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Abstract Given a high-dimensional vector of time series, we define a class
of robust forecasting procedures based on robust one-sided dynamic principal
components. Peña et al. (J Am Stat Assoc 114(528):1683–1694, 2019) defined one-
sided dynamic principal components as linear combinations of the present and past
values of the series with optimal reconstruction properties. In order to make the
estimation of these components robust to outliers, we propose here to compute
the principal components by minimizing the sum of squares of the M-scales of
the reconstruction errors of all the variables. The resulting robust components are
called scale one-sided dynamic principal components (S-ODPC), and an alternating
weighted least squares algorithm to compute them is presented. We prove that when
both the number of series and the sample size tend to infinity, if the data follow a
dynamic factor model, the mean of the squares of the M-scales of the reconstruction
errors of the S-ODPC converges to the mean of the squares of the M-scales of the
idiosyncratic terms, with rate .m1/2, where m is the number of dimensions. A Monte
Carlo study shows that the S-ODPC introduced in this chapter can be successfully
used for forecasting high-dimensional multiple time series, even in the presence of
outlier observations.
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1 Introduction

High-dimensional sets of correlated time series are nowadays automatically gen-
erated in many fields, from engineering to environmental science and economics.
These large data sets are often collected by using wireless sensor networks that
may fail to record the data correctly due to depletion of batteries or environmental
influence. These failures will produce outliers in the time series recorded that can
modify strongly the forecasting generated from these contaminated data. Thus,
using robust forecasting procedures based on robust estimation methods, which can
deal with large outliers, is very important in this high-dimensional data sets.

Robust estimation of multivariate data sets generated by vector autoregressive
(VAR) models was studied by Muler and Yohai (2013). They generalized to the
multivariate case the robust estimation procedure proposed by Muler et al. (2009)
for ARMA univariate models. However, the multivariate approach requires the
estimation of a VAR/VARMA model for the vector of time series, and for these
models, the number of parameters grows at least with the square of the number
of series, turning their estimation unfeasible for high-dimensional sets of time
series. Therefore, other alternatives for robust estimation in these situations have
been explored. Dynamic factor models have been shown useful to model high-
dimensional sets of time series, and some procedures have been proposed for the
robust estimation of these models, see Fan et al. (2019), Alonso et al. (2020), Fan
et al. (2021), and Trucíos et al. (2021).

Peña and Yohai (2016), following Brillinger’s idea of dynamic principal com-
ponents, see Brillinger (1964, 1981), proposed a new class of dynamic principal
components that provide an optimal reconstruction of the observed set of series.
These dynamic components are more general than those of Brillingers’s, as they
are computed without the assumption of being linear combinations of the data.
In Peña and Yohai (2016) was also developed a robust estimation procedure for
these principal components. However, although they are useful for reconstruction
of the set of time series, these components are not expected to work well in
forecasting problems, as their last values will be computed with a smaller number
of observations than the central ones.

In order to have dynamic components useful for forecasting, (Peña et al. 2019)
proposed the one-sided dynamic principal components (ODPC) that are defined
as linear combinations of the observations based on a one-sided filter of past
and present observations, instead of the double filter of past and future values,
as proposed by Brillinger (1964). See also Forni et al. (2015, 2017) for a related
approach to build one-sided filters for dynamic factor models.

Since the estimation procedure applied in Peña et al. (2019) minimizes the mean
square error of the series reconstruction, it can be very sensitive to outliers. To
overcome this drawback, in this chapter, we introduce a robust ODPC procedure that
is based on the minimization of the sum of squares of M-scales of the reconstruction
error of all the variables. Thus, the resulting forecasting procedure can be applied
to automatic forecasting of large high-dimensional data sets of time series. The M-
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scales introduced by Huber (1964) are robust estimators that measure how large
in absolute value are the elements of a sample. These scales may have a 50
% breakdown point against outliers and inliers. Therefore, they protect for both
types of anomalies. We call this procedure S-ODPC, and by means of a Monte
Carlo procedure, we show that it produces accurate forecasts even with outlier
contaminated data.

In Sect. 2 of this chapter, we review the one-sided dynamic principal components
(ODPC) proposed by Peña et al. (2019). In Sect. 3, we introduce its robust version,
the S-ODPC, and in Sect. 4, we describe an alternating weighted least squares
to compute them. In Sect. 5, we discuss how to use the S-ODPC to forecast
future values of a multiple time series. In Sect. 6, two possible robust strategies
to determine the number of components and the number of lags to define each
component and to reconstruct the time series are described. In Sect. 7, we show
that asymptotically, when both the number of series and the sample size go to
infinity, if the data follow a dynamic factor model, the reconstruction obtained with
S-ODPC converges, in mean squared error, to the common part of a dynamic factor
model. In Sects. 8 and 9, we illustrate with Monte Carlo simulations and with a real
data example that in the presence of outliers the forecasting procedure based on S-
ODPC performs much better than the one based on ODPC. Finally, Sect. 10 contains
conclusions. An Appendix includes the mathematical proofs.

2 One-Sided Dynamic Principal Components

Consider a zero mean vector of stationary time series .z1, . . . , zT , where .zt =
(zt,1, . . . , zt,m)′. Let Z be the data matrix of dimension T × m where each row
is z′

t . We will use E for the expectation operator, ‖ · ‖ for the Euclidean norm of
vectors and the spectral norm of matrices and ‖ · ‖F for the Frobenius norm of
a matrix. Consider an integer number k1 ≥ 0, and let a = (a′

0, . . . , a
′
k1

)′, where
a′
h = (ah,1, . . . , ah,m) is a vector of dimension m. Following Peña et al. (2019), the
scores of the first one-sided dynamic principal component are of the form

.ft (a) =
k1∑

h=0

a′
hzt−h, t = k1 + 1, . . . , T . (1)

This component, built with k1 lags, is used to reconstruct each observation zt,j using
k2 ≥ 0 of its lags and the respective loading coefficients by

.̂zt,j (a,B) = ϕj +
k2∑

h=0

bj,hft−h(a). (2)
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Let B be the m × (k2 + 2) loading matrix with row j equal to (ϕj , bj,0, . . . , bj,k2).
Then if

.̂zt (a,B) = ẑt,1(a,B), . . . ,̂zt,m(a,B))′

and Ft (a) = (1, ft (a), . . . ,ft−k2(a)), (2) can be written as

.̂zt (a,B) = BFt (a).

