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Foreword

It is an honor and a pleasure to contribute this biographical note to the Festschrift
dedicated to David (Dave) Tyler on the occasion of his pending retirement from
Rutgers University.

I met Dave in the late 1980s through our mutual friend and colleague Javier
Cabrera. Our frequent conversations regarding statistics and robustness led to the
idea that workshops in robust statistics would be beneficial to the rapidly changing
field of statistics. As a result, our first conference on Robustness and Data Analysis
was held at Princeton University in 1994 with an outstanding list of invited speakers
that included John Tukey and Frank Hampel. The success of this first conference
encouraged us to continue with international meetings over more than a decade,
and Dave’s contributions were vital to our creation of the International Conference
on Robust Statistics (ICORS) workshops. Today, with the effort and guidance of a
younger generation of statisticians, these ICORS workshops continue to thrive.

But Dave’s involvement in these conferences went well beyond the usual
organizational stage. His deep understanding of statistical issues and his conviction
that robust statistics is not merely a subfield of statistics, but rather a school of
thought motivated by the realities of data analysis, provided a clear and firm
foundation for these meetings. In every conference, Dave interacted extensively
with the participants by exchanging ideas and engaging in discussions for the
future direction of robust statistics as well as by stressing the importance to further
integrate the concept of robustness into the everyday practice of data analysis.

Dave’s insight and depth of understanding regarding statistical issues is attested
by his many high-quality research publications. From his first paper, “Asymptotic
theory of eigenvectors,” published in the Annals of Statistics in 1981, to his latest
research work on robust covariance matrices, his broad knowledge and independent
approach are reflected in the long list of research papers published in the most
prestigious statistical journals. Taken together, these papers illustrate the wide range
of Dave’s interests and his continuing influence in statistics, particularly in the
areas of multivariate statistics and robustness. His international academic reputation
in these areas is evidenced by his countless invitations to conferences, seminars,
and special courses at major academic institutions worldwide. His distinguished
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vi Foreword

academic credentials led to appointments of associate editor at some of the most
prestigious statistical journals, including the Annals of Statistics, the Journal of the
Royal Statistical Society B, and the Journal of Multivariate Analysis.

Dave’s supportive and collaborative attitude toward his colleagues and his
deep statistical knowledge earned him the respect and appreciation of major
international researchers in statistics, as is documented by his joint publications with
distinguished scholars around the world. In addition, his generosity with his ideas
is reflected in the numerous doctoral students that he inspired and supervised with
their PhD dissertations. The contributors of this Festschrift, many of whom had the
privilege to have worked with Dave and to have benefitted from his knowledge as
well as his company, enthusiastically offered their research papers for this volume,
and this constitutes a testimony of their appreciation and admiration for his stature
as a scholar and for him as a person.

Dave’s childhood and adolescence merit comment. From the third oldest child
of an impoverished family with ten children to a PhD in statistics from Princeton
University to a Distinguished Professorship at Rutgers University, Dave’s life and
career have been quite unusual. He is the only member of his family to have achieved
an advanced university degree.

Born and raised in Pittsburgh, Pennsylvania, Dave spent his early school years in
Catholic schools, where he developed an early interest in mathematics. When he was
11 years old, due to family circumstances, he and his siblings were sent to a Catholic
orphanage, and he remained there for two years. While poverty was a defining state,
his mother provided a stabilizing influence in the family. After graduating from an
urban public high school, Dave was admitted to Indiana University of Pennsylvania,
where he earned a BA in mathematics in 1972 and where later, in 2015, he was
awarded a Distinguished Alumni Award for his career accomplishments. In 1972,
he continued with graduate studies at the University of Massachusetts, Amherst,
and earned a Master’s degree from the Mathematics Department in 1974. That
same year, at age 24, he married Coleen McCullough, an aspiring young artist of
similar religious and social background. Dave then pursued a doctoral program
at Princeton University, where in 1979 he was awarded a PhD in statistics. After
Princeton, he served as Assistant Professor at the University of Florida (1978,1979)
and Old Dominion University (1979–1983). Finally, in 1983 he joined the Statistics
Department of Rutgers University, where he was named Distinguished Professor of
Statistics in 2004.

Among Dave’s striking personal characteristics are modesty, humanity, and total
honesty. This was evident not only during my work with him, but also in the
social setting, where I met Coleen, an accomplished artist with whom I had a
lasting friendship, and his son, Ed. The interaction between our families made
me appreciate Dave’s human dimension in addition to his outstanding scholarship.
Moreover, firmly bound to his modest origins but dedicated to the field of statistics,
Dave complemented his colorful personality with numerous interests and activities
such as swimming, basketball, chess, hiking, biking, and boating, among others.



Foreword vii

On the occasion of his pending retirement from Rutgers University, the institution
where he spent most of his career, I wish Dave many more productive years and I
look forward to enjoying the pleasure of his professional and personal company for
many more years to come.

Philadelphia, PA, USA Luisa Fernholz
June 2022



Preface

We are honoured and delighted to edit this Festschrift dedicated to David (Dave)
E. Tyler, Distinguished Professor of Statistics at Rutgers University. The idea for
this Festschrift was born around the occasion of Dave’s 70th birthday and coming
retirement from Rutgers to celebrate his outstanding career with many significant
contributions to the field of statistics, especially in the areas of multivariate and
robust methods.

Dave has a remarkable research career, which he started in 1978, after obtaining
his PhD from Princeton University, as an assistant professor at the University of
Florida. Via the Old Dominion University, he came in 1983 to Rutgers University,
where he currently is a distinguished professor in statistics. In 1994, Dave was
elected as an IMS fellow for his distinctive contributions in statistics regarding his
independent work on M-estimation of scatter. In particular, most of his work was
supported by various grants from, e.g. National Science Foundation (NSF). Dave
has a reliable intuition and ability to identify interesting and challenging research
questions which are of general importance and relevance. Then he develops his
ideas in an insightful as well as rigorous manner addressing all possible details. His
attention to detail, while keeping an eye on the big picture and the relevant questions,
has been passed on to early career stage researchers, with whom he collaborated
and mentored. It is therefore also no surprise that all seven PhD students of Dave
embarked on their careers in academia, most of whom are now associate and full
professors at universities around the world.

Contributed by Dave’s students, friends, coauthors and colleagues, this book
includes 22 peer-reviewed papers. The topics of the contributions are mainly
motivated by the research interests of Dave. Accordingly, the book consists of four
parts. Part I begins with an analysis of Dave’s publication and coauthor networks,
followed by a review article on Dave’s famous Tyler’s shape estimator. Parts II and
III, as the main body of this book, cover some recent advances in multivariate and
robust methods. The final part, Part IV, includes some various other topics such as
supervised learning and normal extremes.

Speaking of these cutting-edge articles, we would like to express our gratitude
to the efforts and patience of all contributors in the publishing process, especially
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x Preface

because of the Covid-19 pandemic that disrupted most contributors’ routine of
work. Despite of those disruptions, upon joint work of authors and referees, we
have reached a milestone with very interesting papers. We would like to thank
therefore all contributors, who submitted their original and high-quality work to this
Festschrift for Dave, and the referees, without whose generous help we would not
have made it in time, given the tight schedule. We would like to thank also Veronika
Rosteck and Daniel Ignatius from Springer who provided help and assistance
whenever needed.

Finally, we want to salute Dave again for his intellectual contributions as well as
his help as a mentor and as a friend. May Dave stay healthy and continue advancing
the knowledge and boundaries of statistics!

Beijing, China Mengxi Yi
Jyväskylä, Finland Klaus Nordhausen
July 2022
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About David E. Tyler’s Publications



An Analysis of David E. Tyler’s
Publication and Coauthor Network

Daniel Fischer, Klaus Nordhausen, and Mengxi Yi

Abstract David E. Tyler can look back on an impressive career with many
significant contributions to robust and multivariate statistical methods. In this
paper we attempt to quantify his scientific impact by having a closer look at his
publications and by analyzing his coauthor network.

Keywords Bibliography · Community detection

1 Introduction

David (Dave) E. Tyler is a driving force in the development of robust and
multivariate statistical methods with an impressive publication record. In this article,
we will give a brief overview of Dave’s publications and analyze his coauthorship
network as well. As Dave is still active in research, we anticipate and expect to
see still many more significant contributions from him. Here, however, we consider
only his publications until May 2022. By then, Dave has published 82 scientific
papers1 as listed in Appendix A.1, which could be roughly classified into statistical
theory, methodology, application, and comments such as reviews and discussions.

1 For the purpose of this paper we ignored Dave’s applied papers resulting from consulting but
included also methodological papers which are so far only available on Arxiv.
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4 D. Fischer et al.

Below, we refer to these works using the numbers provided in the Appendix and all
the citation data are based on the Web of Science on 5.5.2022 (URL: http://apps.
webofknowledge.com). Citation details were downloaded from Semantic Scholar
(URL: https://www.semanticscholar.org).

Dave is an expert in robust statistics, especially in M-estimation, having also
significant influence in other areas such as signal processing. His most cited
work [10] has been cited 380 times, which is rather high considering the general
low frequency in citations in the area of statistics. In this paper, Dave proposes a
new M-estimator of scatter which is nowadays quite popular and often referred to
as Tyler’s M-estimator or Tyler’s shape matrix and it is still being actively studied in
statistics and signal processing and, for example, reviewed in Taskinen et al. (2023).

Meanwhile, Dave has contributed to the field of multivariate analysis, directional
data analysis, spectral analysis of time series, and functional data analysis. For
instance, his most cited methodological work [58] (with 76 citations) suggested
the invariant co-ordinate selection (ICS) procedure to better explore multivariate
data. An R package developed accordingly introduces this method to a broader
audience; see [54] and the [R1] in Appendix A.2, which lists the R packages
where Dave is involved in. Methodologically applied in the area of psychometrics,
computer vision, and signal processing, Dave’s work has become more and more
appreciated beyond the community of statistics. Dave’s contribution to the academia
also embodies in some review and discussion papers that gain significant attention
from peer researchers, among which the most cited work [63] has been referred 261
times so far.

Dave obtained his PhD from Princeton University 1979 for his dissertation
entitled “Redundancy Analysis and Associated Asymptotic Distribution Theory”
supervised by Lawrence S. Mayer. This makes Dave an academic descendant of
various famous statisticians who worked among others on multivariate methods and
robust nonparametric methods, topics which Dave developed further in his career.
A pruned version of Dave’s academic genealogical tree is given in Fig. 1 which lists
also the seven students who Dave supervised so far.

As Dave’s academic life has been devoted to the development of statistical theory
and methodology, most of his works are published in highly ranked statistical
journals including The Annals of Statistics, Biometrika, Journal of the Royal
Statistical Society Series B, and Journal of Multivariate Analysis. Based on the
titles and abstracts of the publications considered here we provide in Fig. 2 the
corresponding word cloud, see, e.g., Seifert et al. (2008), which shows the most
frequent 100 words after removing the standard stop words of the English language
as defined by the package tm and the words abstract, keywords, can, also, and given.
As the font size and color reflects the frequency of a word, Fig. 2 shows clearly
that Dave’s research interest centers around multivariate data and scatter matrices
and emphasizes the robust aspect, such as the breakdown point. Theoretically, Dave
considers especially asymptotic properties and the distribution of estimators. Notice
also that Dave’s publication record shows surprisingly consistency on the studies
of M-estimation of scatter matrices, where Dave has published numerous single
authored papers and left a strong influence on statistics and signal processing till
now and beyond.

http://apps.webofknowledge.com
http://apps.webofknowledge.com
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Fig. 1 Extract of Dave’s genealogical tree including his seven academic children

Fig. 2 Word cloud based on the abstracts and titles of Dave’s publications
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In the following sections, we apply community detection methods to investigate
Dave’s coauthorship networks and the impact of Dave’s work in the community.The
analysis is done in R (R Core Team 2022), using the R packages bibtex (Francois
2014), igraph (Csardi & Nepusz 2006; Kolaczyk & Csardi 2014), circlize
(Gu 2014), wordcloud (Fellows 2018), tm (Feinerer & Hornik 2020), and
rworldmap (South 2011).

2 David Tyler’s Coauthor Network

We first review some basic facts of network theory. A network graph .G = (V ,E)

consists of a set V of vertices or nodes and a set E of edges or links. The number of
vertices .n = |V | is the order of the network G and the number of edges .m = |E|
is its size. Two vertices are neighbors or adjacent if they are connected by an edge.
Networks are undirected if there is no ordering in the vertices defining an edge and
are weighted if a real number is associated with each of the edges. If vertices are
not allowed to be connected to themselves, the graph G is called a simple graph. A
network can be partitioned into several subgraphs, where .Gr = (Vr , Er) is called a
subgraph of .G = (V ,E) if .Vr ⊂ V and .Er ⊂ E.

One of the most important subgraphs is the egocentric network. This is a network
created by selecting an ego-node and all of its connections. First, we are interested
to build Dave’s direct-coauthor network .G = (V ,E) based on his publications [1]–
[82]. Thus, Dave is the ego vertex, his direct coauthors are the other vertices, and two
distinct authors are connected by an edge if they have written one joint paper with
Dave. Table 1 presents Dave’s collaboration frequencies, which shows that Dave has
one collaborator with whom he has written 8 papers. Dave has 21 single authored
papers that do not contribute to the network. In the remaining 61 publications, Dave
has 51 coauthors.

The network of Dave’s direct coauthors is visualized in Fig. 3. Here, no infor-
mation about how his coauthors work together with him was used, it rather
visualizes Dave’s blossoming levels of collaboration, as each joint publication
between coauthors is visualized with an own edge, the closer therefore an coauthor
is in Fig. 3 to Dave, the more often he/she collaborated with him. This indicates that
his inner circle of coauthors with more than 5 joint papers consists of L. Dümbgen,
P. Meer, K.Nordhausen, H. Oja, and E. Ollila; the first four coauthors have published
6 papers with Dave and the last author has published 8 papers.

Table 1 Number of times Dave collaborated with coauthors for his publications. The value zero
corresponds to single author papers

Number of joint papers 0 1 2 3 5 6 8

Frequency 21 29 11 5 1 4 1
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D. E. Tyler

J. L. Bali

G. Boente

J.−L. Wang

J. Kent

F. Critchley

L. Duembgen

H. Oja

E. Ollila

D. Stoffer

A. Mcdougall

B. Mendes

V. Koivunen

H. Poor

D. Wendt

J. R. Berrendero

Z. Chen

H. Chen

P. Meer

M. S. Barrera

K. Nordhausen

A. Duerre

D. Vogel

S. Sirkiae

S. Taskinen

Y. Vardi

H. Ombao

K. Singh

J. Zhang

S. Mukherjee

M. Yi

J. Virta
A. F. Magyar

I. Soloveychik

A. Wiesel

J. Miettinen

L. Korn

I. Guttman

U. Menzefricke

E. Raninen

D. Comaniciu

B. Matei

C. Stewart

L. Fernholz

V. Yohai

M. L. Eaton

F. Pascal

K. Tatsuoka

Fig. 3 Network of Dave’s direct coauthors. Each connection corresponds to a collaboration for a
joint paper

Next, we review some results on community detection methods. As the whole
information about a network can be stored in matrix form, we could define the .n×n

adjacency matrix .A, for a network .G = (V ,E), as follows

.Aij =
{
1, if {i, j} ∈ E,

0, otherwise.

For a simple network, the diagonal elements of the adjacency matrix are all zero.
And the matrix .A will be symmetric for undirected networks. If G is a weighted
network, then .Aij represents the weight of the edge between i and j . Note also
that the degree .ki of a vertex i, i.e., the number of its neighbors, can be given by
.ki = ∑n

j=1 Aij .
In order to detect significant community structure, or to identify good partitions

of a network, it is useful to have a quality function to assess the goodness of a graph
partition. In this way, the largest number given by the quality function means the
partition is best. One of the most popular quality function is the modularity used in
Newman (2006). It is based on the idea of finding divisions of the network in which
the actual minus the expected number of edges over all pairs of vertices that belong
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to the same cluster is highest. Let .ci be the cluster or community to which vertex i

belongs, the modularity is defined as

.Q = 1

2m

n∑
i

n∑
j

[
Aij − kikj

2m

]
δ(ci, cj ),

where m is the total number of edges of the network and .δ(ci, cj ) = 1 if .ci = cj and
0 otherwise. The goal is then to decide the optimal number of partitions and to label
the vertices by maximizing the modularity. Many methods have been suggested,
in the literature, for this optimization problem; see, for example, in Fortunato
(2010) for an overview. In the following we will describe the multi-level modularity
optimization algorithm of Blondel et. al. (2008).

The algorithm consists of two phases. Consider initially to assign a different
community to each node of the network. Then put each node to the community
for which it gain maximum of the modularity. Repeat this process until no further
improvement can be made. The second phase starts by regarding each community,
found in the first phase, as a vertex and builds the network based on these nodes
and links. The process stops until there are no more changes or a maximum of the
modularity is attained.

By using the above-described community detection method, we build Dave’s
community graph, Fig. 4, based on Dave’s direct coauthors. Here, in addition to the
Dave’s publication information, we also included relevant all coauthor publications
that contribute an edge to the network to get the correct weights for the edges
between the different coauthors. That means, the network visualizes the connections
between the coauthors based on all joint papers and not only based on joint papers
with Dave. In total we can identify eight different communities within this network;
see Table 2. For instance, Community 7 corresponds to Dave’s work on robust
functional methods, Community 6 to Hannu Oja’s group, Community 4 to computer
vision groups, and Community 5 on his work in signal processing.

After considering the network of Dave’s direct coauthors, we extend our search
to include as well the coauthors from the coauthors. Also in this network, we
take the direct connections between coauthors into consideration, so that we had
to look at Dave’s peers that are even three nodes away. For that extensive search
Semantic Scholar granted us a API access and the search resulted in 495,864 peers
with 253.5 million connections in total. For this network, we filter then to peers
that are two levels away only; see Fig. 5. Here, we visualize .n = 2755 nodes
and .m = 364,469 edges. And Table 3 lists the 5 most influential authors in each
community. It becomes obvious that Dave is not part of a tiny community but has
via his connections a huge reach into the scientific community. This is indicated
that many of the communities detected are not directly linked. Crude interpretations
for some of communities are possible. Community 3 could be dependent data
like time series, Community 5 the British school of statistics and Community 15
multivariate nonparametric statistics while Community 12 could be summarized as
signal processing.
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D. Vogel

A. Duerre

D. E. Tyler

A. F. Magyar

D. Stoffer

A. Mcdougall

I. Soloveychik

J. Zhang

E. Ollila

F. Pascal

B. Mendes

J. R. Berrendero

P. Meer

C. Stewart

D. Comaniciu

S. Mukherjee

H. Ombao

K. Nordhausen

V. Koivunen

J. Miettinen

S. Taskinen

H. Oja

E. Raninen

J. Kent

F. Critchley

L. Duembgen

G. Boente

M. S. Barrera

J. L. Bali

H. Chen

J. Virta

S. Sirkiae

I. Guttman

U. Menzefricke

J.−L. Wang

K. Singh

K. Tatsuoka

L. Fernholz

L. Korn

M. L. Eaton

M. Yi

B. Matei

H. Poor

Z. Chen

A. Wiesel

D. Wendt

V. Yohai

Y. Vardi

Communities
1
2
3
4
5
6
7
8

Fig. 4 Community Network of Dave’s direct coauthors, where members belonging to the same
community are connected by edges in the same color

Table 2 Communities detected by using Dave’s direct coauthors. The table below lists the most
prominent members of the communities

Community 1 2 3 4 5

1 D. Vogel A. Duerre

2 D. E. Tyler D. Stoffer J. Kent F. Critchley A. Mcdougall

3 I. Soloveychik A. Wiesel

4 J. Zhang P. Meer D. Comaniciu S. Mukherjee K. Singh

5 E. Ollila V. Koivunen H. Poor F. Pascal E. Raninen

6 H. Oja S. Taskinen K. Nordhausen J. Miettinen J. Virta

7 G. Boente V. Yohai M. S. Barrera J. L. Bali J.-L. Wang

8 I. Guttman U. Menzefricke
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S2 with S3 information Co−authornetwork

Fig. 5 Community Network of Dave’s coauthors’ coauthors. Top representatives from each
community are highlighted with names

3 David Tyler’s Influence

When considering the network spanned by Dave’s coauthors’ coauthors one can
suspect that Dave’s ideas have a wide reach. While it is quite a challenge to measure
a researcher’s impact we make an attempt by looking at the citations Dave’s work
got in Semantic Scholar. Based on this data, Dave’s papers received in total 3739
citations from 2993 different authors. Hereby, his most citing peers are F. Pascal
(184), K. Nordhausen (159), H. Oja (158), A. Breloy (99), D. Paindaveine (99), and
E. Ollila (96). Further, his citations originate from 433 different journals, with IEEE
Transactions on Signal Processing (179), Journal of Multivariate Analysis (146),
Signal Processing (57), Computational Statistics & Data Analysis (55), and IEEE
Signal Processing Letters (48) being the journals that contain the most citations
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Table 4 Number of citations to Dave’s work from different fields of sciences

Field Citations Field Citation

Mathematics 2507 Psychology 9

Computer Science 1550 History 7

Medicine 145 Geology 6

Engineering 122 Art 4

Physics 53 Chemistry 3

Economics 45 Business 2

Biology 40 Political Science 2

Environmental Science 18 Sociology 2

Geography 16

Materials Science 12

Philosophy 12

to Dave’s work, which shows that his ideas are especially in signal processing of
interest. Classifying these journals2 into scientific fields, according to the system
of Semantic Scholar, shows that these journals represent 19 main fields of study,
ranging from Mathematics and Computer Science of Engineering, Biology and
Physics towards Philosophy, History and Art; see Table 4 the frequencies. From
Table 4, we find that Dave’s most influential area is Mathematics, specifically in
Statistics. Interesting to note is that his methods could also be applied in Art.

However, considering the huge amount of data that was collected to create these
Figures, we relied heavily on an automatic data collection. Here it is possible that
we missed for some authors a few publications, in case there is no consistent and
traceable affiliation history available. Also, it might also happen that some wrong
publications were assigned to authors based on a name mix-up.

A more detailed view of how Dave impacts the work of others could be revealed
when we look at the keywords of the citing articles. For the most frequent ones
(.≥20 occurrences), we create again another word cloud; see Fig. 6. Here, it is easily
noticeable from the word cloud that statistical terms stand out.

While above we considered the total number of citations it is of course of
interest to see how these papers distribute over Dave’s 82 papers which are here
under consideration. We visualize the corresponding information in a circos plot,
a visualization type that is typically used in comparative genomics to show links
between different chromosomes, see Krzywinski et al. (2009). In the circos plot
given in Fig. 7 we therefore order the papers chronological and give a line from
each paper to the year in which it was cited. As it is usual in mathematical sciences
it usually takes some time before a paper gets cited. The blue lines in the figure
correspond to citations of paper [10] where Dave introduced his famous shape
matrix. The paper seems to have gotten increased interest starting from 2004 and
interestingly then its popularity increased in three year cycles. Inquired which

2 Note that one journal can be assigned by the system to several fields of science.
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Fig. 6 Word cloud based on the keywords of articles citing Dave’s papers

papers besides [10] have most important contributions, Dave listed his 10 papers
[1, 5, 14, 18, 19, 24, 36, 58, 60, 63] which are marked in red in the figure. It is quite
clear from the figure that all these papers have a steady impact over time but are less
influential than the shape paper. Another feature of the figure is Dave’s collaboration
pattern, the comparison between collaborative papers and single authored ones.
Interesting to see there is that while in the first 10 years of his career Dave mainly
worked alone, after that almost all publications are made in collaborations. While
this might be partly due to a shift in scientific conventions we believe it also reflects
Dave’s increased popularity and that Dave is an excellent collaborator willing to
share with others his deep insight and many ideas as when looking of the list of
collaborators one can see that many of them especially in the last 10 years are in
much earlier career stages.

Also with the increase in collaborations Dave’s output seems to have increased
considerable since the mid-nineties. Notable in this context is also that when
considering what we consider the current location of his coauthors that they are
spread quite around the globe as visualized in Fig. 8.
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Fig. 7 Circos plot showing the influence of David’s paper over time. The outer ring indicates the
publications per year (blue are single author publications, yellow are multi-author papers). The red
lines indicate citations of David’s top 10 important papers and the blue lines are citations to Dave’s
shape matrix paper [10]

Fig. 8 Current location of Dave’s coauthors, where the corresponding countries are in black
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4 Concluding Remarks

Dave’s academic pedigree raises high expectations and we think he has more than
fulfilled them. Dave was and still is a driving force in multivariate and robust
statistics with many important contributions to the field. While it is inherently dif-
ficult to measure scientific relevance and impact we attempted this by investigating
Dave’s network of coauthors and citation network. Our analysis shows Dave’s wide
interests having many different coauthors embedding him in large networks where
his contributions are frequent and regularly cited. While it seems his research is
most relevant in the fields of statistics and signal processing he nevertheless gets
also many citations from other fields of science.

And we are happy to note that this analysis is just a snapshot and hopefully
soon outdated as Dave is still active in research where his current interest is
on M-estimation in high dimensions as, for example, his recent papers like
[69,76,78,79,82] show and we are looking forward to read still many papers
published by Dave!

Acknowledgments The work of Mengxi Yi is supported by the National Natural Science
Foundation of China (No. 12101119). The authors are grateful for the comments given by the
referees which helped to improve the paper.
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2. David E Tyler. Radial estimates and the test for sphericity. Biometrika,
69(2):429–436, 1982.
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Biometrika, 70(2):411–420, 1983.
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local alternatives to multiple roots. The Annals of Statistics, 11(4):1232–1242,
1983.

7. David E Tyler. A class of asymptotic tests for principal component vectors. The
Annals of Statistics, 11(4):1243–1250, 1983.
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8. Irwin Guttman, Ulrich Menzefricke, and David E Tyler. Magnitudinal effects
in the normal multivariate model. The Annals of Statistics, 14(4):1555–1571,
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9. David E Tyler. Breakdown properties of the M-estimators of multivariate
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13. John T Kent and David E Tyler. Maximum likelihood estimation for the
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14. Morris L Eaton and David E Tyler. On Wielandt’s inequality and its application
to the asymptotic distribution of the eigenvalues of a random symmetric matrix.
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15. David E Tyler. Some issues in the robust estimation of multivariate location
and scatter. In Directions in Robust Statistics and Diagnostics, pages 327–336.
Springer, 1991.

16. John T Kent and David E Tyler. Redescending M-estimates of multivariate
location and scatter. The Annals of Statistics, 19(4):2102–2119, 1991.

17. David S Stoffer, David E Tyler, Andrew J McDougall, and Gabriel Schachtel.
Spectral analysis of DNA sequences. Bulletin of the International Statistical
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18. David S Stoffer, David E Tyler, and Andrew J McDougall. Spectral analysis
for categorical time series: Scaling and the spectral envelope. Biometrika,
80(3):611–622, 1993.

19. David E Tyler. Finite sample breakdown points of projection based multivariate
location and scatter statistics. The Annals of Statistics, 22(2):1024–1044, 1994.

20. Morris L Eaton and David E Tyler. The asymptotic distribution of singular-
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Journal of Multivariate Analysis, 50(2):238–264, 1994.

21. John T Kent, David E Tyler, and Yahuda Vardi. A curious likelihood identity
for the multivariate t-distribution. Communications in Statistics – Simulation
and Computation, 23(2):441–453, 1994.

22. David E Tyler. M-estimates, S-estimates and CM-estimates: A review. In IEEE
Proceedings of NSF/AFPA Workshop: Performance versus Methodology in
Computer Vision, pages 1–6. IEEE, 1994.

23. Beatriz VM Mendes and David E Tyler. Constrained M-estimation for regres-
sion. In Robust Statistics, Data Analysis, and Computer Intensive Methods,
pages 299–320. Springer, 1996.
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29. Peter Meer and David E Tyler. Smoothing the gap between statistics and image
understanding. Comments on the paper “Edge-preserving smoothers for image
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non-elliptical distributions. The Annals of Statistics, 28(4):1219–1243, 2000.

37. Leo R Korn and David E Tyler. Robust estimation for chemical concentration
data subject to detection limits. In Statistics in Genetics and in the Environmen-
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47. David E Tyler. Discussion of the paper “Breakdown and groups” by P Laurie
Davies and Ursula Gathers. The Annals of Statistics, 33:1009–1015, 2005.

48. Lutz Dümbgen and David E Tyler. On the breakdown properties of some
multivariate M-functionals. Scandinavian Journal of Statistics, 32(2):247–264,
2005.

49. Klaus Nordhausen, Hannu Oja, and David E Tyler. On the efficiency of invariant
multivariate sign and rank tests. In Liski, E.P., Isotalo, J., Niemelä, J., Puntanen,
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54. Klaus Nordhausen, Hannu Oja, and David E Tyler. Tools for exploring mul-
tivariate data: The package ICS. Journal of Statistical Software, 28(6):1–31,
2008.

55. David E Tyler. Book review for “Robust statistics: Theory and methods”.
Journal of the American Statistical Association, 103(482):888–889, 2008.

56. Kesar Singh, David E Tyler, Jingshan Zhang, and SomnathMukherjee. Quantile
scale curves. Journal of Computational and Graphical Statistics, 18(1):92–105,
2009.



D. E. Tyler’s Publication and Network 19

57. Seija Sirkiä, Sara Taskinen, Hannu Oja, and David E Tyler. Tests and estimates
of shape based on spatial signs and ranks. Journal of Nonparametric Statistics,
21(2):155–176, 2009.

58. David E Tyler, Frank Critchley, Lutz Dümbgen, and Hannu Oja. Invariant co-
ordinate selection. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 71(3):549–592, 2009.

59. David E Tyler. A note on multivariate location and scatter statistics for sparse
data sets. Statistics & Probability Letters, 80(17–18):1409–1413, 2010.

60. Juan Lucas Bali, Graciela Boente, David E Tyler, and Jane-Ling Wang. Robust
functional principal components: A projection-pursuit approach. The Annals of
Statistics, 39(6):2852–2882, 2011.

61. Andrew Magyar and David E Tyler. The asymptotic efficiency of the spatial
median for elliptically symmetric distributions. Sankhya B, 73(2):165–192,
2011.

62. Esa Ollila, David E Tyler, Visa Koivunen, and H Vincent Poor. Compound-
Gaussian clutter modeling with an inverse Gaussian texture distribution. IEEE
Signal Processing Letters, 19(12):876–879, 2012.

63. Esa Ollila, David E Tyler, Visa Koivunen, and H Vincent Poor. Complex
elliptically symmetric distributions: Survey, new results and applications. IEEE
Transactions on Signal Processing, 60(11):5597–5625, 2012.

64. Esa Ollila and David E Tyler. Distribution-free detection under complex
elliptically symmetric clutter distribution. In 2012 IEEE 7th Sensor Array
and Multichannel Signal Processing Workshop (SAM), pages 413–416. IEEE,
2012.

65. Andrew Magyar and David E Tyler. The asymptotic inadmissibility of the spa-
tial sign covariance matrix for elliptically symmetric distributions. Biometrika,
101(3):673–688, 2014.

66. Alexander Dürre, Daniel Vogel, and David E Tyler. The spatial sign covariance
matrix with unknown location. Journal of Multivariate Analysis, 130:107–117,
2014.

67. Daniel Vogel and David E Tyler. Robust estimators for nondecomposable
elliptical graphical models. Biometrika, 101(4):865–882, 2014.

68. Graciela Boente, Matías Salibián Barrera, and David E Tyler. A characterization
of elliptical distributions and some optimality properties of principal compo-
nents for functional data. Journal of Multivariate Analysis, 131:254–264, 2014.

69. Esa Ollila and David E Tyler. Regularized M-estimators of scatter matrix. IEEE
Transactions on Signal Processing, 62(22):6059–6070, 2014.

70. Esa Ollila, Frederic Pascal and David E Tyler. Complex elliptically symmetric
distributions and their applications in signal processing. IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP-14, 2014.

71. Klaus Nordhausen and David E Tyler. A cautionary note on robust covariance
plug-in methods. Biometrika, 102(3):573–588, 2015.

72. Jue Wang and David E Tyler. Generalized MM-tests for symmetry. In Nord-
hausen, K. and Taskinen, S. (editors) “Modern Nonparametric, Robust and
Multivariate Methods. Festschrift in Honour of Hannu Oja”, pages 133–148,
Springer, 2015.



20 D. Fischer et al.

73. Jari Miettinen, Klaus Nordhausen, Sara Taskinen, and David E Tyler. On the
computation of symmetrized M-estimators of scatter. In Agostinelli, C., Basu,
A., Filzmoser, P. and Mukherje, D. (editors) “Recent Advances in Robust
Statistics: Theory and Applications”, pages 151–167, Springer India, New
Delhi, 2016.

74. Alexander Dürre, David E Tyler, and Daniel Vogel. On the eigenvalues of
the spatial sign covariance matrix in more than two dimensions. Statistics &
Probability Letters, 111:80–85, 2016.

75. Esa Ollila, Ilya Soloveychik, David E Tyler, and Ami Wiesel. Simultaneous
penalized M-estimation of covariance matrices using geodesically convex
optimization. arXiv preprint arXiv:1608.08126, 2016.

76. Lutz Dümbgen and David E Tyler. Geodesic convexity and regularized scatter
estimators. arXiv preprint arXiv:1607.05455, 2016.

77. Klaus Nordhausen, Hannu Oja, David E Tyler, and Joni Virta. Asymptotic and
bootstrap tests for the dimension of the non-Gaussian subspace. IEEE Signal
Processing Letters, 24(6):887–891, 2017.

78. David E Tyler and Mengxi Yi. Lassoing eigenvalues. Biometrika, 107(2):397–
414, 2020.

79. Mengxi Yi and David E Tyler. Shrinking the covariance matrix using convex
penalties on the matrix-log transformation. Journal of Computational and
Graphical Statistics, 30(2):442–451, 2021.

80. Elias Raninen, Esa Ollila, and David E Tyler. On the variability of the
sample covariance matrix under complex elliptical distributions. IEEE Signal
Processing Letters, 28:2092–2096, 2021.

81. Klaus Nordhausen, Hannu Oja, and David E Tyler. Asymptotic and bootstrap
tests for subspace dimension. Journal of Multivariate Analysis, 188:104830,
2022.

82. Elias Raninen, David E Tyler, and Esa Ollila. Linear pooling of sample
covariance matrices. IEEE Transactions on Signal Processing, 70:659–672,
2022.

A.2 R Packages of David E Tyler
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Data via ICS/ICA. First release 2007. http://cran.r-project.org/package=ICS.
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Nonparametrics. First release 2007. http://cran.r-project.org/package=ICSNP.
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A Review of Tyler’s Shape Matrix and Its
Extensions

Sara Taskinen, Gabriel Frahm, Klaus Nordhausen, and Hannu Oja

Abstract In a seminal paper, Tyler (1987a) suggests an M-estimator for shape,
which is now known as Tyler’s shape matrix. Tyler’s shape matrix is increasingly
popular due to its nice statistical properties. It is distribution free within the class of
generalized elliptical distributions. Further, under very mild regularity conditions, it
is consistent and asymptotically normally distributed after the usual standardization.
Tyler’s shape matrix is still the subject of active research, e.g., in the signal
processing literature, which discusses structured and regularized shape matrices. In
this article, we review Tyler’s original shape matrix and some recent developments.

Keywords M-estimator · Generalized elliptical distribution · High dimension ·
Robust estimator · Regularization

1 Introduction

Maronna (1976) and Huber (1981) propose robust M-estimators for location and
scatter of multivariate elliptically distributed data. Since their seminal work, we
can find many contributions finding new ways to estimate the location vector and
scatter matrix. See Maronna et al. (2018) for a nice overview of robust multivariate
methods.

S. Taskinen (�) · K. Nordhausen
Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
e-mail: sara.taskinen@jyu.fi; klaus.k.nordhausen@jyu.fi

G. Frahm
Department of Mathematics and Statistics, Helmut Schmidt University, Hamburg, Germany
e-mail: frahm@hsu-hh.de

H. Oja
Department of Mathematics and Statistics, University of Turku, Turku, Finland
e-mail: hannu.oja@utu.fi

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Yi, K. Nordhausen (eds.), Robust and Multivariate Statistical Methods,
https://doi.org/10.1007/978-3-031-22687-8_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22687-8protect T1	extunderscore 2&domain=pdf

 885 49096 a 885 49096 a
 
mailto:sara.taskinen@jyu.fi
mailto:sara.taskinen@jyu.fi
mailto:sara.taskinen@jyu.fi

 9096 49096 a 9096 49096
a
 
mailto:klaus.k.nordhausen@jyu.fi
mailto:klaus.k.nordhausen@jyu.fi
mailto:klaus.k.nordhausen@jyu.fi
mailto:klaus.k.nordhausen@jyu.fi

 885 52970 a 885 52970 a
 
mailto:frahm@hsu-hh.de
mailto:frahm@hsu-hh.de
mailto:frahm@hsu-hh.de

 885 56845 a 885 56845 a
 
mailto:hannu.oja@utu.fi
mailto:hannu.oja@utu.fi
mailto:hannu.oja@utu.fi
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2
https://doi.org/10.1007/978-3-031-22687-8_2


24 S. Taskinen et al.

In this work, we focus on the robust M-estimator for shape, introduced by Tyler
(1987a). We start by fixing some notation. Consider first a location-scatter model.
This means that the p-variate observations x1, x2, . . . , xn are independent copies of

.x = μ + �e,

where μ ∈ R
p is a location vector and � ∈ R

p×q is a transformation (or mixing)
matrix with rk(�) = p. Hence, we have that p ≤ q and the symmetric positive-
definite matrix � := ��� ∈ R

p×p is referred to as the scatter matrix. Without
loss of generality, we may choose the decomposition � = �

1
2 �

1
2 , where �

1
2 is the

unique symmetric root of � > 0.
Different multivariate models are obtained by making specific assumptions about

the q-variate random vector e (Nordhausen and Oja 2018b). For example, it is
typically assumed that p = q and that e has a spherically symmetric absolutely
continuous distribution on R

p, i.e., the density function of e is of the form f (e) =
exp{−ρ(||e||)} for some function ρ : R+

0 → R, where ‖ · ‖ denotes the Euclidean
norm (Fang et al. 1990). Then, we can decompose e into a radial part and an
angular part by e = ru, where the modulus, i.e., the radius, r = ‖e‖ > 0 and
the direction u = ‖e‖−1e are stochastically independent with u being uniformly
distributed on the unit hypersphere in R

p. The density of the modulus is proportional
to rp−1 exp{−ρ(r)}.

For all τ > 0 we have that x = μ + �ru = μ + ϒsu with ϒ := �/τ and
s := τr . Hence, the scatter matrix of x is defined only up to scale. To fix � we
could assume that E(r2) = p or Med(r2) = χ2

p,0.5, where χ2
p,0.5 is the median of

the χ2-distribution with p degrees of freedom. The first assumption requires that
the second moment of r is finite, whereas the second assumption does not require
any moment condition on r at all. If the first assumption is satisfied, we have that
COV(e) = Ip, where Ip is the p × p identity matrix, and COV(x) = �. However,
it is more common to impose the scaling condition

.E
(
ϕ(r2)

) = p (1)

with ϕ
(
r2

) := w
(
r2

)
r2, where w is a real-valued partial function on R

+
0 .1 In fact,

this is typically done both in M-estimation and in ML-estimation of scatter (Frahm
et al. 2020; Tyler 1982). The chosen weight function w is considered appropriate if
and only if there exists no scaling constant τ �= 1 such that E

(
ϕ
(
(τ r)2

)) = p.2 In
the special case of w : r2 �→ 1, we obtain the simple scaling condition E(r2) = p

mentioned above.

1 A partial function f : D → C is a function from a subset of D to C.
2 See Frahm (2022) for a detailed explanation.
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Under the above assumptions, x1, x2, . . . , xn are independent copies of the p-
variate random vector x, which follows an elliptically symmetric distribution with
density function

.f (x) = det(�)−
1
2 g((x − μ)��−1(x − μ)).

The function g : R+
0 → R

+
0 is referred to as the density generator of x. Given that

the first moment of r is finite, the location vector μ is the mean vector of x, and if
the second moment of r is finite, COV(x) = E(r2)/p · � is the covariance matrix
of x.

If we allow r to be negative and to depend on u, then x is generalized elliptically
distributed (Frahm and Jaekel 2010). It is worth noting that, in this case, we can
no longer assume that p = q without loss of generality. A particular generalized
elliptical distribution, which will be of interest later on, is obtained by setting μ = 0
and r = ‖�u‖−1 with p = q. The random vector x = �u/‖�u‖ follows an angular
central Gaussian distribution on the sphere (Tyler 1987b). In the bivariate case, i.e.,
p = 2, the angular central Gaussian distribution turns into the wrapped Cauchy
distribution after angle doubling (Kent and Tyler 1988).

The last location-scatter model relevant later on is the so-called independent
component model where it is assumed that the components of e are mutually
independent. In independent component analysis the goal is to estimate e based on
x alone (for an overview see for example Nordhausen and Oja 2018a). If not stated
otherwise, in the following we will assume that x follows an elliptically symmetric
distribution.

The scatter matrix � can be written as � = σ 2V, where σ 2 = σ 2(�) represents
the scale of �. A scale function σ 2(·) is such that σ 2(Ip) = 1 and σ 2(τ 2�) =
τ 2σ 2(�) for all τ > 0. Further, the matrix V = �/σ 2(�) is the unique shape
matrix associated with �. Classical choices of σ 2(�) are �11 (Hallin et al. 2006;
Hallin & Paindaveine 2006; Hettmansperger & Randles 2002), tr(�)/p (Dümbgen
1998; Frahm & Jaekel 2015; Taskinen & Oja 2016; Tyler 1987a), and det(�)1/p

(Dümbgen & Tyler 2005; Paindaveine 2008; Salibián-Barrera et al. 2006; Taskinen
et al. 2006; Tatsuoka & Tyler 2000).

Note that tr(�)/p and det(�)1/p correspond to the arithmetic and geometric
means of the eigenvalues of �, respectively. The use of det(�)1/p as a scale
function yields a canonical definition of shape, meaning that the scale and shape
estimators are asymptotically independent if the data are elliptically distributed
(Paindaveine 2008). The scale describes the “size,” whereas the shape describes
the “orientation” of an elliptical distribution and it is well-known that several
multivariate methods, such as principal component analysis, canonical correlation
analysis, and multivariate regression, require the shape matrix only (Croux &
Haesbroeck 2000; Salibián-Barrera et al. 2006; Taskinen et al. 2006).

In the robust-statistics literature, several functionals for multivariate distributions
are proposed. Let x be a p-variate random vector with cumulative distribution
function Fx. Then a functional μ(Fx) ∈ R

p is said to be a location vector if it is
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affine equivariant in the sense that μ(FAx+b) = Aμ(Fx) + b for any nonsingular
matrix A ∈ R

p×p and vector b ∈ R
p. A symmetric positive-definite functional

S(Fx) ∈ R
p×p is called a scatter matrix if S(FAx+b) = AS(Fx)A�. Further, a

symmetric positive-definite functional V(Fx) ∈ R
p×p is referred to as a shape

matrix if V(Fx) = S(Fx)/σ
2(S(Fx)) and thus

.V(FAx+b) = AV(Fx)A�

σ 2(AV(Fx)A�)
.

Hence, in general, a shape matrix is not affine equivariant and V(FAx+b) even is
not proportional to AV(Fx)A�. However, if we use the canonical scale function
det(�)1/p, we have that

.V(FAx+b) = AV(Fx)A�

σ 2(AA�)
.

Thus, at least for σ 2(AA�) = 1, i.e., if not the scale, but only the shape of the
distribution of x is affected by the transformation A, the canonical shape matrix
remains equivariant (Frahm 2009).

If the distribution of x is elliptically symmetric, then μ(Fx) = μ. This means that
all location vectors correspond to the same population quantity μ. By contrast, all
scatter matrices are related to each other by S(Fx) = σ 2(S(Fx))V, where V is the
(unique) shape matrix of x. Put another way, a scatter matrix is always a multiple
of the shape matrix V. Finally, if the functionals μ(·), S(·), and V(·) are applied
to an empirical distribution function F̂x, i.e., the empirical distribution of a random
sample x1, x2, . . . , xn, we obtain the corresponding estimators, which we denote by
μ̂ = μ(F̂x), Ŝ = S(F̂x), and V̂ = V(F̂x), respectively.

As mentioned above, several multivariate methods can be based on shape
matrices only. Such matrices can be easily defined by normalizing any scatter
matrix with a scale parameter. On the other hand, sometimes shape matrices arise
naturally as a result of some estimation procedure. In this review we discuss Tyler’s
shape matrix, proposed in the seminal paper by Tyler (1987a), which was initially
motivated via estimating equations utilizing spatial sign scores. Recall that spatial
sign scores are defined as U(x) = x/||x||, for x �= 0, and U(0) = 0 (Möttönen and
Oja 1995). We define Tyler’s shape matrix and review its statistical properties in
Sect. 2. Section 3 is devoted to some recent extensions of Tyler’s shape matrix and
the paper is concluded with some discussion on Sect. 4.

2 Definition and Statistical Properties

Assume that .x1, x2, . . . , xn with .n > p is a random sample from a centered p-
variate elliptical distribution, i.e., .μ = 0. Further, suppose that r has no atom at
.0, which means that .P(r = 0) = 0. In Tyler (1982, 1983) tests for sphericity and
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related shape estimators based on Huber’s M-estimators were considered. It was
noted that it is possible to use in the M-estimation procedure a weight function that
yields a distribution-free test and estimate under the elliptical model. This served as
a motivation in Tyler (1987a) to propose a shape matrix estimator .V̂ as a solution of

.V̂ = p

n

n∑

i=1

xix�
i

x�
i V̂−1xi

. (2)

Tyler (1987a) considers the solution of (2) an M-estimator for scatter, since it can
be written as

.�̂ = 1

n

n∑

i=1

w
(
r2
i

)
xix�

i

with .r2
i = x�

i �̂
−1

xi for .i = 1, 2, . . . , n, where the weight function w is .r2 �→ p/r2.
However, we prefer to call it Tyler’s shape matrix. This term is commonly used in
the literature, too. The shape matrix can also be seen as the limit of two popular M-
estimators for scatter, namely Huber’s M-estimator and the ML-estimator under the
assumption that the data have a multivariate t-distribution. More precisely, Huber’s
weight function is

.w : r2 �−→
{

γ , r2 < λ

γλ/r2 , r2 ≥ λ ,

where the parameters .γ, λ > 0 are such that .E
(
ϕ(χ2

p)
) = p. Now, Tyler’s weight

function occurs for .λ ↘ 0, i.e., .λ approaching zero from above. Alternatively, we
obtain Tyler’s weight function by setting .ν = 0 in the Student-type weight function
.r2 �→ (p + ν)/(r2 + ν) or .α = 1 in the power M-weight function .r2 �→ (r2/p)−α

proposed by Frahm et al. (2020).
Another way to write down the estimation equation in (2) is via spatial sign

scores, which are defined in Möttönen and Oja (1995). Then Tyler’s shape matrix .V̂
solves

.
p

n

n∑

i=1

V̂− 1
2 xix�

i V̂− 1
2

||V̂− 1
2 xi ||2

= p

n

n∑

i=1

U(zi )U(zi )
� = Ip

with .zi := V̂− 1
2 xi for .i = 1, 2, ..., n and .U(zi ) := ‖zi‖−1zi . This means that .V̂ is

chosen such that the spatial signs of the transformed observations .z1, z2, . . . , zn are,
approximately, uniformly distributed on the unit hypersphere.
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In any case, (2) can be re-written, equivalently, as

.V̂ = p

n

n∑

i=1

r2
i V

1
2 uiu�

i (V
1
2 )�

r2
i u�

i (V
1
2 )�V̂−1V

1
2 ui

= p

n

n∑

i=1

V
1
2 uiu�

i (V
1
2 )�

u�
i (V

1
2 )�V̂−1V

1
2 ui

,

which means that the sample observations .r1, r2, . . . , rn of the modulus r have no
impact on Tyler’s shape matrix at all. This holds true even if some .ri becomes
negative, since .r2

i does not depend on the sign of .ri , and also if .ri depends on .ui .
Hence, Tyler’s shape matrix is distribution free if the data are generalized elliptically
distributed—provided that r has no atom at .0 and we know the location vector

.μ (Frahm & Jaekel 2015). Here, we have chosen .V
1
2 as a transformation matrix.

Indeed, the decomposition of .V, i.e., the precise meaning of the .p × p matrix .U in
.V = UU�, is not arbitrary if r depends on .u, but our arguments still remain valid if
we choose any other decomposition of .V.

Originally, conditions for the existence of Tyler’s shape matrix were listed in
Tyler (1987a) and it was shown that the matrix is unique up to a positive scaling
constant. In Tyler (1987a) the shape matrix was chosen so that .tr(V̂) = p and
in Tatsuoka and Tyler (2000) .det(V̂) = 1 was used. We use here the first option.
Tyler’s shape matrix can be computed simply by starting with an initial value, e.g.,
.V̂0 = Ip, and then iterating

.

zi = V̂
− 1

2
k−1xi ,

V̂k ← V̂
1
2
k−1

p

n

n∑

i=1

U(zi )U(zi )
� V̂

1
2
k−1,

until convergence. The scale can be fixed either at each iteration step or in the end so
that .tr(V̂) = p. In Tyler (1987a) weak conditions for the convergence are given. See
also Kent & Tyler 1988 for the existence of the solution under general distributions.

Recently, in Wiesel (2012) a new viewpoint for the investigation of covariance
matrices was developed. In this framework covariance matrices can be seen as
elements of the Riemannian manifold of symmetric positive-definite matrices which
can also be used to study Tyler’s shape matrix. The use of the concept of geodesic
convexity provides then a new set of tools to prove existence and uniqueness of
Tyler’s shape matrix. Dümbgen & Tyler 2016 give a very detailed treatment of
the geodesic approach to M-estimation of scatter in general and to Tyler’s shape
matrix in particular. Another advantage of this framework is the development of
fast Newton-Raphson type algorithms for Tyler’s shape matrix (Dümbgen et al.
2016; Dümbgen and Tyler 2016) which are from a computational point of view
more efficient than the fixed-point algorithm mentioned above. Franks and Moitra
(2020) show the connection between Tyler’s shape matrix and operator scaling.
This connection is then used to derive non-asymptotic bounds and to show that the
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iterative algorithm from above converges in polynomially many steps. Other results
concerning non-asymptotic performance are given in Soloveychik & Wiesel 2015.

Now, consider the limiting behavior of Tyler’s shape matrix, more precisely, the
consistency of .V̂ and the asymptotic distribution of .

√
n
(
V̂ − V

)
, where .V̂ is based

on a random sample .x1, x2, . . . , xn ∼ x. We need not require that .x is elliptically
distributed. The matrix .V just represents a solution of

.V = pE
(

xx�

x�V−1x

)
.

This solution exists and is unique –up to scale– if the distribution of .x is continuous
(Tyler 1987a). Further, in this case, .V̂ is strongly consistent, i.e., it converges almost
surely to .V. In order to prove that .

√
n
(
V̂ − V

) → Np×p(0, C) as .n → ∞, Tyler

(1987a) applies the normalization .V̂0 = pV̂/ tr(V−1V̂). The asymptotic covariance
matrix of .

√
n
(
V̂0 − V

)
is quite complicated (Tyler 1987a, Theorem 3.2).

If .x is elliptically distributed, the asymptotic covariance matrix of .
√

n
(
V̂0 − V

)

simplifies, essentially. More precisely, it holds that

.C = p + 2

p

(
Ip2 + Kp2

)(
V ⊗ V

) + 2(p + 2)

p2 vec(V) vec(V)�,

where .Ip2 is the .p2 × p2 identity matrix, .Kp2 is the .p2 × p2 commutation matrix,
and .vec(V) is the .p2-variate vector obtained by stacking the columns of .V on top
of each other. Frahm (2009, Corollary 1) shows that we obtain the same asymptotic
covariance matrix for .

√
n
(
V̂ − V

)
when choosing the canonical scale function, i.e.,

requiring that .det(V̂) = 1.
It can be seen that .V̂0 is affine equivariant. However, in general, this is no longer

true if we choose another normalization of .V̂. The chosen scale function has an
essential impact on the asymptotic covariance matrix. More precisely, we have that

.C = p + 2

p
ψ

(
Ip2 + Kp2

)(
V ⊗ V

)
ψ�

with .ψ := Ip2 − vec(V)Jσ 2 , where .Jσ 2 is the Jacobian of the scale function .σ 2

(Frahm 2009; Frahm & Jaekel 2010; Frahm et al. 2020). See also Sirkiä et al.
(2009) and Taskinen and Oja (2016), among others, for the limiting distributions
of .

√
n
(
V̂ − V

)
under different choices of .σ 2. In any case, since Tyler’s shape

matrix is distribution free within the class of generalized elliptical distributions, the
asymptotic covariance matrix never depends on the distribution of the generating
variate r . Further, the breakdown point of Tyler’s shape matrix is between .1/(p+1)

and .1/p (Dümbgen & Tyler 2005; Yohai & Maronna 1990). In Adrover (1998)
Tyler’s shape matrix is shown to be minimax bias-robust.

Tyler (1987a) points out that his shape matrix is the “most robust” estimator for
the shape matrix of an absolutely continuous elliptical population. More precisely,
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let h be a real-valued, differentiable, and scale invariant function of .� > 0. That is,
we have that .h(α�) = h(�) for all .α > 0 and .� > 0. Consider some parameter
.θ = h(�) and some estimator .θ̂ = h(�̂). It is clear that we can substitute .� with
.V and .�̂ with .V̂. Now, Tyler’s shape matrix minimizes the maximum asymptotic
variance of .θ̂ = h(V̂) among all consistent estimators .V̂ such that .

√
n
(
V̂ − V

) →
Np×p(0, C).

Tyler’s shape matrix is usually introduced as a general M-estimator of shape;
however, it can also be derived as the ML-estimator for .� under the angular central
Gaussian distribution, as shown in Tyler (1987b). Later Ollila and Tyler (2012)
showed the similar result under the more general model of elliptical distributions
of proportional covariance matrices. See also Gini and Greco (2002), Conte et al.
(2002).

Above, we assumed that the location vector of the elliptical distribution is known.
However, Tyler (1987a) considers also the case in which the location is unknown.
One can, for example, center the observations using any .

√
n-consistent location

estimate before computing the shape matrix. The asymptotic properties of the
resulting shape matrix estimate will remain the same. Tyler (1987a) also mentions
a possibility of estimating the location vector and shape matrix simultaneously in a
similar fashion as in Maronna (1976), Huber (1981) and recognizes the limitations
of such an approach. We will discuss the simultaneous estimation in Sect. 3 along
with other extensions of Tyler’s shape matrix.

To conclude this section, note that Paindaveine and Van Bever (2019) introduce
the concept of Tyler shape depth which can be used to order shape matrices. The
deepest shape matrix is then related to the definition of Tyler’s shape matrix.

3 Extensions

In the exposition above, Tyler’s shape matrix was considered for real data observa-
tions with known location and for data without missing values. It was also assumed
that the shape matrix does not follow any special structure and that the sample size
n is larger than the dimension p. All the issues listed above have been recently
addressed in the literature and in the following we will give an overview of the
approaches that tackle these issues.

As custom in statistics we will continue focusing on real-valued data. Especially
in the signal processing community the theory is, however, often developed
considering complex-valued data and most of the methods described below can also
be applied in such a context. The interested reader is referred, for example, to Kent
(1997), Gini and Greco (2002), Conte et al. (2002), Pascal et al. (2008), Ollila and
Tyler (2012), Ollila et al. (2012), and the references therein.
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3.1 Joint Estimation of Location and Tyler’s Shape Matrix:
The Hettmansperger–Randles Estimators

Hettmansperger and Randles (2002) tackle the problem of simultaneous estimation
of location vector and shape matrix utilizing spatial sign scores. Write now zi =
V̂− 1

2 (xi−μ̂), i = 1, . . . , n, for transformed observations. Then the Hettmansperger–
Randles (HR) estimators of location vector and shape matrix, μ̂ and V̂, solve

.
1

n

n∑

i=1

U(zi ) = 0 and
p

n

n∑

i=1

U(zi )U(zi )
� = Ip, (3)

and V̂ is standardized, for example, such that tr(V̂) = p. The resulting location vec-
tor estimate is known as the transformation-retransformation (TR) spatial median
(Chakraborty et al. 1998) and the shape matrix is the Tyler’s shape matrix with
respect to the TR spatial median. Notice that the classical spatial median, which
solves n−1 ∑n

i=1 U(xi − μ̂), is only rotation equivariant, whereas the TR spatial
median is affine equivariant. For the robustness properties and limiting distributions
of HR estimates, see Hettmansperger and Randles (2002); Möttönen et al. (2010);
Oja (2010).

HR estimates are easy to compute as estimating equations in (3) lead to the
following iteration steps:

.

zi = V̂
− 1

2
k−1(xi − μ̂k−1),

μ̂k ← μ̂k−1 + V̂
1
2
k−1

∑n
i=1 U(zi )

∑n
i=1 ||zi ||−1

,

V̂k ← V̂
1
2
k−1

p

n

n∑

i=1

U(zi )U(zi )
� V̂

1
2
k−1.

See also Hettmansperger and Randles (2002) for computation of HR estimates.
Unfortunately, as far as we know, there is no proof for the convergence of the
above algorithm. Also, as Tyler (1987a) already pointed out, the existence and
uniqueness of the HR estimates remains an open question as the estimates do not
satisfy the conditions that guarantee the existence and uniqueness of simultaneous
M-estimates (Huber 1981; Maronna 1976). Motivated by this, Taskinen and Oja
(2016) proposed k-step HR estimators for location and shape, that is, one starts with
initial

√
n-consistent estimates μ̂0 and V̂0 and repeats the above iteration steps k

times. Resulting estimates are affine equivariant if the initial estimates are affine
equivariant. The limiting distributions depend on the limiting distributions of the
initial pair of estimates and those of HR estimates. The larger the k, the more similar
are the distributions to those of the HR estimates (Taskinen & Oja 2016). For the
robustness properties of k-step estimates, see Croux et al. (2010), Taskinen and Oja
(2016).
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3.2 The Symmetrized Variant of Tyler’s Shape Matrix:
Dümbgen’s Estimator

Tyler (1987a) assumes that the location center is known or given. Dümbgen (1998)
avoids this assumption and proposes a symmetrized version of the Tyler’s shape

matrix. Write now zi = V̂− 1
2 xi , i = 1, . . . , n. Dümbgen’s shape matrix V̂ is then

chosen to solve

.

1

p
Ip =

(
n

2

)−1∑ ∑

i<j

V̂− 1
2 (xi − xj )(xi − xj )

�V̂− 1
2

||V̂− 1
2 (xi − xj )||2

=
(

n

2

)−1∑ ∑

i<j

U(zi − zj )U(zi − zj )
�

and standardized, for example, such that tr(V̂) = p. This shape matrix is thus Tyler’s
shape matrix computed on pairwise differences.

Statistical properties of Dümbgen’s shape matrix are studied in detail in Düm-
bgen (1998), Dümbgen and Tyler (2005), Rublik (2021), and later in Sirkiä et al.
(2007), Dümbgen et al. (2015) under a framework of symmetrized M-estimators
of scatter. The shape matrix obtained using pairwise differences is highly efficient
(under the elliptical model). It also possesses the so-called joint (and block)
independence properties which means that the matrix is a (block) diagonal matrix if
the components of x are mutually (block) independent (Nordhausen & Tyler 2015).
The joint independence property is rare among scatter and shape functionals and
needed, for example, in the independent component model. The use of symmetrized
scatter functionals for independent component analysis is discussed in Oja et al.
(2006). Other multivariate methods that require the joint or block independence
property are discussed in Nordhausen and Tyler (2015).

Dümbgen’s shape matrix can be computed using the algorithm proposed in Tyler
(1987a), that is, one can simply start with an initial value, e.g., V̂0 = Ip, and then
iterate

.

zi = V̂
− 1

2
k−1xi ,

V̂k ← V̂
1
2
k−1

(
n

2

)−1∑ ∑

i<j

U(zi − zj )U(zi − zj )
� V̂

1
2
k−1.

The standardization can be done after the algorithm has converged. Although the
above algorithm is easy to apply in practice, it has a drawback of being highly
intensive when the sample size is large. Due to this issue, several new computational
approaches and variants of Dümbgen’s shape matrix are introduced in the literature.
For alternative algorithms, see Miettinen et al. (2016), Dümbgen et al. (2016). In
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Taskinen et al. (2010) k-step estimator of Dümbgen’s shape matrix was considered.
Finally notice that iteration steps

. V̂k ← V̂
1
2
k−1

1

n(n − 1)2

∑ ∑ ∑

i �=j,i �=k

U(zi − zj )U(zi − zk)
� V̂

1
2
k−1

yield a related shape matrix estimator based on spatial rank vectors (Möttönen &
Oja 1995). We refer interested readers to Sirkiä et al. (2009) for more details.

3.3 Estimation Under Missing Data

In real-life applications, practitioners often face the problem that some data are
missing. Nevertheless, it may be of interest to estimate the scatter matrix by using
all available observations—not only the observations that are complete. Under
the assumption that the data are missing at random, maximum-likelihood meth-
ods based on the so-called observed-data likelihood function are well-developed
(Schafer 1997). In order to generalize Tyler’s shape matrix to the case of incomplete
data, Frahm and Jaekel (2010) use the fact that Tyler’s shape matrix .V̂ is a ML-
estimator under the angular central Gaussian distribution. More precisely, they show
that .V̂ represents an observed-data ML-estimator under the assumption that the
data stem from a generalized elliptical distribution. They also point out that the
incomplete data must be missing completely at random to guarantee the consistency
of .V̂.

Frahm and Jaekel (2010) provide a fixed point algorithm for the computation of
Tyler’s shape matrix in the case of incomplete data. An extension to the case of the
Hettmansperger–Randles estimator is also given. Since the notation convention in
the missing-data framework is nonstandard, we omit details here and refer to Frahm
and Jaekel (2010). Theoretical properties of M-estimators, in particular for Tyler’s
shape matrix, in the case of independent and dependent observations are derived
by Frahm et al. (2020). The aforementioned authors show that, when applying M-
weight functions to incomplete data, the critical scaling condition expressed by
(1) must be satisfied, correspondingly, for each incomplete observation, in order
to guarantee that the given M-estimator for scatter is consistent. They resolve
the scaling problem by introducing the class of power M-estimators for location
and scatter. Both the Gauss-type weight function, .r2 �→ 1, and Tyler’s weight
function, .r2 �→ d/r2, represent two distinguished power M-weight functions, which
implicitly satisfy the critical scaling condition for incomplete data.
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3.4 Structured Tyler’s Shape Estimation

In many applications there is some prior knowledge about the structure of the
scatter/shape matrix available. Such structures include, for example, Toeplitz struc-
ture, spiked covariance structure, group symmetry, and Kronecker structure, among
many others. Originally, structured estimation was considered in the context of the
covariance matrix estimation for iid Gaussian data and it was shown that enforcing
the structure improves the performance of the estimator. Recently, especially in the
signal processing community, there has been an increasing interest in estimating
robust structured scatter matrices in the context of elliptical distributions, and the
research has focused especially on Tyler’s shape matrix (see for example Mériaux
et al. 2021; Soloveychik and Trushin 2016; Soloveychik et al. 2016; Soloveychik
and Wiesel 2014; Sun et al. 2016, and the references therein). In general, algorithms
to estimate the structured shape matrix are usually tailored for the specific structure.
A lot depends on the convexity of the assumed structure. As the unstructured Tyler’s
shape matrix is geodesic convex, it can be concluded that the minimizer of the cost
function under a constraint that is also geodesic convex leads to a global maximizer,
which is, for example, the case under a group symmetric constraint (Soloveychik
et al. 2016).

In the following assume a centered sample .x1, x2, . . . , xn with an unstructured
estimate .V̂ of Tyler’s shape matrix and denote .S as a known closed convex subset of
all positive semi-definite .p×p matrices .V under an appropriate scale constraint, i.e.,
.S ⊂ P. The subset .S of .P is closed but not necessarily convex. In the following we
only outline some general approaches for structured estimation and provide some
references for more details.

Convex projection projects an unconstrained estimate onto the closest element of
the constrained set, that is, structured shape matrix .Vs is found as a solution to

. min
Vs∈S

||Vs − V̂||,

where .||·|| denotes some norm. This is a convex optimization problem, but it consists
of a two-step procedure and therefore does not couple structural and distributional
properties in the estimation process (Soloveychik and Wiesel 2014).

Convex constrained covariance estimation (COCA, Soloveychik and Wiesel
2014) is based on the general methods of moments (GMM) approach and it seeks
an approximate solution to

. min
Vs∈S

∣∣
∣∣∣

∣∣
∣∣∣
Vs − p

n

n∑

i=1

xix�
i

x�
i Vs−1xi

∣∣
∣∣∣

∣∣
∣∣∣
.

This problem is, however, not convex and for general practical computation a convex
relaxation of the above equation is suggested which then allows the use of general
optimizers for solving the problem. It is then shown that in the unconstrained case
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COCA is equivalent to Tyler’s shape matrix and in the constrained case the two
matrices are asymptotically equivalent.

The most general form is the majorization-minimization (MM) approach of Sun
et al. (2015, 2016), which starts from a log-likelihood point of view and aims at
solving

. min
Vs∈S′ log det(Vs) + p

n

n∑

i=1

log(x�
i Vs−1xi ). (4)

Due to the complexity of the problem, the MM approach searches for stationary
points of (4) and therefore does not necessarily provide the global optimum. Sun
et al. (2015, 2016) then provide many tailored MM algorithms for specific structures
whose properties depend on the structure at hand. These include convex (e.g.,
Toeplitz structure, sum of rank one matrices structure) and non-convex structures
(e.g., spiked covariance model structure, Kronecker structure).

3.5 Regularized Estimators

A topic of increasing interest in multivariate statistics is high-dimensionality, as the
dimension p of modern data can be very large and increasingly often even larger
than the available sample size n. Therefore, the behavior of multivariate methods is
nowadays often investigated in settings where n and/or p grow.

A key result regarding scatter matrix estimation is given in Tyler (2010), which
states that for finite data, if .n ≤ p + 1 and the data is in general position, then
any affine equivariant scatter matrix is proportional to the covariance matrix, where
the proportionality factor does not depend on the data. The question is then, what
is the behavior of Tyler’s shape matrix if n and p grow, i.e., if .p/n → c when
.n → ∞ and .p → ∞. Dümbgen (1998), Frahm and Glombek (2012) consider
the case .c = 0 and show that the condition number of Tyler’s shape matrix is .1 +
4
√

p/n + o(
√

p/n) and that the spectral distribution of .
√

n/p(V̂ − Ip) converges
weakly to a semicircle distribution. Further, Zhang et al. (2016) show that in the case
.0 < c < 1 the spectral distribution of Tyler’s shape matrix converges weakly to the
Marčenko–Pastur distribution. Notice that these results are derived in the context
of iid samples from elliptical distributions while similar results for the covariance
matrix require usually iid samples from the Gaussian distribution or are less useful
in case of elliptical distributions (Karoui 2009; Zhang et al. 2016).

As the estimation in high-dimensional setting is quite challenging, often esti-
mators are regularized in such a setup and include shrinkage. For Tyler’s shape
matrix basically three different options for shrinkage are considered: (i) shrinking
the eigenvalues of an already computed shape matrix, (ii) adding an penalty term to
the M-estimation objective function, or (iii) modifying the M-estimation equation.
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In the following we outline some recent suggestions to regularize Tyler’s shape
matrix and refer for further details to the provided references. We first consider
shrinking the eigenvalues which assumes a framework with .n > p and that we are
able to compute Tyler’s shape matrix .V̂ with .tr(V̂) = p for the centered sample
.x1, x2, . . . , xn. The shrinkage regularized Tyler’s shape matrix is then defined as

.V̂r
α = αV̂ + (1 − α)Ip,

where .α ∈ [0, 1] is a regularization parameter. Thus .V̂r
α shares the same eigenvec-

tors as .V̂ but the eigenvalues of it are shrank towards the mean of the eigenvalues
of .V̂. This type of estimator is considered, for example, in Chen et al. (2011), Ollila
et al. (2021). Ollila et al. (2021) suggest to choose .α as

.αo = min
α

MSE(V̂r
α),

where .MSE(V̂r
α) = E[||V̂r

α − V||2], for which a closed-form expression can be
obtained in case of elliptical distributions or using cross validation (CV).

To allow .p > n Abramovich and Spencer (2007) suggest to load the diagonals
in the fixed point algorithm of Tyler’s shape matrix by modifying the updating steps
as follows

.

Ṽr
k,β ← β

p

n

n∑

i=1

xix�
i

x�
i (V̂r

k−1,β)−1, βxi

+ (1 − β)Ip,

V̂r
k,β ← Ṽr

k,β

tr(Ṽr
k,β)

,

and iterate until convergence. Here .β ∈ [0, 1] is a shrinkage coefficient. Chen et al.
(2011) establish uniqueness of the estimator and suggest a way to choose .β. The
above estimator has, however, been criticized for being heuristic as it is not related
to any cost function which it would minimize. Therefore, Wiesel (2012) starts
again from a log-likelihood point of view and suggests to minimize the following
penalized log-likelihood function, that is, to solve

. min
V∈S

log det(V) + p

n

n∑

i=1

log(x�
i V−1xi ) + γP (V), (5)

where .P(V) is the penalty function and .γ ≥ 0 is a regularization parameter. Wiesel
(2012) uses .P(V) = p log(tr(V−1T))+log(|V|), which has its minimum at .T which
is the desired target matrix towards which .V should be shrunk to. The minimizer of
(5) is denoted as .V̂r

γ . Wiesel (2012) and Dümbgen and Tyler (2016) also list several
other penalty functions and discuss their appropriateness for different data settings.
The regularization parameter can either be fixed or chosen data dependent using
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so-called oracle type estimator as discussed in Chen et al. (2011), Ollila and Tyler
(2014). The use of cross validation was suggested in Dümbgen and Tyler (2016). It
is shown that statistical properties, such as existence and uniqueness, depend on the
used penalty function and special attention is given to penalty functions which are
geodesic convex in .V. For example, Sun et al. (2014) show that if one uses as penalty
the Kullback–Leibler distance between two zero mean Gaussian distributions with
covariance matrices .V and .T, an estimate very similar to the diagonal loading
method mentioned above is obtained.

