + βlW

l
1

)

+αlH
0
(
(1 − βl)In + βlW

l
2

)] (9)

GCNII [5] uses βl is to ensure the decay of the weight matrix adaptively
increases with more layers. While FDGATII typically achieves best accuracy
early with a few layers, we still adopt the same mechanism, βl = log

(
λ
l + 1

) ≈ λ
l ,

where λ is a hyperparameter, for robustness at high depth. Following [27], we
add skip connections in the form of initial representations H0 as in [5].

FDGATII differs from existing models with respect to its use of a modi-
fied attention mechanism. Notably, we demonstrate competitive performance of
GATv2+II with only a few layers in non-homophilous networks. Using edge-lists
avoids computationally intensive matrix operations. Table 1 summarizes how
FDGATII accumulates all benefits from GCN and GAT worlds with none of the
drawbacks.

3.4 Datasets and Experiments

Homophily is the fraction of edges which connect two nodes of the same label
[17]. A higher value (1) indicates strong homophily; a lower value (0) indicates
strong heterophily.

We evaluate FDGATII against SOTA GNNs on benchmark graph datasets
for fully supervised classification. Following [5,21], we use 7 datasets (Table 5).
Cora, Citeseer and Pubmed are homophilic citation networks where nodes cor-
respond to documents, and edges correspond to citations. The remaining four
are heterophilic datasets of web networks, where nodes and edges represent web
pages and hyperlinks, respectively. Node feature vectors are bag-of-word repre-
sentations of the document. Following [5,21] we use the same data splits, 60:20:20
nodes for training:validation:testing, learning rate = 0.01, hidden units = 64 and
measure the average performance on the 10 splits for each dataset.

We choose GCNII [5] as our performance and accuracy benchmark as it is
(a) more current; (b) most similar to our work in the use of initial representation
and identity; (c) actively attempts to solve over smoothing (d) is the SOTA in
Cora (a prominent dataset for GNN model comparison) and most importantly
(d) it is a deep-capable model. We also compare with H2GCN [29] which is the
SOTA for Cornel, Texas and Wisconsin; highly heterophelic datasets, but note
that H2GCN is a shallow model.

For training and inference time measurements we perform GPU warm-up and
synchronization prior to measurements. We take the average time for 1000 infer-
ences to lower any possibility of errors and to be more reflective of real-world use
of models. We ignore pre processing times, but point out, unlike the benchmarks,
FDGATII has no expensive full graph eigen operations or normalizations.
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Table 2. Mean classification accuracy of full-supervised node classification. (a)
reported by [5], (b) reported by [29], (c) best results running GCNII (official author
implementation) and H2GCN (public pytorch repo: github.com/GitEventhandler/
H2GCN-PyTorch) on data splits of [5], (d): our FDGATII, with same splits. Best
is bold and second underlined. # of layers in parenthesis.

Dataset Cora Cite. Pumb. Cham. Corn. Texa. Wisc.

Hormophily % 0.81 0.74 0.8 0.23 0.30 0.11 0.21

MLPb 74.75(1) 72.41(1) 86.65(1) 46.36(1) 81.08(1) 81.89(1) 85.29(1)

GCNa 85.77 73.68 88.13 28.18 52.70 52.16 45.88

GATa 86.37 74.32 87.62 42.93 54.32 58.38 49.41

Geom-GCN-Ia 85.19 77.99 90.05 60.31 56.76 57.58 58.24

GraphSAGEb 86.90 76.04 88.45 58.73 81.18 82.43 75.95

MixHopb 87.61 76.26 85.31 60.50 75.88 77.84 75.88

H2GCN-1b 86.92 77.07 89.40 57.11 82.16 84.86 86.67

APPNPa 87.87 76.53 89.40 54.3 73.51 65.41 69.02

JKNeta 85.25(16) 75.85(8) 88.94(64) 60.07(32) 57.30(4) 56.49(32) 48.82(8)

JKNet(Drop)a 87.46(16) 75.96(8) 89.45(64) 62.08(32) 61.08(4) 57.30(32) 50.59(8)

Incep(Drop)a 86.86(8) 76.83(8) 89.18(4) 61.71(8) 61.62(16) 57.84(8) 50.20(8)

GCNIIa 88.49(64) 77.08(64) 89.57(64) 60.61(8) 74.86(16) 69.46(32) 74.12(16)

GCNII*a 88.01(64) 77.13(64) 90.30(64) 62.48(8) 76.49(16) 77.84(32) 81.57(16)

H2GCN-1c 77.3038 74.5220 87.5887 49.0351 73.7838 78.9189 79.0196

GCNIIc 88.2696 76.9325 90.3499 63.7500 77.2973 78.3784 79.8039

FDGATIId 88.3903(2) 76.3082(1) 90.5502(2) 66.1184(1) 84.3243(1) 83.7838(1) 86.0784(1)

Table 3. Inductive learning - F1 (micro) on PPI. (1): Results from [5]. (2): Our results
with identical settings and Eq. 5. Note, we do not require any data pre processing

Method PPI(reported)1 Method PPI(our tests)2

GraphSAGE 61.2 FDGATII (2 layers) 98.51

GAT 97.3 FDGATII (3 layers) 98.91

JKNet 97.6 FDGATII (4 layers) 99.18

GeniePath 98.5 FDGATII (5 layers) 99.17

Cluster-GCN 99.36 FDGATII (6 layers) 99.24

GCNII (9 layers) 99.53 GCNII (9 layers) 99.52

GCNII* (9 layers) 99.56 GCNII* (9 layers) 99.53

4 Results and Discussion

4.1 Fully Supervised Node Classification

Table 2 reports the mean classification accuracy. We reuse the metrics already
reported by [5] and [29]. We observe that FDGATII demonstrates SOTA results
on heterophilic datasets while still being competitive on the homophilic datasets.
Further, FDGATII exhibits significant accuracy increases over its attention based
predecessor, GAT. This result suggests that dynamic attention with initial resid-
uals and identity improves the predictive power whilst keeping the layer count
(and hence the model parameters and computational requirements) low.
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Fig. 2. Accuracy, epochs, training and inference time comparison. For variants, we
use the lowest average time taken to run all 10 standard splits. Efficiency = 1/time.
Original GCNII is in pytorch. Original H2GCN is in TF. A public pytorch H2GCN is
used to eliminate any framework effects. Tested on Google colab with GPU.

Table 4. Ablation study w/0 II and w/0 dynamic attention. * Eq. 5, ** Eq. 9. Hyper-
parameter settings from [5]. L1 and L2 are 1 and 2 layers, respectively.

Metric Cora Cite. Pumb. Cham. Corn. Texa. Wisc.

Without II, L1 86.90 75.65 87.01 65.18 65.95 62.16 54.51

Without II, L2 86.74 74.45 86.19 49.78 58.92 57.30 51.76

With II*, L1 87.06 75.07 89.96 61.34 76.76 70.00 81.96

With II*, L2 87.79 74.88 90.35 47.82 79.19 79.73 83.53

With II*, L2 w/o dynamic attention 87.53 75.01 90.34 46.00 79.73 81.90 82.54

With II**, L1 84.91 75.28 89.48 49.12 80.27 78.65 84.12

With II**, L2 86.52 75.14 90.12 44.34 80.81 82.16 84.90

With II**, L2 w/o dynamic attention 85.98 74.48 90.03 43.99 80.80 80.54 85.49

4.2 Inductive Learning

We use the PPI dataset and follow [8] using 20:2:2 graphs for train:validation:test.
For settings, we follow [5]: 2048 hidden units, learning rate 0.001. Similar to [5,25],
we add a skip connection from layer l to l+1. Table 3 reports the F1 (micro) scores.
Results show that FDGATII is capable of competitive inductive learning.

4.3 Ablation Study

In this section, along with Table 4, we consider the effect of various design strate-
gies. Our 1 or 2-layer models, without Initial residual and Identity (II), is the-
oretically equivalent to GAT(static attention)/GATv2(dynamic attention). The
ablation study indicates that the addition of II together with dynamic attention
results in improvements on the heterophilic dataset performance. This result sug-
gests that both II and dynamic attention techniques are needed to solve the prob-
lem of over-smoothing and data heterophily. Figure 4 also confirms GAT/GATv2
cannot handle heterophily or depth unaided, while FDGATII shows significant
and consistently better results.
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Fig. 3. Efficiency vs accuracy, on GPU with warm-up. left: average inference time
for 1000 iterations. right: average training efficiency for 10 iterations. Efficiency =
log(1/time). Top-right is better.

4.4 Performance and Efficiency

Figure 3 summarizes the high accuracy-to-computational-time-efficiency ratio of
FDGATII clearly indicating its superior performance mix. The proposed archi-
tecture performs consistently better across noisy and diverse datasets with com-
parable or better accuracy (Table 2) while exhibiting superiority in training
and inference times, specifically 12x faster training speeds and up to 9x faster
inference speeds over our chosen deep-capable SOTA benchmark, GCNII [5].
FDGATII is 3x faster than H2GCN [29] on Citeseer. Our dynamic attention
achieves higher expressive power with fewer layers paying selective attention to
nodes, while the II supplements self-node features in highly heterophilic datasets.

By using edge-lists, FDGATII avoids computationally intensive eigen decom-
positions and matrix operations as well as the need to know the graph structure
upfront. Also, output feature computation can be parallelized across nodes while
the attention computation can be parallelized across all edges. While FDGATII
has the same time complexity of GCNII, by using significantly fewer layers
(Table 2 and Table 5), it achieves comparable or better results with superior
efficiency-to-accuracy ratios. Note, in Fig. 2, the graph pre processing (inver-
sion, normalization) times for benchmarks were not taken into account due to
focus on model training and inference. FDGATII has zero graph pre processing.

4.5 Suspended Animation and Over Smoothing

Responding to training indicates absence of suspended animation [26], while
effectively handling higher receptive fields indicates robustness to over-smoothing
[6]. Figure 4 shows FDGATII’s performance for 3 selected datasets under increas-
ing layer depth. There is no evidence of performance degradation from suspended
animation or over smoothing even at depth of 32. Accuracy is achieved early
and sustained over higher depths. In Cora, the drop is 0.1 for 32 layers. H2GCN
reported OOM for depths over 8.
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Fig. 4. Accuracy vs layer depth (on Goole Colab with GPU). FDGATII is consistent.
H2GCN OOM after 8 layers. Depth and heterophily degrades GAT/GATv2 accuracy.

4.6 Broader Issues Related to Heterophily

Many popular GNN models implicitly assume homophily, producing results that
may be biased, unfair or erroneous [29]. This can result in the so-called ‘filter bub-
ble’ phenomenon in a recommendation system (reinforcing existing beliefs/views,
and downplaying the opposite ones), or make minority groups less visible in social
networks, creating ethical implications [7]. FDGATII’s novel self-attention mech-
anism, where dynamic attention supplemented with II for feature preservation,
reduces the filter bubble phenomenon and its potential negative consequences,
ensuring fairness and less bias.

This offers new possibilities for future research into data where ‘opposites
attract’, in which the majority of linked nodes are different, such as social and
dating networks (the majority of persons of one gender connect with the opposite
gender), chemistry and biology (amino acids bond with dissimilar types in pro-
tein structures), e-commerce (sellers with promoters and influencers), and dark
web and other cybercrime related activities [29]. In a typical dark web social
network, fraudsters are more likely to connect to intermediaries and prospective
victims than to other fraudsters. Illicit actors will form ties with other actors
who play different roles [3], resulting in heterophilic characteristics.

Table 5. Final model hyperparameters.

Dataset H% Clases Nodes Edges Features α Dropout λ Layers Varient WD

Cora 0.81 7 2,708 5,429 1,433 0.3 0.6 0.2 2 Eq 5 1e–4

Citeseer 0.74 6 3,327 4,732 3,703 0.5 0.6 1 1 Eq 9 1e–6

Pubmed 0.80 3 19,717 44,338 500 0.2 0.3 1 2 Eq 5 5e–5

Chameleon 0.23 4 2,277 36,101 2,325 0.1 0.3 0.2 1 Eq 5 5e–4

Cornell 0.30 5 183 295 1,703 0.1 0.5 1 1 Eq 9 5e–4

Texas 0.11 5 183 309 1,703 0.3 0.6 1.5 1 Eq 9 5e–4

Wisconsin 0.21 5 251 499 1,703 0.4 0.3 0.2 1 Eq 9 5e–4

PPI 121 56,944 818,716 50 0.5 0.2 1.0 7 Eq 5 0.0
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5 Conclusion

We propose FDGATII, a novel efficient dynamic attention-based model that
combines attentional aggregation with dual feature preserving mechanisms based
on Initial residual and Identity. FDGATII successfully combines strengths of
both GCN and GAT worlds with none of the drawbacks, is inductive, able to
handle noise in graphs and achieves depths of upto 32; a first for any attentional
model and a limitation of many prior GNN techniques. Extensive experiments on
a wide spectrum of benchmark datasets show that FDGATII achieves SOTA or
second-best accuracy on benchmark fully supervised tasks. FDGATII has excep-
tional accuracy and efficiency whilst simultaneously addressing over-smoothing,
suspended animation and heterophily prevalent in real world datasets.
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Abstract. Scene Graph Generation (SGG) serves a comprehensive rep-
resentation of the images for human understanding as well as visual
understanding tasks. Due to the long tail bias problem of the object
and predicate labels in the available annotated data, the scene graph
generated from current methodologies can be biased toward common,
non-informative relationship labels. Relationship can sometimes be non-
mutually exclusive, which can be described from multiple perspectives
like geometrical relationships or semantic relationships, making it even
more challenging to predict the most suitable relationship label. In this
work, we proposed the SG-Shuffle pipeline for scene graph generation
with 3 components: 1) Parallel Transformer Encoder, which learns to
predict object relationships in a more exclusive manner by grouping rela-
tionship labels into groups of similar purpose; 2) Shuffle Transformer,
which learns to select the final relationship labels from the category-
specific feature generated in the previous step; and 3) Weighted CE loss,
used to alleviate the training bias caused by the imbalanced dataset.

Keywords: Scene graph generation · Long-tailed bias · Unbiased
scene graph generation

1 Introduction

Scene Graph Generation (SGG) is a fundamental visual understanding task that
aims to encode image structure using the objects in the image as well as the
relationships between these objects into a more compact representation with
graphs [6]. Such representation allows for a more comprehensive understanding
of the visual scene and serves as an intermediate data structure for downstream
machine learning tasks between images and text, such as VQA [11] or Text-Image
Matching [10]. Significant progress has been made recently in SGG thanks to the
advancement of object detection [15]. However, due to the challenges of variation
in object-predicate type as well as the extremely long tail bias of objects and
predicates, efforts for SGG must be made so that scene graphs can be more effec-
tive for other visual understanding tasks. The traditional pipeline of SGG can
often be viewed as a design pattern that comprises 2 main parts, with the pred-
icate prediction built on top of the object detector, which generates object fea-
ture representation through convolution neural network structure. Most methods
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 87–101, 2022.
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focus on leveraging contextual object features in images via a variety of message
propagation mechanisms such as LSTM [4,9,18,25] and GNN [7,13,23]. Such
methods include the biassed prediction of predicate labels towards the head cat-
egories with much lower performance in tail categories. This is a major problem
for the intended purpose of scene graphs; head categories frequently have generic
meanings but tail categories provide important information that can be used in
downstream tasks. Recent research has been conducted toward solving this long
tail bias by a number of debiasing methods: data augmentation [5,8], model
design [22,24], and bias disentangling [2,17]. These methods focus on making
use of predicates’ frequency and the hierarchy structure of predicates’ corre-
lation with object labels to make their models focus on infrequent predicates.
There has been a lack of research into non-correlated predicates, which are used
for different purposes but might have a non-mutually exclusive distribution of
objects and subjects. We argue that this leads to the problem where the model
needs to give attention to the classification between predicate labels of different
purposes and semantic features like “above,” which is used to describe posi-
tional relationships, and “holding,” which is used to describe an action. This
leads to less focus on differentiating between predicate labels of similar purpose
like “above” and “under”, which is already challenging due to the long tail biased
problem presented in the SGG task. The SGG model can learn the differences
between predicates with similar or contrasting semantic correlations and reduce
the bias of the tail class towards the head class of different semantic spaces.

To tackle the challenge, we propose the SG-Shuffle architecture that lim-
its the learning of classification between predicate labels in different semantic
spaces to improve classification between semantically correlated predicate labels.
In order to separate non-correlated predicate labels, we group correlated predi-
cates into four groups: Geometric, Possessive, Semantic, and Misc based on their
purpose and super-type following the description in the Neural Motif paper [25].
A stacked transformer encoder is adopted for feature refinement and contex-
tual information encoding of the object feature to generate the category-specific
predicate feature with fine-grained information that distinguishes predicate with
correlated semantics. A shuffle transformer structure based on Transformer [19]
and ShuffleNet [12] is proposed to fuse such fine-grained category-specific fea-
tures into a more universal feature that can classify between all predicates labels
in the dataset. This structure both fuses the fine-grained features generated
from the previous step and further propagates contextual information among
the scene graphs. We then applied the simple loss weighting strategy at the end
of the training process to further handle the long tail bias problem that also
exists within the predicate of the same category.

Our contributions are as follows: First, we addressed the SGG issue where
uncorrelated labels are classified against each other, which we tackled by cate-
gorising correlated labels and learning category-specific predicate features. Sec-
ond, we also proposed a Shuffle Transformer layer, which is used to fuse fea-
tures of different focuses to obtain the universal predicate feature for predicate
classification as part of our architecture, SG-Shuffle. Third, we evaluated the
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performance of the proposed SG-Shuffle to demonstrate its effectiveness in the
SGG task.

2 Related Works

Scene graphs received an attention in vision and language joint learning research
as they can serve as a structural representation of images and have the poten-
tial to benefit several downstream vision and language reasoning tasks, such as
image generation, image retrieval, visual question answering, and image cap-
tioning. Earlier works in scene graph generation involve making better use of
visual features. They leverage contextual information for object prediction and
predicate prediction using message passing [21], LSTMs [4,9,18,25], and GNN
[7,13,23]. Statistics correlation of object and predicate are also used in addi-
tion to give the models more information to enhance the results. [25] has used
GloVe for implicit statistics correlation, whereas [1] has explicitly used statistical
correlation as edges in GNN. While performance was improved, challenges still
remain due to the long-tailed data distribution which causes these models to
perform poorly on infrequent classes. Recent work has looked at several debias-
ing methods for unbiased scene graph generations which can mainly categorised
into three major types: re-sampling; loss re-weighting; and bias disentanglement
from biased results. [8] proposed to oversampling image instances while under-
sampling common predicates for balanced predicate distribution. [22] and [5] on
other hand suggest to use label correlation to realign their training loss while
other methods like [7,16,26] propose their additional training loss objectives to
reduce the bias problems. Other than re-sampling and loss re-weighting, bias dis-
entanglement is also commonly used, removing bias from biased model result for
unbiased scene graph. [17] propose to remove causal inference bias while missing
label bias is estimated from label frequency and removed in [2].

One of the challenge in computer vision is the channel sparse connection
problem in convolution neural networks for images, where each convolution only
operates on a single group of input channels due to the use of group convolu-
tions for reducing model complexity. ShuffleNet [12] was proposed to address
the problem by allowing for information exchange between channels of different
groups through the use of channel shuffle operations between group convolution
layers. Inspired by this, channel shuffling was used in multiple works in a variety
of different deep learning research works [3,20] to allow for information flow and
strengthen the correlation between components of their model. Based on the
success of ShuffleNet, we propose Shuffle Transformer containing the channel
shuffling operation for combining multiple category specific predicate features.

3 Methodology

The typical methods of SGG comprise a two-stage process: 1) detecting objects
within the images and 2) predicting the relationships between these objects. In
the first stage, a standard object detector like Faster RCNN [15] obtains a set
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of bounding boxes for the set of objects detected in the image. RoIAlign [15]
generates the visual feature of these bounding boxes and determines the initial
detection of the object label for each of the detected objects. The object bounding
boxes, which represent the position of the object in the image; object visual
features, which represent the shape, form, and pattern learned by the object
detector about the object; and object labels, which represent natural language
understanding of the object semantic, are predicted using the input image and
used as input for the next step. If ground truth information is used, as is the case
of PredCls or SGCls settings, the ground truth information is inserted at the step
where the information is intended to be used. In the second stage, the information
generated from the object detector is used to predict the predicate between
the predicted objects. As Faster RCNN is usually used for object detection,
SGG models generally focus on the second stage of the process, which is also
aligned with the main focus of our proposed SG-Shuffle. Our proposed model
for predicate prediction, in particular, consists of three steps: 1) Four individual
transformer sub-models are used to learn the category-specific representation of
the objects and predicates; 2) Shuffle Transformer layers are then used to merge
and allow information flow between the previous step’s output; and 3) Finally,
weighted cross-entropy (CE) loss is calculated and used for model optimization
as a way to reduce the long tail biased problem.

3.1 Categories

To focus the attention of the model on distinguishing between predicate labels of
similar semantic space, we categorize the predicate labels into 4 groups based on
their super-type following the description of the Neural Motif [25]: Geometric,
Possessive, Semantic, and Misc as shown in Table 1. We limit the need of the
model to classify between predicates with different semantic purposes which can
often require attention to different aspects of the input, for example: mainly
object position for Geometric predicates, object label, and visual feature for
Possessive predicates, or a balanced combination of the three for Semantic and
Misc predicates. And this, in turn, allows the model to make use of the input
aspects selectively to classify between semantically correlated predicates of the
same category, which can be challenging for general scene graph models since
they are often represented close to each other in the feature space due to semantic
similarity, especially with the long tail biased problem of the SGG dataset.

3.2 Parallel Transformer Encoder

For each image, bounding boxes, corresponding object features, and object labels
are generated using Faster RCNN [15] as input to our relationship prediction
module. In order to incorporate object label information as input, object labels
are encoded using GloVe encoding [14]. As these inputs are still non-contextual
and are not specifically trained for relationship prediction, as shown in Fig. 1,
we made use of the transformer encoder architecture to transverse contextual
information as well as refine the feature vectors for relationship prediction. And
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Table 1. Predicate categories and predicate labels in each category

Category Predicate label

Geometric ‘above’, ‘across’, ‘against’, ‘along’, ‘at’, ‘behind’, ‘between’, ‘in front
of’, ‘near’, ‘on’, ‘on back of’, ‘over’, ‘under’, ‘in’ , ‘and’

Possessive ‘belonging to’, ‘has’, ‘part of’, ‘wearing’, ‘attached to’, ‘of’, ‘wears’,
‘with‘

Semantic ‘to’, ‘carrying’, ‘covered in’, ‘covering’, ‘eating’, ‘flying in’, ‘growing
on’, ‘hanging from’, ‘holding’, ‘laying on’, ‘looking at’, ‘lying on’,
‘mounted on’, ‘painted on’, ‘parked on’, ‘playing’, ‘riding’, ‘says’,
‘sitting on’, ‘standing on’, ‘using’, ‘walking in’, ‘walking on’, ‘watching’

Misc ‘for’, ‘from’, ‘made of’

since we needed 4 sub-models to learn the specific details about the relation-
ship categories, the 4 transformer encoders are trained with their own goal of
classifying relationships within each of the category groups. For simplicity, we
concatenate the three object information streams, including object bounding
box, object feature, and object label encoding, as input to our context encoder.

Input = Wo[pos(boxi), visuali, GloV e(labeli)] (1)

Our context encoder adopts the out-of-the-box architecture of the transformer
encoder as it has been shown to be relatively effective compare to RNN, or
CNN in both natural language and computer vision. It is composed of layers of
self-attention, feed-forward, and layer normalization stacked.

o′
c = LayerNorm(SelfAttention(oc) + oc) (2)

o′′
c = LayerNorm(FeedForward(o′

c) + o′
c) (3)

where oc is the input object feature o′
c is the output of the multi-head attention

and o′′
c is the output of the transformer encoder. The output of the contex-

tual encoder is combined with the bounding boxes and visual features of the
unions and intersections through concatenation to predict the category-specific
relationships, which calculates a category-specific loss using CE loss.

rc = Softmax(Concat(subjectc, objectc, vintersect, vunion)) (4)

where rc is the category specific predicate features, v is the visual feature while
subjectc and objectc are the output object features of the objects pair.

We applied CE loss to jointly optimise the sub-models in their respective
categories. The parameters of the sub-models are trained in parallel and opti-
mized as part of the training process. For each of the sub-models, object pairs
with relationships from other categories are not considered in the computation
of this loss.
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Fig. 1. Overall architecture of SG-Shuffle

3.3 Shuffle Transformer

In the second step of our relationship prediction pipeline, after the sub-model
learns the category-specific contextual information for each of the objects in the
image, these category-specific contextual object features are merged together
in order to classify the actual relationship of the objects pair in the original
relationship labels set. Therefore, in this stage, the outputs of the transformer
encoder sub-models are used. Furthermore, while the 4 categories used in the
previous step are from different semantic domains, they are still correlated as the
candidate relationship of the same pair of objects, and hence, information flow
between these sub-models is needed. In order for the aforementioned reasons
to be incorporated into the model, we need to ensure that all the outputs of
the sub-models are relevant in the prediction stage and the correlation between
these category-specific object features is taken into account to further improve
the prediction result. We proposed making use of the shuffle architecture, which
was proposed in ShuffleNet [12] to handle information flow between channels
of CNN for computer vision tasks for this purpose. As shown in Fig. 1, this
architecture specifically makes use of the channel shuffle operation to allow such
information flow. The original ShuffleNet is used with CNN for images and is not
directly applicable to our situation, so we replace their convolution layer with
a transformer encoder layer with the same architecture as in the previous step,
with shuffle layers in between similar to the shuffle net. For SG-Shuffle, since we
have 4 category-specific object features of 4 sub-models from the previous stage,
for simplicity, the same number of shuffle sub-models are used in our shuffling
stage. By using four shuffle sub-models, a quarter of the output features from
the previous layer are concatenated to be the input of the next layer.

o′
s = SelfAttention([partitions(o(k=1−→4))]) (5)

ofinal = Ws[o
final−1
(s=1−→4)] (6)

rfinal = Softmax(Concat(subjectfinal, objectfinal, vintersect, vunion)) (7)
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After a few shuffle layers, the output of the shuffle sub models are concatenated
and used to predict the predicate of the object pairs using the softmax function.

3.4 Weighted CE Loss

While categorizing the predicate labels into 4 different groups helps alleviate the
bias problem to a certain degree, there is still bias between predicates of the same
predicate group. To further remedy the long tail bias problem in the SGG, at the
end of the training process, we applied a simple re-weighted CE loss to balance
the learning process of each predicate label. Traditionally, for classification tasks
like predicate prediction in SGG, a network is trained to minimise the CE loss.
The predicted probability is obtained by applying the Softmax function to the
output of the final layer. This loss penalises errors of predicting each label equally
and therefore makes the model skew toward common labels due to the number
of instances they have in the dataset. The weighted CE loss is a simple modified
version of this CE loss with larger weights for the infrequent labels and lower
weights for the frequent labels and penalises error classification accordingly.

l(x, y) = L{l1, ..., lN}T , ln = −
C∑

c=1

wclog
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c (8)

4 Evaluation Setup

Dataset Details. We used the VG150 dataset [25], a subset of the large-scale
Visual Genome vision and language dataset. It is the pre-processed split which is
specifically used for SGG tasks, with the most frequent 150 object categories and
50 predicates categories. For object and predicate-super categories, we followed
[25] criteria to split the predicate classes into 4 super-classes based on their
semantic nature. Following the same testing strategy, as [17], we also use the
original split with 70% training set and 30% test set, as well as taking 5000
samples from the training set as a validation set for parameter adjustment.

Evaluation Metrics. We use the mean Recall@ K metric. This metric has
recently been used in place of regular recall due to the long tail bias problem in
the image dataset, which leads to the performance bias in this metric [17]. The
evaluation is done by predicting the relationship triplets in 3 settings: Predicate
Classification (PredCls): using the image with ground truth object label and
bounding box, Scene Graph Classification (SGCls): only ground truth bounding
box and Scene Graph Detection (SGDet): using only the ground truth image.

Implementation Details. We use the Faster RCNN as the object detector to
focus on the performance of the predicate prediction and stay consistent with
previous work. It is pre-trained on ImageNet and fine-tuned on VG150 by [17]
with ResNeXt-101-FPN being the backbone for region proposals. For consistency
with previous works, the parameters of the object detector were kept frozen dur-
ing the training and evaluation period. The stacked encoder used as the category
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sub-models contains 6 layers of transformer encoder with 4 attention heads each.
For the weighted CE loss, we applied the inversed square root of predicate fre-
quency as mentioned in [2] as weight for the loss function. We optimised the
proposed model using the Adam optimizer with an initial learning rate of 0.001
and the warm-up and decay strategy suggested by [17]. The experiment was
conducted on the NVIDIA T4 GPU.

5 Performance Analysis

5.1 Quantitative Evaluation

We compare SG-Shuffle with other SGG methods to demonstrate the ability of
the proposed SG-Shuffle architecture to improve upon the feature refinement of
objects and relationships in SGG while also displaying that it can be used with
debiasing methods for unbiased SGG.

Table 2. Performance evaluation on VG150.

PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

Without debiasing IMP (2017) 9.80% 10.50% 5.80% 6.00% 3.80% 4.80%

Motif (2018) 13.30% 14.40% 7.10% 7.60% 5.30% 6.10%

KERN (2019) 17.70% 19.20% 9.40% 10.00% 6.40% 7.30%

VCTree (2019) 17.90% 19.40% 10.10% 10.80% 6.90% 8.00%

Our model 24.39% 25.94% 13.00% 13.90% 10.94% 12.01%

With debiasing Motif + TDE (2020) 25.50% 29.10% 13.10% 14.90% 8.20% 9.80%

PCPL (2020) 35.20% 37.80% 18.60% 19.60% 9.50% 11.70%

Motif + DLFE (2021) 26.90% 28.80% 15.20% 15.90% 11.70% 13.80%

BGNN (2021) 30.40% 32.90% 14.30% 16.50% 10.70% 12.60%

Our Model/w Weighted Loss 35.57% 38.67% 17.96% 19.24% 13.52% 14.91%

Firstly, we compare SG-Shuffle without weighted CE loss to other biased
SGG baselines, including IMP [21], Motif [25], KERN [1], VCTree [18]. These
models aims to generate better objects feature representations by traversing con-
text information between objects in the images. We compare SG-Shuffle without
weighted CE with these baselines to demonstrate the effectiveness of SG-Shuffle
in generating informative feature representation. As shown in the first part of
Table 2, the mR@100 of our model is 6.5% higher in the PredCLS setting, 3.1%
higher in the SGClS setting, and 4.0% higher in the SGDet setting comparing to
the VCTree, which is the best performing model among models without debias-
ing methods. These models worked on the large label set at once, a challenging
task since the distance between the predicate label are not uniform in the fea-
ture space. SG-Shuffle was able to gain better performance by learning in-depth
features that differentiate predicate with close semantic nature.

Secondly, we compare SG-Shuffle with weighted CE loss with the more recent
unbiased SGG models such as TDE [17], PCPL [22], DLFE [2], and BGNN [8],
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which use debiasing strategies to solve the long-tailed bias problem in the SGG
task. We observed that with simple weighted CE loss, SG-Shuffle outperforms
baseline models in the PredCls setting and SGDet setting, in which our PredCls
score is 0.87% higher than PCPL and 5.77% higher than DLFE in mR@100 score.
It only comes slightly lower than only PCPL in SGCls by a minor 0.3%. Among
the baseline models, strategy used by PCPL also involve learning a better rep-
resentation of predicates by modeling the relationship between predicate labels.
Compare to our model and PCPL, other models in the baseline are designed to
reduce the training bias by removing biased probability or re-sampling, to out-
perform models without debiasing. But without in-depth learning of predicate
representation, their performance is generally lower than the models with this
feature like PCPL and our model.

5.2 Hyper Parameter Tuning

While increasing the number of layers is often advantageous in the early layers
of deep learning models, at a higher number of layers, it could also lead to
diminishing gradient and optimization issues. We conducted hyper-parameter
testing with it being tested with a varying number of shuffling layers.

Table 3. Performance with shuffle layers in PredCLS, SGCLS, and SGDET.

# of shuffle layers PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

4 30.00% 32.43% 14.72% 15.87% 10.59% 11.90%

5 35.09% 37.68% 17.96% 19.24% 13.52% 14.91%

6 35.57% 38.67% 16.64% 17.81% 11.46% 12.78%

7 32.13% 35.04% 14.89% 16.03% 9.92% 11.23%

In Table 3, we tested the model with 4, 5, 6, and 7 layers of shuffled trans-
former in all three SGG settings: PredCls, SGCls, and SGDet, and compare the
performance using the mR@100 and mR@50 metrics. As shown in the table,
the performance of the model increases significantly when the number of shuffle
layers goes from 4 to 5 and goes down from 6 to 7. At this depth, challenge in
optimization outweighs the performance gain of further layer depth increase. The
model performs best with the PredCls setting when using 6 layers of shuffling,
while 5-layered models perform best in the SGCls and SGDet settings.

5.3 Alternate Shuffle Layer

In order to learn how the level of connection between the sub-models in the
shuffling layer of the model affects the final performance, we also tested a pair-
to-pair shuffling layer which is shown in Fig. 2. In this setting, the output features
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Table 4. Performance of SG-shuffle with full shuffle layers and pairwise shuffle layers

PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

No shuffle 27.53% 29.85% 14.94% 16.32% 6.13% 7.54%

Pair-to-pair shuffle 29.23% 31.62% 13.93% 15.14% 10.89% 12.18%

Full shuffle 35.57% 38.67% 16.64% 17.81% 11.46% 12.78%

from the previous layer are each partitioned into halves and each half is com-
bined with a half from a different sub models and used as input for the current
layer. After a few layers of shuffling, the category specific context information
is shared in all 4 sub-models pathways. As shown in Table 4, while the pair to
pair shuffling procedure does increase performance when compared to the model
without any shuffling by 2% in PredCls setting and 5% in SGDet setting, the
performance increase was lower than the full channel shuffling. We attribute the
higher performance of the full shuffling layer over the pair-to-pair shuffling layer
to the direct connection with all 4 sub-model from previous layer that allows
it to learn important aspects from the previous layers at a faster rate and give
better feature representation for relationship prediction.

Fig. 2. Full channel shuffling and pair to pair shuffling layer

5.4 Ablation Study

Ablation Testing. We performed an ablation study on our model by removing
the shuffling layer or weighted CE, and comparing them with the full model
to show the effectiveness of each component. Compare with the model without
weighted CE loss, the full model has nearly a 13% increase in performance in the
PredCls setting when using the mR@100 metric. Long-tail bias plays a major
part in SGG, and with no debiasing methodology, models are generally highly
affected by the training bias introduced by the highly imbalanced dataset.

When debiasing is included, the weighted CE loss model also has much lower
performance than the full model by around 8% mR@100 in the PredCls setting.
This is due to the availability of shuffle layers, which allow information to flow
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Table 5. Ablation result of SG-shuffle with mR@100 and mR@50

Shuffle Weighted
CE loss

PredCLS SGCLS SGDET

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

� – 24.39% 25.94% 13.00% 13.90% 10.94% 12.01%

– � 27.53% 29.85% 14.94% 16.32% 6.13% 7.54%

� � 35.57% 38.67% 16.64% 17.81% 11.46% 12.78%

more freely between the sub-models in the full model. Comparing the shuffled
only model and the weighted CE loss only model, the weighted CE loss has
the advantage of debiasing and has higher performance in PredCls and SGCls
but loses out in the SGDet setting in which object position was omitted. This
omission leads the model to rely on its own predicted object position for SGG,
which is less reliable than ground-truth information and harder to refine without
the use of shuffle layer. As shown in Table 5, both of the components of the SG-
Shuffle are necessary to achieve higher performance in unbiased SGG.

Categories Breakdown. In Table 6, we look at the effect of the model compo-
nent with respect to each category of predicate label by comparing the PredCls
mR@100 of the models in each of the 4 categories. For the geometric category, the
full model has the highest performance, while the weighted CE loss only model
has only slightly higher performance than the shuffle only model. Since there
are both common and uncommon relationships in this category, so the debias-
ing advantage of the weighted CE loss in uncommon classes is matched by the
shuffle-only model, which performs better in common classes. In the possessive
category, which is dominated by the common predicate classes the shuffle-only
model has a slightly higher performance than the other two models.

Table 6. Effect on different categories using PredCLS setting with mR@100

Shuffle Weighted CE loss Geometric Possessive Semantic Misc Overall

� – 21.27% 31.33% 29.71% 4.73% 25.94%

– � 22.06% 30.10% 37.16% 9.66% 29.85%

� � 28.11% 31.11% 48.97% 29.29% 38.67%

The main difference in the overall mR@100 lies in the semantic category with
the largest number of predicates, which are both informative and comparably
uncommon in the dataset. There is a large gap between the three models’ per-
formances in this category. The shuffle-only model suffered from the long-tailed
bias, which affects the uncommon predicate in this category and performs the
lowest of the three models. Between the full model and the weighted CE loss only
model, the full model has the advantage of the shuffle transformer with more
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informative feature representation and much higher performance in the seman-
tic category than the other two ablations tested models. Similarly, the mR@100
of the full SG-Shuffle model also has higher performance in the Misc category,
which has uncommon predicate labels, than the ablation-tested models.

5.5 Qualitative Analysis and Case Study

We visualize several scene graphs generated in the PredCls setting using the
Ablation Tested Models in Fig. 3. We selected 4 samples for the case study based
on the objects presented in the images: A person’s portrait; B) a person in a
large background; C) a building; and D) animal with plants in the background.

Fig. 3. Sample scene graph generated from ablation tested models. Correct relationship
is marked with black arrows and incorrect relationship is marked with red arrows (Color
figure online)

Observing samples A and B, between three models, the shuffle only model
prefers more common predicates like “on” or “has”, but cannot predict less
frequent predicates like geometric relationship “near”, or semantic relationship
“using”. The long-tailed bias present in the dataset to heavily affect the predic-
tion of the model. The weighted CE loss only model, on the other hand, favors
the infrequent relationship “wear” over the more common but same meaning
“wearing”. The SG-Shuffle model perform better than the other two models in
both common possessive relationships like “has” as well as infrequent semantic
relationships like “sitting on” or “using”. Similarly, in sample C, the shuffle only
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model misclassified infrequent relationship “near”, the weighted CE loss only
does the opposite, misclassified common relationship “on”, while the SG-Shuffle
correctly classifies both. However, weighted CE loss could not predict the every
infrequent semantic relationship as shown in sample D, where “growing on” was
misclassified as “on”. Comparatively, the full model was able to associate “grow-
ing on” with object “tree” thanks to the improved feature representation from
jointly learning from category-specific object features.

6 Conclusion

In this paper, we propose the SG-Shuffle model for unbiased SGG by addressing
non correlation problem of relationship labels in the existing SGG dataset. We
proposed to categorise the set of predicate labels to four category “Geometric”,
“Possessive”, “Semantic”, and “Misc” in a divide and conquer approach which
is learned as part of the SG-Shuffle SGG pipeline by Transformer Encoder in
parallel to provide category-specific context for further SGG. We also propose a
shuffle transformer layer, which apply channel wise shuffling operation in com-
bination with the Transformer Encoder architecture to allow information flow
between sub-models and merge together the learned category-specific feature
representation. We demonstrated the effectiveness of SG-Shuffle in the VG150
dataset in comparison with other state-of-the-art SGG models.
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Abstract. Microplastics are environmental contaminants that put
marine and aquatic ecosystems at serious risk. Monitoring microplas-
tics is necessary to understand the level of microplastic pollution in
our environment. However, the lack of a standard protocol for quantify-
ing and classifying microplastics causes problems in the reliability and
comparability of results. Previous literature has employed deep learning
models to classify and quantify microplastic polymers with great suc-
cess, but the ability of these models to classify microplastics from new
domains is unanswered. This paper presents an innovative approach to
microplastic classification that employs a deep learning approach using
a transformer neural network. Our specific contributions are: (1) A novel
way to pre-process FTIR spectral data to dramatically increase classifica-
tion accuracy. (2) Developed a transformer neural network for classifying
microplastic polymer FTIR spectra. With the inclusion of a wider range
of data, future deep learning approaches will improve the classification
and quantification of microplastic polymers, subsequently reducing the
costs and labour involved.

Keywords: Microplastic detection · Transformer · Time-series
analysis · Supervised learning · Deep learning

1 Introduction

Microplastics are highly persistent contaminants found in marine and freshwater
systems [20]. They are classified as tiny pieces of plastic that form through envi-
ronmental factors and manufacturing processes [11]. Prolonged environmental
exposure fragments larger plastic objects into smaller microplastics over time
[11]. Microplastics have adverse effects in the reproduction of certain marine
species [1], and have been found within human lung tissue and blood [5,7].
Microplastics are commonly analysed using chemical characterisation meth-
ods, such as Fourier-transform infrared spectroscopy (FTIR) and Raman spec-
troscopy [11]. Spectroscopy methods can be highly effective, but can suffer from
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a lack of precision or costly and time consuming processes [4,11]. Micro-FTIR
is a reflectance spectroscopy method which enables high throughput analysis
of particles, capable of rapidly recording large quantities of data but result in
polymer spectrum’s that are hard to distinguish from others [22]. Machine learn-
ing techniques could enable micro-FTIR and similar methods to be effective in
classifying and analysing microplastics. If a protocol that utilises machine learn-
ing and micro-FTIR is developed, microplastic quantification and classification
could be conducted in a fraction of the time.

A promising machine learning architecture for the classification of microplas-
tics is the transformer neural network. They are a recent innovation in the
field of machine learning [19], and have proven to be effective in both time
series forecasting and time series classification tasks [13,24]. This is due to the
transformer neural networks ability to capture discrepancies and interactions
over long sequences [21]. A successfully modelled transformer network could be
capable of classifying microplastics that have been collected using micro-FTIR
spectroscopy.

Machine learning methods are becoming more popular in microplastic
research, particularly through computer vision and classification [10,16,23,25].
Classification methods have proven extremely effective at microplastic classi-
fication, with some methods achieving near-perfect accuracies [25]. Obtaining
microplastics from environmental domains is challenging and expensive [16],
resulting in the need to manually create microplastics [16,25]. Still unanswered
is how a machine learning model trained on the microplastic polymers from one
domain performs when classifying polymers from another domain.

The paper is organised as follows. The related background of this application
is given in Sect. 2. In Sect. 3, we detail how we adapt the standard transformer
to this specific problem and other techniques to process the data. A number of
experiments are given in Sect. 4 to demonstrate the effectiveness of our method.
Finally, Sect. 5 concludes the paper.

2 Background

2.1 Microplastics

Microplastics pose serious environmental risks. They are classified as either pri-
mary or secondary microplastics. Primary microplastics are manufactured for
use as abrasives and exfoliates in consumer products. Secondary microplastics
result from the fragmentation of larger pieces of plastics through environmental
factors, such as solar radiation and ocean waves [12]. The presence of microplas-
tics within our environment is having a significant impact on both marine and
terrestrial ecosystems [6]. The aggregation and digestion of microplastics affect
the injuries and mortality of aquatic birds, fish, mammals and reptiles [14]. Due
to their size and persistence, microplastics have infiltrated human food sources
[1] and drinking water [15]. Microplastics have been found within the blood and
lung tissue of humans, negatively impacting our health [5,7]. Microplastics can
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act as a vector for persistent organic pollutants (POPs) which are highly car-
cinogenic chemical compounds. Contaminated microplastic particles may affect
both our ecosystem and food sources [22].

The growing concern over microplastics in our environment has introduced a
need for a robust and straightforward method of analysing microplastics. Some
of the most common spectroscopic techniques come in the form of FTIR spec-
troscopy [11] and electron microscopy [16]. To date, a standardized solution for
microplastic analysis is yet to be developed, as each method has its strengths
and limitations. A standardised method of microplastic analysis would facilitate
the comparability, validity and accuracy of future microplastic research [6,22].

2.2 Time Series and Transformers

Transformer neural networks [19] have shown great performance in numerous
time series applications. This is largely due to their capabilities of modelling
long-range dependencies and interactions in sequential data [21]. Transform-
ers have been successfully applied to various time series tasks. The original
transformer architecture was designed as a sequence-to-sequence deep learn-
ing model, initially created for use in natural language processing (i.e., lan-
guage translation). This is achieved through its encoder-decoder architecture.
Encoder-decoder transformers have been used in time series forecasting [8,24]
and anomaly detection [17], where the input time series sequence results in some
output sequence from the transformer model. Classification transformers modify
the deep learning model by removing the decoder framework. The transformer
neural networks can then be used in the feature representation stage through
its encoder architecture and then for classification tasks using the feature rep-
resentations [9,13]. A multivariate time series classifier proposed by [9] uses a
two-tower transformer, where the towers respectively focus on time-step-wise
and channel-wise attention. This modification of the transformer architecture
achieved state-of-the-art results in numerous multivariate time series. Recent
work by [13] achieved greater classification rates on raw optical satellite time
series compared to recurrent and convolutional neural networks (CNN).

2.3 Microplastics and Deep Learning

Deep learning methods have proven extremely useful in microplastic quantifica-
tion and classification. A recent study conducted Shi [16] used electron micro-
graphs in combination with a CNN to achieve a microplastic polymer classifica-
tion accuracy of 98.33%, displaying a cost-effective and rapid way of analysing
microplastics. Yurtsever [23] used a CNN to classify microbeads from distinct
cleansers within wastewater samples with accuracies of 89%. CNNs have also
been used in conjunction with FTIR spectroscopy. Zhu [25] have developed a
CNN that can classify the FTIR spectra of polyethylene and polypropylene poly-
mers with high accuracy (99%). Deep learning methods can be extremely bene-
ficial tools for classifying microplastics. Thus far, much of the research has only
tested their deep learning models on one microplastic dataset without further
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validating performance by using microplastics obtained from another domain or
environment. This is largely due to the lack of publicly available datasets and
the costs involved in collecting environmental microplastic samples [3].

3 Methodology

3.1 Transformer Model

Fig. 1. Modified transformer neural network

The transformer neural network [19] was originally proposed for natural lan-
guage processing, such as machine translation tasks. Whilst it has very pow-
erful modelling capabilities for sequences, the original model architecture is
unsuitable for our desired classification task. Rather than a sequence-to-sequence
model, we require a sequence-to-vector model capable of taking an input time
series sequence and outputting a binary classification of either polyethylene or
polypropylene. The aim is to leverage the modelling power of the transformer
neural network in the encoding stage such that we can use the found feature rep-
resentations to perform classifications. A modified TNN architecture was created,
aimed at classifying this type of data (see Fig. 1). Following previous research
[9,13], this study’s transformer model employs an encoder layer for represen-
tation learning. The decoder in the traditional transformer is replaced with a
feed-forward neural network for classification instead. This implementation is
a modification of a previous transformer model [2] and is designed to classify
reflectance micro-FTIR spectra samples. We aim to utilise the transformer’s
ability to capture long-term dependencies in sequences to classify microplastic
polymer identities.

3.2 Dataset Creation

This study used two microplastics datasets: a marine and a standard poly-
mer dataset. Each dataset contains spectra samples of polyethylene (PE) and
polypropylene (PP) polymers that have been analysed using reflectance micro-
FTIR spectroscopy. This FTIR spectroscopy method enables high throughput
and a non-destructive way of analysing microplastics [22]. Each sample in the
dataset represents the measurement of the interaction of infrared radiation with
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Fig. 2. Average polyethylene and polypropylene spectra.

Fig. 3. Workflow of microplastic analysis using micro-FTIR

a polymer (PE or PP) by absorption. Figure 3 displays the process involved with
collecting spectra data through micro-FTIR. The marine polymer dataset con-
tains spectra samples of PE and PP polymers sourced from marine saltwater.
A total of 512 spectra samples were obtained. The marine polymer dataset was
then split into training, validation and testing sets. 70% of the samples were
used to train the transformer model, and the remaining 30% were split to form
validation and testing sets.

A standard polymer dataset was obtained containing spectra samples of PE
and PP polymers. Unlike the marine polymer dataset, the standard polymers
were not sourced from the environment but purchased as standard samples.
The standard polymer dataset contains 89 PE and 80 PP polymer spectra. The
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standard polymers is be used to test the trained transformer model to see how
well the model generalises to polymers that were collected from another domain.
Specifically, the marine polymer dataset is used for model training and testing.
The standard dataset evaluates how well the trained model can generalise to
unseen data from another domain.

3.3 Pre-processing
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Fig. 4. Plotted marine polyethylene spectra showcasing raw data and first, second and
fourth-order differencing.

From the domain knowledge, it is known that different plastics react differently
to electro-magnetic frequencies. Furthermore, it is their sensitivity that differen-
tiates them than the absolute response. For that reason, time series differencing
was applied to the polymer spectra to extract the relationships shared between
the samples for both polymer types. Time series differencing was used because
recorded spectra for PP and PE polymers share similar trends as seen in Fig. 2
and high-order analysis would be able to differentiate them more easily. This
pre-processing technique aims to assist the transformer during the representa-
tion learning stage.

The raw spectra data and higher orders of difference were compared to deter-
mine the best pre-processing approach to maximise the transformer model’s per-
formance. The first-order difference is calculated by the following:

A[n] = X[n] −X[n−1], (1)



108 M. Barker et al.

where X is an array containing a single spectra sample, and A is an empty array.
The element at position A[n] is equal to the difference between the element at X[n]

and X[n−1], also known as the first-order difference. Higher order differences are
achieved by applying the same formula again to the resulting array A. Figure 4
shows the various effects of orders of differencing on a PE spectra sample. The
absorbance of the unprocessed PE spectra fluctuates between a range of 2.0 and
1.1. After applying first-order differencing, the range is restricted between 0.20
and −0.15. Figure 4 further shows this range is further restricted by using higher
orders. What can be seen is that the peaks along the wavelength are preserved
using this method.

3.4 Data Augmentation

Original Data Jittering Scaling

Rotation Permutation Magnitude Warping

Fig. 5. Effects of augmentation on a single polyethylene spectra.

Due to the minimal training data available, data augmentation was implemented
to create new but similar spectral samples. This was done with the aim of improv-
ing the model’s accuracy and its ability to generalise to new data. A study
conducted by [18] tested eight different time series augmentation methods on a
data set consisting of wearable sensor data for Parkinson’s’ Disease monitoring.
These methods include jittering, scaling, rotation, permutation, and magnitude
warping. Using these augmentation methods, [18] achieved a classification perfor-
mance improvement of 77.54% to 88.68%. Figure 5 visually represents different
augmentation methods’ effects on a PP sample. Permutation randomly perturbs
the data locations within a set window in the time series. Scaling changes the
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magnitude of the data by multiplying elements by a random scalar, while jit-
tering simulates additional noise in the time series. Finally, magnitude warp-
ing changes the magnitude of each sample by convolving the time series with
a smooth curve. Each augmentation method was tested, and their impact on
the model’s performance in predicting the marine and standard polymers was
recorded.

4 Experiments

4.1 Experiment 1: Time Series Difference Selection

Experiment Details. In this experiment, we evaluated the effect of time series
differencing on the marine and standard spectra samples on the model’s over-
all performance. The model was be trained with the marine training set and
evaluated with the marine testing and standard polymer sets. Varying orders of
differencing were tested ten times each, and the resulting accuracies were aver-
aged and compared. The model was trained using 50 epochs per run, a batch
size of 64 and a learning rate of 10−4.

Table 1. Model performance with respect to various orders of difference, evaluated by
marine set accuracy, loss, and Standard set accuracy.

Diff. Marine Acc. Loss Std. Acc.

Default 70.84 % 0.5298 51.17%

First-order 97.43% 0.081 52.11%

Second-order 98.46 % 0.043 72.35%

Third-order 98.51 % 0.041 72.61%

Fourth-order 98.71% 0.035 75.64%

Fifth-order 97.69 % 0.058 77.29%

Sixth-order 97.25% 0.067 81.52%

Findings and Discussion. The transformer model’s performance on the raw
spectra data leaves much to be desired. A test set accuracy of 70.84% and a stan-
dard set accuracy of 51% is far too low to be considered useful. The low accuracy
may indicate the shortcomings of reflectance-FTIR, where recorded spectra can
suffer from distortions due to plastic morphology. The standard set accuracy
for the raw data indicates morphological differences between the marine and
standard samples. Both datasets contain the same polymers analysed using the
same methods, but the model is not generalising well to the standards. Since the
marine samples have been collected from the environment, they would have been
subject to environmental exposure such as UV radiation [12,22]. The morpho-
logical changes in the microplastic samples due to environmental degradation
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are significant enough to affect the transformer model’s performance. Figure 6
gives us further insight into the impact on the performance by giving a visual
representation of the difference in the reflectance spectra for the polymers. Irreg-
ular microplastic particle morphology can cause reflectance spectra distortions
[22], which may further impact the model’s ability to generalise.

Time series differencing has a significant effect on model performance. Table 1
shows a dramatic increase of +26% in testing accuracy after applying first-order
differencing, up to a total of 97.43%. Testing accuracy increases until fourth-order
differencing, where the test set reaches its peak. The accuracy of the standard
set continues to increase throughout the experiments, up to a maximum value of
81.52% using sixth-order differencing. Past this point, both testing and standard
set accuracy begin to decrease.
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Fig. 6. Average spectra for marine and standard polymers.

4.2 Experiment 2: Data Augmentation

Experiment Details. In this experiment, the aforementioned data augmenta-
tion methods were applied to the dataset to observe their impacts on the models
performance. Namely, jittering, scaling, permutation and magnitude warping.
For each augmentation method, the marine training dataset was increased in size
by a factor of two, consisting of the original datasets and the augmented data.
Fourth-order differencing was then applied to the augmented dataset. For each
augmentation method, the model was trained five times, with the corresponding
test and standard set accuracies averaged and recorded. Following Experiment
1, the data augmentation methods were be trained using 50 epochs, a batch size
of 64 and a learning rate of 10−4.
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Table 2. Model performance on validation, test and standard sets when using data
augmentation.

Aug. Val. Acc. Marine accuracy Std. accuracy

No Aug 99.2% 98.7% 75.6%

Jittering 99.3% 98.5% 72.5%

Scaling 100% 98.7% 66.7%

Permutation 99.4% 98.5% 60.5%

Mag. Warp 100% 98.7% 65.7%

Findings and Discussion. The data augmentation methods outlined by [18]
did not have any meaningful performance increases on either the marine set or
the standard polymer set. Table 2 showcases the outputted accuracies. None of
the augmentation methods improved the marine test accuracy, either remaining
unchanged or slightly decreasing. All augmentation methods positively influ-
enced the model’s validation accuracy and loss. Using augmentation methods,
the model was able to reach higher validation accuracies, peaking at 100% for
both scaling and magnitude warping. The model performed worse on the stan-
dard polymer set using all augmentation methods. The most significant decrease
was when using permutation, where a decrease of 12% was observed.

The data augmentation methods could be causing the model to overfit to
the marine set, as the augmentation methods are not specifically designed for
microplastic spectral data. It could also be the case that key features in the
spectral data are not being replicated properly in the augmentation process. Data
augmentation’s negative impact on the standard polymer dataset accuracy shows
that domain-specific knowledge is required to design an appropriate method of
spectral data augmentation that can assist with model generalisability.

4.3 Experiment 3: Model Tuning

Experiment Details. This experiment investigated increasing the model’s per-
formance through tuning the hyperparameters, aimed at increasing the model’s
accuracy on the standard polymer dataset. The microplastic spectra were pre-
processed using fourth-order differencing.

Findings and Discussion. During the training of the transformer model, the
outputted validation loss and accuracy and the performance on the standard set
were monitored and recorded. Within the first 10 to 20 epochs, the model’s accu-
racy for both the validation and standard sets increased. This can be observed in
Fig. 7, where the accuracies and loss values for both datasets are initially corre-
lated but diverge after 20 epochs of training. Within this 10–20 epoch range, the
standard set accuracies average at a value of 88.45%, which is a 7% increase from
the best recorded standard accuracy shown in Table 1. During epochs 10–20, the
validation accuracy averages at a value of 97%.
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Fig. 7. Relationship between validation and standard set accuracy and loss after 5x
training iterations for 50 epochs.

Fig. 8. Confusion matrices for model performance on marine polymer test set and
standard polymer set.

The network overfitting could explain the divergent behaviour between the
marine and standard polymer datasets. By reducing the number of epochs, we
can gain overall accuracy. The performance increase is promising, but future
research must consider the performance of deep learning models when classifying
microplastics from another domain due to the possibility of overfitting.

By reducing the number of epochs to 20 and adjusting the hyperparameters,
a test set accuracy of 98.71% and standard set accuracy of 92.3% were achieved.
This final accuracy was achieved with a learning rate of 10−4 and a batch size of
128. In this case, the transformer model had two encoder layers both with four
heads. Figure 8 displays the resulting confusion matrices. The marine polymer
confusion matrix incorrectly classified a PE polymer as a PP polymer, which
may result from a polymer that has had more morphological change than the
rest considerably. As shown in the standard polymer confusion matrix, the model
has a bias toward making PE predictions with 86% of incorrect classifications
being PE classifications.
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4.4 Experiment 4: Model Performance Comparison

Experiment Details. In this experiment, we evaluated the model’s perfor-
mance by comparing its classification accuracies and F1-scores against other
machine learning models: K-nearest neighbour, Random Forest, Naive Bayes,
Linear Discriminant Analysis and Logistic Regression. We have also evaluated
the performance against a 1D CNN to compare its performance against similar
microplastic classifiers [16,23,25]. Each model was trained with the marine train-
ing set and evaluated with the marine and standard testing sets. The resulting
accuracies were averaged and recorded for comparison.

Table 3. Comparison between transformer, kNN and Random Forest models on the
marine and standard testing sets.

Model Marine accuracy Marine F1 Std. accuracy Std. F1

Transformer 98.7% 98.7% 92.3% 92.0%

CNN 98.7% 92.6% 91.2% 91.0%

KNN 94.8% 92.6% 88.0% 84.6%

Rand. Forest 97.4% 94.5% 68.0% 44.6%

Naive Bayes 98.7% 98.7% 80.0% 78.9%

LDA 97.4% 97.4% 58.8% 54.2%

Logistic Reg. 94.8% 94.7% 52.9% 19.9%

Findings and Discussion. Table 3 reveals the accuracies of each machine
learning model. The best model was the transformer, with a standard accuracy
and f1 score of 91.1% and 91.2%, respectively. Each machine learning model
performed very well on the test sets in terms of accuracy and F1-score, but
most suffered once classifying the standard set. K-nearest neighbour achieves an
impressive accuracy of 83.5% on the standard polymer set when nearest neigh-
bour k = 3. Similarly, Naive Bayes achieved a score of 80%. Both Naive Bayes
and K-nearest neighbour perform similarly to previous iterations of the trans-
former model. This demonstrates that the transformer model is an appropriate
choice over other machine learning models. The 1D CNN performed extremely
well on both the standard and marine testing sets, with F1-scores of 98.7% and
91.2% respectively. This performance closely matches that of the transformer
architecture and further supports deep learning methods as appropriate tools
for analysing microplastics.



114 M. Barker et al.

5 Conclusions

We have proposed a highly effective transformer model that provides accurate
classifications of microplastic polymers. We have shown that time series differ-
encing can dramatically increase performance for both known and unknown data.
In addition, we have shown that the morphology of microplastics can influence
a machine learning models ability to classify microplastics from other domains.
With continually growing datasets, machine learning approaches are expected
to classify a broad range of microplastic polymers and dramatically reduce the
cost and labour involved in microplastic classification and quantification. Our
implementation will be made publicly available at https://github.com/br3nr/
microplastic-transformer.
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Abstract. Convolutional neural networks (CNNs) are a very prevalent
and powerful deep learning paradigm. In recent years, many neural archi-
tecture search (NAS) methods have been developed to automate the
design process of CNN architectures, significantly reducing human effort.
Among various search techniques, differential evolution (DE), as a popu-
lar evolutionary computation algorithm, has advantages of fewer control
variables, fast convergence and powerful optimization capability. How-
ever, existing DE-based NAS methods simply use conventional search
operators, and do not consider the global and local information in the
search process well, thus failing to achieve satisfactory results. In this
paper, we propose an eclectic DE approach for NAS that can make good
use of the search capability of DE. The architectural parameters are
encoded into two parts according to their ranges. A discrete mutation
operator is proposed to evolve the part that has a small search space,
while a versatile mutation operator is devised for the other part with
a large search space. The proposed DE algorithm can well balance the
global and local search, and yields better overall results than most com-
pared methods with a single-path CNN architecture design based on
basic operations on four benchmark image classification datasets.

Keywords: Neural architecture search · Convolutional neural
networks · Differential evolution

1 Introduction

Neural architecture search (NAS) [3] has greatly promoted the development
of deep learning, as it saves the manpower and labour of manually design-
ing deep neural networks. In particular, various computer vision tasks, espe-
cially image classification, have greatly benefited from NAS in designing novel
high-performance convolutional neural network (CNN) architectures [17]. Search
strategy is one of the most critical components of an NAS algorithm, which has
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become the focus of NAS research in recent years. The vast majority of exist-
ing NAS algorithms are based on reinforcement learning [26], gradient descent
[20], and evolutionary computation (EC) [2] to navigate the search space. Since
NAS can be considered as a challenging non-differentiable optimization problem,
among these search strategies, EC is becoming increasingly popular because of
its powerful ability in solving hard problems in a gradient-free fashion [16].

EC is a population-based method, and in EC-based NAS, each CNN archi-
tecture is treated as an individual in the population. The architecture search
process of EC-based NAS is also the update of the population performed by the
EC algorithm. Among various EC algorithms, differential evolution (DE) [24] is
a powerful optimizer, which contains few control variables yet is very efficient
and robust in dealing with optimization problems over large spaces. During pop-
ulation updating process of DE, new individuals are generated by mutation and
crossover operators, where the mutation operation leads to a mutant individual
by combining the difference information among multiple individuals in the pop-
ulation, while crossover is a recombination of the mutant individual with the
current target individual. In particular, the behavior of the search algorithm in
exploring the search space can be purposefully adjusted by different designs of
mutation and crossover operators.

DE is rarely involved in NAS, probably due to the early introduction and pre-
conception of other popular EC algorithms in this area, such as genetic algorithm
(GA) [18] and particle swarm optimization (PSO) [13]. Wang et al. [29] proposed
to use DE to evolve CNN architectures, and showed better performance than
the predecessor using PSO [28]. Nevertheless, the conventional random mutation
operator used affects the search efficiency since it does not consider the quality of
the selected solutions and their correlations with the candidate solution. Hence,
the DE operator needs to be improved to better balance the local and global
information of the population and thus enhance the search capability.

When designing a CNN architecture, many relevant parameters need to be
determined, e.g., layer type, convolution kernel size, stride size, and number of
filters for each layer. Basically, layer type, kernel size and stride size have a
small search range, while the number of filters for each layer has far more pos-
sible values. It is desirable to find an efficient way to encode these architectural
parameters with different ranges.

To further exploit the potential of DE-based NAS and improve its search
ability, in this work, we propose an eclectic DE approach, dubbed EDE-NAS,
to automated CNN architecture design for image classification. We effectively
split the architectural parameters that need to be optimized into two categories,
namely, one containing those with only a few possible values and one including
those with more options. In addition, a discrete mutation operator and a ver-
satile mutation operator concerning elite-based local and global information are
devised respectively for these two kinds of architectural parameters. The network
architecture is constructed with basic convolutions and pooling operators based
on a single-path (no branches) backbone which, though simple, has been proved
to be hardware-friendly [5]. Experiments on several benchmark image classifi-
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cation datasets show better results overall compared to those state-of-the-art
models. The contributions of this work are:

1. Designing a convolutional architecture search space based on basic standard
convolutional and pooling layers, and constructing single-path CNN architec-
tures from the search space. The resulting architecture, despite its simplicity
because of the plain topology, is efficient and effective for the target tasks.

2. Encoding the involved four architectural parameters into two parts, 1) part1 :
layer type, kernel size and stride size which have a few options; 2) part2 :
number of filters containing more possible values within a certain range. Such
an encoding scheme can handle a large search space and simplify it to facilitate
the convergence of the search process.

3. Evolving the CNN architecture in a variable-length manner by DE. A discrete
mutation operator is designed to evolve the small search space of part1 and a
versatile mutation operator is devised to evolve the large search space of part2.
Both operators focus on the elitism of the population which is conducive to
continuously improving the evolution quality, and global information which
avoids the population being trapped into bad local optima.

2 Background

2.1 Differential Evolution (DE)

DE [24] is a population-based EC algorithm, originally proposed for continuous
optimization problems. It produces new individuals by combining the informa-
tion among multiple individuals in the population. DE is a very effective global
optimizer which has few control variables and converges relatively fast. Gener-
ally, a DE algorithm procedure is constituted of four main steps: initialization,
mutation, crossover, and selection. First, a group of initial solutions/vectors is
randomly generated in the encoding space, which then enters the mutation-
crossover-selection loop. In each mutation, a mutant vector is generated by per-
forming differential operation among several selected vectors from the popu-
lation. Taking the classical DE/rand/1/bin operator as an example, the i-th
mutant vector in the g-th generation vgi is calculated by combining three ran-
domly selected solutions xg

r0 , x
g
r1 and xg

r2 :

vgi = xg
r0 + F · (xg

r1 − xg
r2) (1)

where i �= r0 �= r1 �= r2 ∈ {1, 2, ..., T} and T denotes the population size; F is a
scaling factor controlling the impact of the difference vector. After the mutation,
the final trial vector ug

i is produced by conducting crossover operation on the
mutant vector vgi given the crossover rate CR. Specifically, the j-th element in
ug
i is set as:
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ug
i,j =

{
vgi,j , if rand() ≤ CR or j = jrand
xg
i,j , otherwise (2)

where rand() is a random number between 0 and 1; To assure there is at least
one element comes from the mutant vector, a random position jrand is specified.
At the selection stage, the trail vector ug

i is compared with the current solution
xg
i , and the one with higher fitness value (assuming a maximization problem)

will survive in the next population.

xg+1
i =

{
ug
i , if f(ug

i ) ≥ f(xg
i )

xg
i , otherwise (3)

where f(·) refers to the task-specific fitness function, e.g., classification accuracy.

2.2 EC-Based NAS

NAS is a technology that automates the process of neural network architecture
design, which is comprised of three critical components: search space, search
strategy, and performance estimation [6]. EC-based NAS algorithms, from the
perspective of search strategy, leverage EC algorithm to explore the search space
and find the desire architecture. Xie and Yuille [31] proposed to evolve the con-
nections among layers of different stages in CNN by a standard GA. The con-
nection topology is encoded as a fixed-length binary string, and the encoding
scheme theoretically can represent many popular network architectures, such as
VGGNet [23], ResNet [8], and DenseNet [10]. A variable-length PSO approach
[12] is devised to encode single-path CNN architectures for image classification.
The individuals are updated in a discrete fashion by a difference vector between
the current individual and best-so-far individuals. However, this method does
not fully exploit the ability of PSO in local search, and the effectiveness of archi-
tecture search is thus limited. In addition to GA and PSO, Wang et al. [29]
employed DE to search for single-path CNN architectures encoded by an IP
address-based method [28]. A single point crossover operation is introduced as
the second crossover in the evolutionary process to enhance local search. Awad
et al. [1] also adopted a canonical DE to evolve CNN architecture where the
architectural parameters are encoded as real values for continuous evolution,
and then mapped back to discretized architecture. Albeit achieving promising
performance, these methods still fall short in effective search due to the use of the
classic random mutation operator. To address this limitation, in this study, the
mutation operation is improved to consider more information in the population.

3 Methodology

3.1 Framework

The overall flowchart of the proposed algorithm is shown in Fig. 1, which basi-
cally follows a common EC-based NAS algorithm [16]. First of all, an initial
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Fig. 1. Framework of EDE-NAS.

population is generated with random configurations for each individual. Then,
the population is updated iteratively by the proposed search algorithm. When
the stopping criterion is met, the best individual in the latest population is out-
putted. For a more precise presentation, we also outline the procedure of the
proposed algorithm in Algorithm 1. Note that two mutation operators (elabo-
rated in Subsect. 3.3) are conducted on part1 and part2 of the encoded individ-
ual, respectively. The generation of individuals is carried out one by one, and
the new individual takes effect immediately and can be used for the evolution of
subsequent individuals.

Algorithm 1: Procedure of EDE-NAS
Input: Population size T , number of generations G, the differential rate F , and

the crossover rate CR.
Output: The best individual.

1 P 0 ← Initialize and evaluate a population {x0
i }T

i=1;
2 for g = 1 to G − 1 do
3 for i = 1 to T do

4 vg−1
i ← Mutation(xg−1

i , P g−1, F );

5 ug−1
i ← Crossover(xg−1

i , vg−1
i ,CR);

6 xg
i ← Evaluation&Selection(xg−1

i , ug−1
i );

7 P g−1 ← Update P g−1 by replacing xg−1
i with xg

i ;

8 end
9 P g ← Updated P g−1;

10 end

11 xbest ← The best-performing individual from PG−1;
12 Return xbest.

3.2 Search Space and Encoding Scheme

The searched CNN architectures are based on basic standard convolutional
(Conv) and pooling layers, with different configurations of kernel size and stride
size. We do not introduce additional knowledge regarding primitive operator nor
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network topology, for mitigating human intervention. The target architecture is
constructed based on a single-path backbone, which means that there are no
branches in the network and every layer connects to only one preceding layer
and one subsequent layer. This leads to a simple CNN architecture overall, which
will be demonstrated in the experiments to be sufficiently effective especially in
the small and medium-scale image classification tasks.

Many EC-based NAS methods represent a CNN architecture as a vector
where each element incorporates multiple architectural parameters through a
sophisticated encoding scheme. Despite the fact that such ways are intuitive and
straightforward, they may complicate the search space if the number and range
of the searchable parameters are large. To alleviate the aforementioned issue, we
separate the involved architectural parameters into two parts, i.e., part1 : layer
type, kernel size and stride size, and part2 : number of filters, which are encoded
into two vectors. For the encoding of part1, we exhaust the combinations of layer
type, kernel size and stride size, and assign each combination a representation
code, as illustrated in Table 1.

Table 1. Encoding scheme of one layer in the part1 of an individual.

Representation code Layer type Kernel size Stride size

0 Conv 1 1

1 Conv 3 1

2 Conv 5 1

3 Conv 3 2

4 avgPool 2 2

5 maxPool 2 2

In this work, three commonly used kernel sizes, namely, {1, 3, 5} for the Conv
operation, and three different downsampling operations are chosen. Apparently,
these combinations are discrete, independent of each other, and result in a rel-
atively small search space. Therefore, we propose a discrete mutation operator
to explore such a search space. As for part2, a direct encoding is adopted to
represent the number of filters of each convolutional layer, where 0 refers to that
this convolutional layer has one filter. It is not difficult to see that part2 could
have far more optional values (the range of number of filters per layer is set to
[1, 128] in this work) than that of part1. A continuous form of mutation opera-
tor is devised to navigate such a large search space. Fig. 2 shows an example of
the proposed individual encoding method, where the valid (non-white) length of
the individual denotes the depth of the decoded network, and each two blocks
aligned vertically together represent one layer in the architecture. During the
mutation process of part2, the updated values of the elements in the encoding
vector may fall outside the preset range, e.g., 145 and −26 in Fig. 2. We regard
them as invalid values and discard the corresponding layers when decoding the
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vector into a CNN architecture. This helps the proposed method to realize a
variable-length evolution. Based on this encoding scheme, the decoded architec-
ture of the example in Fig. 2 is a six-layer CNN, where the third and fifth layers
are maxPool and avgPool, respectively, and the rest are all convolutional layers
with a stride size of 1.

Fig. 2. An example of the individual encoding.

Algorithm 2 gives the pseudocode for population initialization, where part2
and part1 of an individual are created one by one and then merged together.
Particularly, to ensure a high diversity on the depth of searched architectures at
the beginning of evolution, a random probability value pvalid between 0 and 1 is
employed to control the proportion of the valid elements in the individual.

Algorithm 2: Population Initialization
Input: Population size T , individual length l, maximal number of

strided/pooling layers maxs, maximal number of filters maxf , part2
threshold gap thd.

Output: The initial population P0.
1 P0 ← ∅;
2 for i = 1 to T do
3 pvalid ← Randomly generate a value from [0, 1];
4 part2 ← Generate l integers which are sampled from [0, maxf − 1] with a

probability of pvalid, and the rest from [-thd, -1] ∪ [maxf , maxf + thd];
5 nums ← Randomly select an integer from [0, maxs];
6 Randomly generate nums integers between [3, 5];
7 Randomly generate l − nums integers between [0, 2];
8 part1 ← Combine and shuffle the l integers;
9 P0 ← P0 ∪ [part1, part2];

10 end
11 Return P0.

3.3 Architecture Evolution

As illustrated in Sect. 3.1, the evolutionary process of EDE-NAS includes four
major steps, namely, mutation, crossover, evaluation, and selection, which are
performed iteratively for the individuals until a termination condition is reached.

Mutation: The mutation operation in DE is to learn from the comparison
of multiple solutions in the population. The classical mutation operators, e.g.,
DE/rand/1/bin as shown in Eq. (1), are lacking in qualitative consideration of
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the selected individuals and the association with the current candidate individ-
ual. In EDE-NAS, we develop a DE/current-to-better/1/bin mutation operator
by including the current solution and a solution better than the current one
in the process. In this operator, the current solution is co-guided by a better
solution as well as random solutions in the population, which well balance the
elite-based local search and global search. The discrete form and the continuous
form for evolving part1 and part2 are respectively formulated as Eqs. (4) and
(5), respectively.

vgi =
{
xg
rb

⊕ F · (xg
r1 � xg

r2), if Ib
xg
i

�= ∅
xg
ri ⊕ F · (xg

r1 � xg
r2), otherwise

(4)

and

vgi =
{
xg
i + F · (xg

rb
− xg

i ) + F · (xg
r1 − xg

r2), if Ib
xg
i

�= ∅
xg
i + F · (xg

r1 − xg
r2), otherwise

(5)

where A � B means removing the elements from A that also appear in B, C ⊕
F ·D means replacing the elements in C by the elements in D with a probability
of F . Ib

xg
i

is an individual set containing all the solutions in the population that

outperform the current solution xg
i . In both mutations, xg

rb
∈ Ib

xg
i

is randomly
selected to guide xg

i toward a potentially better position, and meanwhile, to
avoid getting into poor local optima, we also consider global information during
mutation by incorporating two random solutions in the population, namely, xg

r1
and xg

r2 . if the current solution xg
i is the best, which means that there is no

solution better than xg
i and thus Ib

xg
i

= ∅, the mutation is reduced to a self-
update of xg

i .

Crossover: Crossover of individuals in EDE-NAS follows the typical operator
as in Eq. (2). The two vectors of part1 and part2 are treated as a whole, and
the crossover are performed based on a preset crossover rate CR and a random
position jrand. See Fig. 3 for an example of crossover operation.

Fig. 3. An example of crossover operation.

Evaluation: The typical evaluation process in NAS is to first train the searched
architecture on the training set by stochastic gradient descent (SGD) and then
obtain its classification accuracy on the evaluation set. This process is notoriously
time-consuming and becomes the most critical factor limiting the algorithm effi-
ciency. In EDE-NAS, we adopt a simple yet widely used acceleration technique,
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namely, early stopping to improve the search efficiency. Concretely, during the
evaluation process, each candidate architecture is trained with a dynamically
decayed learning rate in a very small number of epochs. The trained architec-
ture is then directly evaluated on the evaluation set to obtain the classification
accuracy, which serves as the fitness value of the corresponding individual.

Selection: After getting the fitness value of the newly generated candidate
architecture, selection is conducted by comparing it with that of the current
solution. The one with higher fitness value, i.e., classification accuracy on the
evaluation set, will be kept to the next generation. Note that the updated indi-
vidual takes effect immediately and can be used in evolving next individual.

4 Experiment Design

4.1 Datasets and Peer Competitors

To examine the effectiveness of the proposed algorithm, four widely used image
classification datasets are selected, i.e., the MNIST Basic (MB) [15], the MNIST
with Rotated Digits plus Background Images (MRDBI) [15], Fashion-MNIST
[30] and CIFAR-10 [14]. Both MB and MRDBI contain 12,000 training samples
and 50,000 test samples of handwritten digits from 0–9. However, the classifi-
cation task on MRDBI is more challenging than that of MB due to the more
complicated background. The Fashion-MNIST dataset has 55,000 training and
10,000 test images of 10 fashion products. Each instance in the above mentioned
three datasets is of size 28 × 28 × 1. The CIFAR-10 dataset consists of 50,000
training and 10,000 test color images of 10 objects, such as horse, ship, and
truck, and the spatial size of each image is 32 × 32.

A number of state-of-the-art methods are chosen for comparison, including
the manually designed models as well as NAS methods. Specifically, on MB and
MRDBI, CAE-2 [21], PCANet-2 [4], EvoCNN [25], EF-ENAS [22], IPPSO [28],
psoCNN [12], DECNN [29], and FPSO [11] are selected as peer competitors;
on Fashion-MNIST, VGG16 [23], GoogleNet [27], MobileNet [9], EvoCNN [25],
EF-ENAS [22], psoCNN [12], and FPSO [11] are selected as peer competitors;
on CIFAR-10, VGG16 [23], ResNet-110 [8], GeNet [31], LS-Evolution [19], and
FPSO [11] are selected for comparison.

4.2 Parameter Settings

Most parameter settings in this work follow the community conventions [7] and
previous works [11,28,29]. Specifically, the population size T is set to 30, and
the number of generations G is 20. The length l of an individual is fixed to 30
with up to 4 strided layers. For each convolutional layer, the maximal number of
fiters is 128, and the threshold gap thd is restricted to 30 when evolving part2.
During the evolutionary process, we set the differential rate F to 0.4 and the
crossover rate CR to 0.5. We randomly extract 10% of the training set as the
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evaluation set, and the test set is never involved during the architecture search
process. An SGD optimizer with a cosine annealing learning rate scheduler is
employed for early stopping training during the search process. When the search
process terminates, the best architecture is fully trained on training set using
SGD optimizer with multi-step learning rate decay scheduler, and the accuracy
of the trained model on test set is reported. Experiment on each dataset is run 10
times independently, and the best and average results are collected respectively.

5 Experimental Results and Discussions

5.1 Overall Results

In this subsection, the experimental results and discussions of the proposed algo-
rithm on four datasets are provided. First of all, the classification error rates (%)
of EDE-NAS and the selected compared methods on MB and MRDBI are shown
in Table 2. Then, in Tables 3 and 4, the proposed method is compared with peer
competitors in terms of classification performance and number of parameters
(#parameters) on Fashion-MNIST and CIFAR-10, respectively.

Table 2 shows the classification performance of EDE-NAS on MB and
MRDBI compared with the selected peer competitors. Note that the symbol
“–” indicates that the result was not reported in the paper of the compared
algorithm. It is shown that the proposed method is superior to most of the com-
pared methods on both datasets, including the handcrafted models (CAE-2 and
PCANet-2), the GA-based method (EvoCNN), PSO-based methods (IPPSO and
psoCNN), and DE-based method (DECNN). In particular, on MRDBI, EDE-
NAS achieves significantly better performance than DECNN with an accuracy
advantage of over 25%. When compared with FPSO on the MB dataset, both
the best and average performance of the proposed method is slightly worse than
that of FPSO. It turns out that FPSO’s powerful local search capability helps it
find a better architecture on such a simple dataset. On the other hand, on the
MRDBI dataset, while the best architecture found by FPSO outperforms that
of EDE-NAS, the average result of all searched architectures is worse than that
of EDE-NAS.

Table 3 exhibits the classification error rates of the proposed method and the
peer competitors on the Fashion-MNIST dataset. Apparently, the best archi-
tecture searched by EDE-NAS outperforms almost all the compared methods
(except for EF-ENAS) in terms of the classification error rate. In addition, the
mean error of the proposed method is very low among the peer competitors
with a relatively small number of parameters, demonstrating the effectiveness
and stability of EDE-NAS for architecture search on Fashion-MNIST.

With promising results on the previous three small-scale datasets, the pro-
posed method is further conducted on CIFAR-10, to examine its effectiveness
on the medium-scale dataset. We report the best result of ten independent runs.
As shown in Table 4, the resulting architecture is slightly better than the man-
ually designed models, i.e., VGG16 and ResNet-110, and is very competitive
compared with the automatically searched architectures, i.e., LS-Evolution and
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Table 2. The classification error rates (%) of EDE-NAS with the peer competitors on
MB and MRDBI

Model Error rate (%)

MB MRDBI

CAE-2 2.48 45.23

PCANet-2 1.4 35.86

EvoCNN (best) 1.18 35.03

EvoCNN (mean) 1.28 (0.15) 37.38 (1.75)

EF-ENAS (best) – 10.39

EF-ENAS (mean) – 12.27 (1.69)

IPPSO (best) 1.13 33

IPPSO (mean) 1.21 (0.1) 34.5 (2.96)

psoCNN (best) – 14.28

psoCNN (mean) – 20.98

DECNN (best) 1.03 32.85

DECNN (mean) 1.46 (0.11) 37.55 (2.45)

FPSO (best) 0.96 10.17

FPSO (mean) 1.08 (0.06) 11.91 (0.79)

EDE-NAS (best) 0.99 10.97

EDE-NAS (mean) 1.10 (0.06) 11.84 (0.82)

Table 3. The performance of EDE-NAS with the peer competitors on fashion-MNIST

Model Error rate (%) #parameters (M)

VGG16 6.5 26

GoogleNet 6.3 23

MobileNet 5 4

EvoCNN (best) 5.47 6.68

EvoCNN (mean) 7.28 (1.69) 6.52

EF-ENAS (best) 4.66 3.31

EF-ENAS (mean) 5.27 (0.36) 4.80

psoCNN (best) 5.53 2.32

psoCNN (mean) 5.90 2.5

FPSO (best) 4.93 0.53

FPSO (mean) 5.22 (0.14) 0.61

EDE-NAS (best) 4.82 0.77

EDE-NAS (mean) 5.16 (0.21) 0.73
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Table 4. The performance of EDE-NAS with the peer competitors on CIFAR-10

Model Error rate (%) #parameters (M)

VGG16 6.66 20.04

ResNet-110 6.43 1.7

GeNet 7.10 –

LS-Evolution 5.40 5.4

FPSO 6.28 0.70

EDE-NAS 6.04 1.15

FPSO. This also demonstrates that even with a simple building blocks and back-
bone structure, the proposed approach can still design architectures that perform
very well.

5.2 Convergence Analysis

In this subsection, we conduct a convergence analysis of EDE-NAS on the four
datasets by visualizing the change of the number of newly generated individuals
in each generation, as shown in Fig. 4. Note that the statistics start from the
second generation because of the first generation is a random initialization. In
EDE-NAS, an offspring individual will survive in the next generation only if
it is superior to the current individual. If there is a large proportion of new
individuals over the entire population, it means the search algorithm is running
actively and finding more and better architectures in the current generation.
On the contrary, if only very few new offspring individuals are retained in the
population, it reflects that in the current generation, the search algorithm is close
to convergence. It is shown in Fig. 4 that on the four datasets, the number of new
individuals in the population is high in the early stage and decreases gradually
as the search proceeds. In the last generations, new individuals make up a very
small percentage of the population, indicating that population update is coming
to a halt, in which situation the search algorithm has largely found what it
considers the best architecture. We do not exclude that by continuing the search
process, the population can find a better architecture through a slow updating
process. However, based on this observation and the experimental results, we
believe that the current setup is efficient and sufficiently effective.
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Fig. 4. Convergence analysis.

6 Conclusions

This paper introduced EDE-NAS, an eclectic DE-based approach for single-path
CNN architecture design. The involved architectural parameters are effectively
split and encoded into two parts based on their range size. Two mutation opera-
tors are developed for evolving the two parts, respectively, by utilizing the elitism
as well as the random solutions from the population to balance the local and
global search. The target network architecture is built on an efficient single-path
backbone and evolved in a variable-length way. Experiments on four image clas-
sification datasets demonstrate the promising performance of EDE-NAS, which
also shows great potential of DE in NAS problem. Since the proposed method
simply employs early stopping to speed up the fitness evaluation process which
might not be very reliable, more effective and trustworthy acceleration methods
are expected to be investigated in the future.
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Abstract. To improve the performance of gradient descent learning
algorithms, the impact of different types of norms is studied for deep
neural network training. The performance of different norm types used
on both finite-time and fixed-time convergence algorithms are compared.
The accuracy of the multiclassification task realized by three typical algo-
rithms using different types of norms is given, and the improvement of
Jorge’s finite time algorithm with momentum or Nesterov accelerated
gradient is also studied. Numerical experiments show that the infinity
norm can provide better performance in finite time gradient descent algo-
rithms and give strong robustness under different network structures.
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1 Introduction

For a machine learning model, increasing the model complexity can effectively
improve the learning ability. For models like neural networks, there are two obvi-
ous ways to increase complexity, one is to make the model wider and the other is
to make the model deeper [1]. Shallow networks require exponentially increasing
the number of units to achieve the same computational results compared with
deep networks. Additionally, shallow networks need a good feature extractor
that solves the selectivity-invariance dilemma [2], which can be avoided auto-
matically when a deeper structure instead. From the perspective of topology,
the transformation of a high-dimensional space by multiple activation functions
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makes the multi-classification problem linearly separable [3], thus the study of
deep learning attracts more attention.

With the development of gradient descent-based algorithms, stochastic gra-
dient descent (SGD) [4] provides a trade-off between accuracy and speed by
modifying the size of the batch, while momentum [5] can help to meet dampen
oscillation requirements by considering past velocity when updating. Nesterov
accelerated gradient (NAG) [6] can further speed up the process by effectively
looking ahead, the gradient of parameters in which with respect to the approxi-
mate future position instead of the current one. Other than modifying the direc-
tion, Adagrad [7] adapts the learning rate to parameters based on past gradients,
reducing the learning rate when approaching the optimum. RMSprop [8] mod-
ifies the learning rate through dividing by an exponentially decaying average,
solving the dramatically dropping problem. Adam [9] keeps both the adaptive
learning rate like RMSprop and the direction adjustment like Momentum. How-
ever, most of them can only have asymptotic convergence, which means they
cannot complete their learning within a reasonable time.

To solve the problem mentioned above, Recently, a series of algorithms appear
to guarantee finite time convergence. Among them, Jorge first provides a kind
of finite-time convergent learning algorithm, in particular, gradient flow (con-
tinuous gradient descent) through the gradient over the Euclidean distance (L2

norm) of vectors [10]. After that, Wibisono gives a variant of which by adding
a fraction on the Euclidean distance (q rescaled gradient flow) [11]. Besides,
Romero and Benosman prove that it is indeed finite-time convergent [12]. Addi-
tionally, Garg proposes a fixed-time convergence algorithm that essentially splits
the q-RGD into two parts [13]. Although a growing body of research has access
to the mathematical norm on convergence, most of them only consider the
Euclidean distance (L2 norm) when rescaling the gradient flow. There is no
study focusing on the effect of different types of norms with respect to conver-
gence performance to the best of our knowledge.

This paper aims to study the impact of mathematical norms on the conver-
gence of gradient flow for deep neural networks. Section 2 provides a review of
different types of norms, the equivalence of norms, and convergence property.
Section 3 gives numerical applications comparing different norms used on spe-
cific algorithms, and the potential improvement after involving momentum or
NAG methods. Section 4 concludes.

2 Main Results

In this section, we first review the definition of mathematical norms and the
most popular used norm types in Sect. 2.1, then give the equivalence of norms as
well as the convergence property in Sect. 2.2. The qualitative analysis of different
norms based on the expression of algorithms is given in Sect. 2.3, and the related
works we used to compare in Sect. 3 are concluded in Sect. 2.4.
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2.1 Mathematical Norms

Mathematically, a norm is a function from a vector space to the real numbers
describing the distance from the origin, which is an abstract generalization of
length [14]. According to the definition, a norm on a vector space R

n is a real-
valued function ‖·‖ : Rn → R that meets the following properties [15]:

– Triangle Inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ R
n.

– Absolute Homogeneity: ‖sx‖ = |s| ‖x‖ for all x ∈ R
n and all scalars s.

– Positive Definiteness: for all x ∈ R
n, if ‖x‖ = 0, then x = 0.

There are some typical types of norms given as follows [16]:

– L1 norm (Taxicab norm): ‖x‖1 :=
∑n

i=1 |xi|.
– L2 norm (Euclidean norm): ‖x‖2 :=

√
x2
1 + x2

2 + ... + x2
n.

Both L1 and L2 norms are usually used as a regularization term to penal-
ize large weights during logistic regression against the overfitting issue. While
L1 regularization penalizes the sum of the absolute values, L2 regularization
encourages the sum of the square of parameters to be small [17].

– Lp norm (p ≥ 1): ‖x‖p := (
∑n

i=1 |xi|p)1/p.

According to [[18], Theorem 3.5.4], Lp is a norm for 1 ≤ p < ∞. However, it
will becomes a pseudo-norm for 0 < p < 1, as it violates the triangle inequality
property.

– L∞ (Infinity Norm): ‖x‖∞ := maxi |xi|.

The infinity norm is essential for the limit of the Lp norm for p → ∞. Accord-
ing to the expression of the Lp norm, we can figure out that the computation
burden increase with the increase of the subscript of the norm symbol. However,
after the functional limit operation, the computation of infinity norm as shown
in the L∞ norm only needs to iterate over through vector space once.

2.2 Equivalence of Norms

We recall from [[19], Definition 1.3] that two norms ‖·‖α and ‖·‖β on a vector
space R

n are called equivalent if and only if there exist positive real numbers C
and D such that for all x ∈ R

n:

C ‖x‖α ≤ ‖x‖β ≤ D ‖x‖α . (1)

A more precise relationship between different norms is obtained through Cauchy-
Schwarz inequality and Hoder’s inequality: for p > r > 1 on R

n [20], we have

‖x‖p ≤ ‖x‖r ≤ n1/r−1/p ‖x‖p . (2)
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In particular,
‖x‖2 ≤ ‖x‖1 ≤ √

n ‖x‖2 ,

‖x‖∞ ≤ ‖x‖2 ≤ √
n ‖x‖∞ .

(3)

According to [[19], Appendix A], the open subset of vector space R
n defined

by equivalent norms are the same, and the convergent sequences and their limits
in R

n defined by equivalent norms are the same. Similar statements are given in
[21]: two finite-dimensional linear normed spaces with the same dimension are
algebraically isomorphic and topologically homeomorphic. Thus, the convergence
property is unchanged no matter what type of norm instead compared with the
original algorithm under the Euclidean distance.

2.3 Different Norms Applications

As mentioned in Sect. 1, Jorge [10] and Wibisono [11] proposes finite-time con-
vergence algorithms, Garg [13] provides a fixed-time convergence algorithm, and
all of which are gradient flows involving the Euclidean norm (L2 norm).

Jorge’s finite-time convergence algorithm:

dw

dt
= − ∇wJ

‖∇wJ‖2
. (4)

Wibisono’s finite-time convergence algorithm:

dw

dt
= −ζ

∇wJ

‖∇wJ‖
q−2
q−1
2

, (5)

where q > 2.
Garg’s fixed-time convergence algorithm:

dw

dt
= −C1

∇wJ

‖∇wJ‖
p1−2
p1−1

2

− C2
∇wJ

‖∇wJ‖
p2−2
p2−1

2

, (6)

where p1 > 2 and 1 < p2 < 2.
As all components in the vector share the same denominator, the relative

size among different components in the vector has not changed. Thus, the back-
propagation mechanism still works as the core of gradient descent is to figure
out which component changes matter more.

According to the expressions of Eqs. (4), (5), and (6), all norms appear in
the denominator of gradient flow and only have magnitude but without any
direction. Thus, the potential step size when iteration operation will be inversely
proportional to the relationship of the magnitude of different norms.

According to Eq. (3), the infinity norm obtains the smallest magnitude among
all kinds of norms, which means it provides the largest potential step size after
involving gradient flow. We can easily change the norm type in all these algo-
rithms without changing the convergence property considering the convergence
property discussed in Sect. 2.2.
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2.4 Related Works

This section gives a brief review of the two most popular algorithms, stochastic
gradient descent (SGD) [4] and Adam [9], which will be used as the benchmark
for the first case study. Two direction adjustment methods, momentum [5] and
Nesterov accelerated gradient (NAG) [6], are also introduced, which will be used
to analyze the potential improvement for the second case study.

SGD [4] is an iterative approximation method calculated from a randomly
selected subset (50 < n < 256) achieving faster iterations in trade for a lower
convergence rate:

θ = θ − η · ∇wJ(θ;xi:i+n; yi:i+n). (7)

Momentum [5] accelerates SGD by adding a fraction (γ < 1) of the previous
update vector, which obvious effect dampens oscillation when the gradient in
one direction is larger than in others:

vt = γ · vt−1 + η · ∇wJ,

θ = θ − vt.
(8)

Nesterov [6] modifies the momentum one by calculating the gradient with
respect to the estimated future position (moved by γ ·vt−1) instead of the current
one. The so-called look ahead essential considers the second derivative informa-
tion of objective function:

vt = γ · vt−1 + η · ∇wJ(θ − vt),
θ = θ − vt.

(9)

Adam [9] computes adaptive learning rates, storing an exponentially decay-
ing average (β2) of past squared gradients and keeping another similar hyper-
parameter (β1) on past gradients themselves, which is commonly considered
fairly robust to hyperparameter selection:

mt = β1 · mt−1 + (1 − β1) · ∇wJ,

vt = β2 · vt−1 + (1 − β2) · ∇wJ 
 ∇wJ.
(10)

Additionally, bias correction is considered to offset the shift to the initial
value at the beginning of the iteration:

m̂t =
mt

1 − βt
1

,

v̂t =
vt

1 − βt
2

,
(11)

thus,

θt+1 = θt − η√
v̂t + ε

· m̂t. (12)

where ε is a smoothing term that avoids singularity.
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3 Case Studies

As the Stanford vision and learning lab [22] summarizes that two recommended
updates to use for CNN learning in visual recognition are either SGD with Nes-
terov momentum or Adam. Two case studies with quantitative analysis apply to
comparing their performance with different norm-based finite-time algorithms.
Section 3.1 compares the accuracy of different norms used in three typical algo-
rithms under ResNet50 architecture, while Sect. 3.2 shows the improvement
of Jorge’s finite-time involving momentum and Nesterov accelerated gradient
(NAG) under a six-layers convolutional network.

3.1 Three Typical Algorithms Using Different Types of Norms

As one of the most popular used image classification databases, CIFAR100 [23]
is considered as an example, and the 50-layer ResNet learning framework [24]
is introduced to complete the task. We compare the performance of algorithms
mentioned in Sect. 2.3 using different types of norms (L1, L2, L3, and L∞) in
each respectively. SGD [4] and Adam [9] are attached as the benchmark. The η
and n for SGD in Eq. (7) are fixed at 0.01 and 128, while the η, β1, β2, and ε for
Adam in Eqs. (10), (11), and (12) are 0.001, 0.9, 0.999, and 10−8 respectively.

Figure 1 gives the average value of training and testing accuracy of the
CIFAR100 database under ResNet50 architecture using three different algo-
rithms within different types of norms. According to Fig. 1a and 1b, Jorge’s
finite-time algorithm [10] using the L1 norm instead almost cannot converge
under the same step size, while L2 norm one obtains a reasonable convergent
speed. Infinity norm one can obtain the best performance. When focusing on the
training result given in Fig. 1a, the performance of SGD and Adam are between
L2 norm one and L3 norm, while for the testing result given in Fig. 1b, Adam
can beat the L3 norm after 30 epochs. Additionally, the advantage from infinity
one to L3 norm is more obvious in testing accuracy compared with the training
one.

Figures 1c and 1d give the accuracy using Wibisono’s finite time algorithm
[11] within different types of norms, and the q given in Eq. (5) is chosen as 6.
As we aim to figure out the improvement from the L2 norm to the infinity one,
only the consistency of the parameter chosen before and after changing the norm
types is necessary, while the parameters are not necessarily obtained the best
performance. When focusing on the training result given in Fig. 1c, the difference
accuracy between L2 norm one and Adam is relatively smaller compared with
Jorge’s one Fig. 1a, while the difference accuracy between L3 norm and infinity
one is relatively larger. However, the improvement from L2 norm to infinity one
in Wibisono’s finite-time is less significant compared with Jorge’s one.

Figures 1e and 1f give the performance of the CIFAR100 database under
ResNet50 architecture using Garg’s fixed-time algorithm [13] within different
types of norms, and the p1 and p2 given in Eq. (6) are chosen as 3 and 1.5
respectively. Again, we only maintain the parameter consistency before and after
changing the norm types but do not necessarily choose the optimal value. When
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Fig. 1. ResNet50 CIFAR100 performance under different norms

Table 1. Improvement from L2 norm to infinity one for different algorithms

Statistics Jorge Wibisono Garg Jorge-v Wibisono-v Garg-v

L∞ − L2

Max 0.6109 0.5492 0.2441 0.2372 0.2039 0.0562
Min 0.0596 0.0460 −0.0032 0.0274 0.0920 0.0179
Median 0.3154 0.2383 0.0269 0.1732 0.1687 0.0338
Mean 0.3209 0.2615 0.0739 0.1721 0.1636 0.0353

L∞−L2
L2

Max 721.43% 695.65% 51.29% 533.73% 528.45% 39.84%
Min 6.87% 4.88% −1.14% 61.81% 61.46% 7.65%
Median 77.92% 46.96% 4.18% 86.99% 82.24% 15.73%
Mean 169.30% 119.93% 16.64% 126.54% 108.38% 16.18%
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focusing on the training result given in Fig. 1e, the performance of the L2 norm
can almost beat the Adam one, while Fig. 1f shows that the improvement from
the L2 norm to infinity one in Garg’s fixed-time algorithm is limited. Specifically,
the performance of Garg’s fixed-time algorithm under almost all types of norms
(excluding the L1 one) is between SGD and Adam after 20 epochs, which means
that the improvement room from L2 norm to infinity one in Garg’s fixed-time
algorithm is further compressed.

Fig. 2. Accuracy of CIFAR100 database using different algorithms under L1 norm

According to Fig. 1, L1 norm-based iteration provides the worst performance
for the lowest accuracy for all three algorithms. To indicate they are convergent
slower instead of cannot obtain the convergence property, Fig. 2 extracts the
accuracy of different algorithms using the L1 norm from Figure 1. The darker
chroma of the same color represents the accuracy difference from training to
testing. According to Fig. 2, all three algorithms can converge but with a slower
step size, and the difference between the training database and the testing one
is relatively small. Although Garg’s fixed-time algorithm has a slightly higher
original accuracy, it provides the least improvement from the perspective of
absolute numerical.

Table 1 gives statistical data on the differences from L2 norm to infinity one at
corresponding iteration times for different algorithms respectively. The absolute
values indicate the absolute accuracy improvement from L2 to infinity norm,
while the relative values indicate the absolute differences over corresponding
L2 norm accuracy (percentage improvement). A positive value means that the
accuracy of the infinity norm used on the algorithm is higher than Euclidean one,
while the negative value implies that the L2 norm may have higher accuracy
at a specific iteration time. The algorithms without -v in the column express
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the training accuracy, while the algorithms with -v in the column express the
validation accuracy (testing datasets).

According to Table 1, the infinity norm used in all algorithms can have an
improvement from its original one (L2 norm). Among them, Garg’s fixed-time
algorithm provides the smallest improvement, and Jorge’s finite time algorithm
has slightly more improvement than Wibisono’s. Additionally, for a specific algo-
rithm, the improvement in training datasets is always more obvious than which
in testing one. The maximum improvement (7 times for Jorge’s and Wibisono’s
training and (7 times for Jorge’s and Wibisono’s testing) usually appear in the
first few iteration times, while the minimum differences (negative for Garg’s
training accuracy) arise at the latest few steps.

In summary, the effects on different types of norms are obvious for Jorge’s
finite-time algorithm, and the performance of which using infinity norm can
surpass SGD and Adam for training and testing accuracy during the overall
process. Although Wibisono’s finite-time algorithm with infinity norm also has
similar accuracy, the dependency on the parameter chosen weakens its advantage.

3.2 Jorge’s Finite-Time Algorithm with Momentum and Nesterov

According to the brief review of gradient descent-based optimization given in
Sect. 2.4, there are two mainstreams to refine an algorithm, namely iteration
direction (eg. Momentum [5]) and adaptive learning rate (eg. RMSprop [8]).
The finite time algorithm is essential one type of rescaled gradient flow, which
means the improvement from the perspective of adaptive learning rate is already
obtained. Thus, we are interested in whether the direction modification can
further improve learning performance.

The second case study focuses on the improvement of Momentum [5] and
Nesterov accelerated gradient (NAG) [6] methods used on finite time algorithms
with different types of norms. The network structure considered in the case study
is a six convolutional layers CNN (filter numbers 32, 32, 64, 64, 128, and 128)
with batch normalization and dropout layers attached. To reduce the puzzle
caused by the parameter chosen, Jorge’s finite-time algorithm is considered as
an example.

Figure 3 gives the testing accuracy of the CIFAR100 database using the L2

norm and L3 norm with different fractions of momentum (γ in Eq. (8)) or Nes-
terov (γ in Eq. (9)) accelerate respectively. SGD is still considered as a bench-
mark. As for the infinity norm, the different performance among different frac-
tions is too small to illustrate, more statistical details will give in Table 3.

According to Fig. 3, the difference between momentum (Figs. 3a, 3c, and 3e)
and corresponding Nesterov (Figs. 3b, 3d, and 3f) under the same fraction value
is not obvious. Besides, the improvement after involving momentum and Nes-
terov is outstanding on the L2 norm-based Jorge’s finite-time algorithm as seen
in Figs. 3c and 3d. However, the accelerated effect is reduced on the L3 norm-
based one as seen in Figs. 3e and 3f. The enhancement of SGD after adding
momentum is between the L2 norm and the L3 norm.
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Fig. 3. CIFAR100 testing accuracy under six convolutional layer structure

Table 2. Improvement of momentum and Nesterov for different types of norms

Statistic SGD-M SGD-N L2-M L2-N L3-M L3-N

f0.9 − f0

Max 0.2216 0.2085 0.2772 0.2993 0.1634 0.1977
Min 0.0113 0.0106 0.0567 0.0563 −0.0172 −0.0690
Median 0.0646 0.0571 0.1349 0.1356 0.0071 0.0134
Mean 0.0802 0.0773 0.1406 0.1499 0.0270 0.0277

f0.9−f0
f0

Max 248.24% 154.20% 413.87% 534.09% 540.54% 428.37%
Min 1.98% 1.86% 11.26% 11.01% −2.97% −25.89%
Median 12.64% 11.48% 31.25% 32.02% 1.27% 2.38%
Mean 24.71% 23.11% 56.46% 62.38% 12.61% 12.03%
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Table 2 concludes the improvement from no momentum to 0.9 fractions (best
performance under all subfigures) of both absolute and relative values for SGD,
L2 norm, and L3 norm respectively. The algorithms with M in the column indi-
cate adding momentum term, and the algorithms with N in the column indicate
adding Nesterov term.

When we look at the absolute difference, while the improvement of the L2

norm is almost double compared with which in SGD, the mean value of SGD
is triple compared with the L3 norm on average and quadruple compared with
which median value. As for the relative value, the average improvement of SGD
is only double compared with the L3 norm, but the median value difference
between them is five times. Again, the maximum improvement usually appears
in the first few iteration times, while the minimum differences arise at the latest
few steps. As the extreme value has relatively greater contingency, the statistical
significance of which is weakened.

Although SGD, L2 norm, and L3 norm obtain the best performance when
fractions equal to 0.9, the same fraction gives the worse performance when it
comes to the infinity norm, while other fractions almost have no effect on it (as
seen in Table 3), which may be caused by the radical acceleration in the same
direction, as the increased dimensions almost doubled.

Table 3. Effect of momentum and NAG for infinity norm with different fraction

Values Statistic f = 0.1 f = 0.3 f = 0.5 f = 0.7 f = 0.9

M
fx − f0

Mean 0.0042 0.0006 0.0046 −0.0192 −0.0254
Median 0.0015 0.0003 0.0051 −0.0213 −0.0205

fx−f0
f0

Mean 1.33% 0.51% 0.88% −3.16% −5.04%
Median 0.27% 0.06% 0.91% −3.72% −3.57%

N
fx − f0

Mean 0.0033 0.0005 −0.0017 −0.0006 −0.0143
Median 0.0051 0.0009 −0.0022 −0.0017 −0.0098

fx−f0
f0

Mean 0.46% 0.11% −0.22% 0.03% −3.05%
Median 0.89% 0.15% −0.38% −0.29% −1.72%

Table 3 concludes the influence of momentum and Nesterov for infinity norm
gradient flow under different fractions, where fx represents the fraction value
(γ) in Eqs. (8) and (9).

Among all fraction choices, 0.1 obtain the best performance while the
improvement is still limited. The influence is negligible when the fraction is
chosen between 0.3 and 0.5. When the fraction comes to 0.7, momentum shows
negative effects and even worst when 0.9 is chosen. NAG effectively mitigates
the negative effect of momentum by looking ahead effectively. When close to the
optimum value, the gradient current time should be smaller than the previous
one, and there is reason to believe that it will continue to be smaller, which
justifies the radical acceleration deduction.
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To have a more intuitive comparison, Fig. 4 concludes the best performance
of each norm from Fig. 3 (L2 norm and L3 norm with 0.9 fraction Nesterov, SGD
with 0.9 fraction momentum, and infinity norm without fraction).

Fig. 4. Highest accuracy of CIFAR100 using different types of norms (Color figure
online)

According to Fig. 4, the L2 norm gives the worst performance (in yellow)
while the infinity norm gives the best (in red), while the L3 norm and the SGD
are between the two mentioned above. Although the improvement of the L2

norm after involving momentum is significant, it cannot surpass the infinity
one, which can be imaged as an invisible ceiling existing (infinity norm gradient
flow without momentum) no matter what type of norm choose. Thus, the less
improvement of the L3 norm given in Figs. 3e and 3f can be explained as the
difference between the L3 norm and the infinity one being small, thus there
is no room for momentum and Nesterov to improve the performance. In other
words, the better the performance without momentum or Nesterov acceleration,
the less it can be improved through the dampens oscillation methods. Thus,
the infinity norm used on Jorge’s finite-time algorithm can cover the benefits of
Momentum without introducing the updated velocity in the past time, which
saves computing costs.

The performance of Adam is also plotted in Fig. 4. Although the accuracy
of Adam (in black) and infinity norm gradient flow (in red) is similar, there
are no hyperparameters that needed to be adjusted (Jorge’s finite-time) related
to the infinity norm gradient flow (INGF), and no memory requirement (no
momentum or NAG need). Specifically, the average running time of Adam is
13.4% longer than which of the INGF (914.75 s and 806.62 s respectively) under
the same GPU model (NVIDIA GeForce RTX 2080 Super with Max-Q Design
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under CUDA 10.0 support). From that perspective, INGF is superior to Adam
which needs not only adaptive learning rates (computational burden) but also
history records (memory burden).

4 Conclusion

In this paper, the comparison of different types of norms used in finite-time
convergence algorithms is obtained. Qualitative analysis after the equivalence of
norms with the help of convergence property verifies the convergence rate. The
performance of three typical algorithms using different types of norms is quan-
titatively analyzed for image classification using the CIFAR100 database under
the ResNet50 architecture. Jorge’s finite-time algorithm gives the maximum
improvement after changing the Euclidean norm to the infinity one. The improve-
ment of Jorge’s finite-time algorithm with momentum and Nesterov is studied.
Although the better original performance, the less improvement after momentum
or Nesterov acceleration involving, infinity norm gradient flow (INGF) without
momentum still keeps overwhelming superiority. Although INGF can not always
be superior to Adam in accuracy, no hyper-parameters adjustment and no mem-
ory requirement of INGF can keep its favorable position in time-consuming com-
pared with Adam. According to the results given in case studies, we have rea-
son to believe that Jorge’s finite-time algorithm with infinity norm can provide
reliable performance (higher accuracy and less time) for CNN learning tasks,
especially visual recognition.
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Abstract. Counterfactual Regret Minimisation (CFR) is the leading
technique for approximating Nash Equilibria in imperfect information
games. It was an integral part of Libratus, the first AI to beat professionals
at Heads-up No-limit Texas-holdem Poker. However, current implemen-
tations of CFR rely on a tabular game representation and hand-crafted
abstractions to reduce the state space, limiting their ability to scale to
larger and more complex games. More recently, techniques such as Deep
CFR (DCFR), Variance-Reduction Monte-carlo CFR (VR-MCCFR) and
Double Neural CFR (DN-CFR) have been proposed to alleviate CFR’s
shortcomings by both learning the game state and reducing the overall
computation through aggressive sampling. To properly test potential per-
formance improvements, a class of game harder than Poker is required,
especially considering current agents are already at superhuman levels.
The trading card game Yu-Gi-Oh was selected as its game interactions
are highly sophisticated, the overall state space is many orders of magni-
tude higher than Poker and there are existing simulator implementations.
It also introduces the concept of a meta-strategy, where a player strategi-
cally chooses a specific set of cards from a large pool to play. Overall, this
work seeks to evaluate whether newer CFR methods scale to harder games
by comparing the relative performance of existing techniques such as reg-
ular CFR and Heuristic agents to the newer DCFR whilst also seeing if
these agents can provide automated evaluation of meta-strategies.

Keywords: Artificial intelligence · Machine learning · Extensive-form
games

1 Introduction

Attempting to solve problems of increasing complexity is one of the main goals
of artificial intelligence (AI) research. Games are often used as a test bed for such
research, as they provide a reasonable environment to evaluate but can also be
applicable to the real world. Over time different techniques have been created
to address different classes of games, starting with simple perfect-information
(whole game state is known at all times) deterministic games like Tic-Tac-Toe,
to massive imperfect-information (partial unknown game state) extensive form
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games like Starcraft. In the case of perfect information games, Monte-Carlo Tree
Search (MCTS) [10] and deep neural networks have been used in AIs such as
Alpha Zero [21], which surpassed human levels of performance in Chess, Go,
and Shogi. In the case of imperfect information games, a technique called Coun-
terfactual Regret minimization (CFR) [6] was used in Libratus [9] to beat top
professionals at Heads-up No-limit Texas Holdem Poker. Given that superhuman
performance has been achieved at the hardest benchmark for imperfect informa-
tion games, new harder games are needed to increase benchmarks for existing
and future methods. Trading Card Games (TCGs) are a possible direction as,
despite having a larger state space, more complex card interactions, and the
concept of meta-strategies, they are still feasible to compute in comparison to
massive online games like StarCraft or League of Legends, and can still be easily
represented as a game tree. This paper will benchmark existing and new game
solving methods, such as Deep Counterfactual Regret Minimisation (DCFR) [8],
to see if they cope with the demands of more complex games like TCGs and
assess whether these methods can evaluate different meta-strategies.

1.1 Foundational Work

In general, games are classified by the following properties:

– Zero-sum: overall reward sums to zero or there is some concept of a winner
and loser.

– Information: whether the state is partially or fully known.
– Determinism: whether chance affects the game in any way.
– Sequential: whether actions occur one after another or simultaneously.
– Discrete: whether actions are applied in real time or not.

For simple deterministic perfect-information games with small state spaces,
the whole game tree can be evaluated with the classical Minimax [4]. However,
for most non-trivial games, an algorithm must decide what part of the game tree
to explore. Perhaps the most widely used algorithm is MCTS [10] which was used
in DeepMind’s AlphaGo [22] to beat the 18-time Go world champion. Instead of
hand-crafted game evaluation functions and state selection heuristics that would
be required to make Minimax feasible, the algorithm used in AlphaGo used a
deep neural network trained with self-play for state evaluation and a MCTS for
state selection. Along with its successor AlphaZero [21] AlphaGo serves as the
benchmark for perfect-information game playing performance.

Despite this excellent performance in perfect information games there are few
real-world scenarios that have perfect information. In fact, most real-world situ-
ations, such as business strategy, economic models or simple negotiation
can all be modelled as imperfect information games [15]. Whilst extensions can
be made to perfect information games to make them imperfect, such as imper-
fect Chess [19], and simple games like Bridge are used as teaching tools, Poker
is the canonical example of an imperfect information game.
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Attempting to apply the Minimax algorithm or raw MCTS to Poker will lead
to poor results as each game state has uncertainty and it is infeasible to enu-
merate all combinations. Instead, information sets (infoset) are used as a proxy
for game state and represent the set of all possible states that could be known
with the current information. Whilst MCTS can be modified to accommodate
information sets, Regret Matching (or regret minimisation) has been shown to
have better convergence and results in practise [24]

Intuitively, the action that you regret not taking the most is the one that
should have used. A mathematical representation of regret is the difference
between the reward of an action that was taken and the action that could have
been taken

regret = µ(possible action) − µ(action taken)

CFR [26] is an extension to regret matching. It deals with scenarios that have
multiple steps and allows an agent to know what the regret of not taking an
action is at each step. Instead of calculating the regret for an action, the regret
is calculated based on a counterfactual value, which is the value of a state mul-
tiplied by the probability of reaching that state.

CFR was used to play the hardest variation of Poker (Heads up no limit
Texas-holdem having approximately 10161 decision points) and successfully to
beat top-level human players [9]. Computing a strategy for this game was obvi-
ously infeasible. As such, treating groups of scenarios as strategically identical
was required. But, it came at the cost of fixing the implementation to a hand-
crafted abstraction and a tabular representation. Overall, this means the original
CFR techniques would not generalise well to other games, nor would they scale
to extremely large games.

1.2 Current Methods

One of the first methods to deal with both tabular solving and abstraction
was Deep CFR [8] (Deep CFR). It performed better than all the previously
mentioned approaches and stands as one of the few algorithms that can tackle
games whose state or action spaces are too large. It works by using a neural
network to approximate, with theoretical convergence, the behaviour of CFR.
The neural network architecture used can be seen in Fig. 1.

It is unique compared to the previous methods shown in that it does not
calculate and accumulate regrets at each infoset, rather it generalises across
similar infosets with the function approximation provided by deep neural net-
works. Unlike tabular CFR it does not require a hand crafted game abstraction
and, as such, learns through self-play.

For each iteration, Deep CFR performs a constant number of partial traver-
sals according to Monte-Carlo CFR [16]. At each infoset it plays its current
strategy, which was determined by regret matching the output of the neural net-
work. This neural network takes in information sets as input and has the goal of
approximating the regret that tabular CFR would have produced. Like regular
CFR, when a terminal node is reached, values are propagated back up the tree.
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Fig. 1. Neural network architecture of Deep CFR as presented in [8]

These instantaneous regrets are sampled and stored in memory. Then, before
the next iteration, a completely new network is trained to minimise the error
between the predicted regrets and the samples of regret that have been stored
in memory. Once this training is complete, the next iteration can begin.

Despite scaling better than tabular CFR, DCFR is not perfectly scaleable
either. The sampling strategies used are simplistic, and introducing more sophis-
ticated methods would likely result in high variance between sampled payoffs.
Extensions to Deep CFR such as Variance Reduction Monte-Carlo CFR (VR-
MCCFR) [20] and Double Neural CFR (DNCFR) [18] represent the state of the
art in solving massive imperfect information games.

Specifically, VR-MCCFR takes the per-iteration estimated value updates of
a MCTS and reformulates them as a function of sampled values and state-action
baselines whilst still being unbiased. It should be noted that plain Monte-Carlo
CFR (also known as chance sampled CFR) was the precursor to this method, but
it was only applied to small games and struggled to compete with tabular agents
[16]. A visual representation of the difference between MCCFR and VR-MCCFR
can be seen in Fig. 2

Fig. 2. The tree traversal of VR-MCCFR as compared to regular MCCFR and normal
CFR as presented in [20]
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VR-MCCFR was not investigated for implementation in this project due to
its inability to be accelerated by GPU compute (unlike DCFR and DNCFR),
meaning significantly more computational resources would be required for similar
results. Similarly, DNCFR was not investigated due to a lack of open source
reference implementations.

1.3 Game Selection

Imperfect information games are a harder class of games than perfect information
games due to the number of possible game states growing exponentially due
to uncertainty. Trading card games (TCG) are a more difficult class of game
because there is not only non-determinism in game state, but also uncertainty
in card interactions.Furthermore, instead of being completely turn-based games
like Poker, card interactions between players can happen on either player’s turn.
Specifically, many TCG cards have a logical description of the effect they have
on the game state, when this can be applied, and any uncertainty or random
conditions that need to be met to carry it out. Being significantly harder than
Poker, TCG’s could provide an environment to test more powerful imperfect
information solving methods. An example of a TCG is Yu-Gi-Oh. From Table 1
not only does Yu-Gi-Oh have a much larger card pool but also a significantly
larger number of possible actions.

Table 1. Comparison of Yu-Gi-Oh and Poker

Property Yu-Gi-Oh Poker

Move types 20 6

Players 2 2

Multi-interaction ✓ ✗

Deck size 40–60 52

Card pool 11,892 52

Even compared to other TGC’s Yu-Gi-Oh presents a few unique advantages,
such as not having mechanics to re-snuffle the starting hand at the beginning
of the game, a limited field size, and generally requires more card interactions
overall. This means any agent developed does not have to require a hand evalu-
ation system at the start of the game, can have its state represented efficiently,
and can learn common patterns of card interaction more easily.

A Brief Description of Yu-Gi-Oh. A player wins a game of Yu-Gi-Oh by
reducing their opponent’s life points to zero. Both players start with 8000 and
they can be reduced either by attacks from an opponent’s Monster or card
effects. A Monster card is one of the three main types of Yu-Gi-Oh cards. It
can be placed on the field, termed “summoning” by a player on their turn given
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certain conditions are met. A simple analogy would be Chess pieces, where a
Monster is a particular piece and a square on the Chess board is a Monster zone
on the field. There are also Spell and Trap cards which cannot directly harm
an opponent but do influence the state of the game. These cards are stored in a
Deck which can be between 40–60 cards of the players’ choice.

1.4 Similar Work

Most TCGs have large player bases, and some even have international competi-
tions. Such competitions are usually held in person with physical cards. Addi-
tionally, there is a dedicated AI competition in the case of Hearthstone [12],
but methods so far have focused on perfect information MCTS. This is also
the case for Magic the Gathering [25], where even ensemble MCTS tree search
methods showed poor results [11]. This is because MCTS, even with information
sets struggles to adequately address the inherent imperfect information nature
of the games. Some neural network methods have been attempted but have had
poor results [13]. At the time of writing there are no works investigating the
application of game solving methods to Yu-Gi-Oh.

1.5 Meta-strategies

The terms Meta-game or Meta-strategy have different interpretations depending
on context, but from the perspective of Yu-Gi-Oh the so called “meta” is the
specific decks that are the best or most successful. One of the most prudent
examples of “meta” is that of the 2013 or “Dragon Ruler” format in Yu-Gi-Oh
where 95% of all tournament wins and top positions were taken out by two decks,
Dragon Rulers and Spellbooks. Furthermore, the world championships of 2013
were comprised entirely of those two decks [5]. Playing any other deck at the
time put a player at a serious disadvantage.

Deciding on a good meta-strategy is a reflection of a player’s skill and is
not something that is directly addressed by modern card game AIs. Often when
playing an AI player their meta-strategy has been pre-determined and does not
change, such is the case with AIs provided with community Yu-Gi-Oh simulators
and the official Yu-Gi-Oh online games. Because MCTS, CFR and DCFR agents
all learn through some form of self-play and attempt to learn the optimal strategy
(or policy) given the deck they have, it should be possible to give one of them
different decks, train the same agent against itself, and use the results to draw
conclusions about the relative performance of those decks.

2 Experimental Design

Being different to almost all games traditionally studied in game theory and
AI generally, the implementation of Yu-Gi-Oh for performing experiments will
both be distinct and more complicated. There are relatively few digital Yu-Gi-
Oh environments, and none that have been used in the context of AI. To play
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Yu-Gi-Oh online, players can either purchase the first party app [17] but must
unlock cards and cannot play freely with other players. They can go to the
website [1] where they are free to choose cards but must still play and perform
all the card interactions manually. The final option is a free and open source
simulator, EdoPro (formerly YGoPro) which is a C++ game engine that uses
Lua scripts to represent card logic. Being originally designed to function as a
game server it provides a reasonable API from which game state and available
actions can be captured, thus making it a suitable platform to build and train
an agent. Being a community built technology means it has the advantage of
being regularly updated and remarkably complete in comparison to the latest
release of the game. It is also quite fast, supporting Lua scripting for describing
card logic.

The overall simulator used for experiments in this project used parts of the
core game engine available [3] and a selection of card scripts from [2] as a base.
Parts of it were re-written and other parts were added to make tree searching
more practical with what was originally a completely linear state machine. On
top of this base, a Python abstraction layer was built and linked to the associated
algorithms. This Python layer also allowed for parallelisation across different
kinds of compute resources. Considering that the successful agents for Poker ran
on a supercomputer [9], to be able to achieve any reasonable results, a reduced
game was considered. The rule set, card pool and banned card list were all
restricted to the original release of the game. Furthermore, every agent used the
same pre-constructed deck. This version of the game still captures the complex
interactions and vast card pool without making the game overly complicated or
too large.

The following agents were implemented:

– Heuristic agent
The EdoPro simulator [3] provides some built-in AIs that are all heuristic
agents hard-coded to respond to certain combinations of cards. For example,
always attack the weakest monster, always set trap cards in main phase two,
and if the opponent’s monster is more powerful, set your own monsters to
defence position.

– ISMCTS Agent
A simple information set MCTS agent with the UCB [14] tree selection policy

– Plain CFR agent
A custom game abstraction was implemented and the different phases of a
Yu-Gi-Oh turn were divided into buckets

– Deep CFR agent
A deep regret matching network trained through partial iterations of MCCFR
[16]

For all experiments, a single duel setting was decided upon (where two players
play until one wins) as opposed to a match (best two out of 3 duels) to alleviate
the need for side decking and to simplify numerical analysis. The agents played
500 duels, and they both played with the same set of cards. They also started
with 8000 life-points, had a starting hand of 5 cards, drew one card per turn,
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and played under no ban list (as was the case for the Original Yu-Gi-oh release).
This round of 500 games was repeated three times for each pair of agents to
reduce variance further.

Constraints. To save computational resources, for the implementation of all
tree searching methods, the following additional constraints were placed on the
state of the game to save computational resources:

– What cards were in the graveyard and what order they were in was not
recorded.

– The cards that were in both players’ extra decks were not recorded.
– Only cards on the field were recorded not the specific placement or ordering

and the same for the hands of both players

Multiple instances of each agent were used for training but each referenced
the game memory (the game tree in the case of ISMCTS and counterfactual
memory for the CFR methods). In the case of ISMCTS random simulations
were limited to 100 actions before the evaluation function was applied.

Evaluation Function. Given the sometimes immense length of Yu-Gi-Oh
games, waiting until a terminal state in the roll out stage of ISMCTS and CFR
would lead to poor performance. As such, the simulated games were cut off and
an evaluation function was applied, which is meant to approximate the overall
value or result of that state.

The following function was used:

v(s) = 1.5 ∗ (cc − oc) + 2 ∗ mf +
cl

ol

where cc ∈ [0, 20] is the number of cards the agent controls oc ∈ [0, 20] is the
number of cards the opponent controls cl ∈ [0, 8000] is the agent’s life points,
ol ∈ [0, 8000] is the opponents’ life points and mf ∈ [0, 5] is the number of
Monsters the current player has on the field.

This function was chosen based on experience and preliminary testing. It
seemed to capture the three main aspects of Yu-Gi-Oh that led to an overall
advantage:

– Having more life points than the opponent.
– Having Monsters to attack the opponent with.
– Having more cards than the opponent to play with.

Time constraints limited empirical determination of good values for the
weighting of various factors, so crude values were chosen based on experience
with the game.

Statistical Significance. Independent sample t-tests were performed to com-
pare two agents in each of the three experiment runs.
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Meta-strategy Evaluation. A way of assessing whether CFR methods can
evaluate decks at a high level would be to compare them to human evaluations
of decks. A common notion among the Yu-Gi-Oh player base is tiers, where if a
deck is in tier 1, it is one of the best and is expected to win most major events. If
a deck is in tier 3, it is not expected to win much, but is still competitive. In the
early history of Yu-Gi-Oh there were no real archetypes (groups of cards that
followed a theme and worked well together), so there were only a few popular
decks that people played with subtle variations from player to player. Because
of this, and the fact that records of top performances during the early 2000s are
difficult to find, decks from that time period cannot be used.

The first format to have reasonable records and well defined tiers is that
of early 2011. Table 2 shows which decks were selected after compiling popular
decks from the Pojo community forums [23] and what tier they are.

Table 2. Decks chosen for Meta-Strategy evaluation and their relative performance

Deck Tier

Agents 1

Tengu-Plants 1

GraveKeepers 2

Six Samurai 2

Worms 3

Gem-Knights 3

A DCFR agent was trained for each deck. Training consisted of instances of
the six agents playing against a random opponent (who was one of the six decks)
for a period of four days. They were then placed in a tournament scenario which
closely resembles real-life Yu-Gi-Oh tournaments.

3 Results

A summary of the overall win percentages of playing various agents against each
other can be seen in Table 3.

3.1 Baseline

Overall the Heuristic Agent beat the random Agent 75% of the games. As was
expected, reasonable heuristics crafted by an expert player easily outperformed
random play. The difference between the agents was significant; t (4) = 10.885,
p < 0.001. This experiment provided a baseline for the examination of the other
agents (Table 4).
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Table 3. Overall head to head win percentage of three 500 game matches between
different agents.

Deck Random Heuristic ISMCTS CFR DCFR

Random 50% 30% 45% 39% 22%

Heuristic 70% 50% 70% 61% 47%

ISMCTS 55% 30% 50% 42% 35%

CFR 61% 39% 65% 50% 37%

DCFR 78% 53% 65% 63% 50%

Table 4. Number of wins, mean and variance of three 500 game matches between the
Custom Heuristic Agent and a random Agent

Agent Round 1 Round 2 Round 3 μ σ

Random 125 170 130 142 24

Heuristic 375 330 350 352 22

These results are likely due to the fact that heuristics are effective at playing
most scenarios with simple decks and most of the actions available do not involve
the more complex game mechanics that would require more detailed heuristics.

3.2 Existing Methods

The ISMCTS Agent won 55% of the games when playing the Random Agent
(Table 5). The differences between ISMCTS, Random and Heuristic agents were
all statistically significant. It fared significantly worse against the Heuristic Agent
only winning around 30% of the games played on average. Whilst the ISMCTS
Agent was slightly better than random play, it was no match for the expert
heuristics, indicating raw MCTS methods are not a good fit for solving Yu-Gi-
Oh. The CFR Agent won 61% of the games against the Random Agent (Table 5).
However, it was also easily beaten by the Heuristic Agent, only winning 37% of
the games. The differences between CFR, Random and Heuristic Agents were
all significant. These results indicate that the CFR Agent performs better than
the ISMCTS Agent in both random and heuristic scenarios. Therefore, it is still
not an ideal fit for Yu-Gi-Oh, especially considering the large training resources
required.
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Table 5. Number of wins, mean, variance and t score of three 500 game matches
between the ISMCTS Agent, CFR Agent, Heuristic Agent and a Random Agent

Match Round 1 Round 2 Round 3 μ σ t (p < 0.001)

ISMCTS/Random 275/225 270/230 280/220 275/225 5 12.247

ISMCTS/Heuristic 150/350 141/359 152/348 148/352 6 −42.779

ISMCTS/CFR 175/325 173/357 177/323 175/325 2 13.272

CFR/Random 305/195 306/194 300/200 304/196 3.2 40.894

CFR/Heuristic 200/300 159/341 190/310 183/317 21 −9.9625

3.3 Deep Counterfactual Regret Minimisation Agent

Deep CFR performed the best out of all the agents, winning 53% of games against
the Heuristic Agent and 78% against the Random Agent (Fig. 3). The difference
between Deep CFR and the Random agent was significant. However, the nar-
row difference between Deep CFR and the Heuristic Agent was not statistically
significant; t (4) = 2.746, p < 0.052 (Table 6).

Table 6. Number of wins, mean and variance of three 500 game matches between the
Deep CFR Agent, the Heuristic Agent and a Random Agent

Match Round 1 Round 2 Round 3 μ σ t (p < 0.001)

DCFR/Random 390/110 387/113 385/115 387/112 2 133.670

DCFR/Heuristic 265/235 250/250 270/230 262/238 10 N/A

Deep CFR Random

390

110

387

113

385

115

Run 1 Run 2 Run 3

Deep CFR Heuristic

265

235
250 250

270

230

Run 1 Run 2 Run 3

Fig. 3. Visualisation of the number of wins of three 500 game matches between the
Deep CFR agent, the Heuristic Agent and a Random Agent
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Given this lack of significance, a further test run of three 1000 game matches
between the same DCFR and Heuristic agents was run (See Table 7). This run
was statistically significant with t (4) = 0.0154, p < 0.001 confirming the superior
performance of the DCFR agent.

Table 7. Number of wins, mean and variance of three 1000 game matches between the
Deep CFR Agent and the Heuristic Agent

Agent Round 1 Round 2 Round 3 μ σ

DCFR 565 542 560 555 12.1

Heuristic 435 458 440 444 12.1

3.4 Meta-strategy Evaluation

Agents Tengu-plant Gravekeepers Six Samurai Worms Gem Knights

195

170
180

165
155

135

Tier 1 Tier 2 Tier 3

Fig. 4. Number of tournament wins of various decks

The most dominant deck, Agents, won the most games by a reasonable margin
(See Fig. 4). However, the tier two deck Gravekeepers came in second place,
followed by the other tier one deck, Tengu-Plant. Whilst this slightly matches
the trend indicated by Table 2, the tier 1 decks are not as dominant and the tier
3 decks are not completely overpowered.

4 Discussion

4.1 Game Abstractions

The game abstraction used for the CFR agent was both simplistic and small.
Looking at some of the Duel replays, it is apparent it hindered the agents’
performance in some areas. For example, when the opponent had a powerful
Monster like the CFR player would attempt to play a card that only destroys
spell cards, thinking it was one that destroyed all cards, leading to a worse
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position. Furthermore, as the general preprocessing was hand crafted, it is not
applicable to other Decks making the agents less general.

Future experiments should incorporate larger game abstractions such as the
hierarchical methods outlined in [7] and post-processing methods.

4.2 Agent Results

According to the results against the Heuristic agent, Deep CFR is the most scal-
able and best performing agent. There are a few factors that were responsible for
this success. The first is how it uses the computational resources. Both MCCFR
and CFR were limited to using only the CPU for calculations and storage of
regret values, whilst the Deep CFR agent was able to make use of 2 GPU’s for
training its neural networks and some storage, putting it at a significant advan-
tage. This is especially the case when compared to the MCTS agent, which ran
out of memory during training and struggled to complete enough iterations to
become competitive in terms of win rate. As Yu-Gi-Oh cannot easily be rep-
resented as a vector with reasonable memory requirements and hence a matrix
game, being able to scale some component of the system to better hardware
could be considered a desirable quality in the case of Deep CFR.

In the case of the CFR agent, having a more efficient variant such as CFR+
or Linear CFR could have led to much better results. However, it is likely that
both a sampling strategy and advanced abstraction will be required for the best
results. These will help alleviate memory issues as the standard CFR agent ran
out of memory on multiple occasions and had to cut nodes from the game tree
in some cases. Overall, despite being the fastest computationally, CFR does not
provide a path to scale to the full game.

A small number of games were played between the Deep CFR Agent and
a human player. The Deep CFR Agent was able to win some of these games
and made relatively few obvious mistakes, which, whilst expected due to the
stochastic nature of Yu-Gi-Oh and the simplified game, is a promising indicator
that the agent had achieved a level of human-like play. Future experiments should
aim to play more games against humans, perhaps making use of the online
facilities provided by EdoPro [3], to ascertain how competitive Deep CFR and
agents like it are.

4.3 Meta-strategy Evaluation

Whilst the results are promising for meta-strategy evaluation, there are a few
issues that likely led to less than perfect results. The first is training the DCFR
agent on much more complicated decks. In the simplified game, the agents hardly
ever had to deal with chained effects or extra deck Monsters, yet for the 2011
decks, the usage of extra deck Monsters was critical. This partially explains why
the Tengu-Plant deck did not perform as well as expected. Being a strategy
that heavily revolves around the extra deck and requires complicated card com-
binations to be successful, it was probably too much for the Deep CFR agent
to learn perfectly. This could also explain why the Gravekeeper deck did better
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than expected, coming in second place, as its strategy revolves more around con-
trolling the field and playing as few cards as possible. Seeing that the Deep CFR
agent prefers more simple strategies, it raises the question of what improvements
could be made algorithmically. A possible solution could be focusing on expand-
ing more of the game tree related to the current player’s turn as opposed to
the opponent’s move to encourage exploration of combination moves on a single
turn. Despite its shortcomings, the fact that Tengu-Plants came in 3rd place is
an indication that Deep CFR can learn complex strategies, and if improvements
to the algorithm were made, or if more computational resources were applied, it
is likely that it would perform even better.

5 Conclusion

Current CFR methods are almost universally tested using the game of Poker
which, whilst providing a complex stochastic imperfect information environ-
ment, does not capture complex logic interactions between cards or players.
Yu-Gi-Oh, in contrast, is in a class of harder games where card interactions can
be stochastic, conditional, or temporally inter-dependent at the same time, and
player interaction incredibly situational. These properties make Yu-Gi-Oh a bet-
ter representation of real world strategic interactions and more apt at addressing
modern challenges in AI, such as complex logic, massive state space and hidden
information, than Poker. To test Yu-Gi-Oh using CFR, within the bounds of
modern computational power, a slightly simplified version of the game that still
captures the logic and state space requirements was constructed.

Of the methods tested, Deep CFR and a simple Heuristic Agent performed
the best. This indicates that techniques such as MCTS and tabular CFR with
custom abstractions are not well suited to address the amount of hidden infor-
mation Yu-Gi-Oh presents and that even custom abstractions do not capture
the relationships between information sets well. Also of concern is that, with the
exception of the Heuristic Agent all methods struggled under the CPU, mem-
ory, and disk resource limitations of the experimental environment. Future work
should look at scaling the experiments to larger computational resources to inves-
tigate if MCTS and CFR can perform better under such conditions, especially
in the case of sampling variants such as CFR+ and VR-MCCFR.

In the case of using CFR as a way of evaluating meta-strategy, the results
are positive but inconclusive. Using Deep CFR as the evaluation system results
in similar trends as in real tournament play. Considering that the decks and
rules used in those experiments were far more advanced than the simple deck
and that each agent had to learn how to play against multiple meta-strategies,
the fact that the best deck in the format came out on top is promising. Future
work, similarly to the evaluation of CFR methods, should look at what the
algorithms do with more training time but also at how different algorithms
learn to play different meta-strategies or combinations of them. Furthermore,
advanced variants such as Single Deep CFR and Double Neural Deep CFR should
be considered for their better computational performance and ability to utilise
computational accelerators.
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Overall, CFR methods appear to be able to handle the demands of larger and
more complicated games. They can produce competitive results when compared
to a tuned domain-specific agent by learning similar general behaviours and, if
given more resources, would likely outperform them. Furthermore, CFR methods
appear to be a promising tool for investigating the construction and evaluation of
meta-strategies and, with future research, could lead to intelligent systems that
are both able to calculate what resources are required to solve a problem as well
as how to best use them when doing so. Such systems do not currently exist for
imperfect information contexts, but if they did, they could be revolutionary for
business and military strategy, negotiation interactions, and complex planning
problems.
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Abstract. With the rapid deployment of graph neural networks (GNNs)
based techniques in a wide range of applications such as link prediction,
community detection, and node classification, the explainability of GNNs
become an indispensable component for predictive and trustworthy deci-
sion making. To achieve this goal, some recent works focus on design-
ing explainable GNN models such as GNNExplainer, PGExplainer, and
Gem. These GNN explainers have shown remarkable performance in
explaining the predictive results from GNNs. Despite their success, the
robustness of these explainers is less explored in terms of vulnerabili-
ties of GNN explainers. Graph perturbations such as adversarial attacks
can lead to inaccurate explanations and consequently cause catastro-
phes. Thus, in this paper, we take the first step and strive to explore the
robustness of GNN explainers. To be specific, we first define two adver-
sarial attack scenarios—aggressive adversary and conservative adversary
to contaminate graph structures. We then investigate the impacts of the
poisoned graphs on the explainability of three prevalent GNN explain-
ers with three standard evaluation metrics: Fidelity+, Fidelity−, and
Sparsity. We conduct experiments on synthetic and real-world datasets
and focus on two popular graph mining tasks: node classification and
graph classification. Our empirical results suggest that GNN explain-
ers are generally not robust to the adversarial attacks caused by graph
structural noises.

Keywords: Graph neural networks · GNN explainers · Adversarial
attacks · Robustness

1 Introduction

Generally, a computation graph G can be represented as G = (V ,A,X), where
V is the node set, A ∈ {0, 1} denotes the adjacency matrix that Aij = 1
if there is an edge between node i and node j, otherwise Aij = 0, and X
indicates the feature matrix of the graph G. It is an ideal data structure for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 161–174, 2022.
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a variety of real-world datasets, such as chemical compounds [3], social circles
[21], and road networks [15]. Graph neural networks (GNNs) [5,26,29,33], with
the resurgence of deep learning, have become a powerful tool to model these
graph datasets and achieved impressive performance. However, a GNN model
is typically very complicated and how it makes predictions is unclear; while
unboxing the working mechanism of a GNN model is crucial in many practical
applications (e.g., criminal associations predicting [24], traffic forecasting [11],
and medical diagnosis [1,23]).

Recently, several explainers [19,20,30] have been proposed to tackle the prob-
lem of explaining GNN models. These attempts can be categorized into local
and global explainers according to their interpretation scales. In particular, if
the method provides an explanation only for a specific instance, it is a local
explainer. In contrast, if the method explains the whole model, then it is a
global explainer. Alternatively, GNN explainers can also be classified as either
transductive or inductive explainers based on their capacity to generalize to
extra unexplained nodes. We investigate a flurry of recent GNN explainers and
decide to use three most representative GNN explainers—GNNExplainer [30],
PGExplainer [20], and Gem [19]—in our experiments. GNNExplainer is chal-
lenging to be applied into inductive settings as its explanations are limited to a
single instance and it merely provides local explanations; while a trained PGEx-
plainer which constructs global explanations and Gem which generates both
local and global explanations can be used in inductive scenarios to infer expla-
nations for unexplained instances without the need of retraining the explanation
models. Table 1 summarizes the characteristics of these methods.

Table 1. The characteristics of GNN explainers.

GNNExplainer PGExplainer Gem

Interpretation
scale

Local explainer Global explainer Local & global
explainer

Transduction/
Induction

Transductive
explainer

Inductive explainer Inductive explainer

Applications Node classification Node classification Node classification

Graph classification Graph classification Graph classification

Link prediction

On the other hand, robustness is also an important topic in the community of
deep learning and has gained significant attention over years. Recently, there are
a large number of research studies focusing on the robustness of image classifica-
tion including adversarial robustness [27] and non-adversarial robustness [10,16].
In addition, researchers start to explore the robustness of GNN models in recent
years, having gained several crucial observations and insights [2,34]. Neverthe-
less, the robustness of GNN explainers is still under exploration. While in real
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world, graph datasets are never ideal and often contaminated by various nuisance
factors such as noises in node features and/or in graph structures. Therefore, one
natural question one might ask: are current GNN explainers robust against these
nuisance factors?

To answer this question, we in this paper take the first step to examine the
robustness of GNN explainers. To be specific, we explore two adversary scenarios
to contaminate graph datasets:

– Aggressive adversary. We introduce noises to graph structures without con-
sidering the characteristics of nodes–whether it is an important node or a
redundant node. To be more specific, we may pollute any nodes to have
edges with others regardless of the impact on the GNN models.

– Conservative adversary. In contrast to aggressive adversary, we introduce
noises to graph datasets in a more cautious way such that we hope the injected
noises would not affect the GNN model itself. To achieve this goal, we have
to take the characteristics of graph dataset itself into account (e.g., whether
the node is an important node or an unimportant node). We then only alter
the graph structure by adding edges among unimportant nodes. By doing so,
the underlying essential subgraph, which determines the prediction of GNN
models, is untouched.

We first use the aforementioned adversary scenarios to contaminate the graph
datasets. We then use these generated noisy graph datasets to evaluate the
robustness of the GNN explainers. For the baseline, we refer to the performance
of the GNN explainers on original (clean) graph datasets. Thus, we track and
compare the difference in the performance of GNN explainers between original
and polluted graph datasets. Our contributions can be summarized as followings:

– For the sake of comprehensive evaluations, we propose to generate noisy graph
data under two scenarios—aggressive adversary and conservative adversary.

– We empirically investigate the robustness of GNN explainers against these
perturbations through two different applications including node classification
and graph classification.

– We find that GNN explainers in general are not robust to these perturba-
tions, implying that robustness is another essential factor one should take
into account when evaluating GNN explainers.

2 Related Work

2.1 GNNs and the Robustness of GNNs

Graph neural networks (GNNs) have shown their effectiveness and obtained
the state-of-the-art performance on many different graph tasks, such as node
classification, graph classification, and link prediction. Since graph data widely
exist in different real-world applications, such as social networks [25], chem-
istry [8], and biology [6], GNNs are becoming increasingly important and useful.
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Despite their great performance, GNNs share the same drawback as other deep
learning models; that is, they are usually treated as black-boxes and lack human-
intelligible explanations. Without understanding and verifying the inner working
mechanisms, GNNs cannot be fully trusted, which prevents their use in critical
applications pertaining to fairness, privacy, and safety [4].

On the other hand, the robustness evaluation for GNNs has received a great
deal of attention recently. In recent years, some adversarial attacks and back-
door attacks against GNNs are proposed [7,9,28,34]. Specially, in [28], Yang et al.
propose a transferable trigger to launch backdoor attack against different GNNs.
In [34], authors propose an efficient algorithm NETTACK exploiting incremen-
tal computations. They concentrate on adversarial perturbations that target the
node’s characteristics and the graph structure, therefore taking into account the
interdependencies between instances. In addition, they ensure that the pertur-
bations are undetectable by keeping essential data features. Ghorbani et al. [9]
demonstrate how to generate adversarial perturbations that produce perceptively
indistinguishable inputs that are assigned the same predicted label, yet have very
different interpretations. They prove that systematic perturbations can result in
drastically different interpretations without modifying the label. Fox et al. [7]
investigate that GNNs are not robust to structural noise. They focus on inserting
addition of random edges as noise in the node classification without distinguish
important and unimportant nodes. On the contrast, we focus on injecting conser-
vative structure noise into unimportant nodes/subgraphs. Overall, in our research,
we propose to infuse aggressive and conservative structure noise individually into
graph data in order to examine the robustness of GNN explainers.

2.2 GNN Explainers

GNNs incorporate both graph structure and feature information, which results
in complex non-linear models, rendering explaining its prediction remain a chal-
lenging task. Besides, models explanations could bring a lot of benefits to users
(e.g., improving safety and promoting fairness). Thus, some popular works has
emerged in recent years focusing on the explanation of GNN models by leverag-
ing the properties of graph features and structures. There are some popular GNN
explainers developing explaining strategies based on graph intrinsic structures
and features. We will briefly review three different GNN explainers: GNNEx-
plainer, PGExplainer, and Gem.

GNNExplainer [30] is a seminal method in the field of explaining GNN mod-
els. It provides local explanations for GNNs by identifying the most relevant
features and subgraphs, which are essential in the prediction of a GNN. PGEx-
plainer [20] introduces explanations for GNNs with the use of a probabilis-
tic graph. It provides model-level explanations for each instance and possesses
strong generalizability. Gem [19] is able to provide both local and global expla-
nations and it is also operated in an inductive setting. Thus, it can explain
GNN models without retraining. Particularly, it adopts a parameterized graph
auto-encoder with Graph Convolutional Network(GCN) [14] layers to generate
explanations.
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3 Method

In this paper, we examine the robustness of GNN explainers under two adversary
scenarios—aggressive adversary and conservative adversary. In this section, we
provide the details of our method. Particularly, we first introduce how we inject
noises into graph data and construct noisy graph data (see Sect. 3.1), and we
then depict our evaluation flow (see Sect. 3.2).

3.1 Adversary Generation

Without loss of generality, we consider generating aggressive and conservative
adversaries in a graph classification task. For a graph Gi = (V i,Ai,Xi) with
label Li, we have the prediction f(Gi) of a GNN model, and the explanation
E(f(Gi),Gi) from a GNN explainer.

Fig. 1. The instance of generating aggressive structure noise. The orange nodes denote
important nodes, while the rest means unimportant nodes in the graph. In this scenario,
we do not take the node property into account and we randomly select nodes. (Color
figure online)

Aggressive Adversary Generation. The aggressive adversary disregards the role
of nodes and radically incorporates structure noises into nodes without consid-
ering their impacts on the GNN models. For a particular graph Gi, we randomly
choose ε = {10%, 30%, 50%, 80%} nodes from the set V i, then generate edges
among these selected nodes by using random graph generation model with gen-
erating edges probability 0.1, meaning that the number of edges is equal to 10%
of the number of selected nodes. Figure 1 shows a toy example of aggressive
adversary generation. After generating aggressive structure noises, we obtain
a new noisy graph ̂Gi = (V i, ̂Ai,Xi) with label Li, and further obtain the
GNN prediction f(̂Gi) on this new noisy graph as well as its the explanation
E(f(̂Gi), ̂Gi). As we have aggressively changed the structure of the graph, the
probability of f(̂Gi) is expected to be lower, implying that the aggressive struc-
ture noises also affect the performance of the GNN models. Furthermore, pre-
dictions of GNN model is another input to GNN explainers, which is another
factor to influence explanations of GNN explainers.
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Conservative Adversary Generation. The conservative adversary selectively
appends structure noise into unimportant nodes. Particularly, in conservative
adversary, we build a structure noise which would not alter the prediction of
GNN models. For a particular graph Gi, we obtain the unimportant nodes set
N i with the similar ratio of ε = {10%, 30%, 50%, 80%} we used in the setting
of aggressive adversary. Then, we use random graph generation model to gener-
ate edges among N i with the generating edges probability 0.1. Similarly, Fig. 2
shows a toy example of conservative adversary generation. After developing con-
servative structure noise, we get a noisy graph G

′
i = (V i,A

′
i,Xi) with label Li.

Therefore, we are able to obtain the GNN prediction f(G
′
i) and the explana-

tion E(f(G
′
i),G

′
i). In conservative adversary, since the significant subgraph that

determines the prediction of GNN models is unmodified, there is a high possi-
bility that f(G

′
i) would make the correct predictions. Thus, the prediction of

GNN as a parameter in GNN explainers inputs keeps stable and unchanged.
Therefore, one should expect that the GNN explainers would be more robust
against conservative adversary than aggressive adversary.

Fig. 2. The instance of generating conservative structure noise. The orange nodes
denote important nodes, while the rest are unimportant nodes in the graph. We only
select unimportant nodes. (Color figure online)

3.2 Robustness Evaluation Framework

For a GNN model, GNN explainers are used to unveil why the GNN model makes
its predictions. Thus, it is intriguing to explore whether these explanations really
make sense, especially when the graph data is not clean and polluted by noises,
which is often the case in real-world datasets. The contamination can occur in
many ways such as during the process of data collection, the defects of sensors,
data transmission through network, and many others. In this paper, we insert
noises into the original clean graph data to examine whether the explanation of
GNN explainers would be affected.

Specifically, in our experiments, we target to investigate the robustness of
the GNN explainer to structure noises. We introduce two types of structure
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noises to graph datasets, of which the detailed information can be found in
Sect. 3.1. After obtaining noisy graph dataset, we feed it into a pre-trained GNN
that is trained by the original clean graph dataset and get its corresponding
predictions. Then a GNN explainer conducts its explanations and we obtain its
explanation performance and further conduct comparisons with the explanations
on the original graph dataset. The pipeline of our robustness evaluation method
is shown in Fig. 3. We further show an example of our experimental flow under
the conservative adversary in Fig. 4.

Fig. 3. In this diagram, different lines denote distinct flows. The black lines denote
initial flow that generates explanations for the original dataset. The green lines denote
flow that generates a noisy graph data from the original graph data as well as its
explanations. Finally, we can compare “noisy” explanations with “original” explana-
tions. (Color figure online)

Furthermore, we use accuracy to quantitatively measure the influence of
structure noises to the GNN model. We assume that the performance of GNN
model would rarely be affected if the prediction accuracy on the noisy graph
dataset is roughly the same as the accuracy on the original clean graph dataset.
We further assume that if the GNN model itself is not confused by the injected
noises, then the GNN explainers would yield similar explanations between orig-
inal clean graph data and noisy graph data.

Fig. 4. The instance of generating explanation for noisy graph with conservative adver-
sary. The orange nodes denote important nodes, while the rest means unimportant
nodes in the graph. The orange nodes and edges are expected to be as an explanation
from GNN explainers. However, after injecting structure noise which is highlighted
in red colour, the GNN explainers can not get the true important subgraph, which
demonstrates that the GNN explainers are not robust to structure noises. (Color figure
online)



168 Y. Li et al.

4 Experiments

In this section, we conduct experiments to inspect the robustness of GNN
explainers against structure noises. We first describe the details of the imple-
mentation, datasets, and metrics we used in Sect. 4.1. After that, we present and
analyze the experimental results for aggressive adversary scenario and conser-
vative adversary scenario in Sect. 4.2 and Sect. 4.3, respectively.

4.1 Implementation Details, Datasets, and Metrics

Implementation Details. In this paper we choose GCN as the classification clas-
sifier. For GNN explainers, we choose GNNExplainer [30], PGExplainer [20],
and Gem [19]. In order to obtain the pre-trained GCN models, we split the
datasets into percentages of 80/10/10 as the training, validation, and test set,
respectively. We follow the experimental settings in Gem [19]. Specifically, we
firstly train a three-layer GCN model based on BA-Shapes dataset, Tree-Cycles
dataset, and Mutagenicity dataset, respectively. We choose Adam [13] as the
optimizer. After that, we utilize the pre-trained GCN models and the explain-
ers to obtain the explanations for both the original clean graph datasets and
the noisy graph datasets. Furthermore, by analyzing the experiment settings
and results in [19], we note that explainers obtain different levels of accuracy
when selecting different top-important edges as explaining edges. Therefore, one
should choose an appropriate number of top important edges when evaluating
explainers. In our paper, we select top 6 edges for synthetic datasets (BA-Shapes
and Tree-Cycles) and top 15 edges for Mutagenicity dataset.

Datasets. We focus on two widely used node classification datasets, including
BA-Shapes and Tree-Cycles [18,31], and one graph classification dataset, Muta-
genicity [12]. Statistics of these datasets are shown in Table 2. For BA-Shapes
and Tree-Cycles datasets the nodes which define a motif structure such as a
house or cycle are considered as important nodes. For Mutagenicity datasets,
Carbon rings with chemical groups NH2 or NO2 are known to be mutagenic.
Carbon rings however exist in both mutagen and nonmutagenic graphs, which
are not discriminative. Thus, we simply treat carbon rings as the shared base
graphs and NH2, NO2 as important subgraphs for the mutagen graphs.

Table 2. Dataset information.

Node classification Graph classification

BA-shapes Tree-cycles Mutagenicity

# of Graphs 1 1 4,337

# of Edges 4110 1950 266,894

# of Nodes 700 871 131,488

# of Labels 4 2 2
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In addition, explainers—GNNExplainer, PGExplainer, and Gem—can obtain
higher accuracy when used to explain only important nodes or subgraphs. While
in our experiments, we may alter the nodes as well as the subgraph structures,
thus we have to explain all nodes or subgraphs (important or unimportant),
which may lead to suboptimal accuracy. However, this is not a major issue for
us as our goal in this paper is to compare the performance change of GNN
explainers on graph datasets before and after adding noises.

Noisy Datasets. Following the noise generation pipeline described in Sect. 3, we
inject aggressive and conservative structure noises into these graph datastes to
generate aggressive and conservative noisy datasets, respectively. For conserva-
tive structure noisy datasets, we only inject noises into unimportant nodes to
minimize the affection of structure noise on GNN prediction. By doing so, we
attempt to maintain GNN predictions on conservative structure noise datasets.

Metrics. Good metrics should evaluate whether the explanations are faithful
to the model. After comparing the characteristic of each quantitative met-
ric [17,32], we chose Fidelity+ [31], Fidelity− [31], and Sparsity [22] as our
evaluation metrics. The Fidelity+ metric indicates the difference of predicted
probability between the original predictions and the new prediction after remov-
ing important input features. In contrast, the metric Fidelity− represents pre-
diction changes by keeping important input features and removing unimportant
structures. Besides, Sparsity measures the fraction of features selected as impor-
tant by explanation methods. The Fidelity+, Fidelity−, and Sparsity can be
defined as:

Fidelity+ =
1
N

N
∑

i=1

(f(Gi)yi
− f(G1−mi

i )yi
), (1)

Fidelity− =
1
N

N
∑

i=1

(f(Gi)yi
− f(Gmi

i )yi
), (2)

Sparsity =
1
N

N
∑

i=1

(1 − |si|
|Si|total ), (3)

where N is the total number of samples and yi is the class label. f(Gi)yi
and

f(G1−mi
i )yi

are the prediction probabilities of yi when using the original graph
Gi and the occluded graph G1−mi

i , which is gained by occluding important fea-
tures found by explainers from the original graph. Thus, a higher Fidelity+ (↑)
is desired. f(Gmi

i )yi
is the prediction probabilities of yi when using the explana-

tion graph Gmi
i , which is obtained by important structures found by explainable

methods. Thus a lower Fidelity− (↓) is desired. Furthermore, the |Si|total rep-
resents the total number of features (e.g., nodes, nodes features, or edges) in the
original graph model; while |si| is the size of important features/nodes found
by the explainable methods and it is a subset of |Si|. Note that higher sparsity
values indicate that explanations are sparser and likely to capture only the most
essential input information. Hence, a higher Sparsity (↑) is desired.



170 Y. Li et al.

4.2 Vulnerable to Aggressive Adversary

To measure the robustness of GNN explainers against aggressive structure noises,
we estimate the differences in performance of GNN explainers between original
and aggressive noisy datasets. We first obtain the explanation performance of
each explainers on original clean graph datasets, which serves as our baseline.
We then obtain the corresponding explanation performance of each explainers
on noisy graph datasets with aggressive adversary. For reference, we also report
the GCN accuracy.

Fig. 5. The results of aggressive adversary in terms of Fidelity+, Fidelity−, and
Sparsity.

GNN Explainers Are Not Robust to Aggressive Adversary. Figure 5 shows the
results of the robustness of GNN explainers against aggressive noise. One can
observe that: 1) As the noise level increases, all explanation performance metrics
including Fidelity+, Fidelity−, and Sparsity consistently become worse, imply-
ing that aggressive noises do have negative impacts on the GNN explainers; 2)
The accuracy of GCN keeps decreasing as the noise level increases, implying that
the aggressively injected noises also affect the performance of GCN itself, which
is consistent with the findings in [7,34]; 3) The findings mentioned above are
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consistent across different datasets and different tasks, suggesting the generality
of our findings.

4.3 Vulnerable to Conservative Adversary

Now, we start to explore how conservative adversary affect the GNN explainers.
We follow the exact pipeline in Sect. 4.2 expect that we here inject noises in a
more cautious way. We believe this conservative adversary would yield negligible
impacts on the GCN itself while it may still negatively affect the explanation
quality of GNN explainers (see Sect. 3 for more details).

Fig. 6. The results of conservative adversary in terms of Fidelity+, Fidelity−, and
Sparsity.

GNN Explainers Are Not Robust to Conservative Adversary. Figure 6 shows
the experimental results for the setting of conservative adversary. As expected,
the accuracy of the GNN is quite stable and does not change much even when
the noise level increases, implying that the noises injected in this way do not
alter the essential structures of graph datasets. However, in term of Fidelity+,
Fidelity−, and Sparsity, we see a similar trend as the aggressive adversary
(Sect. 4.2) although the impacts here are much benign, which further demon-
strates the fragility of GNN explainers to graph noises.
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5 Conclusion

In this paper, we attempt to identify the robustness issue of GNN explainers.
We propose two types of structure noises—aggressive adversary and conservative
adversary—to construct noisy graphs. We evaluate three recent representative
GNN explainers including GNNExplainer, PGExplainer, and Gem, which vary
in terms of interpretation scales and generality. We conduct experiments on two
different tasks—node classification with BA-Shapes and Tree-Cycles datasets
and graph classification with Mutagenicity dataset. Through experiments, we
find that the current GNN explainers are fragile to adversarial attacks as the
quality of their explanations is significantly decreased across different severity
of noises. Our findings suggest that robustness is a practical issue one should
take into account when developing and deploying GNN explainers in real-world
applications. In our future work, we would develop algorithms and models to
improve the robustness of GNN explainers against these adversaries.
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Abstract. The important process of choosing between algorithms and
their many module choices is difficult, even for experts. Automated
machine learning allows users at all skill levels to perform this process. It
is currently performed using aggregated total error, which does not indi-
cate whether a stochastic algorithm or module is stable enough to consis-
tently perform better than other candidates. It also does not provide an
understanding of how the modules contribute to total error. This paper
explores the decomposition of error for the refinement of genetic program-
ming. Automated algorithm refinement is examined through choosing a
pool of candidate modules and swapping pairs of modules to reduce the
largest component of decomposed error. It is shown that a pool of can-
didates that are not examined for diversity in targeting different com-
ponents of error can provide inconsistent module preferences. Manual
algorithm refinement is also examined by choosing refinements based on
their well-understood behaviour in reducing a particular error compo-
nent. The results show that an effective process should exploit both the
advantages of targeted improvements identified using a manual process
and the simplicity of an automated process by choosing a hierarchy of
the most important modules for reducing error components.

Keywords: Genetic programming · Automated machine learning ·
Algorithm refinement · Symbolic regression

1 Introduction

With the successful application of machine learning algorithms to many problem
domains [1–3], there is increasing interest from end users who are not experts
in machine learning. These applications of machine learning typically involve a
wide range of parameters or algorithm module choices [4,5]. This wide range
of choices provide a greater opportunity to produce a good predictive model,
given that a particular algorithm will not provide consistently better predictive
performance than all other candidates [6]. However, even for data scientists, the
process of choosing between a large number of algorithms and choosing appropri-
ate parameters/modules is difficult [7,8]. This is the motivation for automated
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machine learning (AutoML), which involves the data-driven algorithmic selec-
tion, composition and parameterisation of machine learning methods, usually in
order to minimise prediction error [9,10].

AutoML methods in the literature use only an aggregate measure of pre-
diction error for a continuous response variable (referred to in this paper as
total error) to examine combinations of algorithm modules. Performing AutoML
using only total error does not provide an understanding of how the modules
of the algorithm interact or the role each module plays in reducing total error.
Instead, decomposed error will allow an AutoML process to make more accu-
rate and informed decisions, in terms of the compatibility of algorithm module
combinations and their parameterisation, by targeting a reduction in the largest
component of error.

For a deterministic algorithm, using the same training data for each run
produces the same prediction model. These algorithms can be characterised by
decomposing error into bias and variance, where the single source of error due
to variance is associated with sampling of finite training data [11]. In contrast, a
stochastic algorithm involves multiple sources of error due to variance. Therefore,
the algorithm can be more fully characterised by splitting error due to variance
into error due to external variance (variance due to the training data) and error
due to internal variance (variance due to the algorithm itself) using an extended
error decomposition [12]. The extended decomposition of error and AutoML are
expected to be strongly compatible as they are both empirical processes.

Performing AutoML using “black-box” total error creates ambiguity about
which sources of error are being reduced and why a particular combination of
algorithm modules has been chosen. In contrast, decomposed error provides an
explanation of which error components are being minimised when choosing mod-
ules. Therefore, AutoML driven by decomposed error would provide more trans-
parency and an explanation of why a particular combination of modules has been
chosen, which are both important for AutoML [13]. This includes an understand-
ing of how the chosen algorithm is appropriate for a given problem. Explainabil-
ity is important for AutoML because end users need to have confidence and trust
in the performance/behaviour of an algorithm [14]; this confidence is gained by
understanding why the algorithm modules have been chosen.

In this paper, AutoML driven by an extended decomposition of error is
explored by performing algorithm refinement that targets the largest compo-
nent of error. This process is applied to the refinement of genetic programming
(GP) for symbolic regression, although any machine learning algorithm could
be refined using this process. Algorithm refinement is first performed using an
automated process to determine whether it can be reliable for stochastic algo-
rithms. This method focuses on refining the selection and variation operators
of GP, although the method could be used to refine all parts of the GP algo-
rithm. It is shown that error due to internal variance is not sufficiently stable to
provide consistent decisions about which module reduces prediction error. This
highlights the importance of choosing a diverse set of candidate modules that
provide targeted reductions in all components of error, particularly error due
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to internal variance. To confirm this, algorithm refinement is performed using a
manual process. In each iteration, new algorithm components are hand-picked
for their well-understood behaviour in terms of reducing the largest component
of error, which is shown to successfully reduce total error.

The remainder of this paper is structured as follows: a brief overview of
algorithm refinement methods are discussed in Sect. 2; a description of how to
decompose error for the refinement of GP is outlined in Sect. 3; results for an
automated algorithm refinement process using decomposed error are discussed in
Sect. 3.1 and critiqued in Sect. 3.2; results for a manual algorithm refinement pro-
cess using decomposed error are discussed in Sect. 3.3 and critiqued in Sect. 3.4;
finally, conclusions and future work are discussed in Sect. 4.