Note that we can consider the reconstruction (2) as the predictions of the common
component in a dynamic factor model (DFM). This equation can be interpreted as
the forecast of the common component of a DFM with one dynamic factor and k2
lags. The loadings are given by the matrix B. The dynamic factor is assumed to be
a linear combination of the observations and their k1 lags, defined by the a weights
in (1).

We suppose here that k1 and k2 are given, and in Sect. 6, we will propose a
method to choose them. We will call T ∗ = T − (k1 + k2) to the number of
observations that can be reconstructed. The population optimal values of a and B
were defined by Peña et al. (2019) as those that minimize the mean squared error in
the reconstruction of the data

.(a∗,B∗) = argmin
a,B

E(‖zt − ẑt (a,B)‖2).

Since if (a,B) is a solution of (2), then (ca,B/c), for c �= 0, will be one as
well, we can normalize the vector a, so that ‖a‖ = 1, although, as in standard
principal components −a,−B works as well as a,B. Given a sample, z1, . . . , zT ,
the estimators â, and B̂ of the optimal values (a∗,B∗) are defined as

.(̂a, B̂) = arg min‖a‖=1,B

1

T ∗
T∑

t=(k1+k2)+1

‖zt − ẑt (a,B)‖2, (3)

and the estimated first dynamic principal component is given by

.f̂t = ft (̂a) =
k1∑

h=0

â′
hzt−h, k1 + 1 ≤ t ≤ T , (4)

and ẑt = ẑt (̂a, B̂) will provide an estimated optimal reconstruction of zt using k2 of
its lags at periods t , (k1 + k2) + 1 ≤ t ≤ T .

The second and higher orders of one-sided dynamic principal components
are defined similarly. Let k

(h)
1 and k

(h)
2 be the number of lags to define the h-

th component, and suppose that we have already computed the first l principal
components. Denote by r(l)

t ,max1≤h≤l (k
(h)
1 + k

(h)
2 ) + 1 ≤ t ≤ T , the residual
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vector at time t using the first l components. Then, the (l + 1) one-sided dynamic
estimated component is a vector with components of the form

.ft (a) = a′
0zt + a′

1zt−1 + . . . + a′
k
(l+1)
1

z
t−k

(l+1)
1

, max
1≤h≤l+1

(k
(h)
1 + k

(h)
2 ) + 1 ≤ t ≤ T ,

(5)

where the vector a = (a0, a1, . . . , ak1) is chosen so that it optimizes the recon-

struction of r(l)
t ,max1≤h≤l+1(k

(h)
1 + k

(h)
2 ) + 1 ≤ t ≤ T . More precisely, consider

reconstructions of r(l)
t of the form r̂(l)

t (a,B) = BFt (a), where B is a m× (k
(l)
2 +2)

matrix, and then the (l + 1)-th principal component has values ft (̂a(l+1)), where
â(l+1) is defined so that there exists a m× (k

(l+1)
2 + 2) matrix B̂(l+1) such that

.(̂a(l+1), B̂(l+1)) = arg min||a||=1,B

1

T ∗
T∑

t=k
(l+1)
1 +k

(l+1)
2 +1

∥∥∥r(l)
t − r̂(l)

t (a,B)

∥∥∥
2
.

More technical details can be found in Peña et al. (2019).
We will consider here only the estimating equations of the first component, and

therefore, we will drop the superscript (l). The estimating equations of higher order
principal components can be found in Peña et al. (2019). Let Zh be the T ∗ ×m data
matrix of T ∗ consecutive observations

.Zh =

⎛

⎜⎜⎜⎝

z′
h+1
z′
h+2
...

z′
h+T ∗ ,

⎞

⎟⎟⎟⎠ (6)

and we will consider this matrix for h = 0, . . . , (k1 + k2). Merging these matrices,
we can write in a compact way the data used in the estimation. Note that the matrix
Zk1+k2 includes all the values of the series to be reconstructed.

Second, we will consider the larger matrix Zl,k1 = [
Zh,Zh−1, . . . ,Zh−k1

]
of

dimension T ∗ × m(k1 + 1) that includes the observations and also their k1 lags
required for the computation of the first component. The matrix of values of the
components used for the reconstruction is the T ∗ × (k2 +2) matrix Fk1,k2(a), which
has as rows Ft (̂a), k1 + k2 + 1 ≤ t ≤ T , and the reconstruction of the values Zk1+k2

is made with the T ∗ × m matrix Ẑk1+k2 computed as

.̂Zk1+k2 = Fk1,k2 (̂a)B̂
′.

Third, let ZB be the matrix with dimensions T ∗(k1 + 1) × m(k1 + 1) given by

.ZB =
⎛

⎜⎝
Zk1+k2,k1

...