For further discussions on regularized Tyler’s shape matrices we refer to Pascal
et al. (2014), Couillet and McKay (2014), Sun et al. (2014), Ollila and Tyler (2014),
Dümbgen and Tyler (2016), where maybe Dümbgen and Tyler (2016) provide the
most general treatment of regularized Tyler’s shape matrices and suggest also a
cross validation procedure. Corresponding algorithms are discussed, for example,
in Sun et al. (2014), Dümbgen and Tyler (2016). Robustness properties of previous
regularized estimators are studied in Tyler and Yi (2020) showing that, under certain
conditions on the tuning parameter, the breakdown point of regularized Tyler’s shape
matrix could be 1, if not estimating the center .μ.

None of the above methods guarantees a sparse solution. To obtain a sparse
estimate based on a (regularized) Tyler’s shape matrix, Goes et al. (2020) discuss
thresholding. Entry-wise thresholding of a matrix .A = (aij ) and a threshold .t > 0
is defined as

.τ t (A) = (I (|aij | > t)aij ).

Applying such an entry-wise thresholding to an estimate of Tyler’s shape matrix,
which can also be regularized, yields the thresholded estimate

.V̂t = τ t (V̂),

where it is assumed that .V̂ has unit trace. Under the assumption of elliptical
data with approximately sparse scatter matrix, Goes et al. (2020) provide many
properties of .V̂t , especially that these estimators are rate optimal, meaning that
the rate coincides with the minimax rate for sparse covariance estimation for sub-
Gaussian elliptical data but in addition holds also for heavy tailed elliptical data.
There seems, however, to be no suggestion yet for choosing the threshold t in a
data-driven fashion.
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4 Discussion

The seminal paper introducing Tyler’s shape matrix (Tyler 1987a) has been cited
according to the Web of Science up to date 378 times.3 Since its appearance,
Tyler’s shape matrix has been used in many application areas such as antenna array
processing (Ollila and Koivunen 2003), radar detection (Ollila & Tyler 2012) or
image analysis based subspace recovery (Zhang 2015). Applications in the field
of finance are discussed, for example, in Frahm and Jaekel (2015) and Yang et al.
(2015).

This paper is a short and restricted review which shows that due to its non-
parametric nature with many excellent statistical properties and computational
simplicity, Tyler’s shape matrix is still, 35 years after its introduction, an active
research area. Tyler’s shape matrix continues to exhibit great promise and can be
extended in different directions driven by the complex nature of modern data sets.

Acknowledgments The authors would like to thank the editor and referees for their insightful
comments and suggestions.
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On the Asymptotic Behavior of the
Leading Eigenvector of Tyler’s Shape
Estimator Under Weak Identifiability

Davy Paindaveine and Thomas Verdebout

Abstract We consider point estimation in an elliptical Principal Component
Analysis framework. More precisely, we focus on the problem of estimating the
leading eigenvector .θ1 of the corresponding shape matrix. We consider this problem
under asymptotic scenarios that allow the difference .rn := λn1 − λn2 between
both largest eigenvalues of the underlying shape matrix to converge to zero as the
sample size n diverges to infinity. Such scenarios make the problem of estimating .θ1
challenging since this leading eigenvector is then not identifiable in the limit. In
this framework, we study the asymptotic behavior of .θ̂1, the leading eigenvector of
Tyler’s M-estimator of shape. We show that consistency and asymptotic normality
survive scenarios where .

√
nrn diverges to infinity as n does, although the faster

the sequence .(rn) converges to zero, the poorer the corresponding consistency rate
is. We also prove that consistency is lost if .rn = O(1/

√
n), but that .θ̂1 still bears

some information on .θ1 when .
√

nrn converges to a positive constant. When .
√

nrn

diverges to infinity, we provide asymptotic confidence zones for .θ1 based on .θ̂1. Our
non-standard asymptotic results are supported by Monte Carlo exercises.

Keywords Principal component analysis · Point estimation · Confidence zone
estimation · Robustness · Weak identifiability

1 Introduction

Many classical models in multivariate statistics include scatter parameters. The most
common example is the elliptical model where observations are independent copies
of a random p-vector .X whose characteristic function is of the form

.t �→ eit′μφ(t′�t) (1)
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for some characteristic generator .φ : R+ → R. Here, the p-vector .μ is a location
parameter and the .p × p symmetric and positive definite matrix .� is a scatter
parameter. A very popular instance is of course the p-variate normal model that
is obtained with .φ(s) = exp(−s2/2). Inference on the scatter parameter in the
elliptical model has been the subject of many contributions: to cite only a few,
Frahm (2009), Lopuhaa (1999), Tyler (1987) studied the asymptotic properties
of robust estimators of .�, Cator and Lopuhaä (2010) provided several properties
of the Minimum Covariance Determinant estimator of .�, sphericity tests have
been studied in Hallin and Paindaveine (2006), Onatski et al. (2014), Taskinen
et al. (2006) computed the influence functions of empirical canonical correlation
coefficients, Hallin et al. (2010), Hallin et al. (2014), Salibián-Barrera et al. (2006),
Tyler (1981), Tyler (1983) considered Principal Component Analysis based on
estimators of .�, whereas Dürre et al. (2016), Tyler (1983) studied estimators of
the eigenvalues of .�.

In the present paper, we consider estimation of the leading eigenvector of .�,
that is, of the eigenvector, .θ1 say, associated with the largest eigenvalue of .�. This
is of course the primary object of interest when conducting a Principal Component
Analysis exercise. Since .θ1 does not change when .� is replaced with .c� for any .c >

0, we actually want to estimate the leading eigenvector of the shape matrix

.V := �

(det�)1/p
(2)

associated with .�, that is, of the version of .� that is normalized to have determinant
one (see Paindaveine 2008); note that this also takes care of the fact that, in (1), .�
was identified up to a positive scalar factor only. What makes our contribution
original is that we will consider double asymptotic scenarios where, as the sample
size n diverges to infinity, the underlying shape matrix .V = Vn has its two leading
eigenvalues .λn1 > λn2 that satisfy .λn1/λn2 → 1. This means that, while .θ1 is
properly identifiable for any n (up to an unimportant sign change, as usual), it is
no more identifiable in the limit as .n → ∞. Obviously, such weak identifiability
scenarios make inference on .θ1 challenging for large n.

More precisely, we will consider throughout triangular arrays of observa-
tions .Xn1, . . . , Xnn, where, for each n, the .Xin’s form a random sample from the
p-variate elliptical distribution with location .μ, shape matrix

.Vn = Ip + δnξθ1θ
′
1

(det(Ip + δnξθ1θ
′
1))

1/p
= (1 + δnξ)

(1 + δnξ)1/p
θ1θ

′
1 + 1

(1 + δnξ)1/p
(Ip − θ1θ

′
1),

(3)

and characteristic generator .φn; in (3), .θ1 is a unit p-vector, .ξ is a positive real
number, .δn is a bounded positive sequence, and .I� denotes the .�-dimensional iden-
tity matrix. We will denote the corresponding sequence of hypotheses as .Pθ1,δn,ξ,φn

.
Throughout the paper, we tacitly assume that .φn is such that .Xn1 �= 0 almost surely,
which is needed to make Tyler’s estimator of shape well-defined below. The second
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expression of .Vn in (3) makes it clear that the leading eigenvalue of .Vn is

.λn1 := (1 + δnξ)(p−1)/p, (4)

with corresponding eigenvector .θ1, and that its remaining eigenvalues are

.λn2 = . . . = λnp := (1 + δnξ)−1/p, (5)

with an eigenspace that is obviously the orthogonal complement to .θ1. If .δ = 1 for
any n (which we will denote as .δ ≡ 1 in the sequel), then the classical setup in
which .λn1 remains asymptotically well separated from the remaining eigenvalues is
obtained. While we will cover this case as well, our main interest below will be on
the weakly identifiable case where .δn is .o(1), which provides .λn1/λn2 → 1, hence
makes .θ1 unidentifiable in the limit.

In the sequel, we will restrict to the case .μ = 0, which is actually without
any loss of generality in the distributional setup considered above. In elliptical
models, the Fisher information matrix for location and shape parameters is indeed
block-diagonal (see Hallin and Paindaveine 2006), which entails that asymptotic
inference for the shape parameter can be conducted in the same way under
specified and unspecified location (block-diagonality of the Fisher information
matrix guarantees in particular that parametric efficiency bounds for shape under
known and unknown .μ do coincide). In the specified location case, the results of this
paper actually trivially extend to the generalized elliptical distributions introduced
in Frahm (2004).

Quite naturally, .θ1 can be estimated by the leading eigenvector of a shape
estimator .V̂n. For this purpose, we will focus in this paper on the shape estima-
tor .V̂n that was proposed by David Tyler in Tyler (1987). We will investigate the
asymptotic behavior of the corresponding leading eigenvector .θ̂n1 in the triangular
distributional framework described above. In particular, we will show that .θ̂n1 is
consistent and asymptotically normal when .

√
nδn → ∞, but that it is not consistent

when .δn = O(1/
√

n). We will precisely derive the limiting distribution of .θ̂n1
for any sequence .(δn). Our results identify the same phase transitions as in the
corresponding hypothesis testing framework, when testing .H0 : θ1 = θ01 against
.H1 : θ1 �= θ01 for some fixed unit p-vector .θ01; see Paindaveine et al. (2020a,b).

The rest of the paper is organized as follows: in Sect. 2, we recall the definition
of Tyler’s estimator of shape .V̂n and provide its asymptotic distribution under
weak identifiability. In Sect. 3, we derive the limiting behavior of .θ̂n1 under
weak identifiability and discuss the construction of confidence zones for .θ1 under
sequences .δn such that .

√
nδn → ∞. In Sect. 4, we corroborate the results of Sect. 3

through Monte Carlo exercises. A technical appendix collects the proofs.
For the sake of convenience, we collect here the notation that will be used in the

paper. Throughout, .e� will denote the .�th vector of the canonical basis of .Rp, so that
.Kp := ∑p

i,j=1(eie′
j ) ⊗ (ej e′

i ) is the usual commutation matrix. Denoting as .vecA
the vector obtained by stacking the columns of the matrix .A on top of each other,
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we let .Jp := (vec Ip)(vec Ip)′. We will write .diag(a1, . . . , a�) for the diagonal
matrix collecting the real numbers .a1, . . . , a� on its diagonal. For a symmetric and
positive definite matrix .B, we will denote as .B1/2 its symmetric and positive definite
square root and as .B−1/2 the inverse of this square root. Finally, .→D will stand for
convergence in distribution.

2 Tyler’s Estimator of Shape Under Weak Identifiability

As explained above, we consider the problem of estimating the eigenvector .θ1
associated with the largest eigenvalue of the underlying shape matrix .Vn. To
estimate .θ1, we will use the leading eigenvector .θ̂n1 of Tyler’s estimator of shape .V̂n

from Tyler (1987). Under specified location .μ = 0, this shape estimator .V̂n is
defined as the solution of

.
p

n

n∑

i=1

XniX′
ni

X′
niV̂

−1
n Xni

= V̂n, (6)

normalized to have unit determinant. This can be seen as the estimator of shape for
which the directions (or spatial signs) of the resulting sphericized observations

.
V̂−1/2

n Xn1

‖V̂−1/2
n Xn1‖

, . . . ,
V̂−1/2

n Xnn

‖V̂−1/2
n Xnn‖

have an empirical covariance matrix (with respect to specified location .μ = 0)
equal to .(1/p)Ip. Tyler’s estimator of shape enjoys many nice properties. In
particular, it is distribution-free in the (centered) elliptical model and it is consistent
and asymptotically normal under a broad range of distributions without moment
assumptions; see Tyler (1987). Distribution-freeness is an important property since
it entails that the distribution of .θ̂n1 does not depend on the underlying characteristic
generator .φn, that is, it does not depend on the type of elliptical distribution at hand
(normal, t , etc.) nor on the scale of this elliptical distribution.

The following result provides the asymptotic distribution of Tyler’s estimator of
shape in a framework where .θ1 is possibly weakly identifiable.

Proposition 1 Fix a unit vector .θ1, a positive real number .ξ and a sequence .(δn)

that either is .δn ≡ 1 or is .o(1). Let .(Vn) be the resulting sequence of shape matrices
in (3). Let further .(φn) be a sequence of characteristic generators. Then,

.
√

n vec(V̂n−Vn) →D N
(

0,
(
1+ 2

p

){

(Ip2 + Kp)(V ⊗ V) − 2

p
vec(V)vec′(V)

})

under .Pθ1,δn,ξ,φn
as .n → ∞, where .V is the limit of .(Vn).
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This result shows that root-n consistency of Tyler’s estimator of shape .V̂n is
robust to arbitrarily weakly identifiable scenarios, that is, to scenarios where .(δn)

converges to zero arbitrarily fast. As we will show in the next section, this is not the
case for the leading eigenvector of .V̂n.

3 Asymptotic Behavior of Tyler’s Leading Eigenvector
Under Weak Identifiability

The main goal of this section is to derive the asymptotic behavior of the leading
eigenvector .θ̂n1 of .V̂n under weak identifiability. Denoting as .λ̂nj , .j = 1, . . . , p,
the eigenvalues of .V̂n in decreasing order (these sample eigenvalues are pairwise
different almost surely), we first provide the following result that shows that root-n
consistency of these eigenvalues is robust to weak identifiability.

Proposition 2 Fix a unit vector .θ1, a positive real number .ξ and a sequence .(δn)

that either is .δn ≡ 1 or is .o(1). Let .(φn) be a sequence of characteristic generators.
Then, for any .j = 1, . . . , p, .

√
n(λ̂nj − λnj ) is .OP(1) as .n → ∞ under .Pθ1,δn,ξ,φn

.

With .θ1 fixed, pick arbitrarily p-vectors .θ2, . . . , θp such that .� :=
(θ1, θ2, . . . , θp) is orthogonal. Let further .�̂n := (θ̂n1, . . . , θ̂np) stand for the
orthogonal matrix whose j th column vector is an eigenvector of .V̂n associated with
eigenvalue .λ̂nj . To unambiguously fix the “signs” of .θ̂nj , .j = 1, . . . , p, we impose
that, with probability one, all entries in the first column of

.En := �̂
′
n� =

(
En,11 En,12

En,21 En,22

)

(7)

are positive (note that all entries of .En are almost surely non-zero). The following
result then provides the asymptotic behavior of .En in the present context.

Proposition 3 Fix a unit vector .θ1, a positive real number .ξ and a sequence .(δn)

that either is .δn ≡ 1 or is .o(1). Let .(φn) be a sequence of characteristic generators.
Let .Z be a .p × p random matrix such that

.vec(Z) ∼ N
(

0,

(

1 + 2

p

){

(Ip2 + Kp) − 2

p
Jp

})

,

and let .E(ξ) := (w1(ξ), . . . , wp(ξ))′, where .wj (ξ) = (wj1(ξ), . . . , wjp(ξ))′ is the
unit eigenvector associated with the j th largest eigenvalue of .Z + diag(ξ, 0, . . . , 0)
and such that .wj1(ξ) > 0 almost surely. Then, we have the following as .n → ∞
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under .Pθ1,δn,ξ,φn
:

(i) If .δn ≡ 1, then .n(En,11 −1) = OP(1), .En,22E′
n,22 = Ip−1 +oP(1), .

√
nEn,21 =

OP(1), and both .
√

nE′
n,22En,21 and .

√
nE′

n,12 are asymptotically normal with

mean zero and covariance matrix .ξ−2(1 + ξ)(1 + 2
p
)Ip−1.

(ii) If .δn is .o(1) with .
√

nδn → ∞, then .nδ2n(En,11 − 1) = OP(1), .En,22E′
n,22 =

Ip−1 + oP(1), .
√

nδnEn,21 = OP(1), and both .
√

nδnE′
n,22En,21 and .

√
nδnE′

n,12

are asymptotically normal with mean zero and covariance matrix .ξ−2(1 +
2
p
)Ip−1.

(iii) If .δn = 1/
√

n, then .En converges weakly to .E(ξ).

(iv) If .δn = o(1/
√

n), then .En converges weakly to .E := E(0).

The four regimes (i)–(iv) identified in this result will play a crucial role in the
asymptotic behavior of .θ̂n1 below. At this point, let us note that, in regimes (i)–(ii),

.‖√nδn(θ̂n1 − θ1)‖2 = 2nδ2n(1 − θ̂
′
n1θ1) = 2nδ2n(1 − En,11) = OP(1); (8)

this is compatible with the well-known .
√

n-consistency of .θ̂n1 in the classical
case obtained with .δn ≡ 1 and suggests that .

√
n-consistency deteriorates into

.(
√

nδn)-consistency in regime (ii), which in turn suggests that consistency is lost
in regime (iii). The following result, which is the main result of the paper, shows
that this is precisely what happens.

Theorem 1 Fix a unit vector .θ1, a positive real number .ξ and a sequence .(δn) that
either is .δn ≡ 1 or is .o(1). Let .(φn) be a sequence of characteristic generators. Then,
the leading eigenvector .θ̂n1 of Tyler’s estimator of shape satisfies the following
as .n → ∞ under .Pθ1,δn,ξ,φn

:

(i) If .δn ≡ 1, then .
√

n(θ̂n1 − θ1) is asymptotically normal with mean zero and
covariance matrix

.
1

ξ2
(1 + ξ)

(

1 + 2

p

)

(Ip − θ1θ
′
1) =

(

1 + 2

p

)
λ1λ2

(λ1 − λ2)2
(Ip − θ1θ

′
1),

where .λ1 and .λ2 are the eigenvalues in (4)–(5) with .δn ≡ 1.
(ii) If .δn is .o(1) with .

√
nδn → ∞, then .

√
nδn(θ̂n1 − θ1) is asymptotically normal

with mean zero and covariance matrix

.
1

ξ2

(

1 + 2

p

)

(Ip − θ1θ
′
1). (9)

(iii) If .δn = 1/
√

n, then .θ̂n1 converges weakly to the unit eigenvector associated
with the largest eigenvalue of . Z + ξθ1θ

′
1, where .Z is as in the statement of

Proposition 3.
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(iv) If .δn = o(1/
√

n), then .θ̂n1 converges weakly to a random vector that is
uniformly distributed over the unit sphere .Sp−1.

This result confirms that, while the consistency rate of .θ̂n1 is of course .
√

n in
the standard case .δn ≡ 1, this consistency rate goes down to .

√
nδn when .δn → 0

with .
√

nδn → ∞. Asymptotic normality is obtained in both cases. In the threshold
regime (iii) obtained with .δn = 1/

√
n, the estimator .θ̂n1 is no more consistent

for .θ1, yet it still bears some information on .θ1. Clearly, the larger .ξ , the larger this
information (in particular, the weak limit of .θ̂n1 converges to the Dirac distribution
at .θ1 as .ξ → ∞). Finally, if .δn = o(1/

√
n), then .θ̂n1 behaves asymptotically as

a random vector that is uniformly distributed on the unit sphere of .R
p, hence does

not bear any information on .θ1. Incidentally, we stress that since .θn1 (resp., .θ̂n1) is
a homogenous function of .Vn (resp., .V̂n), Theorem 1 still holds true if, in (2), .Vn is
rather normalized so that it has trace p, or so that its upper-left entry is equal to one,
etc.

The results in Theorem 1 allow one to build confidence zones for .θ1. Let us start
with regime (i). Since the sample eigenvalues .λ̂nj , .j = 1, 2, are .

√
n-consistent,

confidence zones for .θ1 with asymptotic confidence level .1 − α in this regime are
given by

.C1−α
n : =

{

θ1 ∈ Sp−1 : n

(

1+ 2

p

)−1
(λ̂1 − λ̂2)

2

λ̂1λ̂2
θ̂

′
n1(Ip − θ1θ

′
1)θ̂n1 ≤ χ2

p−1,1−α

}

,

where .χ2
p−1,1−α denotes the upper-.α quantile of the chi-square distribution with .p−

1 degrees of freedom. Now, in regime (ii),

.
(λ̂n1 − λ̂n2)
√

λ̂n1λ̂n2

√
n(θ̂n1 − θ1)

=
√

n(λ̂n1 − λn1) − √
n(λ̂n2 − λn2) + √

n(λn1 − λn2)
√

λ̂n1λ̂n2

(θ̂n1 − θ1)

=
√

n(λn1 − λn2)√
λn1λn2

(θ̂n1 − θ1) + oP(1) = δnξ(1 + o(1))
√

n(θ̂n1 − θ1) + oP(1)

→D N
(

0,

(

1 + 2

p

)

(Ip − θ1θ
′
1)

)

,

where we used the fact that .
√

n(λ̂nj − λnj ), .j = 1, 2, are still .OP(1) in this regime
(Proposition 2). A direct consequence is that the asymptotic confidence zones .C1−α

n

above are still valid in regime (ii).
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To conclude this section, we turn to robustness issues by considering the
influence function of .θ̂n1 in regimes (i)–(ii). Using (27) (resp., (28)) in regime (i)
(resp., regime (ii)), jointly with (20), (23) and the fact that .En,11 = 1 + oP(1) in
regimes (i)–(ii), we obtain

.
√

nδn(θ̂n1 − θ1) = (θ2, . . . , θp)
√

nδnEn,11E′
n,12 + oP(1)

= −(θ2, . . . , θp)
√

nδnE′
n,22En,21 + oP(1)

= (θ2, . . . , θp)ξ−1(1 + δnξ)1/p(θ2, . . . , θp)′
√

n(V̂n − Vn)θ1 + oP(1)

= ξ−1(1 + δnξ)1/p(Ip − θ1θ
′
1)

√
n(V̂n − Vn)θ1 + oP(1). (10)

From (14) and (16) in the proof of Proposition 1, we have

.
√

n vec
(
V−1/2

n V̂nV−1/2
n − Ip

)

=
(

Ip2 − 1

p
Jp

)√
n vec

(
pV−1/2

n V̂nV−1/2
n

tr[V−1
n V̂n]

− Ip

)

+ oP(1)

= (p + 2)

(

Ip2 − 1

p
Jp

)√
n vec

(
Sn(Vn) − 1

p
Ip

) + oP(1),

which yields

.
√

n vec(V̂n−Vn) = (p+2)
(
V1/2

n ⊗V1/2
n

)
(

Ip2 − 1

p
Jp

)√
n vec

(
Sn(Vn)− 1

p
Ip

)+oP(1).

Since

.(θ ′
1 ⊗ (Ip − θ1θ

′
1))

(
V1/2

n ⊗ V1/2
n

) = (1 + δnξ)1/2

(1 + δnξ)1/p
(θ ′

1 ⊗ (Ip − θ1θ
′
1))

(which in particular entails that .(θ ′
1⊗(Ip−θ1θ

′
1))

(
V1/2

n ⊗V1/2
n

)
(vec Ip) = 0), plugging

this in (10) then provides

.
√

nδn(θ̂n1 − θ1) = (p + 2)(1 + δnξ)1/2

ξ
(θ ′

1 ⊗ (Ip − θ1θ
′
1))

√
n vec(Sn(Vn)) + oP(1)

= (p + 2)(1 + δnξ)1/2

ξ
√

n
(Ip − θ1θ

′
1)

n∑

i=1

V−1/2
n XniX′

niV
−1/2
n

‖V−1/2
n Xni‖2

θ1 + oP(1).

By applying the multivariate central limit theorem (and (15)), it is readily checked
that this Bahadur representation result for .

√
nδn(θ̂n1 − θ1) is compatible with

the asymptotic normality statements in Theorem 1(i)–(ii). More importantly, this
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Bahadur representation result shows that the boundedness of the influence function
of .θ̂n1 does not only hold in the standard regime (i) but also in the weakly identifiable
regime (ii).

4 Numerical Illustration

In this section, we conduct Monte Carlo simulation exercises to validate the various
asymptotic results in Theorem 1. For any .� ∈ {0, 1, . . . , 7}, we generated .M =
10, 000 independent random samples of size .n = 100, 000 from the bivariate (.p = 2)
normal distribution with mean vector zero and covariance matrix

.�n,� = I2 + δn,�ξθ1θ
′
1, (11)

with .δn,� = n−�/8, .ξ = 2 and .θ1 = e1 ∈ R
2. In each of these samples, we computed

the leading eigenvector .θ̂n1 of Tyler’s estimator of scatter (still with respect to fixed
location at the origin of .Rp); evaluation of Tyler’s estimator of scatter was done by
using the function tyler.shape from the R package ICSNP (Nordhausen et al.
2018). We first focus on Theorem 1(i)–(ii), hence on the cases .� ∈ {0, 1, 2, 3}. For
each such .�, we provide in Fig. 1 a histogram of the M corresponding values of

.
√

nδn,�e′
2θ̂n1 = √

nδn,�e′
2(θ̂n1 − θ1). (12)

Clearly, the results nicely agree with the corresponding asymptotic distribution
of (12) in Theorem 1, namely .N(0, 3

2 ) for .� = 0 (regime (i)) and .N(0, 1
2 ) for .� =

1, 2, 3 (regime (ii)). We then turn to Theorem 1(iii)–(iv), hence to the cases .� ∈
{4, 5, 6, 7}. For these values of .�, Fig. 2 reports histograms of

.e′
2θ̂n1. (13)

Here, the asymptotic distributions of (13) in Theorem 1(iii)–(iv) do not have a closed
form density, and we are therefore plotting kernel density estimates obtained from
a random sample of size .106 from the weak limit of (13) in Theorem 1(iii)–(iv).
To avoid boundary effects (the support of this weak limit is of course .[−1, 1]), we
employed the function kde.boundary from the R package ks (Duong 2021) with
default parameters, which returns the kernel density estimate using the second form
of the Beta boundary kernel in Chen (1999). Irrespective of .� ∈ {4, 5, 6, 7}, these
empirical results fully support the corresponding asymptotic results in Theorem 1.



54 D. Paindaveine and T. Verdebout

-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

=0 (i)

-6 -4 -2 0 2 4 6
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

=1 (ii)

-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

=2 (ii)

-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

=3 (ii)

Fig. 1 For each .� ∈ {0, 1, 2, 3}, histograms of the quantities .
√

nδn,�e′
2(θ̂n1 − θ1) computed

from .M = 10,000 independent random samples of size .n = 100,000 from the bivariate normal
distribution with mean vector zero and the covariance matrix .�n,� in (11), where .θ̂n1 denotes
the leading eigenvector of Tyler’s estimator of scatter (with respect to fixed location at the origin
of .R2). In each panel, the solid curve is the density of the corresponding asymptotic distribution,
namely .N(0, 3

2 ) for .� = 0 and .N(0, 1
2 ) for .� = 1, 2, 3
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Fig. 2 For each .� ∈ {4, 5, 6, 7}, histograms of the quantities .e′
2θ̂n1 computed from .M = 10,000

independent random samples of size .n = 100,000 from the bivariate normal distribution with mean
vector zero and the covariance matrix .�n,� in (11), where .θ̂n1 still denotes the leading eigenvector
of Tyler’s estimator of scatter (with respect to fixed location at the origin of .R2). In each panel,
the solid curve is a kernel estimate for the density of the corresponding weak limit obtained from
Theorem 1(iii)–(iv); see Sect. 4 for details
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Appendix

The proof of Proposition 1 requires the following preliminary result, which follows
from (3.7)–(3.8) in Tyler (1987).

Lemma 1 Fix a unit vector .θ1, a positive real number .ξ and a sequence .(δn) that either
is .δn ≡ 1 or is .o(1). Let .(Vn) be the resulting sequence of shape matrices in (3). Let
further .(φn) be a sequence of characteristic generators. Then, letting

.Gp := Ip2 − 1
p+2 (Ip2 + Kp − Jp) and Sn(V) := 1

n

n∑

i=1

V−1/2XniX′
niV

−1/2

‖V−1/2Xni‖2 ,

we have that

.Gp

√
n vec

(
pV−1/2

n V̂nV−1/2
n

tr[V−1
n V̂n]

− Ip

)

= p
√

n vec
(
Sn(Vn) − 1

p
Ip

) + oP(1),

under .Pθ1,δn,ξ,φn
as .n → ∞.

In all proofs below, stochastic convergences are as .n → ∞ under .Pθ1,δn,ξ,φn
.

Proof of Proposition 1 Letting .Hp := Ip2 + Kp − 2
p

Jp , we have .HpJp = 0
and .HpKp(vecB) = Hp(vecB) for any symmetric matrix .B, so that

.HpGp(vecB) = (Hp − 2
p+2Hp)(vecB) = p

p+2Hp(vecB)

for any symmetric matrix .B. Lemma 1 thus yields that

.
p

p+2Hp

√
n vec

(
pV−1/2

n V̂nV−1/2
n

tr[V−1
n V̂n]

− Ip

)

= p
√

n Hpvec
(
Sn(Vn) − 1

p
Ip

) + oP(1).

Using the fact that .Jp(vecB) = (tr[B])(vec Ik) and .Kp(vecB) = vecB for any
symmetric matrix .B, this rewrites

.
√

n vec

(
pV−1/2

n V̂nV−1/2
n

tr[V−1
n V̂n]

− Ip

)

= (p + 2)
√

n vec
(
Sn(Vn) − 1

p
Ip

) + oP(1). (14)

Now, Lemma A.3(ii) from Paindaveine et al. (2020a) states that

.
√

n vec
(
Sn(Vn) − 1

p
Ip

) →D N
(

0,
1

p(p + 2)
Hp

)

, (15)

so that

.
√

n vec

(
pV−1/2

n V̂nV−1/2
n

tr[V−1
n V̂n]

− Ip

)

→D N
(

0,

(

1 + 2

p

)

Hp

)

.
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Hence, the argument in the bottom of page 341 in Hallin and Paindaveine (2006) yields
that

.
√

n vec

(
V−1/2

n V̂nV−1/2
n

(det(V−1/2
n V̂nV−1/2

n ))1/p
− Ip

)

=
(

Ip2 − 1

p
Jp

)√
n vec

(
pV−1/2

n V̂nV−1/2
n

tr[V−1
n V̂n]

− Ip

)

+ oP(1) (16)

→D N
(

0,
1

p(p + 2)
Hp

)

,

that is,

.
√

n vec
(
V−1/2

n V̂nV−1/2
n − Ip

) →D N
(

0,
1

p(p + 2)
Hp

)

.

Since this rewrites

.
(
V−1/2

n ⊗ V−1/2
n

)√
n vec

(
V̂n − Vn

) →D N
(

0,
1

p(p + 2)
Hp

)

,

we finally obtain that

.
√

n vec
(
V̂n − Vn

) →D N
(

0,
(
1 + 2

p

){

(Ip2 + Kp)(V ⊗ V) − 2

p
vec(V)vec′(V)

})

,

with .V the limiting value of .(Vn). ��
We do not prove Proposition 2 here since the proof follows along the exact same

lines as the proof of Lemma 2.2 in Paindaveine et al. (2020b). We thus turn to the
proof of Proposition 3 that requires the following linear algebra result.

Lemma 2 Let .A be a .p × p matrix. Assume that .λ is an eigenvalue of .A and that the
corresponding eigenspace .Vλ has dimension one. Denoting as .C = (Cij ) the cofactor
matrix of .A − λIp , assume that .v := (C11, . . . , C1p)′ �= 0. Then .Vλ = {tv : t ∈ R}.
Proof of Lemma 2 For any .j = 1, . . . , p, denote as .(A−λIp)j the j th row of .A−λIp .
For .j = 2, . . . , p,

.(A − λIp)j v = det

⎛

⎜
⎜
⎜
⎜
⎝

(A − λIp)j

(A − λIp)2
...

(A − λIp)p

⎞

⎟
⎟
⎟
⎟
⎠

= 0,
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since this is the determinant of a matrix with (at least) twice the same row. Since .λ is an
eigenvalue of .A, this determinant is also zero for .j = 1. Therefore, .(A − λIp)v = 0.
The non-zero vector .v thus belongs to .Vλ. Since .Vλ has dimension one by assumption,
the result follows.

Proof of Proposition 3 In this proof, we put

.Zn := √
n�′(V̂n − Vn)�, (17)

and .�n := �′Vn� = diag(λn1, . . . , λnp). First note that since

.En = �̂
′
n� =

(
En,11 En,12

En,21 En,22

)

is an orthogonal matrix, we easily obtain that

.En,21 = − 1

En,11
En,22E′

n,12, (18)

.En,22E′
n,22 = Ip−1 − En,21E′

n,21 (19)

and

.En,11E′
n,12 = −E′

n,22En,21. (20)

We start with the proof of (i)–(ii). The random matrix .Yn := √
n�′V̂n� − √

nλn1Ip

admits the eigenvectors .wnj := �′θ̂nj , .j = 1, . . . , p, with corresponding eigenval-
ues .ζnj := √

n(λ̂nj − λn1), .j = 1, . . . , p. Thus, with probability one, we have .ζn1 >

ζn2 > . . . > ζnp , and the eigenspace of

.Yn = Zn + √
n(�n − λn1Ip) = Zn − diag

(

0,

√
nδnξ

(1 + δnξ)1/p
, . . . ,

√
nδnξ

(1 + δnξ)1/p

)

(21)

associated with eigenvalue .ζn1 is spanned by

.wn1 = �′θ̂n1 =
(

En,11

E′
n,12

)

.

Partitioning .Zn into

.Zn =
(

Zn,11 Z′
n,21

Zn,21 Zn,22

)

,
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where .Zn,11 is a scalar and .Zn,22 is a .(p − 1) × (p − 1) matrix, Lemma 2 then yields
that .wn1 is proportional to the vector of cofactors associated with the first row of

.Mn,1 :=
⎛

⎝
Zn,11 − ζn1 Z′

n,21

Zn,21 Zn,22 −
√

nδnξ

(1+δnξ)1/p
Ip−1 − ζn1Ip−1

⎞

⎠, (22)

or equivalently, that .wn1 is proportional to the vector of cofactors associated with the
first row of

.

⎛

⎝
Zn,11 − ζn1 Z′

n,21
(1+δnξ)1/p√

nδnξ
Zn,21

(1+δnξ)1/p√
nδnξ

Zn,22 − Ip−1 − (1+δnξ)1/p√
nδnξ

ζn1Ip−1

⎞

⎠.

Since .Zn,21 and .Zn,22 are .OP(1) (Proposition 1) and so is .ζn1 (Proposition 2), we obtain
that

.

(
En,11

E′
n,12

)

= e1 + oP(1)

(recall that .En,11 > 0 almost surely and that .e1 is the first vector of the canonical basis
of .Rp) and that

.
√

nδnE′
n,12 = OP(1).

Using the fact that .En is orthogonal, it follows that

.nδ2n(1 − En,11) = ‖√nδnE′
n,12‖2

1 + En,11
= 1

2
‖√nδnE′

n,12‖2 + oP(1) = OP(1).

Since .En,22 is bounded, it also directly follows from (18) that .
√

nδnEn,21 = OP(1).
In view of (19), we then obtain that .En,22E′

n,22 − Ip−1 is .oP(1). Now, letting .�̂n :=
�̂

′
nV̂n�̂n = diag(λ̂n1, . . . , λ̂np), we have

.Zn,21 = √
n(�′V̂n�)21 = √

n(�′�̂n�̂n�̂
′
n�)21

= √
n(E′

n�̂nEn)21 = √
n(E′

n,12 E′
n,22)�̂n

(
En,11

En,21

)

= √
nλ̂n1En,11E′

n,12 + √
nE′

n,22diag(λ̂n2, . . . , λ̂np)En,21.
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Writing .�nj := √
n(λ̂nj − λnj ) for .j = 1, . . . , p, using (4)–(5), then (20), thus provides

.Zn,21 = �n1E′
n,11E′

n,12 + E′
n,22diag(�n2, . . . , �np)En,21

+√
n(1 + δnξ)(p−1)/pEn,11E′

n,12 + √
n(1 + δnξ)−1/pE′

n,22En,21

= E′
n,22diag(�n2 − �n1, . . . , �np − �n1)En,21 − √

nδnξ(1 + δnξ)−1/pE′
n,22En,21,

which, since the .�nj ’s are .OP(1) (Proposition 2), yields

.
√

nδnE′
n,22En,21 = − (1 + δnξ)1/p

ξ
Zn,21 + oP(1). (23)

Now, Proposition 1 directly entails that .vecZn = (�′ ⊗ �′)
√

nvec (V̂n − Vn) is
asymptotically

.N
(

0,

(

1 + 2

p

){

(Ip2 + Kp)(� ⊗ �) − 2

p
(vec�)(vec�)′

})

in case (i), where .� := diag((1 + ξ)(p−1)/p, (1 + ξ)−1/p . . . , (1 + ξ)−1/p) and

.N
(

0,

(

1 + 2

p

){

(Ip2 + Kp) − 2

p
Jp

})

in case (ii). Therefore, straightforward computations yield

.Zn,21 = (e2, . . . , ep)′Zne1 = (e′
1 ⊗ (e2, . . . , ep)′)vecZn →D N(0, B),

where

.B :=
(

1 + 2

p

)

(1 + ξ)(p−2)/pIp−1 and B :=
(

1 + 2

p

)

Ip−1

in case (i) and in case (ii), respectively. In view of (23), the desired asymptotic normality
result for .

√
nδnE′

n,22En,21 follows. The one for .
√

nδnE′
n,12 then follows from (20) and

the fact that .En,11 = 1 + oP(1).
We turn to the proof of (iii)–(iv). As above, .wn1 = �′θ̂n1 = E′

ne1 is the unit
eigenvector associated with the eigenvalue .ζn1 = �n1 = √

n(λ̂n1 − λn1) of .Yn in (21),
or equivalently, with the eigenvalue

.�̃n1 = �n1 +
√

nδnξ

(1 + δnξ)1/p
= √

n(λ̂n1 − λn2)

of

.Yn +
√

nδnξ

(1 + δnξ)1/p
Ip = Zn + diag

( √
nδnξ

(1 + δnξ)1/p
, 0, . . . , 0

)

. (24)
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Similarly, .wnj := �′θ̂nj = E′
nej , .j = 2, . . . , p, are the unit eigenvectors associated

with the .p − 1 smallest eigenvalues .�n2 = √
n(λ̂n2 − λn2), . . . , �np = √

n(λ̂np − λnp)

of (24). Consequently, the joint distribution of .wnj , .j = 1, . . . , p—that is, the joint
distribution of the columns of .E′

n—converges weakly to the joint distribution of the unit
eigenvectors (associated with eigenvalues in decreasing order, and with the signs fixed
as in the statement of the theorem) of

.Z + lim
n→∞ diag

( √
nδnξ

(1 + δnξ)1/p
, 0, . . . , 0

)

(recall that, in cases (iii)–(iv), .Zn converges weakly to the random matrix .Z). This
establishes the result.

Proof of Theorem 1 (i) In this regime, the eigenvalues .λnj , .j = 1, . . . , p, are fixed and
given by

.λ1 := (1 + ξ)(p−1)/p and λj := (1 + ξ)−1/p, j = 2, . . . , p,

respectively; see (4)–(5). Since

.
1

ξ2
(1 + ξ) = λ1λ2

(λ1 − λ2)2
,

Proposition 3(i) entails that

.
√

nE′
n,12 →D N

(

0,

(

1 + 2

p

)
λ1λ2

(λ1 − λ2)2
Ip−1

)

. (25)

Now, writing .τn := √
n(θ̂n1 − θ1), we have

.
‖τn‖2
2
√

n
= τ ′

nτn

2
√

n
=

√
n

2
(θ̂n1 − θ1)

′(θ̂n1 − θ1) = √
n(1 − θ ′

1θ̂n1) = −θ ′
1τn, (26)

where we used the fact that .θ̂n1 and .θ1 are unit vectors. Since .τn := √
n(θ̂n1 − θ1) is

.OP(1), it follows that

.(Ip − θ1θ
′
1)τn = τn − (θ ′

1τn)θ1 = τn + ‖τn‖2
2
√

n
= τn + oP(1)
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as .n → ∞. Therefore,

.
√

n(θ̂n1 − θ1) = (Ip − θ1θ
′
1)

√
n(θ̂n1 − θ1) + oP(1)

=
( p∑

j=2

θ j θ
′
j

)√
n(θ̂n1 − θ1) + oP(1)

= √
n

p∑

j=2

θ j (θ̂
′
n1θ j ) + oP(1)

= (θ2, . . . , θp)
√

nE′
n,12 + oP(1), (27)

so that the asymptotic normality result in (25) entails that .
√

n(θ̂n1−θ1) is asymptotically
normal with mean zero and covariance matrix

.

(

1 + 2

p

)
λ1λ2

(λ1 − λ2)2

p∑

j=2

θ j θ
′
j =

(

1 + 2

p

)
λ1λ2

(λ1 − λ2)2
(Ip − θ1θ

′
1),

as was to be shown. (ii) In this regime, .τn = √
n(θ̂n1 − θ1) is .OP(1/δn) (see (8)), so

that (26) yields

.(Ip − θ1θ
′
1)δnτn = δnτn + δn‖τn‖2

2
√

n
= δnτn + oP(1).

Therefore,

.
√

nδn(θ̂n1 − θ1) = (Ip − θ1θ
′
1)

√
nδn(θ̂n1 − θ1) + oP(1)

=
( p∑

j=2

θ j θ
′
j

)√
nδn(θ̂n1 − θ1) + oP(1)

= (θ2, . . . , θp)
√

nδnE′
n,12 + oP(1), (28)

so that the result follows from the fact that

.
√

nδnE′
n,12 →D N

(

0,
1

ξ2

(

1 + 2

p

)

Ip−1

)

.

in this regime; see Proposition 3(ii).
(iii) Let .Z be as in the statement of Proposition 3 and write again .� = (θ1, . . . , θp).

In the regimes (iii)–(iv),

.�′θ̂n1 =
(

En,11

E′
n,12

)
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converges weakly to the unit eigenvector associated with the largest eigenvalue of .Z +
diag(ξ, 0, . . . , 0) with .ξ > 0 in regime (iii) and .ξ = 0 in regime (iv). This directly
entails that

.θ̂n1 = �

(
En,11

E′
n,12

)

converges weakly to the unit eigenvector associated with the largest eigenvalue of

.�(Z + diag(ξ, 0, . . . , 0))�′ = �Z�′ + ξθ1θ
′
1. (29)

Part (iii) of the result then follows from the fact that the distribution of .Z is invariant with
respect to orthogonal transformations, in the sense that .OZO′ has the same distribution
as .Z for any .p × p orthogonal matrix .O. (iv) The proof for .ξ > 0 in (iii) above
applies for .ξ and shows that, in regime (iv), .θ̂n1 converges weakly to the unit eigenvector
associated with the largest eigenvalue of .Z = Z(0). Now, the orthogonal invariance of
the distribution of .Z = Z(0) entails that the joint distribution of its eigenvectors is the
invariant Haar distribution on the group of .p × p orthogonal matrices, which implies
in particular that each of these eigenvectors is uniformly distributed over .Sp−1. This
establishes Part (iv) of the result.
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On Minimax Shrinkage Estimation with
Variable Selection

Stavros Zinonos and William E. Strawderman

Abstract We study minimax estimators of the mean vector of a spherically
symmetric distribution that also perform variable selection by estimating certain
components as 0. The basic class of estimators developed is closely related to,
and generalizes, classes considered by Zhou and Hwang (2005) and Maruyama
(2014) in the Gaussian setting. The class of distributions studied includes scale
mixtures of normals (e.g., Student-t) as well as the general class of spherically
symmetric distributions with a residual vector. Certain subclasses of these estimators
based on truncated order statistics are shown to be particularly effective when some
information on the sparsity is known.

Keywords Shrinkage estimation · Variable selection · Minimaxity · Quadratic
loss

1 Introduction

We study minimax estimators of the mean vector of a spherically symmetric distri-
bution which dominate the standard minimax estimator .δ0(X) = X under squared
error loss. We are particularly interested in minimax estimators whose positive
part adaptively estimates a certain subset of the mean vector as 0, while shrinking
the remaining coordinates. The results may be viewed as a modification based on
order statistics of extensions of Zhou and Hwang (2005) and of Maruyama (2014)
from the Gaussian case to the broader class of spherically symmetric distributions,
and also to a somewhat wider class of estimators. The modification of this wider
class of estimators seems effective in risk reduction and variable selection when
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information on sparsity is available. Specifically, let .X be a spherically symmetric
distribution with density given by .f (‖x− θ‖2) where .dim(X) = dim(θ) = p ≥ 3,
.cov(X) = σ 2Ip where .σ 2 is known, and let the loss function for estimation of .θ be
given by

.L(θ,d) = ‖d − θ‖2. (1)

We study minimaxity of estimators of the form:

.δ(X) = (δ1(X), δ2(X), . . . , δp(X))′,

where

.δi(X) = (1 − φi(X))Xi, (2)

and where

.φi(X) = ψi(X
2
1, X

2
2, . . . , X

2
p). (3)

If .f (·) is unimodal and .δ(·) is minimax, the positive-part estimator .δ+(X) with

.δ+
i (X) = (1 − φi(X))+Xi

(where .a+ = max(0, a)) is also minimax (and in fact dominates .δ(X)) and
additionally may allow adaptively selected subsets of the coordinates to be estimated
by 0. Hence minimaxity and variable selection are simultaneously achieved. In
particular Theorem 2 establishes minimaxity of certain shrinkage estimators with
coordinates of the form

.δ+
i (x) =

⎧
⎪⎨

⎪⎩

(1 − cσ 2v(
∑p

i=1 h(x2
i ∧ z2

k))w(x2
i ))+xi if |xi | ≤ zk

(1 − cσ 2v(
∑p

i=1 h(x2
i ∧z2

k))w(z2
k)zk

|xi | )+xi if |xi | > zk,

(4)

where .xi ∧ xj = min(xi, xj ) and .Z = (Z(1), Z(2), · · · , Z(p))
′ with .Zi = |Xi |.

Hence .δ+
i (x) is set to zero whenever

.

⎧
⎨

⎩

w(x2
i ) > 1

cσ 2v(
∑p

i=1 h(x2
i ∧z2

k))
if |xi | ≤ zk

w(z2
k)zk

|xi | > 1
cσ 2v(

∑p
i=1 h(x2

i ∧z2
k))

if |xi | > zk.

Zhou and Hwang (2005) and Maruyama (2014) have studied classes of such
procedures given by (4) for the case .k = dim(X) = p in the Gaussian case, basing
shrinkage on the .�d -norm of .X: .1 < d < 2 for Zhou and Hwang, and general d for
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Maruyama. In particular the form of (4) when .k = dim(X) = p is given by

.δ+
i (X) = (1 − cσ 2v(

p∑

i=1

h(x2
i ))w(x2

i ))+xi . (5)

Hence .δ+
i (X) is set to 0 whenever

.w(x2
i ) >

1

cσ 2v(
∑p

i=1 h(x2
i ))

.

Applications of classes of these procedures given in (4) when .k = p were used
by Zhou and Hwang (2005) in estimation of functions via wavelets. For other
estimators in the context of wavelet denoising see, e.g., Donoho and Johnstone
(1994), Donoho and Johnstone (1995), and Cai (1999).

This type of modification of shrinkage estimators is due to Stein (1981). While
Stein introduced the idea to limit the amount of shrinkage, we use it to limit the
size of the denominator of the shrinkage factor, so that it is easier for coordinates
with small .|Xi | to be deselected (estimated as 0). A simulation study indicated that
this class can be particularly successful in reducing risk and in variable selection
in certain subspaces reflecting knowledge of the sparsity of the model. A notable
feature of this modified estimator as shown in the simulation studies is that,
in certain subspaces, the asymptotic risk is substantially less than the minimax
risk. Furthermore the asymptotic probability of selection of inactive (i.e., mean 0)
variables is strictly less than 1. Both of these asymptotic behaviors do not occur for
the Zhou-Hwang or Maruyama estimators.

In addition to extending the classes of minimax estimators we extend the results
to scale mixtures of normal distributions. We also extend the result to the general
class of spherically symmetric distributions with a residual vector that allows
estimation of an unknown scale. In particular let

.

(
X
U

)

∼ f (‖x − θ‖2 + ‖u‖2), (6)

where .dim(X) = dim(θ) = p ≥ 3, .dim(U) = m ≥ 1, and covariance matrix
.σ 2Ip+m with .σ 2 unknown. The vector .U is referred to as the residual vector and is
used to estimate the scale parameter .σ 2. The model (6) is a canonical form of the
general linear model with error vector .ε ∈ R

p+m where .ε ∼ f (‖ε‖2). Let

.L(θ,d) = ‖d − θ‖2

E‖U‖2 .

In this case the dominating minimax estimators are of the form

.δi(X,U) = (1 − U′Uφi(X)

m + 2
)Xi
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and

.δ+
i (X,U) = (1 − U′Uφi(X)

m + 2
)+Xi.

As a special case of this extension the estimator .δ+
i (X,U) will be minimax in the

Gaussian case with an unknown scale. The basic tool in the Gaussian setting is
the Stein unbiased estimator of risk technique as in Zhou and Hwang (2005) and
Maruyama (2014). Generalizations of this technique to the spherically symmetric
setting form the basis of the results for more general spherically symmetric
distributions. See Fourdrinier et al. (2018) for a general discussion of shrinkage
estimations for such models.

The paper is organized as follows: Sect. 2 considers classes of minimax estima-
tors in the Gaussian case. The generalization will include classes of pseudo-bayes
estimators. Section 3 studies extensions to the class of scale mixtures of normal
distributions. Section 4 extends the results of Sect. 2 to spherically symmetric
distributions (including the normal) with a residual vector. Section 5 simulates the
risk and probability that .|θ̂i | 	= 0 for certain classes of estimators developed in
Sect. 2. Section 6 gives some concluding remarks.

2 Results for the Normal Case, Known Scale

In this section, .X ∼ Np(θ , σ 2Ip) with .σ 2 known and loss given by (1). We focus on
modifications of estimators of the form

.δM(X)i = (1 − σ 2cv(D)w(x2
i ))xi = (1 − ψi(x

2
1 , . . . , x2

p))xi, (7)

where

.D =
p∑

i=1

h(x2
i ) (8)

and on their positive parts. The estimators of Zhou and Hwang (7) and
Marauyama (5) are of this form. The modifications are based on the ordered
values of the .|Xi |’s. Specifically let .Yi = |Xi | for .i = 1, . . . , p and let .Zk = Y(k),
where .Y(i) is the .ith order statistic and k is fixed, and such that .p ≥ k ≥ 3. The
form of the truncated version is

.δi(X) =
{

(1 − σ 2cv(D)w(x2
i ))xi if |xi | ≤ zk

(1 − σ 2cv(D)w(z2
k)

zk|xi | )xi if |xi | > zk,
(9)

where .D = ∑p

i=1 h(x2
i ∧ z2

k).
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The class of estimators considered in (7) contains classes of estimators which
are sometimes referred to as pseudo-Bayes estimators, by which we mean (in this
paper) estimators of the form

.δ(X) = X + σ 2g(X),

where

.g(X) = �m(X)

m(X)
.

The function .m(X) is referred to as a pseudo-marginal. If .m(X) were a true marginal
distribution corresponding to a generalized or proper prior .π(θ), then .δ would be a
generalized or proper Bayes estimator. This can be seen by setting

.m(t) = j2(t)

so that

.
(�m(D))i

m(D)
= 4j ′(D)h′(x2

i )xi

j (D)
(10)

with D as in (8). Hence,

.cv(D) = 4j ′(D)

j (D)
, and (11)

.w(x2
i ) = h′(x2

i ) (12)

so that the estimator (7) may be interpreted as a pseudo-Bayes estimator with
pseudo-marginal .m(x) = j2(D).

Theorem 1 gives general conditions under which thresholding each of the
coordinates of an estimator .δ(X) of .θ results in an estimator, .δ+(X) with smaller
risk under square error loss than .δ(X). Various versions, including Theorem 4 in
Zhou and Hwang (2005), have appeared in the literature. The current version is
broad enough to apply to other (non-Gaussian) distribution studied in this paper.

Theorem 1 Suppose .X is a random variable in .R
p with density .f (‖x−θ‖2) where

f is symmetric, and unimodal in each of the coordinates separately for each fixed
value of the other coordinates. Let .δ(X) = (δ1(X), . . . , δp(X))′ be an estimator of
.θ satisfying (2) and (3). Let

.δ+(X) = ((1 − φ1(X))+X1, . . . , (1 − φp(X))+Xp)′ =

.(δ+
1 (X), . . . , δ+

p (X))′
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then

.Eθ [θi − δ+
i (X))2] ≤ Eθ [(θi − δi(X))2] for i = 1, . . . , p.

Furthermore if there exists an i such that .Pθ (φi(X) > 1) > 0, then

.Eθ [(θi − δ+
i (X))2] < Eθ [(θi − δi(X))2].

Proof The proof is similar to that in Zhou and Hwang (2005). The details are
omitted.. �

The following standard Lemma follows easily from the covariance inequality
(see, e.g., Casella and Berger 2002, Theorem 4.7.9).

Lemma 1 Let f and h be continuous monotonic functions defined over .[a, b] ⊆ R

into .R. For any finite collection .{xi}i=1,...,n ⊆ [a, b]
(i) If f and h are both monotonic increasing functions, then

.(

n∑

i=1

f (xi))(

n∑

i=1

h(xi)) ≤ n

n∑

i=1

f (xi)h(xi).

(ii) If f is a monotonic increasing function and h is a monotonic decreasing function,
then

.n

n∑

i=1

f (xi)h(xi) ≤ (

n∑

i=1

f (xi))(

n∑

i=1

h(xi)).

. �
Theorem 2 is the main result of this section. Sufficient conditions are given so
that estimators of the form (7) and their positive-part versions are minimax under
squared error loss, .‖d − θ‖2.

Theorem 2 Let .X ∼ Np(θ , σ 2Ip) with .σ 2 known and .θ unknown. Let .δ(X) = X+
σ 2g(X) be of the form (9) with .g(X) weakly differentiable and .Eθ [‖g(X)‖2] < ∞.
Also, assume the following:

k is fixed and such that .p ≥ k ≥ 3.
Assumptions on .h(·):

(H1) h(t) is differentiable in t for all .t ≥ 0.
(H2) h(t) and .h′(t) are non-negative for all .t ≥ 0.
(H3) There exists a constant .B > 0 such that .h′(t)t ≤ Bh(t) for all .t ≥ 0.

Assumptions on .w(·):
(W1) w(t) is differentiable with respect to t for all .t ≥ 0.
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(W2) .w(t) ≥ 0 and .w′(t) ≤ 0 for all .t ≥ 0.
(W3) There exists a constant .A < 0 such that .Aw(t) ≤ w′(t)t for all .t ≥ 0.
(W4) For .t ≥ 0 w(t)t is monotonic increasing in t.

Assumptions on .v(·):
(V1) The first derivative with respect to t, .v′(t), exists for all .t > 0.
(V2) For .t > 0, .v(t) > 0 and .v′(t) < 0.
(V3) There exists a constant .F > 0 such that .−4v′(t)t ≤ Fv(t) for .t > 0.

(V4) There exists a constant .H > 0 such that .v(D)
∑p

i=1{w(x2
i ∧z2

k)(x
2
i ∧z2

k)} ≤ H

for all .xi 	= 0,

where .D = ∑p

i=1 h(x2
i ∧ z2

k). Then the estimator .δ(X) is minimax under squared
error loss provided:

.0 < 4k(A + 1

2
) − FB

and

.0 < c ≤ 4k(A + 1
2 ) − FB

H

is satisfied. Furthermore the estimator .δ+(X) will also be minimax.

Comment Before giving the proof, we comment on the possible value of the
truncating the estimators based on the ordered .|Xi |’s. Without truncation, if both
.v(t) and .w(t) are strictly monotonic decreasing functions, and if .h(t) is a strictly
monotonic increasing function (as in the case of Maruyama, i.e., Example 1), for
any .|xi | sufficiently large,

.w(x2
i ) <

1

σ 2cv(D)

so that for sufficiently large .‖X‖2 no coordinates of .δi(X) will be set to 0. If an
investigator believes at most s of .|θi | > 0, setting .k <= p − s allows some control
on the size of .v(D) so that coordinates in non-active sets have a higher probability
of being set to 0 for large values of .‖X‖2, while coordinates in active sets with .|xi |
sufficient large satisfy

.
w(z2

k)

|xi | <
1

σ 2cv(D)

and are not set to 0. The idea of truncation was used by Stein (1981) to modify the
shrinkage pattern of James–Stein estimators so that the amount of shrinkage of large
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.|Xi |’s was controlled. In this context we use it as a means to control the thresholding
in sparse sets to produce estimators with more favorable model selection properties.

Proof The proof is based on Stein’s unbiased estimator of risk (Stein 1981), i.e.,
.� = E[‖X+σ 2g(X)−θ‖2]−E[‖X−θ‖2] = σ 4E[‖g(X)‖2 +2div(g(X))]. Hence
to prove minimaxity of .X+σ 2g(X) it suffices to show .‖g(X)‖2 + 2div(g(X)) ≤ 0,
since .Eθ‖g(X)‖2 < ∞ is sufficient for the risk of .δ(X) to be finite. Without loss of
generality we assume that .σ 2 = 1. Since

.
∂gi

∂xi

=

⎧
⎪⎪⎨

⎪⎪⎩

−cv(D)[2w′(x2
i )x2

i + w(x2
i )] − 2cv′(D)w(x2

i )h′(x2
i )x2

i if |xi | < Zk

−cv(D)[2w′(z2
k)z

2
k + w(z2

k)] − 2c(p − k + 1)v′(D)w(z2
k)h

′(z2
k)z

2
k if |xi | = Zk

0 if |xi | > Zk

.‖g(x)‖2 + 2divx(g(x)) is expressible as

.c2v2(D)[
k−1∑

j=1

w2(x2
(j))x

2
(j) + (p − k + 1)w2(z2

k)z
2
k]−

.4cv′(D){
k−1∑

j=1

w(x2
(j))h

′(x(j)2)x
2
(j) + (p − k + 1)w(z2

k)h
′(z2

k)z
2
k}−

.{4cv(D)[
k−1∑

j=1

(w′(x2
(j))x

2
(j)) + w(x2

(j))

2
)] + (w′(z2

k)z
2
k + w(z2

k)

2
)} =

.cV (D)[
k−1∑

j=1

w(x2
(j)) + (p − k + 1)w(z2

k)]{L1 + L2 − L3, } (13)

where

.L1 = cv(D)[∑k−1
j=1 w2(x2

(j))x
2
(j) + (p − k + 1)w2(z2

k)z
2
k]

∑k−1
j=1 w(x2

(j)) + (p − k + 1)w(z2
k)

(14)

.L2 = −4v′(D){∑k−1
j=1 w(x2

(j))h
′(x2

(j))x
2
(j) + (p − k + 1)w(z2

k)h
′(z2

k)z
2
k}

V (D)[∑k−1
j=1 w(x2

(j)) + (p − k + 1)w(z2
k)]

(15)

.L3 = 4{∑k−1
j=1(w

′(x2
(j))x

2
(j)) + w(x2

(j)
)

2 )] + (w′(z2
k)z

2
k + w(z2

k)

2 )}
∑k−1

j=1 w(x2
(j)) + (p − k + 1)w(z2

k)
(16)

in (13). Bounds on .L1, .L2, and .L3 are given so that .L1+L2 ≤ L3 which implies (13).≤
0.
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From assumption W3 and arranging the sum to include first k terms

.4(A + 1

2
)(

∑k
j=1 w(x2

(j))
∑k

j=1 w(x2
(j)) + (p − k)w(z2

k)
) ≤ L3.

Let .w̄n =
∑n

j=1 w(X2
(j)

)

n
. Since .w(t) is decreasing in t (assumption W2), and .|X(j)| ≤ Zk

for .j ≤ k, .(p − k)w̄k ≥ (p − k)w(Zk), so that

.4(A + 1

2
)
k

p
= 4(A + 1

2
)

k(w̄k)

k(w̄k) + (p − k)w̄k

≤ (17)

.4(A + 1

2
)(

∑k
j=1 w(x2

(j))
∑k

k=1 w(x2
(j)) + (p − k)w(z2

k)
) ≤ L3. (18)

Since .w(t)t is increasing in t (assumption W4) and w(t) is decreasing in t
(assumption W2) Lemma 1 implies the p terms in the sum of .L1 satisfy

.L1 ≤ cv(D){ (
∑k−1

j=1(w(x2
(j))x

2
(j)) + (p − k + 1)w(z2

k)z
2
k)(

∑k−1
j=1 w(x2

(j)) + (p − k + 1)w(z2
k))

p(
∑k−1

j=1 w(x2
(j)) + (p − k + 1)w(z2

k))
} ≤

.(assumption V4)
cH

p
. (19)

By assumptions V3 and H3

.L2 ≤ FB(
∑k−1

j=1 w(x2
(j))h(x2

(j)) + (p − k + 1)w(z2
k)h(z2

k))

D(
∑k−1

j=1 w(x2
(j)) + (p − k + 1)w(z2

k))
≤ (20)

.
FB{∑k−1

i=1 w(x2
(j))) + (p − k + 1)w(z2

k)}D
D{∑k−1

j=1 w(x2
(j)) + (p − k + 1)w(z2

k)}p
= FB

p
, (21)

where (21) follows from (20) form Lemma 1 using the p terms in the sum for
.L2 since w is decreasing (assumption W2) and h is increasing (assumption H2).
Therefore once

.0 ≤ L1 + L2 ≤ cH + FB

p
≤ 4(A + 1

2
)
k

p
≤ L3

is satisfied .δ(X) is minimax. .�

Theorem 1 implies the positive-part estimators, or equivalently the adaptively
thresholded estimators, are also minimax. Hence in general under the stated
condition on h(), w(), and v(), the shrinkage estimator given by (9) remains minimax
when each coordinate is adaptively thresholded (and set to 0).
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Example 1 (Truncated Maruyama Estimator) In this example we retrieve the
results of Maruyama (2014) and Zhou and Hwang (2005) as a special cases of
Theorem 2. Let .X ∼ Np(θ, Ip). The estimators considered by Zhou and Hwang
have coordinates of the form

.δZH,i(X, a, c) = (1 − c

‖X‖2−a
2−a|Xi |a

)Xi, (22)

where

.0 < c ≤ 2(p − 2 − a(p − 1)),

and are minimax provided .p ≥ 3 and .0 < a <
p−2
p−1 . Here .‖x‖a = [∑ |xi |a] 1

a . As

Maruyama (2014) notes, this is a subclass of his estimators, .δM(X, a, d, c), with .ith

coordinates of the form

.δM,i(X, a, d, c) = (1 − c

‖X‖2−a
d |Xi |a

)Xi (23)

for .d > 0. Maruyama (2014) gives the condition

.0 < c ∗ max{1, p1−( 2−a
d

)} ≤ 2(p − 2 − a(p − 1))

for .p ≥ 3, .0 < a <
p−2
p−1 , and .d > 0 for the minimaxity of .δM(X, a, d, c). This

implies the Zhou and Hwang result since

.max{1, p1− 2−a
d } = 1

for .d = 2 − a with .0 < a <
p−2
p−1 .

Interestingly, the Zhou and Hwang estimator can be derived as a pseudo-Bayes

estimator of the form (10)- (12) where .j (t) = t−
a1
4 and .h(t) = t

d1
2 so that

.cv(D) = 4
j ′(D)

j (D)
= −a1

4D
= −a1

∑p

i=1(x
2
i )

d1
2

,

and

.w(x2
i ) = h′(x2

i ) = −d1

2
(x2

i )
d1−2

2 .

Hence

.X + �m(X)

m(X)
= (1 − a1(

d1
2 )

[∑p

i=1 |xi |d1]|xi |2−d1
)xi .
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Let .Yi = |Xi |, and .Zk = Y(k) denote the .kth largest value of .Yi .
Example 2 shows the estimator

.δi(x, a, c, d, k) =

⎧
⎪⎪⎨

⎪⎪⎩

xi − cxi

[∑p
i=1(|xi |d∧zd

k )] 2−a
d |xi |a

if |xi | ≤ zk

xi − czk∗sign(xi )

[∑p
i=1(|xi |d∧zd

k )] 2−a
d za

k

if |xi | > zk

(24)

is a minimax estimator for .0 < c ∗ max{1, p1−( 2−a
d

)} ≤ 2(k − 2 − a(k − 1)),
.0 < a < k−2

k−1 , .d > 0, and .3 ≤ k ≤ p = dim(X). Setting .k = p in (24) yields back
Maruyama’s estimator (23) with the same bounds for minimaxity under squared
error loss.

Example 2 (Truncated Maruyama Continued)
As in Example 1, let .σ 2 = 1. Since .sign(xi) = xi|xi | , (24) can be re-expressed as

.δi(x, a, c, d, k) =

⎧
⎪⎨

⎪⎩

(1 − c

[∑p
i=1(|xi |d∧zd

k )] 2−a
d |xi |a

)xi if |xi | ≤ zk

(1 − czk

[∑p
i=1(|xi |d∧zd

k )] 2−a
d za

k |xi |
)xi if |xi | > zk.

(25)

The minimaxity of .δ+ follows from Theorem 2 as follows, with the identification

.v(t) = t−( 2−a
d

), h(t) = t
d
2 , w(t) = t− a

2 .
Condition on .h(·):

With .h(t) = t
d
2 conditions H1, and H2 are satisfied once .d > 0, and condition H3

is satisfied with .B = d
2 .

Conditions on .w(·):
With .w(t) = t−( a

2 ) and .0 ≤ a ≤ 2, conditions W1-W4 are satisfied with .A = − a
2 .

Conditions on .v(·):
With .v(t) = t−( 2−a

d
) V1-V3 are satisfied with .0 < a < 2, d > 0, and .F = 4( 2−a

d
).

Selection of the constant H which satisfies V4 can be separated into 2 cases:
Case 1: .

2−a
d

> 1. Since

.[
p∑

i=1

(x2
i )

d
2 ] 2−a

d ≥
p∑

i=1

(x2
i )

2−a
2 (26)

we can choose H to be 1.
Case 2: .

2−a
d

< 1.

From Jensen’s inequality for a concave functions (i.e., .c(x) that .c(EX) ≥ Ec(X))

.[
∑p

i=1(x
2
i )

d
2

p
]( 2−a

d
) ≥

∑p

i=1 x
2( 2−a

2 )

i

p
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which implies

.

∑p

i=1(x
2
i )(

2−a
2 )

[∑p

i=1(x
2
i )(

d
2 )]( 2−a

d )
≤ (

1

p
)(

2−a
d

)−1

so that .H = p1−( 2−a
d

).

From Case 1 and 2, .H = max{1, p1−( 2−a
d

)}.
From Theorem 2, (25) will be minimax once:

.0 < c ∗ max{1, p1−( 2−a
d

)} ≤ 4k(
1 − a

2
) − 4(

2 − a

d
)
d

2
,

or equivalently,

.0 < c ∗ max{1, p1−( 2−a
d

)} ≤ 2(k − 2 − a(k − 1))

for .0 < a < k−2
k−1 , .3 ≤ k ≤ p, and .d > 0.

A simulation study in Sect. 5 indicates that, when knowledge of the sparsity, .p −
k, is available, the positive-part version of estimator (25) markedly improves both
the risk and probability of non-inclusion of inactive variables in certain subspaces.

3 Scale Mixtures of Normal Distributions

In this section we extend Theorem 2 to the case of scale mixtures of normals. In
particular the distributions studied have the hierarchical structure

.X|σ 2 ∼ Np(θ, σ 2Ip) (27)

.σ 2 ∼ G(σ 2), (28)

where .E[σ 2] < ∞ and .E[ 1
σ 2 ] < ∞. The estimators studied have coordinates of the

form (analogous to (9))

.δ(x)i = xi −

⎧
⎪⎨

⎪⎩

c

E[ 1
σ2 ]v(

∑p

i=1 h(x2
i ))w(x2

i )xi if |xi | ≤ zk

c

E[ 1
σ2 ]v(

∑p

i=1 h(x2
i ∧ z2

k))w(z2
k)zk ∗ sign(xi) if |xi | > zk.

(29)

Here is the main result of this section. Its proof uses similar techniques found
in Strawderman (1974) which proved extensions to Baranchik-type shrinkage
estimators for scale mixture of normal distributions.
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Theorem 3 Let .X have the distribution given in (27)–(28) where .E[σ 2] and .E[ 1
σ 2 ]

are finite. Let .δ(X) be an estimator for .θ with .ith coordinate given by (29) such that
v, h, and w satisfy the assumptions of Theorem 2 with .k ≤ p, .4k(A + 1

2 ) − FB > 0.
Also assume that .E[σ 2 ∑p

i=1 v(
∑p

i=1 h(x2
i ∧ z2

k))w(x2
i ∧ z2

k)|σ 2] is a monotonic
increasing function of .σ 2. Then the estimator .δ(X) is minimax for

.0 < c ≤ 4k(A + 1
2 ) − FB

H
.

Proof Let

.r = c

E[ 1
σ 2 ]

so that the ith coordinate of the estimator .δ is expressible as

.δi(x) = xi −
{

rv(
∑p

i=1 h(x2
i ))w(x2

i )xi if |xi | ≤ zk

rv(
∑p

i=1 h(x2
i ∧ z2

k))w(z2
k)zk ∗ sign(xi) if |xi | > zk.