2 Algorithm Refinement

A number of different methods have been used for AutoML. The combined
algorithm selection and hyperparameter optimisation (CASH) problem can be
viewed as a “single hierarchical hyperparameter optimisation problem”, with the
chosen type of algorithm being considered as a hyperparameter [9, p. 847]. Grid
search examines all possible combinations of hyperparameters [15]. While this is a
simple method, it is computationally expensive and potentially intractable if the
number of hyperparameters is large. Random search improves on grid search by
not examining the full distributions of hyperparameter values [15]. However, ran-
dom search is still potentially computationally expensive. Bayesian optimisation,
involving a probability surrogate model of objectives, is more computationally
efficient and is applicable to any type of objective function. Auto-WEKA [16]
involves Bayesian optimisation using tree-based models. Auto-SKLearn [17] also
uses Bayesian optimisation, extending Auto-WEKA in order to provide an initial
meta-learning step as well as automated ensemble construction. Evolutionary
computation has also been used for AutoML. RECIPE (REsilient ClassifIca-
tion Pipeline Evolution) uses grammar-based GP, with a grammar representing
an algorithm pipeline, i.e., a combination of algorithm modules [18]. RECIPE
provides a larger number of algorithm modules than both Auto-SKLearn and
Auto-WEKA. TPOT (Tree-Based Pipeline Optimization Tool) also uses a vari-
ant of GP to represent algorithm pipelines, allowing parallel processing by using
multiple copies of a data set [19].

When applied to regression problems, these AutoML methods involve the
same basic process. A portfolio of candidate algorithm modules and parameters
is chosen (although the reasons for including the selected module options are
not usually explained). During the hyperparameter optimisation process, com-
binations of these candidates are examined. All of the methods in the literature
use total prediction error (for test observations) to guide the improvement of the
combination of algorithm modules.

The goal of AutoML, for supervised machine learning, is to minimise total
prediction error. However, performing AutoML using total error can lead to a
lack of model parsimony and does not focus on an algorithm’s sensitivity to
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noise [20]. Also, AutoML provides no insight as to why a particular combina-
tion of algorithm modules should be chosen. Total error does not explain the
behaviour of the algorithm, providing a lack of confidence in the chosen algo-
rithm and a discrepancy between AutoML and the growing need for explainable
artificial intelligence [21]. It also does not illustrate the stability of the algorithm
and therefore the reliability of the AutoML process. Instead, decomposed error
should be used in AutoML to examine algorithm behaviour as it is important
to provide end users with greater insights into an algorithm’s behaviour and
therefore enhanced confidence in its performance [22,23]. Therefore, it needs to
be explored how decomposed error can be used to guide algorithm refinement.

3 Algorithm Refinement of Genetic Programming Using
Decomposed Error

Estimating decomposed prediction error involves splitting up total error into
components based on the potential sources of error. In a typical bias-variance
error decomposition, a total error measure (e.g., mean squared error) is decom-
posed into two primary components: a bias component quantifies the ability
of the method to learn the underlying generating function of a problem, while
a variance component quantifies the learning method’s sensitivity to stochas-
tic effects encountered during the learning process (e.g., the sampling of data)
[24]. To enable variance due to the sampling of training data (external variance)
as well as variance due to the algorithm (internal variance) to be represented,
the standard bias-variance decomposition can be further expanded, as shown in
[12]. Error due to internal variance captures the changes in model predictions
observed over multiple algorithm runs using the same training data. When fur-
ther decomposing the error, Tukey’s outlier removal is performed in order to
provide more stable decomposed error estimates [12]. The error is decomposed
using a set of 100 runs (10 training sets and 10 runs per training set). In order to
explore how decomposed error can be used to reliably and effectively refine the
GP algorithm, this is performed using both automated and manual processes.

3.1 Automated Algorithm Refinement

A desirable option for algorithm refinement is to use an automated process.
Starting with traditional GP, alternative modules can be examined, choosing one
to minimise the largest component of error (reducing error due to bias, internal
variance or external variance). The process can be repeated a specific number of
times or until the largest component of error cannot be reduced. The process has
been illustrated by focusing on particular key parts of an evolutionary algorithm,
rather than examining all possible alternative modules.

The typical framework of an evolutionary algorithm is shown in Fig. 1. A
number of design choices present themselves at each block of the diagram, mean-
ing that there are potentially many choices to be made at each module. The
automated algorithm refinement process examined in this paper focuses on the



Towards Explainable AutoML Using Error Decomposition 181

Fig. 1. Modules involved in an evolutionary algorithm process for symbolic regression.

selection and variation (crossover and mutation) parts of the algorithm (shown in
red). However, in principle, any part of the algorithm could be examined using
this process. The sequential process of targeting the reduction of the largest
component of error was performed using these steps:

1. Run GP using an initial configuration of modules.
2. Decompose the error associated with the initial GP configuration.
3. Determine the largest component of error (i.e., error due to bias, internal

variance or external variance).
4. Run GP using the current combination of modules except for swapping in each

alternative module individually, calculating the decomposed error associated
with each combination of modules.

5. Determine which new combination of modules reduces the largest component
of error.

6. If the largest component of error cannot be reduced, stop the process and
return the current combination of modules. Otherwise, determine the new
largest component of error (i.e., repeating Step 3).

7. Repeat Steps 4 to 6 for n time steps (if the process has not already been
terminated).

Steps 1 and 4 involve multiple complete runs of GP in order to decompose the
error associated with each combination of modules that are examined. Modules
from traditional GP, Angle-Driven Geometric Semantic GP (ADGSGP ) [25] and
GP using semantic similarity [26] have been selected to refine GP. The following
individual modules were examined:

Selection Operators:

– Tournament selection (TS)
– TS and angle-driven selection (ADS) for crossover [25]
– Double tournament selection (DTS) [27]
– DTS and ADS for crossover

Crossover Operators:

– One point crossover (OPX)
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– Perpendicular crossover (PC) [25]
– Semantic similarity-based crossover (SSC) [26]

Mutation Operators:

– Uniform subtree mutation (UM) using full growth
– Random segment mutation (RSM) [25]
– Semantic similarity-based mutation (SSM) based on SSC [26]

The modules of ADGSGP were performed using the implementation of [25]. An
initial GP configuration of OPX, UM and TS was used as the starting point
for the refinement process, with a maximum of five steps. The refinement of the
GP algorithm is explored using a variant of the Keijzer-5 function [28]:

f(x, y, z) =
30(x − a)(z − a)

((x − a) − 10)(y − a)2
(1)

where a = 10 for x, z ∈ U [9, 11) and y ∈ U [11, 12). A similar adaptation of
the Keijzer-5 function is used by [29]. Equation (1) was used to generate 10
training folds of 100 observations and a test fold of 1000 observations. Algorithm
refinement driven by decomposed error will generalise to other problems because
decomposed error characterises the algorithm for the given problem and therefore
will guide the choice of modules for that problem. GP is performed using the
Distributed Evolutionary Algorithms in Python (DEAP) framework [30] and the
parameters that are not considered for refinement are shown in Table 1, which
are typical of those in recent work [31,32].

Table 1. Fixed parameters for GP

Parameter Value

Population size 100

Number of generations 100

Probability of crossover 0.3

Probability of subtree mutation 0.7

Maximum depth 17

Initial minimum depth 2

Initial maximum depth 6

Minimum depth of subtree mutation 2

Maximum depth of subtree mutation 6

Elitism Yes (1 individual)

Size of tournament 3

Function set {+,−,×,÷}

The decomposed error values associated with the steps taken to improve the
algorithm are shown in Fig. 2. After initially running GP (using OPX, UM and
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Fig. 2. Decomposed error for data generated by Eq. (1), using the automated algorithm
refinement process to change the combination of GP modules implemented.

TS), it was determined that OPX should be swapped with PX in order to
reduce the largest component of error (internal variance). Despite this config-
uration change, internal variance remains the largest error component. In the
second iteration, TS was swapped with DTS + ADS in order to continue to
reduce error due to internal variance. Subsequent iterations were unable to find
combinations of modules that reduced error due to internal variance. Therefore,
the process terminated and the mutation operator remained unchanged. How-
ever, it is interesting to see that two modules from ADGSGP (PX and ADS for
crossover) have been selected using this process. While it is preferable to simul-
taneously minimise all components of error, the primary goal of each module
swap is to reduce the largest component of error, and therefore total error. The
process was effective in reducing error primarily due to internal variance but
also external variance. However, there was an apparent trade-off between error
due to variance and error due to bias. Swapping TS for DTS + ADS provided
a reduction in both types of error due to variance but with a slight increase in
error due to bias.

3.2 Critique of Automated Algorithm Refinement

The motivations for using this automated algorithm refinement process are clear.
First, by automating the process, the only human involvement required is in
determining the initial combination of modules examined, the candidate mod-
ules and the parameters associated with these modules. Second, the process of
changing only one module at each time step allows all candidate modules to be
applied without the computational expense of trying all possible combinations.
Finally, by choosing a combination of modules that appears to reduce the largest
component of error, total error can be reduced (see Fig. 2). However, it needs to
be determined whether the estimated decomposed error of GP provides stable
enough estimates in order to assess whether the inclusion of a particular module
reduces the largest component of error.
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For the initial GP configuration of modules {OPX, UM , TS} and the sub-
sequent chosen combination of modules {PX, UM , TS}, the 100 runs (M = 10
and R = 10) used to estimate the decomposed error were repeated 50 times.
The mean decomposed error values (and associated error bars representing one
standard deviation) from the 50 repetitions are shown in Fig. 3. The identifica-
tion of error due to internal variance as the largest component of error for both
combinations of modules is consistent across the 50 repetitions. However, the
mean internal variance value for the initial combination of {OPX, UM , TS}
is very similar to that for {PX, UM , TS}. Also, the error bars have signifi-
cant overlap, with the inclusion of OPX sometimes providing lower error values
compared to PX. While the magnitudes of error due to bias and error due to
external variance for OPX and PX are relatively stable across repetitions, this
is not the case for error due to internal variance. Across the 50 repetitions, some
of them determined that swapping OPX for PX reduces error due to internal
variance while other repetitions determined the opposite result (selecting a dif-
ferent module or terminating the process). OPX provided lower error 22 times,
larger error 16 times and similar error 12 times (an absolute difference of less
than 0.1). As it is not known which error component is targeted by choosing
either OPX or PX, it is possible that they both target a reduction in error due
to bias and therefore a reduction in error due to variance could not be achieved.

0.0

0.5

1.0

1.5

2.0

OPX UM TS PX UM TS
Combination

Er
ro

r

Component bias2 varext varint Total Error

Fig. 3. Mean decomposed error (and associated error bars representing one standard
deviation) for data generated by Eq. (1), for 50 repetitions of the first two combinations
of GP modules involved in the automated refinement process (see Fig. 2).

These results show that automatic algorithm refinement is associated with
difficulties in swapping algorithm modules in order to reduce the largest com-
ponent of error. In particular, a comparison of modules that exhibit similar
decomposed error does not help to substantially reduce the largest component
of error. This can also provide inconsistent results when performed for multiple
repetitions due to unstable estimates of error due to internal variance. Perform-
ing a manual algorithm refinement process might allow for more meaningful
comparisons of modules, as we can choose to examine modules with a prior



Towards Explainable AutoML Using Error Decomposition 185

understanding that they are expected or known to target the largest component
of error. Such a manual process is investigated in the next section.

3.3 Manual Algorithm Refinement

The motivation for a manual algorithm refinement process is to identify and
then target a reduction in the largest component of error using a module known
to successfully reduce that component of error. The automated algorithm refine-
ment process used in Sect. 3.1 was able to consistently determine the largest
component of error. However, individual runs gave inconsistent results as to
whether changing an operator reduced the largest component of error. There-
fore, it is plausible that the largest error component can be determined but
used within a manual algorithm refinement process as a heuristic for reduc-
ing the largest component of error. This was performed by examining a single
well-understood adaptation to an algorithm that targets the largest component
of error (or is hypothesised to reduce the largest component of error), rather
than blindly comparing alternative algorithm module combinations that involve
uncertainty and may be too similar in terms of their error reducing behaviour.

Starting with the GP results for the initial combination of {OPX, UM , TS}
(see Fig. 3), the largest component of error is consistently error due to internal
variance. Therefore, an adaptation to the algorithm needs to be applied in order
to reduce this component of error. Bagging is well understood to reduce both
error due to internal and external variance. However, there is evidence that
bootstrapping of the training data is unnecessary when the error due to external
variance component is much smaller than the error due to internal variance
component [33]. Averaging the predictions from an ensemble of models without
bootstrapping will, like bagging, reduce error due to internal variance. Therefore,
an ensemble of 25 models (using the operator combination of {OPX, UM , TS}
and calculating the median value) was used to predict the test observations,
with each set of 100 runs (M = 10 and R = 10) being performed 30 times. The
mean and standard deviation of decomposed error for the ensemble algorithm
is compared to that of the initial combination of operators in the first two rows
of Table 2. An ensemble of models (without bootstrapping) provided a large
reduction in error due to internal variance, which is statistically significant (p <
0.0001) using the Wilcoxon signed-rank test for the difference between the error
due to internal variance components. The additional runs involved in model
averaging provided more accurate predictions with a reduction in error due to
bias as well as a reduction in error due to external variance.

The new largest error component associated with the operator combination
of {OPX, UM , TS} in an ensemble is error due to bias. This is consistent across
all 30 repetitions. Therefore, a different type of adaptation needs to be applied
in order to reduce error due to bias. As both GP with Z-Score standardisation
(of explanatory and response variables) and GP with linear scaling have been
shown to reduce error due to bias [31,34], GP was performed using a combination
of both standardisation and linear scaling (GPZ+LS). The decomposed error
of the ensemble algorithm without feature scaling is compared to the ensemble
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Table 2. Variants of GP examined using manual algorithm refinement

Variant bias2 varext varint Total error

OPX UM TS 0.1138 0.2289 1.0826 1.4253

±0.0005 ±0.0951 ±0.5985 ±0.6959

OPX UM TS Ens 0.0441 0.0263 0.0054 0.0759

±0.0005 ±0.0012 ±0.0008 ±0.0018

GPZ+LS OPX UM TS Ens 0.0029 0.0025 0.0002 0.0057

±0.0000 ±0.0001 ±0.0000 ±0.0001

GPZ+LS OPX UM TS 0.0031 0.0055 0.0232 0.0318

±0.0004 ±0.0024 ±0.0147 ±0.0174

algorithm using GPZ+LS in the second and third rows of Table 2 (with the lowest
error component values bolded in the third row). Using GPZ+LS provided a large
reduction in error due to bias, which is statistically significant (p < 0.0001)
using the Wilcoxon signed-rank test for the difference between the error due
to bias components. It also reduced error due to both external and internal
variance (with both differences statistically significant, both p < 0.0001). As
exhibited when creating an ensemble of models without bootstrapping, all error
components were reduced. Therefore, these wrapper methods have reduced total
error without exhibiting a trade-off between error due to bias and error due to
variance.

The new largest error component associated with an ensemble of models
(without bootstrapping) using GPZ+LS was still error due to bias (across all
30 repetitions). However, this component was only slightly larger than error
due to external variance, with both components being significantly reduced by
performing standardisation and linear scaling. Therefore, this manual refinement
process reached an appropriate stopping point for the examined data set.

3.4 Critique of Manual Algorithm Refinement

Estimating which component of error is the largest component gave consistent
results over multiple repetitions of the runs required to decompose error. This
provides confidence in determining what type of adaptation to the algorithm
needs to be made in order to reduce the largest component of error and there-
fore total error. While this process requires human involvement after performing
multiple runs of each adaptation of the algorithm, it allows domain knowledge
and targeted decision making to be exploited. It also provides an explainable
refinement process by understanding the purpose of selecting particular mod-
ules in terms of decomposed error. The two adaptations to the algorithm (see
Table 2) were successful in targeting the largest component of error, and therefore
total error. However, it needs to be confirmed whether both adaptations were
necessary to reduce total error and error due to internal variance in particular.
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The final combination of modules before stopping the manual refinement pro-
cess (GPZ+LS using an ensemble of 25 models) is compared to GPZ+LS without
ensembling in the third and fourth rows of Table 2. The results show that a single
model provides a statistically significant increase in error due to internal variance
(p < 0.0001) compared to the ensemble model, using the Wilcoxon signed-rank
test for the difference between the error due to internal variance components.
This makes it clear that while standardisation and linear scaling provide lower
error due to internal variance than the initial set of modules (without stan-
dardisation and linear scaling), they do not sufficiently target the component.
An ensemble model is needed to target error due to internal variance as stan-
dardisation and linear scaling specifically target error due to bias. The standard
deviation is also larger for error due to bias and error due to external variance
for a single model.

By considering a small set of candidate algorithm adaptations that are known
or expected to target the reduction of a specific error component, this man-
ual process requires fewer runs of GP. Instead of performing many runs across
many different algorithm adaptations, the focus can be on multiple repetitions
of the same algorithm to determine the consistency of both the overall predic-
tive performance and the magnitude of the error components. A small set of
candidate algorithms is sufficient if, between them, they capture a reduction in
all error components. This algorithm refinement process is not trying to find
the algorithm with the best possible predictive performance but instead find
an algorithm that provides reasonable performance as well as stable and well-
understood behaviour. While only wrapper adaptations to the algorithm have
been examined (feature scaling and ensemble models), adaptations internal to
the algorithm can also be examined using this manual process. A set of can-
didate algorithm adaptations or modules with known or expected behaviour, in
terms of targeting a reduction of the largest component of decomposed error, is a
desirable characteristic of an AutoML process. By understanding the behaviour
of algorithm adaptations or modules, the set of candidate options can be chosen
more carefully in order to provide a diverse range of behaviour, leading to a more
effective and explainable reduction of error.

4 Conclusion

This paper introduces the use of decomposed error for performing algorithm
refinement. It has been applied to the refinement of GP using both automatic
and manual processes. The results for the automatic algorithm refinement pro-
cess show that comparing algorithm modules with similar decomposed error
values makes it difficult to target a reduction of the largest error component.
This is particularly the case for algorithms like GP than can exhibit a large
and/or unstable error due to internal variance component and therefore can pro-
vide inconsistent conclusions about candidate algorithm adaptations. In order to
make more meaningful comparisons, the manual refinement process focuses on
choosing a candidate algorithm adaptation or module that is known to reduce
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the largest component of error, determined by manually examining the estimated
decomposed error of the algorithm at each step in the process.

For the manual algorithm refinement process, the sequence of algorithm adap-
tations was successful in reducing the largest component of error, with the type
of the largest error component changing throughout the process. Therefore, a
set of candidate algorithm adaptations or modules need to provide diversity in
reducing different components of decomposed error. Many traditional AutoML
processes choose a set of candidate algorithm adaptations or modules without
prior examination of their diversity in terms of reducing different components of
error. Therefore, choosing candidate modules that coincidentally target a reduc-
tion of the same component of error will significantly limit the ability to improve
the predictive performance of an algorithm. A greater understanding of how an
algorithm module reduces prediction error, and the module’s interaction with
other modules, can be provided using the extended error decomposition. A more
strategically chosen set of candidate algorithm modules, in terms of providing
diverse behaviour in reducing different components of error, can then be applied
to an automated algorithm refinement process. It is particularly important for
the set of candidates to include a module that reduces error due to internal
variance. This allows for the prediction error associated with an algorithm to
be stabilised, if required, before being able to make reliable further refinements
that target other components of error.

Although the manual algorithm refinement process was more successful than
the automated process in reducing the largest component of error (and there-
fore total error), the motivations for automating algorithm refinement are still
clear and important. Therefore, mapping the successful elements of the manual
algorithm refinement process into an AutoML framework should be explored
in future work. This would involve choosing a hierarchy of modules that are
most important for reducing a diverse range of error components. This provides
efficiency in reducing the search space of hyperparameters while providing con-
fidence in the behaviour of the module combinations. The examination of algo-
rithm refinement in this paper focused on the overall algorithm module structure
rather than the tuning of parameters; this should be examined in future work.

Acknowledgment. Thank you to Dr Qi Chen for kindly allowing your ADGSGP
code to be used as part of this paper.
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Abstract. Artificial Intelligence (AI) has been increasingly used to
assist decision making in different domains. Multiple parties are usu-
ally affected by decisions in decision making, e.g. decision-maker and
people affected by decisions. While various parties of users may have dif-
ferent responses to decisions regarding ethical concerns such as fairness,
it is important to understand whether a compromise on fairness exists
in using AI models. This paper takes AI-assisted talent shortlisting as a
case study and investigates perception of fairness, trust, and satisfaction
with decisions of both recruiters and applicants in AI-informed decision
making. The compromises on fairness between decision-maker and peo-
ple affected by decisions are identified which are then explained by social
and psychological theories. The findings can be used to help find compro-
mising points between decision-maker and people affected by decisions
so that both parties can reach for a balanced state in decision making.

Keywords: AI ethics · Fairness · Trust · Satisfaction · Compromise

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) algorithms have been
increasingly used in shaping our everyday lives and activities in different domains
especially human related decision making such as allocation of social benefits,
hiring, and criminal justice [4,8,11]. As a result, the ethical issues of AI are
becoming key concerns in algorithmic decision making. AI algorithms, trained on
a large amount of historical data, may not only replicate, but also amplify exist-
ing biases or discrimination in historical data [32]. Therefore, fairness has espe-
cially been becoming one of actively discussed ethical concerns in AI-informed
decision making tasks where multiple parties are usually involved and affected
by decisions. Fairness is defined as a global perception of appropriateness – a
perception that tends to lie theoretically downstream of justice [9]. In the algo-
rithmic context, fairness means that algorithmic decisions should not create dis-
criminatory or unjust consequences [28]. Examples of bias discrimination are 1)
banks evaluating credit risks based on race or gender and not on financial score,
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and 2) courts judging the recidivism rate of prisoners based on races. Algorith-
mic fairness is a complicated topic and extensive research has been investigated
focusing on fairness definitions (ranging from statistical bias, group fairness, to
individual fairness) and unfairness quantification [10,12,22].

Taken the recruiting scenario in the human resources context as an example,
AI algorithms are often used to shortlist applicants. The laws such as Australia’s
Anti-Discrimination Law require that different groups (e.g. male and female)
should have equal employment opportunity, which implies that the shortlisting
should keep a similar proportion of both male and female candidates for the fair-
ness (equal opportunity for male and female candidates). The AI algorithm is
designed and trained to meet such fairness requirement. When the AI algorithm
is used to shortlist candidates, female candidates are hurt by the AI algorithm
if they are shortlisted with a less proportional number than male candidates.
This means that the level of fairness of the AI algorithm is not high enough. In
addition, AI model accuracy is another factor that affects user’s responses to AI
solutions such as user trust [29]. For example, if the AI model accuracy is low,
it may affect recruiters’ trust because they may not get the most appropriate
candidates for a position. However, if the AI model accuracy is very high, the
applicants may have questions on the fairness of decisions since fairness usually
comes with a trade-off over AI model accuracy [19,23,27]. As it can be seen from
this recruiting scenario example, at least two parties are involved in AI-informed
decision making: decision-makers (recruiters in this example) and people affected
by decisions (applicants in this example). The influence of AI-informed decision
making on them and their expectations are different: recruiters prefer high model
accuracy to get the most appropriate candidates, while applicants prefer high
fairness in recruiting to get equal opportunities. However, decisions usually can-
not meet preferences from both parties at the same time so that both parties
agree to and are satisfied with decisions.

As a result, important questions are posed on the use of AI:

– Whether people in different roles in AI-informed decision making have differ-
ent perception of fairness, trust, and satisfaction with decision making?

– Whether there is a compromise on fairness between people in different roles
in AI-informed decision making?

In order to answer these questions, this paper takes AI-assisted talent short-
listing as a case study and investigates perception of fairness, trust, and satisfac-
tion with decision making of both recruiters and applicants in AI-informed deci-
sion making. Different introduced fairness (refers to the inherent algorithmic fair-
ness) andmodel performance are introduced andmanipulated inAI-informeddeci-
sion making tasks. The responses in perception of fairness, trust, and satisfaction
from recruiters and applicants at each introduced fairness level and model per-
formance are compared to find any differences in responses from recruiters and
applicants. Compromises on fairness between decision-maker and people affected
by decisions are identified if both parties have the same responses in perception
of fairness, trust, or satisfaction under a given introduced fairness level and model
performance. A user study has been conducted to answer research questions.
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2 Related Work

2.1 Fairness-Accuracy Trade-Off

A large amount of work has shown that fairness usually comes with a trade-
off over accuracy. Zliobaite [38] presented a theoretical and empirical analysis
of trade-offs between accuracy and fairness. They argued that comparison of
non-discriminatory classifiers needs to account for different rates of positive pre-
dictions, otherwise conclusions about performance may be misleading in binary
classification. Martinez et al. [20] used Pareto frontiers to dynamically re-balance
subgroups’ risks to minimize performance discrepancies across sensitive groups
without causing unnecessary harm. They argue that even in domains where fair-
ness at cost is required, finding a non-unnecessary-harm fairness model is the
optimal initial step. Pleiss et al. [23] investigated the tension between minimis-
ing unfairness across different population groups while maintaining calibrated
predictions. It shows that maintaining cost parity and calibration is desirable
yet often difficult in practice. They argue that as long as calibration is required,
no lower-error solution can be achieved.

Wang et al. [27] showed that traditional approaches that mainly focus on opti-
mising the Pareto frontier of multi-task accuracy might not perform well on the
trade-off between group fairness and accuracy. They proposed a new set of met-
rics to better capture the multi-dimensional Pareto frontier of fairness-accuracy
trade-offs uniquely presented in a multi-task learning setting. Zhao and Gor-
don [31] theoretically and empirically investigated the problem of quantifying
the trade-off between utility and fairness in learning group-invariant representa-
tions. They proved a lower bound to characterize the trade-off between fairness
and the utility across different population groups.

2.2 Human Responses to AI

Since AI is often used by humans and/or for human-related decision making
[26], humans’ responses to AI play an important role in AI-informed decision
making. This section reviews some of the most investigated human responses
to AI including human’s perceived fairness (perception of fairness), trust, and
satisfaction.

The perception of fairness is a central component of maintaining satisfac-
tory relationships with humans in decision making [1]. The perception of fair
treatment on customers is found to be important in driving trustworthiness and
engendering trust in the banking context [24].

In AI-informed decision making, algorithmic factors have been studied on
how the technical design of an AI system affects people’s fairness perceptions.
For example, Lee et al. [16] found that people had different variations in the
preferences for the three fairness metrics (equality, equity, efficiency) impacted
by the decision. Human-related information has also been investigated on their
effects on the perception of fairness. For example, education and age have been
found affecting both perceptions of algorithmic fairness and people’s reasons for
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the perception of AI fairness [14]. Zhou et al. [37] found that introduced fairness
is positively related to perception of fairness.

User trust in AI-informed decision making has been extensively investigated
from different perspectives. Zhou et al. [33,36] argued that communicating user
trust benefits the evaluation of effectiveness of machine learning approaches.
Confidence score, model accuracy and users’ experience of system performance
have been studied on their effects on user trust [30,34]. Zhou et al. [35] found that
the presentation of influences of training data points significantly increased the
user trust in predictions, but only for training data points with higher influence
values under the high model performance condition.

Theoretical arguments and empirical evidence suggests that satisfaction be
among the most important of reactions to the appraisal process [15]. User’s
satisfaction is another factor that affects the effectiveness of AI-informed decision
making. For example, Allam and Mueller [2] found that visual and example-based
explanations integrated with rationales had a significantly impact on patient
satisfaction in AI diagnostic systems.

These previous work primarily focuses on responses from one party such
as decision-maker’s response or response of people affected by decisions in AI-
informed decision making. However, less attention has been paid to responses
from both sides of decision-makers and people affected by decisions in AI-
informed decision. This study investigates the responses from both sides in AI-
informed decision to find their differences and whether there is a compromise
over decisions.

3 Preliminary Knowledge

Fairness is a complex and multi-faceted concept that depends on context and
culture [3]. Various mathematical definitions of fairness have been summarised
because of various reasons such as different contexts/applications, different stake-
holders, impossibility theorems, as well as allocative versus representational
harms. It shows that it is impossible to satisfy all definitions of fairness at the
same time [3].

In this study, the statistical parity, one of group fairness definitions, is used
to represent fairness. The statistical parity suggests that a predictor is fair if the
prediction Ŷ is independent of the protected attribute Z so that

P
(
Ŷ |Z

)
= P

(
Ŷ

)
. (1)

It also means that subjects in both protected and unprotected groups have
equal probability (P ) of being assigned to the positive predicted class. Taken
the recruitment as an example, this would imply equal probability for male and
female applicants to have positive predicted recruitment:

P
(
Ŷ = 1|Z = 0

)
= P

(
Ŷ = 1|Z = 1

)
(2)
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where Z = 0 represents male applicants and Z = 1 represents female applicants.
Based on these preliminaries, statistical parity difference (PD) is defined as:

PD =
∣∣∣P

(
Ŷ = 1|Z = 0

)
− P

(
Ŷ = 1|Z = 1

)∣∣∣ (3)

where PD is in the range of [0, 1]. PD = 0 represents the complete fairness,
and PD = 1 represents the complete unfairness. This paper manipulates various
fairness levels of PD between [0, 1] (called introduced fairness in this paper) to
learn how introduced fairness is perceived and affects user responses in algorith-
mic decision making.

4 Method

4.1 Case Study

A company needs to recruit staff for a position. They posted the position descrip-
tion and a large number of applicants submitted their applications for the posi-
tion. A machine learning system named Automatic Recruiting Assistant (ARA)
is simulated to help to process applications and shortlist applicants for interview-
ing. ARA is a laboratory simulated candidate assessment tool that is supposed
to use historical recruiting data to train a machine learning model and predict
whether a candidate will be shortlisted.

In this study, a participant is told to act as either a Recruiter (R) or an Appli-
cant (A) but not both. The participant is then required to conduct tasks and
answer questions by giving information on the ARA performance information
and shortlisting information of male and female applicants as a role of recruiter
or applicant.

4.2 Fairness-Performance Space

In this study, introduced fairness (defined in Eq. 3) and model performance of ML
models are manipulated and presented to participants to investigate responses
of participants on the perception of fairness, trust, and satisfaction. There-
fore, introduced fairness and performance form a 2D space. In this 2D space,
each point represents a task condition of introduced fairness and model perfor-
mance pair (f, p). The values in the dimension of model performance investigated
include 70%, 80%, and 90% which correspond to low, middle, and high model
performance respectively.

In the fairness dimension of the 2D space, the gender of applicants is used as
the protected attribute in the recruitment scenario. The PD is used to measure
the fairness and defined as the difference of shortlisted rate by the gender. In
this study, fairness is introduced by manipulating PD with its discrete values of
0, 0.1, 0.2, 0.3, . . . , 0.8, 0.9, and 1.0, where each PD’s discrete value was used as
a measure of fairness to define the number of male and female applicants as well
as number of male and female applicants shortlisted in each task respectively.
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4.3 Task Design

In this study, tasks with different model performance and introduced fairness
pair conditions were designed to investigate their effects on user’s perception of
fairness, trust, and satisfaction in AI-informed decision making. Table 1 shows
11 fairness presentation examples corresponding to different PD values. In this
table, “Rate (M)” and “Rate (F)” represent the predicted success rate of male
and female applicants respectively, “Male #” and “Female #” represent the
number of male and female applicants respectively, and “Listed Male #” and
“Listed Female #” represent the number of shortlisted male and female appli-
cants respectively. All together 33 (11 × 3) tasks were designed and conducted by
each participant based on eleven (11) fairness presentation examples and three
(3) model performance levels (70%, 80%, 90%). Two additional training tasks
were also conducted by each participant before the formal tasks. The order of
formal tasks was randomized during the experiment to avoid any bias.

Table 1. Examples of fairness presentation in tasks.

Example# PD Rate (M) Rate (F) Male# Female# Listed Male# Listed Female#

1 0 0.8 0.8 10 10 8 8

2 0.1 0.7 0.8 10 5 7 4

3 0.2 0.6 0.8 5 5 3 4

4 0.3 0.8 0.5 5 10 4 5

5 0.4 0.8 0.4 5 5 4 2

6 0.5 0.7 0.2 10 5 7 1

7 0.6 0.8 0.2 5 5 4 1

8 0.7 0.1 0.8 10 5 1 4

9 0.8 0.9 0.1 10 10 9 1

10 0.9 0.1 1 10 10 1 10

11 1 1 0 5 10 5 0

During the task time, each pair of fairness and model performance is firstly
presented to participants with visualisations. Figure 1 shows the screenshot of
visualisations in a task conducted in the experiment. The left barchart shows
the number of applicants and number of applicants shortlisted by ARA for both
males and females, which implies the fairness status in shortlisting for males and
females. The right circular chart represents the model accuracy in shortlisting.
After reading these information, participants are then asked to agree or reject
decisions made by the ARA followed by different survey questions on perception
of fairness, trust, and satisfaction in AI-informed decision making.

4.4 Scales of User Responses

Different questionnaires with Likert-type response scales are used in this study
to collect responses of perception of fairness, trust, and satisfaction of users. The
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Fig. 1. Visualisation of fairness and model performance (accuracy of ARA).

scale is on a 5-point Likert-type response scale ranging from 1 (strongly disagree)
to 5 (strongly agree) for each questionnaire on perception of fairness, trust, and
satisfaction respectively.

Trust Scales. Trust is assessed with four items using self-report scales as the
following [21].

– I am happy with help provided by the ARA.
– I have confidence in the advice given by the ARA.
– I can depend on the ARA.
– I can trust the ARA to make the correct selection.

Scales of Perception of Fairness. The perception of fairness of participants
is assessed with the following two items.

– Overall, female and male applicants are treated fairly by ARA.
– I believe the ARA is a competent performer for both men and women.

Scales of Satisfaction. The satisfaction of participants is assessed with the
following item [15,25]: overall, I am satisfied with the recruiting by considering
both the performance of ARA and the fairness.

4.5 Experiment Setup

Due to social distancing restrictions and lockdown policies during the COVID-
19 pandemic, this experiment was implemented using Python web framework
and was deployed on the cloud server online. The deployed application link was
then shared with participants to invite them to conduct tasks. In this study,
participant responses to tasks were stored in a MySQL database.
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4.6 Participants and Data Collection

In this study, 60 participants were recruited to conduct experimental tasks via
various means of communications such as emails, text messages and social media
posts who were mainly university students and 19 participants were females. Of
all participants, 30 participants randomly acted as job applicants and other 30
participants acted as HR recruiters in the experiment.

After each task was displayed on the screen, the participants were asked to
answer questions based on the task on perception of fairness, trust, and satis-
faction in the AI-informed decision making respectively.

Fig. 2. Overall average responses in trust, satisfaction, and perception of fairness
regardless of model performance.

5 Analyses and Results

This section analyses the collected data to answer our questions. We aim to
understand whether two parties affected by decisions from AI have the same
responses to AI-informed decision making from the perspectives of perception of
fairness, satisfaction and trust.

When two parties have similar responses to decisions from AI under a given
introduced fairness condition, it shows that they both agree with the effects
of the specific introduced fairness on the decision. We can say that there is
a compromise between two parties regarding the introduced fairness despite
the decision maybe affecting them differently. When two parties show different
responses to decisions under a given introduced fairness condition, it implies that
there is a disagreement between two parties regarding the introduced fairness.
The outcomes of the study can be used to customise user interface or take
different measures when there is no compromise.

In order to perform the analyses, we first normalised the collected data of
trust, satisfaction, and perception of fairness with respect to each subject to
minimise individual differences in rating behavior using the following equation:

V N
i =

Vi − V min
i

V max
i − V min

i

(4)
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where Vi and V N
i are the original rating values and the normalised rating values

respectively from the user i, V min
i and V max

i are the minimum and maximum of
the ratings of trust, satisfaction, or perception of fairness respectively from the
user i in all of his/her tasks.

Figure 2 shows the overall average responses of participants in trust, satis-
faction, and perception of fairness (or perceived fairness) regardless of model
performance. t-tests were used to compare differences in trust, satisfaction, and
perception of fairness between applicants and recruiters at each introduced fair-
ness level. There are no statistically significant differences found in both trust
and perception of fairness between applicants and recruiters at each introduced
fairness level. However, it was found that recruiters showed statistically signif-
icantly higher trust than applicants at the introduced fairness level of 0.6 (t =
1.9905, p < .048), and no significant differences were found in trust between
recruiters and applicants at other introduced fairness levels. The results also
show the decreasing trends of trust, satisfaction, and perception of fairness with
the increase of PD values on the horizontal axis (the decrease of introduced
fairness levels), which is consistent with the previous research [37].

Figure 3 shows the average responses of participants in trust, satisfaction,
and perception of fairness per different model performances. t-tests were applied
to compare differences in trust, satisfaction, and perception of fairness between
applicants and recruiters at each introduced fairness level under different model
performances. From Fig. 3, it was found that:

– As it is expected, the recruiters have overall lower satisfaction when per-
formance is low (at the region 1 in Fig. 3), and the applicants have overall
lower satisfaction when fairness is low while performance is high. However, we
observed the higher satisfaction at the region 1 for applicants even if the fair-
ness is low. If we compare it to the region 2, then we can see the actual value
at the region 1 is lower than the region 2. Here we argue that the applicants’
satisfaction is higher than recruiters due to the low model performance.

– We observed that there was a significantly higher level of satisfaction from
recruiters than applicants at the region 2 (t = 2.4918, p < .0156). This can
be explained that even recruiters thought the fairness was poor, they were
still satisfied with ARA.

– We also observed that recruiters showed lower trust under low model perfor-
mance (at the region 3), this is further affected by fairness. If we compare the
region 3 to the region 4, we can see that recruiters trust less at the region 3.
We assume that the recruiters may consider fairness-accuracy trade-off here,
since we can observe that their trust at the region 4 is higher than applicants,
where the fairness is lower.

– We observed that the compromised setting can be achieved. It is obvious that
high model performance (90%) and high fairness (close to 0 of introduced
fairness) were highly rated and satisfied by both parties (the region 5). And
low performance (70%) and low fairness were rated low and less satisfied by
both parties (the region 1 and the region 4). The more compromised setting
is at the region 7 that both parties had the same satisfaction.



200 J. Zhou et al.

Fig. 3. Average responses of participants in trust, satisfaction, and perception of fair-
ness per different model performances.

– Recruiters showed statistically significantly higher level of perception of fair-
ness than applicants at the introduced fairness level of 0.7 when the model per-
formance is 70% (t = 2.8366, p < .0062). Furthermore, we can see that almost
all recruiters rated the perception of fairness higher than applicants when the
model performance is 70%. This is maybe because that the recruiters may
expect lower fairness to improve the performance given the trade-off between
accuracy and fairness. However, recruiters showed statistically significantly
lower level of satisfaction than applicants at the introduced level of 0.4 when
the model performance is 70% (t = 3.1949, p < .0023). Under each studied
model performances, we have not found other significant differences between
recruiters and applicants in trust, satisfaction, and perception of fairness at
different introduced fairness levels.
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6 Discussions

Multiple parties are usually involved in an AI-informed decision making, e.g.
decision-maker and people affected by decisions. Different parties may have dif-
ferent responses to a decision from AI-informed decision making. This study took
the AI-assisted talent shortlisting as a case study and investigated satisfaction,
trust, and perception of fairness of parties (recruiters and applicants) related to
decisions respectively. The results showed that compromises on fairness did exist
in AI-informed decision making under given model performances and introduced
fairness levels.

Fairness heuristic theory [6,18] suggests that when individuals face uncertain
circumstances they rely on impressions of fairness to determine whether to coop-
erate and enter into exchange relationships with the other party, which suggests
that individuals use fairness judgements to form their perceptions of trust. The
social exchange theory [5] also argues that fair actions and the treatment by
one party generate reciprocation in the form of trust by the other party in the
exchange. In the context of talent shortlisting in human resource settings used
in this paper, recruiters were unsure about the outcomes from the Automatic
Recruiting Assistant when the model performance was low, resulting in the low
perception of fairness as shown in the region 4 in the right diagram of the first
row in Fig. 3, and therefore also resulting in low trust as shown in the region 4
in the left diagram of the first row in Fig. 3. The similar conclusion was observed
for applicants as stated in the previous section.

Fig. 4. Heider’s POX model.

In the psychology of motivation, balance theory proposed by Fritz Heider
[13] conceptualizes the cognitive consistency motive as a drive toward psycho-
logical balance. It assumes that individuals retain their psychological balance
and develop their relationships with others or things within their circumstances.
They prefer to maintain a balanced state through a series of cognitive opera-
tions that balance out their likes (represented by “+”) and dislikes (represented
by “-”) to create equilibrium. Balance theory is often termed POX theory, rep-
resenting the balanced/imbalanced state of individuals from the relationships
among one person (P), the other person (O), and an attitudinal thing or object
(X), as shown in Fig. 4. In this triadic relationship, a balance is achieved when
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there are three positive (+) links or two negatives (-) with one positive. Balance
theory has been used in social psychology to understand various interpersonal
relationships such as service quality, customer behaviour understanding [7,17].
Such balance theory can be used to explain the satisfaction of applicants and
recruiters across different model performances in the talent shortlisting example
conducted in this paper. As shown in Fig. 3, applicants showed an overall higher
satisfaction level with AI than recruiters when the model performance is 70%,
and vice versa when the model performance is 90%. All these result in “tensions”
between applicants and recruiters. To reduce “tensions”, this study modulated
the model performance to 80%, and recruiters and applicants reached a balanced
state (the region 7), where recruiters and applicants compromised and had the
similar level of satisfaction.

The findings from this study can be used to help find compromising points
between decision-maker and people affected by decisions so that both parties
can reach for a balanced state in AI-informed decision making. Such findings
also suggest AI developers as well as AI users that different stakeholders can be
considered together in AI-informed decision making so that all stakeholders can
satisfy with decisions.

7 Conclusion and Future Work

Since multiple parties are usually affected by decisions in AI-informed decision
making and they have different responses regarding the fairness, this paper inves-
tigated whether there is a compromise on fairness in using AI models by exam-
ining user’s satisfaction, trust, and perception of fairness in AI-informed deci-
sion making. The paper took the AI-assisted talent shortlisting as a case study
to compare responses to decisions from recruiters and applicants. The results
showed that compromises on fairness did exist in AI-informed decision mak-
ing under given model performances and introduced fairness levels, which can
be used to help find compromising points between decision-maker and people
affected by decisions so that both parties can reach a balanced state The future
work of this study will focus on the setup of a compromise profile for an AI-
informed decision making through investigation of wider model performances
such as from 50% to 100% and such profile can be used to guide the use of AI
solutions for more effective decision making.
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Abstract. Machine learning has been widely applied to extract insights
from streaming data. However, ethical issues such as fairness have
emerged related to these decision-support systems. Feature engineering
methods have shown potential in representing and learning of fairness
learning. However, these techniques have not been applied to streaming
data. In this paper, we proposed a fairness-aware swarm-based machine
learning for streaming data. The novelty of this algorithm is in the util-
isation of two swarms, one for classification by building a network of
prototypes and one for discrimination mitigating using feature weight-
ing. Experiments with well-known datasets in fairness learning show that
the proposed methods can improve fairness while maintaining the clas-
sification performance.

Keywords: Fairness · Swarm intelligence · Feature weighting · Data
stream

1 Introduction

Machine learning (ML) have recently been adopted in a wide range of appli-
cations from finance, education to healthcare [2,23]. ML is applied to analyse
and extract insights from data streams have become increasingly popular. Data
stream classification is one of important tasks in data stream analytics and has
attracted more attention in community due to their practical applications. Since
ML models are trained based on data collected from human activities and life
styles (e.g. business users, customers), they may inherit some unfairness against
underrepresented groups. Discrimination ML methods make decisions toward
certain individuals or groups [21]. The issue of discrimination is often related to
the use of sensitive or protected attributes such as race, gender, religion in the
prediction model. Ethical issues are found in many ML algorithms. For example,
the online advertisements on Facebook Ads, Google Ads exclude groups such as
families with women and children or disability in housing advertisements [5].
Since these policies/practices can hurt certain groups or individuals, they have
become one of the important topics in the ML research community.
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Since discrimination is caused by the use of protected features, a simple solu-
tion for fairness would remove the protected features. However, it may result in
a poor prediction accuracy due to the potential information loss. In addition,
it may not completely remove discrimination due to the existence of admissible
features which can work as a proxy for sensitive features to affect on the model’s
decision. Therefore, feature selection methods [4,6,27] have been proposed as
pre-processing methods to select a subset of features that can mitigate the dis-
crimination and maintain the accuracy. Results of these fair FS methods have
shown promising in addressing fairness in ML. However, most of them are com-
putationally expensive [4,27], and they mainly focus on static data, so they are
not suitable for online learning in which models are continuously updated based
on the incoming data streams. In addition, their performance is still limited due
to the potential information loss when removing features. Instead of removing
features, feature weighting can mitigate information loss by assigning a smaller
weight for protected and admissible features and a larger weight for inadmissible
features. In this study, a combination of online learning and feature weighting
using swarm intelligence to approach fairness for data stream is proposed.

Swarm intelligence (SI) is an important category of evolutionary computation
[20] that is inspired by the collective behaviours and social intelligence of animals.
The behaviours and interactions of individuals in swarm form the intelligence for
learning methods. Individuals find the best solution in their local area and share
the information of the current state with others to guide their future search and
explore better solutions [26]. SI is a potential approach for learning in dynamic
environments because SI methods learn based on interactions between individ-
uals which learn from each other by sharing knowledge to adapt themselves to
environments and cooperate to solve a problem. Particle Swarm Optimisation
(PSO) is a well-known algorithm which uses a population of particles to search
for solutions [14]. PSO has been widely applied to feature weighting methods
[25] which assign high weight for informative features and vice versa in differ-
ent machine learning tasks. Recently, dynamic self-organising swarm method
(DSOS) [24] was proposed to incrementally learn a network of prototypes rep-
resenting data. DSOS can automatically adjust the set of prototypes based on
the distribution of incoming data. In this study, we propose a Fairness Aware
Swarm-based Machine Learning for Data Streams (FAS Stream). Specifically,
FAS Stream system includes a DSOS swarm and a PSO swarm. DSOS is used to
learning prototypes for classification while a PSO swarm is used to find feature
weights for mitigating discrimination in learning. The major contributions of
this study are:

– A new fairness aware online classification method based on two swarms, one
for classification task and one for improving fairness.

– A new feature weighting method based on swarm intelligence to reduce dis-
crimination for streaming data.
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2 Background

2.1 Machine Learning for Data Streams

Machine learning (ML) has recently been used to explore patterns/knowledge
from streaming data. Many online learning algorithms have been proposed for
clustering, classification and sequential pattern mining on data streams [22].
However, learning streaming data is still challenging because data arrives con-
tinuously and data distribution may change over time (known as concept drifts)
[17]. Therefore, to maintain their performance, ML methods are required to
evolve and adapt to the changes in learning data stream [22]. Major learning
methods which attract more attention from the data stream learning community
include ensemble learning, incremental learning and lazy learning. An ensem-
ble is composed of individual learners whose decisions are combined to make
a final decision. This approach works based on the assumption that multiple
individual learners can cover changes and different distributions in streaming
data [16]. Results in Adaptive Random Forest Classification [8] and Accuracy
Weighted Ensemble classifier [29] have shown the advantages of this approach.
Another approach in data stream learning is incremental learning whose mod-
els are adjusted overtime to adapt quickly to the new concepts in streaming
data [9]. Hoeffding Tree Classifier [10] and Hoeffding Adaptive Tree Classifier
are well known incremental learning methods. Also, lazy methods such as k-
Nearest Neighbour (KNN) classifier and regressor are also popular in learning
data stream. SAMKNN [19] is a state-of-the-art method in this category. It com-
bines long term memory and short term memory to make decisions in streaming
data.

2.2 Fairness Aware Machine Learning

Fairness aware learning methods aim to mitigate discrimination while main-
tain their prediction performance. Three main approaches for fairness aware
machine learning are pre-processing, in-processing and post-processing, which
aim to improve fairness by intervening either before, during, or after the model
training process. Data transformation to remove discrimination is one of the
first pre-processing approaches to fairness. To make the training data distribu-
tion fairer among the protected and unprotected groups, these methods change
the data class labels (massage data) [12] or re-weight the instances to create a
more balance sample [12]. These techniques are lately applied to data stream
in Fairness-enhancing interventions (FEI) [11] to modify incoming data chunks
before using them for model training. FEI is one of the rare fairness-aware ML
methods for data stream that follow the pre-processing approach. The results of
these data transformation methods showed that they helped classifiers improve
their performance in terms of accuracy and fairness. However, modifying and
removing data may lead to meaningless data [15].

Fair feature selection (FS) is another pre-processing approaches that avoid
the data transformation limitation. Instead of modify data instances (horizon-
tal approach), feature selection tries to remove sensitive or protected features
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(vertical approach) to mitigate bias in the trained model. There are two main
approaches in fair FS, associational and causal. While associational methods [4]
aim to reduce the inequalities in the prediction outcomes between two groups of
the sensitive feature, causal methods [27] try to identify and remove the influence
of sensitive features on the outcomes. In [4], a fair FS method that follows associ-
ational approach is proposed using forward feature selection to find the minimal
subset that maximise the objective function of AUC −weight ∗ discrimination.
Different weights were investigated with three classification methods and six
discrimination measures showed that feature selection helps to produce fairer
prediction when increasing the weight. Following causal approach, FAIREXP
[27] first constructs new features from the original features by recursively apply-
ing transformations with the aim of extracting unbiased and useful information
for prediction. The constructed features are selected using forward FS to improve
accuracy and removed using backward FS for fairness improvement. While the
causal approach provides a better understanding of the influence of sensitive fea-
tures on the outcomes, it usually assume to have the underlying causal structure,
which may not always be available, especially in a dynamic environment as data
stream. Besides FS and feature construction, feature weighting has also been
considered to address fairness. In [3], a system is developed to allow users manu-
ally choose feature weights. By showing boundaries that partition the space into
regions where the desired fairness constraint is satisfied, the system helps users to
obtain greater fairness in their subjective weight selection process. However, this
approach can not scale well with high dimensional data. In general, results of fair
FS, feature construction, and feature weighting have shown promise; however,
they have not been explored in streaming data.

Instead of investigating fairness in the training data, in-processing methods
try to modify models in the training process to remove discrimination. They usu-
ally inject fairness or discrimination measure to the objective function. Fairness
aware strategies have been proposed for tree-based algorithms [1,13], logistic
regression and support vector machines [30]. Fair tree-based methods [31,32]
are also proposed for streaming data. They are developed based on the Hoeffd-
ing Tree algorithm [10] by incorporating fairness gain into information gain to
improve both accuracy and fairness.

Although pre-processing and in-processing approaches are popular; they are
inapplicable when training models are not allowed to modify. Post-processing
techniques are used instead to modify the output predictions for fairness.

In general, most existing studies mainly focus on static data. Research on
streaming data has still limited. To the best of our knowledge, feature engineering
and feature weighting has not yet been applied to fairness aware online learning.

3 Proposed Method

3.1 Overview

The goal of this research is to develop a fairness-aware classification system for
data streams based on swarm intelligence. Figure 1 presents a system overview
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with two main components, and Fig. 2 provides a closer look at each component.
The first component is a dynamic self-organising swarm-based classification with
long-short terms memory (SAMDSOS) that can build adaptive classifiers to
streaming data incrementally. The second component is a particle swarm opti-
misation (PSO) feature weighting algorithm. PSO works as a pre-processing step
to evolve a weight for each feature to minimise the discrimination of the classifi-
cation model. It is only triggered when the new coming data chunk has a higher
classification discrimination than the average obtained so far. The learnt feature
weights are then fed into SAMDSOS for classification. Detail explanation of the
two components will be presented in the following subsections.

3.2 Memory Updating Strategy in SAMDSOS

SAMDSOS is a new algorithm extended from the KNN Classifier with Self
Adjusting Memory for Heterogeneous Concept Drift (SAM) algorithm [19] which
applies long-term memory and short-term memory to address data stream clas-
sification problems. The key difference between SAMDSOS and SAM is the
incorporation of the dynamic self-organising swarm (DSOS) algorithm [24] to
efficiently update and evolve the long-term memory.

SAMDSOS maintains two memories including MS to store current concepts
and ML to store past concepts. While short term memory MS records the most
recent data points which allow the proposed system to adapt quickly to the
changes in data distributions, the key task of the ML is to incrementally learn
the global data distribution and maintain useful patterns for classification. In
SAMDSOS, DSOS is used to construct the long-term memory ML by learning a
prototype network that capture the non-stationary data distribution from data
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streams (more details are provided in Sect. 3.3). In the prototype network, each
node is a particle whose position will be updated using DSOS. Predictions are
made based on the competition between three sub-models including MS , ML

and MC (combining MS and ML) based on their performance over time.
Algorithm 1 shows the pseudo-code of SAMDSOS. Initially, both MS and

ML is empty. The first data chunk D1 = {(x1, y1), . . . , (xn, yn)} in the data
stream (xi and yi are the feature values and label of example i respectively) will
be used to populate MS and to create the minimal prototype network of ML

(the first two particles with positions copied from the two first data points). In
the first stage, default feature weights (weights of sensitive features are zero and
weights of other features are one) are applied to ML. Over time, if the size of
MS reach a pre-defined threshold max STM size, the outdated data will be
transferred into ML (lines 10–15) which will be updated by using DSOS. To
avoid conflicts in predictions from MS and ML, a repairing procedure in ML is
triggered (lines 16–24). With a new data point (xi, yi), SAMDSOS will identify
all data points in MS with the class yi and determine the longest distance θ
between these points and xi. The distance θ can be used as an adaptive radius
within which data points will belong to the same class. In ML, the distances
between particles and xi will be calculated. The particles that have distances
less than θ and the label different from yi will be moved away from xi. These
particles will be moved to their closest neighbour whose label is the same as
the particle and out of the threshold radius. The goal of this strategy is to keep
similar prototypes close together and far away from inconsistent ones. Further-
more, to ensure that MS contains the most current concept, a model adaptation
mechanism is applied (lines 25–36). Whenever the concept changes, a bisection
method is used to refine MS based on interleaved Test-Train errors on the cur-
rent window data [19]. Discarded data point in MS will be transferred to ML

using DSOS.

3.3 Updating Long Term Memory with DSOS

ML is a swarm that includes a set of particles incrementally learning to opti-
mally represent input data based on DSOS algorithm [24]. Each incoming data
is considered as a food source that attract particles to move forward to. The two
particles become neighbours when they are the two closest ones to a food source.
Whenever a food source is in a particle coverage, the particle and its neighbours
will share the information to move, consume and gain energy. If the food source
is far from particles, a new particle is created. The connection between parti-
cles and their neighbours are maintain by repulsive force. If the two particles
do not share common food source over time, the repulsive force increase. The
connection between two particles is broken when the repulsive force reach a typ-
ical threshold. Thank to this mechanism, the swarm avoid crowded groups of
particles. When the repulsive force meets a threshold, the connection between
two particles will be broken. They are not neighbours do not share food source
information any more. Over time, exhausted particles (zero energy) or isolated
particles (no connection) will be removed. Due to the page limitation, technical
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Algorithm 1: SAMDSOS
Input : Data: Dt = {(x1, y1), . . . , (xn, yn)} in which n is the window size,

feature weights evolved by PSO
Output: updated MS and updated ML

1 begin
2 Initialise Swarm in DSOS: ML = {} ;
3 Initialise the short term memory MS = {} ;
4 if ML is empty then
5 initialise the first two particles in ML by using the values of the first

two data inputs {(x1, y1), (x2, y2)} in Dt ;

6 end
7 for each xi ∈ Dt do
8 MS ← MS

⋃{xi} ;
9 m ← MS .size ;

10 if m < max STM size then
11 numshift ← max STM size − m ;
12 moved set ← {(x1, y1), . . . , (xnumshift, ynumshift)} ;
13 MS ← remove moved set from MS ;
14 Use moved set and feature weights to update ML by using DSOS

algorithm ;

15 end
16 X ← x′ in MS with same class as xi ;
17 Find x∗ ∈ X with the largest distance from xi ;
18 θ ← distance(x∗,xi) ;
19 Z ← z ∈ ML with distance (z,xi) < θ and class different from yi;
20 for z in Z do
21 Z ′ ← z′ ∈ ML and same class as z ;
22 Choose the closest z∗ ∈ Z ′ with distance(z, z∗) > θ ;
23 Move z to z∗ with moving step equal to 0.5 ∗ distance(z, z∗)
24 end
25 m ← MS .size ;
26 if m > 2 ∗ min size then
27 for l in (m, m/2, m/4, ...), with l > min size do

28 Ml
S ← {(xm−l+1, ym−l+1), . . . , (xm, ym)} ;

29 end

30 Choose l where Ml
S get smallest error in making prediction. ;

31 if l < m then
32 moved set ← {(x0, y0), . . . , (xm−l, ym−l)} ;
33 MS ← remove moved set from MS ;
34 Apply DSOS to update ML based on moved set and feature

weights;

35 end

36 end

37 end
38 return updated MS and updated ML

39 end
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details related to DSOS are not presented in this paper. Interested readers can
check the original DSOS for more details [24]. DSOS is used in this paper instead
of the long term memory adopted in SAM [19] because DSOS can adapt and grow
its swarm based on data rather than replying on pre-defined parameters. This
feature will make SAMDSOS more efficient in terms of memory requirements
compared to SAM.

SAMDSOS uses KNN algorithm in sub-models to make prediction. Each
particle p in ML will be assigned a label Classp based on the distribution of
data points hitting the particles in the earlier updating steps, in which Classp
is the majority class of partile p. To catch new trend in data stream, SAMDSOS
proposes a weighting strategy which gives newer data a larger weight in voting
labels for particles as Eq. (1).

W c
p = Nc

p ∗ 1
t

i=Nc
p∑

i=0

tcp,i (1)

where:

– W c
p : weight of class c in particle p. The class c with the highest weight W c

p

will be assigned to Classp.
– Nc

p: the number of data points with class c hitting the particle p.
– tcp,i: the time when the ith data point with label c hitting the particle p.
– t: arrival time of the last data point. In this paper, we simply use indices of

data points in the original data set as time t.

3.4 PSO for Feature Weighting

The goal of PSO is to determine feature weights that minimise discrimination
and maintain accuracy in classification. It must be noted that PSO swarm here
is independent from the swarm in DSOS discussed earlier. Here, a position of
a particle represents the weights of features. The position of particle k is a d-
dimension vector pk = [pk,1, pk,2, pk,3, ..., pk,d] of real numbers corresponding to
d features and each weight will range from 0 to 1.

To guide particles moving toward fair solutions, this research proposes a
fitness function to evaluate particles. The fitness function shown in Eq. (2) is
the weighting function of accuracy and discrimination.

Fitness(pk) = w1 ∗ acc(pk) + (1 − w1) ∗ (1 − disc(pk)) (2)

where acc(pk) and disc(pk) are the accuracy and discrimination obtained by
applying features with weights for classifying the current window data, respec-
tively. As shown as Eq. (2), a solution with higher accuracy and lower discrim-
ination is the better solution. w1 allow users to control the trade-off between
acc(pk) and disc(pk). PSO is triggered when a data chunk arrives.

Any discrimination measure can be used for disc(pk) in (2). In this method,
equal opportunity difference is chosen due to its popularity [7]. It computes the
rate prediction difference between unprivileged group and privileged group.
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Disc(D) = TPR|(D = unprivilegedgroup) − TPR|(D = privileged) (3)

where Disc(D) is discrimination of data D, TPR|(D = unprivilegedgroup) and
TPR|(D = privileged) are true positive rate of privileged group and unprivi-
leged group, respectively.

At the first run of PSO, particles are initialised with a random position.
The position and velocity of particles are updated by using Eqs. (4) and (5),
respectively.

pi+1
k = pik + vi+1

k (4)

vi+1
k = w ∗ vi

k + c1 ∗ r1 ∗ (pbestik − pik) + c2 ∗ r2 ∗ (gbesti − pik) (5)

where pik and vi
k are the position and velocity of particle k at iteration i. w is the

inertia weight representing the moving momentum of particles. pbestpbestpbestik and gbestgbestgbesti

are the local best position of particle k and the global best position of the swarm
respectively. c1 and c2 are acceleration. r1 and r2 are constant randomised in [0,
1] anew at iteration i.

In this paper, we proposed two PSO algorithms to optimise the fitness func-
tion in Eq. (2). The two algorithms PSO 1 and PSO 2 are shown in Algorithm 2
and Algorithm 3 respectively. PSO 1 only uses the traditional updating scheme
in PSO to update the local best positions and the global best solutions based on
the proposed fitness function. PSO 2 applies a much stricter rule to update the
local best and global best positions. In PSO 2, only new positions that provide
better accuracy and discrimination will be used to update local best positions.
The global best position in PSO 2 is only updated if the particle with the best
rank (for both accuracy and discrimination) has a better fitness value. Compared
to PSO 1, PSO 2 is more conservative to prevent the SAMDSOS classification
system from making big changes in its predictions.

Algorithm 2: PSO 1
Input : Data window
Output: Best found solution

1 begin
2 Initialise PSO population;
3 for iter = 1 to max iterations do
4 for k = 1 to Popsize do
5 Calculate Fitness(pppk) using Eq. (2);
6 Update pbestpbestpbestk if Fitness(pppk) > Fitness(pbestpbestpbestk);
7 Update gbestgbestgbest if Fitness(pppk) > Fitness(gbestgbestgbest) ;

8 end
9 Update velocity/position of each particle k using Eqs. (5) and (4);

10 end
11 Return gbestgbestgbest ;

12 end
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Algorithm 3: PSO 2
Input : Data window
Output: Best found solution

1 begin
2 Initialise PSO population;
3 for iter = 1 to max iterations do
4 for k = 1 to Popsize do
5 Calculate accuracy acc(pppk) and discrimination disc(pppk);
6 Update pbestpbestpbestk if acc(pppk) >= acc(pbestpbestpbestk) and

disc(pppk) < disc(pbestpbestpbestk);

7 end
8 Rank particles based on acc (descending) and disc (ascending) ;
9 Choose particle pppr with lowest total ranking of acc and disc ;

10 Update gbestgbestgbest if Fitness(pppr) > Fitness(gbestgbestgbest);
11 Update velocity/position of each particle k using Eqs. (5) and (4);

12 end
13 Return gbestgbestgbest ;

14 end

4 Results and Analysis

This section introduces the datasets, machine learning methods and parameter
settings used in our experiments.

4.1 Experiment Setting

To examine the performance of FAS Stream in fairness aware learning from
streaming data, this study uses three datasets [18] used commonly in fairness
learning (shown in Table 1). For these datasets, we convert categorical features
into binary features. Table 1 also shows discrimination (disc) level of the whole
dataset calculating by applying Eq. (3) to the entire dataset. Sensitive attribute
(S.A) and unprivileged group (U.P) are also shown in Table 1.

Table 1. Datasets used in the experiments

Dataset N d Domain S.A U.P Data disc

Adult (Adult) 32,561 14 Finance Sex Female 0.1963

Dutch census (Dutch) 60,420 11 Finance Sex Female 0.2951

KDD Census-Income (Census) 284,556 37 Finance Sex Female 0.0753

SAMDSOS have been run with max STM size = 10% of the number of total
instances, w1 = 0.7, Window size = 1000. For PSO 1 and PSO 2 algorithms, the
population size is 20, and the maximum iterations are 40. Other PSO parameters
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Table 2. Accuracy and discrimination obtained by FAS Stream and other methods

Method Metric

Adult Dutch Census

Accuracy Disc Accuracy Disc Accuracy Disc

FAS 1 0.7923 0.0937 0.7863 0.1964 0.9379 0.0058

FAS 2 0.7896 0.0859 0.7907 0.1947 0.9377 0.0056

NoFW 0.8067 0.1232 0.8024 0.3190 0.9380 0.0054

HeuFW 0.8068 0.1142 0.7941 0.2040 0.9379 0.0053

KNN 0.8012 0.1336 0.7793 0.2958 0.9377 0.0176

SAM 0.7849 0.0890 0.7654 0.3215 0.9386 0.0108

are similar to those adopted in the PSO literature [28]. All the algorithms are
implemented in Python.

To examine how feature weighting affects the accuracy and discrimination of
FAS Stream, in experiments, we run FAS Stream with different feature selection
strategies:

– FAS 1: We run FAS Stream with algorithm PSO 1 for feature weighting.
– FAS 2: We run FAS Stream with algorithm PSO 2 for feature weighting.
– NoFW: We disable feature weighting processing in FAS Stream.
– HeuFW: We set the weight of sensitive features to zero and others to one

when running FAS Stream.

4.2 Compare with Other Methods

To show the effectiveness of FAS Stream in building classifiers with a high clas-
sification performance and desirable discrimination, this section compares the
accuracy obtained by FAS Stream with lazy classifiers. Because PSO is a stochas-
tic algorithm, we execute FAS Stream with PSO feature weighting strategies on
these datasets in 30 independent random runs. Table 2 shows the average test
accuracy and discrimination (disc) by FAS Stream in 30 runs versus accuracy
and discrimination obtained by Lazy learning methods (KNN and SAM). The
ideal method is the one with the highest accuracy and lowest discrimination.
The results show that although FAS Stream strategies do not reach the high-
est accuracy, its discrimination is significantly lower than other methods. FAS
Stream strategies (first four methods in Table 2) obtain lowest discrimination in
the three datasets. The two methods with PSO-based feature weighting (FAS 1
and FAS 2) perform very well in terms of minimising discrimination in the adult
and Dutch datasets. FAS 1 and FAS 2 are the second and the third methods on
Census, but the difference in discrimination with other FAS Stream strategies
is not significant. All above findings are also supported by Wilcoxon statistical
tests with a significant level of 0.05.
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(a) t = 2000 (b) t = 9000 (c) t = 31000

Fig. 3. PSO feature weighting process over time.

The results here demonstrate the effectiveness of FAS Stream (FAS 1 and
FAS 2) in weighting relevant features to minimise discrimination in the classi-
fication task. The results also shows the limitations of simple/naive strategies
such as NoFW and HeuFW in reducing discrimination. Regarding accuracy,
HeuFW and NoFW win at Adult and Dutch datasets, respectively while SAM
achieves the highest accuracy for the Census dataset. However, the gaps in terms
of accuracy between the methods compared in our experiments are very small.

4.3 Further Analysis

Because FAS 2 slightly performs better than others, it is further investigated
in this section. In Table 3, metrics including accuracy and discrimination (disc)
are used to compare the performance of FAS 2 with different window sizes. In
general, there are no significant differences in the performance of FAS 2 with
window sizes in the Dutch and Census datasets. For the adult dataset, FAS 2
seems to perform slightly better at minimising discrimination when the window
size is 1000. In general, the results suggest that FAS 2 is sensitive to the window
size.

Table 3. Influence of window size

Window size Metric

Adult Dutch Census

Accuracy Disc Accuracy Disc Accuracy Disc

200 0.7860 0.0918 0.7892 0.1825 0.9367 0.0054

500 0.7992 0.0930 0.7970 0.1993 0.9370 0.0058

700 0.7812 0.0903 0.7977 0.1826 0.9380 0.0066

1000 0.7864 0.0774 0.7790 0.1862 0.9386 0.0059

We also examine how PSO feature weighting works overtime. As discussed
earlier, PSO feature weighting is called to optimise feature weights once dis-
crimination increases. Figure 3 compares fitness values of the best solution (gbest
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shown in orange) and the average fitness of the whole population (avg.population
shown in blue) through 40 iterations at different times t. The first time PSO is
executed (t = 2000), it needs more than 25 iterations to find the best solution
and converge. At t = 9000, PSO needs roughly 20 iterations to converge. How-
ever, at t = 31000, there is no improvement made by PSO. These observations
suggest that FAS Stream has successfully and incrementally learned good feature
weights for minimising discrimination over time.

5 Conclusion

Handling discrimination is challenging within streaming data. To deal with this
challenge, this paper proposes a system made up of two swarms to incrementally
build a classifier and reduce discrimination in data. The novelty of this algorithm
is the use of feature weighting for discrimination reduction based on swarm
intelligence. Experiments on popular datasets in fairness learning show that the
proposed method is competitive compared with baseline methods. Further anal-
yses show that FAS Stream has the capability of learning from flexible window
sizes and incrementally learning feature weights for mitigating discrimination
over time. In future studies, we will try to apply multi-objective optimisation to
maximise accuracy and minimise discrimination.
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Abstract. Detecting intrusions on a network through a network intru-
sion detection system is an important part of most cyber security
defences. However, the interest in machine learning techniques, most
notably neural networks, to detect anomalous traffic more accurately
has led to a rise of these network intrusion detection systems being a
black box, opaque to the user with little ability to explain its decisions
and robbing the defenders of useful information that could lead them
vulnerable to an opportune attacker. This paper makes several contri-
butions to addressing this through augmenting an autoencoder-neural
network model with external memory. It first explores the effect of the
memory size and the addressing scheme used on F1-score performance,
finding optimal performance plateaus at memory sizes greater than 50,
and that addressing schemes to increase the sparsity of the memory usage
have negligible effect on performance. In addition, this work has gener-
ated several tools to better explain the model. This includes plotting
which memory slots are strongly matched with what classes, visually
and numerically measuring how much external memory each class takes
to be properly encoded, and using the contents of the external memory
to not only identify similar previously seen classes, but identify simi-
larity with unseen classes and help gauge how outdated a model may
be based on how the results align with domain knowledge. These tools
and techniques show promising results in demonstrating the explainabil-
ity potential of external memory with regards to an intrusion detection
system and how they might be applied to help secure networks.

Keywords: Network intrusion detection · Memory-augmented
models · Autoencoder · Cyber security · Deep learning

1 Introduction

Detecting cyber crime is becoming more important for businesses and organi-
sations every year. It’s estimated to cost Australian businesses up to $29 bil-
lion a year and the threat environment is “worsening” and that the “growth
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of cyber crime is outstripping our ability to respond” [1]. A successful breach
can leak important information such as customer passwords, compromise the
integrity of a business’ data, or lead to significantly reduced ability to function
if resources are taken offline such as through a ransomware attack. As such,
research is constantly being conducted to develop better tools suited to defend
against attackers. This work will focus specifically on network intrusion detec-
tion systems (NIDS). NIDS detect activity in a variety of ways, which can be
summarised into 2 main distinctions, signature-based [9] and anomaly-based [5].

In recent years, deep neural networks in particular have increased in pop-
ularity in cyber security [2,4,21]. However, they are usually black-box models,
or models where the inner workings cannot be easily explained to the user and
the model cannot justify the result clearly. This is detrimental, in particular
to the field of cyber security, as without having a working knowledge of the
model, potential blind spots in its functionality may go unnoticed by defenders
and taken advantage of by hackers. As going back to models such as decision
trees, which are highly explainable [12], would lead to a loss of the performance
gained through using these models [4], there have been attempts at making
neural networks and other black-box models more explainable. These attempts
include using the generic LIME [15], which manipulates the input being fed into
the model, and measure the effect on the output to provide information such
as important features that drive the models’ decision making. This was used
to explain unsupervised clustering of network traffic analysis in [14], as well as
for deep neural networks on supervised datasets [19]. The idea of manipulating
inputs to gain insight into the model was also used in [13], which used an adver-
sarial approach to find the minimum change required from the input to change
the classification of incorrect samples to their correct class.

To address the shortcomings of deep learning in cyber attack detection, this
paper achieves two important goals. The first goal is to not only explore explain-
ability within the specific context of intrusion detection and external memory [7],
but to also do so using more recent datasets [16]. The second goal is to explore
more characteristics of the external memory. In particular interest is the effect
of the size of the memory has on performance, as well as further investigating
the hard shrinkage used in memory augmented autoencoder of [6], which is sup-
posed to affect the addressing of the external memory [7] by promoting stronger
but fewer matches and thus increasing classification performance. This was only
tested on the KDD99 dataset, and has not been visualised using read/write
weightings of the external memory to see the actual effect that it has on the
makeup of the external memory. This provides a good example to investigate
the power of the explainability provided by external memory to explain changes
in the model’s operations and performance. As such, the chosen model will use
the memory augmented autoencoder as a base, and feed the encoded data it
generates into a neural network for multi-class classification.
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2 Background

External memory was first developed by [7] as part of what was called a Neural
Turing Machine. The premise was that a neural network could be augmented
with external storage (memory), where it could store and retrieve information to
assist it in its task, much the same way that a computer uses its random access
memory (RAM) to expand its capabilities. What makes it different from existing
models, such as LSTM which also has a memory component, is that external
memory can be de-attached from any kind of sequence. It is less about storing
information for the next piece of data, but rather storing information that may
be useful at some later unspecified date.

This model was first tested with simple tasks such as copying sequences, or
a priority sort, but was expanded to handle more complicated tasks in [20] such
as question-answering problems and in [8], including navigating graphs, question
answer problems and the block puzzle. The advantage with external memory is
that the reading and writing of the external memory can be tracked and provide
valuable insight into the model, what it is doing and why. This was used by [11]
to create a model that could explain its inference on sequential data on both
a T-maze test, where it must make a correct turn at a T junction based on
information it has seen previously, and the story close test, where it must pick
the best ending to a story based on a series of premises. In addition to tracking,
the contents of the external memory could be used just as easily, as it can be
easily retrieved in a meaningful format due to the external nature of it.

Differentiable neural computers (DNC)

Applications of external memory
to the field of cyber security and
intrusion detection are still underde-
veloped. External memory has been
used to classify different types of mal-
ware using restricted training data
[18], is briefly mentioned in [6] which
used a memory augmented autoen-
coder primarily for anomaly detec-
tion in images and video, as well
intrusion detection in [3] using a sim-
ple memory network. However, in latter cases, they do not explore using that
external memory to explain their findings or their performance, and evaluation
was limited to the very old KDD99 dataset [17].

3 Methodology

Model Structure. The chosen model consisted of 2 components, the autoen-
coder and the classification neural network Fig. 1. The autoencoder was based
on the work conducted in [6] and inserts the external memory between the tra-
ditional encoder and decoder.
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Fig. 1. Autoencoder and classification model structure

3.1 Encoder

The traditional part of the encoder involves having a series of dense layers with the
ReLu activation function reduce the dimensionality of the data [6]. This encoded
data is then passed to the memory module. This memory module contains the
external memory, which is a vector in the shape of N × D. Here, N is the num-
ber of memory slots, also referred to as the memory size, and D is the dimensions
of the encoded data. In each slot of the external memory, the contents represent a
typical pattern of the encoded data found during the training stage.

When a piece of data is passed through the memory module, its similarity to
each slot in the memory is calculated using the cosine distance. These similarity
scores are stored inside one vector, which is then passed through a softmax
operation to generate an attention vector of size N and the contents of which
sum to 1. This attention vector represents how strongly each slot in the external
memory matches with the input.

Finally the contents of each slot in the external memory is weighted by the
matching value in the attention vector, and the weighted contents of the memory
are added together to form one final vector of shape D. Thus the memory slots
that more strongly match with the input have more of an effect on the final
output than those that only weakly match. In this way, the input data is not
directly involved with creating the output, but instead serves to generate a query
(through the attention vector) to the external memory, with the latter then
responsible for creating the output [6].

Hard Shrinkage. This is an optional operation between the creation of the
attention weight, and its multiplication with the memory, which takes the form
fλ(x) = 1|x|≥λx where 1 is the indicator function and λ is a sparsity threshold.
The goal of this operation is to reduce the number of memory slots the encoder
uses to reconstruct the input in training.

Training. The result generated by the external memory is then passed into
the decoder, which is a symmetric copy of the Dense layers at the start of the
model, creating an output in the same dimensions as the original input [6].
This autoencoder is trained to minimise the difference between the input and
the output, using the mean squared error loss function and Adam optimizer
[10]. However, it is only trained with data labelled as an attack sample. For
the NSL KDD dataset, this is any data not with the label ‘normal’, and for
the 2017/2018 dataset, it is any data not with the label of ‘benign’. This is to
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promote the external memory to generate representations for each type of attack
class within, and to further separate out normal/benign traffic from attack traffic
by performing well for the attack samples, but poorly for normal/benign traffic
and generating a more anomalous output.

Once fully trained, the encoder aspect of the autoencoder, consisting of the
dense layers and external memory module, is separated out to be used for the
classification component. This component is a neural network consisting of a
series of dense layers with ReLU activation, with a final dense layer at the end
with a softmax activation, providing the final prediction. This neural network
is not trained on the raw input data, but instead the encoded data. Unlike
the autoencoder training, this training uses all of the data, including the nor-
mal/benign class and is compiled with sparse categorical cross-entropy loss.

Model Shape and Hyperparameters. The number of layers, and the number
of units in each dense layer for both the encoding and decoding, and the clas-
sification neural network were fine tuned for both the NSL KDD and CIC2017
dataset. This was done by generating potential model shapes based on a list
of values, creating and training the model and then evaluating its performance
in terms of F1 score. The CIC2017 results were used for the CIC2018 dataset
due to the similarity between the datasets, and the large size of the CIC2018
dataset making it impractical to experiment with many combinations. The cho-
sen model shape and hyperparameters is not guaranteed to be optimal for enough
combinations were not tested, however they ensured that a reasonable level of
performance could be achieved.

As it is impractical to perform fine-tuning step for every external memory size
that was investigated, some preliminary tests were conducted with a makeshift
model to find a suitable memory size to conduct all of these fine-tuning experi-
ments with. The chosen value for this memory size was 250, which appeared to
show promising results. Memory size and its effects were properly explored after
this fine-tuning stage and are detailed in the results section of this paper.

For the NSL dataset, the range of values [110, 90, 70, 50] were used for
the number of neurons in the encoding layers, experimenting with 1–3 layers
of depth. For the neural network, the neuron counts [60, 45, 30, 15] were used
experimenting with 1–2 layers of depth. The optimal model shape was found to
be [110, 90] for the autoencoder, and [60, 45] for the neural network.

For the CIC2017 dataset, the range of values [60, 45, 30, 15] were used for
the autoencoder, with 1–2 layers of depth and the range of values [45, 30, 15]
with a depth of 1–2 layers were used for the neural network. These values were
lower than those used for the NSL dataset due to the reduced dimensions of the
data. The optimal model shape was found to be [60, 45] for the autoencoder,
and [45, 30] for the neural network.

Some of the model’s hyperparameters, such as the number of epochs, the
learning rate and the batch size, were also fine tuned. The chosen values for
these hyperparameters, for both the autoencoder and the neural network, were
150 epochs, a learning rate of 0.0001, and a batch size of 128.
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4 Experiments

We use three well-known IDS datasets: NSL-KDD [17], CIC2017 and CIC2018
[16]. Substantial work was needed to prepare the datasets for experiments as
per the literature. As the classes are very imbalanced, we mainly measure the
performance using F1 score, with and without weighting by class population.

4.1 Memory

Memory Size. Once the model’s general design was finalised, the first hyper-
parameter of the external memory, the size, was explored. A series of models
were trained with various memory sizes for both the NSL KDD dataset and the
CIC2017 dataset, and the performance of each model was logged.

NSL-KDD : As the external memory size increases, Fig. 2 highlights the initial
poor performance with very low memory and the very quick stagnation and
plateau of performance as the number of memory slots reach 100 and over. This
is inline with [6], which found that after a certain threshold, the memory size had
little to no effect on the performance. Before that threshold, the memory size
was insufficient to store enough representations within to perform effectively and
performance was compromised. Interestingly, this threshold was much lower for
this dataset than it was for the UCSD-Ped2 used in [6], which had performance
plateauing at memory sizes 1000 and over. This is likely as a result of the UCSD-
Ped2 dataset consisting of video and image data which is comparatively more
complex data wise than anomaly detection of network traffic.

When the memory size varies from 3 to 1500, Table 1 shows that the perfor-
mance gain in the early stages comes from more successfully classifying the rare
minority class r2l, with general improvements in the other classes from size 3 to
size 15, and what would appear to be slight fluctuations from size 15 onwards.

Table 1. Category-wise F1 score vs memory size

Memory size 3 15 250 1500

DOS 0.799 0.842 0.861 0.848

Normal 0.798 0.786 0.786 0.798

probe 0.574 0.645 0.619 0.687

R2L 0 0.065 0.327 0.273

U2R 0 0.011 0.012 0.018

macro avg 0.434 0.470 0.521 0.525

Weighted avg 0.670 0.694 0.725 0.728

CIC2017 : The general performance profile as shown in Table 2 and Fig. 2,
shows a similar pattern to the NSL KDD dataset emerges, albeit with much
higher classification performance. It appears that there is a more gradual ascent
in low memory performance as the size increases than in the NSL KDD dataset,
however it still approaches and reaches a plateau point of performance at memory
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Fig. 2. Graph of memory size and performance on NSL-KDD and CIC2017

sizes greater than 50 where the addition of external memory does not yield any
gains at a similar size of external memory.

For individual class performance, one can notice that there exists several
attacks, such as the Web Attack variants and Infiltration that universally achieve
poor performance. However, for the other classes, once again, significant perfor-
mance leaps can be found between memory size 3 and 15, and 15 and 250.
More notably with this dataset than the NSL KDD dataset is the lack of drastic
improvement in the classification of the BENIGN class when compared to attack
classes. This is most likely as a result of BENIGN being the majority class, and
being omitted from the training helping to more easily differentiate it.

CIC2018 : Due to the large size of the 2018 dataset, the full range of memory
sizes were not used. Instead, the values 15, 250 and 1500, to represent low,
medium and high sizes of external memory were used to gain a snapshot of
performance, shown in Table 3. Although the full shape of the curve cannot be
seen due to this limited data, it appears to support the findings of the previous
2 datasets, with a relatively significant jump in macro f1-score from 15 to 250,
and a relatively minor one between 250 and 1500 that is consistent with random
variation found between other models.

The results on 3 datasets suggest that external memory past a certain size
offers little to no performance gain in classification. Below this size, performance
is affected, increasingly dropping off as memory size tends towards 3. In addition,
this threshold value appears lower than the one suggested by [6], highlighting
how simpler data, such as network traffic information, can more effectively utilise
lower sizes of external memory than more complicated data, such as images and
video. The potential explanation behind this is explored later.

Space Addressing. The sparse addressing was tested using the external mem-
ory sizes 15, 250 and 1500 to represent low, medium and high sizes of memory
respectively. The sparsity threshold to be used was suggested to be between 1/N
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Table 2. Category-wise F1 score vs Memory Size on CIC2017

Memory size 3 15 250 1500

BENIGN 0.96626 0.98576 0.98737 0.98737

Bot 0.0 0.34069 0.51155 0.51155

DDoS 0.86044 0.98465 0.99096 0.99096

DoS GoldenEye 0.5967 0.90996 0.94308 0.94308

DoS Hulk 0.87957 0.9499 0.9501 0.9501

DoS Slowhttptest 0.72558 0.88077 0.91236 0.91236

DoS slowloris 0.54967 0.92129 0.94969 0.94969

FTP-Patator 0.52839 0.95663 0.97661 0.97661

Heartbleed 0.0 0.38889 0.68889 0.68889

Infiltration 0.0 0.0 0.0 0.0

PortScan 0.83829 0.90817 0.92072 0.92072

SSH-Patator 0.45444 0.92555 0.93237 0.93237

Web Attack Brute Force 0.0 0.0 0.03214 0.03214

Web Attack Sql Injection 0.0 0.0 0.0 0.0

Web Attack XSS 0.0 0.0 0.00509 0.00509

macro avg 0.42662 0.61015 0.6534 0.6534

weighted avg 0.94084 0.97639 0.97915 0.97915

Table 3. Category-wise F1 score vs Memory Size on CIC2018

Memory size 15 250 1500

Benign 0.993 0.993 0.993

Bot 0.998 0.998 0.999

Brute Force -Web 0.339 0.474 0.445

Brute Force -XSS 0.603 0.606 0.597

DDOS attack-HOIC 0.999 0.999 0.999

DDOS attack-LOIC-UDP 0.831 0.817 0.842

DDoS attacks-LOIC-HTTP 0.993 0.994 0.995

DoS attacks-GoldenEye 0.989 0.994 0.966

DoS attacks-Hulk 0.999 0.999 0.997

DoS attacks-SlowHTTPTest 0.600 0.580 0.597

DoS attacks-Slowloris 0.957 0.967 0.964

FTP-BruteForce 0.782 0.775 0.782

Infilteration 0.010 0.018 0.021

SQL Injection 0.1 0.228 0.306

SSH-Bruteforce 0.999 0.999 0.999

macro avg 0.746 0.763 0.767

weighted avg 0.978 0.978 0.978
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and 3/N by [6], where N is the size of the external memory. However testing
2/N and 3/N yielded NaN loss values in practice. As such, 1/N was chosen as
the value to be used for this experiment.

While the effect of the size of the external memory was consistent with [6], the
effects of sparse addressing through hard shrinkage were not. For the NSL KDD
dataset, instead of increasing the performance of the model as was suggested,
it appeared to have negligible effect, as shown in Table 4 by comparing the
No (no hard shrinkage activated) and Yes (hard shrinkage enabled with shrink
threshold set to 1/N) rows. While performance does increase for 250 memory size,
the increase is only for the weighted f1 average and not the macro, suggesting
that it has performed marginally better for the majority class, and performance
decreases for both metrics when comparing memory sizes 15 and 1500.

For the CIC2017 dataset, the reduction in performance in memory size 15
does appear quite significant, dropping around 3% for the weighted, and 16% for
the weighted average. However, once again no significant increase of performance
is noted with the higher memory sizes. A similar pattern is present for the
CIC2018 dataset, although the performance decrease for the memory size of 15
is not quite as significant as for the CIC2017 dataset.

The possible explanation behind this discrepancy between the original paper
[6] and this paper is explored in the Explainability experiment.

Table 4. Hard shrinkage comparison

NSL-KDD CIC2017 CIC2018

Size F1 Weighted F1 F1 Weighted F1 F1 Weighted F1

15 No 0.4646 0.6928 0.6391 0.9758 0.7468 0.9785

15 Yes 0.4559 0.6870 0.4696 0.9488 0.6527 0.9675

250 No 0.5044 0.7093 0.6349 0.9797 0.7632 0.9783

250 Yes 0.4989 0.7161 0.6340 0.9774 0.7716 0.9784

1500 No 0.5143 0.7240 0.6524 0.9778 0.7672 0.9785

1500 Yes 0.5073 0.7123 0.6350 0.9774 0.7605 0.9781

4.2 Explainability

Mapping Memory Activation. The external memory of the autoencoder,
representing what patterns and common occurrences in the data it has learnt
through the training process, can be used to explain the model’s performance
and provide insights into each class of attack and the connections between them.
The first technique used was examining and graphing which memory slots were
strongly activated by each class of attack. In the normal encoding process, the
input data is encoded using the initial dense layers. This result is then used
to generate a vector the size of the external memory; comparing the encoded
input with each slot in memory using the cosine distance, and then passing the
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final vector through a softmax function. Finally, this vector acts as an attention
vector is multiplied with the external memory to generate the output. However,
if this final step is left out, the attention vector can be used to indicate which
memory slots are strongly matched with the input and which slots are not. When
averaged out and normalised for each class, these vectors provide information
on the general memory activations, in addition to allowing comparisons between
these activations.

Classes that strongly activated similar memory slots could be highly related,
matching with the contents of the memory and suggesting that the information
learnt in the training process applies to both sets of data. This could be used
to explain potential confusion between classes in classification, and common
features/patterns that are shared between classes that could be used in further
analysis in identifying future types of attacks.

This insight in to the functioning of the model can also be used to explain
the findings generated in this paper when investigating the size of the external
memory and any hard shrinkage operations on the performance of the model.

Fig. 3. Plotted memory activations of NSL with size 3, 25 and 250

Size of Memory. It can be hypothesised that the lack of performance with small
amounts of external memory can be attributed to not having sufficient slots in
memory to represent all the types of attacks. This leads to a homogenisation of
output in the model and reduces performance for not only the rarer classes of
attacks as it cannot sufficiently reconstruct them, but also the majority classes
as their memory encodings are compromised by trying to generalise too much.

When plotting the memory activations of each class in the NSL KDD dataset
with memory size of 3, this fact becomes apparent. Looking at Fig. 3, one can
see that both dos and u2r, as well as normal and r2l share incredibly similar
patterns of activation with each other. It also becomes apparent how difficult it
is for the encoder to distinguish between 5 types of classes, using only 3 memory
slots due to the limited memory possibilities.

Expanding the memory size to 25, one can see that although there still exists
similarities between classes, the difference in memory patterns have become
more distinct. For example, memory slot 18 shows clear distinction in values
between different classes. This contrast is important in making each class dis-
tinctly encoded inside the external memory and ensuring that the encoded rep-
resentations of each class when later used in the classification module are in the
most useful form.
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Further expanding memory size to 250, the lack of improvement of in per-
formance when increasing the memory size past a certain point also becomes
more apparent. As the memory size increases, the usage of the memory does
not increase at the same rate. This leads to higher sparsity in the memory and
thus more memory slots not contributing to the output generated. Once this
saturation point has been achieved, adding extra memory is only increasing the
sparsity of the memory, not expanding any representations found within.

Shrinkage. The same technique, with some modifications, can be applied to
investigating whether the hard shrinkage is actually reducing the number of
memory slots used by each class and promoting stronger matches with fewer
slots. While in extreme cases it can be easily to see the difference in the sparsity
of the memory, to be better judge this aspect, another graph can be generated by
sorting each row from low to high. While the relation of memory slots between
rows is lost, it shows the general shape and tail of the activation for each type of
class, and allows comparisons with how much of the memory is used, and how
quickly the strength of the match tails off. Figure 4 shows the sorted memory
activiation of CIC2017 with two shrinkage thresholds 1 and 0.2 respectively,
which clearly illustrates the effect.

Fig. 4. Sorted memory activations of CIC2017 with max 1.0 and 0.2

When the same process is applied to the model that was trained with hard
shrinkage on, the reduction in memory slot usage and stronger matches becomes
immediately apparent. This suggests that the hard shrinkage does promote spar-
sity in the use of the memory as [6] claims for the CIC2017/2018 dataset. How-
ever this does not necessarily always translate to performance and might depend
on the nature of the data and the model that is in use. Losing too much infor-
mation in the low memory activations may compromise a model’s ability to
accurately classify and perform.

Memory Contents. We are interested in examining the memory contents.
However, a preliminary plot of the heatmap revealed little connection between
memory slots and it had limited insight into explaining anything about the
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model. The next iteration was to use only some of the memory, namely the
memory slots highly activated by each class, excluding memory slots that had
little to no effect on the inputted data. While this did improve the readability of
the graph by reducing the number of memory slots shown, it did little to increase
the insight gathered from the graph.

As such, the contents of the memory had their dimensionality reduced using
PCA down to 2 dimensions. The entire contents of the memory was first plotted
Fig. 5, and then subsequently only the top 15 activations of each class were plot-
ted to show the most representative memory contents. In this case, the memory
slots the attacks activated had quite different contents, shown by the different
shape and location of the dots when comparing the two graphs.

Fig. 5. PCA graph with all memory contents, top 15 infiltration, and top 15 DoS
Golden Eye - CIC2017 dataset

Unseen Attacks. Finally, experiments were also done with trying to predict
how the external memory would react to an unseen attack that is similar to an
existing attack it has been trained on. The reasoning behind this was the fact
that one could leverage the external memory to show how up to date the model
was with current attacks, and whether or not it would need to be retrained with
new data. If the unseen attack activated much of the same memory slots as its
similar counterpart than the model could perform just fine. However, if it was
something far off, or confused with another, very dissimilar type of attack, it
could be used as evidence that the external memory has become outdated and
needs to be retrained with newer data. This is incredibly important to know in
the field of cyber security, as resources are often constrained and knowing when
they need to be spent vs when they can be saved could be essential in the proper
operations of a network security system.

This unseen attack was artificially introduced by withholding an attack sam-
ple from the training set. For this purpose, the class Web Attack XSS was chosen
from the CIC2017 dataset, due to the very similar memory activations it has with
Web Attack Brute Force, shown in Fig. 6. The model was trained with only access
to the Web Attack Brute Force class, and after training, the memory contents
for both classes were graphed using the aforementioned method.

While there exists a slight difference between the graphs, the majority of the
points are of the same memory slots, and those that are not exist in the same
general area. This shows the adaptability of the encoded memory to handle
unseen attacks that are similar to ones that it has trained on before, in addition
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Fig. 6. PCA graph with top 15 Web Attack Brute Force (seen in training) and top 15
Web Attack XSS (unseen in training) - CIC2017 dataset

to highlighting a useful visual metric on how well generalised the model is for
unseen attacks that are similar to attacks in the training sample.

5 Conclusion

The comprehensive study has revealed that past a certain threshold, which
appeared to be approximately 100, additional memory slots offered little to no
extra performance to the model. It also found that the shrinkage function to
promote memory sparsity had mixed effects on performance, rather than the
positive one found in [6].

Not only was the average match with external memory gathered and plotted
as a heatmap, but the contents of the external memory was reduced to 2 dimen-
sions and plotted as a dot graph. These visual tools allow the user to not only
identify areas of commonality between classes of attacks through comparison,
but to identify when the model may be becoming outdated and in need of fresh
data and new training through comparing unseen attacks (simulated through
leaving out a class) with existing classes that are expected to be similar.

Similarly, numeric metrics were designed to describe the sparsity of the mem-
ory through measuring the maximum value in the averaged activations, as well
as the number of memory slots required to reach a threshold of the total match.
This provides the reader with a picture of whether the data is strongly matched
with few memory slots, or more weakly matched with more memory slots.
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Abstract. Maximizing the classification performance and minimizing
the feature subset size are two key objectives in multi-objective feature
selection. Most existing works treat these two objectives equally. How-
ever, from the perspective of decision-makers, the preferences of these
two objectives are different, that is, the classification performance is
more important than the number of selected features. Besides, improving
the classification performance is also more challenging than reducing the
number of selected features. To deal with this issue, this paper proposes
a preference-inspired multi-objective evolutionary algorithm, which con-
sists of three major components: 1) a fitness function is proposed to
give more preference to the objective of classification performance; 2)
based on the analysis of solutions’ distribution, an irrelevance learning
method is proposed to detect the irrelevant features; 3) a dimensionality
reduction method is proposed to remove irrelevant features and further
improve the classification performance of feature subsets. By comparing
the proposed method with five state-of-the-art multi-objective evolution-
ary algorithm-based feature selection methods, empirical results on nine
classification datasets demonstrate that the proposed method is able to
obtain a set of feature subsets with better classification performance.

Keywords: Evolutionary computation and learning · Feature
selection · Multi-objective optimization · Classification

1 Introduction

The explosive growth of data in the current era has brought a wealth of informa-
tion, but also produced a large number of useless data [5]. High-dimensional data
poses severe challenges to current learning tasks (such as classification). Having
many features can easily lead to the overfitting of the classification model and
the degradation of the classification performance. To improve the utility of high-
dimensional data, feature selection (FS) plays a crucial role in machine learning
and data mining [9,12]. It aims to select the informative features and remove
irrelevant, redundant, and noisy features from the original feature set. The ben-
efits of FS in classification are manifold [1]: 1) data compression, reducing the
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data dimensionality when data volume is large and data storage space is limited;
2) performance improvement, boosting both the classification performance and
the generalization ability of the classifier; 3) data interpretation and understand-
ing, gaining knowledge about the process of generating data or easily visualize
data; and 4) processing acceleration, reducing training time to increase the com-
putational efficiency.

Based on the relationship with classifiers, FS can be categorized into filter,
wrapper, and embedded methods [17]. Filter methods independently evaluate
each feature by various proxy measures, and then pick out the discriminative
features with top rankings. However, they normally neglect the composite effect
that arises when selected features are put together. Embedded methods incor-
porate feature evaluation into models of classifier training, by which a feature
evaluator is achieved along with the optimization of a classifier. Among the three
methods, wrapper methods are the most time-consuming, but usually exhibit the
best classification performance. Wrapper methods first generate candidate fea-
ture subsets via a search algorithm, and then evaluate the goodness of these
candidate feature subsets based on a classification model. Evolutionary algo-
rithms (EAs) have been recognized as an effective search approach in wrapper
methods given their global search ability, and the population-based property
can approximate a set of trade-off solutions in a single run [3]. Thus, in this
paper, the wrapper method is used to excavate the optima feature subsets for
classification with the assistance of an EA.

Maximizing the classification performance and minimizing the feature sub-
set size are two main objectives in FS, which can be viewed as a multi-objective
optimization problem [10,17]. Unlike most filter and embedding methods that
require the number of selected features to be specified in advance, which is
unknown in reality, multi-objective feature selection can automatically obtain
a set of optimal feature subsets, which are trade-offs between the number of
selected features and classification performance [16]. In the past decade, several
multi-objective EAs (MOEAs) have been proposed to optimize these two objec-
tives to obtain a set of trade-off feature subsets [4,16]. Most existing works treat
the two objectives in FS as being equally important. However, the preferences of
these two objectives are different [6]. It is well known that classification perfor-
mance is more important than the number of selected features in most cases. In
terms of the difficulty of optimizing these two objectives, maximizing the classi-
fication performance is also more challenging than minimizing the feature subset
size, since the latter can be easily achieved by directly reducing the number of
selected features. By contrast, maximizing the classification performance needs
to consider the relevance and redundancy of features and deal with the complex
interaction issue between features. It is challenging to select informative fea-
tures from high-dimensional data which generally contains many irrelevant and
redundant features [7]. These irrelevant and redundant features often impede
classification performance and misdirect classification tasks. Therefore, it is of
great significance to remove irrelevant and redundant features and pay more
attention to improving classification performance in multi-objective FS.
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Goals and Contributions: The overall goal of this paper is to develop an
MOEA to find a diverse set of trade-off feature subsets between the classifica-
tion performance and the feature subset size. More importantly, among the two
objectives in multi-objective FS, the designed algorithm aims to find feature
subsets that achieve better classification performance. To achieve this goal, this
paper proposes a preference-inspired MOEA for multi-objective FS in classifi-
cation, termed PMOFS. Focusing on how to generate and select feature subsets
with better classification performance, a dimensionality reduction operator and
a fitness function in PMOFS are proposed to improve the classification perfor-
mance of feature subsets.

The main contributions of this paper can be summarized as follows:

1. A fitness function is designed during the environmental selection process,
which combines the convergence criterion and the classification performance
criterion, with the aim of prioritizing the objective of maximizing the clas-
sification performance over the objective of minimizing the feature subset
size.

2. Based on the analysis of the population distribution, an irrelevance learning
method is proposed to detect irrelevant features.

3. A dimensionality reduction technique is proposed, which aims to remove irrel-
evant features for offspring solutions and improve their classification perfor-
mance.

The rest of this paper is organized as follows. The details of the proposed
PMOFS algorithm are elaborated in Sect. 2. Section 3 presents the experiment
design. Section 4 reports the experimental results and some discussions. Finally,
Sect. 5 concludes this paper.

2 The Proposed Approach

2.1 Problem Statement

By minimizing the selected feature ratio fratio(xxx) and the classification error
rate ferr(xxx), a multi-objective FS problem can be formulated as:

min FFF (xxx) = (fratio(xxx), ferr(xxx)) = (
∑D

i=1 xi

D , 1 − 1
c

c∑

i=1

TPi

|Si| )
where xxx = (x1, ..., xD) ∈ Ω,

xi ∈ {0, 1}, i = 1, · · · ,D,

(1)

where D is the total number of features. xxx is the solution (feature subset). xi=1
and xi = 0 mean that the i-th feature is selected and discarded, respectively.
The first objective fratio(xxx) is the selected feature ratio, which is equal to the
ratio of the number of selected features and the total number of features. The
second objective ferr(xxx) is the balanced classification error rate [11], which can
be obtained by evaluating a classifier using the selected feature subset xxx. c is the
number of classes of a dataset. TPi represents the number of correctly identified
instances in class i, and |Si| is the number of instances of class i.
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2.2 Overall Framework

Figure 1 outlines the overall framework of PMOFS. In initialization, the number
of selected features in each solution xxx (e.g., feature subset) is randomly generated,
i.e., |xxx| = rand(1,D). Then, |xxx| features are randomly selected and their bits are
set to 1, i.e., xi=1, i ∈ [1,D]. In each generation, the canonical genetic operators,
i.e., single-point crossover and bit-flip mutation, are used to generate an offspring
population O. Subsequently, guided by a learning array A, a dimensionality
reduction operator is performed to remove irrelevant features of each solution
in O. After evaluating the classification performance of each solution in O, the
nondominated sorting operation [2] is performed to divide the union of the parent
and offspring populations (U = P ⋃ O) into different nondominated front levels.
Then, the irrelevance array A can be learned according to the distribution of the
union population U . At last, the environmental selection operator (Algorithm 3)
is used to select elite solutions from the union population U as the next parent
population P. Once the stopping criterion is satisfied, i.e., the maximum number
of function evaluations, the nondominated feature subsets will be regarded as
output.

Fig. 1. The framework of PMOFS.

The novelty of PMOFS lies in three operators: irrelevance learning, dimen-
sionality reduction, and environmental selection, which will be described in detail
subsequently.

2.3 Irrelevance Learning

Redundant features normally cannot improve the classification performance, but
will lead to longer training time, while irrelevant or noisy features can degenerate
the classification performance. In evolutionary FS, since the population-based
search mechanism can generate a lot of feature subsets. One question may arise:
can we learn the irrelevant features through the distribution of the population
in the objective space? The answer is yes.

The proposed irrelevance learning is based on the population’s distribution.
Fig. 2 depicts an illustrative example. In Fig. 2, solution xxx1 selects two features,
and exhibits the best classification performance (i.e., lowest classification error
rate). Solution xxx2 selects three features, two of which are selected by both solu-
tion xxx1 and solution xxx2, i.e., the first and fifth features. However, compared with
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Fig. 2. An example to illustrate the irrelevance analysis.

Algorithm 1: Irrelevance learning
Input: U : the union of the parent and offspring populations U = P ⋃ O;
F(xxx): the nondominated front level for each solution xxx in U .
Output: the learning array A.

1 A = (0, 0, · · · , 0), A ∈ R
D;

2 for each solution xxx ∈ U do
3 S ← {xxx/|xxx/ ≺ xxx and F(xxx) − F(xxx/) ≤ 1,xxx/ ∈ P};
4 for each xxx/ ∈ S do
5 if xxx/ ∧ xxx == xxx/ then
6 A ← A ∨ ((xxx/ ∨ xxx) ∧ (xxx/));

7 Return A.

xxx1, xxx2 selects one more feature (i.e., the third feature) but exhibits a larger clas-
sification error rate than that of xxx1. From this perspective, it can be inferred that
the third feature is more likely to be irrelevant which degrades the classification
performance. As a result, we can label the third feature as irrelevant and avoid
selecting it when generating new feature subsets (solutions). Taking a closer look
at Fig. 2, we can find that solution xxx3 also selects more features (i.e., the second,
third, and fourth features) and has worse classification performance than that
of xxx1, but it is hard to deduce that the second, third, and fourth features are all
irrelevant, since the number of features selected by xxx1 and xxx3 is quite different, so
the second, third, and fourth features selected by xxx3 may contain both relevant
and irrelevant ones. In this regard, in this paper, the irrelevance analysis is only
performed on two solutions that are in the adjacent nondominated front levels.

The pseudo-code of the irrelevance learning mechanism is presented in Algo-
rithm 1. A learning array A, is used to label the useless features. The i-th bit of
A is equal to 1 (Ai = 1) implies that the i-th feature is likely to be irrelevant.
For each solution xxx in population U , we find solutions xxx/ who can dominate xxx,
and xxx/ and xxx are on adjacent nondominated front levels (line 3 of Algorithm
1). If all features selected by xxx/ are also selected by xxx (line 5 of Algorithm 1),
the irrelevant features can be inferred, which are additional features selected
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by xxx. Finally, the bits of these irrelevant features are set to 1 for A (line 6 of
Algorithm 1).

2.4 Dimensionality Reduction

For newly generated offspring solutions in O, the purpose of the dimensionality
reduction operation is to further reduce the number of their selected features
before evaluating them. Algorithm 2 presents the pseudo-code of dimensionality
reduction. For each solution in O, we find the locations of its selected features,
and these features are also learned as irrelevant by A (line 3 of Algorithm 2).
These selected features are then removed with a random probability to achieve
the purpose of removing irrelevance and reducing dimensionality.

Algorithm 2: Dimensionality reduction
Input: O: the offspring population; A: learning array.
Output: the offspring population O.

1 for each xxx ∈ O do
2 for j=1,...,D do
3 if Aj == 1 and xj == 1 then
4 if rand()<0.5 then
5 xj ← 0;

6 Return O.

2.5 The New Fitness Function for Environmental Selection

In environmental selection, instead of utilizing the nondominated front level and
crowding distance to select elite solutions as the next parent population, we
define a new fitness function to prioritize the objective of classification error
rate. The proposed fitness function consists of two criteria, i.e., the convergence
criterion and the classification performance criterion. Specifically, given a fea-
ture subset xxx, the convergence criterion can be naturally represented by its
nondominated front level, i.e., F(xxx); and the classification performance criterion
is represented by the acute angle between xxx and the nondominated solution xxx∗

with the minimum classification error rate (xxx∗ = arg min
xxx∈F1

ferr(xxx)), i.e., θxxx,xxx∗ .

The smaller the angle θxxx,xxx∗ , the better the classification performance of xxx. Dur-
ing the optimization process, xxx∗ is constantly updated as the feature subset with
a smaller classification error rate is found. In order to balance the convergence
criterion and the classification performance criterion, a scalarization approach is
proposed as the fitness function:

min fitness(xxx) = α ∗ cos θxxx,xxx∗ ∗ min(F(xxx) − 1, 1) + (1 − α) ∗ F̂(xxx), (2)
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where α is the dynamic weight coefficient associated with the current evolution-
ary generation g, which has the form of [18]:

α = (1 + δ) exp(−(
g

G )4) − δ, (3)

where δ=1e–8 is a tolerance, G =
gmax

4

√
ln( 1+δ

δ )
, and gmax is the maximum num-

ber of generations. It is obvious that α value will decrease as the evolutionary
generation g increases.

The acute angle between xxx and xxx∗ in the objective space is calculated as

cos θxxx,xxx∗ =
FFF

′
(xxx) • FFF

′
(xxx∗)

||FFF ′(xxx)|| × ||FFF ′(xxx∗)|| (4)

where FFF
′
(xxx) = FFF (xxx) − zzz∗ = (ferr(xxx) − z∗

1 , fratio(xxx) − z∗
2) is the normalized

objective vector for xxx, and FFF
′
(xxx) • FFF

′
(xxx∗) represents the inner product of two

objective vectors FFF
′
(xxx) and FFF

′
(xxx∗), and zzz∗ is the ideal point which represents

the best objective value found so far. ||.|| calculates the norm of a direction. It
is clear that cos θxxx,xxx∗ is in the range of [0, 1].

F̂(xxx) in Eq. (2) is the normalized nondominated front level for feature subset
xxx with the form of

F̂(xxx) =
F(xxx) − Fmin

Fmax − Fmin

(5)

Obviously, Fmin is equal to 1.
The proposed fitness function in Eq. (2) has the following properties:

Property 1. When lim
g→0

α = 1, and lim
g→0

fitness(xxx) = cos θxxx,xxx∗ ∗min(F(xxx)−1, 1),

Eq. (2) is mainly determined by the classification performance criterion.

Property 2. When lim
g→gmax

α = 0, and lim
g→gmax

fitness(xxx) = F̂(xxx), Eq. (2) grad-

ually degenerates to the original dominance relationship.

Property 3. The nondominated solution xxx always has the best fitness value,
since fitness(xxx) = 0 for ∀ xxx ∈ F1.

In the early stage of the search process, α is close to 1, which means that
the value of fitness(xxx) is mainly determined by the classification performance
criterion (Property 1), thus high selection pressure on the classification error
rate is exerted to prioritize the objective of classification performance. In the
later stage of the search, with the value of g approaching gmax, α is close to
0. There is no much room for classification performance improvement, thus the
influence of fitness(xxx) will gradually emphasize the importance of the conver-
gence criterion to generate more well-distributed feature subsets (Property 2).
Since nondominated solutions represent the best solution set found so far, they
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Fig. 3. An example to illustrate how the proposed fitness function selects solutions.

always have the highest priority to be chosen regardless of the changes of the α
value (Property 3).

Figure 3 gives an example to illustrate how the proposed fitness function
selects solutions. In Fig. 3, solution xxx1 is in the second front level (F(xxx1) = 2)
after nondominated sorting, while xxx2 locates in the third front level (F(xxx2) = 3).
In the traditional environmental selection of NSGA-II, i.e., based on nondomi-
nated sorting and crowding distance, the two objectives are treated as equally
important, thus xxx1 will be chosen prior xxx2 since the nondominated front level
of xxx1 is smaller than that of xxx2. However, although xxx1 selects a smaller number
of features than xxx2, its classification error rate is much larger than that of xxx2,
since xxx2 may contain more informative features than that of xxx1. Therefore, in
the proposed fitness function, xxx2 will be preferred to xxx1 when α is large. It is
worth noting that when xxx2 is selected as the solution that forms the next parent
population and uses it to generate offspring, although it selects a larger number
of features, it contains more relevant features which facilitate the improvement
of classification performance. Furthermore, the method proposed in Sect. 2.4 is
conducive to removing its irrelevant features for dimensionality reduction.

Algorithm 3: Environmental selection
Input: U : the union of the parent and offspring populations U = P ⋃ O;
F(xxx): the nondominated front level for each solution xxx in U ;
N : population size.
Output: the parent population P.

1 P = ∅;
2 Remove duplicated solutions in the search space from U ;
3 xxx∗ ← arg min

xxx∈F1
ferr(xxx);

4 Calculate the fitness value of each solution in U according to Eq. (2);
5 The solutions in U are sorted in ascending order according to the fitness value,

and the top N solutions are added to P;
6 Return P.

Algorithm 3 gives the details of the environmental selection operator. During
environmental selection, the duplicated solutions will be removed first, to avoid
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selecting multiple identical solutions, thus increasing the population diversity.
Then, the best N solutions are selected from the union of the parent and offspring
populations based on the fitness value defined in Eq. (2).

3 Experiment Design

3.1 Classification Datasets

Table 1. The characteristics of the classification datasets

Dataset #Features (D) #Classes #Instances
Ionosphere 34 2 351
Sonar 60 2 208
Movementlibras 90 15 360
Hillvalley 100 2 1212
Musk1 166 2 476
LSVT 310 2 126
ORL 1024 40 400
DLBCL 5469 2 77
Prostate-GE 5966 2 102

Nine classification datasets collected from the UCI machine learning repository1

are utilized for testing the performance of PMOFS and its competitors. Table 1
summarizes the characteristics of the datasets. It can be observed from Table 1
that the chosen datasets have different numbers of features, classes, and instances
with an expectation to well represent various real-world cases.

3.2 Comparison Algorithms

Five classical and state-of-the-art MOEAs are chosen as competitors of PMOFS:
NSGA-II [2], MOEA/D [19], SIOM-NSGA-II [15], PMMOEA [13], and DAEA
[14]. NSGA-II and MOEA/D are representatives of Pareto-dominance-based and
decomposition-based MOEAs, respectively, while SIOM-NSGA-II, PMMOEA,
and DAEA represent state-of-the-art MOEA-based FS methods.

3.3 Parameter Settings

Each classification dataset is randomly divided into a training data subset and
a test data subset with the proportions of about 70% and 30% [17], respectively.
During the training process, 5-NN with five-fold cross-validation is utilized to
calculate the classification error rate on the training data subset to avoid the FS
bias [8]. The nondominated feature subsets obtained at the end of the training
process are applied to the unseen test set.
1 http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Each MOEA independently runs 30 times on each dataset. NSGA-II,
MOEA/D, and the proposed PMOFS algorithm all employ the single-point
crossover and bit-flip mutation operators to generate offspring solutions, where
the crossover probability and mutation probability are set to 1.0 and 1/D, respec-
tively, while SIOM-NSGA-II, PMMOEA, and DAEA adopt their specific genetic
operators. The population size for all compared algorithms is set to be the same
as the number of features (N = D) but bounded by 200 (N = 200 if D >
200) to avoid high computational costs on high-dimensional datasets [15]. Other
parameter settings of the compared algorithms follow their original papers.

3.4 Performance Metrics

The following three performance metrics are used to measure the quality of the
final obtained feature subsets:

1. Hypervolume (HVHVHV ) [20]: it measures both the convergence and diversity of
nondominated feature subsets. The larger the HV value, the better the per-
formance of a method.

2. Minimal classification error rate (MCERMCERMCER) [14]: it is the classification error
rate on the test data obtained by the feature subset that has the minimal
classification error rate on the training data.

3. The number of selected features (FNFNFN) [14]: it is the number of selected fea-
tures by the feature subset with the minimum classification error rate.

Fig. 4. Distributions of nondominated solutions obtained by each algorithm on test
sets in terms of median HV value.

4 Results and Discussions

Performance Comparison in Terms of HV: The comparison results derived
from the six compared algorithms in terms of HV are summarized in Table 2.
At first glance, the proposed PMOFS method can achieve superior perfor-
mance on most datasets. Specifically, PMOFS exhibits the best results on six
out of nine datasets, and DAEA has the best performance on the rest three
datasets, while the rest four algorithms (NSGA-II, MOEA/D, SIOM-NSGA-II,
and PMMOEA) do not gain any best result. According to statistical significance
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tests, the proposed PMOFS method performs significantly better than NSGA-
II, MOEA/D, SIOM-NSGA-II, and PMMOEA on eight, eight, three, and three
datasets, respectively, and is not significantly worse than its peer algorithms on
any dataset.

Figure 4 plots the final nondominated solutions with the median HV obtained
by six MOEAs on test sets. As can be seen from the figure, on the small dataset

Table 2. Comparative results (mean and standard deviation) in terms of HV, MCER,
and FN metrics, respectively.

Dataset Algorithm HV MCER FN

Ionosphere

NSGA-II[2] 9.12E-1±1.89E-2≈ 6.55E-2±2.16E-2≈ 4.07E+0±1.46E+0≈
MOEA/D[19] 9.04E-1±2.04E-2≈ 7.44E-2±2.40E-2≈ 3.40E+0±1.30E+0≈
SIOM-NSGA-II[15] 9.09E-1±2.16E-2≈ 6.95E-2±2.51E-2≈ 3.87E+0±1.41E+0≈
PMMOEA[13] 9.05E-1±1.95E-2≈ 7.33E-2±2.26E-2≈ 3.73E+0±1.60E+0≈
DAEA[14] 9.16E-1±1.78E-2≈ 6.08E-2±2.05E-2≈ 3.80E+0±1.21E+0≈
PMOFS 9.13E-1±1.80E-2 6.43E-2±2.08E-2 3.77E+0±1.38E+0

Sonar

NSGA-II[2] 8.03E-1±1.89E-2+ 1.79E-1±4.08E-2≈ 1.06E+1±4.32E+0+
MOEA/D[19] 8.01E-1±2.04E-2+ 1.86E-1±3.11E-2≈ 7.67E+0±3.46E+0≈
SIOM-NSGA-II[15] 8.15E-1±2.16E-2≈ 1.82E-1±3.27E-2≈ 7.30E+0±3.48E+0≈
PMMOEA[13] 8.12E-1±1.95E-2≈ 1.86E-1±3.13E-2≈ 6.80E+0±3.43E+0≈
DAEA[14] 8.16E-1±1.78E-2≈ 1.81E-1±2.28E-2≈ 9.60E+0±5.14E+0≈
PMOFS 8.21E-1±1.93E-2 1.75E-1±2.30E-2 7.10E+0±2.68E+0

Movementlibras

NSGA-II[2] 7.32E-1±3.48E-2+ 2.39E-1±4.06E-2≈ 1.51E+1±6.79E+0≈
MOEA/D[19] 7.32E-1±2.87E-2+ 2.45E-1±3.38E-2≈ 1.07E+1±2.84E+0≈
SIOM-NSGA-II[15] 7.50E-1±3.10E-2≈ 2.49E-1±3.74E-2≈ 1.09E+1±5.58E+0≈
PMMOEA[13] 7.50E-1±2.71E-2≈ 2.51E-1±3.22E-2≈ 1.00E+1±4.16E+0≈
DAEA[14] 7.54E-1±2.65E-2≈ 2.45E-1±3.17E-2≈ 1.29E+1±6.60E+0≈
PMOFS 7.58E-1±2.90E-2 2.39E-1±3.41E-2 1.22E+1±5.29E+0

Hillvalley

NSGA-II[2] 6.05E-1±2.30E-2+ 4.03E-1±2.00E-2≈ 1.22E+1±5.49E+0+
MOEA/D[19] 6.15E-1±1.62E-2+ 4.12E-1±1.90E-2+ 5.53E+0±2.47E+0−
SIOM-NSGA-II[15] 6.24E-1±1.30E-2≈ 4.05E-1±1.51E-2≈ 8.37E+0±4.11E+0≈
PMMOEA[13] 6.13E-1±1.80E-2+ 4.19E-1±2.05E-2+ 4.63E+0±1.97E+0−
DAEA[14] 6.26E-1±1.38E-2≈ 4.03E-1±1.57E-2≈ 8.83E+0±4.44E+0≈
PMOFS 6.28E-1±1.05E-2 4.01E-1±1.24E-2 8.53E+0±5.17E+0

Musk1

NSGA-II[2] 8.12E-1±3.06E-2+ 1.28E-1±2.92E-2≈ 3.24E+1±1.37E+1+
MOEA/D[19] 8.17E-1±2.83E-2+ 1.60E-1±3.14E-2+ 1.53E+1±4.65E+0−
SIOM-NSGA-II[15] 8.62E-1±2.61E-2≈ 1.39E-1±3.05E-2≈ 2.13E+1±9.34E+0≈
PMMOEA[13] 8.48E-1±3.05E-2+ 1.56E-1±3.58E-2+ 1.62E+1±8.59E+0−
DAEA[14] 8.71E-1±2.30E-2≈ 1.27E-1±2.77E-2≈ 2.31E+1±8.47E+0≈
PMOFS 8.64E-1±1.82E-2 1.37E-1±2.11E-2 2.66E+1±1.40E+1

LSVT

NSGA-II[2] 7.65E-1±5.24E-2+ 1.69E-1±5.52E-2+ 3.71E+1±9.35E+0+
MOEA/D[19] 7.81E-1±5.05E-2+ 1.85E-1±5.18E-2+ 2.30E+1±6.74E+0+
SIOM-NSGA-II[15] 8.58E-1±4.33E-2≈ 1.43E-1±4.61E-2≈ 1.18E+1±7.28E+0≈
PMMOEA[13] 8.57E-1±4.33E-2≈ 1.53E-1±7.37E-2≈ 5.03E+0±2.31E+0−
DAEA[14] 8.84E-1±3.88E-2≈ 1.22E-1±4.31E-2≈ 1.22E+1±9.69E+0≈
PMOFS 8.76E-1±4.47E-2 1.31E-1±5.04E-2 8.40E+0±4.85E+0

ORL

NSGA-II[2] 5.64E-1±2.53E-2+ 2.31E-1±3.71E-2+ 3.43E+2±2.32E+1+
MOEA/D[19] 6.03E-1±3.73E-2+ 2.45E-1±4.36E-2+ 2.61E+2±2.75E+1+
SIOM-NSGA-II[15] 7.14E-1±2.55E-2+ 2.13E-1±2.81E-2≈ 1.55E+2±3.33E+1+
PMMOEA[13] 7.85E-1±3.13E-2+ 2.32E-1±3.52E-2+ 4.11E+1±2.03E+1−
DAEA[14] 8.06E-1±2.39E-2≈ 2.08E-1±2.68E-2≈ 3.89E+1±1.89E+1−
PMOFS 8.06E-1±2.59E-2 2.05E-1±2.99E-2 7.42E+1±5.77E+1

DLBCL

NSGA-II[2] 5.20E-1±5.64E-2+ 1.94E-1±9.97E-2+ 2.23E+3±4.33E+1+
MOEA/D[19] 5.34E-1±5.24E-2+ 2.18E-1±7.85E-2+ 2.01E+3±6.72E+1+
SIOM-NSGA-II[15] 6.99E-1±7.16E-2+ 1.78E-1±9.41E-2+ 1.01E+3±5.26E+1+
PMMOEA[13] 8.61E-1±9.34E-2≈ 1.53E-1±1.03E-1≈ 3.63E+0±2.20E+0−
DAEA[14] 8.76E-1±8.80E-2≈ 1.37E-1±9.69E-2≈ 2.67E+0±1.12E+0−
PMOFS 8.95E-1±9.20E-2 1.12E-1±1.01E-1 2.64E+1±3.55E+1

Prostate-GE

NSGA-II[2] 3.15E-1±1.92E-2+ 5.46E-1±3.49E-2+ 2.47E+3±3.26E+1+
MOEA/D[19] 3.28E-1±2.19E-2+ 5.47E-1±3.75E-2+ 2.28E+3±7.26E+1+
SIOM-NSGA-II[15] 4.20E-1±2.60E-2+ 5.45E-1±3.45E-2+ 1.11E+3±2.45E+1+
PMMOEA[13] 5.16E-1±3.68E-2≈ 5.33E-1±4.05E-2≈ 1.97E+0±1.07E+0−
DAEA[14] 5.15E-1±3.75E-2≈ 5.33E-1±4.13E-2≈ 1.93E+0±1.23E+0−
PMOFS 5.26E-1±2.79E-2 5.20E-1±3.02E-2 2.37E+1±2.05E+1

Friedman’s rank

NSGA-II[2] 5.5556 3.3333 6.0000
MOEA/D[19] 5.1111 5.5556 3.3333
SIOM-NSGA-II[15] 3.4444 3.8889 3.5556
PMMOEA[13] 3.7778 4.6667 1.5556
DAEA[14] 1.7778 2.0000 3.4444
PMOFS 1.3333 1.5556 3.1111
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Sonar, under a similar number of selected features, the solutions obtained by
PMOFS tend to have a smaller classification error rate, which can be attributed
to the proposed fitness function that focuses more on the classification perfor-
mance. On the high-dimensional dataset ORL, benefiting from the dimensional-
ity reduction operator, PMOFS can obtain a set of trade-off solutions with very
few selected features, and some of them exhibit good classification performance.

Performance Comparison in Terms of Classification Performance: As
discussed before, in FS, classification performance is more important than the
number of selected features. To verify the effectiveness of the proposed fitness
function in emphasizing the classification performance, Table 2 also reports the
mean and standard deviation of MCER metric values. Similar to HV results,
the MCER results show that PMOFS outperforms the compared methods in
most of the datasets, particularly on the high-dimensional datasets. Besides, the
Friedman’s results show that PMOFS can rank first among the six state-of-the-
art methods, which suggests it has the best overall classification performance.

Performance Comparison in Terms of the Number of Selected Fea-
tures: Intuitively, PMOFS should select a large number of features, since the
proposed fitness function gives more preference to the objective of classification
performance. Particularly at the early and middle stages of evolution, PMOFS
tends to select features with smaller classification error rates but a larger num-
ber of selected features, those feature subsets with a smaller number of selected
features but higher classification error rates are discarded. However, from Fried-
man’s rank results in Table 2, in terms of the comparison results of the FN metric,
we can find that PMOFS can rank second among the six compared methods.
The reason is that the proposed dimensionality reduction mechanism can remove
a large number of irrelevant features to reduce the size of feature subsets. Mean-
while, it is necessary to reduce the number of selected features while ensuring
that the classification performance does not deteriorate. The proposed dimen-
sionality reduction mechanism can achieve this goal because most of the removed
features are irrelevant which could degenerate the classification performance.

Fig. 5. Comparison results between PMOFS and its variants.
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Effectiveness Analysis of the Proposed Irrelevance Learning, Dimen-
sionality Reduction, and Fitness Function: To verify the effectiveness of
each major component of PMOFS, we test the performance of PMOFS with
its two variants: PMOFS-1 removes the irrelevance learning and dimensionality
reduction operators, and PMOFS-2 replaces the fitness function based environ-
mental selection with the nondominated sorting and crowding distance.

Figure 5 plots the results of three methods on the Sonar, Musk1, and ORL
datasets. It can be seen that PMOFS and PMOFS-1 have similar HV and MCER
results, but the number of selected features obtained by PMOFS is smaller than
PMOFS-1. This can be attributed to the fact that the proposed irrelevance
learning and dimensionality reduction operators can identify and remove a large
number of irrelevant features. Since removing irrelevant features is beneficial to
the improvement of classification performance, this can explain why PMOFS
selects a smaller number of features but exhibits similar or even better classifi-
cation performance (e.g., on the Musk1 dataset) with PMOFS-1.

Compared with PMOFS-2, PMOFS can obtain better HV and MCER values,
which verifies the effectiveness of the proposed fitness function in prioritizing the
objective of classification performance.

5 Conclusions

This paper has proposed a preference-inspired MOEA (PMOFS) for handling
the different preferences between objectives for multi-objective FS. In PMOFS,
the designed fitness function enables PMOFS to achieve a smaller classification
error rate since there is more search pressure on improving the classification per-
formance. In addition, through irrelevance learning, the proposed dimensionality
reduction operator is not only conducive to the improvement of classification per-
formance, but also reduces the size of feature subsets. The experimental results
verified that PMOFS outperforms the compared state-of-the-art algorithms in
terms of HV and classification performance metrics, and is highly competitive
in terms of the number of selected features.

Given the promising performance of PMOFS, we envisage the following two
directions for future endeavors. First, the idea of incremental learning can be
borrowed to learn the irrelevance between features. Second, it is also worth
studying to reduce the training time by combining the proposed method with
Bayesian statistical learning.
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Abstract. Detecting quality community structures in complex networks
is an important and highly active research area. Plenty of methods have
been proposed for community detection in recent years. Among them,
Genetic Algorithms (GAs) have been widely explored for community
detection due to their strong competence at exploring the global discrete
search space. However, existing GA algorithms for community detection
still face major challenges when handling large and complex networks
due to their use of random mutation operators. Whenever any candidate
community structure in a GA population is mutated, a mutated node of
the network under processing is often associated to a community with
loose connections, seriously hurting GA’s effectiveness and scalability.
To address this issue, a newly designed Leiden-based GA (LGA) with
a novel mutation operator based on the Leiden algorithm is proposed
in this paper to improve the effectiveness of the mutation operator and
the performance of the GA approach. Experiment results clearly show
that LGA can achieve highly competitive performance in comparison to
several state-of-the-art GA and non-GA community detection algorithms
on multiple synthetic and real-world networks.

Keywords: Community detection · Leiden algorithm · Genetic
algorithm

1 Introduction

Many complex real-world systems can be modeled as networks [24]. Studying
these networks in different fields such as communication, biological and trans-
portation can often lead to deep understandings and scientific breakthroughs
[2,7,17]. In recent past years, researchers are increasingly focusing on the com-
munity structures of complex networks. Identifying the community structure
helps to reveal the hidden features of a network that are of significant research
and practical values [24].

The current analysis of the community structures focuses on community
detection with the aim to group densely connected nodes together, meanwhile
separating loosely connected nodes into different groups [22]. In recent years,
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many effective community detection algorithms have been proposed, including
heuristic based algorithms [18], mathematical optimization algorithms [8,30],
evolutionary computation (EC) algorithms [8,22,24], and deep learning-based
algorithms [5,10,28].

Among all the existing community detection algorithms, EC algorithms have
been shown to be highly effective and scalable [22]. In comparison to other EC
algorithms such as ant colony optimization (ACO) [9] and firefly and bat algo-
rithms [18], Genetic Algorithm (GA) is widely explored for community detection
due to its strong competence at exploring the global discrete search space with
a desirable balance between efficiency and effectiveness without prior domain
knowledge and mathematical models.

While showing promise, existing GA approaches for community detection still
face major challenges, especially when handling large and complex networks. Par-
ticularly, many previously proposed GAs rely on random mutation techniques
to evolve new community detection solutions. The mutation operators do not
explicitly consider a node’s connectivity with all its adjacent communities in a
network. Consequently, a node is often associated to a community with loose
connections after mutation, seriously hurting a GA’s effectiveness on large net-
works.

In the literature, the Leiden algorithm [30] has been shown to perform reliably
well with state-of-the-art performance on many networks. In comparison to GA,
Leiden can make more informed decisions when it merges groups of nodes iter-
atively into increasingly larger communities, driven explicitly by the connection
densities among groups. As such we utilize Leiden to enhance the effectiveness of
the mutation operator and design a new Leiden-based GA (LGA) in this paper.
Meanwhile, as a population-based search strategy, LGA provides diverse starting
points for Leiden to carry out its greedy community building process, alleviating
Leiden’s reliance on the initial node groupings.

The performance of LGA has been evaluated experimentally in this paper
and compared to several state-of-the-art algorithms on both real-world and syn-
thetic networks. Our experimental results clearly show that LGA can consistently
outperform many existing algorithms on a majority of the benchmark networks
evaluated. The key contributions of this paper are listed below:

– We develop a mutation operator based on the Leiden algorithm to generate
mutated community structures with significantly high quality. To the best
of our knowledge, this is the first time that Leiden has been adopted as a
mutation mechanism to boost the performance of GA. Building on Leiden, the
mutation operator in LGA can effectively connect densely connected nodes
to the same community.

– Building on the Leiden mutation operator, we develop and implement LGA
algorithm that can be applied to various networks for community detection.

– Comprehensive experiments have been conducted in this paper on a wide
range of benchmark networks. Our experiment results clearly show that LGA
can achieve highly competitive performance, in comparison to several state-
of-the-art GA and non-GA community detection algorithms.
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2 Related Works

During recent years, community detection has received increasing attention in
the research community [22]. Existing algorithms for community detection can
be categorized as heuristic algorithms [1,18], greedy search algorithms, EC algo-
rithms and machine learning based algorithms [5,10,28]. State-of-the-art learn-
ing based algorithms are more suitable for processing high-dimensional networks
[14] that are different from the networks considered in our problem formulation
in Sect. 3. Since they are also computationally intensive, we will not consider
such approaches in this paper.

Among the existing greedy search algorithms [11,26], the Louvain algorithm
[4] is an efficient algorithm for identifying community structures in large net-
works. It gradually merges small communities into larger groups so as to max-
imize the modularity of the resulting community structure. To further improve
Louvain algorithm’s effectiveness, Leiden algorithm [30] was proposed in 2019.
Similar to Louvain, Leiden is an efficient greedy search algorithm. While merg-
ing smaller communities, Leiden also checks the connectivity strength among the
nodes in each community, in order to produce high quality community structures.
Despite well demonstrated effectiveness, the final performance of Leiden highly
depends on the initial community setup as a key algorithm input. Default initial
community set up for the Leiden algorithm is that it assigns each node in the
network to its own community. However, instead of the default initial commu-
nity set up, a different initial community set up also can be given as an input to
the Leiden algorithm. If the initial community setup is misleading, Leiden may
end up with poor community structures.

Besides greedy search, a popular approach is to formulate community detec-
tion as modularity maximization problems that can be further solved through
various optimization algorithms. Particularly, Barber and Clark showed in [3]
that such optimization problems are NP-hard. Therefore, in order to achieve a
good balance between effectiveness and efficiency, using EC techniques for com-
munity detection has now become a trending research area. A brilliant review of
existing EC approaches for community detection can be found in [22].

Among all EC techniques, GA is the most widely studied method for commu-
nity detection [6,15,16,29]. Most GA approaches rely on purely random muta-
tions to explore the solution space. As a result, the mutated community struc-
tures often have poor modularity (see Fig. 2 for an example). To address this
issue, the CCGA algorithm introduced in [24], uses the Clustering Coefficient
(CC) to guide the mutation process. Meanwhile, LSSGA [8] designs a new muta-
tion operator to improve the local structural similarity of each network node.

However, by relying only on the local information of each network node,
CCGA and LSSGA cannot guarantee to mutate community structures in the
direction of maximizing the global modularity across all communities. In com-
parison, Leiden can effectively improve the modularity by iteratively merg-
ing smaller communities into larger ones, guided by the community structures
evolved by GA. Hence, we propose to develop a Leiden-based mutation operator
to boost the performance of GA.
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3 Problem Formulation

A network SN is a graph G = (V,E), where V is the set of n nodes
V = {v1, v2, ..., vn} in the network and E is the set of edges, denoted as
E = {ei,j |ei,j ∈ V × V }. Similar to many existing works [8,24], this paper
considers networks with undirected and unweighted edges.

A community in a network refers to a group of nodes that are densely con-
nected among each other and sparsely connected with the nodes in other groups.
In this paper, the community structure of a network SN is defined as a group of
p communities, denoted as CS = {C1, C2, ...., Cp}, p ≥ 1. Here Ci stands for the
i-th community of SN , which is non-overlapping with any other communities,
i.e., ∀i �= j, Ci∩Cj = ∅. Furthermore, any node of SN must belong to exactly one
community such that SN is fully covered by all the communities. The main goal
of the community detection problem is to find the optimal community structure
CS∗, as defined formally below:

CS∗ = arg max
CS

Q(CS, SN) (1)

In Eq. (1), Q(CS, SN) refers to the modularity of community structure CS
with respect to network SN . It is a major and widely adopted quality measure of
any community structures and is originally introduced by Girvan and Newman
[20]. Q(CS, SN) is formally defined below:

Q(CS, SN) =
1

2mSN

∑

ij

(ASN
ij − kSN

i kSN
j

2mSN
)δ(i, j, CS) (2)

In Eq. (2) ASN
ij = 1 whenever nodes vi and vj are adjacent in network SN .

Otherwise, ASN
ij = 0. mSN is the total number of edges in network SN . kSN

i

and kSN
j are the degrees of the nodes i and j in network SN respectively. δ is

defined below:

δ(i, j, CS) =

{
1 if nodes i and j are in the same community of CS

0 otherwise
(3)

High values of modularity Q in Eq. (2) indicate good community structures
[22]. LGA has the aim to maximize Q by evolving the best possible community
structures of network SN .

4 Proposed Algorithm

4.1 Overall Algorithm Design

The proposed LGA algorithm follows the general process of conventional GA
[20]. The initial population is generated randomly where each chromosome in the
population uses the popular Locus based adjacency representation [19]. Based
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on the community structure it represents, each chromosome is evaluated by Q
in Eq. (2) as its fitness. In each generation, LGA adopts the elitism mechanism
to pass a certain percentage of chromosomes with the highest fitness directly to
the next generation. The rest of the chromosomes of the subsequent generation
are created from selected parent chromosomes of the current population using
crossover and mutation operators. This iterative process will be performed for
multiple generations until the termination criteria is reached. Finally, the fittest
chromosome is reported as the best community structure identified by LGA.
Since Leiden is an efficient greedy search algorithm, by combining it with GA
as in LGA, it produces high quality community structures and accelerates the
convergence compared to the other state-of-the-art algorithms. The pseudo-code
of LGA is given in Algorithm 1. Each of the main steps of the proposed algorithm
is explained in detail below.

4.2 Solution Representation

LGA uses the Locus Based Adjacency (LBA) representation of chromosomes
proposed in [19]. For a network with n nodes, a chromosome consists of n genes
g1, ....., gn, with the positions as the indices of nodes. Each gene is assigned with
an allele value that spans within a range of {1, ..., n}. If the allele value of the
i-th gene is j, this means that node vi is connected to node vj by an edge in the
network and the two nodes should be grouped into the same community accord-
ing to the chromosome. In other words, each gene gi will choose a neighboring
node of node vi as its allele value. Hence, LBA requires a dedicated decoding
process to transform any chromosome into the corresponding community struc-
ture. An example network is given in Fig. 1(a) and an example chromosome for
this network is illustrated in Fig. 1(b). As shown in the two figures, the allele
value is randomly chosen among the neighbors of the each node. For example,
node 1 is the allele value of node 0 which is chosen randomly from the list of
neighbors {1,9} of node 0. Fig. 1(c) illustrates the communities obtained after
decoding. Nodes 0 and 1 belong to the same community since the allele value
of node 0 is node 1. Similarly node 7 and node 1, node 9 and 7 belong to the
same community. Hence {0,1,9,7} is a one community which is shown in red in
the Fig. 1(c). Similarly it is able to obtain the other two communities given in
blue and green in the same figure.

4.3 Population Initialization

In LGA, each chromosome in the initial population is generated by randomly
selecting a neighboring node of each node that corresponds to separate genes in
the chromosome Sect. 4.2. This approach is widely used in many existing GA
methods for community detection [8,24].

4.4 Crossover Operator

The crossover operator generates new offspring chromosomes by recombining
different genes from the parent chromosomes. In LGA, following several existing
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Fig. 1. An example of the Locus Based Adjacency (LBA) representation.

GA approaches [8,24], we use the uniform crossover operator to generate new
offsprings [21]. The gene values to be inherited by the offspring chromosomes
are decided based on a random binary vector. If the corresponding value of the
binary vector is 1, the offspring inherits the gene value from the first parent,
otherwise the gene is inherited from the second parent.

4.5 Mutation Operator

As mentioned in the introduction, random mutation can often lead to poor
offspring chromosomes with low modularity. This is because, after performing
random mutation on a node in the network, the node is often associated to a
community with loose connections in the offspring chromosome. Such an example
is illustrated in Fig. 2(a). Ibm refers to the chromosome which is to be mutated.
Q(Ibm) is the modularity of Ibm. As illustrated in the example, after performing
random mutation, the mutated chromosome has lower modularity, since ran-
dom mutation accidentally separates node 4 and nodes 2 and 8 into different
communities despite of the strong connections among them. After performing
random-based mutation as illustrated in Fig. 2(a), node 4 has only one connec-
tion (edge highlighted in red) within the assigned community, whereas it has two
external connections with another community (edges highlighted in purple).

To enhance the effectiveness of the mutation operator, we develop a new
mutation operator based on the Leiden community detection algorithm, which
has been shown to achieve good performance on many large-scale networks [8].
Leiden accepts an initial community setup in the form of a membership list
that assigns each node with an initial community label. Guided by the given
community setup, Leiden iteratively merges small communities to form larger
communities in the direction of maximizing the modularity. The whole merging
process depends on the initial community setup, which is obtained from the
evolved chromosome selected for mutation.

In LGA, the chromosome to be mutated is first decoded into the correspond-
ing community structure, according to which the membership list can be estab-
lished. Subsequently, for all nodes assigned with the same community label, we
randomly select a neighboring node for each node. Based on the inter-connections
among randomly selected neighbors, we can further break the whole commu-
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nity into smaller sub-communities. Nodes in the same sub-communities are then
assigned a new community label. This process ensures that every community
in the initial community setup for the Leiden algorithm is reasonably small,
facilitating the merging operations to be carried out next by Leiden.

In line with our new mutation operator, any chromosome evolved by GA
can be utilized to create the initial community setup that guides the merging
activities in Leiden. It alleviates the dependencies of Leiden on any specific com-
munity structures, enabling the algorithm to explore all possible formations of
communities so as to eventually maximize the modularity. Meanwhile, since Lei-
den only merges the communities provided by a chromosome when this improves
the modularity, it can be guaranteed that the mutated chromosome will never
have poor modularity, in comparison to the chromosome before mutation. As
illustrated in Fig. 2(b), after performing Leiden-based mutation on chrosome
Ibm, the mutated chromosome Ilm has achieved a higher modularity than Ibm.
For example in Fig. 2(b) there exists a higher number of internal connections
for node 4 (edges highlighted in purple) compared to the external connections
(edges highlighted in red). The same observation has also been witnessed in our
experiments.

Fig. 2. An example of Random mutation and Leiden-based mutation: (a) the chro-
mosome obtained after the random-based mutation process and (b) the chromosome
obtained after the Leiden-based mutation process.

Algorithm 2 presents the pseudo-code for the new Leiden-based mutation
operator. Lines 2 and 3 are the key steps of this algorithm. Line 2 decodes chro-
mosome Ibm under mutation to the corresponding community structure CSbm.
Line 3 breaks every community in CSbm into smaller sub-communities. This is
achieved by randomly pairing each node with one of its neighboring node into
the same sub-community. Hence, a large community is more likely to be broken
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Fig. 3. An example of the key steps of Leiden-based mutation.

into small sub-communities than a small community. This process is illustrated
in Step 1 in Fig. 3. Line 4 then generates a list of community labels based on
the output of Line 3, as demonstrated in Step 2 in Fig. 3. The list of labels and
the network will be given as the inputs to the Leiden algorithm, which will pro-
duce the mutated community structure CSlm in Line 5, as illustrated in Step
3 in Fig. 3. Finally CSlm is encoded into the mutated chromosome Ilm. The
encoding process is described in the next subsection.

4.6 Encoding

To encode any community structure into a chromosome with the LBA represen-
tation, LGA first creates a spanning tree over all nodes in the same community.
The breadth-first graph search algorithm is further conducted on the spanning
tree, starting from a randomly selected root node of the tree, such that every
other node will choose its parent node in the tree as its neighbor in the LBA
chromosome. On the other hand, the root node will choose one of its child node
as its neighbor in the LBA chromosome. The same process is repeated for every
community. Eventually, a complete LBA chromosome can be created where each
node in the network is associated with a separate gene that captures its selected
neighbors.

4.7 Population Update

Upon creating the new population for the next generation, LGA selects 5% of
the most fitted chromosomes of the current population. The remaining 95% of
the population is filled with the newly evolved offspring chromosomes. Thanks
to elitism, the best chromosomes evolved by LGA will never get lost during the
evolution process.
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Algorithm 1. Leiden-based GA (LGA)
Input: Network SN ; Population size Np; Crossover rate Pc; Mutation rate Pm;

Elitism ratio Pe; Generation size Ng;
Population ratio to generate the offsprings Ps

Output: Community structure CS∗

1: Initialize the population with Np randomly created chromosomes � Refer
Subsection 4.3

2: for each chromosome I in Np do
3: Evaluate fitness of chromosome I: Q(I) � Refer Section 3
4: end for
5: for each generation g in Ng do
6: Pass the best Pe chromosomes to generation g + 1 � Refer Subsection 4.7
7: Select Ps parent chromosomes NOS

8: for each chromosome I in NOS do
9: Perform crossover with Pc to obtain offspring Ibm � Refer Subsection 4.4

10: Perform Leiden Mutation(SN, Ibm, Pm) to obtain Ilm � Refer Algorithm 2
11: Evaluate fitness of chromosome Ilm: Q(Ilm)
12: Update population with Ilm for the next generation g+1 � Refer

Subsection 4.7
13: end for
14: end for
15: Return the evolved community structure with the highest modularity

Algorithm 2. Leiden-based mutation operator (Refer Subsection 4.5)
1: function Leiden Mutation(SN , Ibm, Pm):
2: Decode Ibm to obtain CSbm � Refer Subsection 4.2
3: Destroy each community of CSbm to obtain a new community structure new CS
4: Generate a list of community labels list Clabel based on new CS
5: CSlm = Leiden(SN , list Clabel)
6: Encode CSlm to obtain Ilm � Refer Subsection 4.6
7: return Ilm

5 Experiment and Analysis

Real-world networks and synthetic networks are used for the evaluation of LGA.
Detailed explanation regarding the benchmark networks are given in Subsect.
5.1. Four different state-of-the-art algorithms were used to compare the perfor-
mance of LGA, including Louvain [4], Leiden [30], CCGA [24] and LSSGA [8].
They are briefly explained in Subsect. 5.2. We follow strictly the recommended
parameter settings of each competing algorithm according to their inventors [24].
The parameter settings relevant to LGA are given in Subsect. 5.3. All the exper-
iments are conducted on MacOS 11.4 with an Intel Core i3 8-core processor and
8GB RAM. Python 3.9 and networkx 2.6.3 have been used for the experiments.
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5.1 Benchmark Networks

The experiments of our proposed LGA and the other competitive algorithms
have been carried out on real-world and synthetic networks. Descriptions of all
benchmark networks are given below.

Real-World Networks. To evaluate the performance of LGA, we used 11 real-
world networks, as summarized in Table 1, along with the network type, number
of nodes and the number of edges.

Table 1. Description of the real-world and synthetic networks.

Network Type Number of nodes Number of edges

Karate [23] Social 34 78

Dolphins [23] Social 62 159

Polbooks [23] Social 105 441

Football [23] Social 115 613

Jazz [23] Collaboration 198 2742

E.coli [27] Biological 418 519

Email-Eu-core [31] Communication 1005 25571

Cora [23] Citation 2708 5429

Facebook [13] Online social 2888 2981

Citeseer [23] Citation 3312 4732

Protein [25] Biological 3724 8748

LFR256 Synthetic 256 911

LFR512 Synthetic 512 1958

LFR1000 Synthetic 1000 4038

Synthetic Networks. The performance of LGA is also evaluated on three syn-
thetic networks based on Lancichinetti-Fortunato-Radicchi (LFR) benchmarks
[12]. These networks are summarized in Table 1. The parameter settings for gen-
erating the three LFR benchmark networks are given in [24].

5.2 Baseline Algorithms

The performance of LGA is compared to four state-of-the-art algorithms. Out
of four algorithms, Louvain [4] and Leiden [30] are greedy search algorithms.
CCGA [24] and LSSGA [8] are competing EC algorithms. These four algorithms
are specifically designed to maximize the modularity of community structures.
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5.3 Parameter Settings

Parameter settings for LGA follow closely with the parameter setting of CCGA
[24]. Specifically, population size is 300, generation number is 200, elitism ratio
is 0.05, crossover rate is 0.8 and mutation rate is 0.2. The algorithm was run for
30 times independently.

5.4 Results

In this study, modularity in Eq. (2) is used as the performance metric. Table 2
compares the moularity achieved by LGA and other competing approaches intro-
duced in Subsect. 5.2. The highest average modularity over 30 runs achieved on
every benchmark network is bolded in the table. Missing modularity is indi-
cated as hyphen (–) since the corresponding results cannot be found in relevant
research papers.

According to Table 2, on most networks LGA outperformed the competing
algorithms. LGA achieved significant improvement in modularity on Citeseer and
Email networks among all algorithms. LGA also achieved competitive modularity
on Karate, Football, Facebook and three synthetic networks. Among all the
networks, LGA only falls slightly behind LSSGA on the Cora network. Even
though LGA does not perform better than LSSGA on Cora, LGA still manages
to outperform Leiden. This shows that, by using community structures evolved
by GA as the initial community setup for Leiden in our Leiden-based mutation
operator, LGA is more effective at handling large complex networks than Leiden.

Table 2. Average modularity over 30 runs, achieved by LGA and competing algo-
rithms.

Network Louvain [4] Leiden [30] CCGA [24] LSSGA [8] LGA

Karate 0.4156 0.4198 0.4198 0.4198 0.4198

Dolphins 0.5224 0.5256 0.5057 0.5283 0.5285

Polbooks 0.5270 0.5269 0.5270 0.5270 0.5272

Football 0.6042 0.6046 0.5243 0.6046 0.6046

Jazz 0.4402 0.4449 0.4440 – 0.4451

Ecoli 0.7777 0.7806 0.7647 – 0.7815

Facebook 0.8087 0.8087 0.8087 – 0.8087

Protein 0.7813 0.7863 0.7314 – 0.7891

Email 0.4318 0.4331 0.2721 0.4165 0.4347

Cora 0.8123 0.8230 0.7646 0.8257 0.8247

Citeseer 0.8920 0.8960 0.8147 0.8100 0.8969

LFR256 0.7664 0.7664 0.7143 – 0.7664

LFR512 0.8312 0.8313 0.7717 – 0.8313

LFR1000 0.8614 0.8614 0.7778 – 0.8614
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5.5 Further Analysis

Figure 4 presents the convergence curves of LGA, stdGA and CCGA on some
real-world networks: Citeseer and Cora. It presents the average curves on maxi-
mum fitness values obtained over 30 runs. stdGA refers to the conventional GA
that uses the random mutation operator. As evidenced in this figure, LGA con-
verges much faster than other GA algorithms. Specifically, in our experiments,
LGA can find its best solution after the 2nd to 10th generation on small networks
such as Karate, Dolphins, Polbooks, Football and Ecoli. On large networks such
as Citeseer and Cora networks, LGA converges to its best solution after the 30th

to 50th generation. In comparison to other GA-based algorithms, LGA requires
consistently a much smaller number of generations to find its best solution.

(a) Citeseer network (b) Cora network

Fig. 4. Convergence curves of LGA, stdGA and CCGA on two real-world networks.

We further conduct experiments to evaluate the performance of using a
new Leiden random mutation (LRM) operator that combines both Leiden-based
mutation and random mutation. This is achieved through two consecutive steps.
In step 1, Leiden-based mutation is applied first to the selected chromosome. In
step 2, the mutated chromosome is further updated through random mutation
in order to encourage more exploration in GA.

Our experiments show that LRM mutation and Leiden-based mutation can
achieve the same best modularity on all networks. However, Leiden-based muta-
tion enables LGA to converge faster. For example, LGA converges after the 31st

generation on the Citeseer network. In comparison, GA with LRM converges
to the best solution after the 46th generation. Similarly on the Cora network,
convergence occurred after the 42nd generation for LGA, while it takes 139 gen-
erations for GA with LRM to converge. Hence it does not seem necessary to
introduce extra randomness in the mutation process. Using Leiden-based muta-
tion alone is effective at evolving high-quality community structures.
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6 Conclusions

In this paper, we proposed a new GA based algorithm, named LGA, with a novel
mutation operator based on the Leiden algorithm to improve the performance
of community detection. We conducted comprehensive experiments on a wide
range of benchmark networks including real-world and synthetic networks. Our
experiments demonstrated that the proposed LGA can outperform several state-
of-the-art algorithms on most of the networks, in particular large networks such
as Citeseer and Email. LGA can also converge much faster than some existing
GA-based approaches. In the future, it is interesting to explore the potential
combined use of LGA and learning based techniques for community detection in
high-dimensional networks.
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Abstract. We investigate evolution strategies (ES) - an optimisation technique
originally developed in the 1960s – for learning policies that work effectively in
gridworld environments with sparse rewards. We combine the evolution strate-
gies algorithm with an intrinsic reward, based on observation counts, to optimise
the parameters of a neural network. We find that the resulting approach is able
to obtain good scores on a number of MiniGrid environments, despite the chal-
lenges of sparse rewards, partial observability and the environments being proce-
durally generated. These scores are comparable with deep reinforcement learning
approaches that optimise neural network parameters using gradient descent. How-
ever, evolution strategies has a number of advantages. It is simple to implement and
uses relatively few hyperparameters, it has less reliance on specialised hardware
and it is highly parallelisable. In combination, these properties make it a promising
alternative to reinforcement learning for sparse reward gridworld problems.

Keywords: Evolution strategies · Sparse rewards · Intrinsic rewards

1 Introduction

Over the last few years, there has been significant development in techniques that involve
an agent interactingwith an environment to learn a policywhichmaximises some desired
reward. The most popular and successful techniques have proven to be deep reinforce-
ment learning (RL) methods. Examples of successful RL applications have been demon-
strated across a range of environments, including the ability to learn to play board games,
such as Chess [1] and Go [2, 3], computer games of increasing complexity, such as Atari
[4], StarCraft [5] and DOTA [6], as well as more general tasks, such as controlling
simulated robots in the MuJoCo physics simulator [7].

RL approaches use the Markov Decision Process (MDP) formalism, whereby the
system is represented as a 4-tuple of state, action, transition probabilities and reward. The
goal of an agent operating in that system is to generate a policy for choosing actions that
maximise the long-term reward. A variety of deep RL approaches have been developed
for learning such policies. However, a common feature of all deep RL approaches is the
use of one or more neural networks to represent the policy (either directly or through
a value function) and then updating the weights of these neural networks through an
optimisation method, such as stochastic gradient descent, via back propagation.
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While these deep RL methods have been incredibly successful and currently domi-
nate the field, othermethods for learning policies are available. One example is black-box
optimisation methods, where instead of modelling the agent’s interactions with the envi-
ronment as anMDP, the policy is optimised directly. In this formalism, we are attempting
to optimise the value of some arbitrary function that takes a set of numbers (which just
happen to describe the policy) as input and returns a real-valued output describing the
fitness of the policy input.

One example of a black-box optimisationmethod is “evolution strategies” (ES). This
method was originally developed in the 1960s [8], but gained renewed interested in 2017
when a team from OpenAI [9] demonstrated that ES could successfully learn policies
in a range of standard RL environments, such as Atari and MuJoCo. Notably however,
evolution strategies failed to produce any non-zero results on two particular Atari games:
Montezuma’s Revenge and Pit Fall. These two games are difficult to solve due to the
presence of extremely sparse rewards – often referred to as “hard exploration problems”
[10].

Within the field of RL, a number of techniques have been specifically developed
for sparse reward problems. In this work, we explore whether similar techniques could
also be used in combination with evolution strategies to improve its performance in the
MiniGrid [11] environments. In addition to having sparse rewards, MiniGrid is proce-
durally generated, with each episode generating a different instance for the agent to
explore, limiting the ability of agents to memorise a solution. MiniGrid is also par-
tially observable by default, with only a subset of the environment visible to the agent.
This combination of sparse rewards, along with partial observability and a procedurally
generated environment provides a different set of challenges for ES agents to navigate,
compared with those present in earlier work.

2 Background

We begin with a background of theMiniGrid environments, as well as the RL techniques
that have already proven effective on MiniGrid and related sparse reward gridworld
environments.

2.1 MiniGrid

TheMinimalisticGridworldEnvironment (MiniGrid) [11] is actually a collection of grid-
world environments, each with different properties and difficulty levels. As introduced
above, these environments have a number of characteristics that make them suitable for
exploring the performance of evolution strategies on hard exploration problems. First,
rewards provided by the environments are extremely sparse, with a non-zero reward typ-
ically only provided to the agent once the full task is completed. This can involve many
separate steps, such as opening doors, navigating to keys, unlocking doors and ultimately
navigating to a goal. In addition, the environments are (by default) partially observable
and each instance of an environment is procedurally generated, making memorisation
of a fixed policy infeasible.
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While a number of MiniGrid environments may be suitable for this work, we focus
on one of the hard exploration tasks that is commonly reported in the MiniGrid RL
literature, namely KeyCorridor. While we have also explored evolution strategies on
other MiniGrid environments, KeyCorridor provides significant challenge to the agent,
and is one of the most widely benchmarked and reported results in the MiniGrid RL
literature. As such, we focus on KeyCorridor and leave exploration of ES on other
environments (in the MiniGrid suite and beyond) for future work.

Fig. 1. Examples of the KeyCorridorS3R3 (top-left), KeyCorridorS4R3 (top-right), Key Corri-
dorS5R3 (bottom-left) and Key Corridor S6R3 (bottom-right) environments.

As described in [11], “KeyCorridor is a task where the agent has to pick up an object
which is behind a locked door. The key is hidden in another room, and the agent has
to explore the environment to find it”. KeyCorridor tasks comes in different sizes, each
with varying levels of difficulty. In this work, we focus on KeyCorridorS3R3, KeyCor-
ridorS4R3, KeyCorridorS5R3 and KeyCorridorS6R3. Each of these environments is
progressively more difficult to solve. While individual instances of these environments
are procedurally generated, an example of each environment is shown in Fig. 1.
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2.2 Reinforcement Learning

By far the most common approach for learning a policy of an agent interacting with a
general environment is through deep RL. One of the most successful forms of deep RL
are actor-critic methods. These methods use policy gradient as a conceptual foundation,
but include two neural networks – the actor, which learns via a policy gradient approach
to decidewhich action to take, and the critic, which learns a value function to evaluate the
action. Three commonly used actor-critic methods are asynchronous advantage actor-
critic (A3C) [12], proximal policy optimisation (PPO) [13] and IMPALA [14]. These
are popular stand-alone methods, but also form the foundation for the sparse reward
approaches discussed in the next section.

While each RL method has different strengths and weaknesses, and varying perfor-
mance on different problems, most of these techniques perform poorly when applied
directly to environments with extremely sparse rewards, such as MiniGrid. For instance,
[15] reports that IMPALA achieves a score of zero on the S3R3, S4R3 and S5R3 Key-
Corridor environments. Similarly, the PPO implementation provided by the MiniGrid
environment gets scores of zero on these three environments, as well as the even sim-
pler S3R2 environment, only demonstrating an ability to learn on the simplest S3R1
environment, as shown in Fig. 2. The runs in Fig. 2 were undertaken using PPO on
a machine with one NVIDIA A100 GPU and 54 CPU cores. The S3R2 case failed to
perform better than random after 100M steps of training, which took over 8 h on that
infrastructure. Other experiments on S3R3 and harder KeyCorridor environments also
failed to perform.

Fig. 2. Performance of PPO on the two simplest KeyCorridor environments, S3R1 and S3R2.
Each line represents an average of five runs. Shading shows standard deviation.

2.3 Handling Sparse Rewards

Responding to the challenges facing traditional deep RL methods in handling sparse
rewards, a number of techniques have been developed that augment standardRLmethods
and provide better performance on difficult exploration problems. In general, one of the
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approaches that has proved successful for handling sparse (or even non-existent) rewards
is for the agent to generate its own intrinsic reward to guide exploration. These intrinsic
rewards have been proposed as analogous to human-centered concepts like intrinsic
motivation [16] and curiosity [17], which appear to guide human exploration, especially
in children and infants.

Intrinsic rewards in RL typically belong to one of two general classes. Those that
encourage the agent to explore novel states that have not previously been explored [18,
19], or those that guide exploration towards states that are in some sense unpredictable or
surprising [20–22]. These intrinsic reward mechanisms are combined with standard RL
techniques, such as A3C, PPO or IMPALA, to augment the learning process. In recent
years, a number of papers exploring various intrinsic rewardmethods have demonstrated
an ability to achieve non-zero scores on increasingly difficult versions of the hard explo-
ration problems presented byMiniGrid. We now give a brief overview of these methods,
with a particular focus on the KeyCorridor sparse reward environments. Results for each
of the methods introduced here are discussed later in this paper (see Table 1).

In 2016, Count [18] built upon count-based exploration algorithms, extending it to
the non-tabular case of playing Atari games from raw pixels. In 2017, Pathak et al. [23]
proposed an “Intrinsic Curiosity Module” (ICM), where curiosity is formulated as the
“error in the agent’s ability to predict the consequences of its own actions”. In 2019,
random network distillation (RND) [24] introduced a related intrinsic reward concept,
where the exploration bonus is based on the error of a neural network predicting features
of the observations given by a fixed, randomly initialised neural network – using this
as a proxy measure of the familiarity that an agent has with particular states. In 2020,
RIDE [25] also built upon ICM, in terms of learning a latent state representation, but in
RIDE, the intrinsic reward is based on the difference between the latent representations
of two consecutive states, rather than the error of predicting the next state.

In 2021, AMIGO [15] introduced an alternative method of producing intrinsic
rewards. AMIGO uses a goal-generating teacher agent that proposes intermediate goals
which form an automatically generated and increasingly challenging curriculum for the
learning agent, with intrinsic rewards obtained when the learning agent achieves inter-
mediate goals. AMIGO was applied to MiniGrid in a fully observable setting (whereas
MiniGrid is normally partially observable). Another novel technique for improving
performance on MiniGrid, which was also proposed in 2021, was RAPID [26]. This
attempted to improve PPO through a form of imitation learning, where episodes that had
previously achieved higher scores are imitatedmore closely than lower scoring episodes.

Another approach, developed by researchers at Inria and Google Brain, also builds
on PPO, but introduces a third agent that they call the adversary, alongside the actor and
critic. The adversary attempts to mimic the actor, while the actor attempts to differentiate
itself from the adversary’s predictions, while still trying to achieve the extrinsic goal of
the system. This technique is known as adversarially guided actor-critic (AGAC) [27]
and promotes diversity in the actor’s exploration, as rewards are given for choices that
could not have been predicted by the adversary based on prior exploration. Finally, in
another work from 2021, BeBold [28, 29] also builds on PPO but uses visitation counts –
in particular, the “regulated difference of inverse visitation counts of consecutive states”
[28] – as a criterion for calculating the intrinsic reward. This work also builds on RND
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to approximate the visitation count, and explicitly encourages exploration at the bounds
of previously explored regions.

2.4 Evolution Strategies

RL methods for solving MiniGrid environments have evolved rapidly over the last few
years, building on earlier techniques, as well as popular RL approaches, such as A3C,
IMPALA and PPO. Common to all of these algorithms is the use of a neural net-
work to represent (directly or indirectly) the policy, and the use of back propagation
to update the neural network weights through successive layers. In this paper, however,
we explore a different class of algorithm for learning policies on sparse rewardMiniGrid
environments – evolution strategies.

Evolution strategies is a family of stochastic algorithms for global optimisation,
loosely inspired by the biological theory of evolution. It is a member of the broader class
of evolutionary algorithms and was initially developed by Ingo Rechenberg and Hans-
Paul Schwefel in the 1960s [8]. At its heart, evolution strategies involves a collection
of randomly generated candidate solutions being evaluated based on a fitness function,
and the resulting evaluations then being used to create a new generation of slightly
improved candidate solutions. This process is iterative and the quality of candidate
solutions improves over time with respect to the fitness function.

In 2017, OpenAI demonstrated the potential for evolution strategies to be used as
“a scalable alternative to reinforcement learning” [9]. They used a variant of natural
evolution strategies [30] to demonstrate the performance of ES on a range of tasks,
including the MuJoCo robot control environment and the Atari arcade learning envi-
ronment. Their approach begins with a randomly initialised parameter vector, which
describes the weights and biases of a neural network. This neural network defines a
policy by which an agent (the parent) acts in the environment. This set of parent weights
are used to generate a population of candidate solutions (children, or child policies), by
taking the initial parameter vector and perturbing it with Gaussian noise. The various
sets of child parameters are used to instantiate child neural networks which are then
evaluated and ranked through interactions with the environment. An updated (parent)
parameter vector is then generated, as a weighted sum of the parameters in the child
networks, weighted according to the total reward that each solution received. This app-
roach proved highly successful, generating results that were extremely competitive with
the best available RL methods on the Atari and MuJoCo benchmarks.