Zk1,k1

⎞

⎟⎠, (7)
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B1 the matrix B with its first column deleted and Id the d × d identity matrix.
Define the matrix of products of loadings and data values by

.X(B) = (B1 ⊗ IT ∗)ZB (8)

as a mT ∗ × m(k1 + 1) matrix with rank m(k1 + 1). Then, in Peña et al. (2019), it is
shown that (̂a, B̂) are values (a,B) satisfying

.a = (X(B)′X(B))−1X(B)′vec(Zk1+k2), (9)

and this vector is standardized to unit norm. On the other hand, B̂ can also be
computed by least squares by

.B′ = (F′
k1,k2

(a)Fk1,k2(a))
−1F

′
k1,k2

(a)Zk1+k2 . (10)

An alternating least squares algorithm to compute (̂a, B̂) can be carried out as
follows. Given an initial value of â, the matrix of values of the component Fk1,k2(a)
is computed by (9), and the matrix B̂ is obtained by (10). Then, this matrix allows to
compute a new value of â, by first applying (8) and then using (9). This alternating
process is continued until convergence. A similar algorithm can be applied to obtain
the i-th component for i > 1.

3 Robust One-Sided Dynamic Principal Components

Since the ODPC estimator described in Sect. 2 is based on the minimization of
the reconstruction mean square error, this estimator is very sensitive to the presence
of outliers in the sample. To address this problem, we are going to propose a class
of robust one-sided principal components that will be called S-ODPC and that are
based on a M-scale.

Given a random variable x, the M-scale SM(x) is defined by

.E
(

ρ

(
x

SM(x)

))
= b,

where ρ: R → R
+ and ρ and b satisfy: (a) ρ(0) = 0, (b) ρ(−x) = ρ(x), (c) ρ(x)

is non-decreasing for x ≥ 0, (d) limx→∞ ρ(x) = 1, and (e) 0 < b < 1. The scale
SM(x) is a measure of how large are the values that x takes. Note that if ρ(x) = x2

and b = 1, then SM(x) is the L2-scale given by S2
M(x) = E(x2).
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Given a sample x = (x1, x2, . . . xn) of x, SM(x) may be estimated by sM(x)
satisfying

.
1

n

n∑

i=1

ρ

(
xi

sM(x)

)
= b. (11)

Generally, it is required that EΦ(ρ(x)) = b, where Φ is the standard normal
distribution. This condition implies that if xn is a sample of size n of a N(0,σ 2)
distribution, then limn→∞ sM(xn) = σ 2.

A family of ρ functions satisfying these properties is the Tukey biweight family
defined by

.ρBS
c (x) =

[
1 −

(
1 −

(x

c

)2)3
]
I (|x| ≤ c).

The breakdown point of a M-scale is ε∗ = min(b.1−b) and is maximized when
δ = 0.5, and in this case, ε∗ = 0.5. The consistency condition EΦ(ρBS

c (x)) = 0.5
is satisfied when c = 1.547. This is the function used in the simulations in Sect. 8
and in the example in Sect. 9.

The M-scales have been used to define robust estimators for many statistical
problems. We will mention here two classes of estimators based on a M-scale: S-
estimators for regression (see Rousseeuw and Yohai 1984) and S-estimators of the
scatter matrix and multivariate location (see Davies 1987).

When the first component is used to reconstruct the series, the reconstruction
error of the variable j at the period t is given by

.rt,j (a,B) = zt,j − ẑt,j (a,B), k1 + k2 + 1 ≤ t ≤ T . (12)

The first population S-ODPC is defined by the values a∗
S , B

∗
S given by

.
(
a∗
S,B∗

S

) = arg min||a||=1,B
KM(a,B),

where

.KM(a,B) =
m∑

j=1

S2
M(rt,j (a,B)).

Given a sample zt , 1 ≤ t ≤ T ,
(
a∗
S,B∗

S

)
can be estimated by

.
(
âS, B̂S

) = arg min||a||=1,B
kM(a,B),
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where

.kM(a,B) =
m∑

j=1

s2M(r.j (a,B))

and r.j (a,B) = (rt,j (a,B))k1+k2+1≤t≤T .

Remark 1 Observe that if the performance of the principal components is measured
by the sum of the squares of the M-scales of the empirical reconstruction residuals,
then the S-ODPC defined above is still optimal when dealing with nonstationary
series. Therefore, it may be used for forecasting even in this case.

In the Appendix, we prove that differentiating S(a,B), â and B̂ satisfy
expressions similar to (9) and (10), respectively. In fact, it can be shown that âS and
B̂S are values a and B satisfying the following weighted least squares relationships:

. a∗ = (X(B)′W(a,B)X(B))−1X(B)′W(a,B)vec(Zk1+k2),

.̂a = a∗/
∣∣|a∗|∣∣, (13)

where W is a mT ∗ × mT ∗ diagonal matrix of weights. On the other hand, fixing
Fk1,k2 (a), the optimal B also satisfies a weighted least squares expression. Then,
B′= (b1, . . . ,bm), where

.bj = (Fk1,k2
(a)′Wj (a,B)Fk1,k2(a))

−1Fk1,k2
(a)′Wj (a,B)z∗

j , (14)

where z∗
j is the j -th column of Zk1+k2 and Wj is a T ∗ × T ∗ matrix of weights.

The matrices Wj , 1 ≤ j ≤ m, are defined as follows: let ψ(u) = ρ′(u) and
w(u) = ψ(u)/u if u �= 0 and w(0) = limu→0 w(u). Given a and B, let σj (a,B) =
sM(r.j (a,B)) and wj (a,B) = (wt,j (a,B))k1+k2+1≤t≤T , 1 ≤ j ≤ m, where

.wt,j (a,B) = w(rt,j (a,B)/σj (a,B))

1
T ∗

∑T
k=k1+k2+1

w(rk,j (a,B)/σj (a,B))
. (15)

Then, Wj (a,B) and W(a,b) have as diagonals wj (a,B)
′
and w(a,B) =

(w1(a,B)′, . . . ,wm(a,B)′)′, respectively. These weights penalize outliers reducing
or removing their influence on the estimators.