The conditional (on .σ 2) difference in risk, .�, between this estimator and .X is
expressible as

.� = E[‖g(X) + 2(X − θ)′g(X)‖2] = E[E[‖g(X)‖2 + 2σ 2divx(g(X))|σ 2]]

. = E[E[rσ 2V (D)[
k−1∑

j=1

w(x2
(j)) + (p − k + 1)w(z2

k)]{
L1

σ 2
+ L2 − L3}|σ 2]]

with .L1,.L2, and .L3 as in (14) - (16) of the proof of Theorem 2. As in the proof of
Theorem 2,

.L1 ≤ rH

σ 2p
,L2 ≤ FB

p
, and, L3 ≥ 4(A + 1

2
)
k

p
, (30)

where the bounds in (30) are established in (17)–(21) in the proof of Theorem 2. Let

.Mk = σ 2rV (D)[
k−1∑

j=1

w(x2
(j)) + (p − k + 1)w(z2

k),

.T1(σ
2) = E[Mk|σ 2], and

.T2(σ
2) = E[ rH

σ 2p
+ FB

p
− 4(A + 1

2
)
k

p
].
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Therefore

.� = E[E[Mk{L1

σ 2 + L2 + L3}|σ 2]]

. ≤ E[E[Mk{ rH

σ 2p
+ FB

p
− 4(A + 1

2
)
k

p
}|σ 2]] (31)

. ≤ E[T1(σ
2)]E[T2(σ

2)], (32)

where (32) follows from (31) by the correlation inequality since .T1(σ
2) is a

monotonic increasing function of .σ 2, and .T2(σ
2) is a monotonic decreasing function

of .σ 2. Expression (32) is non-positive once

.0 ≤ r ≤ 4k(A + 1
2 ) − FB

HE[ 1
σ 2 ]

or equivalently

.0 ≤ c ≤ 4k(A + 1
2 − FB)

H

establishing the result. .�
Example 3 (Extension of Truncated Maruyama Estimator) Let .X|σ 2 ∼
Np(θ , σ 2Ip) and assume that the distribution of .σ 2 satisfies .E[σ 2] and .E[ 1

σ 2 ]
are finite. Then the estimator .δ(X) of .θ with .ith coordinate of the form

.δ+
i (x, a, c, d, k) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − c

[E[ 1
σ2 ]∑p

i=1(|xi |d∧zd
k )] 2−a

d |xi |a
)+xi if |xi | ≤ zk

(1 − czk

E[ 1
σ2 ][∑p

i=1(|xi |d∧zd
k )] 2−a

d za
k |xi |

)+xi if |xi | > zk

where .zk = y(k), .3 ≤ k ≤ p, and .yi = |xi |, is minimax for

.0 < c ∗ max{1, p1− 2−a
d } ≤ 2(k − 2 + a(k − 1)),

.0 < a < k−2
k−1 , and .d > 0. This follows from Theorem 3 and Example 1 with

the identification .h(t) = t
d
2 , .v(t) = t−( 2−a

d
), and .w(t) = t− a

2 . Example 1
established the conditions on c, so that .cH + FB ≤ 4k(A + 1

2 ). When .k =
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p E[σ 2 c

E[ 1
σ2 ]V (D)

∑p

i=1 w(x2
i )|σ 2] is a monotonic increasing function of .σ 2. To

show this monotonicity, note that

.E[σ 2 c

E[ 1
σ 2 ]v(D)

p∑

i=1

w(x2
i )|σ 2]

. = c

E[ 1
σ 2 ]E[σ 2

∑p

i=1(x
2
i )− a

2

(
∑p

i=1(x
2
i )

d
2 )

2−a
d

|σ 2](letting y2
i = x2

i

σ 2
)

. = c

E[ 1
σ 2 ]E[

∑p

i=1(y
2
i )− a

2

(
∑p

i=1(y
2
i )

d
2 )

2−a
d

|σ 2]

. = c

E[ 1
σ 2 ]E[

∑
k 	=i (y

2
k )− a

2

((y2
i )

d
2 + ∑

k 	=i (y
2
k )

d
2 )

2−a
d

+ (y2
i )− a

2

((y2
i )

d
2 + ∑

k 	=i (y
2
k )

d
2 )

2−a
d

|σ 2]

. = c

E[ 1
σ 2 ]E[U1(y

2
i , . . . , y2

p) + U2(y
2
i , . . . , y2

p)].

Here, both .U1 and .U2 are monotonic decreasing in each .y2
i for every fixed value

of the other coordinates. Since .{Y 2
i ; i = 1, . . . , p} is a collection of independent

random variables such that

.Y 2
i ∼ χ2

1 (
θ2
i

σ 2 = νi)

is stochastically increasing in .νi and hence stochastically decreasing in .σ 2 (see,
e.g., Lehmann and Romano 2005, Lemma 3.4.2), and each .Ui(y

2
i , · · · , y2

p) is
a decreasing function of each of its coordinates, the random variables .Ui are
stochastically increasing in .σ 2. It follows .

c

E[ 1
σ2 ]E[U |σ 2] is a monotonic increasing

function of .σ 2. When .3 ≤ k < p, the monotonicity of

.E[
∑k−1

j=1[(Y 2
(j))

−a
2 ) + (p − k + 1)(Y 2

(k))
− a

2 ]
[∑k−1

j=1(Y
2
(j))

d
2 + (p − k + 1)(Y 2

(k))
d
2 ] 2−a

d

|σ 2] = E[U(Y 2
(1), Y

2
(2), . . . , Y

2
(k))]

with respect to .σ 2 where .Y 2
i ∼ χ2

1 (
θ2
i

σ 2 = νi), follows from U being an increasing
function of each coordinate for fixed values of the other coordinates and the order
statistics originate from a collection of independent random variable .{Yi}, where
each .Y 2

i is stochastically increasing in .νi (stochastically decreasing in .σ 2) so that
.Y 2

(i) is stochastically increasing in .νi (stochastically decreasing in .σ 2).
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4 Spherically Symmetric Distributions with Residual

This section extends the results of Sect. 2 to the general spherically symmetric case
with a residual vector. In this section we do not assume a known covariance matrix
for the distribution and use the residual vector to estimate the unknown scale. In
particular suppose

.

(
X
U

)

∼ SSp+m

((
θ

0

))

with .dim(X) = dim(θ) = p ≥ 3 and .dim(U) = dim(0) = m ≥ 1, and let the loss
be

.L(d, θ) = ‖d − θ‖2

E[‖U‖2] . (33)

The covariance matrix will be of the form .σ 2Ip+m with .σ 2 unknown. The estimate

.E[ ‖U‖2

m+2 ] serves as an estimate for the unknown scale parameter .σ 2. Loss (33)
is chosen as an invariant loss function where the estimator .X of the location
parameter .θ is a minimax. As a special case, the results of this section apply when
the underlying distribution is a normal distribution with residual vector .U, and
covariance .σ 2Ip+m. The following Lemma from Fourdrinier et al. (2006) applies
to general estimators of the form

.δ(X, S) = X + S

m + 2
g(X), (34)

where .S = ‖U‖2.

Lemma 2 (Fourdrinier et al. 2006) Let .

(
X
U

)

∼ SSp+m

((
θ

0

))

where .dim(X) =
dim(θ) = p ≥ 3 and .dim(U) = dim(0) = m ≥ 1. Assume .E[‖U‖2] < ∞ and
that .g(X) is such that

(i) .g(X) is a weakly differentiable function,
(ii) .E[‖U‖4‖g‖2] < ∞
(iii) .‖g(X)‖2 + 2divx(g(X)) ≤ 0 a.e.

Then the estimator (34) is minimax under the loss (33).

Theorem 4 is a straightforward consequence of Lemma 2 and Theorem 2. It is
the main result of this section.

Theorem 4 Let .

(
X
U

)

∼ SSp+m(

(
θ

0

)

) where .dim(X) = dim(θ) = p ≥ 3 and

.dim(U) = dim(0) = m ≥ 1 such that all second moments exist. Let .Zk = Y(k)
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where .Yi = |Xi | for .i = 1, . . . , p and .3 ≤ k ≤ p. Then the estimator

.δ(X, ‖U‖2) =

⎧
⎪⎨

⎪⎩

(1 − ‖U‖2cv(D)w(X2
i )

(m+2)
)Xi if |Xi | ≤ Zk

(1 − ‖U‖2cv(D)w(Z2
k )Zk

(m+2)|Xi | )Xi if |Xi | > Zk,

(35)

where .D = ∑p

i=1 h(X2
i ∧Z2

k ), and v, w, and h satisfy the assumptions of Theorem 2
with,

.4k(A + 1

2
) − FB ≥ 0

and

.0 < c ≤ 4k(A + 1
2 ) − FB

H

is minimax under loss (33) provided assumption ii) of Lemma 2 is also satisfied. If,

in addition, .

(
X
U

)

has a density, f that is unimodal, the positive-part version of this

estimator dominates the original estimator, .X.

Proof With the identification

.gi(x) =
⎧
⎨

⎩

cv(D)x(x2
i )xi if |xi | < zk

cV (D)w(z2
k)zkxi

|xi | if |xi | ≥ zk

Equation (35) is expressible as .δ(X, S) = X + Sg(X)
m+2 , where .S = ‖U‖2. Therefore

the difference in risk between the minimax estimator, .X, and .δ is proportional to

.E

[
S2

(m + 2)2 ‖g(X)‖2 + 2
S

m + 2
(X − θ)′g(X)

]

. (36)

Lemma 2 establishes sufficient conditions in which estimator (35) is minimax by
expressing (36) as

.E

[
S2

(m + 2)2 ‖g(X)‖2 + 2
S2

(m + 2)2 divX(g(X))

]

using the equality .E[S(X − θ)′g(X)] = 1
(m+2)

E[S2divx(g(X))]. Therefore once
the assumptions of Theorem 2 are satisfied, assumption iii) of Lemma 2 is satisfied,
proving the result. Assumption ii) of Lemma 2 is sufficient for the risk of the
estimator to exist.
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5 A Simulation Study

In this section we study the risk function and the probability that .|θ̂i | 	= 0 for
.δ(X, a, d, c, k) with coordinates of the form

.δi(x, a, c, d, k) =

⎧
⎪⎨

⎪⎩

(1 − c

[∑p
i=1(|xi |d∧zd

k )] 2−a
d |xi |a

)+xi if |xi | < zk

(1 − czk

[∑p
i=1(|xi |d∧zd

k )] 2−a
d za

k |xi |
)+xi if |xi | ≥ zk

(37)

in the Gaussian case. We assume without loss of generality that .σ = 1, since for all
estimators under consideration .R(θ , σ, δ) = R( θ

σ
, 1, δ). The dimension, p, in each

of the simulations is 12.
For .δ(X, a, d, c, k) in (37) we consider .a = 0.2 and .d = 1.8 with .k = 6, 9, 11,

and 12, and the following one dimensional subspaces:

.D1 = 〈e1〉, (38)

and

.D3 = 〈e1 + e2 + e3〉, (39)

where .{ei}i=1,2,...,12 denotes the standard Euclidean basis in .R
12. The shrinkage

constant, c, is chosen to be .c = 2(k − 2 − a(k − 1)), i.e., the largest value leading
to minimaxity. The case .k = 12 corresponds to the Zhou and Hwang estimate.
To illustrate the effect of basing shrinkage on the .�2−a norm we also include the
positive-part James–Stein estimators (corresponding to .a = 0 and .k = 12, d = 2)
with the shrinkage constant .2(p−2). The mvrnorm (Genz et al. 2020) function in the
MASS (Venables and Ripley 2002) package for R version 4.02 was used to generate
70,000 simulations from a multivariate normal distribution with mean .0.1je1, and
.0.25j (e1+e2+e3), and covariance equal to .I12 for every .j ∈ {0, 1, 2, . . . , 99}. After
each simulation the estimator was computed and the loss along with the output of
an indicator function specifying if .|δi | > 0 was recorded.

Figures 1 and 2 plot the risks of .δ(X) when .a = 0.2 for the varying parameter k,
and compares it to the positive-part James–Stein estimator over the spaces .D1 and
.D3, respectively, as functions of .‖θ‖2.

Note that the risks of the positive-part James–Stein estimators depend only on
.‖θ‖2 and not on the particular one dimensional subspace, however, the risk of the
two Zhou-Hwang estimators, along with their truncated versions depend both on
.‖θ‖2 and on the particular one dimensional subspace .Di . The risk of the Zhou and
Hwang estimator as well as the positive-part James–Stein estimator approaches the
risk of the minimax estimator .X from below for sufficiently large .‖θ‖2. For each .Di ,
at the origin, the positive-part James–Stein estimator with .c = 20 has the smallest
risk, followed by the Zhou-Hwang estimator, then the three truncated versions of



On Minimax Shrinkage Estimation with Variable Selection 83

Fig. 1 Risk of the estimator
.δ (37), for .a = 0.2, .d = 1.8,
.p = 12, and varying k, vs
positive-part James–Stein
estimator, in the direction .D1
(38)
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Fig. 2 Risk of the estimator
.δ (37), for .a = 0.2, .d = 1.8,
.p = 12, and varying k, vs
positive-part James–Stein
estimator, in the direction .D3
(39)
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40

2

the Zhou-Hwang Estimator with .k = 11 having smaller risk than when .k = 9, and
.k 6 having the highest risk.=

When .θ ∈ D1 and .‖θ‖2 is sufficiently large, the risks of the truncated versions
of the Zhou and Hwang estimators have asymptotes that are less than the risk of the
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Fig. 3 .P‖θ‖2 (|δi | > 0) for .δ

given by (37) vs positive-part
James–Stein estimator, for
.θ ∈ D3 (39) when .p = 12
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10

minimax estimator, .X. For sufficiently large .‖θ‖2 the risk of the truncated estimator
when .k = 9 and 6 is similar to and less than the risk of the truncated estimator
when .k = 11. For .θ ∈ D3 the risks of the truncated versions of the Zhou-Hwang
estimators when .k = 6 and .k = 9, approach values less than the risk of the minimax
estimator .X with .k = 6 having smaller asymptote than when .k = 9), however,
when .k = 11 the truncated version of the Zhou-Hwang estimator approaches the
risk of the estimator, .X, from below. This implies when k is misspecified and
.p − k < s, where s denotes the number of .θi in the active set, the estimators will
have risk comparable to the untruncated versions of the Zhou-Hwang estimators for
sufficiently large .‖θ‖2.

To study the probability of correct selection, Fig. 3 plots the .P‖θ‖2(|δi | > 0)

for the positive-part James–Stein estimator, the Zhou-Hwang estimator, and the
truncated versions of the Zhou-Hwang estimator for .k = 11 and 6 from Figs. 1
and 2 in the subspace .D3. Note that for the positive-part James–Stein estimator
this probability only depends on .‖θ‖2 and not on the coordinate .θi . For the Zhou-
Hwang estimators (both truncated and untruncated), however, this probability differs
from coordinate to coordinate depending on .‖θ‖2. For example, the curves for
.θ4, θ5, . . . , θ12 coincide and differ from that for .θ1, .θ2, and .θ3.

Note that for .θ ∈ D3, curve A (corresponding to .i = 1, 2, 3) is larger than curve
B (corresponding to .i = 4, 5,. . . ,12), curve C (corresponding to .i = 1, 2, 3) is larger
than curve D (corresponding to .i = 4, 5,. . . ,12), and curve E (corresponding to
.i = 1, 2, 3) is larger than curve F (corresponding to .i = 4, 5,. . . ,12). This indicates
that the Zhou-Hwang procedure has noticeably higher probability of including non-
zero .θi’s in the model than those .θi’s such that .θi = 0. However, only the truncated
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versions, when .p − k ≥ s, where s denoted the number of non-zero .θi’s, is able to
do so for large values of .‖θ‖2.

Although analytic bounds on the risk of estimator (37) over the parameter
subspace generated by the non-zero .θi’s, when k is correctly specified and .3 ≤
k ≤ p − s, seems intractable, we conjecture that the risk of truncated Zhou-Hwang
will have an asymptote that is strictly less than the minimax estimator, .X due to fact
that the truncated Zhou-Hwang procedure will estimate non-active coordinates as 0
with a non-zero probability over the parameter space, thereby decreasing the risk to
a value less than the minimax estimator, .X, as there will be no contribution to the
loss when .|θ̂i | is estimate as 0 when .θi = 0.

6 Summary and Conclusion

In this paper we extend the results of Zhou and Hwang (2005) and Maruyama (2014)
for the Gaussian case with covariance matrix .σ 2I, to broad classes of spherically
symmetric distributions including the case of scale mixtures of normal distributions,
and to the general class of spherically symmetric distributions with residual vector
and unknown scale (including the normal distribution with a residual vector and
covariance equal to an unknown scale times identity). Extension to the class of
estimators discussed by Zhou and Hwang (2005) and Maruyama (2014) is also
given. A numerical study suggests that certain classes of these estimators preform
favorably in terms of risk when compared to the positive-part James–Stein estimator
and are also successful in differentially estimating null coordinate parameters as 0.
An interesting feature is the development of such estimators based on the order
statistics of the .|X| ’s. In certain subspaces, these estimators have asymptotic risks
which are strictly less than the minimax risk and probability of selection of inactive
(mean 0) coordinates strictly less than 1.
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On the Finite-Sample Performance of
Measure-Transportation-Based
Multivariate Rank Tests

Marc Hallin and Gilles Mordant

Abstract Extending to dimension two and higher the dual univariate concepts of
ranks and quantiles has remained an open problem for more than half a century.
Based on measure transportation results, a solution has been proposed recently
under the name center-outward ranks and quantiles. Contrary to previous proposals,
center-outward ranks enjoy all the properties that make univariate ranks a successful
tool for statistical inference. Just as their univariate counterparts (to which they
reduce in dimension one), they allow for the construction of distribution-free and
asymptotically efficient tests for a variety of problems where the density of some
underlying noise or innovation remains unspecified. The actual implementation of
these tests involves the somewhat arbitrary choice of a grid. While the asymptotic
impact of that choice is nil, its finite-sample consequences are not. In this note, we
investigate this finite-sample impact in the typical context of the multivariate two-
sample location problem.

Keywords Measure transportation · Multivariate ranks · Two-sample rank tests

1 Introduction

1.1 David Tyler, Beyond Affine Equivariance and Elliptical
Symmetry

The closely related concepts of affine equivariance and elliptical symmetry
played a central role in the development of robust multivariate statistics over the

M. Hallin (�)
ECARES and Département de Mathématique, Université libre de Bruxelles, Brussels, Belgium
e-mail: mhallin@ulb.ac.be

G. Mordant
IMS, Universität Göttingen, Göttingen, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Yi, K. Nordhausen (eds.), Robust and Multivariate Statistical Methods,
https://doi.org/10.1007/978-3-031-22687-8_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22687-8protect T1	extunderscore 5&domain=pdf

 885 54077 a 885 54077 a
 
mailto:mhallin@ulb.ac.be
mailto:mhallin@ulb.ac.be
mailto:mhallin@ulb.ac.be
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5
https://doi.org/10.1007/978-3-031-22687-8_5


88 M. Hallin and G. Mordant

past 60 years.1 A critical attitude toward this dominant role of elliptical densities
constitutes a red thread running through all of David’s contributions to multivariate
analysis2—an attitude that actually takes place in a broader debate on the ordering
of the real space in dimension .d ≥ 2. Such ordering is an essential issue if the
univariate concepts of distribution and quantile functions, ranks, and signs, all
heavily depending on the canonical ordering of the real line, are to be extended to a
multivariate context.

1.2 Ordering the Real Space in Dimension d ≥ 2

The problem of ordering .R
d for .d ≥ 2, hence ranking multivariate observations,

has a long history in statistics. Many attempts have been made to define adequate
multivariate concepts of ranks.

The notion of rank, however, cannot be an isolated one and is inseparable
from that of empirical quantiles, quantile regions and quantile contours (collections
of points with ranks less than or equal to, or equal to, some given value), and
(collections of points having the same rank). A sound definition thus should include
all these concepts, along with their population versions—the population distribution
and quantile functions F and .Q := F−1—and their mutual relations (a quantile
function is the inverse of a distribution function; a population distribution function
and its empirical version are asymptotically related via a Glivenko–Cantelli result,
etc.). Among the key properties of any successful concept are the distribution-
freeness (within the class of absolutely continuous distributions .P, say) of the ranks
and the push-forward3 of a distribution .P by its distribution function F . Without
that property, the level of a quantile .Q(τ) = F−1(τ ) depends on the distribution .P
characterized by F and can be anything larger or smaller than .τ : as a quantile, thus,
it is totally meaningless.

Appealing as they are, none of the attempts that had been made until recently—
marginal ranks, spatial ranks, elliptical (or Mahalanobis) ranks, etc. .. . .—is satis-
fying the desired properties; actually, none of them is even enjoying distribution-
freeness. Nor do the various depth concepts: the probability content of a depth
contour of given depth strongly depends on the underlying .P, which hinders its
interpretation as a quantile contour.

1 Tukey (1960), Huber (1964), and Hampel (1968) generally are considered as laying the
foundations of modern robust statistics; see Ronchetti (2006) for a historical perspective and Stigler
(1973) for an account of the pre-Tukey era.
2 Significantly, “Robust Multivariate Statistics: Beyond Ellipticity and Affine Equivariance” is the
title of one of David’s NSF grants.
3 We adopt here the convenient terminology and notation of measure transportation: the push-
forward .F#P of .P by F is the distribution of .F(Z) where .Z ∼ P, i.e., .F(Z) ∼ F#P if .Z ∼ P.
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Based on measure transportation results (mainly, a theorem by McCann 1995),
Chernozhukov et al. (2017), Hallin (2017), and Hallin et al. (2021) recently
introduced the concepts of center-outward ranks and signs, distribution and quantile
functions which, for the first time, satisfy all the desired properties (see Hallin
et al. 2021 and the review by Hallin 2022 for details) and further triggered the
development of several appealing multivariate, distribution-free statistical proce-
dures, among which (Deb et al. 2021, 2020; Deb & Sen 2022; Faugeras &
Rüschendorf 2017; Hallin et al. 2022a,b,c; Shi et al. 2022a, 2021, 2022b). These are
the concepts we are considering, under various versions, in this note and describe
in Sect. 2. Section 3 provides details pertaining to the simulations of Sects. 4 and 5.
These simulations, by shedding some light on the power of center-outward rank-
based tests, constitute the main contribution of this paper.

2 Center-Outward Ranks and Signs

For the simplicity of exposition, we throughout consider distributions .P on .R
d in

the family .Pd of Lebesgue-absolutely continuous distributions with nonvanishing
densities, that is, with a density f such that for all .B > 0, there exist .m−

B ≤ m+
B

such that .0 < m−
B ≤ f (z) ≤ m+

B ≤ ∞ for all .z such that .‖z‖ ≤ B. That assumption
can be relaxed, though, see del Barrio et al. (2020).

2.1 Measure Transportation-Based Concepts of Distribution
and Quantile Functions

The basic idea behind the definitions of the center-outward distribution and
quantile functions of a probability measure .P ∈ Pd is quite simple. For
.d = 1, the distribution function F of .P is the unique monotone increasing function
pushing .P forward to the uniform .U[0,1] over .[0, 1]—namely, .F#P = U[0,1].
Rather than F , however, which is based on a left-to-right ordering of .R that
does not extend to .R

d for .d ≥ 2, we consider the center-outward distribution
function .F± := 2F − 1, which contains the same information as F and is the
unique monotone increasing function pushing .P forward to the uniform .U[−1,1]
over .[−1, 1]. A monotone increasing function is the gradient (the derivative) of
a convex function: the center-outward distribution function .F± actually, is the
unique gradient of a convex function such that .F±#P = U[−1,1]. The interval
.[−1, 1] is, for .d = 1, the closed unit ball .S̄d , where .Sd := {

u|‖u‖ < 1
}

and, denoting by .Ud the spherical uniform4 over .S̄d , the spherical uniform .U1
over .S̄1 coincides with the Lebesgue uniform .U[−1,1] over .[−1, 1].

4 The spherical uniform .Ud over .S̄d is the spherical distribution with center .0 and radial density
the uniform over .[0, 1]: it is thus the product of a uniform over .[0, 1] for the distances to the origin
and a uniform over the unit (hyper)sphere for the directions.
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A celebrated theorem by McCann (1995) tells us that, for arbitrary dimen-
sion .d ∈ N and arbitrary .P ∈ Pd, there exists a (.P-a.s., here Lebesgue-a.e.)
unique gradient of a convex function .F± such that .F±#P = Ud . Obviously,
for .d = 1, .F± coincides with the univariate .F±, whence the notation. Call
.F± the center-outward distribution function of .P. It follows from Figalli (2018)
that—except perhaps at .F−1± (0) (a set of points with Lebesgue measure zero)—
.F±#P is a homeomorphism and hence admits a continuous (except perhaps at .0)
inverse .Q± := F−1± : let .Q±(0) := F−1± ({0}) and call .Q± the center-outward quantile
function of .P. Clearly, .Q±#Ud = P.

This, with the spherical uniform .U1 .Ud (extending .U[−1,1]) as a reference
distribution, is the concept proposed in Hallin (2017) and Hallin et al. (2021), where
we refer to for further properties of .F± and .Q± justifying their qualification as
distribution and quantile functions.

Other choices are possible for the reference .U, though. Replacing .Ud with
an arbitrary compactly supported absolutely continuous reference distribution
.U, Chernozhukov et al. (2017), in a very general approach, propose, under
the name of Monge-Kantorovich vector rank and Monge-Kantorovich quantile
functions, measure-transportation-based definitions of a broad class of analogues,
.FMK and .QMK, say, of .F± and .Q±. For nonspherical .U’s, however, the Monge–
Kantorovich quantile functions do not enjoy all the features expected from a quantile
function;5 Chernozhukov et al. (2017) therefore also introduce a concept of Monge-
Kantorovich depth .D MK—a transformation–retransformation version (based on the
Monge–Kantorovich vector rank function) of the classical Tukey depth .DTukey.
For spherical .U’s, the Monge–Kantorovich depth and quantile contours coincide.
More precisely, defining .δ(τ ) := DTukey(uτ ), where .U

({
u

∣∣ ‖u‖ ≤ ‖uτ‖
}) = τ ,

one has .

{
z
∣∣ ‖FMK‖ = τ

}
= D−1

MK(δ(τ )). Recurring to depth in order to construct

quantile regions and contours, thus, is not necessary in the case of a spherical
reference .U which, in that respect, offers a better conceptual coherence between the
resulting notions of vector ranks and quantiles. As far as rank tests are concerned,
however, this can be considered a minor concern.

The choice for .U of the nonspherical Lebesgue uniform .U[0,1]d over the unit (in
the canonical basis) hypercube .[0, 1]d—call it the cubic uniform—yields a vector
rank function .FMK that reduces, for .d = 1, to the classical distribution function F

just as .F± reduces to .F±. Despite poor equivariance properties,6 its use has been
advocated by several authors: see, e.g., Faugeras and Rüschendorf (2017), Carlier
et al. (2016), Deb et al. (2021, 2020), and Deb and Sen (2022).

5 On this point, see Section 3.4 in Hallin (2022).
6 Contrary to .F±, which is nicely equivariant, the rank vector function .FMK associated with the
cubic uniform .U[0,1]d is highly non-equivariant under orthogonal transformations.
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2.2 Multivariate Ranks and Signs

Denote by .Z(n) := (Z(n)
1 , . . . ,Z(n)

n ) an i.i.d. sample with distribution .P ∈ Pd. The

empirical counterpart .F(n)
± of .F± is obtained as the solution of an optimal pairing

problem between the sample values .Z(n)
1 , . . . ,Z(n)

n and a “regular” grid .G(n) with

gridpoints .G
(n)
1 , . . . ,G

(n)
n . Precisely, .

(
F(n)

± (Z(n)
1 ), . . . ,F(n)

± (Z(n)
n )

)
is defined as the

minimizer .

(
G

(n)
π∗(1), . . . ,G

(n)
π∗(n)

)
, over the .n! possible permutations .π ∈ �n of the

integers .{1, . . . , n}, of .
∑n

i=1

∥∥Z(n)
i − G

(n)
π(i))

∥∥2.

The choice of the grid .G(n), of course, depends on the reference distribution .U
adopted in the definitions of Sect. 2.1: in particular, the uniform discrete distribution
over the n gridpoints .G

(n)
1 , . . . ,G

(n)
n should converge weakly to .U as .n → ∞. Our

objective is to investigate the finite-sample performance of the two-sample location
tests based on

(Ti) the empirical center-outward distribution function .F(n)
± associated with the

spherical uniform reference distribution .U = Ud;
(Tii) the empirical Monge–Kantorovich vector ranks .F(n)

� associated with the cubic
uniform reference distribution .U = U[0,1]d ;

(Tiii) the empirical Monge–Kantorovich vector ranks .F(n)

±N associated with the
Gaussian .N(0, Id) reference considered as a spherical distribution;

(Tiv) the empirical Monge–Kantorovich vector ranks .F(n)

�N associated with the
Gaussian .N(0, Id) reference considered as a product of univariate standard
normal distributions.

The grids we are using for these four cases are constructed as follows (see Sect. 3.1
for details on Halton sequences and the choice of .nR and .nS):

(.Gi) . U = Ud: (a) factorize n into .n = nRnS + n0 with .n0 < min(nR, nS),
(b) generate a Halton sequence .S(nS) := (u1, . . . unS

) over the unit (hyper)-
sphere .Sd−1, and (c) the grid .G(n) consists of the intersections of these .nS

unit vectors with the .nR hyperspheres centered at .0, with radii .j/(nR + 1),
.j = 1, . . . , nR—along with .n0 copies of the origin;

(.Gii) .U = U[0,1]d : the grid .G(n) is a Halton sequence over .[0, 1]d ;
(.Giii) .U = N(0, Id), spherical grid: the grid .G(n) is the image, by the radial

transformation .z 
→
√

F−1
χ2

d

(‖z‖)z, of the spherical grid constructed in (i),

where .Fχ2
d

denotes the chi-square distribution function with d degrees of
freedom;
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(.Giv) . U = N(0, Id), cubic grid: the grid .G(n) is the image, by componentwise
application of the standard normal quantile transformation .zi 
→ �−1(zi),7

of a Halton sequence over .[0, 1]d .

Remark 1 The grid .G(n) in (.Gi) reduces, for .d = 1, to

.{±1/(�n/2� + 1), . . . ,±�n/2�/(�n/2� + 1)}

along with the origin in case n is odd; that grid is of the form

.{2(1/(n + 1)) − 1, . . . , 2(n/(n + 1)) − 1},

where .{(1/(n + 1)), . . . , (n/(n + 1))} is the grid producing traditional univariate
ranks to which the grid .G(n) in (.Gii) also reduces for .d = 1.

Remark 2 In (.Gi) and (.Giii), the grid .G(n) is spherical; as a consequence, .F(n)
± (Z(n)

i )

and .F(n)

±N(Z(n)
i ) in (Ti) and (Tiii) naturally factorize as

.F(n)
± (Z(n)

i ) = ‖F(n)
± (Z(n)

i )‖ F(n)
± (Z(n)

i )

‖F(n)
± (Z(n)

i )‖
=: R

(n)
i±

nR + 1
S(n)

i± ,

where .R
(n)
i± = (nR + 1)‖F(n)

± (Z(n)
i )‖, ranging from 0 or 1 (according as .n0 = 0

or .n0 = 0) to .nR , is the center-outward rank of .Z(n)
i and .S(n)

i± (a unit vector) has the
interpretation of a (multivariate) center-outward sign and

.F(n)

±N(Z(n)
i ) = ‖F(n)

±N(Z(n)
i )‖

F(n)

±N(Z(n)
i )

‖F(n)

±N(Z(n)
i )‖

=: JvdW

⎛

⎝
R

(n)

i±N
nR + 1

⎞

⎠S(n)

i±N, (1)

where .JvdW =
√

F−1
χ2

d

is the univariate normal or van der Waerden score func-

tion, .R(n)

i±N the rank of .‖F(n)

±N(Z(n)
i )‖ among the .nR distinct values of .‖F(n)

±N(Z(n)
i )‖

for .i = 1, . . . , n, and .S(n)

i±N similarly has the interpretation of a multivariate sign.

Being based on different transport maps, however, neither .R
(n)
i± and .R

(n)

i±N nor .S(n)
i±

and .S(n)

i±N need to coincide.

Remark 3 No similar factorization into ranks and signs occurs with the vector
ranks .F(n)

� and .F(n)

�N in (Tii) and (Tiv).

7 As usual, we denote by .� the standard normal distribution function and by .�−1 the standard
normal quantile function.
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2.3 Distribution-Free Tests Based on Center-Outward Ranks
and Signs

Hallin et al. (2022a) propose, for multiple-output regression models with unspec-
ified noise distribution P ∈ Pd, fully distribution-free yet, for adequate choice
of scores, parametrically efficient center-outward rank tests of the null hypoth-
esis of no-treatment effect based on the empirical center-outward distribution
functions F(n)

± (hence, the center-outward ranks and signs).
The particular case of two-sample location is treated by Deb et al. (2021) who

also consider tests based on the empirical Monge–Kantorovich vector ranks F(n)
MK

associated with various reference distributions.

2.3.1 Score Functions

In line with the classical theory developed, e.g., by Hájek and Šidák (1967), rank-
based statistics, irrespective of the reference distribution, involve score functions or
scores. Depending on the context, a score function is a mapping .J from the unit
ball .Sd or the unit cube .[0, 1]d to .R

d satisfying some mild regularity assumptions
(continuity, square integrability, etc., see, e.g., Hallin et al. (2022a), Assump-
tion 3.1). The only score functions we are considering here are the Wilcoxon, the
spherical van der Waerden, and the marginal van der Waerden score functions

.JW(u) :=u, J±
vdW(u) :=

√
F−1

χ2
d

(‖u‖) u
‖u‖ , and J�

vdW(u) :=
(
�−1(u1), . . . , �

−1(ud)
)
,

respectively, where .Fχ2
d

and .� stand for the (univariate) chi-square (d degrees of
freedom) and standard normal distribution functions.

2.3.2 Test Statistics

For simplicity, our investigation here is limited to the particular case of two-sample
location models, where the n observations are i.i.d. under the null and consist of
two samples, .Z(n)

1 , . . . ,Z(n)
n1 and .Z(n)

n1+1, . . . ,Z
(n)
n1+n2

, with .n1 + n2 = n. The classical
procedure for this problem is Hotelling’s test, based on a quadratic statistic of
the form

.

(
T

(n)
Hot

)2 := �
(n)′
Hot

(
�

(n)
Hot

)−1
�

(n)
Hot,
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where .�
(n)
Hot is the estimated (under the null) covariance matrix of

.�
(n)
Hot := 1

n1

n1∑

i=1

Z(n)
i − 1

n2

n∑

i=n1+1

Z(n)
i .

The Hotelling test is parametrically efficient under Gaussian assumptions; it remains
asymptotically valid,8 however, under mild moment assumptions and therefore
qualifies as a pseudo-Gaussian procedure.

For score functions .J, the center-outward rank-based test statistics in Sec-
tion 5.3.1 of Hallin et al. (2022a) are of the form

.

(
T
∼

(n)
J±

)2 = �
∼

(n)′
J±

(
��

∼J±

)−1
�
∼

(n)
J± (2)

where .��
∼J

is the exact or asymptotic covariance of

.�
∼

(n)
J± := 1

n1

n1∑

i=1

J(F(n)
± (Z(n)

i )) − 1

n2

n∑

i=n1+1

J(F(n)
± (Z(n)

i )). (3)

Since the quadratic form (2) is invariant under affine transformations of .�
∼

(n)
J± and

since the sum .
∑n

i=1 J(F
(n)
± (Z(n)

i )) is a deterministic constant that only depends on .J

and the grid used in the definition of .F(n)
± , the same test statistic can be based on

.�
∼

(n)
J = 1

n1

n1∑

i=1

J(F(n)
± (Z(n)

i )) − 1

n

n∑

i=1

J(F(n)
± (Z(n)

i )),

yielding the test statistic described in Section 5.3.1 of Hallin et al. (2022a), which,
in the particular case of Wilcoxon and van der Waerden scores .J W and .J±

vdW, we

denote as .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
vdW±

)2
, respectively.

For the same testing problem, Deb et al. (2021) consider statistics of the form (2)
but also

(a) Based on the empirical Monge–Kantorovich vector ranks .F(n)
� associated with

the cubic uniform reference .U = U[0,1]d , statistics .T
∼

(n)
J� and .�

∼

(n)
J� of the

same form as .T
∼

(n)
J± and .�

∼

(n)
J± in (2) and (3) but with .J(F(n)

� (Z(n)
i )) instead

of .J(F(n)
± (Z(n)

i )); denote by .

(
T
∼

(n)
W�

)2
and .

(
T
∼

(n)
vdW�

)2
the particular cases of the

8 Asymptotically valid, here, means pointwise (with respect to the actual density of the obser-
vations) asymptotically correct nominal probability levels, not uniformly asymptotically correct
nominal probability levels.
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Wilcoxon and cubic van der Waerden statistics, obtained for the scores .JW

and .J�
vdW, respectively

(b) Based on the empirical Monge–Kantorovich vector ranks .F(n)

±N and .F(n)

�N asso-
ciated with the spherical Gaussian reference .N(0, Id) considered as spherical or
as a product of independent uniforms, statistics .T

∼

(n)

J±N and .T
∼

(n)

J�N of the same

form as .T
∼

(n)
J± and .�

∼

(n)
J± in (2) and (3) but with .J(F(n)

±N(Z(n)
i )) and .J(F(n)

�N(Z(n)
i )),

respectively, substituting .J(F(n)
± (Z(n)

i )); this, for Wilcoxon scores .J(u) = u,

yields the van der Waerden statistics .

(
T
∼

(n)

vdW±N
)2

and .

(
T
∼

(n)

vdW�N
)2

.

Remark 4 Although they are based on Wilcoxon (identity) scores, the terminology
“van der Waerden statistic” for .T

∼

(n)

vdW±N and .T
∼

(n)

vdW�N seems more appropriate than
the terminology “Wilcoxon statistic” used by Deb et al. (2021) and is in line with the
traditional terminology of rank-based inference. Both .T

∼

(n)
vdW± and .T

∼

(n)

vdW±N indeed result
from a transport from the sample values to a grid of Gaussian quantiles of the form
(.Giii). For .T

∼

(n)
vdW±, the transport is .J ◦ F(n)

± , which, as a rule, is not an optimal one

(not the gradient of a convex function), while, for .T
∼

(n)

vdW±N, the transport is the optimal

one .F(n)

�N; the difference between .T
∼

(n)
vdW± and .T

∼

(n)

vdW±N thus essentially consists in the
way the transport to the spherical Gaussian grid is performed. A similar remark can be
made for .T

∼

(n)
vdW� and .T

∼

(n)

vdW�N.

3 Finite-Sample Performance: Two-Sample Location
Simulations

It clearly appears that choices are to be made before performing a rank test based
on the concepts of multivariate ranks developed in the previous sections: center-
outward ranks? vector ranks? which ones? with which scores? The analysis of
asymptotic performance does not help much, as the same local powers are achieved
irrespective of such choices. The objective of this chapter is to determine whether
finite-sample performance can help us with these choices. We restrict ourselves to
the two-sample location problem, Wilcoxon and van der Waerden scores, but the
conclusions are quite likely to hold for other score functions and in the general case
of the multiple-output linear models considered in Hallin et al. (2022a).

Before explaining how simulations were conducted, let us provide some details
on the way the grids described in Sect. 2.2 were constructed. Recall that the aim of
these grids is to provide a discrete approximation of the chosen continuous reference
distribution.
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3.1 Halton Sequences on the Cube and the Sphere ((Gii) and
(Giv) Grids)

The grid constructions (.Gii) and (.Giv) involve Halton sequences on the hyper-
cube .[0, 1]d . Halton sequences are pseudo-random numbers with low discrepancy,
which are routinely used in methods such as Monte Carlo simulations. We used
the implementation available in the package SDraw by McDonald and McDonald
(2020). The grid construction in (.Gi), hence also in (.Giii), requires an .nS-point
“Halton sequence” over the hypersphere .Sd−1. To obtain such a grid, we first
generate an .nS-point Halton sequence over .[0, 1]d−1 and then componentwise
perform the standard normal quantile transformation .uj 
→ zj := �−1(uj ). This
yields an .nS-tuple of points .z1, . . . , znS

, with

.zj := (�−1(uj1), . . . , �
−1(ujd)).

The resulting unit vectors .zj /‖zj‖, .j = 1, . . . , nS , constitute the desired sequence
over .Sd−1.9

3.2 Factorization of n ((Gi) and (Giii) Grids)

As for the grid constructions (.Gi) and (.Giii), they require a factorization of n

into .nRnS + n0 with .n0 < min(nR, nS). Intuition suggests choosing .nR and .nS

of order .n1/d and .n(d−1)/d , respectively. This, however, is of little help for finite n.
Since the grid is supposed to provide an approximation of the spherical uniform,
we rather proceed by minimizing the Wasserstein distance to the spherical uniform
as proposed in Mordant (2021). More precisely, considering the grid with .nR radial
points described in (.Gi), denote by .G(n)

nR
the discrete measure placing a probability

mass .1/n on each of the n gridpoints except for the origin which receives probability
mass .n0/n. As suggested in Mordant (2021), we select the grid with .n∗

R radial points,
where

n∗
R := arg min

1≤nR≤n

W2(G
(n)
nR

, Ud) (4)

(.W2, as usual, stands for the Wasserstein distance of order two). For .d ≥ 3, that
distance .W2(G

(n)
nR

, Ud) does not only depend on .nR (hence on .nS) but also on the .nS

points chosen (as explained in Sect. 3.1) on the hypersphere .Sd−1. The minimization

9 The justification is the fact that if the distribution of .Z is a product of independent univariate
standard normal marginals, then .Z is spherical Gaussian .N(0, I), and hence .Z/‖Z‖ is uniform
over .Sd−1.
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Table 1 Optimal (in the sense of (4)) values of .nR , .nS , and .n0 as functions of the sample size n,
the dimension d, and the reference distributions ((.Gi) or (.Giii) grids)

Reference
distribution

d .n = 50 .n = 100 .n = 200 .n = 300 .n = 400

.Ud , (.Gi) grid 2 .nR = 4 .nR = 6 .nR = 9 .nR = 11 .nR = 12

.nS = 12 .nS = 16 .nS = 22 .nS = 27 .nS = 33

.n0 = 2 .n0 = 4 .n0 = 2 .n0 = 3 .n0 = 4

.N(0, Id ), (.Giii) grid 2 .nR = 4 .nR = 7 .nR = 11 .nR = 14 .nR = 18

.nS = 12 .nS = 14 .nS = 18 .nS = 21 .nS = 22

.n0 = 2 .n0 = 2 .n0 = 2 .n0 = 6 .n0 = 4

.n1/d .n1/2 = 7.071 .n1/2 = 10 .n1/2 = 14.142 .n1/2 = 17.321 .n1/2 = 20

.Ud , (.Gi) grid 5 .nR = 2 .nR = 2 .nR = 2 .nR = 3 .nR = 3

.nS = 25 .nS = 50 .nS = 100 .nS = 100 .nS = 133

.n0 = 0 .n0 = 0 .n0 = 0 .n0 = 0 .n0 = 1

.N(0, Id ), (.Giii) grid 5 .nR = 1 .nR = 1 .nR = 1 .nR = 2 .nR = 2

.nS = 50 .nS = 100 .nS = 200 .nS = 150 .nS = 200

.n0 = 0 .n0 = 0 .n0 = 0 .n0 = 0 .n0 = 0

.n1/d .n1/5 = 2.187 .n1/5 = 2.512 .n1/5 = 2.885 .n1/5 = 3.129 .n1/5 =
3.314

in (4) is feasible, as n, .nR , .nS , and .n0 all are integers. A similar strategy is adopted
for the construction of the spherical Gaussian grids (.Giii).

Table 1 provides, for dimensions .d = 2 and .d = 5, various sample sizes, and
various reference distributions, the spherical uniform ((.Gi) grids) and the spherical
Gaussian ((.Giii) grids), the “optimal values” obtained via (4) for .nR , .nS , and .n0.
These values are in line with the intuition that the “optimal” .nR behaves like .n1/d ,
while the role of distances to the center rapidly decreases as the dimension d

increases.

3.3 Simulations

Based on the grids obtained along the lines described in Sects. 3.1 and 3.2, the
distribution-free critical values of the various rank tests under study were computed
from 40,000 replications. Throughout, we chose .n1 = n2 = n/2. The optimal maps
between the sample and the grids were obtained via an exact solver relying on the
so-called Hungarian method as implemented in the R-package clue by Hornik
(2022). We now turn to the empirical evaluation of the performance of the various
rank-based Wilcoxon and van der Waerden tests for the two-sample location
problem.
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The objective of our simulations is, essentially, obtaining empirical answers to
the following two questions:

(a) should we use spherical grids ((.Gi) or (.Giii)) or cubic ((.Gii) or (.Giv)) ones?
(b) should we, in line with the Hájek tradition, privilege transports to the uniform

combined with scores (as in .

(
T
∼

(n)
vdW±

)2
and .

(
T
∼

(n)
vdW�

)2
), or, as recommended

by Deb et al. (2021), should we rather consider transports to the “scored
distribution,” that is, choose as reference distribution the push-forward of the

uniform by the score (as in .

(
T
∼

(n)

vdW±N
)2

and .

(
T
∼

(n)

vdW�N
)2

)?

4 Wilcoxon-Type Tests

The Wilcoxon tests are based on the identity score function .J(u) = u and uniform
(either spherical or cubic) reference distributions, yielding (see Sect. 2.3.2) the test

statistics .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
.

4.1 The Bivariate Case

In this section, we evaluate the performance of the bivariate Wilcoxon tests based

on .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
for samples of size .n1 = n2 = n/2 with .n = 100, 200,

and 400. The first sample is drawn from a centered distribution, the second one from
a shifted version with shift .(η, η)′, .η > 0 of the same. The number of replications
is .N = 500.

4.1.1 Spherical Gaussian Samples

The first sample is drawn from .N((0, 0)′, I2) and the second one from .N((η, η)�, I2)

with .η > 0. Rejection frequencies over .N = 500 replications are shown (as functions
of .η) in Fig. 1. All three tests display, essentially, the same performance: although
Wilcoxon, in principle, is strictly less powerful than Hotelling (which in this case is
finite-sample optimal), no significant loss of efficiency is detected.

4.1.2 Nonspherical Gaussian Samples

The first sample is drawn from an .N((0, 0)′,�) distribution, and the second sample
is drawn from an .N((η, η)′,�) one; .vech(�) = (1, 0.8, 1)′. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 2. The results are
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Fig. 1 Rejection frequencies, for bivariate spherical Gaussian samples and various sample sizes,

of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
,

respectively, as functions of the shift .η; .N = 500 replications

Fig. 2 Rejection frequencies, for bivariate samples of nonspherical Gaussian distributions and

various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2

and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

essentially the same as in the spherical case (Sect. 4.1.1). Note the loss of power in
the three tests under study, due to the non-specification of the population covariance
matrix; that loss, however, is uniform over the three tests.
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Fig. 3 Rejection frequencies, for bivariate samples with independent Cauchy marginals and

various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2

and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

4.1.3 Samples with Independent Cauchy Marginals

The first sample is drawn from a product of two independent Cauchy and the
second one from the shifted version of the same distribution. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 3. With a
rejection probability uniformly less than the nominal .5% level, Hotelling, as

expected, performs miserably. In this independent component situation, .

(
T
∼

(n)
W�

)2

does outperform .

(
T
∼

(n)
W±

)2
.

4.1.4 Spherical Cauchy Samples

The first sample is drawn from a centered spherical student with one degree of
freedom .t1((0, 0)′, I2) (spherical Cauchy) and the second one from the shifted
version .t1((η, η)′, I2) of the same distribution. Rejection frequencies over .N = 500
replications are shown (as functions of .η) in Fig. 4. The performance of Hotelling,

again, is a disaster; although the actual distribution is spherical, .

(
T
∼

(n)
W�

)2
still

outperforms .

(
T
∼

(n)
W±

)2
.
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Fig. 4 Rejection frequencies, for bivariate samples of spherical Cauchy distributions (Sect. 4.1.4)

and various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2

and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

4.1.5 “Banana-Shaped” Samples

The first sample is drawn from a centered “banana-shaped” mixture

.0.3N2

((
0

−0.7

)

,

(
0.352 0

0 0.352

))

+ 0.35N2

((
−0.9

0.3

)

,

(
0.358 −0.55

−0.55 1.02

))

+ 0.35N2

((
0.9
0.3

)

,

(
0.358 0.55
0.55 1.02

))

of three Gaussian components. The second sample is drawn from a shifted version
(shift .(η, η)′, .η > 0) of the same mixture. Rejection frequencies over .N = 500
replications are shown (as functions of .η) in Fig. 5. The conclusions are the same

as in the previous case, except that the (slight) advantage now belongs to .

(
T
∼

(n)
W±

)2
,

despite the fact that the actual distribution is highly nonspherical.

4.2 Wilcoxon-Type Statistics in Dimension d = 5

We essentially adopted the same simulation settings as before, with .n1 = n2 = n/2.
A sample size of .n = 100 in dimension .d = 5 is very small, though, and we
considered sample sizes .n = 200, 400, and 800.
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Fig. 5 Rejection frequencies, for bivariate “banana-shaped” samples and various sample sizes, of

Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
, respectively,

as functions of the shift .η; .N = 500 replications

Fig. 6 Rejection frequencies, for samples with five-dimensional spherical Gaussian distributions
(see Sect. 4.1.1) and various sample sizes, of Hotelling’s test based on T 2 and the Wilcoxon tests

based on
(
T
∼

(n)
W±

)2
and

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift η; N = 500 replications

4.2.1 Spherical Gaussian Samples

Here, the first sample is drawn from the .N(0, I5) distribution and the second one
from the .N(η1, I5) distribution, where .1 denotes a 5-variate vector of ones. Rejection
frequencies over .N = 500 replications are shown (as functions of .η) in Fig. 6. In
the “small sample” case .(n = 200), the optimality of Hotelling over Wilcoxon is
perceptible (more so than in dimension .d = 2); this superiority, however, fades away
with growing n: again, under Gaussian assumptions, abandoning the parametrically
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Fig. 7 Rejection frequencies, for nonspherical five-dimensional Gaussian distributions and var-

ious sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2

and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

optimal Hotelling test in favor of the rank-based Wilcoxon one has no visible cost
in terms of power.

4.2.2 Nonspherical Gaussian Samples

The first sample is drawn from the .N(0,�) distribution and the second one from
the .N(η1,�) distribution, where .1 denotes a 5-variate vector of ones and .� is a
correlation matrix with all off-diagonal entries equal to 0.5. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 7. Here again,
the slight advantage of Hotelling over Wilcoxon very rapidly fades away with
growing n, and the three tests yield very similar performances; in particular, no

significant difference can be detected between .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
.

4.2.3 Samples with Independent Cauchy Marginals

The first sample is drawn from a product of five independent Cauchy distributions
and the second one from the shifted version of the same. Rejection frequencies
over 500 replications are shown (as functions of .η) in Fig. 8. The performance of
Hotelling, as in dimension .d = 2, is terrible. The advantage (which is in line with

the independent component nature of the distribution) of .

(
T
∼

(n)
W�

)2
over .

(
T
∼

(n)
W±

)2
is

even more significant than in dimension .d = 2.
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Fig. 8 Rejection frequencies, for five-dimensional distributions with independent Cauchy
marginals and various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based

on .

(
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)2
and .

(
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)2
, respectively, as functions of the shift .η; .N = 500 replications

4.3 Wilcoxon-Type Statistics in Dimension d = 30

We essentially adopted the same simulation settings as before, with .n1 = n2 = n/2
and sample sizes .n = 200, 400, and 800.

4.3.1 Spherical Gaussian Samples

Here, the first sample is drawn from the .N(0, I30) distribution, the second one from
the .N(η1, I30) distribution. Rejection frequencies over .N = 500 replications are
shown (as functions of .η) in Fig. 9. The strict optimality of Hotelling, which was
not perceptible for .d = 2 and hardly so for .d = 5, is now quite visible; as for the

Wilcoxon tests based on .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
, they achieve essentially the same

performance.

4.3.2 Nonspherical Gaussian Samples

The first sample is drawn from the .N(0,�) distribution, the second one from
the .N(η1,�) distribution, where .1 denotes a 30-variate vector of ones and .� is a
correlation matrix with all off-diagonal entries equal to 0.5. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 10. Powers are
significantly less than in the spherical case: estimating a .30 × 30 covariance matrix
is costly—more costly, under sample sizes 200 and 400, for Hotelling than for
Wilcoxon. The two versions of Wilcoxon yield similar results.
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Fig. 9 Rejection frequencies, for samples with 30-dimensional spherical Gaussian distributions

and various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .
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Fig. 10 Rejection frequencies, for nonspherical 30-dimensional Gaussian distributions and var-

ious sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2

and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

4.3.3 Samples with Independent Cauchy Marginals

The first sample is drawn from a product of thirty independent Cauchy distributions
and the second one from the shifted version of the same. Rejection frequencies
over 500 replications are shown (as functions of .η) in Fig. 11. As expected, Hotelling
fails miserably; here again, in line with the independent component nature of the

distribution, .
(
T
∼

(n)
W�

)2
outperforms .

(
T
∼

(n)
W±

)2
.
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Fig. 11 Rejection frequencies, for 30-dimensional distributions with independent Cauchy
marginals and various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based

on .

(
T
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(n)
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)2
and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

4.4 Wilcoxon-Type Statistics in Dimension d = 100

We essentially adopted the same simulation settings as before, with .n1 = n2 = n/2
and .n = 200, 400, and 800, which, in dimension 100, are quite small sample sizes.

4.4.1 Spherical Gaussian Samples

The first sample is drawn from the .N(0, I100) distribution and the second one from
the .N(η1, I100) distribution, where .1 denotes a 100-dimensional vector of ones.
Rejection frequencies over .N = 500 replications are shown (as functions of .η)
in Fig. 12. Hotelling is losing its advantage over Wilcoxon for .n = 200; as n

grows, the three tests are essentially equivalent. Again, under Gaussian assumptions,
abandoning the parametrically optimal Hotelling test in favor of the rank-based
Wilcoxon one has no visible cost in terms of power.

4.4.2 Nonspherical Gaussian Samples

The first sample is drawn from the .N(0,�) distribution and the second one from
the .N(η1,�) distribution, where .1 denotes a 5-variate vector of ones and .� is a
correlation matrix with all off-diagonal entries equal to 0.5. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 13. Hotelling,
here, is dramatically lagging behind the two versions of Wilcoxon; the latter, in
terms of power, are quite equivalent and obviously less sensitive to the problematic
estimation of a .100 × 100 covariance matrix than their parametric counterpart.
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Fig. 12 Rejection frequencies, for samples with 100-dimensional spherical Gaussian distributions
(see 4.2.1) and various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based

on .
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and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

Fig. 13 Rejection frequencies, for nonspherical 100-dimensional Gaussian distributions and

various sample sizes, of the Wilcoxon tests based on .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
, respectively, as

functions of the shift .η; .N = 500 replications

4.4.3 Samples with Independent Cauchy Marginals

The first sample is drawn from a product of .d = 100 independent Cauchy
distributions and the second one from the shifted version of the same. Rejection
frequencies over 500 replications are shown (as functions of .η) in Fig. 14. The results
are surprisingly comparable with those obtained in Fig. 11 for dimension .d = 30,
and the conclusions are the same.
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Fig. 14 Rejection frequencies, for 100-dimensional distributions with independent Cauchy
marginals and various sample sizes, of Hotelling’s test based on .T 2 and the Wilcoxon tests based

on .

(
T
∼

(n)
W±

)2
and .

(
T
∼

(n)
W�

)2
, respectively, as functions of the shift .η; .N = 500 replications

5 van der Waerden-Type Tests

In this section, we are considering four distinct tests of the van der Waerden

type, based (see Sect. 2.3.2) on .

(
T
∼

(n)
vdW±

)2
(spherical uniform reference density,

(.Gi) grid), .

(
T
∼

(n)
vdW�

)2
(cubic uniform reference density, (.Gii) grid), .

(
T
∼

(n)

vdW±N
)2

(spherical Gaussian reference density, spherical grid (.Giii)), and .

(
T
∼

(n)

vdW�N
)2

(spherical Gaussian reference density, cubic grid (.Giv)).

5.1 Bivariate Case

5.1.1 Spherical Gaussian Samples

The same Gaussian samples as in Sect. 4.1.1 are used. Figure 15 shows the rejection
frequencies over .N = 500 replications of Hotelling and the various rank-based tests:
as expected, performing rank-based van der Waerden tests instead of Hotelling ones
does not imply any loss of efficiency in the Gaussian case.
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Fig. 15 Rejection frequencies, for bivariate spherical Gaussian samples (see 5.1.1) and var-
ious sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based

on .
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Fig. 16 Rejection frequencies, for bivariate nonspherical Gaussian samples and various
sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based

on .
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.η; .N = 500 replications

5.1.2 Nonspherical Gaussian Samples

The same correlated Gaussian samples as in Sect. 4.1.2 are used. Rejection fre-
quencies over .N = 500 replications are shown (as functions of .η) in Fig. 16.
The non-specification of the covariance matrix apparently has no impact on
the comparative performance of Hotelling and its rank-based van der Waerden
competitors, which all coincide.
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Fig. 17 Rejection frequencies, for bivariate samples of independent Cauchy marginals and various

sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based on .
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replications

5.1.3 Samples with Independent Cauchy Marginals

The same samples with independent Cauchy marginals as in Sect. 4.1.3 are used.
Rejection frequencies over .N = 500 replications are shown (as functions of .η) in
Fig. 17. Again, all powers are much less than in the Gaussian case, but Hotelling is
totally inefficient.

5.1.4 Spherical Cauchy Samples

The same spherical Cauchy samples as in Sect. 4.1.4 are used. Rejection frequencies
over 500 replications are shown (as functions of .η) in Fig. 18. All tests perform
similarly except, of course, for Hotelling, which fails completely.

5.1.5 “Banana-Shaped” Samples

The same “banana-shaped” mixtures as in Sect. 4.1.5 are used. Rejection frequen-
cies over 500 replications are shown (as functions of .η) in Fig. 19. The empirical
power curves of the four van der Waerden tests are essentially indistinguishable,
while significantly outperforming the Hotelling ones.
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Fig. 18 Rejection frequencies, for bivariate spherical Cauchy samples and various sample sizes,

of Hotelling’s test based on .T 2 and the van der Waerden tests based on .

(
T
∼

(n)
vdW±

)2
, .
(
T
∼

(n)
vdW�

)2
,

.

(
T
∼

(n)

vdW±N
)2

, and .

(
T
∼

(n)

vdW�N
)2

, respectively, as functions of the shift .η; .N = 500 replications.

Fig. 19 Rejection frequencies, for bivariate “banana-shaped” samples and various sample sizes,

of Hotelling’s test based on .T 2 and the van der Waerden tests based on .
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5.2 van der Waerden-Type Statistics in Dimension d = 5

5.2.1 Spherical Gaussian Samples

The same spherical Gaussian samples as in Sect. 4.4.1 are used. Rejection frequen-
cies over .N = 500 replications are shown (as functions of .η) in Fig. 20. A “small
sample” superiority of Hotelling for .n = 200 rapidly disappears as n increases; all
van der Waerden tests yield the same performance.
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Fig. 20 Rejection frequencies, for samples with five-dimensional spherical Gaussian distributions
(see Sect. 5.4.1) and various sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden

tests based on .
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Fig. 21 Rejection frequencies, for nonspherical five-dimensional Gaussian samples
(see Sect. 5.4.2) and various sample sizes, of Hotelling’s test based on .T 2 and the van der

Waerden tests based on .
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5.2.2 Nonspherical Gaussian Samples

The same spherical Gaussian samples as in Sect. 4.4.2 are used. Rejection frequen-
cies over .N = 500 replications are shown (as functions of .η) in Fig. 21. The slight
advantage of Hotelling for .n = 200 under spherical Gaussian is fading away. All
van der Waerden tests yield similar performance.
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Fig. 22 Rejection frequencies, for five-dimensional samples with independent Cauchy marginals,
(see Sect. 5.4.3) and various sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden

tests based on .
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5.2.3 Samples with Independent Cauchy Marginals

The same Cauchy samples as in Sect. 4.4.3 are used. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 22. The conclusions
drawn for .d = 2 still hold, with a very slight superiority of the “direct transportation”

test .

(
T
∼

(n)

vdW±N
)2

over the Gaussian score ones .

(
T
∼
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)2
and .

(
T
∼
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)2
.

5.3 van der Waerden-Type Statistics in Dimension d = 30

5.3.1 Spherical Gaussian Samples

The same spherical Gaussian samples as in Sect. 4.4.1 are used. Rejection frequen-
cies over .N = 500 replications are shown (as functions of .η) in Fig. 23. Hotelling,
which is optimal, outperforms the four van der Waerden tests, which all yield the
same performance. The dimension increase thus slows down the local convergence
of van der Waerden to Hotelling.

5.3.2 Nonspherical Gaussian Samples

The same spherical Gaussian samples as in Sect. 4.4.2 are used. Rejection fre-
quencies over .N = 500 replications are shown (as functions of .η) in Fig. 24.
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Fig. 23 Rejection frequencies, for samples with 30-dimensional spherical Gaussian distributions
(see Sect. 5.4.1) and various sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden

tests based on .
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Fig. 24 Rejection frequencies, for nonspherical 30-dimensional Gaussian samples and various

sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based on .
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replications

The advantage of Hotelling under spherical Gaussian is hampered by the need to
estimate a .30 × 30 covariance matrix and only reappears as n increases to 800; still
no differences among the four van der Waerden tests.
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Fig. 25 Rejection frequencies, for 30-dimensional samples with independent Cauchy marginals,
and various sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based on
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5.3.3 Samples with Independent Cauchy Marginals

The same Cauchy samples as in Sect. 4.4.3 are used. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 25. Conclusions are
the same as in dimension .d = 5.

5.4 van der Waerden-Type Statistics in Dimension d = 100

5.4.1 Spherical Gaussian Samples

The same spherical Gaussian samples as in Sect. 4.4.1 are used. Rejection frequen-
cies over .N = 500 replications are shown (as functions of .η) in Fig. 26. Hotelling
is outperformed for “small” .n = 200; for .n = 400 and 800, all tests yield the same
performance.

5.4.2 Nonspherical Gaussian Samples

The same nonspherical Gaussian samples as in Sect. 4.4.2 are used. Rejection
frequencies over .N = 500 replications are shown (as functions of .η) in Fig. 27.
The cost of estimating a .100 × 100 covariance matrix has (even for .n = 800) a quite
significant impact on Hotelling but a much milder one on the four van der Waerden
test which, furthermore, yield very similar performances.
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Fig. 26 Rejection frequencies, for samples with 100-dimensional spherical Gaussian distributions
and various sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based

on .
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Fig. 27 Rejection frequencies, for nonspherical 100-dimensional Gaussian samples and various

sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based on .
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5.4.3 Samples with Independent Cauchy Marginals

The same Cauchy samples as in Sect. 4.4.3 are used. Rejection frequencies
over .N = 500 replications are shown (as functions of .η) in Fig. 28. Conclusions
are the same as for .d = 30; a slight advantage for the van der Waerden tests based

on .

(
T
∼

(n)
vdW±

)2
.
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Fig. 28 Rejection frequencies, for 100-dimensional samples with independent Cauchy marginals
and various sample sizes, of Hotelling’s test based on .T 2 and the van der Waerden tests based

on .
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6 Conclusions

While confirming the advantages and excellent performance of rank tests over
their daily practice pseudo-Gaussian counterparts, the simulations of the previous
sections provide empirical answers to several questions of practical importance.

The choice of the grid (whether spherical (.Gi), cubic (.Gii), or Gaussian ((.Giii)
and (.Giv)) seems to have relatively little impact on the performance of the
corresponding Wilcoxon tests and no impact at all on the performance of van der
Waerden tests. In particular, there is no evidence that Wilcoxon tests based on
spherical grids (.Gi) are preferable under spherical distributions, while Wilcoxon
tests based on cubic grids (.Gii) are preferable under distributions with independent
components: see, e.g., the Cauchy case (Sects. 4.1.4 and 4.1.3).

Similarly, little difference is detected among the four versions of van der Waerden
test statistics, whether based on score functions or “direct transportation.”

Supplemental Material Additional material presenting visualizations of different
grids and the contours they induce as well as the codes used for the simulations are
available on https://sites.google.com/view/gillesmordant.

https://sites.google.com/view/gillesmordant
https://sites.google.com/view/gillesmordant
https://sites.google.com/view/gillesmordant
https://sites.google.com/view/gillesmordant
https://sites.google.com/view/gillesmordant
https://sites.google.com/view/gillesmordant
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Refining Invariant Coordinate Selection
via Local Projection Pursuit

Lutz Dümbgen, Katrin Gysel, and Fabrice Perler

Abstract Invariant coordinate selection (ICS), introduced by Tyler et al. (J. Roy.
Stat. Soc. B 71(3):549–592, 2009), is a powerful tool to find potentially interesting
projections of multivariate data. In some cases, some of the projections proposed
by ICS come close to really interesting ones, but little deviations can result in a
blurred view which does not reveal the feature (e.g., a clustering), which would
otherwise be clearly visible. To remedy this problem, we propose an automated and
localized version of projection pursuit (PP), cf. Huber (Ann. Stat. 13(2):435–525,
1985). Precisely, our local search is based on gradient descent applied to estimated
differential entropy as a function of the projection matrix.

Keywords Differential entropy · Gradient descent · Local perturbation · Local
search · Orthogonal matrix · Orthogonal projection

1 Projection Pursuit

Suppose our data consist of vectors .x1, x2, . . . , xn ∈ R
p, and we view these as

independent copies from a random vector .X with unknown distribution P . If .p ∈
{1, 2, 3}, there are various ways to display the data graphically and find interesting
structures, e.g., two or more separated clusters or manifolds close to which the data
are concentrated. If we use a particular method to visualize data sets in dimension
.d ∈ {1, 2, 3} but .p > d, we want to find a d-dimensional linear projection of the data
which exhibits interesting structure. This task has been coined “projection pursuit”
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(PP) by Friedman and Tukey (1974). We also refer to the excellent discussion papers
of Huber (1985) and Jones and Sibson (1987) for different aspects and variants of
this paradigm.

More formally, if the distribution P has been standardized already in some way,
our goal is to determine a matrix .A ∈ R

p×d with orthonormal columns such that
the distribution .PA of .A�X is “interesting.” In what follows, such a matrix .A ∈
R

p×d , that is, .A�A = I d , is called a “(d-dimensional) projection matrix,” and the
distribution .PA is called a “projection of P (via .A).”

An obvious question is how to measure whether a distribution Q on .R
d is

“interesting.” To answer this, let us summarize some of the considerations of Huber
(1985). Suppose that Q has density g with respect to d-dimensional Lebesgue
measure. Shannon’s (differential) entropy of Q is defined as

.H(Q) := −
∫

log(g(y))g(y) dy.

It is well known that among all distributions Q with given mean vector .μ ∈ R
d and

nonsingular covariance matrix .� ∈ R
d×d , the Gaussian distribution .Nd(μ,�) is the

unique maximizer of .H(Q). Coming back to the distribution P , that its projection
.Q = PA is non-interesting if it is Gaussian is also supported by the so-called
Diaconis–Freedman effect, cf. Diaconis and Freedman (1984). Under mild assump-
tions on P , most projections .PA look Gaussian. Precisely, if .A is uniformly dis-
tributed on the manifold of all d-dimensional projection matrices, then for fixed d,

.PA →w,P Nd(0, I d) as p → ∞, p−1‖X‖2 →P 1, p−1X�X̃ →P 0,

where .X̃ is an independent copy of .X; see also Dümbgen and Del Conte-Zerial
(2013).

In view of these considerations, a possible strategy is to find a projection matrix
.A such that .Ĥ (A�x1, . . . ,A

�xn) is minimal, where .Ĥ (y1, . . . , yn) is an estimator
of .H(Q), based on observations .y1, . . . , yn ∈ R

d .
In this chapter, we focus on the entropy .H(Q) and the estimated entropy

.Ĥ (y1, . . . , yn). As discussed by Huber (1985), Jones and Sibson (1987), and
many other authors, there are numerous proposals of “PP indices” measuring
how interesting a distribution Q or the empirical distribution of .y1, . . . , yn is. As
explained at the end of Sect. 4, our local search method can be easily adapted to
different PP indices.

2 Invariant Coordinate Selection as a Starting Point

Invariant coordinate selection (ICS), introduced as a generalization of independent
component analysis by Tyler et al. (2009), may be described as a two-step procedure.
In a first step, the centered raw observations .xraw

1 , . . . , xraw
n are standardized by

means of some scatter estimator .�̂0 = �̂0(x
raw
1 , . . . , xraw

n ) ∈ R
p×p
sym,+, where
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.R
p×p
sym,+ stands for the set of symmetric, positive definite matrices in .R

p×p.

Having determined .�̂0 = B0B
�
0 , we replace the raw observations .xraw

i with the
standardized observations .xi := B−1

0 xraw
i . Strictly speaking, these standardized

observations .xi are no longer stochastically independent, but this is not essential for
the subsequent considerations.

To the preprocessed observations .xi , we apply a different estimator of scatter to
obtain .�̂ = �̂(x1, . . . , xn) ∈ R

p×p
sym,+. Now, we compute a spectral decomposition

.�̂ = ∑p

i=1 λ̂i ûi û
�
i with eigenvalues .λ̂1 ≥ · · · ≥ λ̂p > 0 and an orthonormal

basis .û1, . . . , ûp of .R
p. Then, the resulting invariant coordinates correspond to the

mappings

.R
q � xraw 	→ û

�
k B−1

0 xraw ∈ R, 1 ≤ k ≤ p.

The results of Tyler et al. (2009) suggest to look at the .d + 1 particular projection
matrices

.A0 := [
û1 . . . ûd

]
,

A1 := [
û1 . . . ûd−1 ûp

]
,

...
...

Ad := [
ûp−d+1 . . . ûp

]
,

that is, the columns of .Ak are the vectors .ûi with .1 ≤ i ≤ d − k or .p − k < i ≤ p.
One could also consider all .

(
p
d

)
matrices

.A = [ûi(1) · · · ûi(d)] with 1 ≤ i(1) < · · · < i(d) ≤ p.

3 Estimation of Entropy

For given observations .y1, . . . , yn ∈ R
d with unknown distribution Q and density

g, a standard estimator of g would be a kernel density estimator with standard
Gaussian kernel,

.ĝh(y) := n−1
n∑

j=1

φh(y − yj ),

where .φh(y) := h−dφ(h−1y) with .φ(y) := (2π)−d/2 exp(−‖y‖2/2), and .h =
h(n) > 0 is some bandwidth to be specified later. Then, a possible estimator of
.H(Q) is given by

.Ĥ (y1, . . . , yn) := −n−1
n∑

i=1

log ĝh(yi ).
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Note that .Ĥ (·) is continuously differentiable with

.Ĥ (y1 + δ1, . . . , yn + δn)

= Ĥ (y1, . . . , yn)

+ n−1h−2
n∑

i=1

∑n
j=1(δi − δj )

�(yi − yj )φh(yi − yj )∑n
j=1 φh(yi − yj )

+ O
(‖δ1‖2 + · · · + ‖δn‖2)

as .δ1, . . . , δn → 0 because .φh(y + δ) = −h−2δ�yφh(y) + O(‖δ‖2) as .δ → 0.
This expansion will be useful for local optimization.

The smoothing parameter h has an impact, of course. Suppose that the underlying
distribution Q is the standard Gaussian .Nd(0, I d). Then, the expected value of .ĝ(y)

equals .φ(1+h2)1/2(y), the density of the convolution of Q and .Nd(0, h2I d). Hence,

.Ĥ (y1, . . . , yd) may be viewed as an estimator of

. −
∫

log φ(1+h2)1/2(y)φ(y) dy = (d/2)
(
(1 + h2)−1 + log(1 + h2) + log(2π)

)
.