In [9], the authors also articulate a number of potential advantages of ES over tra-
ditional RL methods, including the simplicity of the approach, the fact that ES only
requires a forward pass over the policy and does not require any backpropagation or
value function estimation, and the highly parallisable and comparatively robust perfor-
mance of the technique. The authors also introduce a number of improvements that
allow the algorithm to run more efficiently, especially when utilising a large number of
parallel workers. This is important, as their key results, including the ability to solve
the MuJoCo Humanoid walking task, use significant compute - 1440 parallel workers
on Amazon EC2 [9]. In this work, we build on the ideas of [9], to explore evolution
strategies in procedurally generated gridworld environments that contain sparse rewards
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and partial observability. We investigate the potential to improve the performance of ES
by combining it with an intrinsic reward signal.

3 Experimental Results

3.1 Our Approach

In this work, we explore ES using comparatively modest computational resources in
contrast to [9]. All of our experiments were performed on a Dell R740xd Ubuntu server
with 54 Intel Xeon Gold 6258R cores. We implemented our own version of the ES
algorithm for the MiniGrid environment, based on a number of example codebases
[31–33]. While our implementation was intended to be as simple as possible, we did
include a number of the specific improvements that were present in the OpenAI paper
[9] and explored a number of alternative design choices, before settling on our final
implementation. These improvements include sending a noise seed (rather than all the
parameters of the neural network) through to child processes. This greatly reduces the
amount of data that is sent to child processes, leading to more efficient communication,
thereby increasing the overall speedof execution for the algorithm.Wealso usedmirrored
sampling [9, 34]. Inmirrored sampling, each set of randomperturbations (which are used
to generate child candidates) is used twice, once normally and once as a mirror (negated)
version of itself. This approach has been found to improve convergence, compared with
non-mirrored sampling, in ES [34].

In all of our experiments, we use evolution strategies to parameterise the weights of a
neural network, which forms the policy network for the agent. We did early explorations
on a range of potential neural network structures but present results here for a relatively
simple neural network structure, consisting of two fully-connected linear layers, the
first with 588 neurons and the second with 256, connected via a Rectified Linear unit
(ReLU) nonlinearity, and an output layer of 7 neurons for the 7 valid actions available in
MiniGrid. Observations of size 7 × 7 × 3 × 4 (using a frame stack of 4, as in [27, 28],
for example) from the MiniGrid environment were fed directly into the neural network.

Parameters for the learning rate andmutation rate (sigma) are set to 0.05 (as suggested
in [32]) with some parameter exploration undertaken in order to confirm that these values
were suitable (see Sect. 4). The number of child evaluations is set to 100 (corresponding
to a population of 50, due to mirrored sampling), chosen to limit wasted processing
resources, given the 54 cores available on the machine that we used for our experiments.
Exploration of other parameters showed limited effect on the final result, as long as a
sufficient number of child evaluations (>30) were performed.

3.2 Evolution Strategies Applied to MiniGrid – No Intrinsic Reward

We undertake experiments to explore the potential of applying ES to MiniGrid environ-
ments. In Sect. 2.2, we showed that using PPO on the comparatively simple KeyCorri-
dorS3R2 environment did not learn anything meaningful (Fig. 2). By contrast, our initial
results in Fig. 3 demonstrates that even without an intrinsic reward, evolution strategies
is able to reach scores above 0.8 on KeyCorridorS3R2. It also achieves good scores
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(above 0.8) on KeyCorridorS3R3 (using a smaller time-budget than was allocated to
the PPO runs). This is a promising result, as ES is achieving good scores on KeyCorri-
dorS3R3, even without the presence of any intrinsic reward, outperforming the baseline
RL algorithm results (alsowith no intrinsic reward) thatwe present in Sect. 2.2. However,
despite the promising results on the KeyCorridorS3R3 environment, ES without intrin-
sic reward, struggles to obtain a good score on the more challenging KeyCorridorS4R3
environment.

Fig. 3. Comparison of scores obtained by evolution strategies with no intrinsic reward on various
KeyCorridor environments. Each line represents an average of five runs. Shading shows standard
deviation.

The failure to perform adequately on KeyCorridorS4R3 (Fig. 3), combined with the
previous success of intrinsic rewards in RL (Sect. 2.3), motivates the need to explore
alternative methods to enhance the base evolution strategies method.

3.3 Evolution Strategies with Intrinsic Reward on MiniGrid

Out of the two broad classes of intrinsic rewards discussed in Sect. 2.3, we use a reward
designed to encourage the exploration of novel states which have not previously been
seen. Our implementation involves providing a small (scaled) intrinsic reward during the
agent’s child evaluations whenever a child first encounters a previously unseen obser-
vation. For this reward, we use a single frame of observation, as provided to the agent,
with no additional processing. This is a simple form of count-based intrinsic reward. At
the end of each generation update, this intrinsic reward is switched off and only extrinsic
rewards from the game environment are presented.

While there are multiple variations and improvements on this simple reward type
in the literature, we use this as an initial basis for exploring intrinsic reward for ES.
One advantage of this simple intrinsic reward is the addition of only a single parame-
ter (intrinsic reward strength), which specifies the weighting between the intrinsic and
extrinsic rewards. For our initial experiments, we choose an intrinsic reward strength
of 0.0001, ensuring that intrinsic rewards will not dominate over any extrinsic reward
obtained. We will discuss some alternative intrinsic reward options in Sect. 4.
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Figure 4 shows the result of combining ES with an intrinsic reward in a range of
KeyCorridor environments of increasing complexity. The results show that the presence
of an intrinsic reward significantly improves the performance of the ES method on all of
these environments – including the threemost difficult environments (KeyCorridorS4R3,
KeyCorridorS5R3 and KeyCorridorS6R3) where the base ES method without intrinsic
reward failed to perform.

Fig. 4. Performance of ES with intrinsic reward on five KeyCorridor environments of increasing
complexity. Each line represents an average of five runs. Shading shows standard deviation.

The final average scores of ESwith an intrinsic reward for each of these environments
are presented in Table 1, alongside previously reported results for the RL algorithms
discussed in Sect. 2.3. For previously reportedRL algorithms,where a range of values are
reported, this indicates that different papers report different scores for the same technique.
In some cases, thismaybe due to slightly different implementations or parameter choices.
In other cases, the authors note that they ran experiments for a shorter duration or
modified other settings. For instance, the BeBold/NovelD paper [28, 29] notes that they
only evaluated AMIGO for 120M steps, whereas the original AMIGO paper performed
evaluations over 500M steps. A hyphen in the table indicates that we are unaware of
previously published results for a method/environment combination.

From these results, it is clear that the two most recent RL methods, AGAC and
BeBold, remain the current state-of-the-art for KeyCorridor environments. However,
evolution strategies with a simple intrinsic reward also performs well on all tested envi-
ronments and achieves better scores on KeyCorridorS4R3, KeyCorridorS5R3 and Key-
CorridorS6R3 than all methods except for AGAC and BeBold. ES with an intrinsic
reward is able to consistently reach the goal in these challenging environments, whereas
many other recent RL methods cannot. While not equaling the performance of the best
RL methods, the ES method performs surprisingly well, given its simplicity. Moreover
these results were obtained on a single machine without the use of a graphics processing
unit (GPU). The results show that ES can perform well despite the combined challenges
presented by sparse rewards, partial observability and the presence of a procedurally
generated environment.
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Table 1. Reported scores for various techniques on the KeyCorridor environments, alongside our
results for ES with an intrinsic reward. Our results are averaged over five runs.

Technique KC-S3R3 KC-S4R3 KC-S5R3 KC-S6R3

Count (NeurIPS 2016) 0.90 0.00 0.00 –

ICM (ICML 2017) 0.42–0.45 0.00 0.00 0.0

RND (ICLR 2019) 0.89–0.91 0.00–0.23 0.00 0.0

RIDE (ICLR 2020) 0.90–0.91 0.19–0.93 0.00 0.0

AMIGO1 (ICLR 2021) 0.89–0.93 0.00–0.54 0.00–0.44 0.0

RAPID (ICLR 2021) 0.92 0.47 0.00 –

AGAC (ICLR 2021) – 0.95 0.93 –

BeBold (NeurIPS 2021) 0.92 0.93 0.94 0.94

ES + intrinsic reward (Ours) 0.86 0.76 0.73 0.75

4 Discussion and Further Work

Evolution strategies provides a promising avenue for future explorations. First, since
ES is a fundamentally different approach to RL techniques that have been applied to
MiniGrid, it comes with different assumptions and inductive bias tradeoffs. Further
exploration of the strengths and weaknesses of this approach is useful in developing a
more diverse range of techniques to solve themyriad of different sparse reward problems.
Moreover, the form of ES presented in this paper is relatively simple – without the
many years of detailed development that has occurred in the space of more traditional
sparse reward RL algorithms. Nevertheless, despite that relative simplicity, it manages
to achieve scores that only a couple of years ago would have been competitive with the
state-of-the-art.

ES also has a number of other properties that make it promising as a practical
technique. Firstly, the method has relatively few hyperparameters [9] and we found
stable performance across a range of these values. For instance, varying intrinsic reward
type (including using simple defaults, like the state-bonus and action-bonus wrappers
included in MiniGrid) as well as varying the intrinsic reward strength had little impact
on the final result, with many parameter choices leading to learnt policies that reach the
goal. We also tested a number of neural network architectures, including the addition of
convolutional layers to the network, but found that this did not improve the result on the
KeyCorridor environments that we tested. The method is also robust to variations to the
observation used as the basis for estimating ‘novelty’ in the intrinsic reward. For instance,
the experiments reported here were based on a single frame of observation – however
similar results were obtained using a sequence of the last four frames.

Evolution strategies is also highly parallelisable [9], opening up this technique to
relatively cost-effective scaling. The runs presented here use a single machine with 54
cores, but this can be scaled to additional CPU cores relatively easily, opening up the

1 Results for AMIGO were obtained using a fully observable view of the environment.
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opportunity for increased child-evaluations and, possibly, better performance.Moreover,
as the neural networks are not trained through back propagation and only require forward
pass evaluations for inference, largeGPU infrastructure is not necessary to take advantage
of the method.

There are also many opportunities for improving the method and intrinsic reward
demonstrated in this paper. For example, incorporating a more complex intrinsic reward,
such as the rewards used in BeBold or AGAC, could lead to further improvements in
performance. In addition, the combination of ES and intrinsic reward should be evaluated
on additional environments, to understand its performance across a broader range of
problems.

5 Conclusion

In this work, we explore evolution strategies, as an alternative to RL, for solving hard
exploration gridworld problems. Building on earlier research that showed ES could be
a scalable alternative to RL in the MuJoCo and Atari environments [9], we explored the
potential for ES within MiniGrid environments. These environments present multiple
challenges: they are procedurally generated, they contain sparse rewards, and they are
partially observable. ES is able to perform well on small KeyCorridor MiniGrid envi-
ronments (S1R3, S2R3 and S3R3), outperforming vanilla PPO over a similar timeframe.
Nevertheless, ES is unable to solve the more difficult S4R3 environment. However, we
find that the combination of ES with an intrinsic reward leads to good results on all
KeyCorridor environments, including S4R3, S5R3 and S6R3. In future work, we plan
to investigate a number of other intrinsic reward approaches and evaluate this method
across a wider range of sparse reward environments, to determine the effectiveness and
limits of the method more broadly.
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Abstract. Explainable artificial intelligence (XAI) is a recent research
focus, aiming to gain trust in machine learning models with clear insights
into how the models make certain predictions. Due to its ability to evolve
potentially interpretable classifiers, genetic programming (GP) is gener-
ally well-suited to XAI. However, many learning algorithms including
GP usually learn a single best model. In practice, the best model in
terms of training classification accuracy/error rate may not be the most
appropriate one from the perspective of a domain expert due to over-
fitting and limited data. Multiple explicit and high-quality classifiers
with the same training performance are therefore needed to increase the
chances that the generated models will be considered more reasonable
to experts. Therefore, this study designs a niching-assisted GP approach
for classification. The results show that the proposed method can signifi-
cantly increase the classification accuracy on most of the tested datasets.
Further analysis shows that the designed algorithm can find different GP
programs with the same classification performance, providing good inter-
pretability for classification tasks.

Keywords: Genetic programming · Multiple optimal programs ·
Classification

1 Introduction

Classification is a major task in data mining, aiming to predict the class labels for
unseen data instances. In classification, explainable artificial intelligence (XAI)
means that a learning algorithm can provide human-understandable justifica-
tions for its output, leading to insights about the inner workings to trust the
classifier [20]. Genetic programming (GP), a biological-evolution-inspired tech-
nique, is an excellent tool for XAI. As a learning algorithm, GP allows users to
use flexible representations such as trees, graphs, and networks with different
kinds of operators or functions to represent the model [23]. These enable GP to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 279–293, 2022.
https://doi.org/10.1007/978-3-031-22695-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_20&domain=pdf
http://orcid.org/0000-0002-1328-5784
http://orcid.org/0000-0002-4865-8026
http://orcid.org/0000-0003-0811-0223
http://orcid.org/0000-0003-4463-9538
https://doi.org/10.1007/978-3-031-22695-3_20


280 P. Wang et al.

capture linear and/or non-linear relations offering insights between features and
the class labels. From a feature selection point of view, GP is good at embedded-
based feature selection, which can simultaneously select a good subset of features
and construct a classifier using the selected features [14].

However, most existing machine learning algorithms including GP generate
only one learned model for a classification task. Unfortunately, the model might
have shortcomings or other issues, such as including a large number of coefficients
and/or parameters that make it unlikely to be inherently interpretable [21]. In
addition, it might not be the best classifier simply because the data is limited
and classifiers with slightly worse classification performance on the training data
might be better on the test data. Therefore, it is essential to search for multiple
different models that are all well-performing for a classification task. It can pro-
vide users with more choices, therefore, the users can pick up classifiers based on
their preferences [7,30]. Furthermore, identifying equal informative models has
important practical significance [7,26]. In disease diagnosis, for example, Liu et
al. [12] found that a classifier with selected features {M77836, J02854, T64297}
or {H06524,H43887, U37019} in the Adeno dataset can achieve the same top
classification accuracy (100%). However, the gene/feature, M77836 in the first
feature subset, is an upregulated protein, while H06524 in the second feature
subset is a severely down-regulated protein. This shows that different functional
modules are likely to separate normal individuals from colon patients.

The existence of multiple optimal classifiers is manifested in GP as programs
or trees1 with different functions and/or features that can achieve the same
classification accuracy, which is ignored by many existing studies. As shown in
many studies [21,27], using niching techniques is a popular way to find multiple
optimal solutions. The key idea of niching techniques is to partition the whole
population into several niches. Genetic operators such as mutation and crossover
will be performed using the neighbour information, which can be a stabler and
more effective way to exchange evolutionary information during training [28].
Motivated by these observations, a niching-assisted GP approach (termed NGP)
is proposed. The aim of NGP is to find multiple optimal GP programs for each
classification task. To achieve this goal, individuals are preferentially scheduled
to perform crossover with their neighbours. Furthermore, an external Archive
is employed to collect the fittest individuals during the evolutionary training
process. A structure score considering the number of selected features, the tree
depth, and the number of nodes from a tree is taken as the complexity of the
tree. Trees with low structure scores will be preferred.

2 Background

2.1 Genetic Programming

The commonly used representation method in GP is based on the tree-like struc-
ture [3]. Each candidate program in GP is represented by a variable length tree
1 Each individual or solution in GP is a classifier or a program with a tree representa-

tion. Therefore, this work treats individual, solution, classifier, tree, program in GP
as the same.
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which involves two types of nodes: internal nodes and leaf nodes. The former
consist of functions or operators with some arguments, such as +,−,×,÷. The
latter are variables or constants that are taken as arguments for the internal
nodes. The set of all possible used functions or operators in the internal nodes
is named as function set. Correspondingly, a term terminal set represents the
set of all possible used variables or constants. The maximum depth, the longest
path from the root to a leaf node, is used to limit the size of a GP tree [8].

The evolutionary process of the standard GP algorithm is introduced as fol-
lows. After initialization, all programs in the population are evaluated based on
the fitness function. Then, the pair parent trees are selected and then performed
genetic operators including elitism, mutation, and crossover. The aim of elitism
is to ensure that the best individuals can be preserved during the evolutionary
process. Mutation is to maintain the diversity of programs in the population,
and crossover in GP aims to combine good building blocks to obtain better pro-
grams. When the stopping condition is met, the method will stop and output
the best individual.

2.2 Genetic Programming for Feature Analysis

Feature selection approaches are generally grouped into three categories: 1) filter
methods, 2) wrapper methods, and 3) embedded methods [27]. Filter methods do
not use any learning algorithm to measure the goodness of selected features, rely-
ing on the general characteristics of data. Instead, a wrapper method measures the
quality of selected features using a learning algorithm. However, a wrapper method
usually has high computation cost. In embedded methods, selecting relevant fea-
tures and training a learning algorithm are done together. Embedded methods
can account for the interactions between features and the learning algorithm. In
general, an embedded method can achieve comparable classification accuracy to a
wrapper method and comparable efficiency to a filter method [14].

GP is popular in designing different kinds of feature selection methods. A GP-
based filter feature selection method was proposed in [16]. In [16], a predefined
relevance measure function sitting at the root of the tree measures the relevance
of its sub-tree to the class labels. Neshatian et al. [17] applied multi-objective GP
to classification tasks. However, the obtained trees have very deep depths. Muni
et al. [13] designed an embedded feature selection method using multi-tree GP. In
[13], if multiple trees output positive values, the class of the tree with the largest
weight value will be assigned. Nag et al. [14] claimed that randomly selecting
a node in mutation may be too disruptive for a target tree. As a result, each
constant of the tree is replaced with another random constant. Each function
node is replaced with another random function node. Ahmed et al. [1] designed a
GP-based hybrid feature selection method. A primitive feature subset from the
original feature set will be obtained according to the search of GP. Then, the
selected features are ranked based on the signal-to-noise ratio. Finally, a certain
number of top features are selected and passed to classifiers. However, these
studies ignore the existence of multiple optimal programs for a feature selection
task.
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In addition, GP has been widely used for feature extraction, feature construc-
tion, regression, and clustering tasks. Nag et al. [15] combined many-objective
GP with a support vector machine to extract linearly separable features. Ahmed
et al. [2] applied GP to feature construction for biomarker identification. In [24],
a semantic-based crossover in GP is proposed for real-valued symbolic regression
problems. Lensen et al. [10] applied GP to perform clustering tasks.

2.3 Niching Techniques in Genetic Programming

The essence of the niching technique is to find multiple optima by creating
and maintaining different niches. Niching approaches include crowding-based,
sharing-based, and speciation-based methods [27]. Lensen et al. [9] combined the
speciation technique with GP to perform association rule mining tasks. In [9],
the whole population is divided into a number of species, each of which shares
a common target feature. Sijben et al. [21] proposed a niching-based multi-
objective GP to search for multiple diverse high-quality models for symbolic
regression tasks. In each generation, the population is divided into multiple sub-
populations by using the distance between solutions in normalized objective
space. In [29], the proposed niching GP method separated the population into
several clusters based on the tree similarity. In addition, there are other studies
applying niching techniques to GP, such as [25] and [6].

Although these niching-based GP methods obtained promising performance,
they have not been used to deal with classification tasks, especially for finding
multiple optimal classifiers.

3 The Proposed Niching-Assisted GP Method

In this paper, a niching-assisted GP method (NGP) with an external Archive is
proposed to search for multiple optimal programs.

3.1 Representation of Classifiers and Fitness Function

In NGP, each program is a binary classifier represented by a tree. When a data
point is passed through an individual, if the output value is positive, the individ-
ual says that the passed data point belongs to one class. Otherwise, it says that
the point belongs to the other class. The internal (nonleaf) nodes of these trees
are functions. The leaf nodes are features from the data. The aim is to minimize
the classification error rate shown in Eq. (1):

fitness = Error Rate =
FP + FN

TP + TN + FP + FN
(1)

where FP , FN , TP , and TN are the false positives, false negatives, true posi-
tives, and true negatives, respectively.
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Algorithm 1: Overall NGP algorithm
Input: N : population size, Gmax: maximal generations
Output: Archive A

1 begin
2 Set A = ∅,
3 Initialize population P by ramped half-and-half method,
4 Evaluate individuals in P , and put the fittest individual(s) to A,
5 while g < Gmax do
6 Perform elitism,
7 Get neighborhood matrix N via Algorithm 2,
8 Perform niche crossover using N ,
9 Perform mutation,

10 Evaluate new individuals,
11 Put the fittest offspring(s) to A,
12 Remove solutions with the same selected features in A,
13 if |A| > N then
14 Calculate Score values of all solutions in A,
15 Sort solutions in ascending order,
16 A = A(1 : min(N, |A|))
17 end

18 end

19 end

3.2 Overall Algorithm

The overall NGP algorithm is shown in Algorithm 1. NGP is similar to a stan-
dard GP search, with the main difference being performing a crossover operator
by considering the neighbourhood information of a target individual. In addi-
tion, after evaluating the population, the fittest individuals will be stored in the
external Archive (termed A). When a stop criterion is met, NGP will output all
solutions in A.

Niche Crossover Operator: As pointed out by [9], multiple diverse and good
programs can be produced by restricting crossover to occurring with neighbours,
improving learning efficacy. The introduction of niche in this work simultane-
ously considers the fitness values of individuals and the number of nodes of indi-
viduals. The niche crossover operator (Line 8 of Algorithm 1) randomly selects
parents with a proportion of 80% or 20% from the neighbourhood matrix (N )
or the global population (P ) alternatively. To avoid getting trapped into a local
optimum, one individual will be randomly chosen from N when a randomly
generated number is less than 0.8.

Algorithm 2 is to get the neighborhood matrix N . For all individuals in P ,
their fitness values and the numbers of nodes are obtained and saved into O
and S, respectively. After respectively performing the min-max normalization
technique in O and S, the Euclidean distance of a target individual to other
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Algorithm 2: Niche Introduction
Input: Population P
Output: Neighborhood matrix N

1 begin
2 Set neighborhood size T = a ∗ |P |,
3 Store the numbers of nodes of all individuals in P as S,
4 Save the fitness values of all individuals in P as O,
5 Normalize the values in S and O, respectively,
6 Calculate Euclidean distances among normalized vectors,
7 Generate a |P | ∗ T neighborhood matrix N , and N (i) consists of T nearest

solutions to P (i).
8 end

individuals is calculated (Line 6 of Algorithm 2). Then, T nearest individuals
to the target individual will be put into N . It should be noted that the compu-
tation cost will be very high if the neighbourhood matrix is calculated in each
generation. Therefore, NGP will redefine N every ten generations. For the neigh-
borhood size T , it is set to a ∗ |P | where |P | means the population size (Line 2
of Algorithm 2). The sensitivity analysis of a will be shown in Sect. 4.2.

Filtering Archive: The Archive A preserves the fittest programs from both
the historical and current populations. However, some programs may select the
same features. Under this situation, only one solution will be randomly chosen
from the multiple ones and kept (Line 12 of Algorithm 1). When the size of
A exceeds the predefined capacity (population size), the cleaning steps (Lines
13–17) will be activated. Specifically, each individual in A will be assigned a
structure score since these individuals can include different numbers (Size) of
features, have different tree depths (Depth), and contain different numbers of
nodes (#Nodes). After getting all Size, Depth, and #Nodes values of all solutions
in A, the structure score of each solution in A is defined as follows:

Score(x) =
Size◦(x) + Depth◦(x) + #Nodes◦(x)

3
(2)

where Size◦, Depth◦, and #Nodes◦ mean the normalized value of Size, Depth,
and #Nodes by using the min-max normalization technique, respectively. There
is no preference for the three parts, thus Eq. (2) takes 1/3 as the coefficient.

4 Experiment

4.1 Tested Datasets

To evaluate the potential of the proposed NGP method, a range of real-world
binary classification datasets from different domains are used in the experiments.
These datasets can be obtained from [5] and are summarised in Table 1, ordered
according to the number of features. Some minor data cleaning is done, including
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Table 1. The information of datasets

Number Dataset # Features # Classes # Instances

1 SPECT 22 2 267

2 WBCD 30 2 569

3 Sonar 60 2 208

4 Hillvally 100 2 606

5 Madelon 500 2 4,400

6 QSAR 1,024 2 3,000

7 Leukemia 5,147 2 72

8 DLBCL 7,050 2 77

9 Prostate 10,509 2 102

Table 2. GP parameter settings

Parameter Value Parameter Value

Population size 1024 Generations 50

Crossover rate 0.8 Mutation rate 0.19

Maximal tree depth 4 Elitism rate 0.01

Initialization Ramped half-and-half Tournament size 7

removing missing values by deleting whole features or instances as appropriate.
Each dataset is randomly divided into two parts: the training set (70% of the
data) and the test set (30% of the data). The objective is to minimize the
classification error rate on the training set.

4.2 Parameter Setting

On each dataset, 30 runs of the standard GP method from the DEAP package
[4] and the proposed NGP method are performed, respectively. In addition, the
decision tree (DT) classifier is used for comparison because of its tree-based
structure. The parameter settings used in the standard GP method and the
proposed NGP method are shown in Table 2. The population size is 1024, and the
maximum number of generations is 50 [18]. A small maximum tree depth of four
is used to encourage interpretable trees, further reducing the computational cost.
The function set includes four arithmetic operators (i.e., +, −, ×, and protected
division ÷). The protected division operator returns zero when dividing by zero.
The terminal set consists of all features in a dataset. Additionally, to avoid very
large trees on some datasets, the maximum depth of trees in DT is set to be the
same as in GP.

For the parameter a in NGP, it controls the size of the niche of an individual.
Different niching methods set a to different values, 20% in [28] and 10% in [11].
Therefore, the classification performance of a between 5% and 25% is explored.
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Table 3. Average Training Classification accuracy of NGP with different a values

Dataset a = 5% a = 10% a = 15% a = 20% a = 25%

SPECT 91.79±0.31 91.83±0.35 91.77±0.34 91.74±0.47 91.70±0.30

WBCD 94.36±1.02 94.20±1.23 94.25±1.49 94.30±1.49 94.25±0.96

Sonar 80.11±1.6 81.64±1.88 80.85±1.87 80.48±2.05 80.85±2.02

Hillvally 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Madelon 63.65±0.78 63.76±1.22 63.73±1.27 63.56±0.7 63.75±1.04

QSAR 92.91±0.37 92.94±0.32 92.88±0.29 92.90±0.28 92.87±0.33

Leukemia 98.80±1.60 98.67±1.74 98.53±1.71 98.60±1.28 99.07±1.61

DLBCL 96.04±2.64 95.53±2.09 95.72±2.62 96.35±2.28 95.47±2.16

Prostate 92.49±2.61 91.69±3.48 91.83±3.82 91.88±3.35 91.74±4.08

Here, the average classification accuracy of a at 5%, 10%, 15%, 20%, and 25%
on the training sets are reported in Table 3. In Table 3, NGP with a = 10%
achieves the highest classification accuracy on five out of the nine datasets. On
the Hillvally dataset, all five methods can obtain the same top classification
accuracy, i.e., 100%. Only on one dataset, NGP with a = 20% or a = 25%
achieves higher classification accuracy than NGP with a = 10%. Although NGP
with a = 5% gets similar training performance on most of the tested datasets to
NGP with a = 10%, the latter shows better overall performance. Therefore, the
value of a in NGP is set to 10%.

5 Experimental Results

Different from the standard GP method and DT, NGP is to find different GP
programs with the same fitness value. Each obtained program from A in NGP
can be considered a classifier consisting of selected features and specific functions.
For NGP, the classification accuracy of the solution with the lowest number of
the selected features on each test set is shown in Table 4. If multiple solutions
have the same number of the selected features, the solution with the lowest
number of nodes will be chosen. The classification performance of the standard
GP method and DT are also shown in Table 4.

In Table 4, the Wilcoxon test with a significance level of 0.05 is used to judge
whether there is a significant difference between algorithms. The signs ‘↑’, ‘↓’, and
‘≈’ mean that the standard GP method or DT is significantly better than, worse
than, and has no significant difference from NGP, respectively. The columns W1

and W2 show the Wilcoxon comparison results between GP or DT and NGP
on subset size and test accuracy, respectively. The more ‘↓’, the better NGP.
Finally, the training time of the standard GP and the proposed NGP methods
on each dataset is given in the last column in Table 4.
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5.1 Test Performance

Classification Accuracy and Subset Size: As shown in Table 4, the proposed
NGP method achieves significantly better or similar classification accuracy than
DT on eight out of the nine datasets. On the DLBCL dataset, the proposed NGP
method obtains more than 10% improvement in accuracy. Only on the Madelon
dataset, the DT classifier achieves higher accuracy than NGP but selects more
features than GP and NGP. However, on four datasets, DT selects the lowest
number of features.

Table 4. Average test results and the training time

Dataset Method # Features W1 Accuracy W2 Time (minutes)

SPECT DT 8.3±0.6 ↑ 72.47±0.65 ↓
GP 8.9±1.3 ≈ 75.47±1.52 ↑ 1.8

NGP 9.2±1.5 74.90±1.76 2.9

WBCD DT 5.6±0.5 ≈ 92.28±0.60 ≈
GP 6.0±1.4 ↓ 91.87±1.74 ↓ 3.7

NGP 5.2±1.1 92.65±1.52 4.7

Sonar DT 9.9±0.9 ↓ 69.63±3.35 ↓
GP 8.4±1.7 ≈ 70.79±6.41 ↓ 2.2

NGP 7.7±1.8 72.91±7.07 3.3

Hillvally DT 2.9±0.2 ↑ 99.69±0.09 ≈
GP 2.0±0 ≈ 99.93±0.15 ≈ 13.3

NGP 2.0±0 100±0 16.7

Madelon DT 12.6±0.5 ↓ 68.15±0.61 ↑
GP 5.1±2.7 ≈ 61.12±0.83 ≈ 103.9

NGP 5.5±1.5 61.42±0.14 101.9

QSAR DT 14.0±0 ↓ 90.04±0.52 ↓
GP 8.6±1.5 ↓ 92.33±0.41 ≈ 243.0

NGP 7.4±1.8 92.48±0.51 228.6

Leukemia DT 2.0±0 ↑ 86.21±3.80 ↓
GP 5.5±2.1 ↓ 87.58±9.01 ↓ 38.8

NGP 4.7±1.9 89.85±6.40 38.4

DLBCL DT 3.0±0 ↑ 65.83±5.21 ↓
GP 5.4±1.8 ≈ 76.39±9.02 ≈ 56.8

NGP 5.3±1.7 76.53±7.81 53.8

Prostate DT 3.0±0 ↑ 78.82±5.99 ≈
GP 6.4±2.6 ≈ 74.62±8.03 ↓ 98.1

NGP 6.3±2.0 79.79±9.08 97.3
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In Table 4, NGP achieves significantly better test classification accuracy and
selects slightly fewer features than the standard GP method on four out of the
tested nine datasets. The highest improvement can be seen on the Prostate
dataset with more than a 5% increase on the average of the classification accu-
racy. On the Hillvally dataset, both NGP and GP can achieve the top classifi-
cation accuracy (100%) using only 2 features on average. Only on the SPECT
dataset, the standard GP method achieves slightly higher classification accuracy
than NGP. Furthermore, Fig. 1 presents the average convergence curves of the
standard GP and NGP methods with generations. Four datasets, WBCD, Made-
lon, DLBCL, and Prostate datasets, are chosen as representatives. In Fig. 1, a
lower fitness value can be obtained from the proposed NGP method on the four
datasets.
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Fig. 1. Convergence curves of the two algorithms during training.

The results indicate that employing neighbourhood information in crossover
can help GP to generate fitter individuals and therefore get better classification
performance.

Training Time: All experiments use the Mahuika High-Performance Comput-
ing (HPC) cluster of the New Zealand eScience Infrastructure (NeSI) [19]. The
average computational time (in minutes) of the standard GP and the proposed
NGP methods on each dataset is given in the last column in Table 4. In Table 4,
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both methods spend a relatively short time, even less than 5 min on the SPECT,
WBCD, and Sonar datasets. Furthermore, both algorithms can finish one run
within 105 minutes on all the tested high-dimensional datasets except for the
QSAR dataset. The results show that the proposed NGP method can achieve
a much better classification performance and finish the evolutionary training
process in a short time.

5.2 Example Programs Evolved by NGP

This section analyzes some example GP programs from the proposed NGP
method on the WBCD, Hillvally, and DLBCL datasets. In these examples, mul-
tiple GP programs selecting different features can achieve the same classification
accuracy. Even, some programs can achieve the same top classification accuracy
(i.e., 100%) on both the training and test sets.

Fig. 2. Two different GP programs with the same classification accuracy on the WBCD
dataset.

Fig. 3. Three different GP programs with the same top accuracy (100%) on the Hill-
vally dataset.

As shown in Fig. 2, the two trees, Tw1 = f28/f4 − f9 ∗ f1 − f30 − f28 and
Tw2 = f28/f4 − f21 ∗ f25 − f30 − f28, can achieve the same training accuracy of
93.5%. The two trees are equivalent to the following two formulas:

Tw1 =
std concave

mean area
−(mean symmetry)∗(mean radius)− lar fractal−std concave, (3)
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Tw2 =
std concave

mean area
− (std radius) ∗ (std smoothness) − lar fractal − std concave, (4)

where std and lar mean the standard error and the largest value, respectively.
More detailed descriptions of the meanings of these features can be seen in [22].
If f28/f4−f30−f28, i.e., std concave

mean area −lar fractal−std concave, is considered a new
classifier, the training accuracy of 93.0% can be achieved. This indicates that
by adding (mean symmetry) ∗ (mean radius) or (std radius) ∗ (std smoothness),
the classification accuracy can be slightly improved (from 93.0% to 93.5%). The
measures of symmetry in Tw1 involve several steps. The first step is to find the
major axis or the longest chord through the centre of the cell nuclei present in the
image. Then, the length difference between lines perpendicular to the major axis
to the cell boundary in both directions is measured. Compared with symmetry,
smoothness in Tw2 is easier to collect since it only involves local variation in
radius lengths. Therefore, if both Tw1 and Tw2 are provided to a user, the user
may prefer Tw2 since it has a lower feature collection cost.

On the Hillvally dataset, the proposed NGP method finds very simple trees
but with the same highest classification accuracy. In Fig. 3, the final outputs of
the three trees are:

Fig. 4. Two different GP programs with the same classification accuracy on the DLBCL
dataset.

Th1 = f99 − f87, (5)

Th2 = f100 − f88, (6)

Th3 = f100 ∗ (f100 − f81). (7)

Trees Th1 and Th2 have the same program structure (same number of nodes and
tree depth), but they select different features. Using any of them can perfectly
predict the class labels of instances. If all the three GP trees are provided to a
user, the user is more likely to use Th1 or Th2 because of the simpler structure.

In Fig. 4, two different trees shown for the DLBCL dataset have the same both
training (98.10%) and test (95.83%) classification accuracies. The two classifiers
are the linear combination of different features. Taking either f5201 − f2061 +
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f6445 +f4193 or f3834 −f2061 +f4193 +f4293 as a classifier, the same classification
performance can be obtained. One interesting point is that there are two common
features (f4193 and f2061) included. If f4193 − f2061 is taken as a new classifier,
the classification accuracy of 66.67% can be achieved. By adding another two
features, the classification accuracy is further improved.

According to these example programs, NGP is capable of automatically
evolving multiple different effective GP programs with the same high classifi-
cation performance.

6 Conclusions

This paper aimed to use GP to evolve multiple optimal classifiers with good
interpretability for classification tasks. This goal has been successfully achieved
by employing a niching technique and an external Archive. During the evolu-
tionary learning process, the fittest individuals were collected into the Archive.
When performing the crossover operator, the niching information of individuals
was considered. The results showed that the proposed NGP algorithm achieved
better overall classification accuracy than the standard GP method and the DT
classifier. More importantly, the results showed that the proposed NGP method
can find different GP programs with the same classification performance, reveal-
ing novel insights into the data. It may be possible to support the user in choosing
a good model in a powerful and sensible manner if they have options, possibly
in conjunction with expert knowledge.

Future work will primarily focus on extending NGP on multiple-class clas-
sification tasks and improving NGP further through the use of more advanced
concepts to better measure the tree complexity.
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Abstract. The high variations across images make image classifica-
tion a challenging task, where the limited number of training instances
further increases the difficulty of achieving good generalization perfor-
mance. Applying ensemble learning to classification often yields better
generalization results on unseen data than using a single classifier. How-
ever, for an ensemble to generalize properly, its base learners should be
accurate and diverse. Genetic programming (GP) has achieved promis-
ing results in image classification. However, existing methods typically
employ single-tree representation (i.e., an individual contains a sin-
gle tree) and are not easy to evolve multiple base learners especially
when only limited training data is available. This paper proposes a
new ensemble construction method for image classification using multi-
objective multi-tree GP (i.e., on individual contains multiple trees). In
the new method, a GP individual forms an ensemble, and its multiple
trees are base learners that can learn informative features from a rela-
tively small number of training instances. To find effective GP individu-
als/ensembles, i.e., to make its multiple trees accurate and diverse, the
proposed method formulates the ensemble learning problem as a multi-
objective task explicitly. Thus, the new objective functions are developed
to maximize the diversity and minimize the classification error simultane-
ously. The proposed method achieves significantly better generalization
performance than many competitive methods on four datasets of varying
difficulty. Further analysis demonstrates the effectiveness and potentially
high interpretability of the constructed ensembles.

Keywords: Image classification · Ensemble learning · Multi-tree
genetic programming · Multi-objective

1 Introduction

Image classification aims at predicting class labels of unknown instances/images
by building a model based on training instances. It is a fundamental task in
computer vision with many applications, including healthcare, the automobile
industry, and manufacturing [30]. However, it is not easy to develop an effective
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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image classification method due to high image variations, such as illumination,
rotation, and scale. Moreover, in some computer vision applications, receiving
large annotated datasets is challenging and expensive, increasing the difficulty
of obtaining good generalization performance.

Ensemble methods have been applied to various classification tasks, includ-
ing image classification [3,10]. An ensemble contains multiple base learners and
performs a good prediction by combining the results of its base learners via a
combination method, e.g., voting and averaging. Much research work has shown
that applying ensemble learning for classification can achieve better generaliza-
tion performance than using a single classification algorithm on unseen data [28].
However, it is challenging to construct an effective ensemble since its base learn-
ers are required to be accurate and diverse. In the image classification domain,
an accurate base learner is expected to extract informative features from raw
images and conduct effective classification simultaneously.

Genetic programming (GP) [13], an evolutionary learning technique, has
been successfully applied for image feature learning and classification [2]. It is
a population-based search approach based on the Darwinian theory. It typically
uses tree-based representation and starts by randomly generating a population of
programs/individuals/solutions and further updates these individuals by using
evaluation, selection, and genetic operators, i.e., crossover and mutation, until
finding the best solution(s). Since a tree-based GP model has potentially good
interpretability, a strong global search ability, and flexible representation with
variable length, it has achieved promising classification results in image clas-
sification [3,8,25]. GP-based methods can learn informative features through
multiple levels of transformations, i.e., linear and nonlinear, in a GP individual.
The evolved GP individuals can be used for building accurate base learners in an
ensemble. However, most existing methods employ a single-tree representation,
i.e., an individual consists of a single tree, because it is relatively easy to be
implemented. However, using single-tree GP is not easy to build multiple accu-
rate and diverse base learners, especially when only a limited number of training
instances are available. With the flexible representation, GP can evolve multiple
trees in a single individual, i.e., multi-tree GP (MTGP) [16]. MTGP is a suitable
candidate for constructing multiple base learners and forming an ensemble for
image classification, but not much work has been done in this direction.

Another crucial issue is that for an ensemble to be more accurate than any
of its base learners, the base learners must be diverse, namely, making differ-
ent errors on the same inputs [28]. However, the objectives of maximizing the
diversity and minimizing the classification error (maximizing the classification
accuracy) of base learners are often in conflict with each other [5,6]. GP has
unique advantages in addressing multi-objective tasks since it can find a set of
trade-off (between the diversity and the classification error) solutions in a single
run using its population-based search mechanism. In addition, the diversity of
the base learners is not easy to measure and control [28].

The overall goal of this paper is to address the above-discussed limitations
by evolving effective ensembles using multi-objective multi-tree GP for image
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classification containing a limited amount of training data. For simplification, the
new method is named MMGP, i.e., multi-objective multi-tree GP. Specifically,
the goal can be divided into five following objectives:

– Develop a new ensemble construction method for image classification using
multi-tree GP that can achieve better generalization performance than many
competitive methods;

– Employ an effective tree representation with a relatively simple structure and
a few parameters that allows base learners in the MMGP method to learn
discriminative and informative features without requiring a large number of
training instances;

– Design the new objective functions to minimize classification error and max-
imize diversity objectives simultaneously, which enables the new method to
search for the best ensembles containing accurate and diverse base learners
during the evolutionary learning/training process;

– Evaluate the generalization performance of the proposed MMGP method on
four image datasets of varying difficulty with a limited number of training
instances; and

– Analyze the effectiveness and interpretability of the constructed ensembles
using MMGP.

2 Related Work

2.1 GP for Image Classification

With flexible tree representation, many studies have investigated the effective-
ness of GP for image classification. Below is a brief summary of these studies.

Atkins et al. [1] used GP for developing a domain-independent image classifi-
cation method. The GP program evolved by this method had three tiers (3TGP)
performing different sub-tasks, such as filtering. Its output was a high-level fea-
ture (i.e., a floating-point number) that was used to make the classification deci-
sion. This method was comparable to other methods based on domain-specific
features. Ruberto et al. [23] presented a genetic program feature learner (GPFL)
for image classification. The method could learn a specific high-level feature from
raw images at each generation and combine them. On the MNIST dataset, it
performed better than the benchmark method, i.e., LeNet-5 [14]. Bi et al. [4]
developed an image classification method based on GP with a flexible repre-
sentation (FGP), which employed multiple image-related functions, including
filters and feature extraction methods, as the internal nodes of GP trees for
extracting features, and conducted classification using support vector machine
(SVM). FGP has shown promising performance on various image classification
tasks. Fan et al. [8] proposed a new tree representation to fully utilize the fea-
tures produced by the different nodes of GP trees. This method could flexibly
reuse useful features from internal nodes of a GP tree, automatically choose one
classification algorithm, such as SVM or random forest(RF), and perform classi-
fication. The method achieved better classification performance compared with
many competitive methods.
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Existing methods of image classification based on GP have shown promising
results. However, these methods usually train a classifier using a GP tree or rely
on an external classification algorithm, e.g., SVM, to perform classification [2].
When there is a limited number of training instances, these methods are not
easy to generalize well.

2.2 Ensemble Learning for Classification

An ensemble method consists of training a diverse set of base learners and com-
bining their predictions to obtain a good prediction. Thus, it usually achieves
better generalization performance than a single model on the test data and has
been extensively applied to address various classification problems [28].

Pooja et al. [22] used a linear program boosting classifier to enhance the accu-
racy of weather predictions. The method employed K nearest neighbor (KNN)
as a weak classifier, and its weight was updated depending on the training error.
To increase diversity among the base learners, Lu et al. [18] trained the base
learner by building the decision group that randomly selected a classifier from
three classifiers, i.e., KNN, decision tree (DT), and näıve bayes (NB), repeated
three times, and obtained the classification decision by voting. In addition, GP
has been used to build ensembles for classification. To improve the classification
of text documents, Zhang et al. [27] utilized multiple GP individuals from a
population to form an ensemble, which was then able to find a set of similarity
functions. Based on majority voting, the similarity functions were more effective
than other methods of fusion, such as content-based SVM. Bi et al. [3] proposed
an ensemble method by integrating several classification algorithms as the func-
tions of the GP programs. The final class label was returned from the output
of the GP program that combined the predictions of multiple classifiers accord-
ingly. The method achieved competitive performance on the image classification
datasets. However, it tended to evolve GP programs with large sizes, harming
its interpretability.

Existing studies have presented promising results using GP-based ensembles
for classification. However, only a few studies have been conducted on building
ensembles based on GP for image classification. Moreover, using single-tree GP
to construct multiple accurate and diverse base learners is not easy, especially
when the number of training instances is limited. This paper aims to address
these issues by developing a new ensemble construction method using multi-tree
GP for image classification.

3 The Proposed Approach

This section presents in detail the new multi-objective multi-tree GP-based
ensemble approach (i.e., MMGP) to image classification. We first provide the
overall process of the proposed image classification framework. Second, this
section introduces the tree representation to build accurate GP trees/base learn-
ers. Finally, a new fitness evaluation strategy with multi-objective is developed.
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Fig. 1. Flowchart of MMGP. It contains a training process and a test process.

3.1 Overall Algorithm

The goal of this paper is to propose a new ensemble construction approach using
multi-objective multi-tree GP to image classification with limited training data.
Unlike most existing GP-based methods that usually contain a single tree in each
individual, the proposed MMGP approach can evolve multiple trees in each indi-
vidual. In MMGP, each GP individual forms an ensemble in which multiple trees
are base learners and obtains the classification results via majority voting. Fur-
thermore, the evolutionary multi-objective optimization method is employed to
search for the best individual/ensemble with accurate and diverse base learn-
ers during the evolutionary learning process. MMGP can maximize both objec-
tives of classification accuracy and diversity simultaneously (see Sect. 3.3). Thus,
MMGP is expected to achieve better generalization performance than the meth-
ods using a single GP tree on unseen data.

Figure 1 shows the flowchart of the proposed image classification frame-
work using MMGP that contains two components, i.e., the evolutionary train-
ing/learning process and the test process. In the training process, MMGP takes a
training set containing training instances/images and corresponding class labels
as the input. Its output is a set of non-dominated solutions/individuals/ensembles
that are employed to predict the class labels of the test instances. Firstly, a popula-
tion of GP individuals with multiple trees is automatically generated via ramped
half-and-half [13]. To obtain accurate base learners/GP trees, MMGP employs
the tree representation proposed in GP-FR [8] (see Sect. 3.2). GP-FR is a state-
of-the-art image classification method that achieves competitive performance on
various image classification datasets. MMGP constructs ensembles using GP indi-
viduals and then evaluates them to obtain the corresponding objective values,
i.e., classification accuracy and diversity. Then, GP individuals with higher objec-
tive values are chosen using the NSGAII selection method [7]. NSGAII is used
in this work since it is a commonly used evolutionary multi-objective optimiza-
tion (EMO) method, and other EMO methods can also be used here. The selected
individuals are used to generate new ones by conducting random-index crossover
and mutation [17] (i.e., randomly selecting a tree from the individual to perform



Evolving Effective Ensembles for Image Classification Using MMGP 299

crossover or mutation). This process will continue until a predetermined stopping
criterion, i.e., the maximum number of generations is reached. Finally, a set of
non-dominated GP individuals are returned, all of which are used to construct an
ensemble using the training set. The obtained ensemble is used to predict the class
labels of test instances via majority voting.

3.2 Multi-tree Representation

MMGP employs the multi-tree GP representation to evolve ensembles for image
classification. Figure 2 shows an example GP individual containing three trees.
MMGP evolves each tree in one GP individual based on the tree representation
in GP-FR [8] to train accurate base learners and then construct effective ensem-
bles using all trees. It is noted that although each tree in the GP individual uses
the same representation developed in GP-FR, their sizes/shapes and internal/leaf
nodes can be different because of the flexible representation, as shown in Fig. 2.
GP-FR is based on strongly typed GP (STGP) [19]. Its tree structure contains
multiple layers with different functions, which conduct image filtering, region
detection, feature extraction, feature concatenation, and classification, respec-
tively. The GP tree takes a raw image as input, and its output is the predicted
class label. GP-FR can automatically learn informative features from raw images
by layer-by-layer transformation, select a suitable classification algorithm, such
as SVM or logistic regression (LR), and conduct effective classification. More-
over, GP-FR can flexibly reuse features generated by different nodes of the GP
tree (see dotted arrows in Fig. 2), thus learning much richer image features and
achieving higher classification accuracy than GP-based methods without feature
reuse. More details about the tree structure, functions, and terminals of GP-FR
can be found in [8].

(a) The first tree. (b) The second tree. (c) The third tree.

Fig. 2. An example GP individual that can be evolved by MMGP (Img: Input Image;
RD: Region Detection Function; IIF: Image Filtering Function; FE: Feature Extraction
Function; FC: Feature Concatenation Function; CA: Classification Algorithm Function
(e.g., SVM)).
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To obtain ensembles that generalize well, base learners are required to be
not only accurate but also diverse. MMGP uses the evolutionary multi-objective
optimization method to achieve this goal.

3.3 Objective Functions

In the proposed MMGP approach, classification accuracy and diversity are
employed as two objectives to measure an individual’s fitness.

Objective 1 – Accuracy.

acc =
Ncorrect

N
, (1)

where N is the total number of training instances, Ncorrect denotes the number
of instances being correctly classified, and acc is the classification accuracy.

Objective 2 – Diversity. MMGP applies pairwise failure crediting (PFC) [5] as
a diversity measure, which provides an indication of how different each tree/base
learner is from all the other trees/base learners in the GP individual/ensemble.

PFC =
1
T

T∑

p=1

T∑

j=p+1,j �=p

∑N
i=1 I(c

p
i , c

j
i )

Errp + Errj
, (2)

where

I(cpi , c
j
i ) =

{
1, if cpi �= cji ,
0, otherwise

In Eq. (2), T is the number of trees in the GP individual, N is the number of
training instances, and cpi and cji are the predicted class labels of the instance
i using the trees p and j, respectively. Indicator function I(·) returns 1 if the
predicted class labels between two trees are different for a given training instance,
or 0 otherwise. Errp and Errj are the number of incorrect predictions for the
trees p and j in a GP individual on the training set. Equation (2) will return
the value between 0 and 1, where the higher the PFC, the better the diversity.

To avoid overfitting, MMGP uses the stratifiedK-fold cross-validation method
to calculate the accuracy and diversity. The training set is divided into K folds.
Each time one fold is used to test the built ensemble/individual, and the remaining
folds are used to train base learners/trees and form an ensemble. MMGP assigns
the average test accuracy and the average diversity of the K folds as the objective
values of the individual. The value of K is set to 3 according to [29].

4 Experiment Design

4.1 Benchmark Datasets

In the experiments, four image classification datasets with limited training data
are employed to evaluate the performance of MMGP. They are DSLR [24], web-
cam [24], Outex [20], and EYALE [15]. These datasets are representative of var-
ious tasks related to image classification, i.e., object classification (DSLR and
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webcam), texture classification (Outex), and face recognition (EYALE). These
tasks with different types of images can comprehensively illustrate the effective-
ness of MMGP. Figure 3 presents the example images of the benchmark datasets.
Table 1 lists their detailed information. In order to reduce the computational
cost, the images are resized and/or converted to gray-scale images.

Fig. 3. Example images of the benchmark datasets.

Table 1. The benchmark dataset properties

No Dataset Training set Test set Image size #Class

1 DSLR 155 (5) 343 50×50 31

2 Webcam 155 (5) 640 50×50 31

3 Outex 480 (20) 3840 64×64 24

4 EYALE 380 (10) 720 50×45 38

4.2 Benchmark Methods

We employ 11 effective benchmark methods, including ensemble-based methods,
CNN-based methods, and GP-based methods, for comparisons to demonstrate
the effectiveness of MMGP. Six traditional image classification methods, namely,
SIFT+RF, HOG+RF, uniform LBP (uLBP)+RF, SIFT+SVM, HOG+SVM,
and uLBP+SVM, which extract SIFT, HOG, and uLBP features respectively
and then use RF or SVM for classification. RF is an ensemble classification algo-
rithm. Since the benchmark datasets only contain limited training instances,
it is not easy to train a very deep CNN. Three typical shallow CNNs, i.e.,



302 Q. Fan et al.

LeNet-5 [14], CNN-5 [25], and MobileNetV3-Small [11] are used for compar-
isons in the experiments. Considering that MMGP is a GP-based approach, the
comparison methods also include two state-of-the-art GP methods, i.e., IEGP [3]
and GP-FR [8]. IEGP is an ensemble method that combines several classification
algorithms as the functions of GP programs. MMGP uses the tree representa-
tion proposed in GP-FR. Comparing with GP-FR can verify the effectiveness of
constructed ensembles in MMGP.

4.3 Parameter Settings

Parameter settings of MMGP are consistent with the commonly used settings in
the GP community [2,8]. The maximum number of generations is 50 and the pop-
ulation size is 100. The ramped half-and-half method is used to generate initial
population [12]. The tree depth is between 4–10 [8]. The mutation and crossover
rates are 0.2 and 0.8, respectively. NSGAII is employed to evolve a good set of
non-dominated GP individuals/solutions in MMGP. To conduct effective major-
ity voting and save the computational cost of constructing ensembles, MMGP
evolves three trees in each GP individual.

The implementation of IEGP, GP-FR, and MMGP is based on the DEAP
(distributed evolutionary algorithm in Python) package [9]. The classification
algorithms, i.e., SVM, LR, RF, and ERF, used in MMGP and the benchmark
methods are implemented based on the scikit-learn package [21]. The parameter
settings for these classification algorithms refer to references [26] and [29] due
to their effectiveness. The SVM uses a linear kernel with a penalty parameter
of 1 [26]. The penalty parameter in LR is also set to 1 [26]. In RF and ERF,
there are 500 trees and their maximum depth is 100 [29]. In CNN-5, LeNet-5,
and MobileNetV3-Small, the batch size is set to 16 and the epochs is set to 100.
On each dataset, all methods have been executed 30 independent times with
different random seeds and the results of the 30 runs are reported.

5 Results and Discussions

In this section, we report and discuss the classification results of MMGP and
the compared methods on the four benchmark datasets, showing the effective-
ness of MMGP for image classification with limited training instances. Table 2
presents the classification accuracy, including the average classification accuracy
and the standard deviation (Mean±Std) from 30 runs. To compare MMGP with
the benchmark method, we use the Wilcoxon rank-sum test with a 95% confi-
dence interval. The symbols “+” and “–” indicate that MMGP achieves signifi-
cantly better and worse performance than a particular benchmark method. “=”
suggests that MTGPE and the benchmark method obtain similar classification
results. From Table 2, MMGP performs better than the benchmark methods,
i.e., it obtains 42 “+” and 2 “=”.

Comparisons with Traditional Methods: The classification performance of
SIFT+SVM, HOG+SVM, and uLBP+SVM on the four benchmark datasets is
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Table 2. Classification accuracy(%) of the proposed approach and comparison methods
on the DSLR, webcam, Outex, and EYALE datasets

Methods DSLR Webcam Outex EYALE

SIFT+SVM 51.31 ± 0.00 + 50.00 ± 0.00 + 34.74 ± 0.00 + 66.49 ± 0.00 +

HOG+SVM 36.73 ± 0.00 + 35.00 ± 0.00 + 16.28 ± 0.00 + 65.26 ± 0.00 +

uLBP+SVM 34.40 ± 0.00 + 36.09 ± 0.00 + 86.25 ± 0.00 + 33.46 ± 0.00 +

SIFT+RF 53.52 ± 1.06 + 55.13 ± 1.01 + 63.89 ± 0.37 + 46.42 ± 0.49 +

HOG+RF 48.67 ± 1.03 + 47.98 ± 0.84 + 48.49 ± 0.43 + 54.21 ± 0.48 +

uLBP+RF 41.42 ± 1.15 + 40.49 ± 0.94 + 93.04 ± 0.22 + 30.09 ± 0.42 +

LeNet-5 37.93 ± 2.98 + 36.26 ± 2.88 + 71.20 ± 6.28 + 58.23 ± 3.85 +

CNN-5 42.96 ± 1.68 + 43.86 ± 2.05 + 60.57 ± 3.56 + 73.87 ± 2.17 +

MobileNetV3-Small 52.54 ± 3.30 + 53.63 ± 2.24 + 96.47 ± 1.10 + 77.54 ± 6.52 +

IEGP 57.03 ± 4.72 + 59.86 ± 5.76 + 98.97 ± 0.38 + 92.65 ± 2.27 =

GP-FR 58.78 ± 2.48 + 59.51 ± 2.52 + 99.05 ± 0.42 + 92.42 ± 2.20 =

MMGP 62.11 ± 0.02 63.21 ± 0.02 99.45 ± 0.01 92.67 ± 0.02

Overall 11+ 11+ 11+ 9+, 2=

not satisfying. SIFT+RF, HOG+RF, and uLBP+RF outperform SIFT+SVM,
HOG+SVM, and uLBP+SVM, respectively, on the DSLR, webcam, and Outex
datasets, which indicates that ensemble methods often achieve better perfor-
mance than using a single classifier when only limited training data is available.
On the other hand, the proposed MMGP approach performs significantly better
than these methods in all comparisons. The results reveal that only using one
feature extraction method may not be sufficient for image classification.

Comparisons with CNN-Based Methods: Compared with three CNN-
based methods, i.e., LeNet-5, CNN-5, and MobileNetV3-Small, MMGP archives
significantly better classification performance on all benchmark datasets. For
example, MMGP reaches a 9.57%, 9.58%, 2.98%, and 15.13% increase over the
best results obtained by the three CNN-based methods on the four benchmark
datasets in terms of mean accuracy. A possible reason for these phenomena is
that CNN-based methods usually contain many parameters even for shallow
CNNs, and require a large number of training instances to train the model.
However, MMGP using a relatively simple tree representation to represent solu-
tions, has a powerful ability to learn informative features and constructs effective
ensembles for image classification with limited training instances.

Comparisons with GP-Based Methods: IEGP performs significantly worse
than the proposed MMGP approach on DSLR, webcam, and Outex, i.e.,
decreases by 5.08%, 3.35%, and 0.48% mean accuracy and reaches the simi-
lar results to MMGP on EYALE. GP-FR and MMGP employ the same tree
representation, but MMGP obtains three “+” and one “=” in four comparisons,
illustrating the effectiveness of the constructed ensembles.

In summary, MMGP achieves better generalization performance than the
compared methods by constructing effective ensembles. In addition, MMGP
obtains a small standard deviation on the four benchmark datasets, indicating
its good stability.
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6 Further Analysis

6.1 The Effectiveness of the Constructed Ensembles Using MMGP

Since MMGP is a multi-objective method, a set of non-dominated GP individ-
uals/ensembles will be received when the evolutionary training process is com-
pleted. To further improve the generalization performance of the new method,
we build the ensemble using all returned individuals in the Pareto front on the
training set and examine it on the test set. In addition, we report the classifica-
tion results of the constructed ensemble using the GP individual with the lowest
training classification error in the Pareto front for comparisons. The method
is named MMGP LE. Table 3 lists the classification accuracy of the baseline
method (i.e., GP-FR), MMGP LE, and MMGP on the four benchmark datasets.
From Table 3, MMGP LE achieves higher classification accuracy than GP-FR,
indicating the effectiveness of the constructed ensembles since they employ the
same tree representation. The classification performance of MMGP LE has been
further improved according to the results of MMGP, showing that using all indi-
viduals in the Pareto front to build an ensemble is more effective for image
classification.

Table 3. Classification accuracy(%) of the constructed ensembles on the DSLR, web-
cam, Outex, and EYALE datasets

Methods DSLR Webcam Outex EYALE

GP-FR 58.78 ± 2.48 + 59.51 ± 2.52 + 99.05 ± 0.42 + 92.42 ± 2.20 =

MMGP LE 60.68 ± 0.02 + 60.65 ± 0.02 + 99.16 ± 0.01 = 92.45 ± 0.02 =

MMGP 62.11 ± 0.02 63.21 ± 0.02 99.45 ± 0.01 92.67 ± 0.02

6.2 An Example GP Individual of MMGP

As shown in Figs. 4 and 5, an example GP individual/ensemble evolved on
EYALE (i.e., a face recognition dataset) is used in this section to explain how
MMGP learns informative features and performs classification, thus demonstrat-
ing its effectiveness and potentially high interpretability. The three trees in this
GP individual achieve 80.00%, 82.08%, and 88.33% test accuracy, respectively,
while it achieves 90.14% test accuracy by considering the results of these three
trees. In addition, it is straightforward to know which features are extracted
and which classification algorithm is used according to the trees in Fig. 4. For
example, from Fig. 5, the texture features extracted from the eye region via the
uLBP function and the features extracted from the whole image via the DIF
function can effectively distinguish different faces, showing that the evolved GP
trees are potentially interpretable.
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(a) The first tree. (b) The second tree. (c) The third tree.

Fig. 4. An example GP individual evolved by MMGP on EYALE.

(a) “person6”. (b) “person26”.

Fig. 5. The example classification process of the third tree from Fig. 4.

7 Conclusions

The goal of this paper was to develop an effective image classification app-
roach based on GP with limited training data. This goal has been successfully
achieved by proposing a new ensemble construction method using MMGP. In
MMGP, each GP individual formed an ensemble, in which three trees were base
leaners. An effective tree representation containing a relatively simple structure
and only a few parameters were used to train accurate base learners that could
learn informative features from limited training data. To ensure the accuracy
and diversity between base learners in an ensemble, MMGP regarded ensemble
learning problems as multi-objective optimization problems. As a result, a set
of non-dominated GP individuals/ensembles were obtained, which were used to
predict the class labels of the test instances. The performance of MMGP has
been evaluated on four different image classification datasets containing limited
training instances. The experimental results showed that MMGP received signif-
icantly higher classification accuracy than those competitive image classification
methods in almost all comparisons. Further analysis verified the effectiveness
and potentially high interpretability of the constructed ensembles.
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This paper investigated the potential of combining multi-tree GP and ensem-
ble learning for effective image classification with limited training data. However,
it is computationally more expensive to use multi-tree GP than single-tree GP.
In the future, we will use efficient methods, e.g., surrogate models, to further
reduce the computational costs of multi-tree GP.
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Abstract. Association rule mining is a pivotal technique for knowl-
edge discovery, but often involves time-intensive manual labour when
performed on large datasets. In this paper we propose a solution for
this problem: QUARRY, a graph model that enables consumable and
queryable insights from association rules. In contrast to existing systems
which take a list of rules and display them in a purpose-built visual-
isation, our graph-based model enables association rules to be queried
directly via graph queries. Through a case study on maintenance data we
show how this model enhances knowledge discovery by eliminating the
need for domain experts to trawl through large lists of rules to find useful
information. QUARRY, which is designed for compatibility with exist-
ing knowledge graphs, provides users with the means to easily search
for rules pertaining to specific items as well as roll up and drill down
on their searches using the concept hierarchy. Domain experts may also
query for association rules based on transaction properties such as costs
and dates, enabling critical insights into their data.

Keywords: Association rule mining · Text mining · Information
retrieval · Knowledge discovery · Knowledge graphs

1 Introduction

Knowledge discovery is an important task facilitated by artificial intelligence
(AI) that supports data-driven decision making. Association rule mining is one
of the foundational techniques for knowledge discovery, and is one of the most
important and well researched techniques in data mining [1,10].

An association rule is an implication that an antecedent predicts a conse-
quent, for example, “people who buy bread and eggs often also buy milk”. The
antecedent and consequent are sets of items, known as itemsets. Association
rules are commonly evaluated by two measures. The support is the fraction of
transactions that contain both the antecedent and consequent divided by the
total number of transactions in the entire dataset. The confidence measures the
fraction of records containing both the consequent and antecedent divided by the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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number of transactions containing the consequent. Rules can also be measured
by their lift, which is the ratio of the confidence of the rule and the expected
confidence of the rule.

Once a list of association rules has been mined, the traditional approach
to interrogating these rules involves copious manual labour. Data scientists or
domain experts typically sort rules by confidence or some other measure (such as
support or lift) in order to find “useful” rules that can inform decision making.
However, if one is interested in searching for rules pertaining to particular items,
one must manually search through the list of all rules to find such rules [9]. This
can be prohibitively time-intensive on large datasets with many item types.
Furthermore, a list of association rules does not capture the concept hierarchy -
for example, a rule stating that bread is commonly associated with milk would
not appear in a search for all rules pertaining to drinks, despite milk being a
subclass of drink.

Several researchers have addressed this issue by introducing methods for visu-
alising association rules. The most recent of these techniques typically involve
graph visualisations that are generated from the list of association rules [6,9].
While these techniques improve the interpretability of the association rules, they
do not inherently change the way the association rules are stored, and thus do
not provide any means to query the rules outside of the visualisation itself.

Another growing area of research in the knowledge discovery space is the con-
struction of knowledge graphs from unstructured text. This involves the auto-
matic extraction of entities and relationships in unstructured text in order to
build a knowledge graph [13,20]. Despite the fact that entities appearing within
documents naturally form itemsets, existing association rule mining techniques
are not designed with these knowledge graphs in mind. One must therefore write
purpose-built scripts to extract item sets from the knowledge graph in order to
run association rule mining, and there is no natural cohesion between the mined
list of association rules and the original knowledge graph.

In this paper we aim to bridge the gap between association rule mining and
graphs by introducing QUARRY, a graph model for storing association rules
alongside transactional data. QUARRY enables association rules to be easily
queried via graph queries, allowing for the filtering of rules containing specific
items that are of interest to domain experts. The concept hierarchy is attached to
the items in each rule, allowing for queries over different levels of the hierarchy.
Additionally, rules can be queried based on document properties such as costs
and dates. The schema is designed to be compatible with an existing knowledge
graph and supports further graph-based visualisations.

This paper is structured as follows. We begin by reviewing prior work in
association rule mining and graph-based visualisations for association rules in
Sect. 2. We then present our model for storing and querying association rules
in Sect. 3. In Sect. 4 we present a case study of our model being applied to
maintenance work orders in order to demonstrate the effectiveness and utility of
our approach. Finally, we conclude this paper and present an outlook to future
work in Sect. 5.
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2 Related Work

Association rule mining, also known as frequent pattern mining, is a long-
standing task in the data mining space [10]. On transactional (tabular) data,
it is often performed using the apriori algorithm [2], which identifies frequent
patterns in the data and continuously expands the size of these patterns until
they can no longer be expanded. Apriori is often contrasted with the FP-Growth
algorithm [11], which uses a tree structure to store frequent patterns.

Another means to generate association rules is to build an association graph,
then traverse the graph to generate all large itemsets [25]. The main benefit of
this is performance, as it reduces the number of database scans necessary when
compared to the Apriori algorithm. Tiwari et al. [23] introduce the FP-Growth-
Graph algorithm, an extension of the FP-Growth algorithm that uses a graph
rather than a tree to store itemsets.

With the growing popularity of graph databases such as social networks [18]
and knowledge graphs constructed from unstructured text [13,20], more recent
research into association rule mining has looked at mining frequent patterns from
graphs directly. Wang et al. [24] propose the concept of graph-pattern association
rules, where the antecedent and consequent of each rule are patterns found in
a graph rather than itemsets from a transaction. Fan et al. [5] focus on large
graphs, proposing a pruning strategy facilitated by a machine learning model in
order to improve performance.

A related area of research in the association rule mining space is the effec-
tive visualisation of association rules in order to maximise their interpretability.
Visualisation tools are often split into several categories: table-based visualisa-
tions, matrix-based visualisations, group matrix-based visualisations, and graph-
ical visualisations [6]. Table visualisations include the educational dashboard
presented by Garcia et al. [7] and the Aquila tool [21], which allows for the
rolling up and drilling down over rules based on the concept hierarchy. Hasler
and Karpienko [9] demonstrate a grouped matrix visualisation technique that
groups similar rules together, which is available as an R package [8].

Graphical association rule mining visualisations provide a more interactive
display of association rules. The visualisations presented by Fernandez-Basso et
al. [6] provide a graph view of association rules which supports fuzzy associa-
tion rules, where the antecedent or consequent are a collection of fuzzy sets [14].
VisAR [22] filters out large subsets of frequent itemsets in order to display a visu-
alisation of notable rules to the user, also allowing the user to specify items of
interest. WiFIsViz [16] similarly displays rules in two-dimensional space, group-
ing itemsets containing similar terms together. More recently, RadialViz [17]
presents rules in an orientation-free visualisation, eliminating the impact of the
graph’s orientation on the legibility of the rules.

Despite the growing body of research on both graph-based techniques for
generating association rules, and graph-based visualisations designed to make
association rules more interpretable, to the best of our knowledge no research
has yet investigated the potential for storing association rules in a graph so that
they can be queried effectively. Systems that generate association rules using an
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underlying graph, and visualisation systems, both rely on a list of association
rules with some underlying purpose-built storage mechanism. Our research thus
does not aim to propose another visualisation system, but rather a graph model
for storing association rules that supports a wide range of queries over those
rules.

3 Model

Fig. 1. A block diagram showing how transaction data can be transformed into a
queryable transaction + association rule graph (QUARRY).

The goal of QUARRY is to provide a queryable model for association rules.
We do not focus on the generation of association rules in this paper; rather, we
focus on a way to store association rules after they have been generated such
that they can be queried using graph query languages to hasten and improve
the process of knowledge discovery.

The overall design of QUARRY is shown in Fig. 1. The input to the model
is a list of transactions (sourced from an existing database) and a concept hier-
archy. The tabular transaction dataset is first transformed to a “transaction
graph”, i.e. a graph representation of a list of transactions. If a knowledge graph
with the same schema to our transaction graph (such as an entity co-occurrence
graph built via a text to knowledge graph pipeline) is already present, this stage
can be skipped entirely. Association rules are then mined from this transaction
data, and fed into an “association rule graph” which is then merged with the
transaction graph. In this section we describe how to build the transaction graph,
generate association rules, model those association rules as a graph, and combine
the transaction and association rule graphs into a single QUARRY graph that
facilitates knowledge discovery.

3.1 Constructing the Transaction Graph

Association rule mining finds patterns appearing in transactions, where each
transaction t is a row that contains a set of items x. A small example of such
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Table 1. An example dataset of transactions.

TID Itemset

001 Beer, Bread, Eggs, Milk

002 Beer, Bread, Eggs

003 Bread, Eggs, Milk

Fig. 2. A translation of Table 1 to a graph schema. Labels have been colour coded.

a dataset with three transactions is shown in Table 1. The first step to building
a queryable graph of association rules is to transform this tabular data into a
graph. We hereby denote this graph as the “transaction graph” (not to be con-
fused with cryptocurrency transaction graphs), which is a graph representation
of a list of transactions.

A graph G(V,E) comprises a set V of vertices and a set E of edges. The edges
may be directed or undirected; in our case, QUARRY is a directed graph. A
property graph allows for each node to have zero or more properties (key-value
pairs). Nodes may be labelled with one or more labels. Edges must always have
a start and end node, may have a type, and may also contain zero or more
properties [3].

Figure 2 depicts a graph schema containing the three itemsets from Table 1.
Each transaction is represented as a node with the Transaction label. While
not shown in this example, the transaction nodes may have properties sourced
from the transaction dataset (such as the date of the transaction, the cost, and
so on) if required. Each unique item is represented as a node with the Item label.
An edge is formed between an item x and a transaction t if that x appears in t.
These edges are assigned the type IN.

3.2 Attaching a Concept Hierarchy

Concept hierarchies are a fundamental concept in data warehousing and are
critical in supporting the ability to roll up and drill down on data. An example
concept hierarchy for our example items (beer, bread, eggs and milk) is shown
in Fig. 3.
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Drink Food

Item

Beer Milk B read Eggs

Fig. 3. An example concept hierarchy.

There are two main ways to represent concept hierarchies in the transaction
graph. Firstly, every level of the hierarchy can be represented as a node, with
edges formed between each level and its parent in the hierarchy. Alternatively,
every level of the concept hierarchy can be stored as labels on the leaf-level item
nodes directly. While storing the concept hierarchy as labels allows for simpler
queries, it results in the same piece of information being stored multiple times
and does not allow for the modelling of multi-level rules in our graph schema.

In light of this, we opt for the former approach. We create nodes for every
level of the concept hierarchy, even if those nodes do not appear directly in a
transaction. We then create a CHILD OF relationship between to each node in the
transaction graph to its parent node. In our example, relationships are formed
from Bread to Food, Eggs to Food, Beer to Drink, and Milk to Drink, and
finally from Drink to Item and Food to Item.

3.3 Building the Association Rule Graph

Once the transactions have been transformed into a transaction graph, the next
step is to mine the association rules. The algorithm used to mine the rules is
not important - one may use apriori [2] over the original list of transactions for
its ubiquity and ease of use, or employ a graph-based algorithm [25] directly on
the transaction graph for performance. In our implementation of QUARRY we
opt to use apriori for simplicity.

Running the apriori algorithm on the rules from Table 1 yields 27 association
rules with confidence > 0.6. A selection of five of these rules is shown below:

– Eggs −→ Bread (Conf: 1.00, Supp: 1.00)
– Beer, Eggs −→ Bread (Conf: 1.00, Supp: 0.67)
– Beer, Eggs, Milk −→ Bread (Conf: 1.00, Supp: 0.33)
– Bread, Eggs −→ Beer (Conf: 0.67, Supp: 0.67)
– Bread −→ Milk (Conf: 0.67, Supp: 0.67)

We then take these rules and transform them into the association rule
graph. Unlike existing work in building graphs from association rules [23,25],
QUARRY is not using the graph to speed up the computation of the associa-
tion rules but is instead modelling rules as a graph so that they be queried using
a graph query language. Our schema is thus designed to be easy to write queries
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Fig. 4. A translation of five example association rules to the association rule graph
schema of QUARRY. ANTE relationships represent antecedents, while CONS relation-
ships represent consequents. We have also added higher-level concepts in the concept
hierarchy (the top level is omitted for brevity).

for. An example of the schema of the association rule graph is shown in Fig. 4.
Our process for building the association rule graph from a list of transactions is
as follows:

1. For each unique Item in the dataset, create a node with the label Item.
2. For each Item with a parent, create a relationship from that item to their

parent Item via the CHILD OF relationship.
3. For each rule, create a node with the label Rule.
4. For each rule, create a relationship of type ANTE between each corresponding

Item node in the antecedent (i.e. the left hand side) and the Rule node. Do
the same for the consequent (the right hand side), linking each Item to each
Rule via a CONS relationship.

5. Assign the Conf (confidence) and Supp (support) properties to the Rule node
(optionally also the Lift).

This schema supports multiple level association rule mining [25], which allows
for rules to be formed between different levels in the concept hierarchy. For
example, Drink could predict Bread with a certain level of confidence. Figure 4
shows nodes for Drink and Food, which are linked to their children via the
CHILD OF relationship. If these items appeared in any rules, they would be linked
to those rules the same way as the lower-level items. Pathfinding graph queries
can then be used to discover all rules containing items from a certain branch in
the hierarchy. This idea is discussed and exemplified in further detail in Sect. 4.
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3.4 Combining the Transaction Graph and Association Rule Graph

The final stage of QUARRY combines the transaction graph with the associa-
tion rule graph. This allows us to query the graph at the item/entity level while
also being able to query association rules.

Fig. 5. The final graph, which is a combination of the Transaction and Assocation
graphs.

Connecting the two graphs is relatively straightforward; all that needs to be
done is to merge the graphs on the Item nodes. Each Item now has up to four
types of outgoing relationships: IN to denote which transactions it is contained
in, ANTE to denote in which rules it appears as the antecedent, and CONS to denote
in which rules it appears as the consequent. Items that are children of other items
also have an outgoing CHILD OF relationship. The final graph is shown in Fig. 5.

4 Case Study - Maintenance Work Orders

In this section we aim to demonstrate the ability for QUARRY to save vast
amounts of time manually searching through association rules by allowing users
to query for specific rules of interest. We aim to accomplish this through a case
study on maintenance data. Maintenance work orders are an abundant source of
rich information capturing work that must be performed on engineering assets
such as pumps and compressors [4]. Work orders are of particular interest to
reliability engineers who work proactively to improve maintenance strategies.
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Our prior work [19] has presented a technical language processing-based
model for constructing a knowledge graph from maintenance data. In this case
study we now show how to incorporate association rules into this knowledge
graph using the method described in Sect. 3. We begin by providing an overview
of the dataset, describing our implementation of the association rule mining and
graph, and finally demonstrate and discuss a range of queries that are made
possible by the QUARRY graph schema.

4.1 Dataset Description

Fig. 6. Three example tagged work orders from the maintenance work order dataset.

The case study dataset1 consists of 10,000 maintenance work order transac-
tions [12], hereby denoted as “work orders”. Each work order contains an average
of 4.5 words describing the work that must be completed, for example “replace
air conditioner”, “fix pump”, and so on. The work orders also contain other
structured information such as the cost of the work order, the date on which
the work was performed, and the type of work order (scheduled or unsched-
uled). The costs were synthetically generated for demonstration purposes as the
original data is anonymised.

The work orders have been automatically labelled using a named entity recog-
nition model in order to identify every entity appearing in the work order. This
model was trained using manually annotated data from our research group, the
(redacted). Another model was used to automatically extend the singular labels
to a maintenance concept hierarchy, so terms such as engine are also labelled
as Item and Item/Rotating Equipment. The vast majority of these entity types
are sourced from the ISO 15926 asset hierarchy taxonomy [15]. Any entities

1 The dataset and source code of QUARRY is available on GitHub.

https://github.com/nlp-tlp/QUARRY
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that could not be successfully placed into the hierarchy were not included in
the association rule mining. Further details of how the named entity recognition
and hierarchy expansion tasks were performed is available in the corresponding
paper [19].

Figure 6 shows three example work orders that have been tagged using named
entity recognition and the hierarchy expansion model. Itemsets were constructed
from the leaf-level entity labels of each work order in order to build the Trans-
action Graph. In total, there are 10,000 transactions in the graph, and a total
of 281 entity types, 207 of which are leaf-level and 12 of which are root-level.

4.2 Association Rule Mining and Graph Implementation

Fig. 7. A subgraph of the combined transaction and association rule graph. Yellow
nodes are transactions, green are entities, and brown are association rules. The values
written on the transaction nodes are their ids. (Color figure online)

Multiple-level association rule mining was performed on these transactions with a
minimum confidence threshold of 0.5 and minimum support threshold of 0.0005,
which yielded a total of 1,086 rules. These rules were then used to construct
the Association Rule Graph, and the two graphs were merged to form the final
QUARRY graph. A subset of the final graph is shown in Fig. 7.

The code for running the association rule mining and generating the graph
is written in Python. The graph itself is stored in Neo4j2, and the queries in
the following section are written in Cypher. We do not cover Cypher in detail
in this paper, but instead encourage readers to visit the Neo4j Cypher manual3

for more information on the syntax.
2 https://neo4j.com.
3 https://neo4j.com/docs/cypher-manual/current/.

https://neo4j.com
https://neo4j.com/docs/cypher-manual/current/
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4.3 Querying Association Rules Using QUARRY

Quarry’s graph model allows for the querying of association rules using graph
queries. The following queries were written for the maintenance work order
database and showcase the types of queries the schema facilitates.

MATCH (e1:Entity)-[c:CONS]->

(r:Rule)<-[a:ANTE]-(e2:Entity)

WHERE r.confidence > 0.8

AND e1.name = "Observation/Leaking"

RETURN r.name, r.confidence, r.support, r.lift

ORDER BY r.lift DESCENDING

Listing 1.1. Querying association rules where a certain entity is in the consequent.

The first query, Listing 1.1, aims to find all rules containing the entity
Observation/Leaking in the consequent. The WHERE clause ensures that only
rules exceeding a confidence value of 0.8 are returned. A selection of three rules
yielded by the first query are displayed in Table 2.

Table 2. A selection of rules returned by the query in Listing 1.1. Note the full name
of the entity (e.g. “Observation/Leaking”) has been shortened to the most granular
label (e.g. “Leaking”) for brevity.

Rule Conf. Supp. Lift

Repair, Consumable, Wrench −→ Location, Leaking 1.0 0.0007 21.05

Consumable, Seal, Location −→ Leaking 1.0 0.0007 10.32

Repair, Consumable, Pump −→ Leaking 0.89 0.0008 9.03

Consumable, Pipe −→ Leaking 0.87 0.0013 8.94

Activity, Consumable, Compressor, Location −→ Leaking 0.83 0.0005 8.60

This query is particularly valuable to engineers as it searches for rules per-
taining to a specific failure mode, i.e. leaks. Without using this query, the user
must manually search through 1,084 rules to find rules pertaining to leaks. The
query returned a total of 57 results, considerably reducing the search time.
By adding another conditional to the where statement, such as AND e2.name
="Activity/Repair", the user can drill down on these results to quickly find
all association rules where a repair has been performed due to a leak. Virtually
any combination of entities appearing in the antecedent and consequent can be
included in the search using this method.
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MATCH (e3:Entity)<-[*0..3]-(e1:Entity)

-[c:CONS]->(r:Rule)<-[a:ANTE]-(e2:Entity)

WHERE r.confidence > 0.8

AND e1.name = "Observation/Leaking"

RETURN r.name, r.confidence, r.support, r.lift

ORDER BY r.lift DESCENDING

Listing 1.2. Querying association rules across multiple levels (up to 3 levels) of the
hierarchy.

The second query, Listing 1.2, showcases the ability to use pathfinding to
find rules across different levels of the hierarchy. Here, the query is searching for
all rules where any type of Observation is present in the consequent. The path
matching syntax ([*0..3]) matches graph patterns up to three levels, thus every
entity that is a descendant of the Observation class will be matched. In this
particular case study it means that engineers can search for rules pertaining to
any type of failure mode (i.e. Observations), as well as the Observation class
itself, which is important as the class may appear in multiple-level association
rules.

MATCH (t:Transaction)<-[:APPEARS_IN]-(e:Entity)-->(r:Rule)

WHERE t.cost > 99000

RETURN DISTINCT r.name, r.confidence, r.support, r.lift

ORDER BY r.lift DESCENDING

Listing 1.3. Querying association rules based on transaction properties.

The third query, Listing 1.3, demonstrates the potential to query over the
association rules using the properties stored within the transactions. Here we are
searching for all rules where any entity in the consequent or antecedent appears
in any work order with a total cost greater than $99,000. This query shows the
importance of merging the Transaction Graph and Association Rule Graph -
without doing so, it would be impossible to query rules based on transaction
properties. This particular query is notable in our case study as association
rules about items with high replacement costs are generally more important to
reliability engineers.

It is possible to also extend this rule to ensure some minimum support thresh-
old for the entities appearing in each transaction. For example, the query could
be adjusted to ensure that the entities appearing in the rule appear in at least 10
work orders with a cost greater than $99,000, or that at least some percentage
of transactions in which that entity appears has a cost greater than $99,000.

Overall the three queries demonstrate the ability for QUARRYto facilitate
knowledge discovery that was not previously possible. Storing association rules
in a graph alongside the transactional data provides unprecedented control over
the rule mining process, empowering end users to search for and visualise rules
based on their domain knowledge. The three queries demonstrated in this paper
are only a small sample of the potential queries made possible by the graph
schema.
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5 Conclusion

In this paper we have presented QUARRY, a graph model for storing association
rules alongside transactional data. QUARRY enables a wide range of queries to
be performed on association rules, eliminating the need to search through a list
to find rules of interest to domain experts. The model transforms AI algorithmic
outputs into easy to consume insights for domain experts. We have demonstrated
the effectiveness of QUARRY through a case study on maintenance work orders.
We have also shown how the schema allows for rules to be queried based on
document properties such as cost, dates, and so on, enhancing the process of
knowledge discovery. The graph schema is designed such that it can be integrated
with an existing knowledge graph.

In future we aim to investigate ways to use the QUARRY transaction graph
to support the generation of association rules, rather than running Apriori to
build the graph initially. We are also working on a method to run the association
rule mining whenever the transaction graph receives new or updated data in
order to eliminate the need to run association rule mining over the entire dataset
whenever the data changes.

Acknowledgments. This research is supported by the Australian Research Council
through the Centre for Transforming Maintenance through Data Science (grant number
IC180100030), funded by the Australian Government.
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Abstract. Valuable technical information are buried in the under-
utilised, user-generated technical texts in engineering domains, such as
manufacturing, logistics and maintenance. For maintenance and reliabil-
ity personnel, the unstructured technical text in maintenance work orders
(MWO) hold crucial information about failures and work performed on
physical assets. However, the domain-specific language used and scarcity
of shared labelled data sets in these contexts present formidable chal-
lenges to contemporary natural language processing (NLP) techniques,
resulting in inability to achieve performance similar to those in non-
engineering domains. In this work, we explore the structure of lan-
guage in technical short texts by learning a context-free grammar (CFG)
through unsupervised grammar induction on industrial MWO texts. We
exploit the grammar’s generative properties for novel sentence generation
and corpus construction and assess its viability for developing synthetic
MWO data sets. The results demonstrate a) there exists a grammar in
the MWOs, b) the grammar was able to model aspects of the mainte-
nance technical language to produce 12k of synthetic MWO texts 93%
as natural and 87% as correct as real texts, and c) the domain-specific
language used in technical short text remains challenging to parse due to
low data quality and sparsity. Contributions of this work include baseline
results for a grammar-based synthetic technical text generation and an
appreciation for challenges in assessing the engineering correctness and
naturalness of the new synthetic texts.

Keywords: Technical language processing · Maintenance · Language
generation

1 Introduction

Large-scale deep neural networks are currently synonymous with state-of-the-art
performance in the majority of natural language processing (NLP) tasks. Pre-
trained language models take advantage of hundreds of millions of open-domain
training examples derived from sources such as the English Wikipedia, Toronto

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 325–338, 2022.
https://doi.org/10.1007/978-3-031-22695-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_23&domain=pdf
http://orcid.org/0000-0001-6600-6323
http://orcid.org/0000-0001-6494-7015
http://orcid.org/0000-0002-7336-3932
https://doi.org/10.1007/978-3-031-22695-3_23


326 T. Bikaun et al.

BookCorpus, and Common Crawl Corpus to learn powerful representations over
sequences of words.

In specialised technical domains such as industrial engineering and asset
maintenance, there are only a handful of small-scale data sets currently in exis-
tence [3]. This is a result of most engineering and asset-related data being closely
guarded by the companies that design, own or operate the assets. The conse-
quence of this data bottleneck is that practitioners are unable to build shared,
large-scale, pre-trained industrial language models that domain-specific tasks can
benefit from due to insufficient training data. Although there has been initial
attempts at fine-tuning open-domain language models on industrial maintenance
data [20], it is a worthwhile task to be able to exploit the structure of technical
language to produce synthetic data sets.

The structure of language can be modelled through the use of language mod-
els such as grammars or neural networks. Though neural networks are powerful,
they are often unexplainable black boxes. In contrast, a grammar is more easily
interpreted, and thus is valuable for gaining insight into a language. Language
that is used in the context of a technical domain is referred to as technical
language, and has a particular style [3,6]. Key characteristics of a technical
language include a large vocabulary of technical jargon, domain specific terms,
acronyms, abbreviations, and erroneous spelling [14]. In addition, the grammati-
cal structure of the texts is often different from natural language where functional
words are typically omitted due to length constraints [6]. These characteristics
of technical language make it distinct from natural language, resulting in poor
performance by contemporary NLP techniques in, for example, the maintenance
domain [1,3,6].

In the absence of readily available and large data sets we look to generate
synthetic data to build new or augment existing sets. More concretely, we focus
on the application of grammar learning to technical language generation. Thus,
we ask the questions:

1. What does a grammar learnt from technical language look like?
2. Can we use a learnt grammar to generate synthetic texts that are natural and

correct?

2 Background

2.1 What Is a Grammar?

A grammar is a language model. A language can be defined as a set of expres-
sions, which is usually infinite. A language has an alphabet, the characters of
which can be combined together to form words. Additionally, the words can be
combined together to form sentences. Specific languages have constraints. These
take the form of the alphabet allowed, and rules imposed on it. For example,
the English language has an alphabet consisting of the 26 characters a . . . z (and
the capital letters, numbers, and symbols), and it is known which constructions
from the alphabet form valid English expressions. “Pump”, for example, is a



Using Context-Free Grammar to Generate Synthetic Technical Short Texts 327

valid English word, but “pmp” is not. Likewise, “the pump is working” is a valid
English expression, but “pump is the working” is not. We can say that English
is governed by “rules” that define what kinds of expressions are valid. To flu-
ent English speakers, it is quickly decipherable which expressions are valid and
which are not, but to quantify these rules is not a trivial task. This is the task
of a grammar.

A grammar models a language through a set of production rules, of the form
left hand side → right hand side. Grammar is commonly described using a four-
tuple (Σ, V, R, S) [15] as follows:

– Σ is a finite set of characters that constitute the alphabet of the language.
As mentioned earlier, the characters combine to form words, referred to as
terminals.

– V is a finite set of symbols (variables), also known as non-terminals (NTs).
They represent one or more terminals, and may themselves be represented by
other NTs. Capital letters are often used to denote NTs.

– R is a finite set of rules. They are also known as production rules. They take
the form of X → Y, where X and Y are strings of terminals and non-terminals.
Specific types of grammars have additional constraints imposed on the X and
Y strings. The rules define the sentences that are valid in the language.

– S is a special NT, the starting symbol. This is the symbol that each sentence
must start from.

Fig. 1. Example grammatical structure of a technical text.

Consider the example in Fig. 1. Let us define the grammar that could generate
sentences such as “fix leaking water in cab” and “fix leaking oil on cab”. We need
the start variable S, non-terminals, terminals, and rules that combine them all.
For this example, these are:

– Σ: {fix, leaking, oil, water, on, in, cab}
– S: S1
– V: {P1, E1, E2}
– T: {{oil, water}, {on, in}}
– R: {P1 →{E1, E2}, E1 →{oil, water}, E2 →{on, in}}

The set of sentences that can be derived from a grammar constitutes the lan-
guage of the grammar. Given a sentence, we can determine whether the grammar
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can successfully derive the sentence, and if so, then we say that the grammar can
parse the sentence (i.e. break down the sentence into smaller units and assign
them to meaningful categories). In this way, we can determine if a sentence is
part of the language of the grammar, and we can also determine the grammatical
structure of sentences that can be parsed.

2.2 Types of Grammars

There is a hierarchy of grammars, first described by Chomsky [2], of which two
types are of interest: the context free grammar (CFG), and the context sensitive
grammar. A CFG is called such because the left hand side of its rules must
be context free - it consists of one NT only. That is, the rules must be of the
form A → γ, where A is a NT, and γ is a string of NTs and terminals. A
context sensitive grammar has a more relaxed requirement, in that the left hand
side of its rules may contain more than one symbol. CFGs have been the most
extensively studied grammar in the Chomsky hierarchy, as shown by the survey
performed by D’Ulizia et al. [4]. The characteristics of importance when choosing
a type of grammar are the power of the grammar in capturing language, and the
complexity of parsing a sentence using the grammar. CFGs can capture much
of natural language, but not all of it.

Three methods for learning a CFG were considered: ADIOS (Automatic DIs-
tillation Of Structure), eg-GRIDS (based on the GRammar Induction Driven by
Simplicity algorithm), and wGCS (weighted grammar-based classification sys-
tem). All are unsupervised algorithms. ADIOS, developed in 2005, searches for
significant patterns and equivalence classes, based on a statistical measure of
importance [16]. eg-GRIDS [13] developed in 2004 is based on the GRIDS algo-
rithm developed by [10]. wGCS, a more recent development by [19] in 2020 uses
the genetic operators of crossover and mutation. ADIOS iterates through all sub-
paths in its graph. eg-GRIDS and wGCS are both genetic algorithms. ADIOS
uses a statistical measure and greedy approach to update its grammar whereas
eg-GRIDS works to minimise a heuristic called minimum description length at
each iteration. wGCS uses the weights of its rules based on how many times a
particular rule is used when parsing the example sentences as its heuristic to
update its grammar. Both ADIOS and eg-GRIDS take only positive examples
as input, while wGCS takes in both positive and negative examples.

To the best of our knowledge none of these three grammar-learning algo-
rithms have been tested on technical short texts. ADIOS has an advantage
in that it has previously been applied on artificial grammar data [16] and on
natural-language corpora such as ATIS [8] and CHILDES [11]. eg-GRIDS has
only been tested on the artificial Dyck language with limited sentences generated
that have lengths longer (≈20 tokens) than technical short texts in MWOs that
are extremely terse (≈5 tokens) [12]. wCGS has, thus far, only been tested on
three synthetic context free languages [19]. Two aspects of technical short text
influenced our decision to use ADIOS, instead of eg-GRIDS and wGCS. The
first is that there are clear patterns in the texts, the presence of these favours
the pattern matching approach of ADIOS, the second is that the texts contain a
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lot of abbreviations. For example, “air conditioner” may be abbreviated to “air
cond.”, or “air con”, or “a/c”. These abbreviations are likely to be accommo-
dated by the equivalence classes approach in ADIOS, where an equivalence class
(E) is a set of interchangeable nodes within a pattern (P), e.g. P = repair E
filter, E = {oil, fuel}.

3 Experiments and Results

In this section, we perform grammar induction using the ADIOS algorithm on
a real industrial data set (Table 1). The data set is derived from user-generated
texts in the unstructured free-text field of MWOs within the context of heavy
mobile mining equipment [9]. The short-text field in MWO’s are terse with only
5 words in length on average [1,3,6].

Table 1. Overview and statistics of industrial data set.

All Train Test

Text samples 55k 49.5k 5.5k

Vocabulary size 13.2k 12.4k 3.6k

Hapaxes (token freq. = 1) 7.6k (58%) 7.1k (58%) 2.1k (56%)

Text Lengths μ = 5.0, σ = 1.4

A detailed discussion of the ADIOS algorithm is beyond the scope of this
paper and we refer interested readers to [16] for a thorough explanation. Due
to unavailability of the ADIOS codebase, ModifiedADIOS, publicly available
at https://github.com/shaobohou/madios, was used for all experiments. After
running MADIOS, an evaluation of the induced grammar was performed by
considering three main aspects - i) quality of rules produced, ii) generation of
novel texts with human evaluation, and iii) ability to parse (reduce into predefined
grammar rules) unseen technical texts.

3.1 Pre-processing

Before performing grammar induction, the following pre-processing of the tech-
nical texts was performed:

– Masking unique equipment identifiers with the special token itemid
– Masking manufacturer names with the phrase manufacture n where n is enu-

merated based on the number of unique manufactures,
– Removing special characters except for , -, &, # and / (these preserve con-

junctions, etc.),
– Removing casing, and
– Adding MADIOS specific delimiters (* and #)

https://github.com/shaobohou/madios
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3.2 Grammar Induction

To train MADIOS to learn a grammar, the 49.5k training texts were used. Four
trials of the MADIOS algorithm were performed with varying parameterisations
to explore the affinity of MADIOS to produce patterns and equivalence classes
(Table 2). Each grammar took between 5–10 hours to be induced, depending on
the parameters used. The default parameters were those suggested by MADIOS.
Significance test threshold (α) and context size (L) were modified to enhance
pattern production and limit over-generalisation in equivalence classes. Multi-
ple grammars were explored to gain insight into the algorithms suitability for
grammar induction from technical language texts. The context size was adjusted
relative to the mean length of texts in the training corpus (Table 1). An overview
of the trials performed is provided in Table 2.

Table 2. Results of parameter tuning (η - divergence threshold, α - significance test
threshold, L - context size, ω - coverage, P - production patterns, EC - equivalence
classes, R - texts in corpus reduced by grammar).

Trial η α L ω P EC R

1 (default) 0.9 0.01 5 0.65 303 43 39%

2 0.9 0.05 3 0.65 463 329 69%

3 0.9 0.1 4 0.65 766 415 59%

4 0.9 0.05 4 0.65 546 309 52%

Fig. 2. Simple example of reduced text derived from Trial 4 grammar with edge
weights.

3.3 Synthetic Text Generation

The grammar produced in Trial 4 was used to generate explainable novel tech-
nical texts. This grammar was selected as its production patterns and equiva-
lence classes exhibited high quality groupings and plausible relationships between
rules upon human evaluation. To generate novel texts, firstly texts in the cor-
pus reduced by the grammar were identified, consisting of 25.7k texts (52% of
the corpus). Secondly, the patterns and equivalence classes in the reduced texts
were probablistically filled until terminals were reached by sampling from a dis-
tribution weighted with the edge weights produced by the CFG. An example
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of a reduced text with its weights is shown in Fig. 2. Here, it can be seen that
there is an 83% chance of filling the equivalence class E12377 within the pattern
P12378 with the terminal “leak” and so forth.

To evaluate how well the grammar can produce texts with technical lan-
guage, human evaluation (using experienced engineers) was performed using a
5-point considering naturalness from very unnatural to very natural, and cor-
rectness from technically incorrect to technically correct, on a Likert scale. The
two attributes are described as:

– Naturalness: Is the text coherent and could it have been plausibly created by a
domain expert?

– Correctness: Does the text make technical sense e.g. are the casual and hier-
archical relationships and/or interactions between entities feasible?

These attributes are analogous to those used in common domain NLG [7],
however they differ to reflect the language generation process in technical settings
such as industrial maintenance. For example, the notion of naturalness differs
from the conventional sense that is typically assessed on syntactical, semantic
and grammatical correctness of a generated text. In the case of TLG that is learnt
from characteristically noisy source text [3,6], naturalness must be relative to
the native form of texts, e.g. a level of noise including abbreviations, common
misspelling and so forth must be tolerated. Similarly, correctness differs due to
the necessity in technical domains to precisely represent causal and hierarchical
relationships and/or interactions between entities either explicitly or implicitly
stated in the text. For example, consider the two example texts that highlight
this necessity - “oil blowing” and “change out engine in piston”. The former
exhibits an incorrect causal relationship as oil cannot blow. Whereas the latter
misrepresents the hierarchical relationship between the two items engine and
piston.

Table 3. Overall evaluation for real and novel texts.

Attribute Real Novel

Naturalness 4.72/5 4.41/5

Correctness 4.42/5 3.85/5

Using the reduced texts, 12k novel technical texts were generated. To deter-
mine whether the grammar can produce natural and correct texts, a set of 100
real texts and 100 novel texts were sampled i.i.d, pooled and shuffled before
human evaluation. This mixing was performed to establish a fair benchmark to
evaluate the novel texts with respect to the attributes of real texts. The results
of the evaluation are presented in Table 3. It was found that the novel texts were
93% as natural and 87% as correct as the their real counterparts. A selection of
evaluated novel and real texts is provided in Table 4. Moreover, we release the
12k novel texts to the public at https://github.com/nlp-tlp/cfg technical short
text.

https://github.com/nlp-tlp/cfg_technical_short_text
https://github.com/nlp-tlp/cfg_technical_short_text
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Table 4. Samples of novel and real texts with corresponding annotator agreement.
Highlighted rows indicate novel texts.

Naturalness Correctness

Replace steering outer bucket tooth & weloed 1.0 1.0

Under cab cut out 2.0 1.67

Air o-ring on hot and cold 2.33 2.0

Fit out r a r belt with tools 3.33 1.67

Tread depths march 2.67 3.0

Fit temp sender to slew pumps 1&3 u/s 3.33 3.33

Engine alarm on fault 5.0 5.0

Main lube line wont build pressure 5.0 5.0

Movement on bucket frame pins/bushes 5.0 5.0

Crankcase pressure high fault 5.0 5.0

Oil leak behind control valves 5.0 5.0

r/h rear mudflap needs to be replaced 5.0 5.0

Table 5. Examples of unsuccessful (grey) and successful texts parsed by the CFG from
Trial 4.

Repair hydraulic system leaks Replace all grease injectors on saddle block

Replace damaged trans filter housing l/h front strut leaking oil

Replace lh engine ac oil pressure switch Re torque top cover bolts on rear swing gear case

3.4 Parsing Technical Text

To understand how well the grammars can recognise technical language, the
Earley parser [5] was used. The Earley parser is a fast, chart-based, unrestricted
context-free language parser implemented with dynamic programming. For each
trial, the parser was loaded with the learnt grammar and attempts at parsing
unseen texts in the test set was performed. Here, the metric recall was used as
defined by [16]. This metric is equal to the proportion of Ctest that is accepted
by the grammar induced from Ctraining where the corpus of synthetic texts C is
split into two sets Ctraining and Ctest. Overall, the recall of the grammars was
universally very low (≈1%). A set of unsuccessful and successful parsed examples
is shown in Table 5.

4 Discussion

In this section, we try to answer the following two questions:

1. What does a grammar learnt from technical language look like?
2. Can we use grammar to generate synthetic texts that are natural and correct?
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4.1 A Grammar Learnt from Technical Language

All four grammars had a significant number of starting rules (μ = 47.3k, σ =
1k), nearly a unique rule for each text in the corpus. The size of starting rules is
attributed to a significant sized vocabulary (12.4k unique tokens) and number of
hapaxes (58% of vocabulary) derived from the training corpus. A review of the
starting rules indicated that many texts were not being reduced by the grammar
and were simply representing the input text explicitly. For example, consider the
two texts and their corresponding reduced forms - “repair/replace carrier roller
plates” → “repair P12432 P12541 plates” and “clean after cooler after turbo
failure” → “clean after cooler after turbo failure”. The former was reduced suc-
cessfully by the grammar whereas the latter was not. Factors such as a large
vocabularies and significant numbers of hapaxes are not atypical of technical
language used in MWOs [3,6] and could be overcome with retrospective data
quality improvement strategies such as lexical normalisation [17,18]. Employing
normalisation strategies could enable vocabulary and hapax reduction by nor-
malising tokens to their canonical forms, e.g. {lh, l/h, lefth, . . . , l/hand, l/h}
→left hand.

Semantic Grouping. An analysis of the equivalence classes produced by the
grammars highlights groupings of tokens that fall under similar semantic con-
cepts. Table 6 exhibits the most common semantic groups captured by the gram-
mars equivalence classes. Taking the equivalence class E12513 in the relative
location semantic class in Table 6 as an example, it is evident that a single cat-
egory of meaning is captured. For example, “r/h/s” →“right hand side” and
“r/h/f” →“right hand front” both correspond to a (relative) location word. In
addition, eight abbreviations were captured. A subset of the concepts is shown in
Table 6. It was found that context size of the grammar had a significant influence
over the quantity and quality of groups identified.

Common Lexical Units. Exploration of the production patterns from the
grammars highlighted their affinity to capture common lexical units such as bi-
grams and tri-grams. This is similar to collocations that find common lexical
units based on token co-occurrence frequencies. However, instead of only finding
lexical units, the patterns found by ADIOS can nest within equivalence classes
and have utility in disambiguation. Table 6 shows examples of common lexi-
cal units including those related to activities (“change out”, “inspect/repair”),
observed states (“not working”), events (“shut down”), acronyms (“sos”), and
items (“torque converter”).
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Table 6. Overview of conceptual groupings extracted from production patterns and
equivalence classes of trial grammars.

Class Rule(s)

Semantic (relative
location)

E12513 →r/h/s |leaking |r/h/f |r/h/r |under |l/h/front |in
|from |l/h |rh |lh |l
E12555 →access |side |door

Semantic
(consumable)

E112466 →oil |water |coolant |fuel |grease |small |air |gas

Semantic (absolute
time)

E12528 →600hr |100hr |of |1000hr

Semantic (item) E12441 →P12387 |pipe |spring |arm |o-ring |valve |P12425
|. . . |pin

Common Lexical
Units

P12381 →[‘change’, ‘out’]

P12435 →[‘not’, ‘working’]

P12668 →[‘shut’, ‘down’]

Abbreviation /
Misspellings

E12517 →alternator |. . . |alternotor |alternater |alernator
|altenator |alt/ |alt |ac

E12420 →hr |hour

Abbreviations and Common Misspellings. As noted previously, ADIOS
is able to identify abbreviations and other variations in word spellings. The
equivalence class E12517 in Table 6 demonstrates the extent of lexical variation
that ADIOS can capture for the items air conditioner and alternator.

Parsing Technical Text. Consider the text “repair hyd leak at front of radi-
ator” that was successfully parsed. Figure 3 shows a partial parse tree for this
text. This is a complex structure that has a large depth. The starting rule for
the text is “S → P950 P1000 radiator”, which contains three symbols in the
RHS. The text is parsed by being split into three segments, corresponding to
the number of segments in the starting rule. However, for the text “pump box
temp sensor not working”, there was no exact starting rule that matched the
structure. One of the closest starting rules was “S → P225 sensor P26”, which
originated from the text “magic eye sensor not working”. The type of sensor was
not recognised as an equivalence class in this case, which resulted in a failure to
parse.
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Fig. 3. Partial parse tree for the text “repair hyd leak at front of radiator”.

Misspellings are a problem when parsing texts. The text “air in removing
drll bit” contains a misspelling (“drll” should be “drill”). If the misspelling had
insufficient support while training, then the parse will fail. If a text being parsed
contains a new word not present in the training set, the parse will also fail.
Technical language contains a lot of jargon, which means that there can be a
high percentage of words that only occur a few times [3]. As noted before, in the
training set 58% of the words only occur once. In the test set, 717 out of 5500
texts (13%) contained new words. Given that not many new words would be
expected in a natural language corpus test set, 13% of the text is a substantial
proportion.

4.2 Synthetic Text Generation

Using the grammar from Trial 4, 25.9k texts were generated, 12k which were
novel. Human evaluation of 100 novel texts were performed after being randomly
mixed with 100 real technical texts. We found that the synthetic texts produced
were 93% as natural (representing the conventions of maintainers and engineers
in how they communicate) and 87% as technically correct (from an engineering
perspective) as their real counterparts. To better understand the performance
gap experienced, we inspect the texts under four different conditions, namely
those that are 1) natural and correct, 2) natural but not correct, 3) correct but
not natural, or 4) neither natural or correct.

By correct, we mean that it is correct statement from an engineering per-
spective. For example “repair hyd leak” is deemed correct as hydraulic systems
do leak. However a statement “replace gas on motor” is not correct as motors
do not have gas. By natural, we mean that it is in the style of the MWO’s we
seek to replicate in terms of syntax and use of abbreviations and jargon.

Of the 100 novel texts evaluated, 24% scored 5/5 on both naturalness and
correctness. Examples of these include “blade positioner cylinder has low power
when lifting” and “repair crack in left side of swing arm”. The reason this text
is considered novel is that the trigram “blade position cylinder” was not present
in the training set. Although novel, it is also plausible (from an engineering
perspective) that a hydraulic component related to the blade on a piece of heavy
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mobile equipment. The remainder of the text is also technically correct given that
hydraulic components can experience low power under lifting operations.

There were 34 novel texts deemed natural but not correct. An example of
technically incorrect is “repair hyd mirror brace lhs of cab”. Here, the grammat-
ical structure of the technical language is plausible, containing a combination of
activity (’“repair”), item (“hyd mirror brace”, “cab”, “bolts”) , relative location
(“lhs”) concepts. However, the item “hyd mirror brace” in the former is invalid
as it is not an engineering item. Only 6 texts were considered correct and not
natural. The text “fit new tyres to pos five and two” is technically correct but
the ordering of the positions is unnatural to a human agent who would enu-
merate in ascending order. Lastly, 36 texts were imperfect in both naturalness
and correctness. Poor performers include “replace steering outer bucket tooth
& weloed” and “air o-ring on hot and cold”. Here, the structure of the phrases
are unnatural due to lack of information and/or ordering of lexical units and the
interactions and relationships between entities are unconventional and do not
represent engineering reality.

In contrast to open-domain NLG evaluation, the notion of “naturalness” and
“correctness” has to be adapted to suit the technical text generation process.
This meant relaxing constraints on syntactic, semantic and grammatical cor-
rectness to match the native style of domain experts. A technical “correctness”
score was introduced whereby relationships and/or interactions between entities
within the texts were assessed on their engineering feasibility.

5 Conclusion

Motivated by the need to overcome confidentiality challenges and alleviate data
scarcity in technical settings, this paper investigated whether a context-free
grammar could be learnt from technical language and be used to generate syn-
thetic technical texts. To achieve this, the ADIOS (Automatic DIstillation Of
Structure) [16] algorithm was applied to user-generated texts derived from main-
tenance work order records. Multiple parameterisations of the algorithm were
investigated, with the learnt grammars evaluated on their ability to i) produce
production rules and equivalence classes, ii) generate natural and correct novel
technical texts, and iii) parse (break down into grammar rules) unseen technical
texts.

The grammars were found to capture meaningful patterns from technical
texts, including conceptual grouping (activities, relative locations, etc.), common
lexical units, and frequent abbreviations and misspellings. Although, a trade-off
between the quality and quantity of patterns produced was observed depending
on the parameters used in the ADIOS algorithm. The ability of the grammars to
parse unseen technical texts was universally low. This was largely attributed to
data quality issues arising from user-generated texts in industrial maintenance,
resulting in a significant number of starting rules being created by each grammar.

To demonstrate how context-free grammars could be used to alleviate data
scarcity issues, the most promising grammar was used to generate synthetic
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technical text. A corpus of 12k novel synthetic technical texts were produced,
about a quarter the size of the training corpus. Human evaluation of a subset
of the texts was performed to assess their naturalness and technical correctness.
It was found that the synthetic texts were 93% as natural and 87% as correct
as their real counterparts. The contributions of this work are a) the identifica-
tion of a need for agreed (and improved) measures of naturalness and technical
correctness for assessing synthetic texts, b) the challenge with parsing and the
opportunity to take the insights from grammar to inform generation of technical
texts using state of the art deep learning methods.
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Abstract. In marimba music, ‘stickings’ are the choices of mallets used
to strike each note. Stickings significantly influence both the physical
facility and expressive quality of the music performance. Choosing ‘good’
stickings and evaluating one’s stickings are complex choices, often rely-
ing vaguely on trial-and-error. Machine learning (ML) approaches, par-
ticularly with advances in sequence-to-sequence techniques, have proved
suited for similar complex classification problems, motivating their appli-
cation in our study. We address the sticking problem by developing Long
Short-Term Memory (LSTM) models to generate stickings in 4-mallet
marimba music trained on exercises from Leigh Howard Stevens’ Method
of Movement for Marimba. Model performance was measured under a
range of metrics to account for multiple sticking possibilities, with LSTM
models achieving a maximum average micro-accuracy of 97.3%. Finally,
we discuss qualitative observations in sticking predictions and limitations
of this study and provide direction for further development in this field.

Keywords: Long short-term memory neural network · Marimba
sticking model · Marimba sticking dataset · Music performance

1 Introduction

When a musician is technically proficient at their instrument, subtle technical
choices facilitate fluid and musical performance, such as in piano fingering or
string bowing. These choices service musicality, technical ease and fluency, and
are often the result of a blend of tradition, experience, and tedious trial-and-error
[27]. In the context of the marimba, a tuned percussion instrument, the analogous
challenge is that of ‘sticking’. The modern 5-octave concert marimba comprises
a set of 61 wooden bars tuned to produce specific pitches when struck. The bars
are laid out in a piano arrangement, but their larger size creates an instrument
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around two and a half metres long and one to two wide deep. Marimba players
typically play with four mallets (or ‘sticks’), with two held in each hand (Fig. 1).
The choice of which mallet is used to strike each bar is called a ‘sticking’.

Fig. 1. Four mallets over a section of a marimba enumerated conventionally.

Well-chosen stickings facilitate fluid movements around the instrument and
aid the expression of musical phrases, while poor stickings hinder movement and
work against expressing musicality. Professional players have proposed general
guidelines to sticking, but due to the subjectivity of musicality, different sugges-
tions can be contradictory with no unique and ideal solution. However, advances
of machine learning (ML) models for music information retrieval related tasks
show precedents for assistance. Deep-learning techniques, including the recur-
rent neural networks as the Long Short-Term Memory (LSTM) networks, have
been used extensively for several musical related tasks (the interested reader is
referred to Choi et al. [9] for a tutorial on the field), including, but not limited
to, music generation and composition [6,7,12,13,18,19,23], music transcription
[37,39], music recommendation [36,42,44], music classification [10,49] and music
prediction and modelling [17,24,47].

Current research of marimba stickings is mainly found in path planning algo-
rithms for robotic percussionists. For instance, in Yang et al. [45], human-level
musical expressivity of mechanical marimba players is leveraged with musical
mechatronics interfaces. In Savery and Weinberg [34], robotic marimba players
and melody generation with LSTM neural networks are used for the implemen-
tation of a software-based film composer. A comprehensive reference on robotic
musicianship and musical path planning is Bretan [5]. In each of these cases, path
planning algorithms are implemented to prevent the self-harm of the robot and
minimise movement between passages of notes to facilitate music-making. While
some similar concerns are shared in marimba sticking techniques, stickings asso-
ciated with the music itself, and idiomatic stickings used in human performance,
are not considered.

The analogues of marimba sticking in other more common instruments, like
guitar fretting and piano fingering, have been explored more broadly in previ-
ous studies. For the guitar, The Optimum Path Paradigm (OPP) [35] represents
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a simple and effective approach to minimising movement in musical technique;
however, Sayegh acknowledges “more subtle parts of the task [such as musi-
cality and style] might not be possible to capture [with the OPP].” The OPP
was further developed in project Robotaba [8] as part of a broader audio-to-
tablature algorithm for guitar music transcription. However, neither physical
nor musical considerations are meaningfully addressed [4,22]. Other studies have
found other approaches minimise the physical movement involved in guitar tech-
nique [26,33,46]. Physical limitations remain the primary concern, but other
considerations are quantified beyond finger movement and position shifts, such
as cognitive factors of reading ‘well-written tablature’. Musical and technical
factors are explored by Tuohy and Potter [41] who employ numerous genetic
algorithm approaches on existing guitar tablature. Another closely related work
resembling this study is the TabGen project [25] that tackles sheet-music-to-
tablature conversion for guitar. It employs the LSTM to parse music notation
and fretting choices as time-series data. Musical issues involved in fretting are
also addressed. Subjective evaluation of fretting outputs is conducted alongside
quantitative methods, which illuminate approaches for improving conventionally
written tablature.

The fingering problem on the piano (also closely analogous to the sticking
problem) is the task of finding a suitable fingering given a piano score. A suit-
able fingering is usually determined utilizing ergonomic, cognitive and music-
interpretive constraints [31]. Various approaches have been proposed to tackle
this problem, including Hidden Markov Models (HMMs) [29,30,48], dynamic
programming and other constraints or cost-based models [1–3,20,31], use of
musical rules [40], and a neuro-fuzzy inference system [16].

The similarities between the geometry of the piano and marimba, and the
similar concerns of the piano fingering problem with the marimba sticking prob-
lem, and a common data-driven approach, motivated us to adopt HMMs as a
baseline comparison to ours.

2 The Sticking Problem

Choices of stickings used to play musical passages greatly influence the physical
ease or difficulty of performance and the quality of musical interpretation [43].
In a four-mallet marimba performance, the performer holds two mallets in each
hand, exerting independent control over each. Following the convention of major
marimba texts, this paper refers to the mallets as ‘1’, ‘2’, ‘3’ and ‘4’ from left to
right (Fig. 1), represented in sheet music as numbers annotated above or below
notes.

While any mallet can be used to strike any individual note, a poorly sequenced
set of stickings can cause physical and musical hindrance in practice. Physical hin-
drances include collisions, strained wrist positions, and tense or repeated rapid
arm and wrist movement. These are not always obvious in looking at stickings in
sheet music alone. Figure 2a shows a short musical passage with good stickings.
The sticking is fairly easily achieved, as the left hand resides on keys away from
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the body and slightly elevated, leaving space for the right hand to cross under the
left and strike the low G on the bar’s near edge. Figure 2b shows the same musical
passage transposed down two semitones. Now the same sticking no longer works
well. Due to the irregular positioning of the bars, now the hands and arms run into
one another.

(a) A good sticking for the given music.
The left hand glides above the right at
all times.

(b) The same passage of music is trans-
posed down two semitones. The same
sticking now requires the mallets to in-
terleave and collide.

Fig. 2. The quality of one sticking applied to slightly different music can vary greatly.

Musical hindrances can look different. Figure 3a shows a simple music passage
that is annotated with alternating ‘2’ and ‘3’ stickings. Such a sticking minimises
movement of the sticks and is physically simple to perform.

(a) An simple sticking for a passage of
music minimising movement.

(b) A more physically complex stick-
ing frees the left hand to express the
indicated melodic phrase of the lower
voice.

Fig. 3. A simple, movement-efficient sticking may lose musical expression.

However, the sticking ignores the indicated musical line represented in the
lower voice. A sticking that better represents the musical phrase is shown in
Fig. 3b, in which the left hand is free to express and phrase the melodic line
while the right hand keeps the non-melodic notes in the background. This more
complex sticking lends itself more readily for expressive performance.

Guidelines such as choosing stickings to ‘minimise motion’ or ‘set up a “clean
hand”’ to play important notes currently assist players [50]. Evidently, these
guidelines can contradict each other.

The complexities involved in assigning stickings motivated us to structure
the sticking problem as a data-driven classification problem: every note of a
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musical passage has to be paired with a stick number. The problem can be
modelled mathematically, which invites ML approaches to assist with the more
complex classification process. This study is the first step in this direction, and
results have indicated that our approach may provide practical assistance with
the marimba sticking problem.

3 Data Preparation

A generative model for automatic annotation of marimba stickings requires a
dataset of sample marimba music with sticking annotations to facilitate the ML
process. The data source employed in this investigation is a standard pedagogical
text in the marimba literature which assures sticking quality. It contains 590
exercises from the book Method of Movement for Marimba by Stevens [38]. All
exercises are completely annotated with stickings. The exercises are written in
C major but are intended to be transposed into all twelve keys, with alternate
stickings provided where required. The exercises consist mainly of pitch and
rhythmic information.

The exercises were transcribed as music notation using Musescore notation
software [28] as Music XML (.mxl) files. Using the music21 package [14] the
exercises were parsed into a Python 3.7.3 environment [32]. Stickings were added
within the Python environment as lyrics attached to each note. Stickings for
dyads and chords were annotated as lists of sticking numerals. Each exercise was
then converted into a list of notes, where each note consisted of a triple: pitch
information, rhythmic information and sticking information. Pitch information
is stored as a Musical Instrument Digital Interface (MIDI) number. Rhythmic
durations are encoded numerically relative to the length of a crotchet—e.g. a
crotchet is encoded as 1.0, a quaver as 0.5, semiquaver as 0.25, and so on. Note
that stickings are valid at a range of tempi provided by Stevens. The fastest
rhythms in the dataset are sextuplets at 132 beats per minute (13.2 notes per
second), while the slowest rhythms are quavers at 25 beats per minute (0.83
notes per second). The applicability of stickings at this range of speeds applies
to this dataset, but does not necessarily hold for all music (see Sect. 6). The
example

n =
pitch duration sticking

( )60 0.5 2

represents the note C4 for a quaver duration played with stick two, while

n =
pitch duration sticking

( )(60, 62) 1.0 (2, 3)

represents the dyad C4 and D4 for a crotchet duration played with sticks two
and three, respectively.
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As numerous stickings can be appropriate for a given musical passage, Stevens
often includes alternate stickings within a single exercise. In constructing the
dataset, alternate stickings were treated as separate exercises, forming 921 exer-
cises in the Stevens dataset before transposition and further encoding.

3.1 Pitch Encoding

Pitch-Vector Encoding. Pitch-vector encoding (PVE) transforms the MIDI
number representation of pitch to a one-hot encoded input vector with 61 com-
ponents corresponding to the 61 keys of the marimba. The numerically encoded
rhythmic duration is added to the input vector as a 62nd component. The cor-
responding sticking (the output/ground truth) is a one-hot encoded vector with
four components. For example,

nx =
C2 ... B3 C4 C 4 ... C7 duration

( )0 ... 0 1 0 ... 0 0.5

ny =
1 2 3 4

( )0 1 0 0

represents the note C4 for a quaver duration played with stick two. Chords are
split into sequences of individual notes, ascending from lowest to highest. The
top note of the chord is assigned the rhythmic value of the chord, while all
lower notes are assigned a rhythmic value of 0. Exercises are transposed into all
possible keys and ranges of the instrument. Duplicate exercises arising in this
process are removed. Alternate stickings for different keys are applied. These
steps generate 23,286 unique exercises when using PVE.

Interval Transition Encoding. The interval transition encoding (ITE) adapts
music encoding assumptions employed by Nakamura et al. for piano fingerings
to the marimba sticking problem and uses the musical intervals and physical
distances between notes [30]. Chords are first split into sequences of notes as
above, and all exercises are transposed into every key.

Pitches are then converted from MIDI number representation to ‘lattice
encoding’. In this representation, the keys of the marimba are represented geo-
metrically as a two-dimensional ‘lattice’. The x dimension runs along the length
of the marimba, with each successive natural note representing a step, and y
dimension runs along the width of the marimba, which distinguishes natural
and accidental notes with a 0 and 1, respectively. A single pitch is represented
by a two-dimensional vector (x, y). Intervals between notes are then calculated
by taking the element-wise difference between successive pitches (Fig. 4). Note
that while in [30] further model assumptions about leaps and symmetry into their
methodology, these considerations are less applicable to marimba performance.

After applying ITE to the dataset, duplicate exercises are again removed to
avoid data leakage (for example, arpeggios in D major and A major are identical
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Fig. 4. Lattice encoding of pitch along two axes, representing the geometry of the
marimba keyboard. Moving between G , C and E show that the same musical interval
may be represented in different ways.

under interval transition encoding) to produce a total of 6,757 unique exercises
using this encoding.

Interval Transition Variant for Hidden Markov Models. Hidden Markov
Models (HMMs) designed by Nakamura et al. [30] were also trained and tested
on the dataset for comparison. We acknowledge that these models were designed
for predicting piano fingerings rather than marimba stickings. Still, we include
them as a baseline standard for the capability of existing models on a novel but
closely related problem. We encode marimba stickings for the HMM algorithms
transforming stickings 1, 2, 3 and 4 into analogous piano fingerings –2, –1, 1
and 2 (left-hand index finger and thumb, right-hand thumb and index finger).
The exercises are transposed into each key without octave transpositions, and
duplicates are removed. The HMMs pre-process the data in a similar method to
interval transposition encoding but are geared toward estimating piano finger-
ings, with the additional assumptions of the equal treatment of large leaps and
reflection symmetry between hands.

Sticking Distribution. The distribution of four sticking classes across the
exercises is approximately uniform under each of the data encoding methods,
mitigating class bias.

4 Machine Learning Methodology

A sequence-to-sequence learning model is required to output sticking sequences
for pitch and rhythm sequence inputs. As the prediction of sticking data depends
on musical structures that often contain long-term dependencies (e.g. recurring
motifs, phrases and patterns), the Long Short-Term Memory (LSTM) neural net-
work is a suitable choice. The LSTM preserves a basic recurrent neural network
structure and includes a secondary network state running in parallel that pre-
serves long-term patterns. For simplicity, we omit the LSTM formulations here,
which are well-known, and instead focus on how we used the LSTM networks
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for learning sticking annotation patterns. We refer the reader to Hochreiter and
Schmidhuber [21] for formulation details of the LSTM.

LSTM models were built with Keras using the TensorFlow backend [11]. The
models in this implementation require inputs to be of constant length. As the
length of the exercises in the datasets vary, exercises are pre-padded with the
value -99 (the conventional value of 0 cannot be used as (0, 0, 0) is a valid note
under interval transition encoding). Consequently, the first layer of the LSTM
model is a masking layer which allows the model to ignore all input padding
and process the musical data only. The data is fed into an LSTM input layer,
and a dense output layer of four units with softmax activation represents a
sticking class. For models trained with pitch-vector inputs, the LSTM layer is
made bidirectional to allow models to pass input samples forward and backward,
allowing classification predictions based on future context. For models trained
with interval transition inputs, simply reversing the order of intervals would not
represent a reversed exercise. Instead, exercises are were reversed first then re-
encoded under ITE. The models were also trained on these inputs, mimicking a
bidirectional layer.

We use LSTM models of different sizes (5, 10, 25, 50, 100 and 200 hidden
units), trained under the Adam optimiser and categorical accuracy metric with
a batch size of 5. Early stopping regularisation is implemented in all models to
reduce overfitting.

First, second and third-order HMMs (HMM 1, HMM 2 and HMM 3) using
the interval transition encoding variant geared toward piano fingerings are also
built and trained to provide a baseline performance level for comparison.

5 Evaluation

Under each method of encoding, twenty per cent of exercises are partitioned for
testing. Exercises with identical input vectors but multiple ground truths are
grouped to be entirely within the training or testing set to avoid data leakage.

Two approaches are taken to evaluating model performance accounting for
multiple ground truths. The naive evaluation is a strict measure where pre-
dictions are evaluated against their corresponding ground truth. A more useful
evaluation better accounts for multiple ground truths, where the predicted stick-
ing is evaluated against all possible ground truths with the same input, and we
take the highest accuracy across all scores. We label this multiple ground truth
evaluation ‘MGT’.

For example, consider two exercises of length 4 with identical inputs but two
different valid ground truth stickings, say (1, 3, 2, 4) and (1, 2, 3, 4). Suppose the
model predicts the same sticking (1, 3, 2, 3) for both. The strict accuracy is 50%
(3+1

8 ), and the MGT accuracy is 75% (3+3
8 ).

For each model, we evaluate the predictions under strict and MGT
approaches on the separated 20% exercises in the test set for each encoding.
Results are shown below, with highest scores under each metric highlighted.
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Results of LSTM neural network models and HMMs under these evaluation
metrics are provided in Table 1. Highest scores of each model under each metric
are highlighted.

Table 1. Results showing accuracy of HMM, PVE and ITE models on the test dataset.

Accuracy

Model Strict (%) MGT (%)

HMM 1 61.9 63.9

HMM 2 69.4 72.2

HMM 3 70.0 72.9

PVE LSTM 5 66.0 83.5

PVE LSTM 10 70.2 89.8

PVE LSTM 25 73.5 92.6

PVE LSTM 50 72.6 91.6

PVE LSTM 100 76.7 97.3

PVE LSTM 200 75.5 95.4

ITE LSTM 5 63.3 79.2

ITE LSTM 10 66.7 84.1

ITE LSTM 25 69.2 87.2

ITE LSTM 50 71.2 89.8

ITE LSTM 100 72.4 92.1

ITE LSTM 200 72.3 92.0

Considering that the baseline HMMs are not optimised for the marimba
sticking problem and that the model architecture and training is simpler, these
existing models perform reasonably well against small LSTM networks. How-
ever, we found that the LSTM performance tends to improve with network size
(increasing the complexity of the model) up to 100 units in the hidden layer
before performance plateaus or declines. For the ITE, higher performances may
be achieved with large LSTMs.

6 Discussion

Our results support the use of LSTM neural networks in predicting marimba
stickings. This section discusses qualitative aspects of obtained results, limita-
tions of the current methodology and directions for extending this study.

6.1 Qualitative Analysis of Sticking Predictions

We inspected a sample of sticking predictions made on the test set of the PVE
LSTM 100 and ITE LSTM 100 models (the optimal models of each approach).
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We first notice basic sticking principles in the model predictions, for example,
that stickings generally reflect the use of sticks 1 and 2 in lower notes and sticks
3 and 4 in higher notes.

We also observed that most predicted stickings were playable and efficient,
and only occasional predictions were clearly erroneous. Moreover, common to
both models was a higher frequency of anomalous predictions near the beginning
or end of input samples, as shown in Fig. 5a. These stickings were sometimes
unplayable or were sometimes viable alternate stickings that did not match the
pattern adopted during the middle of the sample. This behaviour may be a
consequence of the influence caused by model learning on samples with multiple
ground truths, where the ‘correct’ sticking is uncertain. Bidirectionality (PVE)
and the reversal of inputs (ITE) may have helped training with past and future
contexts in the middle of samples. The longer and more repetitive the sample,
the higher quality predicted stickings were generally observed.

(a) Predictions show anomalous stick-
ings at the beginning of exercises.

(b) Predicted dyads are playable as
notes in isolation, but not in sequence
context.

Fig. 5. Sticking prediction characteristics from ITE LSTM 200 model.

The models sometimes struggled with dyads and chords in context of longer
sequences. For example, dyads in Fig. 5b are playable in isolation but are not
practical within the context of the sequence, requiring the hands to cross.

The sticking predictions made by the baseline HMM 3 model in the inspected
samples appeared similar to the ITE LSTM 200 in terms of playability and con-
sistency despite the lower evaluation score. While anomalous stickings were still
observed in some short exercises and at the beginning and ends of longer exer-
cises, sticking quality was good despite the model being designed for the piano
fingering problem (Fig. 6). The main source of error in the HMM 3 model was the
occasional prediction of a sticking number ‘5’—an invalid stick and an artefact of
the HMM implementation for piano fingering despite being trained exclusively
on marimba exercise inputs. We expect the HMM model’s adaptation to directly
address marimba stickings may greatly improve its quantitative evaluation score.
As such, we see both the ITE LSTM and HMM model approaches being useful
in practice for assisting marimbists and percussionists with the sticking problem
and suggest these avenues for further development.

6.2 Limitations

Dataset Limitations. While there are advantages in the use of Stevens’ Method
of Movement for Marimba as the dataset for this study described previously, the
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(a) HMM 3 provides a playable sticking
for a short exercise, although without a
consistent pattern.

(b) The prediction of this sequence
matches the ground truth exactly.

Fig. 6. The HMM 3 model exhibits some successful prediction characteristics despite
being designed for piano fingering.

dataset is also the key limitation of the methodology. Exercises from the dataset
represent typical marimba sticking patterns, but not concert marimba music,
which typically contains a greater variety of pitch, rhythm, and patterns. Devel-
opment of the dataset is challenging with marimba music. The instrument is
far less commonly played and studied than popular instruments like the piano
and guitar, so music and sticking data is far less available. As a relatively new
instrument within the Western music tradition, marimba sheet music generally
remains within copyright, and the capacity to share and develop datasets is lim-
ited. Data may be more readily obtained by recording the performers live rather
than transcribing written marimba music. Such approaches have already been
undertaken with piano fingering by Johnson et al., employing camera systems
to generate depth maps of pianists’ hands while playing [15].

Model Limitations. The models we employ in this study are simplified to
predict stickings based on pitch and rhythm only. These models may be unable
to capture finer aspects of sticking considerations, which are influenced by other
musical variables not modelled in this study such as dynamic, articulation, or
expressive markings.

While we model pitch comprehensively, we include rhythmic information only
in the context of the musical meter, not in absolute speed terms. While appropri-
ate for pedagogical exercises, in performance practice, the sticking of a passage
at a slow tempo will often change compared to when played quickly. Addition-
ally, the model does not account for rolls—rapid successive strikes to sustain
a note—which are important and frequently used techniques on the marimba.
Accounting for rolls in predicting marimba stickings is a necessary area of devel-
opment before sticking prediction becomes practical.

Modelling these additional parameters in further work will help to refine
sticking predictions for more practical musical applications.

7 Conclusion

In this study, we explore a novel problem of predicting marimba stickings
with LSTM neural networks. Leigh Howard Stevens’ pedagogical marimba text,
Method of Movement for Marimba is used as the dataset representing examples
of sticking patterns. Our data-driven approach uses Long Short-Term Memory
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neural networks that are trained on examples extracted from this dataset. We
simplify the complexities involved in marimba music by modelling two core vari-
ables influencing sticking: pitch and rhythm. The best performances are achieved
with LSTM networks that employ interval transition encoding with a maximum
multiple ground truth micro-accuracy of 97.3%.

This study has demonstrated an applicability of data-driven machine learn-
ing approaches to novel problems in musical instrument technique, which include
quantifiable physical constraints as well as qualitative assessments of musical-
ity. The sticking problem of the marimba, a technical issue associated with an
instrument that is rapidly growing in popularity, has not previously been anal-
ysed using a computational methodology of this nature, and the promising results
along side clear paths for development invite further study of the field.
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borhood search algorithm to generate piano fingerings for polyphonic sheet music.
Int. Trans. Oper. Res. 24(3), 509–535 (2017)

4. Barbancho, A.M., Klapuri, A., Tardon, L.J., Barbancho, I.: Automatic transcrip-
tion of guitar chords and fingering from audio. IEEE Trans. Audio Speech Lang.
Process. 20(3), 915–921 (2012). https://doi.org/10.1109/TASL.2011.2174227

5. Bretan, P.M.: Towards an embodied musical mind: generative algorithms for
robotic musicians. Ph.D. thesis, Georgia Institute of Technology (2017)

6. Briot, J.P., Hadjeres, G., Pachet, F.: Deep Learning Techniques for Music Gener-
ation. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-319-70163-9

7. Briot, J.P., Pachet, F.: Deep learning for music generation: challenges and direc-
tions. Neural Comput. Appl. 32(4), 981–993 (2020)

8. Burlet, G., Fujinaga, I.: Robotaba guitar tablature transcription framework. In:
Proceedings of the 14th International Society for Music Information Retrieval Con-
ference, ISMIR, Curitiba, Brazil, pp. 517–522 (2013)

9. Choi, K., Fazekas, G., Cho, K., Sandler, M.: A tutorial on deep learning for music
information retrieval. arXiv preprint arXiv:1709.04396 (2017)

10. Choi, K., Fazekas, G., Sandler, M., Cho, K.: Convolutional recurrent neural net-
works for music classification. In: 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2392–2396. IEEE (2017)

11. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
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Abstract. Natural Language Inference is a fundamental task required
for understanding natural language. With the introduction of large Nat-
ural Language Inference (NLI) benchmark datasets such as SNLI and
MultiNLI, NLI has seen an uptake in models achieving near-human accu-
racy. Deeper analyses through adversarial methods performed on these
models however have cast doubts on their ability to actually understand
the inference process. In this work, we attempt to define a principled
way to generate adversarial attacks based on monotonic reasoning and
consistency to examine their language understanding abilities. We show
that the language models trained for general tasks have a poor under-
standing of monotonic reasoning. For this purpose, we provide methods
to generate an adversarial dataset from any NLI dataset based on mono-
tonicity and consistency principles and conduct extensive experiments to
support our hypothesis. Our adversarial datasets preserve these crucial
aspects of monotonicity, consistency and semantic similarity and are still
able to fool a model finetuned on SNLI 79% of the time while preserving
semantic similarity to a much greater extent than previous methods.

1 Introduction

Natural Language Inference (NLI), initially known as Recognizing Textual
Entailment, was introduced as a PASCAL Challenge Benchmark task (RTE-
1) [17]. The task involves determining if a natural language hypothesis h can be
reasonably inferred from the given premise p [15]. Owing to its use as a com-
parison metric to quantify the semantic inference of models, it is often used as
a proxy to gauge a model’s ability to understand natural language. Significant
advances have been made in the field of NLI, which were further propelled by
the advent of huge benchmark datasets such as the Stanford Natural Language
Inference Corpus (SNLI) [2] and the Multi-Genre Natural Language Inference
Corpus (MNLI) [32].

Language Models and specifically Neural Language Models based on Recur-
rent Neural Network (RNN) [26] and large Transformers [29] have been a
paradigm shift in Natural Language Modeling and have achieved state-of-the-
art results in many Natural Language tasks including NLI. However, adversarial
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attacks and stress tests have questioned the actual language understanding abil-
ity of these models. The NLI task is particularly amenable to logical inspection
and assessment and a model’s failures for a given example helps to identify its
shortcomings. A very instructive example is [8] which analyzes negation and
shows the Language Model’s inability to understand it.

In this work, we investigate the role of semantic monotonicity and logi-
cal consistency in the NLI task and introduce a framework for lexical attacks
based on them. Monotonicity in this case refers to the semantic relations
between generalizations and specializations of a word and inferences which can
be drawn from them. By consistency we mean rules of logic; e.g. symmetry
transitivity etc. are maintained across the sentences. We transform a given
< premise, hypothesis, label >≡ (p, h, l) triplet in the dataset, by substitut-
ing certain words such that the change in label l is deterministic corresponding
to the monotonicity and consistency rules.

For example, consider the sentence pair <People are marching towards the
mountains, The people are going towards the mountains>≡< p, h >, with the
label l = entailment or e. Replacing marching in p with its hypernym walking
does not change the meaning of p or the label, as it is an upward monotone.
Similarly, we can derive rules for label changes for various combinations of sub-
stitutions in both p and h which lead to a specific change in label l. We call these
substitutions two-hop label shifts as they transform both p and h. Our approach
differs from prior work which have used brute force or embeddings-based pertur-
bations [11,19] and have focused on transforming only premises. These attacks
reveal critical deficiencies in the Language Model’s lexical and syntactic under-
standing. Although we focus on NLI datasets, the methods can be generalized
to other language tasks. To the best of our knowledge, this is the first work that
uses attacks based on both monotonicity and consistency rules across both the
premise and hypothesis.

To sum up, our contributions are:

– We provide a general principled adversarial attack method using our novel
two-hop label shift rules.

– We demonstrate the efficacy of our generated datasets on State-of-the-art
NLI models, and compare them against existing adversarial text generation
frameworks.

– We release the code for the experiments which can be found at https://github.
com/nbrahmani/Two-hop-adversarial-attacks

The rest of this paper is organized as follows: Sect. 2 gives an overview of the
existing work. Section 3 gives an overview of NLI and Adversarial NLI. Section 4
describes our methodology of the proposed attacks, and Sect. 5 is about the
experiments performed and the results obtained. We follow up with discussions
in Sect. 6 and conclude in Sect. 7.

https://github.com/nbrahmani/Two-hop-adversarial-attacks
https://github.com/nbrahmani/Two-hop-adversarial-attacks
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2 Related Work

Adversarial methods in Neural Models have been gaining prominence with the
success of Image Classification models [21]. With the growing success of Neural
Language Models, methods to determine the weaknesses of these models have
also gained attention [6,10]. These methods are usually classified into White-box
and Black-box attacks, and the Black-box attacks can be further classified into
Score-based, Decision-based, and Transfer-based attacks [16].

White-box attacks have access to the gradient information of the loss function
and construct the adversarial instances based on this information. Li et al. [12]
use the loss function gradient of each word to find their importance and replace
the words with similar words. Ebrahimi et al. [5] attack the model by flipping a
character in the sentence that maximizes the model loss. Although these attacks
are successful, their methodology is cumbersome.

Black-box attacks, on the other hand, only use the model outputs to generate
the adversarial instances. They do not require access to the model’s gradient
information and are agnostic to the model. For example, Jin et al. [11] use the
model’s confidence scores to create adversarial perturbations. Zhao et al. [34]
use only the final predicted output of the model to generate attacks instead of
the confidence scores. A different approach is taken in [30] who train a classifier
to mimic the decisions of the model, after which attacks are performed on this
model and are then transferred to the original model.

As useful as these attacks are, they are not systematic in nature and introduce
random perturbations in the data to craft adversarial examples. While in search
of a more principled manner to analyze the adversarial examples in text, research
has turned to gauge the model’s understanding of logic. It has been observed that
language models struggle to understand logic due to its discrete nature. Traylor
et al. [28] test whether the models can differentiate between logical symbols
such as disjunction (∨), conjunction (∧) or negation (¬). They find the models
largely fail on their newly generated dataset. Meanwhile, the model’s ability to
infer over conjuncts is probed in [24]. Tarunesh et al. [27] create a huge dataset
that tests the models against 17 reasoning tasks, including logical tasks such as
Boolean (sentences containing logical and (∧), or (∨) and their combinations)
and quantifier (sentences containing universal (∀) and existential (∃) operators)
apart from world knowledge, causality etc.

Richardson et al. [23] and Naik et al. [20] probe the models on various
semantic phenomena, including logical aspects such as negation, along with
monotonicity-related aspects. Glockner et al. [6] generate perturbations by
replacing one word in the premise using lexical knowledge. Similarly, Yanaka et
al. [33] have proposed the MED dataset that checks the model’s understanding
of monotonicity. They synthesize examples based on the monotonicity inference
rules using contextual grammar.

Gururangan et al. [7] showed that a simple classification model achieves 67%
accuracy on SNLI and 53% on MNLI when only hypotheses are given, thus
showing that the models are sensitive to annotation artifacts. Certain words such
as negations and gender-neutral terms lead to false predictions by the model.
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Poliak et al. [22] tested a hypothesis-only model on ten different datasets and
found that the model performed better than most baselines.

Our work follows [33] and [14] in that we use monotonicity and consistency
to generate an adversarial dataset from the given dataset1. Our approach differs
in our use of two-hop label shift rules across the premise-hypothesis pair.

3 Adversarial NLI

We discuss NLI first and then Adversarial NLI in detail:
The standard NLI task consists of predicting a label l from a sentence pair of

Premise and Hypothesis (p, h). For example, the sentence pair <A man is riding
a horse in a meadow, A person is outside> has the label entailment. Usually we
deal with only three labels, entailment, contradiction, neutral. For our purposes
we’ll focus on Neural Language Models, specifically variants of BERT [4] which
have achieved state-of-the-art in many NLP tasks. These models transform the
sentences into distributed representations and posit them as a classification task.

For NLI, the data is a set of ordered triplets of Premise, Hypothesis and
Label: D = {(p, h, l)}. The objective is to find a model M parameterized by
weights Θ, such that it predicts the correct label l given (p, h), i.e.:

MΘ : (P,H) → L

In this case, the model here is a Neural Language Model which is learned by
maximizing the likelihood of Θ over the dataset. That is, the number of predicted
labels li over the input sentences (pi, hi) in the dataset.

MΘ = argmax
Θ

LΘ = argmax
Θ

P (li|pi, hi) ∀(pi, hi, li) ∈ D

Adversarial NLI on the other hand can be considered as the process of find-
ing a set of transformations T : (S,L) → (S,L) where (S,L) is the set of all
<sentence, label> pairs, such that the trained model fails for a given example.
Formally:

M(T (pi, hi)) 	= l′i, (pi, hi, li) ∈ D
where T (pi, hi) changes either pi or hi or both, and li is the true label corre-
sponding to the transformation T (pi, hi).

In other words, the goal is to find a method to transform the inputs so that
the model’s output is not the same as the expected output.

4 Towards Systematic Adversarial NLI

As we mentioned earlier, while approaches for Adversarial NLI exist, they are
not systematic in nature. Here, we describe our approach used in determining
the transformation T for Systematic Adversarial NLI.
1 We use both SNLI and MNLI, but in practice, it can be any NLI dataset or the
methods can even be adapted for any other language dataset.
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Consider a data point (p, h, l) ∈ D. The transformation T we propose is
based on two-hop rules. Recall from Sect. 1 that these are rules which apply to
both the premise and hypothesis, instead of only the premise. We focus only on
single word substitutions using an existing ontology. We choose Wordnet [18] for
our purpose, but any other ontology can be used.

Monotonicity and Consistency Rules. Let, E(p, h) denote an entailment,
C(p, h) a contradiction and N(p, h) a neutral label for premise-hypothesis pair
(p, h). For a sentence s ∈ {p, h}, the following rules are applicable:

1. Rules of Consistency [14]:
– E(p, h) ∧ E(h, z) → E(p, z)
– E(p, h) ∧ C(h, z) → C(p, z)
– N(p, h) ∧ E(h, z) → ¬C(p, z)
– N(p, h) ∧ C(h, z) → ¬E(p, z)
– C(p, h) → C(h, p)

2. Rules of Equivalence:
– s′ = WEq(s) → E(s, s′) ∧ E(s′, s)

Where WEq stands for equivalent word substitution.
3. Rules of monotonicity [33]:

– s′ = WME(s) → E(s, s′) ∧ N(s′, s)
– s′ = WMN (s) → N(s, s′) ∧ E(s′, s)

Where WME , WMN stand for Monotonically Entailment and Neutral word
substitutions, respectively.

Deriving the Label Changes. Using the aforementioned consistency, equiv-
alence and monotonicity based rules, the corresponding changes in label (shifts)
for each transformation are deterministic and can be derived. We list here only
the effective shift rules for the transformations as the rest of the shift rules do
not induce a label change required for an adversarial attack.

We use the following notation for describing the transformations:

– Single Sentence Transformation: TM (p, h) : (p′, h) (or (p, h′)) is a trans-
formation T for a premise-hypothesis pair (p, h) such that only p (or h) is
changed to p′ (or h′) via method M .

– Dual Sentence Transformation: TM,M , e.g., TE,ME(p, h) : (p′, h′) means
that premise p is changed to p′ using an equivalent substitution and hypothesis
h is changed to h′ using a monotonically entailed substitution.

We take ¬C(p, h) and ¬E(p, h) to be N(p, h). Based on a given transfor-
mation TM , we then determine the new label l′. Table 1 lists all the label shift
rules.

One issue we faced was that effecting multiple transformations can cause an
exponential increase in the number of possible combinations of label changes.
To mitigate that, we find the words (which we call markers) which are most
representative of the meaning of the word and transform them which we describe
in the next Sect. 4. We use a separate model to determine the markers.
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Table 1. Table of transformations

TE(p, h) : (p
′, h) → E(p, p′), E(p′, p)

– E(p, h) → E(p′, h)
– C(p, h) → C(p′, h)

TE,MN (p, h) : (p′, h′) →
E(p, p′), E(p′, p), N(h, h′), E(h′, h)
– C(p, h) → C(p′, h′)

TME(p, h) : (p
′, h) → E(p, p′), N(p′, p)

– E(p, h) → ¬C(p′, h)
– C(p, h) → ¬E(p′, h)

TME,E(p, h) : (p′, h′) →
E(p, p′), N(p′, p), E(h, h′), E(h′, h)
– E(p, h) → ¬C(p′, h′)
– C(p, h) → ¬E(p′, h′)

TMN (p, h) : (p′, h) → N(p, p′), E(p′, p)
– E(p, h) → E(p′, h)
– C(p, h) → C(p′, h)

TME,ME(p, h) : (p′, h′) →
E(p, p′), N(p′, p), E(h, h′), N(h′, h)
– E(p, h) → ¬C(p′, h′)

TE(p, h) : (p, h
′) → E(h, h′), E(h′, h)

– E(p, h) → E(p, h′)
– C(p, h) → C(p, h′)
– N(p, h) → ¬C(p, h′)

TME,MN (p, h) : (p′, h′) →
E(p, p′), N(p′, p), N(h, h′), E(h′, h)
– C(p, h) → ¬E(p′, h′)

TME(p, h) : (p, h
′) → E(h, h′), N(h′, h)

– E(p, h) → E(p, h′)
– N(p, h) → ¬C(p, h′)

TMN,E(p, h) : (p′, h′) →
N(p, p′), E(p′, p), E(h, h′), E(h′, h)
– E(p, h) → E(p′, h′)
– C(p, h) → C(p′, h′)

TMN (p, h) : (p, h′) → N(h, h′), E(h′, h)
– C(p, h) → C(p, h′)

TMN,ME(p, h) : (p′, h′) →
N(p, p′), E(p′, p), E(h, h′), N(h′, h)
– E(p, h) → E(p′, h′)

TE,E(p, h) : (p′, h′) →
E(p, p′), E(p′, p), E(h, h′), E(h′, h)
– E(p, h) → E(p′, h′)
– C(p, h) → C(p′, h′)

TMN,MN (p, h) : (p′, h′) →
N(p, p′), E(p′, p), N(h, h′), E(h′, h)
– C(p, h) → C(p′, h′)

TE,ME(p, h) : (p′, h′) →
E(p, p′), E(p′, p), E(h, h′), N(h′, h)
– E(p, h) → E(p′, h′)

Selection of the Markers and Extraction of Sense. Changing all words or
a random combination of words would be too computationally intensive and not
helpful in generating good adversarial examples. Therefore, based on a transfor-
mation T , we select the top 5 most similar words (markers) in the sentence S
(S ∈ {P,H}). These are selected by comparing the cosine similarities between
individual word embeddings and sentence embedding. The word and sentence
embeddings are obtained using a pre-trained model.

After that, a word sense disambiguation model is used to obtain the sense of
the markers to ensure that the generated examples are semantically similar to
original sentences. For this, we use Wordnet sense ids [18]. These transformations
and the two-hop rules which change only the markers form the basis of our
adversarial attacks.

Other methods like TextFooler [11] replace the selected word in the hypoth-
esis from a list of synonyms by comparing the cosine similarities of their embed-
dings. The attack labels of such perturbations are riddled with errors. The sense
of the word can also change due to the replacements. Our attacks are performed
by the two-hop rules governed by the word-replacement technique and the ground
truth and do not suffer from these issues. We also perform sense-based replace-
ment to ensure the sense of the perturbations remains the same.
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4.1 Word-Replacement Techniques

After selecting the markers and their sense, the sentences are perturbed using the
three word-replacement techniques based on the type of transformation applied.
They are 1) Equivalent 2) Monotonic-entailment and 3) Monotonic-neutral.
These replacements govern the selected word substitute and the corresponding
label. The monotonicity of the word is obtained using a polarity annotator.

– Equivalent word replacement is achieved by replacing the marker with one
of its synonyms. It always results in an entailment in both directions.

– Monotonic replacement substitutes a marker by a general phrase (hyper-
nym) or a specific phrase (hyponym). If the word is upward monotone, replac-
ing it with hypernym results in an inferable sentence (entailment label), while
replacing it with hyponym results in a neutral sentence. Similarly, replacing
a downward monotone word with its hyponym results in an inferable sen-
tence, and a hypernym leads to neutral classification. Corresponding to these
rules we define two-word replacement methods: Monotonic-Entailment
and Monotonic-Neutral.

The replacement words obtained are then modified to match the morphology
of the original word after which they are filtered based on their grammar score
or acceptability score. The model is now asked to classify these transformations
along with the labels. Only those input sentence pairs are used whose ground
truth is the same as the predicted label; the rest are skipped. If the label predicted
for the perturbation differs from the one obtained using the derived rules, the
attack is successful, else unsuccessful. The complete Algorithm 1 is given below.

5 Experiments and Results

5.1 Experimental Setup

Before detailing the results of the attacks, we briefly give an overview of the dif-
ferent models and approaches used for individual modules mentioned in Sect. 4.

Algorithm 1. Adversarial Attack using Logical Rules
1: Input: TM , p, h, l, markers {m}
2: Output: Transformed tuple (p′, h′, l′)
3: Select p, h or both based on TM

4: Treating it as a single sentence s of two clauses, select top 5 words from s ≡ {m}.
5: for mi ← {m} do
6: Extract the sense and replace the marker according to method M with a word
7: end for
8: Remove perturbations where grammar score varies significantly from that of s
9: Query model M with the perturbed sentence pair (p′, h′) and check with expected

label l′
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Selecting Markers and Extracting Sense. For selecting top 5 markers, the
embeddings for the premise-hypothesis pair are extracted using a MPNet [25]
based sentence encoder which has been fine-tuned on a 1B sentence dataset. This
model takes the input sentences and produces word embeddings and sentence
embeddings. The top 5 similar words based on cosine similarities between the
word and the given sentence embedding are chosen as essential markers. The
perturbations are generated by extracting sense from ESCHER [1]. These senses
are then used to mine synonyms, hypernyms and hyponyms from Wordnet.

Polarity Annotation and Grammar Score. To get the monotonicity of a
marker, we need the monotonic polarity. We follow [9] for polarity annotation.
The input sentences are first parsed using a CCG parser and ccg2mono proposed
in [9] is used to polarize the words as upward, downward, or no polarity. We then
compare the grammar scores of the original and the modified sentences with a
BERT model fine-tuned on the COLA dataset [31]. The model gives a probability
output of the given sentence being acceptable or not. An absolute difference
greater than a threshold between the original and the perturbed sentence is
ignored. We found empirically that a threshold value of 0.1 works well.

5.2 Results

Using the models mentioned above, we build our attack pipeline to generate
adversarial attacks. We randomly sample 5000 sentence pairs from the train
splits of the SNLI [2] and MNLI [32] datasets. We then generate perturbations
for all 15 types of transformations, picking a different number of markers each
time. Then using the two-hop label shift rules, attacks are performed on the
model with these perturbations. Example perturbations can be found below:

Example 1. p: Man smokes while sitting on a parked scooter.
h: A man smokes a cigarette while sitting on his scooter.
Marker_p: Man, Marker_h: Man
Ground Truth: Neutral, Predicted Label : Neutral
Transformations:

1. TE(p, h) : (p, h′): No perturbations as no valid perturbation exists.
2. TME(p, h) : (p, h′):

– H ′: an adult smokes a cigarette while sitting on his scooter.
Label : Neutral, Attack Status: Failed

– H ′: a person smokes a cigarette while sitting on his scooter.
Label : Neutral, Attack Status: Failed

– H ′: a male smokes a cigarette while sitting on his scooter.
Label : Neutral, Attack Status: Failed

– H ′: an organism smokes a cigarette while sitting on his scooter.
Label : Contradiction, Attack Status: Success

3. Remaining Transformations: No perturbations as the label shift rule does not
exist for this transformation.
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We run the experiments on the BERT base model with both SNLI and MNLI
datasets. The results for a different number of markers are given in the tables
below.

Table 2. Attack Results on BERT finetuned on SNLI and MNLI

No. of markers SNLI MNLI

Successful
attacks

Failed
attacks

Attack
accuracy

Successful
attacks

Failed
attacks

Attack
accuracy

1 2181 3086 41.4% 244 4699 4.9%
2 3289 1978 62.4% 466 4477 9.4%
3 3833 1434 72.7% 588 4355 11.8%
4 4095 1172 77.7% 711 4232 14.3%
5 4199 1068 79.7% 763 4180 15.4%

6 Discussion

As seen in Table 2, our attacks achieved an attack accuracy of 79% on the BERT
model finetuned on SNLI. This shows that though the model performed well
on benchmark datasets, it has a poor understanding of monotonic reasoning
and fails at simple lexical monotonic inferences. Meanwhile, BERT finetuned
on MNLI has achieved 84.6% accuracy (Attack accuracy being 15.4%) on the
adversarial dataset. BERTMNLI being more powerful than BERTSNLI , it can
be surmised that the model can withstand the attacks better than the latter.
From these results, we may assume that the BERTMNLI model has managed
to capture simple monotonic inferences. However, keeping in mind the length of
the sentences in MNLI it may be that single-word substitutions performed might
not be sufficient to validate their monotonic reasoning capacity.

We compare our attack accuracies with adversarial attack methods, namely
TextFooler [11] and BERT-Attack [13] as seen in Table 3. We also give a detailed
comparative analysis of our model with TextFooler and BertAttack. TextFooler is
a state-of-the-art baseline to generate adversarial text. Similar to our methodol-
ogy, they select markers and replace them to create perturbations. In TextFooler,
a marker is selected by sorting the words on their importance ranking and picking
the highest word after removing the stop words. Once the marker is selected, its
synonyms are extracted for replacement. Synonyms are picked by comparing the
cosine similarities of the words in the vocabulary with that of the marker. Parts
of speech is ensured to be the same to generate grammatically valid statements.
The semantic similarity of the sentences is obtained from the cosine similarity of
their embeddings. The attacks are performed by replacing the marker with the
best synonym resulting in label preserving perturbations.

Similarly, BertAttack finds vulnerable words by masking each word in the
sentence and comparing their logit scores. K replacement words for the vulner-
able words are then generated using the BERT model. No additional grammat-
ical or semantic checks are performed as BERT is context aware. Although the
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accuracies of TextFooler and BertAttack are higher than our attack accuracy,
the semantic similarity score for our attacks obtained using Universal Sentence
Encoding model [3] is considerably greater as seen in Table 3.

As earlier we also note that the attack labels of the two above methods can
be prone to errors due to lack of checking of sense of the word and illegitimate
words being introduced into the text. Our method for generating adversarial
examples is much more computationally efficient than TextAttack [19]. We give
some examples below.

Table 3. Accuracies and semantic similarity of the attacks

Attack Accuracy on SNLI Accuracy on MNLI semantic Similarity

TextFooler 96% 90.4% 0.45
BERT-Attack 92.6% 92.1% 0.40
Ours 79.7% 15.4% 0.87

6.1 Comparison of Examples with TextFooler and BertAttack

The following examples illustrate the issues with the approach followed by
TextFooler and BertAttack:

– Errors in label shifts: The replacement words considered are not always
synonyms, thus leading to incorrect attacks as the perturbations are not label
preserving.

• TextFooler- Original: A man in a blue shirt is looking up at a dog.
Perturbation: A man in a blue shirt is looking up at a canine.

• BertAttack- Original: A person throwing something for her dog.
Perturbation: A person throwing something for her puppy.
Explanation: The relation between canine and dog is hypernymy, while
that between dog and puppy is hyponymy rather than synonymy. The
label will therefore be dependent on the monotonicity of the word.

– Improper Perturbations
• Original: There is a little boy who likes the colour brown.

Perturbation:
∗ TextFooler: There is a little boy who iikes the colour brown.
∗ Ours: There is a little person who likes the colour brown.

• Original: Girl plays nintendo.
Perturbation:

∗ BertAttack: Girl and facebook.
∗ Ours: Scout plays nintendo.

Explanation: Non-existent words or unrelated words.
– Incorrect Sense The sense of the replacement word is completely different

from the original sense, thus changing the semantics of the sentence. Though
parts of speech is considered to ensure the grammaticality of the text, the mor-
phology of the words is not maintained, resulting in sentences with improper
grammar.
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• Original: The dogs are running along the shore to meet their master who
just beached his kayak.
Perturbation:

∗ TextFooler: The dogs are executed along the shore to meet their
master who just beached his kayak.

∗ Ours: The dogs are running along the shore to meet their master who
just beached his canoe.

7 Conclusion

We have proposed a novel approach to generate adversarial datasets from bench-
mark NLI datasets. These attacks help in assessing a Neural Language Model’s
understanding of monotonicity reasoning. We evaluate the generated datasets on
state-of-the-art NLI models and analyze their performance. We conclude with
a comparison with state-of-the-art adversarial attacks and show that our meth-
ods produce more semantically similar sentences and do not suffer from lexical
errors.

While single word substitutions are easy to incorporate and effective, not
all concepts can be encapsulated by a single word. Future work can focus on
structural changes with phrase replacement to better test the model’s monotonic
reasoning ability. Another line of work can be explanation-based attacks that
can probe the model’s ability to generalize utilizing the context of the sentences.
While adversarial analysis illuminates the workings of the model, it remains to
be seen if such rules can be incorporated into the models efficiently. So far,
while there’s work [6] which tries to do so, retraining a model for such a task
is computationally expensive while humans can integrate such logical reasoning
much more easily. This remains an open area of research.
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Abstract. We show how JSON documents can be abstracted as concept
descriptions in an appropriate Description Logic (DL). This representa-
tion allows the use of a DL ontology, which includes naming conventions
(“referring expression types (RETs)”) for instances of certain primitive
concepts, in order to locate (perhaps multiple) subdocuments of the orig-
inal JSON document capturing information about some particular con-
ceptual entity. Detecting such situations allows for normalizing the JSON
document into several separate smaller documents that capture all infor-
mation about each such conceptual entity. This transformation preserves
all the original information present in the input document. The RET
assignment enables more refined and normalized capture of documents,
and lead to query answers that adhere better to user expectations. We
also show how RETs allow checking for a document admissibility condi-
tion ensuring that each final subdocument describes a single conceptual
entity.

1 Introduction and Motivation

Suppose we have a JSON/mongoDB document, and a Description Logics (DL)
ontology attaching semantics to (most) fields in JSON objects (called “keys”
in the JSON definition; for the rest of this paper we reserve the word “key”
for database-like keys).1 More precisely, we treat the fields in JSON objects as
(functional) roles in an underlying DL, and use the TBox of our ontology to
introduce, when appropriate, additional concepts for the subject domain of the
document. For example, for the JSON document

{ "fname": "John", "lname": "Smith", "age": 25,
"wife": { "fname" : "Mary", "lname": "Smith" } }

1 We assume that the reader is generally familiar with standard DL terminology, such
as individuals, roles, TBox, and ABox, as well as JSON documents. For formal
definitions of these please see Sect. 2.
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the TBox might contain subsumptions stating that:

– PERSONs are objects that have fname and lname fields,
– fname and lname form a key for PERSONs,
– a wife of a PERSON is also a PERSON, and so on.

We are interested in asking (conjunctive) queries over the document, with
answers being returned in some “answer language” Lanswer. We could simply
create distinct identifiers for each node in the JSON tree, and use roles (obtained
from the fields of JSON objects) to connect them, resulting in an ABox, which in
the above case might contain an assertion like (id434,25) : age. In this case,
a simple query like q(P) :- age(P,25) would return id434, which is quite
meaningless without laboriously tracing back the creation of the ABox; and
this answer makes no connection with the knowledge in the ontology. A more
desirable answer would use the TBox, and return something like PERSON with
fname=“John” and lname=“Smith”. This issue, and many others concerning the
appropriate choice of description for objects in query answers was first addressed
in [2], where the notion of “singular referring expression” was introduced. It stood
for a concept description that was guaranteed to denote a single individual.

Given the use of a referring expression in Lanswer to, among others, avoid
meaningless object ids, another paper [13] suggested using a similar approach
in some “update language” Ltell: replacing the ABox with a “CBox”—a set of
concept descriptions that serve as singular referring expressions for objects and
are used to assert facts as special concepts the KB knows about. For example,
the JSON fragment above could be captured by the concept

∃ fname.{"John"} � ∃ lname.{"Smith"} � ∃ age.{"25"} �
∃ wife.(∃ fname.{"Mary"} � ∃ lname.{"Smith"})

Here, nominal concepts play a central role, as do functionality and key con-
straints for singularity, and a general rule that CBox concepts cannot have empty
interpretations.

An algorithm was given in [13] for computing certain answers to conjunc-
tive queries, which returns singular referring expressions appearing in the CBox.
This work was carried out in a dialect of the FunDL family of description logics
[8]. FunDL and its dialects replace roles with (possibly partial) unary functions
called features, reify general roles, and always include a so-called path func-
tional dependency (PFD) concept constructor to express constraints that are
equality generating (including keys). In particular, the dialect used for these
purposes in [13] has the property that DL reasoning and query answering are
both polynomial-time (in the size of the underlying knowledge base). The above
paper also gave, as an example of CBox use, one way to represent a JSON doc-
ument (in particular, for a document in a MongoDB collection), as a singular
concept description in FunDL.

Example 1 ([13]). Consider the case where "person" is the name of a MongoDB
JSON collection with a value as given in Fig. 1. The "person" document is
captured by a CBox containing the concept description formulated in FunDL
and shown in Fig. 2. ��
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Intuitively, JSON values are mapped to concepts as follows: (a) primitive
values to nominals, (b) (compound) objects to conjunctions of existential restric-
tions of features corresponding to the field names to the (mapping of) values,
and (c) arrays (treated as sets) to multi-valued roles, which are then reified
using the reserved features dom and ran (see Definition 4). One can also infer
that the concept corresponding to the original document, such as the concept
in Fig. 2, will have the above-mentioned singularity property by asserting in a
FunDL TBox that collection names ("person" in our case) are unique.