Observe that wj , W,Fk1,k2 , and X depend on a and B, and therefore, Eqs. (13)
and (14) cannot be used to directly compute them. In the next section, we propose
an alternating weighted least squares algorithm that overcomes this problem.

The second and higher order S-ODPC can be defined in a similar way as that in
the non-robust ODPC.
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4 Computing Algorithm for the S-ODPC

We propose here an alternating weighted least squares algorithm for computing the
first S-ODPC. Let .a(i), .B(i), and .f(i) be the values of .a, .B, and .f = (fk1+1, . . . , fT )

′

corresponding to the i-th iteration and .δ ∈ (0, 1), a tolerance parameter to stop the
iterations. In order to define the algorithm, it is enough to give: (1) initial values
.a(0) and .B(0), (2) a rule that given the values of the i-th iteration .a(i) and .B(i),

.1 ≤ j ≤ m, establishes how to compute .a(i+1) and .B(i+1), 1 ≤ j ≤ m, and (3) a
stopping rule. Then, the iterated algorithm is as follows:

1. To obtain the initial values, we first compute a standard (non- dynamic) robust
principal component f(0) = (f

(0)
t )1≤t≤T , for example using the proposal of

Maronna (2005). Then, we take B(0) = (b(0)
1 , . . . ,b(0)

m ), where b(0)
j , 1 ≤

j ≤ m, is an S-regression estimator (see Rousseeuw and Yohai 1984) using
as dependent variable zj,k1+k2

= (zk1+k2+1,j , . . . , zT ,j ) and as matrix of

independent variables F(0)
k1,k2

with rows F(0)
t = (1, f (0)

t , f
(0)
t−1, . . . , f

(0)
t−k2

),

k1 + k2 + 1 ≤ t ≤ T . Once obtained B(0), we compute the matrix of residuals
R = Zk1+k2 − F(0)

k1,k2
B(0)′. This matrix is used to define the weights wt,j as in

(15) and the diagonal matrixW(0). We compute a(0) = a∗/||a∗||, where

.a∗ = (X(B(0))′W(0)X(B(0))−1X(B(0))′W(0)vec(Zk1+k2)

and X(B) is defined as in (8).
2. Given a(i) and B(i), we compute the reconstruction residuals matrix R =

Zk1+k2−F(i)
k1,k2

B(i)′ and the corresponding newM- scales σ
(i)
j , 1 ≤ j ≤ m. Using

these residuals and scales, we obtain new weights wt,j (a(i),B(i)), k1+k2+1 ≤
t ≤ T , and the corresponding diagonal matrices Wj (a(i),B(i)), 1 ≤ j ≤ m

and W(a(i),B(i)). Then B(i+1) = (b(i+1)
1 , . . . ,b(i+1)

m ) is defined by (14) with
a = a(i). To compute a(i+1), we use (13) with B = B(i+1).

3. The stopping rule is as follows: stop when

.
S(a(i),B(i)) − S(a(i+1),B(i+1))

S(a(i),B(i))
≤ δ.

As in Salibian-Barrera and Yohai (2006), it can be shown at each step the
MSE decreases, and therefore, it converges to a local minimum. To obtain a global
minimum, the initial value f(0) should be close enough to the optimal one.

Note that, since the matrix X(B) = (B1⊗IT ∗)ZB has dimensions mT ∗ ×m(k1+
1), solving the associated least squares problem can be time- consuming for high-
dimensional (large m) problems. The iterative nature of the algorithm we propose
implies that this least squares problem will have to be solved several times for
different B matrices. However, as the matrix B′ ⊗ IT ∗ is sparse, it can be stored
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efficiently, and multiplying it with a vector is relatively fast. We found that for
problems with a moderately large m, the following modification of our algorithm
works generally faster: instead of finding the optimal a(i+1) corresponding to B(i+1),
just do one iteration of coordinate descent for a(i+1).

5 Forecasting Using the S-ODPC

Suppose that we have computed estimators of . Q robust dynamic principal
components and that the lags used for the q component were .(k

(q)

1 , k
(q)

2 ). Let

.̂f(q) = (f̂
(q)
t )

k
(q)
1 +1≤t≤T

, .1 ≤ q ≤ Q, be the estimated S-ODPC’s and .̂Bq the

estimated reconstruction matrices. We will show now how we can predict the
values of .zT +1, . . . , zT +h for some .h ≥ 1. For that purpose, fit a time series model
for each component .̂f(q), .1 ≤ q ≤ Q (e.g., an ARMA model), using a robust
procedure, and with this model, obtain predictions . f̃

(q)
T +l of . f

(q)
T +l ., .1 ≤ q ≤ Q,

.1 ≤ l ≤ h. We fit in the simulations AR models for each component, and
these models were estimated using the filtered .τ -estimation procedure described
in Chapter 8 of Maronna et al. (2019). This procedure selects automatically the
order of the AR model, gives robust estimators of its coefficients, and provides a
filtered series .̃f(q) = (f̃

(i)
t )

k
(q)
1 +1≤t≤T

, 1 ≤ q ≤ Q cleaned of the detected outliers.

With the help of these filtered series, we can obtain robust predictions as follows.
Let .̃F(q)

T +l = (1, .f̃
(q)
T +l , .f̃

(q)

T +l−1, . . . , .f̃
(q)

T +l−k
q
2
)′; then a robust prediction .zT +l given

the first T observations is

.̂zT +l|T =
Q∑

q=1

B̂(q)F̃(q)
t+l , 1 ≤ l ≤ h.

The filtered τ -estimation procedure is implemented in the function arima.rob of
the R package robarima.