(1)

4 Local Optimization

For our purposes, it is convenient to over-parametrize the search problem by writing

.A = U� (2)

with an orthogonal matrix .U ∈ R
p×p and the standard projection matrix

.� :=
[
I d

0

]
∈ R

p×d ,

which reduces a vector .x ∈ R
p to its subvector .��x = (xi)

d
i=1. Instead of looking

for a suitable projection matrix .A directly, we are looking for a suitable orthogonal
matrix .U such that .Ĥ (��U�x1, . . . ,�

�U�xn) is particularly small.
For a rigorous description of the local search strategy, we need to introduce some

notation and geometry. Recall first that any matrix space .R
p×q becomes a Euclidean

space by means of the inner product .〈B,C〉 := trace(B�C) = ∑
i,j BijCij , and

the resulting norm is the Frobenius norm .‖B‖F = ( ∑
i,j B2

ij

)1/2. In the special
case of .p = q, it is well known that .R

p×p is the sum of the orthogonal linear spaces
.R

p×p
sym and .R

p×p

anti of symmetric and antisymmetric matrices, respectively. Indeed, any
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matrix .� ∈ R
p×p can be written as .� = �sym + �anti with the symmetric matrix

.�sym := 2−1(� + ��) and the antisymmetric matrix .�anti := 2−1(� − ��).
Searching locally means that a given candidate .U in (2) is multiplied from the

right with another orthogonal matrix .V which is close to the identity matrix .Ip.
Specifically, let .V be equal to

. exp(�) =
∞∑

k=0

(k!)−1�k

for .� ∈ R
p×p

anti . It is well known that .exp(·) defines a surjective mapping from .R
p×p

anti
to the set of orthogonal matrices in .R

p×p with determinant 1, where .exp(0) = Ip.
Moreover, .exp(�)� = exp(−�), and

. exp(�) = Ip + � + O(‖�‖2
F ).

To find a promising new orthogonal matrix .U exp(�), we may assume without
loss of generality that .U = Ip because

.��(U exp(�))�xi = �� exp(�)�(U�xi ).

Hence, we may replace .xi with .U�xi for .1 ≤ i ≤ p and then look for a promising
perturbation .exp(�) of .Ip. To this end, let

.xi =
[
yi

zi

]
with yi ∈ R

d , zi ∈ R
p−d , (3)

that is, .yi = ��xi . If we write

.� =
[
�1 −C�
C �2

]
(4)

with arbitrary matrices .�1 ∈ R
d×d
anti , .�2 ∈ R

(p−d)×(p−d)

anti , and .C ∈ R
(p−d)×d , then

.�� exp(�)�xi = yi + ��
1 yi + C�zi + O(‖�‖2

F ).

Consequently, it follows from the general expansion of .Ĥ (·) in the previous section
that

.Ĥ
(
�� exp(�)�x1, . . . ,�

� exp(�)�xn

) − Ĥ (y1, . . . , yn)

= n−1h−2
n∑

i=1

∑n
j=1

(
��

1 (yi − yj ) + C�(zi − zj )
)�

(yi − yj )φj (yi − yj )∑n
j=1 φh(yi − yj )

+ O(‖�‖2
F )
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= 〈C, Ĉ〉 + O(‖�‖2
F ) (5)

as .� → 0, where

.Ĉ := n−1h−2
n∑

i=1

∑n
j=1 φh(yi − yj )(zi − zj )(yi − yj )

�
∑n

j=1 φh(yi − yj )
∈ R

(p−q)×d . (6)

In the last step, we used the representations

.(��
1 (yi − yj ))

�(yi − yj ) = 〈
�1, (yi − yj )(yi − yj )

�〉
,

(C�(zi − zj ))
�(yi − yj ) = 〈

C, (zi − zj )(yi − yj )
�〉

and the fact that .�1 ∈ R
d×d
anti is perpendicular to .(yi −yj )(yi −yj )

� ∈ R
d×d
sym . Since

.〈C, Ĉ〉 = 2−1〈�, �̂〉 with �̂ :=
[
0 −Ĉ

�

Ĉ 0

]
,

expansion (5) shows that the gradient of the mapping

.R
p×p

anti � � 	→ Ĥ
(
�� exp(�)�x1, . . . ,�

� exp(�)�xn

)

at .� = 0 is given by .2−1�̂. Consequently, promising candidates for the factor
.exp(�) are given by

. exp(−t�̂) = exp(t�̂)�, t ≥ 0.

The explicit computation of .exp(t�̂) is rather convenient when working with a
singular value decomposition of .Ĉ. With .m := min(d, p − d), suppose that

.Ĉ = W diag(σ )V �

with matrices .W = [w1 · · ·wm] ∈ R
(p−d)×m and .V = [v1 · · · vm] ∈ R

d×m of
singular vectors such that .W�W = V �V = Im and a vector .σ ∈ [0,∞)m of
singular values. If we define

.v̂i :=
[
vi

0

]
∈ R

p and ŵi :=
[
0
wi

]
∈ R

p,

then .�̂v̂i = σiŵi and .�̂ŵi = −σi v̂i for .1 ≤ i ≤ m, while .�̂x = 0 for .x ⊥
{v̂1, . . . , v̂m, ŵ1, . . . , ŵm}. From this, one can deduce that for .1 ≤ i ≤ m,

. exp(t�̂)v̂i = cos(tσi)v̂i + sin(tσi)ŵi ,



Local Projection Pursuit 127

exp(t�̂)ŵi = − sin(tσi)v̂i + cos(tσi)ŵi ,

while .exp(t�̂)x = x for .x ⊥ {v̂1, . . . , v̂m, ŵ1, . . . , ŵm}. In other words,

. exp(t�̂) =
[
I d + V diag(cos(tσ ) − 1)V � −V diag(sin(tσ ))W�

W diag(sin(tσ ))V � Ip−d + W diag(cos(tσ ) − 1)W�
]

=
[
I d − V diag(2 sin(tσ/2)2)V � −V diag(sin(tσ ))W�

W diag(sin(tσ ))V � Ip−d − W diag(2 sin(tσ/2)2)W�
]
,

where the functions of .tσ are computed component-wise. Note that the upper left
block .I d+V diag(cos(tσ )−1)V � equals .V diag(cos(tσ ))V � in case of .d = m, and
the lower right block .Ip−d +W diag(cos(tσ )− 1)W� equals .W diag(cos(tσ ))W�
in case of .p − d = m.

For the explicit choice of .t ≥ 0, we propose an Armijo–Goldstein procedure,
see Nocedal and Wright (2006). Specifically, recall that the auxiliary function
.ĥ(t) := Ĥ

(
�� exp(t�̂)x1, . . . ,�

� exp(t�̂)xn

)
satisfies .ĥ(0) = Ĥ (y1, . . . , yn)

and .ĥ′(0) = −‖Ĉ‖2
F . Now, we choose .t = 2−k with the smallest integer .k ≥ 0 such

that the improvement .ĥ(0) − ĥ(2−k) is at least .−2−kĥ′(0)/3 = 2−k‖Ĉ‖2
F /3.

Using Arbitrary PP Indices Suppose we replace estimated entropy with an
arbitrary continuously differentiable function .Ĥ : (Rd)n → R. Then, there exist
vectors .γ i = γ i (y1, . . . , yn) ∈ R

d such that for arbitrary perturbations .δi ∈ R
d ,

.Ĥ (y1 + δ1, . . . , yn + δn) = Ĥ (y1, . . . , yn) +
n∑

i=1

γ �
i δi + o

( n∑
i=1

‖δi‖
)

as .δ1, . . . , δn → 0. With .xi and .� as in (3) and (4),

.Ĥ
(
�� exp(�)�x1, . . . ,�

� exp(�)�xn

)

= Ĥ (y1, . . . , yn) +
n∑

i=1

γ �
i (��

1 yi + C�zi ) + o(‖�‖F )

as .� → 0. If .Ĥ is orthogonally invariant in the sense that .Ĥ (V y1, . . . ,V yn) =
Ĥ (y1, . . . , yn) for arbitrary orthogonal matrices .V ∈ R

d×d , then .
∑n

i=1 γ �
i ��

1 yi =
0. This can be seen by considering the special case .C = 0 and .�2 = 0, because
then .�� exp(�)�xi = exp(�1)

�yi , and .exp(�1) is orthogonal. Consequently, the
previous expansion of .Ĥ simplifies to

.Ĥ
(
�� exp(�)�x1, . . . ,�

� exp(�)�xn

) = Ĥ (y1, . . . , yn) + 〈C, Ĉ〉 + o(‖�‖F )
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as .� → 0, where

.Ĉ :=
n∑

i=1

ziγ
�
i ∈ R

(p−d)×d .

Hence, our version of local optimization may be applied to any smooth PP index .Ĥ

which is orthogonally invariant.

5 The Complete Procedure(s)

The complete procedure consists of three different basic procedures.

Basic Procedure 1 (Pre-whitening) Given the centered raw data .xraw
1 , . . . , xraw

n ,
we compute the preliminary scatter estimator .�̂0(x

raw
1 , . . . , xraw

n ) = B0B
�
0 . Then,

we set

.x
pre
i := B−1

0 xraw
i .

Basic Procedure 2 (ICS) Now, we compute the second scatter estimator and its

spectral decomposition: .�̂(x
pre
1 , . . . , x

pre
n ) = Û diag(λ̂)Û

�
with an orthogonal

matrix .Û ∈ R
p×p and a vector .λ̂ ∈ (0,∞)p of eigenvectors. Then, we set

.xics
i := Û

�
x

pre
i .

Basic Procedure 3 (Local PP) For given indices .j (1) < · · · < j(d) in
.{1, 2, . . . , p}, let .�(1) < · · · < �(p − d) be the elements of .{1, 2, . . . , p} \
{j (1), . . . , j (d)}. With the standard basis .e1, e2, . . . , ep of .R

p, we define the
permutation matrix .U := [ej (1) · · · ej (d) e�(1) · · · e�(p−d)] and set

.(x1, . . . , xn) ← (U�xics
1 , . . . ,U�xics

n ).
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Now, we start the following iterative algorithm with some small threshold .δo > 0:

.

Ĥ ← Ĥ (��x1, . . . ,�
�xn)

Ĉ ← Ĉ(x1, . . . , xn)

δ ← ‖Ĉ‖2
F

while δ ≥ δo do
(V , σ ,W ) ← SVD(Ĉ)

U ← Exp(V , σ ,W )

(x
tmp
1 , . . . , x

tmp
n ) ← (Ux1, . . . ,Uxn)

Ĥ tmp ← Ĥ (��x
tmp
1 , . . . ,��x

tmp
n )

while Ĥ − Ĥ tmp < δ/3 do
δ ← δ/2
σ ← σ/2
U ← Exp(V , σ ,W )

(x
tmp
1 , . . . , x

tmp
n ) ← (Ux1, . . . ,Uxn)

Ĥ tmp ← Ĥ (��x
tmp
1 , . . . ,��x

tmp
n )

end while
(x1, . . . , xn) ← (x

tmp
1 , . . . , x

tmp
n )

Ĥ ← Ĥ tmp

Ĉ ← Ĉ(x1, . . . , xn)

δ ← ‖Ĉ‖2
F

end while

Here, .Ĉ(x1, . . . , xn) ∈ R
(p−d)×d is given by (6), .SVD(Ĉ) yields the ingredients for

the singular value decomposition .Ĉ = W diag(σ )V �, and .Exp(V , σ ,W ) computes

. exp

([
0 −V diag(σ )W�

W diag(σ )V � 0

])
.

The inner while-loop is the Armijo–Goldstein step size correction mentioned before.

The iterative algorithm will always converge. In each instance of the outer
while-loop, the data .(x1, . . . , xn) are replaced with .(Ux1, . . . ,Uxn) with some
orthogonal matrix .U such that .Ĥ (��x1, . . . ,�

�xn) decreases strictly. Since
the set of all orthogonal matrices is a compact differentiable manifold and since
.Ĉ(x1, . . . , xn) is a continuous function of its input data which is closely related
to the gradient of .Ĥ (��Ux1, . . . ,�

�Uxn) as a function of .U , the condition
.‖Ĉ‖2

F < δo has to be satisfied after finitely many steps.
Basic procedure 3 is executed with .d + 1 or .

(
p
d

)
different choices of .i(1) <

· · · < i(d). It is also possible to compute first .Ĥ (��x1, . . . ,�
�xn) for all these

choices and then start local PP only for the choice with minimal initial value of .Ĥ .
Alternatively, one can inspect a scatter plot matrix of the data .xics

i visually and then
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run a local search, either with .d = 1 and the most promising index j or with .d = 2
and the most promising indices .1 ≤ j (1) < j (2) ≤ p.

The Result Running basic procedures 1, 2, and 3 leads to transformed observations
.xi = B�xraw

i such that the d-dimensional observations .��xi reveal (hopefully)
some interesting feature of the raw data.

The nonsingular matrix .B ∈ R
p×p may be recovered quickly via multivari-

ate least squares: with the data matrices .Xraw = [xraw
1 . . . xraw

n ]� and .X =
[x1 . . . xn]� in .R

n×p, the matrix .B satisfies .XrawB = X, whence .B =
(X�

rawXraw)−1X�
rawX.

We did not specify how the raw data have been centered. In our numerical
experiments, we used the sample mean, but any estimator of location would be pos-
sible, provided that the scatter estimators .�̂0(x

raw
1 , . . . , xraw

n ) and .�̂(x
pre
1 , . . . , x

pre
n )

are invariant under translations of the input data. Note that .Ĥ has this invariance
property as well.

Global PP In our numerical experiments, we also tried a global version of PP.
This consists of basic procedure 1 (pre-whitening) and basic procedure 3 (local PP)
applied to the observations .x

pre
i instead of the observations .xics

i . Of course, one
could extend this by applying basic procedure 3 several times to the observations
.V �

s x
pre
i , where .V 1,V 2,V 3, . . . are independent random orthogonal matrices in

.R
p×p, independent from the data.

6 Numerical Examples

The subsequent numerical examples are similar to examples presented by Tyler et al.
(2009), but with higher dimensions. We always started with the sample covariance
matrix .�̂0, and .�̂(x1, . . . , xn) was a one-step symmetrized M-estimator of scatter,

.�̂(x1, . . . , xn) := C
∑

1≤i<j≤n

(xi − xj )(xi − xj )
�

(ν + ‖xi − xj‖2)γ
(7)

with some (irrelevant for us) scaling factor .C = Cn,p,ν,γ > 0 and parameters
.ν, γ > 0. If .ν > 0, .γ = 1 and .C = ν +p, then .�̂ is a one-step approximation of the
symmetrized maximum-likelihood estimator of a centered multivariate t distribution
with .ν degrees of freedom, see Kent and Tyler (1991). If .ν = 0 and .γ = 1, then .�̂

corresponds to the symmetrized distribution-free scatter estimator of Tyler (1987).
Our numerical experiments indicate that it is worthwhile to try .ν close to 0 and
various parameters .γ > 1, although .�̂ does not correspond to a robust M-estimator
of scatter then.

Another question is the choice of the bandwidth .h > 0. The larger the bandwidth
h, the smoother is the target function .Ĥ , whereas small bandwidths h result in many
irrelevant local minima of .Ĥ . Our numerical experiments indicate that to detect
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clusters, values h between .0.3 and .0.5 work quite well. However, if the structure to
be detected is on a rather small scale, e.g., data lying on several parallel hyperplanes,
then one needs smaller bandwidths h (and probably exponents .γ > 1) to detect such
features.

For all subsequent examples, we simulated data sets of size .n = 500 in different
dimensions p, and we searched for interesting projections in dimension .d = 2.
The underlying distribution was chosen such that a scatter plot of the raw or pre-
whitened data would not reveal the interesting structure. As to basic procedure 3, we
considered all .p(p −1)/2 standard projections .x 	→ ��U�

jkx, where .1 ≤ j < k ≤
p and .U jk = [ej , ek, e�(1), . . . , e�(p−2)] with the elements .�(1) < · · · < �(p − 2)

of .{1, . . . , p} \ {j, k}. Local PP was run with threshold .δo = 10−11.

Example 1 We simulated data in dimension .p = 8. After pre-whitening the data,
we first tried a global PP with .h = 0.5, which yields a value of .2.8610 for (1).
The initial values .Ĥ (��U�

jkx
pre
1 , . . . ,��U�

jkx
pre
n ) ranged from .2.8251 to .2.8423.

The minimal value was obtained for .(j, k) = (1, 5). Running a local PP with this
starting point revealed three clusters, and the final value of .Ĥ was .2.4735. This is
shown in the upper panels of Fig. 1; the scatter plots show the projections before
(left) and after (right) local PP.

Now, we applied the procedure we advocate in this manuscript. We performed
ICS with .ν = 0 and .γ = 1. Then, the values .Ĥ (��U�

jkx
ics
1 , . . . ,��U�

jkx
ics
n )

ranged from .2.7112 to .2.8395. The minimal value was obtained for .(j, k) = (1, 2),
and the corresponding scatter plot indicates already some clustering, see the lower
left panel of Fig. 1. Running local PP revealed essentially the same structure as the
global PP, see the lower right panel.

In this example, global PP without ICS seems to be just as good as our three-
stage procedure. But note that local PP starting from components 1 and 5 of the data
.x

pre
i resulted in 24 iterations, whereas local PP starting from components 1 and 2 of

the data .xics
i resulted in 10 iterations only.

Example 2 We simulated data in dimension .p = 16. Again, we tried first a global
PP without ICS, which means we started local PP from some standard projections
of the data .x

pre
i . With the same bandwidth .h = 0.5 as in Example 1, the initial

values .Ĥjk := Ĥ (��U�
jkx

pre
1 , . . . ,��U�

jkx
pre
n ) ranged from .2.8133 to .2.8472.

The minimal value was obtained for .(j, k) = (3, 15). The upper left panel of Fig. 2
shows that projection of the data .x

pre
i , and starting local PP from this projection led

to the scatter plot in the upper right panel with a value .2.6599 of .Ĥ . The number of
iterations was 112.

Next, we tried other index pairs .(j, k), ordered by the initial values .Ĥjk . The
detected structures were similar for the next 12 pairs, but starting local PP from
.(j, k) = (3, 6) revealed the true underlying structure, a uniform distribution on a
two-dimensional circle with a value .2.3871 of .Ĥ , see the lower panels of Fig. 2.
The number of iterations was 29.
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Fig. 1 PP for Example 1: two-dimensional projections of the pre-whitened data .xi before and
after local PP (upper left and right panels) and of the preprocessed data .xics

i before and after local
PP (lower left and right panels)

Finally, we applied the procedure advocated in this manuscript. After running
ICS with .ν = 0 and .γ = 1, the initial values .Ĥ (��U�

jkx
ics
1 , . . . ,��U�

jkx
ics
n )

ranged from .2.7651 to .2.8476. The minimal value was obtained with .(j, k) = (1, 2),
and the corresponding scatter plot is shown in the upper left panel of Fig. 3. Running
local PP with this starting point revealed quickly the underlying structure. The
total number of iterations was 13, but already 4 iterations gave away the uniform
distribution on the circle, see the lower right panel of Fig. 3.

This example illustrates nicely the benefit of using ICS as a means to find
promising starting points for local PP.

Example 3 Our final example concerns a structure which is surprisingly difficult to
detect even in moderate dimension. Here, the dimension is .p = 6. Starting local PP
starting from all .p(p−1)/2 = 15 pairs of two components of the pre-whitened data
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Fig. 2 PP for Example 2: two-dimensional projections of the data .x
pre
i before (left panels) and

after (right panels) local PP. The upper row corresponds to components .(j, k) = (3, 15) and the
lower row to components .(j, k) = (3, 6)

.x
pre
i did not reveal anything, neither for .h = 0.5 nor for .h = 0.2. Also, our three-

stage procedure with .ν = 0 and .γ = 1 led nowhere. But with .γ = 4, an interesting
structure became visible for components .(j, k) = (1, 5) of the observations .xics

i , see

the upper left panel of Fig. 4. The initial value of .Ĥ was .2.6202. After 85 iterations
of local PP, we ended up with the projection shown in the lower right panel, and the
estimated entropy was .2.5797.
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Fig. 3 PP for Example 2: Two-dimensional projections of the data .xics
i , starting from components

.(j, k) = (1, 2) (upper left panel) and after 1 (upper right panel), 2 (lower left panel) and 4 (lower
right panel) iterations of local PP
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Fig. 4 PP for Example 3: Two-dimensional projections of the data .xics
i , starting from components

.(j, k) = (1, 5) (upper left panel) and after 1 (upper right panel), 4 (lower left panel) and 85 (lower
right panel) iterations of local PP
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Directional Distributions and the
Half-Angle Principle

John T. Kent

Abstract Angle halving, or alternatively the reverse operation of angle doubling,
is a useful tool when studying directional distributions. It is especially useful on the
circle where, in particular, it yields an identification between the wrapped Cauchy
distribution and the angular central Gaussian distribution, as well as a matching of
their parameterizations. The operation of angle halving can be extended to higher
dimensions, but its effect on distributions is more complicated than on the circle.
In all dimensions, angle halving provides a simple way to interpret stereographic
projection from the sphere to Euclidean space.

Keywords Angular central Gaussian distribution · Gnomonic projection ·
Möbius transformation · Multivariate t distribution · Stereographic projection ·
Wrapped Cauchy distribution

1 Introduction

The wrapped Cauchy (WC) distribution on the circle is a remarkable distribution
that appears in a wide variety of seemingly unrelated settings in probability and
statistics. The angular central Gaussian (ACG) distribution is another important
distribution in directional statistics. It was used by Tyler (1987a,b) to construct and
study a robust estimator of a covariance matrix, or more generally a scatter matrix,
for q-dimensional multivariate data. Hence, it is a pleasure to include this chapter in
a volume dedicated to Dave Tyler’s many contributions to statistical methodology.

As noted in Kent and Tyler (1988), the ACG distribution in .q = 2 dimensions
(i.e., on the circle) can be identified with the WC distribution after angle doubling.
Equivalently, WC distribution can be identified with the ACG distribution after
angle halving. Hence, algorithms to estimate the parameters of one distribution
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can be used with little change to estimate the parameters of the other distribution.
Several algorithms to compute the maximum likelihood estimates based on the EM
algorithm have been explored in Kent and Tyler (1988) and Kent et al. (1994). See
also Arslan et al. (1995) for further discussion.

The current chapter extends the analysis as follows:

• To use angle halving on the circle to recast the Möbius transformation in terms
of a rescaled linear transformation of the plane, a result that additionally allows
us to match the parameterizations of the WC and ACG distributions

• To extend angle halving to higher dimensions and to show the connection
between gnomonic projection and stereographic projection

• To note that the ACG distribution under gnomonic projection maps to a multivari-
ate Cauchy distribution and to contrast it with the spherical Cauchy distribution
of Kato and McCullagh (2020), which under stereographic projection maps to a
multivariate t-distribution

• To summarize some further properties of the WC distribution

To set the scene for the main investigation of the work, recall some basic
properties of the WC and ACG distributions on the circle .S1, with points on the
circle represented by either an angle .0 ≤ θ < 2π or a unit vector .(cos θ, sin θ)T .
The WC distribution, written WC.(λ), has the probability density function (p.d.f.)

.fWC(θ; λ) = (2π)−1 1 − λ2

1 + λ2 − 2λ cos θ
, θ ∈ S1. (1)

Here, .0 ≤ |λ| < 1 is a concentration parameter. The distribution has been centered
to have its mode at .θ = 0 if .λ > 0 and .θ = π if .λ < 0; it reduces to the uniform
distribution if .λ = 0.

The ACG distribution on .S1, written ACG.(b), has probability density function
(p.d.f.)

.fACG(ϕ; b) = (2π)−1b/{b2 cos2 ϕ + sin2 ϕ}
= π−1b/{b2(1 + cos 2ϕ) + (1 − cos 2ϕ)}
= π−1b/{(1 + b2) − (1 − b2) cos 2ϕ}, ϕ ∈ S1. (2)

Here, .0 < b < ∞ is a concentration parameter. The density is antipodally
symmetric, .f (ϕ) = f (ϕ +π). The distribution has been centered to have its modes
at .ϕ = 0, π if .b < 1 and .ϕ = ±π/2 if .b > 1; it reduces to the uniform distribution
if .b = 1.

If

.b = (1 − λ)/(1 + λ), (3)
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it can be checked that (2) is the same as (1) under the angle doubling relation .θ =
2ϕ. That is, if .� is a random angle following the ACG.(b) distribution and (3) holds,
then .� = 2� is a random angle following the WC.(λ) distribution. The relation (3)
between b and .λ will be assumed throughout the chapter.

The chapter is organized as follows. The basic transformations of the circle
are defined and examined in Sect. 2. These transformations are used in Sect. 3
to obtain the ACG and WC distributions on the circle as transformations of the
uniform distribution. Angle doubling is extended to the sphere in Sect. 4 and
interpreted through two projections in Sect. 5. The spherical version of the ACG
distribution is studied in Sect. 6 and a spherical analog of the WC distribution is
constructed in Sect. 7. Section 8 gives a discussion of transformation groups on the
sphere and shows how the ACG and spherical Cauchy distributions can be obtained
as transformations of the uniform distribution. Finally, Sect. 9 summarizes some
further derivations and motivations for the WC distribution on the circle.

For some standard background on directional distributions, see, e.g., Mardia and
Jupp (2000) and Chikuse (2003). For basic results from multivariate analysis, see,
e.g., Mardia et al. (1979). A fundamental reference is McCullagh (1996), which goes
further than the current chapter in exploring how the family of WC distributions is
closed under the group of Möbius transformations on the unit circle. See also Downs
(2009) for a broader discussion of Möbius transformations. The use of the Möbius
transformation in directional regression models was proposed in Downs and Mardia
(2002) and Downs (2003).

2 Basic Operations on the Circle

A point on the circle can be written as an angle .ϕ, where without loss of generality,
.ϕ ∈ (−π, π ]. The point can also be expressed as a unit vector

.x = (x1, x2)
T = (cosϕ, sinϕ)T = ±(1, r)T /

√
1 + r2, r = tanϕ, (4)

or as a complex number .x1 + ix2 = C(x). It is convenient to denote the mappings
between vector and angular representations by

.ϕ = Arg(x), x = vec(ϕ). (5)

For later use, note that the derivatives of the mappings between .ϕ and .r = tanϕ

are given by

.dr/dϕ = sec2 ϕ = 1/ cos2 ϕ = 1 + r2, dϕ/dr = 1/(1 + r2). (6)



140 J. T. Kent

Another important representation of an angle, where this time the angle is
denoted .θ , is in terms of the tangent of the half-angle, .s = tan(θ/2). Square both
sides and use the double angle formulas to get

.s2 = tan2(θ/2) = sin2(θ/2)

cos2(θ/2)
= 1 − cos θ

1 + cos θ
, (7)

which can be inverted to give

. cos θ = 1 − s2

1 + s2
,

so that .1 + cos θ = 2/(1 + s2).
Throughout the chapter, we assume that .θ and .ϕ are related by the double angle

condition, .θ = 2ϕ, so that .r = s. However, it is helpful to use both notations r and
s to emphasize that r is obtained from .ϕ and s is obtained from .θ .

Three important mappings from .S1 to itself are as follows.

(a) Squaring, denoted .D(x), whereD stands for the doubling of the angle. In vector
form the transformation is defined by

.D(x) = (x2
1 − x2

2 , 2x1x2)
T , x ∈ S1. (8)

If .y = D(x), then in complex arithmetic .y1 + iy2 = (x1 + ix2)
2. Furthermore,

if .ϕ = Arg(x) and .θ = Arg(y) are the two points in angular coordinates, then
.θ = 2ϕ. Hence, squaring is a two-to-one mapping of .S1 to itself.

(b) The rescaled diagonal linear transformation, denoted .L(x; b), where .b > 0 is
a scaling constant. In vector form the transformation is defined by

.L(x; b) = (x1, bx2)
T /

√
x2
1 + b2x2

2 . (9)

That is, the second component of .x is scaled by a factor b, and the resulting
vector is rescaled to be a unit vector. The rescaled diagonal linear transformation
can also be described as follows. If .z = L(x; b), then

. tanArg(z) = b tanArg(x). (10)

(c) The diagonal Möbius transformation, denoted .M(y; λ). Here, in vector form,
the transformation is defined for .λ > 0 by

.M(y; λ) = (2λ+(1+λ2)y1, (1−λ2)y2)
T /(1+λ2+2λy1), y ∈ S1. (11)
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If .w = M(y; λ) where .Arg(y) = θ and .Arg(w) = η, then .θ and .η are related
by

. tan η/2 = b tan θ/2, (12)

where b and .λ are related by (3). That is, the Möbius transformation is the
same as the rescaled diagonal linear transformation after the angles .θ and .η

are divided by 2. The Möbius transformation is most commonly defined using
complex arithmetic,

.C(M(y; λ)) = y1 + iy2 + λ

λ(y1 + iy2) + 1
, y ∈ S1, (13)

where for our purposes here .0 < λ < 1 is restricted to being real.

These transformations can be combined to give the following result, which is
helpful to call the fundamental diagonal Möbius identity:

.M(D(x); λ) = D(L(x; b)), x ∈ S1, (14)

where b and .λ are related by (3). That is, a rescaled diagonal linear transformation
followed by squaring is the same as squaring followed by a diagonal Möbius
transformation.

The identity in (14) has been stated for diagonal case. However, it is possible to
construct a more general version by allowing rotations before and after the relevant
transformation. Let

.Rα =
[
cosα − sinα

sinα cosα

]
(15)

denote a .2 × 2 rotation matrix by an angle .α. Also, recall that any .2 × 2 matrix .B

with positive determinant can be written using the singular value decomposition as

.B = cRαdiag(1, b)RT
β , (16)

where .c > 0 and .b > 0. Note that if .x = vec(ϕ), then .RT
β x = vec(ϕ − β) and

.D(RT
β x) = R2T

β D(x) = vec(2(ϕ − β)).
Define more general versions of the rescaled diagonal linear and Möbius

transformations by

.L(x;B) = Bx/||Bx|| = RαL(RT
β x; b),

M(x; λ, exp(2iα), exp(2iβ)) = R2
αM(R2T

β x; λ), (17)
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where .||x||2 = xT x. In complex notation, the Möbius transformation becomes

.M(y; λ, exp(2iα), exp(2iβ)) = exp(2i(α − β))
y1 + iy2 + λ exp(2iβ)

λ exp(−2iβ)(y1 + iy2) + 1
.

Note that L now depends on the matrix .B and M now depends on a real number
and two complex numbers. The more general version of the fundamental Möbius
identity becomes

.M(D(x); λ, exp(2iα), exp(2iβ)) = D(L(x;B)). (18)

3 Transformations of Distributions on the Circle

Let .�∗ follow a uniform distribution on the circle, with density .f (ϕ∗) =
1/(2π), −π < ϕ∗ < π . Let .R∗ = tan�∗ and .X∗ = vec(�∗) denote the
corresponding tangent of the angle and the Euclidean coordinates. Consider the
rescaled diagonal linear transformation .X = L(X∗; b), where .b > 0, and let
.� = Arg(X) and .R = tan(�) denote the corresponding angular and tangent values.

The inverse transformation between .X and .X∗ is .X∗ = L(X; 1/b). Then, the
p.d.f. of .� is given by

.
1

2π

dϕ∗

dϕ
= 1

2π

dϕ∗

dr∗
dr∗

dr

dr

dϕ

= 1

2π

1

1 + r∗2 b−1(1 + r2)

= 1

2πb

cos2 ϕ

cos2 ϕ + b−2 sin2 ϕ

1

cos2 ϕ

= b

2π

1

b2 cos2 ϕ + sin2 ϕ
= fACG(ϕ; b), (19)

where we have used the fact that .r∗2 = b−2r2 = b−2 sin2 ϕ/ cos2 ϕ, and
.1/(1 + r2) = cos2 ϕ. In other words, .� follows the ACG.(b) distribution.

If .�∗ follows a uniform distribution, then so does .�∗ = 2�∗. Hence,

.� = Arg(M(vec(�∗), λ)) = 2� = 2Arg(L(vec(�∗), b))

has p.d.f. (19) as a function of .ϕ (the factor 1/2 from the Jacobian .dϕ∗/dθ∗ cancels
the factor 2 which arises since the mapping from .ϕ∗ to .θ∗ is two to one). After
writing the p.d.f. in terms of .θ , the wrapped Cauchy density .fWC(θ; λ) in (1) is
obtained, where .λ is related to b by (3).
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In particular, if .0 < λ < 1, i.e., .0 < b < 1, the diagonal Möbius mapping
.Y = M(Y ∗, λ) pulls probability mass toward the direction .θ = 0; similarly, the
rescaled diagonal linear mapping .X = L(X∗; b) pulls probability mass toward the
directions .ϕ = 0 and .π . Hence, the WC distribution for .Y has a mode in the zero
direction, and the ACG distribution for .X has its modes in the directions 0 and .π .

In summary, both the ACG and WC distributions can be obtained from suitable
transformations of the uniform distribution. For simplicity, attention has been
focused on the centered distributions in this section, but rotations of the modal
direction can be easily included.

4 Basic Operations on the Sphere

To deal with higher dimensional spheres, more notation is needed. Let .Sq−1 = {x ∈
R

q : xT x = 1} denote the unit sphere in .R
q, q ≥ 2, in a unit vector notation. The

surface area of .Sq−1 is given by

.πq = 2πq/2/�(q/2). (20)

A point .x ∈ Sq−1 can be written in polar form about the north pole .e1 =
(1, 0, . . . , 0)T as

.x = ±
[
cosϕ

sinϕ u

]
, 0 ≤ ϕ ≤ π, (21)

where .u is a unit .(q − 1)-dimensional vector. If .q = 2, then .u = ±1 is just a scalar.
Using the polar representation (21), the surface measure on .Sq−1, written .[dx],

say, can be written recursively as

.[dx] = sinq−2 ϕ dϕ [du]. (22)

When .q = 2, the formula simplifies to .[dx] = dϕ. However, note (2) used a slightly
different convention for .ϕ; the scalar .u = ±1 was not present and the angle .ϕ was
allowed to range through the whole circle, .−π < ϕ ≤ π .

For all dimensions .q ≥ 2, changing .ϕ to .π − ϕ and .u to .−u changes .x to .−x.
Hence, when studying antipodally symmetric p.d.f.s, it is sufficient to restrict .ϕ to
the range .0 ≤ ϕ < π/2.

Let .y be another point in .Sq−1 with polar representation

.y =
[
cos θ

sin θ u

]
. (23)
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If .u is the same as in (21) and .θ = 2ϕ, then .y can be said to be obtained from .x by
doubling the angle, where “angle” here means the colatitude .ϕ. Write

.y = Dq(x) (24)

by analogy with the corresponding operation (8) on the circle.
In dimensions .q > 2, the concept of doubling the angle is less general than the

squaring operation on the circle (.q = 2) given in (8). In particular, when .q > 2,
the operation of doubling the angle has a Jacobian which depends on the choice of
north pole; see (32).

For use below, consider the following linear function of a q-dimensional unit
vector .y:

.P(y) = P(y; λ,μ0) = 1 + λ2 − 2λ yT μ0, (25)

and partition the unit vector .μ0 = (μ1,μ
T
2 )T in terms of a scalar and a .(q − 1)-

vector. Using (21) and (23), .P(y) can be rewritten as a quadratic function of .x as
follows:

.P(y) = 1 + λ2 − 2λ yT μ0

= (1 + λ2) − 2λμ1 cos θ − 2λ(μT
2 u) sin θ

= (1 + λ2)(cos2 ϕ + sin2 ϕ) − 2λμ1(cos
2 ϕ − sin2 ϕ) − 4λ(μT

2 u) sinϕ cosϕ

= (1 + λ2)(x2
1 + xT

2 x2) − 2λμ1(x
2
1 − xT

2 x2) − 4λ(μT
2 x2)x1

= (1 + λ2 − 2λμ1)x
2
1 + (1 + λ2 + 2λμ1)x

T
2 x2 − 4λ(μT

2 x2)x1

= Q(x), say, (26)

a homogeneous quadratic form .xT Ax with matrix

.A =
[
1 + λ2 − 2λμ1 −2λμT

2
−2λμ2 (1 + λ2 + 2λμ1)Iq−1

]
. (27)

Since .μT
0 μ0 = 1 and .|λ| < 1, it can be checked that .A is positive definite.

5 Projections from the Sphere to Euclidean Space

In this section, we look at two standard tangent projections from the sphere to
Euclidean space. It is convenient to set up the definitions and notation for all
dimensions .q ≥ 2. We can then specialize to the case .q = 2 and describe how
the projections are connected to the transformations of Sect. 3.
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The first is gnomonic projection, taking the open hemisphere .Hq−1 = {x ∈
Sq−1 : x1 > 0} to .R

q−1. If .x is a unit q-vector in the open hemisphere, it can be
written in the form (21) where .0 ≤ ϕ < π/2 and .u is a unit .(q − 1)-vector. As in
(4), let .r = tanϕ. Then, the gnomonic projection of .x is defined by

.v = r u = sinϕ

cosϕ
u = sinϕ

x1
u. (28)

The second is stereographic projection, taking the sphere .Sq−1, minus the point
at .−e1, to .R

q−1. If .y ∈ Sq−1 is a unit vector other than .−e1, write it in the form
(23), where .−π < θ < π . As in (7), let .s = tan(θ/2). Then, the stereographic
projection of .y is defined by

.w = su = sin(θ/2)

cos(θ/2)
u = sin θ

1 + y1
u (29)

since .sin θ = 2 sin(θ/2) cos(θ/2) and .1 + y1 = 1 + cos θ = 2 cos2(θ/2).
If .y is obtained from .x by angle doubling, then the two projections are identical.

That is, if .θ = 2ϕ, then .r = s and .v = w. However, the mapping of the uniform
measure on the sphere to Euclidean space is different for the two projections. For
gnomonic projection, the polar coordinate representation .v = r u states that r is the
radial part of .v so that the Lebesgue measure in the tangent space .R

q−1 is related to
the uniform measure on the sphere by

.dv = rq−2dr [du]
= (sinϕ/ cos ϕ)q−2(dr/dϕ) dϕ [du]
= cos−q ϕ{sinq−2 ϕ dϕ [du]}
= cos−q ϕ [dx], (30)

using (22) and .dr/dϕ = sec2 ϕ. On the other hand, for stereographic projection, the
polar coordinate representation .w = s u implies

.dw = sq−2ds [du]
= {sin(θ/2)/ cos(θ/2)}q−2 (ds/dθ) dθ [du]

= 1

2
{sin(θ/2)/ cos(θ/2)}q−2{cos(θ/2)}−2 sin−(q−2) θ{sinq−2 θ dθ [du]}

=
(
1

2

)q−1

cos−2(q−1)(θ/2)[dy] (31)

since .ds/dθ = (1/2) sec2(θ/2) and .sin θ = 2 sin(θ/2) cos(θ/2). Except on the
circle .q = 2, the two differentials involve different powers of .cos(θ/2) = cosϕ.
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Since .dv = dw both represent the Lebesgue measure in .R
q−1, (30) and (31) can

be combined to describe the effect of angle doubling on the sphere,

.[dy] = 2q−1 cosq−2 ϕ [dx]. (32)

The reason for the cosine factor is straightforward to understand intuitively. For
example, consider the case .q = 3 corresponding to the usual sphere. For a
constant value of a colatitude .ϕ, the longitude can range between 0 and .2π , and the
corresponding points on the sphere lie on a small circle of circumference .2π sinϕ.
If .ϕ is near .π/2, the corresponding small circle for .x is near the equator, a circle
with circumference .2π . However, the corresponding value of .θ = 2ϕ is near .π ,
and the corresponding small circle for .y lies near the south pole with circumference
close to 0. The cosine factor in (32) accounts for this change in circumference.

Figure 1 illustrates the two projections on the circle, where .θ = 2ϕ. The
gnomonic projection of .ϕ is obtained by following the ray from the origin O through
.(cosϕ, sinϕ)T to the vertical line tangent to the circle at B. The stereographic
projection of .θ is obtained by following the ray from A through .(cos θ, sin θ)T to the
same vertical line and dividing the result by 2. Note that the stereographic projection
of .θ is the same as the gnomonic projection of .ϕ.

The diagonal transformations on the circle in Sect. 2 can be as given simple
interpretations in terms of these projections. First, the rescaled diagonal linear
transformation of a unit vector .vec(ϕ) can be obtained by applying the following
three transformations:

(a) Gnomonic projection, .ϕ → tanϕ

(b) Scale change, .tanϕ → b tanϕ

(c) Inverse gnomonic projection, .b tanϕ → atan(b tanϕ)

Similarly, the diagonal Möbius transformation of a unit vector .vec(θ) can be
obtained by applying the following three transformations:

(a) Stereographic projection, .θ → tan(θ/2)
(b) Scale change, .tan(θ/2) → b tan(θ/2)
(c) Inverse stereographic projection, .b tan(θ/2) → 2atan{b tan(θ/2)}

Fig. 1 Two projections,
gnomonic and stereographic,
from the circle to the vertical
line tangent to the circle at
point B. If .ϕ = θ/2, then
.r = tanϕ = tan θ/2 is both
the gnomonic projection of .ϕ
and the stereographic
projection of .θ

Two projections

ϕϕ
θ

r

2r

OA B
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If .θ = 2ϕ, these two mappings are essentially the same as each other, thus
confirming the fundamental Möbius identity (14).

6 The ACG Distribution on the Sphere

This section takes a closer look at the ACG distribution on the sphere .Sq−1, q ≥ 2,
and in particular derives its behavior under gnomonic projection. First, it is useful
to recall some results about quadratic forms.

6.1 Review of Quadratic Forms in the Multivariate Normal
Distribution

Let .x = (xT
1 , xT

2 )T be a q-dimensional vector partitioned into two parts of
dimensions .q1 and .q2. Similarly, partition a .q × q positive definite matrix as

.� =
[
�11 �12

�21 �22

]
.

If .x follows a multivariate normal distribution, .x ∼ Nq(0,�), then .x1 ∼
Nq1(0,�11) and .x2|x1 ∼ Nq2(�21�

−1
11 x1,�22.1) (e.g., Mardia et al. 1979, p. 63),

where .�22.1 = �22 − �21�
−1
11 �12. Writing the joint density of .x as a product of a

marginal and a conditional density, .f (x) = f1(x1)f (x2|x1) yields an identity for
quadratic forms,

.Q = Q1 + Q2.1, (33)

where

.Q = xT �−1x

Q1 = xT
1 �−1

11 x1, (34)

Q2.1 = (x2 − �21�
−1
11 x1)

T �−1
22.1(x2 − �21�

−1
11 x1).

If .q1 = 1, q2 = q − 1, then .x1 = x1 is a scalar, .�11 = σ 11 is a scalar, and
.�21 = σ 21 is a vector. This case will be useful in the next section when studying
gnomonic projection.
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6.2 Basic Properties of the ACG Distribution

This section reviews some basic facts about the ACG distribution. Let .� be a
symmetric .q × q positive definite matrix with inverse .� = �−1. The ACG
distribution on .Sq−1 is defined by the density (with respect to the uniform measure
on .Sq−1) by

.fACG(x) = fACG(x;�) = π−1
q |�|1/2/(xT �x)q/2, (35)

where .πq is given in (20). The parameter .� is defined up to a multiplicative scalar.
If .� has spectral decomposition .� = ���T , where .� is an orthogonal matrix
containing the eigenvectors and .� is a diagonal matrix containing the eigenvalues,
then it is possible to separate out the orientation and the concentration parts of the
model. The ACG distribution is antipodally symmetric, .fACG(x) = fACG(−x).

If .q = 2 and .� = diag(b2, 1) is a diagonal matrix with .0 < b < 1, then the
density in polar coordinates reduces to (2). A similar expansion can be carried out
in higher dimensions .q > 2. Suppose .� is partitioned as

.� =
[
ω11 ωT

21
ω21 �22

]
,

and partition a unit vector .x ∈ Sq−1 as in (21). The quadratic form becomes

.xT �x = ω11 cos
2 ϕ + 2 sinϕ cosϕ (ωT

21u) + sin2 ϕ uT �22u. (36)

If, in addition, .ω21 = 0, then .ω11 is an eigenvalue. If .ω11 is the smallest eigenvalue,
then the density has its modes at .ϕ = 0, π .

6.3 ACG Distribution Under Gnomonic Projection

Next, consider gnomonic projection of the ACG distribution. Equations (33) and
(34) can be used to show that the ACG distribution on the sphere is transformed to
a multivariate Cauchy distribution in .R

q−1. To verify this result, recall the identities
in (4). Then, the quadratic form .Q = Q(x) = xT �−1x in (36), after dividing by
.cos2 ϕ = 1/(1 + r2), becomes

.(1 + r2)Q = ω11 + 2vT ω21 + vT �22v

= ω11 − ωT
21�

−1
22 ω21 + (v + �−1

22 ω21)
T �22(v + �−1

22 ω21)

= σ−1
11 + (v − σ 21/σ11)

T �−1
22.1(v − σ 21/σ11), (37)

using the identities .σ 21/σ11 = −�−1
22 ω21, .σ

−1
11 = ω11 − ωT

21�
−1
22 ω21 and .�−1

22.1 =
�22 for the inverse of a partitioned matrix (e.g., Mardia et al. 1979, p. 459). Without
loss of generality, we can rescale .� so that .σ11 = 1.
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The .(q − 1)-dimensional multivariate t-distribution, with location parameter .μ,
scatter matrix .B, and degrees of freedom .κ > 0, written .tq−1(μ,B, κ), has density
proportional to

.f (v) ∝ {1 + κ−1(v − μ)T B−1(v − μ)}−(q−1+κ)/2 (38)

(e.g., Mardia et al. 1979, p. 57). If .κ = 1, the distribution is known as the
multivariate Cauchy distribution.

Using (30), (35), and (37) to give the p.d.f. of the ACG(.�) distribution after
gnomonic projection yields

.fACG,gnomonic(v) ∝ Q−q/2 cosq ϕ = Q−q/2(1 + r2)−q/2,

with respect to the Lebesgue measure .dv in the tangent plane, which is the same as
(38) with .κ = 1. That is, the gnomonic projection follows a multivariate Cauchy
distribution .tq−1(σ 21,�

−1
22.1, 1).

7 The Spherical Cauchy Distribution

Kato and McCullagh (2020) have defined the spherical Cauchy (SC) distribution on
Sq−1 to have the p.d.f.

.fSC(y; λ,μ0) = π−1
q

{
1 − λ2

P(y; λ,μ0)

}q−1

, y ∈ Sq−1, (39)

where πq is given in (20) and P(y; λ,μ0) is given in (25). Here, 0 ≤ λ < 1 is a
measure of concentration and μ0 is a unit q-vector representing the modal direction.
When q = 2, the SC distribution reduces to the WC distribution (1).

Write μ0 = (μ1,μ
T
2 )T , where μ1 is a scalar and μ2 is a (q − 1)-vector and

μ2
1 + μT

2 μ2 = 1. Then, similarly to the expansion in (26), the quantity P(y) in (25)
can be written in stereographic coordinates v as

.P = P(y) = 1 + λ2 − 2λyT μ0

= (1 + λ2) − 2λ(μ1 cos θ + uT μ2 sin θ)

= 1

1 + r2
{(1 + λ2)(1 + r2) − 2λ[(1 − r2)μ1 + 2vT μ2)]}

= 1

1 + r2
{γ + δr2 − 4λvT μ2}

= 1

1 + r2
{γ − (4λ2/δ)μT

2 μ2 + δ(v − (2λ/δ)μ2)
T (v − (2λ/δ)μ2)}

= γ ∗

1 + r2
{1 + (v − m)T (v − m)/σ 2}, (40)
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where in the fourth line

.γ = 1 + λ2 − 2λμ1, δ = 1 + λ2 + 2λμ1

and in the final line

.γ ∗ = γ − (4λ2/δ)μT
2 μ2 = (1 − λ2)/δ, m = (2λ/δ)μ2, σ = (1 − λ2)/δ.

In addition, the identities vT v = r2uT u = r2, cos2 ϕ = 1/(1 + r2), cos θ =
(1 − r2)/(1 + r2), and sin θ = 2 sinϕ cosϕ = (2 tanϕ)/(1 + r2) have been used.

Using the change of variables formula (31), the distribution of the stereographic
projection of y has density

.fγ,stereo(v) ∝ P −(q−1) cos2(q−1)(θ/2) = {(1 + r2)P }−(q−1),

which as a function of v can be identified with the density of the multivariate t-
distribution tq−1(m, (q − 1)−1σ 2I q−1, q − 1) with κ = q − 1 degrees of freedom.
Note that the identification is valid even if μ0 
= e1, i.e., even if the mode of the
SC distribution does not lie in the direction of the first coordinate axis. This result
was proved in Kato and McCullagh (2020); see also McCullagh (1996) for a deeper
study of the circular case.

Note that the factor (1+ r2)−(q−1) in the density has the right power to combine
with P −(q−1) in the density. This property explains why the SC distribution was
defined by raising P to the power −(q − 1), and not some other power, in (39).

When q 
= 2, the SC distribution can never be identified with the ACG
distribution under angle doubling. In particular, the gnomonic projections of an
ACG distribution follows a multivariate Cauchy distribution (i.e., a multivariate t-
distribution with 1 degree of freedom). In contrast, the stereographic projection of an
SC distribution follows a multivariate t-distribution with q − 1 degrees of freedom.

Finally, an anonymous referee has noted that there is another definition of a
spherical Cauchy distribution as an exit distribution in diffusion theory. Consider
a q-dimensional Brownian motion starting at the point λμ0, where 0 ≤ λ < 1 and
μ0 is a unit vector. The position of the Brownian motion when it first hits the sphere
Sq−1 has the density

.fBMSC(y; λ,μ0) = π−1
q

1 − λ2

P(y; λ,μ0)
q/2 , y ∈ Sq−1, (41)

(e.g., Durrett 1984, Section 1.10) where P(y; λ,μ0) is given in (25) and where
the subscript BMSC stands for Brownian motion spherical Cauchy. Except on the
circle, q = 2, (41) is different from (39) and its stereographic projection cannot be
identified with any t-distribution.
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8 Transformation Groups on the Sphere

This section extends some results involving the rescaled linear and Möbius transfor-
mations from the circle to higher dimensional spheres .Sq−1, q > 2.

Start with the general rescaled linear transformations of the form

.x → Bx/||Bx||, x ∈ Sq−1, (42)

where .B(q × q) is nonsingular with positive determinant. It is easy to see that
these transformations form a group under composition where the group operation
corresponds to matrix multiplication. This group can be used to facilitate simulation.
For example, if .x is uniformly distributed on .Sq−1 and .B = �−1/2 = �1/2, then
.Bx/||Bx|| follows the ACG distribution in (35).

Of special interest are the rescaled diagonal linear transformations for which .B

is assumed to have the form

.B = diag(1, bI q−1), b > 0. (43)

That is, the scaling factor for the first coordinate direction is different from the
common scaling factor for the other coordinate directions. If .x = (cosϕ, sinϕ uT )T

as in (21), the rescaled diagonal linear transformation of .x can be written as

.Lq(x; b) = (cosϕ∗, sinϕ∗ uT )T , where vec(ϕ∗) = L(vec(ϕ); b)

in terms of the corresponding transformation L on the circle in (9).
It is also possible to extend Möbius transformations to higher dimensions. In

this case, it is simplest to start with the diagonal Möbius transformations. If .y =
(cos θ, sin θ uT )T as in (23), the diagonal Möbius transformation of .y can be written
as

.Mq(y; λ) = (cos θ∗, sin θ∗ uT )T , where vec(θ∗) = M(vec(θ); λ)

in terms of the corresponding transformation M on the circle in (11).
This transformation can be used to facilitate simulation. If .y is uniformly

distributed on .Sq−1, then .Mq(y; λ) follows the spherical Cauchy distribution (39).
See also Downs (2009), who used this property to motivate the definition of the
spherical Cauchy distribution.

It is also possible to define a general Möbius transformation consisting of
three operations: (a) a rotation, followed by (b) a diagonal Möbius transformation,
followed by (c) another rotation. Although it is not immediately obvious, the set of
general Möbius transformations forms a group under composition.

The fundamental diagonal Möbius identity (14) on the circle between the
rescaled diagonal linear transformations and the diagonal Möbius transformations
carries over with a little change. It becomes

.Mq(Dq(x); λ) = Dq(Lq(x); b), x ∈ Sq−1, (44)
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where .Dq is defined in (24). Furthermore, the interpretation of this identity in terms
of gnomonic and stereographic projections given at the end of Sect. 5 carries over
immediately to higher dimensions.

However, two notes of caution are needed . First, it is not possible to usefully
extend (18) to give a version of the general Möbius identity in dimensions .q > 2.
In particular, even if .B = I is the identity matrix, the singular value decomposition
.B = ��T , where .� is any rotation matrix, is not unique, leading to ambiguities in
the construction of the general Möbius transformation.

Second, it should be emphasized that the fundamental Möbius identity does
not lead to a natural pairing of distributions when .q > 2. If .x follows the ACG
distribution with .B given by (43) and if .y = Dq(x), then .y does not follow a
spherical Cauchy distribution. The underlying reason is because the Jacobian term
in (32) is not constant.

9 Parameterizations and Motivations for the Wrapped
Cauchy Distribution on S1

TheWC.(λ) distribution on the circle arises in a variety of settings in statistics. Here,
we give a brief review. The standard one-dimensional Cauchy distribution with scale
parameter .b2 and written .t1(0, b2, 1) in (38) plays a key role in two of the settings.

(a) Angle doubling. This topic has been the main theme of the chapter. In particular,
the WC.(λ) distribution can be obtained from the ACG.(b) distribution by angle
doubling, where b and .λ are related by (3).

(b) Stereographic projection. As noted in Sects. 6 and 7, theWC.(λ) distribution can
be obtained from the Cauchy distribution by inverse stereographic projection
when b is related to .λ by (3).

(c) Wrapping. If .Z ∼ t1(0, b2, 1), set .� = Z mod 2π . Recall that the Cauchy
distribution has Fourier transform .f̂ (t) = exp(−b|t |), t ∈ R, and its wrapped
version has Fourier coefficients .f̂ (m), m ∈ Z. Since the WC.(λ) distribution
has Fourier coefficients, .λ|m|, m ∈ Z, it follows that .� ∼ WC(λ) distribution
with .λ = exp(−b). Note that this value of .λ is different from the value in (b).

(d) AR(1) process. Consider the first-order autoregression AR(1) model in time
series,

.Xt+1 = λXt + εt , t ∈ Z,

where the innovation sequence .{εt } consists of independent identically dis-
tributed .N(0, σ 2

ε ) random variables with .εt independent of .Xs, s < t . For
.|λ| < 1, the model describes a stationary Gaussian process with spectral density
(after standardizing it to be a probability density) given by the WC.(λ) density.
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Table 1 Various parameterizations of the wrapped Cauchy distribution

Number Parameter A B C Setting

1 .0 ≤ λ < 1 .1 − λ2 .1 + λ2 .2λ Wrapped Cauchy, AR(1)

2 .0 < b ≤ 1 .2b .1 + b2 .1 − b2 Doubled ACG,

stereographic projection

3 .0 < μ ≤ π/2 .sinμ 1 .cosμ Angular rep

4 .0 ≤ α < 1/2 .
√
1 − 4α2 1 .2α CAR(1)

(e) CAR(1) process. Consider the first-order conditional autoregression CAR(1)
model, defined by the conditional distributions

.Xt |{Xs, s 
= t} ∼ N(α(Xt−1 + Xt+1), σ
2
η ),

indexed by .t ∈ Z. For .|α| < 1/2, this model defines a stationary process which
is the same as the stationary AR(1) process. The parameters are related by .α =
λ/(1 + λ2).

(f) Exit distribution for Brownian motion. For a standard Brownian motion in the
plane starting from a point inside .S1, the exit distribution on .S1 has a wrapped
Cauchy distribution; see (41).

Several of these settings involve different ways to parameterize the WC distribu-
tion. Note that the WC.(λ) density for .0 ≤ λ < 1 can be written in the form

.fWC(θ; λ) = 1

2π

A

B − C cos θ
, θ ∈ S1, (45)

where .A,B > 0 and .C ≥ 0. Provided .B2 = A2 + C2, the density integrates to 1.
Furthermore, the density is unchanged if the parameters are multiplied by the same
scalar constant. Hence, there is only one free parameter. Table 1 lists some common
choices for .A,B,C. Furthermore, by interchanging A and C, as has already been
done for Parameterizations 1 and 2, the number of parameterizations can be doubled.

Parameterization 1 is the standard representation. As noted in (a), Parameter-
ization 2 is motivated by doubling the angle in the ACG distribution with its
standard parameterization. As noted in (b), it is also motivated by the standard
parameterization of the Cauchy distribution after inverse stereographic projection.
Parameterization 3 is the simplest algebraically. Parameterization 4 is motivated by
the CAR(1) model in (e).

Acknowledgments I am grateful to Peter Jupp and two anonymous referees for helpful comments
on the presentation.
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Part III
Robust Theory and Methods



Power M-Estimators for Location
and Scatter

Gabriel Frahm

Abstract Power M-estimators for location and scatter are studied by Frahm et al.
(J. Multivariate Anal. 176:104569, 2020) in the context of missing data. It is shown
that they are identical to the correspondingML-estimators under the assumption that
the data possess a re-scaled multivariate power-exponential distribution. Further, the
asymptotic distributions for the power M-estimators are simplified. As a by-product,
the asymptotic distributions for power M-estimators for scale-invariant functions of
scatter are provided, too.

Keywords Location · M-estimation · Multivariate power-exponential
distribution · Scatter; Tyler’s M-estimator

1 Motivation

Power M-estimators are used by Frahm et al. (2020) to estimate the location and
scatter of incomplete elliptically distributed data. Here, it is assumed that the data are
complete in order to obtain closed-form expressions. The contribution is threefold:
(i) It is shown that the power M-estimators for location and scatter are identical to
the corresponding ML-estimators under the assumption that the data possess a re-
scaled multivariate power-exponential distribution. (ii) The asymptotic distributions
for the power M-estimators given by Frahm et al. (2020) are simplified. (iii) Further,
the asymptotic distributions for power M-estimators for scale-invariant functions of
scatter are derived.

In fact, many applications of multivariate analysis are based on the estimation
of scale-invariant functions of scatter, e.g., principal component analysis, canonical
correlation analysis, linear discriminant analysis, and linear regression (see, e.g.,
Croux & Haesbroeck 1999; Hallin & Paindaveine 2006; Oja 2003; Paindaveine
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2008; Taskinen et al. 2006). Thus, it seems worth emphasizing that the associated
asymptotic distributions are quite simple and important from a practical viewpoint.

2 Prerequisites

Let X be a d-dimensional random vector possessing an elliptical distribution, i.e.,
.X = μ + �RU , where .μ ∈ R

d , .� ∈ R
d×k , U is a k-dimensional random vector

that is uniformly distributed on the unit hypersphere in .R
k , and .R is a nonnegative

random variable being stochastically independent of U (Cambanis et al. 1981; Fang
et al. 1990, p. 42). Throughout this chapter, it is implicitly assumed that .P(R > 0) >

0, which means that the distribution of X is not degenerate. Further, we can only
observe the realizations of X, whereas the realizations of .R and U are unobservable.

The distribution of X depends on .� only through the .d × d matrix .� := ��′ ≥
0. This is referred to as the scatter matrix of X, whereas .μ is said to be its location
vector. The random variable .R is called the generating variate of X. If .E(R2) < ∞,
the covariance matrix of X is given by .Cov(X) = E(R2)�/k. In any case, the linear
dependence structure of X can be described by the scatter matrix .�. I assume that .�
is positive definite, i.e., .rk(�) = d, and that .k = d > 1, without loss of generality.
Thus, I focus on the multivariate case, although many of the results presented here
are valid also for the univariate case, i.e., .d = 1.

It is typically supposed that the distribution of .R is absolutely continuous. In this
case, the density of .R is given by

.f (r) = 2π
d
2

�
(

d
2

) rd−1g
(
r2

)
, r ≥ 0,

where g is a nonnegative function on .R
+
0 referred to as the density generator of X.1

It is implicitly assumed that .μ and .� do not have any influence on g, i.e., the density
generator is fixed. Now, the density of the random vector X can be written as

.p(x) =
√
det�−1 g

(
(x − μ)′�−1(x − μ)

)
.

The class of elliptical distributions is a broad and fundamental generalization of
the multivariate normal distribution (Cambanis et al. 1981; Fang et al. 1990; Kelker
1970). For all .τ > 0, we have that .X = μ+�RU = μ+VSU with .V := �/τ and
.S := τR. Hence, if X has the scatter matrix .�, there always exists an equivalent
representation of X with the scatter matrix .�/τ 2. Thus, .� can be identified only if
either the scale of .� or the scale of .R is fixed, in some appropriate way.

More precisely, consider some function .ψ : D → R
k , where D is an open subset

of the Euclidean space. The function .ψ is said to be (positively) homogeneous of
degree .γ ∈ R if and only if .ψ(κx) = κγ ψ(x) for all .κ > 0 and .x ∈ D. In particular,

1 The quantity .�
(

d
2

)
/
(
2π

d
2
)
corresponds to the surface area of the unit hypersphere in .Rd .
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it is said to be:

• Scale invariant if and only if it is homogeneous of degree 0.
• Linearly homogeneous if and only if it is homogeneous of degree 1.

Let .Pd be the set of all symmetric positive-definite .d × d matrices and .σ 2 : Pd →
R

+ be a linearly homogeneous function, i.e., .σ 2(κ�) = κσ 2(�) for all .κ > 0 and
.� ∈ Pd . The so-called scale function .σ 2 is assumed to be differentiable, and it is
also required that .σ 2(Id) = 1.2 Now, .σ 2(�) quantifies the scale of .�, and thus
“fixing the scale of .�” means to require that .σ 2(�) = 1. Typical scale functions
are .σ 2(�) = �11, .σ 2(�) = tr(�)/d, and .σ 2(�) = det(�)1/d . For more details, see
Frahm (2009) and Paindaveine (2008).

Alternatively, given some appropriate real-valued partial function w on .R
+
0 ,

3

“fixing the scale of .R” means to require that the generating variate satisfies the
scaling condition

.E
(
ϕ(R2)

) = d (1)

with .ϕ
(
R2

) := w
(
R2

)
R2. The function w is referred to as a weight function.4 It is

considered “appropriate” if and only if there exists no scaling constant .τ �= 1 such
that .E

(
ϕ
(
(τR)2

)) = d. A sufficient condition is that .ϕ is strictly increasing.
A prominent exception is Tyler’s weight function .r2 �→ d/r2, which can be

used whenever .R has no atom at 0, i.e., .P(R = 0) = 0 (Tyler 1987a,b). In this
case, obviously, it holds that .E

(
ϕ
(
(τR)2

)) = d for all .τ > 0, and thus we must,
instead, fix the scale of .�, i.e., require that .σ 2(�) = 1 for any scale function .σ 2. By
contrast, the Gauss-type weight function .r2 �→ 1 is clearly appropriate. In particular,
this weight function implies that

.� = E
(
ϕ(R2)

)

d
� = E

(
R2

)

d
� = Cov(X),

i.e., the scatter matrix .� corresponds to the covariance matrix of X.

3 Power M-Estimators for Location and Scatter

Throughout this section, let the random vectors .X1, X2, . . . , Xn ∼ X be indepen-
dent, where X has an elliptical distribution on .R

d with .d > 1, location vector .μ,
scatter matrix .� > 0, and generating variate .R without atom at 0.

2 Here, .Id represents the .d × d identity matrix.
3 A partial function from A to B is a function from a subset of A to B.
4 The reason why will become clear in the next section.



160 G. Frahm

3.1 ML-Estimation

In the context of ML-estimation, it is assumed that the distribution of .R, i.e., the
generating distribution of X, is known. Further, it is supposed to be absolutely
continuous and so X has a density function. For example:

• .

√
χ2

d is the generating variate of the multivariate normal distribution.

• .
√

dFd,ν with .Fd,ν ∼ F(d, ν) represents the generating variate of the multivariate
t-distribution with .ν > 0 degrees of freedom.

• .G
1/(2β)

d/(2β),2 with .Gd/(2β),2 ∼ Gamma
(

d
2β , 2

)
generates the multivariate power-

exponential distribution with shape parameter .β > 0.5

For .ν → ∞, we obtain .dFd,ν
d→ χ2

d , and for .β = 1, it holds that .G1/β
d/(2β),2 ∼ χ2

d ,
too, which leads us to the multivariate normal distribution.

The density generator of the multivariate normal distribution is

.r2 �−→ (2π)−
d
2 exp

(
−1

2
r2

)
.

Further, the density generator of the multivariate t-distribution is given by

.r2 �−→ 1

(νπ)
d
2

�(d+ν
2 )

�( ν
2 )

(
1 + r2

ν

)− d+ν
2

,

whereas for the multivariate power-exponential distribution (Gómez et al. 1998), we
have that

.r2 �−→ 1

2
d
2β π

d
2

�(d
2 + 1)

�
(

d
2β + 1

) exp
(

−1

2
r2β

)
.

Hence, we obtain the multivariate normal distribution for .β = 1, whereas the given
distribution is light tailed if .β > 1. The latter case is ignored throughout this chapter.

In order to compute the corresponding ML-estimates for .μ and .�, one usually
tries to solve the system

.

0 = 1

n

n∑

i=1

w
(
r2i

)
(Xi − μ̂)

�̂ = 1

n

n∑

i=1

w
(
r2i

)
(Xi − μ̂)(Xi − μ̂)′

5 Here, .d/(2β) is the shape parameter and 2 is the scale parameter of the Gamma distribution.
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of ML-estimating equations,6 where .ri =
√

(Xi − μ̂)′�̂−1(Xi − μ̂) for .i =
1, 2, . . . , n. In some cases, it can happen that the simultaneous ML-estimating
equations have no solution at all. I will come back to this pathological case below.

The corresponding ML-weight function w is given by .r2 �→ −2g′(r2)/g(r2) for
all .r2 ≥ 0 with .g(r2) > 0 (Tyler 1982), provided that the density generator g is
differentiable wherever it is positive. ML-estimation presumes that the distribution
of .R is known, and so the scatter matrix .� is identifiable by construction. In fact,
the scaling condition .E

(
ϕ(R2)

) = d, which is given by Eq. 1, is implicitly satisfied
if the ML-estimator for .� is Fisher consistent, i.e., if we have that

.E
(

∂ logp(X;μ,�)

∂�

)
= 0,

where .p(·;μ,�) is the density function of X, given its location vector .μ and scatter
matrix .� (Frahm et al. 2020). Fisher consistency is an essential requirement of ML-
estimation. If an ML-estimator, understood as the solution of an ML-estimating
equation, is Fisher inconsistent, it cannot be consistent (in the usual sense) at all.

The ML-weight function w associated with the multivariate normal distribution
is .r2 �→ 1. Further, for the multivariate t-distribution, we obtain the weight function
.r2 �→ (d + ν)/(r2 + ν), whereas the multivariate power-exponential distribution
leads us to the weight function .r2 �→ βr2(β−1). Hence, in the latter case, the
corresponding ML-estimating equations for .μ and .� are

.0 = β

n

n∑

i=1

Xi − μ̂
[
(Xi − μ̂)′�̂−1(Xi − μ̂)

]1−β
(2)

and

.�̂ = β

n

n∑

i=1

(Xi − μ̂)(Xi − μ̂)′
[
(Xi − μ̂)′�̂−1(Xi − μ̂)

]1−β
. (3)

For .β = 1, i.e., if X is multivariate normally distributed, we obtain the constant
weight function .r2 �→ 1. Then the ML-estimators for .μ and .� simply turn into the
sample mean vector and sample covariance matrix.

I already mentioned above that the simultaneous ML-estimating equations
could have no solution at all. The multivariate power-exponential distribution is
continuous on .R

d . This means that there is no lower-dimensional hyperplane .H ⊂
R

d such that .P(X ∈ H) > 0. Now, let .x1, x2, . . . , xn (with .n > d) be some data
points in .R

d being generated by a multivariate power-exponential distribution with
known shape parameter .0 < β ≤ 1. Further, let .μ̂ and .�̂ be the ML-estimates of

6 In this chapter, the symbol “0” represents a zero scalar, a zero vector, or a zero matrix. Its
particular meaning should always be clear from the context.
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.μ and .�, respectively, based on the assumption that X has a multivariate power-
exponential distribution with shape parameter .β. To be more precise, .μ̂ and .�̂

maximize the log-likelihood function

.(μ,�) �−→ c + n log det�− 1
2 − 1

2

n∑

i=1

[
(xi − μ)′�−1(xi − μ)

]β

with some constant c, but they do not necessarily solve the ML-estimating equa-
tions 2 and 3. In the case of .β ≤ 1

2 , the log-likelihood function of the multivariate
power-exponential family is peaked and thus not differentiable at each .μ ∈{
x1, x2, . . . , xn

}
. Thus, solving the ML-estimating equations, in order to compute

the ML-estimates, is inappropriate if the shape parameter .β is not greater than .
1
2 .

Then it could even happen that .μ̂ = xi with positive probability, in which case the
ML-estimators .μ̂ and .�̂ cannot satisfy the simultaneous ML-estimating equations 2
and 3.7

3.2 M-Estimation

Now, we drop the assumption that the generating distribution of X is known and
absolutely continuous. In this case, we can estimate .μ and .� by solving the system

.

0 = 1

n

n∑

i=1

v(ri)(Xi − μ̂)

�̂ = 1

n

n∑

i=1

w
(
r2i

)
(Xi − μ̂)(Xi − μ̂)′

of M-estimating equations, where v and w are some real-valued partial weight
functions on .R

+
0 (see, e.g., Huber & Ronchetti 2009; Maronna 1976, Chapter 8).

The population version of the given system of M-estimating equations is

.

0 = E
(
v(R)(X − μ)

)

� = E
(
w

(
R2

)
(X − μ)(X − μ)′

)
,

where .R = √
(X − μ)′�−1(X − μ). From:

• .� = ��′
• .E(U) = 0

7 I would like to thank an anonymous referee for this important hint.
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• .E(UU ′) = Id/d

• .X − μ = �RU

• .(X − μ)(X − μ)′ = R2�UU ′�′

we conclude that the first equation is always satisfied, provided that .E
(
v(R)R

)
<

∞, whereas the second equation requires the critical scaling condition given by
Eq. 1.