{ "collection": "person",

"data" : [

{ "fname": "John", "lname": "Smith", "age": 25,

"wife": { "fname" : "Mary" },

"phone": [

{"colour": "red", "dnum": "212 555-1234"}

] } ,

{ "fname": "Mary", "lname": "Jones", "salary": "$150,000 (CAD)",

"spouse": { "fname": "John" },

"phone": [

{"loc": "home", "dnum": "212 555-1234"},

{"loc": "work", "dnum": "212 666-4567"}

] }

] }

Fig. 1. JSON PERSON Document.

∃ collection.{"person"} �
∃ data(

∃ dom−.∃ ran(
∃ fname.{"John"} � ∃ lname.{"Smith"} �
∃ age.{"25"} � ∃ wife.∃ fname.{"Mary"} �
∃ phone.∃ dom−.∃ ran(∃ colour.{"red"} � ∃ dnum.{"212 555-1234"})) �

∃ dom−.∃ ran(
∃ fname.{"Mary"} � ∃ lname.{"Jones"} �
∃ salary.{"$150000CAD"} � ∃ spouse.∃ fname.{"John"} �
∃ phone.∃ dom−.∃ ran(∃ loc.{"home"} � ∃ dnum.{"212 555-1234"}) �

∃ dom−.∃ ran(∃ loc.{"work"} � ∃ dnum.{"212 666-4567"})))

Fig. 2. FunDL Encoding of the PERSON Document.

Since in our case query answers are elements of the CBox, the above trans-
lation of a full JSON document into a single CBox entry is undesirable because
we can only return as answer the individual described by it. In this paper we
propose to break up the one CBox entry into several conceptual entities that
make sense with respect to the terminology in the TBox, and which correspond
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to breaking the original document into sub-documents. This normalization is
achieved by using referring expression types (RETs) [3], a part of our ontology
that determines how objects of discourse are referred to in the knowledge base.
In particular, we will show how a combination of a TBox and an RET assign-
ment to the primitive concepts occurring in the TBox enable mapping an initial
CBox obtained directly from a MongoDB database, as illustrated above, to an
alternative normalized CBox, as illustrated below.

Example 2 (JSON normalization). Applying our normalization procedure to
the CBox in Example 1 will obtain the following concepts:

DOCUMENT � ∃ collection.{"person"} �
∃ data(∃ dom−.∃ ran(PERSON � ∃ fname.{"John"} � ∃ lname.{"Smith"}) �

∃ dom−.∃ ran(PERSON � ∃ fname.{"Mary"} � ∃ lname.{"Jones"}))

PERSON � ∃ fname.{"John"} � ∃ lname.{"Smith"} �
∃ age.{"25"} � ∃ wife.∃ fname{"Mary"} �
∃ phone.∃ dom−.∃ ran(PHONE � ∃ dnum{"212 555-1234"})

PERSON � ∃ fname.{"Mary"} � ∃ lname.{"Jones"} �
∃ salary.{"$150000CAD"} � ∃ spouse.∃ fname{"John"} �
∃ phone.∃ dom−.∃ ran(PHONE � ∃ dnum{"212 555-1234"}) �

∃ dom−.∃ ran(PHONE � ∃ dnum{"212 666-4567"}))

PHONE � ∃ dnum{"212 555-1234"} � ∃ loc.{"home"} � ∃ colour.{"red"}
PHONE � ∃ dnum{"212 555-4567"} � ∃ loc.{"work"}

In the above, the underlined subconcepts of the CBox concepts serve as referring
expressions identifying entities, while the remainder of these concepts tells us
facts about the entities, using (the dash-underlined) referring expressions when
needed, to record facts relating to other identifiable entities. For example, observe
how references to phone entities in phone facts about persons require only dnum
facts about phones, but not loc or colour facts. ��

Our contributions are as follows:

1. We show how a JSON document (or a MongoDB collection) can be abstracted
as a concept description, as illustrated in Example 1.

2. We describe the normalization procedure which uses the given TBox and a
referring expression type assignment in order to extract additional intuitively
reasonable CBox subconcepts, as illustrated in Example 2.

3. We show how a TBox can attach meaning to such concept descriptions (and
therefore to the JSON documents), and contrast this with other proposals for
assigning a meaning/semantics to JSON documents.

4. We also show how information about the same entity can be consolidated
even if it was originally recorded in different parts of the JSON document.

5. Finally, we present a more effective way of diagnosing an admissibility prop-
erty of a CBox that ensures interpretations of referring expressions are indeed
singular.
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All of the above tasks are accomplished by relying solely on reasoning about
equalities and concept memberships of objects corresponding to values in the
input JSON document with respect to the DL ontology (TBox and RET for
naming conventions). This sets our approach apart from many other approaches
that commonly rely on hand-coded mapping and transformation rules.

The paper is organized as follows: Sect. 2 provides the needed background
relating to FunDL and to referring expressions. Section 3 then outlines the main
results of this paper relating to the ability to identify subdocuments relating to
identifiable entities and subsequent separation of these entities in separate CBox
entries/documents. We conclude with a brief overview of related work and with
suggestions for follow-on research.

2 Definitions and Background

We now formally define the artifacts introduced in our introductory comments,
beginning with a general definition of concept descriptions for members of the
FunDL family of DLs with PTIME complexity of logical consequence.2 Recall
that members of this family replace roles with partial functions, and that concept
descriptions not only occur in a TBox but also serve as referring expressions in
a CBox.

Definition 1 (FunDL Concepts, Referring Expressions, and Knowl-
edge Bases). Let F and PC be sets of feature names and primitive concept
names, respectively. A path expression is defined by the grammar “Pf ::= f.Pf |
id” for f ∈ F. A concept description is defined by the grammar on the left-hand-
side of Fig. 3.3

A subsumption is an expression of the form C � D, where C and D are
parsed by the first six productions in Fig. 3. A terminology (TBox) T consists
of a finite set of subsumptions. A concept box (CBox) C consists of a finite
set of concept descriptions parsed by the last six productions in Fig. 3; these
are intended to assert the existence of individuals with complex properties. A
knowledge base K is a pair (T , C).4

The semantics of concept descriptions and path expressions is defined with
respect to a structure I = (�I , ·I), where �I is a domain of “objects” and ·I an
interpretation function that fixes the interpretations of primitive concepts A to be
subsets of �I and primitive features f to be partial functions fI : �I → �I . The
interpretation is extended in the natural way to path expressions: idI = λx.x,
2 Some additional conditions must be imposed on PFDs and on conjunctions to guar-
antee PTIME bounds; see [7,8] for details.

3 A variety of equality generating dependencies, including keys, can be expressed with
the use of a path functional dependency (PFD) concept description generated by the
second production of this grammar.

4 In Sect. 3 we also use the standard notion of a FunDL assertion box (ABox), a set of
assertions of the form “C(a)”, “a = b”, and “f(a) = b” as defined in [7]. We elaborate
on the relationship between knowledge bases that use a CBox and classical FunDL
knowledge bases, i.e., with an ABox in that section.
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(f.Pf)I = PfI ◦ fI ; and to complex concept descriptions C or D as indicated on
the right-hand-side of Fig. 3.

C,D ::=⊥ ∅
| C : Pf1, ...,Pfk → Pf0 {x | ∀y.((y ∈ CI ∧ (

∧k

i=0
{x, y} ⊆ (∃Pfi.�)I)

(
∧k

i=1
PfIi (x) = PfIi (y))) → (PfI0 (x) = PfI0 (y)))}

| � �I

| A AI ⊆ �I

| ∃Pf.C {x | ∃y.(y ∈ CI ∧ PfI(x) = y)}
| C � D CI ∩ DI

| {a} {aI}
| ∃f−1.C {fI(x) | x ∈ CI}

Fig. 3. Syntax and semantics of concept descriptions.

An interpretation I satisfies an subsumption C � D if CI ⊆ DI , and is a
model of a TBox T if it satisfies all inclusion dependencies in T . I is a model
of a knowledge base K = (T , C), written I |= K, if it satisfies T and also that
|CI | > 0 holds for every C ∈ C.

Given a TBox T , a concept C is singular with respect to T if |CI | ≤ 1 for
all interpretations I that are models of T . We call such a concept a referring
expression.

The logical implication problem asks if K |= C � D holds, that is, if C � D
is satisfied in all models of K. ��

Definition 2 (Admissibility and Query Answers). Let K = (T , C) be a
FunDL knowledge base and Q = {(x1, . . . , xk) | ϕ} a conjunctive query. The
CBox C is admissible for T if each C ∈ C is a referring expression that is
singular with respect to T . (Thus, if K is consistent and C is admissible for T ,
|CI | = 1 for any C ∈ C and any interpretation I.)

A k-tuple of referring expressions (C1, . . . , Ck) is a certain answer to Q in
(T , C) if

K |= ∃x1, . . . , xk.(ϕ ∧ C1(x1) ∧ . . . ∧ Ck(xk))

for {C1, . . . , Ck} ⊆ C. ��

The second part of our view of an ontology consists of naming conventions for
individuals, called referring expression types (RETs), which were introduced in
[2]. In this earlier work, such types were attached to the free variables of a
conjunctive query, and denoted a space of well-formed formulae ψ, with one
free variable, over a given FO signature consisting of unary and binary predi-
cates that were eligible to appear in referring expressions for the variable. Such
types are essentially patterns of possible ψ. Here, these are patterns of possible
descriptions of concept instances, and are now attached to primitive concepts
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by a user defined referring expression type assignment (RTA).5 They determine
a set of possible concept descriptions that are eligible referring expressions for
subdocuments. We illustrate this below for our running example, but leave the
presentation on how this is accomplished to Sect. 3.

Definition 3 (Referring Expression Types and Assignments). A refer-
ring expression type is defined by the following grammar:6

Re ::= A | {?} | ∃Pf.Re | Re � Re | Re ;Re

A referring expression type assignment (RTA) over a TBox T is a partial func-
tion mapping primitive concepts A occurring in T to referring expression types
RTA(A). We define the language of referring expressions inhabiting Re, L(Re),
as follows:

L(A)= {A}
L({?})= {{b} | b is a constant symbol}

L(∃Pf.Re)= {∃Pf.C | C ∈ L(Re)}
L(Re1 � Re2)= {C1 � C2 | C1 ∈ L(Re1) and C2 ∈ L(Re2)}
L(Re1;Re2))= L(Re1) ∪ L(Re2)

��
Example 3 (CBox normalization). Let CBox C consist of the single concept
description in Fig. 2 obtained from the MongoDB collection given earlier, and
let TBox T consist of the following subsumptions:

(∃ collection.�) � (∃ data.�) � DOCUMENT
(∃ fname.�) � (∃ lname.�) � PERSON

∃ dnum.� � PHONE

DOCUMENT � DOCUMENT : collection → id
PERSON � PERSON : fname, lname → id
PHONE � PHONE : dnum → id

PERSON � ∃ wife.PERSON

Consider where our aforementioned normalization procedure, to be detailed in
the next section, is given as input: (a) the above knowledge base K = (T , C),
and (b) the following referring expression type assignment:

RTA(DOCUMENT) = DOCUMENT � ∃ collection.{?}
RTA(PERSON) = PERSON � ∃ lname.{?} � ∃ fname.{?}
RTA(PHONE) = PHONE � ∃ dnum.{?}

Our CBox normalization procedure will then replace C in K by the CBox in
Example 2 of our introduction. ��
5 In [3] it was argued that determining ways to refer to individuals is an integral but
distinct step of conceptual modelling/ontology design.

6 This is a pattern language obtained by abstracting nominals in referring expressions,
and by admitting a final production to express preference among referring expressions
[2].
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A function ToC that maps a JSON value to a referring expression in a CBox is
straightforward using FunDL concepts, and is detailed next. (Recall that Exam-
ple 1 in our introduction illustrates an invocation of ToC on a JSON collection.)
Some observations and reminders: (a) this mapping assumes any JSON value,
including an array, will map to some element of an underlying domain; (b) the
mapping relies entirely on interpreting field names in field-value pairs comprising
JSON objects as feature names; and (c) arrays (treated as sets) are mapped to
multi-valued roles reified via the features dom and ran.

Definition 4 (ToConcept). An arbitrary JSON value is mapped to a CBox
referring expression as follows:

ToC("s") �→ {"s"}
ToC(null) �→ �

ToC({"k1" : v1, . . . , "kn" : vn}) �→ ∃ k1.ToC(v1) � . . . � ∃ kn.ToC(vn)
ToC([v1, . . . , vm]) �→ ∃ dom−.∃ ran.ToC(v1) �

. . . � ∃ dom−.∃ ran.ToC(vm)

where the first case covers all JSON values that are strings, numerics, and
Booleans. ��

3 CBox Normalization

Our CBox normalization procedure is based on a pair of normalization rules to
be presented in Subsect. 3.2. To enable references to sub-concepts in a concept
description required by our formulation of these rules, we define the mapping
ToAbox that converts a CBox C to a standard FunDL ABox ToAbox(C), a set
of assertions of the form “A(a)”, “a = b”, and “f(b) = c” (with the standard
interpretation; for details see [7]).

Definition 5 (ToABox). Let C be a CBox. Each concept C ∈ C is associated
with a fresh constant ‘a’ and mapped to ABox assertions as follows:

ToAbox(a : {b}) �→ {a = b}
ToAbox(a : A) �→ {A(a)},A primitive

ToAbox(a : ∃f.D) �→ {f(a) = b} ∪ ToAbox(b : D), b fresh
ToAbox(a : ∃f−1.D) �→ {f(b) = a} ∪ ToAbox(b : D), b fresh

ToAbox(a : D1 � . . . � Dn) �→
⋃n

i=1{a = bi} ∪ ToAbox(bi : Di), bi fresh.

We then define ToAbox(C) =
⋃

Di∈C ToAbox(ai : Di) for ai fresh. ��
Intuitively, the ToAbox(a : C) function converts an input concept C ∈ C to a
set of ABox assertions by assigning a to its root node and then traversing the
syntactic structure of the concept, assigning additional distinct constant sym-
bols to subconcepts of C while generating additional ABox assertions. These
assertions reflect the meaning of the original concept C. It is easy to see that the
models of (T , C) coincide with the models of (T ,ToAbox(C)) up to the interpre-
tation of constant symbols introduced by the ToAbox mapping. We can therefore
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use this connection and the standard FunDL reasoning techniques [7] to reason
about entailments with respect to (T , C). Note also that the ToAbox mapping
implicitly associates subconcepts in C with constants. This leads to the following
definition.

Definition 6 (Context). Let C ∈ C be a concept description. We use the
notation C[a′ : D] to denote a subconcept D of the concept C where a′ is the
constant symbol assigned to D by ToAbox(a : C). For the top-level concept we
simply use the context [a : C].

Given a constant symbol a and referring expression type Re, the projection func-
tion ToRE is intended to generate a referring expression in L(Re) that identifies
a. (Observe the appeal to an auxiliary recursive function in the definition that
takes a path function Pf as an argument.)

Definition 7 (Projection on Re ). Let K = (T ,ToAbox(C)) be a consistent
knowledge base, Re a referring expression type, and ‘a’ a constant in ToAbox(C).
We define a projection function ToRE(a,Re) to be the result of the following
recursive definition of ToRE(a,Re, id) on the structure of Re:

ToRE(a,A,Pf)=A if K |= a : ∃Pf.A, undefined otherwise
ToRE(a, {?},Pf)= {b} if K |= a : ∃Pf.{b} for some b, undefined otherwise

ToRE(a, ∃Pf′.Re,Pf)=∃Pf′.ToRE(a,Re,Pf.Pf′)
ToRE(a,Re1 � Re2,Pf)=ToRE(a,Re1,Pf) � ToRE(a,Re2,Pf) if both defined
ToRE(a,Re1;Re2,Pf)=ToRE(a,Re1,Pf) if defined,ToRE(a,Re2,Pf) otherwise.

See earlier work [10,11] for more effective ways of computing the second case by
appealing to logical consequence in FunDL knowledge bases. The following is a
consequence of this and our previous definitions.

Lemma 1. For any constant ‘a’, any Re, and any consistent K, ToRE(a,Re) ∈
L(Re) whenever ToRE(a,Re) is defined.

It will also be useful to appeal to a simplification procedure for referring concepts.
The following definition of such a procedure will suffice for illustrative purposes,
and clearly preserves concept equivalence.

Definition 8 (Concept Simplification). We write Simplify(C) to denote an
exhaustive application of the following to referring expression C:

1. If an n-way conjunction contains ∃f.C1 and ∃f.C2, replace both conjuncts by
∃f.C1 � C2.

2. If an n-way conjunction contains duplicate conjuncts, remove one of the con-
juncts. ��

3.1 CBox Admissibility

In this subsection, we show how, given a TBox T , one can statically test for admis-
sibility of any CBox obtained by the normalization rules given in Subsect. 3.2 that
follows. This is achieved by appeal to a sequence of logical consequence problems
for subsumptions expressing functional dependencies with PFDs that are induced
by a given RTA assignment. We begin by defining a normalization of an Re that
preserves L(Re).



376 A. Borgida et al.

Definition 9 (Normalized Types). We write Norm(Re) to refer to an
exhaustive application of the following rewrite rules to Re:

Re � (Re1;Re2) �→ Re � Re1;Re � Re2
(Re1;Re2) � Re �→ Re1 � Re1;Re2 � Re
∃Pf.(Re1;Re2) �→ ∃Pf.Re1;∃Pf.Re2

��

The definition of Norm is an enhanced variant of referring expression type nor-
malization in [2]. The following are consequences: (1) L(Re) = L(Norm(Re)),
and (2) all preference operators (“;”) are at the top level of Norm(Re). We call
the maximal “;”-free parts of Norm(Re) preference-free components.

To statically test for singularity of referring expressions generated by the
ToRE function for a particular referring expression type, we use the following
auxiliary definitions:

Pfs({?})= {id}
Pfs(A)= { }

Pfs(∃Pf′.Re)= {Pf ′.Pf | Pf ∈ Pfs(Re)}
Pfs(Re1 � Re1)=Pfs(Re1) ∪ Pfs(Re2)

Con({?})= �
Con(A)= A

Con(∃Pf ′.Re)= ∃Pf′.Con(Re)
Con(Re1 � Re1)=Con(Re1) � Con(Re2)

These functions extract a set of paths leading to nominals and a FunDL concept
from the preference-free referring expression type. Altogether, we are now able
to formulate the singularity test following the ideas presented in [2], Theorem 20:

Theorem 1. Let T be a TBox and Re a referring expression type. Then all
referring expressions in L(Re) are singular if T |= Con(Re′) � Con(Re′) :
Pfs(Re′) → id for every preference-free component Re′ of Norm(Re).

Our static test of admissibility of any CBox generated by our normalization rules
then follows by applying the above to any Re in the range of a programmer
supplied RTA.

3.2 CBox Normalization Rules

We now have the necessary machinery to present our two rules for normalizing
the CBox of a given knowledge base K = (T , C) and referring expression type
assignment RTA.

Subdocument Extraction. Our first and main rule extracts sub-concepts of a
given CBox concept C ∈ C as additional separate CBox concepts.

Definition 10 (Subdocument Extraction). Let C be a concept in C that
contains a subconcept D (i.e., C[a : D]) that corresponds to a JSON object and
such that (T ,ToAbox(C)) |= A(a) and RTA(A) is defined for a primitive concept
A. We form a new CBox C′ as follows

C′ := C − {C[a : D]} ∪ {C[a : ToRE(a,RTA(A))],ToRE(a,RTA(A)) � D}
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if ToRE(a,RTA(A)) is defined.7 ��

Intuitively, we replace a single monolithic concept C in C in which a subconcept
D was identified as a representation of an A entity by a modified variant of C in
which D has been replaced by its referring expression. In addition we create a
new CBox concept ToRE(a,RTA(A))�D for this recognized entity by extracting
the subdocument D. Adding the concept ToRE(a,RTA(A)) to D is needed since
the referring expression to the document rooted by ‘a’ may not be fully contained
in D, e.g., due to the use of subsumptions relating to inverses in T .

Note that, because of properties of referring expressions (singularity in par-
ticular), we have that the following will hold for any pair of concepts C[a :
ToRE(a,RTA(A))] and [b : ToRE(a,RTA(A)) � D] introduced by subdocument
extraction:

(T ,ToAbox(C′)) |= a = b.

Hence, up to renaming of constants, models will always coincide.
The choice of A above is non-deterministic, but does not affect the soundness

of the extraction. However, this non-determinism can result in equivalent, but
syntactically different referring expressions being used to identify the same sub-
document. Although beyond the scope this paper, earlier work in [3] presents
additional conditions beyond singularity that can be introduced on RTAs to
ensure any choice of A leads to syntactically identical referring expressions.8

Any RTA satisfying these conditions was called identity resolving.

Subdocument Merging. The Subdocument Extraction rule can extract multiple
subdocuments identified by the same (or logically equivalent) referring expres-
sions from the original document. This arrangement allows information about
the same entity to be recorded in several locations in the original document.
Moreover, it allows tree-like documents to naturally represent cyclic, graph-like
data by simply repeating a particular referring expression in a subdocument.

The above observation leads to the second normalization rule that collects
such subdocuments in a single CBox entry: it replaces two CBox referring expres-
sion entries with a single entry when co-reference is implied.

Definition 11 (Equivalent Subdocument Merge). Let [a : C � D] and
[b : C ′ � D′] be two concepts in C such that C and C ′ are referring expressions
and (T ,ToAbox(C)) |= a = b. We replace C with

C′ := C − {[a : C � D], [b : C ′ � D′]} ∪ {[a : C � Simplify(D � D′)]}. ��

The rule does not assume the programmer supplied RTA is identity resolving.
However, it would be sufficient to consider only the CBox entries with identical

7 Otherwise we can report a warning about an A entity that cannot be properly
identified.

8 Essentially, this entails ensuring that preference in RTA(A), for any primitive concept
A, exhaustively accounts for any primitive concept B for which (A�B)I is non-empty
for some interpretation I.
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referring expressions C and C ′ if RTA was identity resolving since in this case
C would be syntactically identical to C ′.

Our main results now follow.

Theorem 2. Let C be a CBox in a consistent knowledge base K = (T , C) and
C′ a CBox obtained by applying the Subdocument Extraction or the Equivalent
Subdocument Merge rules. Then every model of K is also a model of (T , C′) and
vice versa (up to renaming of constant symbols assigned by ToAbox(.)).

It is an easy exercise to match constant symbols in (T ,ToAbox(C)) to those in
(T ,ToAbox(C′)). However, due to equalities stemming from the RET assignment
and thus implied by the knowledge base’s TBox, this mapping can be many-to-
many.

Theorem 3. Let C be an admissible CBox in a consistent knowledge base K =
(T , C) and C′ a CBox obtained by applying the Subdocument Extraction or the
Equivalent Subdocument Merge rules. Then C′ is admissible.

4 Summary Comments

The main contribution of this paper is showing how JSON-like data sources can
be abstracted as concept descriptions in an appropriate DL in a very generic
way. This enables their domain-specific semantics to be naturally captured as
a TBox in the same logic, which then allows one to draw on mature reason-
ing services that have been developed for DLs [1,7]. In addition, our approach
utilizes referring expressions [2] as the means of identifying entities described
in such data sources. This is crucial to the proposal’s ability to detect multiple
subdocuments that provide information about the same entity. Notably, this is
achieved completely automatically as the appropriate equalities will be entailed
by the knowledge base consisting of a domain-specific TBox and the data sources
captured as concepts in a CBox.

Our primary technical contribution is our ability to separate entities into
distinct documents and to consolidate documents that provide information about
the same entity, also by appeal to referring expressions and to entailment in the
underlying DL.

4.1 Related Work

There are many papers that take as input a semi-structured document, in JSON
or XML (sometimes with a schema) plus an ontology in a DL TBox, and create
individual instance descriptions in an ABox; for a survey see [5]. Usually, this is
intended for just adding semantics to the document, but reasoning could be used
to detect inconsistencies, such as a situation where two properties with disjoint
domains apply to the same individual. For example, the use of XPath to navi-
gate XML documents and detect instances of objects belonging to certain OWL
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classes has been presented in [12]. In particular, their approach and implementa-
tion, i.e., their JXML2OWL framework, maps XML documents to existing OWL
ontologies via explicit mapping rules that use XPath. Our approach, in contrast,
uses a generic mapping of JSON to concept descriptions in a DL and then uses
the full power of a DL and reasoning in the DL to capture such mappings and to
achieve a variety of other goals, including detection of entities and entity-based
equality between subdocuments.

The closest to our work is a virtual OBDA architecture, where data is stored
in a JSON MongoDB repository [4]. The architecture extends the basic OBDA
architecture by introducing a relational view (an ABox) over MongoDB with
respect to a set of type constraints. Rewritten queries by the OBDA framework
over the relational view are translated using a fragment of MongoDB aggregate
queries. However, as far as we are aware, the ontology, in particular identification
constraints such as keys and functional dependencies, is not involved in entity
identification issues, nor in separating entities into separate documents.

There is a great deal of work that attempts to synthesize schemata (in various
formalisms) from the semi-structured data [5]. However, these approaches are
orthogonal to the results in our paper.

4.2 Future Work and Extensions

There are many avenues for future research:

1. Additional CBox entries generated by reified roles: in Example 2, we could
also have created additional CBox entries for (reified) phone ownership, e.g.,

HAS-PHONE �
∃ dom.phone−1(PERSON � ∃ fname.{"John"} � ∃ lname.{"Smith"}) �
∃ ran.(PHONE � ∃ dnum{"212 555-1234"}).

This, however, requires generalizing the PFD concept constructor and path
descriptions to allow for a limited use of inverse features.

2. Diagnosis via consistency and pinpointing/data cleaning : inconsistency of the
knowledge base consisting of the domain knowledge T and the CBox ToC(doc)
indicates that either our domain knowledge does not accurately capture the
properties of the documents or that the documents themselves contain erro-
neous data. Also, interactions between a given T and RTA can lead to addi-
tional diagnostic feedback. Axiom pinpointing [9] and data cleaning [6] can
help in these situations.

3. Set-valued properties and referring expressions: another extension relates to
extending the RTAs to allow identification to be based on set-valued proper-
ties/values. Such an extension, however, requires extensions to the equality-
generating constraints in the underlying DL and the ToRE operation.
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Abstract. This paper presents Tyche, a Python library to facilitate
probabilistic reasoning in uncertain worlds through the construction,
querying, and learning of belief models. Tyche uses aleatoric descrip-
tion logic (ADL), which provides computational advantages in its eval-
uation over other description logics. Tyche belief models can be suc-
cinctly created by defining classes of individuals, the probabilistic beliefs
about them (concepts), and the probabilistic relationships between them
(roles). We also introduce a method of observation propagation to facili-
tate learning from complex ADL observations. A demonstration of Tyche
to predict the author of anonymised messages, and to extract author
writing tendencies from anonymised messages, is provided. Tyche has
the potential to assist in the development of expert systems, knowledge
extraction systems, and agents to play games with incomplete and prob-
abilistic information.

Keywords: Probabilistic reasoning · Learning agents · Software
libraries

1 Introduction

Many of the major advances in artificial intelligence in the last decade have
embraced the use of data that does not follow hard rules [2,10,11,15]. Systems
such as deep CNNs for ImageNet classification, AlphaFold, and GPT-3 have
all demonstrated incredible performance over hard rules-based systems for han-
dling data containing a high degree of uncertainty [2,10,11]. However, many of
our existing ontological knowledge base systems are designed only to hold facts
about our world, with no allowance for uncertainty [1,8,13,16]. Tyche aims to
facilitate the creation of knowledge bases with uncertain and probabilistic infor-
mation (i.e., belief models), through a simple Python API. These belief models
can be used to query the probability of truth of logical sentences, and logical
observations can be used to learn the probabilities within belief models. The
name Tyche was chosen for this library in reference to Tyche the goddess of
fortune, from Greek mythology.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Tyche belief models are structured similarly to knowledge graphs. Knowledge
graphs contain many entities, with directed edges between them that represent
relationships. For example, you may have a graph with two nodes representing
the Earth and the sun. The node representing the Earth may have a relationship
to the sun representing that the Earth orbits the sun. The nodes representing the
Earth and the sun may also contain knowledge such as their radius or their mass.
This representation allows knowledge about entities and their relationships to
be flexibly and efficiently represented, and it has been used to create very large
knowledge bases such as Wikidata [16]. However, existing knowledge graphs are
only built to hold factual information [1,8,13,16]. This restricts their use when
information is fundamentally uncertain, such as belief.

Tyche allows the representation of graphs of entities with probabilistic beliefs
about them, and probabilistic relationships between them. This extends the data
that can be represented within knowledge graphs, by allowing the inclusion of
uncertain information. For example, the nodes within a Tyche belief model could
represent people, and we could store whether it is believed that each person is
friendly, and who we believe their best friend is. However, this information may
change each time we interact with each person. Tyche makes use of probability
to account for this uncertainty by treating the probabilities of our beliefs about
individuals as dice rolls, where the probability represents the chance that a belief
will hold each time it is observed. For example, we may believe that 75% of the
time that we talk to someone, they will be friendly. This sampling interpretation
of probability is unique to aleatoric description logic [7], which forms the basis for
the logic that is provided by Tyche. Conversely, other probabilistic logics use prob-
ability to represent a degree of belief about the truth of facts [4,5], the state of the
world [12], or, in the case of fuzzy logics, the degree of inclusion to a set [3]. The
independence of observations in aleatoric description logic leads to a simple recur-
sive interpretation of its semantics, which also gives Tyche computational advan-
tages over other probabilistic logic languages that use logical solvers [4,7,12].

Logical sentences are integral to the querying and updating of Tyche belief
models. Aleatoric description logic, which Tyche’s logical sentences are based
upon, can be used to represent many common constructs of description logics,
such as conjunctions (∧), disjunctions (∨), complement (¬), the universal quan-
tifier (∀), and the existential quantifier (∃). Logical sentences created using these
constructs can be used to query probabilities from belief models, or as observa-
tions to be used to update belief models. Unlike other probabilistic logics, the
logical sentences used to learn a Tyche belief model are not stored in the belief
model. Instead, the probabilities within the belief model are updated as obser-
vations are made. Other probabilistic logics represent knowledge bases as sets of
logical sentences, into which new observations may be added [4,12].

Logical sentences are evaluated in Tyche using belief models to provide the
probabilistic beliefs about individuals (termed concepts), and the probabilistic
relationships between individuals (termed roles). Tyche belief models are cre-
ated through the definition and instantiation of Python classes. The classes of
individuals define the concepts and roles that are available for a type of indi-
vidual, and their value may be provided by the fields or methods of the class.
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For example, the probabilistic beliefs about an individual may be dynamically
calculated from their non-probabilistic properties using other tools such as con-
tinuous probability distributions, expert rules, or neural networks. This grants
a large degree of flexibility when defining belief models using Tyche. This was a
key goal in Tyche’s implementation, to facilitate interoperability between Tyche
and other systems. The goals of flexibility and interoperability when developing
Tyche also guided the choice to implement Tyche in Python, due to its vast
ecosystem of available tools for scientific computing [14].

This paper will introduce the use of Tyche to construct belief models, to
query them using aleatoric description logic, and to update them based upon
observations. An example use of Tyche for knowledge extraction will also be
shown, where Tyche is demonstrated as an effective tool to accurately determine
the author of anonymised messages.

2 Quantification of Belief: Concepts and Roles

Tyche supports reasoning about belief about both the properties of individuals
(termed concepts), and the relationships between individuals (termed roles). The
value of concepts are provided as floating-point probability values in the range
[0, 1]. The value of roles are provided as probability distributions of potentially
related individuals. Tyche currently provides both a mutually exclusive probabil-
ity distribution for roles, and an independent probability distribution. Mutually
exclusive roles only allow a single individual to be related at a time (although,
a null-individual may be added to represent “no relation”). Independent roles
consider the relation of each individual independently, such that any subset of
the potentially related individuals may be related at a time.

Examples of a mutually exclusive role and an independent role are shown
in Fig. 1. These roles could be used to represent marriage (where only a single
spouse is legally allowed at a time), and friendship (where multiple friends are
allowed at a time).

Alice

Bob

Jeff

null

50%

35%

15%

(a) Mutually Exclusive Role.

Alice

Bob Jeff

80% 65%

(b) Independent Role.

Fig. 1. Example roles relating Alice to Bob and/or Jeff.
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3 Constructing Belief Models

Tyche supports the creation of belief models as ontological knowledge bases of
individuals, the probabilistic beliefs about them (i.e., concepts), and the proba-
bilistic relationships between them (i.e., roles). Python classes may be defined to
represent the types of individuals in a belief model, by subclassing Individual.
The class’ fields and methods may then be type-annotated or decorated, respec-
tively, to register them as providing the value of concepts or roles. This allows
individuals to be flexibly defined with support for polymorphism of the indi-
vidual classes. This aims to allow Tyche to be used as a part of other class
hierarchies (e.g., database model objects). The code used to define an example
individual, Person, is shown in Fig. 2.

3.1 Registering Fields as Concepts or Roles

The fields of an Individual subclass can be marked as providing the value of
a concept or role by type-annotating them with the TycheConceptField type,
or the TycheRoleField type, respectively. This will inform Tyche to access the
value of these fields to use as the value for the concepts and roles in your logical
queries. The names of the fields will be used as the symbols for the concepts
and roles within your queries. The positive field and the conversed_with field
in Fig. 2 are registered as a concept and role, respectively, using this method.
These fields could be used to represent whether the person is positive in their
messages, and who they are likely to have last sent a message to.

3.2 Registering Methods as Concepts or Roles

The methods of an Individual subclass can be marked as providing the value
of a concept or role by decorating them with the @concept() decorator, or the

class Person(Individual):

positive: TycheConceptField

conversed_with: TycheRoleField

def __init__(self, positive: float, height_cm: NormalDist):

super().__init__()

self.positive = positive

self.conversed_with = ExclusiveRoleDist()

self.height_cm = height_cm

@concept(symbol='tall')

def is_tall(self):

return self.height_cm > 180

Fig. 2. Example definition of a type of individual called Person, with a concept “pos-
itive” and a role “conversed with” defined by fields, and a role “tall” provided by a
method.
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@role() decorator, respectively. The decorated methods will not be provided
with any arguments, and should return the value of the concept or role. The
name of the method will be used as the symbol of the concepts and roles by
default, although a symbol can also be explicitly provided to the decorators
through their symbol parameter. The is_tall method in Fig. 2 is registered as
the concept “tall” using this method.

4 Logical Queries and Observations

Logical queries and observations can be used to interact with a Tyche belief
model, to query or update its probabilities. Logical queries and observations are
created by constructing logical sentence trees within Tyche. Each element within
a logical sentence is represented as a node in the tree, with the node’s constituent
subsentences represented as child nodes. The tree structure of an example logical
sentence, [ρ]((α?β : ⊥)|�), is shown in Fig. 3. This example sentence represents
the expectation that an individual selected from role ρ will have true values
sampled for the concepts α and β.

Expectation
[ρ]((α ? β : ⊥)|�)

Role
ρ

Conditional
α ? β : ⊥

Concept
α

Concept
β

Constant
⊥

Constant
�

Fig. 3. Tree representation of an example logical sentence. The node class names are
shown in bold, and below them are the aleatoric description logic sentences represented
by the nodes.

Tyche provides several logical constructs for use in the creation of logical
sentence trees, with each represented by their own node class in the language
module of Tyche. The available node types, their descriptions, and their aleatoric
description logic representations are listed in Table 1. The nodes in a logical
sentence tree can be created by first instantiating the node classes needed to
represent the leaf nodes of the tree, and then using them as arguments to con-
struct their parent nodes. Tyche also provides shortcut operators for creating
conditionals that represent conjunctions (&), disjunctions (|), and complement
(~). For example, the logical sentence from Fig. 3 can be created using the code
Expectation("rho", Concept("alpha") & Concept("beta")).
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Table 1. Descriptions of the node types provided by Tyche, along with their aleatoric
description logic (ADL) representation.

Node class Description ADL

Concept A sampling of the value of a concept from a belief model Named variables

Role A sampling of the value of a role from a belief model Named variables

Constant Fixed probabilities such as always (100%), or never (0%)
� (always),
⊥ (never)

Conditional A ternary operator that evaluates to β if α is true, or
else evaluates to γ. These operators can be used to
construct several common logical operators such as
AND, OR, or NOT

(α ? β : γ)

Expectation A marginalisation operator that evaluates to the chance
that α is true, given that an individual in the role ρ was
sampled for which β was true. This ignores the
null-individual, and is vacuously true if the role contains
no individuals for which β could be true

[ρ](α|β)

Exists An operator that evaluates to the chance that a role has
a related individual (i.e., a relation that is not the
null-individual)

N/A

5 Aleatoric Description Logic

Logical sentences within Tyche have been built following the work of aleatoric
description logic [7]. Aleatoric description logic (ADL) provides a generalisation
of standard description logics to extend true/false information to the closed
interval [0, 1], with the extended values representing probabilities of truth [7].
The base syntax of ADL consists of the constant always (�), the constant never
(⊥), atomic concepts (named variables), the ternary operator ((α ? β : γ)), and
the marginalisation operator ([ρ](α|β)). The function of these syntax elements
of ADL are described in Table 1. These base syntax elements provide a versatile
basis to construct common syntactical elements from other description logics, as
shown in Table 2.

Table 2. List of common abbreviations used in description logics, and their equivalent
aleatoric description logic (ADL) sentences [7].

Name Abbreviation Equivalent ADL

Conjunction α ∧ β (α ? β : ⊥)

Disjunction α ∨ β (α ? � : β)

Complement ¬α (α ? ⊥ : �)

Implication α ⇒ β (α ? β : �)

Expectation Eρα [ρ] (α |�)

Existential ∃ρ.α ¬[ρ] (⊥|α)
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An important feature of ADL is that each occurrence of a concept or role
within an aleatoric description logic sentence is treated as an independent
sampling of the value of that concept or role [7]. The probabilities of concepts
and roles do not represent the chance that their underlying value is true, but
instead the chance that they will be true when sampled. For example, if the prob-
ability of α is not 0 or 100%, then the probability of (¬α) ∧ α is not 0%. This
allows the probability of truth of ADL sentences to be evaluated recursively,
without a complicated solver. This is an important feature of ADL, as it facili-
tates its efficiency, and allows Tyche to model problems that contain sampling
more effectively than other probabilistic logics.

6 Evaluation of Logical Queries

The probability of truth of logical queries may be evaluated about an individual
in a belief model. The result represents the chance that the sentence will be true
when sampled about that individual. For example, you may evaluate the prob-
ability that Bob ran into a friend that was happy and relaxed by evaluating the
query [ρ]((α?β : ⊥)|�). The logical sentence tree of this observation was shown
in Fig. 3. To evaluate this query for Bob, you would pass the logical sentence
tree representing this query to the eval method of the object representing Bob
(e.g., bob.eval(sentence)). Tyche will then retrieve the values of ρ, α and β
from the belief model, and use them to calculate the probability of Bob running
into a friend that is happy and relaxed.

This process of value retrieval and calculation is performed in a single recur-
sive pass through the logical sentence tree. The probability of the root node in
the logical sentence tree will be calculated by first evaluating the probability of
its child nodes. The child nodes will then recursively evaluate their child nodes,
and use the results to calculate their own probability. This process allows the
efficient recursive calculation of the probability of truth of logical sentences in a
single pass of the tree. This is possible due to the sampling nature of aleatoric
description logic, as each appearance of a concept or role represents an indepen-
dent sampling of them [7]. The evaluation procedures for each logical construct
provided by Tyche follow the semantics of Modal Aleatoric Calculus [6].

7 Learning Through Observation

Tyche provides mechanisms to learn the value of concepts and roles from logical
observations that include them. The observations take the form of logical sen-
tences, and can be supplied to individuals using their observe method. Tyche
will use Bayes’ rule to determine how each term in the observation has influenced
the truth of the entire sentence. The values of the concepts and roles used within
the sentence may then be learnt using one of the learning strategies supplied by
Tyche. These learning strategies must be provided through a method decorator.
The code used to define an example individual named Student with learning
registered for its “good grades” concept is shown in Fig. 4.
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class Student(Person):

def __init__(self, good_grades: float):

super().__init__(0.33, NormalDist(175, 6.5))

self._good_grades = good_grades

@concept()

def good_grades(self):

return self._good_grades

@good_grades.learning_func(DirectConceptLearningStrategy())

def set_good_grades(self, good_grades: float):

self._good_grades = good_grades

Fig. 4. A type of individual called Student with a concept “good grades” that is learnt
using a direct learning strategy. Student also inherits the concepts and roles of Person
from Fig. 2.

7.1 Calculation of the Influence of Terms in Observations

The influence of each term in logical observations is calculated recursively,
through the propagation of two parameters: likelihood and learning rate. The
likelihood parameter represents the chance that the current term in the obser-
vation is true, and the learning rate quantifies the percentage impact of the
current term on the truth of the entire sentence. These two parameters allow
the influence of each term in an observation to be calculated through a simple
algorithm that recurses through the observation’s logical sentence tree. This is
important, as it means that learning strategies only need to deal with simple
observations that are directly related to the concept or role being learnt (e.g.,
is sunny, or [friend](is tired|�)). The learning strategies do not need to deal
with the interactions between terms in complex observations.

Calculation of the Likelihood Parameter. The likelihood that each term
in an observation is true (t) can be calculated using a method built upon the
application of Bayes’ rule. We apply Bayes’ rule to the event that either the
parent node of the term was true (p) with chance αparent, or else the parent
node was false (¬p) [9]. The term’s likelihood, αterm, can then be calculated as
in Eq. 1. The likelihood parameter, α, is given a value of 1 for the root node of
the observation.

αterm = αparent · P (t | p) + (1 − αparent) · P (t | ¬p) (1)

= αparent · P (p | t) · P (t)
P (p)

+ (1 − αparent) · P (¬p | t) · P (t)
P (¬p)

(2)

The value of P (t) and P (p) may be calculated directly from the current
belief model. The value of P (p|t) may be calculated by replacing the term in the
observation with � (i.e., a constant 100%), and evaluating the resulting sentence
in the current belief model.
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Calculation of the Learning Rate Parameter. The learning rate of each
node in an observation tree can be calculated using the learning rate of its parent,
and the difference in truth of its parent if the term were true (P (p|t)), and if it
were false (P (p|¬t)). The learning rate parameter, r, is given a value of 1 for the
root node of the observation. The learning rate, rterm, of each child node may
then be calculated following Eq. 3.

rterm = rparent · abs(P (p|t) − P (p|¬t)) (3)

This calculates the influence that the term had on the truth of its parent,
and multiplies that by the parent’s influence, to determine the influence of the
term on the original observation. However, when an expectation over a mutually
exclusive role is reached, then we no longer perform this calculation. Instead,
the chance that each individual within the role was selected is used to moderate
the learning rate that is propagated to each individual within the role. For an
expectation [ρ](a|b), the chance that each individual, x, was selected within the
role, ρ, is given by Eq. 4.

P (x selected from ρ for obs) =

P (x selected from ρ) · Px(b) · (α · Px(a) + (1 − α) · (1 − Px(a)))
∑

y∈ρ P (y selected from ρ) · Py(b) · (α · Py(a) + (1 − α) · (1 − Py(a)))
(4)

This chance can then be used as a multiplier with the learning rate of the
expectation node, r, to calculate the learning rate to propagate to each related
individual.

7.2 Learning Strategies

Learning strategies update the value of concepts and roles based upon observa-
tions of their use. They do not receive the entire observation, but instead only
receive the sub-sentence of the observation that is relevant to them, along with
the influence parameters of that sub-sentence. Each inclusion of a Concept node
in an observation will be passed to the concept’s learning strategy, if one is reg-
istered. Similarly, each inclusion of an Expectation node will be passed to its
role’s learning strategy, if one is registered. The learning strategies may then use
the provided sub-sentence and the propagated influence parameters to update
the belief model. This structure provides a simple method for writing learning
strategies that do not need to consider the structure of the observation.

Tyche currently provides two learning strategies for concepts, and
two learning strategies for roles. The Bayes’ rule learning strategy (class
BayesRuleLearningStrategy) updates the distribution of roles by updat-
ing the probability of each individual in a role to the conditional prob-
ability of selecting that individual, given the observation. The direct con-
cept learning strategy (class DirectConceptLearningStrategy) updates the
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values of concepts to the weighted sum of the current value of the con-
cept and the likelihood parameter, weighted by the learning rate. The statis-
tical learning strategies (classes StatisticalConceptLearningStrategy and
StatisticalRoleLearningStrategy) maintain a running mean of the concept
likelihoods or role distribution weights, which is used as the new value of the
concepts or roles.

8 Demonstration: Anonymised Messages

A simple demonstration of Tyche was developed to demonstrate its prediction
and learning capabilities for handling anonymised messages where the recipient
of each message is known, but the author of the messages is unknown. Tyche
may be used to accurately predict the author of these anonymised messages
based upon the writing style of the messages. The writing style of messages is
represented using three properties: uses emoji (E), capitalises first word (C) and
is positive (P ). The tendencies for each author to make these stylistic choices
are stored as the probability values of each author’s concepts in the belief model.
Additionally, mutually exclusive roles between the authors are used to represent
the chance of each author receiving messages from each other author.

In the evaluation of Tyche’s performance for inference, the writing tendencies
of each author are considered to be known. However, when the writing tendencies
of authors are unknown, Tyche may also be used to learn the author’s writing
tendencies, without knowing the messages that each author sent. Additionally,
Tyche’s learning may also be used to learn the probability distribution for who
each author is most likely to have received messages from. The only information
that Tyche is provided for this learning is the properties of each message, and the
assumption that each individual would not receive messages from themselves.

An implementation of this example was also written using ProbLog, to com-
pare it to Tyche. ProbLog is an established tool for probabilistic logic reasoning
[4], and as such it is a likely choice for an alternative library to solve this exam-
ple. However, ProbLog is not built based upon a sampling logic, as Tyche is.
Therefore, as will be shown, it takes much longer to run these examples with
ProbLog, and ProbLog’s lfi learning is not able to learn the belief model from
observations.

8.1 Ground-Truth Belief Model

The anonymous messages belief model is created with three authors: Bob, Alice
and Jeff. Each author has their own writing tendencies for whether they will
use emoji (E), capitalise the first word (C), or be positive (P ). The authors
also each have their own probabilities for receiving messages from each other
author. The values of these writing tendencies and relationships are shown in
Fig. 5a. These values are used for the inference and learning demonstrations to
randomly sample messages received by each author. An unbiased belief model
is also presented in Fig. 5b, which is used as a baseline model with limited prior
knowledge for use in learning.
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(a) Ground-Truth Belief Model
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E : 0.50
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Alice
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P : 0.50

Jeff
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(b) Unbiased Belief Model

Fig. 5. The ground-truth belief model of the anonymous messages example (a), and
the unbiased belief model used as a starting point for learning (b).

8.2 Predicting the Author of Sets of Messages

The author of sets of messages is predicted using Tyche by evaluating the chance
that each author wrote the messages, based upon the ground-truth belief model.
A logical sentence is created that represents the properties of the received mes-
sages (e.g., ¬uses emoji ∧ ¬capitalises first word ∧ is positive). The chance
that each possible author wrote this set of messages is then evaluated using
the ground-truth belief model, and multiplied by the chance that the recipient
received a message from each of the possible authors. The author with the high-
est chance of having written and sent the set of messages is then selected as the
predicted author. To evaluate Tyche’s performance on this task, we used the
ground-truth belief model to sample 10,000 random sets of messages received
by each author, with varying numbers of messages per set from 1 to 10. The
accuracy of Tyche at predicting the author of these random sets of messages is
recorded in Table 3, and shown in Fig. 6.

Table 3. Author prediction accuracy (%) for each individual in the anonymous mes-
sages example, with varying number of messages.

Number of messages

1 2 3 4 5 6 7 8 9 10

Bob 74.8 81.9 85.2 89.2 91.1 92.5 94.5 95.4 96.3 97.1

Alice 76.9 84.5 88.2 91.0 92.8 94.2 95.3 96.6 97.6 98.0

Jeff 90.4 95.5 98.0 99.0 99.5 99.8 99.9 100.0 100.0 100.0
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Fig. 6. The accuracy of author estimation as the number of messages in each set of
messages is increased, for the three individuals in the anonymous messages example.

These results demonstrate that Tyche can achieve accurate results for author
inference. However, the accuracy of the author prediction is not equivalent for
all authors. The author prediction for messages received by Jeff is much more
accurate than the author prediction for messages received by Alice or Bob. This
is due to the fact the writing tendencies of Jeff are similar to Bob and Alice,
while the writing tendencies of Alice and Bob are quite dissimilar. Therefore, it
is easier to distinguish messages written by Bob and Alice, than to distinguish
messages written by Jeff and each other author.

The alternative implementation of this example that uses ProbLog also
achieved identical results. This is as expected, as both Tyche and ProbLog cal-
culate the probability of a conjunction over a set of independent variables in
the same way. However, the Tyche implementation was much faster than the
ProbLog implementation. Author inference using Tyche had a mean duration
of 0.5 milliseconds per prediction, whereas inference using ProbLog had a mean
duration of 94.5 milliseconds (189x slower).

8.3 Learning the Writing Tendencies of Authors

The ground-truth belief model, shown in Fig. 5a, can be learnt using Tyche
based upon observations of messages received by each author in the belief model.
The belief model that is being learnt is initialised as the unbiased belief model
shown in Fig. 5b. The observations are generated from the ground-truth belief
model by first randomly sampling the author that received the set of messages,
then sampling who sent them the set of messages, and finally sampling the
properties of the messages that they sent. These observations are then passed
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to the observe method of the author that received the messages. An example
observation for a set of two messages received by an author is shown in Eq. 5.

[received message]((¬E ∧ ¬C ∧ P ) ∧ (¬E ∧ ¬C ∧ ¬P )) (5)

To demonstrate the learning of belief models in Tyche, 10 trials were per-
formed, with 5000 total observations per trial, and 2 to 4 messages per obser-
vation. At the beginning of each trial, the belief model is reset to the unbiased
belief model. The statistical concept learning strategy was used to learn the
writing tendencies for each author, with hyper-parameters decay rate = 0.95
and decay rate for decay rate = 0.95. The statistical role learning strategy
was used to learn the probability distribution of who each author was more
likely to receive messages from, with hyper-parameters decay rate = 0.85 and
decay rate for decay rate = 0.9995. The ProbLog implementation of this exam-
ple was created through the construction of one large ProbLog program with
each observation added as a variable. Each of the observation variables were
then passed as evidence to the lfi learning routine. The mean values from the
belief models learnt in each trial using the Tyche and ProbLog implementations
are shown in Fig. 7. The values are coloured in green if they fall within 0.015
(1.5%) of their true value, amber if they fall within 0.05 (5%) of their true value,
and red otherwise.

Bob
E : 0.88
C : 0.41
P : 0.15

Alice
E : 0.10
C : 0.80
P : 0.41

Jeff
E : 0.51
C : 0.49
P : 0.50

0.31

0.37

0.73

0.69

0.27

0.63

(a) Belief model learnt using Tyche

Bob
E : 0.68
C : 0.46
P : 0.31

Alice
E : 0.16
C : 0.76
P : 0.41

Jeff
E : 0.49
C : 0.51
P : 0.49

0.29

0.15

0.32

0.71

0.68

0.85

(b) Belief model learnt using ProbLog

Fig. 7. The belief models learnt from observations of received messages using the Tyche
implementation (a), and the ProbLog implementation (b). (Color figure online)

The belief model learnt using Tyche in Fig. 7a is similar to the expected prob-
abilities from the ground-truth model. This demonstrates that the learning capa-
bilities of Tyche are able to accurately estimate the ground-truth belief model
from observations. Conversely, the belief model learnt using ProbLog contained
very close values for Jeff, but had large errors for Bob and Alice. This demon-
strates that the ProbLog lfi learning was not able to accurately estimate the
ground-truth belief model in this case. However, when the learning of the roles
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between Bob, Alice and Jeff is removed (results not included here), the ProbLog
implementation produced accurate results. This suggests that the inclusion of
relationships breaks the ProbLog lfi learning.

The results in Fig. 7 represent the mean of all 10 trial results, and therefore
may be more accurate than the trial results themselves. However, the standard
deviations of the values in the belief model learnt using Tyche had a mean of
only 0.015 for the concepts, and 0.057 for the roles. This suggests that all trials
of learning using the Tyche implementation achieved similar results. Addition-
ally, each trial of learning using the Tyche implementation took an average of
only 9.35 s to complete. Conversely, each trial of learning using the ProbLog
implementation took an average of 1770 s, or half an hour (189x slower).

This result demonstrates Tyche’s ability to efficiently learn from indirect
observations about the world. We hope that Tyche may be used in similar ways to
assist in the learning of unclear probabilistic properties within complex datasets.

9 Related Work

The graph representation of knowledge used in Tyche is similar to representa-
tions that can be created using the tool Protégé [13]. Protégé is a proprietary
tool that supports the creation of ontologies, and the acquisition of data to build
knowledge bases using them [13]. However, protégé only supports the inclusion
of facts. It does not support any representations of chance. As such, it is not
applicable to the problems where Tyche is intended to be used.

Tyche is tangentially related to work on other probabilistic logics such as
ProbLog, Blog, and the use of fuzzy sets [4,12]. ProbLog extends the Prolog
programming language with the ability to specify the probability that each
independent logical clause holds in a randomly sampled program [4]. ProbLog’s
assumption of the independence of the probability of clauses resembles Tyche’s
assumption of the independence of the probabilities of concepts. However, the
terms within clauses in ProbLog are not considered independent, whereas the
terms in Tyche’s logical sentences are considered independent. This leads to
significant differences in the semantics of ProbLog and Tyche. ProbLog uses a
solver to determine the probability that a query holds in a randomly sampled
program, whereas Tyche recursively evaluates the probability of truth of a query,
as if its terms were randomly sampled.

Blog provides a formal language to specify probability models, in a similar
way to ProbLog [4,12]. However, under Blog, these probability models support
worlds with unknown and unbounded numbers of objects, and identity uncer-
tainty. This is a significant distinguishing factor from Tyche, which requires that
all the individuals in the belief model, their concepts, and their roles, are defined.
Additionally, Blog also requires the use of logical solvers to query its probability
models, and does not consider terms in its sentences to be independent.

Fuzzy logic is used to represent degrees of truth, rather than a probability
of truth as in Tyche [3]. For example, we do not usually consider objects as
exclusively either “warm” or not. Instead, an object might be “slightly warm”,



Tyche: A Library for Probabilistic Reasoning and Belief Modelling in Python 395

“moderately warm”, or “very warm”. Fuzzy logic provides a mechanism to rep-
resent this, by representing knowledge as degrees of inclusion into a set. There-
fore, fuzzy logic serves a different purpose to Tyche. However, despite this, both
Tyche’s logic and fuzzy logic share similar functionality in their use of t-norms
[3]. T-norms represent the belief that applying an uncertain hypothesis twice will
lead to a different uncertainty than applying it only once. The t-norm operator
of fuzzy logic shares a lot of functional similarities with Tyche’s operators, which
provides evidence for the usefulness of repeated tests of a variable potentially
yielding different results [3,7].

10 Conclusion

This paper has introduced Tyche, an open-source Python library to support the
creation of belief models, and to facilitate the use of aleatoric description logic to
reason about them. We introduced Tyche’s API to succinctly construct ontolog-
ical knowledge bases of individuals, the probabilistic beliefs about them, and the
probabilistic relationships between them (termed belief models). The creation of
logical sentences, and their use to query belief models, was discussed. We also
introduced Tyche’s novel observation propagation system to learn the probabil-
ities within belief models based upon logical observations. Tyche’s application
for knowledge extraction was demonstrated through its use to predict the author
of anonymised messages, and through its use to learn the writing tendencies of
authors, and the probability distribution of who the authors receive messages
from, without knowledge of who wrote any messages.

The source code of Tyche is available at https://github.com/TycheLibrary/
Tyche.
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Abstract. Belief revision operators are used to model the way that an agent’s
beliefs change when they acquire new information. However, if the new informa-
tion comes from another agent, then we also need to be concerned with the notion
of honesty. In this paper, we present a model in which agents have a memory of all
reports they have received, as well as the set of agents that are assumed to be hon-
est. We propose that all reports from dishonest agents should be ignored, while
inconsistencies between reports from honest agents should be resolved through
iterated revision. We demonstrate how an agent can learn about the honesty of
others through direct observations, and we show how this affects the complete
trajectory of beliefs. Finally, we consider the case where an agent only has partial
information about the honesty of others. We demonstrate that the set of possible
belief trajectories is constrained by a tree of possible revisions, which allows us to
briefly explore properties that are invariant with respect to the honesty of others.

1 Introduction

Belief revision is the process of incorporating new information into a pre-existing belief
state. The most influential theories of belief revision are focused on notions of minimal
change, where the emphasis is on ensuring that the agent in question believes new
information that is provided while abandoning as little as possible of their initial beliefs.
Of course, in practice, new information often comes as a report from another agent. In
this kind of situation, we can not simply take the accuracy of the new information as a
given; we need to consider the notion of trust.

In the literature, there has been work on the notion of knowledge-based trust in a
modal logical setting [7,10], and also in the context of belief revision [3]. This kind
of work focuses on the perceived expertise of the reporting agent, so new information
is only believed when the source of the information is understood to be an authority
over the relevant domain. In this paper, we are not concerned with expertise, we are
concerned with trust related to honesty. Hence, we would like to address belief revision
in a manner that takes into account the fact that the reporting agent may be deceitful.

Our goal is to present a flexible framework that allows agents to perform a kind of
conditional reasoning that allows all reports to be incorporated, but also allows reports
to be abandoned at any point if the reporting agent turns out to be deceitful.

1.1 Motivating Example

Alice is receiving information about the weather from two sources: Bob and Trent. We
assume that these reports are coming through a messaging system, so Alice is not in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 397–410, 2022.
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same room as the reporting agents. Initially, Alice does not have any beliefs about the
weather. Suppose that she receives the following messages:

1. It is rainy. (from Trent)
2. Bob is at my house. (from Trent)
3. It is sunny. (from Bob)
4. I am at the beach. (from Bob)

It seems like someone is not telling the truth. All of the statements being reported could
be easily verified by Bob and Trent; the most likely explanation for the inconsistency is
therefore a non-truthful report.

The question is: what should Alice believe? If Alice simply performs ordinary belief
revision, then she will reason as follows. As the statements are received, Alice will
initially believe (1) and (2). When (3) and (4) are received, she will need to revise her
beliefs again; this will mean that Alice no longer believes it is rainy or that Bob is at
Trent’s house.

But then suppose that Alice somehow learns that Bob is not honest. This could
happen through some special information channel that is not included in this model. Or
it could happen because Alice looks out the window and sees it is raining with her own
eyes. When Alice discovers that Bob is dishonest, then everything Bob has said will
be viewed with some caution. The most drastic solution is to reject everything that Bob
says. But it is not sufficient to only apply this caution to future statements; it should also
be applied retroactively. This means that Trent’s earlier reports need to be reinstated as
well, since they were only lost due to dishonest claims. In this paper, we propose a
formal approach that allows this kind of reasoning to take place by keeping track of
perceived honesty applied to all past reports.

2 Preliminaries

We are interested in formalizing our model in the context of propositional belief revi-
sion. As such, we assume a finite propositional vocabularly F, and we define sentences
overF using the usual propositional connectives¬,∧,∨. A state is a propositional inter-
pretation of F. A state gives a complete description of the world, by specifying exactly
which atomic formulas are true or false. A belief state is a set of states; intuitively, it is
the set of states that an agent considers to be possible. A belief set is a logically closed
set of formulas. Since we have assumed a finite vocabulary, every consistent belief set
defines a unique belief state.

The most influential approach to belief revision is the so-called AGM approach [1].
In this setting, the beliefs of an agent are represented as a deductively closed set of
propositional formulas. A belief revision operator ∗ takes an initial belief set K and a
formula for revision φ, and it returns a new belief set K ∗ φ. Informally, the new belief
set incorporates φ while giving up as little as possible from the initial belief state. In the
AGM model, the revision operator is constrained by a set of rationality postulates. It is
well known that every revision operator that satisfies these postulates can be defined in
terms of a minimization operation over a plausibility ranking on possible states of the
world [6].
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It is well known that AGM revision suffers from a major flaw, in that it is not able
to capture with iterated revision. The problem is that AGM requires an ordering on
possible states, but the belief set returned after a single revision does not include such
an ordering. If we are interested in iterated belief revision, then the dominant approach
has been the DP approach due to Darwiche and Pearl [4]. We introduce the basics of
DP revision presently.

In the DP approach, the beliefs of an agent are given by an epistemic state E. An
epistemic state is intended to capture two things. First of all, with each epistemic state
E, there is an associated belief set Bel(E). An epistemic state also defines a total pre-
order �E over states, with the property that Bel(E) is the set of formulas that are
true in the minimal elements of �E. We remark that an epistemic state is not defined to
simply be an ordering over states, but each epistemic state does specify an ordering. The
interested reader can see [8] for a discussion of categorical representations of epistemic
states.

An interacted revision operator is applied to epistemic states. SoE∗φ returns a new
epistemic state E′. An iterated revision operator is a DP operator if it satisfies the DP
postulates. This is a set of postulates that gives required properties on both the belief set
Bel(E′) and the associated ordering following revision. For an interesting discussion
of the postulates as well as some important DP operators, we refer the reader to [2].

3 Reports and Belief Change

3.1 Epistemic Histories

As noted in the previous section, we assume an finite propositional vocabulary F. We
also assume a finite set of agentsA. We useE to range over epistemic states overF. So,
an epistemic state E has an associated belief state Bel(E) and an associated total pre-
order on states �E. We assume a fixed underlying DP revision operator ∗ on epistemic
states.

We are interested in a situation where each A ∈ A can provide a formula φ as new
information. In this case, we do not necessarily want to simply revise by φ, as it might
be the case that A is dishonest. In order to address this problem, we define the following
notion of a report.

Definition 1. A report is a pair (φ,A) where φ is a propositional formula over F and
A ∈ A. A report history R is a finite sequence of reports.

Hence, a report history captures all of the information that has been reported in sequence
from a set of agents. Our goal is ultimately to give a precise meaning to the belief change
that occurs following a sequence of reports: (φ1, A1), . . . , (φn, An).

We also introduce the notion of an honesty assignment over a set of agents.

Definition 2. An honesty assignment is a set α ⊆ A.

Informally, an honesty assignment represents the set of agents that are presumed to be
honest. In other words, these are agents that only provide reports that they believe to be
accurate. If an agent is not honest, then they may intentionally provide false reports. As
such, reports should only be incorporated when they come from honest agents.



400 A. Hunter

We extend the notion of an epistemic state to specifically include information about
the history of past reports and observations.

Definition 3. An epistemic history is a triple 〈E, R, α〉 where E is an epistemic state,
R is a report history, and α is an honesty assignment.

An epistemic history represents the initial belief stateE of some agent, along with all of
the information that has been reported to them by other agents. We would like to define
the belief state associated with an epistemic history, as we do for epistemic states.

We adopt the following natural shorthand notation for iterated revision by a
sequence of formulas φ = φ1, . . . , φn:

E ∗ φ := E ∗ φ1 ∗ · · · ∗ φn.

The following definition introduces the notion of restriction to a set of honest agents.

Definition 4. Let R = (φ1, A1), . . . , (φn, An) be a report history and let α be an
honesty assignment. We define the restriction R � α to be the subsequence of R where
(φi, Ai) is in the subsequence if and only if Ai ∈ α.

For example, if R = (φ1, A1), (φ2, A2), (φ3, A3) and α = {A1, A3}, then

R � α = (φ1, A1), (φ3, A3).

We would now like to extend Bel to epistemic histories. In other words, we would like
to associate a belief set with each epistemic history. The follow definition specifies how
this is done, and also specifies how we associate a corresponding ordering on states
with an epistemic history.

Definition 5. Let 〈E, R, α〉 be an epistemic history. Then:

Bel(〈E, R, α〉) = Bel(E ∗ (R � α))
�〈E,R,α〉 = �E∗(R�α) .

Hence, Bel(〈E, R, α〉) represents the belief state that an agent should have if they
receive the report sequence R, when α represents the set of honest agents. Similarly,
�〈E,R,α〉 is the total pre-order over states they should have in the same situation. Note

that, if α = A, then the following equalities hold for all E and all R:

Bel(〈E, R, α〉) = Bel(E ∗ R)
�〈E,R,α〉 = �E∗R .

This is not surprising; if we know that all agents are honest, the belief change that
occurs following a sequence of reports can be obtained by just performing normal revi-
sion.
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3.2 Belief Change Due to Reports

In this section, we define some operators on epistemic histories. First, we introduce two
simple operators to change the honesty assignment.

Definition 6. For any epistemic history 〈E, R, α〉 and any β ⊆ A, define:

〈E, R, α〉 + β = 〈E, R, α ∪ β〉
〈E, R, α〉 − β = 〈E, R, α − β〉.

Informally, the+ operator is the change that occurs when an agent learns that the agents
in β are all honest; similarly, the − operator is the change that occurs when an agent
learns that the agents in β are dishonest.

We are now in a position to define ‘revision’ operators for reports. In the following
definition, we use · as a concatenation operator on report histories; so R · r is just the
report history obtained by adding r to the end of R.

Definition 7. Let 〈E, R, α〉 be an epistemic history, let φ be a formula, and let A ∈ A.
Then:

〈E, R, α〉 ∗A φ = 〈E, R · (φ,A), α〉.
The ∗A operator captures what happens when agent A reports the information φ;
namely, the report history is extended.

We use the symbol ∗ for this operation because it actually represents the natural
extension of revision, when we look at the associated belief states. This claim is cap-
tured in the following proposition.

Proposition 1. For any epistemic history 〈E, R, α〉 and any agent A:

Bel(〈E, R, α〉 ∗A φ) = Bel(E ∗ (R · (φ,A)) � α))

Hence, for any action history R, the belief state resulting from 〈E, R, α〉 followed by
the report (φ,A) can equivalently be obtained by concatenating (φ,A) to R and then
calculating the belief state.

In fact, the result of this revision by a report breaks into two cases, depending on
whether or not A is honest.

Proposition 2. Let α be an honesty assignment,

– If A ∈ α, Bel(〈E, R, α〉 ∗A φ) = Bel(E ∗ (R(� α) ∗ φ)))
– If A �∈ α, Bel(〈E, R, α〉 ∗A φ) = Bel(E ∗ R � α))

Essentially, reports from honest agents lead to belief revision and reports from dishonest
agents are discarded.

3.3 Basic Results

The operators ∗A,+ and − are independent in the sense that they alter different parts
of the epistemic history. This allows us to re-order the operations, as indicated in the
following result.
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Proposition 3. Let 〈E, R, α〉 be an epistemic history, let φ be a formula, let β ⊆ A.
Then:

(〈E, R, α〉 + β) ∗A φ = (〈E, R, α〉 ∗A φ) + β

(〈E, R, α〉 − β) ∗A φ = (〈E, R, α〉 ∗A φ) − β

Hence, it does not matter if we learn an agent is dishonest before or after they provide
information. In either case, the resulting epistemic history is the same. Note that none
of the operators {∗A,+,−} is commutative; we can not change the order of revisions
nor can we change the order of honesty expansions/reductions. However, we can apply
the proposition repeatedly to get a standard form.

Proposition 4. If 〈E, R, α〉 is an epistemic history, Ai ∈ A, βi ⊆ A , δi ⊆ A, then

〈E, R, α〉 ∗A1 φ1 + β1 − δ1 · · · ∗An
φn + β1 − δn

= 〈E, Q, γ〉

where

– γ is obtained by starting with α and then iteratively adding and removing the ele-
ments of each βi and δi.

– Q = R · (φ1, A1) · · · · · (φn, An).

As a result, every sequence of reports and honesty updates can be used to obtain a new
epistemic history through mechanical operations. The new beliefs can be determined
by simply applying the Bel operator.

3.4 Motivating Example Revisited

We return to our motivating example, involving weather reports. The set of agents in
this case is A = {B, T}, representing Bob and Trent respectively. The vocabulary is
F = {Sun,House}. The first variable is true if it is sunny, and false if it is rainy. The
second variable is true if Bob is at the house, and false if he is not. Initially, all states
are considered equally likely; so Bel() = 2F where E represents the initial beliefs of
Alice.

In this example, Alice initially believes Bob and Trent are both honest. So the initial
epistemic history is 〈E, τ,A〉, where τ is the empty sequence. Recall that Alice is first
told ¬Sun and House by Trent, and then she is told Sun and ¬House by Bob. In our
framework, we need to calculate the following expression:

〈E, τ,A〉 ∗T ¬Sun ∗T House ∗B Sun ∗B ¬House.

This can be written as 〈E, R,A〉 where

R = (¬Sun, T ), (House, T ), (Sun,B), (¬House,B).

Note that:
Bel(〈E, R,A〉) |= ¬House.
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This is expected, since all agents are assumed to be honest - this just follows from
regular revision.

In the original example, we added an extra step where Alice learns that Bob is
dishonest. This could be captured by applying the subtraction operator.

〈E, R,A〉 − {B} = 〈E, R, {T}〉

Now consider Bel(〈E, R, {T}〉). By Definition 5, this is equal to

Bel(E ∗ R � {T}) = Bel(E ∗ ¬Rain ∗ House) |= House.

So, in this case, Alice believes that Bob is at Trent’s house. This is the desired result.
In practice, we actually learn when an agent is dishonest by comparing their reports

to our own observations. Hence, a reduction to the set of honest agents should be trig-
gered by a direct observation. We address this extension in the next section.

4 Reports from the Self

4.1 Pointed Agent Sets

In order to incorporate observations, we need to be able to designate a special agent
that represents the self. We again assume an underlying propositional vocabulary F.
However, in this section we also assume a pointed agent set A. This is a set of agents
that includes a distinguished symbol O that represents the self.

A report is still a pair (φ,A), though the reporting agent may be the special agent O.
A report of the form (φ,O) represents information that the agent has obtained directly.
We will refer to such reports as observations.

Definition 8. For a pointed agent set A, an honesty assignment is a set α ⊆ A such
that O ∈ α.

The definition of an epistemic history remains unchanged, it still consists of an epis-
temic state, a report history and an honesty assignment; the only difference is that the
report history can include observations and the honesty assignment must include O.

4.2 Observations and Pointed Agent Sets

Observations are special reports. They are special not only because the self is always
considered honest, but also because observations can give us information about the hon-
esty of other agents. Specifically, if some agent reports ψ and then we observe ¬ψ, then
we would like to conclude that agent can not be trusted to provide accurate information.

Definition 9. A report (φ,A) is inconsistent with a formula ψ just in case φ ∧ ψ is
inconsistent.

We write (φ,A)⊥ψ to indicate that (φ,A) is inconsistent with ψ.
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Definition 10. Given a report history R = (φ1, A1) · · · · · (φn, An) and a formula ψ,
let

inc(R,ψ) = {Ai | φi⊥ψ} − {O}.

So inc picks out the set of agents in the report history that have reported information
that is inconsistent with ψ. We remark that an agent A will be in this set if they make a
single report that is inconsistent with ψ. However, we remove O from the set, because
we need to handle inconsistent observations through the normal revision process.

We now extend our definition of ∗A to include observations.

Definition 11. Let 〈E, R, α〉 be an epistemic history over a pointed agent set A, let φ
be a formula, and let A ∈ A.

1. If A �= O, 〈E, R, α〉 ∗A φ = 〈E, R · (φ,A), α〉.
2. If A = O, 〈E, R, α〉 ∗A φ = 〈E, R · (φ,A), α − inc(R,ψ)〉.
For reports from other agents, this definition remains unchanged. In the case of obser-
vations, it indicates that we remove all agents from α that have provided information
that conflicts with the new observation.

4.3 Motivating Example Revisited, Again

We return to the weather report example. If we have pointed action histories, then we
formulate the motivating example using the pointed agent set A = {B, T,O}, where
O represents Alice (the self). The vocabulary remains unchanged. The initial epistemic
history 〈E, τ,A〉 is also unchanged.

In this version of the example, the four initial reports are the same. Alice is still
told ¬Sun and House by Trent, followed by Sun and ¬House by Bob. We now add
one more report, (¬Sun,O). This represents an observation by Alice that it is raining
outside. We need to calculate the result of the following expression:

〈E, τ,A〉 ∗T ¬Sun ∗T House ∗B Sun ∗B ¬House ∗O ¬Sun.

This can be written as 〈E, R,A〉 where

R = (¬Sun, T ), (House, T ), (Sun,B), (¬House,B), (¬Sun,O).

Note that (Sun,B) is inconsistent with the report of ¬Sun from O. Therefore, all
observations from B will be removed when calculating the new belief state. In other
words, if we let

R
′
= (¬Sun, T ), (House, T ), (¬Sun,O)

then the new belief state will be

Bel(〈E, R
′
,A〉).

This is equal to

Bel(E ∗ R � {T,O}) = Bel(E ∗ ¬Sun ∗ House ∗ ¬Sun).
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Clearly House is entailed by this new belief state; so Alice believes that Bob is at
Trent’s house, contrary to Bob’s report. This result is due to the fact that Bob has made
a report that conflicts with Alice’s direct observations, and therefore Bob is no longer
considered to be honest.

This approach to the motivating example is essentially the same as the previous
treatment, except that we no longer require a direct change to the honesty assignment.
Instead, the result follows from the definition of an observation.

5 Incomplete Information

5.1 Partial Honesty Assignments

Thus far, we have only considered cases where we know exactly which agents are hon-
est. In this section, we move to the case where we only have partial information about
honesty. For simplicity, we restrict attention to the case where the agent O does not
appear in the set of agents.

Definition 12. A partial honesty assignment is a set Γ ⊆ 2A.

A partial honesty assignment includes all honesty assignments that are considered pos-
sible. We say that an agent A is honest with respect to Γ just in case A ∈ α for all
α ∈ Γ . Similarly, we say that A is dishonest just in case A is not in any element of Γ .

We define partial epistemic histories by replacing the honesty assignment with a
partial honesty assignment.

Definition 13. Let E be an epistemic history, let R be a report history, and let Γ be a
partial honesty assignment. A partial epistemic history is a triple 〈E, R, Γ 〉.

The revision operators defined previously can be applied to partial epistemic histo-
ries in a natural manner:

〈E, R, Γ 〉 ∗A φ = 〈E, R · (A,φ), Γ 〉.

Similarly, + can also be defined, by applying the union to each element of Γ . In other
words, if we define Γ + β = {γ ∪ β | γ ∈ Γ} then we have:

〈E, R, Γ 〉 + β = 〈E, R, Γ + β〉.

The same thing can be done for the − operator.
We would like to associate beliefs with partial epistemic histories. But we can not

actually associate a specific belief set with a particular epistemic action history. Instead,
we need to associate a collection of different belief sets with each partial epistemic
history.

Definition 14. Let 〈E, R, Γ 〉 be a partial honesty assignment. Then define:

BS(〈E, R, Γ 〉) = {Bel(E, R, α) | α ∈ Γ}.
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Hence, BS picks out the set of possible belief sets depending on which agents are
actually honest. This set allows us to use credulous reasoning to identify formulas that
are believed in all possible honesty assignments.

Definition 15. Let 〈E, R, Γ 〉 be a partial honesty assignment. We say that φ is believed
in 〈E, R, Γ 〉 just in case K |= φ for all K ∈ BS(〈E, R, Γ 〉.
The set of possible belief sets can also be defined through a semantic construction,
which we demonstrate in the next section.

5.2 Revision Trees

Let φ = φ1, . . . φn be a sequence of formulas over the vocabularly F.
We can define a simple tree structure that lets us visualize all possible revisions

of E by subsequences of φ. We define the revision tree T (E, φ) iteratively by levels
V0, . . . , Vn, where Vi is the set of vertices at height i.

1. V0 consists of a single vertex labelled with the epistemic state E.
2. For i > 1, at level Vi we have two children for each vertex v ∈ Vi−1.

(a) The first child is labelled .
(b) The second child is labelled φi.

Every maximal length path in T (E, φ) defines a sequence of revisions by some subse-
quence of φ; we simply start with E and then read the labels off the nodes at heights 1
up to n. Formulas that are not being included in the sequence have been labeled with .
Note that we are treating  as a tautology here, to ensure revision by  does not result
in any change of belief. Note also that the formulas in φ can not be equal to , as they
are defined over the vocabularly F . Of course the formulas in φ can be tautologies, but
they will still be represented as formulas over F without using the special symbol .

Now suppose that we have a report history R = (r1, φ1), . . . , (rn, φn). The paths in
T (E, φ) still correspond to revision sequences, but not every path is valid with respect
to R. Informally, a vertex labelled with  represents a revision that is being ’ignored’
because the reporting agent is dishonest. When we consider sequences of revisions
corresponding to reports, we need to ensure that we ignore all reports from a dishonest
agent.

Definition 16. Let E be an epistemic state, let R = (r1, φ1), . . . , (rn, φn) be a report
history of length n. We say that a sequence ψ1, . . . , ψn is valid with respect to R just in
case:

1. For each i, ψi is either φi or .
2. If ri = rj , and ψi = , then ψj = .

We let val(R) denote set of all valid sequences with respect to R.

Hence a valid sequence with respect to R is a subsequence with the following property.
For each report agent r, either all formulas reported by r are in the sequence or all
formulas reported by r have been replaced by .
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E

� φ

� ψ � ψ

� ¬ψ � ¬ψ � ¬ψ � ¬ψ

Fig. 1. A revision tree

E

� φ

� ψ � ψ

� ¬ψ � ¬ψ � ¬ψ � ¬ψ

Fig. 2. Valid paths with respect to a report history

Example 1. Let φ = φ, ψ,¬ψ. In Fig. 1, we show the complete revision tree for
T (E, φ). Now suppose that R = (A,φ), (B,ψ), (A,¬ψ). In Fig. 2, we show the set
of valid paths of the tree over T (E, φ) with respect to R.

An honesty assignment defines a particular modification of a report history.

Definition 17. For any honesty assignment α and any report history R =
(r1, φ1), . . . , (rn, φn), define R(α) = (r1, ψ1), . . . , (rn, ψn) such that

1. If ri �∈ α, then ψi = .
2. ψi = φi, otherwise.

The following result just ensures this is actually a valid sequence

Proposition 5. For any honesty assignment α and any report history R, the report
history R(α) is a valid sequence with respect toR.

The converse is also true.

Proposition 6. Suppose that we have a path ψ1, . . . , ψn in T (E, φ) that is valid with
respect to R = (r1, φ1), . . . , (rn, φn). Then α = {ri | φi �= } is an honesty assign-
ment.

The proof of this result really just amounts to observing that α is a well defined set,
which follows from the definition of a valid path.
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So, given a report history R, we have a one to one correspondence between honesty
assignments and valid paths in the revision tree. This gives us an alternative way to look
at the beliefs associated with a partial epistemic history.

Proposition 7. Let 〈E, R, Γ 〉 be a partial epistemic history. Then K ∈ BS(〈E, R, Γ 〉)
if and only if K = Bel(E ∗ ψ) for some valid sequence ψ with respect to R.

Hence, while we can not associate a unique belief set with a partial epistemic history,
the set of possible belief sets has a useful structure.

5.3 Honesty Invariants

Partial honesty assignments are useful for applications where we receive information
from other agents, and we learn over time which agents are honest and which agents are
not. One natural application for this work is in tracking how our beliefs are contingent
upon the honesty of particular agents.

Definition 18. Let 〈E, R, Γ 〉 be a partial epistemic history. We say that φ is honesty
invariant with respect to A ∈ A just in case φ is believed in 〈E, R, Γ 〉 + {A} and φ is
believed in 〈E, R, Γ 〉 − {A}
When a formula φ is honesty invariant with respect toA, then it will be believed whether
or not A is honest.

We can state a simple property of honesty invariance.

Proposition 8. Let 〈E, R, Γ 〉 be a partial epistemic history. If Bel(E, ψ) |= φ for
every valid sequence ψ, then φ is honesty invariant with respect to every A ∈ A.

This result states that a formula is honesty invariant with respect to all agents if it is true
following every possible sequence of revisions. We give another basic result.

Proposition 9. Let 〈E, R, Γ 〉 be a partial epistemic history. Let j be the highest index
of a report from A in R, and let k be the highest index of a report (B,ψ) where ψ |= φ.
If k > j and B ∈ α for all α ∈ Γ , then φ is honesty invariant with respect to A.

This result is only slightly more difficult. It says that φ is honesty invariant with respect
to A if the last report from A is followed later by a report from an honest agent that
guarantees φ will be true.

Using a brute force approach, in order to check if φ is believed in a partial epistemic
history, we need to look at |Γ | revision sequences. If there is a single report from A,
then we need to look at roughly 2 · |Γ | sequences to check if φ is honesty invariant. If
there are n reports, this grows to 2n ·|Γ | sequences. Hence, checking honesty invariance
becomes computationally very expensive if we use an exhaustive approach; we need to
use heuristics to exploit the symmetries over the set of valid sequences to do this more
efficiently. We leave a complete treatment of computational issues related to honesty
invariance for future work.
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6 Discussion

6.1 Related Work

As mentioned in the introduction, there has been related work on the way trust impacts
the dynamics of belief [3,7,10]. However, each of these frameworks is focused on trust
in terms of perceived knowledge. In this context, we actually have to look at the content
of a report to determine if it should be believed. Hence, a particular agent might be
trusted when they report about the weather but they might not be trusted when they
report about microbiology. There is no reason to dismiss an agent as dishonest, but we
do need to consider their expertise over particular domains. This is a very different form
of trust, and the models developed for knowledge-based trust do not apply directly to
the issue of honesty addressed in this paper.

In a sense, our work is more closely related to formal models of reasoning that focus
on some form of regression to maintain a consistent belief trajectory. This is the case,
for example, in the case of belief evolution operators [5] or the epistemic extension
of the Situation Calculus [9]. In both of these frameworks, we essentially maintain a
consistent sequence of belief states by regressing change to an initial state of the world.
We are following the same basic approach, by maintaining a history of all possible
reports; this allows us to ensure a consistent trajectory of beliefs when we get new
information about honesty.

6.2 Future Work

There are several issues to be addressed in future work. First, the theoretical founda-
tions of our model need to be clarified. We have shown that the revision tree includes all
possible belief trajectories, and that paths through the revision tree represent valid tra-
jectories with respect to a report history. This observation provides the first step towards
a representation result for honesty-sensitive revision operators. In future work, we will
provide a set of rationality postulates for the ∗A operators. We will then attempt to prove
that these postulates are fully characterized by some suitable set of paths in the revision
tree.

In addition to a representation result, there are important theoretical directions to be
explored in this framework. As noted previously, we would like to explore algorithms
for honesty invariance. We would also like to consider the integration of honesty-based
trust with knowledge-based trust.

We would also like to work on practical applications of our framework. The main
example that we will pursue is the use of honesty assignments to reason about recovery
following security breaches. Suppose that we have a knowledge base that has been
accessed by an individual using fraudulent credentials. It is not sufficient to simply
block that individual from future access; we also need to roll back any changes that
they have made. This can be modelled by viewing knowledge base updates as reports
associated with particular agents.
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7 Conclusion

We have addressed the problem of honesty-based trust in the context of formal belief
revision operators. New information comes in the form of reports from agents, and we
maintain a list of all reports that have been obtained. In addition to a list of reports,
we have also introduced the notion of an honesty assignment that keeps track of which
agents are currently considered to be trustworthy. We have demonstrated that this allows
us to modify our belief state appropriately when we obtain new reports, and also when
we get new information about the honesty of other agents. By moving to pointed agent
sets, we have also shown how reports from other agents interact with observations.
While it is simpler conceptually when we have a single set of honest agents, we have
also considered the case where our knowledge about honesty is uncertain. We have
demonstrated that all reasonable belief trajectories can be defined in a simple tree struc-
ture, which is further constrained by the sequence of reporting agents. The end result is
a simple model that allows us to move from a naive model of belief revision where all
agents are assumed to be honest to a more realistic model where the perceived honesty
of agents influences the dynamics of belief.
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Abstract. Labelling unlabeled data is a time-consuming and expen-
sive process. Labelling initiatives should select samples that are likely to
enhance the classification accuracy of the classifier. Several methods can
be employed to accomplish this goal. One of these techniques is to select
samples with the highest level of uncertainty in their predicted labels.
Experts then label these samples. Another option is to choose samples
at random. This paper proposes three methods for identifying unlabeled
samples to improve predictive accuracy when they are labelled. Our study
explores how to select samples when we have very few labelled samples
available from manifold distributed data sets. In order to assess perfor-
mance, we have compared our approaches with uncertainty sampling and
random sampling. We demonstrate that our methods outperform uncer-
tainty sampling and random sampling by using public and real-world data
sets.

Keywords: Active learning · Uncertainty sampling · Unlabelled
sampling · Random sampling · Incremental learning · Few shot
learning · Entropy · Uncertain labels

1 Introduction

To classify complex tasks, supervised machine learning models can be used to
learn complex relationships between queries and responses. For instance, machine
learning models can help detect tumours at an early stage. Upon finding a
tumour by these models, a specialist can examine it further. Training data must
contain queries and responses created by or evaluated by specialists to train mod-
els for specialized purposes. Therefore, such data can be challenging to obtain.
Many queries are available (e.g. image scans, feature vectors, videos), yet, it is
hard to receive accurate responses to each of these queries. In the case of spe-
cialized data, we must hire a specialist to examine each query and provide a
response. A specialist must take time to do this, which is costly for both the
data modeller and the specialist. If labelling is cost-prohibitive, a smaller sam-
ple of queries is forwarded to a specialist. The selection of the samples is either
accomplished randomly or using uncertainty sampling.
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H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 413–426, 2022.
https://doi.org/10.1007/978-3-031-22695-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_29&domain=pdf
http://orcid.org/0000-0002-8901-4606
http://orcid.org/0000-0003-0201-4409
http://orcid.org/0000-0002-8284-2062
https://doi.org/10.1007/978-3-031-22695-3_29


414 S. W. Qayyumi et al.

Table 1. Sampling/Labelling scenarios. With a large sample that is difficult to label,
we resort to labelling a random sample, but is that best approach?

Sampling
1: Simple 2: Difficult

Labelling
A: Simple Label all Label all
B: Difficult Label Random Label all

This paper discusses how to sample queries for manual labelling to improve
the accuracy of the machine learning models. In our research, we generally focus
on small sample sizes (e.g., the few shot learning scenario and manifold dis-
tributed data). The article will proceed as follows: Sect. 2 discusses the current
state of the art in the selection of the next best-unlabelled sample. Section 3
examines our approaches to the next best sample selection. Section 4 presents
the results of experiments conducted on different public and real-life data sets
in a few-shot learning and semi-supervised learning scenario. This section also
compares our sampling techniques with active learning’s uncertainty sampling
and random sampling. Section 4.3 contains a list of our observations. Section 5
concludes this paper and discusses our future work.

2 Background and Related Work

In attempting to classify manifold distributed data with very few label samples,
we investigated the problem of finding the best-unlabelled sample for labelling.
In classifier training, there are four scenarios regarding data availability. Table 1
lists all these scenarios. This article discusses scenario 1B (easy to sample and
difficult to label). In this scenario, we have to label more samples to achieve
higher accuracy in classification. Labelling is a complex and costly endeavour, so
choosing the right unlabelled sample is crucial. Imagine, for example, one million
CT scans with only ten labels. To improve the accuracy of your classifier, you
need to label another ten items. Choosing a sample that increases the accuracy
of the classifier is crucial in such a scenario. This is the focus of our sample
selection methods.

Active learning is the process of selecting an optimal unlabelled sample from
a pool of unlabelled data. Unlabeled data is classified with a classifier, and then
the observations with the most uncertain labels are identified. This process is
known as uncertainty sampling. There are many methods that are available to
estimate the uncertainty of a labelled sample. The active learning process con-
sists of querying an information source, for example, an Oracle, to assign a new
label to a data point. This algorithm attempts to choose the best possible sam-
ple to be labelled [16,18]. The term optimal experimental design can also refer
to active learning in statistics. In situations, unlabeled data is readily available,
but its labelling is costly. When such a scenario occurs, a learning algorithm can
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aid in identifying samples for labeling. This process is known as active learning.
Choosing examples that the learner finds meaningful is generally more effective,
which results in fewer examples needed than is necessary for supervised learn-
ing. Recent advances in active learning include multi-label active learning [24]
and hybrid active learning [11]. These research areas combine machine learning
concepts with incremental learning policies. There are three different scenarios
or settings in which learners typically query instances’ labels.

– The learner generates instances based on the underlying distribution in the
membership query synthesis.

– In stream-based sampling, the assumption is that unlabeled samples are free
to obtain. Thus, each unlabelled sample is selected one at a time. Upon read-
ing an unlabelled instance, the learner can decide whether to query or reject.
Acceptance or rejection of the instance is driven by its informativeness. A
query strategy determines how informative the sample is.

– Pool-based sampling is based on the assumption that there is a large pool of
unlabeled data. An informativeness measure can be applied to all samples in
the pool to identify the best candidates for labeling. The proposed sampling
methods described in this paper can also be referred to as pool-based sampling
techniques.

The learner can utilize a variety of measures to identify the most appro-
priate sample. An example of one of these measures is uncertainty. The learner
labels all unlabeled data using the available labelled data. Upon determining the
uncertainty of each predicted label, the sample with the most uncertain label is
selected and sent to Oracle for labeling. The following are three commonly used
approaches to querying instances based on uncertainty sampling.

– Least Confidence: LC strategies let learners select the instance for which the
learner is least confident in its most likely label.

U(x) = 1 − P (x̂|x) (1)

– Margin Sampling: A fundamental problem with the LC strategy is that it only
considers the most probable label and disregards the other label probabilities.
For this reason, the margin sampling strategy selects the instance with the
minimal difference between the first and second most probable labels.

M(x) = P (x̂1|x) − P (x̂2|x) (2)

– Highest Entropy: All the potential label probabilities can be computed using
entropy. All instances are analyzed by calculating the entropy value of each
instance and querying the instance with the highest value.

H(x) = −
∑

k

pk log(pk) (3)
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It is important to note that uncertainty sampling is dependent on predicted
labels. In addition, calculating uncertainty is not straightforward for all classifi-
cation methods. It is not easy, for example, to calculate the uncertainty in neural
network setup [23].

Sampling plays a significant role in classifier training. In order to improve
prediction accuracy, it is necessary to train a classifier with sufficient training
data. Sample collection can help provide the necessary data. You can find a
detailed description of most of the sampling techniques in Altmann et al. [1] and
Etikan et al. [5]. In random sampling [15], each sample has an equal chance of
being selected. A stratified random sampling method [14] involves dividing the
population into subgroups called strata and selecting samples at random from
each stratum. A systematic sample selection method, [12] is based on choosing
a fixed interval and starting point. After establishing a starting point, subse-
quently, samples can be collected at regular intervals. Clustered sampling [6]
allows drawing samples at random from some of the clusters. Clustered sampling
draws samples from random groups, whereas stratified sampling selects samples
from each stratum or group, allowing us to exclude entire groups from the study.
The convenience sampling method [17] involves selecting a sample solely on the
basis of its convenience for sampling purposes. Quota sampling [13] selects sam-
ples based on specific characteristics. There is also snowball sampling [8], which
selects a sample based on the judgment of the experts who need it, and then uses
it to select subsequent samples. Sampling methods are bound to be biased. A
number of methods have been proposed to address bias in sampling [10,21]. All
samples need not come from the same distribution. They may even come from a
distribution similar to the one we study. If the main distribution is unavailable,
importance sampling [22] is applied. In this scenario, we sample from another
distribution by adjusting the weights of the distribution so that it represents
the desired distribution. We can use information gain to select the samples. The
information gain is the amount of entropy removed from the data set by splitting
it. Therefore, a split with a higher information gain [2] is preferred.

Data samples are collected before classification models are built and trained.
It is possible to construct classification models if enough data is available. When
we do not have enough data, we can continually improve our classification mod-
els by retraining additional labelled data. During retraining, newly acquired
labelled data is incorporated into the learning process. The method of learning
is called incremental learning [7]. It is possible to apply several traditional clas-
sification methods to incremental learning [20]. In incremental learning, the goal
is to acquire new knowledge based on new data without forgetting the existing
knowledge derived from older data. The next best action recommendation is a
popular marketing technique designed to retain customers. In order to determine
what the best next step for a given customer is, it is necessary to compare their
profile to a similar customer model [9]. Reinforcement learning determines the
next best task based on this approach [4]. In a similar fashion to incremental
learning, the next best task has been an active area of research [3].
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Aside from uncertainty sampling, our work is also comparable to Transduc-
tive Semi-supervised Deep Learning (TSSDL) and Personalized next-best-action
recommendation [3,19]. In particular, we discuss the topics of sampling, entropy,
incremental learning, and recommendation of the next best task. We will discuss
the relevance of these topics after providing a brief overview of these topics. We
do not estimate labels for the unlabeled samples, but rather rank all unlabeled
samples according to their potential influence on classification accuracy.

3 Measuring the Utility of an Instance for Training

As a rule of thumb, the performance of a classification model is contingent on
how well the training data represent the population to be classified. Therefore,
it is imperative to select a sufficient number of instances from the population of
interest for manual labelling and inclusion in the training set. To accomplish this,
we must be able to select the most appropriate sample of the population, and
then manually label each instance within that sample. We should take as large a
sample as possible if the labelling of each instance is a straightforward process.
Furthermore, we should attempt to label all the observations in our training set.
When both manual labelling and sampling are time-consuming and costly, fewer
samples can be collected, and all instances will have to be labelled. There is a
question regarding how to proceed when we have access to a large pool of unla-
belled data but cannot label each instance. Therefore, we must determine which
subset of that sample should be manually labelled and added to the training set.
Our goal should be to select observations that will produce the highest increase
in classification accuracy when used for training. However, the question remains
as to how to choose the instances.

This section examines three candidate functions for evaluating the utility of
including an unlabeled instance in a training set. Each instance is assigned a score
based on its potential to influence classification accuracy. The article focuses
on data with a relatively small training set (only a few cases were manually
labelled), and which are manifold distributed. Thus, we use k Nearest Neighbors
(kNN) as a classifier. Please also note that we have assumed that sampling from
the population will be relatively straightforward, whereas labelling will be more
complex. Thus, we can also safely presume that we have a large pool of candidate
instances from which to choose and that it is possible to assess the utility of a
selected instance; we refer to this pool of available data as the “test set”. We
have described our proposed methods in the following three subsections.

3.1 Neighbourhood Impact

In order for a new instance to have the potential to increase accuracy, it has to
play a role in the classification of newly created instances. The training instance
is only relevant if it is the nearest neighbour of the test instance in the kNN clas-
sification. Therefore, one measure of the utility of a candidate training instance
is the number of data points it is closest to.
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Given a set of manually labelled instances X and a set of unlabelled instances
U , let Nk(u;X ) ⊂ X be the set of k nearest neighbours of u chosen from the
manually labelled set of instances, where u ∈ U and |X | > k. We define the
Neighbourhood Impact I of labelled instance x as

I(x) =
∑

u∈U
1Nk(u;X )(x). (4)

for x ∈ X , where 1A(x) is the indicator function (1A(x) = 1 if x ∈ A or 0
otherwise).

To measure the neighbourhood impact of an unlabelled instance u, we must
remove the instance from the set U to obtain U \ u, and append it to the set of
labelled instances {X , u}. The neighbourhood impact for an unlabelled instance
is

I(u) =
∑

v∈U\u
1Nk(v;{X ,u})(u). (5)

Including an unlabelled instance in the training set will not cause the trained
model’s classification accuracy to improve if I(u) = 0. Including an unlabelled
instance with a high I(u) will affect the model’s classification accuracy when
included in the training set. The hypothesis is that if an unlabelled instance has
a high I(u) value, then manually labelling it and adding it to the training set
will improve its accuracy.

3.2 Maximum Entropy

A neighbourhood impact refers to the potential of an instance based on its
proximity to a neighbourhood. Furthermore, it is possible to examine whether
the point may be able to alter the unlabelled class prediction. By calculating the
entropy of the label distribution one can determine how robust the prediction
is when there is a set of training labels. As a result, the notion of high entropy
implies that one change in an instance label might alter a prediction, whereas
the notion of low entropy requires many changes in order to change a prediction.

The class prediction for test instance u is the mode class of the set of k nearest
neighbours from the labelled set X . We define Lk(u;X ) as the set of class labels
associated to the training instances Nk(u;X ). Using this, the predicted class
label for instance u is mode (Lk(u;X )) and the entropy of the neighbourhood
distribution is Ent (Lk(u;X )).

This potential for an unlabelled instance u to influence the class prediction is
expressed by Maximum Entropy. Essentially, this can be defined as the maximum
class distribution entropy if the example was included in the training set with
a class label. The maximum entropy H(u) of an unlabelled instance u can be
defined as

H(u) = max
lu∈L

∑

v∈U\u
Ent (Lk(v; {X , u})). (6)
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where u is the candidate unlabelled instance, U \ u is the unlabelled set with
the candidate instance removed, lu is the label of the candidate instance, L is
the set of all possible class labels and Ent(X) is the entropy of the categorical
distribution X.

3.3 Delta in Prediction

It would be ideal if we could identify which of the unlabelled instances would
be suitable for labelling and inclusion in the training set. The ideal training
example is the one that offers the highest accuracy. Due to the lack of labelling,
we cannot examine the increase in accuracy for each candidate instance.

Instead of measuring the increase in accuracy, we can instead measure the
potential increase in accuracy. The classification accuracy for kNN using training
set X and testing set U is

1
|U|

∑

u∈U
1 (mode (Lk(u;X )) = lu). (7)

where 1(A) is an indicator function (providing 1 if A is true and 0 is A is false)
and lu is the class label of instance u.

We define the Delta in Prediction of labelled instance x as

Δ(u) = max
lu∈L

1
|U \ u|

∑

v∈U\u
1 (mode (Lk(v; {X , u})) = lv). (8)

where u is the candidate unlabelled instance, U \ u is the unlabelled set with
the candidate instance removed, lu is the label of the candidate instance, and
L is the set of all possible class labels. Thus, the Δ(u) represents the maximum
classification accuracy that may be obtained by including u in the training set,
concerning all class labels.

In this paper, we examine the relationship between each of these functions’
scores and the accuracy of classification when choosing the associated instance.

4 Experimental Setup

We have only a small training set and wish to add to it. But manual labelling
is challenging, so we should choose carefully when selecting which unlabeled
instances are to be labelled. This study aims to answer the question: “Does the
use of instance selection functions to refine sample selection result in better accu-
racy than random and uncertainty based selection?”. We empirically investigate
this question using the data from the UCI repository.

In each run of the experiment, we follow the steps below. A random sample of
instances from a given data set is chosen as the training set containing manually
assigned labels. The remainder of the instances are left unlabeled. Every unla-
belled observation is assigned a selection score, and the sample with the highest
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Table 2. Data used for evaluating instance selection functions.

Dataset No of classes Characteristics Instances Attributes Features

Banknotes 2 Multivariate 13,72 Real 5
Satlog 6 Multivariate 6,435 Integer 36
Segmentation 7 Multivariate 2,310 Real 19
Heart disease 5 Multivariate 303 Real 14
Diabetes 2 Multivariate, Time-series 768 Real 9
Pendigits 10 Multivariate 10,992 Integer 16

Table 3. Comparison of average classification accuracy of random and uncertainty
sampling with all our methods - average of 100 iterations

Dataset Rand
samp

Uncert
samp

I Δ H IΔ IH ΔH IΔH

Banknotes 0.59 0.60 0.61‡ 0.56 0.58 0.56 0.61‡ 0.60† 0.61‡

Satlog 0.45 0.45 0.46‡ 0.46‡ 0.46† 0.46† 0.46‡ 0.46‡ 0.46‡

Segmentation 0.35 0.36 0.36† 0.35� 0.36† 0.35 0.36‡ 0.35∗ 0.36‡

Heart disease 0.46 0.45 0.44 0.48‡ 0.45 0.48‡ 0.44 0.45 0.48‡

Diabetes 0.60 0.61 0.63‡ 0.63‡ 0.64‡ 0.63‡ 0.63‡ 0.63‡ 0.63‡

Pendigits 0.38 0.37 0.39† 0.38 0.38 0.37 0.39† 0.38 0.39†

Signif. codes: �: p < 0.05, †: p < 0.01, ‡: p < 0.001.

score is added to the labelled training set. kNN accuracy is determined before
and after the new point has been added to the training set.

The experiment variables are: the candidate instance selection functions
{Random selection, Neighbourhood Impact, Maximum Entropy, Delta in Pre-
diction}, the data (shown in Table 2), the initial training set size {4, 8, 16, 32,
64, 128}, and the number of instances chosen. Initial analysis shown in Fig. 1
showed that high accuracy instances are those that provide more central scores,
so we selected the instance that provided the score closest to the mean score
from all observations, to include in our training set. We also expanded the can-
didate instance selection function set to include the sum of each combination
of the three candidate function scores. The selection methods are shown in the
results as: Random sampling(adding a randomly chosen instance), uncertainty
sampling, Δ (Delta in prediction), H (Maximum entropy), and I (Neighbour-
hood impact). Whenever two or more methods have been combined, the scores
for the respective methods have been added.

4.1 Choosing One Instance

In the first experiment, we examine the results of selecting one instance from the
unlabeled set to be manually labelled using a randomly chosen training set size
of four. The experiment is paired, i.e. each method employs the same random
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Fig. 1. Relationship of higher accuracy, neighbourhood impact and delta in prediction
- Banknotes dataset. The figure shows that high accuracy is related to mean neigh-
bourhood impact and delta in prediction

training sets. Figure 2 provides the accuracy of each method based on 100 runs,
where the results are sorted by uncertainty sampling. Each point on the figure
represents the average prediction accuracy after one hundred iterations. The
graph has exactly 100 points, so each line represents ten thousand executions.
The proposed selection technique performs much better than the benchmarks,
namely uncertainty sampling and random selection. In light of our experimental
findings, and the above demonstrations, we find that our proposed techniques
perform very well in a few-shot learning environment. The p values of all tech-
niques are compared in Table 3. This table also presents the average accuracy of
each technique for different data sets in comparison with random sampling and
uncertainty sampling.

4.2 Choosing n Instances

As the number of labelled samples increases, i.e. as we move from a few shot
learning scenario to a semi-supervised learning scenario, Fig. 3 illustrates the
average accuracy for Random, Oracle, uncertainty sampling and our methods.
For all methods, accuracy is based on sample sizes of 4, 8, 16, 32, 64, 128. The
figure illustrates that our approaches are more accurate than random selection
when the labelled sample size is small while at par with random selection as the
labelled sample size increases. Our study found that as the number of labelled
samples per class exceeds 32, the accuracy of selecting new unlabelled samples
remains the same for all methods, including random sampling. Depending on the
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Fig. 2. Mean accuracy of classification – next best 1 sample selection – each point
represent 100 executions

data set, this saturation point may vary, but it is typically close to 30 samples
per class.

These techniques have been tested in a number of situations, including the
next-best 1, n unlabelled samples and n labelled samples. Our results demon-
strate that these techniques are on par with random selection in the next-best
1 and n unlabelled sample selection setting. Please refer to Fig. 4 that shows
the results of a banknotes data set using the next-best 3, 5, 7, and 9 unlabelled
samples. Next-best 3 unlabelled sample setting is one where three 3 unlabelled
samples are selected to compare their accuracy.

4.3 Semi-supervised Learning Scenario

In a setting with many labelled samples, we observed similar results. This test
aimed to assess performance in a semi-supervised setting. In Fig. 3, we compare
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Fig. 3. Comparing the average accuracy (average of 100) for Oracle, Random, and our
methods as the number of labelled samples increases

uncertainty sampling, random selection, and all of the techniques we propose
using all of the data sets. A comparison is made between the average accuracy as
we move from a small labelled data set (few-shot learning) to a bigger labelled
data set (semi-supervised learning). The number of available samples doubles
with each stage. This analysis shows that our approach performs better with
4,8,16, and 32 observations. Although our method outperforms when only a few
labelled samples are available, it is still competitive when many labelled samples
are available. Table 3, we present the results of ten thousand computations and
compare uncertainty sampling and random with the proposed methods.

Based on our experiments conducted in few shot and semi-supervised set-
tings, the following results were observed.

1. A systematic selection of an unlabeled sample is preferable when small labeled
samples are available for the training of the classifier.

2. The methodologies we propose for systematic selection can also be applied
in a semi-supervised setting where a large number of labels are available.
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Fig. 4. Comparison of various methods for next best 3, 5, 7 and 9 sample selection –
Banknotes data set

The cost of systematic selection in this case is higher than that of random
selection.

3. There is a saturation point in terms of the number of samples that have
been labeled. There are no differences between uncertainty sampling, random
sampling and systematic selection beyond this point.

5 Conclusions

We present three novel approaches to selecting a good next sample in few-
shot and semi-supervised learning situations. We evaluate our proposed methods
using random sampling and uncertainty sampling as benchmarks. Performance
is evaluated by comparing the accuracy of classification before and after includ-
ing the selected samples in the training set. Our evaluation of real-life, publicly
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available data sets shows that our proposed sampling methods are preferable
to uncertain sampling and random sampling when there are only a few labelled
samples available. Furthermore, our method performs as well as the benchmarks
when there are a lot of labelled samples.
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Abstract. Today’s malware variants are growing at an unprecedented
rate. To avoid detection by existing antivirus engines, attackers have been
increasing the complexity of packers, layers of obfuscation, and encryp-
tion to obstruct the process of reverse engineering. This paper presents an
automated method using static analysis for extracting opcode sequences
of a length of up to 5000 and employing these sequences for classifying
potential malware into eight classes, namely ransomware, trojan, back-
door, rootkit, virus, miner, benign, and other. Our empirical analysis
compares four different classifiers: MLP, LSTM, GRU, and Transformer.
The experimental results demonstrate that the GRU approach achieves
the highest F1-score of up to 87%. In addition, we analyze dynamic API
call sequences. We use a public malware dataset that comprises more
than 7000 sample sequences of 342 API calls each for apps from eight
different malware families. A GRU network achieves the best result for
this dataset, producing an F1-score of 78%.

Keywords: Opcode · API calls · MLP · GRU · Transformer

1 Introduction

In malware detection, static analysis is usually the first choice selected by
researchers due to being able to examine an executable without the need of actu-
ally executing it in an isolated virtual environment. Malware authors can develop
applications to avoid detection engines by applying obfuscation techniques to safe-
guard the malware code and its data structures from being dissected. Acquiring
static data from mnemonic instructions (opcodes) has become prevalent to prevent
damage from execution. It can provide a holistic view of the application statically
on what operation to perform even though manipulation of the address param-
eters and changes in the execution flow can be obstacles. An opcode is a part of
a machine instruction that determines the function to be executed by a machine.
Each instruction operates on operands that can be stored in registers, or memory,
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or constants stored in the instruction itself. Obtaining opcode sequences can be
conducted by both static and dynamic analysis. Nevertheless, it takes less time to
extract them via static analysis. For dynamic analysis, the extraction of API calls
is the most popular approach for observing runtime behaviour of malware. Recent
research [1] shows that machine learning approaches for sequence classification,
such as multi-layer perceptrons (MLPs) and recurrent neural networks, provide
satisfactory results.

This paper focuses on “BaseOfCode”, a relative offset of code in code sections
(.text) loaded into the memory. We disassemble the application, carve out the
opcodes from the address of the .text section until the end of the file to statically
analyze the behavior. We also present an approach to automate and extract
opcodes from the binary contents. The applications used in this experiment are
implemented by: UPX (Ultimate Packer for eXececutables)1, .NET assemblies
by Microsoft .Net CLI and Mono, and Zlib2 compression. Given that all data
are consecutive sequences of a length of at most 5000, the four different types of
neural networks investigated here are an appropriate choice.

The main contributions of the paper are as follows:

(i) We show that using the open-source tools listed above to extract consecutive
opcode sequences from binaries can provide valid empirical data.

(ii) We calculate the frequency of opcodes for each malware category and imple-
ment SHAP feature selection to obtain a good representation.

(iii) We benchmark four different neural network-based approaches to static
opcodes and dynamic API calls. The experiments highlight that a GRU
yields a highly accurate classifier for static and dynamic sequences.

2 Related Work

2.1 Opcodes

Azadech [7] proposed a static signature-based malware detection method based
on N-gram opcode with different degrees and file signatures by using VXheaven
203 malware binaries and 216 Windows system files as benign binaries. There
were three phases: extracting opcode and binary sequences from benign and mali-
cious files, generating N-grams, and classifying files into benign and malicious
groups. The results demonstrated that combining 1, 2, and 3-grams represents
a feature set with an accuracy of 78%. With the proposed Top-K approach to
select the topmost similar k files, the highest accuracy belongs to Top-10, at
86.63%. In the combination of opcodes and binary sequences, the K is chosen to
be 3, resulting in an accuracy of 86.39%.

Regarding the static analysis, ransomware families [18] fingerprint the envi-
ronment to evade the dynamic analysis explored. They collected 1787 ran-
somware samples from eight families: cryptolocker, cryptowall, cryrar, locky,

1 https://upx.github.io/.
2 https://docs.python.org/3/library/zlib.html.

https://upx.github.io/
https://docs.python.org/3/library/zlib.html
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petya, reveton, teslacrypt, and wannacry by VirusTotal, and 100 trusted soft-
ware samples and obtained opcodes by using the IDA Pro disassembler. The
opcode sequences were transformed to N-gram sequences and calculated by TF-
IDF in descending order to select feature N-grams. Then, TF values of the fea-
ture N-grams were fed into five machine learning methods: DecisionTree, Ran-
dom Forest, K-Nearest Neighbor, Naive Bayes, and Gradient Boosting Decision
Tree. For each family, they performed extensive experiments with N-grams of
lengths 2, 3, and 4, and with different feature dimensions ranging from 29 to
228. Overall, the Random Forest in 3-gram outperformed the other algorithms.
For multi-class, the best accuracy was 91.43% when using 123 features, and the
highest F1 measure of nearly 99% was achieved on wannacry. Similar to binary
classification, accuracy was up to 99.3% using 180 features.

As was aforementioned above, we use open-source tools according to different
compression methods to extract long sequences, compared to commercial tools
in [18]. Furthermore, we use other learning models (e.g., MLP, and GRU) due to
the appropriateness of input data for text classification based on consecutive long
sequences to provide an alternative static input data for malware classification.

2.2 API Calls

In the work of [5], 2600 samples were run in a virtual machine on Windows XP,
and API call sequences were extracted. A whole set of 534 APIs has been hooked
and mapped to 26 categories. Every sequence of Windows API calls was mapped
to a categorized sequence of A to Z letters. They have developed a repository
of 2000 fuzzy hash signatures, 400 for each category. For each class of mal-
ware (Worm, Backdoor, Trojan-Downloader, Trojan-Dropper, and Trojan-Spy),
520 samples were selected. With n-gram analysis of the categorized sequences,
class-specific patterns for all five classes of malware were retrieved. The ssdeep
algorithm calculated the fuzzy hash matching score between different catego-
rized sequences to generate a fuzzy hash-based signature from 0 to 100. A high
fuzzy hash value indicates that the two binaries belong to the same class. This
approach achieved an accuracy of approximately 96%.

Additionally, n-grams databases of API sequences were created using simi-
larity score methods to discover similar characteristics among malware families.
A Control Flow Graph (CFG) [13] of 15000 malware binaries for five differ-
ent classes and 4000 benign PE files were generated after disassembly done by
BeaEngine. This tool represents an execution flow in the form of basic blocks
(nodes) and edges. A basic block is a set of instructions without a single branch
or control transfer instruction. Dice coefficient, Cosine coefficients, and Tversky
Index were used to calculate the similarity between the 2, 3, and 4 g databases
generated from that analysis. A detection rate of 94.78% and a false positive
rate of 33.51% were achieved using 3-grams and the dice coefficient.

Moreover, Yu Wang [17] introduced binary malware classification based on
deep recurrent reinforcement learning (DRL) by emulating the generation of
a sequence of API calls to choose one action out of two: Continue or Halt.
Microsoft’s production antimalware engine evaluated 75000 files to generate
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behavioral events after discarding files whose event sequences were shared
between two classes or contained less than 50 events. This antimalware engine
maps multiple low-level API calls into a single high-level event to deal with
polymorphism. The engine records 114 different event types, including file IO,
registry APIs, networking APIs, thread or process creation and control, inter-
process communication, timing, and debugging APIs. The model’s state contains
three parts: the position (i.e., index) of the current event in the file, the current
event ID, and the histogram of all the previous events. There are two criteria for
designing a reward for each state: (1) shorter emulation sequences are assigned
a higher reward, and longer sequences are given a smaller reward. (2) The closer
an event prediction is to the true file label, the larger the reward will be given at
that state. The model halts emulation of an unknown file and improves malware
classification at 91.3% by the number of consecutive actions where the action
is Halt before the DRL model stops the file’s execution. Furthermore, this new
model improves the true positive rate by 61.5%, at a false positive rate of 1%,
compared to the best baseline classifier.

To handle adversarial learning-based attacks, Yu Wang proposed a new
Actor-Critic (AC) deep reinforcement learning method [16] instead of the older
DQN model [17]. Compared to the DQN approach, the new model performs
better for all K and N values. For halting execution, the new model halts the
execution of unknown files by up to 2.5% earlier than the DQN model and 93.6%
earlier than the heuristics. For the classification task, the proposed AC model
increases the true positive rate by 9.9% from 69.5% to 76.4%, at a false positive
rate of 1% compared to the DQN model.

Our research makes use of sequential input data and performs multi-class mal-
ware classification. Machine learning approaches MLP, LSTM, GRU, and Trans-
former are used on the static opcodes to produce predictive results. The same
approaches are also applied to the benchmark dynamic API call dataset [3].

3 Dataset and Feature Pre-processing

3.1 Opcodes

Samples for malware and benign applications were collected from publicly avail-
able sources. The dataset contains 3256 malicious files made up by VirusShare3

and URLhaus4, and 744 FileHorse5 benign samples. The labels were obtained
from submitting the files to VirusTotal6 and using at least five or more anti-virus
engines to assign a class label. The application will be assigned to the “other”
class if it is not in the seven categories.

We use TextVectorization from Tensorflow for preprocessing the opcode
sequences, where the input sequence length is set to a maximum of 5000 and the

3 https://virusshare.com.
4 https://urlhaus.abuse.ch.
5 https://fileHorse.com.
6 http://www.virustotal.com.

https://virusshare.com
https://urlhaus.abuse.ch
https://fileHorse.com
http://www.virustotal.com
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output sequence length to 500. We also run the experiment by setting up higher
lengths and total maximum tokens; however, a maximum output sequence length
of 500 can already provide good results. The ‘adapt’ method is also used on the
initial dataset to create an index of the resulting vocabulary.

Fig. 1. Our Opcodes Extraction.

The following steps are also automated:

– Check the application implemented:
UPX, Mono/.Net, Zlib.

– Disassemble the executables to obtain
disassembled files.

– Search and remove flag/segment reg-
isters, interrupt instruction, illegal/(bad),
and dead code.

– Extract the first 5000 opcodes.

All samples are inspected to verify
whether it has a “PE” signature and what
type of compression algorithms is imple-
mented. Three packer types are investi-
gated: UPX, Zlip, and Mono/.Net. For
UPX and Zlib, they are parsed to UPX
unpacker and Zlib, respectively. For the
.NET Common Intermediate Language (CIL) code and metadata, “monodis”7

is used to disassemble. If it successfully decompresses a file, it will output a
respective logfile. Otherwise, it will use the Capstone Python library [2]8 and
then“objdump” [8]9 with -d option to disassemble only sections expected to con-
tain code.

Figure 1 shows the system architecture of such an automated process. The
first ten opcodes of a single example binary of each category are listed here:

• Backdoor: [pop, mov, sub, rcr, sub, stosb, pop, mov, sub, test]
• Miner: [lea, lea, sub, xor, cmp, mov, mov, mov, mov, je]
• Ransom: [movsx, xor, dec, je, dec, jne, mov, mov, jmp, mov]
• Rootkit: [loopne, add, add, add, dec, add, add, add, add, push]
• Trojan: [mov, add, add, add, dec, add, add, add, add, push]
• Virus: [nop, dec, add, add, add, dec, add, add, add, add]
• Benign: [push, mov, sub, cmp, je, cmp, mov, jne, or, mov]
• Other: [nop, push, add, add, add, dec, add, add, add, add]

The statistics are presented in terms of the minimum and the maximum num-
ber of total samples, complete in 5000 lengths grouped by each type. To select
the top 20 MLP significant features, SHapley Additive exPlanations (SHAP) [9]
was used. The DeepSHAP function from the open-source python package was
applied. To mitigate bias in a model, SHAP is one of model interpretability
7 https://www.mono-project.com/docs/tools+libraries/tools/monodis/.
8 https://www.capstone-engine.org/lang python.html.
9 https://man7.org/linux/man-pages/man1/objdump.1.html.

https://www.mono-project.com/docs/tools+libraries/tools/monodis/
https://www.capstone-engine.org/lang_python.html
https://man7.org/linux/man-pages/man1/objdump.1.html
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Table 1. Number of opcodes and extracted features for each malware category.

Type Minimum/# of
samples with 5,000
tokens

Total SHAP Selected Features

Ransom-ware 1/90 194 [n1, n95, n3, n44, n115, n134, n50,
n23, n5, n120, n10, n4, n152, n105,
n40, n55, n2, n12, n45, n14]

Trojan 1/426 2570 [n68, n50, n5, n23, n120, n1, n152,
n55, n44, n399, n115, n31, n25, n78,
n40, n59, n45, n14, n66, n4]

Miner 4/63 135 [n50, n12, n3, n44, n45, n1, n55, n4,
n2, n56, n115, n14, n5, n309, n8,
n13, n11, n17, n33, n15]

Virus 1/26 126 [n291, n230, n170, n131, n3, n25, n2,
n4, n408, n141, n209, n29, n115,
n32, n411, n93, n30, n55, n1, n181]

Rootkit 31/7 16 [n44, n45, n50, n58, n55, n68, n1,
n4, n23, n53, n3, n2, n18, n8, n15,
n115, n63, n10, n12, n56]

Backdoor 10/64 166 [n1, n55, n50, n5, n14, n23, n120,
n33, n27, n7, n152, n18, n49, n53,
n40, n36, n56, n25, n8, n6]

Benign 1/374 741 [n68, n50, n393, n55, n33, n44, n40,
n14, n1, n70, n224, n2, n6, n52, n90,
n27, n49, n56, n17, n86]

Other 1/17 52 [n55, n50, n393, n33, n1, n68, n40,
n14, n23, n2, n152, n52, n49, n6, n3,
n18, n56, n4, n27, n120]

that checks all the possible combinations of features for a prediction to calcu-
late the SHAP values. First, the learning model was trained on the full set of
features, and the importance of each feature was obtained by comparing model
predictions with and without the feature, which can be used to select significant
features. Each feature’s SHAP importance was computed individually by taking
the average Shapley values and then sorted in descending order according to
their importance before 20 attributes that have the most significant impact were
chosen. The details are depicted in Table 1.

The features are represented as the column sequences n1,n2,...,n5000 for all
samples where each column contains one opcode. For example, the first selected
feature for ransomware is “n1” the opcodes can be mov, push, sub, movsx, jmp,
std, daa, dec, etc. Compared to trojan, “n68” is selected for the first feature, the
opcodes can be add, or, sub, adc, cmp, insb, xor, and, etc.

Figure 2 presents a summary plot of the top Shapley values. The features
are ordered according to their importance, where “n1” is the feature that has
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the most impact on the model output, and “n55” is a shared feature that
appeared across all categories. Conversely, the features “n7”, “n13”, “n31”,
“n36”, “n58”, “n59”, “n63”, “n70”, “n66”, “n78”, “n86”, “n90”, “n95”, “n105”,
“n309”, “n399” are used seldom, especially the most number of rarely feature
use being in virus class. The top 3 opcodes for “n1” and “n55” features are listed
with the total number of occurrences for each class in Fig. 4. Overall, “push” is
evident in all four families and “add” is the second most common instruction.

Fig. 2. SHAP summary plot of the top
20 features of opcodes for MLP.

Fig. 3. SHAP summary plot of the top
20 features of APIs for MLP.

Fig. 4. Top 3 opcodes for ransomware, trojan, miner, and benign class for selected n1
and n55 features.

3.2 API Calls

Besides our opcodes, the most crucial part of the behavioral records are API
call sequences. The 7107 malicious samples of [3], recording the Windows 7
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API calls from application execution in an isolated environment (the Cuckoo
sandbox) is used here. That paper conducted behavior-based malware analysis
by collecting data from various GitHub pages with the git command-line utility.
The data belongs to multiple classes, which were obtained from the VirusTotal
by searching the MD5 signatures of each malware. In particular, eight classes
are considered. Five of them consist of 1001 samples, including Worm, Virus,
Trojan, Backdoor, and Downloader, while the other three classes are Spyware
(832), Adware (379), and Dropper (891). The objective was to build a benchmark
dataset for Windows API calls of metamorphic malware, which can change the
code signatures and recognize the environment to store their harmful behavior by
anti-analysis techniques in the environments implemented for malware analysis
[10]. Although this type of malware is hard to detect and classify with such
capabilities, the meaningless opcodes with their own dissembler/assembler parts
are added to observe the patterns of how metamorphic malware changes their
behavior. For example, making unnecessary API calls during the behavior change
can detect malware because the pattern is the same.

The Windows API is an interface for developing applications on the Windows
operating system. A Windows application can make API calls to request oper-
ating system services. The data is represented with a 3-channel image obtained
from grayscale image conversion and then using CNN and LSTM as the clas-
sification algorithms to detect malware families. From a sequence of 1000 API
calls, the unique 342 API calls can be extracted by providing an index from 0
to 341. We also perform the SHAP selection method on these API calls, and the
top 20 features are represented in Fig. 3.

4 Model

This section introduces the four machine learning algorithms employed in this
work for malware detection. The methodology adopted for automating the
opcode extraction and malicious behavior identification process is also described.

All models are implemented using TensorFlow, where hyper-parameters were
tuned by utilizing Keras Tuner [11]. The trained classifier is tested using 10%
of the data in the dataset. A 10-fold cross-validation approach is used to pre-
vent over-fitting. Model parameters commonly affecting the predictive result are
represented in terms of a list in Tables 2, 3 and 4. Their respective details are
presented in the following subsections.

4.1 Multi-layer Perceptron (MLP)

The MLP [12] network follows a standard setup using nonlinear activations.
It employs BatchNormalization and regularizers to avoid overfitting. An input
layer sepcifying the shape of the sequences is fed into two dense layers with
dropout [14] and a batchnorm layer in between consecutive dense layers. The
output layer consists of eight neurons densely connected to the last batch nor-
malization layer. All of the layers in the network use swish as their activation
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function. The model calculates loss based on the categorical cross-entropy and
computes accuracy as the evaluation. The model is further fine-tuned by adjust-
ing the hyperparameters to achieve the optimum results as provided in Table 2.

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a group of neural networks designed to
handle sequential data, such as text, where the data contains complex temporal
dependencies and hidden information. Gated Recurrent Units (GRU) [4] and
Long Short Term Memory networks (LSTM) [6] are modified versions of RNNs.
For this research, we use bidirectional GRU and bidirectional LSTM, where
the network considers sequences from right to left and the reverse order. We
use dropout to prevent overfitting, and a softmax layer is used to output the
malware family label.

Table 2. Hyperparameters tuning for MLP for opcodes and API calls

Name Initial value Tuning ranges Opcode best
value

APIs best
value

Batch size 15 ranges(10,50,5) 50 20

Epochs 200 ranges(100,600,50) 150 550

Optimizer RMSprop [‘Adam’,‘RMSprop’,
‘Adadelta’,‘Adagrad’]

Adagrad Adam

Learning
rate

0.0002 [0.0001,0.001,0.01,
0.0002,0.002,0.02]

0.002 0.001

Neurons [512,256] range(256,512,32) [928,896] [480,512]

Hidden
Layers

5 range(2,10) 9 3

Hidden
Neurons

[256,256,256,
256,256]

range(128,512,32) [384,352,128,416,
352,320,256,384,
224]

[160,320,480]

Bias
regularizer

[0.002, 0.001,
0.02]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.002,0.02,
0.0002]

[0.02,0.01,
0.002]

Kernel
regularizer

[0.01,0.01,
0.02]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.001,0.001,
0.001]

[0.01,0.001,
0.0001]

Kernel
constraint

[2.0,1.5,1.5] range(1,3,0.5) [2.0,2.5,2.0] [1.5,2.5,1.0]

Activity
regularizer

[0.0001, 0.001,
0.001]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.0001, 0.002,
0.0001]

[0.0002,0.01,
0.001]

4.3 Transformer

Transformers [15] are based on an attention-based encoder-decoder architecture
focusing on different tokens while generating words to model opcode sequences.
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The first embedding layer converted words into vectors, followed by the posi-
tional encoding layer to add the position information for each word. Then add
those vectors to their corresponding input embeddings. Next, they are encoded
to attention representations in the encoder layers, consisting of two sub-layers:
multi-headed attention and two fully-connected layers with a ReLU activation
in between. Multi-headed attention computes the attention weights for the input
simultaneously. Later, a hidden state is passed to the decoding stage with an
attention layer operating differently from the encoder to prevent seeing future
tokens. Lastly, GlobalAveragePooling1D is added, which averages over sequence
dimension and returns a fixed-length output vector before feeding into the last
softmax layer to get the word probabilities. The details about optimization from
the RandomSearch is provided in Table 4.

Table 3. GRU and LSTM hyperparameters tuning for API calls and opcodes.

Name Initial
value

Tuning ranges API calls (Best) Opcodes (Best)

GRU LSTM GRU LSTM

batch size 15 range(10,50,5) 25 20 30 50

epochs 200 range(100,650,50) 350 500 550 200

optimizer RMSprop [‘Adam’,‘RMSprop’,
‘Adadelta’, ‘Adagrad’]

Adam Adadelta Adam RMSprop

learning
rate

0.0001 [0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

0.0002 0.02 0.0001 0.0001

embedding 128 ranges(256,1024,64) 448 640 768 704

embedding
regularizer

0.0001 [0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

0.0001 0.0001 0.0002 0.0001

gru/lstm
units

[512, 256] ranges(128,512,32) [416, 288] [288, 384] [224, 512] [288, 448]

recurrent
regularizer

[0.0001,
0.001]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.002,
0.01]

[0.0001,
0.002]

[0.02,
0.0001]

[0.002,
0.0002]

kernel
regularizer

[0.001,
0.001]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.0002,
0.002]

[0.0001,
0.02]

[0.001,
0.0002]

[0.01,
0.02]

bias
regularizer

[0.01,
0.02]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.02,
0.01]

[0.002,
0.001]

[0.01,
0.01]

[0.0002,
0.02]

kernel
constraint

[2.0, 1.5] range(1,3,0.5) [1.5, 2.0] [2.0, 3.0] [1.5, 1.5] [1.5, 1.0]

Activity
regularizer

[0.0001,
0.0002]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.002,
0.02]

[0.001,
0.0001]

[0.01,
0.0002]

[0.01,
0.01]

5 Experimental Results

This section will illustrate the results of our experiment on static opcode instruc-
tions and dynamic APIs for malware detection using four learning approaches in
terms of classification metrics. We repeat 30 times the 10-fold cross-validation
using different seed values each time for tuning and average them to report
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the classification result on opcode sequences. Table 5 lists results for running all
algorithms with their default parameter settings on static opcodes. Overall, a
Transformer performs best among all four classifiers by achieving an accuracy
of 63% for opcodes. The Transformer also provides the best predictive result for
dynamic API calls [3] with default model parameters as shown in Table 6.

Table 7 shows the improvements achieved by adequately tuning the essential
hyperparameters. The overall performance increases for all classification models
compared to the default performances from Table 5. With the same learning app-
roach as the default parameters, the GRU exhibits the best results by reaching
the maximum accuracy at 87%. In Table 8, hyperparameter tuning is conducted
on dynamic dataset [3] on the same architecture as the static opcodes. In gen-
eral, the performance of all model approaches is obviously increased compared to
Table 6. The GRU can provide the best predictive result among other classifiers
by achieving the F1-score at 78%. In summary, the Transformer seems to be a
good default architecture, but alternative architectures can outperform it with
proper (and expensive) hyperparameter tuning. In our case, this is an MLP for
static and a GRU network for dynamic sequences.,

Table 4. Hyperparameters tuning for transformer for opcodes and API calls

Name Initial value Tuning ranges Opcode best
value

APIs best
value

Batch size 10 range(10,30,5) 15 15

Epochs 100 range(100,600,50) 250 250

Optimizer Adam [‘Adam’,‘RMSprop’,
‘Adadelta’,‘Adagrad’]

Adam Adam

Learning rate 0.0001 [0.0001,0.001,0.01,
0.0002,0.002,0.02]

0.0002 0.0002

Trans dim 512 ranges(512,2048,32) 832 640

Num heads 8 ranges(6,14,2) 12 12

Feed forward dim 512 ranges(1024,3172,32) 1536 1408

Enc layer 5 ranges(2,10) 6 6

Dec layer 5 ranges(1,10) 4 4

Embedding
regularizer

[0.001, 0.001] [0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.0002,
0.0002]

[0.0002,
0.0002]

Kernel regularizer [0.001, 0.001,
0.001]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.01, 0.002,
0.0002]

[0.01, 0.002,
0.0002]

Bias regularizer [0.01, 0.02,
0.001]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.001, 0.001,
0.0002]

[0.001, 0.001,
0.0002]

Kernel constraint [2.0, 1.5, 1.0] range(1,3,0.5) [1.5, 2.5, 2.5] [1.5, 2.5, 2.5]

Activity
regularizer

[0.001, 0.001,
0.001]

[0.0001, 0.001, 0.01,
0.0002, 0.002, 0.02]

[0.0001, 0.01,
0.01]

[0.0001, 0.01,
0.01]
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An alternative to classification accuracy is to use Precision, Recall, and F-
measure metrics for imbalanced classification. Thus, the per-class performance
for the respective best approach for both static opcodes and dynamic API calls
is reported in Table 9. Remarkably, precision and recall on opcodes is more than
90% for trojan. Nevertheless, Rootkit has the most significant standard devia-
tion compared to other categories. For API calls, Downloader has high precision
and recall and a high standard deviation on Dropper and Spyware. In addition
to the evaluation metrics, we also present the total elapsed time on the train-
ing default configuration and hyperparameter tuning with ten maximum trials
for each estimator. We used stratified 10-Folds cross-validation using the GPU.
Although RandomSearch considers not all possible combinations, Transformer
takes the most time for optimization as shown in Table 10.

Finally, Fig. 6 and Fig. 5 depict the confusion matrix and ROC curves asso-
ciated with the best model obtained from hyperparameter search space. For
Fig. 6, a comparison between the predicted and expected values is calculated.
The figures are less than 2% except for Trojan and Other class regarding the
false positive rate. Likewise, ROC curves on opcodes as in Fig. 5 show that all
but one category can yield AUC values of more than 90%.

Table 5. Model evaluation using default hyperparameter settings for opcodes

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

LSTM 0.605± 0.02 0.598± 0.05 0.111± 0.01 0.878± 0.02

GRU 0.597± 0.02 0.590± 0.03 0.112± 0.01 0.880± 0.01

Transformer 0.727± 0.02 0.725± 0.02 0.083± 0.01 0.914± 0.01

MLP 0.655± 0.02 0.654± 0.02 0.101± 0.01 0.859± 0.01

Table 6. Model evaluation using default hyperparameter settings for API calls

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

LSTM 0.449± 0.02 0.461± 0.02 0.146± 0.01 0.802± 0.01

GRU 0.426± 0.02 0.444± 0.03 0.148± 0.01 0.775± 0.01

Transformer 0.461± 0.02 0.466± 0.02 0.143± 0.01 0.813± 0.01

MLP 0.278± 0.02 0.227± 0.04 0.191± 0.01 0.661± 0.01

Table 7. Model evaluation with average 10 fold cross-validation on hyperparameter
tuning for opcodes

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

LSTM 0.858± 0.04 0.856± 0.04 0.054± 0.01 0.977± 0.02

GRU 0.891± 0.05 0.890± 0.05 0.036± 0.01 0.984± 0.02

Transformer 0.818± 0.03 0.807± 0.03 0.077± 0.01 0.971± 0.02

MLP 0.826± 0.03 0.824± 0.03 0.072± 0.01 0.967± 0.02
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Table 8. Model evaluation with average 10 fold cross-validation on hyperparameter
tuning on API calls

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

LSTM 0.635± 0.06 0.642± 0.07 0.117± 0.01 0.915± 0.04

GRU 0.736± 0.09 0.783± 0.11 0.075± 0.02 0.945± 0.05

Transformer 0.626± 0.09 0.691± 0.10 0.102± 0.02 0.905± 0.05

MLP 0.350± 0.03 0.248± 0.04 0.185± 0.01 0.745± 0.03

Fig. 5. Average ROC Curve for cross-
validation, GRU, Opcodes

Fig. 6. Average Confusion matrix for
cross-validation, GRU, Opcodes

Table 9. Precision, recall, and F1 score per class, for 10-fold cross-validation of the
GRU on opcodes and API calls.

Static opcodes Dynamic API calls

Precision Recall F1 score Precision Recall F1 score

Benign 0.90± 0.04 0.87± 0.07 0.88± 0.04 Adware 0.99± 0.02 0.67± 0.07 0.80± 0.06

Backdoor 0.81± 0.05 0.69± 0.16 0.74± 0.10 Backdoor 0.92± 0.12 0.68± 0.10 0.78± 0.10

Miner 0.80± 0.17 0.81± 0.14 0.80± 0.14 Downloader 0.94± 0.08 0.82± 0.10 0.88± 0.09

Ransom 0.92± 0.25 0.74± 0.23 0.82± 0.23 Dropper 0.94± 0.11 0.71± 0.14 0.81± 0.13

Rootkit 0.90± 0.46 0.56± 0.33 0.69± 0.36 Spyware 0.88± 0.16 0.64± 0.11 0.74± 0.12

Trojan 0.90± 0.04 0.95± 0.03 0.93± 0.03 Trojan 0.90± 0.13 0.66± 0.10 0.76± 0.11

Virus 0.88± 0.27 0.48± 0.18 0.62± 0.20 Worm 0.96± 0.06 0.64± 0.09 0.77± 0.08

Other 0.88± 0.4 0.42± 0.12 0.57± 0.18 Virus 0.92± 0.14 0.61± 0.10 0.73± 0.11
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Table 10. Elapsed time

Algorithm Opcode API

Training Tuning Training Tuning

LSTM 3h:20m 4h:19m 17h:48m 20h:16m

GRU 3h:04m 3h:50m 17h:25m 19h:48m

Transformer 35h:41m 1 week 27h:37m 44h:41m

MLP 1h:08m 2h:36m 2h:25m 4h:18m

6 Conclusions and Future Work

This paper uses open-source software to extract static opcode sequences and
four classifiers to predict malware categories. The very same classifiers were also
applied to the dynamic API call sequences. Regardless of the execution flow, the
first 5000 opcode sequences extracted from the .text section seem to be suffi-
cient for good malware prediction results. Despite the imbalanced nature of our
datasets, a multiclass approach has worked well for both. A potential limitation
of our approach is that opcodes may not be extracted properly by disassembling
tools due to unsupported and less popular programming languages. The disas-
sembling tools also struggle with particularly advanced techniques employed by
metamorphic and polymorphic malware. As a result, the obtained opcodes may
be insufficient and not reveal significant enough patterns for successful malware
classification. We will try to address this issue in future work. We will also con-
tinue to collect and analyze many more malware samples, so that the results
reported here can be verified on much larger datasets.
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Abstract. When working with time series, it is often beneficial to have
an idea as to how complex the signal is. Periodic, chaotic and random
signals (from least to most complex) may each be approached in different
ways, and knowing when a signal can be identified as belonging to one
of these categories can reveal a lot about the underlying system. In the
field of time series analysis, permutation entropy has emerged as one of
the premier measures of time series complexity due to its ability to be
calculated from data alone. We propose an alternative method for calcu-
lating complexity based on the machine learning paradigm of reservoir
computing, and how the outputs of these neural networks capture similar
information regarding signal complexity. We observe similar behaviour
in our proposed measure to both the Lyapunov exponent and permuta-
tion entropy for well known dynamical systems. Additionally, we assess
the dependence of our measure on key hyperparameters of the model,
drawing conclusions about the invariance of the measure and possible
implications on informing network structure.

Keywords: Reservoir computing · Recurrent neural networks · Time
series analysis · Information entropy

1 Introduction

Time Series Complexity. When working with time series, understanding
the nature of the signal we are working with can have profound impacts on
the modelling choices we make. For example, there is little gain in applying
deep learning to a trivial periodic signal, but similarly one can waste many
hours attempting to extract patterns from a random signal that lacks relevant
information. Knowing when a signal is periodic, random or chaotic is the task
of time-series complexity (henceforth simply complexity).

There are a number of well-defined approaches to determining complexity for
known systems. Most notable among these are measures of fractal dimension,
entropy and Lyapunov exponents, all of which are very capable at establishing
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complexity [8,21]. However, these assume knowledge of the equations underpin-
ning the system, or require a reasonable simulation of the system. Determining
complexity of a signal from data alone is a much more demanding task, however
there are a number of proposed methods that are capable of generating good
approximations [9,29].

Permutation Entropy. The problem of calculating complexity from data was
the focus of the work in 2002 by Bandt and Pompe [2], which introduced an
entropy approximation called permutation entropy (PE). The idea of PE is to
first construct a delay embedding of the signal with dimension m (called the
embedding dimension) by taking m lagged states of the signal with a separation
of τ time steps (called the embedding lag). From this embedding each point
in time is transformed into a symbol of length m by looking at the ranking of
the dimensions. For example, with delay embedding m = 2 and embedding lag
τ = 1 a series u(t) can have two possible symbols; ψ(1) = (0, 1) if ut < ut+1 or
ψ(2) = (1, 0) if ut > ut+1. As such, a series such as

u = (1, 8,−4, 5, 2)

would have have two ψ(1) and two ψ(2) symbols.
The frequency of the symbols is used to determine a probability p(ψ), and

the PE is then calculated as

HPE(m) = −
m∑

i=1

p(ψ(i)) log2(p(ψ(i)) . (1)

There are a number of methods for determining the two hyperparameters m
and τ [6,22], however, to avoid excessive discussion we choose to set τ = 1 and
m = 6 or 12 for our trials, chosen to be sensible with respect to the systems
being considered. What is important to note though is that the determination
of these parameters can be nontrivial, and that the higher the values for m and
τ the less symbols can be generated, leading to a problem of scale for large,
complex systems. As such, the development of additional methods to estimate
entropy in cases of limited data or large dimensional systems remains a field of
active interest.

Permutation entropy has seen significant interest since its introduction, pre-
dominantly in the field of time series analysis where its connections to ordinal
partition networks has made it a popular measure for complexity in the field of
network science [17,23]. Due to this it has also seen use as a feature in application
tasks such as concept drift [4,7]. These practical use cases of permutation entropy
likewise encourage further research into the field of complexity estimation, par-
ticularly in the presence of noise or other artifacts of real-world processes.

We propose here the use of a reservoir computing (RC) based complexity
measure as an alternative to PE due to its historically strong performance in
time series prediction tasks, both with synthetic and experimental data. We
detail our proposed method in Sect. 2, then explore the method in a number of
qualitative and quantitative trials in Sect. 3.
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2 Methods

Reservoir Computing. RC is a machine learning paradigm that emerged in
the early 2000s [10,16] as an efficient tool for time series related tasks. The defin-
ing feature of a reservoir computer is its fixed, recurrent network (the reservoir)
that facilitates the need for training only at the readout step. These reservoirs
need not be complicated, and in many cases can be generated randomly with
only a small number of hyperparameters needing to be defined a priori. What
facilitates the use of such a simple structure is the way in which the reservoir
computer embeds time series into a higher dimensional space. This embedding
has two key properties. Firstly, each activation state X is a function of the input
U at that time and the previous states of the reservoir, resulting in what is
known as the echo state property (owing to the way each state echos the prior
states). Secondly, the weights given to previous terms decrease the further in the
past they are, resulting in what is known as the fading memory property as the
reservoir only remembers the M most recent states. These two properties result
in the echo function

Xt = f∞ (Ut, Ut−1, ...)
≈ f (Ut, Ut−1, ..., Ut−M+1)

(2)

which is analog to a delay embedding with m = M and thus allows reconstruction
of the dynamics of the underlying system [27,28].

Because of – or despite – this simple structure, RC has exhibited impressive
performance for supervised time series prediction [13,14,20] and classification
[1,11] tasks. Moreover, these principles have allowed for efficient implementation
of RC in hardware where physical substrates can act as a reservoir [18,24].
There is proportionally less work that has looked at RC in an unsupervised
sense [12,26], however there has been more work recently looking at RC structure
as a means for time series analysis without concern for the classical training
setup [3,5,25], as is the context of this paper.

Implementation. We consider the discrete-time echo state network [10] imple-
mentation of a reservoir computer, with the network states X ∈ R

N×T evolving
such that at time t the state when driven by some input U ∈ R

T is given by

Xt = tanh (WadjXt−1 + WinUt + Wbias) . (3)

We consider here the case of U being a scalar signal only, however, this
implementation could be easily adapted to consider vector valued signals as
well. The elements of Win ∈ R

N and Wbias ∈ R
N are both drawn randomly

from a standard Gaussian distribution, and left fixed throughout the networks
lifespan. The network adjacency matrix Wadj ∈ R

N×N is initially generated
randomly with a specified average degree per node d and elements drawn from
a standard Gaussian distribution. This is then scaled such that the maximal
absolute eigenvalue of the adjacency matrix (called the spectral radius ρ) is of
unit value to ensure consistency of the reservoir dynamics [15], and then kept
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fixed. The hyperbolic tangent function is chosen here as the activation function,
however other sigmoid functions may be chosen with similar functionality.

The fundamental idea of RC is to generate a large ensemble of diverse non-
linear transformations of the input signal U to facilitate information processing
applications. The reservoir effectively acts as an embedding machine, recreating
underlying structures of the system from inputs alone. As one increases the size
of the reservoir N , a greater ensemble of variations is obtained and the quality
of the reconstruction improves towards some limit. Since the hard work of pre-
senting the information is already handled by the construction of the reservoir,
the only training that is required is from the reservoir states to some desired
output Z which is of the same size as U . The variable Z typically represents
some future state of the signal Zt = Ut+Δt for forecasting tasks, a state from a
different signal for prediction tasks or some label for classification tasks. The RC
then approximates this target Z by an output Y ∼ Z, following a least-squares
regression that is usually implemented with Tikhonov regularisation.

Y = RX (4)

R = ZX� (
XX� + βI

)−1
. (5)

For the trials throughout this paper (unless otherwise specified), we choose
to keep hyperparameters fixed with N = 300, d = 5, ρ = 1 and β = 0.001.
These choices are somewhat arbitrary, but ensure we are operating in a regime
consistent with common RC methodology.

Reservoir Readout Complexity. The concept of complexity has been con-
sidered with RC before. Pathak et al. 2017 [19] utilised a fully trained RC system
as a proxy for the original system in calculating Lyapunov exponents for a num-
ber of complex systems. Carrol 2018 [5] also looked at using RC as a means of
calculating Lyapunov exponents, but more prevalent to this research they also
proposed a variation on PE that used the reservoir activation states in place of
a delay embedding for determining symbols. They were able to show that this
entropy measure could be used for informing the hyperparameter choices of the
reservoir, noting a minimisation in signal classification errors when the reservoir
entropy was maximised. However, there is an immediate problem here in that
with even a modestly sized reservoir their are potentially a very large number of
symbols when using the reservoir activation states in place of a delay embedding,
far more than can be reasonably worked with. In practice the actual number of
symbols should be much lower due to correlation between nodes, however prob-
lems can still arise for finitely sampled signals, in the presence of noise or in
particular RC setups where larger variations between node activations occur.

We approached the idea of complexity from a more ground-up perspective,
leveraging the following assumptions;

1. The more complex a signal/system, the harder the task of forecasting future
values.
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(a) Random (b) Periodic (c) Chaotic

Fig. 1. Mean readout vectors R sorted by node magnitude for various random (a),
periodic (b) and chaotic (c) signals. Ribbons show the 5th and 95th percentiles.

2. In RC, hard tasks require information from a larger number of nodes to simple
tasks.

Thus, by considering the proportion of nodes used for time-series forecasting
tasks (we opt to consider the simple one-step forecast Yt ∼ Zt = Ut+1 here), we
should be able to get a proxy for the complexity of the underlying signal. What
we require then is a way of quantifying the proportion of node information used.
This is analogous to looking at the magnitude of the weights assigned during
the training process in presence of regularisation.

These magnitude curves for the one-step forecast across many systems are
presented in Fig. 1, where the node indices have been sorted from least to most
contribution. What we observe supported our initial assumptions, with clear dif-
ferences in weight magnitudes being observed between periodic (low complexity),
chaotic (moderate complexity) and random (high complexity) signals. Based on
these results, it did not seem necessary to define a highly sophisticated measure
to read information from the curves, and that instead we could simply look at a
trapezoidal approximation for the area under the curves;

HRC = log

(
N−1∑

i=1

Ri + Ri+1

2

)

≈ log

(
N∑

i=1

|Ri|
)

,

(6)

where R is sorted by magnitude as in Fig. 1(a-c) and the latter approximation
holds for large N as typically used in RC. We will henceforth refer to this measure
as RC complexity (RCC).

Of the hyperparameters at play here, there are three that we expect to have
the largest impact on our complexity measure. Firstly, the size of the reservoir N
is going to have a significant impact on the ensemble of node activations that can
be chosen from during the training step. We hypothesise that as N gets large,
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additional nodes will add negligible additional information, thus being given
weight close to 0 and not significantly impacting the complexity measure. Next,
the regularisation parameter is crucial here as it ensures node selection is carried
out as we expect; giving more weight to the nodes that are most informative,
and punishing nodes that offer little information thus allowing us to get a good
picture for what proportion of the nodes are utilised. Finally, as with any task
involving linear regression, the length of the underlying signal will impact the
quality of the prediction, and as such should have an impact on our complexity
measure. All of these hyperparameters will be assessed in Sect. 3.

3 Results

System Analysis. To get an understanding of our proposed complexity mea-
sure, we opted to look at two well known dynamical systems; the logistic map
and Rössler system.

(a) Bifurcation Diagram (b) Lyapunov Exponent

(c) Noise Free (d) With Noise

Fig. 2. Bifurcation diagram (a), Lyapunov exponents (b) and corresponding complexity
measures (c, d) for the logistic map. The PE and RCC are shown, both in the case
without measurement noise (c) and with 0.4% standard Gaussian measurement noise
(d).
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The logistic map is a one-dimensional discrete-time map governed by the
equation ut+1 = rut(1 − ut) where r ∈ [3.5, 4] is a bifurcation parameter. Dif-
ferent values of r present different dynamics, from stable fixed points to orbits
of various periods and even including chaos. The bifurcation diagram and corre-
sponding Lyapunov exponents are shown in Figs. 2(a-b), respectively. The cor-
responding RCC and PE are presented in Fig. 2c, where we can immediately
observe similarities between the spiking behaviour in the two complexity mea-
sures and the transitions in the bifurcation diagram and Lyapunov exponents.

(a) Bifurcation Diagram (b) Noise Free

(c) With Noise

Fig. 3. Bifurcation diagram (a) and corresponding complexity measures (b, c) for the
Rössler system. The PE and RCC are shown, both in the case without measurement
noise (b) and with 4% Gaussian measurement noise (c).

The Rössler system, unlike the logistic map, is multi-dimensional and con-
tinuous in time, however presents similar bifurcation behaviour. The equations
governing the system are

u̇1 = −u2 − u3

u̇2 = u1 + 0.2u2 (7)
u̇3 = r − u3(u1 − 5.7)

where u = u1 is our signal of interest, with r ∈ [0.05, 1.60] our bifurcation
parameter. Due to the continuous nature, capturing transitions in dynamics is
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a harder task, and we expect factors such as sampling rate (chosen here to be
Δt = 0.5) to become more critical, especially in the case of PE.

Observing the results in Fig. 3, we immediately see greater differences between
the RCC and PE measures. Focusing on the noise free case, we see that the RCC
responds to significantly less transitions that the PE. While concerning on face
value, looking at the bifurcation diagram (particularly for the r ∈ [0.9, 1.2] region),
the Rössler system is engaged in a periodic regime with little variation with the
parameters. As such, we would expect to see very little variation in our complexity
measure, supporting the use of theRCCover thePE in this case. The reason for this
spiking behaviour in the PE is the fixed sampling rate. As we vary our bifurcation
parameter and the orbit frequency of the system changes, we encounter situations
where the sampling rate leads to loss of information, and thus lower complexity
hence the spiking behaviour observed.

We additionally note that with the chosen embedding dimension m = 6, the
PE appears relatively insensitive to abrupt transitions, and generally exhibits
quite high variability. Recalling the continuous dynamics and thus larger time
scale of the Rössler system this prompted us to also consider the PE with an
embedding dimension m = 12, which is generally more responsive to dynamic
conditions than the PE with m = 6. However, it remains sensitive to the sampling
rate and is still generally more variable than the RCC.

The introduction of noise seemed to impact both the PE and RCC mea-
sures in similar ways; a general increase in the variability of the measure, but
maintaining similar sensitivity to transitions as in the noise-free case. The vari-
ability of the RCC appears to be impacted more by the introduction of noise
than either of the PE measurements. This prompted us to consider a different
choice for our regularisation parameter β, as increasing this parameter should
prevent overfitting on finite size effects introduced by the noise. By increasing
β we observed a significant reduction in the variability, but also note that the
measure had decreased sensitivity to some of the major transitions, particularly
the transitions between periodic and chaotic regimes around r ≈ 0.3.

Hyperparameter Analysis. In this section we assess the dependence of the
RCC measure on the key hyperparameters discussed in Sect. 2. To do this, we
continue to look at the logistic map and Rössler systems discussed at the start
of Sect. 3, choosing bifurcation parameter values of r ∈ {3.5, 3.7, 4.0} and r ∈
{0.75, 0.45, 0.2} for the two systems respectively, listed by increasing complexity.
Additionally, we consider a signal of random noise as a comparison for both
systems. In each case trials were repeated 300 times and the mean was plotted,
with error bars representing the 5th and 95th percentiles. Note the use of log
scales for the x-axis throughout the section.

We begin by looking at the behaviour with respect to the reservoir size N (see
Fig. 4). First, it is important to note here that by the nature of this task it is not
possible to keep the reservoir structure fixed, as generating reservoirs of different
size requires generation of a new adjacency matrix in each case. As such we
can observe the high variance resulting from different reservoir structures, which
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(a) Logistic Map metsySrelssöR)b(

Fig. 4. Variation in the RCC measure of a signal with respect to the reservoir size N
for the logistic map (a) and Rössler system (b).

notably is higher than supposedly comparable results we will see in the numerical
analysis for the regularisation parameter and signal length (see Figs. 5 & 6). The
reservoir is kept fixed for all other investigations in this paper, which together
with our choice of N = 300 makes the variance in the latter investigations
negligible.

None the less, the observed behaviour is consistent with the general RC
expectations and our assumptions. For small reservoir sizes, it is more difficult
to get a good representation of the underlying signal and so there is significantly
more variation in individual complexities, and greater overlap between complex-
ities of different signals. We begin to see successful separation at around the
N = 100 mark, and observe that the variation in complexities is almost com-
pletely eliminated by the N = 1000 node mark. In the context of time-series
analysis, this suggests that the RCC is invariant in the limit N → ∞, however
the analytics required to prove such a claim falls well outside the consideration
of this paper. We additionally note that the apparent invariance is even more
fascinating given the variation in reservoir structure, and may suggest that for
large enough reservoirs the structure is a relatively unimportant consideration
outside of ensuring consistency.

Turning our attention to the regularisation parameter β (see Fig. 5), we
choose to focus specifically on the Rössler system as the introduction of noise
with this system proved more impactful, and as such should be more informa-
tive with regards to the role regularisation may play. There are three important
behaviours we observe here related to the limit cases as β → 0 and as β → ∞.
Considering first the β → ∞ case, we observe a gradual convergence of the com-
plexity for all signals with and without noise. We expect this, as increased reg-
ularisation should push the values of our readout vector towards uniform value,
essentially removing any potential information that could be gained from them.
We would expect this convergence to likewise reduce the variation in complexity
values, which we also observe.
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(a) Noise Free (b) 4% Noise

Fig. 5. Variation in the RCC measure of a signal from the Rössler system with respect
to the regularisation parameter β in the case of no additive noise (a) and 4% additive
noise (b).

The behaviour as β → 0 is more interesting. For the noise free case, results
suggest that separation increases in the limit, and should be maximised when
β = 0. Indeed, calculation of the complexities at β = 0 gives complexities of
4.93, 6.46, 6.85 and 6.93 for the four signals in increasing expected complexity,
respectively. While there is a reduction in separability, the hierarchy of complex-
ity is maintained, and in particular the separation between the low complexity
r = 0.75 signal and the other signals remains quite high. The explanation for
this behaviour likely comes down to the mechanism of Tikhonov regularisa-
tion behind Eq. 5, which would require additional analysis which fell outside the
scope for this investigation. We note however that there is no significant change
to the variation as β → 0, and that improvements in general are negligible below
β ≈ 0.005. The case with noise here is more telling, and we see that as regu-
larisation falls we see a convergence of all measures to some high complexity.
This aligns more with expectations, as we expect that as the regularisation gets
sufficiently low, we begin to train on the finite size effects presented by the noise
and as a result observe the corresponding increased complexity we have seen
with other purely random signals.

Looking at the variations with respect to signal lengths (see Fig. 6), there
are a number of notable features and comparisons that immediately stand out.
Firstly, the RCC appears to reach an optimum at around the T = 300 for
the random signal case. This can be explained in terms of the signal length with
respect to the size of the reservoir N , the latter of which is fixed at N = 300. The
regime T � N is characterised by over-fitting as there are more variables than
data points. This can result in seemingly optimal solutions using only a fraction
of the node values that are, however, mostly finite-size effects. For T � N , the
issues with trying to predict future values of random noise become apparent and
the best approximation capable by the reservoir becomes mapping to the mean
of the signal, which due to normalisation will always be 0. Similarly to the high
regularisation case, this leads to a convergence of values in the readout vector and
a loss of information. This relationship between reservoir size and signal length
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(a) RCC Logistic (b) PE Logistic

(c) RCC Rössler relssöREP)d(

Fig. 6. Variation in the calculated complexity of the signal with respect to the length
of the signal for the logistic map (a,b) and Rössler system (c,d). Both the RCC (a,c)
and PE (b,d) complexities were considered.

is presented in Fig. 7, which also highlights the decreased variation as reservoir
size increases. These results lead us to conclude that reservoir size and signal
length should always be considered interrelated, and in the future the choice of
one should not be made without consideration of the other. The behaviour in
the informative signal cases is somewhat more predictable; decreased variation
as signal length increases, with a gradual trend towards some steady state.

Looking again at Fig. 6 and focussing on comparisons between the RCC and
PE measures without the presence of noise, there are two main conclusions.
Firstly, in the limit as T → ∞ the PE seems to offer comparable separation for
the informative signals, but better performance for the noise signal where we
do not observe the same deterioration for T � N and instead see the eventual
formation of a steady state. For low signal lengths, however, the opposite appears
to be true. While the RCC appears capable of separating the four cases with
as few as around 15 data points, we do not see full separation in the PE case
until around 50 data points. In terms of variation of complexities, variation
is almost entirely eliminated for informative signals by around 60 data points,
relative to the almost 400 data points required for PE. This result is important
when considering applications, as it would suggest the RC approach is generally
better for determining signal complexity when data is limited. Turning attention
to the the cases in the presence of noise, the PE measure appears incapable of
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Fig. 7. RCC measure with respect to signal length T of random noise for various fixed
reservoir sizes N . Note the characteristic peaks where T ≈ N .

separating the non-random signal complexities whereas the RCC does with as
few as 50 data points. This heavily suggests that RCC can offer improvements
over current PE measures in this context.

4 Conclusion

We have introduced a novel method for calculating time series complexity using
RC. We showed that it performs similarly to both system-driven measures such
as the Lyapunov exponent, as well as the data driven measures such as PE.
There are a number of implications here for future work. Firstly, the methods
introduced here were not optimised; we did not look at approaches for choosing
appropriate reservoir sizes or regularisation, and our choice for reading out com-
plexity was done based on empirical observations. Further analysis may provide
a more robust method that offers additional meaning than simply a proxy for
complexity.

Secondly, a possible application of our method may be found in reservoir
design. This research has shown a clear connection between the complexity char-
acteristics of a signal and the structure of the reservoir computer when making
predictions on that signal. Future work may look to unpack this further, and
look for ways of inferring structure of the reservoir computer, such as an opti-
mal range of connectivities d or spectral radii ρ, by first calculating an efficient
complexity measures such as the PE.
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Abstract. It has been well documented that both boosting and bagging
algorithms improve ensemble performance. However, these types of algo-
rithms have only infrequently been applied to ensembles of constructivist
learners which are based on neural networks. Although there have been
previous attempts at developing similar ensemble learning algorithms for
constructivist learners, our proposed approach also addresses the issue
of ensuring more diversity of the learners in the ensemble and offers a
different approach for handling imbalanced data sets. More specifically,
this paper investigates how a modified version of the AdaBoost algorithm
can be applied to generate an ensemble of simple incremental learning
neural network-based constructivist learners known as the Self-Evolving
Connectionist System (SECoS). We develop this boosting algorithm to
leverage the accurate learning of the SECoS and to promote diversity in
these SECoS learners in order to create an optimal model for classifica-
tion tasks. Moreover, we adopt a similar minority class sampling method
inspired by RUSBoost which addresses the class imbalance problem when
learning from data. Our proposed AdaBoostedSECoS (ABSECoS) learn-
ing framework is compared with other ensemble-based methods using
four benchmark data sets, three of which have class imbalance. The
results of these experiments suggest ABSECoS performs comparably well
against similar ensemble methods using boosting techniques.

Keywords: Ensemble learning · Adaptive systems · Neural networks

One of the main problems in generating an accurate classifier that can both
learn from training data and generalize well is dependent on reducing both bias
and variance in its learning. Compounding this problem is the issue of class
imbalance which has the effect of reducing the accuracy of the learning system.

To address this problem past solutions have applied variants on generating
boosted ensembles of classifiers primarily based on algorithms such as the pop-
ular AdaBoost approach [10]. This method has been demonstrated to work well
with simple weak classifiers, for example näıve Bayesian classifiers [24] and decision
trees [9]. But one type of classifier which AdaBoost has not been frequently applied
is the family of Evolving Connectionist Systems (ECoS) methods [13,14,16].

The motivation for investigating how ensemble methods can be applied to
ECoS systems in particular is that three of the requirements for ECoS system
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H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 456–469, 2022.
https://doi.org/10.1007/978-3-031-22695-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_32&domain=pdf
http://orcid.org/0000-0001-5202-9700
https://doi.org/10.1007/978-3-031-22695-3_32


Boosted Self-evolving Neural Networks for Pattern Recognition 457

design are 1) fast learning from a large amount of data; 2) real-time, incremental
adaptation to new data; and 3) continuous improvement throughout the lifetime
of the system [15]. Ensemble methods for learning systems promote diversity in
its learners and ECoS methods can enhance this diversity by its constructivist
algorithms which modify the structure of the network as training data is pre-
sented; normally only requiring one pass to accurately learn data. These prop-
erties of ECoS learners result in models which are hard to over-train as they
learn quickly, and they are far more resistant to catastrophic forgetting than
most other models as new training data are represented by adding new neurons
rather than accommodating the additional data in existing neurons [27].

One specific implementation of ECoS, the aforementioned Simple-Evolving
Connectionist System (SECoS) [27] uses a modified supervised learning algo-
rithm based on [13]. To generate an AdaBoost based SECoS ensemble of learn-
ers therefore requires 1) that the original architecture of the SECoS learner be
modified to become a pseudo-weak learner, 2) the AdaBoost algorithm be mod-
ified to incorporate this learner, 3) a suitable function to establish consensus
amongst the ensemble of learners for each new data instance presented to it,
and 4) how to deal with class imbalance if present in the data set. Satisfying all
four requirements and validating this approach is the focus of this paper.

The proposed approach is compared with the performance of a single SECoS
learner, Random Forest, multi-class variant of the AdaBoost algorithm, and the
state-of-the-art XGBoost algorithm. Not only do the results of the experiments
suggest that the SECoS-based ensemble performs comparatively well, but also
provides some insight into how ensemble-based learning can be improved upon
to tackle more complex problem domains especially those that require robust
Machine Learning (ML) systems which can be applied for accurate pattern recog-
nition in the horticultural domain [5].

Therefore, our original contributions of this paper are:

– We build on earlier attempts to generate ECoS-based ensembles by incorpo-
rating a modified version of the AdaBoost algorithm, addressing the problem
of forcing this SECoS-based ensemble to learn “difficult” examples in the
data set, controlling the growth of the SECoS, and propose a method for
overcoming potential class imbalance in the data set.

– To validate our proposed approach and to provide proof of concept we com-
pare our proposed ABSECoS algorithm with three popular ensemble-methods
using four well-known ML benchmark data sets.

– Our findings indicate that our ABSECoS approach comparably well against
similar ensemble methods some of which also adopt boosting techniques.

The rest of the paper is organized as follows. In Sect. 1, we briefly review rele-
vant prior work. Section 2 details our proposed framework. Experiments applying
our framework are described in Sect. 3. The results and discussion of the exper-
iments are presented in Sect. 4. Finally, in Sect. 5 we revisit our key objectives
in the context of the results we obtained leading to areas of improvement in the
form of future work.
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1 Background

Ensemble learning involves the combination of multiple learners to solve a par-
ticular machine learning task. The intuition behind this approach is weighing
and combining several individual opinions is better than choosing the opinion
of one individual [22]. In terms of a machine learning context avoiding over-
fitting, decreasing the risk of the ensemble obtaining a local minimum, and
better coverage thus a better fit to the space the data set represents are just
three reasons why ensembles can improve predictive performance [22]. Moreover,
ensemble methods can overcome specific difficult challenges to machine learning
algorithms such as better dealing with class imbalance. Strategies such as over-
sampling the minority class creating “synthetic” examples instead of sampling
with replacement and under-sampling the majority class as in the Synthetic
Minority Over-sampling Technique (SMOTE) [3] or randomly under-sampling
the minority class like Random Under-sampling Boosting (RUSBoost) [23] can
achieve better ensemble performance.