6 Selecting the Number of Lags and the Number of
Components

An important problem is the selection of the number of dynamics components Q to
use for prediction, and the number of lags .k

(q)

1 and .k
(q)

2 , 1 ≤ q ≤ Q, required to
define each component. In order to simplify the presentation, we will assume that
.k

(q)

1 = k
(q)

2 = k(q). We can use two possible methods to select these values: (a) an
information criterion and (b) cross-validation. Simulations performed for the ODPC
in Peña et al. (2019) show that both procedures have similar efficiencies; However,
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(a) is much faster than (b). For that reason, we propose to use (a). In what follows,
we describe implementations of both procedures.

6.1 Selection Using an Information Criterion

In Peña et al. (2019), an adaptation of the Bai and Ng (2002) criterion for factor
model was used to choose .k(q) and Q for ODPC. Here, we modify this procedure
for its use in S-ODPC. We should start given a maximum value K for .k(q). We
compute the first S-ODPC with .k(q) = k for all values of k such that .0 ≤ k ≤ K. For
each of these values of k, we compute the residuals .(r

(1,k)
t,j )2k+1≤t≤T ,1 ≤ j ≤ m and

compute the M-scale S.M(r(1,k)
.j ) of each vector .r(1,k)

.j = (r
(1,k)
2k+1,j , . . . , r

(1,k)
T ,j ), 1 ≤

j ≤ m. Let .̂σ1,k = ((1/m)
∑m

j=1S.M(r(1,k)
.j ))1/2. Let .T ∗

1,k = T −2k; then we choose
as .k(1) the value of k among .0, . . . , K that minimizes

.BNG1,k = log(̂σ 2
1,k)) + (k + 1)

log(min(T ∗
1,k, m))

min(T ∗
1,k, m)

.

Suppose we have already computed q − 1 dynamic principal components,
where the component i uses k(i) lags. Then we compute the q component
with i lags for each 0 ≤ i ≤ K and the corresponding residuals matrix

(r
(q,k)
t,j )hq,k+1≤t≤T ,1≤j≤m, where hq,k = 2

(
k + ∑q−1

i=1 k(i)
)
. Let T ∗

q,k = T − hq,k,

r(q,k)
.j = (r

(q,k)

hq,k+1,j , . . . , r
(q,k)
T ,j ) and σ̂q,k = ((1/m)

∑m
j=1SM(r(q,k)

.j ))1/2; then the

value of k(q) is the value of k, 0 ≤ k ≤ K , which minimize the following
robustification of the Bai and Ng criterion

.BNGq,k = log(̂σ 2
q,k)) + (

q−1∑

i=1

((k(i) + 1) + k + 1)
log(min(T ∗

q,k,m))

min(T ∗
q,k,m)

.

The selected number of components is Q = q−1, where q is the minimum value
q such that BNG

q,k(q) ≥ BNG
q,k(q−1) .

6.2 Selection Using Robust Cross-validation

Suppose that we are interested in using the S-ODPC to predict .zT +1, . . . , zT +h.

We can apply the following robust cross-validation procedure for selecting the
number of components, Q, and k(q), 1 ≤ q ≤ Q, the number of lags used for
each component. Suppose that the first T1 < T observations are chosen as the
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training set, and the last T − T 1 observations as testing set. Then the training set
will be used to compute all the loading vectors a(q,k) for the q component with k

lags and the testing set to evaluate the prediction power of any choice of the number
of lags k(q) for each component q and the number of components Q.

The cross-validation procedure starts choosing k1 as follows. For 0 ≤ d ≤
T − T1 − i, 1≤ j ≤ m, 1 ≤ i ≤ h and k ≥ 0, let ẑ

(1,k)
T1+d+i,j |T1+d be

the prediction of zT1+d+i,j using the first component with k lags and loading

vector a(1,k) corresponding to the periods t ≤ T1 + d, and let r̂
(1,k)
T1+d+i,j |T1+d =

ẑ
(1,k)
T1+d+i,j |T1+d − zT1+d+i,j the corresponding prediction error. We evaluate the
quality of the predictions up to h periods ahead using the first component with
k lags by

.SS
(1)
k =

m∑

j=1

h∑

i=1

SM(̂r(1,k,i)
.j ), (16)

where r̂(1,k,i)
.j = (̂r

(1,k)
T1+i,j |T1 , . . . , r̂

(1,k)
T ,j |T −i ) is the vector of all the i periods ahead

predictions. We select as k(1) the first k, such that SS
(1)
k ≤ SS

(1)
k+1. Suppose now

that we have already computed q − 1 components with lags k(1), . . . , k(q−1). To
obtain k(q), we proceed as when computing k(1), that is, for each k, we compute

.SS
(q)
k =

m∑

j=1

h∑

i=1

SM(̂r(q,k,i)
.j ), (17)

where r̂(q,k,i)
.j =(̂r

(q,k)
T1+i,j |T1 , . . . , r̂

(q,k)
T −h+i,j |T −h), r̂

(q,k)
T1+d+i,j |T1+d = ẑ

(q,k)
T1+d+i,j |T1+d −

zT1+d+i,j , and ẑ
(q,k)
T1+d+i,j |T1+d is the prediction of zT1+d+i,j assuming that

z1, . . . , zT1+d are known, using the first q−1 components with lags k(1), . . . , k(q−1)

and the q component with k lags. The number of lags k(q) for the q component is
defined as the first value of k, such that SSk ≤ SSk+1. Similarly, the number of
components Q is chosen as the first q such that SS

q

k(q) ≤ SS
q+1
k(q+1) . The robustness of

this procedures follows from the fact that all the options selected by the procedure
are evaluated using a robust scale, see (16) and (17). The procedure to make the
forecasting is described in Sect. 5. The case where k1 may be different of k2 can be
treated similarly but with more computational effort.