Most of the results contained in this chapter do not depend on the choice of v.
Nonetheless, it is important to choose v carefully—as we will see at the end of this
section. Whenever I refer to some weight function without any further remark, I
mean the weight function w. The following M-weight functions can frequently be
found in the literature (see, e.g., Kent & Tyler 1991; Tyler 1987a):

• The Gauss-type weight function .r2 �→ 1.
• The Student-type weight function .r2 �→ (d + ν)/(r2 + ν) with .ν > 0.
• Tyler’s weight function .r2 �→ d/r2.
• Huber’s weight function

.r2 �−→
{

γ , r2 < λ

γλ/r2 , r2 ≥ λ ,

where the parameters .γ, λ > 0 are such that .E
(
ϕ(χ2

d )
) = d.

As already mentioned in the last section, if we choose .r2 �→ −2g′(r2)/g(r2)

for all .r2 ≥ 0 with .g(r2) > 0, the M-weight function reduces to the ML-weight
function associated with the density generator g. I call the weight function .r2 �→ 1
“Gauss-type” because it is the ML-weight function under the assumption that the
data have a multivariate normal distribution. Similarly, the weight function .r2 �→
(d + ν)/(r2 + ν) is called “Student-type” because it is the ML-weight function
given that the data have a multivariate t-distribution. See Dümbgen et al. (2015) for
a comprehensive survey on M-estimation of scatter.

The power M-weight functions for .μ and .� proposed by Frahm et al. (2020) are
given by:

• .v : r �→ r−α

• .w : r2 �→ (
r2

d

)−α

respectively, where .0 ≤ α ≤ 1 represents a so-called tail index. If .α is lower than 1,
the function .ϕ : r2 �→ dαr2(1−α) is strictly increasing. Hence, the power M-weight
function for scatter, w, with tail index .α < 1 is appropriate in the sense that we are
able to fix the scale of .R by applying the scaling condition expressed by Eq. 1.

The power M-estimators .μ̂ and .�̂ are the solutions of

.0 = 1

n

n∑

i=1

Xi − μ̂
[
(Xi − μ̂)′�̂−1(Xi − μ̂)

] α
2

(4)
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and

.�̂ = dα

n

n∑

i=1

(Xi − μ̂)(Xi − μ̂)′
[
(Xi − μ̂)′�̂−1(Xi − μ̂)

]α . (5)

Once again, it could happen that the power M-estimators do not exist, almost surely,
which depends on the chosen tail index .α and the distribution of X.

The weight function v with tail index .α = 0 leads us to the sample mean vector
.μ̂ = 1

n

∑n
i=1 Xi as an estimator for .μ, whereas for .α = 1 we get the M-estimator

for location proposed by Hettmansperger and Randles (2002). This means that .μ̂ is
the solution of

.0 = 1

n

n∑

i=1

Xi − μ̂
√

(Xi − μ̂)′�̂−1(Xi − μ̂)
,

where .�̂ is the power M-estimator for .� with tail index .α = 1, i.e., Tyler’s M-
estimator

.�̂ = d

n

n∑

i=1

(Xi − μ̂)(Xi − μ̂)′

(Xi − μ̂)′�̂−1(Xi − μ̂)

for scatter. The solutions of both equations do not depend on the chosen scale of .�̂.
Correspondingly, the Gauss-type weight function .w : r2 �→ 1 appears for .α = 0,

whereas Tyler’s weight function .w : r2 �→ d/r2 can be found on the boundary .α =
1. Any choice of .α between 0 and 1 is a compromise between the sample covariance
matrix .

1
n

∑n
i=1

(
Xi − μ̂

)(
Xi − μ̂

)′, i.e., the typical nonrobust estimator, and Tyler’s
M-estimator, i.e., the most robust estimator for .� (Tyler 1987a, Remark 3.1). Simply
put, the tail index .α determines the robustness of the power M-estimators.

In the introduction, I mentioned that power M-estimators are used by Frahm
et al. (2020) to estimate the location and scatter of incomplete elliptically distributed
data. Now, I would like to explain, shortly, the reason why the class of power
M-estimators is particularly suitable for missing-data analysis. Suppose that we
observe only .k ∈ {

1, 2, . . . , d
}
components of X. In fact, the observed subvector

of X is elliptically distributed, too, but with generating variate .R
√
B, where .B ∼

Beta
(

k
2 ,

d−k
2

)
is independent of .R (Cambanis et al. 1981). Hence, when applying an

M-weight function for scatter to incomplete data, the critical scaling condition given
by Eq. 1 turns into .E

(
ϕk(R2B)

) = k with .ϕk(R2B) := wk(R2B)(R2B), where .wk

denotes the M-weight for scatter given that one observes only k components of X.
To guarantee that the resulting M-estimator is consistent, the scaling condition must
be satisfied for .k = 1, 2, . . . , d. Let .R be such that

.E

((
R2

d

)−α

R2
)

= d
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for some tail index .0 ≤ α ≤ 1. Hence, given the power M-weight function
for scatter, .R satisfies the scaling condition expressed by Eq. 1, which is a basic
requirement in the complete-data case. Now, Theorem 3 of Frahm et al. (2020) states
that

.E

(
B

(
k
2 + 1, d−k

2

)

B
(

k
2 + 1 − α, d−k

2

)

(
R2B
d

)−α

R2B
)

= k,

where .B(a, b) denotes Euler’s beta function with parameters .a, b > 0. Thus, a
natural choice of the power M-weight function in the case of incomplete data is

.wk : r2 �−→ B
(

k
2 + 1, d−k

2

)

B
(

k
2 + 1 − α, d−k

2

)
(

r2

d

)−α

, 0 ≤ α ≤ 1.

It holds that .B(a, x)/B(b, x) = 1 as .x ↘ 0, and so we may define
.B(a, 0)/B(b, 0) = 1 for all .a, b > 0. Hence, in the complete-data case, i.e., .k = d,

.wk turns into the usual power M-weight function for scatter, i.e., .w : r2 �→ (
r2

d

)−α .
Further, for .α = 0 and any .k ∈ {

1, 2, . . . , d
}
, we obtain the Gauss-type weight

function .wk : r2 �→ 1, whereas for .α = 1 we have that .wk : r2 �→ k/r2 (Frahm
et al. 2020). To sum up, scaling the power M-weight function w in an appropriate
way guarantees that the resulting M-estimator for scatter remains consistent in the
incomplete-data case.

A seeming weakness of the power M-estimating equations 4 and 5 is that both

.
xi − μ

[
(xi − μ)′�−1(xi − μ)

] α
2

(6)

and

.
(xi − μ)(xi − μ)′

[
(xi − μ)′�−1(xi − μ)

]α (7)

are not (yet) defined for .μ = xi , where .xi ∈ R
d is any data point. The Euclidean

norm of the vector in (6) is .O
(‖μ − xi‖1−α

)
. Hence, in the case of .0 ≤ α <

1, that vector vanishes as .μ → xi , and thus we can set it to 0 whenever .μ ∈{
x1, x2, . . . , xn

}
. By contrast, in the case of .α = 1, the min–max theorem tells

us that the Euclidean norm of the vector in (6) is bounded below by the square root
of the minimum eigenvalue of .�, which is positive. Hence, in this case, the vector
does not vanish as .μ → xi .

The same argument holds true for the matrix in (7), since this can be written as

.

[
xi − μ

[
(xi − μ)′�−1(xi − μ)

] α
2

][
xi − μ

[
(xi − μ)′�−1(xi − μ)

] α
2

]′
.
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To sum up, the power M-estimating equations are always well defined, provided that
the tail index .α is lower than 1. More precisely,

.
Xi − μ̂

[
(Xi − μ̂)′�̂−1(Xi − μ̂)

] α
2

can be considered zero if .μ̂ = Xi for some .i ∈ {
1, 2, . . . , n

}
. However, for the

tail index .α = 1, there seems to be no obvious solution in the pathological case
.μ̂ = Xi .8

The above arguments can be summarized as follows. Let

.Sα(y) =
{

y/‖y‖α, y �= 0

0, y = 0

with .0 ≤ α < 1 be the spatial power sign of the data point .y ∈ R
d , whereas the

spatial power sign for .α = 1, i.e., the spatial sign .S1(y) = y/‖y‖, remains undefined
at .y = 0. Hence, in the case of .0 ≤ α < 1, the power M-estimating equations 4
and 5 can be re-written, equivalently, as

.
1

n

n∑

i=1

Sα(Yi) = 0 and
dα

n

n∑

i=1

Sα(Yi)Sα(Yi)
′ = Id

with .Yi := �̂−1(Xi − μ̂) for .i = 1, 2, . . . , n and .�̂�̂′ = �̂. This works also if
.Yi = 0 for some .i ∈ {

1, 2, . . . , n
}
. By contrast, re-writing the power M-estimating

equations makes not much sense at all for .α = 1.
Being able to choose the weight functions for location and scatter differently is a

major advantage of M-estimation. The solution proposed above is not applicable
to the ML-estimators for .μ and .� under the assumption that the data have a
multivariate power-exponential distribution with shape parameter .β ≤ 1

2 . The
problem is the ML-estimating equation for .μ, i.e., Eq. 2. The Euclidean norm of
the vector

.
xi − μ

[
(xi − μ)′�−1(xi − μ)

]1−β

is .O
(‖μ − xi‖2β−1

)
. Hence, in the case of .β ≤ 1

2 , which I already mentioned at
the end of the last section, the vector cannot be considered zero for .μ = xi . Once
again, this underpins the observation that applying the ML-estimating equations 2
and 3, instead of the power M-estimating equations 4 and 5, is inappropriate if X

has a multivariate power-exponential distribution with shape parameter .β ≤ 1
2 .

8 Tyler (1987a) simply suggests to disregard all data points that equal .μ̂, since they do not contain
any directional information at all.
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3.3 Main Result

Tyler (1983) considers his M-weight function a limit of Huber’s M-weight function,
whereas Tyler (1987b) derives it as an ML-weight function by observing that the
distribution of the random vector S = (X−μ)/‖X−μ‖ does not depend on R > 0.
In fact, we have that

.S = X − μ

‖X − μ‖ = R�U

‖R�U‖ = �U

‖�U‖ ,

provided that R has no atom at 0. Tyler (1987b) calls the distribution of S angular
central Gaussian on the sphere. Its density function is

.φ : s �−→ �
(

d
2

)

2π
d
2

√
det�−1

√
s′�−1s

−d

for all s ∈ R
d with ‖s‖ = 1. Frahm (2004, Ch. 4.2.1) calls φ a spectral density

function and notes that S possesses a generalized elliptical distribution. Frahm and
Jaekel (2010) call φ a characteristic density function, since the eigenvectors and
eigenvalues of � are characterized by the stationary points of φ (Frahm & Jaekel
2015, p. 299). Moreover, in Mardia and Jupp (2000, p. 178), the distribution of S is
referred to as the projected (or offset) normal. In the case of d = 2, it turns into the
wrapped Cauchy distribution after angle doubling (Kent and Tyler 1988).

Another way to obtain Tyler’s weight function is to set ν = 0 in the Student-type
weight function r2 �→ (d + ν)/(r2 + ν) or to set α = 1 in the power M-weight

function r2 �→ (
r2

d

)−α proposed by Frahm et al. (2020). A main contribution of
this chapter is the observation that the power M-weight function for scatter with tail
index 0 ≤ α < 1 represents the ML-weight function based on the density generator
g with

.g(r2) ∝ exp

(

−dαr2(1−α)

2(1 − α)

)

, (8)

which represents the density generator of a re-scaled multivariate power-
exponential distribution with shape parameter β = 1 − α > 0.

By contrast, as already mentioned in Sect. 3.1, Gómez et al. (1998) originally
choose the density generator g with

.g(r2) ∝ exp

(
−1

2
r2β

)
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with shape parameter β > 0 to define the multivariate power-exponential family.
More precisely, the original choice of the generating variate R is such that

.R2β ∼ Gamma

(
d

2β
, 2

)
.

After substituting β with 1 − α and multiplying R by
( 1−α

dα

)1/[2(1−α)], we obtain
the density generator given by Eq. 8. Hence, the stochastic representation of the
corresponding random vector X is

.X = μ + �

(
1 − α

dα

) 1
2(1−α)

RU,

which means that X has a multivariate power-exponential distribution with location

vector μ, scatter matrix ϒ = ( 1−α
dα

)1/(1−α)
�, and shape parameter 1− α. However,

the scatter matrix ofX is still� if we consider the random variable
( 1−α

dα

)1/[2(1−α)]R
its generating variate. Thus, by using the power M-weight function, we estimate �,
i.e., the scatter matrix of the re-scaled multivariate power-exponential distribution,
not the scatter matrix ϒ in the sense of Gómez et al. (1998).

Theorem 1 Let the density generator g of an elliptically distributed random vector
X with location vector μ ∈ R

d , positive-definite scatter matrix � ∈ R
d×d , and

generating variate R be such that

.g
(
r2

) ∝ exp

(

−dαr2(1−α)

2(1 − α)

)

, 0 ≤ α < 1.

Then the density function of X is given by

.x �−→ c(d, α)
√
det�−1 exp

(
− dα

2(1 − α)

[
(x − μ)′�−1(x − μ)

]1−α
)

with

.c(d, α) = 1

π
d
2

�(d
2 + 1)

�
(

d
2(1−α)

+ 1
)
(

dα

2(1 − α)

) d
2(1−α)

.

This is the density function of a multivariate power-exponential distribution with

location vector μ, scatter matrix ϒ = ( 1−α
dα

)1/(1−α)
� , and shape parameter 1− α.

Further, the generating variate R is such that

.R2(1−α) ∼ Gamma

(
d

2(1 − α)
,
2(1 − α)

dα

)
.
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The associated ML-weight function is the power M-weight function for scatter with

tail index α, i.e., r2 �→ (
r2

d

)−α
, and it holds that E

(
ϕ(R2)

) = d for all α ∈ [0, 1].
We conclude that the ML-estimator for � under the assumption that X has a re-

scaled multivariate power-exponential distribution with shape parameter 1−α > 0,
according to Theorem 1, corresponds to the power M-estimator �̂ with tail index
0 ≤ α < 1 given by Eq. 5. Nonetheless, the power M-estimator μ̂ in Eq. 4 is not the
ML-estimator for μ under the same distributional assumption about X. Actually, the
corresponding ML-estimator is the solution of

.0 = dα

n

n∑

i=1

Xi − μ̂
[
(Xi − μ̂)′�̂−1(Xi − μ̂)

]α .

Put another way, it equals the ML-estimator for μ given that X has a multivariate
power-exponential distribution with shape parameter β = 1 − α (see Eq. 2).

4 Asymptotic Distributions

4.1 Theoretical Results

The theoretical results presented in this section about the asymptotic distributions
for the power M-estimators .μ̂ and .�̂, which solve the simultaneous M-estimating
equations 4 and 5, require some basic notation of multivariate analysis:

• As already mentioned, .Id denotes the .d × d identity matrix.
• The .d2 × d2 matrix .Jd2 is defined as .

∑d
i=1 eii ⊗ eii , where .⊗ is the Kronecker

product and .eij is the .d × d matrix with 1 in the ij th position and 0 elsewhere.
• The commutation matrix .Kd2 is the .d2 × d2 matrix given by .

∑d
i,j=1 eij ⊗ ej i .

• For any .d ×d matrix M , the .d2-dimensional vector .vecM is obtained by stacking
the columns of M on top of each other.

In order to obtain closed-form expressions, I assume that the data are complete,
independent, and identically distributed. For more details on the case of incomplete
and (serially or spatially) dependent data, see Frahm et al. (2020). Moreover, I
presume that the sample size, n, is sufficiently large. Otherwise, the probability
that the simultaneous power M-estimating equations 4 and 5 have no solution at
all would be positive. I assume also that, under the given elliptical distribution, .μ̂

and .�̂ exist and that they are unique, almost surely, for each sufficiently large sample
size n.

If .� ∈ R
d×d is a positive-definite matrix and .�̂ is some estimator for .�, then

.
√

n
(
�̂ − �

) −→ Nd×d(0, C), n −→ ∞,
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means that .
√

n
(
vec�̂ − vec�

)
converges weakly to a multivariate normally

distributed random vector .ξ ∼ Nd2(0, C) with .0 ∈ R
d2 and .C ∈ R

d2×d2 .
Let .ψ : Pd → R

k be any differentiable function of the scatter matrix .�, and
suppose that the parameter .θ = ψ(�) is scale invariant, i.e., .ψ

(
�/τ 2

) = ψ(�) for
all .τ > 0. The Jacobian of .ψ at .� is given by the .k × d2 matrix .∂ψ(�)/∂vec(�)′.
Each off-diagonal element of the lower triangular part of .� represents an implicit
function of the corresponding off-diagonal element of its upper triangular part and
vice versa. Hence, the total differential of .ψ is .dψ(�) = Jψdvec(�) with

.Jψ := ∂ψ(�)

∂vec(�)′
1

2

(
Id2 + Jd2

)
,

where .
1
2 (Id2 + Jd2) adjusts for the redundancy caused by the symmetry of .�.

Throughout this section, I assume that the scale of the generating variate .R is
fixed such that

.E
(
ϕ(R2)

) = E
((
R2/d

)−αR2
)

= d,

which means that .R satisfies the general scaling condition expressed by Eq. 1.
Hence, we can substitute .E

(
R2(1−α)

)
with .d1−α and thus simplify the asymptotic

moments of .
√

n
(
μ̂ − μ

)
and .

√
n
(
�̂ − �

)
provided by Frahm et al. (2020).

Theorem 2 Suppose that the random vectors .X1, X2, . . . , Xn ∼ X are indepen-
dent, where X has an elliptical distribution on .R

d with .d > 1, location vector .μ,
scatter matrix .� > 0, and generating variate .R without atom at 0 such that:

1. .E
(
R−α

)
< ∞

2. .E
(
R4(1−α)

)
< ∞

3. .E
(
R2(1−α)

) = d1−α

Let .μ̂ and .�̂ be the power M-estimators for location and scatter with tail index
.0 ≤ α ≤ 1. Further, assume that .μ̂ and .�̂ exist and that they are unique, almost
surely, for each sufficiently large sample size n. Then we have that

.
√

n
(
μ̂ − μ

) −→ Nd

(

0,
d2−α

(d − α)2

1

E2
(
R−α

) �

)

, n −→ ∞ .

Further, it holds that .
√

n
(
�̂ − �

) → Nd×d(0, A) as .n → ∞ with

.A = γ1
(
Id2 + Kd2

)(
� ⊗ �

) + γ2vec(�)vec(�)′,
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provided that .0 ≤ α < 1. In this case, the numbers .γ1 and .γ2 are given by

.γ1 = d + 2

d
η(d, α) and γ2 = 1

(1 − α)2

[
d + 2(1 − α)(1 + α)

d
η(d, α) − 1

]

with

.η(d, α) =
(

dα

d + 2(1 − α)

)2

E
(
R4(1−α)

)
.

Moreover, .
√

n
(
μ̂ − μ

)
and .

√
n
(
�̂ − �

)
are asymptotically independent.

Let .ψ : Pd → R
k be a scale-invariant differentiable function of .� and .θ̂ =

ψ
(
�̂

)
be the estimator for .θ = ψ(�). Then we have that .

√
n
(
θ̂ −θ

) → Nk×k

(
0, B

)

as .n → ∞ with

.B = 2
d + 2

d

(
dα

d + 2(1 − α)

)2

E
(
R4(1−α)

)
Jψ

(
� ⊗ �

)
J′

ψ .

Finally, .
√

n
(
μ̂ − μ

)
and .

√
n
(
θ̂ − θ

)
are asymptotically independent, too.

The given result concerning .
√

n
(
�̂ − �

)
requires .0 ≤ α < 1, whereas regarding

.
√

n
(
θ̂ − θ

)
, it is valid also for .α = 1, in which case the power M-estimator for .� is

Tyler’s M-estimator. As we can see, there are three moment conditions:

1. The inlier condition .E
(
R−α

)
< ∞

2. The outlier condition .E
(
R4(1−α)

)
< ∞

3. The scaling condition .E
(
R2(1−α)

) = d1−α

The inlier condition states that the generating distribution of X must not be too
heavily concentrated around 0, whereas the outlier condition requires that its right
tail must not be too heavy. If we use the sample moments for .μ and .�, i.e., .α = 0,
the inlier condition disappears, whereas the outlier condition requires .R to have
a finite fourth moment. By contrast, if we apply the Hettmansperger–Randles M-
estimator for .μ and Tyler’s M-estimator for .�, i.e., .α = 1, the outlier condition
disappears, whereas the inlier condition states that .E

(
R−1) < ∞. Thus, choosing

an appropriate tail index .0 ≤ α ≤ 1 means to make a trade-off between the inlier
and outlier conditions. To be more precise, if the data are heavy tailed, .α should be
close to 1, but then the data points must not be too much concentrated around the
center. For .α = 1, this is already observed by Tyler (1987a).

For example, suppose that .R ∼ Gamma(ς, ζ ) with shape parameter .ς > 0 and
scale parameter .ζ > 0. Then, we have that

.E
(
R−α

) = ζ−α �(ς − α)

�(ς)
.
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This means that the shape parameter of the gamma distribution, .ς , must exceed .α,
since otherwise the inlier condition is violated. However, the outlier condition is
always satisfied if .R is Gamma-distributed.

By contrast, if .R = √
dFd,ν with .Fd,ν ∼ F(d, ν) and .ν > 0, i.e., if we choose

the generating variate of the multivariate t-distribution with .ν degrees of freedom,
we obtain

.E
(
R4(1−α)

) = d2(1−α)E
(
F

2(1−α)
d,ν

)
.

It is well known that .E
(
F

2(1−α)
d,ν

)
is finite if and only if .ν > 4(1 − α). Hence, the

outlier condition is violated for each .ν ≤ 4(1 − α). Further, the inlier condition
requires .E

(
F

−α/2
d,ν

)
to be finite, which is true if and only if .d > α. This means that

the inlier condition is always satisfied for the multivariate t-distribution.
Finally, suppose that .R = G

1/(2β)

d/(2β),2 with .Gd/(2β),2 ∼ Gamma
(

d
2β , 2

)
, which is

the generating variate of the multivariate power-exponential distribution with shape
parameter .β > 0. In this case, we have that

.E
(
R−α

) = E
((
R2β

)− α
2β

)
= 2− α

2β
�

(
d−α
2β

)

�
(

d
2β

) .

Hence, once again, d must exceed .α, which is true for all .0 ≤ α ≤ 1. Further, all
positive moments of the gamma distribution are finite. We conclude that both the
inlier condition and the outlier condition are satisfied if the data are multivariate
power-exponentially distributed.

Theorem 2 shows that the asymptotic covariance matrix of .
√

n
(
θ̂ − θ

)
is much

simpler than the asymptotic covariance matrix of .
√

n
(
�̂ − �

)
. To the best of my

knowledge, this crucial and highly relevant observation is made first by Tyler (1983).
It follows that the asymptotic relative efficiency of .θ̂ that is based on Tyler’s M-
estimator, compared to some power M-estimator for .� with tail index .0 ≤ α < 1,
amounts to

.ARE =
(

dα

d + 2(1 − α)

)2

E
(
R4(1−α)

)
.

We conclude that, in order to estimate .θ , Tyler’s M-estimator is preferable whenever

.E
(
R4(1−α)

)
>

(
d + 2(1 − α)

dα

)2

.

In particular, Tyler’s M-estimator is preferable compared to the sample covariance
matrix, i.e., the power M-estimator with .α = 0, if .E

(
R4

)
> (d + 2)2. In some

practical applications, it can happen that no choice of .α < 1 is favorable, which
depends on the heaviness of the right tail of the distribution of .R and the number d

of dimensions.
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An evident question is why we do not always use the ML-estimator for scatter,
i.e., the power M-estimator given by Eq. 5, since from a theoretical point of view
this is preferable to any (other) M-estimator. Thus, suppose that .R is the generating
variate of the re-scaled multivariate power-exponential distribution with shape
parameter .1 − α > 0. Then, according to Theorem 1, we have that

.R2(1−α) ∼ Gamma

(
d

2(1 − α)
,
2(1 − α)

dα

)
.

By using the recurrence property of the gamma function, i.e., .�(x + 1) = x�(x),
we conclude that .E

(
R4(1−α)

) = d2(1−α). Hence, the asymptotic relative efficiency

of .θ̂ that is based on Tyler’s M-estimator, compared to the ML-estimator, amounts
to

.ARE =
(

d

d + 2(1 − α)

)2

,

provided that the random vector X, in fact, possesses a re-scaled multivariate power-
exponential distribution with known shape parameter .1 − α > 0. The asymptotic
relative efficiency is always lower than 1, which means that Tyler’s M-estimator
for scatter cannot be preferable to the ML-estimator for .�. However, the problem
is that, in most real-life applications, the generating distribution of X is unknown.
In this case, the chosen “ML-estimator” actually represents an M-estimator, and if
the data are heavy tailed or the number of dimensions is high, Tyler’s M-estimator
usually turns out to be the better alternative (Frahm & Jaekel 2010; Frahm et al.
2020).

4.2 A Simple Application

It seems worth illustrating a simple application of Theorem 2. Let Y be some random
variable and X be a k-dimensional random vector such that the .(k + 1)-dimensional
random vector .Z = (Y,X) has a multivariate normal distribution with covariance
matrix

.� =
[
� ρ′
ρ �

]
∈ Pk+1.

Here, .� symbolizes the variance of Y , .� ∈ Pk is the covariance matrix of X, and
.ρ ∈ R

k is the vector of covariances between X and Y . Hence, the linear-regression
equation of X and Y is .Y = β0 + β ′X + ε with .β0 ∈ R being the intercept and
.β = (β1, β2, . . . , βk) ∈ R

k the vector of regression coefficients.9 It holds that .β =

9 Here, I use the traditional symbol “.β” for the vector of regression coefficients. This is not to be
confounded with the shape parameter .β of the multivariate power-exponential distribution.
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�−1ρ, and thus .β represents a scale-invariant function of .�. The OLS-estimator for
.β is given by .β̂ = �̂−1ρ̂, where .�̂ and .ρ̂ are the sample moments, i.e., the power
M-estimators with tail index .α = 0, respectively.10 It is well known that

.
√

n
(
β̂ − β

) −→ Nk

(
0, σ 2

ε �−1), n −→ ∞,

with .σ 2
ε := Var(ε) = � − β ′ρ.

To calculate the asymptotic covariance matrix of .
√

n
(
β̂ − β

)
by Theorem 2, we

have to set .α = 0. Since Z has a .(k + 1)-dimensional normal distribution, we have
that .R2 = χ2

k+1, which satisfies the general scaling condition required by Eq. 1, viz.

.E
(
ϕ(R2)

) = E
(
R2

) = E
(
χ2

k+1

) = k + 1.

Moreover, it holds that .E
(
χ4

k+1

) = (k + 1)(k + 3), and thus Theorem 2 leads us to
the asymptotic covariance matrix .B = 2Jψ

(
� ⊗ �

)
J′

ψ = σ 2
ε �−1.

This result can readily be used to determine the asymptotic covariance matrix
of .

√
n
(
β̂ − β

)
if Z has any other elliptical distribution or if .0 < α ≤ 1,

provided the moment conditions of Theorem 2 are satisfied. More precisely, by
applying the power M-estimators with tail index .0 < α ≤ 1, we leave the area
of OLS-estimation and step into M-estimation of linear-regression coefficients. The
asymptotic covariance matrix of .

√
n
(
β̂ − β

)
corresponds to

.B = k + 3

k + 1

(
(k + 1)α

k + 1 + 2(1 − α)

)2

E
(
R4(1−α)

)
σ 2

ε �−1.

In particular, if we use the Hettmansperger–Randles M-estimator for .μ and Tyler’s
M-estimator for .�, i.e., set .α = 1, then we obtain the simple expression

.B = k + 3

k + 1
σ 2

ε �−1.

Obviously, this does not dependent on the generating distribution of Z. The power
M-estimators with .α = 1 are preferable, compared to the sample moments, which
are obtained by setting .α = 0, whenever .E

(
R4

)
> (k + 3)2.

Finally, note that also .σ 2
ε �−1 is a scale-invariant function of the covariance

matrix or, to put it more generally, of the scatter matrix .� of Z. Further, the
coefficient of determination, i.e., .R2 = β ′ρ/�, is a scale-invariant function of .�,
too. This means that the above arguments hold true regarding the M-estimation of
.σ 2

ε �−1 and .R2.

10 It is implicitly assumed that .n > k, where n is the sample size. Thus, .�̂ is regular, almost surely.
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5 Proofs

Proof of Theorem 1 According to Gómez et al. (1998), the density generator of the
multivariate power-exponential distribution is proportional to exp

( − 1
2 r

2β
)
with

β > 0, which leads us to the density function

.x �−→ 1

2
d
2β π

d
2

�
(

d
2 + 1

)

�
(

d
2β + 1

)
√
det�−1 exp

(
−1

2

[
(x − μ)′�−1(x − μ)

]β
)

.

The density generator given by the theorem creates a density that is proportional to

.

(
1 − α

dα

) d
2(1−α) √

detϒ−1 exp

(
−1

2

[
(x − μ)′ϒ−1(x − μ)

]1−α
)

with ϒ = ( 1−α
dα

)1/(1−α)
�. Thus, we have that

.
1

2
d

2(1−α) π
d
2

�
(

d
2 + 1

)

�
(

d
2(1−α)

+ 1
) = c(d, α)

(
1 − α

dα

) d
2(1−α)

,

i.e.,

.c(d, α) = 1

π
d
2

�
(

d
2 + 1

)

�
(

d
2(1−α)

+ 1
)
(

dα

2(1 − α)

) d
2(1−α)

.

The resulting density function

.x �−→ c(d, α)
√
det�−1 exp

(
− dα

2(1 − α)

[
(x − μ)′�−1(x − μ)

]1−α
)

corresponds to

.x �−→ 1

2
d

2(1−α) π
d
2

�
(

d
2 + 1

)

�
(

d
2(1−α)

+ 1
)
√
detϒ−1 exp

(
−1

2

[
(x − μ)′ϒ−1(x − μ)

]1−α
)

,

which is the density function of a multivariate power-exponential distribution with
location vector μ, scatter matrix

.ϒ =
(
1 − α

dα

) 1
1−α

�,
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and shape parameter 1 − α. Hence, the generating variate of X is
( 1−α

dα

)1/[2(1−α)]

times the generating variate of a multivariate power-exponential distribution with
shape parameter 1 − α, i.e., G1/[2(1−α)]

d/[2(1−α)],2. Put another way, R is such that

.R2(1−α) = 1 − α

dα
Gd/[2(1−α)],2 ∼ Gamma

(
d

2(1 − α)
,
2(1 − α)

dα

)
.

The ML-weight function w is given by

.r2 �−→ −2
g′(r2)
g(r2)

= d dαr2(1−α)/(1 − α)

d r2
=

(
r2

d

)−α

,

which corresponds to the power M-weight function with tail index 0 ≤ α < 1.
Finally, it holds that

.E
(
ϕ(R2)

) = E
((
R2/d

)−αR2
)

= dαE
(
R2(1−α)

) = dα d

2(1 − α)

2(1 − α)

dα
= d

for all 0 ≤ α < 1 and also E
(
ϕ(R2)

) = E
((
R2/d

)−1R2
) = d for α = 1. Q.E.D.

Proof of Theorem 2 In the case of 0 ≤ α < 1, the joint asymptotic distribution of√
n
(
μ̂ − μ

)
and

√
n
(
�̂ − �

)
follows by the Central Limit Theorem together with

Theorem 4 in Frahm et al. (2020), after substituting “E
(
V 2(1−α)

)
” with “m1−α” and

thus observing that τ2 = 1 − α. Moreover, for α = 1, the asymptotic distribution
of

√
n
(
μ̂ − μ

)
is provided by Hettmansperger and Randles (2002). Since ψ is scale

invariant, Euler’s theorem leads us toJψvec� = 0, which makes the second part of
A superfluous. This holds true also for the limiting case α = 1, in which the number
γ2 is undefined. Hence, for 0 ≤ α ≤ 1, we have that

.B = γ1Jψ

(
Id2 + Kd2

)(
� ⊗ �

)
J′

ψ.

Since � is symmetric, it holds thatKd2J′
ψ = J′

ψ and thusJψ

(
Id2 +Kd2

) = 2Jψ ,

i.e., B = 2γ1Jψ

(
� ⊗ �

)
J′

ψ . According to Theorem 4 in Frahm et al. (2020),√
n
(
μ̂−μ

)
and

√
n
(
�̂ −�

)
are asymptotically independent if 0 ≤ α < 1, whereas

their asymptotic independence for α = 1 is proved by Hettmansperger and Randles
(2002). Since θ̂ is a function of �̂, and thus

√
n
(
θ̂ − θ

)
is a function of

√
n
(
�̂ −�

)
,√

n
(
μ̂ − μ

)
and

√
n
(
θ̂ − θ

)
are asymptotically independent, too. Q.E.D.
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On Robust Estimators of a Sphericity
Measure in High Dimension

Esa Ollila and Hyon-Jung Kim

Abstract The need to test (or estimate) sphericity arises in various applications
in statistics, and thus the problem has been investigated in numerous papers.
Recently, estimates of a sphericity measure are needed in high-dimensional shrink-
age covariance matrix estimation problems, wherein the (oracle) shrinkage param-
eter minimizing the mean squared error (MSE) depends on the unknown sphericity
parameter. The purpose of this chapter is to investigate the performance of robust
sphericity measure estimators recently proposed within the framework of elliptically
symmetric distributions when the data dimensionality, p, is of similar magnitude as
the sample size, n. The population measure of sphericity that we consider here is
defined as the ratio of the mean of the squared eigenvalues of the scatter matrix
parameter relative to the mean of its eigenvalues squared. We illustrate that robust
sphericity estimators based on the spatial sign covariance matrix (SSCM) or M-
estimators of scatter matrix provide superior performance for diverse covariance
matrix models compared to sphericity estimators based on the sample covariance
matrix (SCM) when distributions are heavy-tailed and .n = O(p). At the same time,
they provide equivalent performance when the data are Gaussian. Our examples also
illustrate the important role that the sphericity plays in determining the attainable
accuracy of the SCM.

Keywords Elliptical distributions · High-dimensional statistics · M-estimators of
scatter matrix · Robust statistics · Sign covariance matrix · Sphericity parameter
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1 Introduction

Suppose we observe independent and identically distributed (i.i.d.) p-variate real-
valued random vectors .x1, . . . , xn. Then a commonly occurring problem in multi-
variate analysis is to analyze the degree of sphericity of the underlying sampling
distribution. A random vector .z is said to have a spherically symmetric distribution
iff .z =d Pz for all orthogonal .p × p matrices .P (i.e., .P�P = I), where .=d

should be read as “has the same distribution as.” The probability density function
(pdf) of a spherical random vector .z, given it exists, is of the form .g(z�z), where
.g : R≥0 → R>0 is a function, called the density generator (Fang et al. 1990),
verifying .

∫ ∞
0 tp/2−1g(t)dt < ∞.

In this chapter, we assume that the sample is generated from an (absolutely
continuous) elliptically symmetric (ES) distribution. A random vector .x with an ES
distribution has same distribution as an affine transformation of a spherical random
vector .z (Fang et al. 1990):

.x =d μ + �1/2z, (1)

where a positive-definite symmetric .p × p matrix .� and a vector .μ ∈ R
p are

parameters of the ES distribution, called the scatter matrix and the symmetry center.
Above .�1/2 denotes the unique positive-definite symmetric matrix square root of
.�. The pdf of .x, given it exists, is then of the form

.f (x) = |�|−1/2g((x − μ)��−1(x − μ)),

and we denote this case by .x ∼ Ep(μ,�, g). For example, the multivariate
normal (MVN) distribution, .x ∼ Np(μ,�), is a particular instance of the elliptical
distribution obtained when .g(t) = (2π)−p/2 exp(−t/2). The sphericity hypothesis
is then true if and only if .� ∝ I.

Assuming that .x ∼ Ep(μ,�, g) has finite 2nd-order moments, then its mean
vector is .μ = E[x] and its covariance matrix, .cov(x) = E[(x − μ)(x − μ)�], is

.cov(x) = σcov · � for σcov = E[‖�−1/2(x − μ)‖2]
p

, (2)

which follows by applying the stochastic decomposition (1). Thus the scatter
matrix .� is proportional to the covariance matrix .cov(x), given it exists. Note
that, for some ES distributions (multivariate Cauchy distribution, for example), the
covariance matrix does not exist, yet the scatter matrix is a well-defined parameter
that determines the shape and orientation of the elliptical equidensity contours. Also
note that in the MVN case, .σcov = 1.



On Robust Estimators of Sphericity in High Dimension 181

Most measures of sphericity are based on discrepancy of eigenvalues .λi of .�

from a scale parameter of .�, such as the mean of the eigenvalues:

.η = tr(�)

p
= 1

p

p∑

i=1

λi. (3)

See Paindaveine (2008) for a detailed account on scale statistics. Formally, .η ≡
η(�) is a scale parameter if it verifies .η(I) = 1 and .η(a�) = aη(�) for all .a > 0.
Furthermore, the shape matrix (or normalized covariance matrix) is defined by

.� = �

η
= p�

tr(�)
, (4)

and note that .tr(�) = p. One commonly used measure of sphericity is

.γ = p tr(�2)

tr(�)2
= ‖�‖2F

p
=

1
p

∑p

i=1 λ2i
(
1
p

∑p

i=1 λi

)2 , (5)

where .‖ · ‖F denotes the Frobenius matrix norm (.‖A‖F = √
tr(A�A) for any matrix

.A) and .tr(·) denotes the matrix trace, .tr(A) = ∑p

i=1 aii . Thus the sphericity measure
(5) is the ratio of the mean of the squared eigenvalues of .� relative to the mean of
its eigenvalues squared. Letting .s2 = 1

p

∑p

i=1(λi − η)2 denote the sample variance
of the eigenvalues, we may express .γ as

.γ = 1 + s2

η2
= 1 + 1

p
‖� − I‖2F.

The first identity illustrates that .γ measures the degree of variability of the
eigenvalues around their mean, while the second identity illustrates that .γ measures
distance of .� from .cI for any .c > 0 (i.e., distance of .� from .I). It is important to
notice that .γ is invariant to scaling of .�, and thus one may replace .� in (5) by .c · �
for any .c > 0, e.g., the covariance matrix, without changing its value.

The sphericity parameter gets values in the range .[1, p] and attains its minimum
if and only if .� is a scaled identity matrix (so .λi = λj ) and its maximum for a rank
one matrix. Indeed, if all the eigenvalues are identical, then their sample variance is
.s2 = 0, and consequently, .γ = 1 + s2/η2 = 1. On the other hand, if .� is of rank 1,
so it has only one non-zero eigenvalue, then the sample variance is .s2 = η2(p − 1),
and consequently, .γ = 1 + s2/η2 = p. The fact that .γ is lower-bounded by .γ ≤ p

is easiest seen by recalling the submultiplicativity of the matrix trace; namely, for
any positive semidefinite matrices .A and .B, it holds that .tr(AB) ≤ tr(A) tr(B). Thus
.tr(�2) ≤ tr(�)2 = p2, and consequently, .‖�‖2/p = tr(�2)/p ≤ p.

Let .S = 1
n−1

∑n
i=1(xi −x̄)(xi −x̄)� denote the sample covariance matrix (SCM).

We note that .S is an unbiased estimate of .cov(x), so .E[S] = cov(x) for any p-
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variate distribution with finite 2nd-order moments. In cases when .μ is known, and
assuming .μ = 0 without any loss of generality (w.l.o.g.), the SCM is defined as
.S = 1

n

∑n
i=1 xix�

i . An obvious plug-in estimate of sphericity .γ is then

.γ̂John = p tr(S2)
tr(S)2

, (6)

which is the sphericity statistic originally proposed and studied by John (1971,
1972). However, John’s sphericity statistics fails to be consistent estimator of .γ

when .n = O(pδ), .0 < δ ≤ 1 (Srivastava 2005). At the same time, the estimator
is highly non-robust. This has led to many authors consider sphericity tests that are
robust (Hallin & Paindaveine 2006; Sirkiä et al. 2009; Tyler 1982) and/or consistent
in the large sample regime, where both n and p are large, but often comparable in
size (Chen et al. 2010a; Jung & Marron 2009; Ledoit & Wolf 2002; Paindaveine
& Verdebout 2016; Srivastava 2005; Virta 2021; Zou et al. 2014). More recently,
instead of constructing robust sphericity tests, the focus has shifted toward finding
accurate estimates of the sphericity parameter .γ under various conditions, e.g., in
the works proposing high-dimensional shrinkage covariance matrix estimators as in
Chen et al. (2010b), Zhang and Wiesel (2016), Ollila (2017), Ollila and Raninen
(2019), Ollila et al. (2021).

This chapter is organized as follows. Section 3 reveals the role that the sphericity
parameter .γ plays in describing the attainable accuracy of the SCM in high
dimensions, while Sect. 3 reviews estimators of sphericity parameter .γ that are
based on the SCM. Then Sects. 4 and 5 review robust sphericity estimators based on
the spatial sign covariance matrix and M-estimators of scatter matrix, respectively.
In Sect. 6, we investigate the performance of the considered sphericity estimators in
diverse setups using simulations. Finally, Sect. 7 concludes.

2 On the Role of Sphericity on the Accuracy of SCM in High
Dimension

Sphericity .γ plays an important role in determining the accuracy of the SCM .S in
high dimensions. Namely, Ollila and Raninen (2019, Theorem 4) showed that the
normalized MSE of .S when sampling from an elliptical distribution .Ep(μ,�, g)

with finite 4th-order moments and unknown .μ is

.NMSE(S) ≡ E
[‖S − �‖2F

]

‖�‖2F
=

(

1 + p

γ

)( 1

n − 1
+ κ

n

)
+ κ

n
, (7)

where .κ is elliptical kurtosis parameter, defined formally in (12). The expression of
.NMSE(S) when .μ is known (.μ = 0) is given in Ollila (2017, Lemma 1), while the
NMSE of .S when sampling from complex ES distributions can be found in Raninen
et al. (2021a).
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In order to obtain more insight on the effect of sphericity .γ on MSE of .S, we
consider the following instructive example, where the scatter matrix parameter has
an autoregressive model (AR(1)) structure

.(�)ij = η	|i−j |, (8)

where .η is the scale (3) and .	 is the correlation parameter, .	 ∈ (−1, 1). The
sphericity is then (Raninen et al. 2021b, Prop. 3)

.γ = p − p	4 − 2	2 + 2(	2)p+1

p(	2 − 1)2
. (9)

Figure 1a displays the NMSE when sampling from p-variate normal distribution,
.Np(μ,�), for .p = 40 fixed. In this case, .κ = 0. As can be noted, the accuracy
of the SCM .S depends heavily on value of .γ . When .γ ≈ 1 (i.e., the distributions
are close to being spherical, so .	 ≈ 0), the NMSE is largest and rises steeply when
.n < p.

Next we consider the large sample asymptotic limit,

.c = p

n
→ c0, 0 < c0 < ∞, as p, n → ∞. (10)

Noting that .γ → γ0 = (1+ 	2)/(1− 	2) as .p → ∞, and using (7), it immediately
follows that the limiting NMSE under asymptotic regime (10) is

.NMSE(S) → 1 − 	2

1 + 	2
(1 + κ)c0 = 1 + κ

γ0
c0.

Since the limit is a positive constant, it follows that .S is not a consistent estimator
of .� possessing an AR(1) structure, unless .c = p/n → 0. This is illustrated in
Fig. 1b that displays the limiting NMSE as a function of .γ0 for different cases of
.c0 ranging from .1/10 to 10. Again the limiting NMSE is largest when .� is close to
being spherical (.	 ≈ 0). Moreover, if .c0 > 1, the limiting NMSE can be very large.

3 Sphericity Estimator Based on the Sample Covariance
Matrix

As was already mentioned, .γ̂John defined in (6) is not a consistent estimator of .γ

when .n = O(pδ), .0 < δ ≤ 1. Srivastava (2005) showed that a consistent estimator
of .γ can be obtained using

.γ̂ = (n − 1)2

(n − 2)(n + 1)

(
p tr(S2)
tr(S)2

− n

n − 1

p

n

)

= bn(γ̂John − anc), (11)
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Fig. 1 The effect of sphericity .γ on NMSE of SCM .S when sampling from .Np(μ,�) with .�

having an AR(1) structure. (a) Displays the NMSE for .p = 40, while (b) displays the limiting
NMSE as a function of limiting sphericity value, .γ → γ0, as .p/n → c0 as .p, n → ∞.
(a) .p = 40, n varies. (b) .p/n → c0 as .p, n → ∞

where .c = p/n, under the assumption that the samples are generated from
.Np(μ,�). This result was extended in Ollila and Raninen (2019) for general
elliptical distributions .Ep(μ,�, g) with finite 4th-order moments.

Before discussing the approach of Ollila and Raninen (2019), we need to
introduce some notation. We recall that the elliptical kurtosis (Muirhead 1982) is
defined by

.κ = E
[‖�−1/2(x − μ)‖4]

(
E

[‖�−1/2(x − μ)‖2])2
· p

p + 2
− 1, (12)

where we assume that the elliptical random vector .x has finite 4th-order moments.
The elliptical kurtosis shares properties similar to the kurtosis of a real random
variable. Namely if .x ∼ Np(μ,�), then .κ = 0. This result becomes more obvious
when one notices the following relationship of .κ with the marginal (excess) kurtosis,
.kurt(xi), of any component of .xi of .x ∼ Ep(μ,�, g) (Ollila et al. 2021, Lemma 3):

.κ = 1

3
· kurt(xi) = 1

3

(
E[(xi − μi)

4]
E[(xi − μi)2]2 − 3

)

. (13)

The lower bound for the kurtosis parameter is .κLB = −2/(p + 2) (Bentler &
Berkane 1986).

The generalized sphericity estimator proposed in Ollila and Raninen (2019) is
defined by

.γ̂ = b̂n(γ̂John − ânc), (14)
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where .b̂n = an(κ̂) and .ân = an(κ̂) are constants defined as

.ân = n

n + κ̂

(
n

n − 1
+ κ̂

)

and b̂n = (κ̂ + n)(n − 1)2

(n − 2)(3κ̂(n − 1) + n(n + 1))
,

and .κ̂ is an estimate of elliptical kurtosis .κ described in Ollila and Raninen (2019,
Sect. 4). The estimator (14) reduces to (11) when using .κ̂ = 0, i.e., by assuming the
data have MVN distribution. The benefit of (14) is that it does not assume that data
follow any specific ES distribution. This is illustrated in Sect. 6.

4 Sphericity Estimator Based on the Spatial Sign Covariance
Matrix

The spatial sign covariance matrix (SSCM) has been used for constructing robust
estimates or tests of sphericity in many works, see Hallin and Paindaveine (2006),
Zou et al. (2014), Paindaveine and Verdebout (2016), Zhang and Wiesel (2016),
Ollila and Raninen (2019), Raninen et al. (2021b), Ollila and Breloy (2022).

The SSCM is an estimate of the shape matrix (or normalized covariance matrix)
(4). The scaled1 SSCM is defined as (Visuri et al. 2000)

.�̂ = p

n

n∑

i=1

(xi − μ̂)(xi − μ̂)�

‖xi − μ̂‖2 , (15)

where .μ̂ = argminμ

∑n
i=1 ‖xi − μ‖ is the sample spatial median (Brown 1983).

When .μ is known (.μ = 0), the SSCM is defined as .�̂ = p
n

∑n
i=1

xix�
i

‖xi‖2 .
One of the major selling points of SSCM is its impeccable robustness properties:

it possesses the highest possible breakdown point of 1 with fixed location (Magyar
& Tyler 2014) and breakdown point of 1/2 when using the spatial median to estimate
the location (Croux et al. 2010). This can be contrasted to M-estimators of scatter for
which the best possible breakdown point is .1/p and obtained by Tyler’s M-estimator
(Dümbgen & Tyler 2005).

Raninen et al. (2021b) studied the following estimate of sphericity based on the
SSCM (when .μ is known),

.γ̂ = n

n − 1

(
‖�̂‖2F

p
− p

n

)

, (16)

1 The common definition is without the multiplier p.
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and showed that (16) is asymptotically (as .p → ∞) unbiased when sampling from
elliptical distribution under the assumption .γ /p → 0 as .p → ∞. This assumption
is sufficiently general and holds for many scatter matrix models (Raninen et al.
2021b, Prop. 3). For example, for AR(1) covariance matrix (8), the sphericity given
in (9) verifies .γ = O(1) = o(p).

When location is not known, centering via the spatial median .μ̂ results in
nonnegligible error in the sphericity estimate in the high-dimensional setting, and a
bias correction is needed (Zou et al. 2014). In this case, the sphericity estimate is

.γ̂ ∗ = γ̂ − pδ, (17)

where

.δ = 1

n2
·
(

2 − 2
q2

q2
1

+
(

q2

q2
1

)2
)

+ 1

n3
·
(

8
q2

q2
1

− 6

(
q2

q2
1

)2

+ 2
q2q3

q5
1

− 2
q3

q3
1

)

and .qm = (1/n)
∑n

i=1 ‖xi − μ̂‖−m. When computational simplicity is desired, it
is also possible to use .δ ≈ n−2 + 2n−3, which is often a good approximation (Zou
et al. 2014).

5 Sphericity Estimators Based on M-Estimators of Scatter

Assume now that .n > p and .μ = 0, so we consider that the location is known.
An M-estimator of scatter matrix (Maronna 1976) is defined as positive-definite
symmetric .p × p matrix .�̂ that solves an estimating equation

.�̂ = 1

n

n∑

i=1

u(x�
i �̂

−1
xi )xix�

i , (18)

where .u : [0,∞) → [0,∞) is a non-increasing weight function. An M-estimator
is an adaptively weighted SCM with weights determined by function .u(·). Using
.u(t) = 1 .∀t , the solution is the SCM .S, and for .u(t) = −2 · g′(t)/g(t), one obtains
the maximum likelihood estimate (MLE) of .� of centered elliptical distribution
.Ep(0,�, g). To guarantee existence of the solution, it is required that the data verify
the condition stated in Kent and Tyler (1991).

Define a function .ψ(t) = u(t)t and

.ψ1 = 1

p(p + 2)
E

[

ψ

(
r2

σ

)2]

, (19)
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where the statistical expectation is w.r.t. the distribution of .r = ‖�−1/2x‖, and
.σ > 0 is a solution to an equation

.E
[

ψ

(
r2

σ

)]

= p. (20)

Note that population parameter corresponding to .�̂ is .σ� when .x ∼ Ep(μ,�, g),
i.e., an M-estimator is Fisher consistent to scatter matrix up to a scalar .σ .

Then Ollila et al. (2021) proposed the following estimator:

.γ̂ = b̂n

(
p tr(�̂

2
)

tr(�̂)2
− ψ̂1ân

p

n

)

, (21)

where

.ân = n

n + ψ̂1 − 1
and b̂n = n

n − 1

(
n − 1 + ψ̂1

n − 1 + 3ψ̂1

)

, (22)

and .ψ̂1 is an estimate of .ψ1. Below we will discuss possible choices of weight
functions .u(·) that may be used to construct robust sphericity estimators.

Huber’s weight function is defined as

.uH(t; c) =
{
1/b, for t � c2

c2/(tb), for t > c2
, (23)

where .c > 0 is a user-defined tuning constant that determines the robustness and
efficiency of the estimator and b is a scaling factor defined by

.b = Fχ2
p+2

(c2) + c2(1 − Fχ2
p
(c2))/p,

where .Fχ2
p
(·) denotes the cumulative distribution function (cdf) of chi-squared

distribution with p d.o.f. This choice of b guarantees that .�̂ is Fisher consistent
to the covariance matrix when sampling from MVN distribution .Np(0,�), i.e.,
.σ = 1 when .x ∼ Np(0,�). Since .r2 = ‖�−1/2x‖2 has a .χ2

p-distribution when

.x ∼ Np(0,�), the tuning constant .c2 is chosen as qth upper quantile of .χ2
p-

distribution:

.q = Pr(r2 ≤ c2) ⇔ F−1
χ2

p
(q) = c2 (24)

for some .q ∈ (0, 1]. We use .q = 0.7 in the simulations. Computation of the estimate
.ψ̂1 in this case is discussed in detail in Ollila et al. (2021, Section IVB).
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Another popular choice is MVT-weight function (Kent & Tyler 1991):

.uT(t; ν) = p + ν

ν + t
(25)

in which case the corresponding M-estimator .�̂ is also the MLE of scatter matrix
of multivariate t (MVT) distribution with .ν > 0 degrees of freedom (d.o.f.). The
d.o.f. parameter .ν is estimated adaptively from the data using the method described
by Ollila et al. (2021, Algorithm 1) and .ψ̂1 = (p + ν̂)/(2 + p + ν̂).

Finally, another classic choice with nice robustness properties is Tyler’s (Tyler
1987) M-estimator, in which case the weight function is

.uTyl(t) = p

t
. (26)

Both Huber’s and MVT-weight functions yield Tyler’s weight function as special
cases; namely, for .ν → 0, one notices that .uT(t; ν → 0) = uTyl(t), and in the limit
case, as .c → 0, Huber’s weight function tends to Tyler’s weight function. In this
case, .ψ̂1 = p/(p + 2).

6 Simulation Studies

The purpose of this simulation study is to compare the performance of different
sphericity estimators when the covariance matrix has different structures and the
data is from different types (light-tailed or heavy-tailed) elliptical distributions. The
estimators included in the study are:

• .γ -MVN: estimator (11) using SCM and assuming MVN distribution
• .γ -Ell: estimator (14) using SCM and assuming elliptical distribution
• .γ -SSCM: estimator (16) using SSCM
• .γ -MVT, -Tyl, -Hub: estimator (21) using an M-estimator of scatter based on

MVT, Tyler’s or Huber’s weight function, respectively

We assume that .μ is known and used the noncentered estimator in each case. For
Huber’s estimator, we use a fixed value for .c2 using .q = 0.7 in (24). Recall that for
MVT-weight function, the d.o.f. parameter .ν is adaptively estimated from the data.

In the first experiment, the scatter matrix parameter .� has an AR(1) structure
(8). Recall that .	 = 0 implies that the distribution is spherical (.� = ηI), so .γ = 1,
while as .	 gets larger than 0, the distribution becomes distinctively non-spherical,
with .γ → p as .	 → 1. Performance of estimators is tested using different values
of .	.

Figure 2 shows the mean values of different sphericity estimators as a function
of n in the case that .p = 50, and the data are from a heavy-tailed MVT distribution
with .ν = 3 degrees of freedom. We can observe from Fig. 2a that in the spherical
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Fig. 2 Mean of sphericity estimates when sampling from a MVT distribution with .ν = 3 d.o.f.
when .� has an AR(1) structure; .p = 50 and 5000 MC trials. Dashed line corresponds to true
sphericity . (a) .	 = 0. (b) .	 = 0.3. (c) .	 = 0.6. (d) .	 = 0.9

case (.	 = 0), the SSCM-based sphericity estimator is performing clearly the best.
However, as .	 increases, its performance gradually deteriorates, and at .	 = 0.9, it
provides severely downward biased estimate of sphericity. This does not come as a
surprise, since in Raninen et al. (2021b, Theorem 2) it was shown that the bias of
the SSCM is of the order of the sphericity, .γ = tr(�2)/p, and becomes negligible
as the dimension increases assuming .γ = o(p). Since .γ measures how close the
shape matrix is to an identity matrix, the implication is that the bias of the SSCM
is smaller for approximately spherical covariance matrices (.γ small) and larger for
spiked covariance matrices, where there are only a few large eigenvalues (.γ large).

When we compare the performance of sphericity estimators based on M-
estimators, we notice that an M-estimator based on Huber’s function is generally
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Fig. 3 Boxplots when sampling from a MVT distribution with .ν = 3 d.o.f. when .� has an AR(1)
structure with .	 = 0.4; .p = 50 and 5000 MC trials. Dashed line corresponds to true sphericity .γ

performing very well for a large range of .	 values. The performance of sphericity
estimator based onMVTweight is not on par which may be related with the property
that the method estimates the degrees of freedom parameter .ν adaptively from the
data, and obtaining an accurate estimate of .ν is a difficult task in heavy-tailed setting
(.ν = 3).

Sphericity estimators .γ -SCM and .γ -Ell are left out from plots in Fig. 2 due
to their poor performance. This is not surprising as they require finite 4th-order
moments, which does not hold for MVT distribution with .ν = 3 d.o.f. To obtain a
better view about the variability of sphericity estimators, Fig. 3 displays boxplots for
the non-robust .γ -Ell and the robust .γ -Hub, and .γ -MVT estimators when .	 = 0.4.
As can be noted, .γ -Ell that uses the SCM-based estimator has large variability (due
to heavy-tailed data), and it is clearly not consistent. The robust methods, .γ -Hub and
.γ -MVT, on the other hand are providing accurate and consistent estimation of .γ .

Next we consider the same setting, but the data are generated from MVN
distribution. Figure 4 displays the performance of all estimators for .	 = 0 and
.	 = 0.3. In the spherical case, four of the estimators, namely .γ -MVN, -Ell, -SSCM,
-MVT, are all providing similar top performance. When .� becomes non-spherical
(case .	 = 0.3), the performance of .γ -SSCM deteriorates, and it provides clearly
downward biased estimate of sphericity. Surprisingly, .γ -MVT has slightly better
accuracy than .γ -MVN that assumes Gaussianity, which is also illustrated in the
zoomed-in subplot of Fig. 4b. This is probably due to the used adaptive estimation of
the d.o.f. parameter .ν used by the M-estimator of scatter with MVT-weight function.

Next we assume that scatter matrix .� has the compound symmetry (CS)
structure:

.(�)ij =
{

η	, for i �= j

η, for i = j
, (27)
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Fig. 4 Mean of sphericity estimates when sampling from a MVN distribution, when .� has an
AR(1) structure; .p = 50 and 5000 MC trials. Dashed line corresponds to true sphericity .γ . (a)
Spherical case: .	 = 0. (b) .	 = 0.3

where .	 ∈ (−(p−1)−1, 1) is the correlation parameter and .η is the scale parameter,
which are both fixed. Note that .	 = 1 implies that .� is of rank 1 (so .γ = p), and
when .	 = 0, the distribution is spherical (so .γ = 1). The structure of .� implies that
.x consists of (since .� ∝ cov(x)) equally correlated variables with equal variances.
The eigenvalues of .� are .λ1 = η(	p+1−	) with multiplicity 1 and .λ2 = η(1−	)

with multiplicity .p − 1. The restriction on .	 > −1/(p − 1) is thus needed for .�

to be positive definite (so .λi > 0). The CS model is an example of a spiky spectral
distribution, where there exists a large concentration of small eigenvalues and a
single large eigenvalue. The spectral gap, so separation of the largest eigenvalue
from second largest eigenvalue grows with dimension. Since sphericity is invariant
to scaling of .�, we can assume w.l.o.g. .η = 1 and compute .γ as

.γ = 1

p

p∑

i=1

λ2i = (	p + 1 − 	)2 + (p − 1)(1 − 	)2 = 1 + (p − 1)	2,

and thus .γ = O(p). Since .γ �= o(p), the SSCM-based sphericity estimator is not
useful for this model.

Performance of sphericity estimators is now tested using different values of .	.
We generated data from a MVT distribution with .ν = 9 d.o.f., which is only mildly
heavier tailed than the MVN distribution, having kurtosis .kurt(xi) = 1.2. Figure 5
displays the performance for several cases of correlation parameter .	 when the
dimension is .p = 100. As can be noted, in the nearly spherical case (.	 = 0.1),
all estimators are performing relatively well. As expected, .γ -MVN has the worst
performance (as Gaussianity assumption is not valid), while .γ -Ell showcases the
highest accuracy, especially for large sample lengths. When .	 increases (and hence
the spectral gap increases), the estimators start to behave very similarly and attain
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Fig. 5 Mean of sphericity estimates when sampling from a MVT distribution with .ν = 9 d.o.f.,
when .� has a CS structure; .p = 100 and average is over 5000 MC trials. Dotted line corresponds
to true sphericity. (a) .	 = 0.1. (b) .	 = 0.3. (c) .	 = 0.6. (d) .	 = 0.9

very similar performance when .	 = 0.9. However, .γ -Ell underestimates the true
sphericity more than others. This is probably due to the fact that for spiked spectrum
model, the kurtosis parameter is more difficult to estimate.

We excluded .γ -SSCM from plots in Fig. 5 since it is not a consistent estimator
of .γ when .γ = O(p). To get an idea of its bias, we display boxplots of .γ -Ell, .γ -
SSCM, and .γ -Hub in Fig. 6 in the case that .	 = 0.6. As can be noted, the sphericity
estimator based on the SSCM is severely downward biased and fails to provide a
sensible estimator of sphericity. Indeed, the condition .γ = o(p) required by SSCM
implies that .γ � p in large dimensions, and essentially means that the eigenvalues
of .� tend to be similar as p grows. This is not the case for CS model whose first
eigenvalue is much larger than the others in high dimensions (Fig. 6).
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Fig. 6 Boxplots when sampling from a MVT distribution with .ν = 9 d.o.f. when .� has an CS
structure; .	 = 0.6, .p = 100, and 5000 MC trials. Dashed line corresponds to the true sphericity

7 Conclusions

In this chapter, the performance of robust sphericity estimators was tested when
.n = O(p). It was observed that sphericity estimators based onM-estimators provide
the best performance when the distribution is heavy-tailed and are on par with the
SCM-based sphericity estimators when sampling from a MVN distribution. Thus
when .n = O(p), the sphericity estimators based on M-estimators can always be
favored.

M-estimators are however not applicable when .n < p. If they would be,
then that would contradict with the finding of Tyler (2010) that affine equivariant
scatter matrices (assuming here known location) must be proportional to the sample
covariance matrix when .n ≤ p. In this case, the SSCM-based sphericity estimator
is useful as it can be applied in high-dimensional low-sample-size (.n � p) regime.
It is not consistent however in spiked models with a large spectral gap (which often
implies that .γ = O(p)). It was also observed that it provided severely downward
biased estimate when the covariance matrix was distinctively non-spherical (.γ � 1,
e.g., as in AR(1) model for large .	 (cf. Fig. 2c,d). In order to reduce the bias of the
SSCM, we therefore recommend using a bias correction to its eigenvalues, e.g.,
using the method proposed recently in Raninen and Ollila (2021) or Dürre et al.
(2017), in order to improve its accuracy.
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Detecting Outliers in Compositional Data
Using Invariant Coordinate Selection

Anne Ruiz-Gazen, Christine Thomas-Agnan, Thibault Laurent,
and Camille Mondon

Abstract Invariant coordinate (or component) selection (ICS) is a multivariate
statistical method introduced by Tyler et al. (J R Stat Soc Ser B (Stat Methodol)
71(3):549–592, 2009) and based on the simultaneous diagonalization of two scatter
matrices. A model-based approach of ICS, called invariant coordinate analysis, has
already been adapted for compositional data in Muehlmann et al. (Independent
component analysis for compositional data. In Daouia, A, Ruiz-Gazen A (eds)
Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of
Christine Thomas-Agnan. Springer, New York, pp. 525–545, 2021). In a model-
free context, ICS is also helpful at identifying outliers Nordhausen and Ruiz-Gazen
(J Multivar Anal 188:104844, 2022). We propose to develop a version of ICS
for outlier detection in compositional data. This version is first introduced in
coordinate space for a specific choice of isometric log-ratio coordinate system
associated to a contrast matrix and follows the outlier detection procedure proposed
by Archimbaud et al. (Comput Stat Data Anal 128:184–199, 2018a). We then show
that the procedure is independent of the choice of contrast matrix and can be
defined directly in the simplex. To do so, we establish some properties of the set
of matrices satisfying the zero-sum property and introduce a simplex definition of
the Mahalanobis distance and the one-step M-estimators class of scatter matrices.
We also need to define the family of elliptical distributions in the simplex. We then
show how to interpret the results directly in the simplex using two artificial datasets
and a real dataset of market shares in the automobile industry.
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Keywords Anomaly detection · Elliptical distribution · Log-ratio
transformation · Market share data · Scatter matrix · Ternary diagram

1 Introduction

Compositional data are by nature multivariate. Indeed, vectors with positive com-
ponents are considered as compositional data when the interest lies in the relative
information between their components: this last fact implies that they can be
represented by a unique element in a simplex by dividing the components by their
sum. Classical statistical techniques need to be adapted to deal with these constraints
(positivity, sum equal to one). A common approach consists in transforming the data
using the centered log-ratio (clr) or the isometric log-ratio (ilr) transformations (see
Egozcue et al. 2011), and in applying standard techniques in this coordinate space.
Filzmoser et al. (2012) propose to use the ilr transformation and detect outliers
with the usual or the robust version of the Mahalanobis distance. Because of the
affine invariance property of the Mahalanobis distance, the authors notice that the
identified outliers do not depend on the choice of the ilr transformation. Moreover,
they propose some graphical tools in coordinate space based on robust principal
component analysis (PCA) and biplots representation in order to interpret the out-
liers. Their interpretation is only done in coordinate space. This is also the case for
Filzmoser et al. (2014) who propose tools based on pairwise Mahalanobis distances
for detecting local outliers in data that are compositional and spatial at the same
time. In the present work, we consider adapting the invariant coordinate selection
(ICS) technique for outlier detection to compositional data. ICS is a multivariate
statistical method based on the joint diagonalization of two scatter matrices and
aimed at detecting interesting features in multivariate datasets such as outliers or
clusters (see, e.g., Tyler et al. 2009 and Archimbaud et al. 2018a). Compared to the
Mahalanobis distance criterion, ICS includes a dimension reduction step. Compared
to PCA, the components of ICS are invariant under affine transformations. We first
propose to introduce ICS in coordinate space using an ilr transformation. Following
Archimbaud et al. (2018a), we focus on the case of a small proportion of outliers
and use the invariant components associated with the largest eigenvalues of the joint
diagonalization of two particular scatter matrices. As with the Mahalanobis distance,
the identification of outliers with ICS does not depend on the choice of the ilr
transformation (see also Muehlmann et al. 2021). In order to go beyond coordinate
space and interpret the outliers in the simplex, we introduce new algebra tools and
define eigen-elements of endomorphisms of the simplex. We also introduce a class
of one-step M-scatter estimators and elliptical distributions in the simplex. Thanks
to these tools, we are able to write a reconstruction formula of the data in the simplex
decomposing the data in a proper way for outlier identification and interpretation
using ternary diagrams. In Sect. 2, we recall some facts about the ICS method and
its application to outlier detection. Section 3 is a reminder about compositional
data analysis. In Sect. 4, we develop some tools necessary for Sect. 5. First come
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some properties of the algebra of .D × D matrices with the zero-sum property: in
particular, their rank, their inverses, and their eigen-elements. Then Sect. 4.2 defines
one-step M-scatter functionals for simplex-valued random variables together with
an adapted version of Mahalanobis distance. Finally, Sect. 4.3 introduces the family
of elliptical distributions in the simplex. Section 5 first introduces ICS in coordinate
space and then reformulates ICS directly in the simplex. In Sect. 5.3, we present a
formula for reconstructing the data from ICS in coordinate space and in the simplex.
Section 6 is dedicated to three applications, with two toy datasets (with small and
large dimensions) and a real marketing application from the automobile industry.

2 Reminder About ICS and Outlier Detection

Invariant coordinate (or component) selection is a multivariate statistical method
based on the simultaneous diagonalization of two scatter matrices. As detailed
in Nordhausen and Ruiz-Gazen (2022), the method belongs to a large family of
multivariate statistical methods and is useful in particular for outlier detection as
described below.

2.1 Scatter Matrices

The family of scatter matrices generalizes the notion of covariance matrix (see
Nordhausen and Tyler 2015; Tyler et al. 2009, among others), and it has the
following functional definition. For a p-dimensional vector .X with distribution
function .FX, a functional .S(FX), also denoted by .S(X), is called a scatter functional
if it is a .p × p symmetric positive-definite and affine equivariant matrix. We recall
that an affine equivariant matrix .S(X) is such that

.S(AX + b) = AS(X)AT ,

where .
T denotes the transpose operator, .A is any full rank .p × p matrix, and .b any

p-vector.
For a p-variate dataset .Xn = (x1, . . . , xn)

T , the empirical version .S(Xn) of
a scatter functional is the scatter functional .S(Fn), where .Fn is the empirical
distribution function. Thus, a scatter matrix estimator is a .p×p symmetric positive-
definite and affine equivariant matrix such that

.S(XnA + 1nbT ) = AT S(Xn)A,

where .A is any full rank .p × p matrix, .b any p-vector, and .1n an n-dimensional
vector of ones.
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There exist many scatter matrices as detailed for example in Tyler et al. (2009).
The most well-known scatter matrix is the covariance matrix. As many other scatter
matrices, the covariance involves the mean that is an affine equivariant location
estimator. We recall that an affine equivariant location estimator .T is such that:

.T(AX + b) = AT(X) + b,

for the functional version, and

.T(XnA + 1nbT ) = AT T(Xn) + b,

for the empirical version where .A is any full rank .p × p matrix and .b any p-vector.
A general class of scatter matrices is the class of one-step M-estimators with a

functional defined by

.COVw(X) = E
[
w(M2(X))(X − E(X))(X − E(X))T

]
,

where w is a non-negative and continuous weight function and

.M2(X) = (X − E(X))T COV(X)−1(X − E(X)) (1)

is the square Mahalanobis distance with .E(X) the expectation of .X and .COV(X) its
covariance matrix. The sample version of one-step M-estimators is

.COVw(Xn) = 1

n

n∑
i=1

w(M2(xi ))(xi − x̄n)(xi − x̄n)
T ,

where .x̄n = 1/n
∑n

i=1 xi is the empirical mean and

.M2(xi ) = (xi − x̄n)
T COV(Xn)

−1(xi − x̄n)

is the empirical version of the square Mahalanobis distance.
Note that the covariance matrix .COV is obtained with .w(d) = 1, while the

fourth-moment-based estimator .COV4 is obtained with .w(d) = d/(p + 2). .COV4
is widely used in the blind source separation literature (see, e.g., Nordhausen and
Virta 2019; Theis and Inouye 2006) but also in the context of outlier detection (see
Archimbaud et al. 2018a).