To this end the first documented attempt at proposing an ECoS-based ensem-
ble was [29]. Here an on-line clustering algorithm [25] was used to determine the
number of Evolving Fuzzy Neural Network (EFuNN)s [16] which were trained on
data that these clusters were comprised. Although this architecture had potential
and the results reported were favorable, there was still issues with the learning
algorithm dealing with class imbalance, optimizing the parameter settings, and
maintaining diversity of the individual learners in the ensemble. A similar app-
roach was proposed by [19] who applied an on-line clustering method to partition
the input space into N clusters but instead used a co-evolutionary approach to
both train and optimize an ensemble of EFuNNs based on the same number of
clusters. However, this framework required prior definition of parameters for the
fitness function which, if poorly selected, may adversely affect ensemble perfor-
mance. In [18] this issue was addressed by employing a co-evolutionary multi-
objective genetic algorithm. But the high computational cost of this method
would not align with one of the requirements of an ECoS-based model which is
the real-time, incremental adaptation to new data [15].

Nevertheless, we still consider that an alternative architecture for an ECoS-
based ensemble would be of use. This would involve reducing the complexity of
the ensemble architecture since each learner in the ensemble was an Evolving
Fuzzy Neural Network (EFuNN) [16]. Moreover, we need to address the issue
of reducing the number of rules generated by each EFuNN whilst preserving or
improving on the overall performance accuracy of the ensemble.

Therefore, we turn our attention towards the use of a related ECoS-based
architecture known as the Simple-Evolving Connectionist System (SECoS) which
is a less complex architecture than the EFuNN and adopts a modified supervised
learning algorithm based on [13]. The main problem now is to establish how the
weights for each data instance are modified and how each SECoS ensemble makes
use of this information. In addition, as each SECoS learner can add more rule
nodes to its hidden layer when training, then determining the maximum number
of rules to add based on the classification error of the previous learner.
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2 Framework Implementation

2.1 Creating an AdaBoost-Based Ensemble of SECoS Learners

Over twenty years ago [10] proposed AdaBoost as an effective means of gen-
erating robust and accurate ensembles of learners. Since then there have been
many improvements to and variants of this framework. For recent treatment of
AdaBoost and ensemble learning in general refer to [6,22]. The key principle of
the AdaBoost algorithm is that data instances that were not correctly classified
by the previous weak learner have their corresponding weights increased thus
forcing the next weak learner to change its hypothesis i.e. focus on learning the
“difficult” examples which have high corresponding weights.

Therefore, a solution to having an ECoS-based ensemble which employs
AdaBoost is to apply a modified version of the boosting algorithm and a less
complex ECoS learner to play the role of the weak learner.

2.2 The Weak Learner Used in ABSECoS

One implementation of ECoS, the SECoS, is a three layer feed-forward neural
network where in the evolving (middle) layer rule nodes (neurons) are incremen-
tally added only if a new data instance is dissimilar from prototypes represented
by the existing rule nodes in this layer and one of more rule nodes are pruned
(removed) if these satisfy a predefined criterion. Given the complexity of the
SECoS learning algorithm one might consider the SECoS learner a strong learner
when compared with a weak learner such as a decision stump. In [9], however,
the authors do state that the term “weak learner” can refer to a strong learning
algorithm.

To detail its learning, at the start of SECoS training the evolving layer con-
tains no rule nodes. Data examples are incrementally added, regulated by a
parameter, sThr, which determines how different the incoming data example is
required to be before being added as a new rule node, or if not, accommodated
by an existing rule node. In addition, another parameter, errThr, specifies how
much output error the overall SECoS model can tolerate. A rule node will also be
added if the new data example is similar to an existing rule node but the over-
all output error of the SECoS currently exceeds errThr. The result of adding
another rule node will ensure the SECoS maintains an error below errThr. This
means that each rule node in this evolving layer acts as a cluster centre where
data examples that are similar to each other are accommodated by the same rule
node and attempt to generate a model with low error. Finally, a learning rate,
Lr, operates the same way as the modified backpropagation learning algorithm
upon which ECoS is based [14]. We have selected the specific implementation
of SECoS on the basis on the initial work by [17] adding subsequent improve-
ments inspired by the survey of the ECoS framework conducted by [27]. For more
details on the specifics of the SECoS learning algorithm, again refer to [27].
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ALGORITHM 1: The ABSECoS training algorithm
Input:
Set of examples, S〈(x1, y1), . . . , (xm, ym)〉 with labels yi ∈ Y ← {1, . . . , k}
Number of learners, T
Weak learner, SECoS

Output:
A trained ABSECoS ensemble, SECoSEnsemble

1 Initialize Rmax ← k;

2 Let B ← {(i, j)} : i ∈ {1, . . . , m} , y �= yi;

3 Initialize D1(i, y) ← 1/ |B| for (i, y) ∈ B;
4 Initialize instancesIndicies ← number of instances for each class;

5 Initialize sizeMinClass ← minimum of instancesIndicies;
6 for t ← 1 to T do

7 Initialize ruleNodesToAdd ← 0;

8 if t > 1 then
9 Initialize sampClassRows ← {};

10 ruleNodesToAdd ← 0;
11 for classIndex ← 1 to k do
12 misClassRowsForClass ← the indices of misClassified for class

classIndex;

13 Set instInd to the indices of all instances of class classIndex;

14 partError(classIndex) ←
length(misClassRowsForClass)/length(instInd);

15 ruleNodesToAdd ← ruleNodesToAdd + round(partError(classIndex));

16 if not isempty(instInd) and
length(misClassRowsForClass) ≤ sizeMinClass then

17 Randomly sample sizeMinClass instances from instInd using
weights from Dt(i, y) into selectedRows;

18 else

19 selectedRows ← misClassRowsForClass;
20 end
21 Add selectedRows to sampClassRows;

22 end
23 Set theRows as a random permutation of sampClassRows;

24 else

25 Set theRows as a random permutation of S;
26 end

27 Rmax ← Rmax + ruleNodesToAdd;

28 Call SECoS on theRows generating a maximum of Rmax rule nodes;
29 Get back a hypothesis ht : X × Y → [0, 1];

30 Calculate the pseudo-loss of ht according to [9]:

εt ← 1
2

∑

(i,y)∈B

Dt(i, y)(1 − ht(xi, yi) + ht(xi, y));

31 Set βt ← εt/(1 − εt);

32 Update Dt : Dt+1(i, y) ← Dt(i,y)
Zt

· β
(1/2)(1+ht(xi,yi)−ht(xi,y))
t where Zt is the

normalization constant (chosen so that Dt+1 will be a distribution);
33 Test ht on S producing hacc and misClassified;

34 end

35 Output the hypothesis: SECoSEnsemble(x) ← argmax
y∈Y

T∑

t=1
(log 1

βt
)ht(x, y);
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2.3 The Design of the ABSECoS Learning Algorithm

Enabling SECoS learning to be combined with the boosting algorithm requires
that each SECoS learner in the ensemble focus on learning the “difficult” exam-
ples in the data set i.e. those data instance not correctly classified by the previous
SECoS learner. This requirement would be satisfied by randomly sampling data
instances without replacement which have high weights and these data instances
subsequently used for training the next SECoS in the ensemble. To overcome the
issue with class imbalance means that either an over-sampling or under-sampling
strategy be adopted. There is sufficient evidence to support over-sampling the
majority class results in better ensemble performance in the presence of class
imbalance [23]. In addition, a method for regulating the growth of each SECoS
learner also needs to be taken into consideration.

To this end we present the ABSECoS algorithm which applies the AdaBoost
algorithm to an ensemble of SECoS learners incorporating a data sampling
scheme which creates training data with balanced classes. Furthermore, the size
of each SECoS learner in terms of how many rules nodes it can generate under
SECoS learning is controlled for by the training error of the previous SECoS
learner in the ensemble. This is an important step in the ABSECoS algorithm
since the accuracy of a SECoS learner is highly dependent on the number of rule
nodes it can generate.

The ABSECoS algorithm is presented in Algorithm 1. Initially, in Line 1 we
establish that the maximum number of rule nodes that the first SECoS learner
in the ensemble can generate, Rmax, is equal to the number of classes, k, in
the data set. Lines 4–5 determines which of the classes is the minority class
and how many data instances are in this class. This approach is similar to the
RUSBoost algorithm [23] to minimize the issue of class imbalance. However,
unlike RUSBoost, ABSECoS does not require the user to specify the percentage
of total instances to be represented by the minority class and can handle more
than two-class problems without resorting to a One-vs-All strategy, for example.

Lines 6–34 is the main loop of the algorithm where in the first iteration of the
loop the randomly ordered full data set is presented to the first SECoS learner
in the ensemble. We randomly order the data instances to deliberately enforce
diversity in each SECoS learner. In the second iteration and beyond we randomly
select sizeMinClass examples without replacement weighted by Dt(i, y) from
the pool of all instances for a specific class. This ensures data instances that were
not correctly classified by previous SECoS learners in the ensemble have a higher
probability of being selected for the data instances that are used to train the
next SECoS learner as in the AdaBoost algorithm. Line 16 is present as a check
to see if none of the instances for a class were correctly classified by the previous
SECoS learner. If this is the case, then all the data instances associated with
this class are selected for learning by the next SECoS learner in the ensemble.

One problem, however, in this approach is how to determine the number of
rule nodes that could be added to the subsequent SECoS learner in the ensemble
if the current SECoS learner has misclassified one or more of the training data
examples for a particular class. To address this challenge, we define Eq. (1)
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Rmax ← Rmax + ruleNodesToAdd, (1)

where the value of ruleNodesToAdd is calculated using Line 14 of Algorithm 1.
Therefore, in situations where the current SECoS learner has misclassified

the training data, the maximum number of rule nodes the next SECoS learner
can generate is incremented by an amount relative to level of per-class misclas-
sification by the current SECoS learner. This increment can range up to a value
equivalent to the number of classes in the data set. This way each subsequent
SECoS learner progressively has an increased maximum number of rule nodes,
Rmax, with which to generate a classifier that will attempt to correctly classify
all training data instances. However, the current SECoS learner might not gen-
erate a set of rule nodes equivalent to Rmax so the value of Rmax could decrease
for the next SECoS learner.

Depending on the number of weak learners in the ensemble, there may not
be a single weak learner that would correctly classify all training data instances
but in our experiments we have found that ensembles with at least 50 SECoS
learners consistently achieve high accuracy.

Similarly, we employ the weighted voting scheme to determine the winning
class for unseen/test data instances according to the AdaBoost.M2 Algorithm
originally proposed by [9]. Here the assumption is that information about how
well an individual weak learner performed on the training data set can be used
to weight the votes when the entire ensemble is used to classify a new/unseen
data instance. Specifically, weak learners that performed poorly on correctly
classifying training data instances (low β value) would be given less weight to
its votes than weak learners which performed well (high β value). To effect this,
the value of the β parameter assigned to each weak learner when training the
ensemble is used to weight the vote of each weak learner when presented with a
new data instance (testing example) using Eq. (2) [9].

hfin(x) = arg max
y∈Y

T∑

t=1

(
log

1
βt

)
ht(x, y), (2)

where hfin is a weighted vote (i.e. weighted linear threshold) of the weak
hypotheses. To elaborate, for a given instance x, hfin outputs the label y that
maximizes the sum of the weights of the weak hypotheses predicting that label.
The weight of hypothesis ht is defined to be log(1/βt) so that greater weight is
given to hypotheses with lower error.

This means that votes as to the winning class by weak learners with a high β
value are favoured over votes as to the winning class by weak learners with a low
β value. Applying this weighted voting scheme produces votes by the ensemble
which results in a clear winning class thus reducing the problem of deciding
between two or more classes that have the same number of votes assigned to it by
the ensemble. In our ABSECoS algorithm each SECoS learner is also considered
to be a hypothesis, h, and treated in the same way as described in [9].
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3 Methodology

Four experiments were run using this proposed learning algorithm. All experi-
ments used four benchmark data sets; the Iris data set (Iris) [7], Wine data set
(Wine) [8], the Wisconsin Breast Cancer data set (Breast Cancer) [28], and the
Ecoli data set [12]. The breakdown of these data sets is detailed in Table 1. We
selected the data sets as these were a mixture of data sets with varying number
of input features, classes, and number of data instances. Regarding class imbal-
ance in these data set, only the Iris data set did not contain any class imbalance
the other three data sets had varying degree of class imbalance.

The ensemble algorithms employed were a Random Forest (RF ) [2],
AdaBoost Classifier (AdaBoost) [9], and the state-of-the-art XGBoost frame-
work (XGBoost) [4]. For a baseline, a single SECoS classifier (SECoS ) was used
to compare with our proposed ABSECoS framework (ABSECoS ).

In all experiments we used 50 weak learners per ensemble and performed
10-fold cross validation to remove any bias in which data examples were selected
for training and testing the ensembles. In addition, stratified sampling was used
to select the similar percentage of samples in each class. To ensure reproducible
results the same seed was used for the random number generated used for strat-
ified sampling. All data sets were normalized to have a mean of zero and a
standard deviation of one.

Hardware to run the experiments was on a desktop using a quad-core Intel
i5-6500 processor with 16GB memory running a 64 bit version of Windows 10.
Both the ABSECoS and SECoS algorithms were implemented using Matlab
2021a. Python’s scikit-learn [21] and xgboost packages were used for the
other ensemble learning algorithms. The Python hyperopt package [1] was used
to fine-tune the hyper-parameters for the RF, AdaBoost, and XGBoost ensem-
ble learning algorithms. Here hyper-parameter optimization occurred over 80
iterations. Within each iteration ensemble generation underwent 10-fold cross
validation. The average test accuracy of the result of cross validation was used
as the basis to adjust the learning parameters of the ensemble methods with the
objective of increasing the average test accuracy of the ensemble for the next
iteration. The learning parameters for the SECoS learner and ABSECoS were
set empirically also using 10-fold cross validation. For each type of ensemble
method, the best performing ensemble out of the 80 generated was then selected
as the model to be reported on. Performance metrics used were the established
Precision, Recall, and F1-Score values [26].

After obtaining the results of each experiment, we confirmed the performance
of the ensemble methods by conducting a Friedman test [11] at the 95% interval
to establish whether there was a statistically significant difference between the
mean performance metrics obtained by the algorithms. The null hypothesis was
that the performance of the algorithms were equivalent i.e. had the same average
rank. If the null hypothesis was rejected a Nemenyi post-hoc test [20] was run
to determine of the corresponding average ranks differ by at least the Critical
Distance (CD).
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Table 1. Breakdown of the three data sets used in the experiments

Data set Num. Instances Num. Inputs Num. Classes Imbalance ratio

Iris 150 4 3 50:50:50

Wine 178 13 3 59:71:48

Breast Cancer 569 30 2 357:212

Ecoli 336 7 8 143:76:2:2:35:20:5:26

4 Results and Discussion

As a baseline we used the Iris data set which has only four explanatory variables
and three classes. In addition, it exhibits no class imbalance as there are exactly
the same number of data instances per class. Furthermore, the size of the data
set is the smallest out of all the data sets used in the experiments.

First, Table 2 presents the results when the algorithms were used to gener-
ate ensembles to classify the Iris data set. The test performance of ABSECoS
performed better than the other ensemble learning algorithms in terms of Preci-
sion, Recall and F1-Score. RF, AdaBoost, and XGBoost ensembles all achieved
similar performance. Additionally, the Recall and F1-Score Standard Deviations
(SD) were smaller for the ABSECoS ensemble. Only the Precision SD for the
RF model was comparatively smaller. The average size of a SECoS learner in
the ABSECoS ensemble was 7 ± 1 rule nodes.

The results of the Friedman test were Q = 10.667 and p = 0.0306. Since the
p value was less than 0.05 we can reject the null hypothesis. The only ensemble
method that exceeded the CD of 3.522 in the Nemenyi post-hoc test was the
ABSECoS algorithm (CD=5.0).

Table 2. Test results of 10-fold cross validation on the Iris data set

Classifier Precision Recall F1-Score

RF 0.9644 ± 0.0418 0.9600 ± 0.0442 0.9597 ± 0.0444

AdaBoost 0.9622 ± 0.0524 0.9600 ± 0.0533 0.9599 ± 0.0534

XGBoost 0.9622 ± 0.0524 0.9600 ± 0.0533 0.9599 ± 0.0534

SECoS 0.9474 ± 0.0595 0.9267 ± 0.0814 0.9222 ± 0.0807

ABSECoS 0.9756 ± 0.0447 0.9867 ± 0.0233 0.9732 ± 0.0467

Compared with the Iris data set the Wine data set is larger in both size (178
instances versus 150 instances) and number of explanatory variables (13 versus
4). Furthermore, there is class imbalance present in this data set albeit quite
small. Hence, Table 3 presents the test results when the algorithms were used to
generate ensembles to classify the Wine data set. The performance of ABSECoS
was better than the other ensemble learning algorithms in terms of Recall and
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F1-Score. The SD for both these metrics was also lower than the SD for the
other models. However, average Precision was better for the XGBoost results in
terms of both the average Precision value and SD. The average size of a SECoS
learner in the ABSECoS ensemble was 6 ± 1 rule nodes.

This time the results of the Friedman test were Q = 11.467 and p = 0.0218.
Again, the p value was less than 0.05 so we can reject the null hypothesis and
through the Nemenyi post-hoc test only the ranking of the ABSECoS ensemble
(CD=4.67) and the XGBoost ensemble (CD=4.33) exceeded the CD of 3.522.

Table 3. Test results of 10-fold cross validation on the Wine data set

Classifier Precision Recall F1-Score

RF 0.9903 ± 0.0194 0.9886 ± 0.0229 0.9886 ± 0.0228

AdaBoost 0.9804 ± 0.0240 0.9775 ± 0.0276 0.9771 ± 0.0280

XGBoost 0.9950 ± 0.0151 0.9941 ± 0.0176 0.9941 ± 0.0176

SECoS 0.9449 ± 0.0389 0.9305 ± 0.0668 0.9166 ± 0.0697

ABSECoS 0.9944 ± 0.0176 0.9974 ± 0.0081 0.9944 ± 0.0177

Even though the Wisconsin Breast Cancer data set has only two classes it
exhibits high class imbalance ratio so is a good test for an ensemble generation
algorithm as not only does it need to generate a high-performing model, but it
also has to deal with the issue of class imbalance.

In this case, Table 4 presents the test results when the ensemble algorithms
were used to generate models to classify this data set. This time the AdaBoost
model performance was better across the three Precision, Recall, and F1-Score
metrics. The next best ensemble was the XGBoost model and the ABSECoS
ensemble was third-best model. The ABSECoS model did obtain smaller SD
values for Precision, Recall, and F1-Score metrics than the XGBoost model. For
this ensemble, the average size of a SECoS learner in the ABSECoS ensemble
was 5 ± 2 rule nodes.

Table 4. Test results of 10-fold cross validation on the Wisconsin Breast Cancer data
set

Classifier Precision Recall F1-Score

RF 0.9490 ± 0.0254 0.9454 ± 0.0268 0.9455 ± 0.0269

AdaBoost 0.9787 ± 0.0176 0.9771 ± 0.0194 0.9770 ± 0.0195

XGBoost 0.9772 ± 0.0192 0.9753 ± 0.0212 0.9752 ± 0.0214

SECoS 0.8950 ± 0.0402 0.8892 ± 0.0342 0.8891 ± 0.0356

ABSECoS 0.9688 ± 0.0176 0.9685 ± 0.0146 0.9681 ± 0.0154

For this experiment, the results of the Friedman test were Q = 11.467 and p
= 0.0173. As the p value was less than 0.05 we can reject the null hypothesis.
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Additionally, only the ranking of the ABSECoS ensemble (CD=5.00) and the
XGBoost ensemble (CD=4.00) exceeded the CD of 3.522 in the Nemenyi post-
hoc test.

The last set of results reveal some interesting aspects of the ensemble algo-
rithms. This outcome is largely due to the composition of the Ecoli data set since
it has seven explanatory variables and eight classes with an extremely high class
imbalance ratio as presented in Table 1.

Table 5. Test results of 10-fold cross validation on the Ecoli data set

Classifier Precision Recall F1-Score

RF 0.8743 ± 0.0410 0.8455 ± 0.0541 0.8413 ± 0.0560

AdaBoost 0.8071 ± 0.0508 0.7860 ± 0.0558 0.7785 ± 0.0490

XGBoost 0.8584 ± 0.0514 0.8664 ± 0.0532 0.8480 ± 0.0599

SECoS 0.7445 ± 0.0204 0.7265 ± 0.0825 0.6834 ± 0.0209

ABSECoS 0.8591 ± 0.1068 0.9675 ± 0.0145 0.8648 ± 0.0606

Table 5 presents the results when the algorithms were used to generate ensem-
bles to classify the Ecoli data set. The ABSECoS performance was better than
the other ensemble learning algorithms in terms of Recall and F1-Score. How-
ever, with respect to the ABSECoS the Precision SD was much larger than the
equivalent Precision SD values for the other models. The XGBoost ensemble had
the second-best performance metrics and the AdaBoost ensemble had the worst
ensemble performance. Of note is that average size of a SECoS learner in the
ABSECoS ensemble was 26 ± 5 rule nodes. Compared with the average number
of rules generated by the ABSECoS models on the other three data sets this
result indicates that a much larger set of rule nodes must be generated to better
fit each SECoS learner in the ensemble to this data set.

The results of the Friedman test were Q = 10.4 and p = 0.0342. As the
p value was less than 0.05 we can reject the null hypothesis. This time the
ABSECoS ensemble (CD=4.67), XGBoost ensemble (CD=3.67) and RF ensem-
ble (CD=3.67) was greater than the CD of 3.522 in the Nemenyi post-hoc test.

4.1 Statistical Comparison of Overall Ensemble Results

Precision, Recall, and F1-Score metrics from the evaluation of ABSECoS sug-
gested that it performed well when compared with XGBoost and other ensemble-
based methods on the same data set. As an additional test we also conducted a
Friedman test at the 95% interval to establish whether there was a statistically
significant difference between the mean F1-Scores obtained by the ensembles
across all the data sets. The null hypothesis is that there is no difference between
these mean F1-Score values.
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The results of the Friedman test reported values of Q = 11.80 and p = 0.0189.
Since the p value was less than 0.05 we can reject the null hypothesis that the
mean F1-Scores for the ensembles were equivalent.

In order to determine the difference in performance of the ensemble methods
we also conducted a Nemenyi post-hoc test. The results of running this test are
depicted in Fig. 1. Here the ranking of both ABSECoS and XGBoost exceeded
the CD of 3.050. This result would suggest that both ABSECoS and XGBoost
are the two better performing ensemble methods over all the experiments.

Friedman: 0.019 (Ha: Different) 
 Critical distance: 3.050
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Fig. 1. Results of Nemenyi post-hoc test on ensemble performance

5 Conclusion

In this paper we have proposed the ABSECoS framework which was inspired
by the seminal AdaBoost algorithm to enable ECoS-based learners to leverage
a boosting framework to improve learning from a data set especially when the
data set exhibits class imbalance. Although the AdaBoost framework is over
twenty years old we have shown that a variant of it can be adopted for a simple
ECoS-based learner in combination with a minority class-based data sampling
scheme to overcome the issue with class imbalance in a data set. Experiments
involving four benchmark data sets suggest ABSECoS performs comparably well
even with the state-of-the-art XGBoost framework.
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However, there are a number of weaknesses with the framework that are
required to be addressed as future work. First, the SECoS learning algorithm
needs to be adapted to make more use of the weights associated with the data
instances. Second, the values of the learning parameters were sensitive to the
choice of the number of learners in the ABSECoS ensemble. Therefore, we will
investigate how altering the number of learners in an ABSECoS ensemble affects
its performance. In turn this decision will influence what values are selected for
the SECoS learning parameters to maintain acceptable ensemble performance.
Fourth, the number of learners in each ensemble was set to 50. What effect an
increase in the number of learners of an ABSECoS on overall ensemble perfor-
mance has yet to be investigated. Finally, we will generalize the ABSECoS frame-
work to be applied to regression problems and compare this extended framework
with similar state-of-the-art ensemble frameworks.

References

1. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a Python
library for model selection and hyperparameter optimization. Comput. Sci. Discov.
8(1), 014008 (2015)

2. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)
3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic

minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)
4. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proc. 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. pp. 785–794. KDD’16, ACM, New York, NY, USA (2016)

5. Dhiman, B., Kumar, Y., Kumar, M.: Fruit quality evaluation using machine learn-
ing techniques: review, motivation and future perspectives. Multimedia Tools and
Applications , 81, 16255–16277 (2022)

6. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front.
Comput. Sci. 14(2), 241–258 (2019). https://doi.org/10.1007/s11704-019-8208-z

7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenics 7(II), 7, 179–188 (1936)

8. Forina, M., Lanteri, S., Armanino, C., Casolino, C., Casale, M., Oliveri, P.:
PARVUS - An Extendible Package for Data Exploration, Classification and Cor-
relation. Institute of Pharmaceutical and Food Analysis and Technologies, Tech.
rep., ip. Chimica e Tecnologie Farmaceutiche ed Alimentari, Universita’ di Genova
(2008)

9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Pro-
ceedings of the Thirteenth International Conference In Machine Learning, pp. 18–
156. IEEE Press (1996)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

11. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

12. Horton, P., Nakai, K.: A Probablistic Classification System for Predicting the Cel-
lular Localization Sites of Proteins. In: 1996 International Conference on Intelligent
Systems in Microbiology. vol. 4, pp. 109–115 (1996)

https://doi.org/10.1007/s11704-019-8208-z


Boosted Self-evolving Neural Networks for Pattern Recognition 469

13. Kasabov, N.: ECOS: A Framework For Evolving Connectionist Systems and the
ECO Learning Paradigm. In: Proceedings of the 1998 Conference on Neural Infor-
mation Processing and Intelligent Information Systems, (ICONIP’1998), pp. 1232–
1235. Ohmsha Ltd: Tokyo, Japan (1998)

14. Kasabov, N.: Evolving Connectionist and Fuzzy-Connectionist Systems for On-line
Adaptive Decision Making and Control. In: Roy, R., Furuhashi, T., Chawdhry, P.K.
(eds) Advances in Soft Computing. Springer, London (1999). https://doi.org/10.
1007/978-1-4471-0819-1 3

15. Kasabov, N.: The ECOS framework and the eco learning method for evolving
connectionist systems. J. Adv. Comput. Intell. 2(6), 195–202 (1998)

16. Kasabov, N.: Evolving Fuzzy Neural Networks for Supervised/Unsupervised On-
Line, Knowledge-Based Learning. In: IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, vol. 31, no. 6, pp. 902–918 (2001)

17. Kasabov, N., Woodford, B.: Rule insertion and rule extraction from evolving fuzzy
neural networks: algorithms and applications for building adaptive, intelligent
expert systems. In: Proceedings of the 1999 IEEE Fuzzy Systems Conference. vol.
3, pp. 1406–1411. The IEEE, Kyunghee Printing Co (1999)

18. Minku, F.L., Ludermir, T.B.: EFuNN Ensembles Construction Using CONE with
Multi-objective GA. In: 2006 Ninth Brazilian Symposium on Neural Networks
(SBRN’06), pp. 48–53 (2006)

19. Minku, F.L., Ludermir, T.B.: EFuNNs Ensembles Construction Using a Clustering
Method and a Coevolutionary Genetic Algorithm. In: 2006 IEEE International
Conference on Evolutionary Computation, pp. 1399–1406 (2006)

20. Nemenyi, P.: Distribution-free Multiple Comparisons. Ph.D. thesis, Princeton Uni-
versity (1963)

21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

22. Sagi, O., Rokach, L.: Ensemble learning: a survey. WIREs Data Mining Knowl.
Dis. 8(4), 241–258 (2018)

23. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: A
Hybrid Approach to Alleviating Class Imbalance. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part A: Systems and Humans, vol. 40, no. 1, pp.
185–197 (2010)
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Abstract. Dynamical networks are a framework commonly used to
model large networks of interacting time-varying components such as
power grids and epidemic disease networks. The connectivity structure
of dynamical networks play a key role in enabling many interesting
behaviours such as synchronisation and chimeras. However, dynamical
networks can also be vulnerable to network attack, where the connectiv-
ity structure is externally altered. This can cause sudden failure and loss
of stability in the network. The ability to detect these network attacks is
useful in troubleshooting and preventing system failure. Recently, a back-
propagation regression method inspired by RNN training algorithms was
proposed to infer both local node dynamics and connectivity structure
from measured node signals. This paper explores the application of back-
propagation regression for fault detection in dynamical networks. We
construct separate models for local dynamics and coupling structure to
perform short-term freerun predictions. Due to the separation of models,
abnormal increases in prediction error can be attributed to changes in the
network structure. Automatic detection is achieved by comparing pre-
diction error statistics across two windows that span a period before and
after a network attack. This method is tested on a simulated dynamical
network of chaotic Lorenz oscillators undergoing gradual edge corrup-
tion via three different processes: edge swapping, moving and deletion.
We demonstrate that the correlation between increased prediction error
and the occurrence of edge corruption can be used to reliably detect both
the onset and approximate location of the attack within the network.
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1 Introduction

Many real-world systems can be described as a collection of identical units that
communicate with their neighbours in a connected network over time. Some
examples include neuron networks [9], power grids [30], epidemic spread [8], and
cardiac arrhythmia [19]. Interactions with neighbours can influence individual
behaviour, resulting in a variety of interesting local and global dynamics such as
chimera states and synchronisation [1,2,38]. Systems with such a structure can
be broadly described under the framework of dynamical networks.

An extension of dynamical networks is temporal dynamical networks where
the connectivity structure also varies over time [15]. This is unlike its basic coun-
terpart where the structure and individual unit behaviour of dynamical networks
are static with the time varying output of signals being the main component of
interest. Temporal dynamical networks have been used to describe a wide range
of systems such as disease spread [11], power transmission [20] and functional
brain networks [26]. The temporal variation in a dynamical network’s connectiv-
ity structure can lead to significant changes in its behaviour, and in the worse
case, total system failure [27,32]. An example that exhibits such behaviour is
that of edge deletion in vulnerable networks. Real world examples of network
topology influence on stability include breakdown of power grids [34] and com-
munication networks [33]. In cases where there network corruption is gradual,
the early detection and location of structural changes can be valuable in guiding
the diagnosis and repair of the network.

Recently, a backpropagation regression method inspired by RNN training
algorithms was proposed to disentangle node signal observations and sepa-
rately recover local node dynamics and network connectivity structure [25]. This
method has only since been applied to the the context of constructing forecast
models of dynamical networks.

This paper extends the backpropagation regression approach and investigates
how the constructed models with separated local and coupling effects recovered
via backpropagation regression may be used to detect structural changes in tem-
poral dynamical networks. Specifically, we propose a method of using backprop-
agation regression and prediction error for the purposes of concept drift and edge
corruption detection in dynamical networks. We use backpropagation regression
to construct predictive models for a simulated network of chaotic Lorenz oscilla-
tors. The structure of these networks are then procedurally corrupted via three
processes, edge deletion, edge moving and edge swapping. Statistical analysis
of the prediction error is shown to be useful in both detecting changes in the
connectivity structure and identifying the affected nodes.

2 Background

2.1 Dynamical Networks

Dynamical networks can be defined as graph G = (f, g, C) with three main
components: local dynamics f , coupling dynamics g and connectivity structure
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C. Similar to a recurrent neural network, the node states xi(t) of G vary over
time according to a combination of locally defined dynamics and input from
connected neighbour states. This is given by Eq. 1,

ẋi(t) = f(xi(t)) +
∑

i�=j

Ci,jg(xi(t),xj(t)). (1)

Analysis and prediction of dynamical networks is difficult due to the complex
interplay between local dynamics and coupling effects. Applying the dynamical
networks framework to real world systems requires prior information pertaining
to some if not all of the components (f, g, C). In this paper, we focus on temporal
dynamical networks where connectivity structure Ci,j varies over time.

The inference of local dynamics from observed time series has been well stud-
ied. Modern approaches often utilise machine learning methods such as reservoir
computers [10], recurrent neural networks [36] and radial basis networks with
minimum description length [22] to replicate observed system dynamics. Many
of these methods rely on the dynamical guarantees of Taken’s embedding theo-
rem [24].

The inference of connectivity structure of dynamical networks is a some-
what more difficult task and remains an open problem. Methods for inferring
node connections generally rely on a direct approach [21], perturbation methods
applied to a proxy system [3,4,23], or statistical or causality based arguments
[12,17,29]. A more comprehensive review is provided in [25].

Recently, methods have been proposed to simultaneously identify both local
dynamics and connectivity structure purely from node signals [7]. Eroglu et al.
attempts to solve this problem through the construction of an ‘effective network’.
This network acts as an approximate proxy for the real system and can be used
to infer network links and dynamical transitions. However, effective networks
rely on the assumption that interactions in the network are weak and sparse,
with the presence of few high degree nodes.

An alternative method by [25] explored the approach of treating dynamical
networks as a recurrent neural network and likened the task of inferring of local
dynamics and connectivity structure to the backpropagation and training of
recurrent neural networks with an unknown activation function. This paper will
focus on the application of this method in its analyses.

In real world systems, it is also possible for a network’s connectivity structure
to vary over time. Within the framework of dynamical networks, this results
in the connectivity structure being expressed as a function of time C(t). The
evolution function of node states can then be rewritten as follows by replacing
Ci,j with Ci,j(t),

ẋi(t) = f(xi(t)) +
∑

i�=j

Ci,j(t)g(xi(t),xj(t)). (2)

This variation of connectivity structure can also affect the overall behaviour
of the network. For example, periodic edge deletion can result in disconnected
nodes, which can cause cascading failure [32]. For cases where corruption occurs
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gradually, it has been found that network attacks can cause hysteresis and sudden
changes in dynamics [14]. Therefore, the ability to detect and locate structural
changes in the network would be useful in the early prevention of network failure.

Solutions of detecting faults within real-world networks vary depending on
the network type. Descriptor systems are used as a framework for cyber-physical
networks [18]. Pasqualetti et al. discusses the detectability and identifiability con-
ditions for various attack types. For transmission lines, fault detection methods
can be categorised into three main groups: (i) impedance and frequent methods,
(ii) detection of mobile waves generated network fault points and (iii) artificial
neural network (ANN) based methods [6]. Extensive work by [16] reviews the
various methods of detecting faults in of wireless sensor networks.

2.2 Backpropagation Regression

A recurrent neural network is often structured with a well defined activation
function σ for its forward evolution with linear diffusive coupling between neigh-
bouring nodes. Similarly, a dynamical network can also be viewed within the
framework of a recurrent neural network where the the nonlinear activation
function and node couplings are given by f and g corresponding to the local
dynamics and node coupling effects respectively. Training a recurrent neural
network is then analogous to the simultaneous inference of both f and g. The
backpropagation regression method presented by [25] approaches the problem of
identifying local dynamics and network connectivity structure in 3 parts using
the recurrent neural network training framework. These are initialisation, back-
propagation and decoupling (see Fig. 1).

Fig. 1. Schematic of the backpropagation regression approach with three phases. Ini-
tialisation calculates an approximate local model. Backpropagation uses the local model
to regress the network weights. Regressed weights are used to decouple the input signal
and retrain the local model. Figure taken from [25]
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During initialisation, the full observed node states are used to estimate the
local vector field. A mean field approach is used to approximate the local vector
field as an average across a collection of K nearby neighbours in state space,

ˆ̇x(t) =
1
K

K∑

i=1

ẋ(i)(t + δt) − ẋ(i)(t)
δt

. (3)

The estimated local dynamics f̂ is defined as a mapping f̂ : x(t) → ˆ̇x(t).
This mapping can be approximated by a trained simple feedforward network.
The estimated coupling adjacency matrix Ĉ is also initialised in this stage with
randomly selected values.

In the backpropagation stage, the estimated local model is used to regress
coupling weights and improve the estimate of Ĉ. Drawing inspiration from the
backpropagation through time (BPTT) algorithm used to train recurrent neural
networks, the backpropagation stage treats the dynamical network as an RNN,
with weight training corresponding to regression of coupling weights. A forward
pass consists of freerun predictions using the estimates f̂ and Ĉ with initial
values randomly selected from the observed trajectories.

Similar to BPTT, the error between the predicted values x̂i and true observed
trajectory xi is calculated,

L =
t=tn∑

t=t0

∞∑

i=1

Ei(t) =
t=tn∑

t=t0

∞∑

i=1

(x̂i(t) − xi(t))2. (4)

The loss gradient is then calculated with respect to coupling weights Ĉ, see
Eq. 5,

dL
dĈ

=
t=tn∑

t=t0

∞∑

i=1

∂Ei(t)
∂Ĉ

=
t=tn∑

t=t0

∞∑

i=1

2(x̂i(t) − xi(t))
∂x̂i(t)
∂Ĉ

. (5)

Unlike the training of a recurrent neural network where the activation func-
tion for the forward evolution of node states is well-defined, the forward evolution
functions f̂ and g are not known. As a result, the partial derivatives required to
estimate the loss gradient must be calculated recursively [25]. It is assumed that
coupling only occurs in one component. The calculated loss gradients are then
propagated backwards to improve the estimate of Ĉ (see Fig. 2)

The final stage of decoupling aims to improve the estimate of the local model
dynamics f̂ . Because the initial local model only uses a mean field approach
to counteract the effects of coupling, there will be an inherent error in the esti-
mated vector field, particularly for the components in the coupled dimension.
To improve the model f̂ of the local dynamics, the previously regressed coupling
weights Ĉ are used to decouple the observed signal, given by Eq. 6,

f̂(xi(tn)) ≈ xi(tn+1) − xi(tn) − δt
∑

i�=j ĉijg(xi(tn), xj(tn))
δt

. (6)
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Fig. 2. Information flow during the forward and backward pass for a 2 node dynamical
network. Terms with hats correspond to model predicted values.

Doing so partially filters the effect of coupling from the time series and yields
a slightly improved model of the local dynamics f̂ , which is in turn used to
improve the regressed estimates of Ĉ. The two stages of backpropagation and
regression are then repeatedly alternated until convergence is achieved and the
estimated components (f̂ , Ĉ) → (f, C).

Given that the main object of interest is presented as a network, there are
multiple perceived similarities between backpropagation regression on dynami-
cal networks and graph convolutional networks (GCN) methods [37]. GCNs aim
to encode the graph structure of an input into the convolutional neural network
framework commonly used for image processing. However, we argue that back-
propagation regression tackles a different problem. In most GCN applications,
information of the network structure is already known a priori and is used to
calculate convolutions between neighbour signals. This knowledge is not neces-
sarily available when inferring dynamical networks. We note however, that GCNs
may be extended to tackling dynamical networks by combining with other net-
work inference methods aimed at recovering the network connectivity structure
[5,28]. The adjacency network recovered via the latter methods may be used to
construct a feedforward GCN for the purpose of n-step prediction of dynamical
networks. However, this does not achieve the recovery of local node dynamics
without coupling effects, which is a feature of backpropagation regression.

2.3 Concept Drift and Edge Prediction

A dynamical network with N identical nodes with d dimensional states can
also be viewed as a unified dynamical system defined in N × d dimensions.
Hence, learning the local and coupling dynamics, as in backpropagation regres-
sion, is equivalent to learning the combined N×d-dimensional system. Therefore,
changes to the connectivity structure of this network will cause a shift in the
collective dynamics of the system. Concept drift is inevitable when there is tem-
poral variation in the network’s connectivity structure. Depending on the sever-



476 E. Tan et al.

ity of the variation, the previously constructed model will become increasingly
unrealiable for accurate predictions and show increases in prediction error.

This behavior though undesirable, can be used to detect network changes.
Firstly, the increase in prediction error can inform and trigger a retraining of
the previously constructed model. This is useful for maintaining model accuracy
for cases where temporal variations in network structure are expected and not
detrimental to its function. For operation critical systems where structural vari-
ations in the network are undesirable, the increased model prediction error can
be used for the early detection of system failure [35]. The separation of dynamics
into local and coupling effects ensures that prediction errors caused by concept
drift can be entirely attributed to changes in connectivity structure.

Consequently, because coupling effects must propagate over time, changes
in the network structure will first result in localised errors around nodes with
altered connections. This can be used to locate failure regions in the observed
dynamical network and guide the actions needed to repair the system.

3 Method

In this paper, we present a method for applying backpropagation regression
to the task of concept drift and edge corruption in dynamical networks. The
proposed fault detection method was tested on simulated dynamical networks of
chaotic Lorenz oscillators [13]. The main aim of the analysis is twofold. Firstly, to
detect the occurrence of concept drift due to structural variations in a dynamical
network. Secondly, to locate these structural variations within the network. An
overview of the method is provided in Fig. 3.

For testing, a dynamical network of N = 16 chaotic oscillators was simulated
numerically with 4th order Runge-Kutta integration and timestep dt = 0.002
and subsampled to an effective timestep of dt = 0.02. The network structure was
generated as an undirected random graph with edge probability p = logN/N =
0.173. The dynamical networks were simulated for 25000 time steps during which
the local dynamics and coupling matrix were kept constant. An additional 2000
step washout period was included to accommodate for any transient dynamics.

Backpropagation regression was used to construct a model of the local
dynamics and connectivity structure. A feedforward network with 1 hidden layer
and 128 nodes was used to learn the local node dynamics. Backpropagation
regression was run using 10-step freerun predictions.

To simulate temporal variation of the dynamical network, simulation of the
system was extended for an additional 12500 time steps with n edge corruption
operations being applied at regular intervals every 2500 steps (see Fig. 4). Three
types of corruption operations were tested: edge deletion, edge moving and edge
swapping. In decreasing order, each edge corruption operation preserves a dif-
ferent amount of the network topology. Edge swapping involves the swapping of
two vertices between any pair of randomly selected edges. This process preserves
both the edge density and degree distribution of the network. Edge moving relo-
cates n edges to randomly selected locations and preserves only edge density.



Machine Learning Inspired Fault Detection of Dynamical Networks 477

Fig. 3. Schematic overview of the proposed method of using backpropagation regression
to detect concept drift and edge corruption. Backpropagation regression is used to
identify the local dynamics and models and coupling weights separately. These are
then used for short-term freerun predictions. Prediction errors are monitored and a
normalised score s(t) is calculated to detect the onset of edge corruption. Corrupted
edges shown in red. (Color figure online)

Finally, edge deletion does not preserve any network measure and consists of
setting n randomly selected edges to zero.
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Fig. 4. Weighted connectivity matrix of the system with gradually applied edge dele-
tion. Each round (after round 1) removes 5 randomly selected edges.

The prediction accuracy of the model was tracked by concurrently running
short-term 10 step freerun predictions using initial conditions taken from previ-
ous measured states. The prediction error εi of each node was calculated using
the value of the final predicted step compared to the real system trajectory,

εi(t) = ||x̂i(t) − xi(t)||. (7)

The error profile for each node εi(t) was smoothed by calculating a 200 step
moving average. This was done to reduce the effects of natural fluctuations in
RMSE due to the local dynamics on the chaotic attractor. The collection of node
error profiles εi(t) can also be summarised into a system RMSE E(t) by taking
the average across all nodes as given in Eq. 8,
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E(t) =
1
N

N∑

i=1

εi(t). (8)

The degree of corruption θ(t) in the connectivity structure of the dynamical
network can be quantified by calculating the matrix norm of the coupling matrix,

θ(t) =
||C ′(t) − C(t)||

||C(t)|| , (9)

where C ′(t) corresponds to the corrupted connectivity matrix due to operations
on edges (i.e. deletion, moving, swapping). A similar formulation for individual
nodes is calculated using the norm of the difference in the weighted degree. This
quantity is not normalised to account for cases where a disjoint node becomes
connected due to edge corruption,

θi(t) = ||C ′
i(t) − Ci(t)||. (10)

To detect edge corruption from RMSE at a given time t, statistics are
compared between two segments of time series correponding to recent history
(εi(t − wt), εi(t)) and a past reference (εi(t − wt − τ − wc), εi(t − wt − τ)), where
wc and wt correspond to the control and test window on the non-smoothed εi(t)
respectively. These two windows are separated by a time lag τ during which a
transition may occur. Basic edge detection is done using a normalised score s(t)
calculated at each time step that compares the RMSE time averages across each
pair of time series segments as given in Eq. 11,

s(t) =
μt − μc

σc
, (11)

where μt, μc and σc are the mean and standard deviation of the test and control
segments of the time series. The presence of edge corruption will increase the
prediction RMSE, which in turn results in a temporary increase in the calcu-
lated score s(t). Outliers in s(t) then correspond to the occurrence of potential
edge corruption. Medians and maximum absolute deviation (MAD) was used for
outlier detection in our analysis due to its simplicity and robustness to outliers.

4 Results

The system-wide RMSE was calculated for the simulated Lorenz network with
5 rounds of edge corruption, each round altering 5 edges. A cutoff of k = 4.5
for scores after being normalised by MAD was used to determine the present of
edge corruption. It was found that the RMSE error correlated with the onset of
overall structural changes for earlier rounds of edge corruption (see Fig. 5).

The second task of identifying the location of deleted edges can be achieved
by tracking the prediction error for individual nodes. Similar to the system-
wide RMSE, node prediction error was also found to correlate closely with the
onset of individual node corruption (see Fig. 6). This result is arguably more
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Fig. 5. Calculated RMSE over the duration of regular edge deletion averaged across
all nodes of the whole network. Figure shows detected edge corruption based on irreg-
ularities (blue), and each stage of corruption θ(t) (grey). MA is the moving average of
model prediction errors E(t). (Color figure online)

informative than the overall network RMSE as it provides more information onto
the localised area in the network where edge corruption has occurred. Successive
rounds of edge corruption is noticeably less obvious from the calculated RMSE.
This is likely due to the accumulation of errors between each subsequent round,
which eventually saturate across the whole range of the measured signal Fig. 7.
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Fig. 6. Calculated individual node prediction error over the duration of regular edge
deletion for the first 8 nodes of the network. The detected edge corruption based on
irregularities in the prediction error are given by blue. Each stage of corruption θ(t)
is given by the grey line. Detection of of corruption beyond the first instance is more
inaccurate. MA is the moving average of model prediction errors εi(t). (Color figure
online)
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The success rate in detecting the onset of the first round of corruption in
each node was also calculated for each edge corruption operation with varying
levels. Sixteen iterations were calculated for each combination of edge corruption
operation (i.e. swapping, moving, deletion) and number of corrupted nodes (2
to 20) and was averaged to get the final success rate. The proposed method was
found to perform consistently for all operations with slightly lower performance
for cases with more minor network perturbations (n = 2) (see Fig. 8). This can
be attributed to the effects of these network changes not having a large enough
impact on the dynamics of the network.
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Fig. 7. Summarised plot of detected vs actual edge deletion operations from individual
node RMSE for all nodes. Blue cross correspond to real instances of edge corruption.
Detected edge corruptions are in red. (Color figure online)
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5 Discussion and Conclusions

Dynamical networks are a useful framework for modelling networks of dynamical
units that communicate with each other. Temporal dynamical networks extend
this framework by accounting for temporal variations in connectivity structure.
An interesting problem is the task of detecting and locating the occurrence of
network attacks. This is of interest when modelling operation-critical systems
such as power-grids where loss of communication between nodes can lead to
sudden failure in the network [14,27,32–34].

This paper presents an application of backpropagation regression on dynam-
ical networks to the problem of network fault detection. Several dynamical net-
works of chaotic Lorenz oscillators with randomly generated connectivity were
simulated. A model of the local dynamics and connectivity structure was con-
structed from node signals using the method of backpropagation regression [25].
To simulate network attack, the connectivity structure underwent several rounds
of edge corruption during the simulation of the dynamical network.

The detection of edge corruption was conducted by analysing the short-term
prediction RMSE ε(t) of the originally constructed model in parallel with the
simulated network. By choosing a model framework that separates local and
coupling dynamics, any changes in the RMSE can be attributed to corruption in
the network connectivity structure. It was found that models constructed using
backpropagation regression was able to detect the early occurrence of network
attack, with decreasing performance for subsequent rounds of edge corruption.

A similar approach focusing on the individual node prediction error εi(t) was
also found to be sensitive in detecting edge corruption. By comparing against
εi(t) profiles across multiple nodes, it is possible to identify and locate removed
edges. However, similar to the system-wide RMSE, the individual node predic-
tion error εi(t) is not as sensitive to successive rounds of attack. Open areas of
research still remain, particularly in automating the detection of edge deletion
from the prediction error profiles ε(t) and εi(t). This problem is ultimately one
of automating detection of regime changes and is an active area of research in
the field of signal processing [31].
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Abstract. Hematopoietic Stem Cell Transplantation (HSCT) is an
effective treatment for a variety of blood diseases, including hemato-
logic and lymphoid malignancies, along with numerous other conditions.
One of the most prevalent adverse effects of Allogeneic Stem Cell Trans-
plantation (ASCT) in patients is Graft versus Host Disease (GvHD).
Inflammation brought on by the donor’s stem cells attacking the patient’s
body can lead to GvHD. Moreover, Acute Graft versus Host Disease
(aGvHD) and Chronic Graft versus Host Disease (cGvHD) are the two
possible manifestations. The patient has a chance of developing this dis-
ease even if the donor and the recipient are a perfect match. Therefore,
early diagnosis of the forms of GvHD before a patient receives ASCT
treatment is essential. However, it is still necessary to identify the type
of GvHD even if the patient has already undergone a transplant to advise
any clinical decision. In this research, the types of the GvHD are pre-
cisely predicted using a variety of multi-class classification models. The
techniques utilized in this study include Random Forest, Decision Tree,
K-Nearest Neighbor, Gradient Boosting, XG Boosting, LG Boosting and
a feed forward Artificial Neural Network named Multilayer Perceptron.
This study revealed that the Random Forest algorithm demonstrated
state-of-the-art performance in multi-class classification, with an accu-
racy of 98.62% along with 96.38% F1-Score and an area under the ROC
curve (AUC) score of 98.02%. In terms of accuracy and reduced feature
dependence for predicting the multi-class target feature, this study offers
a useful prognosis tool for medical experts.

Keywords: Bone marrow disease · Prognosis · Acute GvHD · Chronic
GvHD · Feature selection · Classification

1 Introduction

Bone marrow is soft, adipose, spongy tissue in the body that is located in the
skeletal structures. It is responsible for producing the red blood cells, white blood
cells, and platelets of the human body, and it also contains hematopoietic stem
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cells. Bone marrow transplantation is necessary when a cancer patient’s bone
marrow has been damaged by radiation therapy or intense chemotherapy. When
the hematopoietic stem cells are taken from another person (donor) for bone mar-
row transplantation, it is called an Allogeneic Stem Cell Transplantation (ASCT)
[11]. ASCT remains one of the most effective treatments for acute leukemia with
a high risk of relapse or in an advanced stage. It is a surgical process that replaces
unhealthy bone marrow cells with healthy ones. It is used to treat cancers such
as leukemia, myeloma, and lymphoma [6,9]. However, following ASCT, Graft
versus Host Disease (GvHD) may occur, which is further classified into acute
GvHD and chronic GvHD. Acute GvHD might surface within a day, a week, a
month, or within 100 d after transplantation. It can damage several organs, such
as the liver, skin, eyes, mucosa, and intestines of a patient. The patient who is
afflicted may experience a variety of side effects as a result, including jaundice,
hepatomegaly, rash, gastrointestinal issues, bleeding, and diarrhea. Even two or
three years after the transplantation, the negative effects may start to mani-
fest. On the other hand, chronic GvHD affects a patient’s liver, gastrointestinal
tract, and lungs [17]. It’s interesting to note that two years after transplantation,
chronic GvHD affects those who had no relapse, and thirty months or longer after
the stem cell transplantation, most of these patients pass away [24].

Nowadays, Machine Learning (ML) algorithms are widely used to predict
different kinds of diseases in the healthcare system. This study develops several
ML and Artificial Neural Network (ANN) models that can categorize a multi-
class feature by estimating the possibility that a patient will have acute GvHD,
chronic GvHD, both of these, or none of these diseases. These models only rely on
9 out of the 37 features from the original dataset to make this admiringly accurate
prediction. [23]. Hence, nominal data dependency and multi-class classification
make these models more effective compared to other procedures.

The remainder of this study is organized starting with section two, which
summarizes the relevant work. The problem statement is presented in section
three, and a detailed description of the experiment results is provided in section
four. Finally, the whole study is summarized and makes further suggestions for
improvement.

2 Related Work

Leukemia, a blood cancer type that affects white blood cells and damages bone
marrow, has become one of the most severe illnesses in recent years. Romel
Bhattacharjee et al. [4] proposed a robust approach for detecting Acute Lym-
phoblastic Leukemia (ALL) in blood smears by segmenting pictures and com-
paring several classifiers of ALL in blood smears within age groups between 3
to 7 years. Another important finding is the ability to predict relapse in children
acute lymphoblastic leukemia (ALL), as this disease is more vulnerable to relapse
than any other [19]. Because of this, optimum therapy and follow-up planning for
childhood ALL prediction is critical. Liyan et al. [19] designed a machine learning
model to predict the probability of acute lymphoblastic leukemia (ALL) relapse.
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Graft versus Host Disease (GvHD) is the most common reason for death in
patients following their HSCT. Yasuyuki et al. [1] presented a model to predict
acute GvHD after an allogeneic transplant, which is one of the types of GvHD.
Serum Fibrinogen was used by Neslihan et al. [20] as a Predictive Marker for
chronic GvHD in patients after allogeneic HSCT. On the other hand, Catherine
et al. [14] studied the risk of acute GvHD and mortality rate after 100 d post-
transplantation. Also, Ying et al. developed and verified a machine learning
strategy for predicting stem cell donor availability [15].

3 Problem Statement

The chances of developing GvHD following an ASCT is difficult to predict. Fail-
ure to anticipate this disease in its early stages can lead to the development
of many other diseases. One condition that is a frequent symptom of chronic
GvHD is dry eye disease (DED), which has been identified as a serious side
effect of ASCT [18]. In most circumstances, manually foretelling this condition
is quite challenging and erroneous. Though donor gene-expression profiling [2]
and a new biomarker panel [5] also can predict this GvHD but both of these
methods are very time-consuming and imprecise. However, ML methods may be
the best option for predicting GvHD using donor and recipient medical data,
and most importantly, predicting it before the transplantation.

4 Proposed Methodology

The handling of missing values in the dataset is the initial step of the methodol-
ogy. After dealing with the missing data, the two features known as acute GvHD
and chronic GvHD are combined to produce a multi-class target feature. Fol-
lowing that, feature engineering and the feature selection approach are used to
select the best features. The dataset needs to be balanced because it is unbal-
anced and in order to avoid overfitting problems. Finally, the machine learning
models are applied for the prediction. The steps of the proposed approach are
abstracted in the Fig. 1.

Fig. 1. Methodology employed in this study.
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The following sections provide a brief description of each step of the proposed
methodology.

4.1 Dataset Description

In this study, The Bone Marrow Transplant: Children dataset from the Machine
Learning Repository at the University of California, Irvine [23] has been ana-
lyzed. This dataset contains information on pediatric patients who have a variety
of hematologic abnormalities, including malignant and nonmalignant cases. The
transplantation of hematopoietic stem cells from an unrelated allogeneic donor
was performed without any modifications on the patients [23]. It comprises 187
instances, each with 37 attributes, where most of the attributes are categorical,
the rest being numerical and boolean. Unfortunately, there are some missing
values in this dataset. Data loss or missing data can happen for a number of rea-
sons, such as inaccurate data entry, system failures, lost files, and even patients
who choose not to participate in surveys for data collection. To resolve this issue,
the Miss Forest [22] algorithm is used to impute missing values in numerical data
and categorical missing values are filled using the Random Forest Classifier.

A snapshot of the statistical attributes of the dataset is abstracted in Fig. 2.
There are some outliers that have been identified like ANC recovery, PLT recov-
ery, and CD34 shown in Fig. 2. It is clear that some values lie abnormally far
apart from other values. But these features with outliers have no effect on the
performance of these models because the features have been dropped in the
feature engineering process.

Fig. 2. Numerical features.
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4.2 Normalization

Data normalization is a preprocessing technique in which the data is scaled to
ensure that each feature contributes equally. Numerous research has demon-
strated the significance of data normalization in improving the consistency of
the information leading to the increasing effectiveness of machine learning algo-
rithms [21]. So after the imputation procedure, some of the numerical features
from the dataset are normalized to ensure that each feature contributes equally.

4.3 Target Feature Creation

The two features termed “extensive chronic GvHD” and “acute GvHD III IV”
from the dataset have merged so that the ML models can perform a multi-class
classification. A new multi-class attribute called “GvHD Diseases” is created
using the mentioned features with binary values. Algorithm: 1 defines the process
of the transformation.

Here, it is seen that the algorithm will return “Both” if both chronic and
acute GvHD are positive and this indicates that the patient in concern has both
types of GvHD. In accordance with the corresponding condition, all four classes
are formed in the target feature in this manner. Finally, these categorical values
have been converted into numerical values using a label encoder, renaming the
target column as “GvHD Diseases” and appending it to the original dataset.

Algorithm 1. Target selection using features: “extensive chronic GvHD’ as
cGvHD and “acute GvHD III IV’ as aGvHD
1: if cGvHD == Y es && aGvHD == Y es then
2: return Both
3: else if cGvHD == No && aGvHD == No then
4: return None
5: else if cGvHD == Y es && aGvHD == No then
6: return cGvHD
7: else if cGvHD == No && aGvHD == Y es then
8: return aGvHD

4.4 Balancing the Dataset

This study is aiming for a multi-class feature. There are four categories here and
they are :

– Both (Acute and Chronic GvHD)
– None (No Disease or Contamination)
– Acute GvHD (aGvHD)
– Chronic GvHD (cGvHD)
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Here in Fig. 3, it is seen that the category “Both” makes up 127 instances
or 67.91% of the overall dataset. The remainder consists of 32 cases of “acute
GvHD”, 20 cases of “chronic GvHD” and 8 cases of “None” with respective
percentages of 17.11%, 10.69% and 6.29%. The dataset appears to be slightly
unbalanced, so Synthetic Minority Over-sampling Technique (SMOTE) tech-
nique and the “Random Over Sampler” approach have been applied to generate
instances for the minor category to balance this dataset. After balancing the
dataset, this is how the target feature appears in Fig. 3. Here, it is clear that
all classes are now equally distributed, with 127 instances for each of these four
classes.

Fig. 3. Balancing the imbalance dataset.

4.5 Feature Engineering and Feature Selection

The feature engineering process is used following the normalization process. The
features with a threshold value of 80% are removed from the dataset before
creating the correlation matrix. Here, 80% is used as a cutoff value, meaning
that if two features are 80% correlated or more, eliminating one of them won’t
have much of an impact on predicting the target feature. A feature selection
approach is then applied among the selected features following the correlation
matrix. This feature selection method makes use of lasso regression by taking α
as 0.05.

Lasso regression is similar to linear regression, except it employs the “shrink-
age” strategy, which reduces the coefficients of determination to zero. Lasso
regression penalizes and eliminates less significant aspects of the dataset by set-
ting their coefficients to zero. As a result, it allows to choose features and create
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models quickly. After chosen all the features the correlation matrix looks like
Fig. 4.

Fig. 4. Correlation matrix of the selected features.

4.6 Visualization of the Selected Features

The visualization of the dataset’s finally selected features that are chosen in
Fig. 5. It is clear from this that patients who have peripheral blood which is
define as stem cell source = 1, are the ones who experiences chronic GvHD the
most. Also if the donor is younger than 35, it is almost a guarantee that the
patient won’t be affected by any of these diseases. Interestingly there is fewer
relapse case for the patients who don’t have any types of GvHD and both types of
GvHD. Contrarily, there is a big possibility that the patients will experience both
forms of GvHD if the ABOs of the donor and recipient are matched. Another
significant finding is that there is a strong probability that the patient won’t
experience any symptoms of GvHD if only one allel is matched between donor
and recipient.
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Fig. 5. Distribution of the selected features.

4.7 Applied Machine Learning and Artificial Neural Network
Models

For this experiment, some supervised machine learning models have been utilized
such as Random Forest [16], Decision Tree [7], K-Nearest Neighbor [25], Gradient
Boosting [3], XG Boosting, LG Boosting [13], and Multilayer Perceptron [10] to
predict the target feature after the preprocessing and feature engineering steps.
For training, 70% of the dataset is used, and the remaining 30% is used for
testing purposes. In this model, “random state” is defined as 42 for all of these
methods, and the accuracy is validated using the K-Fold Cross Validation (K =
10) technique.

5 Results and Discussion

5.1 Evaluation of the Confusion Matrix

This section provides a thorough picture of the efficiency of a classification model
as well as the kinds of errors it is producing.
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Fig. 6. Confusion matrix of random forest and decision tree algorithms.

It can be inferred from these confusion matrices in Fig. 6 that the Ran-
dom Forest algorithm accurately classifies the majority of the samples where
only 3.92% of instances were misclassified. On the other hand, The K-Nearest
Neighbor algorithm does a terrible job of classifying the instances. A whop-
ping 15.6% of samples were incorrectly classified by the K-Nearest Neighbor
algorithm, 5.88% of which were categorized as “aGvHD” when they actually
required to be categorized as “Both”. Most interestingly, 3.92% of the sam-
ples are categorized as “None”, indicating that these instances should not be
affected by any of these diseases but these are actually in the “Both” category.
As a result, the medical team’s diagnosis must be muddled. In classifying the
instances, other algorithms are also doing quite well. Decision Tree, Gradient
Boosting, XG Boosting, and LightGBM Boosting have miss classified sample
percentages of 7.84%, 7.84%, 4.9% and 7.84% respectively. On the other hand,
MLP has miss classified around 17.23% of the samples. So it can be conclude
that Random Forest outperforms other techniques.

5.2 Validation and Learning Curve

A valuable diagnostic tool that demonstrates the sensitivity and accuracy of
a machine learning model to changes in specific model parameters is called a
validation curve. Usually, a validation curve develops between the score of the
model and a particular model parameter. On the other hand, a learning curve
is a graph that displays how well a model learns across the size of the training
sample.



496 Md. A. B. Khaled et al.

Fig. 7. Validation and learning curves of different machine learning algorithms.

Among all of the validation curves performed in this experiment, here are
presented two strategies that perform well in this dataset for target prediction. It
is seen that Random Forest maintains its performance as the number of epochs
grows. As the number of epochs rises, the validation accuracy increases from
84% to 96%. It is clear from the learning curve that the cross-validation and
training curves converge as the size of the training data increases. The cross-
validation accuracy increases as more training data are added. Therefore, it is
advantageous in this situation to add more training data. Since the training and
validation curves meet at the expectation point, this indicates low bias and low
variance. Therefore, the conclusion is that this model performs better as training
data is increased. The performance of the decision tree is remarkable because its
validation accuracy is nearly close to the testing accuracy. Both the training and
validation curves converge as the size of the training data grows. This means
that with a vast amount of training data, this model performs effectively with
minimal bias and variance which indicates that there is no overfitting problem
in this model.

5.3 ROC-AUC Curves

A measurement tool for binary classification issues is the Receiver Operator
Characteristic (ROC) curve. Plotting the TPR (True Positive Rate) versus the
FPR (False Positive Rate) at various threshold values effectively distinguishes
one class from another.

Figure: 8 displays all of the ROC curves for the various machine learning
techniques utilized in this study. Because the ROC curve only reflects binary
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classification so that it is ploted four distinct curves for a single algorithm on a
single graph to display the ROC curve.

Fig. 8. ROC curves of random forest and decision tree algorithms.

The Random Forest algorithm outperforms others since it properly identi-
fies the majority of the samples and has an AUC score of around 98.02%. It
most accurately classifies “Both” and “aGvHD” and is slightly misclassified for
classifying the “None” and “cGvHD” class. With the exception of identifying
the category “aGvHD” and “None” decision tree performs well. Its AUC score
is approximately 97.58%. However, KNN performs best when classifying only
“Both” class as compared to “None”, “cGvHD” and “aGvHD” classes. It has a
classification accuracy rates of roughly 93.1% as it classifies the best only “Both”
class. The performance of the Gradient Boosting and LG Boosting algorithms
are quite similar as they classify “aGvHD” and “Both” class perfectly and their
AUC score is 96.01% and 96.06% respectively. XG Boosting is the best per-
former for classifying the “Both” class but it is slightly misclassified for “None”
and “aGvHD” classes. Its AUC score is almost 97.24%. With the 87.23% AUC
score, MLP only classifies the “Both” class more accurately.

5.4 Performance Analysis

The target feature was predicted using six machine learning techniques and
an ANN model named MLP, and the Random Forest classifier get the highest
accuracy. Other algorithms are also perform well except the KNN and MLP.
Since both precision and recall are equally important for this research so it
must be needed to look up the F1-Score and again Random Forest outperforms
all other algorithms in F1-Scoring. In Fig. 9 each algorithm uses in this study,
accuracy, precision, recall, and F1-Score are displayed.
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Fig. 9. Accuracy along with precision, recall and F1-score.

It can be inferred from this table that MLP performs the worst for classifying
the classes, and among the machine learning algorithms KNN performs worst,
while Random Forest does the best for classifying all the classes. Here traditional
machine learning methods can more reliably identify unknown data than the
MLP model since most of the feature contain categorical values to predict the
target feature.

In below Table 1 : is comparison between this study with the related exis-
tence work. From this table it is clear that this study is new as a multi-class
classification and there is no comparison analysis in multi-class classification.

Table 1. Comparative analysis with the existing works.

Study Approach BestResult

Research Area Class Best Algorithm Accuracy (%)

Yasuyuki et al. [1] acute GvHD Binary ADTree 76.4

Cooper et al. [8] GvHD Binary Gradient
Boosting

83.2

Ying et al. [15]. Predict Donor
Availability

Binary Boosted
Decision Tree

82.6

Iwasaki et al. [12] Relapse and
GvHD

Binary Random
Forest

66.8

This Study Both Types of
GvHD

Multiclass Random Forest 98.62



Multiclass Classification of GvHD Prognosis Prior to ASCT 499

6 Conclusion and Future Works

Allogeneic Stem Cell Transplantation (ASCT) can save lives in cases of leukemia,
myeloma, and lymphoma, however, it is also one of the causes of GvHD. So if the
medical team can evaluate the possibility of adverse effects before starting the
transplantation process by analyzing donor and recipient data, the procedure will
have a better success rate, with a reduced odds of mortality. This study made use
of methods like imputation, normalization, data balance, and feature selection.
Since this study is primarily concerned with a multi-class classification, a new
multi-class target feature is produced. ML techniques are often used in disease
prediction to lessen human participation. It is rapidly being used in today’s
world in any case where prediction is needed. Subsequently, several models are
benchmarked to find the best model to help the medical personnel estimate the
risk of transplantation before ASCT and take the necessary precautions to lower
that risk.

In the future, this work could benefit from using a larger dataset than the one
used for analysis. In addition, if the amount of missing data can be decreased,
the results can be even more accurate, which might result in better models.
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Abstract. The electrocardiogram (ECG) classification has attracted
great attention as a crucial tool to detect arrhythmia which can be an
early sign of heart disease. However, the key challenge of the current
ECG classification methods is the lack of annotated data when applied
to new patients. On the one hand, enormous ECG data are produced and
they require a high labelling cost for supervised classification. On the
other hand, the morphological and temporal features of ECG in individ-
ual patient can vary significantly. Therefore, the heartbeat classification
models cannot be trained on adequate data and usually faced a huge
performance degradation when tested on new patients without enough
annotated data. Although the current works have worked on reducing
labelling costs through active learning, these methods do not focus on
patient differences and cannot guarantee performance when patient dif-
ferences increase. Other works that aim to solve the patient differences
only focus on the correlations but not the causal relations behind the
data. In this paper, we firstly analyse the patient differences in ECG
heartbeat in a causal view and propose Active Causal Representation
learning of ECG heartbeat Classification (ACREC) to learn the sta-
ble features that have a direct causal effect on the outcome variable.
The experiment results show our method can outperform other methods
when handling patient differences. After active learning, our model can
select the most informative data to annotate and achieve reliable per-
formances. Moreover, we also conduct the ablation study to validate the
effect of each part in our model.

Keywords: Causal learning · Deep learning · Active learning ·
Artificial intelligence in medicine

1 Introduction

Over the years, heart attack has become one of the major causes of sudden
deaths. However, 20% of attacks are not aware by human beings even if they
have made damage to the human body [21]. Although some heart attacks are
silent, they can still be detected by diagnosing the arrhythmia in the electrocar-
diogram (ECG) signals. The ECG has become a regular physical examination
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 501–515, 2022.
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item in the hospital and the ECG signal contains a series of heartbeats data.
To diagnose arrhythmia in ECG, doctors with expert knowledge are required
to label the heartbeat one by one and it leads to a high labelling cost. There-
fore, the application of deep learning to improve the efficiency and accuracy of
arrhythmia detection has attracted great attention.

To recognize arrhythmia, the ECG heartbeat data can be divided into 5
types according to the recommendation of the Association for the Advance-
ment of Medical Instrumentation (AAMI): N (normal beats), S (supraventricu-
lar beats), V (ventricular beats), F (fusion beats), and Q (unclassifiable beats)
[2]. Among these types, the N-type stands for normal heartbeats, the Q type
means the unclassifiable beats that are from unknown sources and the other
three types represent abnormal heartbeats. Different types of heartbeats usually
have large morphological and temporal differences which can work as the clas-
sification criteria for the deep learning models to classify abnormal heartbeats
[13,26]. However, the current ECG heartbeat classification faces two tough chal-
lenges that stop its application in real hospitals. On the one hand, enormous
heartbeat data are generated in hospitals every day and most of them cannot be
annotated. Therefore, we only have a limited number of labelled data to train the
models and the traditional supervised classification methods, which require ade-
quate labelled data, cannot perform well in real hospital scenarios. On the other
hand, the morphological and temporal features varies among different patients
[16,22,26]. When testing the model on the ECG data from new patients, the
enormous differences among different individuals will lead to a huge drop in the
prediction performance.

The previous works have tried different approaches to handle the two afore-
mentioned challenges. One effective way to solve the high labelling cost is active
learning which aims to retain high performances and reduce the size of labelled
data in the meantime. [7,18] build Denoised AutoEncoder model for active learn-
ing while [23] constructs an Recurrent Neural Network (RNN). However, these
works do not consider solving the patient differences from the perspective of the
model itself and are highly dependent on the newly labelled data. Therefore,
the performances of these active learning methods get declined when they are
tested on different datasets where the patient differences increase or the size of
annotated data is limited. Moreover, some inter-patient models are proposed to
solve the patient differences and improve the model performances on the heart-
beat data from new individuals. [8] uses an ensemble model of Support Vector
Machine (SVM), and [11] and [22] choose the same CNN structure, while [22]
add an additional domain adaptation module. Although the previous researchers
have made great progress to solve the patient differences. These works only focus
on learning the correlations but not the casual relations behind the heartbeat
data via deep learning models. The correlations are easily affected by the unre-
lated variables and thus the model performances usually get degraded when the
model is tested on new patients.

Figure 1 illustrates two different views of heartbeat classification. In Fig. 1(a),
the traditional deep learning models mine the correlations between all the fea-
tures X and the outcome variable Y . However, in the ECG classification, apart
from the causal feature set Z that has a direct causal effect on the outcome Y ,
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the noisy feature set C also exist in the whole feature set as shown in Fig. 1(b).
The noisy features set C includes the features that lead to the patient differences.
These noisy features in the different patients can affect the true causal features
Z but they do not have a direct causal effect on the heartbeat types (i.e. Y ). For
example, the heart rate is one of the noisy features and different heart rate may
lead to different morphological and temporal features, which also contains the
ones that lead to different types of heartbeat. However, no direct causal relation-
ship exists between the heart rate and heartbeat types and only the correlation
exists through the mediate feature Z. The correlations between noisy heart rate
and heartbeat types are misleading and result in the performance drop on the
data from different patients [10].

Fig. 1. Correlation view and causal view in ECG heartbeat classification. X and Y
denote the features and outcome while C and Z belong to X and represent the noisy
features and causal features of outcome Y individually. The feature set Z stands for
the true causal features across different individuals for the predictions and the noisy
feature set C represents the causes of the patient differences in heartbeat data

To overcome the aforementioned drawbacks, we can select the causal feature
set Z that has a direct causal effect on the outcomes and train the models based
on these causal features as shown in Fig. 1(c). Inspired by the stable learning [10],
we propose the causal representation learning model and the ACREC method
to extract the causal features across different patients and reduce the reliance
on the large size of labelled data. Specifically, we minimize the causal effect of
the features on all other features during the model training to learn the causal
representation that has a direct causal effect on the heartbeat types. Then to
improve the model performance further, we introduce active learning to achieve
higher performance within a small labelled dataset. To prove the effectiveness of
our methods, we conduct experiments on two different databases: MITDB and
SVDB which contain heartbeats from different patients and frequencies. The
code and experiment details are available in GitHub1.

In summary, our contributions are in three folds:

• We invest the ECG classification problem via a causal graph to exploit the
causal relations behind ECG heartbeat data.

• We propose an ECG heartbeat classification framework based on causal learn-
ing and active learning which can be more applicable than existing methods

1 https://github.com/DATA-Transpose/ACREC.

https://github.com/DATA-Transpose/ACREC
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in real hospital scenarios. To the best of our knowledge, this is the first work
that introduces causal learning in the ECG classification field.

• We conduct experiments and compare our proposed method with other meth-
ods. The results demonstrate that our classification framework is more com-
petitive than others. We conduct the ablation study to explore the importance
of each part of our framework as well.

2 Related Work

2.1 ECG Classification

Previous works on ECG Classification have developed in three different direc-
tions: the intra-patient classifications which establish the training and test sets
using the data from all individuals [24,25]; the inter-patient classifications which
separate patients into different groups to set up the training and test sets [22,26];
and the active learning methods which aim to reduce the size of the labelled
training set in [3,7,18,23].

For the intra-patient classification, [24] proposes a 1-D Convolutional Neu-
ral Network (CNN) and trains the model in an intra-patient way and [25] also
designs a 2-D CNN model and trains it using the randomly selected data from
all patients. In addition, [17] introduce the transformer for the long length signal
detection. The inter-patient classification also attracts the interest of researchers.
[22] applies the unsupervised domain adaptation to update the models on unla-
beled data from new patients. [26] proposes a semi-supervised method through
an unsupervised judgment to select N beats from an unlabelled data pool. In
addition, another type of work combines active learning and inter-patient classi-
fication to reduce the reliance on the large size of the labelled data. For example,
[3] ensembles the unsupervised feature extractor and different classifiers to select
the most informative signals to annotate. In addition, [18] uses the Denoised
Autoencoder and proposes a novel active learning workflow to select the sig-
nals to annotate and another work utilises the same active learning workflow
and extracts eigenvectors of the heartbeat signals as the input features for the
[7]. Moreover, [23] pre-train a graph-based CNN using a small set of the whole
dataset and then update the model through an active learning approach.

In general, the supervised models can reach a rather high accuracy because
the training set accounts for the majority of the whole dataset and contains
adequate information about all patients. However, these assumptions cannot be
held in real hospitals because of the patient differences and high labelling costs.
In comparison, the inter-patient and active learning approaches are more suitable
in practice. However, the inter-patient methods cannot retain high performance
as the intra-patient methods and the current active learning methods only focus
on selecting informative data but do not solve the patient differences.

2.2 Causal Learning

The causality describes the relationship between the cause variable and its effect
on another variable. Previous works on causal learning include causal relation
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learning which mines the causal relationship and causal effect learning which
focuses on estimating the effect of the cause variable [6].

Causal relation learning requires the model to learn the causal structure from
the data. For example, [5] proposes a generative network to learn the causal
structure of latent variables for domain adaptation and [15] constructs a Graph
AutoEncoder to learn the large causal graph. In addition, causal relation learning
also has been applied to specific areas, like the multivariate time series data [12]
and the medical image data [20]. Another type of work: causal effect learning is
usually based on the assumption of the specific causal structures and estimates
the causal effect of noisy variables to reduce the bias and error of the models.
For instance, [10] estimates the causal effect of the features on other features to
reduce the correlations between features and outcomes. In addition, the causal
effect learning has been widely used for debiasing [1].

3 Methodology

In this section, we introduce our novel framework ACREC based on active causal
representation learning for ECG heartbeat classification. We divide the frame-
work into two parts: the causal representation learning model and the active
learning procedure.

3.1 Causal Representation Learning

Traditional ECG classification models contain two parts: a feature extractor that
extracts the feature into latent representations, and a classifier that conducts
the classification tasks [19,22,25,26]. Previous works only focus on extracting
the useful morphological and temporal features and do not pay attention to the
causal relationships between the feature representations and outcome variable
(i.e. Z and Y in Fig. 1).

As we have mentioned in Sect. 1, One effective way of stable representation
learning is to remove the impact of the variables that have a causal effect on
other variables (i.e. removing C → Z in Fig. 1). In causal inference, the inverse
probability weighting (IPW) is an effective way to estimate the causal effect of
one variable on other variables. Thus we can find the weights w of each sample
in the control and treated groups and minimize the causal effect on one specific
response variable to remove the causal effect of the treatment variable on the
response variable [9]:

w = arg min
w

‖E(X|T = 1;w) − E(X|T = 0;w)‖22

= arg min
w

∥
∥
∥
∥
∥

∑

k;Tk=1 wk · Xk
∑

k;Tk=1 wk
−

∑

k;Tk=0 wk · Xk
∑

k;Tk=0 wk

∥
∥
∥
∥
∥

2

2

(1)

where T is the treatment variable, T = 0 and T = 1 represent the control and
treated group, and X is the response variable.
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In the ECG classification, we aim to remove all the causal effects inside the
feature set and only preserve the direct causal effect from features to labels.
Therefore, in our proposed model, we need to go through all the variables and
optimize the sample weights that can reduce the average treatment effect on
other variables instead of working on one fixed treatment as (1). Considering that
the feature representations are in high dimensions, to learn the stable feature rep-
resentations with causal effect on the predictions, we follow the global balanced
weighting method in [10]. Specifically, given a feature representation Z ∈ R

n×m

where n denotes the number of samples and m stands for the dimension of fea-
ture representations, we first transform it into a binary format S ∈ {0, 1}n×m

via a sign function. Then, the stable variables can be selected through a sample
balance weight matrix W ∈ R

n×1 by minimizing the balance loss (2) because
only stable variables that have direct causal effects on Y are preserved in the
sample reweighting procedure [10]. Then the causal effect of the noisy variables
that are correlated to Y will be removed.

Lb =
m∑

k=1

∥
∥
∥
∥
∥

ST
.,−k · (W � (S.,k))

WT · S.,k
− ST

.,−k · (W � (I − S.,k))
WT · (I − S.,k)

∥
∥
∥
∥
∥

2

2

(2)

where S.,k ∈ R
n×1 means the kth variable in S, and S.,−k means the remaining

variables after excluding the kth variable in S (replacing all values of the kth

variable by 0 [10]).
To regularise the weight matrix, and avoid all the weights equal to 0, the

additional restrictions are required in the balance loss:

Lcau = Lb + ‖W‖22 + (
∑

k

Wk − 1)2 (3)

3.2 Model Design

For the whole causal representation learning model, we propose a structure as
shown in Fig. 2. This model contains a general feature extractor ϕ and a classifier
φ, combined with the aforementioned causal representation learning block. The
feature extractor ϕ contains two modules: one convolution module consisting of
three convolution layers to extract morphological features and another LSTM
module consisting of two LSTM layers for the temporal features. All of the CNN
and LSTM layers are followed by the batch normalization layer and relu activa-
tion function. The output of the two blocks is added and then processed into low
dimensions as the feature representation ϕ(X). Then the feature representation
is reweighted by the weight matrix W and input into the classifier φ consisting
of two dense layers. The final output is φ(W · ϕ(X)), which is corresponding to
four classes of heartbeats. Another part of this model is a decoder, which aims to
assist in the feature extraction and reconstruct the input data from the feature
representation.

As for the optimization objective, the loss function of the whole model con-
sists of four parts: the classification loss Lclf , the reconstruction loss Lcon, the
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regularization loss Lreg, and the balance weighting loss Lcau. For the classifica-
tion loss, we employ the weighted cross-entropy loss in (4) which contains class
weights V and sample weights W . The class weights aim to alleviate the class
imbalance of different heartbeat types and sample weights W are used to select
the stable features.

Lclf =
∑

k=1

Wk

N∑

i=1

(Viyilog(φ(W · ϕ(X))) (4)

For the reconstruction loss Lcon, we choose the mean quadratic loss of the
original input and the reconstructed samples:

Lcon =
∑

k=1

∥
∥
∥XK − X

′
K

∥
∥
∥

2

2
=

m∑

k=1

‖XK − ω(ϕ(XK))‖22 (5)

In each iteration of the training stage, we update the model parameter θ
and the balance weights W in two separate steps. Firstly, we fixed all the model
parameters θ and update the balance weights W by backpropagation to minimize
Lcau. Then we fixed the balance weights W and update θ to minimize (6) where
α1, α2, and α3 are hyperparameters.

Lθ = α1Lclf + α2Lcon + α3Lreg (6)

Fig. 2. The model structure of causal representation learning.

3.3 Active Learning

After pre-training our model on the specific patient set, the next part of our
framework is the active learning on other patient sets, which aims to continue
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the causal representation learning and improve the model performance on the
specific patients with the lowest label cost. Specifically, we follow the workflow
in Fig. 3 to conduct the active learning procedure.

When calculating the test sample scores, we choose two metrics: the proba-
bility difference or breaking tie (BT), and the entropy as [7,18,23] do. The BT
means the absolute value of the two largest predicted probabilities pi and pj

among all classes and the entropy means the dispersion degree of the predicted
probability distribution. To select the most informative sample to annotate, we
choose the test samples with the lowest BT or highest entropy, which means the
largest probability does not take the dominant position for the prediction and
the sample is easy to be classified into other categories.

Fig. 3. The model structure of causal representation learning. Firstly, we use the pre-
trained model to initialise the model for active learning. Then we conduct the proce-
dures of active learning in the sequential order: 1. test the unlabelled data using the
initialised model; 2. calculate the scores by the given metric; 3. rank the scores and
select the data with the highest ranks; 4. label the selected data and remove them from
the unlabelled data pool; 5. retrain the model using the newly labelled data.

4 Experiments

In the experiments, we propose three research questions to verify the effective-
ness of our proposed methods: RQ1: How is the causal representation learning
working to solve the patient differences? Does it outperform other methods?
RQ2: How is the ACREC working compared with other active learning meth-
ods on heartbeat classification? RQ3: How does each part of the ACREC affect
the performance?

4.1 Databases

In this paper, we choose two ECG heartbeat databases for the experiments: MIT-
BIH Arrhythmia Database (MITDB) [4,14], and the MIT-BIH Supraventricular
Arrhythmia Database (SVDB) [4]. MITDB consists of 100420 heartbeats from
44 individuals with a frequency 360 Hz after four patients records in MITDB
(#102, #104, #107 and #217) are removed to reduce the Q type of heartbeat
data, which are not related to our arrhythmia detection task. Another database:
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SVDB is a supplement database in the MIT-BIH Arrhythmia Database con-
taining 78 records. This database contains 183332 heartbeats with a frequency
128 Hz. Table 1 shows the class distributions of the two databases. The detailed
information is shown in Table 1.

We use the two databases because the signals recorded using different leads
and frequencies can increase the patient differences and the distributions of V
and S classes have enormous differences in different databases. Therefore, the
experiments across databases are more similar to the real hospital scenarios to
validate the effectiveness of our proposed methods. In addition, both databases
are available in Physionet2.

Table 1. Class distributions in three ECG datasets

Database N V S F Patients

MITDB 89605 6998 3015 802 44

SVDB 161901 9222 12177 32 78

4.2 Preprocessing

In the preprocessing stage, we firstly use the Dual-Tree Complex Wavelet Trans-
form (DTCWT) to denoise the data to eliminate the influence of such noises and
then apply a median filter with a time window of 200 milliseconds to remove the
P wave and QRS complex, then apply another median filter with a time window
of 600 milliseconds to remove the T wave. Moreover, we segment the ECG signal
into heartbeats using a dynamic length which means the segmentation length
varies among different records and sampling periods [22,26]. Specifically, the
length of each heartbeat is calculated by the average length of ±10 R-R inter-
vals beside the aim heartbeat. We choose 90% of the length before the R peak
and another 60% of the length after the R peak as to segment one single heart-
beat. The reason for using dynamic length segmentation is that the heart rate
is not an invariant value, which can vary in different people, and even different
physiological states of different people. Therefore, using the dynamic length can
lead to a more accurate segmentation of the heartbeats. Finally, we normalize
the segmented data into a fixed interval by min-max normalization.

4.3 Experiments Settings

To answer the three research questions, we set up three phases of experiments.
Phase 1 Patient Differences: The first phase of experiments aims to prove
the effectiveness to handle patient differences. We divide the patients in MITDB
database into two sets: DS1 and DS2, which is common separation in [8,11,19,
22,23,26]. The DS1 and DS2 contains the records from different 22 patients. We
regard DS1 as the training set and train our model on this dataset. Then the
model is tested on DS2 and SVDB separately to prove the performance of causal
representation learning to handle patient differences.
2 https://physionet.org/.

https://physionet.org/


510 S. Shen et al.

Phase 2 Active Learning: To improve the model performances to a high level,
we conduct the active learning on the two test sets: DS2 and SVDB and we also
compare our results with other SOTA active learning algorithms [7,18,23].
Phase 3 Ablation Study: we conduct the ablation study by removing the
balance weights parts and decoder parts from the proposed models. And then
we compare the model performances in handling patient differences and the
performance improvement during active learning.

As for the model setting and hyper-parameters, we choose to use the Adam
optimisers with Nesterov momentum and set the pretraining epoch as 80 and the
learning rates as 5×10−4, 5×10−4, and 1×10−4 to update the feature extractor,
classifier, and decoder separately. Then we use the learning rate of 1 × 10−3 to
update the balance weights W . When updating the model parameters θ, we set
α1 = 0.95, α2 = 0.05, and α3 = 1 in (6). For the active learning steps, we set
the training epoch as 50 and choose the learning rate of 1 × 10−3 to fine-tune
the model parameters θ.

5 Results and Analysis

5.1 Patient Differences

Table 2. Performance of ACREC and comparisons with other inter-patients algorithms
on DS2. OA, Se, Pp, Sp and F1 mean the percentage (%) of the overall accuracy,
sensitivity, positive predictive value, specificity, and F1 score respectively.

Method OA SVEB VEB

Se Pp Sp F1 Se Pp Sp F1

DS2 Huang et al.[8] 93.8 91.1 42.2 – 57.5 93.9 90.9 – 92.0

Sellami et al. [19] 95.3 82.0 30.4 92.8 43.9 92.0 72.1 97.5 80.8

Li et al. [11] 91.4 89.0 35.4 – 50.2 95.2 90.1 – 92.4

Zhai et al. [26] 95.2 91.1 26.7 90.4 41.3 87.2 80.0 98.5 83.4

Wang et al. [22] 94.6 71.9 82.9 – 77.1 92.0 80.1 – 85.6

Proposed 95.4 80.8 62.0 99.4 70.2 81.6 82.5 98.7 82.1

SVDB Rahhal et al. [18] – 8.8 14.3 – 10.9 65.2 9.3 – 16.3

Wang et al. [23] – 25.4 36.7 – 30.0 85.7 48.3 – 61.8

Wang et al. [22] – 15.6 46.9 – 23.4 88.4 35.6 – 50.8

Proposed 90.3 22.9 62.1 98.9 33.4 67.5 54.7 96.6 60.4

The results of the first experiment are shown in Table 2. To compare with
other methods, we choose the experiment results that use only DS1 as the train-
ing data to compare. In the DS2 test set, our proposed causal representation
learning model can reach the overall accuracy of 95.4% and the F1 scores for
SVEB (i.e. S class) and VEB (i.e. V class) of 70.2% and 82.1% respectively. In
particular, the overall accuracy of our model is higher than all of the SOTA mod-
els without introducing the test data. In addition, our model has a significantly
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higher F1 score of S heartbeat than [8,11,19,26]. Compared with [22] which
involved more than 20 convolutional layers, our model can reach a higher overall
accuracy while the F1 scores of SVEB and VEB are slighter lower than the ones
in their methods. However, in the SVDB test set which introduces more patient
differences, our proposed method shows its strengths compared with other meth-
ods. Our overall accuracy can reach 90.3% and the F1 score of SVEB and VEB
can reach 33.4% and 60.4%. In particular, our proposed method can achieve
higher performances on nearly all evaluation metrics compared with [22]. The
experiment results on two test sets can prove that causal representation learning
can outperform other methods by selecting the stable variables in the feature
representations when handling patient differences.

5.2 Active Learning

Table 3. Comparisons of ACREC and other algorithms after active learning

Method Metric Labelled SVEB VEB

Se Pp F1 Se Pp F1

DS2 1DCNN [24] BT 300 92.7 99.2 95.8 99.1 98.5 98.8

LSTM BT 300 89.3 99.7 94.2 98.4 98.9 98.6

ASPP [22] BT 300 92.0 98.1 95.0 95.4 99.7 97.5

ACREC Entropy 0 80.8 62.0 70.2 81.6 82.5 82.1

100 87.1 96.9 91.7 99.3 98.7 99.0

200 89.5 99.9 94.4 99.6 100.0 99.8

300 85.0 100.0 91.9 99.6 100.0 99.8

ACREC BT 0 80.8 62.0 70.2 81.6 82.5 82.1

100 88.1 98.2 92.9 99.0 99.3 99.1

200 91.0 99.9 95.2 99.5 99.7 99.6

300 95.5 99.9 97.6 99.5 100.0 99.7

SVDB Rahhal et al. [18] Entropy 300 86.4 94.3 90.2 96.0 95.7 95.8

Rahhal et al. [18] BT 300 78.3 92.4 84.8 90.8 86.9 88.8

Wang et al. [23] Fusion 350 85.1 99.6 91.8 95.2 99.6 97.4

ACREC Entropy 0 22.9 62.1 33.4 67.5 54.7 60.4

100 77.3 43.2 55.4 92.8 94.8 93.8

200 91.0 92.6 91.8 97.4 98.5 98.0

300 93.5 98.0 95.7 98.7 99.0 98.9

ACREC BT 0 22.9 62.1 33.4 67.5 54.7 60.4

100 85.5 84.2 85.0 90.9 94.3 92.6

200 93.0 92.6 92.8 96.5 98.2 97.3

300 92.6 96.4 94.5 97.9 99.0 98.4

Then to improve the model performance furtherly, we implement the active
learning experiment on the three aforementioned sets. The active learning results
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are shown in Tables 3. In the experiments on DS2, we implement some models
from the previous works for comparison with our proposed ACREC. The results
show that the ACREC with BT selection score can reach the highest performance
if we conduct 30 iterations of active learning and select 300 data per patient on
average to annotate. The F1 scores of SVEB and VEB can reach 97.6% and
99.7%. In addition, the sensitivities of these two abnormal heartbeat types are
higher than 95% and 99%. It means ACREC can detect nearly all the potential
arrhythmia with less omission. And the positive predictive values can achieve
nearly 100%, which shows that all the detected abnormal heartbeats are reliable
by ACREC.

For the experiments on SVDB, we choose some SOTA results for comparison.
Our ACREC with entropy scores can get 95.7% and 98.9% F1 scores for SVEB
and VEB classifications. It can still outperform other methods when selecting
the same number of data to annotate. Compared with [18] which produces one
specific model for each patient in active learning, our ACREC only generates
one model and this model can be tested on all patients. Moreover, we can also
find only 200 labelled data per patient on average, the ACREC can get similar
results that require more labelled data in other algorithms.

5.3 Ablation Study

Table 4. Performance comparison of the whole proposed model and the models without
Balance Weights (W ), Decoder (ω), or both (W+ω).

Method OA SVEB VEB

Se Pp F1 Se Pp F1

DS2 Without W + ω 95.1 57.1 83.1 68.1 76.2 95.0 84.5

Without ω 94.6 45.9 78.0 57.8 64.2 98.2 77.6

Without W 93.9 56.3 87.4 68.5 81.8 67.6 74.0

Proposed 95.4 80.8 62.0 70.2 81.6 82.5 82.1

SVDB Without W + ω 77.4 25.6 50.5 34.0 73.5 26.9 39.4

Without ω 85.8 29.7 37.5 33.2 63.7 35.4 45.5

Without W 79.1 22.8 26.5 24.5 77.5 25.3 38.1

Proposed 90.3 22.9 62.1 33.4 67.5 54.7 60.4

Compared with the traditional heartbeat classification models, our model has
two additional parts: a decoder to assist the feature extraction and a balance
weight module to realize the causal representation learning. To verify the effec-
tiveness of the two parts in our proposed model, we design ablation studies
based on experiments on patient differences. As shown in Table 4, we remove the
decoder ω and the balance weights W separately and then remove both of the
two parts.

From the experiment results, we can see the model can get the best per-
formances on DS2 and SVDB when we preserve both ω and W . Then the
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model without both ω and W can also reach competitive results in the exper-
iments on DS2. However, the performances of this model drop significantly in
the SVDB experiments like other models that work on correlations in Table 2.
This is because in SVDB more patient differences are introduced, for example,
the frequency and record lead and then the correlations between these features
and the outcomes can mislead the classification models. In addition, when we
only remove ω or W , the performances on DS2 and SVDB both decrease. The
decoder part and the reconstruction loss in (5) can assist the learning of latent
representations while the balance weights can show their functionality to select
the stable causal variables in the representations. Therefore, both the decoder ω
and the balance weight W are essential for our proposed model.

6 Conclusion

In conclusion, we are the first work applying causal view analysis and causal
learning in the ECG heartbeat classification field. We analyse one of the key
challenges in the heartbeat classification: patient differences via a causal view
and introduce the causal inference methods to select the stable features and
reduce the correlations inside the features. Then we design a novel model struc-
ture for the causal representation learning, which can alleviate the impact of
patient differences on the prediction models and we apply the active learning
methods to reduce the size of labelled training data. Then, we conduct compre-
hensive experiments to prove the effectiveness of our models to handle patient
differences and achieve high performances with a limited size of labelled data
using active learning. Moreover, compared with other SOTA inter-patient and
active learning algorithms, our model can outperform most of the current meth-
ods, especially in the SVDB test dataset. We also implement the ablation study
to verify the positive influence of the decoder and balance weights parts on the
classification under the situation of patient differences and active learning. From
the application of causal learning to the ECG heartbeat classification, we can
find the high potential and bright future of causal deep learning.
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Abstract. Fish is approximately 40% edible fillet. The remaining 60%
can be processed into low-value fertilizer or high-value pharmaceutical-
grade omega-3 concentrates. High-value manufacturing options depend on
the composition of the biomass, which varies with fish species, fish tissue
and seasonally throughout the year. Fatty acid composition, measured by
Gas Chromatography, is an important measure of marine biomass qual-
ity. This technique is accurate and precise, but processing and interpret-
ing the results is time-consuming and requires domain-specific expertise.
The paper investigates different classification and feature selection algo-
rithms for their ability to automate the processing of Gas Chromatography
data. Experiments found that SVM could classify compositionally diverse
marine biomass based on raw chromatographic fatty acid data. The SVM
model is interpretable through visualization which can highlight impor-
tant features for classification. Experiments demonstrated that apply-
ing feature selection significantly reduced dimensionality and improved
classification performance on high-dimensional low sample-size datasets.
According to the reduction rate, feature selection could accelerate the clas-
sification system up to four times.

Keywords: AI applications · Classification · Feature selection ·
High-dimensional data · Particle swarm optimization ·
Multidisciplinary · Gas chromatography · Fatty acid

1 Introduction

Fish oil is rich in omega-3 polyunsaturated fatty acids, nutritionally important
fats that are found at increasingly low concentrations in Western diets [21].
This has contributed to a high consumer demand for omega-3 supplements, pro-
duced from a wide range of marine biomass [17]. The suitability of a given fish
species (or fish tissue) for the production of high-value omega-3 supplements
depends on fatty acid composition, which is determined by an analytical chem-
istry technique called Gas Chromatography [6,19]. However, fatty acid data
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must be carefully processed and interpreted by domain experts (i.e. chemists),
which is very expensive and time-consuming. Previous works using CNNs, [3,14],
showed high classification accuracy on Gas Chromatography data. However,
these black-box models do not produce interpretable models, making it diffi-
cult to verify/troubleshoot these models for fish processing in a factory setting.

The goal of this work is to automate the processing and interpretation of
Gas Chromatography data using machine learning algorithms, to substantially
increase fatty acid analysis throughput. However, it is not a trivial task to
format Gas Chromatography data for existing classification algorithms. Fur-
thermore, each Gas Chromatography data consists of almost 5000 values (fea-
tures/variables), far more numerous than the number of fish samples (153). This
large number of features relative to samples (the curse of dimensionality) results
in a sparsely populated data space, which can result in overfitting i.e. where
the built model works well on the training set but poorly on the test (unseen)
set. Redundant (providing the same information as other features) or irrelevant
features (providing misleading information for the classification task) are also
common in this type of dataset [15], which can reduce classification performance
and cause long training times. Therefore, the paper also assessed the utility of
feature selection to preprocess and remove these irrelevant/redundant features.

The goals of this work are to investigate the viability of classifying different
marine biomass, automate processing of raw Gas Chromatography data, improve
analytical throughput and reduce labour costs, and reduce the dimensionality of
Gas Chromatography data required to perform fish oil production and analysis.
The contributions of this work are broken into three main steps:

– Data preprocessing: This step converts Gas Chromatography data into tabu-
lar format data appropriate as input into a machine learning algorithm. The
paper finds an effective method to detect and fill the missing packets/features
which improves the classification performance over using the raw data.

– Analysing classification algorithms: The second step performs experiments
with five types of classification algorithms, including instance-based classi-
fiers, probabilistic classifiers, tree-based classifiers, ensemble classifiers, and
kernel-based classifiers, to classify fish samples [4,7–9,13]. Experiments find
that kernel-based classifiers, particularly linear SVM, achieve high classifi-
cation accuracy on the fish data. The paper visualises the learnt model and
identifies that not all the data, represented as features, are useful, which leads
to the final step.

– Feature selection: The last step applied feature selection methods to reduce
the amount of collected data i.e., the number of features. The experimental
results illustrate that the number of features could be reduced by almost 75%
while improving the classification performance.
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Fig. 1. Gas Chromatogram of Fatty Acid Methyl Esters from Snapper Skin.

2 Gas Chromatography

Gas Chromatography is an analytical chemistry method commonly used to inves-
tigate the fatty acid compositions of biological samples e.g. marine oils [6,19]. It
works by increasing the temperature of a very narrow ‘capillary’ column, which
separates each fatty acid from the complex mixture based on their individual
chemical characteristics e.g. molecular size, volatility, and polarity. An example
of Gas Chromatography for fatty acid analysis is shown in Fig. 1. The x-axis
represents the time required to separate the individual fatty acids (or a packet),
and the y-axis represents peak intensity (or the packet intensity), which is pro-
portional to the concentration of each fatty acid. Chemists integrate the area
under each peak to measure how much of each fatty acid is present, and use
this information to understand the best use of the oil. This process can be slow,
labour-intensive and expensive.

The goal of this work is to apply machine learning, particularly classification
algorithms to automatically classify the fish data, a real-world problem in New
Zealand. However, the current Gas Chromatography data is not readily applied
to machine learning algorithms due to missing packets which are not caught by
the system detector. The missing packets cause the misalignment between two
samples, i.e., intensities at the same time of the two chromatographs may have
different meanings. Therefore, it is necessary to detect such missing packets to
align the data before applying machine learning algorithms.
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Table 1. Inconsistent timestamps

Timestamp

Sample 1 Sample 2 Sample 3

Packet 1 51 50 50

Packet 2 52 51 51

Packet 3 53.05 53.1 53

3 Data Preprocessing and Formation of Classification
Problems

The Y-data output from the Gas Chromatography analysis consists of many
packets with variable intensities. In theory, they could be used as features to
classify the different fish samples, but there were a large number of inconsisten-
cies between packets in the different fish samples. An example, focusing on these
inconsistencies for three different fish samples, is shown in Table 1. Although all
three samples have three packets, their timestamps are different. For example,
the timestamp of the first packet of Sample 1 is 51, while the timestamp of the
first packet of Sample 2 is 50. In other words, the first packet of Sample 1 does
not correspond to the first packet of Sample 2, and thus it does not make sense
to directly apply a classification algorithm to the raw data. Initial experiments
tried KNN (K = 3), and the classification performance was only 67%, which is
quite low.

Further investigation revealed that the main reason was due to the missing
packets, caused by the absence of signal at the Gas Chromatography detector.
For example, for Sample 1, the packet at the timestamp 50 is missed, and thus
the first packet of Sample 1 is at 51. These missing packets are unavoidable for
this dataset, therefore a method is needed to handle missing data. Preprocessing
aligns the packets from all the samples. Firstly, all unique timestamps are col-
lected by analysing all the possible samples in the training set. For the example
given in Table 1, the set of unique timestamps is {50, 51, 52, 53, 53.05, 53.1}.
Thus, there should be six packets in total, while Table 1 shows only three pack-
ets for each sample. Based on the timestamp set, the packets at {50, 53, 53.1}
are missing for Sample 1. Once the missing packets are identified, these missing
intensities need to be filled.

This work tried three different standard methods for missing values: filling 0,
filling the average value, and filling the median value. The results show that filling
0 gives the most promising results with 83.57% on KNN (K = 3). The possible
reason is that the missing packets have low intensities, which the detector might
not be able to detect. Thus, the 0 value is quite close to the intensities of the
missing packets. Therefore, the filling 0 method was chosen. The authors are
aware that there are more complex methods for imputing missing values, [22,24],
but they are not the focus of the paper and will be left for future work [23].

The processing gives 4800 packets for each sample, which meant each sam-
ple had 4800 features. The number of fish samples was 153. There is a class
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imbalance for the fish species dataset, where Blue cod is the majority class e.g.,
68 samples are Blue Cod of the total 153 samples. There are two classification
tasks associated with the data:

– To predict the fish species for each fish sample. There are four fish species:
Snapper, Gurnard, Tarakihi, and Blue cod.

– To predict from which body part the fish sample is extracted. There are six
body parts: Frame, Gonad, Head, Liver, Skin, and Guts.

4 Classification Performance

The following section illustrates the classification performance on the fish species
and body parts.

4.1 Experiment Settings

Firstly, since the number of samples is small, the experiment uses 10-fold cross-
validation to conduct the experiments. For 10-fold cross-validation, the method
divides the data into 10 folds such that the proportions of the classes in each
fold are representative of the proportions in the whole dataset. Each fold plays
the testing role, while the remaining 9 folds are combined to form a training set.
A classification algorithm is then trained on the training set, and the obtained
classifier is evaluated on the test set. Finally, 10 testing accuracies are obtained,
and their mean value and standard deviation are given as the final classification
performance. The experiment measures the balanced accuracy, so as not to bias
results towards the majority class (i.e. Blue cod for fish species).

These experiments compare five well-known classifications: K Nearest Neigh-
bours (KNN), Naive Bayes (NB), Random Forest (RF), Decision Trees (DT),
and Linear Support Vector Machines (SVM) [4,7–9,13]. The parameters are the
default settings in scikit-learn [18].

4.2 Results and Discussion

Table 2 shows the results for KNN, RF, DT, NB, and SVM. Results are given
for fish species (top), and fish part (bottom) datasets. The mean and standard
deviation of balanced accuracy is given using the fish species and part datasets.
For each dataset, the best accuracy is emphasized in bold.

As can be seen from the table, RF, DT and SVM achieve 100% training
accuracies. However, on the test set, DT and RF do not achieve good classifica-
tion performance. The main reason is that there is a small number of training
samples. The trees built by DT and RF can perfectly fit the training data by
creating large trees that remember all the possible training samples. Such trees
do not generalise well on the test set, which is the overfitting problem in machine
learning. KNN does not achieve good performance since it is a distance-based
classification algorithm which suffers the most from the large number of features.
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Table 2. Classification accuracies

Dataset Method AvgTrain ± Std AveTest ± Std

Fish Species KNN
RF
DT
NB
SVM

83.57 ± 1.80
100.0 ± 0.00
100.0 ± 0.00
79.54 ± 1.60
100.0 ± 0.00

74.88 ± 12.54
85.65 ± 10.76
76.98 ± 13.12
75.27 ± 4.35
98.33 ± 5.00

Body Parts KNN
RF
DT
NB
SVM

68.95 ± 3.49
100.00 ± 0.00
100.00 ± 0.00
65.54 ± 2.69
100.00 ± 0.00

43.61 ± 13.48
72.60 ± 16.15
60.14 ± 14.57
48.61 ± 12.19
79.86 ± 8.52

Similar to KNN, NB does not achieve good performance since it assumes condi-
tional independence between features that may not be true in the fish datasets.
The SVM classifier outperforms the other classifiers on the test set, with 98.33%
and 79.86% for fish species and body parts, respectively. The main reason is that
SVM can handle a large number of features, so SVM is suitable to classify the
fish data.

Another essential point is that the classification accuracy on the fish species
is always higher than the classification accuracy on the body parts. The results
suggest that classifying body parts is a more challenging problem. A possible
reason is that the tissue samples from different species may have very different
chemical components. Meanwhile, the tissue samples from different body parts
(but on the same fish species) may have similar chemical components. Future
work will investigate more sophisticated mechanisms to improve the classification
performance on classifying body parts.

4.3 Interpret SVM Models

Achieving a high classification performance is great. However, in real-world appli-
cations, it is essential to analyse why the models work well. This subsection ana-
lyzes the Linear SVM model built to classify the fish species. The main idea of
SVM is to build hyperplanes that separate different fish species. For SVM with
linear kernels, the hyperplane is represented by a weight vector in which each
weight is associated with a feature. The larger the weight, the more important
the corresponding feature. After an SVM classification algorithm is trained on
the training set, an SVM classifier containing a learned weight vector is obtained.
This section analyses the learned weight vector to examine the contribution of
each packet/feature.

Figures 2a and 2b show the coefficients of hyperplanes to separate Snapper
and Blue cod from other species, respectively. The horizontal axis is the fea-
ture index and the vertical axis is the coefficient value. The negative weights
are in red and the positive weights are in blue. Gas Chromatography data is
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(a) Snapper

(b) Blue cod

Fig. 2. SVM hyperplane coefficients

non-negative, so only negative weights push toward the negative class, therefore
positive weights are expected values, and the negative values are not. Note that
when considering the feature importance, the absolute values of the weights
should be considered, i.e., the longer the bar, the more important the corre-
sponding features. Both figures demonstrate that most features have relatively
small weights, which suggests not all the 4800 packets/features are needed to
classify the fish data.
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5 Feature Selection

5.1 Motivations

As can be seen in the SVM models, it is not necessary to use all the 4800
packets/features to perform fish classification. Therefore, the number of packets
can be reduced while maintaining (or even improving) the classification perfor-
mance. In an automated classification system, it would be great to significantly
reduce the number of packets. Since then the system will not need to wait for
a large number of packets to arrive at the end of the detector, hence signifi-
cantly improving the system efficiency and throughput. The remaining question
is which packets or features should be used. This question motivates us to con-
duct a further investigation using feature selection to select the most important
packets/features.

5.2 Feature Selection Methods

In a classification problem, the classification performance relies heavily on fea-
ture quality. However, in a large set of features as in the fish data, there are
usually redundant or irrelevant features that blur useful information provided
by the relevant features. Feature selection aims to select an informative sub-
set of relevant features, which is expected to significantly reduce the number of
features while maintaining (or even improving) the classification performance.
In a feature selection system, subset evaluation is an essential component that
evaluates the quality of a feature subset. Based on the subset evaluation, the
system can continuously improve the subset quality until a stopping criterion is
met. The final feature subset is the output as the final solution.

This section compares four common feature selection methods:

– χ2 (chi-square) [12] is a statistical measure that computes the independence
of two variables X and Y . The formula of χ2 is

χ2 =
N∑

k=1

(Xk − Yk)2

Yk
(1)

where k is the index of the sample and N is the number of samples. In feature
selection, χ2 can be used to measure the independence between a feature and
a class label. Since there is usually a high dependency between a relevant
feature and a class label, the low χ2 value indicates that the features are
more relevant. Thus, the features can be ranked in ascending order and the
top-ranked features can be selected.
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– Minimum Redundancy and Maximum Relevance (mRMR) [5] uses
mutual information to perform feature selection. Mutual information between
two variables X and Y , i.e., I(X;Y ) calculates the dependency between two or
more variables. mRMR aims to select a feature subset such that the redun-
dancy of the selected features is minimised and the relevance between the
selected features and the class label is maximised. Given a set of selected
features A, the score of a feature Xi, i.e., Si is calculated by the following
formula:

Si = I(Y ;Xi) − 1
|S|

∑

Xj∈A

I(Xi;Xj) (2)

mRMR has many iterations where at each step mRMR will add the best
feature based on Eq. (2). mRMR stops when a predefined number of features
are selected.

– ReliefF [20] is a feature selection algorithm based on distance measures. In
ReliefF, a good feature should be able to separate instances from different
classes well while the instances from the same class should not be far from
each other. The algorithm ranks all features based on the idea of nearest
neighbours. For a feature, if the distance between two nearest instances from
different classes (a miss) is large, the feature score is increased since the
feature can separate different classes well. On the other hand, if the distance
between the two nearest instances from the same class is large (a hit), the
feature score is decreased. In ReliefF, the higher the score, the more relevant
the feature. Therefore, all features are ranked in descending order, and the
top-ranked features are selected.

– Particle Swarm Optimisation (PSO) [10,16] for Wrapper Feature
Selection utilises the classification performance as the fitness function to
achieve feature selection. The main idea is to have a swarm of particles that
can explore the feature subset space in parallel. Each particle represents a
feature subset. The quality of each particle is the classification performance
of the corresponding feature subset. Since it is necessary to train a classifi-
cation algorithm during the evaluation process, the classification algorithm
is “wrapped” inside the PSO algorithm (that is why the algorithm is called
Wrapper PSO). In this work, a linear SVM is used as the wrapped classifica-
tion algorithm since it achieves good classification performance. Each particle
records the best feature subset that it discovered so far (called personal best
or pbest) and the best feature subset that is discovered by the whole swarm
so far (called global best or gbest). The particle then updates its position by
moving towards the two best positions. It is expected that the new subset
at the new position will have better quality (i.e., higher classification perfor-
mance) than the previous position. An advantage of PSO is that the particle
movement is stochastic. Thus, the swarm can globally explore the feature
subset search space, which is an essential point when dealing with a large and
complex search space like feature selection. Therefore, PSO has gained much
attention from the feature selection community recently [15].
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Although there are other advanced and complicated feature selection algo-
rithms [1,2,11,25], this work starts with the above four simple but well-known
techniques. If the results are promising, future work will investigate extensions
of these and/or other feature selection algorithms.

5.3 Experiment Settings

Following the same setting in the classification part, this experiment uses 10-
fold cross-validation to generate the training and test sets. For each method, the
balanced classification accuracy is measured with a linear SVM classification
algorithm [18]. For χ2, mRMR, and ReliefF, a hyperparameter for the number
of selected features must be given. Therefore, the experiments measure the per-
formance of the three algorithms on a wide range of the number of features:
{50, 100, 150, ..., 4800} with increment 50. For PSO, the swarm size is set to 30
and the maximum number of iterations to 100. An advantage of PSO is that it
does not need to specify a hyperparameter for the number of selected features.
Since PSO is a stochastic algorithm, it is run 30 independent times on each
classification task to make a reliable comparison.

5.4 Feature Selection Performance on Fish Species Classification

Figure 3 shows the results for χ2 (chi2), ReliefF, mRMR and PSO on the fish
species. The vertical axis is the classification accuracy and the horizontal axis
is the number of selected features. As can be seen from the figures, the three
algorithms χ2, mRMR, and ReliefF perform poorly when the number of selected
features is small. The main reason is that when the number of selected features
is small, many relevant features are not selected, and thus essential classification
information is missed. Among the three algorithms, χ2 usually achieves the low-
est classification performance since χ2 does not reduce the feature redundancy
and does not consider the interactions between features. ReliefF and mRMR
achieve comparative performance. mRMR achieves its highest training and test-
ing accuracies when the number of selected features is around 1500, which can
be seen in Table 3.

As can be seen from the figure, most feature subsets evolved by PSO have
from 1100 to 1500 features. The results indicate that PSO can automatically
determine a good number of selected features, which cannot be achieved by
the other three algorithms. As can be seen in Table 3, the highest classification
performance of PSO is 99.17% which is about 1% higher than using all features.
Meanwhile, PSO can remove 75% of the features, which means the classification
system can be four times faster given the number of required packets/features
is reduced by four times.



526 J. Wood et al.

(a) Species: Training set (b) Species: Test set

Fig. 3. Classification Accuracy of Fish Species on Different Numbers of Selected Fea-
tures.

Table 3. Best accuracy on Fish Species.

Method Number of features Training accuracy Testing accuracy

ReliefF
mRMR
χ2

PSO
Full

359
1500
3250
1192
4800

100.0
100.0
100.0
100.0
100.0

98.33
99.17
98.33
99.17
98.33

5.5 Feature Selection Performance on Body Parts Classification

Figure 4 shows the results for χ2, ReliefF, mRMR and PSO on the fish part
dataset. As can be seen in Fig. 4a, χ2, mRMR, and Relief-F witness a sharp
improvement when the number of selected features is in the range [0, 500],
which indicates that the 500 top-ranked features are essential to select. After
that, the three approaches have a gradual incline, which peaks at 100% where
all the features are selected. On the other hand, PSO selected feature subsets
with sizes ranging in [1200, 1300]. Given the same classification performance,
PSO usually selects a smaller number of features than the other three feature
selection algorithms. The main reason is that PSO considers the interaction in
the whole set of features, meanwhile, the other algorithms only consider the
pair-wise interactions between feature pairs.

Table 4 illustrates the best accuracy for classifying fish body parts. As can
be seen from the table, the best classification performance at 86.94% is achieved
with 1500 features selected by mRMR. Thus, feature selection can also improve
7% accuracy over using all features. Meanwhile, the number of features is reduced
by 2.5 times, which means the system can be 2.5 times faster. It should be noted
that the testing performance of PSO is not as good as mRMR despite its superior
training performance. The results indicate the potential overfitting of PSO on
classifying body parts, which can be investigated more in the future.
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(a) Part: Training set (b) Part: Test set

Fig. 4. Classification accuracy of Fish Body Parts on Different Numbers of Selected
Features.

Table 4. Best accuracy on fish body parts

Method Number of features Training accuracy Testing accuracy

ReliefF
mRMR
χ2

PSO
Full

1650
1500
1550
1223
4800

100.0
100.0
100.0
100.0
100.0

84.44
86.94
82.50
84.31
79.86

5.6 Summary

In general, feature selection can significantly reduce the number of required
packets/features and improve classification performance. For classifying the fish
species, 75% of packets can be removed. For classifying the body parts, 60% of
packets can be removed. The significant reduction means that the overall clas-
sification system can be up to 4 times faster. It should be noted that classifying
the body part is more challenging than classifying the fish species. That is why
classifying the body parts requires more features. Last but not least, PSO can
automatically determine a good number of selected features. In general, PSO
achieves good classification performance, except for some signs of overfitting
which can be investigated in future.

6 Conclusions and Future Work

This paper has proposed an interpretable and effective classification process
for fish oil analysis. Based on the results, it can be concluded that machine
learning is a promising direction to improve the effectiveness and efficiency of
the overall fish product system. In terms of accuracy, the proposed model can
achieve high classification performance on classifying both fish species and body
parts. However, fish species are easier to predict than body parts since there is
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more intra-class variation within fish species than there is a similarity between
the same part from different fish. Among the considered classification algorithms,
linear SVM achieves the best classification performance since it is suited to high-
dimensional problems. Analysis of the SVM model demonstrates that not all
packets are needed, and thus feature selection has been conducted to significantly
reduce the number of packets and improve the classification performance.

It is worth noting that the classification and feature selection methods pre-
sented in this paper could be extended to further improve performance. This is
particularly useful for the lower-accuracy fish part dataset. A potential direc-
tion is to improve the classification performance by constructing more informa-
tive high-level features, also known as feature construction. In addition, a more
sophisticated imputation method can be developed to fill the missing packets in
the fish data.
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Abstract. Radiologists are required towrite a descriptive report for each examina-
tion they perform which is a time-consuming process. Deep-learning researchers
are developing models to automate this process. Currently, the most researched
architecture for this task is the encoder-decoder (E-D). An issue with this app-
roach is that these models are optimised to produce output that is more coherent
and grammatically correct rather than clinically correct. The current study con-
siders this and instead builds upon a more recent approach that generates reports
using a multi-label classification model attached to a Template-based Report Gen-
eration (TRG) subsystem. In the current study two TRG models that utilise either
a Transformer or CNN classifier are produced and directly compared to the most
clinically accurate E-D in the literature at the time of writing. The models were
trained using the MIMIC-CXR dataset, a public set of 473,057 chest X-rays and
206,563 corresponding reports. Precision, recall and F1 scores were obtained by
applying a rule-based labeller to the MIMIC-CXR reports, applying those labels
to the corresponding images, and then using the labeller on the generated reports.
The TRG models outperformed the E-D model for clinical accuracy with the
largest difference being the recall rate (T-TRG: Precision 0.38, Recall 0.58, F1
0.45;CNN-TRG: Precision 0.34, Recall 0.69, F1 0.42;E-D: Precision 0.38, Recall
0.14, F1 0.19). Examination of the quantitativemetrics for each specific abnormal-
ity combined with the qualitative assessment concludes that significant progress
still needs to be made before clinical integration is safe.

Keywords: Medical text · Medical imaging · Deep learning · Templates ·
Encoder-decoder · CNN · Transformer

1 Introduction

Since the 1990s, the number of medical imaging examinations has increased globally at
a rate significantly higher than the rate of practicing radiologists [1, 2]. This decreasing
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radiologist to examination ratio has resulted in an excessive workload per radiologist
[1], which is a major risk factor responsible for clinician burnout [3], with this burnout
contributing to an increase in diagnostic errors [3–5] and loss of experienced staff [6].
A component of a radiologist’s workload is the translation of medical images into diag-
nostics reports that describe their observations, particularly whether a region is normal,
abnormal, or potentially abnormal [7]. An example report taken from the MIMIC-CXR
dataset [8], a dataset consisting of chest X-rays paired with their corresponding report,
has been provided in Fig. 1. Writing radiology reports is a time-consuming process that
requires the expertise of a professional radiologist and therefore cannot be delegated to
other clinicians [7]. This presents machine learning researchers with the opportunity to
alleviate radiologist’s workload through the development of automated Medical Report
Generation (MRG) systems.

Fig. 1. A chest X-ray from the MIMIC-CXR dataset [8] and the corresponding report.

1.1 Related Research

Current automated MRG research has been built atop a foundation of image captioning
research and follows the same trend of improving the Encoder-Decoder (E-D) archi-
tecture [9–19]. A common theme throughout most of these studies is that the almost
exclusive method of evaluating model performance is via Natural Language Processing
(NLP) metrics, a group of measures that assess how well the generated output matches
the target/s, with the most common metric being the BLEU [20] metric. This method
primarily works by calculating the number of matching n-grams between the original
and generated reports. An n-gram is a contiguous sequence of n items and when calcu-
lating a BLEU score, 1-gram (B1), 2-gram (B2), 3-gram (B3), and 4-gram (B4) metrics
are commonly calculated, with a score of 1 representing a perfect match and a score of
0 representing a perfect mismatch. However, it has been shown that NLP metrics are
not a good representation of the clinical content within a generated report, but rather
a measure of report coherence and grammatical correctness [21, 22]. As such, a report
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could receive very high NLP scores, but be clinically incorrect. An example provided
by Pino et al. [21] can be seen in Table 1 comparing the ROUGE-L score, a measure of
the longest common subsequence, the BLEU score averaged across all n-gram values,
and the clinical accuracy metrics including the precision, recall, and F1 score.

Table 1. An example of how NLP metrics are not a good representation of the quality of a
generated clinical report. Italic represents correct text; underlined represents incorrect text; B =
BLEU 1–4 averaged; RL = ROUGE-L; P = Precision; R = Recall.

Report B RL F1 P R

1 – Ground Truth: Heart size is mildly enlarged. Small right
pneumothorax is seen

- - - - -

2 – Heart size is normal. No pneumothorax is seen 0.493 0.715 0 0 0

3 – The cardiac silhouette is enlarged. No pneumothorax 0.146 0.464 0.5 0.5 0.5

4 –Mild cardiomegaly. Pneumothorax on right lung 0.075 0.289 1 1 1

Boag et al. [22] were the first to assess the appropriateness of NLP metrics for
healthcare-based AI research and profiled a range of models for automatic MRG, with
their most notable result being the performance comparison between the conditional n-
gram language model (CLM) and the CNN-LSTM encoder-decoder model. It was found
that while the CNN-LSTM model outperformed the CLM on B1 (0.305 vs 0.206), B2
(0.201 vs 0.107), B3 (0.137 vs 0.057), B4 (0.092 vs 0.031) and other NLP metrics,
both models performed equivalently on macro average F1 score (CNN-LSTM = 0.186
vs CLM = 0.185). This study was the first to specifically highlight the inconsistency
between NLP metrics and clinical correctness.

Since publicly available datasets used to train ED models consist of unlabelled
report/X-ray pairs, Boag et al. [22] obtained their precision, recall, and F1 scores by
labelling the original and generated reports with the CheXpert labeller [23] and calcu-
lating their metrics with the resulting labels. The CheXpert labeller is a comprehensive
rule-based labeller that provides chest X-ray reports with 14 labels (13 abnormality
labels; 1 no findings label) that can subsequently be attributed to the corresponding
X-ray. To assess the performance of the labeller, the authors performed three tests: men-
tion detection, the labellers’ ability to detect the mention of an abnormality, negation
detection, the labellers’ ability to detect when the mention of an abnormality negates its
presence, and uncertainty detection, the labellers’ ability to detect uncertainty within the
mention of an abnormality. The labeller achieved a macro-average F1 score of 0.948 for
mention detection, 0.899 for negation detection, and 0.770 for uncertainty detection.

Of the encoder-decoder studies previously cited, only 4 [14, 17–19] attempted to
measure the performance of their model’s clinical correctness. Alfarghaly et al. [19] had
a radiologist qualitatively assess a subset (201 normal; 299 abnormal) of the generated
reports and classify them as either accurate, missing detail, or false. For the normal
reports, 99%were accurate, 0%weremissing detail, and 1%were false. For the abnormal
reports, 36.5% were accurate, 47.1% were missing detail, and 16.4% were false. From
these results, it is concluded that it was harder for the model to detect abnormalities.



Automated Radiology Report Generation 533

The other 3 studies [14, 17, 18] utilised the same approach as Boag et al. [22]. Zhang
et al. [14], however, used a self-developed labeller, which performs the same task as the
CheXpert labeller, and achieved 0.483 recall, 0.490 precision, and 0.478 F1. Chen et al.
[17] and Lovelace et al. [18] both used the CheXpert labeller [23] with the MIMIC-
CXR dataset and the performance of their models have been contrasted in Table 2. A
comparison of these studies reveals information that is consistent with the findings of
Boag et al. [22]; NLP metrics do not necessarily relate to clinical accuracy, with both
achieving poor precision and recall.

Table 2. A comparison of the models produced by Chen et al. [17] and Lovelace et al. [18]
showing that NLP metrics do not necessarily relate to clinical accuracy.

Models B1 B2 B3 B4 RL F1 P R

Chen et al. (2020) 0.353 0.218 0.145 0.103 0.277 0.276 0.333 0.273

Lovelace et al. (2020) 0.415 0.272 0.193 0.146 0.318 0.228 0.333 0.217

While themovement away fromNLPmetrics is just emerging, there is still an inherent
problem in the primary architecture used to generate reports; they are optimised against
the structure of the original report and not the clinical content. Lovelace et al. [18]
attempted to integrate clinical content learning into the current ED architecture, but they
still achieved poor results, no better thanChen et al. [17] who did not optimise for clinical
content.

As an alternative to the encoder-decoder architecture, Pino et al. [21] proposed a
Template-basedReport Generation (TRG)model that detects abnormalities using aCNN
classifier and generates reports usingfixed sentence templates for each abnormality. They
used the same approach as Chen et al. [17] and Lovelace et al. [18] to measure clinical
accuracy and achieved an F1 score of 0.428, precision of 0.381, and recall of 0.531.
These results were also obtained using only the frontal X-rays and excluded the ‘no
findings’ label provided by the CheXpert labeller which means their results cannot be
directly contrasted with the study by Chen et al. [17] or Lovelace et al. [18]. The benefit
of the CNN-TRG approach is that it allows the model to be directly optimised using
clinical content since optimisation of a classifier is based on how well it categorises
abnormalities. The limitation of this approach is that it is constrained by the labels
provided and the complexity of the TRG subsystem.

The work in this paper improves upon the CNN-TRG approach by replacing the
CNN with a Transformer and by implementing a more flexible TRG subsystem that
retrieves templates based on probability outputs. The performance of the T-TRG and
CNN-TRGmodels are directly compared against the ED model produced by Chen et al.
[17], currently one of the most clinically accurate ED models. A qualitative assessment
of the generated reports is then performed looking into the safety of integrating these
deep learning models into a clinical setting. The contributions of the current study are
as follows.



534 B. Abela et al.

1. A model for generating clinical reports from chest X-rays that outperforms that
current start of the art.

2. A clinical safety assessment of the current state of the art models.

2 Method

2.1 Dataset

The current study utilised the MIMIC-CXR [8] dataset, the largest public radiology
dataset at the time of writing, which consists of 473,057 frontal/lateral chest X-ray
images and 206,563 corresponding reports from 63,478 patients. Both the frontal and
lateral X-ray images were used. The X-ray images without reports were excluded using
the method employed by Chen et al. [17]. The make-up of the dataset after accounting
for exclusion criteria are presented in Table 3. The training, validation, and testing splits
presented in Table 3 are the official MIMIC-CXR splits after applying the exclusion
criteria. The official MIMIC-CXR splits have been used since this setup is consistent
with MRG literature reviewed in Sect. 1.1.

Table 3. The number of unique instances in the training, validation, and testing subsets of the
MIMIC-CXR dataset after filtering out images without corresponding reports.

Dataset Train Val Test

Images 279,790 2,130 3858

Reports 139,368 1,163 2,346

Patients 59,799 459 289

Avg. report length 51.24 49.63 60.76

TheMIMIC-CXR dataset is an unlabelled dataset and therefore, for precision, recall,
and F1 scores to be calculated, the data had to be labelled. These labels were obtained
by using the CheXpert labeller [23] on the MIMIC-CXR reports. The CheXpert labeller
is a comprehensive rule-based labeller that provides 13 abnormality labels to a report
and provides a 14th ‘no findings’ label. In the study by Chen et al. [17] they chose to
use the ‘no findings’ label and in the study by Pino et al. [21] they chose not to use
it. In the current study, the ‘no findings’ label is not used for two reasons. First, the
absence of the other 13 findings indicates ‘no findings’, and secondly, the addition of
the ‘no findings’ label will confound the proposed metrics. Precision, recall, and F1 are
measures that relate to the positive class and therefore representing ‘no findings’ with
a positive label would result in the negative class leaking into the positive class. The
labels were obtained for each of the reports in the dataset and were given to each of the
corresponding X-ray images. These labels were used as the target values for the dataset.
The resulting statistics for each abnormality are provided in Table 4.

The CheXpert dataset [23] is also used to initially train the TRG models on the
same 13 abnormality labels before they are fine-tuned on the MIMIC-CXR dataset. The
CheXpert dataset consists of 224,316 labelled frontal/lateral chest X-rays from 65,240
patients.



Automated Radiology Report Generation 535

Table 4. The distribution of abnormalities within the MIMIC-CXR dataset after filtering out
images without corresponding reports.

Abnormality Train Val Test

No findings 48685 (18.0%) 539 (25.3%) 180 (4.7%)

Enlarged cardiomediastinum 51491 (19.0%) 192 (9.0%) 640 (16.6%)

Cardiomegaly 74209 (27.4%) 515 (24.2%) 1621 (42.0%)

Lung lesion 10892 (4.0%) 110 (5.2%) 258 (6.7%)

Lung opacity 83794 (30.9%) 593 (27.8%) 1786 (46.3%)

Edema 34205 (12.6%) 156 (7.3%) 842 (21.8%)

Consolidation 21756 (8.0%) 60 (28.2%) 429 (11.1%)

Pneumonia 31891 (11.8%) 92 (4.3%) 651 (16.9%)

Atelectasis 62111 (22.9%) 413 (19.4%) 1114 (28.9%)

Pneumothorax 26306 (9.7%) 68 (3.2%) 395 (10.2%)

Pleural effusion 64943 (24.0%) 399 (18.7%) 1421 (36.8%)

Pleural other 6034 (2.2%) 45 (2.1%) 156 (4.0%)

Fracture 11882 (4.4%) 57 (2.7%) 256 (6.6%)

Support devices 70792 (26.1%) 531 (25.0%) 1642 (42.6%)

2.2 Experiments

The CNN-TRG and T-TRG models detect abnormalities in the X-ray using the predic-
tions from a multilabel-classifier to retrieve template sentences from a subsystem. These
sentences are concatenated and used as the final report. The model structure is provided
in Fig. 2.

DenseNet-121 [24] is used as the classifier for the CNN-TRGmodel and the original
Vision Transformer (ViT) architecture [25] is used for the T-TRGmodel. The ViTmodel
partitions an input image into 16x16 patches before vectorizing the patches and providing
each vector with a positional encoding. The patches are then fed into a stack of multi-
head attention and dense layers that utilise skip connection and normalisation. An output
component of this stack is then fed into a softmax classifier which outputs a vector with
the shape of the number of classes, which in the case of the current study is 13. This
is a brief overview of the ViT classifier; a more in-depth description is provided in the
original paper [25].

Both classifiers are first initialised with the pre-trained weights from ImageNet [26]
before initially being trained on theCheXpert dataset [24] to classify the 13 abnormalities
detailed in Table 4. Next the classifiers are fine-tuned on the target dataset (MIMIC-
CXR). The models were trained using binary cross entropy loss for 40 epochs and early
stoppingwasused tooptimise thePR-AUCmetric. PR-AUCis a single value representing
the precision and recall performance of a model at all prediction thresholds.

The current study improves on the original TRG subsystem developed by Pino et al.
[21] by applying class probabilities to the template retrieval process. The developed
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Fig. 2. An example of the T-TRG and CNN-TRG template subsystem that retrieves template
sentences based on the prediction and threshold values and produces a report by concatenating
them into a report.

TRG subsystem is unique to this study. The TRG component of the model consists of 3
sentences developed by a radiologist for each abnormality, with each abnormality’s pre-
diction probability retrieving a certain sentence class: either present, possibly present, or
not present. The threshold for each sentence is based on the optimal PR-AUC threshold
for each abnormality. A possibly present sentence is retrieved if the prediction value
is up to 50% higher than the detection threshold. For example, for the standard detec-
tion threshold of 0.5, a prediction value of 0.5–0.75 would retrieve a ‘possibly present’
sentence, whereas a prediction value of 0.75–1.0 would retrieve a ‘present’ sentence.
Negative predictions are also combined into individual sentences to produce more con-
cise reports. For example, if no lung abnormalities are detected, these sentences are
grouped into a single sentence, ‘The lungs are clear’.

In order to evaluate our approach, a traditional E-Dmodel was used as a baseline. The
E-Ddeveloped byChen et al. [17]was selected due to it being themost clinically accurate
E-D model currently reported in the literature. The model consists of a transformer
encoder, a transformer decoder, and a novel relational memory component that stores
information about previously generated reports. A comprehensive description of the
model is detailed in the original paper [17].

2.3 Quantitative Assessment

Both NLP and clinical accuracy metrics are used in the quantitative assessment of the
models. NLP metrics have been included to highlight the inconsistency between NLP
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metrics and clinical accuracy and expand on current literature findings. For NLPmetrics
BLEU 1–4 is used, with B1 being calculated using 1-gram, B2 2-gram, B3 3-gram,
and B4 4-gram. The BLEU score is calculated by taking the geometric mean of the test
corpus’ modified precision scores and multiplying that value by the exponential brevity
penalty (BP) factor.

The modified precision score is calculated by counting the number of times each n-
gram appears in the generated report, clipping those numbers to the rate of appearance in
the original report, dividing the generated appearances by the original report appearances,
and then adding together the results for each n-gram.

Pn =

∑

C ∈ {Candidates}
∑

n-gram ∈ C
Countclip(n-gram)

∑

C ′ ∈ {Candidates}
∑

n-gram′ ∈ C ′
Countclip(n-gram′)

(1)

The BP factor is calculated by finding the reference report with the closest length to
that of the generated report, dividing that reference length with the generated length, and
subtracting 1. The brevity penalty is only applied if the length of the generated report
exceeds the length of the longest reference report.

In summary, we first calculate the geometric average of the modified n-gram preci-
sions, Pn, using n-grams up to the length N and positive weights wn summing to one.
Next, with c as the length of the candidate translation and r as the effective reference
length, we compute BP, then compute BLEU. The result is a value between 0 and 1,
with 0 representing a perfect mismatch and 1 representing a perfect match.

BP =
{
1 if c > r
e
(
1 − r

c

)
if c ≤ r

BLEU = BP · exp(∑N
(n−1) wn log pn)

. (2)

For the clinical accuracy metrics, the generated reports are labelled with the CheXpert
labeller and the precision, recall and F1 score will be calculated by comparing the labels
provided for the X-ray images to those provided for the generated reports. Precision is
calculated by dividing the true positive rate by all positive predictions, recall is calculated
by dividing the true positive rate by the total positive cases, and F1 is calculated by
multiplying precision and recall, dividing the result by the precision plus recall, and
multiplying the result by 2. Each of the TRG models are trained 5 times and the results
are averaged across the 5 runs for each model.

2.4 Qualitative Assessment

For the qualitative assessment, 100 reports generated by each model were given to
two radiologists to assess their clinical safety. A stratified randomisation algorithm was
applied that randomly selected 100 reports that matched the 14 label distributions of
the test set in Table 4 within a 25% range. The radiologists assessed the reports using 2
criteria:

1. Will the report cause immediate harm to the patient as a result of missing an
abnormality or reporting an abnormality that could lead to unnecessary intervention?
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2. Does the report miss any incidental findings that may not cause immediate harm,
but may result in harm to the patient in the future?

An example of a report causing immediate harm is missing a pneumothorax as this
has the potential for cardiorespiratory decompensation and possibly death. An example
of a report causing possible long-term harm is missing a lung nodule, which on occasion
may be cancerous. The proportion of generated reports that will cause immediate harm,
long term harm, or both is then calculated for each model.

3 Results

The overall performance of each model is demonstrated in Table 5. The T-TRG model
outperformed the CNN-TRG and E-D models on F1 score, with the T-TRG model
achieving an F1 score of 0.45, the CNN-TRG model achieving a score of 0.42, and the
E-D model a score of 0.19. For recall, the CNN-TRG model achieved the highest score
with a value of 0.69, followed by the T-TRG model with a value of 0.58, and the E-D
model only achieving 0.14 recall. Both the E-D and T-TRG model achieved the highest
precision with a value of 0.38, with the CNN-TRG model close behind with a value of
0.34.

Table 5. The macro average metrics for each model contrasted against each other.

Model B1 B2 B3 B4 P R F1

Transformer-TRG (Ours) 0.107 0.014 0.001 0.001 0.38 0.58 0.45

CNN-TRG (Ours) 0.192 0.045 0.008 0.001 0.34 0.69 0.42

Encoder-Decoder (Baseline) 0.353 0.218 0.145 0.103 0.38 0.14 0.19

The results for eachmodel at the abnormality level displayed in Table 6 showfindings
that are consistent with the overall performance. The T-TRGmodel results in the highest
F1 performance across all abnormalities, the CNN-TRG model results in the highest
recall performance across most abnormalities, and top precision performance is shared
by the T-TRG and E-D models.

Table 6. The clinical accuracy metrics per disease for each model. The highest performing model
per metric is highlighted in bold – italics represent shared top performance. The% column indicate
what percentage of the training data contains the corresponding abnormality.

Dataset Transformer-TRG CNN-TRG Encoder-Decoder

P R F1 P R F1 P R F1 %

Enlarged
cardiomediastinum

0.22 0.66 0.33 0.20 0.81 0.32 0.16 0.05 0.07 19.0

(continued)
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Table 6. (continued)

Dataset Transformer-TRG CNN-TRG Encoder-Decoder

P R F1 P R F1 P R F1 %

Cardiomegaly 0.58 0.83 0.69 0.54 0.91 0.67 0.50 0.42 0.46 27.4

Lung lesion 0.21 0.20 0.21 0.09 0.68 0.16 0.42 0.02 0.04 4.0

Lung opacity 0.52 0.86 0.65 0.51 0.86 0.64 0.61 0.23 0.34 30.9

Edema 0.43 0.60 0.50 0.39 0.63 0.49 0.41 0.11 0.17 12.6

Consolidation 0.25 0.38 0.30 0.19 0.60 0.29 0.19 0.09 0.12 8.0

Pneumonia 0.27 0.43 0.33 0.22 0.57 0.32 0.18 0.01 0.02 11.8

Atelectasis 0.47 0.66 0.55 0.40 0.83 0.54 0.44 0.18 0.26 22.9

Pneumothorax 0.17 0.40 0.24 0.14 0.58 0.22 0.33 0.01 0.01 9.7

Pleural effusion 0.64 0.76 0.70 0.70 0.68 0.69 0.81 0.18 0.29 24.0

Pleural other 0.18 0.49 0.26 0.10 0.38 0.16 0.00 0.00 0.00 2.2

Fracture 0.17 0.45 0.25 0.10 0.69 0.18 0.00 0.00 0.00 4.4

Support devices 0.86 0.78 0.82 0.81 0.78 0.80 0.87 0.56 0.68 26.1

Table 7. The results from the qualitative assessment of clinical safety. PLH= Possible Long-term
Harm; IH = Immediate Harm; Both include reports that cause PLH and IH. Those in the ‘Both’
column are not counted in the PLH or IM column.

Model Safe PLH IH Both

Transformer-TRG (Ours) 62% 1% 34% 3%

CNN-TRG (Ours) 68% 0% 29% 3%

Encoder-Decoder (Baseline) 51% 0% 37% 12%

The results of the qualitative assessment are presented in Table 7 and show that
the CNN-TRG model was the safest model with 68% of the reports assessed as safe,
followed by the T-TRG model with a score of 62%, and the ED model with a score of
51%. Neither the CNN-TRG or ED model would cause any Possible Long-term Harm
(PLH) and the T-TRG would cause PLH only 1% of the time. The CNN-TRG model
would cause only Immediate Harm (IM) to the patient 29% of time, followed by the
T-TRG model with a score of 34%, and the ED model with a score of 37%. Both the
CNN-TRG and T-TRG models would cause both IM and PLH 3% of the time, and the
ED model would cause both 12% of the time. An example report generated by each
model has been provided in Fig. 3.
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Fig. 3. This figure provides an example of reports generated by each model along with the target
report and corresponding X-ray image.

4 Discussion

The current study aimed to produce an automated MRG model with state-of-the-art
clinical accuracy metrics and provide an assessment of whether it would be safe to
integrate the model into a clinical setting. Both the T-TRG and CNN-TRG models
outperformed the baseline E-D model (T-TRG: Precision 0.38, Recall 0.58, F1 0.45;
CNN-TRG: Precision 0.34, Recall 0.69, F1 0.42; E-D: Precision 0.38, Recall 0.14,
F1 0.19) with the T-TRG model showing the highest F1 performance. The qualitative
assessment revealed the CNN-TRGmodel to be the safestmodel, followed by the T-TRG
model, with the ED model being the least safe (T-TRG: Safe 62%, PLH 1%, IH 34%,
Both 3%; CNN-TRG: Safe 68%, PLH 0%, IH 29%, Both 3%; ED: Safe 51%, PLH 0%,
IH 27%, Both 12%).

The finding that the T-TRG model performed slightly better than the CNN-TRG
model on precision but worse on recall may be due to the transformers inherent adversar-
ial robustness (the model’s ability to resist being fooled) resulting in more conservative
but higher quality predictions. The work by Shao et al. [27] found that convolutions
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may negatively affect a model’s adversarial robustness which does not affect the trans-
former architecture since it does not use convolutions. It was also found by Bhojanapalli
et al. [28] that if pre-trained on a large enough dataset, the transformer performs sig-
nificantly better on a range of out-of-distribution tests, for example resisting common
image corruptions or texture-shape cue conflicting stimuli.

The study by Pino et al. [21] is the only other study that has currently attempted
MRG using a CNN-TRG model and achieved an F1 of 0.428, precision of 0.381, and
recall of 0.531 on the MIMIC-CXR dataset. In their study design they only used the
frontal X-ray images which simplifies the task and makes it difficult to compare their
results to a range of ED studies currently in the literature which utilise the frontal and
lateral images. They also employed a binary TRG subsystem that only produced one of
two templates: present or not present.

The results we obtained using the E-Dmodel developed by Chen et al. [17] produced
NLP metrics that aligned with those originally reported. However, the clinical accuracy
metrics differed greatly due to the fact that in the original paper, they used the 14th ‘no
findings’ label in their calculations which inflated their results due to the leaking issue
discussed in Sect. 2.1. In the current study, we removed this label which accounts for
the drop in performance.

The qualitative assessment revealed that the TRG models were safer than the ED
model and the CNN-TRG model was safer than the T-TRG model which is consistent
with the quantitative findings. The CNN-TRG model had higher recall and lower preci-
sion, which means that the model would be more liberal with its predictions resulting in
fewer positive incidences being missed and the report ultimately being safer. The trade
of for this safety is an increase in false positives.

5 Limitations

The current models are limited by the fact that they have only been assessed using chest
X-rays. Medical imaging takes many forms and is used on many different body parts.
The complexity of chest X-rays may lean in favour of the TRG approach, and the E-D
approach may perform better on different parts of the body or with different imaging
modalities. The current study is also limited by the fact that clinical accuracy was only
assessed using the CheXpert labels which consist of 13 abnormalities.

6 Future Work

The TRG approach is limited by the rigidity of the generated reports. The current study
made the reports more flexible by implementing a probability factor based on the abnor-
mality thresholds, but there is still more that could be done. Localisation of the findings
is an important component of a report, and this could be achieved by classifying heat
map outputs for each class and using the predictions to retrieve a localisation template.
Severity of the disease is also an important component of reports and could be achieved
by replacing the binary classes with multiple classes of severity. Future TRG models
could be improved using an ensemble of models based on the highest performing clas-
sifiers in the literature. And finally, future E-D models could attempt to improve clinical
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accuracy by integrating multi-label information to the bottleneck between the encoder
and decoder.
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Abstract. Computer vision technology is advancing rare disease diag-
nosis to address unmet needs of the more than 300 million individuals
affected globally; one in three rare diseases have a known facial pheno-
type. 3D face model reconstruction is a key driver of these advances.
However, the utility of 3D reconstruction from images obtained from
mobile phone cameras has been questionable due to relatively low quality
2D data and need external calibration methods (e.g. visual markers) to
extract accurate measurements. Herein a novel implementation pipeline,
leveraging deep learning technologies, that can successfully reconstruct
3D face models from multiple 2D images taken by mobile phone cameras
for clinician usage is described. Specifically, Multi-view Stereo (MVS) has
been introduced to this application for providing a cost-effective pipeline
of 3D face dense reconstruction. As a state-of-the-art MVS method, deep-
learning based MVS has shown its strong generalization capability of
using the low quality 2D face images to reconstruct 3D face models
without camera calibration. The results demonstrate conceptual proof
of a analytic pipeline to satisfy the clinician’s needs.
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1 Introduction

Rare Disease (RD) has been defined in Australia as one that affects fewer than
2000 individuals. Although this number is defined differently in many countries,
the patients suffering from some form of RDs is estimated to constitute as much
as 10% of the population globally. For this reason, RDs have presented a public
health challenge [23]. Specifically in Australia, 2 million people live with a rare
disease, and 30–50% of these individuals have experienced their first symptoms
during childhood [21]. Early diagnosis is critical for supporting best medical care
for people living with rare diseases (PLWRD) and their families. However, the
timely and accurate RD diagnosis remains a global medical challenge. Thirty
percent of RD patients are referred to an average of six specialists, and some
patients wait for up to 30 or more years for a definitive diagnosis, if it is achieved
at all diagnosed. On the journey towards definitive diagnosis, only half of all
initial diagnoses are correct.

Many RDs can be diagnosed directly from patients’ phenotype - how they
appear, how they behave, what their physical and cognitive abilities are, com-
pared to their peers [21]. Facial phenotype is recognised as an effective diagnostic
parameter. However, their recognition requires expert experience, is subjective
and subject to cognitive bias. Fortunately, salient aspects of facial phenotype can
provide clinical diagnostic assistance [1]. Cliniface is an integrated, modular and
interoperable platform of computational tools for visualising and analysing 3D
facial information [20]. Cliniface is compatible with multiple 3D imaging hard-
ware systems, for example the Vectra H1, which can perform 3D face scans with
sub-millimetre accuracy. With Cliniface, clinicians can make use of anatomical
facial landmarks to extract measurements of potential clinical significance, e.g.,
distances between certain pairs of landmarks. These facial landmarks can be
detected semi-automatically using Cliniface, in which the facial landmark posi-
tions can be manually adjusted by the clinicians without revisiting the patients.
The accurate measurements via Cliniface are used to assist diagnosis through
referencing to databases of facial phenotype with a wide variety of demographic
information (gender, date of birth, ethnicity etc.) that can be personalised to the
individual being assessed. Figure 1 shows an example in Cliniface user interface.

Cliniface improves RD diagnosis compared to subjective assessments alone
[20], however one of its limitations is reliance on bespoke and moderately costly
medical grade 3D imaging hardware. Unfortunately, data directly acquired e.g.
through using proprietary smartphone software has been shown to be unreliable
and not fit-for-purpose when compared to medical grade 3D imaging hardware.
The advanced 3D imaging systems are very costly and generally inaccessible to
most clinicians, especially those in the remote areas. Therefore, there is a strong
demand to develop novel technologies to build highly detailed and accurate 3D
facial models from images taken by low-cost everyday camera systems, such as
camera on smartphones, especially for patients in the remote areas and low and
middle income (LMIC) settings.

Multi-view stereo (MVS) has been extensively researched [12] and achieved
many 3D reconstruction results with outstanding performance, especially for
static objects and large scale scenes [11]. Compared to the conventional 3D recon-



546 Y. Liu et al.

Fig. 1. An example in Cliniface user interface [20].

struction via binocular stereo images, MVS has greater flexibility for variable
camera settings, and higher accuracy of 3D reconstruction results. Therefore,
we applied MVS on the images taken by mobile-phone cameras to reconstruct
detailed and accurate 3D facial models. For end-user convenience, we designed
to deploy one smartphone camera to take a series of face photos from different
angles under similar lighting conditions. The set of multi-view images is pro-
cessed to be fed into an MVS algorithm to deliver 3D face reconstruction. Given
that conventional MVS is challenged when processing images with significant
texture-less regions and these are frequent when face images are taken from
close distances by smartphones under various lighting conditions. A novel appli-
cation of a deep learning method is introduced [26]. We demonstrate that this
deep learning method can achieve good performance of 3D face reconstructions
from a set of 2D images.

There are three major contributions of this research:

1. Develop a novel vision-based pipeline to reconstruct 3D face models from 2D
face images taken by mobile phone cameras. There is a high demand on the
accuracy of the reconstructed 3D face models since they are employed for
medical applications.

2. Introduce a deep learning algorithm to apply the multi-view stereo for 3D face
reconstruction with 2D face images taken at different times for the almost-
rigid human face target. Deep-learning based dense 3D reconstruction method
has shown robust performances in general 3D reconstruction tasks for rigid
objects. The algorithm is deployed to show the robust 3D reconstruction
capability of deep-learning based MVS dealing with almost-rigid objects.

3. Provide a vision-based computational tool to assist clinical assessments of rare
diseases, such as rare neurocognitive disorders, that is incorporated into the
Cliniface platform. Cliniface is free and open source to support remote and
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LMIC applications, and is deployable on premise to overcome data sharing
barriers, collectively promoting equitable access and scale.

2 Related Work

3D face reconstruction has been extensively investigated over the last decades,
and has been widely implemented in various computer-based scientific applica-
tions [17,22] to address limitations of 2D facial analysis [18]. Compared to the 3D
facial data, 2D images do not capture the complete facial geometry information,
because they collapse in one dimension (losing the depth information). This may
introduce large physical measurement errors. In contrary, 3D face models can
provide all the face geometry details, which is invariant to pose and illumination.
To successfully reconstruct 3D face models from 2D images, some prior knowl-
edge of the targeting faces might be needed to resolve the ambiguities caused by
the absence of the 3rd dimension.

3D face reconstruction is a specific 3D reconstruction task. With the conven-
tional 3D reconstruction methods, the prior knowledge on the camera informa-
tion such as the intrinsic matrix and the extrinsic matrix needs to be provided
or estimated. With this prior information, the accurate 3D position can be cal-
culated by the classical triangulation methods. To obtain the accurate prior
knowledge of 2D imaging systems, camera calibrations will be applied at first
stage. Based on this process, the general 3D reconstruction systems can be clas-
sified into two overarching categories, namely 3D reconstruction system with
camera calibrations, and 3D reconstruction system without camera calibrations.

2.1 3D Face Reconstruction System with Camera Calibrations

Camera calibration has been used to estimate the prior knowledge of 2D face
imaging systems used for 3D face reconstruction. The more accurately the cam-
era calibration is done, the more accurate the obtained 3D face model will be.
Beeler et al. 2010 [2] has applied camera calibrations in their 3D face reconstruc-
tion method with highly accurate results.

With strict camera calibrations, traditional MVS can recover the 3D objects
or scenes from a set of multi-view 2D images with high accuracy. Based on the
representation of reconstructed 3D models, traditional MVS can be categorized
into four groups of methods: voxel-based methods, surface-evolution based meth-
ods, patch-based methods and depth-map based methods. From the perspective
of 3D reconstruction implementation, depth-map based methods are more con-
cise and flexible, compared to the other three group of methods. Patchmatch
Stereo methods [8], a typical depth-map based methods, have shown robust per-
formance with calibrated multi-view images. With Patchmatch Stereo, Galliani
et al. [8] uses a red-black chessboard pattern to propagate the passing-message in
parallel. Schönberger et al. [24] jointly estimates pixel-wise view selection, depth
map and surface normal in his COLMAP pipeline. ACMM [29] accommodates
the checkerboard sampling, multi-hypothesis joint view selection and multi-scale
geometric consistency guidance with camera calibrations as well.
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2.2 3D Face Reconstruction System Without Camera Calibration

There are three different kinds of strategies in 3D face reconstruction without
camera calibration, namely statistical model fitting, photometric stereo, and
deep learning [18].

Statistical Model Fitting Methods, as the classical approach among the
three strategies, encodes the prior geometric information in a generic 3D face
model, which are generated from prior knowledge of a set of 3D faces. The 3D
face model will be adjusted to match the input images. Because this strategy
includes geometric variations of the input faces, it can be useful for the 2D-to-
3D face reconstruction with face occlusion and large pose variations. 3D face
models reconstructed from the statistical model fitting methods usually consist
of a mean face along with modes of variation of its geometry and appearance.

By adjusting the model parameters, a 3D facial model from a photograph can
be estimated. By projecting a 3D face into the image plane with illumination, the
projected images should match the given 2D face images. The most widely used
statistical models of 3D faces are the 3D Morphable Models (3DMM), which
were firstly proposed by Blanz and Vetter [3].

There are two recurrently noted methodological limitations of 3DMM.
Firstly, as a PCA (Principal Component Analysis) based method, 3DMM algo-
rithm estimates the principal basis vectors that model the input data globally,
hence subtle information, such as wrinkles, may be discarded. Thus, reconstruct-
ing facial details by fitting a 3DMM becomes very difficult. It would pose some
limitations on the local accuracy of the generated 3D face models as well. Sec-
ondly, the real general face, according to 3DMM, is not perfectly combined with
the shape variations in a linear way. As a result, 3DMM cannot handle nonlinear
facial variations very well.

Photometric Methods are mainly based on estimating the lighting parame-
ters and surface normal from a set of 2D images using a Lambertian reflectance
model. This approach was originally proposed by Woodham [27], who recon-
structed 3D face models via estimating the surface normal from several 2D
images under different lighting conditions. With the same philosophy, Ghosh et
al. [9] captures high solution diffuse and specular photometric information using
a multi-view face capture system, and reconstructs detailed facial geometry.

Photometric 3D face reconstruction can use images captured by simple photo-
taking devices to reconstruct 3D models. However, additional prior knowledge
of the 3D face model, such as template shapes [33], must be included because
the RGB images are unconstrained, and the light source is unknown. For this
reason, a very large number of 2D face images are needed to implement the
photometric methods in real-world applications, and the 3D face reconstruction
results are noisy due to lack of a geometric prior to constrain these solutions.
The computational cost of processing these images is too high to be implemented
on mobile devices.
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Deep Learning Methods for 3D-from-2D face reconstruction needs to estab-
lish the mapping between 2D face images and 3D face models. Deep learning
methods are based on the available 3D face data, learning the mapping which
encodes the prior knowledge in the weights of the trained neural networks.

By applying an end-to-end deep learning method, GCNet [15] generated a
stereo estimation from 3D cost volume regularization, and produces the final dis-
parity map via a soft-argmin operation. With a coarse-to-fine approach, PSMNet
[4] introduces spatial pyramid pooling (SPP) to the Cross Perspective Projec-
tion layer of the network for regularization. DeepPruner [7] builds a lightweight
cost volume, which is regularized by a 3D Neural Network, via a differentiable
Patchmatch module discarding most disparities.

2.3 Learning-Based MVS

As one specific subarea of deep learning methods for 3D face reconstruc-
tion, learning-based MVS has attracted much attention recently because of its
high accuracy and ease of application. As it has been motioned above, voxel-
based methods have clear drawbacks of a volumetric representation, which has
restricted its usage to small-scale reconstructions [26]. While, many learning-
based MVS are based on plane-sweep stereo [6], which uses depth maps to
reconstruct 3D scenes. They regularize the cost volumes built with the warped
features of multi-view images, through the 3D Convolutional Neural Networks
(CNNs) and then regress the depth. Because of the heavy computational cost
of 3D CNNs, these applications of deep-learning based MVS commonly apply
the down-sampling operation to the cost volume. R-MVSNet [32] has tried to
reduce memory by regularizing 2D cost maps. The current search efforts on
learning-based MVS focus on improving efficiency and capability of estimating
high-resolution depth maps. Accordingly, Cas-MVSNet [10] introduces cascade
cost volumes based on a feature pyramid and estimates the depth map in a
coarse-to-fine manner. Similarly, UCS-Net [5] forms cascade adaptive thin vol-
umes by using variance-based uncertainty estimates for an adaptive construction.
CVP-MVSNet [30] applies the cascading method to generate an image pyramid
and constructs a cost volume pyramid.

3 Methods

2D face images of participants in this research are taken under the indoor condi-
tions. This setting is designed to mimic real-word conditions where the final user
(i.e. clinicians) are non-experts in photography and external calibration (e.g.
with checkerboards or markers) is not compatible with standard clinical flow.
Accordingly, Structure-from-Monition (SfM) technology and well developed key
point detection algorithms are deployed to ascertain accurate information of the
position and pose of the cameras and support the 3D face reconstruction. We
refine PatchmatchNet [26], to specifically support 3D reconstruction using 2D
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face images taken by mobile phone cameras to reconstruct geometrically accu-
rate 3D face models. Below, we describe the details of our application pipeline,
covering 2D face image taking, sparse 3D face reconstruction, and dense 3D face
reconstruction with deep learning technologies.

3.1 2D Face Image Acquisition

To support clinical utility, mobile phone cameras are used. Leveraged by the
current camera technology, mobile phone cameras have been widely used in
many applications with reasonable image qualities and high image resolutions.
For example, iPhone 13 pro are using 12-megapixel cameras and Samsung S22
are using 50-megapixel cameras. An important advantage of these consumer
cameras is the provision of clear facial photos at different viewpoints with auto
focus. For our experiments, we applied the camera of iPhone 12 to collect multi-
view 2D face photos. Lighting conditions of photo collection were set up as
the general indoor environment. The light coming through windows and high-
lighting resources were minimised. To mimic the real application environment
for the future clinical use, overall lighting conditions were far less controlled than
typical 3D reconstruction settings.

Similar to previous SfM approaches, no camera calibration was performed.
The background of these face photos is better to have rich texture for the sub
tasks of sparse 3D face reconstruction, such as key point detection and key point
mapping. As the proposed pipeline is applied with the 3D scene reconstruction
method, the face must occupy the major area of the multi-view images to catch
most 2D face geometry details.

3.2 Sparse 3D Face Reconstruction

To support non-calibrated 3D face reconstruction, SfM is introduced to pro-
vide a sparse 3D face reconstruction model, which has also been included in
the implementation pipeline of PatchmatchNet [26]. COLMAP [24] is used to
handle the process of the sparse 3D reconstruction. The initial multi-view 2D
face images are fed into the COLMAP open-source platform to obtain camera
relative poses and locations, referencing to the world coordinates of the scene
to be reconstructed. SIFT [19] features are applied to each 2D image pairs for
key point detection and matching during this process. The estimated camera
intrinsic and extrinsic matrices and the matching points of multi-view images
are imported into PatchmatchNet for dense 3D face reconstruction.

3.3 Dense 3D Face Reconstruction

PatchmatchNet [26] is used to complete the final dense 3D face reconstruction
with the state-of-the-art deep learning technology. PatchmatchNet is designed
for 3D scenes reconstruction with high-resolution multi-view stereo, and it can
process high resolution imagery efficiently. For this reason, PatchmatchNet is
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more suited to run on resource-limited devices than competitors that employ 3D
cost volume regularization. For the first time, we apply an iterative multi-scale
Patchmatch in an end-to-end trainable architecture, see Fig. 2 for details. The
PatchmatchNet model was trained on the DTU [13] dataset, and its 3D recon-
struction results show a very competitive performance and good generalization
on both the Tanks & Temples [16] dataset and the ETH3D [25] dataset.

Fig. 2. Structure of PatchmatchNet [26]: multi-scale feature extractor, learning-based
Patchmatch and refinement. Patchmatch process has been introduced with the coarse-
to-fine manner to predict the depth map at multiple scales.

In contrast to most of cost volume regulation approach for the 3D recon-
struction, PatchmatchNet proposes a strategy of adaptive sampling points for
the spatial cost aggregation and extends the conventional Patchmatch ideas into
deep learning methods. The original pre-trained model has shown a very robust
performance on ETH3D [25] dataset under complex lighting conditions. Com-
pared to the most popular deep-learning based MVS method - MVSNet [31],
PatmatchNet has a fast performance on DTU dataset [13] with the run-time
processing cost about 0.25 s per image, and less GPU memory consumption at
about 2G, for images with resolution of 1152 × 864. This will allow fast recon-
struction of dense 3D face models on mobile phones. According to Xiao et al. [28],
model fine-tuning on the pre-trained model of MVSNet has marginal improve-
ments in the experiments on the large extra high qualitative 3D face datasets. To
simplify our 3D face reconstruction pipeline and balance the cost and efficiency
of the approach, the pre-trained model of PatchmatchNet has been used directly
for dense 3D face reconstruction to generate 3D face models.
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4 Results and Discussion

In this section, we present experimental results on 3D face model reconstruction
from images taken by mobile phones. The reconstructed 3D face models have
been imported to the Cliniface platform to verify whether the reconstructed
models are good enough to detect the facial landmarks correctly with the facial
landmark detection function of Cliniface, which is a core part of medical diag-
nosing assistance. To check the robustness of the proposed method, 5 people
in our research group have participated in data collection. Each person sits in
their office, and multi-view face images are taken by the camera with the same
iPhone 12. For all the data collected, 3D face models have been reconstructed
successfully. Here, we illustrate the experimental results with the images and
reconstructed 3D face model of one person.

The input face images are shown in Fig. 3. These images are taken from
different views, and the image brightness varies with different view locations
with different shading areas.

Fig. 3. Input 2D face images

With the COLMAP [24] platform, the sparse 3D face model is obtained and
the result is shown in Fig. 4. It can be seen that the sparse 3D face model provides
coarse face geometry information in terms of sparse point clouds. The related
camera poses and positions are displayed in red in the figure.
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Fig. 4. Sparse 3D face reconstruction result.

Based on the sparse 3D reconstruction model, the camera intrinsic and extrin-
sic parameters are introduced to the PatchmatchNet framework (Fig. 2), process-
ing the input 2D face images again to generate the final dense 3D face model.
The point clouds of the reconstructed 3D face model is presented in Fig. 5. It
can be seen that this 3D face model can recover the 3D face geometry more
clearly. To use the 3D model in the CliniFace platform, post-processing on the
point clouds model is applied with Poisson surface reconstruction [14]. The result
shown in Fig. 6 has been imported to Cliniface to verify the usefulness of this
3D face model by applying the facial landmark detection on it.

Fig. 5. Dense 3D face reconstruction
result.

Fig. 6. 3D face reconstruction result
after post-processing with Poisson sur-
face reconstruction.