The forecasting of a particular time series can be improved if we add a specific
or idiosyncratic component that explains the residuals of the series. For that
purpose, we may fit for each variable an ARMA model for the respective S-ODPC
reconstruction residuals.
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7 Asymptotic Behavior of the S-ODPC in Factor Models

Let .z
(m)
t,j , 1 ≤ j ≤ m,m > 1, be observations generated by a dynamic one-factor

model with k lags, that is, they satisfy

.z
(m)
t,j = ϕ

(m)
j + c

(m)
j,0 ft + . . . + c

(m)
j,k ft−k + ut,j , 1 ≤ j ≤ m, (18)

where .ft and . ut,j , .1 ≤ j ≤ m, are independent stationary process. We also have
. E(ut,j ) = E(ft ) = 0, var.(ft ) = τ 2, and var .(ut,j ) = σ 2

j .

In this section, we study the behavior of the first population S-ODPC when .m

tends to infinite. This is stated more precisely in Theorem 1, which is the analogous
of Theorem 3 of Peña et al. (2019), but using S-ODPC instead of ODPC. Consider
the following Assumptions:

A1. There exist .ε > 0 and .A1 such that . 0 < ε < σ 2
j < A1 < ∞ for all .j.

A2. Let . sj = SM(utj ); then

.0 < sj ≤ A2. (19)

A3. The function .ρ has a derivative .ψ that is continuous and bounded. Then
.A3 = supψ < ∞.

A4. .A4 = infj E(ut,jψ(ut,j )) > 0.

A5. There exists C such that . supm sup1≤j≤m,0≤i≤k |c(m)
j,i | ≤ C and

.supm sup1≤j≤m |ϕ(m)
j | ≤ C.

A6. Let .c(m)
i = (c

(m)
1,i , ...., c

(m)
m,i ), 0 ≤ i ≤ k, and .E(m) the subspace of .R

m

generated by . c(m)
i , 1 ≤ i ≤ m. Then, we can write . c(m)

0 = d(m) + e(m),where
.d(m) is orthogonal to .E(m) and .e(m) ∈ E(m). Then, there exists .δ such that
.||d(m)||2 ≥ mδ for all .m. This condition implies that the common part of
.z(m)

t = (z
(m)
t,1 , . . . , z

(m)
t,m) does not get close to the .k − 1- dimensional subspace

.E(m) when m increases.

Theorem 1 Assume A1–A6. Let .z(m)
t = (z

(m)
t,1 , . . . , z

(m)
t,m) generated as the dynamic

one-factor model given in (18) and .z(m)∗
t = (z

(m)∗
t,1 , . . . , z

(m)∗
t,m ) its population

optimal reconstruction using the first S-ODPC with .k1 equal to any nonnegative
integer and .k2 equal to .k, the number of lags of the factor model. Then, there exists
a constant K independent of m such that

.
1

m1/2

⎛

⎝
m∑

j=1

S2
M(z

(m)
t,j − z

∗(m)
t,j )2 −

m∑

j=1

S2
M(ut,j )

⎞

⎠ ≤ K. (20)

Remark 2 This theorem can be generalized to a model with k factors, if the first k

S-ODPC are defined simultaneously instead of sequentially so that they minimize
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the sum of the squares of the population M-scales. The proof is similar to the case
of one factor.

8 Simulation Results

We generate matrices .(zt,j ) of .T =102 observations and .m = 50 time series using
the following dynamic factor model:

.zt,j = dj,1ft + dj ,2 ft−1 + dj,3ft−2 + 0.2ut,j , 1 ≤ t ≤ 102, 1 ≤ j ≤ 50,

where .ut,j are i.i.d. .N(0, 1) and .ft follows the autoregressive model

.ft = 0.85ft−1 + vt

and .vt are i.i.d. .N(0, 1). The coefficients .dj,i are generated in each replication as
i.i.d. with uniform distribution in .[0, 1].

The first 100 observations are used to obtain the one-sided dynamic components
(ODPC and S-ODPC), and the last two to evaluate the prediction performance of
these methods.

These values .zt,j are contaminated as follows: for .t = kT /H , .k = 1, 2, . . . , H −
1, the values of the observed series are

.z∗
t,j = zt,j + K.

Three values of H are considered, 0, 5, and 10, that is, 0%, 4%, and 9% of
outliers, respectively, and the values of K are .3, 5, 10, and 15.

The number of replications is 500. For each case, we compute the first ODPC
and the first S-ODPC with .k1 = 1 and .k2 = 2. The performance of both procedures
for predicting the values of the series one and two periods ahead is evaluated
by the sum of squares of the M-scales of the respective prediction error. Let .sM,j ,
.1 ≤ j ≤ 50, be the M-scale of the prediction errors of the j -th variable. Then the
performance of each procedure is evaluated by

.

50∑

j=1

s2M,j .

The results are shown in Table 1.
We observe that under outlier contamination the forecasting error using the S-

ODPC is much smaller than that using ODPC.
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Table 1 Sum of the squares of the M-scales of the prediction errors. Pr1 and Pr2 stand for one
and two steps ahead, respectively

%out K Pr1 ODPC Pr1 S-ODPC Pr2 ODPC Pr2 S-ODPC

0 21.23 22.69 74.19 77.20

4 3 36.63 23.90 108.73 83.27

5 53.63 23.13 128.54 81.92

10 85.54 23.52 157.62 79.94

15 133.15 23.33 202.20 78.43

9 3 51.14 24.79 127.61 98.63

5 66.69 24.33 138.69 82.47

10 147.56 23.34 208.53 79.51

15 254.02 24.17 299.28 82.75

9 Example with a Real Data Set

We consider a multiple time series .zt,j , 1 ≤ t ≤ 678, 1 ≤ j ≤ 24, the electricity
price in the Connecticut region, New England, during the Thursdays of 676 weeks
for each of the 24 hours of the day. Then we have 24 series of 676 observations.
The data can be obtained at www.iso-ne.com and were previously considered for
clustering time series by Alonso and Peña (2019).