For elliptical distributions with second moments, scatter functionals are all
proportional to the covariance matrix (see, e.g., Bilodeau and Brenner 2008). We
recall that an elliptical distribution is obtained as an affine transformation of a
spherical distribution that is a distribution invariant by orthogonal transformation.
Multivariate normal and Student distributions belong to this family of distributions.
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2.2 ICS Principle

Let .S1(X) and .S2(X) be two scatter functionals. ICS consists of the simultaneous
diagonalization of .S1(X) and .S2(X). If the random vector .X follows an elliptical
distribution, the two scatter matrices will be proportional, and the result will be
useless. However, as mentioned in Tyler et al. (2009), comparing two different
scatter functionals may help revealing interesting departures from an elliptical
distribution. This is the case in particular for anomaly detection. The method
searches for a .p × p matrix .H(X) and a diagonal matrix .�(X) so that

.H(X)T S1(X)H(X) = Ip and H(X)T S2(X)H(X) = �(X), (2)

where .Ip denotes the .p × p identity matrix. The matrix .�(X) contains the
eigenvalues of .S1(X)−1S2(X) in decreasing order, while the columns of the matrix
.H(X) = (h1, . . . ,hp) contain the corresponding eigenvectors so that

.S2(X)H(X) = S1(X)H(X)�(X)

. or equivalently S1(X)−1S2(X)H(X) = H(X)�(X).

These eigenvalues and eigenvectors can also be derived through the spectral
decomposition of the following symmetric matrix:

.S1(X)−1/2S2(X)S1(X)−1/2 = U(X)�(X)U(X)T , (3)

with .U(X) a .p × p orthogonal matrix and the same eigenvalues in the diagonal
matrix .�(X). We have

.H(X) = S1(X)−1/2U(X)

and

.H(X)H(X)T = S1(X)−1 and H(X)−1 = U(X)T S1(X)1/2.

Tyler et al. (2009) give an interesting interpretation of the eigenvalues .λ1, . . . , λp

in terms of kurtosis. Using the optimality property of eigen-elements, it is easy to
see that .h1 maximizes the ratio:

.
hT S2(X)h
hT S1(X)h

over all possible vectors .h in .R
p and that .λ1 is equal to the maximum ratio. This

ratio of two scale measures can be viewed as a generalized measure of kurtosis,
and .λ1 can thus be interpreted as a maximum kurtosis. The other eigenvalues and
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eigenvectors can be defined in a similar way by maximizing the same ratio over
vectors .h that verify additional orthogonality conditions (see Tyler et al. (2009) for
details).

Using any affine equivariant location estimator .T(X), the ICS scores .Z =
(z1, . . . , zp)T are defined by

.Z = H(X)T (X − T(X)),

or equivalently by .zk =< hk,X − T(X) > where .< ., . > denotes the standard
scalar product. The scores define the affine invariant coordinates or components.
The square Euclidian norm of these coordinates is given by

.ZT Z = (X − T(X))T H(X)H(X)T (X − T(X))

= (X − T(X))T S1(X)−1(X − T(X)).

The last expression is a generalization of the Mahalanobis distance (1) of .X with
the location parameter .T(X) (instead of .E(X)) and with respect to the scatter matrix
.S1(X) (instead of .COV(X)). In the special case where .T(X) = E(X) and .S1(X) =
COV(X), we have

.ZT Z =
p∑

k=1

z2
k = M2(X). (4)

The empirical version of ICS consists of the joint diagonalization of a scatter pair
of estimators .S1(Xn) and .S2(Xn). For a .p × p matrix .H(Xn) and a diagonal matrix
.�(Xn), we have

.H(Xn)
T S1(Xn)H(Xn) = Ip and H(Xn)

T S2(Xn)H(Xn) = �(Xn).

Using any affine equivariant location estimator .T(Xn), the ICS scores are given by

.Zn = (z1, . . . , zn)
T = (Xn − 1nT(Xn)

T )H(Xn)

and are affine invariant. As in (4), if .T (Xn) = x̄n and .S1(Xn) = COV(Xn), we have

.M2(xi ) = zT
i zi .

2.3 ICS for Outlier Detection

As already stated in Tyler et al. (2009), one possible application of ICS is outlier
detection. The Mahalanobis distance is a well-known tool to detect outliers (see
Rousseeuw and Van Zomeren 1990), but it does not offer the possibility of
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dimension reduction. ICS gives the possibility of selecting components that are
helpful in detecting anomalies (see Archimbaud et al. (2018a) for details). In
the case of a small proportion of outliers, the theoretical properties of ICS (see
Archimbaud et al. (2018a) for details) lead us to only focus on the invariant
components associated with the largest kurtosis and thus the largest eigenvalues. In
this context, Archimbaud et al. (2018a) show that the scatter pair .S1(X) = COV(X)

and .S2(X) = COV4(X) is not only simple and fast to compute but also effective
in detecting outliers when compared to other pairs that involve robust scatter
estimators. Archimbaud et al. (2018a) propose different automatic procedures for
invariant components selection based on hypothesis testing. In short, the idea is
to test sequentially the normality of each of the invariant components using some
classical tests such as the D’Agostino test and to select the first k components
that reject the Gaussian assumption. After selecting k invariant components among
p, the last step of the procedure is the outlier identification. Let us consider the
empirical version of ICS. For each observation .i = 1, . . . , n, the square “ICS
distance” is the square Euclidian norm in the invariant coordinate system accounting
for the k first coordinates:

.(ICS distance)2
i,k =

k∑
j=1

(
z
j
i

)2
, (5)

where .z
j
i denotes the j th value of the score .zi . In Archimbaud et al. (2018a), an

observation is flagged as an outlier when its ICS distance using .k components is
larger than a cutoff based on Monte Carlo simulations from the standard Gaussian
distribution. Given a data dimension, a scatter pair, and a number k of selected
components, many Gaussian samples are generated, and the ICS distances are
computed. A cutoff is derived for a fixed level .γ as the mean of the .(1−γ )-quantiles
of these distances over the replications. The whole ICS procedure for outlier
detection is available in the R package ICSOutlier described in Archimbaud
et al. (2018b) and used in Sect. 6 below.

3 Reminder About Compositional Data Analysis

A D composition .u is a vector of D parts (or shares) of some whole that carries
relative information. There exists a unique representation of this vector in the unit
simplex space

.SD =
{
u = (u1, . . . , uD)T : um > 0,m = 1, ...,D;

D∑
m=1

um = 1

}
.
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For any vector .w ∈ R
+D, its representer in the simplex is obtained by the closure

operation

.C(w) =
(

w1∑D
m=1 wm

, · · · ,
wD∑D

m=1 wm

)
.

The following operations endow the unit simplex with a vector space structure:

1. .⊕ is the perturbation operation, corresponding to the addition in .R
D:

.For u, v ∈ SD,u ⊕ v = C(u1v1, . . . , uDvD).

2. .� is the power operation, corresponding to the scalar multiplication in .R
D:

.For λ ∈ R,u ∈ SD λ � u = C(uλ
1, . . . , uλ

D).

The subtraction operation can be naturally defined by .u � v = C(u1/v1, . . . ,

uD/vD). Compositional data analysis uses log-ratio transformations such as the
centered log-ratio (clr) and the isometric log-ratio (ilr) transformations. The clr
vector components specify the relative dominance of each compositional part over
the whole composition, see for example Filzmoser et al. (2018). Formally, the clr
transformation of a vector .u ∈ SD is defined by

.clr(u) = GD lnu,

where .GD = ID − 1
D
1D1D

T , .ID is a .D × D identity matrix, and .1D is the D-vector
of ones and where the logarithm of .u ∈ SD is understood componentwise.

For a vector .u in the orthogonal space .1⊥
D (orthogonality with respect to the

standard scalar product of .R
D), the inverse clr transformation is defined by

.clr−1(u) = C(exp(u)).

The simplex .SD of dimension .D − 1 can be equipped with the Aitchison scalar
product

. < u, v >A=< clr(u), clr(v) >,

where the right-hand side scalar product is the standard scalar product in .R
D .

The clr coordinates sum up to zero inducing a degeneracy. For this reason, the
class of isometric log-ratio coordinates has been introduced providing orthonormal
and non-singular coordinates. For any given orthonormal basis .(e1, · · · , eD−1) of
.SD , orthonormality being understood with respect to the Aitchison scalar product
here, one can define a so-called contrast matrix .V of dimension .D × (D − 1)

(e.g. Pawlowsky-Glahn et al. 2015) given by .V = clr(e1, · · · , eD−1), where clr is
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understood columnwise. To each such matrix, .V is associated an isometric log-ratio
transformation by

.ilrV (u) = VT ln(u).

The inverse transformation, for any vector .u∗ of .R
D−1, is given by

.u = ilr−1
V (u∗) = C(exp(Vu∗)).

The link between the ilr and clr transformations is .clr(u) = VilrV (u).

4 Multivariate Tools for Compositional Data

For working with scatter matrices for compositional data, we are going to need some
algebra tools concerning matrices of endomorphisms in the simplex.

4.1 Algebra of Endomorphisms of the Simplex and
Eigendecomposition

Let .A be the set of .D × D matrices such that .A1D = 000D and .AT 1D = 000D , where
.000D denotes the D-dimensional column vector of zeros: this condition is called
the zero-sum property. Pawlowsky-Glahn et al. (2015) define endomorphisms of
the simplex using the ilr transformation and prove that they can be associated to
a matrix belonging to .A, see Property 4.16 and pages 55–58. The linearity here
refers to the vector space structure of the simplex based on the perturbation and
powering operations. Let us introduce an equivalent formulation based on the clr
transformation: for .u ∈ SD and .A ∈ A, endomorphisms of the simplex are defined
by maps .u �→ A � u := clr−1(Aclr(u)).

The composition of endomorphisms corresponds to the ordinary matrix product
since it is clear that .A�(B�u) = AB�u, and therefore, .A is an algebra with neutral
element .GD . We are now going to extend the definition of the ilr transformation to
matrices of .A.

Theorem 1 Let .V be a .D×(D−1) contrast matrix, and let .PV be the .D×D block
matrix .[V 1√

D
1D]. For a .D×D matrix .A ∈ A, the .(D−1)× (D−1) matrix .A∗ :=

ilrV (A) = VT AV is such that .A = ilr−1
V (A∗) = VA∗VT = PV

(
A∗ 0D−1

0T
D−1 0

)
PT

V

and satisfies the following properties:

1. The rank of .A is equal to the rank of .ilrV (A).
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2. If .ilrV (A) is invertible, then .A is invertible in .A, and we have the following
expressions for its .A-inverse

.A−1 = (A+ 1

D
1D1T

D)−1− 1

D
1D1T

D = V(VT AV)−1VT = PV

(
A∗−1 0D−1

0T
D−1 0

)
PT

V .

3. .ilrV (AB) = ilrV (A)ilrV (B). If .A is invertible, then .ilrV (A−1) = (ilrV (A))−1. If
.(ilrV (A))1/2 exists, then .ilrV (A1/2) = (ilrV (A))1/2.

Note that a matrix .A of the algebra .A is never invertible in the space of matrices
in the classical sense. But it may be invertible in the sense of the algebra, and its
.A-inverse then coincides with the Moore–Penrose pseudo-inverse of .A in the usual
sense. The matrix .ilrV (A) is simply the matrix corresponding to .A in coordinate
space when the coordinates are defined by .ilrV . We also extend the definition of the
clr transformations to matrices.

Theorem 2 For a .D × D matrix .B, let us define its clr transformation by

.clr(B) = GDBGD.

We then have the following properties:

1. If .A ∈ A, then .clr(A) = A.

2. If .B /∈ A, then .clr(B) ∈ A and for any .x ∈ SD

.B � x := clr−1(clr(B)clr(x)) = clr(B) � x. (6)

3. If .B /∈ A, then the unique element .A ∈ A such that .ilrV (A) = ilrV (B) is
.A = clr(B).

4. For any contrast matrix .V and any .A ∈ A, we have .clr(A) = VilrV (A)VT .

Note that the matrix product .� can be defined even when the matrix .B does
not belong to .A, but in that case it is not linear. Note also that the ilr and clr
transformations preserve symmetry.

The next proposition links the eigen-elements of .A to those of .ilr(A). Let us first
define the notion of .A-diagonalizable for a matrix of .A.

Definition 1 A matrix .A ∈ A is said .A-diagonalizable if there exists a basis
.e1, . . . , eD−1 of .SD and .D − 1 reals .λj (.j = 1, . . . , D − 1) such that

.A � ej = λj � ej ∀j = 1, . . . , D − 1. (7)

We will say that .ej is an .A-eigenvector of .A. It is clear that .clr(ej ) is then
an eigenvector of .clr(A) = A and that for any contrast matrix .V, .ilrV (ej ) is
an eigenvector of .ilrV (A). Note that .1D is an eigenvector of .A associated to the
eigenvalue .0. It is natural to say that a matrix .A ∈ A is diagonal in a given basis
.e1, . . . , eD−1 of .SD if Eq. (7) is satisfied for these vectors.
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Theorem 3 Let .V be a .D × (D − 1) contrast matrix. For a .D × D matrix .A ∈ A,

we have the following properties:

1. If .e∗
j ∈ R

D−1 is an eigenvector of .ilrV (A), then .ej = ilr−1(e∗
j ) ∈ SD is an

.A-eigenvector of .A and .wj = clr(ej ) ∈ R
D an eigenvector of .A.

2. The set of eigenvalues of .A contains the eigenvalue .0. The other .D − 1
eigenvalues of .A coincide with the eigenvalues of .ilrV (A) for any contrast
matrix .V.

3. .ilrV (A) is diagonalizable if and only if .A is diagonalizable, and if and only if .A
is .A-diagonalizable.

All symmetric matrices in .A are .A-diagonalizable. Note that the vectors .ej =
clr−1(e∗

j ) are independent of the contrast matrix .V. Let .A be a symmetric matrix
of .A. Since the vector .1D is an eigenvector of .A, .A cannot be diagonal in the
canonical basis of .R

D , but it can be diagonal in a basis obtained by completing
.wD = 1

D
1D with .D − 1 orthogonal eigenvectors in .1⊥

D , say .w1, . . . ,wD−1. Then
.ej = clr−1(wj ) ∈ SD (.j = 1, . . . , D − 1) is an orthonormal basis of .SD for
the Aitchison metric since .< ei , ej >A=< wi ,wj >E= δij , where .δij = 1
if .i = j and 0 otherwise, and these vectors are .A-eigenvectors of .A. If .W =
[w1 . . . ,wD−1] is the corresponding contrast matrix, then .ilrW(A)ij = wT

i Awj =
λjwT

i wj = λiδij , which shows that .ilrW(A) is the .(D − 1) × (D − 1) diagonal
matrix .� with the .λi as diagonal elements. Then using Theorem 1, we can write

that .A = PW

(
� 0D−1

0T
D−1 0

)
PT

W showing that .A is similar to the diagonal matrix

.

(
� 0D−1

0T
D−1 0

)
. This last result gives us the general form of diagonal matrices of .A

with the corresponding spectral representation .A = ∑D−1
i=1 λiwiwT

i .

4.2 One-Step M-Scatter Functionals of a Compositional
Random Vector

For a simplex-valued random vector .X (see Pawlowsky-Glahn et al. 2015), let us
recall the following definition of expectation:

.E⊕X := clr−1(Eclr(X))

and the following definition of the (clr-)covariance matrix .COV⊕X (see Aitchison
1982) given by the .D × D matrix

.COV⊕X := COV(clr(X)).
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Note that, by Theorem 2, we can see that .COV⊕X is also equal to
.clr−1(COV(clr(X))). Using the same principles, let us now introduce a simplex
adapted definition of the square Mahalanobis distance as being the square
Mahalanobis distance in the usual sense of the clr coordinates of .X

.M2(X) = (clr(X) − Eclr(X))T (COV⊕X)−1(clr(X) − Eclr(X)).

In the same line, let us define the following one-step M-scatter matrix of a
simplex-valued random vector as the corresponding scatter of its clr coordinates

.COV⊕
wX := COVw(clr(X))

= E[w(M2(X))(clr(X) − Eclr(X))(clr(X) − Eclr(X))T ].

For .w(d) = d/(D+2), we get the fourth-moment-based scatter matrix .COV⊕
4 X:

.COV⊕
4 X := COV4(clr(X))

= 1

D + 2
E[M2(X)(clr(X) − Eclr(X))(clr(X) − Eclr(X))T ].

All these characteristics can also be expressed using the ilr coordinates associated
to any contrast matrix .V by the following formulas:

.E⊕X = ilr−1
V (EilrV (X)),

.COV⊕X = COV(clr(X)) = COV(VilrV (X)),

and thus

.COV⊕X = VCOV(ilrV (X))VT = ilr−1
V (COV(ilrV (X))),

.M2(X) = M2(ilrV (X)),

and similarly

.COV⊕
w(X) = VCOVw(ilrV (X))VT = ilr−1

V (COVw(ilrV (X))).

Note that the scatter functionals .COV⊕
wX belong to the algebra .A, and thus we

also have

.COV⊕
w(X) = clr−1(COVw(clr(X))).

Given a sample of size n, the empirical versions of the previous scatter matrices
can be derived easily.
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4.3 Elliptical Distribution in the Simplex

Nguyen (2019) introduces the Student distribution in the simplex with an application
to political economy. Mateu-Figueras et al. (2021) review some distributions in the
simplex including the multivariate Student distribution. We define a new family of
elliptical distributions with second moment in the simplex. A random vector X with
values in SD is said to follow an elliptical distribution if any of its ilr coordinates
follows an elliptical distribution with second moment in R

D−1. This definition
makes sense due to the following theorem.

Theorem 4 Given two contrast matrices V and W, if X∗
V = ilrV (X) follows an

elliptical distribution with parameters μ∗
V = E(X∗

V ) and �∗
V = COV(X∗

V ), then
X∗

W = ilrW(X) follows an elliptical distribution with parameters (μ∗
W,�∗

W) with

.Wμ∗
W = Vμ∗

V ,

W�∗
WWT = V�∗

WVT ,

W�∗
W

−1WT = V�∗
V

−1VT .

From this theorem, we can say that μclr = Vμ∗ = E(clr(X)) is an invariant that
characterizes the location parameter of the elliptical distribution in clr coordinate
space, and μ = clr−1(μclr) = E⊕(X) is an invariant that characterizes the location
parameter in the simplex. Moreover, � = V�∗

VV
T = ilr−1

V (�∗
V ) = COV⊕X is

an invariant that characterizes the scatter matrix in the simplex. Similarly, Q =
V�∗

V
−1VT = ilr−1

V (�∗
V

−1) is an invariant that characterizes the precision matrix
of this distribution in the simplex. As in Pawlowsky-Glahn et al. (2015), it is
easy to write the density of this distribution with respect to Lebesgue measure in
coordinate space as well as with respect to the Aitchison measure in the simplex. As
in Comas-Cufí et al. (2016), we can extend this definition to a mixture of elliptical
distributions.

5 ICS for Compositional Data

5.1 ICS in Coordinate Space

With the definitions introduced in Sect. 4.2, we can now define ICS for a composi-
tional random vector .X. For a given choice of contrast matrix .V, let .X∗ = ilrV (X).
In the ilr coordinate space, ICS consists of the joint diagonalization of two scatter
matrices .S1(X∗) and .S2(X∗). Following Archimbaud et al. (2018a), let us focus
on .S1(X∗) = COV(X∗) and .S2(X∗) = COV4(X∗). From Eq. (3) in Sect. 2.2, we
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can derive the affine invariant coordinates by diagonalizing the .(D − 1) × (D − 1)

symmetric matrix

.L∗ = COV(X∗)−1/2COV4(X∗)COV(X∗)−1/2.

Let .λ1 ≥ . . . ≥ λD−1 be the eigenvalues of .L∗ in descending order, and .� be the
.(D − 1) × (D − 1) diagonal matrix with the vector of eigenvalues on its diagonal.
Let .u∗

k , k ranging from 1 to .D − 1, be the .D − 1 corresponding eigenvectors of
.L∗ and .U∗ = [u∗

1 . . . u∗
D−1] be the matrix whose columns are these eigenvectors.

By construction, the matrix .U∗ is orthogonal (with respect to the standard scalar
product in .R

D−1). We have for all .k = 1, . . . , D − 1:

.L∗u∗
k = λku∗

k.

If we denote by .h∗
k , .k = 1, . . . , D − 1 the column vectors of .H∗ =

COV(X∗)−1/2U∗, we have

.H∗T COV(X∗)H∗ = ID−1, . (8)

H∗T COV4(X∗)H∗ = �. (9)

Equations (8) and (9) correspond to the joint diagonalization of .COV(X∗) and
.COV4(X∗). As for Eq. (2), we also have

.COV4(X∗)H∗ = COV(X∗)H∗�(X).

The scores or invariant coordinates of .X∗ are given by

.Z∗ = H∗T (X∗ − EX∗) (10)

or equivalently by .z∗
k =< h∗

k,X
∗ − EX∗ >, .k = 1, . . . , D − 1.

5.2 ICS in the Simplex

Let us now use Sect. 4 to obtain a formulation of the previous results back in the
simplex. This presentation of ICS involves elements (scatter matrices, eigenvalues,
and eigenvectors) that are independent of the particular choice of contrast matrix,
thus justifying this approach. Let us denote by .L the following matrix:

.L = (COV⊕X)−1/2COV⊕
4 X(COV⊕X)−1/2. (11)



ICS for Outlier Detection in CODA 211

By Theorem 1, we have that

.ilrV (L) = L∗, (12)

and by Theorem 3, we have that, for .k = 1, . . . , D,

.L � uk = λk � uk,

where .uk = ilr−1
V (u∗

k) for .k = 1, . . . , D − 1, and .uD = 1D/
√

D corresponding to
.λD = 0. We have .< uk,ul >A = δkl , for .k, l = 1, . . . , D. The vectors .uk are the
.A-eigenvectors of .L. We can write the following spectral representation of .L:

.L =
D−1∑
k=1

λkclr(uk)clr(uk)
T .

If we denote by .hk = ilr−1
V (h∗

k) = (COV⊕X)−1/2
� uk , .k = 1, . . . , D, we get

.COV⊕
4 X � hk = λk � COV⊕X � hk

and

.(COV⊕X)−1COV⊕
4 X � hk = λk � hk.

The scores .Z∗ = (z∗
1, . . . , zD−1) defined by (10) do not depend on the contrast

matrix as already mentioned in Muehlmann et al. (2021) and are given by

.z∗
k =< h∗

k,X
∗ − EX∗ >=< hk,X � E⊕X >A . (13)

This equation shows that the scores can be used for outlier detection indepen-
dently of the contrast matrix.

5.3 Reconstruction Formula

From (10), it is easy to derive the reconstruction formula in coordinate space:

.X∗ = EX∗ + (H∗T )−1Z∗. (14)

Let .a∗
k denote the column vectors of the matrix .(H∗T )−1 = COV(X∗)1/2U∗

for .k = 1, . . . , D − 1. Let us define the scalar product with respect to the metric
.COV(X∗)−1 by

. < u∗, v∗ >COV(X∗)−1= u∗T COV(X∗)−1v∗.
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Equation (8) shows that the vectors .a∗
k , .k = 1, . . . , D − 1, are orthonormal in the

sense of this scalar product since the equation can be rewritten as

.(H∗)−1COV(X∗)−1(H∗T )−1 = ID−1. (15)

This orthogonality implies that the reconstruction formula can also be obtained
by

.X∗ − EX∗ =
D−1∑
k=1

< a∗
k,X

∗ − EX∗ >COV(X∗)−1 a∗
k. (16)

The scalar products .< a∗
k,X

∗ − EX∗ >COV(X∗)−1 , .k = 1, . . . , D − 1, are the
coordinates of the .(D − 1) vector:

.(H∗)−1COV(X∗)−1(X∗ − EX∗).

Using (14), this vector can be written:

.(H∗)−1COV(X∗)−1(X∗ − EX∗) = (H∗)−1COV(X∗)−1(H∗T )−1Z∗. (17)

Using (17) and (15), we get

.(H∗)−1COV(X∗)−1(X∗ − EX∗) = Z∗,

and thus

. < a∗
k,X

∗ − EX∗ >COV(X∗)−1= z∗
k,

where .(z∗
1, . . . , z

∗
D−1) denote the coordinates of .Z∗.

Combining with (16), we get the final reconstruction formula in coordinate space

.X∗ = EX∗ +
D−1∑
k=1

z∗
ka

∗
k. (18)

Applying .ilr−1
V to Eq. (18), we get the following simplex version of the recon-

struction formula

.X = E⊕X
D−1⊕
k=1

z∗
k � ak, (19)

where

.ak = ilr−1
V (a∗

k) = (COV⊕X)1/2
� uk. (20)
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The vectors .ak are related to the .A-eigenvectors .uk of .L by (20). They generate
simplex lines called ICS axes that are the sets of vectors .α � ak , for .α ∈ R. In
the next section, we use the empirical version of the reconstruction formula (19) in
order to plot the projection of the data on the vector .a1 in some ternary diagrams in
situations where the number of selected invariant coordinates is one.

We can also write (19) in terms of the vectors .hk:

.X = E⊕X
D−1⊕
k=1

< hk,X � E⊕X >A �(
COV⊕X � hk

)
.

6 Examples of Application

We first consider two artificial datasets following a mixture of two normal distribu-
tions with 10% of observations that differ from the 90% constituting the main bulk
of the data. The dimension is .D = 3 for the first example and .D = 20 for the second
one. The contrast matrices we use for the ilr transformations in this section are
triangular Helmert matrices corresponding to the original ilr transformation defined
by Egozcue et al. (2003).

6.1 Toy Examples

For the first example, the contrast matrix is given by .VT =
⎛
⎝

1√
2

− 1√
2

0

− 1
2

√
2
3 − 1

2

√
2
3

√
2
3

⎞
⎠.

In this toy example, .n = 100 observations are generated in the ilr space with .D−
1 = 2 dimensions from a mixture of two Gaussian distributions. The mean and the
covariance matrix of the first .90% of the observations (sample 1) are, respectively,

.μ∗
1 = (0, 0)T and �∗

1 = 0.02I2 + 0.02121T
2 ,

while the mean vector and the covariance matrix of the remaining .10% (sample 2)
are

.μ∗
2 =

(
2√
2

log 2,
−1√

6
log 2

)T

and �∗
2 = 0.05I2.

Figure 1 on the left (resp., in the middle) shows the dataset in the simplex .S3

(resp., in the ilr space). The points in cyan (resp., magenta) belong to sample 1
(resp., sample 2), and we can see that component .x2 has higher values in sample
2 than in sample 1, to the detriment of .x1 and .x3. We perform the ICS method
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Fig. 1 First toy example: data in the simplex (left), data in the ilr space (middle), identification of
the outlying observations using ICS (right)

in the ilr space using the ICSOutlier package (Archimbaud et al. 2018b). The
eigenvalues are .1.57 and .0.81, and the D’Agostino test for normality leads to the
selection of a single invariant component. Note that this test is based on the ICS
scores and thus does not depend on the ilr transformation (see Archimbaud et al.
2018a, for more details). Figure 1 on the right reports the ICS distances as in Eq. (5)
for each observation. The horizontal line represents a cutoff value based on Monte
Carlo simulations and a .90% quantile. The choice of the quantile order can be done
with respect to the expected percentage of outliers in the data. The ICS distances
and the cutoff are also independent of the ilr transformation since they depend on
the ICS scores only. Figure 1 on the right allows us to identify outliers represented
by filled circles. On this example, all 10 observations from sample 2 are identified
as outliers, whereas only 1 out of the 90 observations from sample 1 is incorrectly
identified (at the limit of the cutoff value).

The two vectors generating the ICS axes (dashed lines in Fig. 2) are equal to
.a∗

1 = (0.31,−0.1) and .a∗
2 = (0.12, 0.22) in the ilr space and .a1 = (0.27, 0.43, 0.30)

and .a2 = (0.28, 0.33, 0.39) in the simplex space. To better understand the role of
the ICS components and how they discriminate the observations, we represent in
Fig. 2 the projections of the observations on the first ICS axis (left plots) and the
second ICS axis (right plots) in the ilr space (top plots) and in the simplex space
(bottom plots). The first ICS axis allows to discriminate the observations with a
high value of .x2 relatively to the other shares and results in a good discrimination of
the two groups. On the contrary, the second axis that seems to separate observations
with high values of .x1 against observations with high values of .x3 does not allow to
discriminate the two groups.

Finally, using the cutoff value, we represent in gray in Fig. 3 the zones or areas
of the ilr space (left plot) and of the simplex (right plot) where the observations are
considered as outliers. This confirms that the observations with a large or a small
value of .x2 relatively to the other shares are in the outlying zone.
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Fig. 2 First toy example: plot of the ICS axes and projections of the data on the ICS axes (ICS 1
on the left and ICS 2 on the right) in the ilr space (top plots) and in the simplex (bottom plots)

For the second toy example, we generate a higher dimensional dataset with .D =
20, using two multivariate Gaussian distributions. The first sample is of size .n1 = 90
with

.μ∗
1 = (0, 0, . . . , 0)T and �∗

1 = 0.02ID−1 + 0.021D−11
T
D−1,

and the second sample is of size .n2 = 10 with

.μ∗
2 =

(
2√
2

log 2,
−1√

6
log 2, 0, . . . , 0

)T

and

�∗
2 =

(
0.05I2 0

0 0.02ID−1 + 0.021D−31
T
D−3

)
.
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Fig. 3 First toy example: outliers zones in gray in the ilr space (left) and in the simplex space
(right)

When .D > 3, several options can be used for representing compositional data.
One possibility is to plot ternary diagrams using sub-compositions as described in
van den Boogaart and Tolosana-Delgado (2008). An alternative is to plot a ternary
diagram with .x1, .x2 and the sum of the remaining parts .x3 + . . . + xD . Another
possibility is to replace the sum of the remaining parts by their geometric mean.
If .D > 3 is not too large, these sub-ternary diagrams can be gathered in a square
matrix of dimension .D(D − 1)/2.

In order to identify the outliers, we implement the ICS method using
ICSOutlier in coordinate space. The procedure selects only the first invariant
component. The left plot of Fig. 4 displays the ICS distances and the cutoff value as
an horizontal line to identify outliers. This plot is the same for all ilr transformations.
9 observations out of 10 are detected as outliers in sample 2, while none of the
observations from sample 1 are identified as outliers. The symbols for the points are
as in Fig. 1.

The right plot represents several sub-ternary diagrams, but not all of them
because of the large dimension .D = 20. The selected ternary diagrams plot two
parts among .x1 to .x5 against the geometric mean of the rest denoted by .∗. However,
the diagrams that are not shown are very similar to the ones that focus on .x3, .x4,
and .x5 (see the rows and columns 3, 4, and 5 on the matrix plot). Observations
with the cross (resp., circle) symbol belong to sample 1 (resp., sample 2). The sub-
ternary diagrams confirm that .x1 and .x2 are the composition parts playing a role in
explaining the outlyingness of the red points. In fact, the observations of sample 1
are clearly visible and separated from the other group when considering the diagram
with the .x1 and .x2 components and the geometric mean of the other parts. On the
contrary, when looking at the ternary diagrams that do not take .x1 and .x2 separately
from the other parts, the outliers are not distinct from the other observations.
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Fig. 4 Second toy example: ICS distances (left), sub-ternary diagrams of the first five composition
parts (right), with cyan (resp., magenta) for sample 1 (resp., 2) and filled circles for detected outliers
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*
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Fig. 5 Second toy example: plot of the ICS axis .a1 and projections of the data on this axis in the
ternary diagram .(x1, x2, ∗)

We represent in Fig. 5 the sub-ternary diagram .(x1, x2, ∗) (where .∗ represents the
geometric mean of the rest), with small circles in cyan (resp., magenta) for sample
1 (resp., sample 2). The vector .a1 is plotted together with the ICS axis represented
by a dashed line. We see that the data projected on the first ICS axis are clearly
discriminated by high values of .x2 relatively to .x1.
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6.2 Market Shares Example

This market share dataset has been simulated from a model fitted on the real
European cars market in 2015 and is available in Barreiro et al. (2022). The plot
on the top of Fig. 6 represents the shares in the French automobile market of 5
segments (.D = 5), from January 2003 to August 2015, denoted by A, B, C, D,
and E (European cars market segments, from the cheapest cars to the most powerful
and luxury ones). We perform the ICS method in the ilr space and represent in
the bottom of Fig. 6 the ICS distances for each observation. The normality test of
the ICS procedure reveals that only the first component is important for outlier
identification. The cutoff value is based on the quantile of order .97.5%. All the
identified outliers are concentrated in a time interval between September 2008 and
May 2009. It turns out that during this period, the global automobile market was
undergoing a crisis with worldwide sales significantly down and political solutions
have been provided such as the scrapping bonus at the end of 2008.

As before, in Fig. 7, we represent the matrix of sub-ternary diagrams with
detected outliers in red. The ternary diagram vertices consist of two selected parts,
and the third part indicated by .∗ corresponds to the geometric mean of the remaining
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Fig. 6 French Market automobile shares example: from January 2003 to August 2015 in 5
segments (top) and identification of the outlying observations using ICS distances (bottom). The
dotted vertical lines represent the period during which outliers were identified (September 2008 to
May 2009)



ICS for Outlier Detection in CODA 219

A

A B

*

A C

*

A D

* *

B A

*

B

B C

*

B D

* *

C A

*

C B

*

C

C D

* *

D A

*

D B

*

D C

*

D

*

E A

*

E B

*

E C

*

E D

*

E

A E

B E

C E

D E

Fig. 7 French Market automobile shares example: outlier identification on the matrix sub-ternary
diagram

parts. It seems that among all ternary diagrams, the ones including segment A are
the best possible in order to identify the outliers. More precisely, the sub-ternary
diagram that includes segments A, D, and the others separates the most the two
groups. Thus, we plot in Fig. 8 the data in the sub-ternary diagram .(A,D, ∗). We
also represent the vector .a1, the ICS axis, and the projections of the data on this
axis.

The time points that are detected as outlying correspond to observations with
high values of segment A, compared to more normal values of D and low values of
the geometric mean of .B,C and E. This interpretation is confirmed when looking
at the top plots of Fig. 6.
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Fig. 8 French Market automobile shares example: projection of the data on the first ICS axis .a1 in
the sub-ternary diagram defined by A, D, and the amalgamation of other components (left). Zoom
on the interesting part of the ternary diagram (right)

7 Conclusion

The present contribution extends ICS for outlier detection to the context of
compositional data. As for standard data, ICS with the scatter pair .COV and .COV4
is a powerful tool to detect a small proportion of outliers. The definition of ICS
in coordinate space is straightforward, and the identification of outliers does not
depend on the choice of the isometric log-ratio transformation. The definition of ICS
in the simplex is more challenging, and some algebra tools have been introduced to
tackle the problem. Using a reconstruction formula, ICS axes can be plotted on
ternary diagrams that help interpreting the outliers. Further interpretation tools are
work in progress. Among the perspectives, we can mention the extension of ICS to
compositional functional data (see Rieser and Filzmoser (2022) and Archimbaud
et al. (2022)). Some supplementary material is available on https://github.com/
tibo31/ics_coda in order to permit the reproducibility of the empirical analyses
contained in the present paper.
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Appendix

Proof of Theorem 1

1. Let PV be the D × D block matrix [V 1√
D
1D]. Then PT

V PV = ID and PV PT
V =

VVT + 1
D
1D1T

D = ID; therefore, PV is invertible, and its inverse is equal to PT
V . If

A = VA∗VT for a (D−1)×(D−1) matrix A∗, then A = PV

(
A∗ 0D−1

0T
D−1 0

)
PT

V =

PV

(
A∗ 0D−1

0T
D−1 0

)
P−1

V ; therefore, A is similar to A∗ and their rank is equal.

2. If A∗ is invertible, by the previous property, A = VA∗VT is also invertible. Then,
let us first prove that (A + 1

D
1D1T

D) is invertible. We can write

.PV

(
A∗ 0D−1

0T
D−1 1

)
PT

V = A + 1

D
1D1T

D.

The rank of the central matrix is D; therefore, A + 1
D
1D1T

D is invertible, and its
inverse is given by

.

(
PV

(
A∗ 0D−1

0T
D−1 1

)
PT

V

)−1

=
(
PV

(
A∗ 0D−1

0T
D−1 1

)
P−1

V

)−1

= PV

(
A∗−1 0D−1

0T
D−1 1

)
PT

V .

Then let us check that the inverse of A inA is given by PV

(
A∗−1 0D−1

0T
D−1 0

)
PT

V .

Indeed

PV

(
A∗−1 0D−1

0T
D−1 0

)
PT

VA = PV

(
A∗−1 0D−1

0T
D−1 0

)
PT

V PV

(
A∗ 0D−1

0T
D−1 0

)
PT

V =

VVT = GD. Same for the other direction. Since PV

(
0D−10T

D−1 0D−1

0T
D−1 1

)
PT

V =
1
D
1D1T

D, we have

.A−1 = PV

(
A∗−1 0D−1

0T
D−1 0

)
PT

V

= PV

(
A∗−1 0D−1

0T
D−1 1

)
PT

V − PV

(
0D−10T

D−1 0D−1

0T
D−1 1

)
PT

V
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and thus A−1 = (A + 1
D
1D1T

D)−1 − 1
D
1D1T

D . An alternative formula is

.A−1 = V(VT AV)−1VT .

3. ilrV (A)ilrV (B) = VT AVVT BV = VT ABV = ilrV (AB). If A is invertible, then
ilrV (A−1) = VT V(VT AV)−1VT V = (VT AV)−1 = (ilrV (A))−1. If (ilrV (A))1/2

exists, let us define A1/2 = ilr−1((ilrV (A))1/2
) = V(ilrV (A))1/2VT . We have

A1/2A1/2 = V(ilrV (A))1/2VT V(ilrV (A))1/2VT = VilrV (A)VT = A.

Proof of Theorem 2

1. 1 is a clear consequence of the fact that GD is the neutral element ofA.

2. It is clear that clr(B)clr(x) ∈ 1⊥
D; hence, by definition, clr−1(clr(B)clr(x)) =

clr(B) � x.
3. If VT BV = VT AV, then multiplying on the left by V and on the right by VT

and using the fact that VVT = GD, we get GDBGD = GDAGD , and hence,
clr(A) = clr(B). Then if A ∈ A, then clr(A) = A = clr(B).

4. By Theorem 1, we have A = VilrV (A)VT and A = clr(A) by 1.

Proof of Theorem 3 A∗ is diagonalizable if there exists a basis v∗
1, . . . , v

∗
D−1 of

R
D−1 and D − 1 real values λj such that A∗v∗

j = λjv∗
j . Then let ej = ilr−1

V (v∗
j );

we get by applying ilr−1: A� ej = ilr−1
V (λjv∗

j ) = λj � ilr−1
V (v∗

j ) = λj � ej so that
ej is an A-eigenvector of A. Now applying the clr transformation, we also get that
if wj := clr(ej ), then Aclr(ej ) = λj clr(ej ) so that Awj = λjwj showing that wj

is an eigenvector of A. 1D/
√

D is an eigenvector of A associated to the eigenvalue
0 when A ∈ A, and this completes the basis in R

D since the vectors wj belong to
1⊥
D , j = 1, . . . , D − 1.

Proof of Theorem 4 The density of the elliptical distribution of X∗
V = ilrV (X) is a

function of R = (ilrV (X)−μ∗
V )T �∗

V
−1(ilrV (X)−μ∗

V ). Since ilrV (X) = VT clr(X),

an alternative formulation for R is

.R = (clr(X) − clr(μ))T VT �∗
V

−1V(clr(X) − clr(μ)).

Now if we let μ∗
W = WT Vμ∗

V , we have Wμ∗
W = Vμ∗

V . Similarly, let �∗
W =

WT V�∗
VV

T W, and we have W�∗
WWT = V�∗

VV
T . Therefore, substituting this

expression in R, we see that R is invariant to the specification of the contrast matrix,
and going backward, we can rewrite R = (ilrW(X) − μ∗

W)T �∗
W

−1(ilrW(X) − μ∗
W),

which shows that ilrV (X) follows an elliptical distribution with parameters μ∗
W and

�∗
W . Now using the properties of contrast matrices VVT = GD and VT V = ID−1,

we have

.(WT V�∗
VV

T W)(WT V�∗
V

−1VT W) = ID−1,

which proves the last part of the theorem.
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Robust Forecasting of Multiple Time
Series with One-Sided Dynamic Principal
Components

Daniel Peña and Víctor J. Yohai

Abstract Given a high-dimensional vector of time series, we define a class
of robust forecasting procedures based on robust one-sided dynamic principal
components. Peña et al. (J Am Stat Assoc 114(528):1683–1694, 2019) defined one-
sided dynamic principal components as linear combinations of the present and past
values of the series with optimal reconstruction properties. In order to make the
estimation of these components robust to outliers, we propose here to compute
the principal components by minimizing the sum of squares of the M-scales of
the reconstruction errors of all the variables. The resulting robust components are
called scale one-sided dynamic principal components (S-ODPC), and an alternating
weighted least squares algorithm to compute them is presented. We prove that when
both the number of series and the sample size tend to infinity, if the data follow a
dynamic factor model, the mean of the squares of the M-scales of the reconstruction
errors of the S-ODPC converges to the mean of the squares of the M-scales of the
idiosyncratic terms, with rate .m1/2, where m is the number of dimensions. A Monte
Carlo study shows that the S-ODPC introduced in this chapter can be successfully
used for forecasting high-dimensional multiple time series, even in the presence of
outlier observations.

Keywords Outliers · Dimensionality reduction · S-estimators · Dynamic factor
models
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1 Introduction

High-dimensional sets of correlated time series are nowadays automatically gen-
erated in many fields, from engineering to environmental science and economics.
These large data sets are often collected by using wireless sensor networks that
may fail to record the data correctly due to depletion of batteries or environmental
influence. These failures will produce outliers in the time series recorded that can
modify strongly the forecasting generated from these contaminated data. Thus,
using robust forecasting procedures based on robust estimation methods, which can
deal with large outliers, is very important in this high-dimensional data sets.

Robust estimation of multivariate data sets generated by vector autoregressive
(VAR) models was studied by Muler and Yohai (2013). They generalized to the
multivariate case the robust estimation procedure proposed by Muler et al. (2009)
for ARMA univariate models. However, the multivariate approach requires the
estimation of a VAR/VARMA model for the vector of time series, and for these
models, the number of parameters grows at least with the square of the number
of series, turning their estimation unfeasible for high-dimensional sets of time
series. Therefore, other alternatives for robust estimation in these situations have
been explored. Dynamic factor models have been shown useful to model high-
dimensional sets of time series, and some procedures have been proposed for the
robust estimation of these models, see Fan et al. (2019), Alonso et al. (2020), Fan
et al. (2021), and Trucíos et al. (2021).

Peña and Yohai (2016), following Brillinger’s idea of dynamic principal com-
ponents, see Brillinger (1964, 1981), proposed a new class of dynamic principal
components that provide an optimal reconstruction of the observed set of series.
These dynamic components are more general than those of Brillingers’s, as they
are computed without the assumption of being linear combinations of the data.
In Peña and Yohai (2016) was also developed a robust estimation procedure for
these principal components. However, although they are useful for reconstruction
of the set of time series, these components are not expected to work well in
forecasting problems, as their last values will be computed with a smaller number
of observations than the central ones.

In order to have dynamic components useful for forecasting, (Peña et al. 2019)
proposed the one-sided dynamic principal components (ODPC) that are defined
as linear combinations of the observations based on a one-sided filter of past
and present observations, instead of the double filter of past and future values,
as proposed by Brillinger (1964). See also Forni et al. (2015, 2017) for a related
approach to build one-sided filters for dynamic factor models.

Since the estimation procedure applied in Peña et al. (2019) minimizes the mean
square error of the series reconstruction, it can be very sensitive to outliers. To
overcome this drawback, in this chapter, we introduce a robust ODPC procedure that
is based on the minimization of the sum of squares of M-scales of the reconstruction
error of all the variables. Thus, the resulting forecasting procedure can be applied
to automatic forecasting of large high-dimensional data sets of time series. The M-
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scales introduced by Huber (1964) are robust estimators that measure how large
in absolute value are the elements of a sample. These scales may have a 50
% breakdown point against outliers and inliers. Therefore, they protect for both
types of anomalies. We call this procedure S-ODPC, and by means of a Monte
Carlo procedure, we show that it produces accurate forecasts even with outlier
contaminated data.

In Sect. 2 of this chapter, we review the one-sided dynamic principal components
(ODPC) proposed by Peña et al. (2019). In Sect. 3, we introduce its robust version,
the S-ODPC, and in Sect. 4, we describe an alternating weighted least squares
to compute them. In Sect. 5, we discuss how to use the S-ODPC to forecast
future values of a multiple time series. In Sect. 6, two possible robust strategies
to determine the number of components and the number of lags to define each
component and to reconstruct the time series are described. In Sect. 7, we show
that asymptotically, when both the number of series and the sample size go to
infinity, if the data follow a dynamic factor model, the reconstruction obtained with
S-ODPC converges, in mean squared error, to the common part of a dynamic factor
model. In Sects. 8 and 9, we illustrate with Monte Carlo simulations and with a real
data example that in the presence of outliers the forecasting procedure based on S-
ODPC performs much better than the one based on ODPC. Finally, Sect. 10 contains
conclusions. An Appendix includes the mathematical proofs.

2 One-Sided Dynamic Principal Components

Consider a zero mean vector of stationary time series .z1, . . . , zT , where .zt =
(zt,1, . . . , zt,m)′. Let Z be the data matrix of dimension T × m where each row
is z′

t . We will use E for the expectation operator, ‖ · ‖ for the Euclidean norm of
vectors and the spectral norm of matrices and ‖ · ‖F for the Frobenius norm of
a matrix. Consider an integer number k1 ≥ 0, and let a = (a′

0, . . . , a
′
k1

)′, where
a′
h = (ah,1, . . . , ah,m) is a vector of dimension m. Following Peña et al. (2019), the
scores of the first one-sided dynamic principal component are of the form

.ft (a) =
k1∑

h=0

a′
hzt−h, t = k1 + 1, . . . , T . (1)

This component, built with k1 lags, is used to reconstruct each observation zt,j using
k2 ≥ 0 of its lags and the respective loading coefficients by

.̂zt,j (a,B) = ϕj +
k2∑

h=0

bj,hft−h(a). (2)
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Let B be the m × (k2 + 2) loading matrix with row j equal to (ϕj , bj,0, . . . , bj,k2).
Then if

.̂zt (a,B) = ẑt,1(a,B), . . . ,̂zt,m(a,B))′

and Ft (a) = (1, ft (a), . . . ,ft−k2(a)), (2) can be written as

.̂zt (a,B) = BFt (a).

Note that we can consider the reconstruction (2) as the predictions of the common
component in a dynamic factor model (DFM). This equation can be interpreted as
the forecast of the common component of a DFM with one dynamic factor and k2
lags. The loadings are given by the matrix B. The dynamic factor is assumed to be
a linear combination of the observations and their k1 lags, defined by the a weights
in (1).

We suppose here that k1 and k2 are given, and in Sect. 6, we will propose a
method to choose them. We will call T ∗ = T − (k1 + k2) to the number of
observations that can be reconstructed. The population optimal values of a and B
were defined by Peña et al. (2019) as those that minimize the mean squared error in
the reconstruction of the data

.(a∗,B∗) = argmin
a,B

E(‖zt − ẑt (a,B)‖2).

Since if (a,B) is a solution of (2), then (ca,B/c), for c �= 0, will be one as
well, we can normalize the vector a, so that ‖a‖ = 1, although, as in standard
principal components −a,−B works as well as a,B. Given a sample, z1, . . . , zT ,
the estimators â, and B̂ of the optimal values (a∗,B∗) are defined as

.(̂a, B̂) = arg min‖a‖=1,B

1

T ∗
T∑

t=(k1+k2)+1

‖zt − ẑt (a,B)‖2, (3)

and the estimated first dynamic principal component is given by

.f̂t = ft (̂a) =
k1∑

h=0

â′
hzt−h, k1 + 1 ≤ t ≤ T , (4)

and ẑt = ẑt (̂a, B̂) will provide an estimated optimal reconstruction of zt using k2 of
its lags at periods t , (k1 + k2) + 1 ≤ t ≤ T .

The second and higher orders of one-sided dynamic principal components
are defined similarly. Let k

(h)
1 and k

(h)
2 be the number of lags to define the h-

th component, and suppose that we have already computed the first l principal
components. Denote by r(l)

t ,max1≤h≤l (k
(h)
1 + k

(h)
2 ) + 1 ≤ t ≤ T , the residual
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vector at time t using the first l components. Then, the (l + 1) one-sided dynamic
estimated component is a vector with components of the form

.ft (a) = a′
0zt + a′

1zt−1 + . . . + a′
k
(l+1)
1

z
t−k

(l+1)
1

, max
1≤h≤l+1

(k
(h)
1 + k

(h)
2 ) + 1 ≤ t ≤ T ,

(5)

where the vector a = (a0, a1, . . . , ak1) is chosen so that it optimizes the recon-

struction of r(l)
t ,max1≤h≤l+1(k

(h)
1 + k

(h)
2 ) + 1 ≤ t ≤ T . More precisely, consider

reconstructions of r(l)
t of the form r̂(l)

t (a,B) = BFt (a), where B is a m× (k
(l)
2 +2)

matrix, and then the (l + 1)-th principal component has values ft (̂a(l+1)), where
â(l+1) is defined so that there exists a m× (k

(l+1)
2 + 2) matrix B̂(l+1) such that

.(̂a(l+1), B̂(l+1)) = arg min||a||=1,B

1

T ∗
T∑

t=k
(l+1)
1 +k

(l+1)
2 +1

∥∥∥r(l)
t − r̂(l)

t (a,B)

∥∥∥
2
.

More technical details can be found in Peña et al. (2019).
We will consider here only the estimating equations of the first component, and

therefore, we will drop the superscript (l). The estimating equations of higher order
principal components can be found in Peña et al. (2019). Let Zh be the T ∗ ×m data
matrix of T ∗ consecutive observations

.Zh =

⎛

⎜⎜⎜⎝

z′
h+1
z′
h+2
...

z′
h+T ∗ ,

⎞

⎟⎟⎟⎠ (6)

and we will consider this matrix for h = 0, . . . , (k1 + k2). Merging these matrices,
we can write in a compact way the data used in the estimation. Note that the matrix
Zk1+k2 includes all the values of the series to be reconstructed.

Second, we will consider the larger matrix Zl,k1 = [
Zh,Zh−1, . . . ,Zh−k1

]
of

dimension T ∗ × m(k1 + 1) that includes the observations and also their k1 lags
required for the computation of the first component. The matrix of values of the
components used for the reconstruction is the T ∗ × (k2 +2) matrix Fk1,k2(a), which
has as rows Ft (̂a), k1 + k2 + 1 ≤ t ≤ T , and the reconstruction of the values Zk1+k2

is made with the T ∗ × m matrix Ẑk1+k2 computed as

.̂Zk1+k2 = Fk1,k2 (̂a)B̂
′.

Third, let ZB be the matrix with dimensions T ∗(k1 + 1) × m(k1 + 1) given by

.ZB =
⎛

⎜⎝
Zk1+k2,k1

...

Zk1,k1

⎞

⎟⎠, (7)



230 D. Peña and V. J. Yohai

B1 the matrix B with its first column deleted and Id the d × d identity matrix.
Define the matrix of products of loadings and data values by

.X(B) = (B1 ⊗ IT ∗)ZB (8)

as a mT ∗ × m(k1 + 1) matrix with rank m(k1 + 1). Then, in Peña et al. (2019), it is
shown that (̂a, B̂) are values (a,B) satisfying

.a = (X(B)′X(B))−1X(B)′vec(Zk1+k2), (9)

and this vector is standardized to unit norm. On the other hand, B̂ can also be
computed by least squares by

.B′ = (F′
k1,k2

(a)Fk1,k2(a))
−1F

′
k1,k2

(a)Zk1+k2 . (10)

An alternating least squares algorithm to compute (̂a, B̂) can be carried out as
follows. Given an initial value of â, the matrix of values of the component Fk1,k2(a)
is computed by (9), and the matrix B̂ is obtained by (10). Then, this matrix allows to
compute a new value of â, by first applying (8) and then using (9). This alternating
process is continued until convergence. A similar algorithm can be applied to obtain
the i-th component for i > 1.

3 Robust One-Sided Dynamic Principal Components

Since the ODPC estimator described in Sect. 2 is based on the minimization of
the reconstruction mean square error, this estimator is very sensitive to the presence
of outliers in the sample. To address this problem, we are going to propose a class
of robust one-sided principal components that will be called S-ODPC and that are
based on a M-scale.

Given a random variable x, the M-scale SM(x) is defined by

.E
(

ρ

(
x

SM(x)

))
= b,

where ρ: R → R
+ and ρ and b satisfy: (a) ρ(0) = 0, (b) ρ(−x) = ρ(x), (c) ρ(x)

is non-decreasing for x ≥ 0, (d) limx→∞ ρ(x) = 1, and (e) 0 < b < 1. The scale
SM(x) is a measure of how large are the values that x takes. Note that if ρ(x) = x2

and b = 1, then SM(x) is the L2-scale given by S2
M(x) = E(x2).
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Given a sample x = (x1, x2, . . . xn) of x, SM(x) may be estimated by sM(x)
satisfying

.
1

n

n∑

i=1

ρ

(
xi

sM(x)

)
= b. (11)

Generally, it is required that EΦ(ρ(x)) = b, where Φ is the standard normal
distribution. This condition implies that if xn is a sample of size n of a N(0,σ 2)
distribution, then limn→∞ sM(xn) = σ 2.

A family of ρ functions satisfying these properties is the Tukey biweight family
defined by

.ρBS
c (x) =

[
1 −

(
1 −

(x

c

)2)3
]
I (|x| ≤ c).

The breakdown point of a M-scale is ε∗ = min(b.1−b) and is maximized when
δ = 0.5, and in this case, ε∗ = 0.5. The consistency condition EΦ(ρBS

c (x)) = 0.5
is satisfied when c = 1.547. This is the function used in the simulations in Sect. 8
and in the example in Sect. 9.

The M-scales have been used to define robust estimators for many statistical
problems. We will mention here two classes of estimators based on a M-scale: S-
estimators for regression (see Rousseeuw and Yohai 1984) and S-estimators of the
scatter matrix and multivariate location (see Davies 1987).

When the first component is used to reconstruct the series, the reconstruction
error of the variable j at the period t is given by

.rt,j (a,B) = zt,j − ẑt,j (a,B), k1 + k2 + 1 ≤ t ≤ T . (12)

The first population S-ODPC is defined by the values a∗
S , B

∗
S given by

.
(
a∗
S,B∗

S

) = arg min||a||=1,B
KM(a,B),

where

.KM(a,B) =
m∑

j=1

S2
M(rt,j (a,B)).

Given a sample zt , 1 ≤ t ≤ T ,
(
a∗
S,B∗

S

)
can be estimated by

.
(
âS, B̂S

) = arg min||a||=1,B
kM(a,B),
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where

.kM(a,B) =
m∑

j=1

s2M(r.j (a,B))

and r.j (a,B) = (rt,j (a,B))k1+k2+1≤t≤T .

Remark 1 Observe that if the performance of the principal components is measured
by the sum of the squares of the M-scales of the empirical reconstruction residuals,
then the S-ODPC defined above is still optimal when dealing with nonstationary
series. Therefore, it may be used for forecasting even in this case.

In the Appendix, we prove that differentiating S(a,B), â and B̂ satisfy
expressions similar to (9) and (10), respectively. In fact, it can be shown that âS and
B̂S are values a and B satisfying the following weighted least squares relationships:

. a∗ = (X(B)′W(a,B)X(B))−1X(B)′W(a,B)vec(Zk1+k2),

.̂a = a∗/
∣∣|a∗|∣∣, (13)

where W is a mT ∗ × mT ∗ diagonal matrix of weights. On the other hand, fixing
Fk1,k2 (a), the optimal B also satisfies a weighted least squares expression. Then,
B′= (b1, . . . ,bm), where

.bj = (Fk1,k2
(a)′Wj (a,B)Fk1,k2(a))

−1Fk1,k2
(a)′Wj (a,B)z∗

j , (14)

where z∗
j is the j -th column of Zk1+k2 and Wj is a T ∗ × T ∗ matrix of weights.

The matrices Wj , 1 ≤ j ≤ m, are defined as follows: let ψ(u) = ρ′(u) and
w(u) = ψ(u)/u if u �= 0 and w(0) = limu→0 w(u). Given a and B, let σj (a,B) =
sM(r.j (a,B)) and wj (a,B) = (wt,j (a,B))k1+k2+1≤t≤T , 1 ≤ j ≤ m, where

.wt,j (a,B) = w(rt,j (a,B)/σj (a,B))

1
T ∗

∑T
k=k1+k2+1

w(rk,j (a,B)/σj (a,B))
. (15)

Then, Wj (a,B) and W(a,b) have as diagonals wj (a,B)
′
and w(a,B) =

(w1(a,B)′, . . . ,wm(a,B)′)′, respectively. These weights penalize outliers reducing
or removing their influence on the estimators.

Observe that wj , W,Fk1,k2 , and X depend on a and B, and therefore, Eqs. (13)
and (14) cannot be used to directly compute them. In the next section, we propose
an alternating weighted least squares algorithm that overcomes this problem.

The second and higher order S-ODPC can be defined in a similar way as that in
the non-robust ODPC.
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4 Computing Algorithm for the S-ODPC

We propose here an alternating weighted least squares algorithm for computing the
first S-ODPC. Let .a(i), .B(i), and .f(i) be the values of .a, .B, and .f = (fk1+1, . . . , fT )

′

corresponding to the i-th iteration and .δ ∈ (0, 1), a tolerance parameter to stop the
iterations. In order to define the algorithm, it is enough to give: (1) initial values
.a(0) and .B(0), (2) a rule that given the values of the i-th iteration .a(i) and .B(i),

.1 ≤ j ≤ m, establishes how to compute .a(i+1) and .B(i+1), 1 ≤ j ≤ m, and (3) a
stopping rule. Then, the iterated algorithm is as follows:

1. To obtain the initial values, we first compute a standard (non- dynamic) robust
principal component f(0) = (f

(0)
t )1≤t≤T , for example using the proposal of

Maronna (2005). Then, we take B(0) = (b(0)
1 , . . . ,b(0)

m ), where b(0)
j , 1 ≤

j ≤ m, is an S-regression estimator (see Rousseeuw and Yohai 1984) using
as dependent variable zj,k1+k2

= (zk1+k2+1,j , . . . , zT ,j ) and as matrix of

independent variables F(0)
k1,k2

with rows F(0)
t = (1, f (0)

t , f
(0)
t−1, . . . , f

(0)
t−k2

),

k1 + k2 + 1 ≤ t ≤ T . Once obtained B(0), we compute the matrix of residuals
R = Zk1+k2 − F(0)

k1,k2
B(0)′. This matrix is used to define the weights wt,j as in

(15) and the diagonal matrixW(0). We compute a(0) = a∗/||a∗||, where

.a∗ = (X(B(0))′W(0)X(B(0))−1X(B(0))′W(0)vec(Zk1+k2)

and X(B) is defined as in (8).
2. Given a(i) and B(i), we compute the reconstruction residuals matrix R =

Zk1+k2−F(i)
k1,k2

B(i)′ and the corresponding newM- scales σ
(i)
j , 1 ≤ j ≤ m. Using

these residuals and scales, we obtain new weights wt,j (a(i),B(i)), k1+k2+1 ≤
t ≤ T , and the corresponding diagonal matrices Wj (a(i),B(i)), 1 ≤ j ≤ m

and W(a(i),B(i)). Then B(i+1) = (b(i+1)
1 , . . . ,b(i+1)

m ) is defined by (14) with
a = a(i). To compute a(i+1), we use (13) with B = B(i+1).

3. The stopping rule is as follows: stop when

.
S(a(i),B(i)) − S(a(i+1),B(i+1))

S(a(i),B(i))
≤ δ.

As in Salibian-Barrera and Yohai (2006), it can be shown at each step the
MSE decreases, and therefore, it converges to a local minimum. To obtain a global
minimum, the initial value f(0) should be close enough to the optimal one.

Note that, since the matrix X(B) = (B1⊗IT ∗)ZB has dimensions mT ∗ ×m(k1+
1), solving the associated least squares problem can be time- consuming for high-
dimensional (large m) problems. The iterative nature of the algorithm we propose
implies that this least squares problem will have to be solved several times for
different B matrices. However, as the matrix B′ ⊗ IT ∗ is sparse, it can be stored
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efficiently, and multiplying it with a vector is relatively fast. We found that for
problems with a moderately large m, the following modification of our algorithm
works generally faster: instead of finding the optimal a(i+1) corresponding to B(i+1),
just do one iteration of coordinate descent for a(i+1).

5 Forecasting Using the S-ODPC

Suppose that we have computed estimators of . Q robust dynamic principal
components and that the lags used for the q component were .(k

(q)

1 , k
(q)

2 ). Let

.̂f(q) = (f̂
(q)
t )

k
(q)
1 +1≤t≤T

, .1 ≤ q ≤ Q, be the estimated S-ODPC’s and .̂Bq the

estimated reconstruction matrices. We will show now how we can predict the
values of .zT +1, . . . , zT +h for some .h ≥ 1. For that purpose, fit a time series model
for each component .̂f(q), .1 ≤ q ≤ Q (e.g., an ARMA model), using a robust
procedure, and with this model, obtain predictions . f̃

(q)
T +l of . f

(q)
T +l ., .1 ≤ q ≤ Q,

.1 ≤ l ≤ h. We fit in the simulations AR models for each component, and
these models were estimated using the filtered .τ -estimation procedure described
in Chapter 8 of Maronna et al. (2019). This procedure selects automatically the
order of the AR model, gives robust estimators of its coefficients, and provides a
filtered series .̃f(q) = (f̃

(i)
t )

k
(q)
1 +1≤t≤T

, 1 ≤ q ≤ Q cleaned of the detected outliers.

With the help of these filtered series, we can obtain robust predictions as follows.
Let .̃F(q)

T +l = (1, .f̃
(q)
T +l , .f̃

(q)

T +l−1, . . . , .f̃
(q)

T +l−k
q
2
)′; then a robust prediction .zT +l given

the first T observations is

.̂zT +l|T =
Q∑

q=1

B̂(q)F̃(q)
t+l , 1 ≤ l ≤ h.

The filtered τ -estimation procedure is implemented in the function arima.rob of
the R package robarima.

6 Selecting the Number of Lags and the Number of
Components

An important problem is the selection of the number of dynamics components Q to
use for prediction, and the number of lags .k

(q)

1 and .k
(q)

2 , 1 ≤ q ≤ Q, required to
define each component. In order to simplify the presentation, we will assume that
.k

(q)

1 = k
(q)

2 = k(q). We can use two possible methods to select these values: (a) an
information criterion and (b) cross-validation. Simulations performed for the ODPC
in Peña et al. (2019) show that both procedures have similar efficiencies; However,
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(a) is much faster than (b). For that reason, we propose to use (a). In what follows,
we describe implementations of both procedures.

6.1 Selection Using an Information Criterion

In Peña et al. (2019), an adaptation of the Bai and Ng (2002) criterion for factor
model was used to choose .k(q) and Q for ODPC. Here, we modify this procedure
for its use in S-ODPC. We should start given a maximum value K for .k(q). We
compute the first S-ODPC with .k(q) = k for all values of k such that .0 ≤ k ≤ K. For
each of these values of k, we compute the residuals .(r

(1,k)
t,j )2k+1≤t≤T ,1 ≤ j ≤ m and

compute the M-scale S.M(r(1,k)
.j ) of each vector .r(1,k)

.j = (r
(1,k)
2k+1,j , . . . , r

(1,k)
T ,j ), 1 ≤

j ≤ m. Let .̂σ1,k = ((1/m)
∑m

j=1S.M(r(1,k)
.j ))1/2. Let .T ∗

1,k = T −2k; then we choose
as .k(1) the value of k among .0, . . . , K that minimizes

.BNG1,k = log(̂σ 2
1,k)) + (k + 1)

log(min(T ∗
1,k, m))

min(T ∗
1,k, m)

.

Suppose we have already computed q − 1 dynamic principal components,
where the component i uses k(i) lags. Then we compute the q component
with i lags for each 0 ≤ i ≤ K and the corresponding residuals matrix

(r
(q,k)
t,j )hq,k+1≤t≤T ,1≤j≤m, where hq,k = 2

(
k + ∑q−1

i=1 k(i)
)
. Let T ∗

q,k = T − hq,k,

r(q,k)
.j = (r

(q,k)

hq,k+1,j , . . . , r
(q,k)
T ,j ) and σ̂q,k = ((1/m)

∑m
j=1SM(r(q,k)

.j ))1/2; then the

value of k(q) is the value of k, 0 ≤ k ≤ K , which minimize the following
robustification of the Bai and Ng criterion

.BNGq,k = log(̂σ 2
q,k)) + (

q−1∑

i=1

((k(i) + 1) + k + 1)
log(min(T ∗

q,k,m))

min(T ∗
q,k,m)

.

The selected number of components is Q = q−1, where q is the minimum value
q such that BNG

q,k(q) ≥ BNG
q,k(q−1) .

6.2 Selection Using Robust Cross-validation

Suppose that we are interested in using the S-ODPC to predict .zT +1, . . . , zT +h.

We can apply the following robust cross-validation procedure for selecting the
number of components, Q, and k(q), 1 ≤ q ≤ Q, the number of lags used for
each component. Suppose that the first T1 < T observations are chosen as the
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training set, and the last T − T 1 observations as testing set. Then the training set
will be used to compute all the loading vectors a(q,k) for the q component with k

lags and the testing set to evaluate the prediction power of any choice of the number
of lags k(q) for each component q and the number of components Q.

The cross-validation procedure starts choosing k1 as follows. For 0 ≤ d ≤
T − T1 − i, 1≤ j ≤ m, 1 ≤ i ≤ h and k ≥ 0, let ẑ

(1,k)
T1+d+i,j |T1+d be

the prediction of zT1+d+i,j using the first component with k lags and loading

vector a(1,k) corresponding to the periods t ≤ T1 + d, and let r̂
(1,k)
T1+d+i,j |T1+d =

ẑ
(1,k)
T1+d+i,j |T1+d − zT1+d+i,j the corresponding prediction error. We evaluate the
quality of the predictions up to h periods ahead using the first component with
k lags by

.SS
(1)
k =

m∑

j=1

h∑

i=1

SM(̂r(1,k,i)
.j ), (16)

where r̂(1,k,i)
.j = (̂r

(1,k)
T1+i,j |T1 , . . . , r̂

(1,k)
T ,j |T −i ) is the vector of all the i periods ahead

predictions. We select as k(1) the first k, such that SS
(1)
k ≤ SS

(1)
k+1. Suppose now

that we have already computed q − 1 components with lags k(1), . . . , k(q−1). To
obtain k(q), we proceed as when computing k(1), that is, for each k, we compute

.SS
(q)
k =

m∑

j=1

h∑

i=1

SM(̂r(q,k,i)
.j ), (17)

where r̂(q,k,i)
.j =(̂r

(q,k)
T1+i,j |T1 , . . . , r̂

(q,k)
T −h+i,j |T −h), r̂

(q,k)
T1+d+i,j |T1+d = ẑ

(q,k)
T1+d+i,j |T1+d −

zT1+d+i,j , and ẑ
(q,k)
T1+d+i,j |T1+d is the prediction of zT1+d+i,j assuming that

z1, . . . , zT1+d are known, using the first q−1 components with lags k(1), . . . , k(q−1)

and the q component with k lags. The number of lags k(q) for the q component is
defined as the first value of k, such that SSk ≤ SSk+1. Similarly, the number of
components Q is chosen as the first q such that SS

q

k(q) ≤ SS
q+1
k(q+1) . The robustness of

this procedures follows from the fact that all the options selected by the procedure
are evaluated using a robust scale, see (16) and (17). The procedure to make the
forecasting is described in Sect. 5. The case where k1 may be different of k2 can be
treated similarly but with more computational effort.

The forecasting of a particular time series can be improved if we add a specific
or idiosyncratic component that explains the residuals of the series. For that
purpose, we may fit for each variable an ARMA model for the respective S-ODPC
reconstruction residuals.
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7 Asymptotic Behavior of the S-ODPC in Factor Models

Let .z
(m)
t,j , 1 ≤ j ≤ m,m > 1, be observations generated by a dynamic one-factor

model with k lags, that is, they satisfy

.z
(m)
t,j = ϕ

(m)
j + c

(m)
j,0 ft + . . . + c

(m)
j,k ft−k + ut,j , 1 ≤ j ≤ m, (18)

where .ft and . ut,j , .1 ≤ j ≤ m, are independent stationary process. We also have
. E(ut,j ) = E(ft ) = 0, var.(ft ) = τ 2, and var .(ut,j ) = σ 2

j .

In this section, we study the behavior of the first population S-ODPC when .m

tends to infinite. This is stated more precisely in Theorem 1, which is the analogous
of Theorem 3 of Peña et al. (2019), but using S-ODPC instead of ODPC. Consider
the following Assumptions:

A1. There exist .ε > 0 and .A1 such that . 0 < ε < σ 2
j < A1 < ∞ for all .j.

A2. Let . sj = SM(utj ); then

.0 < sj ≤ A2. (19)

A3. The function .ρ has a derivative .ψ that is continuous and bounded. Then
.A3 = supψ < ∞.

A4. .A4 = infj E(ut,jψ(ut,j )) > 0.

A5. There exists C such that . supm sup1≤j≤m,0≤i≤k |c(m)
j,i | ≤ C and

.supm sup1≤j≤m |ϕ(m)
j | ≤ C.

A6. Let .c(m)
i = (c

(m)
1,i , ...., c

(m)
m,i ), 0 ≤ i ≤ k, and .E(m) the subspace of .R

m

generated by . c(m)
i , 1 ≤ i ≤ m. Then, we can write . c(m)

0 = d(m) + e(m),where
.d(m) is orthogonal to .E(m) and .e(m) ∈ E(m). Then, there exists .δ such that
.||d(m)||2 ≥ mδ for all .m. This condition implies that the common part of
.z(m)

t = (z
(m)
t,1 , . . . , z

(m)
t,m) does not get close to the .k − 1- dimensional subspace

.E(m) when m increases.