The 3D face models of all the other participants were reconstructed success-
fully with the same pipeline. These 3D face models generated from iPhone input
data, can then be analysed through Cliniface to provide diagnostic support.
Figure 7 shows a reconstructed 3D face model and its visualisation in Cliniface
platform. The facial landmarks have been detected by the embedding function
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of Cliniface to support conceptual proof of principle for using readily accessible
camera technology for Cliniface functions, such as RD diagnostic support. The
facial landmark detection result on the 3D face model generated by Vectra H1
3D imaging system is shown in Fig. 8. Qualitatively compared to this result, the
facial landmarks can be detected properly on cliniface with our reconstructed
3D face model to assist the medical diagnosis.

Fig. 7. 3D face model generated by our
pipeline for facial landmark detection
on Cliniface.

Fig. 8. 3D face model generated by
Vectra H1 for facial landmark detection
on Cliniface.

5 Conclusion

We have presented a novel computer vision pipeline to implement the multi-
view stereo method to reconstruct 3D face models from 2D face images taken
by mobile phone cameras. The PatchmatchNet, one of the modern deep-learning
based 3D reconstruction methods, has been refined for deployment to address
the challenges of 3D face reconstruction. This further extends the utility of Clin-
iface with a low cost and scalable solution, including rare disease diagnosis for
remote regions and low-and-middle-income setting. Equity and inclusive access
is further supported by the diverse range of normative reference data currently
accessible through Cliniface, which is increasing with expanding international
and community partnerships.

6 Research Ethic

This research project involves highly sensitive private information for the future
clinic usage. Strict research ethic procedure has been followed since the beginning
of the project. Only research team members have access to confidential data of
the potential patients. Face images will not be collected without proper consent.
The confidential data of individual participants in the future research will be
transferred and stored according to the ethic and governance approval.
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Abstract. Artificial Pancreas Systems (APS) aim to improve glucose
regulation and relieve people with Type 1 Diabetes (T1D) from the cog-
nitive burden of ongoing disease management. They combine continuous
glucose monitoring and control algorithms for automatic insulin adminis-
tration to maintain glucose homeostasis. The estimation of an appropri-
ate control action—or—insulin infusion rate is a complex optimisation
problem for which Reinforcement Learning (RL) algorithms are currently
being explored due to their performance capabilities in complex, uncer-
tain environments. However, insulin requirements vary markedly accord-
ing to sleep patterns, meal and exercise events. Hence, a large dynamic
range of insulin infusion rates is required necessitating a large continuous
action space which is challenging for RL algorithms. In this study, we
introduced the use of non-linear continuous action spaces as a method
to tackle the problem of efficiently exploring the large dynamic range
of insulin towards learning effective control policies. Three non-linear
action space formulations inspired by clinical patterns of insulin deliv-
ery were explored and analysed based on their impact to performance
and efficiency in learning. We implemented a state-of-the-art RL algo-
rithm and evaluated the performance of the proposed action spaces in-
silico using an open-source T1D simulator based on the UVA/Padova
2008 model. The proposed exponential action space achieved a 24% per-
formance improvement over the linear action space commonly used in
practice, while portraying fast and steady learning. The proposed action
space formulation has the potential to enhance the performance of RL
algorithms for APS.

Keywords: Reinforcement learning · Glucose regulation · Continuous
action space

1 Introduction

Reinforcement Learning (RL) is a class of machine learning algorithms where
an intelligent agent learns to act in an underlying environment to maximise
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a cumulative reward [25]. The reward is formulated to reflect a desired objec-
tive. RL algorithms have been successfully applied in games, where they have
demonstrated superhuman performance capability/potential [20]. However, the
application of RL to real-world problems is challenging due to complexities and
constraints such as critical safety requirements, lack of knowledge for the formu-
lation of reward functions, delays in sensors or actuators, partial observability,
and high-dimensional continuous state or action spaces [6].

The problem of glucose regulation in Type 1 Diabetes (T1D) features all of
the above challenges in RL. In healthy individuals, insulin secretion is performed
by the islet β-cells of the pancreas. During periods of fasting (e.g., during sleep),
a low basal rate of insulin secretion is required, whereas after meals surges in
insulin secretion superimposed on basal secretion are necessary to maintain nor-
mal blood glucose concentrations [19]. In people with T1D, the autoimmune
destruction of the β-cells of the pancreas results in complete insulin deficiency
[5]. As a result, external insulin administration is vital to maintain glucose home-
ostasis [17]. Efforts to estimate the right rates of insulin infusion in T1D are chal-
lenged by delays in continuous glucose monitoring (CGM) sensing and insulin
action; high inter- and intra-population variability; and critical safety constraints
that cannot be compromized. Current advancements in T1D management meth-
ods include insulin administration by a continuous subcutaneous insulin infusion
(CSII) pump alongside CGM in open-loop or hybrid closed-loop systems. In both
cases, insulin delivery is divided into two distinct infusion patterns: low-range,
almost-continuous basal pattern of delivery, and a pattern of intermittent high-
range (or bolus) delivery of insulin used mainly to counter the glucose elevation
due to meals [17]. In an open-loop setting, both basal and bolus insulin rates
are calculated based on patient-specific characteristics (e.g., total daily insulin
requirement, carbohydrate ratio) combined with the estimated amount of carbo-
hydrate (CHO) content of a meal [17], as well as on insulin pharmacokinetic and
pharmacodynamic properties [23]. In hybrid closed-loop schemes, basal insulin
infusion rates are automatically estimated by a control algorithm according to
CGM inputs, while insulin bolus dosing is manually calculated and administered
by the user prior to meals. For decades, research interest has been on developing
a fully automated Artificial Pancreas System (APS) (Fig. 1A) [4]. An APS con-
sists of a CGM, a CSII pump, and a control algorithm to calculate automatically
the insulin infusion rate for all circumstances in an effort to improve the total
time in the normoglycemic range and relieve the people living with T1D from
the heavy cognitive burden included in the manual calculation of meal CHO and
insulin bolus doses [2].

Current APS research is investigating the use of RL algorithms due to their
capability to perform well in uncertain and complex dynamic environments with
disturbances [1]. However, one of the main challenges faced by RL algorithms in
the APS context is the large and continuous insulin action space, which differs
from the discrete actions present in game environments. According to the basal-
bolus scheme, the low-range basal insulin actions account for the vast major-
ity of the total insulin actions, while the large bolus actions are intermittent.
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Fig. 1. (A) Artificial Pancreas System, (B) Frequency distribution of insulin action
based on a clinical perspective (not to scale).

Typical clinical patterns of insulin delivery can hence be interpreted as bi-modal
in the frequency (Fig. 1B). This challenges the RL algorithm by requiring effi-
cient exploring of the entire continuous insulin action space to learn suitable
control strategies for different situations which necessitates varying amounts of
insulin out of a large dynamic range. The application of RL algorithms to contin-
uous action spaces is not straightforward compared to low-dimensional discrete
action spaces, while high-dimensional actions further increase the learning dif-
ficulty [13]. The complexity of continuous action spaces can be sub-optimally
solved by discretizing the action space. However, this may not be suitable for
high-precision control problems such as glucose regulation, as it could eliminate
required information regarding the structure of the action space. Current avail-
able CSII pumps are discretized with fine resolution (e.g., Medtronic Minimed
Pump basal increment of 0.025U/hr [18]), hence allowing the assumption of a
continuous insulin action space. An alternative approach could be the intro-
duction of two separate actions for the RL algorithm to focus on the clinical
conventions of basal and bolus insulin separately. However, this increases the
degrees of freedom in the algorithm and, due to the very sparse use of large
insulin doses, could add complexity to learning.

In this study, we introduced the use of non-linear continuous action spaces
as a method to overcome the challenges associated with efficiently exploring the
dynamic range of insulin to learn effective glucose regulation strategies. Three
non-linear translation functions were designed to map the RL action to the
insulin infusion rate, inspired by the basal-bolus pattern of clinical insulin treat-
ment practice. We implemented a state-of-the-art RL algorithm used in contin-
uous control (e.g., 3D humanoid motion problems, physics simulations [22]) to
evaluate the learning performance and efficiency of the proposed non-linear con-
tinuous action spaces. We evaluated our approach in-silico using an open-source
T1D simulator based on the FDA approved UVA/Padova 2008 model [9]. We
demonstrated that a linear action space is not suitable for the problem of glu-
cose regulation in T1D and show that the proposed non-linear continuous action
spaces improve the performance while portraying fast and steady learning.



560 C. Hettiarachchi et al.

2 Related Work

The use of RL for continuous control has gained much attention in the recent past
due to applications such as locomotion, self-driving, and dexterous manipulation
tasks [13]. In the problem of glucose regulation in T1D, the majority of the RL-
based approaches focus on hybrid systems, which only control basal insulin levels,
while bolus insulin infusion is carried out manually by the user [7,14,31,32].
These studies use a small set of handcrafted discrete actions to represent basal
insulin [31,32]. A handful of studies have sought to control both basal and bolus
insulin without any user input [7,8,12]. In particular, [7,12] used a discrete
action distribution to control insulin. However, the action space discretization
could lead to a loss of information, while a continuous action space is expected
to enable more flexible RL agents that can learn more robust control strategies.
[8] is the only research which focused on a continuous insulin action space. They
divided the action space to two equal regions, where one represented no insulin
administration and the other mapping the action linearly to the insulin pump.
This strategy encouraged sparse insulin dosing and was evaluated on reasonably
low CHO meals which required insulin rates <0.5 U/min. However, in real-life
scenarios the presence of meals with large CHO content results in a large insulin
action space ([0, 5] U/min).

According to the RL-related literature, applications with a large continuous
actions space can present challenges related to its efficient exploration [11] and
the existence of redundant or irrelevant actions [30]. [11] used a novel actor-
critic algorithm based on a Sequential Monte Carlo approach to improve the
exploration, while [30] proposed an approach which combined the RL algorithm
with an action elimination network to eliminate sub-optimal actions.

In the present study, we design and develop a fully automated APS based
on a RL algorithm. We introduce a challenging meal protocol including meals of
large CHO content, which translates to the need of a large insulin action space,
reflective of a real-life scenario. To address this challenge, we propose the use of
non-linear representations of the RL algorithm action spaces. This results in a
non-uniform resolution across the action space which guides the RL algorithm
to explore insulin delivery patterns observed in clinical treatment. To the best
of our knowledge this is the first attempt to explore action space representations
to tackle complexities in large continuous action spaces associated with glucose
regulation in T1D.

3 Method

3.1 Problem Formulation

The glucose control problem can be formulated as a Partially Observable Markov
Decision Process (POMDP), where perfect state information is unavailable and
limited to noisy sensor measurements. This POMDP can be defined as a 6-tuple
(S�, S,O,A, P,R), where s� ∈ S� denotes the true states, s ∈ S the noisy states
observed by an observation function O, a ∈ A the actions, P : (s�, a) → s′ the
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transition function where s′ denotes the next state, and R : (s, a) → r ∈ R the
reward function. The reward function is designed based on glucose risk indices
proposed in [10], where dangerous glucose levels are penalised and normal glucose
levels encouraged. We define an observation function O : s�

t → gt−k:t, it−k:t which
maps the true state s�

t at current time t to glucose sensor observation gt and
administered insulin it augmented by their past k historical values. Hence, the
observed state space is formulated as st = (gt−k:t, it−k:t) where past k samples
encompass the information related to glucose dynamics and the effect of insulin.

3.2 Action Space

We take a policy gradient approach for designing the RL algorithm since it
is more suited for continuous action spaces and for learning stochastic policies
[25]. In this formulation, the RL algorithm is required to predict a distribution
over the actions (π(a|s)) for a given state (s). We use a normal distribution
(N (μ, σ)) where the RL algorithm learns both μ & σ parameters. The final
predicted action is bounded to the range [−1, 1] which is then mapped to the
insulin infusion rate of the insulin pump (Ipump ∈ [0, 5] U/min) based on a
translation function T . As discussed earlier, the common practice in RL is to
map the predicted action linearly to the underlying actuator [3,26,27] as shown
in Eq. 1, where Imax corresponds to the maximum insulin.

Ipump = Imax · (a + 1)
2

, a ∈ [−1, 1]. (1)

3.3 Proposed Translation Functions

Glucose regulation requires frequent use of very small insulin doses for basal
insulin compared to the less frequent larger doses, resulting in a skewed concen-
tration in the action space, as opposed to the uniform resolution provided by
the linear mapping (Eq. 1). In order to capture this property, we explore three
non-linear translation functions; (1) quadratic, (2) proportional-quadratic, and
(3) exponential to formulate non-linear action spaces in order to provide better
resolution to the important target insulin ranges (Fig. 2).

Quadratic. The translation function T is a quadratic function of the RL action
a. This formulation integrates the two distinct actions (basal-bolus) used in typi-
cal insulin treatment to a single continuous action space avoiding the complexity
of using multiple actions. The action space is divided into two segments, where
actions in [−1, 0] are translated to a basal dose range with a maximum basal
insulin of δ1(0.05) and actions in (0,1] considered as the bolus range with a max-
imum bolus insulin of Imax. This results in a duplication of the basal range [0,
0.05] in the bolus range [0, 5], which could be considered negligible due to the
low resolution of the bolus range.

Ipump =

{
δ1 · a2 −1 ≤ a ≤ 0
Imax · a2 0 < a ≤ 1

. (2)
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Fig. 2. Translation functions used to map RL action to the insulin infusion rate: (a) lin-
ear, (b) quadratic, (c) proportional-quadratic, and (d) exponential.

Proportional-Quadratic. This function is a modification of the Quadratic
function where the parameter γ(0.5) is introduced to adjust the resolution of
the two dose ranges and δ1 is set to 0.5.

Ipump =

{
δ1

(γ+1)2 · (a − γ)2 −1 ≤ a ≤ γ
Imax

(γ−1)2 · (a − γ)2 γ < a ≤ 1
. (3)

Exponential. The translation function T is an exponential function of the RL
action a ∈ [−1, 1] with a tuneable parameter β(4.0) which ensures Ipump ∈ (0, 5].
This increases the resolution of the basal dose range while ensuring the action
space is continuous without any duplication of actions. This formulation provides
more flexibility for the RL algorithm to use the fully continuous structure of the
action space and avoids any instabilities in learning, which might be caused by
action duplication.

Ipump = Imax · eβ(a−1), a ∈ [−1, 1]. (4)

3.4 Algorithm

The RL algorithm was designed based on PPO [22], which is one of the state-of-
the-art on-policy RL methods used in continuous control problems. We formulate
the glucose control problem as a continuing (not episodic) task, where the goal
of the RL algorithm is to maximise the average reward r [16,25] while following
a control policy π defined as,

r(π) .= lim
h→∞

1
h

h∑
t=1

E[Rt|S0, A0:t−1 ∼ π]. (5)

The PPO algorithm consists of a policy network (πθ) and a value network
(Vφ) which we have implemented using recurrent and dense neural network lay-
ers. The main objective of the policy network is to learn a suitable policy while
the value network learns the n-step expected return being in a given state (st).
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The PPO algorithm imposes constraints on policy updates to avoid excessive
changes between the old policy (πθold

) and the new policy (πθ) by clipping the
probability ratios of the new and old policies at 1 − ε or 1 + ε as shown in the
policy objective below:

Lpolicy(θ) = Êt

[
min(

πθ(at|st)
πθold

(at|st)
Ât,

clip(
πθ(at|st)

πθold
(at|st)

, 1 − ε, 1 + ε)Ât) + βsH(π(·|st))

]
, (6)

where Ât is the advantage function [21] estimate at timestep t. The entropy term
H(π(·|st)) facilitates exploration, where βs is a hyperparameter. We used n-step
returns to compute the advantage function and value function targets (V target

t ).
The value network is optimised using the objective:

Lvalue(φ) = Êt

[
1
2
(Vφ(st) − V̂ target

t )2
]

. (7)

3.5 Simulation Protocol

The UVA/Padova T1D simulator was used for the conduction of our study [9].
This is the only FDA-approved T1D simulator and can be used as a replacement
of animal studies prior to clinical evaluation in humans. The simulator comprises
a cohort of 30 in-silico subjects of three age categories (adults, adolescents and
children) as well as models of different CGM and CSII pumps available in the
market. In order to allow for reproducability of our results by the community, we
used an open-source Python implementation of this simulator [29]. We conducted
the evaluation using the adolescent cohort (10 subjects) due to their highly com-
plex individual dynamics and glucose variability which create a very challenging
glucose control environment. The Guardian RT glucose sensor and the Insulet
pump with a sampling time of 5 min was used for the experiments. A challenging
meal scenario was defined for the training and testing of the RL algorithm. For
the training phase, the meal scenario consisted of three random meals (break-
fast, lunch, and dinner) which were randomised based on the amount of CHO,
time, and probability of occurrence (Table 1). The testing scenario spanned 24 h
starting at 00:00 hrs and was fixed with three meals: 40 g of CHO for break-
fast at 8:00 h, 80 g of CHO for lunch at 13:00 h, and 60 g of CHO for dinner at
20:00 h. Simulations which recorded glucose levels that exceeded the detectable
range (39–600 mg/dL) of the glucose sensor were terminated and considered as
a catastrophic failure.

3.6 Implementation Details and Data Analysis

The simulations were carried out on a workstation machine with 2 × NVIDIA
3090 GPUs. Each action space representation was evaluated for three random
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Table 1. Training meal protocol.

Meal type Time (hours) Probability Carbohydrates (g)

Breakfast 7.00–9.00 0.95 30–60

Lunch 12.00–14.00 0.95 70–100

Dinner 19.00–21.00 0.95 50–110

seeds per subject, where all other hyperparameters were kept fixed. The RL
algorithms were trained for 500, 000 interactions (1, 736 human days, 1 interac-
tion = insulin action taken every 5 min), which was identified as sufficient to
reach convergence for the above proposed meal protocol. Upon the conclusion
of training, 1, 500 testing simulations were also conducted for each subject. The
best performing action space representation was compared against the bench-
marking linear action space by conducting statistical significance tests for each
individual subject. A Shapiro-Wilk Test [24] was performed to check the nor-
mality and a Mann-Whitney U Test [15] was conducted to evaluate significance
using a confidence level of 0.05.

3.7 Evaluation Metrics

The evaluation was twofold, and included analysis of the final performance after
training using the results of the testing simulations and analysis of the learning
efficiency derived from the training phase. For the final performance assessment,
we used as metrics the total reward achieved by the RL algorithm as a percentage
of the maximum achievable reward (PR) and the Time In Range (TIR) calcu-
lated as the average percentage of time that the glucose levels were maintained
in the normoglycemic range (70–180 mg/dL) during a simulation. In addition we
calculated the Failure Rate (FR) as the percentage of simulations which resulted
in catastrophic failures over the total testing simulations. The clinical objective
is to increase TIR and reduce the FR.

The aim of the RL algorithm during training is to iteratively improve a
control policy reasonably fast (relative to the application’s time scale), while
avoiding excessive changes (smooth learning) which could lead to sudden unan-
ticipated behaviour and even result in catastrophic failures. To evaluate the
learning efficiency, we first defined reward thresholds of 25%, 50%, 70%, and
80% of the maximum achievable reward. The average number of interactions
required to reach the threshold as a percentage of total interactions (PI) was
used to compare the learning efficiency between the candidate action spaces.
Furthermore, we qualitatively assessed the learning smoothness through visual
inspection of the shape and fluctuations of the reward curves during training.
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4 Results

The exponential action space improved the performance in terms of PR by 24%,
while reducing the FR by 42% compared to the benchmark linear action space,
on average across the subjects. The improvement was statistically significant
(p < .001) for all the subjects. The performance of the candidate action spaces
for all subjects, based on PR and FR metrics is summarised in Table 2. An inter-
subject variability in performance improvements was identified, with substantial
performance improvements for some subjects (Adolescent8). All the proposed
non-linear action spaces were able to outperform the linear action space. The
proposed non-linear functions all performed similarly in terms of TIR and FR
(Fig. 3). Figure 3 also highlighted the variability in glucose control present among
the subjects.

The exponential action space was the most efficient in reaching the 80%
reward threshold in 34.90% PI, for all 10 subjects. Table 3 summarises the PI
required for identified reward thresholds and the number of subjects reaching
the target threshold. The linear action space was unable to reach the 80% reward
threshold and also took more PI to cross lower reward thresholds. The quadratic
and proportional-quadratic functions also performed better compared to the lin-
ear action space. The structure of the reward graphs (Fig. 4) for the exponential
and quadratic action spaces gave evidence of steady learning and better conver-
gence for all subjects. The reward graphs of adolescent 3 and 5 clearly indicated
unsteady learning for the linear action space where sudden large reward fluc-
tuations are observed during training. The linear action space failed to achieve
convergence in some subjects (Adolescent 0, 8) and convergence to sub-optimal
reward levels was observed in some subjects (Adolescent 1, 6, 9).

Fig. 3. The percentage time in normoglycemic range (TIR) and Failure Rate (FR) for
candidate action spaces (Each dot represents an adolescent subject and each color a
candidate action space.) (Color figure online)
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Table 2. Adolescent Cohort Summary Results—Total Reward Achieved As A Per-
centage of Maximum Achievable Reward (PR) & Failure Rate (FR) for the candidate
functions: Linear(L), Quadratic(Q), Proportional-Quadratic(PQ), Exponential(E).

Adolescent Reward (PR) Failure rate (FR)

ID L Q PQ E L Q PQ E

0 52.55% 97.08% 97.33% 97.52% 72.53% 0.87% 0.60% 0.87%

1 66.70% 79.23% 81.75% 79.36% 35.87% 7.53% 2.47% 6.07%

2 76.09% 80.82% 77.92% 87.71% 32.67% 17.33% 21.73% 5.60%

3 58.48% 88.27% 75.20% 86.95% 34.13% 4.27% 31.07% 5.07%

4 68.21% 85.74% 76.81% 84.57% 58.13% 5.93% 21.13% 8.47%

5 70.20% 81.93% 88.96% 87.89% 33.93% 16.20% 6.00% 6.53%

6 54.96% 71.19% 82.78% 76.20% 68.27% 36.33% 2.80% 17.87%

7 75.94% 74.63% 81.40% 80.75% 14.53% 17.20% 5.07% 3.93%

8 25.17% 93.43% 90.72% 91.97% 96.67% 0.87% 5.53% 3.47%

9 59.65% 78.29% 80.90% 74.05% 66.53% 17.13% 12.47% 34.60%

Average

(mean± std)

60.79%

± 14.98%

83.06%

± 8.12%

83.38%

± 6.93%

84.70%

± 7.24%

51.33%

± 24.97%

12.37%

± 10.82%

10.89%

± 10.33%

9.25%

± 9.99%

Table 3. Efficiency analysis—Average Number of Interactions Required to reach the
reward threshold as a percentage of total interactions (PI) and the number of adoles-
cents achieving identified reward thresholds.

Translation function Reward threshold

25% 50% 70% 80%

Linear 64.55% (10) 71.91% (9) 80.28% (5) None

Quadratic 15.65% (10) 19.91% (10) 26.71% (10) 41.37% (8)

Proportional quadratic 38.75% (10) 45.79% (10) 52.51% (10) 63.44% (9)

Exponential 16.96% (10) 21.22% (10) 25.97% (10) 34.90% (10)

5 Discussion

The application of RL algorithms to problems with large continuous action
spaces is challenging and currently being tackled through the design of effi-
cient exploration algorithms [11] and irrelevant/redundant action elimination
[30]. The common practice in continuous control RL tasks present in OpenAI
Gym [3], DeepMind Control Suite [26], and MuJoCo physics environments [27]
is to use a linear action space. Inspired by clinical treatment methods for T1D,
in this study we introduced non-linear continuous action space representations
to tackle the challenge of the large, continuous, and non-uniform insulin action
space. To the best of our knowledge this is the first study to explore non-linear
action space formulations to compensate the challenges present in continuous
action spaces associated to glucose regulation in T1D.

The proposed exponential action space outperformed the linear action space,
with statistically significant (p < .001) improvements in PR and FR metrics for
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Fig. 4. Comparison of candidate action spaces during training. The mean and standard
deviation of the total testing reward (3 random seeds × 20 testing scenarios) achieved
for each candidate action space is presented against 500, 000 learning interactions.

all subjects. It also exhibited steady convergence properties and was the most effi-
cient in reaching the 80% reward threshold out of all the candidate action spaces.
Unsteady learning (Adolescent 3, 5) and convergence to sub-optimal reward lev-
els (Adolescent 1, 6, 9) was observed for subjects under a linear action space. The
linear action space showed very poor performance for some subjects (Adolescent
0, 8) as it was unable to converge within the target number of training interac-
tions. However, it is expected that the linear action space based RL algorithm
might converge if the number of training interactions are increased. Meanwhile,
all the proposed non-linear action spaces were able to converge within the target
training interactions. The subjects who achieved convergence under the linear
action space only converged to a sub-optimal level which indicates that increas-
ing training interactions might not be beneficial for these subjects. The learning
efficiency achieved in our proposed approach indicates efficient exploration by the
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RL algorithm. This also reduces the computational time requirements for train-
ing, which is very valuable in the design and development phase of RL algorithms
for glucose control, as often multiple iterations of designs are explored and tested.
Increasing the complexity in the RL algorithmic architecture or the simulation
protocol is expected to result in increased compute times until convergence is
achieved. Hence, faster learning can become not only desirable but also vital for
the experimental design of future RL algorithms for glucose regulation.

The successful real-world application of a RL-based APS would require online
continual learning to adapt the control strategy based on biological variabil-
ity (e.g., ageing, hormonal disturbances) of the user. Hence, the steady learn-
ing observed in the exponential and quadratic action spaces is vital to ensure
safety by avoiding sudden excessive changes. The proposed approach illustrated
favourable characteristics in this regard, while further future research is required.
Our approach can also be applied to other medical applications with similar
action space properties. The application of propofol dosing in general anaesthe-
sia is such an application where a non-uniform action distribution is observed
and RL currently being explored [28].

We selected the PPO algorithm due to its suitability towards the glucose
regulation application which requires continuous control and steady learning.
Hence, the performance improvement through non-linear action spaces were only
analysed based on PPO. It is expected that the identified benefits would also be
applicable to other similar on-policy RL algorithms. The results draw a promising
line of research to explore the contribution of non-linear action spaces on other
on-policy and off-policy RL algorithms. The use of a linear action space does
not impose any bias in the learning process as all actions are equally probable.
In contrast, our approach adds prior knowledge about the insulin action distri-
bution to facilitate better learning which imposes the bias of the current clinical
practice in T1D insulin treatment. This introduced bias was demonstrated as
necessary for the glucose regulation task to achieve effective and efficient control.
However, the effect of the bias in the proposed approach could be detrimental
in problem domains with limited expert knowledge, and future research could
focus on methods to identify the most suitable translation functions to design
the target non-linear action spaces. The inter-subject variability in performance
observed in the analysis highlights that the design of personalised action spaces
using clinically recognised parameters of individuals may be beneficial, thus a
potential area of future research. The designed RL-based system can be further
improved to increase the TIR and reduce the FR. In future work, we aim to
explore reward function formulations and algorithmic improvements to enhance
the performance, while focussing on aspects such as safety, explainability, and
transferability to real-life, which are vital for a robust APS.

6 Conclusions

This study proposed the use of non-linear action space representations for a
RL-based APS with the aim to address the challenge of the large, continuous,
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and non-uniform insulin action space and enhance the learning efficiency and
performance of glucose control strategies. Our results demonstrated superior
performance of the non-linear action spaces compared to the standard linear one
with faster and smoother convergence and higher final reward. This research is
expected to contribute to the development of RL-based fully-autonomous APS.
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Abstract. Alzheimer’s disease is a neurodegenerative disease without a
cure and is one of the leading causes of death across the world. The early
detection of cognitive impairment could prove crucial for reducing the
occurrence of Alzheimer’s disease in the future. Significant research into
detecting the disease fromMRI images has already been performed andhas
produced encouraging results. However, there has been very limited work
on predicting conversion from normal cognition to cognitive impairment.
This study is aimed at producing a deep learning model to predict whether
a subject will remain cognitively normal or progress to a state of cognitive
impairment in the future. We found that the use of a patch-based approach
combined with pre-trained ResNet-50 model using 3D MRI scans provide
better results as compared to equivalent whole brain voxel-based approach
and other state-of-the-art CNN models. Our proposed model achieved an
accuracy of 90% and an area under the receiver operating characteristic
curve of 0.99, which are better than the existing state-of-the-art results.

Keywords: Alzheimer’s · CNN · Deep learning · MRI · Cognition
prediction

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease which
destroys memory and other important cognitive functions. It is the most com-
mon form of dementia affecting up to 70% of those diagnosed [30]. In the United
States alone, it is estimated that there are over 6 million people living with
AD [2]. Dementia, including AD, has been the second leading cause of death in
Australia since 2013 [3]. Currently, there is no cure for AD.

At the present time, there is no single test that can be used to identify AD
and the diagnosis can only be confirmed by examination of the subject’s brain
tissue after death. Clinical diagnosis of AD usually involves a combination of
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psychiatric assessment, cerebrospinal fluid testing, APOE genotyping, positron
emission tomography (PET) and magnetic resonance imaging (MRI). However,
the expert use of these tests only leads to a 77% diagnostic accuracy for clinical
diagnosis of AD [24].

Mild cognitive impairment (MCI) is a condition in which people experience
significant memory loss but do not yet meet the criteria for a clinical diagnosis
of AD [23]. Davis et al. [5] estimated that, at age 65, 8% of people will progress
from normal cognition to MCI and 22% of patients with MCI will progress to a
clinical diagnosis of AD annually. For a cohort of 100 cognitively normal (CN)
patients at age 65, it was found that a 20% reduction in the progression rate
from normal cognition to MCI would avoid 5.7 cases of MCI and 5.6 cases of
AD in the future.

Non-pharmacological interventions such as diet, exercise and cognitive exer-
cise have been shown to have an influence on reducing the incidence of devel-
opment of MCI and dementia [32]. As such, early intervention should lead to
increased life expectancy and less time spent in severe AD health status.

Lee et al. [19] found that radiological examinations’ retrospective error rate
is approximately 30%. There are a range of factors that can cause errors to
be made but it was found that errors were mainly due to fatigue and radiol-
ogists’ inherent biases while performing diagnoses. These diagnostic errors are
estimated to account for up to 80,000 annual deaths in the US. As such, the
use of automated systems for diagnosis is a growing field of interest. Due to the
recent advancement in machine learning, many methods are being researched
and utilised to improve the medical practices.

MRI is a medical imaging technique that is commonly used for diagnosing
brain injuries and diseases. It is one of the most useful and effective tools a
physician can use to assist in the diagnosis of AD [8].

Dukart et al. [7] provided some of the first research into using machine learn-
ing techniques to detect AD using MRI data. The study used a 50% split of AD
patients and CN subjects taken from a 56 subject sample of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset. The volume of several regions
of interest of the brain were extracted from the MRI data. A support vector
machine (SVM) was fit to this volumetric data and was able to distinguish
between AD and CN patients with an accuracy rate of 80.4%. Gray et al. [10]
explored the ability of a random forest (RF) to classify AD using MRI volumes.
The results from this study suggested that the RF was able to predict AD with
a higher degree of accuracy in comparison to previous studies which used SVMs.
A subset of the ADNI data was used and included 37 AD patients, 75 MCI
patients and 35 CN persons. The study reported that the random forest model
was able to detect AD patients with 82.5% accuracy. The study also reported
accuracy of 67.3% to classify between MCI patients and CN.

Recently, deep learning has been used to solve many complex medical prob-
lems such as detecting Multiple Sclerosis, Alzheimer’s disease and various types
of cancer [21,25]. The interest in deep learning for medical imaging has largely
been due to the ability of convolutional neural networks (CNNs) to learn useful
representations of complex images. The first study to explore the use of deep
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learning for AD classification was performed by Suk and Shen in 2013 [28].
Unlike previous methods which used simple features extracted from MRI such
as brain tissue volumes, the deep learning method implemented here was pro-
posed to be able to extract more complicated patterns from the data. A stacked
auto-encoder (SAE) with three hidden layers was utilised and the output layer
of the auto-encoder is used to represent the class label of the input data. This
implementation of the SAE acted as a classifier and was able to detect between
healthy controls and AD patients with 85.7% accuracy. The SAE could also dis-
tinguish MCI patients from healthy controls with 70.6% accuracy. Gunawardena
et al. [11] compared the use of SVMs and CNNs in the detection of AD from MRI
data. The data consisted of 1615 images from the ADNI dataset. The proposed
CNN model was constructed using two convolution layers, a pooling layer and a
fully connected layer. The SVM used in this study predicted AD with an accu-
racy of 84.4% while the CNN model had an accuracy of 96.0%. This difference
in performances confirms that deep learning methods can greatly improve the
ability to automatically detect AD from MRI.

Farooq et al. [9] investigated the AD detection performance of transfer learn-
ing by using pre-trained CNN models with ImageNet weights. 355 MRI volumes
from the ADNI dataset were used, with each scan being broken down into many
2D slices. Binary classification between CN patients and patients with AD or
MCI was performed effectively by these models. ResNet-18 and GoogLeNet were
the top two performing models with both achieving accuracy rates of over 99%.
The performance of the selected models exceeded most other state-of-the-art
technologies present in the literature at the time but the data did not include
entire ADNI dataset.

Although three-dimensional neural networks are more computationally inten-
sive than their 2D counterparts, the ability of 3D CNNs to extract discriminative
features from MRI data is found to be superior [31].

Similarly, the use of ensembles of various deep learning networks has been
tested and has shown promising results. Dua et al. [6] implemented an ensemble
technique to combine CNN, recurrent neural network and a long short-term
memory model to improve on each model’s individual performance. An ensemble
of five different 3D DenseNets provided state-of-the-art results for the three-way
classification of CN, MCI and AD [29]. On its own, the best performing 3D
DenseNet in this study provided a three-way classification accuracy of 94.77%
while an ensemble method improved this to an accuracy of 98.83%.

In addition to classification, early diagnosis of AD and MCI due to AD could
help slow or halt patients’ cognitive decline [18]. Methods which allow us to
detect early signs of cognitive impairment or predict further cognitive decline
are more valuable compared to classification approaches which only seek to dif-
ferentiate between a CN subject and a subject suffering from heavily progressed
AD [8]. Shen et al. [26] used a 2D CNN to extract features from the MRI scans
of 165 MCI patients recorded in ADNI. After feature extraction, a support vec-
tor machine was used to classify these features and predict whether the patients
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would be diagnosed with AD within 12 months. The classification accuracy using
an RBF kernel was 92.3%.

Albert et al. [1] investigated the ability to predict individuals’ progression
from normal cognition to MCI. Their study used baseline data from 224 CN
subjects, of which 75% had a first degree relative with dementia. At the end of
the 5 year study, 46 of these subjects had progressed to having MCI. The study
found that age, right hippocampus volume, right entorhinal cortex thickness,
APOE genotype and cerebrospinal fluid testing results were significant for the
purposes of prediction of a patient’s progression from normal cognition to MCI.
This study’s use of MRI scans was limited to measuring the specific parts of
brain which include brain’s right hippocampus volume and entorhinal cortex
thickness. For the prediction of progression from CN to MCI, the single-modal
use of the MRI domain technique in this study provided an AUC of 0.740. When
combined with other demographic and genetic variables the AUC improved to
0.849.

In this study, we propose deep learning based approach to predict the cogni-
tive decline of a patient from CN to MCI or clinical diagnosis of AD. To date,
there has been limited research into predicting individuals’ progression from
normal cognition to cognitive impairment as mentioned above, and there are
substantial opportunities to improve this practice.

2 Materials and Methods

All computational experiments have been performed in a Google Colab environ-
ment which provides access to GPUs. Implementation of the experiments was
performed using Python 3.7 and TensorFlow 2.6.

2.1 Datasets

In 2010, Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset was
released. It provided a compilation of MRI and PET scans of 819 elderly sub-
jects [14]. Since the release, the amount of data has been steadily increasing.
Ebrahimighahnavieh et al. [8] found that 90% of the studies into Alzheimer’s
detection and classification uses ADNI dataset.

The Open Access Series of Imaging Studies (OASIS) is a recently released
neuroimaging dataset which focuses on subjects’ cognitive decline. OASIS-3 was
released in 2018 and is an openly available dataset containing MRI and PET
imaging for 1,098 subjects [17]. 850 of the participants entered the study as
CN while there were 248 participants who entered with some form of cognitive
impairment. Throughout the study, 245 of the patients who were initially CN
had converted to a state of cognitive impairment. Over the course of the study,
there were a total of 2,168 MRI scans produced. As the OASIS-3 images were
obtained over a period of more than 10 years and on a range of different scanners,
there were several different file types storing the data. However, a single standard
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format has been provided and all data files have been converted to NifTI format
files.

The OASIS-3 dataset also includes related clinical data as well as post-
processed outputs and regional segmentations of the brain. Clinicians assessed
the participants and provided a dementia diagnosis which included categories of
“cognitively normal”, “AD dementia” and “vascular dementia”.

The Clinical Dementia Rating (CDR) is a commonly used measure in lon-
gitudinal studies of AD [22]. Patients’ CDR is based on their impairment in
memory, orientation, judgment and problem solving, community affairs, home
and hobbies, and personal care. A CDR of 0 corresponds to a cognitively nor-
mal patient, 0.5 represents very mild dementia, 1 represents mild dementia, 2
represents moderate dementia and 3 represents severe dementia.

The groups of patients in OASIS-3 have been defined as “Stable Controls”,
“Converters” and “Dementia at aging”. Stable controls are individuals who
begun with a CDR score of 0 and remained on the same score. Converters are
those subjects who started with CDR of 0 and progressed to a CDR greater than
0. Subjects defined as dementia at aging were those who initially had a CDR
greater than 0.

In both the ADNI and OASIS datasets, subjects completed clinical assess-
ment protocols in line with the National Alzheimer Coordinating Center Uniform
Data Set. The main difference between the OASIS-3 and ADNI datasets is that
the majority of the OASIS-3 participants were initially categorised as being cog-
nitively normal and their potential decline was followed through longitudinal
progression. ADNI, however, primarily enrolled patients who already had some
form of dementia or MCI. Thus, we found OASIS-3 to be optimal dataset for
our study as it has the potential to greatly improve early detection methods of
MCI and AD.

2.2 Image Data

For each subject in OASIS-3, we have access to T1-weighted MRI images. We
used the post-processed MRI images from OASIS-3 that come in the form of
FreeSurfer files. These files contain a 3D image of the brain with the skull
stripped and have a shape of 256 × 256 × 256 voxels.

After reading in the FreeSurfer files, we performed further processing steps
in order to have a useful format for feeding the images into our deep learning
model. These steps included cropping the image so that the majority of blank
space around the brain is removed and then resizing this cropped image to 128
× 128 × 128 voxels. After the cropping and resizing, each image was normalised
so that each voxel has an intensity value between 0 and 1.

2.3 Subject Selection

There were two classes of subjects that we were interested in for our experiments.
These were the subjects who remained CN for the foreseeable future and the
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Table 1. Split of number of subjects in each class of the OASIS-3 dataset after selection
process.

Class Training Validation Test

Healthy controls 30 10 10

Converters 30 10 10

subjects who converted from CN to cognitive impairment. For our subjects that
remained CN throughout the study, we selected those who have received a clinical
assessment with a CDR of 0 at least 3000 days after their initial scan.

For the class of subjects who converted to cognitive impairment, we selected
subjects who initially had a CDR of 0 but at a later assessment received a CDR
of 0.5 or higher. As the scans of each subject were not usually taken on the date
of their clinical assessment, we ensured that the scans we selected were taken at
a point in time when the subject is still likely to be CN. To do this, we selected
scans of subjects that have occurred within 365 days of receiving a CDR score
of 0 in an assessment and receive a CDR rating of 0.5 or above within the next
1,000 days after the scan. We also ensured that the date of the scan was closer to
the subject’s CDR 0 assessment in comparison to their CDR ≥ 0.5 assessment.

A 50/50 split of subjects in each class was obtained as suggested in earlier
studies [7,9]. 60% of our data was used in the training set, 20% for the validation
set and 20% for the test set [16].

At the end of selection process, we had 204 subjects remaining that satisfied
our selection criteria. However, only 50 of these were subjects who would go on
to convert to cognitive impairment. In order to create a balanced dataset, we
reduced the number of subjects that remained CN in our dataset from 154 to
50. After performing our train, validation and test split, we were left with the
subjects as detailed in Table 1.

2.4 Evaluation Metrics

For the purposes of calculating evaluation metrics in this study, subjects that
convert from normal cognition to cognitive impairment are referred to as the
positive class. Subjects remaining CN throughout the study are referred to as
the negative class.

The evaluation metrics used were accuracy, sensitivity, specificity, area under
the receiver operating characteristic curve (AUC) as suggested in the literature
[1]. These metrics are calculated using the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN
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where TP, TN, FP and FN represent true positives, true negatives, false positives
and false negatives respectively.

AUC is calculated as the area under the Sensitivity (True Positive Rate)
curve plotted against 1 − Specificity (False Positive Rate).

2.5 Model Architecture

There are two popular methods for dealing with 3D images in literature: voxel-
based approach [13] and patch-based approach [20]. We propose a deep learning
network that uses both the approaches to examine their effectiveness. The over-
all architectures for the two approaches are very similar with a difference that
voxel-based approach uses voxel intensity values from the whole image while a
patch-based approach breaks down the whole image into several small three-
dimensional cubes.

Fig. 1. Overview of the architecture of our voxel-based approach

Our voxel-based architecture as presented in Fig. 1 takes an input for each
subject of a 128 × 128 × 128 whole brain MRI. This input image is fed into a
pre-trained 3D CNN using ImageNet weights. The 3D ImageNet weights we used
were proposed by Solovyev et al. [27] for their winning submission to a machine
learning competition regarding identification of stalled brain capillaries. As the
pre-trained networks are built to classify between 1,000 classes in the ImageNet
problem, it produces 1,000 output probabilities. As we are only interested in
a binary classification output, we need to transform this output to a single
probability.

To achieve binary classification, we added three dense layers consisting of
1,000, 500 and 200 units respectively as well as a sigmoid layer for the output
layer. The use of these layers takes the 1,000 output probabilities from the pre-
trained CNN and produces a single output probability which corresponds to the
predicted probability of a subject converting from normal cognition to cognitive
impairment.

Figure 2 presents our method of implementing a patch-based approach which
is similar to the voxel-based approach. The first difference between the two
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Fig. 2. Overview of the architecture of our patch-based approach

approaches is the input to the model. Instead of using the 128 × 128 × 128 whole
brain MRI, we split this image into 3 × 3 × 3 patches. Each patch of voxels has
a 50% overlap with its neighbouring patch [4]. This patch-based method results
in the generation of 27 uniform-sized patches for each MRI.

Similar to voxel-based approach, after feeding the inputs into a pre-trained
3D CNN, the same dense layers and sigmoid layer are applied in order to produce
a single output probability for each patch. A stacked model has been applied
by using the outputs from each patch based model as features to feed in to a
logistic regression model for us to make our final prediction.

The dense layers and sigmoid layer following the pre-trained CNN were fine-
tuned in a brief training process. The parameters for the training of the CNNs in
the voxel-based and patch-based models are shown in Table 2. The only difference
between the parameters used for the models is the batch size. The reduced batch
size for the voxel-based method is necessary due to the memory limits of the
GPUs we used for the experiments.

Table 2. CNN parameters for our voxel-based and patch-based approaches

Parameter Voxel-based Patch-based

Input shape 64, 64, 64 128, 128, 128

Pre-trained weights ImageNet ImageNet

Batch size 20 5

Loss Binary cross-entropy Binary cross-entropy

Learning rate 0.001 0.001

Maximum epochs 1,000 1,000

Early stopping 50 epochs 50 epochs

Optimizer Adam Adam
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2.6 Experiment 1 - Voxel-Based vs. Patch-Based Approaches

In our first experiment, we compared the performance of a voxel-based model
to a patch-based model. These models were built according to the specifica-
tions detailed in Sect. 2.5. As mentioned earlier, we used a 3D ResNet-50 model
initialised using ImageNet weights for both models.

2.7 Experiment 2 - CNN Architectures

We compared the performance of two of the historically best performing CNN
architectures for medical imaging problems, ResNet-50 and DenseNet-121. In
addition to this, ResNet-18 was also tested as it has previously shown simi-
lar performance to ResNet-50 for the binary classification of AD while having
significantly less parameters [9].

Squeeze-and-excitation networks were introduced by Hu et al. [12]. The
addition of squeeze-and-excitation blocks to previously developed and well-
established architectures such as ResNet provided improvements in performance
with only a slight increase in computational intensity. In their testing of the
model on ImageNet, SE-ResNet-50 was found to outperform the original ResNet-
50 architecture improving the top-5 error from 7.48% to 6.62%. SE-ResNeXt-50
showed further improvements with a top-5 error of only 5.49% on ImageNet.
In the field of medical imaging, Jiang et al. [15] found that the use of an SE-
ResNet module provided improvements to the state-of-the-art results for the task
of breast cancer classification. We wanted to explore whether the use of squeeze-
and-excitation networks could provide any improvement over our ResNet-50
model implemented in Experiment 1 of this study. As such, we tested the per-
formance of SE-ResNet-50 and SE-ResNeXt-50 in a patch-based approach.

An ensemble of the five models selected for comparison was tested to deter-
mine whether a combination of models could provide additional improvements.

3 Results and Discussion

As mentioned in the earlier section, we conducted two sets of experiments. The
aim of the first experiment was to compare and evaluate the performance of
voxel-based and patch-based approaches. This helped to select a better approach
for the next experiment. The aim of the second experiment was to obtain the
best model for our prediction problem.

3.1 Experiment 1 - Voxel-Based vs. Patch-Based Approaches

After fine-tuning the voxel-based and patch-based networks’ weights on the train-
ing and validation set, the two models produced the results which are presented
in Table 3.

In Experiment 1, the voxel-based approach predicted that all the subjects in
the test set would remain CN. However, the patch-based approach achieved an
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accuracy of 90% with only 2 subjects wrongly classified. These 2 subjects were
predicted by the model to remain CN while they actually converted to a state
of cognitive impairment.

From the accuracy results seen in Table 3, it is evident that the patch-based
approach greatly outperforms the voxel-based approach. The result shows that
the patch-based model will be able to provide more accurate predictions than
the voxel-based model for our next experiment.

Table 3. Model performance on test set for Experiment 1

Model Accuracy AUC Sensitivity Specificity

Voxel-based approach 0.50 0.50 0.00 1.00

Patch-based approach 0.90 0.99 0.80 1.00

3.2 Experiment 2 - CNN Architectures

After finding the patch-based approach to be optimal for our prediction problem,
we tested a range of patch-based 3D CNNs as presented in Table 4.

From the comparison of the five individual CNN architectures presented in
Table 4, we found that ResNet-50 and SE-ResNet50 produced the most accurate
predictions, with both models correctly predicting the class of the test subject
90% of the time. These two models resulted in the same predictions for each
subject in the test set, suggesting that there was no improvement made by using
the squeeze-and-excitation version of the network.

Interestingly, ResNet-50 greatly outperformed ResNet-18 in all metrics. Pre-
viously, Farooq et al. [9] had shown that for the binary classification of AD and
CN subjects, ResNet-18 outperformed ResNet-50. For our task of predicting a
subject’s conversion to cognitive impairment, the use of ResNet-50 produced an
accuracy of 90% and an AUC of 0.99 in comparison to ResNet-18’s accuracy of
65% and AUC of 0.80. It is important to note that Farooq et al.’s study used 2D
CNNs while we have used 3D CNNs. While it is obvious that the deeper model of
ResNet produced more accurate results in our experiments, our results may also
suggest that the use of a deeper model is beneficial for 3D image classification
tasks.

In Experiment 2, we also tested the performance of DenseNet-121. In other
studies using 3D medical imaging data, DenseNet models have performed
strongly and exceeded the results produced by other CNN architectures [27,29].
Based on our testing, we found that DenseNet-121 outperformed ResNet-18 but
did not outperform ResNet-50 in regards to model accuracy and AUC. DenseNet-
121 did, however, produce the highest sensitivity of all the models tested with
100% of converting subjects predicted correctly in the test set.

Lastly, we also observed that an ensemble method which uses all of the CNN
architectures tested did not provide the best accuracy for our predictions. Its
performance in terms of accuracy was better than ResNet-18 but lower than
DenseNet-121 and ResNet-50 models.
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Table 4. Model performance on test set for experiment 2

Model Accuracy AUC Sensitivity Specificity

ResNet-50 0.90 0.99 0.80 1.00

SE-ResNet-50 0.90 0.99 0.80 1.00

SE-ResNeXt-50 0.75 0.85 0.90 0.60

ResNet-18 0.65 0.80 0.70 0.60

DenseNet-121 0.85 0.97 1.00 0.70

Ensemble model 0.80 0.97 0.90 0.70

Overall from Experiment 1 and Experiment 2, we found that the models
producing the highest accuracy and AUC were the patch-based implementations
of ResNet-50 and SE-ResNet50. Due to the fact that ResNet-50 has slightly fewer
parameters and thus is less computationally intensive, we recommend this is as
our most promising model for future applications.

From the literature, we found that the only published article that has
attempted to predict whether a CN subject will convert to cognitive impair-
ment in the near future, was performed by Albert et al. [1]. Table 5 presents the
model performance of Albert et al. in comparison to our model’s performance.

On the test set of our data, our approach has produced an AUC of 0.99 while
only making use of MRI data. When using MRI data only, Albert et al.’s [1]
approach produced an AUC of 0.74 for the prediction of conversion to cognitive
impairment in a five year time frame. We acknowledge that we can not directly
compare the results of our study to the results of Albert et al. [1] as the study
used a private dataset that was gathered by the Geriatric Psychiatry Branch of

Table 5. Comparison of our model’s performance to that of Albert et al. [1]

Model Time to
outcome

AUC Sensitivity Specificity

Albert et al. [1] Cox regression
(MRI data only)

5 years 0.740 0.641 0.710

7 years 0.722 0.662 0.659

9 years 0.705 0.616 0.678

Cox Regression
(MRI +
demographic +
genetic variables)

5 years 0.850 0.804 0.740

7 years 0.843 0.815 0.724

9 years 0.831 0.764 0.759

Our approach Patch-based
ResNet50

1,000 days 0.990 0.800 1.000
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the National Institute of Mental Health and as such, we did not have access to
this data. However, we believe that our patch-based 3D ResNet-50 model has the
potential to improve the previously established methods of predicting a subject’s
probability of conversion to cognitive impairment.

4 Conclusion

AD is a leading cause of death across the world. It has been found previously
that a reduction in the progression rate from normal cognition to MCI would
reduce the number of cases of AD in the future. Due to the potential for medical
interventions to reduce the incidence of development of MCI, the ability to accu-
rately predict whether a person will convert from normal cognition to a state of
cognitive impairment could be important in the future.

In this paper, we developed an approach to detect whether a person will
progress from normal cognition to a state of cognitive impairment in the future.
While there is still work to be done in order to validate the results of this study
on a wider cohort of subjects, the application of our approach to the OASIS-3
dataset appears to produce impressive results. In our testing, we found that a
3D patch-based approach has outperformed an equivalent voxel-based approach.
We tested various CNN architectures and found that a pre-trained ResNet-50
using ImageNet weights produced the greatest performance with a prediction
accuracy of 90%.

In future, this study can be extended to predict the time to conversion of CN
to MCI instead of predicting a probability of the conversion. The provision of
more data and additional of clinical data in the input is expected improve the
results.
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Abstract. Phoneme segmentation is important for many healthcare
applications, such as the diagnosis and monitoring of children with speech
sound disorders (SSDs). This is usually addressed by performing forced
alignment (FA), which essentially annotates an audio file to provide infor-
mation on what has been uttered and where. While many FA tools exist,
very few can work automatically without the assistance of a transcrip-
tion. This work aims at providing a novel text-independent FA tool by
using two models, namely wav2vec 2.0 and an unsupervised segmentor
known as UnsupSeg. To provide labels to the segments, the class regions
that are obtained by nearest-neighbour classification with wav2vec 2.0

labels pre-CTC collapse as the reference points. Maximal overlap between
the class regions and the segments determines class label. Additional
post-processing steps, such as over-fitting cleaning and application of
voice activity detection, are also performed to further improve the seg-
mentation performance. All the models used to create the tool are self-
supervised, and thus can leverage great amounts of unlabelled data to
reduce the need for labelled data. When evaluated on the TIMIT dataset,
our implementation achieved a harmonic mean score of 76.88%, compet-
itive against other alternatives.

Keywords: Forced alignment · Phoneme segmentation ·
Transformer · Self-supervised learning · Connectionist temporal
classification · Voice activity detector · Speech sound disorder · Speech
processing · Deep learning

1 Introduction

The term Speech Sound Disorder (SSD) is used as an umbrella term to describe
a common communication disorder in young children. The prevalence is reported
to range from approximately 1% to 4% in children aged 4–5 years of age, higher
in younger children [15]; and accounts for up to 70% of a speech-language pathol-
ogist’s (S-LPs) caseload [4]. A SSD is defined as “... any difficulty or combination
of difficulties with perception, motor production or phonological representation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 585–598, 2022.
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of speech sounds ...” [1], resulting in difficulty saying sounds in words correctly,
thus affecting speech intelligibility [14]. Access to timely intervention is required
to mitigate the well documented cascading consequences of a SSD, that con-
tribute to long term educational and employment difficulties [3]. The assessment
and management of SSDs is usually performed by a qualified S-LP, with pho-
netic transcription of the child’s speech integral to the process of identifying
the nature of the SSD [14]. Phonetic transcription entails the use of phonetic
symbols to represent speech sounds and requires knowledge of the International
Phonetic Alphabet [17].

Although clinical practice guidelines recommend phonetic transcription of
a speech sample form the “first step” towards diagnosis of a SSD, in a recent
survey of Australian and British S-LPS, it was reported only 39.5% and 45.4%,
respectively were using broad transcription. Challenges to the use of phonetic
transcription included lack of proficiency, time challenges and service delivery
issues [17]. The authors concluded there is a need for further resources to support
S-LPs in their use of phonetic transcription.

To date, recommendations to support S-LPs with phonetic transcription
have focused on the development of competencies through resources, training,
and tutorials [16]. Another possible solution includes computer assisted tools,
such as automatic speech analysis [13]. To date, computer assisted tools have
focused predominantly on anomaly detection and designed to be used in auto-
matic speech recognition (ASR) contexts. These tools, however, do not provide
analysis at the phoneme level, as is required for differential diagnosis, by an S-LP.
Further, the models used in ASR are based on older machine learning techniques
or statistical models. It has been observed that these tools fare poorly on non-
complaint utterances, having phone phoneme label accuracies as low as 46.42%
[12]. This can be attributed to two factors;

– The tools are dependant on being able to first correctly predict the spo-
ken word, then break the predicted word into graphemes (phonetic symbols)
which are assigned to each individual segment of audio. Non-complaint speech
will certainly have some issues with predicting the correctly spoken word, and
therefore be unable to predict the correct phonemes.

– The models are built to recognise contextual clues and are not frame indepen-
dent - for a given phoneme, it may have some idea what should come next,
raising the probability that it predicts those phonemes1.

Fortunately, there have been many new developments in the field of deep
learning regarding sequence modelling. Sequence models are designed to oper-
ate on sequential data, such as text or audio. One may be able to apply, adjust
or re-purpose some of these new sequence modelling techniques to become flex-
ible enough to label the utterances of a SSD patient. A few techniques, such as
bi-directional long short-term memories (BLSTMs) [21] paired with connection-
ist temporal classification (CTCs) [6] are noted for having a sense of conditional
independence, meaning all outputs are independent of each-other, given the input.
This means greater flexibility at the cost of contextual awareness - a bad thing in
1 This refers to conditional dependence on the previous states in a sequence.
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other applications but an opportunity here. New techniques, such as wav2vec 2.0
[2] are showing outstanding performance using self-supervision, which reduces the
amount of labelled data required to create a strong performing model.

Ultimately, the goal is to make a tool which can take audio speech data of a
non-compliant (SSD) speaker, detect sections which belong to phonemes and cor-
rectly label the phonemes, then output the data in a form which is manipulatable
by SLPs. This task is called text-independent forced alignment, as it performs
forced alignment without the aid of text information. Fortunately, advances in
machine learning and sequence modelling techniques have resulted in very power-
ful models which are showing excellent results in tasks such as automatic speech
recognition (ASR). This work uses wav2Vec 2.0 (w2v2), which is based on the
transformer sequence model [2]. w2v2 is purpose-built for ASR tasks. It is consid-
ered as the state-of-the-art obtain the orthographic and phonetic transcriptions
of an audio file without any external support. This is used to obtain the phonetic
information from the audio file. Recent work has been done to attain the seg-
ments of phonemes without looking the phoneme labels [9,10,22]. This can be
used to acquire accurate timings, improving temporal accuracy. Whilst we also
use w2v2 for the speech representation part, we present an alternative approach
that is equally competitive whilst being more intuitive and extendable.

The paper is organised as follows. Section 2 details how to build the model and
how to obtain metrics which meet the specifications. The results and validation
section, Sect. 3, performs a series of experiments to gauge how each component
of the tool interacts with each other and how the resulting tool configuration
performs. Finally, Sect. 4 contains concluding remarks. The implementation of
the proposed method presented in this paper will be made publicly available at
https://github.com/dsphamgithub/fatool.

2 Methodology

Audio

W2V2 Segmentor

VAD

Combination

Cleaning

Labelled Segments

Unlabelled segments

CTC

Tokens

Phonetic
Transcription Labelled Segments

Unlabelled
Segments

Fig. 1. Data flow

Initialised TIMIT

Dictionaries

Semi-preprocessed TIMIT

Processors

Predict WAV

Trained Model

Save files

Fig. 2. Dependencies within the Wav2vec
2.0.

https://github.com/dsphamgithub/fatool


588 B. Wohlan et al.

2.1 Proposed Forced Aligner

The data flow of our proposed forced aligner is show in Fig. 1. Our approach
relies on two important components: an unsupervised segmenter (UnsupSeg) [9]
and the well-known wav2vec 2.0 (w2v2) model [2] for speech representation.
Our novelty lies in the specific adaptation of w2v2 from automatic speech recog-
nition (ASR) to phoneme segmentation and a scheme to combine the tokens
generated by w2v2 and unlabeled segments from the unsupervised segmenter.
We develop a novel algorithm that combines the information to generate accu-
rate boundaries and assigns the correct phonetic transcription using the output
of w2v2’s CTC. Some extra elements, such as voice activity detector and clean-
ing, are also required to improve the overall performance. We now describe the
motivation for the proposed system and the details of individual components.

Fig. 3. The output of wav2vec 2.0 and the segmentation function visualised. Green
arrows represent “impulses” of labels pre CTC-collapse. Grey arrows represent PAD
tokens that are present throughout the whole sequence, but are only shown at the
beginning of the diagram for visual clarity. (Color figure online)

We start with the outputs of w2v2 and UnsupSeg, which are shown in Fig. 3.
Here, the UnsupSeg provides segments, while w2v2 provides labels and weak
positional information. To overcome this issue, one could opt to ignore the seg-
ments and split using the w2v2 labels. However, this would most likely violate the
tight 20 ms tolerance that speech language pathologists need for a human-level
alignment. Another option is to segment the audio file on the segments provided
by UnsupSeg, and then use w2v2 to annotate each snippet to form a number
of annotations. However, this is not ideal, as contextual information regarding
the whole utterance would be lost. For example, knowing vowel sounds usually
follows consonant sounds - annotating each segment independently would lose
the contextual knowledge.
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Another temptation is to use the w2v2 labels to annotate the segments by
labelling segements using the impulses at that time. That is to say, if there is a
segment from t1 and t2 and a label L exists between t1 and t2 then that segment’s
label is L. This would be an effective strategy, since every segment may not have
a w2v2 label within its boundaries, or the label might have several conflicting
w2v2 labels within its boundaries. This issue is solved by the proposed technology
presented in this paper. Instead of directly using the labels to vote, we can use
a decision boundary to annotate labels. Supposed we used a nearest neighbour
approach, where we annotate a segment with 0 duration (i.e. an impulse). The
region where the nearest neighbour approach will deterministically assign label
πi is noted. This region is described as

Ri : x → πi ∀ Ri εx (1)

where Ri is region i belonging to class πi, and x is the term to be classified.
The decision boundary is the limits of this space where two regions meet. It
is considered ambiguous as to what class will be assigned. The implementation
in this project assigns both classes to the boundary. This has no bearing on
performance due to the computation method of class labels which is described
ahead. We use these class regions to calculate the overlap with each segment. The
class label with the greatest degree of overlap with the segment is determined
to be the segment’s label. For example, if a segment x spanned a number of
regions belonging to class labels π = [a, b, c] in proportions of 40%, 30% and
30% respectively, then we would decide x’s label as a. The region boundaries
are calculated by using the midpoint of two successive class label impulses. The
fomula for region boundaries is detailed in Eq. 2.

Boundary(R1 : R2) = (t1 + t2)/2 ∀t1 < t2 ∧ � t1 ≤ tx ≤ t2, ∀x, (2)

where Ri is region i belonging to class πi, ti is the time of label impulse i with
ti ≤ ti+1, and tx is the time of any segment that is not t1 or t2. However,
w2v2 might assign labels to be closer to the start or end of the true segment.
This is compensated by introducing a bias factor to calculate the class region
boundaries. The bias factor pushes the boundary closer (for β → 1) or further
(for β → 0) from the uppermost segment.

BiasedBoundary(R1 : R2) = (1 − β)t1 + βt2 ∀ t1 < t2 ∧ � t1 ≤ tx ≤ t2 (3)

where β is a bias factor. Edge cases such as the last and start segment will extend
towards the end of the speech sample. It is also beneficial to “clean up” successive
segments which have the same label by amalgamating the two segments. The
start time of the earlier segment and the end time of the latter segment becomes
the boundaries for the new segment, when the class label is preserved.

Algorithm 1 forms the most critical part of the proposed system. A visual
illustration is given in Fig. 4.

With the boundary finding algorithm above, Algorithm 2 (also see Fig. 1)
describes the working of our forced aligner. As can be seen, there are few more
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Algorithm 1. Boundary Calculation
1: procedure DecisionBoundaryCalc(timedTokenList, seconds, bias)
2: timedTokenList is a list of tuples of labels and their timings
3: seconds is the duration of the speech sample in seconds
4: bias is the bias factor which is positive and smaller than 1.
5: DCB ← new List
6: for ii in range of length timedTokenList do
7: if ii equals length of timedTokenList - 1 then
8: upper ← seconds
9: lower ← timedTokenlist[ii - 1][time])*(1-bias) + timedToken-

List[ii][time])*(bias)
10: else if ii equals 1 then
11: upper ← timedTokenlist[ii +1 1][time])*(bias) +

timedTokenList[ii][time])*(1-bias)
12: lower ← 0
13: else
14: upper ← timedTokenlist[ii +1 1][time])*(bias) +

timedTokenList[ii][time])*(1-bias)
15: lower ← timedTokenlist[ii - 1][time])*(1-bias) + timedToken-

List[ii][time])*(bias)
16: end if
17: Append tuple (timedTokenList[ii][label], lower, upper)
18: end for
19: return DCB
20: end procedure

additional functions that are also needed for it to work (details are omitted due
to lack of space):

– The voice activity detector (VAD) function is implemented to remove any
unnecessary segments. The segments returned from the Unsupervised Seg-
mentor are stored in a list called segVect.

– The TokensToTimedTokens function turns a 1D array of class labels into a
list of tuples containing the class label and the respective time in the sample
at which that class label corresponds to. Afterwards, tokens used for CTC
are removed, and includes the pad, unknown and delimiting tokens.

– The maxDCBInitDict is used to initialise a blank dictionary. It uses the string-
to-unicode dictionary as its template, but the values are replaced by zeroes.
It is effectively a string to 0 dictionary.

– The MaxContribution function takes the segment vector, decision boundaries
and the MaxDCBInitDict to analyse the contribution, or overlap of each class
within each class boundaries. It labels the entire segment with the dominant
class label from the overlapping class regions. It returns a label list, which is
a list with the class labels in order, so the first label in the list represents the
region between segments i and i + 1. This is converted to a list of 3 length
tuples, which include the phone label, start segment time, and end segment
time.
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– Finally, the cleaning function cleanSegs returns a list with fewer overfitting
labels. Cleaning is a post processing step which aims to increase the accu-
racy of the predictions by removing overfitted labels. It works by doing the
following steps: 1) Get the word spoken with CTC collapse; 2) Calculate tran-
sitions based on every two letters, i.e. cat = (c-a, a-t); and 3) Scan through
the labelled segments. If two labels are the same but aren’t a permissible
transition, amalgamate them.

Fig. 4. Example of the process of determining the label of an unlabelled segment.

The list of tuples is converted to a list of dictionaries for easier use when
evaluating. This is effectively a list of segments with their labels. This completes
the forced alignment process.

2.2 Pre-processing

In order for the forced aligner to work, important pre-processing steps are
needed. In this paper, wav2vec 2.0 (w2v2 ) [2] is implemented using the
Hugging-Face implementation (see Fig. 2). Whilst there is existing documen-
tation on using w2v2 in the context of automatic speech recognition (ASR), it is
substantial work to extend it to phoneme prediction. The method for fine-tuning
w2v2 for phoneme recognition involves taking the pre-trained model and further
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Algorithm 2. Forced Aligner
1: procedure Labelled segmenter(wavPath)
2: signal, samplingFreq ← soundfile.read(wavPath)
3: seconds ← length of signal / SamplingFreq
4: wp ← Wav2Vec2PredictiorObject
5: tokens ← wp.predictWavNoCollapse(wavPath)
6: segPredictor ← UnsupervisedsegmenterPredictorObject
7: segVect ← segPredictor.predict(wavPath, CheckpointPath)
8: segVect ← VADFilterSegments(wavPath, SegVect)
9: segVect ← toList(segVect)

10: timedTokens ← tokensToTimedTokens(signal, samplingFreq, tokens)
11: filteredTimedTokens ← new List
12: for timedToken in timedTokens do
13: if timedToken[label] is not ”[pad]” or ”[unk]” or ”—” then
14: Append timedToken to filteredTimedTokens
15: end if
16: end for
17: decisionBoundaries ← decisionBoundaryCalc(filteredTimedTokens, seconds,

bias)
18: strToUnicodeDict ← Read in from wav2vec2 object save
19: MaxDCBinitdict ← dictionary fromkeys(strToUnicodeDict, 0)
20: Insert 0 at index 0 to segVect
21: Append seconds value to the end of segVect
22: labelList ← MaxContribution(segVect, maxDCBInitDict, DCB)
23: segList ← new List
24: for ii in range of length of labelList do
25: Append tuple (LabelList[ii], segVect[ii], segVect[ii+1]) to segList
26: end for
27: segList ← cleanSegs(segList)
28: Convert list of tuples to list of dictionaries
29: return segList
30: end procedure

training it on TIMIT [5]. We only retain relevant phonetic details for the study.
As required by Hugging Face, we also needed to convert the encoding of phone
labels in ARPABET form to something more atomic

ARPABET
PhonetoUnicodeDict←−−−−−−−−−−−−→ Unicode

UnicodetoNumericDict←−−−−−−−−−−−−−−→ NumericID

A dictionary which maps a phoneme to a token ID (numeric) must be created
for the tokenizer. To achieve this, a list of unique phone labels is created by
scanning the entire TIMIT dataset, and adding every new phone seen to a list.
A numeric ID exists for each phone label and is created by enumerating each
value in the aforementioned phone label list. This numeric value is mapped to
each phone label in the list to form a dictionary.
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Due to the limitations of the current version of w2v2 , the phonemes in the
dictionary cannot be represented by multi-character strings - "aa"":32 would
not work, but "a":32 would; labels are not appropriate to encode the sounds
i.e. bait - ’b’-’ay’-t’, ’ay’ would cause issues. This is further complicated by
Python 3.8’s handling of strings as lists of characters - the tokenizer class can-
not differentiate between a list of strings and a list of characters. Therefore,
the phone labels had to be transformed to a single character representation by
adding an intermediary unicode step in the dictionary encoding. While IPA is a
tempting choice due to its universal use for representing phonemes, it is prob-
lematic it uses character accents - which behind-the-scenes are actually separate
characters. Unfortunately, this violates the restriction to single character repre-
sentations. Therefore, the phones were instead successfully encoded to unicode
emojis (U+1F600 unward) due to the enormous selection available which enables
easy one to one mapping between phones and emojis.

A w2v2 tokenizer is created from the Unicode to numeric dictionary, and a
w2v2 feature extractor is declared with: feature size = 1, sampling rate = 16 kHz,
padding value = 0, and normalise = False. The processor is a combination of a
tokenizer and a feature extractor. The processor used the dictionary from within
the w2v2 to process the dataset. This embedded tokenizer within the processor
is the cause of the intermediary step of converting the dataset to unicode - w2v2
’s trainer and data collator requires a processor to be used. Hence, one can’t
manually code their own tokenizer that works with strings.

A map is applied to the dataset using the processor, converting the phonetic
detail phone labels to its numeric equivalent and assigning that to a feature
called target phones. The target phones acts as the supervision of the trainer
as it tries to minimise the edit distance between its predictions and the target
phones. We used the data collator suggested in [19].

Fine tuning is required to use w2v2 for a specific “down-stream” task as the
pre-trained model wav2vec2-large-xlsr-53 that we used was performed by
Facebook in a self-supervised mannner on generic datasets covering 53 different
languages. Fine-tuning in a supervised manner helps w2v2 adapt for our use case,
in order to achieve accurate predictions about the phonemes in an audio file.

Phoneme Error Rate (PER) is used to evaluate the performance of the forced
aligner. It is a metric derived from the Levenshtein distance [7], which is the
smallest number of substitutions, removals or insertions of characters to make
one string equal to another. The PER is calculated as the Levenshtein distance all
divided by the number of characters/phones. This metric is similar to the word
error rate (WER), but operates on a character level, rather than the word level.
It only depends on the order of the sequence, and not the exact timing. While
this metric is used primarily for evaluating w2v2 and other sequence modelling
tools, it is also somewhat relevant regarding the overarching forced alignment
tool which implements w2v2 , as the PER of w2v2 will act as a soft ceiling for
the accuracy metric of the FA tool. Note that the PER can be greater than 1,
as the number of operations can exceed the number of phones. The loss function
for training the aligner is based on PER (Table 1).
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Table 1. An example of each atomic operation

Operation String Target Usage No. of operations

Substitution bat cat b → c 1

Removal catt cat del t(4) 1

Insertion at cat insert c 1

3 Experiments

A well performing forced alignment tool depends on: 1) the ability to predict the
correct labels and the ability to position the predictions accurately. The former
is measured with precision, recall and F1 score, and the latter is measured with
offset timing errors, Δtend and Δtstop. The proportion of matched predictions
correct PGroundTruthCorrect is a way of assessing how precise our classifier is.
The proportion of ground truths correctly classified PMatchedPredictionsCorrect

is a way of assessing our algorithm’s ability to recall the correct answer. The
harmonic mean between these two metrics is called the Harmonic Mean score:

(P−1
GroundTruthCorrect + P−1

MatchedPredictionsCorrect)
−1

In the speech language research, a midpoint method is also often used to
evaluate forced alignment methods [11]. From each utterance, several metrics are
obtained, such as start offset time, end offset time, %-match and accuracy. Each
segment in the ground truth is compared with each segment in the prediction
list. If temporal mid-point of the ground truth is both greater than a predicted
segment’s start time, and smaller than the predicted segments end time, then
it is stated that the prediction has “matched” the manual alignment. Of the
matched segments, the absolute difference in time of the segment boundaries,
Δi = |ti,predict − ti,truth|, is noted for both the end times and the start times
separately.

We use the database TIMIT [5] to validate the proposed model for all
experiments. TIMIT contains 4620 instances on the training portion, and 1680
instances on the test portion. We first evaluate the two core components of the
forced aligner.

– wav2vec 2.0: Fine-tuning the proposed model took 151.2 min on a sys-
tem with a single RTX 3080. The fine-tuned w2v2 model used in this paper
attained an phoneme error rate (PER) of 10.6% when trained on TIMIT’s
training set and evaluated on TIMIT’s test set. It achieved a minimum PER
of 13.2% when applied validation set.

– Unsupervised Segmentation (UnsupSeg) was trained on TIMIT+ using
the publicly available repository [8] and produced an R-val of 0.83.

We next validate the overall forced alignment performance of the pro-
posed model. An illustration is shown in Fig. 5. First, we study how the forced
aligner performs when the bias is varied. We examine Harmonic Mean and the
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Fig. 5. The segments obtained by using the tool with VAD, hard cleaning, equal/no
bias. The utterance says “Bubbles, fishes and cats”.

Fig. 6. Performance with varied bias

proportion of Start-times and End-times being less than 20 ms compared to
groundtruth. The result is shown in Fig. 6. From Fig. 6, a bias of 0.5 (otherwise
unbiased) yields good performance. Its visible that the harmonic mean is inverse
parabolic with a maximum of 0.736 at a bias of 0.4. Timing performance seems
inversely correlated with bias, so higher bias yields greater timing performance.
Selecting a bias would involve weighing up the trade-offs - accept a small hit in
timing performance for optimal harmonic mean accuracy, or concede a small loss
in accuracy for a increase in timing performance. A bias of 0.45 is a reasonable
compromise between the aforementioned trade-offs. Keeping the timing metrics
above 0.8 is preferable, and is achieved for all bias values greater than 0.4, but
0.45 bias leaves a good amount of margin for little expense.

Next, we examine the forced alignment performance with the bias being 0.45.
We also use the following hard cleaning scheme: if w2v2 specified that a duplicate
transition (i.e. “ah” → “ah”) was allowed to occur at the end of the sequence, but
the cleaning segment found one at the start of the sequence; it will amalgamate
it anyway.
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The accuracy and timing errors are given in Tables 2 and 3 respectively. It is
observed that when VAD is not used, the label prediction accuracy improves
slightly, whilst both Segment Start and End Times are similar. Overall, we
achieve a maximum Harmonic Mean score of 76.88%, about 82% of the seg-
ments have Start Time within 20 ms of groundtruth and 88% of the segments
have End Time within 20 ms of groundtruth.

Table 2. Forced alignment results

Metric With VAD Without VAD

Accuracy of predictions 71.9% 82.35%

Proportion of manual labels correctly classified 71.4% 72.02%

Harmonic mean 71.6% 76.88%

Table 3. Proportions of the segment boundary errors in milliseconds

<20 ms <40 ms <60 ms

Segment start time (w/VAD) 81.73% 94.21% 97.22%

Segment end time (w/VAD) 87.53% 96.72% 98.70%

Segment start time (w/o VAD) 81.50% 94.07% 97.16%

Segment end time (w/o VAD) 88.33% 96.87% 98.71%

Table 4. A comparison with other text-independent aligners

Model/Tool P R F1 Source

FAVE 0.57 0.59 0.58 [20]

Gentle 0.49 0.46 0.48 [18]

W2V2-CTC-20ms 0.31 0.30 0.31 [22]

W2V2-FS-20 ms 0.40 0.42 0.41 [22]

W2V2-FC-20ms-Libris 0.57 0.59 0.58 [22]

Ours 0.62 0.54 0.58 This paper

The comparison with other text independent models presented in Table 4
shows how this tool performs relative to similar specified models when evalu-
ated on the TIMIT dataset. We note that previous work did not publish the
segment start and end times information. In addition, we also needed to use
more traditional metrics (precision, recall, and F1 used in previous work). A
tolerance of 20 ms is used, as a segment within 20 ms of the ground truth is
considered indistinguishable from the manual alignment. We observe that the
precision is excellent compared to other models, but the recall is slightly behind.
It is possible to fine-tune the tool to achieve better recall. However, the tool is
overall competitive to other recent tools and models.
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4 Conclusions

We have presented a new tool capable of text-independent alignment, based on
an unsupervised segmenter and wav2vec 2.0. This paper provides a novel way
of using 1-NN class regions to annotate unlabelled segments provided by the
Unsupervised segmenter; it also uses the class labels provided by w2v2 ’s output
before being sent to CTC, which has weak temporal accuracy and is unfit to label
segments in that form. When evaluated, the tool shows reasonable power. When
evaluated on TIMIT using the onset transitions (with a tolerance of 20 ms), the
tool achieved a precision of 0.62, which means 62% of the predictions made by
the tool were indistinguishably accurate. When evaluated using the midpoint
method, the tool captures ≈72% of the ground truth midpoints, and 82.35% of
the predictions were hits. This tool could potentially be used in clinical settings
as an assistive technology for the diagnosis of speech-sound disorders.
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Abstract. Emotion recognition affords new approaches ranging from
context-awareness to the efficiency of system interaction with the abil-
ity to perceive and express emotions. While most studies are dominated
by discrete and dimensional theoretical models of emotion, neuroscience
analysis aligns with the multi-component interpretation of emotional phe-
nomena. One such componential theory is the Component Process Model
(CPM), with five synchronized components: appraisal, motivation, physi-
ology, expression and feeling. However, limited attention has been paid to
the systematic investigation of emotions assuming a full CPM. Therefore,
we induced various emotions in this preliminary analysis using 27 inter-
active Virtual Reality (VR) games. We measured the manifestation of 28
participants across CPM components, 20 discrete emotion terms, heart
activity, skin conductance, and facial electromyography. Our work aims to
analyze the relationship between discrete theory-based emotions and the
theoretically defined components with physiological measures. Further, we
analyze the correlation between subjective expression termswith objective
facial expressions. Our Machine Learning (ML) analysis reveals a signifi-
cant relationship between emotions and full componential features with
physiological signals. Further, our study presents the role of each CPM
component in emotion differentiation.

Keywords: Emotion · Component process model · Physiological
responses · Computational modeling

1 Introduction

Human emotions are multifaceted phenomena that are fundamental in individ-
ual development. Emotions are cultural and psychobiological adaptation mech-
anisms that play a significant role in flexible and dynamic communication
with internal and external contingencies [34]. Therefore, emotion recognition is
increasingly important in numerous domains and affords new approaches ranging
from context-awareness to the efficiency of system interaction with the ability to
perceive and express emotions [29]. Recent digital developments such as virtual
agents and intelligent machines have heightened the need for emotional intelli-
gence with emotion understanding, context awareness, and better interaction.
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Existing research considers one or a combination of emotion models as Dis-
crete, Dimensional, and Appraisal [13]. However, considerable literature has
grown around discrete models that define emotions by distinct elements such
as happiness, fear, or dimensional models, theorizing emotions by valence and
arousal dimensions [40]. As these two models primarily consider the feeling com-
ponent, it leads to major theoretical neglect without an explanation for the tem-
poral evolution of emotions with complex processes. Although appraisal models
have inferred emotion evolution based on temporal processes, research in this
domain has been mostly confined to limited data-driven studies [27]. This may be
partially explained by the complex definitions of appraisal theories that require
extensively defined experimental settings. Nevertheless, as emotions are assumed
to be complex mechanisms with many processes [27,33], which converge with the
appraisal model, it is necessary to consider a process-based model to determine
emotion formation and analyze the underlying components.

Recent investigations have led to a renewed interest in theories based on the
appraisal model. One such model is the Component Process Model (CPM), with
five interrelated components: appraisal, motivation, physiology, expression and
feeling [33]. Recent works have confirmed the efficacy of using CPM in emotion
understanding but lack involving active participation [24,26], evaluating physiol-
ogy and expression components with objective measures (physiological and facial
signals) [25] and understanding a wider range of emotion variations. Therefore,
exploring the potential of CPM through a data-driven approach with active
participation and objective measures may lead to the resolution of controversies.

In this work, we use a data-driven approach with multimodal analysis to
explore the relationship between the full CPM and emotions using an immersive
medium. We induced a wider range of emotions using interactive Virtual Reality
(VR) games and collected physiological and facial signals to enrich our under-
standing of CPM components with objective measures. This study was designed
to understand the relationship between full CPM with objective measures and
the discrete model of emotions using Machine Learning (ML) algorithms. Fur-
ther, we analyze the correlation of facial EMG expressions with the expression
component. Our findings can inform the importance and role of each component
and modality in encoding emotion features. Our insights reveal which elements
can be used to improve context awareness and system interactions in domains
such as adaptive interfaces, game designing, healthcare, e-learning, entertain-
ment, and other disciplines.

The structure of the paper is as follows: Sect. 2 begins by laying out the
theoretical dimensions of the research, Sect. 3 describes our methodology, Sect. 4
presents the results, followed by Sect. 5 with discussion, and, finally, Sect. 6 con-
cludes the analysis.

2 Background and Related Works

Given the importance of affect recognition, numerous studies have been based
on discrete and dimensional theories of emotions. Despite evidence from the



Multi-componential Emotion Recognition in VR Using Physiological Signals 601

neuroscience studies of emotion, appraisal theory-based models have largely been
neglected, possibly due to the complexity of their architectures. Recently, an
increase in articulation based on CPM, a variant of the appraisal model, can be
seen.

CPM comprises five components: appraisal, motivation, physiology, expres-
sion, and feeling [33] to define the emotional phenomena. According to the CPM,
the appraisal component is an initiator for event assessment at several cognitive
levels defined by four objectives 1) Relevance: “Does this event relevant?”, 2)
Implications: “What are the consequences of this event?”, 3) Coping potential:
“What is the possibility that I can overcome these consequences?” and 4) Nor-
mative significance: “Is this event important with respect to social norms and
values?”. Based on that, the appraisal component activates interdependent pro-
cesses on other components. Then the motivation component initiates action
tendencies (e.g., fight or flight). The outcomes of both these components are
attended by the expression and physiology components and define changes in
expressive motor behavior and body, respectively. The feeling component is an
awareness of these integrated changes and represents an emotional experience
that we know by categorical and verbal labels. To evaluate CPM, the GRID
instrument was developed as a questionnaire with shortened versions as Core-
GRID and MiniGRID [35].

Most research on CPM has been carried out considering a single or combina-
tion of components [6,10,30,32]. However, due to the component synchronization
and interconnection [33,34], assuming a full CPM is more rational to understand
the underlying mechanism of emotions, the role of each component in discrete
emotion differentiation and the correlation between components. For instance,
using film clips, Mohammadi and Vuilleumier [26] have elicited a range of dis-
crete emotions to study the efficacy of CPM in defining emotion attributes. The
authors showed that CPM could be used to distinguish discrete emotions, and
components contribute differently to each emotion. Further, using hierarchical
clustering, they clearly differentiated between the positive and negative emotions
in the CPM space.

CPM components such as physiology and expression can be objectively mea-
sured by physiological signals, facial signals, and body gestures. Moreover, the
inclusion of multimodal objective measures is more reliable than self-reports due
to the representation of conscious and unconscious responses [5]. Menétrey [23]
attempted to explore the CPM by collecting self-reports and multimodal signals
such as heart activity, skin conductance and respiration. The authors used film
clips as the stimuli and conducted the experiments inside a functional Magnetic
Resonance Imaging (fMRI) machine. They showed the possibility of ML tech-
niques in identifying the patterns of CoreGRID terms and physiological signals
in characterizing emotions. Similarly, using the XGBoost, the authors show the
possibility of developing a personalized model in multi-componential space [42].
Despite the research validity of CPM, these works were limited in providing a
better ecologically valid experimental setup due to mobility constraints inside
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fMRI. Furthermore, using passive emotional stimulation methods such as movies
reduces active participation, so the user is more like an observer [23,26,40].

Recent CPM-based studies using VR as an active mechanism to induce emo-
tion are considered at an exploratory level [25,39,41]. A recent investigation by
Meuleman and Rudrauf [25] used seven VR games to trigger discrete emotions.
They showed the possibility of VR games in investigating the CPM features,
multi-componentiality of emotional response, and importance of the appraisal
component in explaining emotion variations. However, the authors focused more
on exploring the characteristics of CPM using self-reports rather than objective
measures. Furthermore, their study was more focused on the appraisal compo-
nent; hence, additional research on other components is required.

3 Methodology

3.1 Proposed System

Fig. 1. Experimental
setup

Our objective is to develop a data-driven framework to
inform emotion recognition systems and serve as a testbed
to understand the underlying mechanism of emotional for-
mation more fully, assuming a full CPM. Accordingly, our
research is designed to generate a wide range of emotions
to span the componential space via VR games, eliciting
ecologically valid content with the active contribution of
participants. As shown in Fig. 1, we used a HTC VIVE
Pro headset with controllers for game visualization and
play. To measure facial expressions by EMG muscle activ-
ity, we used an emteqPRO embedded into the VR headset
[11]. We used an Empatica E4 wristband to record Heart
Rate (HR), Electrodermal Activity (EDA), Blood Volume
Pulse (BVP), Inter Beat Intervals (IBI), skin temperature,
and acceleration. In addition, we used Shimmer sensors to

collect respiration and Electrocardiography (ECG) and Inertial Measurement
Unit (IMU) [8] to measure involuntary body gestures. Before each game, for cal-
ibration purposes, participants were instructed to remain in a neutral position,
maximally smiling, frowning, and raising their eyebrows.

In the current study, we have only analyzed the self-reports, emteqPRO EMG
and E4 signals, as the primary aim is to explore the relationship between discrete
theory-based emotions and the theoretically defined components with physiolog-
ical measures. Further analysis of other objective measures will be conducted in
later stages.

3.2 Material and Assessment

We used 27 interactive VR games from the Steam platform, which were used
in the literature [1,25,37,40]. We annotated each game using the 20 emotion
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terms from Geneva Emotion Wheel (GEW) [38] based on literature [1,25,37],
researcher experience and reviews from game review sites. Nevertheless, partic-
ipants’ emotional experience is based on their cognitive evaluations, so we did
not assume that participants have the same experience for each game, like our
pre-labeling [43]. We evaluated participants’ emotional experiences using 20-item
GEW and 51-item CoreGRID questionnaires [26,38,41].

3.3 Procedure

After ethics approval from the University of New South Wales Human Research
Ethics Committee (HC200809), we conducted a preliminary experiment with
28 participants (10 females, 18 males, mean age 24.1, SD = 5.1 years). First,
we conducted a VR training session for each participant and then organized
three data collection sessions on separate dates. They all had a normal or cor-
rected vision and were given a $30 gift voucher per session. In each session, we
explained the procedure, instructed them to immerse themselves in the game,
express their feelings, and report their experiences with each game. We devel-
oped an application to present games and questionnaires, time sync each event,
and save data. Based on the game pre-labeling, we randomized the sequence of
games across participants and sessions; however, we made sure that games with
similar emotional content did not recur in a single session, so we got a balanced
distribution of different emotions in each session. Further, we randomized the
order of each questionnaire item. We evaluated participants’ demography, per-
sonality, and mood using surveys. Before each game, we calibrated the devices
by collecting several expressions. Each participant played a three-minute VR
game wearing the HTC VIVE Pro with emteqPRO, E4, Shimmer, IMU sensors,
and speech recorder. Then GEW and GRID questionaries [35] were presented
to rate their emotional experience on a 5-points Likert scale (1-Not at all, 5-
Strongly). This iterative process continued until each participant completed the
27 games. We collected 756 observations (27 games × 28 participants) from all
participants but considered 749 observations due to technical problems such as
slow loading and game updates while collecting the rest. Moreover, we used
the Emteq SuperVision1 application to get collected EMG signals’ expression,
arousal, and valence insights.

This analysis presents our results from self-reports, E4 biosignals (BVP, EDA,
skin temperature, HR) and filtered EMG signals from the emteqPRO. To pre-
serve the signal quality, EMG signals are sampled at 1000 Hz [22,28]. There-
fore, we resampled all the signals to 1000 Hz. We up-sampled EDA (4 Hz), skin
temperature (4 Hz) to 1000 Hz and applied a Savitzky-Golay filter [31] with a
window length of 31 and polyorder of 2 [4,44]. Then we up-sampled BVP (64 Hz)
and HR (1 Hz) to 1000 Hz and applied a median filter [4]. We used filtered EMG
signals collected at 2000 Hz from emteqPRO and downsampled to 1000 Hz [22].
Finally, for each biosignal time-series data, we extracted the mean, median, max,
min, and standard deviation [4] and used them to train our ML models.

1 https://support.emteqlabs.com/monitoring-tools/supervision.

https://support.emteqlabs.com/monitoring-tools/supervision
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4 Analysis and Results

4.1 Exploratory Analysis of Facial EMG

To understand the possibility and power of facial EMG activations in represent-
ing emotions, we conducted a correlation analysis with the CoreGRID’s expres-
sion items. For that, we uploaded the calibration data (neutral, smile, frown
and eyebrow raise) and three minutes game data to the SuperVision application
and retrieved intensities for each of the neutral, smile, frown and eyebrow raise
expressions. As shown in Fig. 2, we analyzed the Spearman correlation between
the average intensity of each EMG expression insight with the eight self-reporting
items of the expression component.

Fig. 2. Correlation matrix of average intensity of each EMG expressions (smile emg,
frown emg, eyebrowraise emg) (black font) with the CoreGRID expression component
(blue font). (+) shows a positive correlation, and (−) shows a negative correlation.
Asterisks indicate the significance of results at p-value: * p< 0.1, ** p< 0.01, ***
p< 0.001. (Color figure online)

According to Fig. 2, a positive correlation of “smile emg” is highly signif-
icant with CoreGRID’s “smile?”, “shout or exclaim?” (p< 0.001), and mod-
erately significant with “eyebrows go up?” (p< 0.1). The “smile emg” shows
a significant negative correlation with “jaw drop?”, “shut your eyes?” and
“cry?” (p< 0.01). The “frown emg” shows a significant positive correlation with
“frown?” (p< 0.01), “speech disturbances?” (p< 0.1) and a significant negative
correlation with “smile?” (p< 0.01). The “eyebrowraise emg” shows the high-
est positive correlation with “frown emg” (p< 0.001) and moderate significance
with “cry?” (p< 0.01), “frown?” (p< 0.1), “speech disturbances?” (p< 0.01),
but not with “eyebrows go up?”. The observed difference may be due to the
applications’ inaccuracy in capturing these expressions. The correlation between
“eyebrowraise emg” and “smile?” is negatively significant (p< 0.01).
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Fig. 3. Correlation matrix of average intensity of each EMG expressions (smile emg,
frown emg, eyebrowraise emg) (black font) with the GEW emotions (blue font). (+)
shows a positive correlation, and (−) shows a negative correlation. Asterisks indicate
the significance of results at p-value: * p< 0.1, ** p< 0.01, *** p< 0.001. (Color figure
online)

Similarly, we performed a Spearman correlation with GEW items and aver-
age expression intensities to find the encoding pattern of facial expressions with
emotions. Figure 3 shows the correlation between GEW items and three expres-
sions. Accordingly, “smile emg” shows a highly significant positive correlation
with interest, amusement, joy, and pleasure (p< 0.001), moderate significant
correlation with pride (p< 0.01) and fear (p< 0.1). A significant negative cor-
relation with “smile emg” can be seen with contempt (p< 0.01), disgust, guilt,
sadness, and compassion (p< 0.1). With “frown emg”, a positive correlation
can be seen with sadness, regret, disgust, hate (p< 0.01) and disappointment,
fear, and anger (p< 0.1). All the positive emotions show a negative correla-
tion with “frown emg”, and some are significant at several p-levels as joy, plea-
sure, contentment (p< 0.001), interest, pride (p< 0.01), and amusement, relief
(p< 0.1). The “eyebrowraise emg” shows a high positive significant correlation
with compassion, sadness, “frown emg” (p< 0.001). Further, it demonstrates
a significant positive correlation with admiration, regret, and hate (p< 0.01).
At a lower significant level (p< 0.1), the correlation of “eyebrowraise emg” with
guilt, shame, fear, disgust, and contempt is positively significant. However, “eye-
browraise emg” shows a significant negative correlation with pleasure (p< 0.1).
Overall, these results suggest that EMG features recorded through the emte-
qPRO device in VR can be used to identify facial expressions and emotional
characteristics where face recording is not feasible.

4.2 Interpretation of Emotional Experience Through the CoreGRID
and Physiological Changes

Next, to analyze the possibility of using ML techniques to find the features of
emotions assuming a full CPM, we trained several classifiers such as Random
Forest (RF), Support Vector Machines and XGBoost. For that, we z-normalized
the 51 CoreGRID items and statistical features (mean, median, max, min, and
standard deviation) of resampled BVP, EDA, HR, skin temperature, and filtered
EMG signals and used them as features. We treated each emotion as the target.
We converted our problem to a binary classification by dividing emotion ratings
into two classes (high and low), using the median of each emotion as the split
point. We used random sampling to reduce the imbalance (refer to ’Class Dis’
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Fig. 4. Accuracy of the Random Forest (RF) binary classifiers for the differentiation
of each emotion. Accuracy is compared with the chance level (majority class portion).
Error bars show the standard deviation. Asterisks indicate the significance of results
at p-value: *p< 0.001. The chance level is used as the baseline.

column in Table 1) in the dataset. We trained and tested the model using a
stratified 10-fold cross-validation and evaluated average performance after ten
iterations. Although we trained several classification methods, we report results
from RF because it performed better than other methods.

Figure 4 shows the results of training the RF classifier for each emotion. We
used the chance level (majority class prediction) as the baseline and one-sample
t-test to compute the significance. Accordingly, the accuracy of all emotions is
significantly (p< 0.001) higher than the chance level. Although, the performance
is significantly higher than the chance level for all emotions, the margin is smaller
for emotions that are more skewed towards one class. This is due to having less
representative for that class which hinders the model to find the discriminat-
ing pattern. Overall, these results show the efficacy of objective measures and
CoreGRID items in differentiating emotion features.

4.3 Role of Each CPM Component and Physiological Changes
in Differentiating Discrete Emotions

To explore the role of each CPM component with objective measures, we trained
ML models like the above section. Each model was trained to predict discrete
emotions’ high and low values and evaluated the average performance after strat-
ified 10-fold cross-validation. Table 1 presents the results of our ML models using
the individual component descriptors.

Accordingly, the feeling component is significant for interest, joy, pleasure,
contentment, admiration, love, relief, compassion, fear (p< 0.001) and anger
(p< 0.01). However, the feeling component is not significant with most negative
emotions. For the physiological component, first, we trained models only with
CoreGRID physiology questions and then with both questions and statistical
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features of BVP, EDA, HR, and skin temperature values. We found that models
using self-reports and signal data performed better (2.3%–11.4% improvement)
than only self-report for all emotions except compassion and admiration. So,
we report only the multimodal analysis. The physiology component performed
better in contentment, love, relief, compassion, guilt, fear, contempt (p< 0.001)
followed by interest, admiration, sadness, regret, disappointment, and disgust
(p< 0.01). Like physiology, we used filtered EMG statistical data and self-reports
to find the role of the expression component in CPM. We report those data
because accuracy using both signals and self-reports was better (1.5%–8.8%
improvement) than unimodal except for love. These accuracy increments using
subjective and objective measures implicitly show the importance of using objec-
tive measures rather than only relying on subjective evaluations for such com-
ponents which people may not be conscious about. The expression component
analysis shows significant performance for all emotions except amusement, pride,
and sadness, and has a lower significance for joy, and pleasure. The motivation
component performs significantly for interest, admiration, love, hate (p< 0.001)
and compassion, disappointment, and disgust (p< 0.01); and surprisingly did
not appear as significant for anger and fear which is in contrast with previous
findings [26]. This could be due to not having enough samples with high levels of
fear and anger. Our results show that the appraisal component is significant for
all the emotions except amusement, sadness, and shame. Given that the perfor-
mances are still higher than the chance level for those emotions, we suggest this
could be the effect of not having samples with extreme values of amusement,
sadness, and shame.

5 Discussion

Our first correlation analysis with facial EMG expressions (smile, frown, and
eyebrow raises) and CoreGRID expression items shows the patterning of facial
activations to the events trigged using VR games. Accordingly, EMG smile
expression is highly correlated with “smile?” and “shout or exclaim?” items.
Although the correlation of EMG smile with self-reported “smile?” is expected
[3,9,12], the correlation to “shout or exclaim?” may be due to the zygomaticus
muscle (mouth area) activations such as involuntary speech and orofacial move-
ments [36]. As the SuperVision application currently only provides four facial
expressions (neutral, smile, frown, eyebrow raise), our correlation analysis cannot
detect the difference between speech and smiles as both are related to the same
muscle areas. In contrast, EMG smile negatively correlates with “jaw drop?”,
“shut your eyes?” and “cry?”. The analysis of EMG frown positively correlates
with “frown?” and “speech disturbances?” which may be due to the involve-
ment of corrugator supercilli muscles (near the medial end of eyebrows) that are
contributing to frowning [14,15]. Moreover, EMG frown activation is negatively
correlated with self-reported “smile?” possibly due to the opposite activations.
The EMG activations of eyebrow raises showed positive correlations to EMG
frown expression and “cry?”, “frown?” and “speech disturbances?” CoreGRID
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Table 1. Accuracy of Random Forest binary classifiers for the differentiation of each
emotion using individual components. Asterisks indicate the significance of results at p-
value: *p< 0.01, **p< 0.001. The chance level is used as the baseline. (The physiology
component involves CoreGRID questions and BVP, EDA, HR, and skin temperature
values. The expression component contains CoreGRID questions and filtered EMG
values. FEEL: Feeling, PHYI: Physiology, EXPRE: Expression, MOTI: Motivation,
APPR: Appraisal, BASE: Chance level, Class Dis: Class distribution (#high, #low))

FEEL PHYI EXPRE MOTI APPR CPM BASE Class Dis

Interest 67.15** 65.15* 69.57** 70.48** 68.49** 75.03** 58.21 (436, 313)

Amusement 71.42 70.77 72.35 68.89 72.10 76.36** 70.63 (529, 220)

Pride 72.22 71.57 71.16 65.28 75.30** 79.31** 68.36 (512, 237)

Joy 79.29** 72.77 77.70* 70.36 81.44** 84.11** 69.29 (519, 230)

Pleasure 82.24** 71.83 77.83* 69.56 81.58** 84.38** 69.83 (523, 226)

Contentment 70.49** 66.09** 68.75** 60.90 69.55** 77.16** 59.41 (445, 304)

Admiration 73.17** 64.21* 68.89** 64.35** 70.50** 75.43** 56.88 (426, 323)

Love 67.57** 70.76** 64.21** 64.35** 69.96** 73.30** 51.40 (385, 364)

Relief 66.09** 69.03** 66.90** 57.81 64.23* 74.77** 55.94 (419, 330)

Compassion 63.95** 66.74** 69.43** 62.48* 69.56** 74.11** 56.74 (324, 425)

Sadness 81.99 83.71* 83.05 78.90 83.05 85.45** 79.31 (155, 594)

Guilt 87.85 89.72** 90.79** 86.65 89.06* 91.06** 86.25 (103, 646)

Regret 73.44 78.77* 80.37** 73.17 79.71* 81.58** 74.90 (188, 561)

Shame 82.78 82.51 84.78** 79.70 83.17 85.85** 80.64 (145, 604)

Disappoint 66.49 65.68* 69.96** 66.21* 68.75** 73.96** 61.42 (289, 460)

Fear 78.91** 82.38** 78.77** 75.97 78.37** 85.45** 71.96 (210, 539)

Disgust 81.30 83.72* 87.19** 85.45* 86.38** 89.72** 79.71 (152, 597)

Contempt 76.10 77.84** 78.11** 73.03 77.44** 80.10** 72.90 (203, 546)

Hate 81.84 82.90 85.30** 83.31** 87.57** 88.91** 79.31 (155, 594)

Angry 76.36* 77.31 79.18** 75.43 77.97* 82.24** 71.96 (210, 539)

items. This correlation may be due to stimulating frontalis muscles (brow low-
erer) in frowning situations [7]. So, the SuperVision application cannot find the
differences in these expressions. Although EMG eyebrow raise shows a positive
correlation to “eyebrows go up?”, the correlation is not significant, probably due
to some oversights in the SuperVision application.

Our following analysis involves exploring the correlation between GEW items
and EMG expressions. Agreeing with the literature [3,15], EMG’s smile corre-
lates positively with positive emotions except admiration, relief, and compas-
sion. This negative association can be explained by the less arousal and control
involved with admiration, relief, and compassion [38], so minimal zygomaticus
activations may be expected. Also, it shows a negative correlation with negative
emotions except for shame, fear, and anger. This positive correlation of some
negative emotions (shame, fear, and anger) may be possible due to the facial
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action units such as lip tightener, lip stretcher, and jaw drop [7]. As expected,
all the positive emotions are negatively correlated with EMG frown expression.
This is due to the less activation of corrugator supercilli muscles in positive
emotional phenomena and high activation in negative ones [12]. Supported by
literature [18], EMG frown positively correlates with all negative emotions except
guilt. Guilt is a complex emotion [19], defined as social or self-conscious emo-
tions based on human evolution and development [17]; it might be challenging
to induce such emotions. Further, in the current dataset, guilt emotion ratings
were skewed towards the lower, so the data may not be enough for modeling.
Nevertheless, the correlation of EMG frown with negative emotions agrees with
Cacioppo, et al. [3], where authors show higher corrugator muscle activation in
unpleasant situations than in pleasant. The observed correlation of EMG eye-
brow raises is positive for most GEW items except for interest, pride, joy, and
pleasure. This can be explained by the high arousal involving these positive
emotions (interest, pride, joy, and pleasure), where frontalis EMG shows lower
activation in such events [3]. However, the high positive correlation between com-
passion and sadness may be due to the frontalis muscle activation due to the
lowering of the eyebrows and inner brow raiser [7,18]. Overall, both correlation
analyzes with EMG facial expressions and the CoreGRID expression component
shows that EMG encodes facial activations. Further, it validates the principles
of the CPM expression component.

Our subsequent analysis focused on modeling the emotional features using
subjective and objective measures. All our classifiers performed significantly bet-
ter than the chance level, showing the efficacy of ML models in differing high and
low emotions segments. However, we noticed that emotions ratings are skewed
to the lower side for guilt and shame. It is possible due to the complexity of
these emotions [19], which are difficult to evoke using VR games. Further, as
VR games are more oriented towards entertainment, finding such game content
is more challenging.

Finally, we analyzed the role of individual CPM components in emotion dif-
ferentiation. The less significance of the feeling component with most of the
negative emotions may be due to the skewness of these emotion ratings to the
lower end as VR appears to be more pleasant even in challenging and scary
content [25]. On another note, this could be because the feeling component
or selected CoreGRID items for this component do not capture the emotional
experience well. The physiology component performed better for most of the
negative emotions and some of the positive emotions. This may be due to the
variations in collected heart rate and skin conductance, which are associated
with negative emotions [20]. So, our physiological signals are suited to capturing
those emotions. The expression component’s higher performance to most emo-
tions demonstrates the capacity of selected CoreGRID items and facial EMG to
encode the emotional experience relatively well. Therefore, as facial expressions
are the most natural way of non-verbal communication [2,21,28], most emotions
can be identified by facial EMG expressions and subjective expression analysis.
Furthermore, the lower performance of the expression component for amusement
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agrees with previous work using film clips [26]. Since the motivational compo-
nent was related to positive and negative emotions, it could be explained by
approach and avoidance [16]. Also, this performance can be partially justified
by previous works [26], which showed significant performance for fear, anxiety,
anger and disgust. The importance of the appraisal component in predicting
fear [25], disgust [26], anger [42], and joy [25] agrees with the literature. In gen-
eral, the model with all CPM self-reports and signals performs better in all the
emotions. These results show that each CPM component could have a specific
role in emotion differentiation which has not been studied in previous works. For
example, expression may not be a reliable signal for detecting all emotions. Fur-
ther, considering only one component will limit our understanding of emotion
formation.

6 Conclusion and Future Work

This investigation aimed to explore the CPM as a model to frame emotion by
interconnected components and processes. For that, we conducted a prelimi-
nary study using 27 interactive VR games and collected self-reports, physiolog-
ical signals, facial signals, and body gestures. Our correlation analysis with the
facial EMG expressions and emotions, facial EMG expressions and CoreGRID
expression items showed the possibility of using facial EMG in analyzing motor
expressions and discrete emotions. All the classifiers were able to differentiate
the features of each of the categorical emotions significantly. Moreover, our anal-
ysis demonstrates the significant role of each CPM component in understanding
the emotional experience. The current findings clearly support the importance
of assuming a full CPM. These analyzes showed the possibility of using ML
methods to model the CPM emotion theories. Overall, our results strengthen
the importance of considering full CPM to enrich our understanding of emo-
tional phenomena. Additionally, our work implies the theoretical limitations in
literature which considers only one component.

In future, our research is determined to increase the stability of ML models by
accompanying diverse participants and using data augmentation. More broadly,
we plan to determine the contribution of other physiological signals and their
features rather than statistical elements.
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Abstract. Liver disease is responsible for over 2 million additional
deaths globally each year. Therefore, early detection and treatment may
lower the likelihood of liver disease-related death. Many researchers have
been using artificial intelligence to detect liver disease. Inaccurate and
disorganized data, however, make it difficult for them to choose an app-
roach for determining the condition. Additionally, disproportionate data
worsens dataset biases, reducing the validity of the research. As a result,
it becomes necessary to develop techniques for dealing with this sort of
challenge. This study suggests a methodology that integrates approaches
for classifying liver disease by reduction of data dependency, which gives
the advantage of getting more accurate predictions even with less data.
Two imputation strategies were employed to tackle missing value and
were contrasted with each other. Despite showing slight differences, no
statistically significant distinctions between them were found. Machine
Learning (ML) methods such as Random Forest, Extra Trees, Support
Vector Machine, and K-Nearest Neighbor and neural network such as
Multilayer Perceptron were employed to categorize liver diseases. The
Extra Trees classifier outperformed other approaches in both of the
imputed datasets, achieving accuracy of 98.37% and 99.18%, F1-Score
of 98.37% and 99.17% while achieving 99.3% and 99.4% area under
the ROC curve (AUC) respectively. This unorthodox method delivers
cutting-edge accuracy with few feature dependencies. Hence, the sug-
gested technique will make it easier for medical practitioners to identify
liver diseases more quickly, resulting in a classification with lower data
reliance that is less susceptible to error.

Keywords: Liver disease · Missing value · Data imbalance · Data
dependency · Feature selection · Classification

1 Introduction

Liver diseases are the major causes of morbidity and mortality in many parts of
the world. According to the World Health Organization (WHO) [14], it is one of
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the top ten principal causes of death in developing and underdeveloped countries.
The liver is in charge of metabolism and protein absorption. It is affected due to
a variety of conditions, such as cirrhosis, fibrosis, and hepatitis. Many essential
physical functions that are crucial for survival are supported by the liver. As a
result, it is imperative to have precise methods for the diagnosis and detection of
liver diseases. However, the liver’s functioning doesn’t start to deteriorate until
more than 75% of the liver tissue has been damaged. If their liver somehow mal-
functions, the affected cannot live more than a few days. Therefore, the necessity
for precise liver disease detection and diagnostic procedures becomes critical. The
traditional methods of detection with extensive amounts of clinical tests might be
expensive and unavailable to patients. The application of machine learning and
data mining approaches can be effective in addressing this issue. In various infer-
ential and decision-making applications, researchers and lab workers have used a
variety of methodologies, including statistical techniques and machine learning
approaches [6,19]. Regardless, there are challenges in data analysis for medical
diagnostics, including dimensionality, insufficient data, missing data, choosing
the right target and feature variables, and many more [21]. For researchers,
many of these obstacles are more frequent than others, and they could be chal-
lenging to overcome. Missing data is a troublesome and persistent concern in
medical research, resulting from various factors such as study subjects refusing
to continue or laboratory worker errors. Statistical power gets reduced because of
missing data, which may lead to bias in research [5]. The imputation techniques
such as Simple Imputation, Multiple Imputation by Chained Equation (MICE),
and MissForest are proven to be effective in resolving this problem [17,22]. These
imputation techniques handles the missing spots by replacing them with some
proxy value which helps to keep information at possible maximum. Furthermore,
imbalanced data is another barrier. Data augmentation techniques like Synthetic
Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (Adasyn)
sampling approaches are used to bring balance to data [2,4].

With the support of artificial intelligence and data mining techniques in
healthcare, a lot of progress can be brought in the diagnosis and treatment
of diseases. However, collecting medical records in large quantities is often too
hard to complete. Since numerous tests are necessary, they could also be costly
and time-consuming. Therefore, this study aims to reduce data dependency by
removing features that are less contributing to model training through selec-
tive feature selection processes. Additionally, to study their impact, two dif-
ferent imputation techniques were compared. Moreover, many algorithms were
employed on two differently imputed datasets to gauge models and propose a
better-performing model for the detection of liver disease.

The remainder of this paper comprises four more sections where Sect. 2
reviews the related works. The following section starting with Sect. 3 outlines the
methodology used for the problem and Sect. 4 analyzes the investigated result.
Finally, the whole work was abstracted in the last section.
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2 Related Works

Machine Learning (ML) models can be applied to predict the presence of liver
disease by analyzing data collected from various medical datasets such as blood
samples, tissue samples, and histologically stained slides. Based on an Indian
Liver Patient dataset, Muthuselvan et al. suggested a technique to diagnose
liver cancer illness using four classifiers, Naive Bayes, J48, Random Forest, and
K-Star respectively. The findings revealed that Random Forest had a higher suc-
cess rate [13]. Pasha and Fatima detected a way of detecting liver cancer based
on the Indian Liver Patient Dataset. They applied Grading Meta-Learning, Ada
Boost, Logit Boost, and Bagging algorithms. Compared to other methodolo-
gies, their findings revealed that Grading Meta-Learning performed better [15].
Vijayarani and Dhayanand found that Support Vector Machines (SVM) were
able to perform better than Naive-Bayes in identifying the types of liver can-
cer from liver function test results of patients [23]. Additionally, Jaganathan et
al. employed SVM with an optimal descriptor set in predicting drug-induced
hepatotoxicity [7].

Moreover, previous studies also used different Deep Learning (DL)
approaches. An artificial neural network was used by Rau et al. in the pro-
cess of predicting the patients who have liver cancer with type 2 diabetes [16].
Chakraborty et al. showed that using a deep convolutional neural network helps
distinguish between different types of liver cancer with the help of imaging data
sets [11]. Additionally, Saillard et al. proposed a neural network model that has
been able to anticipate the mortality rate of a patient after their liver tumor was
removed, which used data that contains images of stained and processed tissues
originating in Biopsies [20]. Although DL methods perform very well for large
datasets, however, for a limited dataset, traditional machine learning algorithms
often outperform DL methods. Subsequently, the previous researches didn’t shed
sufficient light upon the fact of data dependency reduction. Therefore, the need
for this study became salient.

3 Methodology

3.1 Data Description

The University of California, Irvine (UCI) Machine Learning Repository pro-
vided the Hepatitis C Prediction (HCV) dataset utilized in this study [10]. This
dataset comprised laboratory (clinical) and demographic information for 615
hepatitis C patients and blood donors. Furthermore, Aspartate Aminotrans-
ferase (AST), Alkaline Phosphatase (ALP), Albumin (ALB), Alanine Amino-
transferase (ALT), Creatinine (CREA), Bilirubin (BIL), Cholesterol (CHOL),
Choline Esterase (CHE), Gamma-glutamyl Transferase (GGT), and Total Pro-
tein (PROT) were among the 10 laboratory attributes included in the dataset
along with age and sex (gender) as demographic features.
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Fig. 1. Study procedures

3.2 Preprocessing of Data

Initially, it was discovered that some of the values from the dataset were missing.
Subsequently, those missing values were imputed separately using two different
imputation techniques.

Multiple Imputation by Chained Equation (MICE). Multiple Imputation
by Chained Equations is one of the most reliable and informative ways to deal
with missing specifics in datasets [17]. It was utilized to impute the missing
values of the dataset in the beginning.

MissForest Imputation Technique. MissForest [22] is a random forest-based
missing data imputation technique. The dataset was additionally imputed using
the MissForest technique to see if there is a significant improvement in the accu-
racy of models over MICE imputed data.

3.3 Data Dependecy Reduction by Feature Selection

Random Forest, which is an ensemble learning method, has a built-in function to
calculate the importance of features [1]. It is possible to compute it using both
mean decrease impurity and mean decrease accuracy. In each set of trees con-
structed, there are nodes and leaves. How the data will be divided based on their
similarity is a decision taken by selected features in the nodes. These features are
selected based on criteria such as Gini impurity or information gain. The amount
of impurity reduced by each feature can be calculated, and the average of entire
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trees in the forest is employed to determine feature importance. The Recursive
Feature Elimination (RFE) technique internally ranks the features by using a
fitted coefficient of a model or attributes found from feature importance of model
and recursively keeps eliminating the weak features till a given condition is sat-
isfied while it tries to eradicate dependencies and collinearity. Consequently, the
Recursive Feature Elimination (RFE) method was used to select the features
once the Random Forest algorithm had determined the feature’s importance,
internally using Random Forest algorithm. So the combined feature selection
process is utilizing the ensemble learning method, in this case which is Random
Forest.

Fig. 2. Distribution of the selected features

3.4 Applied Machine Learning Methods

A few supervised classification models was used for this investigation. Following
is a brief discussion of the models used.

Random Forest Classifier. Random Forest is a supervised machine learning
algorithm. For the purpose of regression and classification, it can be used. Ran-
dom Forest algorithm is based on the concept of ensemble learning method [1].

Extra Trees Classifier. Another variant of the ensemble learning technique
that produces a classification result by adding the results of various pre-distorted
decision trees assembled in a forest is the Extremely Randomized Trees Classifier,
also known as the Extra Trees Classifierr [3].

K-Nearest Neighbor (KNN). The K-Nearest Neighbour (KNN) algo-
rithm [9] can be used to address classification and regression problems. It is
widely used in the industry for categorization and prediction challenges.
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Support Vector Machine (SVM). Support Vector Machine (SVM) [8] cre-
ates a decision boundary known as a hyperplane that can partition n-dimensional
space into different sets to put incoming data points into the correct one. SVM
chooses the maximal points/vectors that help create the hyperplane.

Multilayer Perceptron (MLP). A Multilayer Perceptron (MLP) is an utterly
linked class of feedforward artificial neural network (ANN). At least three layers
of nodes exist in an MLP. Those three layers are known as a layer of input,
a hidden layer, and a layer of output. A supervised learning method that uses
gradient descent, called backpropagation, gets utilized in MLP for training. MLP
can discriminate data that is separable non-linearly [8].

3.5 Evaluation Metrics

Following model training, measurement was carried out to assess the models
performance using a variety of performance metrics.

Table 1. Confusion matrix

Confusion matrix Actual class

Predicted class Label 0 1

0 TP FN

1 FP TN

The confusion matrix structure is presented in Table 1. In the matrix, the
actual target values are contrasted with those that the machine learning model
predicted. It assists in calculating Precision, F1-Score, Recall, Accuracy, and
other metrics. In this context, true positive, true negative, false positive, and false
negative are each defined by TP, TN, FP, and FN, respectively. The assumption
that each class is equally important was employed in accuracy. Sometimes it’s
more crucial to correctly diagnose a patient with liver illness than it is to diagnose
a non-patient with the condition. Thus, to scale accurate forecasts, Precision,
and Recall values were also utilized. Furthermore, Precision and Recall were used
to gauge the F1-Score. For a healthcare based decision, it is more appropriate
that precision and recall is given more priority over accuracy since correctly
classifying a patient is the goal. So F1-Score is considered the go to metric by
many researcher and hence is given priority in this study too.

4 Results and Discussion

To comprehend the structures, and distributions, and gather information, sev-
eral data visualization approaches were taken. Figure 3 shows the types of liver
disease concerning gender. With 377 instances of males and 238 instances of
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Fig. 3. Count plot for the types of liver disease according to Sex (Gender, Blue: Male,
Yellow: Female). (Color figure online)

females, the category was classified as 0 for “No Liver Disease” (Blood Donor
and Suspected Blood Donor) and 1 for “Liver Disease” (Hepatitis, Fibrosis,
Cirrhosis). 86.67% of the data fell into the “No Liver Disease” category, while
13.33% of the data fell into the “Liver Disease” category. The result indicates
that the dataset was highly imbalanced. Since the majority of the hematologi-
cal features were highly right-skewed and leptokurtic, hence the data were not
normally distributed.

Exploratory data analysis revealed ALB, ALP, ALT, CHOL, and PROT had
a few missing observations. The dataset was imputed using MICE with linear
regressor as estimator and MissForest separately which produces two datasets.
In Fig. 4, all of the datasets were visualized by using the letter value plots.
Since it is medical data, a letter value plot would be more insightful as it could
capture more values as input features. Also, it will leave only a few too extreme
values as outliers. A few extreme values were detected for the following features:
ALT, AST, CREA, and GGT. However, some of the donors’ records may have
had elevated amounts of these features because of secondary, non-liver causes.
Furthermore, it seems to be quite possible that a lab error occurred during the
initial data acquisition. For handling these, 95% of the data were considered to
be correct, and the rest were treated as outliers. Robust scaling was the choice
for the normalization technique that would handle those values above 95%.

Feature Selection. During the process, Pearson’s Correlation was calculated
to measure the relationship between features. The target variable Category had
a fairly positive relationship with the variables AST, BIL, and GGT in both
datasets, and to a lesser extent, a negative relationship with the variables ALB,
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Fig. 4. Letter value plot for visualizing the state before and after imputation.

CHOL, and CHE in the dataset created using Iterative Imputer. ALP was also
added to the list of negative relationships in the dataset created using MissForest.
AST, BIL, and GGT all had a correlation of 0.62, 0.4, and 0.44 respectively, with
AST having the strongest relationship with category features.

The variance inflation factor (VIF) was calculated to see if there is any mul-
ticollinearity, even if the correlation matrix does not show much hint of it. Any
feature having a VIF higher than five was temporarily removed to observe if the
multicollinearity was reduced. Five features were found under the specified VIF
value, ALP, ALT, AST, BIL, and GGT. When compared for feature importance,
those features were contributing the most in feature importance. To visualize
the feature importance, a random forest feature importance test was conducted,
shown in Fig. 5a and Fig. 5b. The feature importance was calculated using Gini
importance. It was discovered that CHE and BIL were engaging in the process
practically identically. From Pearson’s correlation, it was confirmed that BIL had
a positive correlation whereas CHE had a negative correlation with the target

(a) MICE (b) MissForest

Fig. 5. Random Forest feature importance plot (left) of the imputed dataset using
MICE; (right) imputed dataset using MissForest.
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feature. Therefore only one of the similarly important features was decided to be
discarded picking only 5 features. The Recursive Feature Elimination approach
was used to confirm the reduction and selection of features, where Random For-
est was choosen as internal model and it was discovered that ALP, ALT, AST,
BIL, and GGT were chosen by the algorithm, bearing almost 73.11 % and 73.07
% importance for MICE and MissForest imputed data, respectively. Then both
the dataset was divided into individual training (80%, 492 instances) and testing
(20%, 123 instances) set and normalization were applied using a robust scaling
method due to the probable outliers and different measuring units presence.
While analyzing classification performance on two data sets, model overfitting
occurred.

An oversampling method known as SMOTE was applied separately to train-
ing datasets to address this problem and produce a balanced dataset. Figure 6
was used to visualize the impact of SMOTE between any two random features (in
this case, the two most contributing feature AST and GGT) and all the features
together respectively. From those plots, it was clear to see that the minor sam-
ple increased in numbers and SMOTE didn’t change the distribution entirely.
SMOTE was used only on the training datasets to prevent data leakage.

Fig. 6. Scatter plot for (left) the raw data, (mid) the imputed dataset using MICE,
(right) the imputed dataset using MissForest.

Model Evaluation. Prior to the use of classification algorithms on testing
datasets, the models were trained using train datasets, and before the training,
the hyperparameter tuning was performed for each of the models with each of
the train sets. Hyperparameter tuning was conducted using different kind of
combinations of parameters on a trial-and-error basis method to obtain the best
model. After acquiring information on hyperparameters of the five models, they
were trained. Consequently, they were tested with the test data for different
datasets, which were completely unseen by those models. Table 2 shows the
obtained accuracy of each model in different datasets.
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Table 2. Comparison of model accuracies (measured in percentage) across imputed
datasets.

Model
Data

Random Forest
Classifier

Extra Trees
Classifier

Multilayer
Perceptron

SVM
Classifier

KNN
Classifier

MICE 95.12 98.37 97.56 95.12 93.49

MissForest 98.37 99.18 96.74 95.93 95.12

From Table 2, it was clear that all the models except MLP, performed better
in terms of accuracy with the MissForest imputed dataset. Among the models,
Extra Trees Classifier outshined other models in both datasets, with an accuracy
of 98.374% and 99.187% using MICE and MissForest imputed datasets respec-
tively. Random Forest achieved moderate accuracy in MICE imputed set but
relatively high accuracy with MissForest imputed data. MLP seemed to perform
well with MICE imputed data. SVM and KNN performed poorly in terms of
accuracy considering the accuracy of other models. To gain confidence in the
result, nested cross-validation was performed with 5-fold in the outer layer and
10-fold in the inner layer, which achieved similar (±0.005 to ± 0.01) mean aver-
age with respect to each model’s accuracy. The results from the confusion matrix
showed each model’s ability to correctly classify the instances. For each of the
datasets, the confusion matrix of the model achieved the highest accuracy as
shown in Fig. 7a and Fig. 7b.

(a) For MICE imputed data (b) For MissForest imputed data

Fig. 7. Extra trees classifier confusion matrix
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From the confusion matrix, it was found that Extra Trees using MICE
imputed data misclassified one instance as “No Disease” when the actual label is
“Disease” and two instance as “Disease” when the actual label is “No Disease”.
However, Extra Trees using MissForest imputed data misclassified one instance
as “No Disease” when the actual label is “Disease” but classified all the actual
“No Disease” categories correctly.

In Table 3, the scores are calculated using weighted average. As the test
data was imbalanced, a weighted average would be an ideal choice. Extra Tree
with MissForest shows the highest F1-Score of 99.17%. Moreover, Extra Tree
with MissForest achieved the highest precision, and recall too among the models
with values of 99.19% and 99.18% respectively. There weren’t many fluctua-
tions in these scores for Extra Trees. On the other hand, KNN with MICE
performed poorly on all the metrics and also in comparison to all the models.
The AUC-ROCs score further supported these findings. The AUC-ROC curves
of the classification models here in Fig. 8a and Fig. 8b, validate the applied tech-
niques. Interesting observations were made here, where Extra Trees with MICE
achieved a very high ROC-AUC score of 99.41%. Random Forest with MICE
also achieved a good area under curve score, topping Extra Trees by obtain-
ing 99.44%. In another observation, Extra Trees with MissForest achieved the
highest AUC score of 99.38%.

Table 3. Summary of evaluation metric scores.

Metric Imputed
Dataset

Extra Trees
Classifier (%)

Random Forest
Classifier (%)

Multilayer
Perceptron (%)

Support Vector
Machine (%)

K - Nearest
Neighbor (%)

Precision MICE 98.374 94.931 97.655 95.946 95.074

MissForest 99.194 98.404 96.748 96.454 95.946

Recall MICE 98.374 95.122 97.561 95.122 93.496

MissForest 99.187 98.374 96.748 95.935 95.122

F1-Score MICE 98.374 94.97 97.595 95.363 93.945

MissForest 99.175 98.323 96.748 96.091 95.363

AUC-ROC MICE 99.414 99.444 96.975 97.901 94.599

MissForest 99.383 99.29 97.716 98.21 95.802

(a) For MICE imputed data (b) For MissForest imputed data

Fig. 8. AUC-ROC curve
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Fig. 9. Radar Plot to visualize the comparison different evaluation metrics of models
created

From all these evaluations, with comparison visualization in Fig. 9 it was
found that Extra Trees performed overall better in terms of F1-Score, Precision,
Recall, and Accuracy, achieving higher values than previously established mod-
els from researchers. Therefore, data dependency reduction was successful with
Extra Trees Classifier being the proposed model with an accuracy of 99.18%.
Additionally, it was observed that for a small and skewed dataset like this, non-
parametric imputation techniques such as MissForest perform slightly better on
average than MICE with a linear regressor as its estimator. But to find if it
was statistically significant, a two-sample t-test was performed for two groups of
data. The null hypothesis was that the mean of the two groups is equal, hence
these two imputation impacts are equal. With alpha α = 0.05, the p-value was
0.3587> alpha. Therefore, the null hypothesis could not be rejected, hence it
was concluded that there was not sufficient evidence to claim that the impact of
one imputation algorithm is significantly different from the other.

Table 4. Comparison with other works

Author name Feature selection Best model Accuracy (%)

Mostafa et al. [12] Yes, PCA Random Forest 98.14

Safdari et al. [18] No Random Forest 97.29

Proposed approach Yes RF Feature Importance &
RFE

Extra Trees 99.18

Comparison with Other Related Works. There are a few work with the
same dataset for binary liver disease classification which are compared with
proposed study in Table 4. From Table 4, it is clear that proposed study achieved
higher accuracy than other works.
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5 Conclusion

Experienced healthcare professionals carefully analyze collected hematological
elements and distinguish between normality and abnormality among the results.
But the process is very sophisticated. The application of Machine Learning (ML)
techniques can help in sophisticated processes like the diagnosis of liver disease.
A similar approach to this study can be taken and used to assist to some extent
in the work of healthcare professionals. Also, this approach can classify liver
disease patients with a higher probability while using much fewer data. With
feature importance calculation, only five out of ten hematological features were
used to achieve better accuracy than previously stated works. These five features
together contain most of the information needed to classify liver disease. It was
observed that a non-parametric imputation method like MissForest is of great
help while conducting research with a nonnormal kind of dataset. It was observed
that, in terms of evaluation metrics, the best-performing model was the Extra
Trees Classifier. Nonetheless, this study had some hindrances. The dataset was
really small to generalize. Dataset was heavily imbalanced. Furthermore, without
using SMOTE, the dataset mostly referred to the majority class and overfitting
occurred. Without imputing the missing values, the alternative could be drop-
ping the rows containing missing values which would result in decreasing the
minority class more and the dataset would be more imbalanced.

In the future, the proposed methodology can be tested with other advanced
algorithms and more data to observe its applicability. It is recommended to
advance into multiclass classification as it will open up more possibilities for
investigation and help to identify the exact liver disease.

References

1. Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)
2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic

minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
3. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. learn.

63(1), 3–42 (2006)
4. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-

roach for imbalanced learning. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–
1328. IEEE (2008)

5. Hughes, R.A., Heron, J., Sterne, J.A., Tilling, K.: Accounting for missing data in
statistical analyses: multiple imputation is not always the answer. Int. J. Epidemiol.
48(4), 1294–1304 (2019)

6. Islam, M., Rab, R., et al.: Analysis of CT scan images to predict lung cancer
stages using image processing techniques. In: 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), pp.
0961–0967. IEEE (2019)

7. Jaganathan, K., Tayara, H., Chong, K.T.: Prediction of drug-induced liver toxicity
using SVM and optimal descriptor sets. Int. J. Mol. Sci. 22(15), 8073 (2021)



Liver Disease Classification by Pruning Data Dependency 627

8. Joloudari, J.H., Saadatfar, H., Dehzangi, A., Shamshirband, S.: Computer-aided
decision-making for predicting liver disease using PSO-based optimized SVM with
feature selection. Inf. Med. unlocked 17, 100255 (2019)

9. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE
Trans. Syst. Man Cybern. SMC-15(4), 580–585 (1985)

10. Lichtinghagen, R., Klawonn, F., Hoffmann, G.: UCI Machine Learning Repository:
HCV data Data Set (2020). https://archive.ics.uci.edu/ml/datasets/HCV+data

11. Midya, A., et al.: Deep convolutional neural network for the classification of hep-
atocellular carcinoma and intrahepatic cholangiocarcinoma. In: Medical Imaging
2018: Computer-Aided Diagnosis, vol. 10575, pp. 501–506. SPIE (2018)

12. Mostafa, F., Hasan, E., Williamson, M., Khan, H.: Statistical machine learning
approaches to liver disease prediction. Livers 1(4), 294–312 (2021)

13. Muthuselvan, S., Rajapraksh, S., Somasundaram, K., Karthik, K.: Classification
of liver patient dataset using machine learning algorithms. Int. J. Eng. Technol
7(3.34), 323 (2018)

14. World Health Organization: The top 10 causes of death (2014). https://www.who.
int/news-room/fact-sheets/detail/the-top-10-causes-of-death

15. Pasha, M., Fatima, M.: Comparative analysis of meta learning algorithms for liver
disease detection. J. Softw. 12(12), 923–933 (2017)

16. Rau, H.H., et al.: Development of a web-based liver cancer prediction model for
type ii diabetes patients by using an artificial neural network. Comput. Methods
Programs Biomed. 125, 58–65 (2016)

17. Royston, P., White, I.R.: Multiple imputation by chained equations (MICE): imple-
mentation in stat. J. Stat. Softw. 45, 1–20 (2011)

18. Safdari, R., Deghatipour, A., Gholamzadeh, M., Maghooli, K.: Applying data min-
ing techniques to classify patients with suspected hepatitis C virus infection. Intell.
Med. (2022)

19. Sahoo, A.K., Pradhan, C., Das, H.: Performance evaluation of different machine
learning methods and deep-learning based convolutional neural network for health
decision making. In: Rout, M., Rout, J.K., Das, H. (eds.) Nature Inspired Comput-
ing for Data Science. SCI, vol. 871, pp. 201–212. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-33820-6 8

20. Saillard, C., et al.: Predicting survival after hepatocellular carcinoma resection
using deep learning on histological slides. Hepatol. 72(6), 2000–2013 (2020)

21. Smiti, A.: When machine learning meets medical world: current status and future
challenges. Comput. Sci. Rev. 37, 100280 (2020)
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Abstract. For most charities, there is a lack of features describing their
constituents to be used for machine learning predictions about chari-
table behaviour. But as charities learn to collect and synthesize more
data, the feature sets have grown and these sets should be optimized.
We investigate several methods for optimizing the feature set for chari-
table predictions. We first systematically remove different types of data
(e.g., education) and then remove individual features, using Pearson and
Spearman correlation coefficients, random forests and removal of “unim-
portant” features as determined by the GINI measure of decision trees.
Ultimately, for one prediction we found that only 3 features were needed
for machine learning algorithms to achieve an accuracy equal to the accu-
racy achieved with the full feature set. This finding should help charities
focus on using accurate predicted lists instead of trying to determine
themselves which features of a constituent matter.

Keywords: Machine learning · Charitable giving · Feature engineering

1 Introduction

Charities seek to target constituents (people in their databases) with relevant
appeals in order to increase the chances of the constituents donating to the
charity. Machine learning can be used to predict which donors are likely to give
to a cause at a particular time. While it is possible to ask every constituent
to donate to every cause or appeal, this can lead to donor fatigue and churn
(attrition), as the donors are inundated with solicitations [3]. Thus, targeted
lists are preferred by charities in order to ask donors for a donation at the
best possible time and to help ensure more donation dollars go to the intended
recipients. This is an important problem, as in the USA, charities raised $484.85
billion in 2021 [4].

In machine learning problems, having more features on which to learn and
form a model generally helps improve accuracy. But charities often do not have
hundreds of features describing their constituents – they may have as few as
10, and they seek to augment their data with any features they can find or
derive. Feature sets bloated with irrelevant or correlated features could lead to
less accurate models that take (sometimes prohibitively) longer to train and/or
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 631–645, 2022.
https://doi.org/10.1007/978-3-031-22695-3_44
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run. There is thus a need to optimize the feature set for charitable giving with
respect to machine learned predictions, to optimize the accuracy of the learned
models and the speed of the training process.

The more accurate the machine learning model for a given charitable pre-
diction, the more likely charities using the list will send solicitations to the best
constituents for each solicitation. This will increase charitable revenue, while
reducing donor churn. We seek to learn which features and characteristics of fea-
ture relationships (e.g., correlations) lead to the best dataset on which to learn
various models for various charities, in order to help inform charities and the
machine learning community. To do this, we experiment with removing different
types of data (e.g., donation), removing unimportant correlated features, and
using only the most important features to train machine learning models.

The rest of the paper is organized as follows. We next review related work,
followed by the problem formulation. We then describe our approach, followed
by the empirical evaluation. We conclude with discussion and future work.

2 Related Research

Feature selection has been studied previously, in domains outside of charitable
giving. In [7], the authors build a dataset of customer review features from
five different categories (structural, lexical, syntactic, semantic, and meta-data)
and analyze which have the most impact on model accuracy, using an SVM
regression algorithm. We do similar work by analyzing which categories of data
(demographic, donation, behavioural, or education) have the most impact on
charitable machine learning models as we describe later.

Feature engineering has also been studied extensively outside of the charitable
domain [16]. Model optimization has been studied through reducing the number
of features in large datasets based on their importance [6]. This leads to faster run
times where resulting accuracies can range from small increases to acceptable
decreases. We make use of common feature selection techniques in this work,
such as calculating feature correlations and importance, using decision trees’
GINI importance measure [11].

Machine learning for customer behaviour prediction has been well-studied [2,
5]. Some lessons can be learned from this research, but ultimately, people give
to charities for different reasons than why they make purchases [1,12,14].

Machine learning for charitable giving has been studied with respect to the
donor journey [9,10]. The donor journey is the series of actions a charity and a
constituent take that leads to a donation from the constituent, which involves
predictions on chronological data, while we focus on point in time predictions.
Combining data across charities in order to improve accuracy of point in time
predictions has been explored [8]. In other charitable predicition work, the effect
of combining National Survey of Student Engagement data with donation data
for predicting telephone donations was explored in [13]. Gaussian Näıve Bayes
classifiers, random forests, and support vector machine algorithms were used to
seek new donors in [15]. These bodies of research did not seek to optimize the
feature set available for charitable prediction, which is the subject of our work.
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3 Problem Formulation

The problem we are attempting to solve is optimizing the feature set for building
machine learning models for charitable giving. The four predictions we are opti-
mizing are shown in Table 1 The positive and negative labels for each prediction
are provided in the original data.

Table 1. Four predictions whose feature sets we seek to optimize, and their corre-
sponding positive and negative data sets.

ID Prediction Positive set Negative set

P1 Donors likely to become major donors Major donors Non-major donors

P2 One-time donors likely to repeat Repeat donors One-time donors

P3 Lapsed donors likely to return Current donors Lapsed donors

P4 Current donors likely to lapse Lapsed donors Current donors

These predictions are made on three universities, whose data is described in
Table 2. This data comes from Fundmetric (www.fundmetric.com), a machine
learning platform that provides anonymized data that mirrors the real world
completeness of most data sets for nonprofits. Positive examples are examples
of the behaviour we are trying to predict (e.g., who is going to give a second gift
who has only given one gift? – P2) Negative examples are the “prospects” for
the charity, being the constituents the charity thinks may start exhibiting the
positive behaviour. The predictions are meant to tell the charities which of these
prospects is most likely to exhibit the positive behaviour. In terms of defining
the groups, a donor is generally considered lapsed after not having donated for a
period of 2 years. A donor is considered a major donor if they have given at least
one gift at or above the major gift threshold for the charity, which is typically
in the range of $25,000–$50,000.

Table 2. Data for the three university charities whose feature sets we attempt to
optimize. Positive and negative set sizes are separated by “/”.

Charity Major donor Likely to lapse Likely to return Likely to repeat

C1 1436/107490 39071/18362 18885/54833 52517/13654

C2 367/11236 4217/2136 2253/5369 7336/845

C3 2537/80489 18842/20523 21362/38633 40333/15792

For each prediction, the same feature set is available, but some features must
be removed as they are giveaway features. These are features that provide the
machine learning algorithms with immediate answers to the question in the
prediction and produce a model that does not help the charity build useful appeal
lists. An example is the feature maximum donation in P1 (Table 1), where the

https://www.fundmetric.com/
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algorithm could learn the simple rule, “if the maximum donation is greater than
the major gift threshold, major donor, else, not major donor”. While this type
of feature will often produce a 100% accurate model, it does not provide any
useful information to charities seeking prospects, and thus we seek to eliminate
giveaway features from each prediction’s data set.

The data available for each constituent can be divided into four types: demo-
graphic, donation, behavioural, and education. A subset of the features used in
our experiments is shown in Table 3.

Table 3. A subset of the features used in experiments.

Type Examples

Demographic Solicit mail/email/phone, contact mail/email/phone,
postal/zip code, age, prefix,

Donation Standard deviation, days since first donation, largest
donation, number of small gifts, giving frequency, donation
method

Behaviour Percentage of emails opened, number of volunteer activities,
links clicked, videos started, days since last answered phone
call

Education Number of degrees, year of graduation, last school graduated
from

3.1 Demographic Data

Demographic data primarly describes a constituent’s location and contact prefer-
ences. Whether they can be contacted by email, or solicited by phone are features
recorded by charities to ensure smooth communication. While age, income, and
employment status are features that would fit in this category, most charities do
not have access to this information for more than half their constituents.

3.2 Donation Data

Charities record donation amounts and dates, and from these two features many
features can be derived. These calculated features include maximum/ minimum/
mode/ mean donations, donation lifetime, and the slope of the line of best fit of
a constituent’s donations in chronological order to inform the machine learning
algorithms (roughly) whether this constituent’s donations are increasing (posi-
tive slope) or decreasing (negative slope).

3.3 Behavioural Data

Constituents interact with charities in ways that do not involve a financial trans-
action and these actions can indicate constituent preferences. Whether con-
stituents open emails, the percentage of emails they open, and whether they
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attend events can all be used by machine learning algorithms to help learn a
model concerning their donation habits.

3.4 Educational Data

Educational institutions provide more data on their constituents than many
other charities, recording what degree the constituent earned, how many degrees
they earned and if this institution was where they earned their ultimate degree.

3.5 Experimental Design Being Optimized

We seek to optimize the feature set so as to maximize prediction accuracy given
the following setup. The data is divided into training and testing data, and
balanced by using the full smaller of the two sets and a random selection of
the larger set, which is repeated 10 times. All non-numeric features are one-hot
encoded and all accuracies reported are on an unseen test set. This process is used
with each charity (Table 2) and each algorithm. In the next section, we detail
how we vary the data set used in this process to understand how to optimize
said data set.

4 Our Approach

We seek to optimize the feature set by discovering and eliminating strongly
correlated features, discovering which features are important and creating models
with only those features deemed “important” by the algorithm at hand.

In our Experiment 2, we calculate the correlation coefficients between fea-
tures using two methods – Spearman and Pearson. The Spearman correlation
coefficient is calculated as:

p = 1 − 6
∑

d2i
n(n2 − 1)

(1)

where p is Spearman’s rank correlation coefficient, di is the difference between
each observation, and n is the number of observations.

The Pearson correlation coefficient is calculated as:

r =
∑

(xi − x̄)(yi − ȳ)
√∑

(xi − x̄)2
∑

(yi − ȳ)2
(2)

where r is the correlation coefficient, xi is the value of the current x variable,
x̄ is the mean of the values of the x variable, yi is the value of the current y
variable in a sample, and ȳ is the mean of the values of the y variable.

The Pearson method determines whether a linear relationship exists between
any of the variables. It depends on all of the features being continuous, making
it useful for many regression-based problems. The Spearman method accepts
discrete or continuous variables and can be used to determine the monotonic
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relationship between them. For the Pearson method, the relationship between
x and y must be described linearly. We investigate correlations calculated with
both Pearson and Spearman methods in the next section.

For feature importance calculations in Experiments 3 and 4, we use the GINI
measure, or Mean Decrease in Impurity (MDI), of decision trees/random forests.
Features that show no decrease in impurity are deemed to be zero importance
features, and we experiment with the removal of these features from the data
set. We also consider the most important features according to this measure,
building sets only from these features and noting the change in accuracy in
models compared to training with the full set.

5 Empirical Evaluation

In this section, we detail the experiments run to help optimize the feature set
for the four predictions given in Table 1. We first experiment with the removal
of entire types of data (e.g., donation) and observe the effects. Next, we calcu-
late the difference in findings for the Spearman and Pearson correlation coeffi-
cients, then use the Spearman coefficient along with the GINI measure of decision
trees/random forests to eliminate correlated features and observe the difference.
We then take this a step further and eliminate features deemed not “important”
using the GINI measure of a baseline random forest model and observe the
change in accuracy across three machine learned models. Finally, we compare
the performance of these algorithms using only the most important features,
compared to using the full feature set.

Various parameterizations of three machine learning algorithms were used.
These are k-nearest neighbours (KNNs), artificial neural networks (ANNs) and
random forest classifiers (RFCs). The best performing architectures were used in
each experiment. Ten cross validation folds were used for each experiment. We
show results for all predictions where the results vary by prediction, otherwise
we show representative results.

5.1 Experiment 1: Exploring Removal of Data Set Types

Before exploring the effect of removing individual features, we first explored the
removal of each of the types of data described in Sect. 3 – demographic, donation,
behavioural, and education. Figure 1 shows the effect of the removal of each type
of data on C3 on the “Donors Likely to Lapse” prediction using a KNN classifier.
This effect was similar across all charities and predictions so we present Fig. 1
as a representative example. The y-axis labels indicate which types of data have
been dropped from the set, so the 3rd bar from the top would be the set with no
behavioural, demographic, or donation data, and thus only education data, as an
example. Not surprisingly, the sets with donation data are the most important
(the bars with the highest accuracy do not have donation data dropped). Given
that we did not see any other significant patterns, we moved on to more granular
feature removal experiments.
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Fig. 1. The effect of the removal of various data types for the “Donors Likely to Lapse”
prediction for C3 using a KNN classifier. Here “B” = behavioural, “De” = demographic,
“Do” = donation, “E” = educational and “None” shows the full data set being used.

5.2 Experiment 2: Calculating Spearman and Pearson Coefficients

For each prediction and charity, we calculated the coefficient matrix using both
the Spearman and Pearson methods. We provide a sample of a Spearman cor-
relation matrix in Fig. 2 with a subset of the feature set, and the same sample
using a Pearson correlation matrix in Fig. 3. The same pattern holds across all
predictions and charities with the full feature set, with many features correlated,
most of which are explainable. In Fig. 2, distinct years of giving is heavily cor-
related with donation lifetime. This make sense, as the former is a count of the
number of different years the donor gave and the latter is the number of years
since the donor started giving. It is quite possible that machine learning algo-
rithms do not need both features to build an accurate model, even if they can
provide quite distinct information.

Note that while both methods are able to calculate positive correlations
between features, the Spearman coefficient calculations also capture negative
correlations more reliably. Figure 3 is almost completely devoid of negative cor-
relations. Thus, we used the Spearman coefficient going forward in our experi-
ments.

Using the GINI method for determining feature importance and the correla-
tion coefficients as determined in Fig. 2, we removed the less important feature
of any correlated pair and compared the performance of KNNs, ANNs, and
RFCs using the two sets on the “Donors Likely to Lapse” prediction. Results
are shown in Table 4. Here, for pairs of features to be correlated, they must have
a Spearman coefficient of |0.75|.

In most cases, removing the unimportant feature of a correlated pair did not
have a large effect on accuracy. ANNs benefitted the most, with a 2.4–2.6% boost
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Fig. 2. A Spearman correlation matrix on a sample of the features available to the
machine learning algorithms.

Fig. 3. A Pearson correlation matrix on a sample of the features available to the
machine learning algorithms.
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in accuracy with the C2 and C3 data sets. Since this data set change did not
show great promise, we next tried to remove more unimportant features. This
pattern holds across predictions and charities.

Table 4. Comparing accuracy using full data set to set with unimportant correlated
features removed on the likely to lapse prediction.

Algorithm Set Accuracy Time Charity

RFC Full 98.8 ± 1.9E-04 127 C1

Trimmed 99.0 ± 1.6E-04 41 C1

KNN Full 98.9 ± 8.0E-05 131 C1

Trimmed 99.1 ± 3.2E-04 101 C1

ANN Full 93.2 ± 1.2E-02 437 C1

Trimmed 96.0 ± 1.6E-02 73 C1

RFC Full 97.4 ± 3.3E-04 12 C2

Trimmed 98.3 ± 1.0E-03 13 C2

KNN Full 89.6 ± 3.7E-03 5 C2

Trimmed 91.0 ± 3.4E-03 9 C2

ANN Full 70.8 ± 1.5E-02 27 C2

Trimmed 73.4 ± 1.3E-02 12 C2

RFC Full 99.6 ± 1.6E-04 122 C3

Trimmed 99.0 ± 7.0E-05 51 C3

KNN Full 96.6 ± 4.9E-04 138 C3

Trimmed 97.4 ± 6.0E-04 113 C3

ANN Full 82.8 ± 2.4E-02 431 C3

Trimmed 85.2 ± 3.7E-02 111 C3

5.3 Experiment 3: Removing Zero Importance Features

Using the GINI importance measure of random forests, we compared the accu-
racy of training a model with the full set of features to the accuracy of models
trained with all of the zero importance features removed. Table 5 shows the
change in accuracy for the “Donors likely to lapse” prediction. The ANN bene-
fits for C1, but in general the removal of the unimportant features does not have
a large effect on accuracy. The run times for these algorithms are all lowered,
though, and when the data is scaled up, this could become a factor in deter-
mining the significance of zero importance feature removal. This pattern holds
across predictions and charities.

5.4 Experiment 4: Comparing Top 3 Feature Set to Full Set

After determining values for features using the GINI measure of random forests,
we ran models using only the top 3 most important features. For each prediction,
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Table 5. Comparing accuracy using full data set to set with unimportant features
removed on the likely to lapse prediction.

Algorithm Set Accuracy Run time Charity

RFC Full 98.8 ± 1.9E-04 127 C1

Trimmed 99.1 ± 2.8E-04 106 C1

KNN Full 98.9 ± 8.0E-05 131 C1

Trimmed 99.0 ± 3.2E-04 118 C1

ANN Full 93.2 ± 1.2E-02 437 C1

Trimmed 95.5 ± 1.5E-02 319 C1

RFC Full 97.4 ± 3.3E-04 12 C2

Trimmed 97.8 ± 7.7E-04 12 C2

KNN Full 89.6 ± 3.7E-03 5 C2

Trimmed 92.9 ± 4.0E-03 4 C2

ANN Full 70.8 ± 1.5E-02 27 C2

Trimmed 82.0 ± 2.7E-02 28 C2

RFC Full 99.6 ± 1.6E-04 122 C3

Trimmed 99.8 ± 1.0E-04 107 C3

KNN Full 96.6 ± 4.9E-04 138 C3

Trimmed 96.6 ± 6.1E-04 126 C3

ANN Full 82.8 ± 2.4E-02 431 C3

Trimmed 85.9 ± 3.5E-02 330 C3

we ran experiments with the full data set and compared the accuracy and run
time to using the same algorithms with only the top 3 most important features.
Tables 6, 7, 8 and 9 show the comparison.

Donors Likely to Lapse: The top 3 features are: frequency (number of
gifts/days since first donation), days since first donation, and total donations
(sum of the constituent’s donation). ANNs benefit from using only the top 3
features, increasing their accuracy by 6 to 21%, while cutting their run time by
one third for the larger sets. RFC and KNN accuracies increase as well, but to
a point where they produce almost no prospects (no false positives). So, while
using only the set of 3 features helps to produce more accurate models, it does
not help a charity practically in terms of finding people in danger of lapsing.

Donors Likely to Become a Major Donor: For the major donor prediction,
the top 3 features were not able to capture a sufficient amount of information to
make accurate predictions. The features were top engagement type (the manner
in which they engaged most with the charity), total donations per total engage-
ment (how often they gave compared to how often they engaged), and age. In
almost all cases there was a drop in accuracy when using only the top 3 features
compared to the full set. This would indicate that the major donor prediction is
likely more nuanced than other predictions where accuracy is unaffected or even
increased by considering only the top 3 features.
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Table 6. Comparing accuracy and run times using the top three features (Donors
Likely to Lapse).

Charity Algorithm Set Accuracy Time(s)

C1 RFC Full 98.8 ± 0.0002 112.9

Limited 99.9 ± 2.14E-05 54.7

KNN Full 98.9 ± 0.0025 127.1

Limited 99.9 ± 6.69E-05 6.4

ANN Full 93.2 ± 0.00002 361.1

Limited 99.4 ± 0.00184 139.4

C2 RFC Full 97.4 ± 0.0003 12.0

Limited 99.5 ± 0.00042 8.5

KNN Full 89.6 ± 0.0037 5.0

Limited 99.8 ± 0.00043 0.9

ANN Full 71 ± 0.0146 25.7

Limited 92.6 ± 0.04320 28.6

C3 RFC Full 99.6 ± 0.00015 114.9

Limited 99.9 ± 5.8E-05 56.8

KNN Full 96.6 ± 0.00049 135.4

Limited 99.9 ± 0.00016 6.5

ANN Full 82.8 ± 0.02374 370.6

Limited 99.8 ± 0.00075 218.9

Table 7. Comparing accuracy and run times using the top three features (Donors
likely to become major donors).

Charity Algorithm Set Accuracy Time(s)

C1 RFC Full 97.1 ± 0.00245 19.4

Limited 89.9 ± 0.00383 16.2

KNN Full 87.8 ± 0.00586 42.6

Limited 84.9 ± 0.00595 18.6

ANN Full 88.0 ± 0.01176 29.2

Limited 75.2 ± 0.04341 15.7

C2 RFC Full 96.3 ± 0.00511 5.2

Limited 83.7 ± 0.01320 5.0

KNN Full 85.3 ± 0.01709 3.5

Limited 73.1 ± 0.03067 2.3

ANN Full 60.8 ± 0.02246 4.7

Limited 61.9 ± 0.04433 3.8

C3 RFC Full 97.9 ± 0.00079 21.8

Limited 89.7 ± 0.00621 19.0

KNN Full 89.5 ± 0.00324 46.7

Limited 87.4 ± 0.01146 16.2

ANN Full 91.3 ± 0.00704 41.3

Limited 86.9 ± 0.00656 25.9
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One Time Donors Likely to Repeat: Similar to the major donor prediction,
the top 3 features set was not informative enough to compete with the full data
set for any algorithm. The top 3 most important features for this prediction were
days since last donation, days since last interaction, and minimum donation.

Table 8. Comparing accuracy and run times using the top three features (One Time
Donors Likely to Repeat).

Charity Algorithm Set Accuracy Time(s)

C1 RFC Full 99.9 ± 2.9E-06 33.8

Limited 94.5 ± 0.00067 38.4

KNN Full 99.5 ± 0.00044 64.9

Limited 92.4 ± 0.00023 5.5

ANN Full 99.8 ± 0.00044 157.1

Limited 80.1 ± 0.01555 88.0

C2 RFC Full 99.9 ± 0.00010 4.9

Limited 0.94833 ± 0.00600 5.0

KNN Full 94.7 ± 0.00328 2.4

Limited 88.2 ± 0.00559 0.9

ANN Full 80.7 ± 0.03251 12.7

Limited 70.5 ± 0.05369 11.6

C3 RFC Full 99.9 ± 4.6E-06 46.4

Limited 86.7 ± 0.00197 55.9

KNN Full 99.2 ± 0.00015 93.1

Limited 81.4 ± 0.00172 5.6

ANN Full 99.7 ± 0.00071 202.3

Limited 58.2 ± 0.00801 80.4

Lapsed Donors Likely to Return: The lapsed donors likely to return pre-
diction had the greatest increase in accuracy by using only the top 3 features of
all the predictions. In addition to this, the accuracies are not almost 100%, thus
meaning that there are still prospects on the list for charities. The top 3 features
for this prediction were frequency, distinct years of giving count (in how many
different years did the constituent give a gift), and donation lifetime.

6 Discussion and Future Work

In this work, we evaluated several methods for choosing features to include for
training charitable giving models using machine learning. Removing less impor-
tant correlated features did not have a large effect. Removing zero importance
features did help accuracy improve in some cases. This is likely because the
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Table 9. Comparing accuracy and run times using the top three features (Likely to
Return).

Charity Algorithm Set Accuracy Time(s)

C1 RFC Full 89.8 ± 0.00139 129.4

Limited 94.3 ± 0.00073 69.5

KNN Full 91.0 ± 0.00218 235.2

Limited 94.1 ± 0.00131 11.6

ANN Full 88.9 ± 0.00329 471.5

Limited 94.6 ± 0.01068 104.9

C2 RFC Full 86.0 ± 0.01128 12.8

Limited 90.3 ± 0.00463 9.7

KNN Full 79.2 ± 0.00208 6.8

Limited 93.2 ± 0.00469 1.6

ANN Full 70.0 ± 0.03086 23.0

Limited 88.5 ± 0.03408 23.0

C3 RFC Full 85.8 ± 0.00125 149.8

Limited 91.2 ± 0.00098 86.7

KNN Full 85.4 ± 0.00158 211.1

Limited 91.2 ± 0.00091 9.9

ANN Full 77.0 ± 0.05961 330.1

Limited 94.0 ± 0.00162 95.7

algorithms we used are robust to irrelevant features, in particularly ANNs and
RFCs. On the major donor and one time likely to repeat predictions, using only
the top 3 most important features as determined by the GINI measure did not
provide machine learning algorithms with sufficient information needed to build
an accurate model.

Using only the top 3 most important features had a significant effect on the
lapsed donors likely to return prediction - models were all more accurate when
training only on these 3 features compared to training on the full data set. These
top 3 features are affinity features – measuring how long the donor had been
giving (donation lifetime), how often they gave in that lifetime (frequency), and
whether their giving was regular (distinct years of giving). The importance of
these features should be noted by charities seeking to create rules for choosing
which lapsed donors to contact in hopes of having them return to giving to
the charity. On the machine learning side, this shows an example of a problem
that can be solved with a small set of features and where seemingly informative
features may be irrelevant and misleading.

In the future, we would like to experiment with the (anonymous) combination
of data, to see if these methods have the same effect on a more general set of
charitable data. More individual charities will be used for data sets as well,
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including non-university data, to see whether the lessons learned in this current
work hold in other charitable verticals (e.g., disease or sports charities).
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Abstract. The discounted knapsack problem (DKP) is an NP-hard
combinatorial optimization problem that has gained much attention
recently. Due to its high complexity, the usual solution combines a global
search algorithm with a greedy local search algorithm to repair candidate
solutions. The current greedy algorithms use a heuristic that ignores the
items already in a candidate solution. This paper presents a new greedy
algorithm for DKP that uses an expanded set of operators and bet-
ter heuristics that are more effective at considering the selected items.
Experimental results show that the proposed greedy algorithm has supe-
rior performance to three well-known greedy algorithms for DKP, both
when operating independently and when combined with global search
algorithms.

Keywords: Combinatorial optimization · Discounted knapsack
problem · Greedy algorithm · Local search

1 Introduction

The Knapsack problem (KP) [3,13] is a combinatorial optimization problem that
has many real-world applications in logistics, energy usage optimization, financial
system modeling, cryptographic systems, etc [1]. The classic KP assumes that
there exists a container of a given capacity and a set of predefined items, each
with a value and a weight. The task is to select items that maximize the total
value while their total weight does not exceed the container’s capacity.

In the Discounted Knapsack Problem (DKP) [5,18] variant, the task is to
select a set of items with costs and values, maximizing the total value, subject
to a fixed maximum cost. There are discounts on the costs of certain groups of
items if all items in a group are selected. DKP has been applied to many real-
world applications, including purchasing decisions, investment, project selection,
and budget control [20]. For example, in purchasing decisions, a buyer can get a
cost discount if he/she buys a group of items together. The DKP is challenging
because of the increased interactions between the items in a group which any
heuristic rule needs to consider.
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In the standard data sets for DKP, the groups of items with a discount all
have exactly two items. A common formulating approach of DKP is to model
the groups as if they had three items: xi1 and xi2 are the real items belonging
to the i-th group, and xi3 is a fake item representing the case where both xi1

and xi2 are selected. The value and cost of item xij are vij and cij , respectively.
Note that, vi3 = vi1 + vi2 and ci3 = ci1 + ci2 − di, where di is the discount of the
i-th group. DKP can be formulated as the following optimization problem:

Maximize

n∑

i=1

(si1vi1 + si2vi2 + si3vi3) (1a)

s.t. si1 + si2 + si3 ≤ 1, (1b)
n∑

i=1

(si1ci1 + si2ci2 + si3ci3) ≤ C, (1c)

si1, si2, si3 ∈ {0, 1},∀i ∈ {1, 2, . . . , n} (1d)

where n is the number of groups, sij = 0 if item xij is not selected, and sij = 1
if xij is selected. Equation (1b) is the constraint that, for each group, at most
one of the three items is selected. Equation (1c) is the constraint that the total
cost of the selected items may not exceed the maximum cost C. A binary vector
S = (s11, s12, s13, s21, s22, s23, . . . , sn1, sn2, sn3) ∈ {0, 1}3n is a candidate solution
of DKP. If constraints in Eqs. (1b) and (1c) are satisfied, S is a feasible solution,
otherwise S is an infeasible solution.

Existing greedy algorithms for DKP [8,10–12,16] build a solution in terms
of a set of items by carrying out a sequence of operations (adding/removing
items) on the current solution. The operations are usually ordered by a heuristic
rule. However, the existing heuristic rule does not consider the items already
selected in the current solution. For example, adding a specific item has a single
position in the ordered list, regardless of whether or not the other item in its
group has already been in the solution. Thus, the operation order is inaccurate,
which might not result in a good item set.

This paper presents an improved greedy algorithm for DKP. It considers the
interactions of the items in groups and distinguishes the cases that can happen to
the group. New heuristics are developed to evaluate these different cases, which
allow the algorithm to make better choices at the right time. The results show
that the proposed greedy algorithm gives better results when running indepen-
dently and when combined with a heuristic global search.

The rest of this paper is organized as follows. Section 2 presents a literature
survey of existing greedy algorithms for DKP and analyzes their limitations.
Section 3 describes our proposed greedy algorithm in detail. Section 4 discusses
the experimental design and analyzes the results. Finally, Sect. 5 concludes the
paper.
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2 Existing Greedy Algorithms for DKP

This section discusses three well-known greedy algorithms for DKP: GR-DKP [8,
16], NROA [7,11,12,19], and D-GROA [2,10,17]. GR-DKP uses an H list of
3n items (x11, . . . , xn3) sorted descending by their value/cost ratios in order
to choose items greedily. It repairs and improves a candidate solution in three
steps. First, it checks the solution to ensure that only one item is selected for
each group. If more than one item is selected, only the item with the highest
value/cost is kept. Second, suppose the cost of the solution is greater than the
container’s capacity (C). In that case, it progressively removes the item with
the lowest value/cost ratio until the total cost is less than or equal to C. The
first two steps ensure that the obtained solution or item set is feasible while
keeping the solution’s quality as high as possible. Finally, it traverses H again
in forwarding order, adding items with high value/cost as long as they do not
make the solution infeasible.

NROA uses an integer representation where each solution is a vector of n
integer values corresponding to n groups. Each value is in {0, 1, 2, 3}, which
indicates the selected item from a group. For example, the value of 0 means
no item is selected, while the value of 1 means the first item is selected. Such
representation allows at most 1 item to be selected for each group; thus, the
first constraint (Eq. (1b)) is always satisfied. Like GR-DKP, NROA also sorts
the items based on their value/cost ratios, resulting in the H list. NROA first
steps through H, adding up the costs of the items in the candidate solution.
Any item that takes the total cost over C is removed from the solution. The
candidate solution is then guaranteed to be feasible. NROA then traverses H
again, adding an item if none of the items in its group are selected, and the new
total cost does not exceed C. One problem of NROA is that it may leave a very
low value/cost item in the solution as long as it has a low cost, even if it prevents
the addition of a higher value/cost item.

D-GROA is very similar to NROA but avoids the problem noted above. D-
GROA changes the order in which items are removed to ensure that if an item is
removed from the solution to meet the maximum cost constraint, then all other
items in the solution with a lower value/cost have already been removed.

The solution representation models of GR-DKP, NROA, and D-GROA share
one thing: they all use fake items for the option of selecting both items. Unfor-
tunately, this approach leads to a distorted view of the DKP problem because
it does not consider the inherent relationship between item 1, item 2, and item
3. Ignoring this relationship can lead to errors in deciding what actions to take,
as we explain in what follows.

Furthermore, existing greedy algorithms do not consider the current state
of the groups in the candidate solution. Let us consider the situation of adding
item 1 of the i -th group to the solution. If group i has no items already selected,
adding item 1 will increase the solution’s total value by vi1 and the total cost by
ci1. If item 2 is already in the solution, existing greedy algorithms will remove
item 2, then adds item 1. As a result, the total value of the solution will change
by vi1 − vi2. Similarly, the total cost will change by ci1 − ci2. Existing greedy
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Fig. 1. State transition diagram of a group.

algorithms do not separate these two cases clearly, and both are weighed by
the original value and cost of item 1. In other words, the value/cost ratios do
not accurately reflect the benefits of adding and removing items. Our proposed
algorithm aims to address these problems.

3 Operation-Based Greedy Algorithm for DKP

This section first presents our choice of solution representation model, then intro-
duces new lists of operations that are sorted using new heuristic models. The
section concludes with the overall proposed algorithm.

3.1 Solution Representation

Our goal is a solution representation scheme without fake items because a bet-
ter representation is essential for making the best greedy decisions. Given that
the DKP problem has 2n real items, we represent solutions as binary vectors
containing 2n values. Each group has two corresponding bits where the first bit
represents the first item and the second bit represents the second item. A bit
value of 0 means the item is not selected, while the value of 1 means the item is
selected. If both bits are 1, both items of the group are selected.

This representation shows that a group can be in four different states: 00—no
items selected (the group is empty), 10—item 1 selected, 01—item 2 selected,
and 11—both item 1 and item 2 are selected (the group is full). A problem with
the traditional approach is the inadequate recognition of transitions between
these states. The existing algorithms’ actions include three adding operations
(add item 1, add item 2, and add item 3) and three removal operations (remove
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item 1, remove item 2, and remove item 3). Adding an item results in the group
having only that item, and removing the item results in an empty group. There
is currently no model for adding an item to a group with the other item already
selected to create item 3, and no model for removing a sub-item from item 3 so
that the solution still contains the remaining item of the corresponding group.
To address the problem, this paper distinguishes all possible states and events
related to a group and organizes them into a state transition diagram in Fig. 1.

As depicted in Fig. 1, there are three types of operations: adding, removing,
and swapping. An adding operation adds item(s) to an empty group or a group
that already has another item. A removing operation removes item(s) from the
solution, resulting in an empty group or, in the case of removing an item from a
group with two items selected, a group with the remaining item. Finally, swap-
ping operations are to swap item 1 with item 2 and vice versa.