Figure 1 shows plots of 12 of these 24 series. The series appear to be highly
correlated, and therefore, dimension reduction is expected to be useful. We observe
that at every hour of the day there are outliers especially between the weeks 500 and
600, and therefore, a robust procedure seems to be appropriate for these data.

For each .d, 1 ≤ d ≤ 177, we apply the ODPC and S-ODPC procedures to the
set .zt,j , .1 ≤ t ≤ 500 + d, and predict the values of .z500+d+1,j , .1 ≤ j ≤ 24.

Figure 2 shows that in general the M-scales of the prediction errors of the S-
ODPC are smaller than those of the ODPC specially between 10 am and 8 pm.

As indicated by one of the referees, the large values around weeks 500 and 600
may be due to some interesting facts that, if considered, can provide important
insights in the data analysis. We have not investigated this important issue for a
rigorous analysis of these data, as our objective here is to illustrate the performance
of our robust procedure. Also, the plot of the series suggests that they are not
stationary. However, as is mentioned in Remark 1, the S-ODPC may be a useful
tool to predict future values of the series even in this case.

www.iso-ne.com
www.iso-ne.com
www.iso-ne.com
www.iso-ne.com
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Fig. 2 M-scales of the one step ahead prediction errors

10 Conclusions

Given a vector series .zt , .≤ t ≤ T , we have introduced the S one-sided dynamic
principal components (S-ODPC) .ft , k1+1 ≤ t ≤ .T , defined as a linear combination
of .zt , zt−1 . . . zt−k1 that have the following properties:

• It allows the reconstruction .̂zt of the series .zt for .k1 + k2 − 1 ≤ t ≤ T as a
linear combination of .ft , . . . ft−k2 .

• It allows the forecasting of .zT +h.

• The reconstruction of the series and the forecasting of future values of .zt can be
improved taking higher order components.

• The values of .k1, k2 and the number of components q can be chosen by: (a) a
robust version of the Bai and Ng (2002) criterion for factor models or (b) cross-
validation.

• The procedure S-ODPC is robust, that is, it can be applied successfully even in
the presence of outliers.
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Appendix

Derivation of the Estimating Equations

Call .θ = (a,B); then the value of .θ for the S-ODPC estimator is obtained
minimizing

.kM(θ) =
m∑

j=1

s2M(r.j (θ)), (21)

where .r.j (θ) = (rk1+k2+1,j (θ), . . . , rT ,j (θ)), .rt,j (θ) = zt,j − ẑt,j (θ) satisfies

.
1

T ∗
T∑

t=k1+k2+1

ρ

(
rt,j (θ)

sM(r.j (θ))

)
= b, (22)

with .T ∗ = T − k1 − k2. Differentiating (21), we get that the optimal .θ for the
S-ODPC satisfies

.

m∑

j=1

sM(r.j (θ))
∂sM(r.j (θ))

∂θ
= 0. (23)

Let us differentiate (22). We have

.

T∑

t=k1+k2+1

ψ

(
rt,j (θ)

sM(r.j (θ))

)
sM(r.j (θ))∂rt,j (θ)/∂θ − rtj (θ)∂sM(r.j (θ)/∂θ

s2M(r.j (θ))
= 0

and

.
∂sM(r.j (θ))

∂θ
=

T∑

t=k1+k2+1

ψ
(
rt,j (θ)/sM(r.j (θ))

) sM(r.j (θ))∂rt,j (θ)/∂θ
∑T

t=k1+k2+1 ψ
(
rt,j (θ)/sM(r.j (θ))

)
rt,j (θ)

.

This can also be written as

.
∂sM(r.j (θ))

∂θ
= sM(r.j (θ))

∑T
t=k1+k2+1 w

(
rt,j (θ)/sM(r.j (θ))

)
r2t,j (θ)

×
T∑

t=k1+k2+1

w

(
rt,j (θ)

sM(r.j (θ))

)
rt,j (θ)

∂rt,j (θ)

∂θ
,
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where .w(u) = ψ(u)/u. Then the estimating Eq. (23) satisfies

.

T∑

t=k1+k2+1

w∗
tj (θ)rt,j (θ)

∂rt,j (θ)

∂θ
= 0 , (24)

where

.w∗
t,j ( θ) = s2M(r.j (θ))

1
T ∗

∑T
t=k1+k2+1 w

(
rt,j (θ)/sM(r.j (θ))

)
r2t,j (θ)

w(rt,j (θ)).

Note that when .w∗
t,j ( θ) = 1 for all .(t, j), (24) is the estimating equation of

the ODPC. Therefore, the only difference between the estimating equation of the
RODPC and the one of the ODPC is that the least squares solutions to obtain the
optimal values of .a and .B for the RODPC give weight .w∗

t,j ( θ) to the observation
.(t, j). Then we obtain (13) and (14).

Proof of Theorem 1
Lemma 1 Suppose that zt,j satisfies A1, A4, A5, and A6; then there exist a(m) ∈
R

m and a m × (k + 2) matrix B(m) such that if g
(m)
t = a(m)′zt and F(m)

t =
(1, g(m)

t , . . . , g
(m)
t−k), the reconstruction z̃(m)

t = B(m)F(m)
t satisfies

.E(z
(m)
tj − z̃

(m)
t,j − ut,j )

2 ≤ K1

m
(25)

for some constant K1.