Theorem 1 Assume A1–A6. Let .z(m)
t = (z

(m)
t,1 , . . . , z

(m)
t,m) generated as the dynamic

one-factor model given in (18) and .z(m)∗
t = (z

(m)∗
t,1 , . . . , z

(m)∗
t,m ) its population

optimal reconstruction using the first S-ODPC with .k1 equal to any nonnegative
integer and .k2 equal to .k, the number of lags of the factor model. Then, there exists
a constant K independent of m such that

.
1

m1/2

⎛

⎝
m∑

j=1

S2
M(z

(m)
t,j − z

∗(m)
t,j )2 −

m∑

j=1

S2
M(ut,j )

⎞

⎠ ≤ K. (20)

Remark 2 This theorem can be generalized to a model with k factors, if the first k

S-ODPC are defined simultaneously instead of sequentially so that they minimize
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the sum of the squares of the population M-scales. The proof is similar to the case
of one factor.

8 Simulation Results

We generate matrices .(zt,j ) of .T =102 observations and .m = 50 time series using
the following dynamic factor model:

.zt,j = dj,1ft + dj ,2 ft−1 + dj,3ft−2 + 0.2ut,j , 1 ≤ t ≤ 102, 1 ≤ j ≤ 50,

where .ut,j are i.i.d. .N(0, 1) and .ft follows the autoregressive model

.ft = 0.85ft−1 + vt

and .vt are i.i.d. .N(0, 1). The coefficients .dj,i are generated in each replication as
i.i.d. with uniform distribution in .[0, 1].

The first 100 observations are used to obtain the one-sided dynamic components
(ODPC and S-ODPC), and the last two to evaluate the prediction performance of
these methods.

These values .zt,j are contaminated as follows: for .t = kT /H , .k = 1, 2, . . . , H −
1, the values of the observed series are

.z∗
t,j = zt,j + K.

Three values of H are considered, 0, 5, and 10, that is, 0%, 4%, and 9% of
outliers, respectively, and the values of K are .3, 5, 10, and 15.

The number of replications is 500. For each case, we compute the first ODPC
and the first S-ODPC with .k1 = 1 and .k2 = 2. The performance of both procedures
for predicting the values of the series one and two periods ahead is evaluated
by the sum of squares of the M-scales of the respective prediction error. Let .sM,j ,
.1 ≤ j ≤ 50, be the M-scale of the prediction errors of the j -th variable. Then the
performance of each procedure is evaluated by

.

50∑

j=1

s2M,j .

The results are shown in Table 1.
We observe that under outlier contamination the forecasting error using the S-

ODPC is much smaller than that using ODPC.
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Table 1 Sum of the squares of the M-scales of the prediction errors. Pr1 and Pr2 stand for one
and two steps ahead, respectively

%out K Pr1 ODPC Pr1 S-ODPC Pr2 ODPC Pr2 S-ODPC

0 21.23 22.69 74.19 77.20

4 3 36.63 23.90 108.73 83.27

5 53.63 23.13 128.54 81.92

10 85.54 23.52 157.62 79.94

15 133.15 23.33 202.20 78.43

9 3 51.14 24.79 127.61 98.63

5 66.69 24.33 138.69 82.47

10 147.56 23.34 208.53 79.51

15 254.02 24.17 299.28 82.75

9 Example with a Real Data Set

We consider a multiple time series .zt,j , 1 ≤ t ≤ 678, 1 ≤ j ≤ 24, the electricity
price in the Connecticut region, New England, during the Thursdays of 676 weeks
for each of the 24 hours of the day. Then we have 24 series of 676 observations.
The data can be obtained at www.iso-ne.com and were previously considered for
clustering time series by Alonso and Peña (2019).

Figure 1 shows plots of 12 of these 24 series. The series appear to be highly
correlated, and therefore, dimension reduction is expected to be useful. We observe
that at every hour of the day there are outliers especially between the weeks 500 and
600, and therefore, a robust procedure seems to be appropriate for these data.

For each .d, 1 ≤ d ≤ 177, we apply the ODPC and S-ODPC procedures to the
set .zt,j , .1 ≤ t ≤ 500 + d, and predict the values of .z500+d+1,j , .1 ≤ j ≤ 24.

Figure 2 shows that in general the M-scales of the prediction errors of the S-
ODPC are smaller than those of the ODPC specially between 10 am and 8 pm.

As indicated by one of the referees, the large values around weeks 500 and 600
may be due to some interesting facts that, if considered, can provide important
insights in the data analysis. We have not investigated this important issue for a
rigorous analysis of these data, as our objective here is to illustrate the performance
of our robust procedure. Also, the plot of the series suggests that they are not
stationary. However, as is mentioned in Remark 1, the S-ODPC may be a useful
tool to predict future values of the series even in this case.

www.iso-ne.com
www.iso-ne.com
www.iso-ne.com
www.iso-ne.com
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Fig. 2 M-scales of the one step ahead prediction errors

10 Conclusions

Given a vector series .zt , .≤ t ≤ T , we have introduced the S one-sided dynamic
principal components (S-ODPC) .ft , k1+1 ≤ t ≤ .T , defined as a linear combination
of .zt , zt−1 . . . zt−k1 that have the following properties:

• It allows the reconstruction .̂zt of the series .zt for .k1 + k2 − 1 ≤ t ≤ T as a
linear combination of .ft , . . . ft−k2 .

• It allows the forecasting of .zT +h.

• The reconstruction of the series and the forecasting of future values of .zt can be
improved taking higher order components.

• The values of .k1, k2 and the number of components q can be chosen by: (a) a
robust version of the Bai and Ng (2002) criterion for factor models or (b) cross-
validation.

• The procedure S-ODPC is robust, that is, it can be applied successfully even in
the presence of outliers.
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Appendix

Derivation of the Estimating Equations

Call .θ = (a,B); then the value of .θ for the S-ODPC estimator is obtained
minimizing

.kM(θ) =
m∑

j=1

s2M(r.j (θ)), (21)

where .r.j (θ) = (rk1+k2+1,j (θ), . . . , rT ,j (θ)), .rt,j (θ) = zt,j − ẑt,j (θ) satisfies

.
1

T ∗
T∑

t=k1+k2+1

ρ

(
rt,j (θ)

sM(r.j (θ))

)
= b, (22)

with .T ∗ = T − k1 − k2. Differentiating (21), we get that the optimal .θ for the
S-ODPC satisfies

.

m∑

j=1

sM(r.j (θ))
∂sM(r.j (θ))

∂θ
= 0. (23)

Let us differentiate (22). We have

.

T∑

t=k1+k2+1

ψ

(
rt,j (θ)

sM(r.j (θ))

)
sM(r.j (θ))∂rt,j (θ)/∂θ − rtj (θ)∂sM(r.j (θ)/∂θ

s2M(r.j (θ))
= 0

and

.
∂sM(r.j (θ))

∂θ
=

T∑

t=k1+k2+1

ψ
(
rt,j (θ)/sM(r.j (θ))

) sM(r.j (θ))∂rt,j (θ)/∂θ
∑T

t=k1+k2+1 ψ
(
rt,j (θ)/sM(r.j (θ))

)
rt,j (θ)

.

This can also be written as

.
∂sM(r.j (θ))

∂θ
= sM(r.j (θ))

∑T
t=k1+k2+1 w

(
rt,j (θ)/sM(r.j (θ))

)
r2t,j (θ)

×
T∑

t=k1+k2+1

w

(
rt,j (θ)

sM(r.j (θ))

)
rt,j (θ)

∂rt,j (θ)

∂θ
,
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where .w(u) = ψ(u)/u. Then the estimating Eq. (23) satisfies

.

T∑

t=k1+k2+1

w∗
tj (θ)rt,j (θ)

∂rt,j (θ)

∂θ
= 0 , (24)

where

.w∗
t,j ( θ) = s2M(r.j (θ))

1
T ∗

∑T
t=k1+k2+1 w

(
rt,j (θ)/sM(r.j (θ))

)
r2t,j (θ)

w(rt,j (θ)).

Note that when .w∗
t,j ( θ) = 1 for all .(t, j), (24) is the estimating equation of

the ODPC. Therefore, the only difference between the estimating equation of the
RODPC and the one of the ODPC is that the least squares solutions to obtain the
optimal values of .a and .B for the RODPC give weight .w∗

t,j ( θ) to the observation
.(t, j). Then we obtain (13) and (14).

Proof of Theorem 1
Lemma 1 Suppose that zt,j satisfies A1, A4, A5, and A6; then there exist a(m) ∈
R

m and a m × (k + 2) matrix B(m) such that if g
(m)
t = a(m)′zt and F(m)

t =
(1, g(m)

t , . . . , g
(m)
t−k), the reconstruction z̃(m)

t = B(m)F(m)
t satisfies

.E(z
(m)
tj − z̃

(m)
t,j − ut,j )

2 ≤ K1

m
(25)

for some constant K1.

Proof Let u(m)
t = (ut,1, . . . , ut.m) and ϕ(m) = (ϕ

(m)
1 , . . . , ϕ

(m)
m ); then

.z(m)
t = ϕ(m)+ft (d(m) + e(m)) + ft−1c

(m)
1 + . . . + ft−kc

(m)
k + u(m)

t ,

where d(m) and e(m) are as in A6. Let a(m)= d(m)/||d(m)||2; then by A6,

.||a(m)|| ≤ 1/(m1/2δ1/2). (26)

Define g
(m)
t = a(m)′z(m)

t , and observe that

.g
(m)
t = ft + p(m) + η(m),

where η
(m)
t = a(m)′u(m)

t and p(m) = a(m)′ϕ(m). Then, by (26) and A1, we have

.E(η
(m)2
t ) ≤ D/m (27)
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with D = A1/δ. Let us reconstruct z
(m)
t using g

(m)
t as follows:

.̃z(m)
t = (ϕ(m) − p(m)(c0 + . . . + ck)) + g

(m)
t c(m)

0 + g
(m)
t−1c

(m)
1 + . . . + g

(m)
t−kc

(m)
k .

That is, if B(m) is the m × (k + 2) with columns ϕ(m) − p(m)(c0 + . . . + ck) and
ci , 0 ≤ i ≤ k, we have

.̃z(m)
t = B(m)F(m)

t

and

.z
(m)
t,j − z̃

(m)
t,j = −cj,0η

(m)
t − c1η

(m)
t−1 − . . . − cj,kη

(m)
t−k. + ut,j

= v
(m)
t,j + ut,j ,

where

.v
(m)
t,j = −cj,0η

(m)
t − c1η

(m)
t−1 − . . . − cj,kη

(m)
t−k.. (28)

Then by (27) and A5, there exists K1 such that for all 1 ≤ j ≤ m

.E(v
(m)2
t,j ) ≤ K1

m
,

and this proves the Lemma.

Lemma 2 Suppose that zt,j satisfies A1–A6, and let a(m), B(m), and z̃(m)
t as in

Lemma 1, and then there exists K2 independent of m such that

.SM(z
(m)
tj − z̃

(m)
t,j ) ≤ SM(ut,j ) + K2

m
(29)

for some constant K2.

It is enough to show that there exists m0 such that for m ≥ m0 (29) holds. Let
for k > 0 and v

.Ltj (v, k) = ρ

(
v + utj

sj + k

)
,

where sj = SM(ut,j ).

Using the mean value theorem at (0, 0), we get

.Ltj (v, k) = Ltj (0, 0) + v
ψ

(
v∗+utj

sj +k∗
)

sj + k∗ − k
ψ

(
v∗+utj

sj +k∗
)

v∗+utj

sj +k∗

sj + k∗ , (30)
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where |v∗| ≤ |v| and 0 ≤ k∗ ≤ k. Put k = K2/m1/2. Since z
(m)
t,j −̃z

(m)
t,j = v

(m)
t,j +ut,j ,

where v
(m)
t,j is defined in Eq. (28) of Lemma 1, then using (30), we can write

.E

(
ρ

(
z
(m)
t,j − z̃

(m)
t,j

sj + K2/m1/2

))
= Etj (L(v

(m)
t,j , K2/m1/2))

= b +
E

(
v

(m)
t,j ψ

(
v∗+ut.j

sj +K∗/m1/2

))

sj + K∗/m1/2

− K2

m1/2

E
(
ψ

(
v∗+ut,j

sj +K∗/m1/2

)
v∗+utj

sj +K∗/m1/2

)

sj + K∗/m1/2 , (31)

where |v∗| ≤ |vt,j | and K∗ ≤ K2.

Put

.K2 = 2A3K
!/2
1 /A4. (32)

Since by Lemma 1 E(v
(m)2
t,j ) ≤ K1/m and by A3 A3 = maxψ(u), we have

.

∣∣∣E
(
v

(m)
t,j ψ

(
v∗+ut,j

sj +K∗/m1/2

)) ∣∣∣

sj + K∗/m1/2 ≤ E(v
(m)2
t,j )1/2 maxu ψ(u) )

sj + K∗/m1/2 (33)

≤ A3K
1/2
1 /m1/2

sj + K∗/m1/2 .

Take

.K2 > A3K
1/2
1 /A4; , (34)

then since K∗ ≤ K2 and |v∗| ≤ |vt,j | by Lemma 1 and A4, there exists m0 such
that for m ≥ m0

.
K2

m1/2sj + K∗/m1/2E
(

ψ

(
v∗ + ut,j

sj + K∗/m1/2

)
v∗ + utj

sj + K∗/m1/2

)

≥ K2A4/2

m1/2sj + K∗/m1/2 . (35)
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Then by (31), (33), and (35), we have

.

(
ρ

(
z
(m)
t,j − z̃

(m)
t,j

sj + K2/m1/2

))
< b ,

and therefore, SM(z
(m)
t,j − z̃

(m)
t,j ) ≤ sj + K2/m1/2. This proves the Lemma.

Proof of Theorem 1
From Lemma 2, it can be derived that if z

∗(m)
t,j is the reconstruction with the

optimal first S-ODPC with any k1 and k2 = k, we should have

.
1

m1/2

m∑

j=1

S2
M(z

(m)
t,j − z

∗(m)
t,j ) ≤ 1

m1/2

m∑

j=1

S2
M(z

(m)
t,j − z̃

(m)
t,j )

≤
m∑

j=1

(
s2j + K2

2

m
+ 2

K2

m1/2 sj

)

≤ 1

m1/2

m∑

j=1

(
s2j + K

m1/2

)

= 1

m1/2

m∑

j=1

s2j + K,

where K = max(K2
2 ,K3) and K3 = 2K2 maxj sj.. This proves Theorem 1.
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Robust and Sparse Estimation of
Graphical Models Based on Multivariate
Winsorization

Ginette Lafit, Javier Nogales, Marcelo Ruiz, and Ruben Zamar

Abstract We propose the use of a robust covariance estimator based on multivariate
Winsorization in the context of the Tarr–Müller–Weber framework for sparse
estimation of the precision matrix of a Gaussian graphical model. Likewise Croux–
Öllerer’s precision matrix estimator, our proposed estimator attains the maximum
finite-sample breakdown point of 0.5 under cellwise contamination. We conduct an
extensive Monte Carlo simulation study to assess the performance of ours and the
currently existing proposals. We find that ours has a competitive behavior, regarding
the estimation of the precision matrix and the recovery of the graph. We demonstrate
the usefulness of the proposed methodology in a real application to breast cancer
data.
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estimation · Cellwise contamination · Winsorization
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1 Introduction

Let .X = (X1, . . . , Xp)′ be a p-variate random vector with Gaussian distribution
with mean vector .μ and covariance matrix .�. We assume that .� is positive definite
(.� � 0), and its inverse, the precision matrix, will be denoted by .� = (ωij )i,j=1...,p;
furthermore, we assume that .μ = 0. Abbreviated, the model is

.X ∼ N(0,�). (1)

Given .V = {1, . . . , p}, let .V 2 = V × V and .V 2−d = {(i, l) ∈ V 2 : i �= l}. For
a given pair .(i, l) ∈ V 2−d , let .V \{i, l} = {j ∈ V : i �= j �= l} and .XV \{i,l} = {Xj :
j ∈ V \{i, l}}.

For a random vector .X satisfying (1), a Gaussian graphical model (GGM) is the
undirected graph .(V ,E), where V is the set of nodes and E is the set of edges,
which is defined by

.(i, l) ∈ E if and only if corr
(
Xi,Xl |XV \{i,l}

) �= 0, (2)

where . corr
(
Xi,Xl |XV \{i,l}

)
is the conditional correlation coefficient of .Xi and .Xl

given .XV \{i,l}.
So, the set of edges E can be expressed as

.E =
{
(i, l) ∈ V 2−d : corr

(
Xi,Xl |XV \{i,l}

) �= 0
}
. (3)

It is well known that there exists a characterization of the conditional correlation in
terms of the elements of the precision matrix. More specifically,

.∀(i, l) ∈ V 2−d : corr
(
Xi,Xl |XV \{i,l}

) = − ωil√
ωiiωll

. (4)

Hence, we have the following parametrization for E:

.E = {(i, l) ∈ V 2−d : ωi,l �= 0}. (5)

Given a sample of .X, the goal of covariance selection is to estimate the
conditional dependence structure by determining the set of nonzero entries of the
precision matrix .� (see Dempster 1972; Edwards 2000; Lauritzen 1996). Generally,
in high-dimensional statistics, it is assumed that there are just a few entries of .� that
are different from zero, that is, that .� is sparse.

Until a few decades ago, statistical procedures assumed that datasets included
many observations of a few and carefully chosen variables. Nowadays, datasets
may contain a large number of variables relative to the sample size, bringing along
blessings but also curses of dimensionality (Donoho 2000, 2017). Therefore, in
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a high-dimensional setting, the estimation of precision matrices faces significant
challenges.

Let .X = (
x′

1, . . . x
′
n

)′ be a .n × p data matrix where .x1, . . . , xn is a sample. If

.n > p, then the sample covariance matrix .S = 1

n − 1

n∑

i=1

(xi − x̄)(xi − x̄)′ is well

conditioned and a well-known optimal estimate of .�. Moreover, .S−1 can be used to
define an unbiased estimator of .�, provided .n > p + 2. See Anderson (2003, pp.
272–274) or Muirhead (2005, p 137). On the other hand, when .p > n, the sample
covariance matrix is not invertible.

To deal with this problem, several covariance selection procedures based on
regularization have been developed under the assumption that .� is sparse. See
Friedman et al. (2008); Yuan and Lin (2007) and Banerjee et al. (2008).

For instance, if .�̂ is an estimator of .�, the graphical lasso (Glasso) proposed by
Friedman et al. (2008) is defined by

.�̂ = argmin{U:U′=U,U�0}
{
tr(U�̂) − logdet(U) + λ ‖ U ‖1

}
, (6)

where the optimization is over the set of symmetric positive-definite matrices,

. ‖ U ‖1 =:
∑

i,j

|uij | for i, j = 1, . . . , p (7)

is the .�1 norm of the matrix .U = (uij )i,j=1...,p, and .λ ≥ 0 is a regularization or
penalty parameter usually determined by cross-validation. Following Friedman et al.
(2008), we penalize all the elements of .� including the diagonal terms. Note that
the larger the value of .λ is, the more sparse the precision matrix estimate becomes.

For .λ = 0, if .�̂ = S � 0, then the solution of (6) is the classical maximum
likelihood estimate of .�. On the other hand, (Banerjee et al. 2008) proved that, for
any symmetric and positive semidefinite matrix .�̂ and .λ > 0, Eq. (6) has a strictly
positive-definite solution .�̂ even if .p > n.

In contrast to univariate datasets, in multivariate settings, outliers can appear
in complex ways. In this regard, two types of contamination mechanisms have
been introduced in the robustness literature: the Tukey–Huber contamination model
(THCM) and the independent contamination model (ICM). In the THCM, it is
assumed that a relative small proportion .ε (.ε < 1/2) of the rows in the data table are
contaminated. In the ICM, introduced by Alqallaf et al. (2009), each cell of the data
matrix has a probability to be independently contaminated. This second mechanism
is a better fit for the high-dimensional setting where the variables are likely to be
obtained from different sources and measured separately (Agostinelli et al. 2015).

The vast majority of the work in the area of robust statistics has concentrated
on the estimation of the covariance matrix under these two types of contamination
models. Robust conditional correlation coefficient estimation has been studied when
p is small. Rao and Sievers (1995) introduced a measure that uses residuals based
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on rank estimates of regression parameters when .p = 3. Only recently a few papers
have focused on estimation of the precision matrix in the context of ICM.

Tarr et al. (2016) and Öllerer and Croux (2015) showed that Glasso is not
robust in the presence of cellwise outliers. Therefore, in order to obtain a robust
estimate of the precision matrix, they proposed a plug-in approach, using a robust
covariance matrix estimator .�̂ in Eq. (6). There are several robust estimators of
.�, but, unfortunately, their computation is very time-consuming and may not be
possibly well defined when the dimension p is high (Khan et al. 2007). To overcome
this problem, resistant pairwise procedures can be used to avoid sensitivity to
two-dimensional outliers, like in Tarr et al. (2016) and Öllerer and Croux (2015)
proposals. Tarr et al. (2016) proposed to use pairwise robust covariances estimates,
whereas (Öllerer and Croux 2015) used pairwise robust correlation estimates.

Huber (2011) proposed a robust estimator of the correlation coefficient by using
one-dimensional Winsorization. Alqallaf et al. (2002) proposed the use of Huber-
ized pairwise correlation coefficients based on one-dimensional Winsorization. A
limitation of this approach is that the pairwise Huberized estimates and covariance
estimates do not take into account the orientation of the (pairwise) bivariate data.
To overcome this limitation, Khan et al. (2007) developed an adjusted bivariate
Winsorization estimation, obtaining a robust estimator of the correlation matrix
under cellwise contamination. Here, we use this estimator to introduce a new robust
graphical lasso procedure, RGlassoWinsor. We compare the performance of our
method with other existing approaches under cellwise and casewise contamination.

Section 2 discusses the main differences between the THCM and ICM. Section 3
introduces our proposal. Section 4 presents the results of an extensive simulation
experiment comparing the currently existing estimators of the robust precision
matrix with our new robust graphical lasso procedure. Section 5 contains an
application to breast cancer data. Section 6 concludes with some remarks.

2 Outliers in High-Dimensional Data

In this section, we briefly outline the main differences between THCM and ICM.
Consider a set of n independent observations of the multivariate Gaussian vector

.X = (X1, . . . , Xp)′ satisfying (1), let .ε ∈ (0, 1) be the fraction of contamination,
and define the random vector

.B = (B1, . . . , Bp)′ with Bj ∼ Bernoulli(ε), j = 1, . . . , p. (8)

Suppose that instead of .X, we observe

.Y = (I − D)X + DZ, (9)

where .I is the .p × p identity matrix, .Z is a p-variate random vector with an
arbitrary and unspecified outlier generating distribution, and .D is a diagonal matrix
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with diagonal elements .B1, . . . , Bp. Moreover, we assume that .X, .B and .Z are
independent.

The classical THCM assumes that the random vector .B = (B1, . . . , Bp)′
satisfies .P(B1 = B2 = . . . = Bp) = 1. So, we see either a perfect realization
of the random vector .X, with probability .1−ε, or a realization of the random vector
.Z, with probability .ε.

Motivated by the THCM, robust procedures identify and downweight pos-
sibly contaminated cases. However, in a high-dimensional setting, this strategy
is inconvenient for two reasons. The most obvious is that in high dimension,
when n is relatively small compared with p, discarding a single observation may
result in a substantial loss of information. A perhaps less obvious reason was
highlighted by Alqallaf et al. (2009), where they argued that there are situations
where the contaminating mechanism may be independent for different variables.
Consequently, they proposed the ICM that assumes that .B1, . . . , Bp are independent
random variables and satisfy

.P(B1 = 1) = . . . = P(Bp = 1) = ε. (10)

Hence, a case is uncontaminated, .Y = X, with probability .P(B = 0) = (1 − ε)p,
which quickly decreases below .1/2 as p increases. Equivalently, the probability that
at least one component of .Y is contaminated is .1− (1−ε)p. For example, if .p = 60
and .ε = 0.05, this probability equals to 0.95. If .p ≥ 200 (not an uncommon case
these days), this probability becomes nearly 1.

The indicator matrix .D, whose diagonal is a sequence of Bernoulli random
variables, determines the structure of the contamination model. Figure 1 shows
a representation of a sample of size .n = 100 of .B with dimension .p = 60,
contamination fraction .ε = 0.10, under both contamination models: THCM in
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Fig. 1 Panels (a) and (b) represent the data matrix of dimension .100 × 60 corresponding to the
random vector .B of dimension 60 given in (8) generated under THCM and ICM, respectively.
Uncontaminated cells are in color white, and contaminated cells are in color black
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panel (a) and ICM in panel (b). On each panel, uncontaminated cells are in color
white and contaminated cells are in color black. For THCM, the actual proportion
of contaminated cells is 0.08, coinciding with the percentage of contaminated
observations (rows). But, for ICM, the proportion of contaminated cells is 0.10,
but all the observations have at least one contaminated cell (.≈ 1 − (0.9)60);
hence, the totality of the cases or rows is contaminated. This phenomenon is called
“propagation of outliers” in Alqallaf et al. (2009).

THCM is also called casewise contamination model, where a minority of
observations or cases (rows) of the data matrix contains outliers and the size of this
minority does not depend on the number p of variables. ICM is also denominated
cellwise contamination model because the contamination is produced randomly
affecting the cells of the data table.

The classical robustness theory based on the affine equivariant Tukey–Huber
contamination model relays and enforces the concept of equivariance. Alqallaf
et al. (2009) showed that under the cellwise contamination model, standard high-
breakdown affine equivariant estimators propagate outliers, and this causes their
very poor performance when p is large. The reason is that affine equivariant robust
estimators depend on linear combinations of the observations that have a very high
probability of being contaminated under ICM for moderate and large p. Notice that
under ICM, the majority of cases will have at least some contaminated component.
Agostinelli et al. (2015) addressed the problem of robust estimation of location and
scatter under the two contamination models.

3 Robust Lasso for Precision Matrices

In this section, we introduce the robust covariance estimator based on bivariate
Winsorization, and we define the robust precision matrix estimator of a Gaussian
graphical model based on (Tarr et al. 2016) framework.

3.1 Plug-in Strategy

Hereafter, .yi = (yi1, . . . , yip)
′
, i = 1, . . . , n, denotes a sample of observations

of a p-multivariate random vector .Y = (Y1, . . . , Yp)′ satisfying (9), and let .Y =
(y1, . . . , yn) ∈ R

n×p be the corresponding data table. Let .R denote the correlation
matrix; i.e., if .� = (�ij ), then .R = (Rij ) with .Rij = �ij /

√
�ii�jj .

Following Tarr et al. (2016) and using (6), we will construct a robust estimation
procedure of the precision matrix as follows:

.�̂ = argmin{U:U′=U,U�0} tr(U�̂) − logdet(U) + λ ‖ U ‖1, (11)

where .�̂ is a robust estimator of the covariance matrix.
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3.2 Adjusted Multivariate Winsorization

To control the effect of bivariate outliers on the pairwise estimation of .�, we apply
the procedure proposed by Khan (2006). In this procedure, the robust estimator .̂RW

of the correlation matrix .R is defined in two steps by first computing the pairwise
correlation matrix, .̂R0, using an adjusted Winsorization scheme, which takes into
consideration the orientation of bidimensional data. Later, based on .̂R0, a robust
estimator of the covariance matrix .� is defined.

The two steps to compute .̂RW are given below:

(1) Initial estimate .̂R0.
Given .j, k ∈ {1, . . . , p}, with .j �= k, let consider the bivariate sample
.{(yij , yik)

′
, .i = 1, . . . n} and compute for every .l = j, k

.ml = median(y1l , . . . , ynl), sl = mad(y1l , . . . , ynl), (12)

where “.mad” denotes the median absolute deviation. Define now the standard-
ized samples

.ỹil = yil − ml

sl
, i = 1, . . . , n, (13)

for every .l = j, k.
As Khan et al. (2007) noted, one-dimensional Winsorization does not account
for the orientation of the bidimensional data and does not address the effect
of bivariate outliers. Therefore, they propose a bivariate adjusted Winsorization
that uses two tuning constants denoted .c1 and .c2. The constant .c1 is used on
the two quadrants that contain the majority of the standardized data, and the
constant .c2, smaller than .c1, is used on the other two quadrants. Typically,
.c1 = 2 or .2.5 and .c2 = √

hc1 with .h = n2/n1, where .n1 is the number of
observations in the two major quadrants and .n2 = n − n1.
The bivariate Winsorized data .(vij , vik)

′
, .i = 1, . . . , n, are computed as

follows. If .(ỹij , ỹik) lies in one of the major (more populated) quadrants, let

.vil = ψc1(ỹil), i = 1, . . . , n; l = j, k, (14)

where .ψc1 is the Huber function .ψc(x) = min{max{−c, x}, c} with tuning
constant .c = c1. On the other hand, if .(ỹij , ỹik) lies in one of the minor (less
populated) quadrants, then

.vil = ψc2(ỹil), i = 1, . . . , n; l = j, k. (15)
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The elements .R̂0
jk of the matrix .̂R0 are now defined as follows. For .j = k, we

set .R̂0
jj = 1, and for .j �= k, we set

.R̂0
jk = corr(vj , vk),

where .vj = (v1j , . . . , vnj )
′

and .vk = (v1k, . . . , vnj )
′
.

(2) Final estimate .̂RW .
As before, consider .{(yij , yik)

′
, .i = 1, . . . n} a bivariate sample of the two

variables .Yj and .Yk , with .j �= k (columns j and k of the data table). Let

.Ajk =
(

1 R̂0
jk

R̂0
kj 1

)

be the .2 × 2 submatrix of .̂R0. Perform now, for every .l = j, k, the following
bivariate transformation:

.uil = yil min
(√

c/Djk(yij , yik), 1
)
, i = 1, . . . , n; l = j, k, (16)

where .Djk is the Mahalanobis distance based on the correlation matrix .Ajk and
evaluated in .(yij , yik). The tuning constant .c = 5.99 corresponds to the .95%
quantile of a .χ2

2 distribution. By this transformation, the outliers are shrunken
to the border of an ellipse, including the majority of the data.
We now define the Winsorized correlation estimate .̂RW = (R̂W

jk) as follows.
For .j �= k, we set

.R̂W
jk = corr(uj ,uk),

where .uj = (u1j , . . . , unj )
′

and .uk = (u1k, . . . , unj )
′
, and for .j = k, we set

.R̂W
jj = 1.

Finally, based on .̂RW , a robust estimator of .� is defined as

.�̂
W = diag(s1, . . . , sp)R̂W diag(s1, . . . , sp), (17)

where .sj is the robust estimator of the dispersion introduced in (12). In order to

guarantee positive definiteness of .�̂
W

, we compute the nearest positive-definite
matrix (Higham 2002). Finally, the robust Glasso estimator of the precision matrix

based on bivariate adjusted Winsorization, called and denoted by .�̂
W

, is defined by

(11) with .�̂ = �̂
W

.
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Remark 1 By Theorem 19.1 and Proposition 19.1 in Öllerer and Croux (2015), the

finite-sample breakdown point under ICM of .�̂
W

satisfies

.εn

(
�̂

W
)

≥ ε+
n (�̂

W
) ≥ max

j=1,...,p
ε+
n (sj ) = 1/2,

where .ε+
n (�̂

W
) is the explosion finite-sample breakdown point (EBP) under ICM

contamination of .�̂
W

and .ε+
n (sj ) is the EBP of the univariate scale estimator scale

.sj , .j = 1, . . . , p.

4 Simulation Experiment and Numerical Results

We conducted a Monte Carlo simulation experiment to investigate the performance
of RGlassoWinsor compared with other procedures.

4.1 Simulation Settings

In the following, we describe the precision matrix models, the contamination sce-
narios, and the precision matrix estimation procedures considered in our simulation
study.

Precision Matrix Models

We consider two-dimension values (.p = 60, 200) and five .� models.

Model 1. Autoregressive model of order 1, denoted .AR(1). In this case, we set
.�ij = 0.4|i−j | for .i, j = 1, . . . p and .� = �−1.

Model 2. Block-diagonal matrix model, denoted BG. In this case, the precision
matrix .� has q blocks of size .p/q. Each block has diagonal elements equal to 1
and off-diagonal elements equal to .0.5. For .p = 60, 200, we use .q = 10 and 40
blocks, respectively.

Model 3. Random model, denoted .Rand. Jiang et al. (2021), in the R package huge,
compute the .� matrix of this model as follows. First they consider .� = (θij ) an
adjacency matrix of dimension p such that every diagonal entry .θii = 0, and each
pair of off-diagonal elements is randomly set .θij = θji = 1 with probability
.prob = 3/p (the default value) and defined as 0 otherwise. Then they define
the set of edges of the graph, establishing that two different nodes, i and j , are
connected if and only if .θij = 1. Finally, given .Θ , is possibly to choose real
constants v and s such that .� = v� + (|e| + 0.1 + s)Ip is positive definite, with
.Ip the identity matrix, e the smallest eigenvalue of .v�, and v and s set to the
default values 0.3 and 0.1, respectively.
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(a) (b) (c)

(d) (e)

Fig. 2 Graphs of .AR(1), .BG, .Rand, .NN(2), and .Hub, graphical models for .p = 60 nodes. (a)
Model AR(1). (b) Model .BG. (c) Model .Rand. (d) Model .NN(2). (e) Model .Hub

Model 4. Nearest neighbors model of order 2, denoted .NN(2). For each node, we
randomly select two neighbors and choose a pair of symmetric entries of .� using
the “NeighborOmega” function of the R package Tlasso (Sun et al. 2016).

Model 5. Hub model, denoted .Hub. As in Model 3, consider .� = (θij ) an adjacency
matrix defined as follows. The row/columns are evenly partitioned into 3 (10)
disjoint groups if .p = 60 (if .p = 200). Each group is associated with a “center”
row i in that group. Each pair of off-diagonal elements, .i �= j , is set .θij = θij = 1
if j also belongs to the same group as i and 0 otherwise. It results in 57 (190)
edges in E if .p = 60 (if .p = 200). The precision matrix .� is defined as in Rand
model and computed using the same R package huge.

Figure 2 displays graphs from Models 1–5 with .p = 60.

Contamination Scenarios

As in (9), let .Y = (I − B)X + BZ, and consider the following scenarios:

(i) Clean data. .Y = X ∼ N(0,�) corresponding to .ε = 0.
(ii) Cellwise or ICM. Here .Z ∼ N(μ1, σ

2�), where .μ1 = (10, . . . , 10)′, .σ = 0.2,
and contamination fractions .ε : 0.01, 0.05, .0.10.
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(iii) Casewise or THCM. Let .Z = z with .z = kv, .v is the eigenvector
corresponding to the smallest eigenvalue of .� satisfying .v′�−1

0 v = 1 and
.k = 100. We consider .ε : 0.05 and .0.10.

For every p, .ε, and .� model, we generate .N = 100 random samples
.Y1, . . . ,YN , of size .n = 100 of .Y .

Precision Matrix Estimators

We will compare the performance of the following estimators of .�:

1. The classical Glasso estimator defined by (6).
2. TWM estimators. Tarr et al. (2016) estimate a robust initial covariance matrix

based on the approach proposed by Gnanadesikan and Kettenring (1972). Noting
that the covariance of two random variables X and Y can be written as

.cov(X, Y ) = 1

4αβ
[Var(αX + βY ) − Var(αX − Y )], (18)

where .α = 1/
√

Var(X) and .β = 1/
√

Var(Y )), a robust estimate of the bivariate
covariance .�̂lj can be obtained by replacing .Var in (18) with a robust variance
estimator like .Qn or .τ -scale estimators defined by Maronna and Zamar (2002)
and Rousseeuw and Croux (1993). Based on these robust estimators of the
covariance matrix, using (11), Tarr et al. (2016) derived a robust estimator of .�,
denoted by RGlassoQn and RGlassotau. We use the R package robustbase to
compute the robust variance estimators .Qn and .τ -scale (Maechler et al. 2022).

3. OC estimators. Öllerer and Croux (2015) proposed a robust estimator .�̂R
lj of the

bivariate correlations

.�̂R
lj = scale(yl )scale(yj )r(yl , yk), (19)

where .r(·) and .scale(·) are robust correlation and scale estimators, respectively.
For instance, .scale(·) is .Qn (or the mad), and for .r(·), there are different
possibilities, such as Gaussian rank correlation, Spearman correlation, and
Quadrant correlation. This proposal leads, using (11), to three robust estimators
called RGlassoGauss, RGlassoSpearman, and RGlassoQuadrant. As in Öllerer
and Croux (2015), and based on Croux and Dehon (2010), to obtain Fisher con-
sistency at the bivariate normal distribution, Quadrant and Spearman correlations
need to be transformed.

4. Our proposal, RGlassoWinsor estimator. To compute the robust bivariate
adjusted correlation estimator defined in steps 1 and 2 of Sect. 3, we use the
function “corhuber” of the R package robustHD (Alfons 2021).

In proposals (1) and (3), to make the pairwise correlation matrices positive def-
inite, we compute the nearest positive-definite matrix using the function “nearPD”
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of the R package Matrix (Bates and Maechler 2019). To solve the regularized
equation (11), we use the R package huge. There are different alternatives to select
the optimal regularization parameter, and we use 5-fold cross-validation as it is
indicated by Jiang et al. (2021) and Öllerer and Croux (2015).

Estimation Performance Evaluation

We wish to evaluate two different features of the procedures: (i) their performance
as estimates of .�; and (ii) how well they recover the true graphical model graph.

The numerical performance of .�̂ is measured by the mean squared error (MSE)
defined by the Frobenius norm of the difference between .� and the predicted
precision matrix .�̂

.mF = ||�̂ − �||F =
√∑

ij

|ωij − ω̂ij |2

and also quantified by the Kullback–Leibler divergence

.DKL = 1

2

(
tr
{
�̂�−1

}
− log

{
det

[
�̂�−1

]}
− p

)
.

To evaluate the graph recovery or classification performance, we compute
the true positive and true negative rates—also called sensitivity and specificity,
respectively—defined by

.TPR = TP

#E
and TNR = TN

#NE
,

where .E = {
(i, j) ∈ V 2−d : ωij �= 0

}
is the set of edges, .NE = {

(i, j) ∈ V 2−d :
ωij = 0

}
is the set of non-connected nodes, and

.TP = #
{
(i, j) ∈ V 2−d : ω̂ij �= 0 ∧ ωij �= 0

}
,

TN = #
{
(i, j) ∈ V 2−d : ω̂ij = 0 ∧ ωij = 0

}

denote the sizes of the sets of true positives and true negatives, respectively.
A related measure is the Matthews correlation coefficient (MCC) given by

.MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,
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Fig. 3 Heatmap for the frequency of adjacency for each pair of nodes with .p = 60 and true graph
of model .Rand. The axes display the graph p-nodes in a given order. (a) Estimated model .Rand.
(b) True graph of model .Rand

where

.FP = #
{
(i, j) ∈ V 2−d : ω̂ij �= 0 ∧ ωij = 0

}
,

FN = #
{
(i, j) ∈ V 2−d : ω̂ij = 0 ∧ ωij �= 0

}

denote the number of false positives and false negatives sets, respectively.
Note that larger values of TPR, TNR, and MCC indicate better performances

(Baldi et al. 2000; Fan et al. 2009).
Heatmaps are useful to visualize the graph recovery performance of a given

procedure. As an example, for .p = 60, the axes in the panels of Fig. 3 display the
graph nodes in a given order. Panel (a) shows .N = 100 estimated .Rand models by
Glasso from simulation replicates where each cell displays a gray level proportional
to how frequently the corresponding pair of nodes appears in the estimated graph
in the N simulation replicates. So, a white color in a given cell .(i, j) means that
nodes i and j are never adjacent in the simulated graphs, and a pair of nodes that
are always adjacent in the simulated graphs is represented by a black colored cell.
The heatmap of Panel (a) is compared with the figure of Panel (b) that represents
the graph of true model .Rand where a black or white cell corresponds to a pair of
connected or non-connected nodes, respectively.

Finally, Fig. 4 represents the five true model graphs.
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Fig. 4 True model graphs with .p = 60. The axes display the graph p-nodes in a given order. (a)
.AR(1). (b) .BG. (c) .Rand. (d) .NN(2). (e) .Hub

4.2 Estimation and Graph Recovery Performances

In this section, we analyze the numerical and graph recovery performances of the
estimation of the different GGMs, represented by its precision matrix .�, for clean
data and under both contamination scenarios.

To fix some ideas, we first focus on the estimation results for the .AR(1) model.
Tables 1, 2, 3, 4, 5, and 6 show the estimation performance under ICM. Lafit et al.
(2022) report the results under THCM (see Tables 40 to 45, Appendix B ).

In terms of numerical performance, Glasso is slightly better than other methods
for clean data, but it is clearly non-robust under both contamination models for
all positive contamination fractions. In both contamination models, our proposal,
RGlassoWinsor, has the best numerical performance. Note that the mean squared
error, .mF , and the Kullback–Leibler divergence, .DKL, grow when the dimension

Table 1 Model .AR(1) under ICM. Comparison of means and standard deviations (in brackets) of
.mF and .DKL over .N = 100 replicates. .p = 60, .n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

.DKL .mF .DKL .mF .DKL .mF .DKL .mF

RGlassoWinsor 5.223 4.365 5.739 4.689 8.336 5.798 13.089 7.053

(0.039) (0.024) (0.046) (0.024) (0.069) (0.024) (0.102) (0.022)

Glasso 4.232 4.063 30.007 8.960 76.465 10.828 103.705 11.241

(0.028) (0.021) (0.339) (0.030) (0.240) (0.005) (0.187) (0.002)

RGlasso.Qn 8.118 5.830 10.314 6.477 29.604 9.100 57.220 10.406

(0.080) (0.027) (0.131) (0.034) (0.450) (0.040) (0.428) (0.013)

RGlassoTau 5.687 4.737 7.071 5.373 24.044 8.548 71.010 10.742

(0.044) (0.023) (0.070) (0.030) (0.501) (0.054) (0.593) (0.013)

RGlassoGauss 4.595 4.278 5.732 4.854 10.540 6.516 16.375 7.697

(0.033) (0.021) (0.048) (0.025) (0.080) (0.022) (0.095) (0.016)

RGlassoSpearman 4.968 4.478 5.889 4.936 10.303 6.455 16.274 7.670

(0.042) (0.025) (0.049) (0.025) (0.076) (0.021) (0.096) (0.016)

RGlassoQuad 10.545 6.560 11.682 6.843 16.151 7.693 22.521 8.515

(0.073) (0.020) (0.093) (0.023) (0.109) (0.019) (0.130) (0.015)
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Table 2 Model .AR(1) under ICM. Comparison of means and standard deviations (in brackets) of
.mF and .DKL over .N = 100 replicates. .p = 200, n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

.DKL .mF .DKL .mF .DKL .mF .DKL .mF

RGlassoWinsor 23.481 9.541 25.191 9.986 33.635 11.564 49.845 13.611

(0.125) (0.038) (0.126) (0.035) (0.193) (0.034) (0.233) (0.025)

Glasso 19.469 8.784 94.502 16.112 257.189 19.867 350.501 20.628

(0.085) (0.044) (0.467) (0.025) (0.576) (0.007) (0.409) (0.003)

RGlasso.Qn 63.930 14.998 78.345 15.856 149.160 18.274 255.526 19.914

(0.335) (0.024) (0.465) (0.025) (0.746) (0.017) (1.105) (0.011)

RGlassoTau 29.859 11.082 38.890 12.440 135.343 17.916 306.799 20.354

(0.169) (0.031) (0.250) (0.034) (0.834) (0.022) (1.245) (0.009)

RGlassoGauss 21.102 9.295 25.163 10.216 41.158 12.711 60.306 14.603

(0.107) (0.039) (0.106) (0.028) (0.180) (0.026) (0.217) (0.019)

RGlassoSpearman 23.131 9.794 26.254 10.438 41.564 12.756 61.643 14.686

(0.116) (0.035) (0.110) (0.029) (0.189) (0.027) (0.222) (0.019)

RGlassoQuad 48.458 13.612 53.087 14.044 70.442 15.322 91.330 16.416

(0.181) (0.021) (0.214) (0.022) (0.254) (0.019) (0.336) (0.017)

Table 3 Model .AR(1) under ICM. Comparison of means and standard deviations (in brackets) of
TPR and TNR over .N = 100 replicates. .p = 60, n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

TPR TNR TPR TNR TPR TNR TPR TNR

RGlassoWinsor 0.991 0.842 0.989 0.853 0.962 0.887 0.799 0.934

(0.001) (0.003) (0.001) (0.003) (0.003) (0.003) (0.009) (0.003)

Glasso 0.997 0.816 0.140 0.986 0.033 0.985 0.045 0.968

(0.001) (0.003) (0.015) (0.001) (0.003) (0.001) (0.003) (0.001)

RGlasso.Qn 0.865 0.952 0.786 0.968 0.131 0.998 0.003 1.000

(0.006) (0.002) (0.011) (0.002) (0.018) (0.000) (0.001) (0.000)

RGlassoTau 0.960 0.875 0.928 0.902 0.397 0.988 0.012 1.000

(0.003) (0.002) (0.004) (0.002) (0.025) (0.001) (0.001) (0.000)

RGlassoGauss 0.996 0.834 0.987 0.835 0.888 0.882 0.655 0.924

(0.001) (0.003) (0.002) (0.003) (0.005) (0.003) (0.008) (0.003)

RGlassoSpearman 0.990 0.850 0.983 0.851 0.914 0.890 0.718 0.927

(0.001) (0.003) (0.002) (0.003) (0.004) (0.002) (0.008) (0.002)

RGlassoQuad 0.729 0.934 0.688 0.941 0.553 0.957 0.339 0.978

(0.008) (0.002) (0.010) (0.002) (0.012) (0.002) (0.012) (0.001)

p increases, for both clean and contaminated data. .DKL and .mF are higher for
cellwise contamination model than the casewise contamination model.

Even when there is no contamination and considering the MCC as graph recovery
measure, the performance of Glasso is poor. Under cellwise contamination model,
MCC means produced by RGlassoWinsor and those produced by OC estimators
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Table 4 Model .AR(1) under ICM. Comparison of means and standard deviations (in brackets) of
MCC over .N = 100 replicates. .p = 60, .n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

RGlassoWinsor 0.389 0.402 0.444 0.471

(0.004) (0.004) (0.005) (0.005)

Glasso 0.360 0.147 0.026 0.013

(0.003) (0.013) (0.003) (0.003)

RGlasso.Qn 0.567 0.594 0.261 0.023

(0.005) (0.005) (0.017) (0.005)

RGlassoTau 0.420 0.455 0.441 0.056

(0.004) (0.004) (0.014) (0.006

RGlassoGauss 0.380 0.378 0.399 0.360

(0.003) (0.003) (0.004) (0.004)

RGlassoSpearman 0.398 0.397 0.424 0.401

(0.004) (0.004) (0.003) (0.004)

RGlassoQuad 0.428 0.425 0.391 0.331

(0.005) (0.004) (0.005) (0.006)

Table 5 Model .AR(1) under ICM. Comparison of means and standard deviations (in brackets) of
TPR and TNR over .N = 100 replicates. .p = 200, n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

TPR TNR TPR TNR TPR TNR TPR TNR

RGlassoWinsor 0.971 0.932 0.961 0.941 0.904 0.958 0.620 0.982

(0.002) (0.002) (0.002) (0.002) (0.003) (0.001) (0.009) (0.001)

Glasso 0.986 0.914 0.207 0.984 0.024 0.989 0.028 0.983

(0.001) (0.002) (0.010) (0.000) (0.001) (0.000) (0.001) (0.001)

RGlasso.Qn 0.041 1.000 0.021 1.000 0.001 1.000 0.000 1.000

(0.003) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000)

RGlassoTau 0.867 0.963 0.796 0.976 0.017 1.000 0.002 1.000

(0.004) (0.001) (0.006) (0.001) (0.002) (0.000) (0.000) (0.000)

RGlassoGauss 0.978 0.931 0.959 0.937 0.794 0.952 0.487 0.973

(0.001) (0.002) (0.002) (0.001) (0.005) (0.001) (0.008) (0.001)

RGlassoSpearman 0.967 0.935 0.957 0.936 0.842 0.952 0.565 0.973

(0.002) (0.002) (0.002) (0.001) (0.004) (0.001) (0.008) (0.001)

RGlassoQuad 0.648 0.965 0.607 0.970 0.455 0.979 0.304 0.985

(0.005) (0.001) (0.006) (0.001) (0.009) (0.001) (0.008) (0.001)

remain almost constant and even slightly increase when the contamination fractions
increase as it is shown in Tables 4 and 6. Conversely, MCC means of the TWM
estimators dramatically decrease when the contamination fraction .ε increases. A
better explanation can be found by looking at Tables 3 and 5, while the mean of
TPR remains relatively high for RGlassoWinsor and for the estimators of OC, and
the mean of TPR goes to zero for the estimators of TWM. Note that, although not
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Table 6 Model .AR(1) under ICM. Comparison of means and standard deviations (in brackets) of
MCC over .N = 100 replicates. .p = 200, .n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

RGlassoWinsor 0.342 0.365 0.405 0.405

(0.004) (0.004) (0.005) (0.003)

Glasso 0.312 0.137 0.013 0.008

(0.004) (0.005) (0.001) (0.001)

RGlasso.Qn 0.185 0.121 0.016 0.001

(0.008) (0.008) (0.003) (0.001)

RGlassoTau 0.404 0.451 0.108 0.017

(0.004) (0.004) (0.006) (0.003)

RGlassoGauss 0.345 0.350 0.332 0.269

(0.004) (0.003) (0.003) (0.002)

RGlassoSpearman 0.348 0.347 0.352 0.307

(0.003) (0.003) (0.004) (0.002)

RGlassoQuad 0.311 0.317 0.284 0.227

(0.002) (0.003) (0.003) (0.003)

Fig. 5 Graph of true model .AR(1) and heatmaps for the frequency of adjacency for each pair of
nodes over .N = 100 replicates. .p = 60 and .n = 100. ICM with .ε = 0.01. The axes display the
graph p-nodes in a given order. (a) True .AR(1). (b) Glasso. (c) RGlassoWinsor

so extreme, a similar phenomenon occurs under THCM, as it is shown in Lafit et al.
(2022) (Tables 44 and 45).

Figures 5, 6, and 7 show the performance of Glasso and RGlassoWinsor for
contaminated data under ICM. Notice that for contaminated data, Glasso cannot
recover the true set of edges, introducing a large number of false negatives. Although
RGlassoWinsor introduces false positives, it better recovers the true set of edges.

In the following paragraphs, we set general conclusions about the behavior of the
estimators for all analyzed .� models, based on Tables 1, 2, 3, 4, 5, and 6 of this
section, Tables 16 to 19 of Appendix A (ICM), and Tables 40 to 69 of Appendix
B (THCM) reported in Lafit et al. (2022). Tables 7, 8, 9, 10, 11, 12, 13, and 14
below report the average ranks for all the compared estimation methods, evaluated
across all the considered precision matrix models. Rank 1 and 7 correspond to the
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Fig. 6 Graph of true model .AR(1) and heatmaps for the frequency of adjacency for each pair of
nodes over .N = 100 replicates. .p = 60 and .n = 100. ICM with .ε = 0.05. The axes display the
graph p-nodes in a given order. (a) True .AR(1). (b) Glasso. (c) RGlassoWinsor

Fig. 7 Graph of true model .AR(1) and heatmaps for the frequency of adjacency for each pair of
nodes over .N = 100 replicates. .p = 60 and .n = 100. ICM with .ε = 0.10. The axes display the
graph p-nodes in a given order. (a) True .AR(1). (b) Glasso. (c) RGlassoWinsor

best and worst performing methods, respectively. The average ranks of the best two
performing methods are shown in boldface.

For .ε = 0, Glasso performs slightly better than the other estimators and shows a
non-robust performance, being the worst ranked for contaminated data. For almost
all contamination scenarios, RGlassoWinsor is the best ranked, and the estimators
of TWM, specially RGlassoSpearman and RGlassoGaus, have the closest rankings.
Note that for dimension .p = 200, RGlassoSpearman has a slightly better average
rank than RGlassoWinsor, under THCM.

4.3 Timing Comparisons

In this section, we report timing comparisons of the estimation methods. Tables 15
and 16 give the average running time and standard error (in bracket) in seconds for
every method based on .R = 100 replications. In this simulation, we used the AR.(1)

model with .p = 60, 200. The times were obtained using the R function Sys.time.
Note that RGlassoWinsor and RGlassoTau are computationally intensive.
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Table 7 Average rank of the estimation methods based on .mF and .DKL under ICM. .p = 60,
.n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

.mF .DKL .mF .DKL .mF .DKL .mF .DKL

RGlassoWinsor 3.4 4 1.6 2 1 1 1 1
Glasso 1 1 6.4 6.4 7 7 6.6 6.6

RGlasso.Qn 6.4 6.4 5.8 6 6 6 5.2 5.2

RGlassoTau 5.4 5.4 4.2 4.8 5 5 6.2 6.2

RGlassoGauss 2.2 2 2.2 1.2 2.4 2.6 2.6 2.4
RGlassoSpearman 3.4 3 2.6 2.8 2.6 2.4 2.4 2.6

RGlassoQuad 6.2 6.2 5.2 5 4 4 4 4

Table 8 Average rank of the
estimation methods based on
MCC under ICM. .p = 60,
.n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

RGlassoWinsor 3.2 2.2 1.2 1.4
Glasso 4.4 6.4 7 6.8

RGlasso.Qn 3.4 3.4 5.8 5.4

RGlassoTau 3.8 3.2 4.6 6.2

RGlassoGauss 3.8 4.2 3.5 3

RGlassoSpearman 4.2 3.6 2 1.6
RGlassoQuad 5.6 5 4.2 4

Table 9 Average rank of the estimation methods based on .mF and .DKL under ICM. .p = 200,
.n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

.mF .DKL .mF .DKL .mF .DKL .mF .DKL

RGlassoWinsor 3.6 3.4 1.6 1.8 1 1 1.2 1
Glasso 1 1.4 6.2 6.2 6.6 6.6 6.6 6.8

RGlasso.Qn 6.8 6.8 6 6.2 5.6 5.8 5.4 5

RGlassoTau 5.6 5.2 5 5 5.4 5.2 6 6.2

RGlassoGauss 2 2 1.6 1.2 2 2 2 2.2
RGlassoSpearman 3.4 3.4 2.8 3 3 3 2.8 2.8

RGlassoQuad 5.6 5.8 4.8 4.6 4.4 4.4 4 4

Table 10 Average rank of
the estimation methods based
on MCC under ICM.
.p = 200, .n = 100

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

RGlassoWinsor 3.2 1.4 1 1.6
Glasso 3.6 6.2 6.6 6.4

RGlasso.Qn 4.2 5.4 4.4 4.6

RGlassoTau 3 2.6 4.2 6

RGlassoGauss 2.4 3 3.2 3

RGlassoSpearman 3.4 3.4 2.2 1.8
RGlassoQuad 6.2 5.2 4.6 4.4
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Table 11 Average rank of
the estimation methods based
on .mF and .DKL under
THCM. .p = 60, .n = 100

.ε = 0.05 .ε = 0.10

.mF .DKL .mF .DKL

RGlassoWinsor 1.2 1.8 1.4 2
Glasso 5.2 7 7 7

RGlasso.Qn 6 5.8 5.8 5.8

RGlassoTau 4.6 4.4 4.6 4.4

RGlassoGauss 2.2 2.4 2.2 2.4

RGlassoSpearman 2.6 1.8 2.4 1.8
RGlassoQuad 4.8 4.8 4.6 4.6

Table 12 Average rank of
the estimation methods based
on MCC under THCM.
.p = 60, .n = 100

.ε = 0.05 .ε = 0.10

RGlassoWinsor 2.6 2
Glasso 6.8 7

RGlasso.Qn 3.6 4.6

RGlassoTau 3 3.4

RGlassoGauss 4.6 4.8

RGlassoSpearman 2.6 2.6
RGlassoQuad 3.8 3.6

Table 13 Average rank of
the estimation methods based
on .mF and .DKL under
THCM. .p = 200, .n = 100

.ε = 0.05 .ε = 0.10

.mF .DKL .mF .DKL

RGlassoWinsor 2 1 1.4 2
Glasso 4.8 7 5.2 6.2

RGlasso.Qn 7 6 6.6 6.4

RGlassoTau 4.8 5 4.8 5.2

RGlassoGauss 1 2 1.4 1.4
RGlassoSpearman 3 3 2.8 2.4

RGlassoQuad 5.2 4 4.6 4.2

Table 14 Average rank of
the estimation methods based
on MCC under THCM.
.p = 200, .n = 100

.ε = 0.05 .ε = 0.10

RGlassoWinsor 2.4 2.2
Glasso 5.4 5.6

RGlasso.Qn 6.4 5.6

RGlassoTau 3 3.8

RGlassoGauss 3.2 2.6

RGlassoSpearman 2 2.2
RGlassoQuad 5 5.2
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Table 15 Average running time and estimated standard error (in bracket) in seconds for each
method based on .R = 100 replications. AR(1) model with .p = 60 under ICM

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

RGlassoWinsor 17.111 16.373 23.178 19.875

(0.051) (0.022) (0.194) (0.046)

Glasso 4.931 3.940 4.239 4.464

(0.048) (0.004) (0.017) (0.005)

RGlasso.Qn 14.430 12.312 13.653 14.708

(0.058) (0.011) (0.065) (0.019)

RGlassoTau 37.920 43.234 43.045 43.256

(0.115) (0.516) (0.100) (0.027)

RGlassoGauss 4.202 4.513 4.549 4.791

(0.015) (0.004) (0.006) (0.017)

RGlassoSpearman 4.279 4.573 4.623 5.091

(0.015) (0.006) (0.004) (0.015)

RGlassoQuad 4.315 4.672 4.709 4.862

(0.018) (0.007) (0.005) (0.005)

Table 16 Average running time and estimated standard error (in bracket) in seconds for each
method based on .R = 100 replications. AR(1) model with .p = 200 under ICM

.ε = 0 .ε = 0.01 .ε = 0.05 .ε = 0.10

RGlassoWinsor 180.510 161.564 161.452 162.035

(1.585) (0.062) (0.075) (0.159)

Glasso 5.631 5.315 5.378 5.300

(0.010) (0.023) (0.018) (0.035)

RGlasso.Qn 107.061 111.841 110.646 109.240

(0.757) (0.280) (0.273) (0.269)

RGlassoTau 403.468 419.055 416.680 417.736

(1.254) (5.350) (5.331) (5.241)

RGlassoGauss 6.015 6.407 6.268 6.231

(0.011) (0.017) (0.021) (0.013)

RGlassoSpearman 7.355 7.701 7.711 7.634

(0.012) (0.021) (0.021) (0.019)

RGlassoQuad 7.660 7.522 7.735 7.663

(0.010) (0.054) (0.022) (0.015)

5 Real Data Example

In preoperative chemotherapy, when all invasive cancer cells are eradicated, the
patient is said to have reached the state of pathological complete response,
abbreviated as pCR. This pCR is associated with the long-term cancer-free survival
of a person. On the contrary, residual disease (RD) indicates that the disease has not
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Fig. 8 Cellwise outliers detected by “cellHandler” for the RD class based on (a) .�̂
W

and (b) .�̂
G

.
A black colored cell indicates an outlier

been eradicated. Measurements of the expression level (activity) of genes may be
able to predict if a patient can reach a pCR.

Hess et al. (2006) use normalized gene expression data of patients in stages I–
III of breast cancer, to identify patients that may achieve pCR under preoperative
chemotherapy. Their database has 22283 gene expression levels for 133 patients,
with 34 pCR and 99 RD. Hess et al. (2006) and Natowicz et al. (2008) identify
26 important genes for predicting survival and response to adjuvant chemotherapy.
Following Ambroise et al. (2009) and Tang et al. (2021), we estimate the precision
matrix for the 26 key genes on the two classes pCR and RD.

Raymaekers and Rousseeuw (2022) proposed a method that detects cellwise
outliers, implemented in the R package cellWise (Raymaekers and Rousseeuw
2021). The function “cellHandler” of cellWise flags cellwise outliers in the
data matrix, based on robust estimates of the mean .μ and covariance matrix
.� with 0.95% as cutoff used in the detection of cellwise outliers. We compare
the performance of RGlassoWinsor and RGlassoGauss because both have shown
similar rankings. Using the sample median and a robust estimates of .� provided by

Winsorization, .�̂
W

, and Gaussian rank correlations, .�̂
G

(see (17) and (19)), we first
detect outliers in the dataset.

Figure 8 illustrates cellwise outliers flagged by “cellHandler” based on both
robust covariance estimates for the RD class. The rows represent the patients or
cases, and the columns represent the variables or gene expressions. A black colored
cell indicates that its value is an outlier.

Of the total of 2574 (.99 × 26) cells of the data matrix of the RD class, 307
(12%) are contaminated according to “cellHandler” based on .�̂

W
. The first five

most contaminated variables correspond to genes SCUBE2, FLJ12650, RRM2,

FLJ10916, and PDGFRA. Using .�̂
G

, 325 (almost 13%) are flagged as contami-
nated, and the first six most contaminated variables correspond to genes SCUBE2,
GFRA1, RRM2, BTG3, MAPT, and FLJ12650 (i.e., the last two genes have the
same numbers of cellwise outliers)

A similar procedure shows that for the pCR group, using .�̂
W

, of the total of
884 (.34 × 26) cells of the data matrix, “cellHandler” flags 166 (19%) cells as
contaminated, and the first five most contaminated variables correspond to genes
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Fig. 9 Estimated graph of the GGM for the 26 genes corresponding to RD class. (a) Glasso. (b)
RGlassoWinsor. (c) RGlassoTau. (d) RGlassoGauss

PDGFRA, CA12, SCUBE2, BBS4, and IGFBP4. Using .�̂
G

, 108 (almost 12 %)
cells are flagged as contaminated, and the first five most contaminated variables
correspond to genes CA12, SCUBE2, IGFBP4, KIAA1467, and MTRN.

Figures 9 and 10 display the resulting network obtained using Glasso, RGlas-
soWinsor, RGlassoTau, and RGlassoGauss, the latter two representing TWM and
OC of procedures. Table 17 exhibits the estimated network density for the 26 genes
for each class, for all procedures, using a regularization parameter chosen by 5-fold
cross-validation.

Excluding the estimated networks by RGlasso.Qn and RGlassoTau, the undi-
rected graphs differ according to the class membership that may suggest that genes
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Fig. 10 Estimated graph of the GGM for the 26 genes corresponding to PCR class. (a) Glasso. (b)
RGlassoWinsor. (c) RGlassoTau. (d) RGlassoGauss

regulation differs according the participants response to the treatment (Ambroise
et al. 2009).

In the pCR class, RGlassoWinsor produces a less sparse network than Glasso
and RGlassoSpearman, but a similar structure. But, in the RD class, while Glasso
and RGlassoTau do not detect any conditional relationship between nodes (genes),
RGlassoWinsor and the procedures of OC detect several edges between genes.
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Table 17 Estimated network
density for the 26 genes from
breast cancer gene
expressions data

pCR class RD class

RGlassoWinsor 0.280 0.169

Glasso 0.243 0.003

RGlasso.Qn 0.000 0.000

RGlassoTau 0.000 0.000

RGlassoGauss 0.203 0.249

RGlassoSpearman 0.197 0.237

RGlassoQuad 0.117 0.234

6 Concluding Remarks

This chapter introduces a new robust graphical lasso procedure called RGlassoWin-
sor based on adjusted bivariate Winsorization estimation of the covariance matrix
for high-dimension covariance selection or precision matrix estimation.

RGlassoWinsor is compared with the currently existing robust estimators of the
precision matrix, introduced by Tarr et al. (2016) and Öllerer and Croux (2015),
by using different performance measures regarding graph recovery and sparse
estimation of the precision matrix.

Our proposal shows a good performance for all the precision models, dimensions,
and contamination scenarios considered in this research. For clean data, Glasso is
slightly better than other methods, but it is clearly non-robust. Under contamination
and for almost all performance measures, our proposal, RGlassoWinsor, has the best
overall performance.

Moreover, our procedure attains the maximum finite-sample breakdown point of
.1/2 under cellwise contamination.

Finally, we demonstrate the usefulness of RGlassoWinsor in an application to the
analysis of breast cancer data.
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Robustly Fitting Gaussian Graphical
Models—the R Package robFitConGraph

Daniel Vogel, Stuart J. Watt, and Anna Wiedemann

Abstract This chapter gives a tutorial-style introduction to the R package rob-
FitConGraph, which provides a robust goodness-of-fit test for Gaussian graphical
models. Its use is demonstrated at a data example on music performance anxiety,
which also illustrates why one would want to fit a Gaussian graphical model—and
why one should do so robustly. The underlying theory is briefly explained, much of
which has been developed by David Tyler.

Keywords Covariance selection model · Deviance test · M-estimator · Music
performance anxiety · Partial correlation

1 Introduction

The first two Sects. 1 Introduction and 2 A Case Study are intended for a general
audience, assuming neither deeper familiarity with graphical models nor robustness.
Section 3 Background and Theory discusses some aspects in detail.
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1.1 Gaussian Graphical Modeling

Graphical models are an important tool for analyzing the dependence structure
of several variables. Gaussian graphical models are employed for continuously
distributed data, where a multivariate normal, or Gaussian, distribution is adequate.

A graph encodes the dependence structure of a random vector .X =
(X1, . . . , Xp) as follows: The nodes represent the individual variables, and an
edge between two nodes represents partial correlation, or the absence of an edge
zero partial correlation. Partial correlation is a measure for conditional dependence
between two variables, conditional on all remaining variables, which, in a very
loose sense, can be understood as a measure for dependence not explained by joint
dependence on other variables. As soon as more than two variables are considered,
conditional dependence is arguably more important than marginal dependence:
It suggests and helps to verify causal relationships. While ice cream sales and
criminal assault rates per day—at any given place in the temperate climate zone—
are certainly positively correlated, their conditional independence given a suitable
mediator variable, such as outside mean temperature, provides evidence for why
this may be so.

Graphical modeling refers to the statistical task of finding an appropriate graph
that describes the dependence structure of a given data set, i.e., identifying all zero
partial correlations. The aim is to find a parsimonious graph, i.e., one with few
edges, which does not contradict the data. A full graph, with all edges present, means
no restriction and contains no structural information. A completely empty graph,
with no edges at all, means all variables are independent.

Let .� denote the covariance matrix of .X. Throughout, we assume that all
second moments of .X are finite and that furthermore .� is positive definite
and thus may be inverted to yield the concentration matrix or precision matrix
.K = �−1. The assumption of strict positive definiteness is a mild one and is
equivalent to the probability mass not being concentrated on a lower-dimensional
affine linear subspace of .R

p. We make the same assumption on the data points
.Xn = (x1, . . . xn)

�, and hence, the sample covariance matrix .�̂n is positive definite,
and the sample concentration matrix .K̂n = �̂−1

n exists.
The basis for Gaussian graphical modeling is the following characterization: The

variables .Xi and .Xj are partially uncorrelated given all remaining .p −2 variables if
and only if .Ki,j = 0. The partial correlation .pi,j of .Xi and .Xj given the remaining
components of .X is defined as the correlation between the residuals of .Xi and .Xj

when regressing both on the remaining components. Some matrix calculus yields
that

.pi,j = − Ki,j√
Ki,iKj,j

, (1)

see, e.g., Whittaker (1990, Chapter 5). Thus the pairwise partial correlations are
obtained from the inverse covariance matrix K in a very similar fashion as the
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pairwise correlations are obtained from the covariance matrix .� itself. The only
difference is the minus sign. Consequently, an absent edge in the graph means a
zero entry in K , and finding the graph for given data comes down to finding the
zero pattern in the inverse of the true covariance matrix .�. Three basic sub-tasks of
graphical modeling can be identified:

(T1) Finding an appropriate graph
(T2) Determining if a given graph fits the data
(T3) Estimating the (remaining) partial correlations under a given graph structure

Whether (T1) or (T2) is considered more important may be debatable and mainly
depends on whether one pursues an explorative or an inferential analysis. Task (T3)
may appear of lesser importance, but it is intrinsically linked to (T2). We briefly
outline how these tasks are approached, in reverse order, starting in with (T3).

Task (T3) We require some mathematical notation. Define a graph .G = (V ,E) as
a set of vertices .V = {1, . . . , p} and a set of undirected edges .E ⊆ { {i, j} : i, j =
1, . . . , p, i < j}. Let .Sp denote the set of all symmetric .p×p matrices and .S+

p the
set of all positive-definite, symmetric .p × p matrices. For any graph .G = (V ,E),
let .S+

p (G) be the set of matrices .A ∈ S+
p with zero entries at off-diagonal positions

specified by G, i.e., .Ai,j = 0 for all .i, j = 1, . . . , p, .i �= j , with .{i, j} /∈ E.
We call any set of p-dimensional probability measures with the common property
that they possess a concentration matrix .K ∈ S+

p (G) a covariance selection model
induced by G. We call a covariance selection model consisting of all regular p-
variate Gaussian distributions a Gaussian graphical model and denote it by .Np(G),
i.e., .Np(G) = {Np(μ, �) : μ ∈ R

p,�−1 ∈ S+
p (G)}. The maximum-likelihood

estimator .�̂G of .� within the parametric family .Np(G) is given as the solution to

�̂G = argmin
�−1∈S+

p (G)

{

log det� + 1

n

n∑

i=1

trace
(
�̂n �−1

)}

. (2)

This optimization problem leads to the estimation equations

.

⎧
⎪⎨

⎪⎩

[
�̂G

]

i,j
=

[
�̂n

]

i,j
for {i, j} ∈ E or i = j,

[
�̂−1

G

]

i,j
= 0 for {i, j} /∈ E and i �= j.

The solution .�̂G depends on the data only through the sample covariance matrix
.�̂n. This approach is due to Dempster (1972), and the optimization problem (2)
has since been thoroughly studied (e.g., Speed and Kiiveri 1986). Algorithms to
compute .�̂G for arbitrary graphs G can be found, e.g., in Lauritzen (1996, Chapter
5) or Hastie et al. (2009, Chapter 17). For decomposable graphs G, there is also an
explicit solution, i.e., .�̂G can be computed in a finite number of steps. For details,
see also Lauritzen (1996, Chapter 5). In R (R Core Team 2022), these algorithms are
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implemented in the function fitConGraph in the package ggm (Marchetti et al.
2020). With a graph-constrained1 estimate .�̂G for the covariance matrix available,
the remaining non-zero partial correlations are computed from .�̂G as unconstrained
partial correlations are computed from .�̂n by virtue of (1).