Table 1. List of operations for a group.

No. Name State 1 State 2 Used for

1 Op{00}-{10} 00 10 Adding/Removing

2 Op{00}-{01} 00 01 Adding/Removing

3 Op{00}-{11} 00 11 Adding/Removing

4 Op{01}-{11} 01 11 Adding/Removing

5 Op{10}-{11} 10 11 Adding/Removing

6 Op{01}-{10} 01 10 Swapping

7 Op{10}-{01} 10 01 Swapping

3.2 List of Operations

Using the states and events in Fig. 1, we propose a list of operations as in Table 1.
In Table 1, State 1 and State 2, similar to the definitions in Fig. 1, serve as
the applying condition and the resulting group state. Although Fig. 1 defines
five adding operations, five removing operations, and two swapping operations,
removing operations are indeed the reverse of adding operations. Therefore,
Table 1 includes only seven operations, of which the first five are for adding
and removing. If one of these five operations is used to add item(s) to the solu-
tion, it will transform the related group from State 1 to State 2. Similarly, if
that operation is used to remove item(s), it will convert that group from State
2 to State 1.

With the current greedy algorithms, the phases of adding items to and remov-
ing items from the solution occur separately, and this list fits perfectly into that
approach. In the cases of item swapping operations, the greedy algorithm only
needs to consider transferring the related group from State 1 to State 2.

Since each group has seven entries in the operation list as above, the complete
list for n groups of a DKP instance has 7n entries.
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3.3 New Heuristic Models

Contribution-based Value/cost Heuristic. The operations in the proposed
list should be ordered by an appropriate measure. Instead of using each item’s
original value and cost, we propose that the contribution to the solution should
determine these values and costs. For example, let us consider adding item 1 of
group i into the solution. There are two possible cases:

– If no other items in group i were already selected, the value and cost of this
operation is vi1 and ci1, respectively.

– If item 2 is already selected and adding item 1 will upgrade the selection to
the group item (both item 1 and item 2 are selected), the value and cost of
this operation should be vi1 and ci1 − di, respectively.

Then, the value/cost ratio is calculated. By doing that, the current state of
the solution is taken into account, and the value/cost ratios reflect what they
contribute to the solution. Applying this heuristic to adding/removing operations
in Table 1, we obtain the add/remove operation list (AROL). Table 2 describes
the AROL list entries for the i -th group.

Table 2. AROL entries of the i-th group.

Name Value Cost Value/Cost State 1 State 2

Op{00}-{10} vi1 ci1 vi1/ci1 00 10

Op{01}-{11} vi1 ci1 − di vi1/(ci1 − di) 01 11

Op{00}-{01} vi2 ci2 vi2/ci2 00 01

Op{10}-{11} vi2 ci2 − di vi2/(ci2 − di) 10 11

Op{00}-{11} vi1 + vi2 ci1 + ci2 − di
vi1+vi2

ci1+ci2−di
00 11

Table 3. Comparison of value/cost descending and dual-ranking increasing sorting.

Operation Value Cost Value/cost approach Dual-ranking approach

Value/Cost Order Value rank Cost rank Sum rank Order

O1 2 4 0.5 2 3 2 5 3

O2 10 5 2 1 1 3 4 2

O3 4 -2 -2 3 2 1 3 1

It can be seen that the change in value and cost of the solution of the adding
and removing operations are the same, except that one is adding value and cost
to the solution, while the other deducts value and cost from it. This confirms
what was discussed above that we do not need a list for adding and another for
removing.

Dual-ranking Heuristic. The contribution-based value/cost heuristic is not
used for swapping operations because it risks incorrect prioritization. While the
existing approach does not provide any real value/cost values for the swapping
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operations, the new contribution-based value/cost system does provide them.
Specifically, the swapping operation of item 1 of group i to item 2 will have a
value and cost of (vi2 − vi1) and (ci2 − ci1), respectively. Similarly, the swap
of item 2 to item 1 will have a value and cost of (vi1 − vi2) and (ci1 − ci2),
respectively. Let us consider the following situations:

– Item 1 and item 2 have the same value and same cost. Therefore, the
value/cost is undefined (0/0).

– Item 1 and item 2 have the same value, but their costs are not equal. As a
result, the value/cost is always zero no matter how different the costs are,
resulting in inaccurate ordering of the swapping operations.

– Assume a swap operation has a value of 2 and a cost of −2. Thus, its
value/cost is −1. Since the list is sorted descending by value/cost, this oper-
ation has a low priority when it should be given a high priority because it
gives a better value with a lower cost.

Table 4. SOL entries of the i-th group.

Name Value Cost Sum rank State 1 State 2

Op{01}-{10} vi1 − vi2 ci1 − ci2 sum rank of Op{01}-{10} 01 10

Op{10}-{01} vi2 − vi1 ci2 − ci1 sum rank of Op{10}-{01} 10 01

The above three cases show the limitations of applying the value/cost cal-
culation to contribution-based value and cost. In some cases, the results are
incorrect or even provide a misleading view of the priority of operations. Thus,
we need another heuristic that satisfies two requirements:

– Using the new contribution-based value and cost.
– Replacing value/cost ratio by a different metric solving the above problems.

We propose a new dual-ranking system using a Borda [4] voting rule with two
voters (value rank and cost rank). Specifically, operations’ values are ranked
descending, and their costs are ranked ascending. This ranking approach consid-
ers the operations’ differences in values and costs. Lower costs and higher values
result in higher ranks. An operation’s ranking positions are then added to reflect
its combined benefit.

The example in Table 3 shows how differently the dual-ranking system affects
the operations’ priority compared to the existing approach. Using the value/cost-
based descending sorting, although having a very good value and cost, operation
O3 has the last position in the sorted list, which means that it has the lowest
priority to be performed. On the other hand, if using the dual-ranking heuristic,
O3 has the first position, which better reflects its contribution to the solution.

Applying the dual-ranking heuristic for swapping operations, we have a swap-
ping operation list (SOL). Table 4 lists two entries of SOL for the i -th group.
Note that the dual-ranking system is not applied to AROL because our experi-
ment shows that the combination of an AROL list with the contribution-based
value/cost and an SOL list with dual-ranking gives better results than a single
7n operation list with dual-ranking.
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3.4 The Proposed Operation-based Greedy Algorithm (OGA)

Algorithm 1 presents the pseudo-code of our proposed OGA algorithm for DKP.
The input parameters of OGA include the cost vector, value vector, and n, which
is the number of groups of the problem. The greedy algorithm works by applying
operations in SOL and AROL lists in order of their priority.

Our algorithm consists of four steps. In step 1, a candidate solution X, the
AROL list, and the SOL list are generated. For proper operation of the greedy
algorithm, AROL needs descending value/cost sorting, and SOL needs ascending
sum rank sorting.

Step 2 is for swapping operations, which are considered in the order of the
SOL list. If a swap operation is applicable and makes the related group better,
it will be executed. A group is better if the difference between its total value
in state 2 and its total value in state 1 is more significant than the difference
between its total cost in state 2 and its total cost in state 1.

Algorithm 1: Operation-based Greedy Algorithm (OGA) for DKP
Input: n: number of groups, C: maximum cost, cost vector, value vector
Output: A feasible solution X: set of items (of size 2n) and its total value
% Step 1: Initialization
Initialize a candidate solution X = [x1, x2, . . . , x2n], xi ∈ {0, 1}, i ∈ {1, 2, . . . , 2n}
Build 5n AROL list in decreasing contribution-based value/cost
Build 2n SOL list in increasing sum rank
Calculate total value and total cost of X
% Step 2: Swapping phase
foreach operation Op in SOL do

if Op is applicable then
if the group of Op is better after applying Op then

Transform the group in X specified by Op from State 1 to State 2
Update total value and total cost

% Step 3: Adding phase
if total cost < C then

foreach operation Op in AROL do
if using Op for adding is applicable and total cost + cost of Op ≤ C
then

Transform the group in X specified by Op from State 1 to State 2
Update total value and total cost

% Step 4: Removing phase
if total cost > C then

foreach operation Op in reverse order of AROL do
if using Op for removing is applicable then

Transform the group in X specified by Op from State 2 to State 1
Update total value and total cost
if total cost ≤ C then

break

return X, total value of X
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After that, if the solution has a total cost lower than the maximum cost,
the algorithm will activate step 3. In this step, in the order of the AROL list,
applicable adding operations will be performed if they do not make the total
cost exceed the maximum cost until no more of them can be done. Conversely,
if the solution’s total cost is greater than the maximum cost, step 4 will remove
items gradually from the solution using remove operations in the reverse order
of the AROL list until the total cost is less than or equal to the maximum cost.

3.5 Complexity Analysis

The complexity of an algorithm is often assessed through two aspects: the time
it takes to solve a particular problem and the space, precisely the amount of
memory it needs to run.

OGA algorithm avoids exponentially increasing the number of computation
operations. First, OGA traverses SOL once. Then, OGA traverses AROL once,
with the direction depending on whether the total cost of the candidate solution
is greater than C or not. Another factor to consider is that the AROL and
SOL lists need sorting. The best case (lists ordered already) takes linear time.
Otherwise, O(n ∗ log(n)) comparisons are needed to sort an array of n elements
in the worst case. Thus, our algorithm has a linearithmic complexity of O(n ∗
log(n)). This complexity is similar to those of existing greedy algorithms for
DKP. On the other hand, OGA requires more memory than existing greedy
algorithms since we use larger-sized lists. However, OGA has no spatial barriers
with the existing data sets.

4 Results and Discussion

4.1 Experimental Design

The experiments are to answer the following questions:

1. When running independently, is the OGA algorithm better than existing
greedy algorithms for DKP (including GR-DKP, NROA, and D-GROA)?
OGA, GR-DKP, NROA, and D-GROA will fix and improve input candidate
solutions generated randomly under two cases:

– Case 1: A total of 5 percent of groups in a solution will have an item
selected while the remaining groups are empty. This case checks how well
the greedy algorithms work when they have more container space to do
what they are designed for.

– Case 2: Candidate solutions of length 2n binary bits are randomized with-
out any restrictions and then converted to the format used by each greedy
algorithm.
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In each of the two cases, each algorithm performs 100 runs per data set
instance.

2. Which type of input candidate solution works better with OGA? Should the
candidate solution be empty (which forces the greedy algorithm to add items
to it) or overfull (a lot of items are in it, and the greedy algorithm mostly
removes items from the solution)?
The proposed OGA algorithm will be tested in the following cases:

– Case 1: The candidate solution is empty.
– Case 2: All groups have the combined item (item 1 + item 2) selected.
– Case 3: All groups have the best value/cost item selected.

The first case helps examine how well OGA adds items to an empty candidate
solution. Following are the two cases where the container is overfull, i.e., the
maximum cost is very far exceeded.

3. When the greedy algorithms under consideration are combined with a global
search algorithm for DKP to form hybrid algorithms, which resulting hybrid
algorithm gives better results?
The group theory optimization algorithm (GTOA) [10] is the global search
algorithm of our choice. To our knowledge, the hybrid between GTOA and D-
GROA provides the best results that a metaheuristic could achieve in solving
DKP until now. The following combinations will be examined:

– GTOA as the global search and D-GROA as the greedy repair operator.
– GTOA as the global search and OGA as the greedy repair operator.

For fairness, these algorithms use the same values for shared parameters.
The population size is 50, and the maximum iteration is 1000. The mutation
probability, a parameter used by GTOA, has the value of 0.008, which [10]
suggested. The test runs 30 times separately.

A total of 40 DKP data set instances available at [9] are used. They are
classified into four categories: strongly correlated (SDKP), weakly correlated
(WDKP), uncorrelated (UDKP), and inverse correlated instances (IDKP). Cor-
relation is strong when the value and cost of an item are closely related and
weak when the relationship is loose. Each data set types consists of 10 instances
with the number of groups ranges from 100 to 1000. The test algorithms are
programmed in Python and run on VUW’s Rāpoi HPC cluster.

4.2 OGA, GR-DKP, NROA, and D-GROA Run Individually

Table 5 shows the resulting statistical results. To save space, we include only
test results of instances of sizes 2 and 8 (IDKP2, IDKP8, SDKP2, SDKP8,
UDKP2, UDKP8, WDKP2, and WDKP8) because they can represent instances
with a small and large number of dimensions. The Instance column indicates the
instance’s name along with the optimum value for that instance. The next four
columns show the statistical results of case 1, and the last four are for case 2. The
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Table 5. Mean total values and standard deviation of returned solutions of 100 runs.

Instance Case 1 Case 2

GR-DKP NROA D-GROA OGA GR-DKP NROA D-GROA OGA

IDKP2 116,981.8 116,923.6 117,021.7 117,834.4 96,790.3 96,791 96,710.6 97,374.7

118,268 ±445.6 ±441.6 ±403.2 ±142.4 ±1,718.5 ±1,490.3 ±1,997 ±1,876.1

IDKP8 528,510.5 528,471.1 528,267.8 532,544.5 438,036.1 437,246 437,852.6 465,002.9

533,841 ±899.2 ±901.8 ±933.5 ±251.5 ±4,748.2 ±3,914.3 ±4,098.2 ±11,903.1

SDKP2 157,546.7 157,671.8 157,563.4 160,394.6 137,443.3 137,174.5 137,353.3 149,711.3

160,805 ±585.2 ±557 ±522.5 ±181.1 ±2,194.4 ±2,215.9 ±2,340.8 ±3,553

SDKP8 657,395.7 657,319.1 657,338.2 669,587.5 579,852.9 579,601.2 579,980.5 632,389.3

670,697 ±1,064.7 ±965.9 ±1,037.2 ±331.1 ±3,865.4 ±4,357.6 ±3,961 ±3,997.5

UDKP2 141,015.3 141,097.7 141,138.7 162,969.8 113,191.4 113,157 113,912.7 139,422.3

163,744 ±1,026.4 ±834.5 ±991.3 ±521.5 ±4,601.5 ±4,775.2 ±5,393.2 ±7,675.2

UDKP8 552,595.9 553,113.7 553,090.7 647,948.8 491,782.6 491,065.2 491,337.3 596,095.9

650,206 ±2,279.1 ±2,197.1 ±2,160.8 ±840.4 ±5,906.2 ±6,149.6 ±5,787.8 ±4,374.1

WDKP2 136,374.5 136,440 136,419.8 137,874.5 114,003.7 114,406.6 114,516 121,210.1

138,215 ± 479.1 ± 454.5 ± 492.2 ± 149.4 ± 1971.8 ± 1974.7 ± 1660.3 ± 4173.8

WDKP8 569,239.4 569,289.3 569,250.2 575,940.7 483,947.6 482,473.9 482,193.5 529,318.1

576,959 ± 872.4 ± 953.3 ± 976.5 ± 354.5 ± 4448.9 ± 4075.5 ± 4382.3 ± 6271.4

four sub-columns of each case represent the four greedy algorithms evaluated.
The data shown for each algorithm is the mean value of 100 total values returned
after 100 runs, along with the standard deviation of these 100 total values,
preceded by a ± sign. This statistical table also integrates the results of the
Wilcoxon rank-sum test [6] with a significant level of 0.05. The highlighted values
are statistically significantly different from those of the remaining algorithms.

Table 5 shows the superiority of the proposed OGA algorithm. It has bet-
ter mean total values in all cases and instances. In terms of standard deviation,
OGA has very small standard deviation values in tests of case 1, which means its
output solutions are primarily at the same performance level. In case 2, when the
candidate solutions’ total costs are close to the maximum and greedy algorithms
could not do many things, such a difference in standard deviation could not
be repeated. Although the paper’s length limitation prevents us from showing
the test results in all 40 instances, looking at them also gives interesting facts.
Our greedy algorithm obtains the optimal value in three instances (WDKP1,
UDKP2, UDKP3). In most cases, our algorithm has established quite a distance
in performance compared to existing greedy algorithms and is close to the opti-
mum values. Observing the results of combining OGA with a suitable global
search algorithm will be interesting.

4.3 Effects of Solution Initialization Strategy

To save space, Table 6 shows the OGA’s results for instances of sizes 2 and 8
only. The Instance column specifies the instance name, the OPT column stores
the instance’s optimal total value, and the three final columns store the total
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Table 6. OGA’s results on different types of starting candidate solution.

Instance OPT Case 1 Case 2 Case 3

IDKP2 118,268 118,232 118,232 118,232

IDKP8 533,841 533,816 533,816 533,816

SDKP2 160,805 159,327 159,636 159,327

SDKP8 670,697 662,633 664,203 662,633

UDKP2 163,744 144,552 160,381 144,552

UDKP8 650,206 580,800 638,912 579,784

WDKP2 138,215 137,457 137,747 137,457

WDKP8 576,959 574,358 575,221 574,358

value of the solution returned by OGA in each test case. Note that in case 1,
the solution is initialized empty (every bit is 0). Case 2 is when the solution is
initialized with both item 1 and item 2 of all groups selected. Finally, in case 3,
the solution starts with the best value/cost item of each group selected.

Test results show that, if started with a solution in which all groups have both
item 1 and item 2 selected, OGA often gives better results by removing items
until the solution is within the maximum cost. This conclusion may suggest later
algorithms for DKP a promising strategy for generating candidate solutions.

4.4 The Combination of Greedy Algorithms with Global Search

Finally, we investigate how OGA and other greedy algorithms for DKP con-
tribute to the final result in cooperation with a global search algorithm. In such
a combination, global search algorithms cover the solution space, while greedy
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algorithms act as repair operators which modify and optimize candidate solu-
tions given by the global search. In this experiment, the global search algorithm
is GTOA [10], while OGA and D-GROA will be the repair operators. For simplic-
ity, we refer to the hybrid algorithm between GTOA and D-GROA as GTOA-D
and the hybrid algorithm between GTOA and OGA as GTOA-O.

Figure 2 shows the percentage differences of the mean total values between
GTOA-O and GTOA-D. To obtain these values, for each hybrid algorithm and
test instance, we calculate the mean value of 30 total values of 30 best solutions
returned after 30 runs. After that, the difference between the mean values of
GTOA-O and GTOA-D is calculated for each test instance. To save space, we
only include the results of instances of sizes 2 and 8. The GTOA and OGA
hybrid algorithm gives much better results than the combination of GTOA and
D-GROA. The least difference is 19.22% in the case of SDKP2, while it is 51.07%
in the case of UDKP8.

Figure 3 illustrates the average running time of GTOA-D and GTOA-O over
30 runs. These results reflect the natural differences between D-GROA and OGA.
D-GROA is more uncomplicated and runs faster than OGA. In the worst case,
GTOA-O needs 60% more time than the GTOA-D. This compromise is necessary
to achieve much better results in most cases.

5 Conclusions

This paper has proposed a new operation-based greedy algorithm (OGA)
for DKP. Our algorithm integrates many improvements: new heuristics based
on value and cost re-perceptions, consisting of the new contribution-based
value/cost coefficients and a new dual-ranking system; and most importantly,
a more reasonable system of operations to replace the existing list of items.
The experiments have shown that OGA is a robust greedy algorithm for DKP.
No matter how bad the input candidate solutions could be, OGA consistently
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produces high-quality solutions. Furthermore, OGA has impressive results com-
pared to existing greedy algorithms when functioning as a repair operator for
global search algorithms. Of course, more completeness comes at the expense of
higher computational time, but clearly, the cost is worth it.

For such a problem of a hardness level as DKP, greedy local search algorithms
are usually not enough to find optimal solutions. Instead, hybrid metaheuristics
in which global optimizers such as swarm-based algorithms [14,15] cooperate
with local greedy algorithms should be an answer. For this work focuses on greedy
algorithms only, more studies of how a global search algorithm should best use
OGA will be necessary. Thus, we plan to develop a new global optimization
algorithm for DKP in the future.

References

1. Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems - an overview
of recent advances. Part I: single knapsack problems. Comput. Oper. Res. 143,
105692 (2022)

2. Dang, B.T., Truong, T.K.: Binary salp swarm algorithm for discounted {0 − 1}
knapsack problem. PLOS ONE 17(4), 1–28 (2022)

3. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288
(1957)

4. Emerson, P.: The original Borda count and partial voting. Social Choice Welfare
40(2), 353–358 (2013)

5. Guldan, B.: Heuristic and exact algorithms for discounted knapsack problems.
University of Erlangen-Nürnberg, Germany (2007)

6. Haynes, W.: Wilcoxon Rank Sum Test, pp. 2354–2355. Springer, New York (2013).
https://doi.org/10.1007/978-1-4419-9863-7 1185

7. He, Y.C., Wang, X.Z., Li, W.B., Zhang, X.L., Chen, Y.Y.: Research on genetic
algorithms for the discounted {0−1} knapsack problem. Jisuanji Xuebao/Chin. J.
Comput. 39(12), 2614–2630 (2016)

8. He, Y.C., Wang, X.Z., He, Y.L., Zhao, S.L., Li, W.B.: Exact and approximate
algorithms for discounted {0 − 1} knapsack problem. Inf. Sci. 369(C), 634–647
(2016)

9. He, Y.: Four kinds of D{0 − 1}KP instances. ResearchGate (2019)
10. He, Y., Wang, X.: Group theory-based optimization algorithm for solving knapsack

problems. Knowl.-Based Syst. 219, 104445 (2021)
11. He, Y., Wang, X., Gao, S.: Ring theory-based evolutionary algorithm and its appli-

cation to D0–1 KP. Appl. Soft Comput. 77, 714–722 (2019)
12. Li, Y., He, Y., Liu, X., Guo, X., Li, Z.: A novel discrete whale optimization algo-

rithm for solving knapsack problems. Appl. Intell. 50, 3350–3366 (2020)
13. Mathews, G.B.: On the partition of numbers. Proc. Lond. Math. Soc. s1–28(1),

486–490 (1896)
14. Nguyen, B.H., Xue, B., Andreae, P., Zhang, M.: A new binary particle swarm

optimization approach: momentum and dynamic balance between exploration and
exploitation. IEEE Trans. Cybern. 51(2), 589–603 (2021)

15. Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to
feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020)

https://doi.org/10.1007/978-1-4419-9863-7_1185


660 B. T. Dang et al.

16. Sulaiman, A., Sadiq, M., Mehmood, Y., Akram, M., Ali, G.A.: Fitness-based accel-
eration coefficients binary particle swarm optimization to solve the discounted
knapsack problem. Symmetry 14(6), 1208 (2022)

17. Truong, T.K.: different transfer functions for binary particle swarm optimization
with a new encoding scheme for discounted {0−1} knapsack problem. Math. Prob.
Eng. 2021 (2021)

18. Wilbaut, C., Hanafi, S., Coelho, I.M., Lucena, A.: The knapsack problem and
its variants: formulations and solution methods. In: The Palgrave Handbook of
Operations Research, pp. 105–151. Springer, Heidelberg (2022),https://doi.org/
10.1007/978-3-030-96935-6 4

19. Wu, C., Zhao, J., Feng, Y., Lee, M.: Solving discounted {0−1} knapsack problems
by a discrete hybrid teaching-learning-based optimization algorithm. Appl. Intell.
50, 1872–1888 (2020)

20. Zhu, H., He, Y.C., Wang, X., Tsang, E.C.: Discrete differential evolutions for the
discounted {0−1} knapsack problem. Int. J. Bio-Inspired Comput. 10(4), 219–238
(2017)

https://doi.org/10.1007/978-3-030-96935-6_4
https://doi.org/10.1007/978-3-030-96935-6_4


Dynamic Bus Holding Control Using
Spatial-Temporal Data – A Deep
Reinforcement Learning Approach

Yuguang Zhao1(B) , Gang Chen1 , Hui Ma1 , Xingquan Zuo2 ,
and Guanqun Ai2

1 Victoria University of Wellington, Wellington, New Zealand
zhaoyugu@myvuw.ac.nz, {aaron.chen,hui.ma}@ecs.vuw.ac.nz

2 Beijing University of Posts and Telecommunications, Beijing, China
zuoxq@bupt.edu.cn

Abstract. This paper proposes a deep reinforcement learning (DRL)
approach that dynamically determines the dispatching of bus services at
the starting bus stop for a high-frequency bus service line. Most previous
studies focus on planning bus timetables in advance based on expected
future passenger demand. They often ignore real-time data and are there-
fore not competent at handling unexpected passenger demand fluctua-
tions. To address this issue, we propose a Spatial-Temporal data driven
Dynamic Holding (STDH) approach in this paper to dispatch bus on
the fly at any decision granularity, e.g., every minute. Both spatial and
temporal information regarding bus fleet and passengers are captured
in a newly designed state matrix. STDH further employs a Deep Q-
Network (DQN) based learning system to optimize timetabling decisions
dynamically. Our DQN features the use of a newly designed self-attention
network architecture to facilitate effective processing of spatial-temporal
data, enabling DRL to make desirable bus dispatching decisions in accor-
dance with real-time passenger flow. Experiments have been conducted
using real-world data collected in Xiamen China. Our experiments show
that STDH can effectively learn a control policy to dynamically dispatch
bus services in a high-frequency urban line.

Keywords: Dynamic bus holding control · Spatial and temporal
information

1 Introduction

The bus transportation system is a critical public service in many cities and
an effective solution to alleviate urban congestion, protect the environment and
save social resources [11]. However, the service quality is unstable in many cities.
Common problems are low punctuality, long in-vehicle travel times, crowded
buses or stranded passengers during peak hours [3]. Therefore, improving the
quality of service of bus transit systems and operational efficiency is necessary
to attract more citizens from private vehicles to public transit.
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Traditionally, bus timetables are determined through tactical planning [11].
When bus trips deviate from planned headways that measure the time intervals
between consecutive bus dispatches, local bus holding control is applied where
bus drivers are instructed to move on or hold at a bus station [7,21]. While
being simple, local holding control has several limitations. It ignores “global”
information including bus occupancy and passenger demand. In addition, it does
not consider the impacts of current holding on future bus trips.

Most existing bus holding control strategies are also static in nature [4]. They
rely on expectations of passenger demand and fleet operation, which is hard to
hold in practice due to the unstable nature of bus operations [19]. Moreover,
it is common that minor disruptions of one trip can cause cascading effects on
multiple subsequent trips [18]. To address these issues, leveraging on the fast
advancement of Intelligent Transportation Systems (ITS) and Automatic Fare
Collection (AFC) Systems, dynamic bus holding control has attracted increasing
attention recently. Existing research showed that dynamic holding is essential for
high-frequency bus line services (i.e., bus lines with headways of no more than
10–15 minutes during peak hours [6,10]). This is because passengers tend not to
look at published timetables before arriving at bus stops [6] for high-frequency
lines.

With the rising popularity of Deep Reinforcement Learning (DRL) [15], the
technology has been applied to many challenging real-time control problems
with great success. In recent years we are witnessing the trend of transform-
ing traditional human-involved or static controls to DRL-based autonomous
control in traffic signal control (TSC) [20], autonomous driving [9] and rail-
way scheduling [14]. The dynamic nature of bus operations and passenger flow
make the bus holding problem a good candidate for DRL approaches. Several
DRL-based approaches for dynamic bus holding control have been developed
successfully [1,2,5,18]. For example, [5] proposed a Q-Learning based technique
to evenly distribute all on-trip buses. A similar approach was proposed by [2]
using DQN algorithm. [18] proposed a decentralized DRL algorithm to achieve
headway equalization and vehicle coordination.

All these research works assumed a fixed number of running buses and suf-
ficient bus capacity (i.e., no stranded passengers), which may not be always
practical. To address this issue, a recent study [1] explored a different approach
for bus holding control at the starting stop. However, the effectiveness of this
approach depends critically on the knowledge of future passenger demand and
bus occupancy. Furthermore, temporal and spatial information is not explored
extensively in prior DRL-based approaches. For example, in [18], the number of
currently waiting passengers at each stop is included in state information. How-
ever, the number of waiting passengers in the past at adjacent downstream stops
are not considered for optimal bus holding control. Furthermore, prior dynamic
control approaches often ignored the variability of passenger demand due to the
unrealistic assumption of sufficient bus capacity (i.e., no stranded passengers).
Operational cost is also neglected, as the total number of bus trips is assumed
to be either fixed [2,18] or unlimited [19].
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Following [1], this paper aims to propose a new Spatial-Temporal data-driven
Dynamic Holding (STDH) approach that can quickly and dynamically respond
to riding demand changes. It makes real-time dispatching decisions on the first
stop of a high-frequency bus line, taking into account both spatial and temporal
information regarding bus fleet and passengers. STDH also adopts a combined
objective that balances passenger demand fulfilment and bus operational effi-
ciency, subject to constraints on the maximum number of running buses, bus
capacity limitation, as well as the minimum and maximum headways. We focus
on the single-stop bus holding problem because it significantly impacts the total
operational cost of a high-frequency bus line. The dispatching times of all trips
at the first stop effectively determine the total number of trips for a service day.
This paper has the following contributions:

1. We design a new state matrix to capture both spatial and temporal data
regarding passenger and fleet status. Historical information regarding on-
going bus trips and past passenger arrivals is important in identifying the
riding demand trend. Spatial information regarding bus locations are also
important for bus holding control, since adjacent bus trips are highly corre-
lated and should be considered collectively for the holding control agent.

2. We propose a new reward function to achieve a good trade-off between pas-
senger satisfaction and bus operational efficiency. We use positive rewards to
indicate the fulfilment of passenger riding demand and negative rewards to
indicate the bus operational cost, passenger waiting time as well as the corner
cases when passengers get stranded or give up waiting.

3. We develop a self-attention neural network architecture [17] to effectively
process the spatial-temporal data embedded in the state matrix, in order
to determine the degree of attentions on bus trips with strong spatial and
temporal dependencies. It enables the holding control agent to learn quickly
and reliably in our experiments.

4. We implement a comprehensive simulator based on real-world data collected
in Xiamen China. Our simulator considers the realistic resource constraints
without relying on the common assumption of unlimited bus trips. In addi-
tion, passenger stranding due to limited bus capacity and passengers who give
up are also supported the first time by our simulator.

2 Problem Description

In this section, we describe the dynamic bus holding control problem with real-
istic constraints.

Single Stop Bus Holding Control. In this paper we consider a bus line as an
one-way corridor with a fixed number (N) of bus stops S ∈ (s0, ... sN−1), where
N is the total number of stops. To service passengers’ riding demands multiple
bus trips are dispatched every operational day. All buses are dispatched from stop
s0 and travel through all stops until the last stop sN−1 where all passengers must
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alight. Single stop bus holding control aims to dynamically hold and dispatch
every bus trip at the first stop (s0). Figure 1 illustrates the overall holding control
process. At every minute (or any other decision granularity), the holding control
agent dynamically determines bus headways by making “dispatch” or “hold”
control decisions at stop s0, with the objective to to minimize operational cost
while optimizing customer riding experience (defined by the reward function in
Sect. 3.1).

Bus holding control is subject to several key constraints. Specifically, all buses
have a predefined capacity constraint and can only carry a certain number of
passengers at maximum. In addition, the bus company can only support a specific
number of ongoing bus trips at any time. There are various headway ranges
used in previous studies focusing on high-frequency buses [6,10]. We adopt a
common range of 3–15 minutes in our study. The following steps are performed
periodically every minute.

Step 1: A snapshot of bus locations and passenger counts during the last minute
is collected;

Step 2: A state matrix representing spatial-temporal information is constructed
based on the newly collected and historical information;

Step 3: An action (“dispatch” or “hold”) is selected by the holding control agent;
Step 4: The front bus at the first stop (s0) operates according to the control

decision in Step 3;
Step 5: The system progresses for one minute, all running buses move ahead

and interactions between buses and passengers take place.

snapshot

history

decision

dispatch

hold

Timetable

ac on

Time    Dispatch
6:30     Y
6:31     N
…
6:35     Y

Stop 0 Stop 1 Stop N-1

Stop 0 Stop 1

Stop 0 Stop 1

Time

Agent

Bus

Stop

Passengers

Dispatch

Hold

Stop N-1

Stop N-1

Fig. 1. A DRL-based single stop holding control framework.

As shown in Fig. 1, the holding control agent either dispatches a new bus trip
or holds the front bus at the first stop based on the state matrix, which is updated
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every minute in accordance with the bus dispatch times, fleet operational data,
and passenger flow data (see Subsect. 3.1). In Sect. 3, we develop the STDH
approach that formalizes this learning problem as a single-agent reinforcement
learning problem.

3 The STDH Approach for Dynamic Bus Holding
Control

3.1 Problem Setup

We formally model the single-stop timetabling problem as a reinforcement learn-
ing problem in this paper. Specifically, the holding control agent has the goal to
learn an optimal control policy (π∗) that takes agent observation (ot) at any time
t as its input and outputs a bus holding decision (at = π∗(ot)), such that the
expected total rewards obtainable within an operational day can be maximized:

π∗ = argmax
π

E[
Te∑

t=Tb

R(ot, π(ot))], (1)

where Tb and Te refer to the earliest and latest service time of the bus line respec-
tively. R(ot, π(ot)) gives the immediate reward for the holding control agent
based on its current decision at time t. ot is the agent’s observation described
below.

Observation Space Design. In a reinforcement learning problem, there are
two types of state information: environment states and agent observations. Envi-
ronment states are not directly accessible to the agent. An example is passenger
destination, which is not known to the agent until a passenger alights from a
bus. Agent observation refers to state information exposed to the agent at each
step. In STDH, we design the observation as a M × (3 ∗ N + 1) state matrix in
Eq. (2), where M stands for the maximum number of running buses at any time.
The state matrix contains information of the last M − 1 trips plus the next trip
which is yet to be dispatched. Particularly, each row of the state matrix captures
the information of one trip across all bus stops (from s0 to sN−1).

Obs(t) = (Trip(M−1), ...T rip1, T rip0)T (2)

Trip0 in Eq. (2) denotes the trip subject to holding control at the first stop at
time t. Tripi is the i-th trip. Each trip has several stops sij at which passengers
can board and alight. We model a trip Tripi with a set of attributes, i.e., Tripi =
(HW (i), [LD(i, 0), BD(i, 0), AL(i, 0)], . . . , [LD(i,N−1), BD(i,N−1), AL(i,N−
1)]). Each attribute of Tripi is explained below:

– HW (i): Dispatch headway of trip i. It measures the difference between the
dispatching time of this trip and its preceding trip at the first stop s0. For
Trip0 under holding control, we set it to the period between the dispatch
time of Trip1 and the current time;
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– LD(i, j), j ∈ {0, . . . , N − 1}: Bus load information of Tripi. It represents the
number of passengers in the bus of Tripi between stop sj and stop sj+1;

– BD(i, j), j ∈ {0, . . . , N − 1}: Boarding numbers at stop sj for Tripi;
– AL(i, j), j ∈ {0, . . . , N − 1}: Alighting numbers at stop sj for Tripi.

Bus loads (LD), Boarding (BD) and Alighting (AL) of Tripi in the state matrix
are all set to (−1) whenever the corresponding bus stops have not been visited by
trip Tripi. For the example state matrix in Table 1, for Trip0, dispatch headway
HW (0) = 3, meaning that the bus waiting at stop 0 has been held for 3 min after
the previous trip. Previous trips are either finished (i.e. TripM−1 and TripM−2)
or still running. For example, Trip1 has passed stop s0 and is cruising towards
stop s1 since the passenger counts at stop s1 LD(1), BD(1) and AL(1) are -1.

Table 1. A Sample Observation Space Representation.

Trip HW LD(0) BD(0) AL(0) LD(1) BD(1) AL(1) ... AL(N − 1)

TripM−1 8 4 4 0 7 3 0 ... 7

TripM−2 4 7 7 0 8 1 0 ... 9

Trip... 4 3 3 0 4 2 1 ... 17

Trip1 7 10 10 0 −1 −1 −1 ... −1

Trip0 3 −1 −1 −1 −1 −1 −1 ... −1

Spatial and temporal information regarding both the latest and upcoming
trips are captured in the state matrix. Particularly, each row gives the spatial
location of every bus trip, which can be easily determined from the state matrix
by checking the index of the first −1 value along the row. Meanwhile, each column
provides temporal/historical information regarding the bus load, boarding and
alighting passengers with respect to every bus stop. They jointly enable the
holding control agent to determine the relationship among all ongoing bus trips
as well as the future riding demand trend. Our state matrix can be constructed
by using AFC and history data, making it practical for real-world use.

Action Space. The action space of our algorithm is very small, including two
alternative actions, i.e., “dispatch” and “hold”. Accordingly, the headway is
determined after every “dispatch” action. For example, a 5 min headway is deter-
mined by a “dispatch” action following four consecutive “hold” actions.

Reward Function Design. We design the reward function as a weighted sum
of the bus operational cost and passenger satisfaction, as presented below:

R(o, a) = wb × Nboarding + wa × Nalighting

+ wd × Ndispatching + ww × Twaiting + ws × Nstranding + wl × Nleaving

(3)
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where wb, wa > 0 are coefficient for positive reward components. wd, ww, ws, wl <
0 are coefficients for negative reward components. All these coefficients are con-
figured in accordance with their practical significance (See Subsect. 4.1 for more
details in our experiments). Each reward component in Eq. (3) is explained
below:

1. Nboarding: The number of total boarding passengers during time period (t,
t + 1).

2. Nalighting: The number of total alighting passengers during time period (t,
t + 1).

3. Ndispatching: Dispatch cost, 1 if a new bus trip is dispatched and 0 otherwise.
4. Twaiting: Total waiting time across all passengers waiting at all stops during

time period (t, t + 1).
5. Nstranding: The total number of stranded passengers due to limited bus capac-

ity during time period (t, t + 1).
6. Nleaving: The total number of passengers who gave up after waiting for long

time during period (t, t + 1).

In the above, positive reward components reflect successful fulfillment of pas-
senger riding demands, which will be maximized. Negative reward components
refer to the operational cost and other losses to be minimized.

Fig. 2. Training methodology.

3.2 Holding Control Agent

We develop a holding control agent based on the double DQN algorithm, where
Q-values are estimated using “self-attention” embedding of states matrices. The
overall behavioral of our holding control agent is depicted in Fig. 2 with three
key steps:

– State encoding: the agent collects and encodes state information using a
self-attention based neural network;

– Action value estimation: the Q values are estimated using the double DQN
algorithm proposed in [8];

– Action selection: the agents makes “dispatch” or “hold” control decisions,
guided by the learned Q values. Steps 1 and 3 are discussed in more details
below.
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Self-Attention State Encoding. We propose a self-attention based neural
network architecture (Fig. 3) for state encoding. The “attention” mechanism
was initially introduced in an encoder-decoder architecture to process sequential
data with both spatial and temporal dependencies [17]. Instead of only looking
at the last “hidden” state as classical RNNs, self-attention neural networks can
achieve state-of-the-art performance by looking at elements of the input sequence
at all positions and learning to “attend” to important ones.

Fig. 3. Self-attention state encoding.

In this paper we define Attention as a function that maps a query vector (q)
and each key vector (k) of a set of key-value pairs to weighting numbers that
quantify the “compatibility” between the query and the key. The output of the
attention function is a weighted sum of the original value vector (v) based on
the calculated weighting numbers. Self Attention is the attention function where
q, k and v are identical. Furthermore, the commonly used dot-product attention
function is realized through matrix multiplication, where sequences of q, k, and
v are packed into matrices Q, K and V respectively: Attention(Q,K, V ) =
softmax(QKT )V .

We depict the self-attention network architecture adopted in STDH in Fig. 4.
Specifically, Query matrix (Q), Key Matrix (K) and Value matrix (V ) in our
attention network are identical copies of the state matrix as we defined in Eq. (2)
with a size of the M ×L, where L = 3∗N +1. Each row of the three matrices (q,
k, v) represents the feature vector of one trip. To calculate the “compatibility”
between any pair of trip vectors, we project both q and k vectors into different
feature spaces (L′) before applying dot-product attention below:

Attention(Q,K, V ) = softmax((QWq)(KWk)T )V (4)

where Q,K, V ∈ R
M×L, and Wq,Wk ∈ R

L×L′
.

Our self-attention function (Eq. 4) uses two trainable projection matrices (Wq

and Wv) to project the original query and key features from an L-dimensional
space into a smaller L′-dimensional space (we used L′ = 6 in our experiments,
where the original query and key dimensions are L = 109). softmax[(QWq) ·
(KWk)T ] ∈ R

M×M is a matrix of the attention weights between all pairs of
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Fig. 4. The self-attention network of STDH.

trips. The output of the self-attention network is of the dimension M ×L, where
each row contains attention weights of all M trips with respect to one trip in
the state matrix. Therefore, the left part of the self-attention network in Fig. 4
focuses on processing spatial information in the state matrix. The right part of
this network focuses on processing temporal information.

Positional Embedding. For positional embedding, we adopt one of the widely
used “learnable pattern” [16] shown in Eq. (5) that adds an L-dimensional vector
to each row of the state matrix.

embedded(Obs(t)) = Obs(t) + (E(1), . . . , E(M))T (5)

E(m) is a trainable embedding function that maps every integer m ∈ {1, . . . , M}
to an L-dimensional vector.

Action Selection. Building on the high-level features extracted by the self-
attention network from the input state matrices, Q-values are further estimated
using a feed-forward neural network trained by the double DQN algorithm [8].
Using the estimated Q-values, the behavioral policy used during Q-learning is
determined according to the ε-greedy strategy shown below.

π(s) ←
{

argmaxa∈AQ(s, a) with probability of 1 − ε

random(A) with probability of ε
(6)

Additional constraints are also considered by the holding control agent during
action selection. Specifically, the agent must select its action to meet the con-
straints on the minimum and maximum headway. Meanwhile, we prevent the
holding control agent from selecting the “dispatch” action whenever no bus is
available to dispatch at any time t.
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4 Experiment

We use data collected from a specific bus line (BRT Line 2 in Xiamen city,
China) as experimental data. Xiamen’s Bus Rapid Transit (BRT) is a bus rapid
transit system in Xiamen, China. It was established in 2008 and is one of the
earliest elevated BRT networks in China that allow buses to operate at high
speed with small headways [12]. The implementation code and experiment data
are available here.

Table 2. Learning performance of three DQN models.

DQN architecture Average reward Max reward Training time

Self-attention DQN 1158 1891.6 4 h 25min

Fully connected DQN [1] 584.4 1690.8 1 h 5min

CNN-DQN [8] −1629 1201.2 2 h 29min

4.1 Experiment Data

There are two cruising directions for BRT Line 2 (upward and downward). We
take the direction upward as the experimented bus line. The environment is sim-
ulated based on real passenger swiping records and bus travel time information
collected on a random day in June 2018. Some pre-processing steps are performed
to simulate passenger arrival times based on corresponding boarding times since
it is required for passenger waiting time calculation and is not directly recorded
in AFC. A uniform distribution of arrivals during two consecutive buses at each
stop is assumed as a valid estimation because passengers are more likely to arrive
randomly for high-frequency bus lines without planning ahead [6]. An overview
of the daily operational data is summarized as following:

1. There are 36 stops in total for the BRT Line 2 upward direction.
2. The first bus was dispatched at 6:15 and the last at 22:30. A bus trip takes

between 51 and 64 min, with an average of 61 min.
3. The total number of passengers is 4346 for the day. The average number of

hourly passengers is 256, ranging from 59 to 634. Peak hours are between
7:00–10:00 and 16:00–19:00, with more than 300 passengers per hour.

In the simulated environment for the holding control agent, we set the max-
imum number M of running buses at any time to 13 and the capacity C of
buses to 30 according to the real world operational data of BRT Line 2. Follow-
ing [1], the minimum headway Hmin = 3 min and the maximum headway Hmax

= 15 min. We also set the maximum waiting time for all passengers W = 15 min.
The various coefficients of the reward function in Eq. (3) are configured as

follows: boarding coefficient wb = 1, alighting coefficient wa = 1, dispatching
coefficient wd = −30, waiting time coefficient ww = −0.2, stranding coefficient
ws = −2, and leaving passenger coefficient wl = −5. In our experiments, the
coefficient of waiting time is set to −0.2, and the boarding coefficient is set to
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1.0, such that the cost of waiting time is on par with the boarding reward when
a passenger waited for 5 min. Any longer waiting time is considered to hurt
passengers’ satisfaction [6,10]). When one passenger is finally alighted at their
destination, a point of 1.0 is rewarded to the agent for the transportation of this
passenger. Since the operational cost of one bus trip is set to −30, a trip serving
more than 30 passengers (the capacity limit of any bus) is considered beneficial
with overall positive rewards.

Table 3. Comparison of four competing approaches on the original passenger demand.

Policy Reward Dispatches Boarded Avg waiting Stranded Left

STDH 1891.6 124 4345 3.52 1 1

SH 1703.8 141 4343 3.11 17 3

NH −23594.4 124 4083 6.07 150 263

EH 510.6 105 4287 4.99 170 59

Table 4. Comparison of four competing approaches on the passenger demand with
shifted peak hours.

Policy Reward Dispatches Boarded Avg waiting Stranded Left

STDH 1567.6 118 4341 4.01 33 5

SH 1193.2 141 4329 3.49 62 17

NH −23869 124 4068 6.31 146 278

EH 1046.6 105 4322 4.82 79 24

4.2 Experiment Results

In this subsection we report the hyper-parameter settings of the holding control
agent and then present and discuss the performance results.

Hyper-Parameter Settings. In our experiment, every episode of training
data for the holding control agent contains a fixed number of records (1050 in
our experiments based on recorded bus services between 6:15 AM and 23:45 PM
during an operational day). The capacity limit of the replay buffer is set to 10,000
records and the batch size is set to 64. Thus at each training iteration, 64 records
are selected randomly from the replay buffer to train the holding control agent.
Each experiment involves 300k training iterations. ε in Eq. (6) is initialized as
1.0 and decreased linearly at each iteration until it reaches its minimum value of
0.01. Adam optimizer with a learning rate of 0.001 is configured as the gradient
descent optimizer.

Main Results. We evaluated three DQN network architectures in our experi-
ments. Besides the self-attention DQN model proposed in Subsect. 3.2, we used
convolutional DQN (CNN-DQN) [13] and fully connected DQN [8] as competing
approaches.
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Table 2 summarizes the respective learning performance. The total rewards
reported in the table are obtained by testing the final trained DQN models on the
original passenger data. The self-attention DQN model clearly outperformed the
other two DQN models in terms of both the average and max total rewards. Any
statistically significant results verified by a pairwise T-test with a significance
level of 0.02 are bolded in the table.

The total training time on a Linux desktop computer with Intel i7 processor
and 16 GB of memory is about one hour for the fully connected DQN and two
hours for CNN-DQN. Our self-attention DQN takes longer time to train (approx.
4 h). Despite of the difference in training time, the training time required by
all models are considered acceptable since the trained models can be used for
dynamic bus holding control on many operational days.

Further Analysis. To demonstrate how the STDH approach can dispatch
buses responding to real-time passenger demand fluctuations, We compare our
STDH approach against three commonly practiced bus holding approaches for
comparison:

– The proposed STDH control approach (STDH ): A policy trained using the
proposed STDH approach.

– Naive equal headway holding control (EH ): A “hard” holding control app-
roach determined by a pre-fixed headway [5], such that dispatching time is
evenly distributed for a day’s service. We set this to 10 min in our experi-
ments.

– Naive schedule-based holding control (SH ): Buses departure intervals are set
differently for peak hours and non-peak hours respectively based on expec-
tations [18]. We use 8 min headway during peak hours and 15 min headway
during non-peak hours in our experiments.

– No holding control (NH ): The original dispatching times at the first station
are used directly to mimic the original timetable generated by human opera-
tors.

Tables 3, 4, and 5 compare these approaches in terms of the total number of
dispatched bus trips, the total number of boarded passengers, the total amount
of passenger waiting time, the total number of stranded passengers, and the total
number of passengers who gave up with respect to the three passenger demand
scenarios.

Table 5. Comparison of four competing approaches on the passenger demand with
temporal passenger surge.

Policy Reward Dispatches Boarded Avg waiting Stranded Left

STDH 1383.4 125 4799 3.94 221 38

SH 1157 141 4754 3.55 163 83

NH −24183.4 124 4518 6.35 351 319

EH −39.4 105 4698 5.27 316 139
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To further understand the effectiveness of our STDH approach, we have
examined its performance with respect to three passenger demand scenarios.
These scenarios are depicted in Fig. 5 for a single operational day where the
number of passenger arrivals during every time interval of 15 mins is pre-
sented together as a histogram. Meanwhile, the solid lines in the figure represent
the total capacity of bus services dispatched by STDH and manually designed
timetables (i.e., SH approach) respectively for the same time period. Clearly,
STDH can generate demand-responsive bus flows compared with SH. Whenever
the passenger demand changes, the bus flows can change quickly to match the
demand, as evidenced in these figures.

(a) Original passenger de-
mand

(b) Passenger demand with
shifted peak hours

(c) Passenger demand with
temporal surge

Fig. 5. The passenger demand and the corresponding running bus capacity achieved
by STDH and SH.

In comparison to other approaches, STDH achieved the best overall balance
between passenger satisfaction and bus operational cost. Especially, with unex-
pected changes to the passenger demand (i.e., shift peak hours and temporal
passenger surge), STDH shows much better performance in total rewards. For
example, in Table 4 where peak hour passenger demand is switched with non-
peak hour, on average 17 passengers gave up due to prolonged waiting time
caused by using SH, compared with only 5 upon using STDH. Furthermore, SH
is less efficient with an average of 141 dispatched bus trips, compared with only
118 upon using STDH.

5 Conclusions

This paper developed a DRL-based STDH approach for demand-responsive bus
holding control. We proposed a new state matrix and a self-attention neural
network to effectively process dynamic information regarding passenger riding
trend and bus service status.

STDH also adopts a newly designed reward function in order to achieve
a desirable balance between passenger satisfaction and bus operational costs.
Extensive experiments using real-world data showed that STDH can effectively
solve the dynamic bus holding control problem, in comparison to existing DRL-
based approaches and manually designed bus holding control techniques.
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Abstract. The recent advancements and developments in Intelligent Transporta-
tion Systems (ITS) lead to the generation of abundant spatio-temporal traffic data.
Identifying or understanding the latent patterns present in these spatio-temporal
traffic data is very much essential and also challenging due to the fact that there
is a chance of obtaining duplicate or similar patterns during the process of com-
mon pattern identification. This paper proposes an Orthogonal-Constraint Cou-
pled Nonnegative Matrix Factorization (OC-CNMF) method and studies how to
effectively identify the common as well as distinctive patterns that are hidden
in the spatio-temporal traffic-related datasets. The distinctiveness of the patterns
is achieved by the imposition of the orthogonality constraint in CNMF during
the process of factorization. The imposition of the orthogonal constraint helps
to ignore similar/duplicate patterns among the identification of the common pat-
terns. We have shown that imposing orthogonality constraint in CNMF improves
the convergence performance of the model and is able to identify common as well
as distinctive patterns. Also, the performance of theOC-CNMFmodel is evaluated
by comparing it with various performance evaluation measures.

Keywords: Coupled nonnegative matrix factorization · Orthogonal constraint ·
Spatiotemporal · Vehicular traffic pattern mining

1 Introduction

With the recent advancements in ITS [1–3], the general road traffic data is not just
restricted to the count of vehicles on road but other contextual information such as loca-
tion and time [4, 5] becomes available. Incorporating such spatio-temporal context is
challenging and learning traffic behavior patterns becomes a complex and challenging
task. Therefore, in this research, the main focus is on learning peoples’ traffic-related
mobility patterns that will help government and related organizations in traffic plan-
ning, road construction, etc. During the COVID-19 pandemic, the traffic patterns have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 675–689, 2022.
https://doi.org/10.1007/978-3-031-22695-3_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_47&domain=pdf
http://orcid.org/0000-0001-5457-2010
http://orcid.org/0000-0002-8821-6003
http://orcid.org/0000-0003-3115-2325
http://orcid.org/0000-0002-9954-0159
https://doi.org/10.1007/978-3-031-22695-3_47


676 A. Balasubramaniam et al.

drastically changed, and understanding the behavior changes becomes challenging [6,
7]. Previously, by using NMF, Balasubramaniam [8] proposes an NMF-based architec-
ture to understand the variations in spatio-temporal traffic patterns during COVID-19,
whereas NMF [9–11] is one of the matrix factorization-based dimensionality reduction
techniques. A case study has been conducted observing the variations in peoples’ spatio-
temporal mobility patterns in Great Britain. In addition to this, the author has shown that
the independent patterns are present in 2019 and 2020 datasets i.e. before pandemic and
during pandemic traffic datasets, respectively.

To achieve the independent patterns, NMFmust run individually for the two datasets
as proposed in [8]. The interesting question here is: How can we find common as well
as distinctive patterns? One way is: to compare the similarities between the two patterns
achieved by running two NMF models. This may sound good, but this leads to time
complexity. Another way is: finding the solution to identify the common patterns without
running two NMF models. The latter way leads to the motivation for proposing OC-
CNMF in which CNMF identifies only the common patterns that are present in the
provided datasets, whereas CNMF [12–14] is the modified version of NMF. In addition
to this, most of the papers dealingwith COVID-19 scenarios are focusingmainly onwhat
has changed due to COVID-19 but less focusing on identifying the common patterns or
behaviors before and during COVID-19. However, the works focused on comparing the
commonbehaviors are computationally expensive. This problemhas also been addressed
in this work by the implementation of proposing the novel approach of the OC-CNMF
model on vehicular traffic data. The main contributions of this research are (i) Designing
a CoupledNonnegativeMatrix Factorization architecture to learn common patterns from
two different, but related datasets. (ii) Formulate a CNMF with orthogonal constraint
to learn the common, but distinct patterns. (iii) Avoid multiple NMF models through
the proposed OC-CNMF and improve the convergence performance. (iv) Evaluate the
convergence performance of the proposed OC-CNMF by comparing it against NMF and
CNMF models. (v) Identify the common but distinctive patterns on different datasets.
(vi) Evaluating the proposed OC-CNMF model performance by conducting various
performance measures. The outputs of the analyzed common, as well as distinctive
traffic pattern behaviors, will be useful in the fields of traffic management and in various
stages of unprecedented events concerning road traffic.

2 Related Works

Coupled matrix representation is a way to fuse and represent two data together along
one mode. To learn the common features together from the coupled matrix represen-
tation, coupled NMF can be applied. There are several research works performed by
utilizing CNMF technique. Some of those related works are as follows. The authors in
[16] dealt with the problem of acquiring spatio-temporal resolution images, especially
spatio-temporal fusion problems. They proposed the concept of fusing the hyperspec-
tral and multispectral images in every time series by using CNMF. However, in their
work, CNMF is used as only the combining tool to get hyperspectral images. In another
work [17], the authors proposed spatiotemporal constraint nonnegative matrix factoriza-
tion model to deal with the problem to identify intra-urban mobility patterns from taxi
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trips and learn inherent spatiotemporal characteristics of human intra-urban movements.
The authors in [18] presented the nonlinear loose coupled nonnegative matrix factor-
ization approach mainly to describe the features that are common in the images with
different resolutions. They addressed the problem of the potential relationship and map-
ping process between the high-resolution images and low-resolution images. Another
research article [19] is focused on utilizing nonnegative coupled matrix tensor factor-
ization, which is implemented on smart device-generated spatio-temporal data. Their
work mainly focuses on analyzing additional contexts with the data to generate useful
patterns. However, this concept of utilizing coupled nonnegative matrix factorization is
used only on the tensors. In the article [20], the authors proposed the idea of solving the
multi-view representation of the data by using coupled matrix factorization. Alongside
this, the authors come up with the approach of variable selection-based greedy coor-
dinate descent algorithm to improvise the computational efficiency. However, there is
no orthogonality constraint involved in the quoted articles. To the best of knowledge,
CNMFmodels with the implication of orthogonality constraint do not exist that can deal
with spatio-temporal traffic-related datasets.

3 Proposed Orthogonal Constraint Coupled NMF (OC-CNMF)

3.1 OC-CNMF & Its Architecture

Inspired by the capability of Coupled NMF in learning shared features, in this research
we model a coupled NMF architecture to learn common features across two different
matrices. However, one drawback in off-the-shelf usage of Coupled NMF is that the
features learned are not necessarily distinct. This shows that there is a high chance that
similar patterns are identified. To overcome this, we innovatively introduce Orthogo-
nality to the features learned as the features are distinct from each other. The concept
of orthogonality is inspired by one of the existing works on NMF [21], which clearly
shows the differentiation between NMF and orthogonal NMF. This is not for Coupled
NMF, however, the concept is inspired and implemented for Coupled NMF which leads
to the proposal of OC-CNMF for identifying latent, common as well as distinct patterns.
Figure 1 shows the proposed OC-CNMF architecture in which the overall OC-CNMF
process is performed on the datasets to identify common, as well as distinct patterns. As
depicted in Fig. 1, the datasets are imported to the experimental setup and initial data
pre-processing is carried out. In a follow-up to the data pre-processing, matrix files with
respect to the datasets are generated based on the non-shared modes and shared modes
among the datasets. The coupling process of imposing orthogonality constraint is per-
formed on the OC-CNMF block. After performing the coupling process by OC-CNMF,
three lower-dimensional factor matrices are generated among which two factor matrices
(H1 & H2) are generated for the two non-shared modes and one common factor matrix
(W ) is generated for the shared mode. From these generated factor matrices, common
and distinct temporal patterns are identified using the shared mode factor matrices which
are common to the spatial behavior of the respective datasets.
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Fig. 1. The proposed OC-CNMF architecture

3.2 OC-CNMF Mathematical Formulation

The objective function of the Coupled NMF is given based on the NMF objective func-
tions. Assume, matrix V1 is factorized into two factor matrices, namely,W1 and H1; and
matrix V2 is factorized into two factor matrices, namely, W2 and H2.

minf1(W1,H1) =
∣
∣
∣

∣
∣
∣V1 − W1H1

T
∣
∣
∣

∣
∣
∣, s.t. W1 ≥ 0 and H1 ≥ 0 (1)

minf2(W2,H2) =
∣
∣
∣

∣
∣
∣V2 − W2H2

T
∣
∣
∣

∣
∣
∣, s.t.W2 ≥ 0 and H2 ≥ 0 (2)

In coupled NMF, instead of learning W1 and W2 independently, it is learned com-
monly. Therefore, only one factor matrix (W ) will be learned for the shared mode. The
objective function of Coupled NMF is formulated as,

minf (W ,H1,H2) = minf1(W1,H1) + minf2(W2,H2) (3)

Substituting Eq. 1 and 2 in Eq. 3, we get

min f (W ,H1,H2) =
∣
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∣

∣
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∣V1 − W1H
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1
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∣
∣
∣ +

∣
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∣

∣
∣
∣V2 − W2H

T
2

∣
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∣

∣
∣
∣,

s.t.W ≥ 0, H1 ≥ 0, and H2 ≥ 0. (4)

The coupled NMF objective function as given in Eq. 4 can be viewed as a concatena-
tion of two NMFswith only exception of learning one common factor matrix. Therefore,
the update rule for W can be derived from the standard multiplicative update rule that is
defined as,

W ← W −
(

δf1

(
∂f1
∂W

)

+ δf2

(
∂f2
∂W

))

(5)

where δf1 and δf2 are learning rates,
∂f1
∂W is the gradient of function f1 (Eq. 1) with respect

toW , and ∂f2
∂W is the gradient of function f2 (Eq. 2) with respect toW . The gradients ∂f1

∂W

and ∂f2
∂W can be calculated by first-order derivatives solved as follows,

∂f1
∂W

= WH1H1
T − V1H1

T (6)
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∂f2
∂W

= WH2H2
T − V2H2

T (7)

While the learning rate δ can be defined with any scalar value, the multiplicative
update rule defines a dynamic learning rate that changes in every iteration. The learning
rate is defined as,

δf1 = W

WH1H1
T (8)

δf2 = W

WH2H2
T (9)

By substituting Eq. 6 and 8 in δf1

(
∂f1
∂W

)

of Eq. 5, we can measure the change in W

with respect to matrix V1. This is given as

δf1

(
∂f1
∂W

)

= W − W

WH1H1
T

(

WH1H1
T − V1H1

T
)

(10)

By simplifying Eq. 10, the update rule for updating the factor matrixW with respect
to V1 is given as,

W =
(

W × (V1 × H1
T )

W × (

H1 × H1
T
)

)

(11)

where W and H1 represent the factor matrices with respect to V1. To avoid, divide by
zero error, the denominator in the above Eq. 11 is set to a small scalar value, ε, if the
denominator is zero. Elementwise, it is given by,

Wij ×
(

H1j × H1
T
j

)

= Wij ×
(

H1j × H1
T
j

)

∀i, j if Wij ×
(

H1j × H1
T
j

)

�= 0 (12a)

Wij ×
(

H1j × H1
T
j

)

= ε∀i, j if Wij ×
(

H1j × H1
T
j

)

= 0 (12b)

Since the above Eq. UpdatesW with respect to matrix V1 only, a further update must
be made to account for changes in W with respect to matrix V2. By substituting Eq. 7

and 9 in δf2

(
∂f2
∂W

)

of Eq. 5, we can measure the change in W with respect to matrix V2.

This is given as

δf2

(
∂f2
∂W

)

= W − W

WH2H2
T

(

WH2H2
T − V2H2

T
)

(13)

This measure of change in the factor matrixW with respect to V2 is added to Eq. 11
to make the final update rule forW . By simplifying Eq. 13, the update rule for updating
the factor matrixW with respect to V2 becomes,

W = W +
(

W × (V2 × H2
T )

W × (

H2 × H2
T
)

)

(14)
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where W and H2 represent the factor matrices with respect to V2. Similar to Eq. 12, to
avoid, divide by zero error, the denominator in the above Eq. 14 is set to a small scalar
value, ε, if the denominator is zero. Elementwise, it is given by,

Wij ×
(

H2j × H2
T
j

)

= Wij ×
(
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T
j

)

∀i, j if Wij ×
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Wij ×
(

H2j × H2
T
j

)

= ε∀i, j if Wij ×
(

H2j × H2
T
j

)

= 0 (15b)

Equation 14 can also be given as,

W =
(

W1 × (V1 × H1
T )

W1 × (

H1 × H1
T
)

)

+
(

W2 × (V2 × H2
T )

W2 × (

H2 × H2
T
)

)

(16)

3.3 Orthogonal Constraint Objective Function

Different from the update rule of Coupled NMF, in this paper, the update rule is mod-
ified to reflect the orthogonality. We will now see the mathematical formulation of the
updating W for the proposed OC-CNMF. Firstly, the objective function of OC-CNMF
is formulated as,

min f (W ,H1,H2) =
∣
∣
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s.t. W ≥ 0, H1 ≥ 0, and H2 ≥ 0; WWT = I , (17)

where WWT = I is the imposed orthogonal constraint, and I stands for the identity
matrix. The orthogonality constraint imposed on the factor matrixW will ensure that the
rows and columns of the matrix are distinct (orthonormal vector). Since the orthogonal
constraint is imposed only on one factor matrix (W ) in Eq. 17, the optimization problem
of W must be specially treated and it is given as:

maxtr(WT (V1H1)(V1H1)
TW ) (18)

For the constrained optimization, the objective function of OC-CNMF can be re-
formulated using the Lagrangian function as,

L(W ) =
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λ
(
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)]

,

s.t.W ≥ 0, H1 ≥ 0, and H2 ≥ 0; WWT = I , (19)

Equation 19 can be rewritten as,

L(W ) = Tr
[

VT
1 V1 − 2WHT

1 V1H1 + HT
1 H1W

TW
]

+Tr
[

VT
2 V2 − 2WHT

2 V2H2 + HT
2 H2W

TW ]+Tr[λ
(

WTW − I
)] (20)
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Lagrangian value is represented as λ and the gradient of the Lagrangian function
with respect to the factor matrixW can be calculated using first-order partial derivative
as,

∂L

∂W
= −V1H1 + WH1

TH1 + Wλ + (−V2H2 + WH2
TH2 + Wλ) (21)

The Lagrangian function as given in Eq. 20 can be solved using the auxiliary function
proposed in [22] to derive the update rules as follows:

Update Rule for W with Orthogonal Constraint
The update rule for W with respect to V1 alone is given as (W1),

W ←
⎛

⎝
W ×

√

(V1 × H1
T )

√

((W × W1
T ) × (

V1 × H1
T
)

)

⎞

⎠ (22)

Since in Coupled NMF framework the update rule must also reflect the changes W
with respect to V2 also, the update becomes,

W ← W +
⎛
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W ×
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(V2 × H2
T )

√

((W × WT ) × (

V2 × H2
T
)

)

⎞

⎠ (23)

The complete update rule forW in OC-CNMF using the gradient calculated in Eq. 21
can be rewritten as,

W =
⎛

⎝
W ×

√

(V1 × H1
T )

√

((W × WT ) × (

V1 × H1
T
)

)

⎞

⎠ +
⎛

⎝
W ×

√

(V2 × H2
T )

√

((W × WT ) × (

V2 × H2
T
)

)

⎞

⎠ (24)

The importance of OC-CNMF can be seen from the Eq. 24. Instead of learning two
factor matrices individually, a single factor matrix is learned.

Update Rules for H1 and H2:
Since the optimisation process of any factorization algorithm is a non-convex optimi-
sation, alternatively updating the least squares is the key to learning factor matrices. In
other words, once the factor matrix W is updated as per Eq. 24, the other factor matri-
ces can learn in a traditional update rule framework similar to Eq. 12 and 14 but with
the respective gradients calculated. The update rule for H1 and H2 are the same as the
traditional NMF. However, the interesting fact is that the factor matrices H1 and H2 are
learned from the same W factor matrix. The gradients of H1 and H2 can be calculated
as,

∂f

∂H1
= H1

TWTW − V1
TH1 (25)

∂f

∂H2
= H2

TWTW − V2
TH2 (26)
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With the calculated gradients, the update rules for H1 and H2 can be derived using
the multiplicative update rule with a dynamic learning rate. The update rule for H1 is
given as,

H1 = H1 × (WT × V1)

(H1 × V1
T ) × (W × H1)

(27)

The update rule for H2 is given as,

H2 = H2 × (WT × V2)

(H2 × V2
T ) × (W × H2)

(28)

Once the factor matrices are updated using Eq. 24, 27 and 28, it is repeated until
convergence or stopped. This will ensure the learning is converging to the best minimum
solution.

4 Experiment Section

4.1 Dataset

To evaluate the performance of the proposed OC-CNMF model, various other datasets
have been analyzed. As a total, OC-CNMF performance on the five datasets is compared
with NMF and CNMF models using various evaluation measures such as Root Means
Square Error, Silhouette Score, Pattern Distinctiveness, Calinski-Harabasz, Davies-
Bouldin, and Karzanowski and Lai. The five datasets used in the experiments consist of
vehicular traffic volume count records based on location and time in different regions
and in different time periods. Dataset (D1) [15] consists of the vehicle count records in
Great Britain based on 12656 locations, 12 h of time period and 6537 locations, 12 h of
time period during 2019 and 2020. Dataset (D2) [24] is the vehicle count records in New
York City based on 203 locations, 24 h of time and 156 locations, 24 h of time during
2012 and 2013. Dataset (D3) [24] records the vehicle counts based on 273 locations, 24
h of time and 83 locations, 24 h of time during the January and February months of 2012.
Dataset (D4) [15] is the vehicle count records based on 12178 locations, 12 h of time and
12656 locations, 12 h of time during 2018 and 2019. Similarly, dataset (D5) [15] is the
record of the vehicle counts based on 12178 locations, 12 h of time and 6537 locations,
12 h of time during the years 2018 and 2020 in Great Britain. Each of these location and
time features from datasets D1 to D5 are grouped as two matrices considering the time
feature as the common shared mode among the two matrices to perform the coupling
process of these matrices from datasets D1 to D5.

4.2 OC-CNMF Theoretical Convergence Analysis

As per the convergence analysis made in an orthogonal constraint NMF research [23],
the objective function will monotonically decrease, and it will attain the best minimal
solution when a constraint WWT = I ≥ 0. This theory holds for OC-CNMF as well,
as the orthogonal constraint imposed in (Eq. 17) will provide WWT = I ≥ 0 and
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satisfies the condition for monotonically decreasing the cost function or the objective
function. However, the optimization will not guarantee to reach the best solution if no
orthogonality constraint is imposed. Therefore, the traditional CNMF will not reach to
better solution as fast as the OC-CNMF can.

4.3 OC-CNMF Computational Complexity Analysis

Suppose there are two matrices V1 ∈ R
N×M and V2 ∈ R

N×P. Suppose V1 is fac-
torized into two factor matrices W1 ∈ R

N×K and H1 ∈ R
K×M ; V2 is factorized into

two factor matrices W2 ∈ R
N×K and H2 ∈ R

K×P; The time complexity of updating
the factor matrices using NMF on V1 is O(NK + MK), which can further be simpli-
fied as, O(K(N + M )). Similarly, the time complexity of updating the factor matrices
using NMF on V2 is O(NK + PK), which can further be simplified as, O(K(N + P)).
Therefore, the time complexity of updating the factor matrices when running two NMF
becomes O(K(N + M )) + O(K(N + P)) = O(K(2N + M + P)). Now, to prove the
efficiency achieved using Coupled NMF, we will prove that the time complexity of
updating factor matrices is less than that of NMF. Unlike NMF, in coupled NMF and
OC-CNMF there are three factormatrices to update. SupposeW1 ∈ R

N×K ,H1 ∈ R
K×M ,

and H2 ∈ R
K×M are the factor matrices. The time complexity of updating the factor

matrixW isO(NK),H1 isO(MK), andH2 isO(PK).The total time complexity becomes,
O(NK) + O(MK) + O(PK). This will be simplified as, O(K(N + M + P)), which is
less than that of O(K(2N + M + P)). Thus, proving the computational efficiency of
Coupled NMF and OC-CNMF in comparison to NMF, which are tabulated in Table 1.

Table 1. Computational complexity analysis.

Method Computational complexity

NMF O(K(2N + M + P))

CNMF & OC-CNMF O(K(N + M + P))

4.4 Baseline Method and Evaluation Criteria

The standard CNMF is used as the baseline to compare the performance of the proposed
OC-CNMF. Since the main contribution of this paper is to show how OC-CNMF is
converging fast to a better solution, and how it is learning common features, it is only
fair if it is compared against NMF and CNMF. To evaluate the convergence performance
of the proposed OC-CNMF, the root means square error (RMSE), Silhouette Score,
Pattern Distinctiveness, Calinski-Harabasz, Davies-Bouldin, and Karzanowski and Lai
are used. As the goal of both CNMF and OC-CNMF are set to minimize the objective
functions defined using Euclidean distance, the usage of RMSE is more appropriate. In
RMSE, the original matrices are compared against the approximated matrix. For matrix
V1, the approximated matrix based on the factor matrices W and H1 is given by,

V1

∧

= WH1
T (29)
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Similarly, for matrix V2, the approximated matrix based on the factor matrices W
and H2 is given by,

V2

∧

= WH2
T (30)

Now, the original matrix and the approximated matrix can be compared to calculate
the RMSE. Let us take V1 as an example. The RMSE equation is defined as:

RMSE =
√

∑N
i=1 V1i − V1

∧

i

N
(31)

Silhouette score is utilized to evaluate the quality of clusters in terms of how well
similar samples cluster with each other. Cluster-specific Silhouette scores are determined
for each sample. Pattern distinctiveness score is used to measure the similarity of each
patternwith other patterns such that the quality of the learned patterns is evaluated. In pat-
tern distinctiveness, the lower the score, the better the performance. Calinski-Harabasz
score is also termed to be as Variance Ratio Criterion. Calinski-Harabasz evaluation
is the ratio of the sum of between-cluster dispersion and within-cluster dispersion. In
Calinski-Harabasz evaluation, the higher the score, the better the performance. InDavies-
Bouldin score, the score is the average measure of how similar each cluster is to its most
similar cluster. Similarity is the ratio of the distances within a cluster to the distances
between clusters. So, a better score will come from clusters that are farther apart and less
spread out. InDavies-Bouldin evaluation, the lower the score, the better the performance.
These evaluation measures are used to evaluate the proposed model of OC-CNMF in
comparison with NMF and CNMF.

5 Results

5.1 Identification of Rank

Before analyzing the convergence performance, sensitivity analysis is performed to
determine the rank. Rank is determined by conducting evaluation measures (within-
cluster dispersion and between-cluster dispersion) on the matrices. Based on the respec-
tive sensitivity analysis, the rank value is determined for running NMF, CNMF and
OC-CNMF models on the respective matrices of the datasets. According to the sensitiv-
ity analysis performed on the matrices of the datasets, the rank values are determined to
be 4, 7, 5, 7, 5 for the datasets D1, D2, D3, D4, D5, respectively.
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5.2 Convergence Performance

Fig. 2. Convergence analyses on matrices of datasets (D1–D5)

As shown in Fig. 2, the convergence performance of OC-CNMF outperforms NMF
and CNMF by a huge margin in various datasets. If we have a closer look at images in
Fig. 2, RMSE of NMF and coupled NMF starts to increase in the initial few iterations
and then starts to decrease gradually. On the other hand, the RMSE of OC-CNMF starts
to reduce smoothly from the first iteration. This is because of the orthogonal constraint
imposed. While the OC-CNMF converged to a better solution at around 100 to 150 iter-
ations, coupled NMF cannot reach that level even after 300 iterations in most cases. This
shows that the convergence of OC-CNMF is at least 2 times faster than that of the CNMF.
This is a significant result for the approximation of the input matrices. Such performance
guarantees that the OC-CNMF will perform well on most applications of factorization,
such as recommendation systems, link prediction, image reconstruction, etc. It is also
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evident that the OC-CNMF achieve similar performance in the approximation of the sec-
ond input data, whereas standard NMF and CNMF cannot achieve better convergence.
This proves that the OC-CNMF is suitable for simultaneously approximating both the
matrices of the respective datasets.

5.3 Common Pattern Identification

Figure 3a & 3b show the common pattern identification using the CNMF and OC-
CNMF models. Figure 3a shows the common patterns obtained by running the stand-
alone CNMF model on the 2019 and 2020 vehicular traffic datasets (D1). According
to Fig. 3a, though the CNMF model identifies the common patterns, we can see that
CNMF also identifies similar (duplicate) patterns. This can be proved by considering
the patterns (p2 and p3) in Fig. 3a in which the before-mentioned patterns are following
a similar kind of pattern structure during the time from 12 pm to 6 pm. In addition to
this, the similar pattern structure is found in the patterns (p1 and p2) of Fig. 3a during the
time from 10 am to 3 pm. This shows that though CNMF helps to find common patterns,
but they are not distinctive patterns. Figure 3b shows the four patterns (namely p1, p2,
p3, and p4) that are learned from the proposed OC-CNMF model on the 2019 and 2020
vehicular traffic datasets (D1).

Fig. 3. Common patterns identified using CNMF and OC-CNMF

The objective of the proposed model is to identify the common but distinctive latent
(hidden) patterns that are present in the given two matrices. As shown in Fig. 3b, there
are 4 common patterns present in the 2019 and 2020 matrices of D1 for the period before
pandemic and during pandemic. Also, patterns are not following the similar structure
such that the identified common patterns are distinctive and unique.
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5.4 Performance Measure Comparison

Table 2. Performance measure comparison.

Evaluation
measures

Root
means
square
error
(lower
the
better)

Silhouette
score
(higher the
better)

Pattern
distinctiveness
(lower the
better)

Calinski-Harabasz
(higher the better)

Davies-Bouldin
(lower the
better)

Karzanowski
and Lai
(higher the
better)

D1 NMF 0.37 0.50 0.98 6.69 0.92 0.05

CNMF 0.35 0.40 0.97 6.05 0.97 0.05

OCCNMF 0.28 0.73 0.10 18.59 0.46 0.67

D2 NMF 0.19 0.32 0.59 15.46 0.77 0.76

CNMF 0.24 0.39 0.59 23.89 0.82 0.46

OCCNMF 0.20 0.91 0.06 50.48 0.30 0.51

D3 NMF 0.20 0.47 0.86 13.05 0.68 0.34

CNMF 0.19 0.54 0.76 15.87 0.63 0.42

OCCNMF 0.20 0.74 0.12 27.60 0.54 0.97

D4 NMF 0.43 0.29 0.96 2.23 0.59 0.13

CNMF 0.42 0.16 0.96 1.67 0.45 0.13

OCCNMF 0.28 0.91 0.09 15.56 0.41 0.48

D5 NMF 0.40 0.36 0.96 4.05 0.89 0.11

CNMF 0.39 0.58 0.97 7.26 0.41 0.05

OCCNMF 0.28 0.60 0.08 13.38 0.58 0.79

Table 2 shows the performance comparison results of the proposedOC-CNMFmodel
in comparison with NMF and CNMF models on five datasets (D1 to D5). The perfor-
mance evaluation is carried out using various evaluation or performance measures such
as Root Means Square Error, Silhouette score, Pattern Distinctiveness score, Calinski-
Harabasz score, Davies Bouldin score and Karzanowski score. The entire evaluation
measures are carried out in a MATLAB environment and the evaluation score results are
tabulated as above for comparison. According to the table, it is very clear that the over-
all performance of the proposed OC-CNMF model is out-performing NMF and CNMF
models based on the various evaluation score results.

6 Conclusion

This paper proposed the novel approach of OC-CNMF model that helps to find the
common as well as distinctive patterns that are present in the provided datasets. The
concept of orthogonality is applied in the CNMF architecture to learn the common but
distinctive patterns or features. This proposed approach eliminates the usage of running
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individual NMF models which further leads to improving the convergence performance
of the proposed OC-CNMF model. One key observation that we like to highlight is
that the repeated patterns are not identified as individual patterns in the OC-CNMF
model. This is because of the orthogonal constraint imposed on the dataset during the
factorization process. The orthogonal constraint aims to learn the common patterns exist
in both the matrices of the dataset, and at the same time its constraint itself learns
distinctive patterns. Therefore, similar patterns will be ignored, and the OC-CNMF
model will provide us with the unique and common patterns that are hidden in the
datasets.
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Abstract. We look at the dial-a-ride problem through the lens of mech-
anism design, where the goal is to design mechanisms, toward natural
objectives, in strategic settings, where customers act rationally. For this
problem, we consider customer preferences for detour times and waiting
times of services, as well as mechanisms for minimising the detour times,
waiting times, and detour plus waiting times of customers on vehicles.
We characterise mechanisms that are economically efficient and game-
theoretically truthful. With detour-time preferences, we show that there
are mechanisms that are both efficient and truthful in all instances. With
waiting-time preferences, we show that there are mechanisms that are
efficient but not truthful in some instances.

Keywords: Multi-agent systems · Social choice · Vehicle routing

1 Introduction

Let us consider the dial-a-ride problem [5]. On the one hand, when minimising
customer costs in this problem, customers rank minimising their detour times
and waiting times as two of the most important criteria. This is perhaps natural
because doing so is often more convenient for customers and they normally pay
lower costs for shorter trips [12]. On the other hand, drivers tend to pick longer
trips so that they maximise their profit. This often makes routing decisions biased
towards customers with longer routes and, thus, leave customers with shorter
routes less satisfied with their services. In this paper, we look at dial-a-ride
models where vehicle locations are known to customers and customer costs for
services are not explicitly modelled. For example, taxi companies such as Uber
and Lyft reveal the locations of as many of their cars as possible simply because
this extends the number of travel options, which in turn makes it more attractive
for customers to use their services and can additionally make it easier for cars
to avoid making longer tours by, for example, not making U-turns whenever
customers can cross roads. The absence of customer costs is useful either when
the services are free-of-charge or fixed-priced. This is the case whenever we use
such vehicles for social services.
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According to the Federal Statistical Office of Germany, nearly 16 million
Germans are disabled. Subsidising vehicles such as those at Uber and Lyft could
promote mobile opportunities for these people at low costs. Also, in Berlin, more
than 210 000 commuters use public transportation daily. Sharing Uber and Lyft
vehicles could promote commuting alternatives for these people at the price
of a public transportation ticket, which is a common goal for smart cities: see
e.g. the Smart City Mobility Bamberg project. In such settings, customers also
have detour- and waiting-time preferences that do not relate explicitly to their
income, gender, or race. Under such preferences, our goal is to deliver efficiency
(i.e. we cannot provide better services to all customers) and truthfulness (i.e. we
motivate customers to be sincere when submitting their locations).

Customer location misreports have been considered widely in facility location
problems, see e.g. [16], but have only recently been seen as an issue in routing
problems [15]. In response, we let customers have some private locations. In
general, customers have preferences over their private locations, which can be
more complex than accounting solely for their detour times or waiting times. For
example, private locations might be their current locations or nearby locations,
where they prefer moving and submitting requests. That can be around the
corner if they want to go there for health reasons or do some shopping before
taking a lift to a party with friends. However, we consider customer location
preferences for detour times or waiting times. In this context, customers can
strategically report nearby locations where they can move from their private
locations and, thus, decrease their detour times or waiting times.

On the plus side, customers might thus receive quicker services. To see this,
suppose that minimising the overall waiting time for customers a and b requires
that a vehicle picks up first a and then b. This is efficient for both a and b.
However, b can strategically report some nearby location that is closer to the
vehicle location and where they can move quickly in order to receive a quicker
pickup. For example, if b would have to wait 10 min for the vehicle at their
private location because the vehicle would have to pick up first a, then b might
wish to request a ride from a nearby location which is 2 min away by foot from
their private location and where the vehicle could pick them up in the next 3 min
before it picks up a. Thus, moving from their private location to the reported
nearby location plus waiting at that location would take 2 + (3 − 2) = 3 min for
b, which would be strictly less than 10 min.

On the minus side, manipulators might make others wait longer for services.
In the example above, by reporting the nearby location and moving there, cus-
tomer b makes customer a wait longer because a is picked up after b. However,
unlike manipulators, some customers may generally not be able to move to better
locations, e.g. senior citizens and home patients. Such customers might feel less
socially included because they could be disadvantaged due to the manipulations
of others. Therefore, in addition to achieving efficiency, achieving truthfulness
seems to further improve the social inclusion of such customers. This is in line
with the goal of the 2022 International Transport Forum to design mobility
solutions for inclusive societies. Thus, we investigate the following question:
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Under customer preferences for their detour times and waiting times, when
and how can we achieve economic efficiency, game-theoretic truthfulness,
or, whenever possible, both of them?

We tackle this question for customers that remained non-serviced by a given
time point during the day. Their detour times are the travel times between their
origins and destinations minus the shortest travel times between these locations,
respectively. Their waiting times are the times between booking trips and visit-
ing their origins, respectively. We consider detour-time preferences (d-utilities),
waiting-time preferences (w-utilities), and detour-plus-waiting-time preferences
((d+w)-utilities). Satisfying detour-time preferences seems to be more relevant
in Uber and Lyft settings where, when submitting requests via their devices,
customers can already select vehicles with the shortest estimated arrival times
(ETAs), which minimises their waiting times. On the contrary, satisfying waiting-
time preferences seems thus to be more relevant in cab settings where customers
do not know the ETAs of the vehicles. For each of these preference types, we
consider generally contradicting but nevertheless desired objectives such as max-
imising service efficiency and service fairness. Service efficiency is often measured
in terms of minimising the total time travelled by all vehicles [6]. We consider
three other measures for it, i.e. minimising the total detour time (totDET),
waiting time (totWAIT), and detour plus waiting time (totDETWAIT) for all
vehicles. Service fairness is often measured in terms of minimising the maximum
time travelled by any vehicle [10]. We consider three other measures for it as well,
i.e. minimising the maximum detour time (maxDET), waiting time (maxWAIT),
and detour plus waiting time (maxDETWAIT) of any vehicle.

In our work, we consider the classes of mechanisms that minimise these six
objectives, respectively. Mechanisms can be based on exact methods such as the
branch-and-cut algorithm [3] or inexact methods such as the large-neighborhood-
search metaheuristic [7]. In particular, we are interested in mechanisms that are
efficient for given customer preferences. We use Pareto optimality [13] as an
efficiency criterium. Efficient mechanisms guarantee thus that we cannot pro-
vide better services to all customers. Also, we are interested in mechanisms
that encourage customers to report their private locations sincerely. Truthful
mechanisms do exactly this and, thus, elicit these locations. With waiting-time
preferences, in the instance from the above example, we can notice that achiev-
ing both Pareto optimality and truthfulness is not possible. At the same time,
with detour-time preferences, we will prove that it is possible to achieve both
criteria in every instance. Doing so requires that the requests are serviced one
after another and the customers do not take detours. The former condition is
widely realistic with cab, Uber, and Lyft vehicles, where drivers do not start
servicing new customers before finishing the services of their current customers.
However, the latter condition is often violated by cab drivers since they try to
take longer detours that maximise their profits, which often leads to increased
customer dissatisfaction [9]. But, with Uber and Lyft drivers, customers prepay
fixed costs and so drivers are not tempted to detour but quickly move to the
next customers. So, in such settings, the latter condition seems to hold as well.
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Fig. 1. General possibility results for Pareto optimality and truthfulness in our setting:
(left) d-utilities (detour-time preferences); (right) w-utilities (waiting-time preferences).

Figure 1 shows our two main axiomatic results. These results tell us when
(i.e. under which preferences) efficiency and truthfulness can be achieved but
they do not tell us how (i.e. under which mechanisms) to do it. This is what we
investigate in the rest of the paper. Firstly, we discuss literature gaps in Sect. 2.
In Sect. 3, we give formal preliminaries. In Sect. 4, we define the preferences. In
Sect. 5, we define the classes of mechanisms for totDET, maxDET, totWAIT,
maxWAIT, totDETWAIT, and maxDETWAIT. After that, in Sects. 6 and 7,
we show that mechanisms for totDET and maxDET are Pareto-optimal and
truthful with detour-time preferences, as well as only mechanisms for totWAIT
and totDETWAIT are only Pareto-optimal with waiting-time preferences and
detour-plus-waiting-time preferences, respectively. Finally, we present a sum-
mary of results and prospects in Sect. 8.

2 Related Work

Surprisingly, customer preferences and objectives have received limited attention
in the vast VRP literature [15]. Regarding customer preferences, a few works con-
sidered costs but not utilities: Bei and Zhang [4] analysed trip assignments of
minimal costs in ride-sharing; Li et al. [8] looked at minimising shared taxi costs
for people and parcels; Santos and Xavier [14] also studied this task but only
for people. Regarding customer objectives, Nucamendi, Cardona-Valdes, and
Angel-Bello Acosta [11] considered the total waiting time in the context of one
vehicle and visit requests of unit demands. In contrast, we study this objective,
denoted as totWAIT, with multiple vehicles and heterogeneous requests of arbi-
trary positive demands. In addition, we study totDET and totDETWAIT. Work-
load equity has recently been announced to be underexplored [10]. In response,
we investigate maxDET, maxWAIT, and maxDETWAIT that relate to equity
because they minimise the workload of any vehicle, which is measured by means
of the total detour time, waiting time, or detour plus waiting time of the cus-
tomers on the vehicle. Notably, unlike the existing works above, we transfer tools
such as efficiency and truthfulness from the mechanism design field to the cus-
tomer side in the vehicle routing field. From this perspective, our analysis seems
to be highly novel to the best of our knowledge.
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3 Model

For t ∈ N>0, we let [t] denote {1, . . . , t}. We also let L ⊂ R
2 denote a finite set

of at least two locations. We write D = [d(l, l′)]|L|×|L|, where d(l, l′) ∈ R
<∞
≥0 is

the distance between l, l′ ∈ L. The road network is N = (L,D). We consider
vehicle set V = {vi|i ∈ [n]}, where each vi begins at bi ∈ L, ends at ei ∈ L, has
available capacity qi ∈ N>0, and moves with average velocity νi ∈ R>0. We also
consider request set R = {rj |j ∈ [m]}, where each non-serviced rj = (pj , dj ,mj)
is submitted earlier by agent j, and is for transporting mj ∈ N>0 customers
between two different locations from L (i.e. pj �= dj) or visiting mj customers
at some location from L (i.e. pj = dj). In practice, groups split into sub-groups
and submit multiple requests whenever they do not fit in vehicles. Thus, we let
each rj be feasible for some vi, i.e. maxrj∈R mj ≤ maxvi∈V qi hold.

Furthermore, for each vi, we let Ri ⊆ R denote a set of requests assigned to
vi and Ri = (s1(i), . . . , s2|Ri|(i)) denote a route through the service (i.e. pick-
up/drop-off/visit) locations of the requests from Ri. A plan P = {R1, . . . ,Rn}
is a set of routes, where route Ri is assigned to vi. We let I = (N,V,R) denote
an instance. Let us recall that the requests are non-serviced by some given time
point during the day. At that point, we want to plan how to service them subject
to several constraints. In particular, we look at feasible plans for I that satisfy
completeness constraints (i.e. each request is assigned to some vehicle), disjoint-
ness constraints (i.e. no request is assigned to more than one vehicle), ordering
constraints (i.e. each origin is visited before its destination), and capacity con-
straints (i.e. no vehicle capacity is ever exceeded): see e.g. [2].

4 Preferences

Let us consider instance I. Further, pick feasible plan P for I, route Ri from
P, and request rj from Ri. The detour distance for agent j in Ri is the tour
distance travelled by vi between pi and dj minus the shortest distance between
pj and dj : dij = [

∑
sl(i)∈(pj ,...,dj),sl(i) �=dj

d(sl(i), sl+1(i))]−d(pj , dj). The latency
distance for agent j in Ri is the distance travelled by vi between bi and pj :
δij = d(bi, s1(i)) + [

∑
sl(i)∈(s1(i),...,pj),sl(i) �=pj

d(sl(i), sl+1(i))].
The plan P induces detour time and waiting time for agent j. Their detour

time is dij/νi. Their waiting time is wij/νi = (τj + δij/νi), where τj ∈ R≥0 is
the tardiness time agent j waits between submitting their request and planning
the problem and δij/νi is the vehicle travel time between planning the problem
and being picked up at their origin. We use these times to formally define the
utility uij(P) of agent j in P where they are serviced by vi.

For this purpose, we also assume that agent j has some private start and
finish locations sj , fj ∈ L. This is because they might be using our system for
partial planning of their journey. To capture this, we let Tj ∈ R≥0 denote the
additional travel time between sj and pj and between dj and fj . Thus, agent j
can travel Tj units of time by mixed means of transport. This allows them to
use our system in a strategic manner with other systems such as Google Maps.
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We next define uij(P) as a quasi-linear function with respect to (wrt) Tj .
That is, for some aj , bj , cj ∈ R≥0, uij(P) = −mj · [(aj · dij/νi) + (bj · wij/νi)]
if Tj ≤ cj and uij(P) = −mj · [(aj · dij/νi) + (bj · wij/νi) + Tj ] if Tj > cj . The
weights aj , bj , and cj regulate the importance of the detour time, the waiting
time, and the additional time for agent j, respectively. We do not assume to
know the functional form of aj , bj , or cj .

For example, in a full system, agent j might want to detour at most 10 min
and wait at most 5 min. In this case, aj and bj could be quasi-linear functions
wrt these thresholds, i.e. aj = 0 if (dij/νi) ≤ 10 and aj = 1 − (10 · νi/dij) if
(dij/νi) > 10; bj = 0 if (wij/νi) ≤ 5 and bj = 1 − (5 · νi/wij) if (wij/νi) > 5.
However, for simplicity of elicitation, we instead only assume that agents who
want to use our system care for at least one of these times, i.e. aj + bj > 0.

We note that uij(P) ≤ 0 holds because of dij ≥ 0 and wij ≥ 0. We say that
the agents have d-utilities (detour-time preferences) if ∀j ∈ [m] : bj = 0 hold;
w-utilities (waiting-time preferences) if ∀j ∈ [m] : aj = 0 hold; (d+w)-utilities
(detour-plus-waiting-time preferences) if ∀j ∈ [m] : aj = bj hold. We also say
that the agents are sincere if ∀j ∈ [m] : pj = sj and dj = fj (i.e. Tj = 0) hold;
strategic if ∃j ∈ [m] : pj �= sj or dj �= fj (i.e. Tj > 0) hold.

5 Mechanisms

Based on the detour times of customers, we define two natural detour-time
routing objectives in feasible plans: (totDET): minP: feasible

∑
vi∈V

∑
rj∈Ri

mj ·
(dij/νi); (maxDET): minP: feasible maxvi∈V

∑
rj∈Ri

mj · (dij/νi). They are useful
when we cannot start any new service before finishing the current service.

Based on the waiting times of customers, we define two natural waiting-time
routing objectives in feasible plans: (totWAIT): minP: feasible

∑
vi∈V

∑
rj∈Ri

mj ·
(wij/νi); (maxWAIT): minP: feasible maxvi∈V

∑
rj∈Ri

mj · (wij/νi). These objec-
tives are useful when we only care about how much time agents wait.

The waiting-time objectives differ from the detour-time objectives. For exam-
ple, minimising the former is shown to be generally intractable [1], whereas
minimising the latter requires servicing the requests one after another and is,
therefore, tractable. Also, minimising the former might not be minimising the
latter. We illustrate this in Example 1.

Example 1. Let us consider points A(0, 0), B(0, 1), C(1, 0) and the straight-line
metric. Further, let us consider one vehicle and two requests. We let these be v1
with b1 = C, e1 = C, q1 = 2, ν1 = 1, and r1 = (A,B, 1), r2 = (A,C, 1). Also, we
let τ1 = τ2 = 0 hold. Minimising the detour times requires not picking up both
agents at once. We next confirm this.

If the vehicle v1 services r1 before r2, then following A,B,A,C minimises
the detour times but generates waiting times: d11 +d12 = 0+0 and w11 +w12 =
1 + 3 = 4. If the vehicle services r2 before r1, then following A,C,A,B gives
d11 + d12 = 0 + 0 and w11 + w12 = 3 + 1 = 4. The agent-wise time d-profile is
(0, 0), w-profile is (3, 1), and (d+w)-profile is (3, 1).
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Next, suppose that v1 picks up both agents. Following A,A,B,C minimises
the waiting times but generates detour times: d11 + d12 = 0 +

√
2 > 0 and

w11 +w12 = 1+1 = 2 < 4. Also, following A,A,C,B gives symmetric outcomes:
d11 +d12 =

√
2+0 > 0 and w11 +w12 = 1+1 < 4. The agent-wise time d-profile

is (
√

2, 0), w-profile is (1, 1), and (d+w)-profile is (
√

2 + 1, 1). ��
We further consider two more objectives that allow agents to be indifferent

among feasible plans where their detour plus waiting times are equal, as long as
the additive sum of these times is minimised across all vehicles and per any
vehicle, respectively: (totDETWAIT): minP: feasible

∑
vi∈V

∑
rj∈Ri

mj · ((dij +
wij)/νi); (maxDETWAIT): minP: feasible maxvi∈V

∑
rj∈Ri

mj · ((dij + wij)/νi).
In Example 1, minimising totDETWAIT or maxDETWAIT minimises fur-

ther the waiting-time objectives but not the detour-time objectives. By compar-
ison, there are also settings where minimising totDETWAIT or maxDETWAIT
minimises further the detour-time objectives but not the waiting-time objectives.
We confirm this in Example 2.

Example 2. Let us consider points A(0, 0), B(0, 1), D(1, 1) and the straight-
line metric. Further, let us consider vehicle v1 with b1 = D, e1 = D, q1 = 2,
ν1 = 1 and requests r1 = (D,B, 1), r2 = (A,B, 1). Also, let τ1 = τ2 = 0 hold.
Minimising the detour plus waiting times requires that v1 services the agent at
D before the agent at A.

Indeed, if the vehicle transports first the agent from D to B and then the
other agent from A to B, then the corresponding plan gives zero detour times
but generates waiting times: d11+d12 = 0 and w11+w12 = 0+2. The agent-wise
time d-profile is (0, 0), w-profile is (0, 2), and (d+w)-profile is (0, 2).

By comparison, let us suppose that the vehicle picks up the agent at D, drives
then to A where it picks up the other agent, and heads towards B. This plan
minimises the waiting times but gives greater detour times: d11 + d12 =

√
2 + 0

and w11 + w12 = 0 +
√

2 < 2. The agent-wise time d-profile is (
√

2, 0), w-profile
is (0,

√
2), and (d+w)-profile is (

√
2,

√
2). ��

Minimising totDET, totWAIT, and totDETWAIT measure service efficiency
because they minimise the overall times for all vehicles whereas minimising
maxDET, maxWAIT, and maxDETWAIT measure service fairness because they
aim at achieving similar time workloads across all vehicles.

For given instance I, we write FP(I) for the non-empty set of all feasible
plans for instance I. A feasible mechanism M maps I into some plan M(I) from
FP(I). In the rest of the paper, we consider feasible mechanisms for totDET,
maxDET, totWAIT, maxWAIT, totDETWAIT, and maxDETWAIT.

6 Efficient Mechanisms

Let us consider sincere agents. A mechanism M is Pareto-optimal (PO) if, for
each instance I, there is no mechanism M′ such that ∀j ∈ [m] : uijj(M(I)) ≤
ukjj(M′(I)) and ∃j ∈ [m] : uijj(M(I)) < ukjj(M′(I)). With d-utilities, we
next characterise the class of Pareto-optimal mechanisms.
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Theorem 1. With sincere agents and d-utilities, a feasible mechanism min-
imises totDET/maxDET if and only if it is Pareto-optimal.

Proof. As the agents are sincere, Tj = 0 holds for each agent j ∈ [m]. Also, as
they have d-utilities, aj > 0 and bj = 0 hold for each agent j ∈ [m]. Let us
consider a mechanism M that minimises totDET/maxDET in each instance I.
Hence, dij = 0 holds for each i ∈ [n] and j ∈ [m]. As a result, uij(M(I)) = 0
also holds. In other words, each agent receives the maximum possible utility.
The mechanism is Pareto-optimal. Let us consider a mechanism M that is
Pareto-optimal in each instance I. For the sake of contradiction, suppose that it
does not minimise totDET/maxDET in a given instance I. Hence, dij > 0 and
uij(M(I)) < 0 must hold for some i ∈ [n] and j ∈ [m]. For each k ∈ [n] and
l ∈ [m] such that ukl(M(I)) < 0 does not hold, ukl(M(I)) = 0 holds because
ukl(M(I)) ≤ 0 holds by definition. In contrast, a mechanism that minimises tot-
DET/maxDET induces d-utility of zero for each agent. Hence, such a mechanism
Pareto dominates M and, therefore, M cannot be Pareto-optimal. ��

In Example 1, each mechanism for totWAIT/maxWAIT/totDETWAIT/
maxDETWAIT does not minimise totDET/maxDET. Supposing that the agents
are sincere and have d-utilities, no mechanism for any of the former objectives
is Pareto-optimal in this instance.

Furthermore, in Example 1, each mechanism for totDET/maxDET does not
minimise totWAIT/maxWAIT/totDETWAIT/maxDETWAIT. Supposing that
the agents are sincere and have w-utilities/(d+w)-utilities, no mechanism for
any of the former objectives is Pareto-optimal in this instance.

In Example 2, each mechanism for totDETWAIT/maxDETWAIT does not
minimise totWAIT/maxWAIT. Supposing that the agents are sincere and have
w-utilities, no mechanism for the former objectives is Pareto-optimal.

In Example 3, we show that each mechanism for totWAIT/maxWAIT does
not minimise totDETWAIT/maxDETWAIT. Supposing that the agents are sin-
cere and have (d+w)-utilities, it follows that no mechanism for any of the former
objectives is Pareto-optimal.

Example 3. Let us consider A(0, 0), B(0, 1), and C(1, 0): d(A,B) = 1, d(A,C) =
1, and d(B,C) =

√
2. Further, let us consider one vehicle and two requests. We

let these be v1 with b1 = C, e1 = C, q1 = 2, ν1 = 1, and r1 = (B,A, 1),
r2 = (A,C, 1). Also, we let τ1 = τ2 = 0 hold.

The plan where the vehicle begins at C, services A, then B, A, and ends at
C minimises the waiting time: w11+w12 = 2+1 = 3. This plan generates detour
time because the agent at A travels through B and A on their way to C. Indeed,
d11 + d12 = 0 + 2 = 2. The agent-wise time d-profile is (0, 2), w-profile is (2, 1),
and (d+w)-profile is (2, 3).

By comparison, the plan where the vehicle begins at C, services B, then A,
and ends at C generates zero detour time and waiting time of w11 + w12 =√

2 + (1 +
√

2) ≈ 3.8 ∈ (3, 5). The agent-wise time d-profile is (0, 0), w-profile
is (

√
2,

√
2 + 1), and (d+w)-profile is (

√
2,

√
2 + 1). For a1 > 0 and a2 > 0, the

utility (d+w)-profile (−√
2a1,−(1 +

√
2)a2) Pareto dominates (−2a1,−3a2). ��
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Nevertheless, with w-utilities, we can partially characterise Pareto optimality
in terms of mechanisms that minimise totWAIT. This characterisation is strict.
That is, with w-utilities, not every feasible mechanism that is Pareto-optimal
also minimises totWAIT. To see this, we refer the reader to Example 3. In this
setting, with w-utilities, the mechanism that minimises totDETWAIT is Pareto-
optimal, but it does not minimise totWAIT.

Theorem 2. With sincere agents and w-utilities, a feasible mechanism for tot-
WAIT is Pareto-optimal.

Proof. As the agents are sincere, Tj = 0 holds for each agent j ∈ [m]. Also, as
they have w-utilities, aj = 0 and bj > 0 hold for each agent j ∈ [m]. Let us
consider a mechanism M that minimises totWAIT in each instance I. For the
sake of contradiction, let us suppose that M is not Pareto-optimal in a given
instance I. Hence, there is another mechanism M′ that Pareto dominates M in
I. That is, ∀j ∈ [m] : uijj(M′(I)) ≥ ukjj(M(I)) and ∃j ∈ [m] : uijj(M′(I)) >
ukjj(M(I)), where ij , kj ∈ [n]. For each j ∈ [m], we note that mj > 0 holds. We
derive ∀j ∈ [m] : −wijj/νij ≥ −wkjj/νkj

and ∃j ∈ [m] : −wijj/νij > −wkjj/νkj
.

It follows ∀j ∈ [m] : wkjj/νkj
≥ wijj/νij and ∃j ∈ [m] : wkjj/νkj

> wijj/νij .
This implies that M does not minimise totWAIT in I. This is a contradiction
with the choice of the mechanism. The result follows. ��

With (d+w)-utilities, a similar characterisation result holds for Pareto opti-
mality and mechanisms that minimise totDETWAIT. This characterisation is
also strict. That is, with (d+w)-utilities, not every feasible mechanism that is
Pareto-optimal also minimises totDETWAIT. To see this, we refer the reader to
Example 2. In this setting, with (d+w)-utilities, the mechanism that minimises
totWAIT is Pareto-optimal, but it does not minimise totDETWAIT.

Theorem 3. With sincere agents and (d+w)-utilities, a feasible mechanism for
totDETWAIT is Pareto-optimal.

Proof. As the agents are sincere, Tj = 0 holds for each agent j ∈ [m]. Also,
as they have (d+w)-utilities, aj = bj > 0 hold for each agent j ∈ [m]. Let
us consider a mechanism M that minimises totDETWAIT in each instance I.
From now on, the proof uses an analogous line of reasoning as the proof of
Theorem 2, with the exception that one needs to consider (d+w)-utilities instead
of w-utilities. Thus, we can derive a contradiction. The result follows. ��

With just one vehicle, maxWAIT/maxDETWAIT coincides with totWAIT/
totDETWAIT, respectively. In such instances, it follows by Theorems 2 and 3
that a feasible mechanism for maxWAIT/maxDETWAIT is Pareto-optimal
whenever agents have w-utilities/(d+w)-utilities; see also Example 1.

With strictly more vehicles, all mechanisms for maxWAIT/maxDETWAIT
may violate Pareto optimality whenever agents have w-utilities/(d+w)-utilities.
It follows that service fairness and service efficiency are generally incompatible
in these domains unlike with d-utilities. We demonstrate this in Example 4.
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Example 4. For ε > 0, let us consider locations A1(−ε, 0), A2(0, 1
2 ), B1(1, 0),

B2(1, 1
2 ), B3(1, 1), and the straight-line metric. Also, let us consider 3 vehicles

and 2 requests. For i ∈ {1, 2}, we let vi be such that bi = Ai, ei = Ai, qi = 1,
and νi = 1 hold. We let v3 be such that b3 = B3, e3 = B3, q3 = 2, and ν3 = 1
hold. We let r1 = (B1, A1, 1) and r2 = (B2, B1, 1). Also, we let τ1 = τ2 = 0 hold.

The plan that sends vehicle v2 for service at B2 and B1, and vehicle v3
for service at B1 and A1 generates zero detour times and minimises maxWAIT
(maxDETWAIT) to 1. The waiting (detour plus waiting) times of agents 1 and
2 are 1 and 1, respectively. Hence, their sincere w-utilities ((d+w)-utilities) are
−b1 and −b2, respectively. The total waiting (detour plus waiting) time in this
plan is 2.

This plan is not Pareto-optimal with w-utilities ((d+w)-utilities). Indeed, the
plan that minimises totWAIT (totDETWAIT) Pareto dominates it. This plan
asks v3 to pick up the agent at B2 and head towards B1 to pick up the other
agent, and then towards A1. The maximum (total) vehicle waiting (detour plus
waiting) time is 3

2 ∈ (1, 2).
At the same time, this plan does not minimise maxWAIT (maxDETWAIT)

because v3 travels strictly more than 1 unit of time. The waiting (detour plus
waiting) times of agents 1 and 2 are 1 and 1/2. Hence, their sincere w-utilities
((d+w)-utilities) are −b1 and −b2/2, respectively. For b2 > 0, the agent-wise
utility profile (−b1,−b2/2) Pareto dominates (−b1,−b2). ��

To sum up, with d-utilities, we might use mechanisms for minimising totDET
and maxDET because they are Pareto-optimal. By comparison, with w-utilities
((d+w)-utilities), we might use mechanisms for minimising totWAIT (totDET-
WAIT) because they are Pareto-optimal whereas mechanisms for minimising
maxWAIT (maxDETWAIT) may not be Pareto-optimal.

7 Truthful Mechanisms

A mechanism M is truthful (TR) if, for each instance I, there is no other instance
I ′ where R′ = R \ {rj} ∪ {r′

j} for some agent j ∈ [m] and some request r′
j such

that uij(M(I)) < ukj(M(I ′)) holds for some i, k ∈ [n], supposing that agent j
have complete knowledge of I.

For sincere agents, Tj = 0 holds for each j ∈ [m]. As a result, uij(M(I)) =
−mj · [(aj · dij/νi) + (bj · wij/νi)]. For strategic agents, Tj > 0 holds for some
j ∈ [m]. As a result, uij(M(I)) = −mj · [(aj · dij/νi) + (bj · wij/νi)] if Tj ≤ cj

and, otherwise, uij(M(I)) = −mj · [(aj · dij/νi) + (bj · wij/νi) + Tj ].
As we discussed previously, the pick-up and drop-off locations are normally

private in practice and agents may attempt to lie about them in order to receive
quicker services. Truthful mechanisms are robust to such manipulations. With
d-utilities, we next characterise the class of truthful mechanisms.

Theorem 4. With d-utilities, a feasible mechanism minimises totDET/
maxDET if and only if it is truthful.
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Proof. As agents have d-utilities, aj > 0 and bj = 0 hold for each agent j ∈
[m]. Let us consider mechanism M which minimises totDET/maxDET in each
instance I. We let M(I) denote one such minimal plan for I. It follows that
the detour time for each vehicle vi is zero. Hence, dij = 0 and uij(M(I)) = 0
hold for each agent j. This utility value is the maximum possible. As a result,
agent j cannot increase it by acting strategically. Let us consider some truthful
mechanism M. Suppose that it does not minimise totDET/maxDET in instance
I. This means that M induces dij > 0 for some i ∈ [n] and j ∈ [m]. This implies
pj �= dj and uij(M(I)) < 0. If agent j reports pick-up location pj , misreports
drop-off location d′

j = pj , and assigns some value to cj such that Tj ≤ cj holds,
then their utility in each feasible plan is zero. In this case, we note that M still
sends a vehicle for agent j because M is feasible. Hence, M cannot be truthful.
This is a contradiction. ��

With d-utilities, each mechanism that minimises the waiting times is not
truthful. Agents could increase their waiting times by misreporting their private
locations. However, this could lead to a significant decrease in their detour times,
despite the fact they may have to travel a bit longer to the new locations.

Theorem 5. With d-utilities, there are instances where no feasible mechanism
for totWAIT or maxWAIT is truthful.

Proof. For ε ∈ (0, 1
2 ), let us consider locations A(2ε, 1), B(0, 0), C(1, 0) and

D(1, 1). Mark the distances as d(A,B) = 1 + 2ε, d(B,C) = 1, d(C,D) = 1 − ε,
d(A,D) = 1 − 2ε, d(B,D) =

√
2 + ε, and d(A,C) =

√
2 + 2ε. We consider v1

with b1 = D, e1 = D, q1 = 3, and ν1 = 1. Further, we consider r1 = (C,B, 1),
r2 = (B,A, 1), and r3 = (A,D, 1). Also, we let τ1 = τ2 = τ3 = 0 hold.

Suppose that agents are sincere. As d(A,D) < d(C,D), one minimal plan
sends v1 to A, then to B and C. The waiting time in it is 6 − 2ε. For agent 3,
the detour time is at least 2 and the waiting time is 1 − 2ε. This happens when
v1 goes to D after C. Otherwise, it is easy to see that their detour time can only
increase. Hence, the 3’s sincere utility is bounded from above by −2 · a3 < 0.

Suppose next that agent 3 is strategic and submits r′
3 = (A′,D, 1) such that

(1) A′(0, 1) and (2) d(A′, A) = 2ε, d(A′,D) = 1, d(A′, B) = 1, d(A′, C) =
√

2.
As d(A′,D) > d(C,D), one minimal plan now sends v to C, then to B and A′.
The waiting time in it is 6−3ε. The only remaining service location is D. Hence,
v1 visits it.

For agent 3, the detour time is 0 < 2 and the waiting time is 3 − ε. We note
that 3−ε > 1−2ε for ε ∈ (0, 1

2 ). Thus, by being strategic, agent 3 decreases their
detour but waits longer. However, with d-utilities, they do not mind waiting.
Nevertheless, they still need to travel from A to A′ in order to catch the vehicle
there. We will show that thus they will still increase their utility.

Indeed, as they have to travel from A to A′, T3 is proportional to the distance
between these locations. Thus, we let T3 = 2ε

ν hold for some velocity ν ∈ R>0.
This means that T3 and their least utility −T3 go to zero as ε goes to zero. Hence,
for ε ∈ (0,min{1

2 , ν · a3}), this utility is strictly greater than their maximum
sincere utility of −2 · a3. ��
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With w-utilities, each mechanism that minimises the waiting times is also not
truthful. Agents could increase their detour times by misreporting their private
locations. However, this could lead to a significant decrease in their waiting
times, even though they have to travel a bit longer to the new locations.

In addition, agents might wish to decrease their detour plus waiting times
via location manipulations. They can do this as well. In fact, such manipulations
are easy. The key idea is that getting closer to vehicle locations might decrease
their waiting times and not change their detour times.

Theorem 6. With w-utilities or (d+w)-utilities, there are instances where no
feasible mechanism for totDET, maxDET, totWAIT, maxWAIT, totDETWAIT,
or maxDETWAIT is truthful.

Proof. Let us consider A(0, 0) and B(0, 1). We let d(A,B) = 1 hold. Further,
pick one vehicle v1. We let v1 be such that b1 = A, e1 = A, q1 = 1, and ν1 = 1.
Pick also one request r1 = (B,A, 1). Suppose that τ1 = 0 holds. We consider two
cases depending on whether agent 1 misreports their sincere pick-up location.

In the first case, suppose that agent 1 is sincere. Hence, T1 = 0. Each feasible
mechanism sends v1 to B and then to A. This plan minimises the detour time to
0 and the waiting time to 1. The utility of agent 1 is −b1. This utility is strictly
negative because of b1 > 0.

In the second case, suppose that agent 1 is strategic and submits r′
1 =

(B′, A, 1) with (1) B′(0, 1 − ε) and (2) d(A,B′) = 1 − ε, d(B′, B) = ε, where
ε ∈ (0, 1). Each feasible mechanism sends v1 to B′ and then to A. This plan
minimises the detour time to 0 and the waiting time to 1 − ε. The least utility
of agent 1 is now −b1 + b1 · ε − T1.

However, to make it up for their decreased waiting time, agent 1 needs to
travel from B to B′. The travel time is T1 = ε

ν for some velocity ν ∈ R>0. As
ε > 0 and b1 > 0, we conclude that their utility increases strictly for ν ∈ ( 1

b1
,∞).

We can always find such ν. ��
This result holds even if agents know only the vehicle locations, namely in

Uber and Lyft settings. Perhaps, this justifies partly why shuttle companies such
as GoCarma and GoAirlink do not reveal these locations. In these applications,
customer location manipulations are therefore not possible.

Furthermore, the result applies also to systems where agents submit arbitrary
combinations of preferences as long as at least one agent cares about their waiting
time, i.e. at least one agent has a waiting-time preference and each other agent
has either a detour-time preference or a waiting-time preference.

Lastly, agents can manipulate mechanisms for the waiting-time objectives,
and deciding whether manipulations strictly increase their utilities relates to
computing feasible plans. As we mentioned, doing so is shown to be intractable
in general [1]. Consequently, agents might give up such manipulations.
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8 Result Summary and Future Work

In this paper, we studied routing problems where vehicles service customers. For
these problems, we looked at minimising the detour times and waiting times of
the customers on vehicles. Additionally, we formulated the efficiency and truth-
fulness of mechanisms for this task. Thus, we characterised mechanisms that
satisfy these properties wrt the customers’ preferences for their detour times,
waiting times, and detour plus waiting times. Table 1 contains the results.

Table 1. totDET/maxDET - minimising the total/maximum detour vehicle time;
totWAIT/maxWAIT - minimising the total/maximum waiting vehicle time; totDET-
WAIT/maxDETWAIT - minimising the total/maximum detour plus waiting vehicle
time; PO - Pareto optimality; TR - truthfulness; d-utilities - detour-time preferences;
w-utilities - waiting-time preferences; (d+w)-utilities - detour-plus-waiting-time pref-
erences; � - “satisfied in all instances”; × - “not satisfied in some instances”.

totDET/maxDET totWAIT/maxWAIT tot/maxDETWAIT

PO for d-utilities, PO for d-utilities, PO for d-utilities,

� (Theorem 1) × (Example 1) × (Example 1)

PO for w-utilities, PO for w-utilities, PO for w-utilities,

× (Example 1) � (Theorem 2)/× (Example 4) × (Example 2)

PO for (d+w)-utilities, PO for (d+w)-utilities, PO for (d+w)-utilities,

× (Example 1) × (Example 3) � (Theorem 3)/× (Example 4)

TR for d-utilities, TR for d-utilities, TR for d-utilities,

� (Theorem 4) × (Theorem 5) × open

×, TR for w-utilities, (d+w)-utilities (Theorem 6)

In the future, we will look at special cases such as the real line and trees and
more general cases with time windows and service times. Also, we will study the
equilibrium strategies of customers in our setting. Furthermore, we will study
the loss in economic efficiency due to strategic behaviour. For this purpose, we
will look at how we might apply the price of anarchy to our setting and quantify
this loss.
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Abstract. With the development of intelligent technology, autonomous
agents are no longer just simple tools; they have gradually become our
partners. This paper presents a trust-based human-autonomous teaming
(HAT) framework to realize tactical coordination between human and
autonomous agents. The proposed trust-based HAT framework consists
of human and autonomous trust models, which leverage a fusion mech-
anism to fuse multiple performance metrics to generate trust values in
real-time. To obtain adaptive trust models for a particular task, a rein-
forcement learning algorithm is used to learn the fusion weights of each
performance metric from human and autonomous agents. The adaptive
trust models enable the proposed trust-based HAT framework to coordi-
nate actions or decisions of human and autonomous agents based on their
trust values. We used a ball-collection task to demonstrate the coordina-
tion ability of the proposed framework. Our experimental results show
that the proposed framework can improve work efficiency.

Keywords: Trust model · Human-autonomous teaming ·
Reinforcement learning

1 Introduction

The application of artificial intelligence technology is gradually reflected in
almost every aspect of our real world. At the same time, many scholars in the
field of machine learning have begun to pay attention to the problems brought
about by these applications. Many researchers believe that when autonomous
agents make decisions, proper control/decision by human agents is crucial, since
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autonomous agents cannot make correct decisions in all cases [12]. In this case,
there are two major problems occurred when humans need to participate in
an autonomous system of human-autonomy teams. 1) How to build an efficient
human-machine interface. 2) How to assess human decisions to be reliable. To
solve the two problems mentioned above, a trust model designed for human and
autonomous agents is proposed in this paper to optimize the decision-making
process among agents during the interaction.

Human-autonomous teaming framework has a broad application prospect,
since it combines the advantages of both humans and machines, and is more
suitable for complex industrial scenes and some dangerous and hazardous envi-
ronments for human beings [8], such as rescue and disaster relief missions in
extreme environments, sophisticated medical operations, and military missions,
etc. Many approaches based on human-autonomous collaboration have achieved
remarkable results [6,7]. In the case of human agents and autonomous agents
working together, evaluating the performance and capabilities of both human
and autonomous agents becomes a critical issue as it is a key factor in coordinat-
ing agents or assigning tasks. To enhance the credibility of human-autonomous
teaming in these tasks, a few trust models based on statistical methods have
been created.

In [13], Spencer et al. leveraged Switched Linear Quadratic Regulator (SLQR)
to switch the control of the autonomous vehicle between human and autonomous
based on the autonomous performance and human workload. Shahrdar et al. [11]
proposed a data collection-based trust evaluation approach to study the effects
of autonomous driving in different scenarios on human trust. To investigate the
effects of human, autonomous agent, and environment factors on trust model-
ing, [3] made a qualitative analysis of the problem in the human-robot interaction
domain. Wang et al. [15] introduced a mutual trust model according to the robot
and human performance in the presence of faults and then designed a trigger
control strategy based on this trust model. Their trust model considers fewer per-
formance metrics, so it may not suitable for complex scenarios. [10] presented a
time-series trust model for human-robot collaboration task. The trust values of
human and robot are evaluated respectively according to the established perfor-
mance models of robot and human. This method is similar to our trust model,
but their performance models only apply to specific scenarios. The studies men-
tioned above are either based on statistical data or prior knowledge and therefore
are not possible to adjust the trust metrics parameter configuration adaptively
according to individual changes.

To eliminate the above limitations, this paper proposes a trust-based
human-autonomous teaming (HAT) framework which consists of human and
autonomous trust models. The trust models leverage a fusion mechanism to fuse
multiple performance metrics to generate trust values in real-time. To generate
adaptive trust models for specific tasks, a reinforcement learning algorithm is
used to learn the fusion weights of each performance metric from human and
autonomous agents without prior knowledge. The adaptive trust model enables
the proposed trust-based HAT framework to coordinate actions or decisions of
human and autonomous agents according to their trust values.
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The rest of this paper is organized as follows. Section 2 describes the method
of establishing the trust models, including the specific trust evaluation metrics
contained in trust models and the trust metric fusion function we designed.
Section 3, the experimental part, introduces the experimental scenario we estab-
lished to verify the trust-based human-autonomous teaming (HAT) framework
first, then the experimental procedure is described in detail, and followed by
experimental results. Finally, the conclusion is given in Sect. 4.

Fig. 1. Structure of the trust model based human-autonomous teaming framework

2 Method

This section presents the proposed trust model of autonomous and human agents
in the HAT system respectively. Figure 1 shows the proposed HAT trust model
framework. The trust model is implemented based on the agents’ trust metrics
including agent capability, agent state, the impact of decisions for machine agent
and the human perception ability, the stress index and the attention level for
the human agent, which are all acquired during the human-machine interaction.
Then, we combine these trust metrics into a single trust value based on the
evidence theory and fusion mechanism. Thus, in the following subsections, we
first introduce the specific trust evaluation metrics contained in the human and
autonomous agents trust model in detail, and then we further describe how to
fuse these trust metrics through the trust metrics fusion function.

2.1 Trust Model for Human and Autonomous Agents

Trust Evaluate Metrics for Human Agents. The trust model for human
agents takes three pieces of human trust evidence into consideration to evaluate
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human trust value in real-time. The three pieces of evidence are the attention
level, stress index and human perception.

A. Attention level
Human attention level is employed as the first important metric for human
state evaluation. The attention level is calculated based on the real-time pupil
response of human agents, as Hoeks et al. [4] proposed that pupil response is an
important feature for estimating the human attention concentration degree. To
collect and monitor the human agent pupil response, Tobii Pro X2-30 screen-
based eye tracker is used in our trust model study. The Hoeks-Levelt pupillary
model [4] was then used to measure human agents’ attention level x(t):

y(t) = h(t) ∗ x(t), (1)

where y(t) represents the pupillary response, h(t) is defined as the impulse
response, which is a system constant, x(t) is the attention and ∗ is the con-
volution operator. The variables y, h and x are functions of time t. In this case,
identical attention will be generated as the pupil changes identically every time.
The relation between the pupillary response and attention is described by the
impulse response constant h(t). As presented by Hoeks’s work, h(t) is computed
as:

h(t) = s × (tn) × e(
−n×t
tmax

) (2)

where n indicates the number of layers, t is the response time, tmax is used to
represent the subject’s maximum response time and s is a weight parameter
for the pupillary response function scaling. In our trust model approach, we set
n = 10.1, tmax = 5000ms, s = 1

1033 respectively.

B. Stress index
The second metric is the human stress index. The reason for choosing the human
stress index as a trust evaluation metric is that a person’s performance on a task
is affected by the level of stress she/he is exposed to. To obtain the accurate stress
index of the participant, we choose heart rate variability (HRV) as the stress
index evaluation signal in this paper. HRV is a common index used to assess the
human’s autonomic regulation [9]. It is obtained by measuring the interval of
a series of consecutive cardiac cycles, named the inter-beat interval (IBI). Nor-
mally, under the regulation of the parasympathetic nervous system, the resting
heart rate of a normal person is maintained at 60–70 beats per minute. When a
person’s stress increases, the sympathetic nervous system becomes more active,
which in turn affects IBI duration and heartbeat rate. Our trust model assesses
participants’ stress levels by using distribution analyzes of IBI through the geo-
metric method. We use the Empatica-E4 wristband to collect the participants’
IBI data and then we use Baevsky’s [1] stress index (SI) function to calculate
the stress index value:

SI =
AMo

2 × Mo × MxDMn
, (3)
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where AMo is the amplitude modulation index in percent, Mo is the highest
frequency of the RR interval mode selected and MxDMn is the RR interval
distribution range, which expresses the range of variation in the RR interval. To
calculate the stress index of each participant with Baevsky’s method, We divide
the RR interval by 50 milliseconds, as shown in Fig. 2, AMo is calculated by
dividing the number of beats contained in each interval by the total number of
beats, Mo is defined as the median of the RR interval and MxDMn is the size
of the range from the largest RR interval to the smallest.

C. Human perception
Human perception is defined as the third metric. In the HAT scenario, human
perception of the environment will be affected by factors such as viewing angle,
obstacles, etc. In different visual perception states, human confidence in making
decisions is also different. Thus, human perception is used to measure how con-
fident human participants are in executing decisions. Human participants can
observe two types of states in HAT scenarios, namely autonomy state and envi-
ronment state. Since our HAT task in this study is target seeking, therefore, two
autonomy situations and two environment situations are combined in pairs to
form four different situations in the scenario, as listed in Table 1. For the auton-
omy state, we classify situations as agents or no agents based on whether human
participants can observe the autonomous agent. In the same way, the environ-
ment state can be divided into two situations, target or no target, depending
on whether humans can observe the target. The autonomy state is related to
its position, orientation and distance, and the environment state is related to
the distance from the target, so we define four attributes to measure the per-
ception ability of humans, namely position (S1), orientation (S2), distance (S3)
and view angle (S4). From this we can derive the human perception evaluation
formula:

Ea = f(S1, S2, S3, S4) (4)

where Ea is the human perception value, and f(·) represents perception evalua-
tion function. The specific calculation formula will be elaborated in the experi-
mental part according to the experimental scenario design.

Table 1. Four situations of human perception.

Situations Human perception

1 Agent + Target

2 No Agent + Target

3 Agent + No Target

4 No Agent + No Target
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Trust Evaluate Metrics for Autonomous Agents. Just like the trust model
for human autonomous agents, the trust model of autonomous agents also eval-
uates the trust values of each agent based on three pieces of metrics: agent state,
the impact of decisions, and agent capability.

A. Agent state
The agent state is evaluated by the current state and the expected state. A good
agent state is that the agent can reach the expected next state after receiving
the current control command. Conversely, we define a bad agent state as when
the agent cannot reach the next state as expected. The state of the agent may be
affected by internal and external factors. We leverage the particle filter method
to measure the agent state. Specifically, the particle filter can be used to predict
the next timestep’s state of the agent based on the agent’s current state infor-
mation, e.g., position and velocity. We calculate the agent state evaluation value
by comparing the error between the predicted state and the actual state.

B. Impact of decision
The impact of a decision is the second metric of trust for autonomous agents.
The agent typically makes decisions based on the environment states and its
own state information, which are collected by various sensors equipped on it.
The decision quality of the agent directly affects the performance of the overall
system. An inappropriate decision often leads to chaos in an otherwise har-
monious collaborative system. In our human-autonomous teaming system, we
commonly choose distance sensor data as the basis for judging the quality of
robot decisions. For example, we can evaluate the quality of a robot’s decision
by comparing the distance between the robot and the obstacle do and the cor-
responding threshold τd. We formally define the impact of decision metrics as
follows:

Ep
t =

αp + 1
αp + βp + 2

(5)

where αp and βp are both updatable parameters, they are updated according to
the value of do. If do < τd, which means collisions may occur and the decisions of
the autonomous agent may be anomalous. Thus, βp is updated as βp ← βp + 1,
which would cause Ep

t to decrease. On the contrary, if do ≥ τd, αp is updated,
αp ← αp + 1, which leads Ep

t to increase, indicating that the decision of the
autonomous agent is reasonable.

C. Agent capability
The last metric is agent capability. Generally speaking, the capability of an agent
is positively correlated with its experience, that is, an agent that has completed
more tasks or explored a wider task space tends to be more capable. In our
human-autonomous teaming system, we define the capability of an autonomous
agent to be related to the area it has explored. As the agent continues to explore
new areas, its experience is also accumulating. The more explored areas, the
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stronger its capability. Specifically, we divide the task space where cooperative
tasks are performed into Nenv blocks, and the number of blocks explored by the
autonomous agent is Nexplored. Then we can derive the agent capability equation
as

Ee
t =

Nexplored

Nenv
(6)

2.2 Trust Metric Fusion Function

Once we obtain the trust metrics of humans and autonomous agents, we can
then generate the final human and autonomous agent trust values through fusion
mechanism [2] based on these metrics. These trust values could help calibrate
the final decision of the human and autonomous agents’ cooperative task. The
fusion mechanism in our trust model can be described as mapping multiple
trust metrics values in the range [0, 1] to the final trust value. Thus, the trust
metric fusion method is defined as F (E) : [0, 1]n → [0, 1]. We then leverage the
fusion mechanism to combine the evidence with weights to generate trust values.
Assume that the fusion result F (E) meets the inequality min(E1, E2, ..., En) ≤
F (E) ≤ max(E1, E2, ..., En). We can define an aggregation function as follows:

F (E) =
n∑

i=1

(Ei − Ei−1) ∗ wi (7)

where E = (E1, E2, ..., En) ∈ [0, 1]n is an increasing permutation, that is, 0 ≤
E1 ≤ E2 ≤ ... ≤ En, where E0 = 0; w = [w1, w2, ..., wn] is the fusion weight
vector, and w1 + w2 + · · · + wn = 1

Reinforcement Learning
In this part, we introduce the method of updating the fusion weight vector for the
trust model. As mentioned above, the final output of the trust model is a single
value obtained by weighted summation of each trust metric, the fusion weight
vector is crucial for the model. We choose reinforcement learning methods [14]
to deal with this problem since reinforcement learning does not depend on the
environment model, as long as a reasonable reward function is set, it can learn
by itself and get the best reward. Specifically, we use Q-learning to select the
most appropriate weight vector for each agent in real-time, so that the output
of the trust model can well reflect the actual state of the agent. The Q value is
updated according to action i and state s at each step by the following formula:

Q(s, i) ← Q(s, i)+α× ((ω(s, i)×∇+ γ ×
n∑

j=1

(ω(s′, j)×Q(s′, j))−Q(s, i)), (8)

where α, γ ∈ (0, 1], ∇ denote the learning rate, discount factor and reward in
reinforcement learning algorithm respectively; the next state when taking action
i at state s is represented by s′ and ω(s, i) is the weight at step s and perform
action i, which is updated by following method:
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ω′(s, i) ← ω(s, i) +
{

(1 − ω(s, i)) × δ × ( 1
1+e−a×Q(s,i)+b ), ifi = arg maxj Q(s, j)

(0 − ω(s, i)) × δ × ( 1
1+e−a×Q(s,i)+b ), otherwise

(9)

where δ ∈ (0, 1] is a constant and
∑n

i=1 ω(s, i) = 1. Next, we elaborate on
designing reward functions in Q-learning.

Reward Function Design for Reinforcement learning
To explain the reward function, we take the trust fusion of autonomous agents
as an example to illustrate the specific design in detail. First, we define two
indicator functions to reflect the changes in the trust metrics and trust value at
the current timestep and the previous timestep, respectively.

tag1 = sgn(Ep
t − Ep

t−1) + sgn(Ee
t − Ee

t−1) (10)

tag2 = sgn(Trt − Trt−1) (11)

where sgn(∗) stands for the sign function; Ep
t and Ee

t represent the evaluated
perception value and capability value of the autonomous agent at time t, respec-
tively; Trt is the trust value at time t. The value of tag1 reflects the change of
the trust metrics evaluation value at time t. According to the characteristics of
the sign function, the value of tag1 is −2, 0, or 2. The value of tag2 is −1, 0 or
1 according to the change of the trust value at time t. Based on the settings of
tag1 and tag2, we define the reward function:

rfusion =

⎧
⎨

⎩

reward1, if |tag1 + tag2| = val1
reward2, if tag1 = val2
reward3, otherwise

(12)

Here, val1 = 3 and val2 = 0, The reward function means that, when both the
trust value and the trust metrics have the same trend of change, the reward is
reward1 = 3; when the changes of two trust metrics are different, the reward
is reward2 = 0 and otherwise the reward is reward3 = −3. As for the human
agent trust value fusion, we also implement it through a similar indicator function
setting and reward function design.

3 Experiment

In this section, we first introduce the human-autonomous collaboration scenario
designed for our experiment, then the experimental procedure is described in
detail. Finally, we analyze the advantage of our method based on the experi-
mental results.
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Fig. 2. Scenario of the HAT task

3.1 Scenario Design

We design a human-autonomous agents collaboration scenario to evaluate our
trust model in the Webots [5] robot simulation platform, as shown in Fig. 2. In
this scenario, humans and autonomous agents need to cooperate to complete
the task of searching and collecting balls. Figure 2(a) is the global view of the
entire scenario, the green dots are the balls that need to be collected, and the
gray cylinders are obstacles. Robot1 represents teammates autonomous agents
which collaborate with human agents as a HAT team and robot2 represents an
autonomous agent competitor that performs tasks independently. We set a fixed
number of balls in the scenario as goals to be collected. During the experiment,
the autonomous agent (robot1) needs to cooperate with the human agent as
a team and make decisions through the trust model in real-time to collect as
many balls as possible, while the competitor (robot2) performs the task under
the control of the automatic controller, so our scenario is a mix of competition
and cooperation.

3.2 Experimental Procedure

During the experiment, the human agent can only observe the state of the
environment and the autonomous agents through the monitoring perspective
as shown in Fig. 2(b). Since this perspective has limitations on the field of view,
the credibility of human instruction will fluctuate depending on the environment
state and the autonomy state in the field of view. The robot1 can act based on
its sensory information when no instructions are made by the human agent.
The human agent plays the role of the supervisor to observe and monitor the
environment. The autonomous agent, acting as executor and explorer, searches
for targets based on instruction from human or their own decision according
to the on-robot sensor data. The action of robot1 is determined by trust-based
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decision-making in real-time. The other autonomous agent (robot2) controlled
by itself plays a competitor against the HAT team in this ball collection task.
Both autonomous agents can find the ball through the on-robot camera, and
the human agent can find the ball through the observing monitor on the side of
the field. The goals can be identified through the autonomous agents’ camera or
human eyes. A team will gain one point after collecting one ball. The simulation
ends when all balls are collected and the side with the most balls wins.

3.3 Experimental Result

Table 2 shows the 10 trials of simulation results and one simulation result without
the human agent involved. Games 1 to 10 present the results with the HAT
team, while the game without human presents the results produced without
human participation. All robots are controlled by themselves when no human
is participating in the simulation. The HAT team took seven out of ten games;
two games resulted in a draw score, and Robot2 took one game. The average
time to finish the task across Games 1 to 10, which involves the HAT team, is
127.5 sec. In comparison, the time consumed by the game excluding the human
agent is 136.8 sec. We, therefore, can conclude that the efficiency of the task was
improved by adding trust-based HAT decision-making.

Table 2. Experiment results.

Game Without

human

1 2 3 4 5 6 7 8 9 10 Average

across Game

1 to 10

Time to

complete

the task

(sec)

136.8 128.3 120.3 130.6 125.9 132.7 127.0 128.4 122.6 124.8 133.9 127.5

Winner Draw HAT HAT Draw HAT Draw HAT HAT HAT HAT Robot2 –

4 Conclusion

This paper developed a trust model for the HAT system, which is based on
the trust metrics of humans and autonomous agents. The fusion function is
used to fuse trust metrics together to generate the trust value. Moreover, we
leverage reinforcement learning to adaptively adjust the weight and obtain the
best weight for each trust metric. Thus, the trust value generated in this way
can accurately reflect the real-time status and trustworthiness of human and
autonomous agents. To verify the effectiveness of our trust model, we designed
an experimental scenario for human-autonomous agents collaboration in the
simulation environment. The experimental results show that our trust model
can effectively improve the efficiency of the HAT tasks. Compared with purely
autonomous agents, human-autonomous collaborative work can take advan-
tage of both human and autonomous agents, and dynamically adjust decision-
making according to human and autonomous agents’ state fluctuations caused
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by changes in the environment in real-time. In future work, we will consider to
introducing more trust metrics into our trust model, especially those metrics that
can better reflect the real-time state of human agents. For example, employing
electrical brain waves (EEG-signals) as evidence for real-time trust evaluation
of human agents is a promising direction.

References

1. Baevsky, R., Bennett, B., Bungo, M., Charles, J., Goldberger, A., Nikulina, G.:
Adaptive responses of the cardiovascular system to prolonged spaceflight condi-
tions: assessment with holter monitoring. J. Cardiovasc. Diag. Proc. 14(2), 53–57
(1997)

2. Dimuro, G.P., et al.: The state-of-art of the generalizations of the choquet integral:
from aggregation and pre-aggregation to ordered directionally monotone functions.
Inf. Fusion 57, 27–43 (2020)

3. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., De Visser, E.J., Para-
suraman, R.: A meta-analysis of factors affecting trust in human-robot interaction.
Hum. Fact. 53(5), 517–527 (2011)

4. Hoeks, B., Ellenbroek, B.A.: A neural basis for a quantitative pupillary model. J.
Psychophysiol. 7, 315–315 (1993)

5. Michel, O.: Cyberbotics ltd. webotsTM: professional mobile robot simulation. In.
J. Adv. Rob. Syst. 1(1), 5 (2004)

6. Mutlu, B., Terrell, A., Huang, C.M.: Coordination mechanisms in human-robot
collaboration. In: Proceedings of the Workshop on Collaborative Manipulation,
8th ACM/IEEE International Conference on Human-Robot Interaction, pp. 1–6.
Citeseer (2013)

7. Nicora, M.L., Ambrosetti, R., Wiens, G.J., Fassi, I.: Human-robot collaboration
in smart manufacturing: Robot reactive behavior intelligence. J. Manuf. Sci. Eng.
143(3) (2021)

8. O’Neill, T., McNeese, N., Barron, A., Schelble, B.: Human-autonomy teaming: a
review and analysis of the empirical literature. Human Fact., 0018720820960865
(2020)

9. van Ravenswaaij-Arts, C.M., Kollee, L.A., Hopman, J.C., Stoelinga, G.B., van
Geijn, H.P.: Heart rate variability. Ann. Internal Med. 118(6), 436–447 (1993)

10. Sadrfaridpour, B., Saeidi, H., Burke, J., Madathil, K., Wang, Y.: Modeling and
control of trust in human-robot collaborative manufacturing. In: Mittu, R., Sofge,
D., Wagner, A., Lawless, W.F. (eds.) Robust Intelligence and Trust in Autonomous
Systems, pp. 115–141. Springer, Boston, MA (2016). https://doi.org/10.1007/978-
1-4899-7668-0 7

11. Shahrdar, S., Park, C., Nojoumian, M.: Human trust measurement using an immer-
sive virtual reality autonomous vehicle simulator. In: Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, pp. 515–520 (2019)

12. Shively, R.J., Lachter, J., Brandt, S.L., Matessa, M., Battiste, V., Johnson, W.W.:
Why human-autonomy teaming? In: Baldwin, C. (ed.) AHFE 2017. AISC, vol. 586,
pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60642-2 1

13. Spencer, D.A., Wang, Y.: SLQR suboptimal human-robot collaborative guidance
and navigation for autonomous underwater vehicles. In: 2015 American Control
Conference (ACC), pp. 2131–2136. IEEE (2015)

https://doi.org/10.1007/978-1-4899-7668-0_7
https://doi.org/10.1007/978-1-4899-7668-0_7
https://doi.org/10.1007/978-3-319-60642-2_1


718 W. Ma et al.

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

15. Wang, Y., Shi, Z., Wang, C., Zhang, F.: Human-robot mutual trust in
(semi)autonomous underwater robots. In: Koubaa, A., Khelil, A. (eds.) Cooper-
ative Robots and Sensor Networks 2014. SCI, vol. 554, pp. 115–137. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55029-4 6

https://doi.org/10.1007/978-3-642-55029-4_6


Using Uncertainty as a Defense Against
Adversarial Attacks for Tabular Datasets

Poornima Santhosh1, Gilad Gressel1(B), and Michael C. Darling2

1 Center for Cybersecurity Systems & Networks Amrita Vishwa Vidyapeetham,
Amritapuri, India

gilad.gressel@am.amrita.edu
2 Sandia National Laboratories, Albuquerque, USA

michael.darling@sandia.gov

Abstract. Adversarial examples are a threat to systems that use
machine learning models. Considerable research has focused on adversar-
ial exploits using homogeneous datasets (vision, sound, and text) while
primarily attacking deep learning models. However, many industries such
as healthcare, business analytics, finance, and cybersecurity rely upon
heterogeneous (tabular) datasets. The attacks which perform well on
homogeneous datasets do not extend to heterogeneous datasets due to
feature constraints. Therefore, tabular datasets require different forms
of attack and defense mechanisms. In this work, we propose a novel
defense against adversarial examples built from tabular datasets. We use
an uncertainty metric, the Minimum Prediction Deviation (MPD), to
detect adversarial examples generated by a tabular evasion attack algo-
rithm, the Feature Importance Guided Attack (FIGA). Using MPD as a
defense we are able to detect 98% of the adversarial samples with a 7.8%
false positive rate on average.

Keywords: Machine learning · Adversarial defenses · Adversarial
examples · Tabular datasets · Uncertainty

1 Introduction

Machine learning (ML) is quickly becoming ubiquitous in the world of technology
in all aspects, such as business, healthcare, and transportation. However, little
attention is being given to the security of machine learning models, even though
researchers have discovered a variety of ways to exploit machine learning models.
Adversarial attacks on machine learning models come in many forms, such as
data poisoning, model inversion, evasion attacks, and membership inference, each
of which requires a different form of defense.

Generally speaking, an adversarial attack is any form of exploit executed by
a malicious party to cause harm or evade a machine learning system. The most
common type of attack is known as the evasion attack. In an adversarial evasion
attack, the attacker crafts a small perturbation that causes the machine learning
model to misclassify when added to the input. Thus the input sample ‘evades’
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 719–732, 2022.
https://doi.org/10.1007/978-3-031-22695-3_50
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the model. The samples generated in these attacks are known as ‘adversarial
examples’.

Adversarial examples have been shown to elude models with high success
rates, making it problematic to rely upon machine learning models in security-
critical areas. In recent years, several studies examined various adversarial
attacks and potential defense mechanisms, but a good defense against adver-
sarial attacks is still an unsolved problem [3].

Most research has focused on deep neural networks (DNN) and their asso-
ciated homogeneous datasets, such as images, sound, and text. While many
adversarial attacks and defenses have been formulated for these homogeneous
datasets and DNNs, very few studies have been undertaken on tabular hetero-
geneous datasets [11,18–20].

Heterogeneous datasets are tabular datasets, and due to the feature con-
straints on these datasets, we need to use modified or different adversarial algo-
rithms. For example, most adversarial attacks on images assume that all pixels
can be modified (the perturbation may be performed on any or all pixels). How-
ever, in tabular datasets, some features may be immutable and impossible for
an adversary to perturb. Consider medical records; an immutable feature would
be the patient’s blood type. It can be digitally manipulated in feature space,
but a blood type cannot be modified in real life. Similarly, any perturbation
must be feasible. A person’s birth date cannot occur after their death date [11].
These types of constraints require additional efforts when crafting adversarial
examples.

Recent studies have proposed various defense mechanisms for detecting
adversarial examples. However, they are restricted to DNNs and computer vision.
The defense methods focus on one of two main objectives: detecting adversar-
ial examples [5,12] or increasing the robustness of the defending model [7,16].
The defenses are either designed to mitigate a particular attack or attack agnos-
tic, where prior knowledge of the attack is not required. A popular strategy is
adversarial training, creating a dataset with a mix of clean and perturbed sam-
ples (correctly labeled) to enhance a model’s robustness to attack [7,16]. Other
strategies, such as gradient masking, feature denoising, and defense distillation,
are all only suitable for DNNs and homogeneous datasets.

This paper uses uncertainty to detect adversarial attacks on tabular datasets.
We select the Feature Importance Guided Attack (FIGA) as our evasion attack
against tabular datasets [8]. We adopt the Minimum Prediction Deviation
(MPD) as an uncertainty metric, which we use to detect the adversarial exam-
ples [4]. We show that a sample that has been perturbed has an increased MPD
score (higher uncertainty) which allows for detection.

We validate our approach by attacking a phishing dataset that contains
348,739 samples. A random forest model trained on this dataset obtains 97.2%
recall and 97.1% f1-score. When we send the adversarial examples to this model,
its recall is lowered to 19.3%, which indicates a 77.9% success rate of the attack.
Using MPD as a detection method, we can detect 99.4% of the adversarial exam-
ples, with a 7.8% false positive rate on average.
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Further, we show that false positives generated are highly uncertain samples
that the random forest classifier obtains a 73.1% f1-score in classifying in con-
trast to its baseline 97.1% f1-score. The model struggles to classify these highly
uncertain samples. This demonstrates a side-effect of using uncertainty to detect
adversarial samples; even in failure, it is discovering difficult to classify samples
that warrant a deeper inspection. We believe that MPD is a promising defense
mechanism to detect adversarial examples and improve the model’s overall per-
formance by flagging highly uncertain samples.

We see the following as our novel contributions:

– We apply MPD to the detection of tabular adversarial examples, establishing
that adversarial samples contain a higher level of uncertainty than normal
samples

– We demonstrate the effectiveness of MPD as a detection mechanism over a
wide range of attack strengths.

– We show that samples with high values of MPD are difficult to classify, even
if they are not adversarial.

2 Related Work

It has been found that adversarial examples easily compromise all machine learn-
ing algorithms. While a significant amount of research has been performed on the
creation of adversarial attacks, a much smaller amount of research has explored
defense mechanisms against adversarial attacks. Creating a practical defense
against adversarial examples has been challenging for the following reasons:

– The majority of attack algorithms generate adversarial samples through a
complex optimization process. As a result, developing a framework for defend-
ing against all adversarial samples is challenging because there is always a new
unique attack on the horizon, which evades the defense [7,9].

– Many defenses which increase the robustness of a model to adversarial attacks
degrade the model’s overall performance. There is an inherent trade-off
between being adversarially robust and having high-performance [21].

Numerous adversarial defenses have been presented, but shortly after, the
same defenses have been quickly broken and found to be unadaptable to the new
attacks. With a basic understanding of the defense architecture, an attacker may
quickly develop an attack to overcome it [2].

While we are focusing on defending against adversarial attacks on het-
erogeneous datasets, there are very few heterogeneous attacks and no known
defenses. Therefore, we will present the most popular defenses against homoge-
neous attacks and their shortcomings.

2.1 Adversarial Training

Adversarial training is one of the earliest defenses. The main objective is to train
a model by injecting correctly labeled adversarial examples and clean samples
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into the training dataset to increase the model’s robustness. It has been described
as a conventional brute force strategy due to the large amount of data used for
the defending model.

Madry et al. presented a theoretical analysis on adversarial training [10]
where they trained a neural network using the local first-order information
against a strong adversary, the Projected Gradient Descent (PGD). They use
PGD to demonstrate the robustness of a deep learning model on the MNIST
dataset. However, later studies have shown the framework’s limitations [13].

Gau et al. [6] provided a theoretical justification for why adversarial training
produces minimal resilience loss using Neural Tangent Kernels and online learn-
ing methods. They showed that extra model capacity was necessary for robust
interpolation. However, their method only applied to networks of exponential
width and runtime.

Even though adversarial training makes a model more resilient, it is still a
non-adaptive strategy because it needs either realistic attack scenarios or knowl-
edge to train the model. As a result, it does not apply to undiscovered or novel
attacks.

This defense mechanism was ineffective in the case of a black-box attack sce-
nario because the adversarial examples were generated using a locally trained
substitute model. Zhang et al. [22] demonstrated that adversarial training
defense was vulnerable to blind-spot attacks. The presence of blind spot attacks
makes adversarial training defense difficult due to a scarcity of training sets and
the curse of dimensionality. The defense was also vulnerable to more complex
multi-staged attacks in which random perturbations are transferred and attacked
with any classical attack technique such as FGSM, etc.

2.2 Feature Denoising

This defense strategy identifies noise-free images and uses their information to
reduce noise in the pixel space while preserving pixel details. It is added during
adversarial training to improve classification accuracy on adversarial images. Xie
et al. [21] proposed a feature denoising defense strategy to improve the robust-
ness of Convolutional Neural Networks (CNN) against adversarial attacks. The
CNN was constructed using non-local means filters to denoise layer outputs.
Adversarial-generated samples were used for end-to-end network training to min-
imize feature-map perturbations.

One disadvantage of this method was that it was time-consuming. It also
demonstrated that the trained model was differential, making it vulnerable to
white-box attacks.

2.3 Uncertainty Metrics

Uncertainty in a model, particularly in deep learning models, is measured by
adding randomness to the model or removing it via the network’s hidden lay-
ers. Most researchers leverage dropout to measure the uncertainty of a neural
network.
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Smith and Gal [15] examined several uncertainty metrics such as mutual
information, predictive entropy, and the softmax variance to detect adversarial
examples. Probabilistic ensemble models had improved the quality of uncertainty
estimators. However, dropout alone did not provide a convincing defense against
adversarial examples as it fails to capture the entire Bayesian uncertainty in the
visualizing gaps of model uncertainty. They used softmax variance to assess
epistemic uncertainty as a substitute for mutual information and were found to
perform better than other uncertainty measures.

Sheikholeslami et al. [14] introduced a technique where the hidden layers of
the deep learning models were randomly selected based on the Bayesian Uncer-
tainty where the distance of a deep learning model’s uncertainty differs from
clean data to the in-distribution of the adversarial examples. In order to esti-
mate uncertainty, they introduced a layer-wise minimum variance solver and
used a mutual information-based threshold. The uncertainty of the input image
was computed at the inference time using the outputs from the hidden layers.
If the mutual information of the input sample exceeds the threshold, then the
sample is declared adversarial.

In order to detect adversarial samples, O.F Tuna et al. [17] proposed a
defense mechanism using aleatoric and scibilic uncertainty. They proved that
using moment-based prediction uncertainty along with the closeness between
the input sample’s representation to that of the predictive class distribution
in the subspace of the last hidden layer activation can be a successful defense
mechanism against adversarial attacks.

From all the above work, it is to be noted that the existing and ongoing
research is focused on deep learning environments using homogeneous datasets.

In this work, we propose a novel defense mechanism using the Minimum
Prediction Deviation (MPD) uncertainty metric. We use this metric to measure
the uncertainty of a phishing detection model’s predictions on samples from a
tabular dataset. One strong advantage of MPD is that it is used as a detection
method. Therefore it can harden all machine learning models.

3 Background

3.1 Homogeneous vs Heterogeneous Datasets

Adversarial attacks and their defenses have different requirements for homoge-
neous or heterogeneous datasets. Homogeneous datasets are composed of sound,
vision, and text data with semantically identical features. For instance, all fea-
tures of an image are pixels whose values are continuous and bounded at the
same range (0–255). Conversely, heterogeneous (tabular) datasets contain cate-
gorical, numerical, and nominal features, which are often missing values. Some
domains that utilize heterogeneous datasets are healthcare assessments, business
data analytics, finance, and cybersecurity [11].

Adversarial attacks are more easily performed on homogeneous datasets,
where the perturbation of the feature can be applied equally to all features.
In short, the attack can focus on one feature (e.g., a pixel) and be applied to
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the entire sample. However, it is different in the case of heterogeneous datasets,
where features are not standardised. The perturbation may not necessarily be
viable for all features in a tabular dataset because perturbations may create
invalid features. For tabular features to remain valid, there may be some lim-
itations, such as the age of a person cannot be negative, and certain features
may be immutable in a tabular dataset. Creating an attack on tabular datasets
requires modifying the perturbations to be valid for all feature columns.

3.2 Feature Importance Guided Attack (FIGA)

Feature Importance Guided Attack (FIGA) is an evasion attack designed for
heterogeneous (tabular) datasets [8]. FIGA is model agnostic and gradient-free.
It neither requires prior knowledge of any learning algorithm nor any gradient
information. It takes three parameters: fi, the feature importance ranking algo-
rithm, n, the total number of features to be perturbed, and ε, the amount of
perturbation to be added to the input sample.

The algorithm is divided into two steps. The first phase ranks the most
significant features of the dataset and finds the direction in which features must
be perturbed. The intuition is that we would like to move the input class toward
the target class. Therefore, the direction of the perturbation is determined by
comparing the input class’s mean feature values to the target class’s mean feature
values.

The second phase of the algorithm involves adding a perturbation to the
important features of the input samples. We select n features, which are evenly
manipulated by adding a perturbation of size ε in the direction of the target
class. This has the effect of “moving” the input samples in the direction of the
target class. Gressel et al. demonstrated that FIGA can achieve 97% success
rates against four different datasets trained with five different machine learning
models. For full details of the attack, please refer to [8].

3.3 Minimum Prediction Deviation (MPD)

Minimum Prediction Deviation (MPD) is a metric that measures the uncertainty
of a machine learning model’s prediction of a single sample [4]. This measure of
uncertainty is based on the distribution of probabilistic predictions generated
by an ensemble of bootstrapped estimators. MPD measures the inconsistencies
within the model’s predictions in a quantifiable manner. Consider the scenario
where two ML models may have varying probabilistic distributions. The distri-
butions could be bi-modal and uniform, yet both share the same mean. MPD
allows us to quantify these variations in the distributions as a single metric.

MPD has two key steps:

– Bootstrapping: First, we create different sample subsets from the original
dataset with replacement. We create and train an ensemble of n classifiers
using these datasets. After constructing the ensemble of classifiers, we will
use their probabilistic predictions to calculate the MPD score per sample.
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– ProbabilityDistribution: In order to calculate our MPD score we iterate over
all classifiers in the ensemble and obtain a vector of n probabilistic predictions
per sample.

Algorithm 1. Bootstrapping w/ Replacement
Input: X, y, Classifier, n
Output: ensemble

1: ensemble ← []
2: for i ← 0, n do
3: X∗, y∗ ← resample(X, y, replace = True)
4: clf ← clone(classifier) � new unfitted estimators
5: C∗ ← clf.train (X∗, y∗)
6: ensemble.append(C∗)
7: end for
8: return ensemble

MPD is a modified form of the standard deviation equation. Standard devia-
tion is the square root of the expectation E of the squared deviation of a random
sample x from its mean. Equation (1) is the standard deviation.

σ(q(x)) =
√

E[(q(x) − q∗(x))2] (1)

The goal is to determine the uncertainty of a sample x classified from the
probability distribution q(x). Therefore, the equation of the standard deviation
(1) is modified such that it quantifies the deviation of the distribution q(x) from
0 and 1 class labels.

U0(x) =
√

E[(q(x) − 0)2] (2)

U1(x) =
√

E[(q(x) − 1)2] (3)

U0 (2) and U1 (3) quantify the deviation of the probabilistic distribution q(x)
from 0 and 1, which represents the two class labels.

The Minimum Prediction Deviation (MPD) is defined as the minimum of
these two deviations, such that a low MPD score represents low uncertainty and
a high MPD represents high uncertainty.

Uq(x) = min[U0(x), U1(x)] (4)

If U0(x) < U1(x), the distribution is clustered closer to 0 and if U1(x) < U0(x),
then the distribution mass is clustered closer to 1. Whichever value is lower (U0

or U1) represents the uncertainty of the prediction that will be made by the
classifier. Therefore, Uq (the MPD) represents the uncertainty of the prediction
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Algorithm 2. Minimum Prediction Deviation (MPD)
Input: x, ensemble
Output: Uq(x)

1: Prob predict ← []
2: for clf in ensemble do
3: p ← clf.predict proba(x)
4: Prob predict.append(p)
5: end for
6: q(x) ← Prob predict � Prob predict is the sampled q(x)
7: U0(x) =

√
E[(q(x) − 0)2]

8: U1(x) =
√

E[(q(x) − 1)2]
9: Uq(x) = min[U0(x), U1(x)]

10: return Uq(x)

for a single sample. Darling M. proves that Uq increases as the uncertainty
increases [4].

The general steps for creating an ensemble of classifiers are shown in Algo-
rithm 1. The input consists of a sample X, a label vector y, and n, the number of
bootstrapped models to be created. The algorithm is an n-step loop in which we
bootstrap a dataset, fit a model classifier, and save it for later use. We compute
the MPD score by using the prediction of the ensemble of classifiers created. We
show the steps required to compute the MPD score in Algorithm 2. It accepts a
classifier ensemble as input and x as a data point. We iterate over all classifiers
in the ensemble to obtain a probabilistic prediction on sample x to calculate the
MPD.

4 Methodology

4.1 Approach

Machine learning models will be more uncertain about adversarial examples
than normal samples. We want to use MPD to detect adversarial examples. To
test the hypothesis, we measure the MPD of each sample present in the dataset
and compare them to the MPD of the adversarial examples (i.e., samples when
perturbed) created. Then we calibrate a threshold value such that if the MPD
of the adversarial examples is higher than the threshold value, those samples are
considered adversarial. We measure the performance of the MPD detector with
f1-score, precision, recall, and the false-positive rate. We use a phishing dataset
as our testbed to perform all our experiments. Finally, we build a phishing
detection classifier with a random forest model. We use this classifier to evaluate
the strength of the FIGA attack. We require knowledge of the FIGA attack’s
success rate to evaluate the MPD defense.



Using Uncertainty as a Defense Against Adversarial Attacks 727

4.2 Data Collection

We use the dataset collected by Gressel et al. [8]. They have collected benign and
phishing website data using a Selenium-based web crawler. The phishing data
URLs in the datasets were taken from PhishTank during the year 2019–2020.
PhishTank.com is a website where users report and validate phishing sites; it is
considered a ground truth in the academic phishing community. The legitimate
URLs in the dataset were collected from Tranco, which is combined from four
URL ranking lists: Alexa, Majestic, Quantcast, and Umbrella. The logic is that
websites that are frequently visited will be benign. 348,739 URLs were collected,
and 52 features were extracted from the source code.

5 Experiments

5.1 Experiment 1: Relationship Between MPD and FIGA

Fig. 1. MPD scores before and after a FIGA attack

In Fig. 1 we display a histogram of MPD scores on clean unperturbed data and
compare it to a histogram of MPD scores on FIGA perturbed data (all data
was perturbed). The distribution of MPD scores shifts dramatically to the right
when under attack; that is, the scores increase. When there is no attack, the
MPD distribution is primarily near 0, with over 7500 samples containing zero
uncertainty. When FIGA perturbs the same data, the MPD mass increases and
nearly all samples have a score of more than .18. This indicates that an MPD
threshold can be used to detect adversarial attacks successfully.

5.2 Experiment 2: Evaluation of MPD Detection

We prepare a test set of 69,748 samples. 50% of the samples are benign, and 50%
malicious. We use FIGA to perturb half of the phishing samples. This creates
a final set that has 25% adversarial samples, 25% phishing samples, and 50%
benign samples. The exact numbers are given in Table 1.
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If MPD score greater 
than threshold value, 
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If MPD score lesser 
than threshold value, 
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Calculate 
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Fig. 2. Detecting if an unknown sample is adversarial or not

We want to select an MPD threshold value that can be used to classify
an unknown sample as adversarial or not. If the uncertainty of a sample is
greater than the threshold, it will be labeled as adversarial; if it is lower than
the threshold, it will be labeled as normal. To determine the best threshold value
for a given attack, we conduct experiments over a range of thresholds varying
from 0.01 to 0.77 (the maximum MPD score possible) while varying the strength
of the attack.

Table 1. Breakdown of Test Dataset used for Evaluation

Benign Phishing Adversarial Phishing Total

# Samples 42,053 13,848 13,847 69,748

We calculated the MPD scores for each attack for the entire test set. Next,
we select an MPD threshold and divide the samples into positive (adversarial)
and negative (normal) classes. We then use these predictions to compute a set
of metrics to evaluate the performance of the MPD detection. The process is
illustrated in Fig. 2

Note that both unperturbed phishing and benign samples are not adversarial
and are considered the negative class for this experiment. We aim only to detect
the positive class, the adversarial phishing samples.

We examined the recall, precision, f1-score, and false positive rate of the
samples MPD selected as adversarial. The recall score tells us exactly how many
adversarial samples were detected. However, maximizing recall while sacrificing
the false positive rate is easy. In order to have a balance between detection and
precision, we selected the threshold which maximized the f1-score, the harmonic
mean of precision and recall. This would ensure a reasonable detection rate with
a high level of precision (correlating to a lower level false-positive rate).

In order to understand if the ideal threshold rate would change based on
the strength of the attack, we iteratively increased the strength of the attack
while testing all threshold values - selecting the threshold which maximizes the
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Fig. 3. The security evaluation curve for the FIGA attack shows us how MPD responds
as the attack strength increases. We set n = 10 (10 perturbed features) and we increased
the amount of perturbation e from 0.01, to 2.0. The larger e grows, the stronger the attack.
The success rate is measured against a random forest phishing detection classifier

f1-score. This is a security evaluation curve, which examines the detection per-
formance as the attack strength increases [1]. In our case, we examine both
performances of detection and the ideal threshold level. This experiment allows
users to determine the best threshold for their risk model.

6 Results and Analysis

The security evaluation curve is presented in Fig. 3. We used the FIGA parame-
ters n=10 and applied a range of e from 0.01 to 2.0 as e grows, the perturbation
amount increases. The attack success rate (calculated by sending attack samples
to the random forest classifier) also increases.

There are several interesting things to note. The f1-score and detection rate
remain stable as the attack strength and success rate increase. The MPD f1-score
averages .83, and the MPD detection rate (recall) at .96. This is satisfactory as
it indicates that 96% of adversarial samples are detected.

Table 2. We examine the performance of the false positives generated by the MPD
detection. PDC F1: The f1-score for the phishing detection classifier.

PDC F1

MPD FPR Only MPD’s FP Full Data

Mean 7.9% 0.738 0.976

The average false positive rate is 7.8%. However, the samples that are falsely
classified as adversarial are highly uncertain samples (they have a high MPD). In
Table 2, we drill down into the false positives selected by MPD. When classifying
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only the false positive samples, the phishing detection classifier (PDC) yields an
f1-score of .738, which is below its typical .976. This indicates that the false
positive samples are, in fact, difficult to classify due to their higher uncertainty.
This is an added benefit of using MPD as a detection mechanism; when it falsely
labels samples, those samples should be examined regardless due to their higher
uncertainty.

Fig. 4. (a) Confusion matrix generated with the perturbation rate e = 1.5 and MPD
threshold = 0.178. (b) A precision-recall curve of the perturbation rate e = 1.5. This
curve is generated by varying the MPD decision threshold

Figure 4(a), is a confusion matrix obtained with a perturbation rate of 1.54
and an MPD threshold of 0.18. It is helpful to examine the breakdown of errors
made. We see that our method has more false positives than false negatives-this
is important as it is evidence of a very low false negative rate and high recall.

In Fig. 4(b), we display a precision recall curve generated by varying the
MPD threshold. Looking at the curve, we see that we can achieve a reasonable
AUC. We can achieve a high recall without sacrificing much precision.

7 Conclusion and Future Work

Adversarial examples elude models with high evasion rates. These vulnerabili-
ties make it challenging to deploy machine learning models into security-critical
areas. It is an ongoing research problem to find effective defensive mechanisms to
mitigate the threat of adversarial examples. In this work, we developed a novel
defense for tabular datasets.

This work utilized Minimum Prediction Deviation (MPD) as a defensive
mechanism against adversarial examples. By using the MPD, we quantify the
uncertainty per sample so that we can differentiate between adversarial examples
and normal samples. We demonstrated that even the false positives from the
MPD detection are worth examining since they contain a high uncertainty, and
the phishing detection model performed poorly at classifying them.
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We strongly believe that MPD has a good defense for detecting adversarial
samples on many datasets, not only the phishing testbed we experimented with.
Further, we would like to see an adoption of uncertainty analysis for all samples,
regardless of a perceived threat. We believe this would increase the effectiveness
of all machine learning models.