Proof Let u(m)
t = (ut,1, . . . , ut.m) and ϕ(m) = (ϕ

(m)
1 , . . . , ϕ

(m)
m ); then

.z(m)
t = ϕ(m)+ft (d(m) + e(m)) + ft−1c

(m)
1 + . . . + ft−kc

(m)
k + u(m)

t ,

where d(m) and e(m) are as in A6. Let a(m)= d(m)/||d(m)||2; then by A6,

.||a(m)|| ≤ 1/(m1/2δ1/2). (26)

Define g
(m)
t = a(m)′z(m)

t , and observe that

.g
(m)
t = ft + p(m) + η(m),

where η
(m)
t = a(m)′u(m)

t and p(m) = a(m)′ϕ(m). Then, by (26) and A1, we have

.E(η
(m)2
t ) ≤ D/m (27)
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with D = A1/δ. Let us reconstruct z
(m)
t using g

(m)
t as follows:

.̃z(m)
t = (ϕ(m) − p(m)(c0 + . . . + ck)) + g

(m)
t c(m)

0 + g
(m)
t−1c

(m)
1 + . . . + g

(m)
t−kc

(m)
k .

That is, if B(m) is the m × (k + 2) with columns ϕ(m) − p(m)(c0 + . . . + ck) and
ci , 0 ≤ i ≤ k, we have

.̃z(m)
t = B(m)F(m)

t

and

.z
(m)
t,j − z̃

(m)
t,j = −cj,0η

(m)
t − c1η

(m)
t−1 − . . . − cj,kη

(m)
t−k. + ut,j

= v
(m)
t,j + ut,j ,

where

.v
(m)
t,j = −cj,0η

(m)
t − c1η

(m)
t−1 − . . . − cj,kη

(m)
t−k.. (28)

Then by (27) and A5, there exists K1 such that for all 1 ≤ j ≤ m

.E(v
(m)2
t,j ) ≤ K1

m
,

and this proves the Lemma.

Lemma 2 Suppose that zt,j satisfies A1–A6, and let a(m), B(m), and z̃(m)
t as in

Lemma 1, and then there exists K2 independent of m such that

.SM(z
(m)
tj − z̃

(m)
t,j ) ≤ SM(ut,j ) + K2

m
(29)

for some constant K2.

It is enough to show that there exists m0 such that for m ≥ m0 (29) holds. Let
for k > 0 and v

.Ltj (v, k) = ρ

(
v + utj

sj + k

)
,

where sj = SM(ut,j ).

Using the mean value theorem at (0, 0), we get

.Ltj (v, k) = Ltj (0, 0) + v
ψ

(
v∗+utj

sj +k∗
)

sj + k∗ − k
ψ

(
v∗+utj

sj +k∗
)

v∗+utj

sj +k∗

sj + k∗ , (30)
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where |v∗| ≤ |v| and 0 ≤ k∗ ≤ k. Put k = K2/m1/2. Since z
(m)
t,j −̃z

(m)
t,j = v

(m)
t,j +ut,j ,

where v
(m)
t,j is defined in Eq. (28) of Lemma 1, then using (30), we can write

.E

(
ρ

(
z
(m)
t,j − z̃

(m)
t,j

sj + K2/m1/2

))
= Etj (L(v

(m)
t,j , K2/m1/2))

= b +
E

(
v

(m)
t,j ψ

(
v∗+ut.j

sj +K∗/m1/2

))

sj + K∗/m1/2

− K2

m1/2

E
(
ψ

(
v∗+ut,j

sj +K∗/m1/2

)
v∗+utj

sj +K∗/m1/2

)

sj + K∗/m1/2 , (31)

where |v∗| ≤ |vt,j | and K∗ ≤ K2.

Put

.K2 = 2A3K
!/2
1 /A4. (32)

Since by Lemma 1 E(v
(m)2
t,j ) ≤ K1/m and by A3 A3 = maxψ(u), we have

.

∣∣∣E
(
v

(m)
t,j ψ

(
v∗+ut,j

sj +K∗/m1/2

)) ∣∣∣

sj + K∗/m1/2 ≤ E(v
(m)2
t,j )1/2 maxu ψ(u) )

sj + K∗/m1/2 (33)

≤ A3K
1/2
1 /m1/2

sj + K∗/m1/2 .

Take

.K2 > A3K
1/2
1 /A4; , (34)

then since K∗ ≤ K2 and |v∗| ≤ |vt,j | by Lemma 1 and A4, there exists m0 such
that for m ≥ m0

.
K2

m1/2sj + K∗/m1/2E
(

ψ

(
v∗ + ut,j

sj + K∗/m1/2

)
v∗ + utj

sj + K∗/m1/2

)

≥ K2A4/2

m1/2sj + K∗/m1/2 . (35)
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Then by (31), (33), and (35), we have

.

(
ρ

(
z
(m)
t,j − z̃

(m)
t,j

sj + K2/m1/2

))
< b ,

and therefore, SM(z
(m)
t,j − z̃

(m)
t,j ) ≤ sj + K2/m1/2. This proves the Lemma.

Proof of Theorem 1
From Lemma 2, it can be derived that if z

∗(m)
t,j is the reconstruction with the

optimal first S-ODPC with any k1 and k2 = k, we should have

.
1

m1/2

m∑

j=1

S2
M(z

(m)
t,j − z

∗(m)
t,j ) ≤ 1

m1/2

m∑

j=1

S2
M(z

(m)
t,j − z̃

(m)
t,j )

≤
m∑

j=1

(
s2j + K2

2

m
+ 2

K2

m1/2 sj

)

≤ 1

m1/2

m∑

j=1

(
s2j + K

m1/2

)

= 1

m1/2

m∑

j=1

s2j + K,

where K = max(K2
2 ,K3) and K3 = 2K2 maxj sj.. This proves Theorem 1.
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