In future work, we would like to explore using MPD to detect adversarial
samples in additional tabular datasets and discover if MPD can be useful for
homogeneous datasets.
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Abstract. Wilderness Search and Rescue (WiSAR) operations require
navigating large unknown environments and locating missing victims
with high precision and in a timely manner. Several studies used deep
reinforcement learning (DRL) to allow for the autonomous navigation of
Unmanned Aerial Vehicles (UAVs) in unknown search and rescue envi-
ronments. However, these studies focused on indoor environments and
used fixed altitude navigation which is a significantly less complex set-
ting than realistic WiSAR operations. This paper uses a DRL-powered
approach for WiSAR in an unknown mountain landscape environment.
To manage the complexity of the problem, the proposed approach breaks
up the problem into five modules: Information Map, DRL-based Navi-
gation, DRL-based Exploration Planner (waypoint generator), Obstacle
Detection, and Human Detection. Curriculum learning has been used
to enable the Navigation module to learn 3D navigation. The proposed
approach was evaluated both under semi-autonomous operations where
waypoints are externally provided by a human and under full autonomy.
The results demonstrate the ability of the system to detect all humans
when waypoints are generated randomly or by a human, whereas DRL-
based waypoint generation led to a lower recall of 75%.

Keywords: Autonomous navigation · Curriculum learning · Search
and rescue

1 Introduction

WiSAR operations often occur after natural disasters or accidents to find missing
victims. WiSAR operations are time-critical where the objective is to find all
victims within the shortest amount of time. Recent studies have been exploring
the use of UAVs in search and rescue (SAR) missions where access to humans
and ground vehicles is limited [8,15,27]. Due to their greater field of view, ease of
deployment and navigation, and low manufacturing cost, UAVs lend themselves
to complex SAR missions, including WiSAR [2,30].
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In the last decade, most field studies have primarily focused on the use of
manually controlled UAVs in SAR. However, manual control puts significant
workload demands on human operators in such stressful contexts which results
in errors. Thus, the interest in autonomous UAV operation has recently increased
to allow for more effective SAR operations [4,5,8,14] and allow for better use of
the available manpower.

In typical WiSAR operations, no accurate model of the environment exists.
This raises the need for developing algorithms to enable a UAV to autonomously
make its decisions based on its evolving perception of the environment without
relying on continuous human interaction. Reinforcement Learning (RL) has been
used to enable autonomous SAR operations [7] as it enables the UAV to learn
efficient navigation strategies without requiring a model of the environment.
Nevertheless, due to the complexity of SAR problems, past studies using RL
considered simplified settings by focusing on indoor environments. Another key
limitation of past RL studies is fixing the altitude of the UAV to reduce the
action space of RL. However, such simplifications reduce the applicability of
the algorithms to realistic WiSAR operations that are characterised by high
environmental clutter, partial observability, and variable landscape elevation.

This paper aims to address this gap by proposing an approach to autonomous
UAV operation in complex WiSAR environments. This work proposes a modu-
lar approach consisting of five modules: Information Map, Navigation module,
Exploration Planner, Obstacle Detection module, and Human Detection module.
The Information Map is used to mitigate partial observability of the environment
by serving as a memory for storing information collected by the UAV. The Nav-
igation module is an RL algorithm concerned with taking the UAV through the
shortest obstacle-free path towards a given location. Curriculum learning is used
for training the Navigation RL agent to facilitate learning whilst allowing the
UAV to change its altitude in mountain environments. The Exploration Planner
is another RL agent that provides high-level planning of the WiSAR operation
by generating a sequence of waypoints for the UAV. The Obstacle Detection
and Human Detection modules use the UAV sensor feed to detect obstacles and
humans in the environment and estimate their 3D positions. These modules are
described in detail in Sect. 5. The proposed approach has proved its viability
both under semi-autonomous operations (where waypoints are externally pro-
vided by a human) and under full autonomy (where waypoints are generated by
the Exploration Planner Module). Detailed results are provided in Sect. 6.2. The
next section gives a brief review of autonomous UAV operations.

2 Related Work

Many studies have focused on the autonomous navigation of UAVs in SAR oper-
ations. Tomic et al. [29] introduced a framework for the autonomous execution of
SAR operations using aerial robots. They used laser and stereo vision odometry
fused with an inertial measurement unit in an extended Kalman filter to enable
seamless navigation. A successful test was performed on a quadrotor platform
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using four cameras and a laser scanner, but the system did not have any collision
avoidance capabilities. Scherer et al. [24] proposed a UAV-based architecture for
SAR missions in outdoor environments. The architecture used a distributed con-
trol system for coordinating the activities between multiple UAVs. The main aim
was to detect a target through its colour, shape, or texture and live stream the
aerial video for remote monitoring. The project used a swarm of UAVs to act
as a communication relay. But the main limitation of these non-RL solutions is
that the environment model was already known at the start of the task which is
typically not the case for SAR operations.

Recently, RL has been extensively used in developing autonomous algorithms
for UAV navigation, path planning, and trajectory optimisation [3,13]. Kersandt
et al. [16] used DRL for the self-training of drones in a fully autonomous flight
where depth images were used as the observation vector. After 3 days of training,
the DRL agent was deemed effective by achieving 80% success in test flights.
Hodge et al. [10] described a navigation algorithm that uses onboard sensor
data (i.e. GPS and compass) to guide the drone to a target location in a static
environment. They used Proximal Policy Optimisation (PPO) DRL combined
with incremental curriculum learning and Long Short-term Memory (LSTMs)
Neural Networks to implement their algorithm. A key limitation in both of these
works is that the altitude of the drone was kept constant. This is done to reduce
the action space of the DRL agent to facilitate learning, however, this limits the
applicability of the algorithms to fixed-elevation environments.

Pham et al. [22] used RL to train a UAV to navigate safely to a target point
and locate the immobile human (if present at that location) using a combi-
nation of Proportional-Integral-Derivative(PID) and Approximated Q-learning
algorithm. The authors used a discrete state space containing the relative dis-
tance of the UAV from the target and the distances to the nearest obstacle in the
North, South, East, or West direction. The limitation of this study was a con-
stant UAV altitude throughout its flight. An RL-based framework was presented
in [7] that enabled a UAV to autonomously observe the environment and map a
trajectory for the fastest localisation of multiple objects in a SAR mission. The
approach divided the search environment into M cells and the cell center was
used as a state vector for the agent. The framework was implemented in two
phases. In the first phase, the UAV was controlled by a human operator through
an initial scan trajectory to get the number of terrestrial objects and to train the
agent online. Then, in the second phase, the UAV autonomously controlled its
movements using RL to minimize the average location errors of all objects. The
need for a human to teleoperate the UAV during the initial scan is problematic
as it can result in significant inefficiencies.

Most of these studies have focused on SAR operations for indoor and less
cluttered environments. A common limitation was that the altitude of the UAV
was kept constant during training and testing. Furthermore, the victims’ loca-
tions were already known at the start of the SAR operation via GPS so these
algorithms will fail in scenarios where the location is unknown. In contrast to all
the aforementioned developments, this work proposes a fully-autonomous UAV
that is not only capable of autonomously navigating in the wild with varying
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altitudes but can also create a map of the environment that has positional infor-
mation for the obstacles and humans in the environment. This map can help the
SAR team localize the victims easily.

3 Preliminaries

RL is formulated as a MDP with state space S, action space A, reward function
R, and discounting factor γ. By repeatedly interacting with the environment
through trial and error, an RL agent aims to learn a policy that maximises
the accumulated reward; where a policy π provides the mapping from states to
actions π : S → A. In many real-world problems, the true state of the environ-
ment can not be deterministically sensed by the agent. The problem can then be
formulated as partially observable MDP (POMDP) by using agent observations
instead of the true states of the environment. As such, it becomes crucial for
the performance to account for this partial observability (e.g., by maintaining a
belief of the current state or by equipping the agent with memory).

Tasks with huge state and action spaces have represented a significant chal-
lenge for classic RL. Deep RL (DRL) aims to address this challenge by using
Neural Networks(NN) as function approximators. DRL has produced excellent
results in various complex tasks including Atari games [20], robotic control [12],
and nuclear fusion [6]. This paper uses a widely used DRL algorithm called
proximal policy optimisation PPO [25].

4 Problem Definition

The SAR problem addressed in this paper consists of a UAV D with posi-
tion PD = (xD, yD, zD) and a group of N scattered humans (h1, h2, ...hN ) with
positions Phi

= (xhi
, yhi

, zhi
). The SAR operation is conducted in a geofenced

continuous-space environment of dimensions L × L × H. The geofence has O
obstacles in it. The environment has a designated starting position for the UAV
given as P 0

D. The maximum linear velocity of the UAV is VD and the field of view
of its camera is θ. The UAV is assumed to be spatially aware of its position P t

D

but the positions of humans are unknown. The objective is to find all humans
within a predefined amount of time Tmax. The task is finished when all humans
have been detected or when Tmax is reached, whichever happens first. The task
is considered successful if and only if all lost humans are found.

5 Methodology

A modular approach is proposed in this paper to solve the problem defined
above. The proposed system consists of five different modules that are inte-
grated to enable finding an efficient solution to the main problem. A schematic
overview of the proposed system is given in Fig. 1. The UAV Navigation mod-
ule is responsible for controlling the flight of the UAV and guiding it towards a
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given target (generated by the Exploration Planner module) while avoiding colli-
sions. The Human Detection and Obstacle Detection modules are used to detect
humans and obstacles, respectively along the way and calculate their position
in the environment. This information is stored by the Information Map module
and is then used by the Exploration Planner module for generating waypoints
for the UAV.

Fig. 1. Schematic overview of the system modules.

5.1 Simulator

Airsim is used in this work to simulate the UAV in a Landscape Mountains envi-
ronment, as shown in Fig. 2a. Airsim is a photo-realistic simulator for drones
and ground vehicles developed on top of Epic’s Unreal Engine 4 (UE4) by
Microsoft Research. This simulator is selected because it closely simulates real-
world dynamics [26]. The quadcopter model provided by Airsim supports sensors
such as RGB and depth cameras, IMUs, GPS, and LIDARS. Airsim has Python
APIs that can be used for both controlling the UAV and obtaining its sensor
readings.

5.2 Information Map

The Information Map is a 3D occupancy map (a voxel map) containing informa-
tion about UAV detections and past trajectories. This map serves as an input
for the Exploration Planner module. The initial size of the map is 10 × 10 × 3
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Fig. 2. UAV navigation.

cells and it increases during runtime based on the region explored by the UAV.
Each voxel in the map represents 1 m3 volume. A virtual geofence is defined
within the scene to mark the region that the UAV should be exploring. Each cell
can take one of these states: unknown, free, contains obstacle, contains human,
previously visited by the UAV, or currently occupied by the UAV.

Initially, all cells are marked as unknown. The state of a cell can change
depending on the UAV path (calculated using GPS through Airsim) and observa-
tions. A pyramid-shaped vision volume is modelled to keep track of the observed
cells as shown in Fig. 2b. The vision range of (π/2) is selected to generate a real-
istic vision volume that can be achieved from the drone’s faced-down camera
in Airsim. If a previously unknown cell comes within the vision of the UAV, it
will be marked as either free, obstacle or human based on information from the
Obstacle and Human Detection modules. The cells that lie behind any obstacle
are not detected by the UAV and their states are kept unchanged.

5.3 UAV Navigation Module

The Navigation module is responsible for the UAV movement and is controlled
by a DRL agent. The goal state for this module is set based on the current target
waypoint generated by the Exploration Planner module. The observation space
for the agent consists of a depth image of the environment and the distance
and direction of the waypoint relative to the UAV. The action space consists of
five discrete actions: fly forward 0.25 m, rotate left or right 10◦, and move up or
down 0.25 m. This module aims to navigate through the shortest obstacle-free
path to the target waypoint. The episode is terminated when one of the four
conditions is met: reaching waypoint, collision, going outside geofence, or Tmaxis
reached. A reward of +5 is given for reaching the waypoint and a reward of −5 for
collision or going outside the geofence. Besides, a shaping reward of +0.1/−0.1
is given for moving towards/away from the waypoint. A small negative reward of
−0.05 is also included for rotation and moving up/down to discourage the UAV
from doing these actions while staying at the same location. This was deemed
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necessary based on some initial experiments in which the UAV preferred to rotate
and ascend/descend at the same location rather than moving forward.

The UAV takes off at a predefined starting location which remains the same
in each episode. During training, the target waypoint is set according to a simple-
to-complex curriculum learning to allow for efficient learning [11]. In RL domains,
curriculum learning can be used during the training phase by starting the train-
ing with easy scenarios where the probability of success is high before proceeding
with more complex scenarios. This enables the RL agent to receive useful learn-
ing signals early on, which expedites learning. Curriculum learning is used in
the training of the Navigation module as follows. The waypoint position is gen-
erated randomly within a maximum distance of dmax from the UAV. Initially,
dmax is set to 5 m. After each successful training episode, dmax is increased by
0.1 m. After training is complete, the waypoint is set by the Exploration Planner
module and can take any location within the geofence.

The RL algorithm used for the Navigation module is PPO [25] which is
an on-policy algorithm that learns only from its current batch without using a
replay buffer. PPO uses an actor-critic architecture in which the actor learns
the policy through policy gradient, while the critic learns the value function for
each state-action pair and helps with selecting high-value actions. PPO is used
in this paper due to its efficiency and simplicity. It is more stable and converges
faster than deep-Q networks and vanilla policy gradient. Also, it is simpler than
trust region policy optimisation (TRPO).

The neural network used for the training of this module consists of both a
visual encoder and a vector encoder to handle the depth image and distance and
orientation components of the observation space respectively. The visual encoder
consists of a stack of two convolutional layers with (16, 32, 64) filters per layer
followed by a max-pooling layer while the vector encoder only consists of two
fully connected layers each of size 32 neurons. The two encoders run in parallel
and their outputs are then concatenated. The concatenated output is then passed
through two shared fully connected hidden layers of size (32, 32) which split the
network into the actor and critic head. The critic head is a single neuron with
no activation function. The solution uses mini batch gradient descent with the
Adam optimizer [17] and entropy regularisation [1]. Stable-baselines 3 has been
used for the implementation of PPO with the neural network as described above.
The learning rate is set to 1e−5; other hyper-parameters are set to their default
values in Stable-baselines 3.

5.4 Exploration Planner

The Exploration Planner module deals with exploring the environment by gen-
erating a sequence of target waypoints (within the geofence) for the UAV.
These waypoints are used by the pre-trained Navigation module to guide the
UAV through the environment. The input for this module is the Information
Map which gives information regarding the positions of the obstacles, detected
humans, and previously visited areas in the environment. The objective is to
create a policy for the waypoint generation which maximises the exploration of
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the environment within a given time limit. This module is formulated as DRL
and the main inspiration for this waypoint-based exploration was the work done
in [31] and [19].

The state space of the RL environment for the exploration module comprises
the Information Map. The action is defined as generating a waypoint for the
agent, described by the displacement (dx, dy) from the UAV’s current position.
After receiving the action, the pre-trained navigation policy controls the UAV
until it safely reaches the waypoint and the Information Map is updated contin-
uously during this task. To maximise the exploration, the reward function for
this module is based on the detection of previously unseen cells on the map. The
reward for each new waypoint is equal to the number of unknown cells detected
by the UAV, inversely scaled with the number of steps taken to reach the way-
point and the size of the vision volume. A similar approach was used in [21].
An extra reward of +10 is also provided to the agent if it detects a new human
during exploration. The reward function RE for exploration is given as:

RE =
number of new cells detected

vision volume · number of steps taken
+

{
10 if new human detected
0 otherwise

(1)
PPO is used for training this module similar to the UAV Navigation module.
The NN and hyper-parameters used are also almost the same. The differences
are that the NN consists of a visual encoder only due to the spatial nature of the
information map. In the convolutional stack, max pooling is not used to avoid
losing important information. Also, a continuous action head is used due to the
continuous action space.

5.5 Obstacle Detection Module

This module is responsible for detecting obstacles such as trees, rocks, and moun-
tains using the onboard depth camera of the UAV. Using a 64X64 depth image
as input, the algorithm checks the depth at a given number of grid points and
estimates the corresponding global coordinates based on the pinhole camera
model [28]. A 3D point with global coordinates (Xa,Ya,Za) is represented in the
pixel coordinate system (u, v) by the equations:

ua = ku(f
Xa

Za
+ x0) (2)

va = kv(f
Ya

Za
+ y0) (3)

where f is the focal length and ku and kv are the pixel densities in the u and
v directions, respectively. From these equations, it is easy to reconstruct the
coordinates of a 3D point relative to the UAV using a depth image. These coor-
dinates are then transformed into absolute global coordinates using the position
and orientation of the UAV and the result is stored in the Information Map.
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5.6 Human Detection Module

This module uses 1024 × 1024 RGB images to detect humans and calculate their
3D positions. This is enabled by using YOLO [23] which is a widely used algo-
rithm for real-time object detection. In YOLO, an image is first divided into grids
of equal dimensions. Each grid cell makes B bounding boxes and provides the
confidence scores for detection by using a single bounding box regression that
predicts the height, width, center, and class of the objects. Intersection over
unions (IOU) ensures that the predicted boxes are equal to the real boxes of the
objects. This is done by eliminating the unnecessary bounding boxes that do not
match the height and width of the object. YOLO is used in the current work
as it outperforms other object detection algorithms [18]. When YOLO detects a
human, it makes a bounding box around it within the image. The location of the
human in the image is calculated as the center (xc, yc) of the projected box. This
2D point can be re-projected to 3D space using the same method used in the
Obstacle Detection module. The 3D points are then stored in the Information
Map to keep track of the detected humans.

6 Experimental Results

The training and evaluation experiments have been conducted on a Linux system
(1080 Nvidia GPU) using the parameter settings listed in Table 1. The RL train-
ing results are first presented in Sect. 6.1 then the system evaluation is presented
in Sect. 6.2.

Table 1. Parameter setting used for training and evaluation.

Parameter P 0
D Geofence N O VD θ Tmax

Value (0,0,0) 60 × 60 × 15 m3 4 10 0.5 m/s π/2 512 steps

6.1 Training Results

UAV Navigation Agent. Figure 3a shows the performance of the Navigation
PPO agent along training time. During the early training epochs, the agent
learnt to avoid negative penalties by avoiding collisions and staying inside the
geofence. Then the agent learnt to reach waypoints more frequently as indicated
by the positive rewards. When a target waypoint was too close to the geofence
boundary, the agent kept crossing the geofence which resulted in a negative
reward. However, including such waypoints in the training was necessary to
ensure that the resulting agent can maintain the geofence constraints regardless
of the position of the target waypoint.
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Exploration Planner Agent. The training results of the Exploration PPO
agent are shown in Fig. 3b. In the early training epochs, the agent frequently
generated waypoints too close to obstacles which led to early episode termination
due to collisions. Although there was no explicit negative reward for collision in
the Exploration Planner RL agent, collisions prevented the agent from exploring
more portions of the environment and detecting more humans and receiving the
associated positive rewards. Hence, over time the agent learnt to avoid generating
waypoints too close to obstacles.

Fig. 3. Training results. Epoch = 2048 time steps.

6.2 Evaluation

After the training of the RL agents is completed, evaluation has been conducted
in two phases. The first phase aims to evaluate system performance in semi-
autonomous operations, whereas the second phase evaluates the system under
full autonomy.

Evaluation Under Semi-autonomous Operations. In today’s real-life sce-
narios of robot operation, human supervision is necessary for critical opera-
tions. In these human-robot teaming settings, high-level planning is conducted
by humans while plan execution is left for the robot [9]. To evaluate the pro-
posed system under such settings, the waypoints are provided by the authors in
a way that would allow the UAV vision volume to cover all humans. The authors
conducted evaluation experiments to assess the system performance in this set-
ting where the waypoints are externally generated (rather than generated by the
Exploration Planner module), and the system otherwise operates as depicted in
Fig. 1.
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Five evaluation experiments have been conducted during which the positions
of the detected obstacles and humans have been logged for analysis. A human
is considered to be found if they are detected and their position is estimated
within 1.5m2 from their actual position. Similar to the literature on informa-
tion retrieval, recall is used as a measure for reflecting the system’s ability to
retrieve humans’ positions. However, instead of using the precision measure that
is suitable for classification settings, we use position estimation error for mea-
suring the accuracy of calculating the positions of humans found. In our setting,
recall is calculated as the ratio of humans found, and position estimation error is
calculated as the distance between the estimated and actual positions. A recall
of 100% has been achieved in the 5 evaluation runs. The average position esti-
mation error was 0.48 m with a standard deviation of 0.27 m. Figure 4 presents
a 3D visualisation of the map obtained during one of the evaluation runs. The
yellow cubes represent the detected humans, green represents the flight path of
the UAV and red represents the detected obstacles/floor of the environment. The
figure shows more than one yellow cube at three out of four human locations.
This was due to multiple location estimates generated by the UAV for three
humans whereas the fourth one was detected only once.

Fig. 4. Visualisation of the results of the semi-autonomous system operation.

Evaluation Under Full Autonomy. The full system has been evaluated under
full autonomy: first using the pre-trained Exploration Planner RL agent for way-
point generation and then using random waypoints. Figure 5 shows the average
recall over five evaluation experiments. When the Exploration Planner RL agent
is used for waypoint generation, a recall of 75% is achieved within the time limit,
Tmax. Meanwhile, randomly generated waypoints resulted in a 100% recall.
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Fig. 5. Results of five evaluation runs under full system autonomy.

7 Conclusion and Future Work

The autonomous UAV navigation in WiSAR is a highly complex problem due
to cluttered environments and partial observability. Previous studies using RL
focused on SAR for indoor environments and used fixed altitude navigation
which is a significantly less complex setting than WiSAR. This paper addresses
the complexity of WiSAR by proposing a modular DRL-powered system that
consists of five modules: 1. Information Map, 2. Navigation, 3. Exploration Plan-
ner, 4. Obstacle Detection, and 5. Human Detection.

The system has been evaluated both under semi-autonomy (i.e. waypoints
externally provided to the UAV) and full autonomy (i.e. waypoints autonomously
generated by the system). In the semi-autonomous experiments, the system
achieved a 100% recall rate whilst achieving collision-free navigation. Under full
autonomy, random waypoint generation resulted in a higher recall than DRL-
based waypoint generation. This suggests that the Exploration Planner RL agent
was not useful in the experimental environment and should be replaced by a sim-
ple random waypoint generator in similar settings. However, under more complex
settings (e.g. dynamic environments), human-generated waypoints are expected
to result in the highest performance.

Using the Airsim simulator for system development and evaluation has impor-
tant practical implications as the AirLib library (main library in Airsim) can be
compiled and deployed on a real drone [26]. By using a model of a commercially
available quad-rotor for evaluation, we show that the proposed system has no
unrealistic assumptions about the computational capabilities of the drone.

Future studies can extend this work in several directions. First, the current
work considered static humans, however in the general case humans can be
moving in the environment. Second, environmental clues (e.g. human belongings)
can be utilised for guiding the search operation. Third, extending the system to
allow for operating a swarm of UAVs will enable reducing the search time and
covering larger WiSAR areas.
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Abstract. Active learning systems achieve high accuracy with a low
labeling budget by annotating high utility instances incrementally. In
uncertainty sampling, labels of instances with maximal uncertainty are
queried; however, redundant instances with similar features are often
selected during the sampling process. We proposed a novel difficulty-
based active learning framework that constructs decision boundaries by
sampling instances with maximal classification difficulty. We propose
three instance level difficulty measures, specifically base classifier count,
fluctuation score and individual error score, in a boosted ensemble setting
to identify difficult to classify instances. In real-life settings, obtaining
labeled data is often expensive and requires domain experts; unlike other
difficulty measures that assume complete label knowledge, the proposed
measures need only limited labeled data. Experiments with real-world
and synthetic datasets show that difficulty-based sampling requires sig-
nificantly fewer labeled instances to achieve high accuracy than uncer-
tainty sampling.

Keywords: Complexity measures · Active learning · Boosting

1 Introduction

Recently there has been a shift from model-centric to data-centric machine
learning [12], as improving the data quality often yields better results than
algorithm improvements. Active learning systems aim to achieve high perfor-
mance by selecting the most representative and informative instances for train-
ing according to a utility score. The utility score is often quantified in terms of
predictive uncertainty. However, a single probabilistic distribution to represent
existing knowledge does not entail the reasons for uncertainty [14]. The sources
of uncertainty can be found by studying the composition of the instance within
the dataset. Current research measures the overall complexity of a dataset [7].
There are three major drawbacks of data complexity measures: (1) the major-
ity of measures only characterize a dataset’s overall complexity but cannot give
indications of instance complexity; (2) they focus on specific cases of difficult-to-
classify instances (e.g. outliers [16], border points [1]); and (3) they often require
complete label knowledge.
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To mitigate these limitations, we propose a new active learning framework,
Difficulty based Active Learning (DAL) framework, that samples instances based
on the classification difficulty of each instance. Instead of incrementally sampling
instances with maximal uncertainty, a measurement of the whole system (model
and data), we sample instances with maximal difficulty based on the composition
of instances within the dataset. Our approach leverages the label fluctuation of
instances during the construction process of an ensemble model as an indication
of label difficulty, with instances that require a weaker learner and experience
more fluctuations given higher scores. The method of our proposed framework
is outlined in Fig. 1.

The difficulty metrics heavily influences the instances sampled by the active
learning framework. In addition to DAL, we propose a novel framework that mea-
sures different classification difficulty types and the process outlined in Fig. 2.
Three difficulty measures are proposed based on the label fluctuations in an ensem-
ble setting. The classifier count metric measures the minimum description length
of an instance. The fluctuation score is a measurement of label consistency. The
individual error score indicates label consistency, independent of inputs from other
ensemble members. Unlike a single probabilistic distribution such as uncertainty,
our difficulty measures can differentiate between the reducible and irreducible
portions of classification difficulty represented by classifier count and fluctua-
tion score. Reducible classification difficulty is when the difficulty measure can
be reduced if provided with additional data; irreducible difficulty is when the dif-
ficulty measure cannot be reduced with more data. The distinction between the
two types of classification difficulty allows for high model performance with less
labeled training data and helps researchers interpret why particular instances are
selected.

Fig. 1. Difficulty based active learning (DAL) framework.

Our main contributions are summarized as follows. Firstly, we propose an
active learning framework, a difficulty-based active learning (DAL) framework,
that samples difficult-to-classify instances to be annotated so that future dif-
ficult instances can be correctly classified and fewer instances are required to
reach high accuracy. Our framework finds difficult to classify instances based
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Fig. 2. Classification difficulty framework.

on their composition within the dataset in a boosted ensemble setting. Lastly,
We propose three difficulty measures, namely Base Classifier Count, Fluctua-
tion Score, Individual Error Score, to provide insight into why some instances
are more difficult to classify.

2 Related Work

Several methods have been proposed to identify instances that are difficult to
classify. The dataset complexity measures from Ho and Basu [7] have been widely
used to analyze the classification difficulty problem. Ho and Basu noted that the
classification difficulty mainly originates from a combination of three sources:
1) Class ambiguity which is when for a given dataset, the classes cannot be
distinguished regardless of the learning algorithm used; 2) The dimensionality
and sparsity of the dataset, and 3) The complexity of the decision boundary.
In addition, they present several measures that focus on the complexity of the
classification boundary, such as the Fisher’s Discriminant Ratio (F1). This idea
of class ambiguity is also shared by Hüllermeier and Waegeman [8], at which
they discuss the distinction between two sources of uncertainty: aleatoric and
epistemic. Similar to class ambiguity, aleatoric uncertainty is the irreducible
uncertainty where even with the precise knowledge of the optimal hypothesis, the
prediction is still uncertain, and epistemic uncertainty is reducible uncertainty
caused by a lack of data. Other complexity measure [6,9,15] that capture similar
aspects of complexity has been proposed. However, these methods all assume
the availability of labeled data and are designed for supervised classification
problems, limiting their applicability in areas with limited labeled data, such as
active learning.

3 Active Sampling with Varying Difficulty Metrics

In this section, we first describe the difficulty-based active learning (DAL) setup.
Next, we introduce our novel difficulty measures explicitly designed to measure
the classification difficulty of instances in a semi-supervised setting.
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3.1 Difficulty Based Active Learning (DAL)

Given a dataset that contains a small set of labeled data Dl and a large pool of
unlabeled data Du, the problem we are tackling is to sample and label instances
that minimize labeling cost and maximize performance gain. We propose that
the most difficult to classify instances should be queried. For each instance
Du = {x1, . . . , xn}, we denote the classification difficulty of the instances as
{d1, . . . , dn}. The difficulty score dn is given by the ensemble model B with
training set Dl. We use the ensemble model B semi-supervised to output a diffi-
culty score. Based on the difficulty scores, we select δ difficult to classify instances
in addition to (β − δ) random instances from Du to be queried by an Oracle τ ,
such that the difficult to classify instance can adjust the decision boundary and
correctly classify future difficult to classify instances. The process is outlined in
Algorithm 1.

Algorithm 1. Difficulty Based Active Learning
Input: labeled data Dl, unlabeled data Du, classifier θ, ensemble B, batch size β,

difficult batch size η, oracle τ
Output: classifier θ
1: while Du �= ∅ do
2: θ ← θ.train(Dl)
3: B ← B.train(Dl)
4: scoresdiff ← {B.diff(x)|x ∈ Du} � Get difficulty score for unlabeled instances
5: xdiff ←Top η difficult instances given scoresdiff
6: ydiff ← {τ .Query(x)|x ∈ xdiff}
7: Dl ← Dl ∪ {(x, y)|x ∈ xdiff , y ∈ ydiff} � Update Dl

8: Du ← Du \ xdiff � Update Du

9: xrand ← (β − η) randomly sampled instances from Du

10: yrand ← {τ .Query(x)|x ∈ xrand}
11: Dl ← Dl ∪ {(x, y)|x ∈ xrand, y ∈ yrand}
12: Du ← Du \ (xrand)
13: end while

3.2 Instance Difficulty

All instances in a dataset have different degrees of classification difficulty. An
instance’s classification difficulty largely depends on the learning algorithm used
for classification and the composition of the instance within the dataset. We use
a two-dimensional example as demonstrated in Fig. 3. Instances x1, x2, x3, and
x4 are instances of the same class. Instances x1 and x4 are considered outliers;
however, in this scenario, instance x1 would almost always be correctly classified,
and instance x4 would almost always be incorrectly classified. Instances near the
decision boundary, such as instances x2 and x3, would be more difficult to classify
correctly than inlier instances that are further away from the decision boundary.
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Given a dataset D = {(x1, y1), . . . , (xn, yn)} of size n with nc unique class
labels, the classification difficulty di of an instance xi is defined as the amount
of resources required for a learner θ to learn the underlying concept and out-
put the ground truth label yi. We measure both time and memory computation
resources. For our proposed method, we train one weak base leaner as the unit
for measuring the classification difficulty of an instance. Specifically, we delib-
erately overfit to difficult to classify instances and measure the number of weak
learners required for an instance to be correctly classified. For example, instance
x3 would require more weak learners to be classified correctly than instance
x2. In comparison, instance x4 would require a more robust overall model with
even more weak learners to be correctly classified. This process of over-fitting
by including more weak learners is fundamentally an increase in time and space
resources.

AdaBoost [3] is chosen over other boosting methods, whereas, other boost-
ing methods [2,5] do not penalize misclassified instances but instead use a loss
function. Overall Adaboost model consists of total weak learners Btotal(x) =
∑total

t=1 bt(x) where bt is the t weak learner that takes instance x as input and
returns a score indicating the predicted label of the instance. The boosting pro-
cess consists of total iterations where a weak classifier is boosted and added
to the ensemble at each iteration using information gained from previous iter-
ations. Intuitively, as the number of weak classifiers increases, the amount of
performance gained from each additional weak learner decreases. Following the
definition of classification difficulty, difficult instances would need more resources
to be correctly labeled. For each instance, we monitor the changes in the label,
correctly or incorrectly labeled denoted by 0 and 1 respectively, as new weak
classifiers are added. Given a Adaboost model Btotal consisting of b1, . . . , btotal
weak learners. The label fluctuation sequence of an instance xi is fluctotal(xi)
denoted by fluctotal(xi) = {ft}totalt=1 (xi) = {f1(xi), . . . , ftotal(xi)} where ft(xi) is
1 if xi is incorrectly labeled by the ensemble model at iteration t and 0 otherwise.
Here ft(xi) = I(Bt(xi)) where I(·) is an indicator function:

I(f(xi)) =

{
0, if f(xi) == yi

1, otherwise.
(1)

Fig. 3. 2-dimensional example dataset. Fig. 4. Example of base classifier count
score.
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Intuitively more difficult to classify instances will require more weak base
classifiers to be correctly classified than easy ones. In the next section, we present
three difficulty measures that measure the following: the computation resources
required for a correct and consistent label, the consistency of the label, and
the state of the ensemble when the label is misclassified. All proposed difficulty
measures are aimed to extract meta-information that provides indications of
classification difficulty from the fluctuations in label; hence these measures are
not limited to only labeled data.

3.3 Difficulty Measures

This section introduces three difficulty measures that extract meta-information
and provide indications of classification difficulty based on the fluctuations in the
label. We also distinguish between two types of classification difficulty, namely,
label difficulty and correctness difficulty.

Base Classifier Count C . This measure approximates the minimum com-
putation required to correctly label an instance, which is similar to estimating
an instance’s description length. The base classifier count of an instance is the
number of weak classifiers necessary to build an ensemble that can predict the
correct label, denoted by the following:

C(x) =
argmintBt(x) == y,Bt(x) ∈ Btotal(x)

total
(2)

where y is the true label of x, and total is the total number of weak classifiers.
Given that the boosting model Bttotal

is a linear combination of ttotal weak
learners, each learner can be treated as a weak hypothesis ht ∈ H, where H is the
hypothesis space consisting of all possible hypotheses h mapping instances xi to
labels yi, and the overall boosting model is a linear combination of the set of these
hypotheses {h1, . . . , httotal

}. Difficult to classify instances will require a greater
number of weak hypotheses to be labeled correctly, and easy to classify instances
will need less. As an example, in Fig. 4, instance x1 is considered more difficult
to classify compared to instance x2, as it requires an additional hypothesis h2

to be correctly classified.

Fluctuation Score F . The Fluctuation Score is a measurement of label consis-
tency. From the fluctuations in the label, we apply a sliding window to produce
a fluctuation graph such that small label fluctuations contribute less to the over-
all fluctuations in label. Given a fluctuation sequence flucttotal

, the extended
fluctuation sequence is a series containing averages of different subsets of the
fluctuation sequence. Each subset is defined by a sliding window that moves
across the fluctuation sequence. The size of the sliding window increases at the
beginning of the sequence up to a predefined window size and decreases at the
endpoints such that the average is taken over only the elements that fill the win-
dow. The extended fluctuation sequence with a sliding window of size l is defined
as Sl(fluctotal(x)) = {s1,1, s1,2, . . . , s1,l, s2,l, . . . , stotal−1,2, stotal,1} where st,l is
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Fig. 5. The label fluctuation sequence of an easy to classify instance (a) and a difficult
to classify instance (b).

the window average of the tth fluctuation in the label fluctuation sequence, with
a window size of l, and it is given by:

st,l =
1
l

t+l−1∑

j=t

fj , fj ∈ fluctotal(x). (3)

Figure 5 shows extended fluctuation graph, where the sliding window size is the
same as the size of the fluctuation sequence (total = 300), and the window
size increases from 1 to 300, then back down to 1, resulting in an extended
fluctuation sequence that contains 600 window averages. The fluctuation score
of an instance is a ratio between the area under curve and the area above curve
of the fluctuation graph given by:

F (x) = 1 − abs
(

2 × ∑
Sl(x)

|Sl(x)| − 1
)

. (4)

The F value has a range between [0, 1]. A value closer to 1 indicates that the
instance is correctly classified and misclassified for a similar number of iterations
and the label of the instance is inconsistent. If the instance is labeled correctly
classified and incorrectly classified for the same duration, the fluctuation score
will be zero.

Individual Error Score IE . Instead of the cumulative prediction made by the
ensemble model Bttotal

, the prediction of the weak learner bt is used to construct
the individual fluctuation sequence of an instance denoted by ˆflucttotal

(xi), and
it is given by: ˆfluctotal(xi) = {f̂t}totalt=1 (xi) = {f̂1(xi), . . . , f̂total(xi)} where f̂t(xi)
is 1 if xi is incorrectly labeled by the weak learner at iteration t and 0 otherwise.
It is denoted by f̂t(xi) = I(bt(xi)). Individual Error Score measure the number
of times an instance is incorrectly labeled by each individual weak classifier of
the ensemble defined as:

IE(x) =
∑ttotal

t=1 I(bt(x))
ttotal

. (5)

Each weak classifier of the ensemble has different sample weights wi,t determined
by the previous weak classifier. Intuitively more difficult instances with a higher
IE value will be misclassified more often compared to easier instances.
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Label Difficulty vs Correctness Difficulty. Similar to epistemic uncertainty
and aleatoric uncertainty [8], a distinction can be made between label difficulty
and correctness difficulty. Label difficulty is the difficulty of correctly labeling
an instance, and similar to epistemic uncertainty, this difficulty can be reduced
if provided with enough relevant data. On the other hand, correctness diffi-
culty is the difficulty in determining if an instance is correctly labeled or incor-
rectly labeled. Both an instance that is incorrectly classified for all iterations
and another that is correctly classified for all iterations are considered to have
low correctness difficulty as we can be confident that the label is either correct
or incorrect. This is similar to aleatoric uncertainty, where the difficulty can-
not be reduced with additional data. In our case, the label fluctuations-based
difficulty measures F is a measurement of correctness difficulty and cannot dis-
tinguish between an instance that is incorrectly classified for all the iterations
and another that is correctly classified for the entire duration. In comparison,
the classifier counts C as a metric of label difficulty and can distinguish between
two such instances. The individual error scores IE while being a measurement
label difficulty, it is affected by nearby high fluctuation instances and indicates
correctness difficulty.

3.4 Pseudo True Label Assumptions

Given that the difficulty measures are based on label fluctuations, in the absence
of labeled data we can assume 1) the most probable label or 2) the most con-
sistent label as the pseudo true label. The most probable label is the label with
the highest prediction probability given by ŷ = {y|Pr(y) = max

(
Pr(y)

)}.
The most consistent label is the label that remains the same for the longest

number of iterations during the boosting process. We monitor the fluctua-
tion between correct (0) and incorrect labels (1). We are interested in the
fluctuation between all possible labels. We denote the prediction sequence as
Pttotal

(xi) = {pt}ttotal
t=1 (xi) = {Bt(xi), . . . , Btotal(xi)} where pt is the predic-

tion output of the ensemble model with t weak learners. The value range of
the prediction sequence is dependent on the number of unique class labels, for
example, the most consistent label of an instance with a prediction sequence
of {0, 1, 1, 1, 2, 0, 0} is labelled 1 as the label is maintained for three continuous
iterations.

Complexity Analysis Discussion. Our method consists of an ensemble boost-
ing algorithm and some difficulty measure calculations. Given a dataset D with
training set DX , the time complexity of training a decision stump base classifier
bt is O(|DX | × f) where f is the number of features. The cost of training an
ensemble with t base classifiers is therefore O(t × |DX | × f) and the test time
complexity is O(t × f). In addition to the ensemble testing cost, given that all
difficulty measures are based on the label fluctuations, each difficulty measure
can be computed in linear time in respect to t. Additionally, the training cost
of the ensemble can be effectively reduced by scaling down the number of base
learners included in the ensemble.
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4 Experiments

We perform several experiments to answer the following questions: (RQ 1) How
does difficulty based sampling perform in conjunction with different baseline
sampling methods? (RQ 2) How does difficulty based sampling compare under
different pseudo true label assumptions? (RQ 3) How does difficulty based sam-
pling compare under different difficulty measures? (RQ 4) How does difficulty
based sampling compare with state-of-the-art active learning baselines?

Datasets. Experiments are conducted on both controlled synthetic and real-
world datasets. Given that class skew magnifies any sources of classification
difficulty present in the instances [11], we used random tree and random RBF
data generators [10] to build a series of imbalanced datasets such that 75% of
the dataset are instances belonging to the same class, and instances from other
classes make up the remainder 25% of the dataset. A series of real-world datasets
from the UCI repository are also used in our experiments. Some are modified
to be imbalanced with the majority class consisting of 75% of all instances, and
they are denoted by a Imb suffix.

Evaluation Metrics. Plotting the Cohen’s kappa as a function of the size of the
labeled set produces a learning curve, and the ALC is the area under this curve.
Cohen’s Kappa Score is used instead of accuracy as accuracy provides misleading
information given the high imbalance ratio for some of the datasets. We use the
normalized Area Under Learning Curve to evaluate the classification results. The
normalized ALC is given by ALC = ALC−ALCrand

ALCmax−ALCrand
where ALCrand is the area

under learning curve given random predictions, and ALCmax is the area under
learning curve given perfect predictions (area under curve with constant 100%
accuracy). In addition to ALC, we also use the percentage of training instances
(|L|) required to achieve the highest kappa score Kmax as another evaluation
metric. In this case Kmax is the kappa score of the test set given all instances
from the query set all included in the training set. |L| has a range between 0–1,
with higher scores indicating more instances are required to achieve the same
Kmax.

Baseline Methods. We compare difficulty sampling with random sampling
(RS), uncertainty sampling (US), and query by committee [13] with three
(QBC(3)) committee members as the base active learning model. Query by
committee uses the disagreement between a diverse set of committee members
with different hypotheses for sampling [4]. For each dataset we use 50% of the
dataset as the test set and the remaining dataset is then split into the initial
training set and query set. As the overall budget increases, instances are drawn
from the query set evenly divided over 100 iterations. For example, given that
the query set contained 1, 000 instances, 10 instances are queried and added to
the training set in each iteration for 100 iterations.



756 B. Chen et al.

Parameter Settings. Experiments are also carried out to examine the effect
of different parameter settings such as training size, batch size and the num-
ber of weak learners. The results are provided in supplementary materials and
our code is available at https://anonymous.4open.science/r/Difficulty-Based-
Active-Learning-BB79/Active%20Learning%20Curve%20NEW.py.

Table 1. Comparison of random sampling with/without difficulty sampling.

Dataset Metric Baseline Probable Consistent

RS C+RS F+RS IE+RS C+RS F+RS IE+RS

Nursery ALC 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.00 0.94 ± 0.01 0.94 ± 0.01 0.95±0.00 0.95±0.01

|L| 0.92 ± 0.07 0.90 ± 0.08 0.77 ± 0.10 0.93 ± 0.09 0.85 ± 0.09 0.76±0.09 0.85 ± 0.13

Adult ALC 0.48±0.00 0.48 ± 0.00 0.48 ± 0.00 0.48 ± 0.00 0.48 ± 0.00 0.48 ± 0.00 0.48 ± 0.00

|L| 0.22±0.11 0.24 ± 0.14 0.29 ± 0.22 0.33 ± 0.27 0.26 ± 0.25 0.29 ± 0.22 0.28 ± 0.27

Mushroom ALC 1.00 ± 0.00 1.00 ± 0.00 1.00±0.00 1.00±0.00 1.00 ± 0.00 1.00±0.00 1.00±0.00

|L| 0.32 ± 0.13 0.14 ± 0.12 0.10±0.07 0.30 ± 0.26 0.13 ± 0.07 0.10±0.07 0.25 ± 0.21

Mammo ALC 0.49 ± 0.03 0.52 ± 0.03 0.51 ± 0.03 0.52 ± 0.02 0.52 ± 0.03 0.51 ± 0.03 0.52±0.03

|L| 0.50 ± 0.32 0.24±0.23 0.32 ± 0.33 0.35 ± 0.32 0.25 ± 0.28 0.32 ± 0.33 0.28 ± 0.37

Car ALC 0.80 ± 0.02 0.82 ± 0.02 0.81 ± 0.02 0.81 ± 0.01 0.82±0.02 0.82 ± 0.01 0.81 ± 0.01

|L| 0.71 ± 0.14 0.62 ± 0.21 0.58 ± 0.14 0.62 ± 0.16 0.52±0.10 0.60 ± 0.12 0.56 ± 0.16

Drybean ALC 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86±0.00

|L| 0.40 ± 0.17 0.45 ± 0.19 0.39 ± 0.13 0.47 ± 0.24 0.42 ± 0.19 0.38 ± 0.20 0.30±0.21

Thyroid ALC 0.95 ± 0.01 0.96 ± 0.01 0.96±0.00 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

|L| 0.70 ± 0.25 0.20 ± 0.17 0.14±0.06 0.21 ± 0.14 0.25 ± 0.20 0.18 ± 0.08 0.21 ± 0.12

Nursery Imb ALC 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.00 0.91±0.01 0.91 ± 0.01 0.91 ± 0.01

|L| 0.78 ± 0.18 0.47 ± 0.11 0.43±0.12 0.58 ± 0.29 0.52 ± 0.18 0.44 ± 0.97 0.66 ± 0.26

Drybean Imb ALC 0.82 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83±0.01 0.83 ± 0.01

|L| 0.29 ± 0.15 0.17 ± 0.10 0.20 ± 0.12 0.24 ± 0.14 0.21 ± 0.16 0.13±0.07 0.17 ± 0.07

RT1 Imb ALC 0.83 ± 0.01 0.86 ± 0.01 0.87 ± 0.02 0.85 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87±0.01

|L| 0.93 ± 0.07 0.75 ± 0.22 0.65±0.30 0.72 ± 0.19 0.65 ± 0.28 0.73 ± 0.22 0.65 ± 0.34

RBF1 Imb ALC 0.70 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.72±0.01 0.71 ± 0.01

|L| 0.70 ± 0.10 0.46±0.08 0.53 ± 0.12 0.50 ± 0.14 0.55 ± 0.18 0.48 ± 0.18 0.50 ± 0.09

RT2 Imb ALC 0.79 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.85±0.01 0.84 ± 0.01

|L| 0.92 ± 0.09 0.40±0.21 0.44 ± 0.25 0.55 ± 0.16 0.44 ± 0.21 0.43 ± 0.21 0.40 ± 0.20

RBF2 Imb ALC 0.68 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71±0.01 0.70 ± 0.01 0.71 ± 0.01 0.71 ± 0.01

|L| 0.84 ± 0.14 0.49±0.12 0.54 ± 0.20 0.51 ± 0.17 0.60 ± 0.24 0.50 ± 0.18 0.54 ± 0.16

*Our methods are denoted by C (Classifier Count), F (Fluctuation Score), IE (Indi-
vidual Error Score). We also denote C + RS, F + RS, IR + RS for difficulty with
random sampling

(RQ 1). Tables 1 and 2 show the results of difficulty sampling combined with
random and uncertainty sampling. For each iteration, 50% of the instances are
first selected with RS/US, and the remainder 50% are sampled with difficulty
sampling. We observe that baseline methods with additional difficult sampling
can achieve much greater performance than those without difficult sampling.
When compared with difficulty sampling (Table 3), the performance of both
difficulty sampling combined with random and uncertainty sampling is shown
to output higher performance for balanced datasets and lower performance for
more difficult imbalanced datasets.

https://anonymous.4open.science/r/Difficulty-Based-Active-Learning-BB79/Active%20Learning%20Curve%20NEW.py
https://anonymous.4open.science/r/Difficulty-Based-Active-Learning-BB79/Active%20Learning%20Curve%20NEW.py
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Table 2. Comparison of uncertainty sampling with/without difficulty sampling.

Dataset Metric Baseline Probable Consistent

US C+US F+US IE+US C+US F+US IE+US

Nursery ALC 0.95 ± 0.00 0.94 ± 0.01 0.95±0.00 0.95 ± 0.00 0.94 ± 0.01 0.95 ± 0.00 0.95 ± 0.00

|L| 0.92 ± 0.09 0.90 ± 0.09 0.79±0.08 0.85 ± 0.15 0.87 ± 0.11 0.81 ± 0.10 0.90 ± 0.11

Adult ALC 0.48 ± 0.01 0.48±0.00 0.48±0.01 0.48 ± 0.01 0.48±0.00 0.48±0.01 0.48 ± 0.00

|L| 0.35 ± 0.22 0.23±0.15 0.26 ± 0.27 0.23 ± 0.23 0.25 ± 0.21 0.28 ± 0.28 0.31 ± 0.25

Mushroom ALC 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00±0.00 1.00 ± 0.00 1.00±0.00 1.00±0.00

|L| 0.55 ± 0.26 0.17 ± 0.11 0.21 ± 0.10 0.28 ± 0.16 0.16±0.10 0.21 ± 0.10 0.28 ± 0.16

Mammo ALC 0.47 ± 0.03 0.51 ± 0.03 0.52 ± 0.03 0.51 ± 0.02 0.51 ± 0.03 0.51±0.03 0.51 ± 0.03

|L| 0.57 ± 0.23 0.29 ± 0.36 0.21 ± 0.26 0.37 ± 0.35 0.36 ± 0.33 0.20±0.28 0.34 ± 0.34

Car ALC 0.79 ± 0.01 0.81 ± 0.01 0.82 ± 0.02 0.81 ± 0.01 0.81 ± 0.01 0.82±0.01 0.82 ± 0.01

|L| 0.76 ± 0.15 0.61 ± 0.20 0.53 ± 0.13 0.59 ± 0.12 0.56 ± 0.16 0.52±0.15 0.54 ± 0.12

Drybean ALC 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86±0.00

|L| 0.52 ± 0.25 0.34±0.14 0.38 ± 0.24 0.40 ± 0.24 0.39 ± 0.19 0.40 ± 0.22 0.37 ± 0.31

Thyroid ALC 0.95 ± 0.01 0.96±0.01 0.96±0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

|L| 0.65 ± 0.26 0.31 ± 0.09 0.15±0.05 0.21 ± 0.08 0.19 ± 0.07 0.18 ± 0.05 0.18 ± 0.07

Nursery Imb ALC 0.90 ± 0.00 0.91 ± 0.01 0.91 ± 0.00 0.91 ± 0.01 0.92±0.01 0.91 ± 0.00 0.91 ± 0.01

|L| 0.81 ± 0.15 0.45 ± 0.07 0.43±0.13 0.52 ± 0.25 0.43 ± 0.21 0.44 ± 0.12 0.65 ± 0.27

Drybean Imb ALC 0.82 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83±0.01 0.83 ± 0.01

|L| 0.30 ± 0.13 0.20 ± 0.12 0.22 ± 0.10 0.20 ± 0.12 0.19±0.09 0.20 ± 0.08 0.20 ± 0.11

RT1 Imb ALC 0.83 ± 0.01 0.86 ± 0.01 0.87 ± 0.02 0.85 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.87±0.01

|L| 0.88 ± 0.08 0.72 ± 0.27 0.49±0.32 0.78 ± 0.19 0.66 ± 0.35 0.76 ± 0.26 0.64 ± 0.28

RBF1 Imb ALC 0.70 ± 0.01 0.71 ± 0.01 0.71±0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01

|L| 0.69 ± 0.11 0.48 ± 0.12 0.44±0.08 0.47 ± 0.08 0.53 ± 0.15 0.49 ± 0.11 0.47 ± 0.14

RT2 Imb ALC 0.80 ± 0.01 0.84 ± 0.01 0.85±0.01 0.83 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01

|L| 0.85 ± 0.11 0.38 ± 0.23 0.36 ± 0.22 0.64 ± 0.19 0.53 ± 0.23 0.32±0.11 0.41 ± 0.21

RBF2 Imb ALC 0.68 ± 0.01 0.70 ± 0.01 0.70 ± 0.01 0.71±0.01 0.70 ± 0.01 0.71 ± 0.00 0.70 ± 0.01

|L| 0.78 ± 0.10 0.53 ± 0.10 0.51 ± 0.18 0.52 ± 0.17 0.59 ± 0.17 0.49±0.19 0.54 ± 0.18

*We denote C + US, F + US, IR + US for difficulty with uncertainty sampling

(RQ 2). Figure 6 shows the difficulty measures classifier count score (C) and fluc-
tuation score (F ) have similar rankings with individual error (IE) having the
worst ranking. Additionally, Table 3 shows none of the difficulty measures are
consistently the best across different datasets. This suggests that these datasets
have various sources of difficulty. For example, the best performing difficulty
measure for dataset RT1 Imb is classifier count score C, with a lower fluc-
tuation F and individual error (IE) using ALC. This indicates that difficult
instances from this dataset are difficult to classify due to label difficulty and
require more data to become correctly classified. For RBF1 Imb, both fluctua-
tion and individual error scores have higher ALC and lower |L| than classifier
count score. In this case, the instances are difficult due to their frequent changes
in the predicted label and are within the overlapping regions of the decisions.

(RQ 3). Figure 6 shows that there is no significant difference between the two
types of pseudo true label assumptions. However, it is also noticeable that the
same difficulty measure using the most consistent label as the pseudo true label
always has a higher |L| rank than using the most probable label as the pseudo
true label. This suggests that assuming the most consistent label as the true label
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Table 3. The ALC and |L| results of difficulty based sampling, the highest score is
highlighted in bold.

Dataset Metric Baseline Probable Consistent

RS US QBC(3) C F IE C F IE

Nursery ALC 0.94 ± 0.01 0.95 ± 0.00 0.96±0.00 0.94 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.94 ± 0.01

|L| 0.92 ± 0.07 0.92 ± 0.09 0.63±0.16 0.80 ± 0.12 0.72 ± 0.05 0.90 ± 0.09 0.81 ± 0.15 0.73 ± 0.04 0.92 ± 0.05

Adult ALC 0.48 ± 0.00 0.48 ± 0.01 0.49±0.00 0.48 ± 0.00 0.48 ± 0.00 0.45 ± 0.01 0.48 ± 0.00 0.48 ± 0.01 0.46 ± 0.01

|L| 0.22 ± 0.11 0.35 ± 0.22 0.23 ± 0.21 0.28 ± 0.29 0.21±0.14 0.58 ± 0.42 0.24 ± 0.16 0.21±0.14 0.51 ± 0.44

Mushroom ALC 1.00 ± 0.00 1.00 ± 0.00 1.00±0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

|L| 0.32 ± 0.13 0.55 ± 0.26 0.06±0.01 0.20 ± 0.09 0.14 ± 0.07 0.65 ± 0.21 0.23 ± 0.10 0.14 ± 0.07 0.66 ± 0.22

Mammo ALC 0.49 ± 0.03 0.47 ± 0.03 0.51 ± 0.03 0.52 ± 0.03 0.52±0.03 0.51 ± 0.03 0.52 ± 0.03 0.52±0.03 0.51 ± 0.03

|L| 0.50 ± 0.32 0.57 ± 0.23 0.29 ± 0.32 0.37 ± 0.42 0.14±0.16 0.32 ± 0.28 0.21 ± 0.28 0.14±0.16 0.42 ± 0.31

Car ALC 0.80 ± 0.02 0.79 ± 0.01 0.84±0.01 0.81 ± 0.02 0.82 ± 0.02 0.82 ± 0.01 0.83 ± 0.02 0.83 ± 0.01 0.82 ± 0.01

|L| 0.71 ± 0.14 0.76 ± 0.15 0.36±0.07 0.53 ± 0.09 0.45 ± 0.04 0.54 ± 0.06 0.54 ± 0.17 0.48 ± 0.09 0.53 ± 0.15

Drybean ALC 0.86 ± 0.00 0.86 ± 0.00 0.85 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.86±0.00 0.86 ± 0.00 0.86 ± 0.00

|L| 0.40 ± 0.17 0.52 ± 0.25 0.83 ± 0.05 0.43 ± 0.21 0.52 ± 0.23 0.50 ± 0.18 0.36±0.15 0.51 ± 0.31 0.39 ± 0.26

Thyroid ALC 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.97±0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

|L| 0.70 ± 0.25 0.65 ± 0.26 0.40 ± 0.29 0.11 ± 0.04 0.10±0.02 0.20 ± 0.16 0.17 ± 0.13 0.10 ± 0.02 0.13 ± 0.12

Nursery Imb ALC 0.90 ± 0.01 0.90 ± 0.00 0.92 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.92±0.01 0.91 ± 0.01

|L| 0.78 ± 0.18 0.81 ± 0.15 0.32 ± 0.13 0.37 ± 0.22 0.26 ± 0.04 0.81 ± 0.29 0.33 ± 0.23 0.26±0.04 0.71 ± 0.35

Drybean Imb ALC 0.82 ± 0.01 0.82 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83±0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01

|L| 0.29 ± 0.15 0.30 ± 0.13 0.25 ± 0.20 0.19 ± 0.12 0.16 ± 0.05 0.14±0.06 0.17 ± 0.09 0.14 ± 0.07 0.14 ± 0.10

RT1 Imb ALC 0.83 ± 0.01 0.83 ± 0.01 0.88 ± 0.01 0.88 ± 0.02 0.88 ± 0.01 0.86 ± 0.01 0.88±0.01 0.88 ± 0.01 0.88 ± 0.01

|L| 0.93 ± 0.07 0.88 ± 0.08 0.73 ± 0.12 0.58 ± 0.30 0.59 ± 0.29 0.70 ± 0.21 0.37±0.21 0.42 ± 0.25 0.63 ± 0.25

RBF1 Imb ALC 0.70 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.72±0.01 0.71 ± 0.01 0.71 ± 0.01 0.72 ± 0.01

|L| 0.70 ± 0.10 0.69 ± 0.11 0.49 ± 0.26 0.54 ± 0.13 0.46 ± 0.16 0.39±0.15 0.47 ± 0.16 0.43 ± 0.15 0.44 ± 0.11

RT2 Imb ALC 0.79 ± 0.01 0.80 ± 0.01 0.84 ± 0.01 0.86±0.01 0.85 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01

|L| 0.92 ± 0.09 0.85 ± 0.11 0.63 ± 0.18 0.25±0.18 0.33 ± 0.32 0.52 ± 0.25 0.47 ± 0.29 0.25 ± 0.23 0.36 ± 0.25

RBF2 Imb ALC 0.68 ± 0.01 0.68 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.72±0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01

|L| 0.84 ± 0.14 0.78 ± 0.10 0.49 ± 0.21 0.45 ± 0.20 0.40 ± 0.16 0.38±0.12 0.53 ± 0.23 0.41 ± 0.16 0.42 ± 0.18

results in more informative instances being sampled and higher active learning
performance. Figure 7 shows the learning curve plots of difficulty sampling with
the most probable labels, compared to RS and US for the generated synthetic
imbalanced datasets. The learner’s accuracy when all training instances are used
for training is given as the dotted line.

(RQ 4). Table 3 presents the performance (ALC and |L|) comparison between
the baseline methods and difficulty-based sampling under both pseudo true label
approaches. In addition, Fig. 6 shows the critical difference between the different
methods at 95% confidence level. The results show that there is no significant
difference between RS and US for all datasets. In contrast, difficulty sampling
outperforms both RS and US regardless of the difficulty measure used for imbal-
ance datasets (Imb). The effectiveness of difficulty based sampling is dependant
on the difficulty of the dataset. The performance gain (higher ALC and lower
|L|) is much greater for difficult and imbalanced datasets (e.g. Nursery Imb) and
not as effective when the dataset is easy (e.g. Nursery). For simple datasets, all
instances will have similar difficulty scores which results in random sampling.
However, even for the easier to classify datasets with similar ALC scores (e.g.
Mushroom), difficulty sampling requires fewer instances (lower |L|) to achieve
high performance when compared to uncertainty sampling. In comparison to
difficulty-based sampling, QBC(3) has significantly higher performance for eas-
ier datasets (e.g. Nursery and Adult), with difficulty-based sampling methods
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Fig. 6. Critical difference for ALC and |L| results in Table 3.

Fig. 7. Examples of difficult sampling in comparison with baseline methods.

achieving a higher ALC value and lower |L| score for imbalanced datasets. Exper-
iments are also carried out to examine the performance of QBC with five com-
mittee members and included in the supplementary section as it an extreme case
that requires all committee members to be retrained at each query iteration and
is considerably more computationally expensive than other methods.

5 Conclusion

We proposed a novel method, difficulty-based active learning (DAL), to find
it difficult to classify instances within a dataset based on their label fluctua-
tions through a boosting process. The boosting model is constructed through
an additive process with an increasing number of weak learners per iteration.
We show the effect of incorporating the proposed difficulty measures, classifier
count, fluctuation score and individual error score, into the active learning sam-
pling process, such that sampling difficult-to-classify instances can construct a
more robust decision boundary to achieve high model performance with less
labelled training data. The experiment results show that difficulty based sam-
pling outperforms uncertainty sampling and query by committee with three com-
mittee members when the dataset is imbalanced and contains difficult-to-classify
instances. In future work, we plan to explore the potential of using the proposed
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difficulty measures for performance estimation of datasets and as a filter to
remove noisy instances from a dataset.
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Abstract. Recent work has shown the possibility for groups of robots to self-
bootstrap collective motion behaviours in open arenas. However, for real-world
swarm robotics missions, such as package delivery, the environment is likely to
be cluttered with obstacles and the swarm will have a target goal. This paper pro-
poses an architecture for self-bootstrapping collective motion behaviours in the
presence of such extrinsic goals. The architecture takes a reinforcement learning
approach and combines a generic ‘intrinsic’ reward for collective motion tun-
ing, with a mission specific ‘extrinsic’ reward. Two instances of extrinsic goals
including the target search and obstacle avoidance have been considered in this
paper. We demonstrate that our reinforcement learner can tune the behaviour of
randomlymoving groups so that structured collectivemotion emergeswhile avoid-
ing an obstacle or searching for a target. We compare our approach to behaviour
bootstrapping in open arenas to show that the presence of external environmental
constraints does not affect the quality of the bootstrapped behaviours, with respect
to the number of collisions, as well as group, and order metrics.

Keywords: Deep reinforcement learning · Collective motion ·
Self-bootstrapping behaviour · Extrinsic goal

1 Introduction

Recent work has shown that it is possible for groups of robots to self-bootstrap collective
motion behaviours in open arenas [1, 2]. Self-bootstrapping collective motion refers to
the procedure that agents form a collective motion by themselves without any external
effort. Also, collective motion behaviour refers to the behaviour of the flock of birds,
herds of animals, and schools of fish, which the agents interact with each other, and form
a patterned motion to perform a special task [3, 4]. In future, we envisage industries
and businesses will want to construct ad hoc robot swarms from available off-the-shelf
platforms, without the need for manual programming of the collective motions. This
may be useful for exploration in dangerous environments, like finding chemical residues
[2, 5] or performing search and rescue procedures after natural disasters [6, 7].

Existing work has addressed collective motion tuning in open arenas. However, the
environment is likely to be cluttered with objects in real-world swarm robotics missions
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H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 761–774, 2022.
https://doi.org/10.1007/978-3-031-22695-3_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_53&domain=pdf
https://doi.org/10.1007/978-3-031-22695-3_53


762 S. Abpeikar et al.

[8, 9]. This raises new challenges of how to represent such external goals in a format
that the robots can understand, and how this format should be integrated with intrinsic
goals for collective motion.

This paper proposes an architecture for self-bootstrapping collective motion
behaviours in the presence of an extrinsic goal. The architecture takes a reinforce-
ment learning approach to bootstrapping collectivemotion and combines generic ‘intrin-
sic’ reward for collective motion, with mission specific ‘extrinsic’ reward for avoiding
obstacles or target search in an environment. Multi-Objective Reinforcement Learning
(MORL) is a generalized technique of reinforcement learning, that the reward signal is
extended to multiple reward functions [10]. Our proposed method does not necessarily
follow this concept of MORL, since not only both the intrinsic and extrinsic goal should
be reached at the same time, but also, none of the goals surpasses the other.

We demonstrate that our reinforcement learner can tune the behaviour of randomly
moving groups so that structured collective motion emerges, that is suited to both the
robot and the externally imposed constraints of its environment. We compare our app-
roach to behaviour bootstrapping in open arenas to show that the presence of external
environmental constraints does not affect the quality of the bootstrapped behaviours in
terms of the number of collisions between agents, group metric, and order metric. The
contributions of the paper are as follows:

• An architecture for behaviour bootstrapping in the presence of both intrinsic reward
for collective motion, and extrinsic reward describing environmental constraints.

• A reward signal that combines the if-then rule engine of the intrinsic reward sig-
nal integrated with the numerical, distance-based metrics for defining environmental
constraints.

• A demonstration that we can tune collective motion behaviour while satisfying
environmental constraints in a point-mass simulator, in less than 20 actions.

The reminder of this paper is organised as follows: Sect. 2 presents background
and related work. Section 3 describes our approach of collective motion tuning in the
presence of extrinsic goals. Section 4 discusses the experimental setup and the results.
Section 5 concludes the paper and examines the directions for future work.

2 Background and Related Work

2.1 Boid Guidance Algorithm

The boid Guidance Algorithm (BGA) is an extension of Reynold’s boid model [11]
suitable for robots with amass andmovement constraints. Boid is short for BirdAndroid.
Reynold’s boid model is the first computer-based system inspired by flocks of birds. The
simulated motion uses three rules which ensures movement with the same direction
(alignment), close to each other (attraction/cohesion) and without running into each
other (repulsion/separation).
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In simulation for a set ofN boids Bi ∈ {
B1,B2, . . . ,BN

}
at timestep t, the separation

force sit , alignment force ait , and cohesion force cit can be computed as Eq. (1), (2), and
(3), [12].

−→
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By considering Rs,Ra,Rc as the radii in which the separation, alignment and cohe-
sion forces are applicable, (Ns)

t
i, (Na)

t
i, (Nc)

t
i are the subsets of boids within the corre-

sponding radius ranges of boidBi at timestep t.Moreover, xit andV
i
t are the position point

and velocity vector of boid Bi at timestep t. Then in each timestep, the boids position
will be updated using Eq. (4).

xit+1 = xit + vit+1 (4)

where the velocity vector will be updated using the following equation.

vit+1 = vit + Wcc
i
t + Waa

i
t + Wss

i
t (5)

2.2 Reinforcement Learning

Reinforcement learning (RL) is a trial-and-error learning approach, which learns to
accumulate reward by choosing an appropriate action to change the current state to
reachmore rewarding states [13, 14]. Themain parameters of the reinforcement learning
are states (S), actions (A), and reward (R), which makes a tuple (S,A,R) in each step
of each learning episode. Each episode contains a finite number of steps, limited by
a termination criterion. The termination criterion occurrence is when the current step
matches the objective or when the episode has passed a step length criterion [15, 16].
In each step, the environment is acted on by the agent, and changes it to a new state.
A reward value shows how effective this action was, then the new state and computed
reward are sent to the agent for the next step [13, 17]. The RL agent should exploit a
good action which received a high reward in the past but should also explore to find
better actions in future. A policy is the structure which stores a record of good actions
for the current state that will maximize future reward [13].

2.3 Actor-Critic Reinforcement Learning for Collective Motion Tuning

Reinforcement learning for CollectiveMotion Tuning (CoMoT), [1, 2] uses a rule engine
as the reward signal generator. This rule engine is extracted from a decision tree trained
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with human labelled data [18]. Applying this rule engine permits automatic collec-
tive motion tuning, since tuning is a simple task for humans and this rule engine imi-
tates human perception of collective motions [19, 20]. The consequence of if-then rules
is a binary decision of “collective motion” or “random” behaviour [18]. Using this
rule engine, the reward signal generator can recognize collective motion from random
motions for the purpose of rewarding state-action pairswhich results in collectivemotion.
Both the action space and state space are continuous working with collective behaviour
parameters discussed in Sect. 2.1. The new state results in a new movement pattern of
boids in the point-mass simulator. The average decision of the rule engine for at least
10 timestep of monitoring the current state, generates the reward/penalty signal. The
trained reinforcement learning is able to automatically tune a collective motion from
any random motion in an open arena with less than 10 actions. For more information on
the reinforcement learning of CoMoT please see e.g., [1].

This paper addresses the question ofwhether CoMoT can learn structured behaviours
in the presence of external goals. Our methodology is presented in the next section.

3 Actor-Critic Reinforcement Learning for Collective Motion
Tuning in Presence of Extrinsic Goal

This section discusses the methodology to implement the reinforcement learning with
intrinsic goal of collectivemotion tuning, and existence of extrinsic goal. As presented in
Fig. 1, the collectivemotion tuning is called the intrinsic goal (driven by intrinsic reward)
because it depends only on the physical properties of the agent and their communications.
Also, the obstacle avoidance or target search goals are two instances of extrinsic goal
because each refers to properties of the environment external to the agent. We anticipate
that in future these goals could be set by an external entity such as a human or computer
mission controller.

Fig. 1. Sources of intrinsic and extrinsic reward

The state space for the intrinsic goal is a continues space, consisting of the situ-
ational awareness parameters like separation, alignment, and cohesion forces, and the
probability of applying these forces on boids motion in each simulation timestep. To
design an architecture which could cover both the intrinsic and extrinsic goal, some new
parameters are required in this state space. These additional parameters pay attention to
the extrinsic goal and enhance the capability of the state space for bootstrapping both
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intrinsic and extrinsic goals. A distance between the boids and the goal (for example an
obstacle or a target), a force to avoid of or be attract to the goal in two sample scenarios
of obstacle avoidance and target search, and a radii to apply this force on boids, are some
instances of these parameters.

The reward signal is the component which should compromise between these two
parameter sets, and their corresponding intrinsic and extrinsic goals. Therefore, for a
bootstrapping architecture, we need to choose the reward values for extrinsic goals in a
way that they could compete with the intrinsic goal, but do not suppress it. To do this
we defined a general reward signal as Eq. (6). The constant value α ≥ 1 enforces higher
reward with the same rate of importance for both goals when both intrinsic and extrinsic
goals are satisfied. Doing multiple experiments, large α values lead to overfitting, while
using low α values the policy could not be trained [1]. Therefore, a moderate value
of α could better compromise between the reward signals. Moreover, the punishment
should be a negative reward, and in a way that the extrinsic goal does not surpass
the intrinsic goal. To do this, a β > 0 value is required to balance the significance
degree of punishment of extrinsic goal and intrinsic goal. In Eq. (6), Rin and Rex are
the reward signal value for intrinsic and extrinsic goals, respectively. Gi is the goal of
collective motion tuning with existence of an extrinsic goal i. Satisfactory bootstrapping
in this equation refers to generating an automatic collective behaviour, while reaching the
extrinsic goal. More detailed information on the reward signal generator of the intrinsic
goal has been provided in [1]. Expanding this reward signal to deal with extrinsic goals
is one of the main contributions of this paper.

RGi =
{

(Rin + Rex) × α if bootstrapping of Gi is satisfactory

−
(

1
Rin

+ 1
Rex×β

)
otherwise

(6)

This paper considers two instances of using this general reward signal generator,
where the goal is tuning collective motion subject to extrinsic goals of: 1) obstacle
avoidance, and 2) target search. The adaptation of a general reward signal for bootstrap-
ping intrinsic reward and each of the instances of extrinsic reward are mentioned in
Eq. (7) and (8). In these equations, D = { mean

(
Dit

)|1 ≤ i ≤ Nb&0 < t ≤ 10} is the
average score of the if-then rule engine for number of boids (Nb) in 10 timesteps (t).
It is the reward signal for intrinsic goal of collective motion tuning. The rule engine is
extracted from a decision tree trained on a binary dataset of collectivemotion recognition
[21]. It is able to recognize collective behaviour of boids by monitoring the temporal
state values (Sect. 2.1) for maximum of 10 timesteps. The score for “collective motion”
is 5 (Dit = 5), and for “not collective motion” is −1 (Dit = −1). For more information
see e.g., [1, 2, 18]. Moreover, to compromise between the intrinsic goal and each of the
instances of extrinsic goal the moderate value of α = 100 is selected for the positive
reward. Also, β = 10 for extrinsic goal of obstacle avoidance, and β = Nb for extrinsic
goal of target search, could manage the negative reward signal in a way that extrinsic
goal does not surpass the intrinsic goal. In Eq. (7) δo is the average distance of boids
from obstacles, which is controlled by avoidance force from obstacle, and |N |c is the
number of collisions between boids and the obstacle within the 10 timesteps. In Eq. (8),
|N |a is the average number of boids attracted to the target as the result of attraction force,
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within the attraction radius of RT over 10 timesteps.

RG1 =
{ (

D + δo
) × 100 if bootstrapping of G1 is satisfactory

−
(
1
D

+ 1
(|N |c×10)

)
otherwise

(7)

RG2 =
{ (

D + |N |a
) × 100 if bootstrapping of G2 is satisfactory

−
(
1
D

+ 1
(|N |a×Nb)

)
otherwise

(8)

The action space is also a continues space which could change the current state with
respect to each goal. In the designed architecture, the bootstrapping policy is learned by
an actor-critic deep neural network. The actor network is a deep neural network of fully
connected layers of Rectified Linear Units (ReLU) layer, tangent hyperbolic layer and
scaling layer. The critic network estimates Q-values and approximates the reward signal
of the current state and action pair. The critic network is a fully connected deep neural
network of a ReLU layer and tangent hyperbolic layer. The architecture of the actor and
critic deep neural networks are based on the default MATLAB configurations, and the
number of nodes equals to the number of state parameters.

Fig. 2. Reinforcement learning framework for collectivemotion tuning in the presence of extrinsic
goal. The learning cycle (left) can modify the parameters of the robot centric (right) and satisfy
both intrinsic reward and extrinsic reward (A is the action, S is the state, B is the temporal state
data and B′ is the live positioning of agents)

Training consists of 2000 episodes and a maximum of 100 steps in each episode.
In each episode, the initial state is a random motion, which boids move randomly with
no embedded pattern and without paying attention to the extrinsic goal. Then an action
changes the current state S to a new state. The new state produced by the learning cycle
(left of Fig. 2) results in a new movement pattern of boids in the point-mass simulator
(robot centric cycle on the right of Fig. 2). Then the learner collects temporal state
values which discussed in Sect. 2.1 for all boids (Nb = 200), and in a given number of
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timesteps (10 timesteps). The collected temporal state values are used to compute the
reward signal. If the current state receives both intrinsic and extrinsic reward, then the
training of current episode ceases, and the new episode starts. If each of the intrinsic or
extrinsic goal is not rewarded, then the procedure iterates for a maximum of 100 steps,
until the condition for both intrinsic and extrinsic goals are met.

Fig. 3. Training performance of reinforcement learning with intrinsic goal of collective motion
tuning and extrinsic goal of (a) obstacle avoidance and (b) target search (average over 10 runs)

The average over 10 runs of training the reinforcement learning with intrinsic reward
of collective motion tuning and extrinsic reward of obstacle avoidance and target search
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is presented in Fig. 3. As shown in this figure, the average reward converges to the
long-term reward, which confirms that the policy has been trained by 2000 episodes.
The training metrics are defined as follows:

• Episode Reward is the cumulative reward of all the steps of each episode of the
reinforcement learning.

• Average Reward is the average over current and all previous episode rewards.
• Long-term reward (Episode Q0) is the critic estimate of the discounted long-term
reward based on the initial state of each episode.

4 Experimental Study

In this section we run two experiments to evaluate the trained reinforcement learning.
The experiments are as follows:

1. The first experiment tunes collective motion with extrinsic goal for 100 random
scenarios. The aim of this experiment is to investigate the performance of the trained
reinforcement learner in tuning collective motion in the presence of an extrinsic goal
starting from previously unseen random motions.

2. The second experiment examines the swarm metrics, including the number of col-
lisions between boids, group, and order for tuned motions in an open arena, in an
environment with an obstacle, and in an arena with target. The aim of this experi-
ment is to evaluate the quality of collective motion in cluttered environments in the
presence of an extrinsic goal.

4.1 Experiment 1: Evaluation of the Trained Reinforcement Learner
for Collective Motion Tuning in Presence of Extrinsic Goal

All the 10 trained reinforcement learning methods show a very good performance of
reaching intrinsic and extrinsic goal, therefore one of the 10 trained reinforcement learn-
ing methods of Sect. 3, is picked to tune boids’ behaviour in the following experiments.
To evaluate the trained learner, 100 randommovements are first generated, which satisfy
both of the following properties:

– They are not recognised as a collective motion by the if-then rule engine,
– They do not satisfy the extrinsic goal.
– For obstacle avoidance: At least one collision is detected between the boids and the
obstacle.

– For target search: the target is not reached by all the boids.

Exp 1–1: Extrinsic Goal of Obstacle Avoidance
By applying the trained reinforcement learning from Fig. 3(a) the reward values for
each of these 100 random configurations with existence of obstacle is a positive value,
which indicates that the trained reinforcement learner tunes the random configurations,
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so that the behaviour is a collective motion and there is no collision between the boids
and the obstacle. The 100 initial random configurations are non-collective behaviour,
and there is at least one collision with the obstacle. These tuned behaviours could be
achieved so fast and in less than 6 actions (each action could be achieved in less than a
second). Figure 4, presents some examples of tuned behaviours. The direction of boids
movement is shown by blue arrows in this figure. As these arrows show, the boids move
with a pattern, approaching the obstacle while avoiding it by maintaining a predefined
distance threshold. The areas visited by boids in 10 timesteps is presented in Fig. 5. This
figure shows the visited areas of the four samples of Fig. 5. The most visited grid cells
(visited by more than 30 boids) during these 10 timesteps are presented with the darkest
colour, while the least visited ones (visited by less than 2 boids) are presented with
the lightest colour. As shown in this figure, for tuned behaviours, the grid cells around
the obstacle within the radius of RO are always represented by the lightest colour. This
indicates that the boids avoid this area during their collective movement.

Fig. 4. Some examples of tuned motions by the reinforcement learner with intrinsic goal of
collective motion and extrinsic goal of obstacle avoidance (The small black dots are boids, the
red squares are obstacle, and the blue arrows show the direction of boids motion) (Color figure
online)

Fig. 5. Grids covered by boids when tuned by the reinforcement learner with intrinsic goal of
collective motion and extrinsic goal of obstacle avoidance (The red rectangle is the obstacle)
(Color figure online)
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Exp 1–2: Extrinsic Goal of Target Search
Again, by applying one of the trained reinforcement learnings of Fig. 3(b), the final
reward values for collective motion tuning with extrinsic goal of target search is positive
for all 100 scenarios. The 100 initial random configurations are non-collective behaviour,
and not all the boids converge to the target position. However, the tuned collective
motions could be achieved very fast and in less than 20 actions (each action could be
achieved in less than a second). Figure 6 shows some of the tuned motions of these
100 scenarios. The blue arrows indicate the direction of boids’ movement. In this figure
the boids provide a collective motion (a pattern is visible in their motion). Moreover,
the direction of movement shows that they are moving toward the target. The second
snapshot of each part of this figure shows a set of boids which reach the target and wiggle
around it. Moreover, Fig. 7 shows the grid cells which are visited by boids within 10
timesteps, for each of the motions of Fig. 6. In this figure, the most visited grids are
presented with the darkest colour. The grid cells which are least visited are presented
with the lightest colour. As shown in these figures, the boids mostly move around the
target during the last 10 timesteps of simulation, confirming that tuning has occurred.

Fig. 6. Some examples of tuned motions by the reinforcement learner with intrinsic goal of
collective motion and extrinsic goal of target search (The small black dots are boids, the green
circles represent a target, and the blue arrows show the direction of boids motion) (Color figure
online)

Fig. 7. Grids covered by boids when tuned by the reinforcement learner with intrinsic goal of
collective motion and extrinsic goal of target search (The red rectangle is the target) (Color figure
online)
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4.2 Experiment 2: Effect of Extrinsic Goal on Collective Motion Metrics

In this experiment we aim to compare the quality of collective motions generated in the
presence of extrinsic goals to those generated in open arena. By this experiment, we
aim to investigate how collective motions could be compromised by adding an extrinsic
goal, and how reliable is the reinforcement learner in taking care of both intrinsic and
extrinsic goals. There exist different indicators to measure collective behaviour. Group,
order, and the number of collisions between boids are some popular indicators to evaluate
a collective motion [22], which are defined as follows:

• The groupmetric is an indicator thatmeasures the cohesion of the collective behaviour,
based on the average distance between position of boids ui and the average over boids’
positions uaverage [23], and is computed by Eq. (9).

Group = 1

N

N∑

i=1

∥∥uaverage − ui
∥∥ (9)

• Order metric is an indicator which measures the alignment of a collective behaviour.
This metric uses average distance between velocity of boids Vi from the average
velocity Vaverage, [24]. The order metric is computed by Eq. (10).

Order = 1

N

N∑

i=1

∥∥Vaverage − Vi
∥∥ (10)

• Number of collisions among boids is another indicator which measure the separation
of a collective behaviour. This is computed based on the distance between boids. If
the distance between boids is less than a threshold, then the number of collisions
increases.

For this experiment, we use the same 100 random scenarios of Experiment 1, then
for each of them the reinforcement learning tunes policies for collective motions: 1)
in absence of extrinsic goals [1], 2) in the presence of obstacle, and 3) in the presence
of a target. Then the three metrics are computed for the tuned collective motions for
each of these examined reinforcement learners. To compute the metrics, each of the
tuned collective motions are monitored for 100 timesteps. The average group values for
tuned collective motions by each of the reinforcement learning methods is presented in
Fig. 8(a), and the average order values are presented in Fig. 8(b). As is visible in these
figures, all methods have similar average group values, which indicates that adding the
extrinsic goal to the reinforcement learning, does not make the boids less cohesive. Also,
as Fig. 8(b) shows, slightly larger order values are achieved when the extrinsic goal is
added to the reinforcement learning. This increase is significant at the 95% confidence
level and is likely due to the need for boids to change direction when an obstacle or
a target is detected. Moreover, the average over number of collisions between boids
for these 100 tuned scenarios are computed for two different distance thresholds. The
first threshold considers a very small distance of 0.5 between boids. For this threshold
the average value is 1 for all methods, which indicates that there is an average of 1
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collision per episode among boids. Then a greater threshold is considered in Fig. 8(c).
The threshold applied is 25. This value is the lowest separation radius to handcraft a
collective motion, as discussed by Khan, et al., [12]. As it is presented in this figure,
adding the extrinsic goal provides a tighter formation of boids, to assist them to avoid
an obstacle or attract to a target. However, the intrinsic goal compromises efficiently, so
that the boids avoid collision with each other within this tight formation.

Fig. 8. Collective motion metric values over 100 scenarios and 100 timesteps of monitoring with
95% confidence interval

5 Conclusion and Future Work

This paper has presented an architecture for self-bootstrapping collective motion
behaviours in the presence of extrinsic goal relevant for transport tasks, specifically
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obstacle avoidance and target search. We have demonstrated that our reinforcement
learner can tune the behaviour of randomly moving groups so that structured collective
motion emerges in the presence of externally imposed goals.We compared our approach
to behaviour bootstrapping in open arenas to show that the presence of external envi-
ronmental constraints does not affect the quality of the bootstrapped behaviours. Some
avenues for future work are as follows:

• Learning inmore complicated environment with dynamic obstacle or target: Although
in the current work the position of obstacle or target in different scenarios are different,
but they are static during each experiment. Therefore, we need to consider a situation
when the obstacle or target could dynamically change its position during the tuning
procedure.

• Learning on real robots: The work in this paper is based on simulated boids, however
the implementation of theRL tuningmethod on real robotswhich have different global
positioning methods, could be a more challenging task to do. In this case, mature RL
or Multi-agent RL will be helpful.
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Abstract. For the past six decades, the operation of Learning
Automata (LA) has involved states and action probabilities. These have
been central to “remembering” the quality of the actions chosen dur-
ing the learning. The latest enhancements have also incorporated esti-
mates of the actions’ reward probabilities. However, a phenomenon that
has never been used to-date is that of considering how these actions
themselves, can be ordered. Ordering the actions in traditional LA is
rather meaningless unless one resorts to invoking the theory of Random
Races [1]. However, we show that such an ordering makes sense if the
automata operate hierarchically, within a tree, with the actions being
placed at the leaves. In this paper, we shall show that when the LA are
arranged “in a tree formation”, and when the learning is achieved within
such a tree, the hierarchical LA has a superior performance if the actions
located at the leaves of the tree are arranged suitably. While this concept
can be incorporated in any hierarchical LA, we demonstrate its power
for the most recent machine, i.e., the Hierarchical Discretized Pursuit
Automaton (HDPA). These strategies can also be included in the Hier-
archical Continuous Pursuit Automaton (HCPA), and to both of these
which utilize traditional Maximum Likelihood (ML) or Bayesian esti-
mates [2]. The experimental results presented here are very impressive,
and so, if we consider the chronology of LA from FSSA through VSSA,
the Estimator schemes, and the recent hierarchical LA, our modest claim
is that the inclusion of the ADE represents the state-of-the-art which is
not easily surpassed.

Keywords: Learning automata · Reinforcement learning ·
Hierarchical learning automata

1 Introduction

The field of Learning Automata (LA)1 concerns non-human agents learning the
optimal action from a set of actions through the principles of Reinforcement
1 The term LA is used interchangeably to address the field of Learning Automata or

the Learning Automata themselves, depending on the context.
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Learning (RL). The learning agent in LA is often referred to as the Learning
Automaton. The system that the learning agent operates in and learns through
interactions with, is often referred to as the Environment. The learning agent
selects an action, and the Environment responds with a feedback to the automa-
ton. The feedback can be a set of discrete responses or from a continuous range,
but most commonly, the feedback is binary, consisting of either a reward or a
penalty. Depending on the LA’s learning policy, the LA updates its knowledge
based on the feedback, and hopefully, learns to output the action that yields
the highest probability of getting a reward over time. The LA learns in a semi-
supervised manner, meaning that it does not need examples of solutions but
learns via the feedback in a trial-and-error mode. The metric of quantifying the
performance of LA is the average number of iterations it takes, over an ensemble
of experiments. For the Variable Structure Stochastic Automata (VSSA) type
of LA used in this paper, the algorithm converges once the LA attains a specific
probability level that is arbitrarily close to unity.

1.1 Memory Considerations

Learning cannot be achieved without remembering certain quantities during the
process. We shall informally refer to these as the “memory”. However, even if one
remembers all the pertinent information in a very efficient manner, the learning
will not succeed if the algorithm that utilizes the memory, is poor. To bring
out the salient features of the pioneering contribution of this paper, we briefly
itemize the respective components of the different families.

– FSSA: Fixed Structure Stochastic Automata (FSSA) are LA, where the
memory is encapsulated in states which are identical to those possessed by
Finite State Machines or flip flops. Examples of these are the Tsetlin, Krin-
sky, and Krylov LA [3]. In each case, the learning algorithm directs the LA
to move across the states based on the response from the Environment, and
each of the latter boast their own individual strategy. Correspondingly, they
all have different convergence characteristics.

– VSSA: Unlike FSSA, in VSSA, the memory is contained in the action proba-
bility vector, P (n). The action is chosen based on P (n), which is then commu-
nicated to the Environment. P (n+1) is obtained in the next step, and is based
on P (n), the action chosen, α(n), and the feedback that the Environment
provides, β(n). The updating algorithm, on the other hand, can be varied
and includes, among others, the Linear Reward-Penalty (LR−P ) scheme, the
Linear Reward-Inaction (LR−I) scheme, the Linear Inaction-Penalty (LI−P )
scheme, and the Linear Reward-εPenalty (LR−εP ) [4,5].

– Estimator Algorithms: In Estimator LA, the memory resides in the action
probability vector and running estimates of the reward probabilities. In the
Pursuit algorithm, the learning algorithm now increases the probability of
the currently recorded best action and not of the action that is chosen. In
the Pursuit algorithm, only the probability of the best action is increased.
In the Generalized Pursuit, the action probabilities of a subset of actions
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are increased, while the rest of the probabilities are decreased. One has to
mention that the estimates can be done in an ML or Bayesian manner [2],
and the updates done in a continuous or a Discretion paradigm.

– Hierarchical LA: In the family of hierarchical LA, the machines are
arranged in a tree structure, and the actions are at the leaves. These individ-
ual LAs can be VSSA or can be Pursuit machines themselves. More details
of this are included in the next section.

The above bullets briefly encapsulates the entire prior art.

1.2 Action Ordering Considerations

The reader will observe that throughout the above discussions, the ordering
of the actions has remained insignificant. This is valid because the ordering is
unknown unless one resorts to a prior Random Race competition that is not
relevant to our present study [1]. Of course, the ordering of the actions in an
action probability vector is also meaningless.

The hypothesis of this study is that there is an advantage to ordering the
actions. Clearly, such an ordering can only be enforced if there are crude esti-
mates of the reward probabilities. If they are arranged linearly, ordering the
actions can enhance the corresponding choice by resorting to a fast searching
mechanism, as opposed to a linear search. We shall not elaborate on that issue
here.

However, let us consider the case when the automata operate in a hierarchical
manner. The actions then are placed at the leaves of the tree, and the decisions
of the individual LA trickle up to the root. Our hypothesis is that rather than
keeping the leaves completely unordered, information gleaned during the initial
learning phase can be used to order them, and to yield a superior performance.
This is precisely the hypothesis and contribution of our paper.

1.3 Contributions of This Paper

The contributions of this paper can be summarized as follows:

– Unlike the prior art, we show that there is an advantage in considering the
ordering of the actions when the LA operate in a hierarchical manner.

– We demonstrate this, by considering the most recent machine in the field, the
HDPA.

– We confirm the hypothesis, by reporting the results of extensive simulations
in different Environments and a host of distributions.

As mentioned above, the concept presented in this paper is true, not only for the
HDPA, but also for any other type of machine utilizing a hierarchical structure.
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2 Related Work

The paradigm of LA originated in the 1960s with Michael Lvovitch Tsetlin
and his innovation of learning agents and, ultimately, the Tsetlin Automata [6].
Later advancements followed, and the types of LA are generalized into two cat-
egories, namely FSSA and the VSSA. In VSSA, we have the Linear Reward-
Penalty(LR−P ) scheme, the Linear Reward-Inaction(LR−I) scheme, the Linear
Inaction-Penalty(LI−P ) scheme, and the Linear Reward-εPenalty(LR−εP ) [4,5].
In these different schemes, the probability vector is updated linearly. The updat-
ing can also be done in a non-linear manner [4,5,7]. At the same time, VSSA
schemes can be continuous or discrete [8]. Continuous type VSSA updates the
probability in a multiplicative manner with a factor, while the Discretion type
updates the probability with a constant in each update. Due to the multiplica-
tive updating, the continuous type can experience slower algorithm speeds than
the Discretion type. Thus, when an action selection probability gets closer to
unity, the change in its probability becomes less and less. The continuous and
discrete updating functionality has been investigated mathematically in [9,10].

Another major discovery in the field of LA was the Estimator-based Algo-
rithms (EAs), which significantly increased the convergence speed of VSSA [11].
The concept of EAs is the utilization of estimation. In more detail, the LA
keeps reward estimates while in operation, using these estimates to pursue the
currently most promising action (referred to as Pursuit in the Literature) [12].
Researchers combined the Pursuit concept with Discretion updating, leading to
the paradigm of Discrete Estimator Algorithms (DEAs) [13], superior to earlier
VSSA variants in terms of convergence speed.

Although all of the advances mentioned above increased the applicability
and efficiency of LA dramatically, VSSA still had an impediment as the num-
ber of actions (possible solutions to a problem) became large (e.g., more than
ten [14]). Therefore, the authors of [14] proposed the HCPA, bringing structure
to the domain of VSSA. The HCPA was a quantum step to the field of LA, mak-
ing VSSA able to handle a large number of actions. However, as the accuracy
requirement to the HCPA became large, e.g., above 0.98, the HCPA suffered
from its multiplicative property of updating its action selection probabilities,
resulting in sluggish convergence. In [15], the HDPA was proposed, combining
VSSA, Discretion updating, the Pursuit concept, and structure. The HDPA pro-
vides a solution to problems with many actions and high accuracy requirements,
constituting the state-of-the-art for generic LA, being significantly faster when
compared to the HCPA.

3 Incorporating Ordering into an Hierarchical LA

Although the HDPA improved the convergence speed significantly for high accu-
racy requirements, we experienced that the convergence speeds were substan-
tially dependent on the action distribution on the leaf level of the tree. Linked to
the concept of Random Races [1], where the LA is modeled to find an ordering of
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the actions in an ascending/descending order, we hypothesize that we can order
the actions in a manner that is beneficial to the algorithm. More specifically, we
propose that we can use an Estimation Phase in the HDPA process and also the
estimated reward probabilities to reorder the actions at the leaf level to yield
an improved performance. Consequently, in this paper, we propose the Action
Distribution Enhancing (ADE) approach for enhancing the convergence speed
of the HCPA and HDPA. The improvement in the convergence speed becomes
more noticeable as the number of actions at the leaf level increases. Therefore,
organizing the actions in an improved manner can significantly reduce the num-
ber of iterations before the convergence is achieved. While this was our intended
hypothesis, as demonstrated through extensive simulations documented later in
the paper, we show that the ADE approach is, indeed, beneficial compared to
randomly initializing the actions at the leaf level of the tree. The reader should
note that the problems that LA can solve are random in nature, and for a real
problem, no information about the reward probabilities can be known a pri-
ori. Therefore, understandably, the Estimation Phase is needed to obtain an
improved ordering.

3.1 Motivating Arguments

To motivate the development of our new paradigm, we consider a problem involv-
ing four actions A = {α1, α2, α3, α4} with the corresponding estimated action
probability vector D̂ = {d̂1, d̂2, d̂3, d̂4}, taken over an initial estimation phase
of 20 iterations. The reader must please observe that because the number of
iterations are small, the corresponding estimates will be inaccurate. Also, before
we proceed with the arguments, it is wise to see how these estimates will effect
the learning process. Further, in the interest of simplicity, we proceed with the
discussion by considering the case of the HDPA instead of any other arbitrary
hierarchical LA.

At the leaf levels, the four actions are to be placed in one of the 4! positions. It
is also obvious that the descending and ascending orders of the placements of the
actions are merely mirror reflections of each other. On a deeper examination of an
Hierarchical Pursuit LA, one observes that from every level, the estimates of the
most suitable actions chosen at that level will be trickled up. This implies that
the automata at each level will be dealing with problems of different complexities.
However, the most important automaton is the one placed at the root, because
that governs, or rather dictates, the operations of all the automata below it.

Consider the following figure in which the four actions are placed at the leaves
in the descending order (Fig. 1a). From Fig. 1a, we see that the LA A1,1 has to
deal with actions whose reward estimates are 15

20 and 11
20 . Similarly, when the

actions are in a more random order, Fig. 1b, the corresponding reward estimates
for the LA A1,1 are 15

20 and 3
20 . If all goes well as in a perfect world, the trickled up

estimates are those of the optimal actions of their corresponding children. The
root level, which is encountering the most important task, has now to deal with
distinguishing between the reward estimates 15

20 and 7
20 in Fig. 1a, and 15

20 and
11
20 in Fig. 1b. This means that the root automaton, that has to solve the most
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Fig. 1. Example of two hierarchical tree structures for four actions with different action
distributions at the leaf level.

discriminating problem of all the automata, has to resolve actions α1 and α2, in
the case of Fig. 1b, which is much more difficult than the problem in Fig. 1a.

When we use the euphemistic expression above “if all goes well in a perfect
world”, we emphasize that it is statistically not at all unrealistic. This is because
by the law of large numbers or the Estimation Phase in the Bayesian case, the
estimates of the reward probabilities will converge to their true values with an
arbitrarily high accuracy. Thus, the asymptotic arguments (and probabilities) of
the trees of Fig. 1a and Fig. 1b will still be valid2.

4 The Action Distribution Enhancing (ADE) Approach

As mentioned earlier, such an ADE approach applies to both the HCPA and
the HDPA, and indeed, to any hierarchical LA. However, because the HDPA
has demonstrated superior performance to the HCPA for high accuracy require-
ments, and we have limited space, we only highlight the ADE approach for the
HDPA, by understanding that the principles for the HCPA are analogous. The
ADE approach for the HCPA is similar to the approach explained for the HDPA.

The ADE approach concerns distributing the actions at the leaf level of
the hierarchical tree in an improved manner. For a practical, real-life problem,
there can be little information as a priori information about the actions. This
is why the distribution of the actions at the leaf level is an intricate problem
which has not yet been considered in the Literature. The ADE approach is
two-pronged. The first prong is the Estimation Phase, used for estimating the
action reward probabilities. The second concerns distributing the actions in an
improved manner, and is referred to as the Reallocation Process.

2 The proof that the ADE approach represents a superior solution compared with
unordered solutions, will be proven in the extended version of the paper [16].
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The first part of the ADE approach concerns the Estimation Phase. In the
HDPA, the estimated reward probability and the action selection probabilities of
LAs throughout the tree structure are initialized as 0.5, according to [14] and [15].
Thus, the HDPA estimates the reward probabilities as per the Pursuit concept
(maintaining an estimated reward probability vector). We propose a standalone
Estimation Phase with the ADE approach prior to the HDPA starting its regular
operation. This means that in this phase, we include θ iterations per action for
estimating their reward probabilities. These estimates are further utilized as to
initialize the corresponding values in the regular operation of the HDPA, which
happens after the Reallocation Process.

The second part of the ADE approach concerns the Reallocation Process,
which distributes the actions in an improved manner. For a two-action LA con-
figured tree, such an organization can be achieved by ordering the actions accord-
ing to their estimated reward probabilities in either an ascending or descending
order. In this way, asymptotically, the optimal and second optimal actions will
share the same LA at the level below the root. Thus, asymptotically, the algo-
rithm will have achieved a correct estimation of the reward probabilities, and the
actions will be distributed in an improved manner. Clearly, due to the stochastic
nature of the problem, the Estimation Phase might not always yield a perfect
interpretation of the reward estimates and the corresponding trees. This phe-
nomenon and its consequences are explained further in the section with the
experimental results (Sect. 5).

The Reallocation Process uses the estimated reward probabilities from the
Estimation Phase to reallocate the actions to the tree’s leaves in an ascend-
ing/descending order. Thus, after the Estimation Phase, the actions are given
a new location at the leaf level. The reader should note that the estimates also
need to be updated according to this new ordering. By maintaining these esti-
mates, the information from the Estimation Phase is also retained. After the
Reallocation Process, the HDPA starts its normal operation, by utilizing the
reward estimates from the Estimation Phase3.

5 Experimental Results

To demonstrate the effectiveness of the proposed ADE approach presented in
this paper, we conducted experiments with various action distributions, num-
bers of actions, and Environments. For quantifying the effectiveness of the LA
algorithms, we recorded the number of iterations required before convergence,
as this is the most common evaluating measurement [5]. As mentioned earlier,
the convergence requirement for VSSA is that one of the action selection prob-
abilities attains a certain threshold (T ). In our experiments, we tested different
convergence criteria, and report the results for the most utilized convergence
threshold to be 0.995. The reader should note that this metric is helpful because
3 Although the algorithm have been explained in details verbally in this paper, a more

detailed programmatic description of the algorithm will be presented in an extended
version of the paper [16].
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it will remain identical, regardless of the computing power on the machine used
for the experiments, or the efficiency of the code or language used4.

Paired together with this, is the accuracy of the algorithm. Due to the
stochastic nature of the problem, one often conducts more experiments and
reports the average performance. In terms of accuracy, we usually measure this
as the percentage of experiments which have converged to the optimal action.
Consequently, when a 100% accuracy is achieved, all the experiments conducted
in an ensemble of experiments have converged to the optimal action (i.e., the
action with the highest reward probability). The reader should note that the
number of iterations used for the Estimation Phase is also reckoned into the
overall number of iterations in our experimental results.

In LA, the tuning of the learning parameter leads to a trade-off between the
accuracy and the speed. Generally, as the learning parameter becomes smaller,
the number of iterations increases, and at the same time, the algorithm performs
more accurately. The same dilemma applies to the algorithm proposed in this
paper. As demonstrated in the experiments, placing the optimal and sub-optimal
actions in opposite parts of the tree at the leaf level requires more iterations
than establishing them as entities in the same part of the tree (for example, i.e.,
with an ascending/descending ordering). Thus, the ascending/descending orders
generally require substantially less number of iterations before convergence.

With our experiments, we wanted to demonstrate the behavior of the HDPA
for different action distributions at the leaf level, thereby demonstrating the
improved performance with the ADE approach. In practice, we have little or
no a priori information about the reward estimates in a real-life scenario. In
our simulations, we know that with a knowledge of the exact reward probabili-
ties, we are able to execute the programs for different action distributions with
and without the ADE approach. By demonstrating the phenomena for different
configurations, we intend to highlight the improved performance that can be
achieved in a real-life scenario by using the ADE approach with the Estimation
Phase and Reallocation Process before the actual LA learning is performed.

In our simulations, we denote the real reward probabilities, i.e., the prob-
ability of getting a reward for selecting a certain action, as dj , where j ∈
{1, 2, ..., 2K}. If nothing else is specified, for the ADE HDPA, we used a descend-
ing ordering in the Reallocation Process. To help understand the ordering at the
leaf level, we present visualizations of the action distributions with their corre-
sponding reward probabilities. Please note that these visualizations show the real
reward probability of α1 to α2K , i.e., d1 to d2K , for the actions at the leaf level.
Consequently, the HDPA without the ADE will run the experiments with the

4 In our experiments, we have configured the convergence criterion as being achieved
once any of the LA has attained a certain threshold of choosing one of the actions
in its action probability vector. However, in [15], they defined the convergence as
being achieved only when all the LA along the path to a leaf action had attained
the prescribed threshold. Thus, the convergence criterion in this paper is different,
i.e., it utilizes the “logical or” instead of the “logical and”, making the algorithms
(i.e., both the HDPA without/with the ADE) attain a faster convergence.
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actions ordered as displayed by the configuration. Conversely, the ADE HDPA
will reallocate the actions at the leaf level in an ascending/descending order
based on the corresponding reward estimates.

5.1 Simulation 1: 8 Actions

Let us first consider the results for Simulation 1 presented in Tables 1 and 2,
which involve Environments of 8 actions. The difference between the two tables
is that Table 1 does not incorporate the ADE, and Table 2 does. The categoric
superiority of the results in Table 2 demonstrates the power of the ADE.

Table 1. Experimental results for different action distributions without the ADE app-
roach for eight actions with T = 0.995 as the convergence criterion. The results were
averaged over 1, 000 experiments, with Δ = 9e−5.

Config. d1 d2 d3 d4 d5 d6 d7 d8 Avg Std Acc.

1 0.99 0.95 0.87 0.6 0.43 0.54 0.67 0.51 6,727.40 42.76 100%

2 0.87 0.6 0.43 0.54 0.67 0.51 0.99 0.95 6,791.75 56.81 100%

3 0.87 0.6 0.99 0.95 0.43 0.54 0.67 0.51 6,730.42 42.03 100%

4 0.87 0.6 0.43 0.99 0.95 0.54 0.67 0.51 7,082.38 215.46 100%

5 0.99 0.6 0.43 0.54 0.67 0.51 0.87 0.95 7,109.98 220.78 100%

6 0.95 0.99 0.51 0.67 0.54 0.43 0.6 0.87 6,791.15 57.52 100%

7 0.99 0.95 0.87 0.67 0.6 0.54 0.51 0.43 6,713.85 42.49 100%

Table 2. Experimental results for different action distributions with the ADE HDPA
with eight actions and T = 0.995 as the convergence criterion. The results were aver-
aged over 1, 000 experiments, with Δ = 9e−5.

Config. d1 d2 d3 d4 d5 d6 d7 d8 Avg Std Acc.

1 0.99 0.95 0.87 0.6 0.43 0.54 0.67 0.51 6,810.10 44.66 100%

2 0.87 0.6 0.43 0.54 0.67 0.51 0.99 0.95 6,824.48 51.26 100%

3 0.87 0.6 0.99 0.95 0.43 0.54 0.67 0.51 6,823.52 49.19 100%

4 0.87 0.6 0.43 0.99 0.95 0.54 0.67 0.51 6,821.79 49.51 100%

5 0.99 0.6 0.43 0.54 0.67 0.51 0.87 0.95 6,825.32 49.49 100%

6 0.95 0.99 0.51 0.67 0.54 0.43 0.6 0.87 6,813.32 47.15 100%

7 0.99 0.95 0.87 0.67 0.6 0.54 0.51 0.43 6,810.91 44.67 100%

In Simulation 1, we ran 1,000 experiments with similar reward probabili-
ties associated with the Environment, but with different action distributions. In
Tables 1 and 2 we have marked the optimal and optimal action in at the leaf
level with a different background color. For example, we can observe Config. 5,
where the optimal and sub-optimal actions are located in opposite parts of the
tree. We had earlier explained that this configuration was the hardest for the
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HDPA to handle. As opposed to this, having the actions with regard to the
reward probabilities in an ascending/descending order, like the case of Config. 7,
would be easier. This is confirmed from the results in Table 1, where the HDPA
with the ADE has a superior performance. Config. 4 and Config. 5 required the
highest number of iterations and had high standard deviations (Std). However,
for Config. 7, where the actions were ordered in a descending order according to
the reward probabilities, the number of iterations was the lowest. This is obvious
since this is the most optimal setting. Again, the results for the ascending and
descending orders are almost identical.

In Table 2 we present the results for the experiments for the ADE HDPA for
Simulation 1. As we observe from the table, some configurations required more
iterations than the other configurations without the ADE approach. However,
the ADE HDPA was more consistent in the number of iterations, and had a
more stable and smaller standard deviation. Config. 2, which is the reversed
form of Config. 6, yielded a little higher standard deviation than the others. We
also, tested Config. 2 for the ADE HDPA with an ascending ordering in the
Reallocation Process, and these experimental results were similar to those of
Config. 6. More specifically, for 1,000 experiments with the ADE HDPA and an
ascending ordering in its Reallocation Process, the algorithm required 6,818.14
iterations on average and a standard deviation of 48.46 yielded 100% accuracy.

In real-life, we do not know the underlying reward probabilities. Therefore,
we can only tune the number of tests, θ, that is used in the Estimation Phase.
Testing each action for a larger number of iterations in the Estimation Phase
will make the ADE more certain that it has estimated the reward probabili-
ties correctly, and it will, thus, order them correctly as well. However, in most
cases, because we want a fast convergence, a rough estimate might be sufficient.
In Simulation 1, we used θ = 12. If we had perfect estimation of the reward
probabilities, we would have similar results to Config. 7 without the ADE.

5.2 Simulation 2: 16 Actions

In Simulation 2, we increased the number of actions to 16. Again, we set the value
of θ to be 12. The different original action distributions are visualized in Fig. 2,
where we focus on the optimal and sub-optimal actions’ locations in the different
configurations. However, the actions in between them were distributed more or
less randomly. In subsequent simulations, we shall highlight what happens when
we have more constructed forms in the original distributions.

In Tables 3 and 4, we present the results for Simulation 2. Analogous to Sim-
ulation 1, we see that the number of iterations is more consistent, and that the
standard deviation is smaller for the ADE HDPA (Table 4). The HDPA with-
out ADE still had better results for the configurations where the actions were
manually ordered in an ascending/descending order, which is quite understand-
able. Thus, the ADE HDPA did probably not achieve the perfect estimation of
the reward probabilities, since the number of iterations used for the estimation,
where θ = 12 and R = 16 (θR = 192), was too small.
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Furthermore, the simulation demonstrated a bigger gain using the ADE app-
roach for 16 actions when compared with the 8 actions case. As an example, for
Row No. 1, the ADE HDPA used approximately 11,550 iterations before conver-
gence, while the HDPA without the ADE used approximately 12,700 iterations,
which yielded a superiority of more than 1,000 iterations. Thus, the ADE had an
approximately 9.95% better performance in terms of the number of iterations.
In comparison, for Simulation 1, the biggest gain of using the ADE approach
was approximately 4.25%.

Fig. 2. The figure shows the action distribution in accordance with the reward prob-
abilities for Simulation 2. Config. 1 is at the top, Config. 5 is at the bottom, and the
others are ordered in between them systematically.

5.3 Simulation 3: 32 Actions

In Tables 5 and 6, we present the results obtained for Simulation 3, which
involved 32 actions. The configurations in these experiments followed the same
concept as depicted in Fig. 2 for Simulation 2. We can observe that the HDPA
without the ADE required considerably more iterations for the case when the
optimal and sub-optimal actions were in opposite parts of the tree (Row No. 1),
i.e., compared with having the actions ordered in a descending order (Row No. 5).
The numbers of iterations were approximately 17, 700 and 15, 800, respectively.
Comparing the results in Table 5 with those in Table 6, we observe that the ADE
HDPA had a more consistent performance in terms of the number of iterations
and the standard deviations. For Row No. 1 in the tables, we see that the HDPA
with the ADE required approximately 16, 350, while the HDPA without the ADE
required 17, 700, which is approximately 8.26% worse.
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Table 3. Experimental results for different action distributions without the ADE for
Simulation 2, with 16 actions and 0.995 as the convergence criterion. The results were
averaged over 100 experiments, with Δ = 6.75e−5. The different rows represent differ-
ent action configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 Config 1 in Fig. 2 12,691.92 509.64 100%

2 Config 2 in Fig. 2 12,362.99 413.44 100%

3 Config 3 in Fig. 2 11,674.32 100.95 100%

4 Ascending 11,285.18 83.24 100%

5 Descending 11,291.90 86.09 100%

Table 4. Experimental results for different action distributions with the ADE for Sim-
ulation 2, with 16 actions and 0.995 as the convergence criterion. The results were
averaged over 100 experiments, with Δ = 6.75e−5. The different rows represent differ-
ent action configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 Config 1 in Fig. 2 11,556.77 111.29 100%

2 Config 2 in Fig. 2 11,540.57 106.94 100%

3 Config 3 in Fig. 2 11,543.75 94.47 100%

4 Ascending 11,573.89 119.07 100%

5 Descending 11,520.16 91.70 100%

Table 5. Experimental results for different action distributions without the ADE for
Environments with 32 actions where 0.995 is the convergence criterion. The results
were averaged over 100 experiments, with Δ = 4.5e−5. The different rows represent
different configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 As in Config 1 in Fig. 2 17,690.81 849.65 100%

2 As in Config 2 in Fig. 2 17,980.64 742.41 100%

3 As in Config 3 in Fig. 2 16,911.9 600.69 100%

4 Ascending 15,807.09 89.47 100%

5 Descending 15,806.49 90.23 100%
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Table 6. Experimental results for different action distributions with the ADE HDPA
for 32 actions and 0.995 as the convergence criterion. The results were averaged over
100 experiments, with Δ = 4.5e−5 and θ = 12. The different rows represent different
configurations as described in the second column.

Row No. Configuration characteristics Avg Std Acc.

1 As in Config 1 in Fig. 2 16,338.12 114.54 100%

2 As in Config 2 in Fig. 2 16,302.25 121.44 100%

3 As in Config 3 in Fig. 2 16,327.96 121.10 100%

4 Ascending 16,371.00 134.76 100%

5 Descending 16,256.67 107.27 100%

6 Conclusion

In this paper we have proposed the novel Action Distribution Enhancing (ADE)
approach for optimally configuring the underlying hierarchical tree representing
the distribution of the actions in the HCPA/HDPA. The ADE involves two
phases, the first of which estimates the action probabilities very crudely, and
subsequently assigns the actions at the leaves of the tree. The corresponding LA
then operate in a hierarchical manner, each of them involving two actions. Our
hypothesis was that if the leaves were arranged in an ascending/descending order,
the collection of hierarchical automata would perform in their most optimized
manner, and we confirmed this hypothesis by both a formal theoretical analysis
and experimentally [16].

We have then proceeded to verify the power of incorporating the ADE into
problems involving different numbers of automata, and various Environments
with corresponding reward probabilities. Quite briefly stated, our simulation
results uniformly confirm that the inclusion of the ADE significantly stabilizes
and increases5 the convergence speed of the hierarchical machine.

If we consider the chronology of LA from its infancy in FSSA through VSSA,
the Estimator approaches, and the more-recent hierarchical schemes, we mod-
estly believe that the inclusion of the ADE represents the state-of-the-art which
will not be able to be surpassed too easily.
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Abstract. Exploration is a critical component in reinforcement learn-
ing algorithms. Exploration exploitation trade-off is still a fundamental
dilemma in reinforcement learning. The learning agent needs to learn
how to deal with a stochastic environment in order to maximize the
accumulated long-term reward. This paper proposes a robust exploration
strategy (RES) based on the temporal difference error. In RES, the explo-
ration problem is modeled using Beta probability distribution to control
the exploration rate. Moreover, the most promising action is selected dur-
ing the exploration with a view to maximizing the accumulated reward
and avoiding un-rewardable wrong actions. RES has been evaluated on
the k-armed bandit problem. The simulation results show superior per-
formance without the need to tune parameters.

Keywords: Reinforcement learning · Exploration · Exploitation ·
Q-learning · k-armed bandit · ε-greedy · Softmax

1 Introduction

Reinforcement learning (RL) is a branch of machine learning where a learning
agent tries to map situations to actions with a view to maximizing the long-term
reward. Without prior knowledge, the learning agent must discover which actions
are more rewardable. Taking action at any state affects not only the immediately
received reward but all the subsequent rewards. Hence, it may prevent the learn-
ing agent from converging to the global optimum. This reliance on the return
feedback from the environment necessitates the learning agent to explore the
whole environment to take optimal actions and maximize the long-term rewards.
Therefore, RL algorithms count on exploration to obtain sufficient informative
feedback from the environment to exploit the most rewardable actions.

The exploration-exploitation trade-off is still a fundamental problem. When
learning agents over-explore the environment, they cannot maximize the accu-
mulated reward as exploratory actions may return minimum rewards. Moreover,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Aziz et al. (Eds.): AI 2022, LNAI 13728, pp. 789–799, 2022.
https://doi.org/10.1007/978-3-031-22695-3_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_55&domain=pdf
http://orcid.org/0000-0002-5455-6931
http://orcid.org/0000-0001-6430-9558
http://orcid.org/0000-0002-1146-1860
https://doi.org/10.1007/978-3-031-22695-3_55


790 M. S. Hajar et al.

exploiting uncertain action-value functions may yield less reward and make
the convergence suboptimal. Thus, this problem is known as the exploration-
exploitation dilemma, which has been widely investigated by mathematicians
and is still unresolved [1]. ε-greedy and softmax exploration methods are widely
used in the literature to balance exploration-exploitation. These two straight-
forward algorithms perform well in some cases and thus are hard to beat [2].
However, they require rigorous parameter tuning and may not hold in dynamic
environments.

The main contribution of this paper is proposing a robust exploration strat-
egy (RES) based on Temporal Difference (TD) error to effectively balance
exploration-exploitation with a view to maximizing the accumulated long-term
reward. The well-known k-armed bandit problem has been used to demonstrate
the robustness of the proposed method.

The remainder of this paper is organized into five sections as follows. Related
work is given in Sect. 2. The used methodology is comprehensively discussed in
Sect. 3, followed by the evaluation results in Sect. 4. Finally, Sect. 5 concludes
the paper and highlights future work.

2 Related Work

Several approaches have been proposed to produce an efficient exploration algo-
rithm in order to balance the exploration-exploitation trade-off. However, the
main two approaches are the blind exploration approach, such as ε-greedy [1],
and the value-based approach, such as softmax [3].

In blind exploration approach [3], the learning agent solely explores the envi-
ronment based on randomly taken actions. It is a reward-free method to explore
the environment without any kind of information. Thus the action selection
process during exploration is uniform. In real life, ε-greedy is always the first
choice for developers due to its simplicity and near-optimal results despite the
time-consuming process of tuning its single parameter [4]. In this method, the
parameter ε ∈ [0, 1] controls the exploration rate as shown in Eq. 1. Although
this method is widely adopted in RL, it has some drawbacks. First is the afore-
mentioned issue of tuning the parameter ε. Second, choosing random action dur-
ing the exploration may significantly degrade the learning agent performance as
taking random action at time t could affect all future rewards negatively.

at =

⎧
⎨

⎩

argmax
at∈At

Q(s, a) with probability (1 − ε)

a random action with probability ε
(1)

In a value-based approach, the learning agent takes informative action based
on its estimation of the action-value functions. The exploration-exploitation
trade-off is achieved by assigning probabilities to the available actions at time
step t based on the current action-value functions. The predominant algorithm
in this approach is the softmax action selection algorithm [3]. Softmax method
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is usually modeled using Boltzmann distribution as shown in Eq. 2, where the
greedy action is always chosen with the highest probability. In contrast, other
possible actions are weighted according to their corresponding action-value func-
tions.

π(a|s) = Pr{at = a|st = s} =
e

Q(s,a)
τ

∑n
1 e

Q(s,a)
τ

(2)

where τ is the temperature parameter, and it is used to control choosing the
greedy action. When τ is decreased, the greedy action probability increases, and
when τ −→ ∞, all possible actions will have the same probability, and hence the
action will be selected randomly, as in ε-greedy. Tuning the temperature parame-
ter is not straightforward [3]. Moreover, as the probabilities are calculated based
on the actual estimated values, the action selection process is highly influenced
by these values, which necessities re-tuning the temperature parameter whenever
the reward function has changed, even for the same problem.

In [5] and [2], the authors proposed two methods based on ε-greedy and
softmax algorithms, respectively. In both works, the authors used a method
called Value-Difference Based Exploration (VDBE), which is a state-dependent
exploration probability method to control the exploration-exploitation trade-off.
Although the simulation results show promising results, there is still a need to
tune the sensitivity parameter σ, which is used in both methods.

3 Methodology

In this section, the exploration-exploitation dilemma has been introduced, and
the design requirement has been presented. Moreover, the proposed method has
been discussed comprehensively.

3.1 Overview

In RL, the intelligent learning agent interacts with the environment E through
a series of state-action pairs with a view to maximizing the accumulative long-
term reward. The agent is modeled using the tuple (S,A,R), where S represents
a set of states, A is the action set, and R is the reward function, as illustrated in
Fig. 1. In value-based RL algorithms, the learning agent uses value functions to
estimate the future reward of taking action a in a given state s. Therefore, the
action-value function for taking action a given a state (s) and following policy
π could be defined as in Eq. 3. At each time step t, the learning agent in state
s ∈ S takes an action a ∈ A, receives a reward rt+1 ∈ R, and moves from state
s to state s′

qπ(s, a) .= Eπ[Gt|St = s,At = a] = Eπ[Σ∞
n=0γ

nRt+n+1|St = s,At = a], ∀s ∈ S
(3)
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Fig. 1. RL Model

where Eπ[Gt|St = s] is the expected discounted reward when the agent starts
at state s and follows the policy π and γ ∈ [0, 1] is the discount factor for the
future reward R.

3.2 Q-Learning

Temporal difference (TD) algorithms are a combination of Monte Carlo methods
and Dynamic programming (DP) [6]. In TD learning, the agent learns directly
from the environment without any prior knowledge, and thus it is called a model-
free method. Q-learning is a temporal difference algorithm widely used to predict
the action-value function qπ(s, a) without any prior knowledge using trials and
errors [7]. In Q-learning, the action-value function Q(st, at) is updated indepen-
dently of the policy followed by the agent to approximate the optimal action-
value function q∗, which makes it applicable for many problems. Q-learning is
proven to converge to q∗; however, there is still a requirement that all states still
need to be visited and updated.

a
∗(i)
t = argmax

at∈A
Qt(st+1, at) (4)

Qt+1(st, at) ← (1 − α)Qt(st, at) + α[rt+1(st+1) + γmax
a∈A

Qt(st+1, a
∗
t )] (5)

where α ∈ [0, 1] is the learning step size where small values slow the learning,
and higher values could cause oscillations, and γ ∈ [0, 1] is the discount factor
where small values make the learning agent nearsighted by ignoring the future
rewards.

3.3 The Proposed Method

In RL, the environment can be modeled as a Markov decision process (MDP), as
illustrated in Fig. 1. The learning agent interacts with the environment at a series
of discrete-time steps t = 0, 1, 2, .., and receives a reward after each interaction.
In order to estimate the optimal policy π∗, the learning agent must balance
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between exploration and exploitation. In TD algorithms, the value functions are
updated using an error function representing the difference between the predicted
reward at a given state and the actually received reward, as shown in Eq. 6, which
represents the TD error in Q-learning.

δt
.= rt+1 + γQ(st+1, at+1) − Q(st, at) (6)

Thus, the Q-learning updating algorithm could be described as in Eq. 7.

Qt+1(st, at) ← Qt(st, at) + αδt (7)

When the Q function converges to the optimal value Q −→ Q∗, the TD error
converges to zero δt −→ 0. Therefore, the TD error could be used to estimate the
exploration ratio. The learning agent should explore more when the TD error
is high and less when it is small. This approach seems reasonable. However,
there are some limitations. The TD error suffers from oscillations, which means
that the learning agent could over-explore the environment. Moreover, there is a
need to pick the most promising action to perform during the exploration phase.
Therefore, the TD error could be used to evaluate the Q values differences trend,
which then will be used to choose the most promising action. The TD error trend
is exponentially smoothed using Eq. 8.

Δt+1 = ωΔt + (1 − ω)δt (8)

RES uses a dynamic exploration rate θ. It has been evaluated using Beta
probability distribution as in Eq. 9.

θt =
αt

αt + βt
(9)

where α and β are the Beta distribution levels. After each action, the TD
error δt and the exponentially smoothed trend Δt are evaluated as described
in Algorithm 1. This process is modeled using Beta probability distribution to
explore more when there is a promising action to explore. After each action, the
learning agent compare δt and Δt. If the TD error is less than or equal to the
smoothed trend, this action is considered a successful action, and the beta levels
are updated using Eq. 10. Otherwise, it will be unsuccessful, and the levels will
be updated using Eq. 11

αt = λαt−1 + 1
βt = λβt−1

(10)

αt = λαt−1

βt = λβt−1 + 1
(11)
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where λ ∈ [0, 1] is the longevity factor, which used to give more weight to recent
observations. Adopting this method has two advantages. First, the amount of
exploration will be decreased gradually for a static environment, which means
over time, the learning agent will exploit the greedy action more to maximize the
overall reward. Second, in a dynamic environment, this method is able to reflect
the environment dynamicity into more exploration to help the algorithm re-
converge to the global optimum. Therefore, higher values of λ give more weight
to previous observations and fit dynamic environments, while smaller values give
more weight to current observations and fit static environments.

The second important thing is choosing a promising action during the explo-
ration instead of a random one. Randomly chosen action could be catastrophic in
some applications as the chosen action at time t may affect all the future rewards.
Therefore, in RES, more weight is given to actions with a high smoothed differ-
ence as they are regarded as promising actions to discover. To achieve that, RES
uses the Boltzmann distribution [8] of the smoothed differences to calculate the
weighted probabilities of the available actions, as shown in Eq. 12.

PΔi
t
=

eΔi
t

ΣeΔt
: ∀i ∈ A (12)

Algorithm 1: Updating Algorithm
Input: The exponentially smoothed trend: Δi

t−1

Input: The exploration threshold: θt−1

Input: The beta distribution levels: α and β
Output: The updated values Δi

t, PΔa
t
, θt

δi
t = [ri

t+1 + γQi(st+1, at+1) − Qi(st, at)]
Δi

t = ω.Δi
t−1 + (1 − ω).δi

t

if |δi
t| ≤ |Δi

t| then
α = λα + 1
β = λβ

else
α = λα
β = λβ + 1

PΔi
t

= eΔi
t

ΣeΔt
: ∀i ∈ A

θt = α
α+β

The aforementioned parameters are updated whether it is an exploration
or exploitation cycle as shown in Algorithm 2. The uniform random number
ρ ∈ [0, 1] is drawn for each time step to choosing whether to explore or exploit.
If it is an exploitation cycle, then the action will be chosen greedily. Otherwise,
it will be weighted randomly chosen based on the Boltzmann distribution of the
exponentially weighted TD errors.
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4 Evaluation

The proposed method has been evaluated on the k-armed bandit problem, which
is one of the common RL problems to evaluate the explorations exploitation
methods [5]. It has been widely used to model different problems, such as eco-
nomic [9] and routing problems [10,11]. The problem represents a bandit machine
with multiple arms, pulling one of which gives the player a variable reward. The
reward is usually stochastic and drawn from a pre-defined probability distribu-
tion. Hence, the learning agent (player) with no prior knowledge has to learn
from the pulled uncertain rewards the most rewardable arm by exploring them,
which leads to a loss in the gained rewards over time.

4.1 Experimental Setup

The proposed method has been evaluated over long run to prove that it converges
to the optimal solution and achieves the maximum reward. The bandit machine
consists of 10 levers as described in [1]. At each lever pull, the learning agent
gets a stochastic reward drawn from a randomly defined Gaussian distribution
N (10, 1), with mean Q∗(s, a) = 10 and standard deviation σ = 1. The learning
agent can improve its selection policy within 2000 trials. Each experiment has
been repeated 1000 times, and then the results have averaged out and reported.

RES has been contrasted with ε-greedy [1], softmax action selection [3], and
VDBE-Softmax [2]. To ensure a fair comparison, the exploration rate of ε-greedy
and softmax have been optimized. At the same time, the optimized value of the
VDBE method for the k−armed bandit problem is adopted as reported in [5]. In

Algorithm 2: Exploration algorithm
Initialize Q values.
Initialize the differences probabilities:
PΔa

0
= 1

|A0| : ∀a ∈ A
Initialize the exploration parameters:
α = 1, β = 1
θ0 = α

α+β

while TRUE do
ρ ← rand(0..1)
if ρ ≥ θ then

at+1 ← argmax
at∈At

Qt(st, at)

Parameters updating using Algorithm 1
Qt+1(st, at) ← (1 − α)Qt(st, at) + α[rt+1(st+1) + γmax

a∈A
Qt(st+1, at)]

else
at+1 ← weighted rand(PΔt)
Parameters updating using Algorithm 1
Qt+1(st, at) ← (1 − α)Qt(st, at) + α[rt+1(st+1) + γmax

a∈A
Qt(st+1, at)]
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RES, the longevity factor is a decay factor for the single exponential smoothing
of the Beta distribution levels. Its value is set to 0.9 to slowly decrease the weight
of old observations over time, which is widely used in the literature [12].

4.2 Simulation Results

In the first experiment, the simulation was run for a high number of itera-
tions to ensure that all methods are converged as some methods show high
performance at the beginning; however, over time, they perform poorly. Figure 2
shows the average reward of the four exploration methods. Both softmax and
VDBE-Softmax perform well at the beginning as both use the Q function to
choose actions during exploration. ε-greedy performs poorly at the beginning
but shows good performance over time. The reason behind this behavior is that
randomly chosen actions during exploration need more time to build the Q table,
which makes even the exploitation actions inefficient. However, the performance
enhances significantly when the learning agent gets more evidence from the envi-
ronment over time.

On the other hand, RES shows superior performance over the long run. As
it depends on the exponentially smoothed trend of the TD error, it needs a
few exploration steps to estimate Δt. Once it gets a few exploration outcomes
from the environment, it tends to explore the most promising actions based on
its observations. Unlike other exploration methods, the convergence in RES is
achieved separately. The most promising Q function converges faster than others
as it will be excessively chosen, as shown clearly in Fig. 3, which illustrates the
smoothed trend of the TD error over time. Evidently, Δ1 converges faster to
zero than others, although all other values converge over time but considerably
slower than Δ1. The reason behind this behavior is that Δ1 is the most promising
action to take. This could be obviously seen in Fig. 4, which shows the Q values
for all actions over time. The most rewardable action is action one; hence, RES

Fig. 2. The reward over time
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explored this action more at the beginning, making it converge faster than other
actions. Moreover, the high oscillations of this action value confirm that RES
always exploits this action to gain maximum rewards.

Fig. 3. The exponential smoothed differences over time

In the second experiment, the adaptability of RES is evaluated for a dynamic
environment, where the action-value functions may get changed during the sim-
ulation. When the environment changes, the optimal action given a state s may
become the worst. In light of that, the learning agent should act intelligently and
explore the environment to re-converge to the global optimum again. After 50%
of the iterations, the Gaussian distribution of the reward function has been
changed randomly using the distribution N (rand(1, 15), rand(1, 5)). Figure 5
and 6 show the average static and dynamic environment rewards, respectively.

Fig. 4. Q values over time
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For a static environment, as illustrated in Fig. 5, RES performs steadily and
achieves the highest average reward over time. Moreover, when the environment
has changed, as shown in Fig. 6, RES shows high adaptability to re-converge
to the new global optimum. Once the change happens, it will be reflected by a
change in the TD error and the exponential smoothed trend of the TD error.
The former increase the exploration rate, while the latter makes the algorithm
chooses the newest promising action.

Fig. 5. The reward over time for static environment

Fig. 6. The reward over time for dynamic environment
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5 Conclusion and Future Work

Balancing the exploration-exploitation trade-off in reinforcement learning is still
an open area of research. The dilemma lies between exploring the environment to
obtain more informative data, which could be un-rewardable, or selecting actions
that the learning agent can expect their reward. Our proposed action selec-
tion strategy, RES, presents a robust promising solution without the parameter
tuning overhead. RES is an adaptive exploration strategy based on the expo-
nentially smoothed trend of the temporal difference error and Beta probability
distribution. This novel approach demonstrates outstanding performance on the
well-known k-armed bandit problem. In the future, it will be evaluated on other
temporal difference algorithms, such as SARSA. Moreover, it will be deployed
on a more complicated problem to study its behavior, such as reinforcement
learning-based routing protocols.
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Abstract. In reinforcement learning (RL), the goal is to obtain an opti-
mal policy, for which the optimality criterion is fundamentally impor-
tant. Two major optimality criteria are average and discounted rewards.
While the latter is more popular, it is problematic to apply in environ-
ments without an inherent notion of discounting. This motivates us to
revisit a) the progression of optimality criteria in dynamic programming,
b) justification for and complication of an artificial discount factor, and
c) benefits of directly maximizing the average reward criterion, which
is discounting-free. Our contributions include a thorough examination
of the relationship between average and discounted rewards, as well as
a discussion of their pros and cons in RL. We emphasize that average-
reward RL methods possess the ingredient and mechanism for applying
a family of discounting-free optimality criteria to RL.

Keywords: Reinforcement learning · Optimality criteria · Average
rewards · Discounted rewards · Discounting-free criteria

1 Introduction

Reinforcement learning (RL) is concerned with sequential decision making, where
a decision maker has to choose an action based on its current state. Determining
the best actions amounts to finding an optimal mapping from every state to a
probability distribution over actions available at that state. Thus, one funda-
mental component of any RL method is the optimality criterion, by which we
define what we mean by such optimal mapping.

The most popular optimality criterion in RL is the discounted reward [12,17].
On the other hand, there is growing interest in the average reward optimality, as
surveyed by [10,19]. In this paper, we discuss both criteria in order to obtain a
comprehensive understanding of their properties, relationships, and differences.
This is important because the choice of optimality criteria affects almost every
aspect of RL methods, including the policy evaluation function, the policy gra-
dient formulation, and the resulting optimal policy, where the term policy refers

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-22695-3_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22695-3_56&domain=pdf
https://doi.org/10.1007/978-3-031-22695-3_56


Examining Average and Discounted Reward Optimality Criteria in RL 801

to the above-mentioned mapping. Thus, the choice of optimality criteria even-
tually impacts the performance of an RL system (and the choices made within,
e.g. approximation techniques and hyperparameters).

This paper presents a thorough examination of the connection between aver-
age and discounted rewards, as well as a discussion of their pros and cons in RL.
The long version of this paper is available at https://arxiv.org/abs/2107.01348.

2 Preliminaries

Sequential decision making is often formulated as a Markov decision process
(MDP) with a state set S, an action set A, a reward set R, and a decision-epoch
set T . Here, all but T are finite sets, yielding an infinite-horizon finite MDP. At
each decision-epoch (discrete timestep) t ∈ T , a decision maker (henceforth, an
agent) is in a state st ∈ S, and chooses to then execute an action at ∈ A. Con-
sequently, it arrives in the next state st+1 ∈ S and earns an (immediate) scalar
reward rt+1 ∈ R. For t = 0, 1, . . . , tmax with tmax = ∞, it experiences a sequence
(trajectory) of s0, a0, r1, s1, a1, r2, . . . , stmax . The initial state, the next state, and
the next reward are governed by the environment dynamics that is fully speci-
fied by three time-homogenous (time-invariant) entities, namely the initial state
distribution p̊, the one-(time)step state transition distribution p(·|st, at), and
the reward function r(st, at) = Ep(·|st,at)

[∑
r∈R Pr{r|st, at, St+1} · r

]
. There-

fore, St=0 ∼ p̊, St+1|St = st, At = at ∼ p(·|st, at), and rt+1:=r(st, at), where St

and At denote the state and action random variables, respectively. We assume
that the rewards are bounded, i.e. |r(s, a)| ≤ rmax < ∞,∀s ∈ S, a ∈ A, and the
MDP is unichain and aperiodic.

The solution to a sequential decision making problem is an optimal mapping
from every state to a probability distribution over the (available) action set A in
that state. It is optimal with respect to some optimality criterion, as discussed
later in Sect. 2.1. Any of such a mapping (regardless whether it is optimal)
is called a policy and generally depends on timestep t. It is denoted as πt :
S �→ [0, 1]|A|, or alternatively πt : S × A �→ [0, 1], where πt(at|st):=Pr{At =
at|St = st} indicating the probability of selecting action at ∈ A given the state
st ∈ S at timestep t ∈ T . Thus, each action is sampled from a conditional action
distribution, i.e. At|St = st ∼ πt(·|st).

The most specific solution space is the stationary and deterministic policy set
ΠSD whose policies π ∈ ΠSD are stationary (time-invariant), i.e. π:=π0 = π1 =
. . . = πtmax−1, as well as deterministic, i.e. π(·|st) has a single action support
(hence the mapping is reduced to π : S �→ A). In this work, we consider a more
general policy set, that is the stationary policy set ΠS. It includes the stationary
randomized (stochastic) set ΠSR and its degenerate counterpart: the stationary
deterministic set ΠSD.

2.1 Optimality Criteria

In a basic notion of optimality, a policy with the largest value is optimal, i.e.

vx(π∗
x) ≥ vx(π), ∀π ∈ ΠS. (1)

https://arxiv.org/abs/2107.01348
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Here, the function vx measures the value (utility) of a policy π based on the infi-
nite reward sequence that is earned by an agent following π. The subscript x indi-
cates the specific type of value functions, which induces a specific x-optimality
criterion, hence the x-optimal policy, denoted as π∗

x.
One intuitive value function is the expected total reward. That is,

vtot(π, s):= lim
tmax→∞

EAt∼π,St+1∼p

[
tmax−1∑

t=0

r(St, At)
∣∣∣S0 = s, π

]
, ∀π ∈ ΠS, ∀s ∈ S.

(2)
However, vtot may be infinite (unbounded, divergent, non-summable). Howard
[14] therefore, examined the expected average reward (also called the gain)
defined as

vg(π, s):= lim
tmax→∞

1
tmax

EAt∼π,St+1∼p

[
tmax−1∑

t=0

r(St, At)
∣
∣
∣S0 = s, π

]

, (3)

which is finite for all π ∈ ΠS and s ∈ S. For more details, including interpretation
about the gain, we refer the reader to [10].

Alternatively, Blackwell [7, Sec 4] attempted tackling the infiniteness of (2)
through the expected total discounted reward, which was studied before by [6].
That is,

vγ(π, s):= lim
tmax→∞

EAt∼π,St+1∼p

[
tmax−1∑

t=0

γtr(St, At)
∣∣∣S0 = s, π

]
, ∀π ∈ ΠS, ∀s ∈ S,

(4)
with a discount factor γ ∈ [0, 1). In particular, according to what is later known
as the truncated Laurent series expansion (7), Blackwell suggested finding poli-
cies that are γ-discounted optimal for all discount factors γ sufficiently close
to 1. He also established their existence in finite MDPs. Subsequently, Small-
wood [28] identified that the discount factor interval can be divided into a finite
number of intervals, i.e. [0 = γm, γm−1), [γm−1, γm−2), . . . , [γ0, γ−1 = 1), in such
a way that there exist policies π∗

γi
for 0 ≤ i ≤ m, that are γ-discounted optimal

for all γ ∈ [γi, γi−1). This leads to the concept of Blackwell optimality. A policy
π∗
Bw is Blackwell optimal if there exists a critical1 discount factor γBw ∈ [0, 1)

such that

vγ(π∗
Bw, s) ≥ vγ(π, s), for γBw ≤ γ < 1, and ∀s ∈ S,∀π ∈ ΠS. (5)

Note that whenever the policy value function v depends not only on policies π
but also on states s from which the value is measured, the basic optimality (1)
requires that the optimal policy has a value greater than or equal to the other
policies’ values in all state s ∈ S.

In order to obtain Blackwell optimal policies, Veinott [33, Eqn 27] introduced
a family of new optimality criteria. That is, a policy π∗

n is n-discount optimal
for n = −1, 0, . . ., if

lim
γ→1

1
(1 − γ)n

(
vγ(π∗

n, s) − vγ(π, s)
)

≥ 0, ∀s ∈ S,∀π ∈ ΠS.

1 It is critical in that it specifies the sufficiency of being close to 1 for attaining Black-
well optimal policies.
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Veinott showed that (n = |S|)-discount optimality is equivalent to Blackwell
optimality because the selectivity increases with n (hence, ni-discount optimality
implies nj-discount optimalities for all i > j). Then, he developed a policy-
iteration algorithm (for finding n-discount optimal policies) that utilizes the full
Laurent series expansion of vγ ∈ R

|S| as follows,

vγ(π) =
1
γ

( γ

1 − γ
v−1(π) + v0(π) +

∞∑

n=1

(1 − γ

γ

)n

vn(π)
)

(Full expansion)

(6)

=
1

1 − γ
v−1(π) + v0(π) +

{
e(π, γ)

}
, (Truncated expansion) (7)

where vn ∈ R
|S| for n = −1, 0, . . . denotes the expansion coefficients. The trun-

cated form first appeared (before the full one) in [7, Thm 4a], where v−1 is
equivalent to the gain from all states vg ∈ R

|S|, v0 is equivalent to the so-called
bias, and e(π, γ) converges to 0 as γ approaches 1, that is limγ→1 O (1 − γ) = 0.

2.2 Discounting with an Inherent Notion of Discounting

A environment with an inherent notion of discounting has a discount factor γ
that encodes one of the following entities. Thus, γ is part of the environment
specification (definition, description).

Firstly, the time value of rewards, i.e. the value of a unit reward t timesteps
in the future is γt: This is related to psychological concepts. For example, some
people prefer rewards now rather than latter, hence they assign greater values to
early rewards through a small γ (shortsighted). It is also natural to believe that
there is more certainty about near- than far-future, because immediate rewards
are (exponentially more) likely due to recent actions. The time preference is also
well-motivated in economics. This includes γ for taking account of the decreasing
value of money (because of inflation), as well as the interpretation of (1 − γ)/γ
as a positive interest rate. Moreover, commercial activities have failure (aban-
donment) risk due to changing government regulation and consumer preferences
over time.

Secondly, the uncertainty about random termination independent of the
agent’s actions: Such termination comes from external control beyond the agent,
e.g. someone shutting down a robot, engine failure (due to weather/natural dis-
aster), and death of any living organisms.

In particular, whenever the random termination time Tmax follows a geomet-
ric distribution Geo(p = 1 − γ), we have the following identity between the total
and discounted rewards for all s ∈ S and all π ∈ ΠS,

vTmax(π, s):=ESt,At

[

ETmax

[
Tmax−1∑

t=0

r(St, At)
∣
∣
∣S0 = s, π

]]

= vγ(π, s)
︸ ︷︷ ︸
See (4)

, (8)
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where the discount factor γ plays the role of the geometric distribution parameter
[25, Prop 5.3.1]. This discounting implies that at every timestep (for any state-
action pair), the agent has a probability of (1 − γ) for entering the 0-reward
absorbing terminal state. Note that because γ is invariant to states and actions
(as well as time), this basic way of capturing the randomness of Tmax may be
inaccurate in cases where termination depends on states, actions, or both.

3 Discounting Without an Inherent Notion of Discounting

From now on, we focus on environments without inherent notion of discounting,
where γ is not part of the environment specification (cf. Sec 2.2). We emphasize
the qualification “inherent” since any MDP can always be thought of having
some notion of discounting from the Blackwell optimality point of view (5). This
is because a Blackwell optimal policy is guaranteed to exist in finite MDPs [25,
Thm 10.1.4]; implying the existence of its discount factor γBw ∈ (0, 1], and of
a (potentially very long) finite-horizon MDP model that gives exactly the same
Blackwell-optimal policy as its infinite-horizon counterpart. See also [8, Ch 1.3].

When there is no inherent notion of discounting, the discount factor γ is
imposed for bounded sums (Sect. 2.1) and becomes part of the solution method
(algorithm). This is what we refer to as artificial discounting, which induces
artificial interpretation as, for instance, those described in Sect. 2.2. The γBw

(mentioned in the previous paragraph) is one of such artificial discount factors.
In addition to bounding the sum, we observe the following justifications that
have been made for introducing an artificial γ.

3.1 Approximation to the Average Reward as γ Approaches 1

For recurrent MDPs, the gain optimality is the most selective because there
are no transient states [11, Sec 3.1]. This implies that a gain optimal policy is
also Blackwell optimal in recurrent MDPs, for which one should target the gain
optimality criterion.

Nonetheless, the following relationships exist between the average reward vg

and discounted reward vγ value functions of a policy π ∈ ΠS. Firstly, for every
state s0 ∈ S,

vg(π, s0) = lim
γ→1

(1 − γ) vγ(π, s0), [25, Corollary 8.2.5] (9)

= (1 − γ)
∑

s∈S
p�

π(s|s0) vγ(π, s), ∀γ ∈ [0, 1), [27, Sec 5.3] (10)

where p�
π(s|s0) denotes the stationary probability of a state s, i.e. the long-run

(steady-state) probability of being in state s when the MC begins in s0. Here,
(9) is obtained by multiplying the left and right hand sides of (7) by (1 − γ),
then taking the limit of both sides as γ → 1. It is interesting that any discount
factor γ ∈ [0, 1) maintains the equality in (10), which was also proved by [29,
p254].
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The second relationship pertains to the gradient of the gain when a
parameterized policy π(θ) is used. By notationally suppressing the policy param-
eterization θ and the dependency on s0, as well as using ∇:=∂/∂θ, this relation
can be expressed as

∇vg(π) = lim
γ→1

{ ∑
s∈S

∑

s′∈S
p

�
π(s)

∑
a∈A

p(s
′|s, a)π(a|s)∇ log π(a|s)

︸ ︷︷ ︸
∇pπ(s′|s)

vγ(π, s
′
)
}

(11)

=
∑
s∈S

∑
a∈A

p
�
π(s)π(a|s)

[
qγ(π, s, a)∇ log π(a|s)

]

︸ ︷︷ ︸
involving the discounted state-action value qγ

+ (1 − γ)
∑
s∈S

p
�
π(s)

[
vγ(π, s)∇ log p

�
π(s)

]

︸ ︷︷ ︸
involving the discounted state value vγ

,

(12)

for all γ ∈ [0, 1). Notice that the right hand sides (RHS’s) of (11) and (12) involve
the discounted reward value function, i.e. the state value function vγ(π, s),∀s ∈ S
in (4) and the corresponding (state-)action value function qγ(π, s, a),∀(s, a) ∈
S × A, where vπ

γ (s) = EA∼π

[
qπ
γ (s,A)

]
. The identity (11) was shown by [4,

Thm 2], whereas (12) was derived from (10) by [22, Appendix A].
Thus for attaining average-reward optimality, one can maximize vγ but

merely as an approximation to vg because setting γ exactly to 1 in (9, 11)
is prohibited by definition (4). It is an approximation in (10) whenever vγ is
weighted by some initial state distribution p̊ (such as in (15)) or transient state-
distributions pt

π, which generally differs from p�
π. In (12), the second RHS term

is typically ignored since estimating ∇ log p�
π(s) is difficult in practice; such a dif-

ficulty motivates the development of the policy gradient theorem [29, Ch 13.2].
Consequently, ∇vg(π) is approximated (although closely whenever γ is close to
1) by the first RHS term of (12), then by sampling the state S ∼ p�

π (for example,
after the agent interacts long “enough” with its environment).

Moreover, approximately maximizing the average reward via discounting is
favourable because discounting formulation has several mathematical virtues, as
described in Sect. 3.3.

3.2 A Technique for the Most Selective Optimality with γ ∈ [γBw, 1)

As discussed in the previous Sec 3.1, γ-discounted optimality approximates the
gain optimality as γ → 1. This is desirable since the gain optimality is the most
selective in recurrent MDPs. In unichain MDPs however, the gain optimality is
generally underselective since the gain ignores the rewards earned in transient
states. Consequently, multiple gain-optimal policies prescribe different action
selections (earning different rewards) in transient states. The underselectiveness
of gain optimality (equivalent to (n = −1)-discount optimality) can be refined
up to the most selective optimality by increasing the value of n from −1 to 0
(or higher if needed up to n = (|S| − 2) in unichain MDPs) in the family of
n-discount optimality.

Interestingly, such a remedy towards the most selective criterion can also be
achieved by specifying a discount factor γ that lies in the Blackwell’s interval,
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i.e. γ ∈ [γBw, 1), for the γ-discounted optimality (5). This is because the result-
ing π∗

γ∈[γBw,1), which is also called a Blackwell optimal policy, is also optimal for
all n = −1, 0, . . . in n-discount optimality [25, Thm 10.1.5]. Moreover, Black-
well optimality is always the most selective regardless of the MDP classification
since γ-discounted criterion is model-classification-invariant. Thus, artificial dis-
counting can be interpreted as a technique to attain the most selective criterion
(i.e. the Blackwell optimality) whenever γ ∈ [γBw, 1) not only in recurrent but
also unichain as well as the most general multichain MDPs.

Targetting the Blackwell optimality (instead of, gain optimality) is imper-
ative, especially for episodic environments2 that are commonly modelled as
infinite-horizon MDPs (so that the stationary policy set ΠS is a sufficient space
to look at for optimal policies). Such modelling is carried out by augmenting
the state set with a 0-reward absorbing terminal state (denoted by szrat). This
yields a unichain MDP with a non-empty set of transient states. For such szrat-
models, the gain is trivially 0 for all stationary policies so that gain optimality
is underselective. The (n = 0)-discount optimality improves the selectivity. It
may be the most selective (equivalent to Blackwell optimality) in some cases.
Otherwise, it is underselective as well, hence some higher n-discount optimality
criterion should be used. It is also worth noting that in szrat-models, (n = 0)-
discount optimality is equivalent to the total reward optimality whose vtot (2)
is finite [25, Prop 10.4.2]. The latter therefore may also be underselective.

Towards obtaining Blackwell optimal policies in unichain MDPs, the rela-
tionship between maximizing γ-discounted and n-discount criteria can be sum-
marized:

argmax
π∈ΠS

vγ∈[γBw,1)(π, s)

︸ ︷︷ ︸
Blackwell-optimal policies

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmax
π∈ΠS

[
v−1(π, s) = lim

γ→1
(1 − γ)vγ(π, s)︸ ︷︷ ︸

Based on (9)

]
if recurrent MDPs (see Sec 3.1),

argmax
π∈Π∗

n=−1

[
v0(π, s) = lim

γ→1

(1 − γ)vγ(π, s) − v−1(π, s)

1 − γ︸ ︷︷ ︸
Based on (7)

]
if unichain MDPs and
(n = 0)-discount is the
most selective,

argmax
π∈Π∗

n−1

[
vn(π, s)

]
for n = 1, 2, . . . , (|S| − 3) if unichain MDPs and n-

discount is the most selective,
argmax

π∈Π∗
n=(|S|−3)

[
vn=(|S|−2)(π, s)

]
if unichain MDPs,

(13)

for all s ∈ S, where Π∗
n denotes the n-discount optimal policy set.

From the second case in the RHS of (13), we know that v0 can be computed
by taking the limit of a function involving vγ and v−1(= vg) as γ approaches 1.
This means that for unichain MDPs, the Blackwell optimal policies may be
2 Episodic environments are those with at least one terminal state. Once the agent

enters the terminal state, the agent-environment interaction terminates.
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obtained by setting γ very close to 1, similar to that for recurrent MDPs (the
first case) but not the same since the function of which the limit is taken differs.

In practice, the limits in the first and second cases in (13) are computed
approximately using γ close to unity, which is likely in the Blackwell’s interval:
γBw ≤ (γ ≈ 1) < 1. Paradoxically however, this does not necessarily attain the
Blackwell optimality because the finite-precision computation involving γ ≈ 1
yields quite accurate estimation to the limit values: maximizing the first and
second cases in the RHS of (13) with γ ≈ 1 attains gain (n = −1) and bias
(n = 0) optimality respectively, which may be underselective in unichain MDPs.
Consequently in practice, the most selective Blackwell optimality can always be
achieved using γ that is at least as high as γBw but not too close to 1.

3.3 Several Mathematical Virtues of Discounting

Discounted reward optimality is easier to deal with than its average reward
counterpart. This can be attributed to three main factors as follows.

Firstly, the discounted-reward theory holds regardless of the classification of
the induced MCs, whereas that of the average reward involves such classification.
Because in RL settings, the transition probability p(s′|s, a) is unknown, average
reward algorithms require estimation or assumption about the chain classifica-
tion, specifically whether unichain or multichain. Nevertheless, note that such
(assumed) classification is needed in order to apply a specific (simpler) class of
average-reward algorithms: leveraging the fact that a unichain MDP has a single
scalar gain (associated with its single chain) that is constant across all states,
whereas a multichain MDP generally has different gain values associated with
its multiple chains.

Secondly, the discounted Bellman optimality operator B
∗
γ is contractive,

where the discount factor γ serves as the contraction modulus, i.e. any real
number in [0, 1). That is,

‖B∗
γ [v] − B

∗
γ [v′]‖∞ ≤ γ‖v − v′‖∞, for any vectors v,v′ ∈ R

|S|,

where in state-wise form, B∗
γ [v](s):= maxa∈A{r(s, a)+γ

∑
s′∈S p(s′|s, a)v(s′)} for

all s ∈ S, and ‖v‖∞:= maxs∈S |v(s)| denotes the maximum norm. This means
that B

∗
γ makes v and v′ closer by at least γ such that the sequence of iter-

ates vk+1 ← B
∗
γ [vk] converges to the fixed point of B

∗
γ , which is the opti-

mal discounted value v∗
γ , as k → ∞. That is, limk→∞ ‖vk − v∗

γ‖∞ = 0.
In the absense of γ, the contraction no longer holds. This is the case for
the average reward Bellman optimality operator B

∗
g[v](s):= maxa∈A{r(s, a) +∑

s′∈S p(s′|s, a)v(s′)},∀s ∈ S. As a result, the basic value iteration based on B
∗
g

is not guaranteed to converge [19, Sec 2.4.3].
The aforementioned contraction property also applies to the discounted Bell-

man expectation operator, i.e.Bπ
γ [v](s):=EA∼π

[
r(s,A) + γ

∑
s′∈S p(s′|s,A)v(s′)

]

for all s ∈ S. Consequently, we have limk→∞ ‖vk − vπ
γ‖∞ = 0. Here, the dis-

counted policy value vπ
γ is the fixed point of Bπ

γ such that vπ
γ = B

π
γ [vπ

γ ], which
is known as the discounted Bellman evaluation equation (BEE). Related to this
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BEE, the discount factor γ ∈ [0, 1) also plays an important role in the conver-
gence of TD-based parametric value aproximators in that the inverse (I−γPπ)−1,
which involves in the approximator’s minimizer formula, exists [29, p206]. This
is in contrast to the matrix (I − Pπ) whose inverse does not exist [25, p596].

Third, discounting can be used to reduce the variance of, for example policy
gradient estimates, at the cost of bias-errors [4,16]. In particular, the variance
(the bias-error) increases (decreases) as a function of 1/(1 − γ) =

∑∞
t=0 γt. This

is because the effective number of timesteps (horizon) can be controlled by γ.
This is also related to the fact that the infinite-horizon discounted reward vγ (4)
can be ε-approximated by a finite horizon τ proportional to logγ(1 − γ). That

is, τ =
⌈

logγ
(1−γ)ε
rmax

⌉
, where �x� indicates the smallest integer greater than or

equal to x ∈ R.

4 Artificial Discount Factors Are Sensitive
and Troublesome

The artificial discount factor γ (which is part of the solution method) is said to
be sensitive because the performance of RL methods often depends largely on γ.
Fig 1a illustrates this phenomenon using Qγ-learning with various γ values.
As can be seen, higher γ leads to slower convergence, whereas lower γ leads
to suboptimal policies (with respect to the most selective criterion, which in
this case, is the gain optimality since the MDP is recurrent). This trade-off is
empirically balanced around γBw ≈ 0.83. Such trade-off is elaborated more in
Sects. 4.1 and 4.2.

The artificial γ is troublesome because its critical value, i.e. γBw, is difficult to
determine, even in DP where the transition and reward functions are known [13].
This is exacerbated by the fact that γBw is specific to each environment instance
(even from the same environment family, as shown in Fig. 1a). Nevertheless,
knowing this critical value γBw is always desirable. For example, despite the
gain optimality can be attained by having γ very close to 1, setting γ ← γBw

(or some value around it) leads to not only convergence to the optimal gain (or
close to it) but also faster convergence in recurrent MDPs, as demonstrated by
Qγ-learning (Fig. 1b). We can also observe that the discounted vγ≈γBw -landscape
already resembles the gain vg-landscape. Thus, for obtaining the gain-optimal
policy in recurrent MDPs, γ does not need to be too close to 1 (as long as it is
larger than or equal to γBw); see also (13).

Apart from that, γ is troublesome because some derivation involving it
demands extra care, e.g. for handling the discounted state distribution in
discounted-reward policy gradient algorithms [23,30].

4.1 Higher Discount Factors Lead to Slower Convergence

According to (9), increasing the discount factor γ closer to 1 makes the scaled
discounted reward (1 − γ)vγ approximate the average reward vg more closely.
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Fig. 1. Empirical results illustrating the sensitivity and troublesomeness of artificial
γ. In (a), the black horizontal line on the top is the optimal gain vg(π∗

g). (Color figure
online)

This means that a discounted-reward method with such a setting obtains more
accurate estimates of gain-optimal policies. However, it suffers from a lower
rate of convergence (to the approximate gain optimality), as well as from some
numerical issue (since for example, it involves the term 1/(1 − γ) that explodes
as γ → 1). This becomes unavoidable whenever γBw is indeed very close to unity
because the most selective Blackwell optimality (equivalent to gain optimality
in recurrent MDPs) requires that γ ≥ γBw.

The slow convergence can be explained by examining the effect of the effective
horizon induced by γ. That is, as γ approaches 1, the reward information is
propagated to more states [5, Fig 1]. From discounted policy gradient methods,
we also know that an i.i.d state sample from the discounted state distribution is
the last state of a trajectory whose length is drawn from a geometric distribution
Geo(p = 1 − γ). Evidently, the closer γ to 1, the longer the required trajectory.
Also recall that such a geometric distribution has a mean of 1/(1 − γ) and a
variance of γ/(1 − γ)2, which blow up as γ → 1.

There are numerous works that prove and demonstrate slow convergence due
to higher γ. From them, we understand that the error (hence, iteration/sample
complexity) essentially grows as a function of 1/(1 − γ). Those works include
[21] for Q-learning with function approximators, [29] for TD learning, and [1]
for policy gradient methods. We note that for a specific environment type and
with some additional hyperparameter, [9] proposed a variant of Q-learning whose
sample complexity is independent of γ.

4.2 Lower Discount Factors Likely Lead to Suboptimal Policies

Setting γ further from 1 such that γ < γBw yields γ-discounted optimal policies
that are suboptimal with respect to the most selective criterion (see Fig. 1a).
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From the gain optimality standpoint, lower γ makes (1 − γ)vγ deviate from vg

in the order of O (1 − γ) as shown by [4]. More generally based on (13), γ < γBw

induces an optimal policy π∗
γ<γBw

that is not Blackwell optimal (hence, π∗
γ<γBw

is also not gain optimal in recurrent MDPs). This begs the question: is it ethical
to run a suboptimal policy (due to misspecifying the optimality criterion) in
perpetuity?

For a parameterized policy in recurrent MDPs, γ < γBw induces a discounted
vγ-landscape that is different form the gain vg-landscape. Such a discrepancy
becomes more significant as γ is set further below 1. Therefore, the maximizing
parameters do not coincide, i.e. argmaxθ vγ<γBw(π(θ)) �= argmaxθ vg(π(θ))=:θ∗

g ,
where θ ∈ Θ denotes the policy parameter in some parameter set. Interest-
ingly, vγ<γBw(π(θ∗

g )) is a local maximum in vγ-landscape so that the (γ < γBw)-
discounted-reward optimization is ill-posed in that the (global) maximum is not
what we desire in terms of attaining the most selective criterion.

An error bound is established in [24, Thm 2] due to misspecifying a discount
factor γ < γBw. Subsequently, Jiang [15] refined the aforementioned error bound
by taking into account the transition and reward functions. They also highlighted
that such an error as a function of γ is not monotonically decreasing (with
increasing γ). This is consistent with what Smallwood [28] observed, i.e. multiple
disconnected γ-intervals that share the same γ-discounted optimal policy. We
note that specifically for sparse-reward environments (where non-zero rewards
are not received in every timestep), a lower discount factor γ < γBw is likely
to improve the performance of RL algorithms [24, Thm 10]. They argue that
lowering γ decreases the value approximation error ‖v∗

γ−v̂∗
γ‖∞ more significantly

than it increases the γ-misspecification error ‖v∗
γBw

− v∗
γ‖∞, where v̂∗

γ denotes
an estimate for v∗

γ .

5 Benefits of the Average Reward in Recurrent MDPs

In this Section, we enumerate the benefits of directly maximizing the average
reward (gain) optimality criterion in recurrent MDPs. Loosely speaking, such
a recurrent structure is found in continuing environments3 with cyclical events
across all states. For an episodic environment, we can obtain a recurrent MDP
by explicitly modelling the episode repetition. For a non-exhaustive list of con-
tinuing and episodic environments, refer to [10].

The combination of recurrent MDPs and gain optimality is advantageous.
There is no discount factor γ involved (as a by-product), removing the difficulties
due to artificial discounting (Sect. 4). Other benefits are described next.

5.1 Unconditionally the Most Selective Criterion

Gain optimality is the most selective criterion for recurrent MDPs. This is
because all states are recurrent so that the gain is all that is needed to quantita-
tively measure the quality of any stationary policy from those states (such a gain
3 Continuing environments are those with no terminal state; cf. episodic environments.
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quantity turns out to be constant for all states in recurrent or more generally
unichain MDPs). Recall that the gain is concerned with the long-run rewards
(3), and recurrent states are states that are re-visited infinitely many times in
the long-run.

Gain optimality therefore is equivalent to Blackwell optimality uncondition-
ally, as well as instantaneously in that there is no need for hyperparameter tuning
for the optimization objective function itself. This is in contrast to γ-discounted
optimality, where it is equivalent to Blackwell optimality if γ ≥ γBw as in (5),
and since γBw is unknown, tuning γ is necessary (Sect. 3.2).

5.2 Uniformly Optimal Policies

Since recurrent (up to unichain) MDPs have only a single recurrent class (chain),
the gain of any policy is constant across all states. As a result, average-reward
policy gradient methods maximize an objective (14) that is independent of ini-
tial states, or generally of initial state distributions. The resulting gain-optimal
policies are said to be uniformly optimal because they are optimal for all initial
states or all initial state distributions [2, Def 2.1].

In contrast, the discounted-reward counterpart maximizes an objective (15)
that is defined with respect to some initial state distribution p̊ (since the
discounted-reward value vγ depends on the state from which the value is mea-
sured, as in (4)). Consequently, the resulting γ-discounted optimal policies may
not be optimal for all initial states; they are said to be non-uniformly optimal, as
noted by [3, p41]. This non-uniform optimality can be interpreted as a relaxation
of the uniform optimality in DP, which requires that the superiority of optimal
policies π∗

γ holds in every state, i.e. vγ(π∗
γ , s0) ≥ vγ(π, s0), for all states s0 ∈ S

and all policies π ∈ ΠS, see Sect. 2.1.
The objectives of average- and discounted-reward policy gradient methods:

Average-reward policy gradient objective: argmax
θ∈Θ

vg(π(θ)), (14)

Discounted-reward policy gradient objective: argmax
θ∈Θ

Ep̊ [vγ(π(θ), S0)] , (15)

where θ ∈ Θ is the policy parameter and S0 ∼ p̊ is the initial state.

5.3 Potentially Higher Convergence Rate

Without delving into specific algorithms, there are at least two reasons for faster
convergence of average-reward methods (compared to their discounted-reward
counterparts), as hinted by [26, Sec 6] and [32, p114]. First is the common
gain across states. Such commonality eases the gain approximation in that no
generalization is needed, i.e. a single gain estimation is all that is needed for
one true gain of all states in unichain MDPs. Second, average-reward methods
optimize solely the gain term in the Laurent series expansion of vγ in (6). On the
other hand, their discounted-reward counterparts optimize the gain, bias, and
higher-order terms altogether simultaneously, whose implication becomes more
substantial as γ is set further below 1, as can be observed in (7).
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6 Conclusions

We contribute a thorough examination of the relationship between average and
discounted rewards, as well as a discussion of their pros and cons in RL. Our
examination here is devised through broader lens of refined optimality criteria
(which generalize average and discounted rewards), inspired by the seminal work
of Mahadevan [20]. It is also broader in the sense of algorithmic styles: value-
and policy-iteration, as well as of tabular and function approximation settings
in RL. We provide updates and extensions to the existing comparison works,
such as [18,31], in order to obtain a comprehensive view on discounting and
discounting-free RL.

Maximizing the average reward has a number of benefits that make it worth-
while to use and to investigate further. It is the root for approaching Blackwell
optimality through Veinott’s criteria, which are discounting-free (eliminating
any complication due to artificial discounting). Future works include examina-
tion about exploration strategies: to what extent strategies developed for the
discounted rewards applies to RL aiming at discounting-free criteria.
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