Task (T2) Within the parametric framework described above, the likelihood-ratio
test for testing G against the full model is given by the test statistic

.D�
n (G) = n

(
log det �̂G − log det �̂n

)
, (3)

which, under the null hypothesis that G is the true graph, converges to a .χ2
q

distribution as .n → ∞, where q is the number of missing edges in G. The quantity
.D�

n is also called deviance and this likelihood-ratio test hence deviance test. It
simultaneously tests the absence of all edges not in G avoiding any multiple-testing
problems. The deviance is also returned by fitConGraph.

Task (T1) While statistical theory provides rather precise and unambiguous solu-
tions to tasks (T3) and (T2), this is not the case for (T1), which is already reflected
by the phrasing of finding an appropriate graph rather than finding the best-fitting
graph. Deciding on an appropriate graph may also be influenced by interpretability
aspects and relevant domain knowledge. A multitude of approaches exist. A basic
idea, also initiated by Dempster (1972), is the iterative application of the deviance
test. For instance, one starts with the full graph, then removes one or several edges
(with small absolute partial correlations), and keeps the new candidate graph if the
deviance test accepts it. This may be iterated until no further edge removal leads to
an accepted graph. The opposite search direction is also possible: One starts with the
empty graph and successively adds edges until a graph is obtained which is accepted
by the deviance test. For further reading, see the textbooks by Whittaker (1990) or
Edwards (2000). Elaborate model search strategies have been proposed (e.g., Drton
and Perlman 2008; Edwards and Havránek 1985).

Many other model selection approaches use .L1-regularization and are aimed at
finding sparse graphs in high-dimensional settings. For instance, Meinshausen and
Bühlmann (2006) propose a node-wise LASSO-regression. Yuan and Lin (2007)
and Friedman et al. (2008) add an .L1-penalty for .K = �−1 to the optimization
problem (2). Various algorithms have since been proposed for an efficient computa-
tion of such high-dimensional optimization problems (e.g., Cai et al. 2011; Sun and
Zhang 2013; Yuan 2010). Within this framework, the regularization parameter must
be chosen, usually by means of cross-validation. Liu and Wang (2017) particularly
address the latter issue.

1 That is, it obeys the zero pattern in the inverse induced by G.
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Fig. 1 The non-robust sample covariance matrix (solid line) and the robust .t3 M-estimate (dashed
line). The data on the left-hand and right-hand panels differ only by one point

1.2 Robustness

Robustness in general terms is the property of a statistical method to yield sensible
results if its assumptions are violated. In a more specific sense, it means insensitivity
to outliers. Starting with the pioneering work of Huber (1964) and Hampel (1971,
1974), robust statistics has evolved into a large research area, see, e.g., the textbooks
by Huber and Ronchetti (2009) or Maronna et al. (2019). For our purposes, the
important fact to note is that the sample covariance matrix .�̂n is not robust.
In Fig. 1, the left-hand panel shows a small data set of 20 two-dimensional
observations. The black ellipse visualizes the sample covariance matrix, i.e., the
95% probability ellipse of the thus fitted normal model. In the right-hand panel, one
single observation has been moved from the center to the upper right corner. The
covariance estimate has tremendously changed, suggesting even a positive rather
than a negative correlation. The dashed curve, in contrast, represents an alternative,
robust estimator of multivariate scatter (a .t3 M-estimator, see below) and is little
altered by the outlier.

With the sample covariance matrix .�̂n being the main ingredient of essentially
all graphical modeling tasks, they all inherit its lack of robustness. The good news
is: robust alternatives exist. The work on robust multivariate location and scatter
estimation has been originated by Maronna (1976), who developed Huber’s M-
estimation approach for the multivariate setting. Since then, many proposals have
been made.2 Here we consider only one rather simple and easy-to-compute robust
scatter estimator, the .tν M-estimator, which is also already mentioned in Maronna’s
paper. This is an M-estimator, whose loss function stems from the maximum-
likelihood estimator within the elliptical .tν model. The parameter .ν is referred to

2 With numerous contributions by David Tyler (e.g., Kent and Tyler 1996; Tyler 1987).
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as the degrees of freedom and may be any positive real number. The smaller the
.ν, the heavier-tailed the .tν distribution and, consequently, the more outlier-resistant
the corresponding M-estimator. The parameter .ν is usually not inferred from the
data but selected by the data analyst. A common choice is .ν = 3. This is not
extremely heavy-tailed, second moments are finite (and hence the covariance matrix
is properly defined), but it is sufficiently heavy-tailed to yield a strongly outlier-
resistant estimator.

The .tν M-estimator of scatter .Ŝn, along with the corresponding estimate of
location .μ̂n, is defined as the solution to the optimization problem

.(μ̂n, Ŝn) = argmin
μ∈Rp,S∈S+

p

[∑n

i=1
ρν,p

{
(xi − μ)�S−1(xi − μ)

}
+ n log det S

]

(4)

with .ρν,p(x) = (ν + p) log(1 + x/ν). This yields the estimation equations

.

⎧
⎪⎨

⎪⎩

0 =
∑n

i=1
ψν,p(r̂i)(xi − μ̂n),

Ŝn = n−1
∑n

i=1
ψν,p(r̂i)(xi − μ̂n)(xi − μ̂n)

�,

where .ψν,p(x) = ρ′
ν,p(x) = (ν+p)/(ν+x) and .r̂i = (xi −μ̂n)

�Ŝ−1
n (xi −μ̂n). The

.tν M-estimator can be computed, e.g., by a fixed-point algorithm. Implementations
in R can be found, e.g., in the functions cov.trob from the package MASS
(Venables and Ripley 2002), tM from the package ICS (Nordhausen et al. 2008),
and MVTMLE from the package fastM (Dümbgen et al. 2016, 2018). The latter uses
a partial Newton–Raphson algorithm.

With robust alternatives .Ŝn being available, an intuitive path to a robust analysis is
the plug-in approach: First solving (4) and then plugging the thus obtained estimate
.Ŝn instead of .�̂n into (2) to obtain a graph-constrained robust estimate .ŜG and the
corresponding robust (pseudo-)deviance

.DS
n(G) = n

(
log det ŜG − log det Ŝn

)
. (5)

This is accomplished in the package robFitConGraph by the function of the same
name. Plug-in robustifications for the .L1-regularization methods have equally been
proposed (Öllerer and Croux 2015; Tarr et al. 2016). Alternatively, Finegold and
Drton (2011) regularize the elliptical .tν log density.

Before providing further details on the function robFitConGraph and the
underlying theory in Sect. 3, its use shall be demonstrated at a data example on
music performance anxiety.
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2 A Case Study: Music Performance Anxiety

The fear about one’s ability to perform a specific task, such as giving a presentation
or sitting an exam, affects almost everyone. Pressure can be particularly high in
certain professions where performing in front of others is an integral part of day-
to-day life. While some levels of stress and anxiety are normal and actually help us
to achieve optimal performance, severe levels of stress and anxiety are debilitating
and can develop into a disorder. Professional musicians are often exposed to extreme
pressure where maintaining top-quality performances is not just essential to keeping
their job, but to progress in their careers. Music performance anxiety (MPA) can be
understood as a continuum ranging from low to high anxiety levels. The latter poses
a serious problem to the profession and is the subject of ongoing clinical research,
see, e.g., Fernholz et al. (2019) for a recent review.

MPA is often considered to be a form of social anxiety that, loosely speaking,
is the overwhelming fear of social situations (e.g., Cox and Kenardy 1993; Dobos
et al. 2019; Kenny 2011; Nicholson et al. 2015). This is underlined by the fact
that the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American
Psychiatric Association 2013) now acknowledges evidence of individuals suffering
exclusively from performance anxiety as a distinct sub-type of social anxiety
disorder. However, some researchers and clinicians have questioned this description,
as MPA is a complex phenomenon caused by the interaction of many different
factors, and the fear of social judgment is not necessarily always the main problem.

Wiedemann et al. (2022) analyzed a data set consisting of eight numerical
variables measured at .n = 82 students at German music colleges: music per-
formance anxiety (MPA), agoraphobia (AG), generalized anxiety disorder (GAD),
panic disorder (PD), separation anxiety disorder (SEP), specific phobia (SP), social
anxiety disorder (SAD) as well as illness anxiety disorder (ILL). Each variable
is a summary score from a self-assessment inventory with Likert-scale items.
A higher value signifies a higher severity of the condition. MPA was assessed
using the German version of the Kenny Music Performance Anxiety Inventory (K-
MPAI; Kenny 2009) translated by Spahn et al. (2016). All other anxieties were
assessed using the German translation of the disorder-specific anxiety measures
(Beesdo-Baum et al. 2012; Lebeau et al. 2012) for the dimensional anxiety scales
of the DSM-5. The data set is also included in the package robFitConGraph as
anxieties.

Figure 2 shows the pairwise scatter plots of the data set. While most participants
score low on most anxiety scales—as we would expect and hope—there are a
few very high values in all variables. The normality assumption can be seen to
be violated in a similar manner as in Fig. 1 with the same implications for any
sample-covariance-based analysis. For instance, removing the outlier in the variable
AG reduces the Pearson correlation between AG and SEP from 0.612 to 0.407.
Computing the correlation coefficient from a .t3 M-estimator, we obtain the value
0.410, which reduces to 0.350 when removing said outlier. A robust analysis is
highly recommended for these data. All results reported in the following are based
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Fig. 2 Pairwise scatter plots of the anxieties data

on a .t3 M-estimator of scatter. It yields the correlation coefficients given in Table 1.
They can also be obtained by the function robFitConGraph by supplying the
full model as adjacency matrix

> library(robFitConGraph)
> data(anxieties)
> p <- ncol(anxieties)
> Shat <- robFitConGraph(X = anxieties,
+ amat = matrix(1, ncol = p, nrow = p),
+ df = 3)$Shat
> round(cov2cor(Shat), d = 2)

All variables are positively correlated. This is neither surprising nor uncommon
for multivariate data. The corresponding partial correlations, as given in Table 2,
shed further light on the dependence structure of the variables.
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Table 1 Pairwise correlations computed from .t3-M-estimate

MPA GAD SAD PD AG SP SEP ILL

MPA .· 0.62 0.37 0.43 0.17 0.26 0.38 0.32

GAD 0.62 .· 0.66 0.65 0.40 0.35 0.60 0.47

SAD 0.37 0.66 .· 0.50 0.51 0.36 0.64 0.42

PD 0.43 0.65 0.50 .· 0.51 0.44 0.48 0.46

AG 0.17 0.40 0.51 0.51 .· 0.49 0.41 0.36

SP 0.26 0.35 0.36 0.44 0.49 .· 0.37 0.34

SEP 0.38 0.60 0.64 0.48 0.41 0.37 .· 0.29

ILL 0.32 0.47 0.42 0.46 0.36 0.34 0.29 .·

Table 2 Pairwise partial correlations computed from .t3-M-estimate

MPA GAD SAD PD AG SP SEP ILL

MPA .· 0.44 −0.05 0.05 −0.14 0.08 0.05 0.05

GAD 0.44 .· 0.33 0.34 −0.02 −0.06 0.19 0.15

SAD −0.05 0.33 .· −0.05 0.25 0.00 0.37 0.13

PD 0.05 0.34 −0.05 .· 0.24 0.14 0.09 0.16

AG −0.14 −0.02 0.25 0.24 .· 0.30 0.04 0.07

SP 0.08 −0.06 0.00 0.14 0.30 .· 0.11 0.12

SEP 0.05 0.19 0.37 0.09 0.04 0.11 .· −0.12

ILL 0.05 0.15 0.13 0.16 0.07 0.12 −0.12 .·

> Phat <- -cov2cor(solve(Shat))
> diag(Phat) <- 1
> round(Phat,d = 2)

Many of the partial correlations are near zero, suggesting conditional indepen-
dences, i.e., their association may be fully mediated by other variables in the data
set.

2.1 Inferential Analysis: MPA and Social Anxiety

One hypothesis examined by Wiedemann et al. (2022) is whether MPA is primarily
related to a social anxiety disorder (SAD). Based on the positive correlation of
.0.37, a short-sighted analysis may deduce a strong connection between MPA and
SAD, which in light of other, even larger correlations, is right away questionable.
As we will see, the data in fact carry no evidence for a particularly strong connection
between MPA and SAD.

For that purpose, one tests the hypothesis that MPA and SAD are conditionally
independent given all remaining six variables, i.e., testing a graphical model with
only one missing edge between MPA and SAD by means of a robust pseudo-
deviance test. If this test rejects, there is evidence for a strong link betweenMPA and
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Fig. 3 The graph encoding the hypothesis MPA is conditionally independent of all other variables
given GAD (left) and the corresponding adjacency matrix (right)

SAD. Their dependence can then not be fully explained by their associations with
other anxiety types. However, this hypothesis is not rejected (a p-value of 0.66),
and we find no such evidence in the data. The p-value is returned by the function
robFitConGraph via the named list element pval, see also the next code chunk
below.

One can even further test the stronger hypothesis that MPA is, given GAD only,
conditionally independent of all other six specific anxiety scales. This is done by
testing the graph in Fig. 3, which can equivalently be expressed by its adjacency
matrix on the right-hand side of Fig. 3.

Almost unnoticed, we make here use of a non-trivial result, which is the real
merit and the real beauty of graphical models: Each absent edge in the graph
denotes a conditional independence of two individual variables given the respective
remaining six variables. This is indeed equivalent to MPA and (SAD, PD, AG, SP,
SEP, ILL) being conditionally independent given GAD only, because in the graph
GAD separates MPA from (SAD, PD, AG, SP, SEP, ILL). This is known as the
equivalence between the local Markov property and the global Markov property.
For details, see Lauritzen (1996, Chapter 3).

The pseudo-deviance test based on the .t3 M-estimator for the graph in Fig. 3 is
carried out as follows:

> amat <- matrix(1, ncol = p, nrow = p)
> rownames(amat) <- colnames(anxieties)
> colnames(amat) <- colnames(anxieties)
> amat["MPA", c("SAD", "PD", "AG", "SP", "SEP", "ILL")] <- 0
> amat[c("SAD", "PD", "AG", "SP", "SEP", "ILL"), "MPA"] <- 0
> robFitConGraph(X = anxieties, amat = amat, df = 3)$pval
[1] 0.881159

With a p-value of 0.88, this hypothesis is also not rejected. There is no evidence
against the null hypothesis of MPA being conditionally independent of the specific
anxiety types given generalized anxiety (GAD). Accepting the null hypothesis,
GAD is fully sufficient for predicting MPA. When already knowing a person’s GAD
score, i.e., how anxious the person generally is, additionally knowing any of their
specific anxieties scores provides no further information about their MPA score. So
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Fig. 4 A fitting graph with 9
edges based on a .t3 scatter
estimator with p-value 0.45
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this analysis does not support the hypothesis that MPA is foremost related to social
anxiety.

The analysis is complemented by testing if MPA and GAD are conditionally
independent given the remaining six variables. This hypothesis is rejected with a
p-value below 0.01, which corresponds to the partial correlation of 0.44 in Table 2.3

So there is a strong connection between MPA and GAD, this connection is not
mediated by any of the other variables, and GAD explains the connection between
MPA and the remaining variables. Altogether, GAD is the link between MPA and
the other anxieties.

2.2 Explorative Analysis

Naturally, the question arises which other edges may be removed. For that purpose,
we remove all edges that have absolute partial correlation below 0.15 (Table 2),
corresponding to an individual p-value above 0.2. The resulting graph is depicted in
Fig. 4, which is not rejected by the pseudo-deviance test with a p-value of 0.45. The
partial correlations along the edges in Fig. 4 are fitted under the graph, i.e., they are
estimated taking the graph structure into account. They are different from the partial
correlations given in Table 2.

> amat <- abs(Phat) > 0.15
> Shat_G <- robFitConGraph(X = anxieties,
+ amat = amat, df = 3)$Shat
> Phat_G <- -cov2cor(solve(Shat_G))
> diag(Phat_G) <- 1
> round(Phat_G, d = 2)

3 For a single missing edge, the deviance test can indeed be expressed in terms of corresponding
partial correlation only.
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The information learned from such a fitted graph is, e.g., that GAD is central
within this set of variables: It has many edges to other vertices, and it has much
explanatory power about the other variables. If one were to retain only a single
variable (as a very simple dimension reduction approach, say), GAD would be a
natural candidate based on this “vertex degree criterion.”

The fitted graph in Fig. 4 with 9 edges (out of 28 possible) is one parsimonious
graph that fits the data. Generally, there is no well-defined most parsimonious,
best-fitting graph, as obviously fit and parsimony are contradicting goals. However,
one may elaborate upon the initial search by checking if other (equally or more)
parsimonious graphs may fit as well. For instance, increasing the initial partial
correlation threshold to 0.17, say, which results in a further removal of the edge ILL–
PD, leads to a p-value of 0.01 and hence should be rejected. Alternatively, removing
the “next smallest edge” from the candidate graph in Fig. 4, which is GAD–SEP,
results in a p-value of 0.17, which is still acceptable.

Despite using deviance-test p-values as decision criterion whether to accept a
graph or not, this analysis is purely explorative. We have not tested the graph of
Fig. 4. Hypotheses to be tested must be formed a priori. Testing for a graph that is
the result of model selection procedure is as prohibitive as testing if the observed
sample mean is the population mean.

So far, we have used robFitConGraph with df = 3, which is also the
default setting in case df is not specified. Generally, the results are not very sensitive
to variations in .ν. A smaller value of .ν downweights outliers more strongly. In the
present example, taking .ν = 1, we find the hypothesis of Fig. 3 equally accepted
with a p-value of 0.58. The explorative graph in Fig. 4 is accepted with a p-value of
0.26.

2.3 The Classical Analysis

After having cautioned its use at the beginning, we close this section by remarking
that a classical sample-covariance-based analysis leads qualitatively to the same
findings. The classical deviance test gives a p-value of 0.63 for the hypothesized
graph of Fig. 3. An explorative analysis analogous to the one above leads to the
graph in Fig. 5 with a p-value of 0.51, which is also communicated by Wiedemann
et al. (2022). The graph is different, but it equally shows the centrality of GAD as
well as the marginality of MPA within the set of variables. It is generally advisable
to try varying parameter settings and different methods, robust and non-robust, in
any statistical analysis. Conclusions unanimously obtained by several methods may
be considered even more trustworthy.
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Fig. 5 A fitting graph with 10 edges based on the sample covariance matrix with p-value 0.51

3 Background and Theory

The centerpiece of the package robFitConGraph is the function by the same name.
For a given data set .Xn and a given graph G, it simultaneously provides a robust
graph-constrained matrix .ŜG and the p-value of the corresponding pseudo-deviance
test. But so far, the actual worth of the function robFitConGraph has not become
apparent: It appears, its plug-in functionality is equally achieved by a combination
of, say, cov.trob and fitConGraph, as the latter takes the sample covariance
matrix as input. However, there are two good reasons for robFitConGraph,
which both require a slightly deeper foray into statistical theory:

(1) The limit distribution of the pseudo-deviance .DS
n(G) does not follow strictly a

.χ2
q distribution under the graph G, but a .χ2

q -variate multiplied by a constant .σ1.
This constant is required to obtain p-values and depends on the data dimension
p and the degrees of freedom .ν of the estimator. It is computed by the function
find_sigma1.

(2) The plug-in estimator .ŜG is just one approach to a graph-constrained robust
scatter estimator. The function robFitConGraph also provides an alternative
approach, referred to as the direct estimator and denoted by .S̃G below.

Another good reason is speed. Being implemented in C++, robFitConGraph
is considerably faster than the combination of cov.trob and fitConGraph. A
runtime comparison is given by Watt (2019).
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3.1 The Constant σ1

Recall the class of all p-dimensional, continuous, elliptical distributions, i.e.,
distributions possessing a p-dimensional Lebesgue density f of the form

.f (x) = det(S)−
1
2 g

{
(x − μ)�S−1(x − μ)

}
(6)

for some .μ ∈ R, .S ∈ S+
p , and .g : [0,∞) → [0,∞), such that f integrates to 1.

Let .Ep(μ, S, g) denote the distribution described by (6). The univariate function g

is called the elliptical generator and S the scatter or shape matrix of .Ep(μ, S, g). It
is proportional to the covariance matrix if .Ep(μ, S, g) has second moments. In the
present paper, we only consider two examples of elliptical distributions: the normal
distribution with

.gN(x) = 1√
2π

exp
(
−x

2

)
, 0 ≤ x,

and the elliptical .tν distribution with

.gν,p(x) = cν,p

(
1 + x

ν

)−(ν+p)/2
, 0 ≤ x,

where the normalizing constant .cν,p is given in the Technical Appendix at the end
of the chapter. Assume the independent observations .Xn = (x1, . . . xn)

� to stem
from an elliptical distribution .Ep(μ, S, g), and let .V̂n be an arbitrary .p × p scatter
matrix estimator fulfilling two fairly natural conditions:

(1) .V̂n is affine equivalent, i.e., .V̂n(XnA
� + 1nb

�) = AŜn(Xn)A
� for any .b ∈ R

p

and full rank .A ∈ R
p×p, where .1n is the n-vector consisting of ones.

(2) .V̂n is .
√

n-consistent and asymptotically normal at .Ep(μ, S, g), i.e., there exist
matrices .V ∈ Sp and .W ∈ Sp2 such that

.
√

nvec{V̂n(Xn) − V } → Np2(0, W)

in distribution as .n → ∞.

Tyler (1982) showed that under these two conditions, V and W take on specific
forms: .V = ηS for some .η > 0, and

.W = 2η2σ1Mp(S ⊗ S) + η2σ2vec(S)vec(S)�, (7)

where .⊗ is the Kronecker product, .σ1 ≥ 0 and .σ2 ≥ −2σ1/p are scalar constants
independent of .μ and S, and .Mp is a fixed .p2 × p2 matrix defined in the
Technical Appendix. The latter formula greatly simplifies the asymptotic efficiency
comparison of any two affine equivariant scatter estimators at elliptical distributions.
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In case of .V̂n being an elliptical M-estimator, with a general loss function .ρ instead
of .ρν,p in (4), Tyler (1983) gives the following expressions for the scalars .η, .σ1, and
.σ2: Letting .ψ(x) = ρ′(x), .φ(x) = xψ(x), and .R = (X − μ)�S−1(X − μ) for
.X ∼ Ep(μ, S, g), the scalar .η is the solution to .E{φ(R/η)} = p. Letting further

.γ1 = E{φ2(R/η)}
p(p + 2)

, γ2 = 1

p
E

{
R

η
φ′

(
R

η

)}
,

the scalars .σ1 and .σ2 are

.σ1 = (p + 2)2γ1
(2γ2 + p)2

, σ2 = γ −2
2

[
γ1 − 1 − 2γ1(γ2 − 1){p + (p + 4)γ2}

(2γ2 + p)2

]
.

Tyler (1983) further showed that the asymptotic variance of any scale-invariant,
continuously differentiable function h of .V̂n only depends on .σ1 and not on .σ2.
A scale-invariant function .h : Sp → R satisfies .h(αV ) = h(V ) for any .α >

0. The pseudo-deviance-test statistic (5) is such a scale-invariant function of the
scatter estimator .Ŝn. Dependence is an inherently scale-free concept. So this equally
applies to any aspect of multivariate scatter that quantifies dependence in one way or
another, may it be correlations, partial correlations, canonical correlations, principal
components, etc.

In the package robFitConGraph, the functions find_eta and find_sigma1
compute the scalars .η and .σ1, respectively, for .tν1 M-estimators in case the data stem
from a normal or an elliptical .tν2 distribution. Note that the degrees of freedom .ν1
of the estimator loss function .ρν1,p and the degrees of freedom of the population
distribution .ν2 can be generally different. If they coincide, the .tν1 M-estimator is a
maximum-likelihood estimator.

The value of .ν1 is specified by df_est and .ν2 by df_data. For both, Inf
is allowed, which corresponds to the sample covariance matrix and the normal
distribution, respectively. For find_sigma1, the input df_est = 0 is also
allowed. This corresponds to Tyler’s distribution-free M-estimator of scatter (Tyler
1987). In this case, .σ1 = 1+2/p regardless of the elliptical population distribution.
There is no .t0 distribution; hence, df_data = 0 is not allowed.

The value .σ1 can be given directly to robFitConGraph via the optional
argument sigma1. If none is provided, robFitConGraph calls find_sigma1
with df_data = Inf (i.e., assuming Gaussian data) and its argument df being
passed on as df_est to the function find_sigma1. The argument df of
robFitConGraph is optional with the default df = 3.
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3.2 The Direct vs. the Plug-in Estimate

Instead of solving (4) and (2) sequentially, an alternative approach is to directly
solve the optimization problem

.(μ̃G, S̃G) = argmin
μ∈Rp,S−1∈S+

p (G)

[∑n

i=1
ρν,p

{
(xi − μ)�S−1(xi − μ)

}
+ n log det S

]
,

(8)

with .ρν,p as in (4), leading to the estimation equations

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 =
∑n

i=1
ψν,p(r̃i )(xi − μ̃G),

[
S̃G

]

j,k
=

[
n−1

∑n

i=1
ψν,p(r̃i )(xi − μ̃G)(xi − μ̃G)�

]

j,k
, for {j, k} ∈ E or j = k,

[
S̃−1

G

]

j,k
= 0, for {j, k} /∈ E and j �= k,

(9)

where .r̃i = (xi − μ̃G)�S̃−1
n (xi − μ̃G) and, as before, .ψν,p(x) = ρ′

ν,p(x).

The estimator .S̃G shall be called the direct estimator, which is short for direct
graph-constrained .tν M-estimator, and is an alternative to the plug-in graph-
constrained .tν M-estimator. Using the function robFitConGraph, the direct esti-
mator is invoked by setting the option direct = TRUE or plug_in = FALSE.
In case of conflicting specifications, plug_in has priority, and a message will be
displayed. Contrary to the plug-in estimator .ŜG, the direct estimator .S̃G is not a
function of the corresponding unconstrained estimate .Ŝn alone.

One main theoretical result of Vogel and Tyler (2014) is the asymptotic equiv-
alence of .ŜG and .S̃G under elliptical population distributions. Hence, the limiting
distribution of the pseudo-deviance and the constant .σ1 are the same in both cases.
It may be argued that this asymptotic equivalence result favors the plug-in estimator:
Considering the elliptical distribution (6) with the fixed generator .gν,p, one defines
the elliptical-.tν graphical model .Ep(gν,p,G) analogously to the Gaussian graphical
model .Np(G). The direct graphical .tν M-estimator .(μ̃G, S̃G)with the corresponding
loss function .ρν,p is then the maximum-likelihood estimator within this parametric
family.4 So direct graphical M-estimators generalize maximum-likelihood estima-
tors, which are known to be first-order efficient. Plug-in estimators are popular with
practitioners as they are easily applied, fast to compute, and now it turns out that
they also possess desirable asymptotic properties. Direct graphical M-estimators
are generally harder to compute. They may be solved by a double-loop, iteratively

4 The parameters of interest are .μ and S. The degrees of freedom .ν are held fixed.
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reweighted least-squares algorithm, where the Gaussian model fit is nested into the
M-estimation loop.

The other half of the story is that direct graphical M-estimators can be substan-
tially more efficient in small samples as is demonstrated by simulations in Vogel
and Tyler (2014).

3.3 Ellipticity vs. Normality

Multivariate data containing outliers may be modeled conceptually in two different
ways: Either by a corrupted Gaussian distribution, i.e., a few observations are
erroneous and stem from a different, outlier-generating distribution, or by a heavy-
tailed elliptical distribution, which generates outliers itself. Using the .tν M-estimator
implicitly suggests the latter viewpoint. However, two issues arise:

(1) Many data sets exhibit features such as the anxiety data set: It is clearly not
normal as it contains outliers, but it is clearly not elliptical either as it is
skewed. Hence, we do adopt the viewpoint of corrupted normal data. In the
analysis, however, we apply outlier-resistant methods that have been derived
from considerations in the elliptical .tν model. We work on the plausible, but
not formalized assumption that they provide outlier-resistance regardless of the
outliers being scattered symmetrically around the center or not.

(2) An absent edge in a Gaussian graphical model, i.e., a zero partial correlation,
has the interpretation of conditional independence, a notion we have repeatedly
used in Sect. 2. Under ellipticity, an absent edge has the slightly weaker
interpretation of conditional uncorrelatedness. This is occasionally mentioned
as a limitation of elliptical graphical models. However, this limitation is largely
void. The conclusions of any statistical analysis are always a combination of
the information contained in the data and the modeling assumptions. When
performing a purely linear analysis based on partial correlations, concluding
conditional independences due the normality assumption certainly fall into the
latter category.

Technical Appendix

The normalizing constant in the elliptical .tν density is

.cν,p = {(ν + p)/2}
(νπ)p/2(ν/2)

,

where . is the gamma function, see, e.g., Bilodeau and Brenner (1999, Chapter 13).
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The Kronecker product .A ⊗ B of two matrices .A,B ∈ R
p×p is defined as the

.p2×p2 matrix with entry .ai,j bk,l at position .((i−1)p+k, (j−1)p+l). For a matrix

.A = (a1, . . . , ap) ∈ R
p×p, the notation .vec(A) means the .p2-vector obtained by

stacking the columns of A, i.e., .vec(A) = (a�
1 , . . . , a�

p )�. The matrix .Mp in (7) is
defined as

.Mp = 1

2

(
Ip2 +Kp

)
,

where .Ip2 denotes the .p2 × p2 identity matrix and

.Kp =
∑p

i=1

∑p

j=1
eie

�
j ⊗ eje

�
i ,

where .e1, . . . , ep denote the Euclidean basis vectors in .R
p. The matrix .Kp,

commonly referred to as the commutation matrix, is orthogonal and corresponds
to the transpose operator .Kpvec(A) = vec(A�). The idempotent matrix .Mp is
called the symmetrization matrix since it maps .vec(A) to .vec(A + A�)/2.

Acknowledgments We thank the anonymous referees for many valuable suggestions and spotting
mistakes in the originally submitted manuscript.

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders
(5th ed.). Arlington, VA: American Psychiatric Publishing.

Beesdo-Baum, K., Klotsche, J., Knappe, S., Craske, M. G., LeBeau, R. T., Hoyer, J., Strobel,
A., Pieper, L., & Wittchen, H.-U. (2012). Psychometric properties of the dimensional anxiety
scales for DSM-V in an unselected sample of German treatment seeking patients. Depression
and Anxiety, 29(12), 1014–1024.

Bilodeau, M., & Brenner, D. (1999). Theory of Multivariate Statistics. Springer Texts in Statistics.
New York: Springer.

Cai, T., Liu, W., & Luo, X. (2011). A constrained l1 minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106(494), 594–607.

Cox, W. J., & Kenardy, J. (1993). Performance anxiety, social phobia, and setting effects in
instrumental music students. Journal of Anxiety Disorders, 7(1), 49–60.

Dempster, A. P. (1972). Covariance Selection. Biometrics, 28, 157–175.
Dobos, B., Piko, B. F., & Kenny, D. T. (2019). Music performance anxiety and its relationship with

social phobia and dimensions of perfectionism. Research Studies in Music Education, 41(3),
310–326.

Drton, M., & Perlman, M. D. (2008). A SINful approach to Gaussian graphical model selection.
Journal of Statistical Planning and Inference, 138(4), 1179–1200.

Dümbgen, L., Nordhausen, K., & Schuhmacher, H. (2016). New algorithms for M-estimation of
multivariate scatter and location. Journal of Multivariate Analysis, 144, 200–217.

Dümbgen, L., Nordhausen, K., & Schuhmacher, H. (2018). fastM: Fast Computation of Multivari-
ate M-Estimators. R package version 0.0-4.

Edwards, D. (2000). Introduction to graphical modelling. Springer Texts in Statistics. New York,
NY: Springer.



Robustly Fitting Gaussian Graphical Models 295

Edwards, D., & Havránek, T. (1985). A fast procedure for model search in multidimensional
contingency tables. Biometrika, 72, 339–351.

Fernholz, I., Mumm, J. L., Plag, J., Noeres, K., Rotter, G., Willich, S. N., Ströhle, A., Berghöfer, A.,
& Schmidt, A. (2019). Performance anxiety in professional musicians: a systematic review on
prevalence, risk factors and clinical treatment effects. Psychological Medicine, 49(14), 2287–
2306.

Finegold, M., & Drton, M. (2011). Robust graphical modeling of gene networks using classical
and alternative t-distributions. Annals of Applied Statistics, 5(2A), 1057–1080.

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3), 432–441.

Hampel, F. R. (1971). A general qualitative definition of robustness. Annals of Mathematical
Statistics, 42, 1887–1896.

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69, 383–393.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (2nd ed.). Springer Series in Statistics. Springer, New York.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics,
35(1), 73–101.

Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics.Wiley Series in Probability and Statistics.
Hoboken, NJ: Wiley.

Kenny, D. T. (2009). The factor structure of the revised Kenny Music Performance Anxiety
Inventory. In International Symposium on Performance Science (pp. 37–41). The Netherlands:
Association Européenne des Conservatoires Utrecht.

Kenny, D. T. (2011). The Psychology of Music Performance Anxiety. Oxford: Oxford University
Press.

Kent, J. T., & Tyler, D. E. (1996). Constrained M-estimation for multivariate location and scatter.
Annals of Statistics, 24(3), 1346–1370.

Lauritzen, S. L. (1996). Graphical models. Oxford Statistical Science Series. Oxford: Oxford
University Press.

Lebeau, R. T., Glenn, D. E., Hanover, L. N., Beesdo-Baum, K., Wittchen, H.-U., & Craske, M. G.
(2012). A dimensional approach to measuring anxiety for DSM-5. International Journal of
Methods in Psychiatric Research, 21(4), 258–272.

Liu, H., & Wang, L. (2017). TIGER: A tuning-insensitive approach for optimally estimating
Gaussian graphical models. Electronic Journal of Statistics, 11(1), 241–294.

Marchetti, G. M., Drton, M., & Sadeghi, K. (2020). GGM: Graphical Markov Models with Mixed
Graphs. R package version 2.5.

Maronna, R. A. (1976). Robust M-estimators of multivariate location and scatter. Annals of
Statistics, 4, 51–67.

Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust statistics:
Theory and methods (with R) (2nd ed.). New York: Wiley.

Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with
the Lasso. Annals of Statistics, 34(3), 1436–1462.

Nicholson, D. R., Cody, M. W., & Beck, J. G. (2015). Anxiety in musicians: On and off stage.
Psychology of Music, 43(3), 438–449.

Nordhausen, K., Oja, H., & Tyler, D. E. (2008). Tools for exploring multivariate data: The package
ICS. Journal of Statistical Software, 28(6), 1–31.

Öllerer, V., & Croux, C. (2015). Robust high-dimensional precision matrix estimation. In K.
Nordhausen, & S. Taskinen (eds.), Modern Nonparametric, Robust and Multivariate Methods
(pp. 325–350). Berlin: Springer.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Spahn, C., Walther, J.-C., & Nusseck, M. (2016). The effectiveness of a multimodal concept of
audition training for music students in coping with music performance anxiety. Psychology of
Music, 44(4), 893–909.



296 D. Vogel et al.

Speed, T. P., & Kiiveri, H. T. (1986). Gaussian Markov distributions over finite graphs. Annals of
Statistics, 14, 138–150.

Sun, T., & Zhang, C.-H. (2013). Sparse matrix inversion with scaled lasso. The Journal of Machine
Learning Research, 14(1), 3385–3418.

Tarr, G., Müller, S., &Weber, N. C. (2016). Robust estimation of precision matrices under cellwise
contamination. Computational Statistics & Data Analysis, 93, 404–420.

Tyler, D. E. (1982). Radial estimates and the test for sphericity. Biometrika, 69, 429–436.
Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika, 70, 411–

420.
Tyler, D. E. (1987). A Distribution-Free M-Estimator of Multivariate Scatter. Annals of Statistics,

15(1), 234–251.
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New York:

Springer. ISBN 0-387-95457-0.
Vogel, D., & Tyler, D. E. (2014). Robust estimators for non-decomposable elliptical graphical

models. Biometrika, 101(4), 865–882.
Watt, S. J. (2019). Algorithms for data analysis, B.Sc. thesis. Scotland: University of Aberdeen.
Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Chichester, etc.: Wiley.
Wiedemann, A., Vogel, D., Voss, C., & Hoyer, J. (2022). How does music performance anxiety

relate to other anxiety disorders? Psychology of Music, 50, 204–2017.
Yuan, M. (2010). High dimensional inverse covariance matrix estimation via linear programming.

The Journal of Machine Learning Research, 11, 2261–2286.
Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model.

Biometrika, 94(1), 19–35.



Robust Estimation of General Linear
Mixed Effects Models

Manuel Koller and Werner A. Stahel

Abstract The classical REML estimator for fitting a general linear mixed effects
model is modified by bounding the terms appearing in the scoring equations. This
leads to a generally applicable robust M-type estimator that we call robust scoring
equations estimator. It requires only minor assumptions on the covariance matrices
(block diagonal for the random effects and diagonal, known up to scale for the
residual errors) additional to those of the classical methods. The structure of the
data is arbitrary as long as the model is estimable in the classical sense. The
estimator can detect and contain the effect of outliers in moderately contaminated
datasets. Contamination is detected and treated at all levels of variability of the
model, e.g., at both the subject and the observation level for a one-way ANOVA
model. The estimator’s properties are studied by simulation and two examples. One
example implies crossed random effects, for which the known robust methods are
not applicable.

Keywords Mixed model · Variance components · Hierarchical models · Crossed
random effects · Robustness · Huberizing

1 Introduction

Classical estimators of linear mixed models are sensitive to contamination in the
data. Simple screening of residuals from a classical fit has shown to be of limited
use even in simpler settings (Maronna et al. 2019). Mixed effects models allow
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for variability on multiple levels of the data, which makes it even easier for
contamination to hide in the data. Robust estimation methods provide the means to
automatically flag and contain the effect of outliers or other contamination. Armed
with the additional information, users of robust methods can investigate flagged
datapoints and gain insight that would otherwise have been overlooked. Therefore,
robust estimation methods are needed.

The simplest linear mixed effects model is the one-way analysis of variance
model

.Yhi = β0 + Bh + εhi, (1)

where .εhi ∼ N(
0, σ 2

)
and .Bh ∼ N(

0, σ 2
b

)
, .h = 1, . . . , H , .i = 1, . . . , Nh. It can be

written in vector form,

.Yh = Xhβ + δh, (2)

with .Xh = 1, .β = β0 and correlated error vector .δh ∼ NNh

(
0, |�h

)
, . |�h =

σ 2I + σ 2
b 11

ᵀ. For .h �= h′ the vectors .δh and .δh′ , and, therefore, .Yh and .Yh′ , are
independent.

The general form of the mixed effects model is written as .Y = Xβ + ZB + ε,
where .Y collects all the n observations of the target variable, and .X and .Z are the
design matrices for the fixed and random effects. The vector .ε of random errors
fulfills .E(ε) = 0 and .VAR(ε) = σ 2In, or, more generally, .E(ε) = 0, .VAR(ε) =
σ 2Ve with known .V e. We will assume that .V e is diagonal. Finally, .B is the vector of
random effects with .E(B) = 0, .VAR(B) = |�b. If all random variables are normally
distributed, then the entire vector .Y has a multivariate normal distribution, .Y ∼
N

(
Xβ , Z |�bZ

ᵀ + σ 2V e

)
.

This general form encompasses models with several hierarchical factors of
random effects (also called variance components) as well as crossed factors,
pedigree models, and more.

Remark 1 This form embraces even the general model of geostatistics, where .Z =
I , . |�b has a spatial structure and .ε is called the nugget effect. This forms the basis
for a robust procedure for this context, see Papritz et al. (2013). It may also help to
obtain robust estimators in time series with respect to the so-called isolated gross
errors.

In the simple case (2), . |�b = σ 2
b I . More generally, . |�b is often diagonal, and the

random effects split into independent groups g of iid components: Let .J(g) be the
index set of the random effects composing group g. Then,

.VAR
(
BJ(g)

)
= σ 2

g I . (3)

If the design .Z is hierarchical, the variances .σ 2
g are known as the variance

components, and if there is only one group, the model again reduces to (2).
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Considering deviations from the assumptions of normal distributions, a natural
model is to assume long-tailed or “gross error” distributions for the random effects
.Bj and the random errors .εi . (For the general case of correlated .Bj , see Sect. 2.)
We call this model the “Random Effects Contamination Model.” In this model,
contamination comes from different sources. Residual error contamination only
influences a single observation. Contamination of a random effect has an influence
on all the observations that contain it, but the joint distribution of these observations,
given the random effect, is not altered.

If the observations .Y split into independent subvectors .Yh, as is the case in (2),
then a multivariate contamination of the .Yh can be assumed. This idea will be called
the “Multivariate Contamination Model.”

There are several papers on robust estimation of linear mixed models in the
literature. An earlier survey can be found in Heritier et al. (2009). Most of the work
is based on the assumption of independent subvectors .Yh, i.e., on the Multivariate
Contamination Model. A first line of research follows Richardson (1997). Pinheiro
et al. (2001) developed a robust mixed model estimator based on multivariate t-
distributions of the random effects and the residual errors. They also published an
R package called heavy. A second line applies high breakdown estimators of
multivariate location and scatter to the context of linear mixed models, see Copt
and Victoria-Feser (2006), Chervoneva and Vishnyakov (2011), and Chervoneva
and Vishnyakov (2014). The notion of high breakdown applies not to single
observations but to the independent groups .Yh. Any multivariate observation .Yh can
be contaminated by just a single observation .Yhi . As known from the multivariate
location and scatter situation, this entails that a small fraction of contaminated
observations .Yhi can lead to a breakdown of these methods, see Maronna et al.
(2019, Section 6.4.2). A third line of research applies robustness on the single
observation level, called the independent contamination model in Alqallaf et al.
(2009). The Composite-.τ estimators introduced in Agostinelli and Yohai (2016),
see also Maronna et al. (2019, Section 6.15.4), are based on the independent
contamination model. The method is robust against contamination of both the
random errors and effects, but only applicable to balanced datasets.

The method proposed in this paper has been compared in simulation studies in
Agostinelli and Yohai (2016) to their method and the one proposed by Copt and
Victoria-Feser (2006). Mason et al. (2021) do the same, after evaluating two variants
of bootstrap to compute confidence intervals for the estimated parameters.

To the best knowledge of the authors, there is just one proposal based on the
random effects contamination model, introduced by Fellner (1986) and followed up
by Stahel and Welsh (1997). It has been introduced and studied only in the multi
group situation (1) and is limited to a diagonal covariance matrix of the random
effects. The present paper generalizes this approach.

This paper is an excerpt of Manuel Koller’s dissertation (Koller 2013). The
simulation studies presented in Sects. 4.2 and 4.4 are new. A more accessible
introduction to the method presented here together with practical instructions on
tuning the method has been published in Koller (2016).
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The paper is organized as follows. The classical estimating equations for the
general mixed effects model are reviewed in the next section. A robust version is
introduced in Sect. 3, and its properties are evaluated in Sect. 4. We analyze two
examples in Sect. 5 and conclude with Sect. 6.

2 The Model and Classical Estimation

The linear mixed effects model is, as introduced above, .Y = Xβ + ZB + ε with
.ε ∼ N(

0, σ 2Ve

)
, where .Ve is assumed to be diagonal and known a priori. For later

convenience, we write the covariance matrix of .B as .σ 2Vb(θ), .B ∼ N(
0, σ 2Vb(θ)

)
.

.B shall be independent of .ε. The notation .Vb(θ) reflects that .Vb depends on
parameters .θ . In the case (3) of grouped random effects, .σ 2θ2g = σ 2

g is the variance
of the group .BJ(g) of the random effects. For most of our development, we will
assume that .Vb(θ) is diagonal or block diagonal.

As convention for indices, we use

.i = 1, . . . , n for observations .Yi .

.j = 1, . . . , J for random effects .Bj .

.k = 1, . . . , K for diagonal blocks in .Vb(θ) of size .m(k); if .Vb(θ) is diagonal,
then .k = j .

.� = 1, . . . , L for the covariance parameters .θ�, and

.g = 1, . . . ,G for any independent groups of random effects, with index sets .J(g)

and .VAR
(
BJ(g)

)
= σ 2

g I (see (3)); if .B only consists of such groups and .Vb is

diagonal, then .g = �.

Following Bates (2010), we use an alternative formulation of the model based on
spherical random effects .B∗. They are defined by the relation .B = Ub(θ)B∗, where
.Ub(θ) is the lower triangular Cholesky factor of .Vb(θ). This avoids numerical
problems with vanishing variance components. The model then is .Y = Xβ +
ZUb(θ)B∗ + Ue ε∗, .B∗ ∼ N(

0, σ 2I q

)
, .ε∗ ∼ N(

0, σ 2In

)
, .B∗ ⊥ ε∗. Here, we

have also replaced .ε with .ε∗ = U−1
e ε, where .Ve = Ue U

ᵀ
e .

Next, we need a suitable form of the likelihood. To be able to separate the random
components as discussed in the Introduction, we consider the likelihood treating the
random effects as observed and insert the best linear unbiased predictor (BLUP) of
the random effects (for a derivation, see Searle et al. 1992, Chapter 7). This gives a
pseudo-likelihood

.d̂
(
θ , β, σ,b∗|y) = n log 2π + log

∣∣∣σ 2[ZUb(θ)(ZUb(θ))ᵀ + V e

]∣∣∣ + (
ε∗(β,b∗)ᵀε∗(β,b∗) + b∗ᵀb∗)/σ 2 ,

(4)
where .ε∗(β,b∗) = U−1

e (y− Xβ − ZUb(θ)b∗). We drop the dependency of .Ub(θ) on .θ in our
notation from now on and only write .Ub instead.

We will robustify on the level of estimating equations. To get them, we need
the partial derivatives of (4). The MLE results from equating them to zero. It is well
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known that this leads to biased estimates for .σ 2 and .σ 2Vb(θ). The restricted maximum
likelihood (REML) estimates are obtained by equating partial derivatives to their
expected values instead of 0 (Stahel & Welsh 1997). After some more rewriting this
yields

.XᵀU−ᵀ
e ε∗(β̂ , b̂*)/σ̂ = 0 ,

(
U

ᵀ
b ZᵀU−ᵀ

e ε∗(β̂ , b̂*) − b̂*
)
/σ̂ = 0 ,

ε̂∗ᵀε̂* = E0

[
ε̂∗ᵀε̂*

]
, . (5)

b̂∗ᵀQ�(̂θ )̂b* = tr
(
E0

[̂
b*b̂∗ᵀ]

Q�(̂θ )
)

for � = 1, . . . , L , (6)

where

.Q�(θ) = Ub(θ)−1 ∂Ub(θ)

∂θ�

,

and .̂ε* = ε∗(β̂ , b̂*). .E0 denotes expectations with respect to the standard normal distri-
bution of .ε∗ or .b∗. These expectations are computed using the linear approximations
developed in Appendix.

Note that in the diagonal case with the iid group structure (3), .Q�(θ) reduces to
ones and zeroes and, therefore, each instance .� of the fourth equation reduces to one
that looks like the third,

.̂b∗ᵀ
J(g)

b̂*J(g)
= E

[
b̂∗ᵀ
J(g)

b̂*J(g)

]
.

3 The Robust Scoring Equations Estimator

We will first robustify the above estimating equations assuming a diagonal covari-
ance matrix .Vb(θ) of the random effects. In the second step, we will relax this
assumption.

3.1 Estimation for Diagonal Vb

To robustify the first two estimating equations, we replace the spherical random
effects and the residuals by a bounded function .ψ of themselves. According to our
assumptions, all the terms are independent and we apply the .ψ-function compo-
nentwise, using the notation .ψ(x) = [ψ(x1), . . . , ψ(xi ), . . .]ᵀ. The first two estimating
equations then read

.XᵀU−ᵀ
e ψe

(
ε̂*/σ̂

) = 0 , . (7)

U
ᵀ
b ZᵀU−ᵀ

e ψe

(
ε̂*/σ̂

)
/λe − ψb

(̂
b*/σ̂

)
/λb = 0 , (8)
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where .λe = E0
[
ψ ′

e

]
and .λb = E0

[
ψ ′

b

]
, .Eo denoting the expectation for the central model

with scale 1—the standard normal distribution. These factors are introduced to
balance the .̂ε* and .̂b* terms in case different .ψ-functions are used, by making the
influences of the two terms approximately independent of the choice .ψ-functions
and thus their ratio equal to its value in the classical case (for more detail, see Koller
2013, p.32). If there are groups g of random effects, different .ψb-functions can be
used for different groups, and this leads to a straightforward generalization of (8)
covered by the formulas of the next subsection.

For the estimating equations for .σ and .θ, we apply the basic idea of the Design
Adaptive Scale (DAS) approach described in Koller and Stahel (2011). Its starting
point is the well-known fact that the variances of the residuals are smaller than
the error variance and they vary individually according to the design. Let the
covariance matrix of the residuals .̂ε* (for given .σ and .θ) be .σ 2V ∗

e , and analogously,
.VAR

(̂
b*

) = σ 2V ∗
b. Approximations to .V ∗

e and .V ∗
b are given in Appendix. The idea of the

DAS approach is to focus on standardized residuals .̂ε∗
i /(τe,iσ ) with .τ 2e,i = V ∗

e,ii and to
write (5) as .

∑
i τ 2e,i

[
(̂ε∗

i /(τe,iσ ))2 − 1
] = 0. Robust estimation is achieved by introducing

robustness weights of standardized residuals in the form

.
∑

i

τ 2e,iw
(σ)

(
ε̂∗
i

/(
τe,i σ̂

) )[(
ε̂∗
i

/(
τe,i σ̂

) )2 − κσ

]
= 0 (9)

κσ = E0

[
w(σ)(z)z2

]/
E0

[
w(σ)(z)

]
,

where .w(σ) is a weighting function. We discuss choices of weighting functions in
Sect. 3.4. Analogously, we write for the estimation of .θ in the case of diagonal .V b

.
∑

j

τ 2b,jw
(�)

(
b̂∗
j

/(
τb,j σ̂

))
Q�,jj

(
θ̂
)[(

b̂∗
j

/(
τb,j σ̂

))2 − κ�

]
= 0 , � = 1, . . . , L ,

(10)
where .τ 2b,j = V ∗

b,jj and .κ� is determined as .κσ is.
The more sophisticated version of the DAS approach determines the scaling

factor .τe,i by zeroing the expectation of each term of the sum in (9) in a more precise
fashion than is achieved by standardizing the .̂ε∗

i . To this end, .̂ε∗
i is split according

to (15) into a term containing .ε∗
i and a remainder .Ri ,

.̂ε∗
i /σ ≈ ε∗

i /σ − (Aee)iiψe

(
ε∗
i /σ

) − Ri

Ri =
∑

h�=i

(Aee)ihψe

(
ε∗
h/σ

) +
∑

j

(Aeb)ijψb

(
b∗
j /σ

)
.

The remainder .Ri is independent of .ε∗
i and has approximately a normal distribution,

the variance of which is obtained in a straightforward manner. Then, .τi is determined
by calculating expectations based on integration over the distribution of .ε∗

i /σ and
.Ri . The idea also applies to the estimation of .θ . For details, see Appendix.
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The method proposed in this paper is defined as the simultaneous solution
of Eqs. (7) to (10). Since these are robustified versions of the classical scoring
equations, we call the method the Robust Scoring Equations (RSE) estimator.

3.2 Estimation for Block Diagonal V b

If the covariance matrix .Vb(θ) of the random effects is block diagonal instead of
completely diagonal, bounding and weighting is based on a multivariate view of
each block. If .bk denotes the sub-vector corresponding to the kth diagonal block
.V k of .V b, the bounding and weighting functions shall depend on the (squared)
Mahalanobis norm of .bk or, equivalently, on the (scaled) norm of .b∗

k . Sensible
weighting will depend on the dimension .m(k) of .b∗

k . We, therefore, choose a
weighting function .wb,m and let

.ψk(zk) = wk

(
zᵀk zk

)
zk , zk ∈ Rm(k)

ψb(z) = (ψk(zk))k=1,...,K ,

where .wk usually depends on k only through .m(k), .wk = wb,m(k). The second
estimating equation (8) is

.U
ᵀ
b ZᵀU−ᵀ

e ψe(̂ε*/σ)/λe − �−1
b ψb

(
b∗/σ

) = 0 . (11)

Here, .�b is a diagonal matrix with elements depending on the functions .wk(j)

through the block size .mk(j) ,

.�b = Diag
(
λb

(
k(j),mk(j)

))
j=1,...,J

λb(k,m) = E0,m
[
2w′

k(u)u
]/

m + E0,m[wk(u)] ,

where .E0,m denotes the expectation over the .χ2
m distribution.

The fourth equation determines the estimated covariance matrix of the blocks of
random effects .bk . Equivariant M-estimation of a covariance matrix is, following
Stahel (1987), based on choosing two weighting functions .w(η) and .w(τ), which
determine the influences on the shape and the size of the covariance matrix,
respectively. It is convenient to introduce a third, derived, weight function .w(δ) to
simplify notation in the estimating equation below,

.w(δ)(u) =
(
uw(η)(u) −

(
u − mκ

(τ)
b

)
w(τ)

(
u − mκ

(τ)
b

))/
m ,

where .κ
(τ)
b fulfills

.E
[(

u − mκ
(τ)
b

)
w(τ)

(
u − mκ

(τ)
b

)]
= 0 for u ∼ χ2

m .
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Then, the estimating equation for a covariance matrix . |� is

.
∑

i

w(η)
(
xᵀi |�−1xi

)
xix

ᵀ
i = |�

∑

i

w(δ)
(
xᵀi |�−1xi

)
.

Alternatively, one can search for the (lower triangular) standardization matrix .U

such that

.
∑

i

w(η)
(
zᵀi zi

)
ziz

ᵀ
i = I

∑

i

w(δ)
(
zᵀi zi

)
,

with .zi = Uxi , and then estimate . |� by .U−1U−ᵀ.
Using this idea, we turn to the estimation of the covariance matrix .σ 2V k of .Bk ,

which can be formulated as determining .U k such that .VAR
(
B∗

k

) = I . We again
propose to use the covariance structure .V ∗

b of the estimated random effects .̂b* to
standardize them. This leads to the robustified fourth equation

.
∑

k

[
w

(η)

m(k)

(
‖T −1

k b̂*k/σ̂‖2
)
b̂∗ᵀ

k Q�,k(̂θ )̂b*k/σ̂
2 − w

(δ)
m(k)

(
‖T −1

k b̂*k/σ̂‖2
)
tr
(
V ∗

kQ�,k(̂θ )
)
]

= 0 ,

(12)

where .Q�,k(̂θ ) is the .m(k) × m(k) submatrix of .Q�(̂θ ) which acts on block k and .T k

is a square root of .V ∗
k = E0,m

[̂
b*k b̂

∗ᵀ
k

]
.

The refined DAS approach can also be extended to this case, see Appendix.

Remark 2 In the classical case, the linear approximations for .̂b* and .̂ε* are exact, and the
estimating equations (9, 12) reduce to the REML estimating equations (5, 6).

Remark 3 In the case of general . |�b in the sense of Remark 1, robustification of the random
effects and the respective parameters cannot be achieved along these lines, since there are no
independent replications of parts of .B. Robust methods would need to rely on formalizing a
notion of vicinity in space or time.

3.3 Computation

Solutions to these equations are best found by using a nested iterative reweighting
algorithm. The outer loop is updating .̂θ until it converges. For each new value of .̂θ ,
.̂β and .̂b* and then .̂σ are updated. A complete description of the algorithm can be
found in Koller (2013, Section 3.1.3 and Section 3.2.3).

Initial estimates are required to start the above procedure. For bounded, mono-
tone .ψ-functions, the solution can be expected to be unique aside from pathological,
easily discarded solutions, whence starting from the classical estimates is fine. To
get a high breakdown point, one would have to use redescending .ψ-functions and
a suitable high breakdown initial estimate. The authors do not know of any such
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estimator for the general model. It would be interesting to explore possibilities of
generalizing the idea of S-estimation to the setup of estimating more than one scale
parameter (variance component) in the framework presented here.

The methods are implemented in the R package robustlmm (Koller 2016).

3.4 Choices of ψ and w

A simple and reliable choice of a .ψ-function is what we call the smoothed Huber
function. It is defined as

.ψ(x; c, s) =
{

x |x| ≤ c0

sign(x)
(
c − 1

(|x|−c1)
s

)
otherwise

,

where .c0 = c − s−s/(s+1) and .c1 = c0 − s1/(s+1). Compared to the regular Huber .ψ-
function, it has a smooth transition from the ascending linear to the flat part. (We
use .s = 10 throughout this paper.) This modification of the classical Huber function
is meant to avoid numerical problems.

We will now discuss how to choose the tuning constant c for the .ψ—and w-
functions for each estimating equation in turn.

For .ψe used in (7), the tuning parameter c can be chosen as a suitable quantile of
the standard normal distribution that determines the expected proportion of trimmed
residual errors, or, as we prefer, according to efficiency. To simplify the computation
of asymptotic efficiency, one may consider the estimating equation (7) on its own
as a simple M-estimator of regression with known scale. Formulas to compute
asymptotic efficiencies and tables for a range of choices of c can be found in Koller
(2013, Appendix B.2.1 and B.3) and Koller (2016, Appendix A). For the Huber and
the smoothed Huber .ψ-function, .95% asymptotic efficiency is reached for .c = 1.345.

For .w(σ) used in (9), maximum likelihood for long-tailed distributions of errors
and random effects would lead to .w(σ)(x) = ψe(x)/x. For monotone .ψ , this leads
to unbounded .w(σ)(x)x2 and consequently to unbounded influences on .̂σ . We
recommend to use the squared robustness weights instead, .w(σ)(x) = (ψe(x)/x)2,
just as in Huber’s Proposal 2 for estimating location and scale. The squaring comes
with an efficiency loss, so one has to use a larger tuning parameter in order to reach
the same efficiency as with regular robustness weights. Similar to the case for .ψe

considered above, one may treat the estimating equation as simple M-estimator
of scale in order to approximate the efficiency. For the Huber and the smoothed
Huber .ψ-function, .95% asymptotic efficiency is reached for .c = 2.28. For increased
robustness, one may also use the same tuning parameter as for .ψe, but this would
lead to an asymptotic efficiency of .71%.

For .ψb used in (8) or (11), the choice of c depends on whether the covariance
matrix .Vb(θ) is diagonal or block diagonal. In the diagonal case, one may use the
same tuning parameter considerations as for .ψe. We generally use the same tuning
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parameter as for .ψe. In the block-diagonal case, the (squared) Mahalanobis norm is
used as an argument, which requires considerably larger tuning parameters that also
depend on the size of each block. Using squared robustness weights is not necessary
in the block-diagonal case. We prefer to choose the tuning parameter according to
the efficiency of the weight function .w(τ) that controls the size of the covariance
matrix. With .c = 5.14, this efficiency is about .95%.

For .w(�) used in (10) in the diagonal case, the same considerations as for .w(σ)

apply. We prefer to use the same tuning parameter as for .w(σ).
For .w(η) and .w(τ) used in (12), one would technically have to use different tuning

parameters to achieve about the same efficiency. But we prefer to keep things simple
and use the same tuning parameter as for .ψb for both of them as well.

3.5 Robust Tests

For testing fixed effects in mixed effects models, exact tests are only known for
some special data structures even in the classical setup. For the general case, only
approximating methods are available. For the robust RSE estimator proposed here,
an approximate covariance matrix .V β = VAR

(
β̂

)
of the estimated fixed effects is

given by (17) in Appendix. This leads in the usual way to a Wald type test with test
statistic

.TW = (β̂ − β0)
ᵀV̂ β

−1
(β̂ − β0) ≈∼ χ2

p ,

where p is the dimension of .β, and to an approximate confidence region of
.

{
β | (β̂ − β)ᵀV̂ β

−1
(β̂ − β) ≤ q

}
, where q is the suitable quantile of .χ2

p.
Testing for variance components against 0 is difficult in the given setting, where

only estimating equations are used and no likelihood is available. Note that testing
for zero variance components is inherently difficult already in the classical case as
the null hypothesis is on the boundary of the parameter space.

The wild bootstrap provides a general tool for constructing tests and confidence
intervals. It has been applied to the linear mixed model by Mason et al. (2021).
Since the bootstrap samples are by construction contamination-free, one can use
the classical method to fit the model for the bootstrap samples. Mason et al. (2021)
have found that the confidence intervals computed using wild bootstrap for the RSE
method proposed here have an equal coverage to those computed using parametric
or wild bootstrap for the classical method when there is no contamination. In case
of contamination, the confidence interval coverage is affected more for the classical
method than for the RSE estimator.
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4 Properties of the Robust Scoring Equations Estimator

Robust estimators should show limited influence of single observations or small
subgroups and be reasonably unbiased and efficient at the central model as well
as less biased and more efficient than the classical method for contaminated
distributions. We examine these issues in turn. All the R code needed to replicate
the simulation studies is available in Koller (2022).

The following subsections feature two differently tuned versions of the proposed
RSE method as well as up to three other estimators for comparison. We introduce
them here, including the tuning parameters used, so that cross-comparisons between
subsections are easily possible. The estimators are

lme the classical Restricted Maximum Likelihood estimator as implemented in
the lme4 R package by Bates et al. (2015).

RSEa the robust scoring equations (RSE) estimator with smoothed Huber .ψ and
weighting functions. We adjust .w(σ) and .w(1) to obtain the same efficiency
for .̂σ and .̂θ as for the effects. The tuning parameters are .c = 1.345 for .ψe and
.c = 2.28 for .w(σ). In the diagonal case (Sects. 4.1 and 4.2), we use .c = 1.345
for .ψb and .c = 2.28 for .w(1). In the block-diagonal case (Sect. 4.4), we use
.c = 5.14 for .ψb, .w(η) and .w(τ). We use squared robustness weights for .w(σ)

and .w(1), the latter in the diagonal case only.
RSEn the same method, without efficiency adjustment, that is, using .c = 1.345

also for the weighting functions .w(σ) and .w(1) in the diagonal case and
analogue in the block-diagonal case.

cTau the Composite-.τ estimator of Agostinelli and Yohai (2016) as implemented
in the robustvarComp R package by Agostinelli and Yohai (2019), using
the optimal .ψ-function with tuning parameters .c1 = 1 and .c2 = 1.643168. As
initial estimator we use covOGK.

S the S-estimator of Copt and Victoria-Feser (2006), using the implementa-
tion in the robustvarComp R package using the Rocke .ψ-function with
asymptotic rejection probability set to .0.01. As initial estimator we use
covOGK.

4.1 Sensitivity Curves

Sensitivity curves give intuitive, valuable insight into the way a method achieves
robustness.

For one-way ANOVA-type datasets using model (1), there are three ways of
obtaining sensitivity curves:

(a) Changing the response of a single observation
(b) Moving the responses of a whole group, i.e., changing the random effect

corresponding to this group
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Fig. 1 Sensitivity curves for a balanced one-way dataset with 10 groups of 5 observations. The
gray lines indicate the true values. Explanation of (a) Shift of first observation. (b) Shift of first
group. (c) Scaling of first group, see text

(c) Changing the spread of the observations of a group around their expectation
given the (simulated) random effect

For a randomly generated dataset of 10 groups with 5 observations each, the three
sensitivity curves are given in Fig. 1. The values of the three estimators for the
unchanged sample –zero shift or unit scale– are naturally different, and only the
shapes of the curves should be interpreted.

The robust estimators show the flattening of the curves towards extreme changes,
except for the estimated random effect .b1 when the whole first group is shifted or
scaled. As is to be expected, the efficiency adjusted version, which uses a larger
tuning constant for .w(1), is more sensitive to the changes than the unadjusted version.
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4.2 Efficiency and Robustness, Diagonal Case

We examine properties for a completely crossed design with a fixed effects factor
of 3 levels, a random effects factor of 5 levels, and 10 observations for each
combination, leading to 150 observations in total. The true values were 1 for the
intercept (.β0) and for the group contrasts (.β1, .β2), 4 for .σ and 1 for .θ , where
.σb = σθ is the standard deviation of the random effects. For .1, 000 replicates, we
compute the estimators listed in Sect. 4. The methods proposed by Pinheiro et al.
(2001) using heavy-tailed distributions (heavyLme) and by Geraci and Bottai (2014)
using a linear quantile mixed model (lqmm) were also computed but showed poor
performance here and for the block-diagonal case in the next subsection.

For the error and random effects distributions, we used the appropriately scaled
versions of

N the standard normal distribution
CN a “fixed mixture” or “contamponent” of 90% standard normal samples with

10% from a shifted normal, .N(4, 1)—the “contaminated normal” distribution
t3 the t distribution with 3 degrees of freedom

skt3 the skewed t distribution with 3 degrees of freedom and skewing parameter
.γ = 2 as introduced by Fernández and Steel (1998). We use the implementa-
tion in the R package skewt by King and Anderson (2021)

The CN and skt3 distributions were centered by shifting them such that the Huber
Proposal 2 location functional, with tuning constant .c = 1.345, becomes zero for the
shifted distribution. These and the t3 were scaled in order to bring the Proposal 2
scale to one.

An analogous simulation has been carried out for the one-way model considered
in the last Sect. 4.1. Since the results have been very similar, they are not reported
here.

Figure 2 shows the results for selected combinations of distributions of the
random errors and effects. The results show that

1. All estimators perform very similarly to the classical estimator for the normal
(N/N) model and also if the random effects alone are contaminated (N/CN).
The two scenarios show the largest differences for .σb. The efficiency adjusted
RSE estimator RSEa is closest to the classical estimator lme, whereas the
unadjusted RSE estimator RSEn is even slightly closer to the true value than
lme. The Composite-.τ estimator cTau and the S-estimator are biased downwards
for .σb in both the normal model and also if the random effects alone are
contaminated. cTau consistently produces the smallest average estimate for .σb

over all scenarios.
2. The overall performance for the two versions of the RSE estimator and cTau is

quite comparable, but the S-estimator is less robust. For .σ , the S-estimator’s bias
is very similar to lme’s. The S-estimator loses a little less efficiency than lme for
the regular and skewed .t3 scenarios, but clearly more than the other estimators.
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3. The RSE estimator is more efficient than the others for .β1 and .β2. Both cTau

and S have difficulty with contaminated normal errors (CN/N and CN/CN), their
efficiency loss is almost the same as for lme.

4. The efficiency adjustment for RSEa leads to an efficiency gain and loss of degree
of robustness for .σ and .σb that is to be expected.
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Fig. 2 Simulation results for the diagonal case. The left column shows a robust location estimate
of the simulated estimates for the diverse methods and the five parameters .β0, β1, β2, σ, σb . The
true values are indicated by gray horizontal lines. Deviations from them thus represent biases.
The right column shows robust scale parameters –measures of simulated standard errors– in an
analogous way
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4.3 Coverage Probabilities, Diagonal Case

In order to examine the validity of tests and confidence intervals for the fixed effects,
coverage probabilities for the latter were simulated for the preceding model. The
results for .β0 and .β1 are shown in Fig. 3. (Results for .β2 are very similar to those for
.β1.)

For the normal model (N/N) as well as contaminated effects (N/CN), the RSE
method performs very similarly to the classical lme. For other distributions of the
random error term, the method with efficiency adjustment of the scale parameter
shows conservative coverage, whereas the version using the unadjusted tuning
constant performs well. The results for cTau and S are clearly worse. The block-
diagonal case discussed next produced similar results, except for cTau, which
performed about the same as lme and RSE.

4.4 Efficiency and Robustness, Block-Diagonal Case

For the block-diagonal case, the model of the Sleep Study example (see Sect. 5.2)
forms the basis of simulations. In this example, 18 subjects (blocks k) produce Y

values for 10 time points x. The model for the blocks is a simple linear dependency
of the target variable on time, with random intercept and slope,

.Yk = β0 + β1x + B0,k + B1,kx + εh , x = [1, 2, . . . , 10]ᵀ ,

U k =
[

θ1 0

θ2 θ3

]

, V k = VAR
([B0,k, B1,k]ᵀ

)
/σ 2 =

[
θ21 θ1θ2

θ1θ2 θ22 + θ23

]

. (13)
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Simulations consisted on .1, 000 replicates, setting the classically estimated values as
true parameters. The same distributions and estimators as in the diagonal case are
examined, using the .ψ—and w-functions described in Sect. 4.

The results, shown in Fig. 4, show that the first two conclusions of the diagonal
case are confirmed. The slight advantage of the RSE estimators over the Composite-
.τ disappears as well as the efficiency gain of the non-adjusted version.
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The results for the correlation B.corr between the random intercept and slope
with the combination of contaminated random errors and normal random effects
(CN/N) are surprising. A closer look at the distributions of the estimated correlation
in Fig. 5 (last row, 3rd column) reveals that the value is often 1, and in fact,
the algorithm then often converges to a phony solution, for which the estimating
equations are not fulfilled. This also happens for other combinations of distributions
and notably also to the classical lme estimator. Table 1 shows the frequencies of
this event. Further research is needed to analyze this problem and potentially find a
remedy.

Fig. 5 Simulated distribution of estimates in the block-diagonal case. The green horizontal line
marks the true value. The plotting function applies a robust “inner” plotting range in order to
avoid the dominance of rare, extreme values. Where plotting overshoots the range defined by the
solid plotting box, the respective elements of the plot are transformed nonlinearly to appear in the
respective margin anyway
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Table 1 Percentages of
estimated correlation of
(almost) 1 or .−1 of the
random effects .B0 and .B1 for
the examined combinations of
distributions

Method N/N N/CN CN/N CN/CN t3/t3 skt3/skt3

lme 1.6 0.6 8.6 3.0 7.2 10.1

RSEa 8.0 3.6 25.9 11.7 12.0 13.0

RSEn 7.9 3.7 17.7 7.7 9.2 11.1

cTau 0.1 0.0 0.1 0.0 0.0 0.0

S 0.1 0.1 0.0 0.0 0.0 0.0

5 Examples

We apply the methods to two examples, a dataset with crossed random effects and
a longitudinal dataset with a random intercept and slope.

5.1 Penicillin Data

The study of Davies and Goldsmith (1972), used as an example in Bates (2010),
was run to . . .

. . . assess the variability between samples of penicillin by the B. subtilis method. In this test
method a bulk-inoculated nutrient agar medium is poured into a Petri dish of approximately
90 mm. diameter, known as a plate. When the medium has set, six small hollow cylinders or
pots (about 4 mm. in diameter) are cemented onto the surface at equally spaced intervals. A
few drops of the penicillin solutions to be compared are placed in the respective cylinders,
and the whole plate is placed in an incubator for a given time. Penicillin diffuses from the
pots into the agar, and this produces a clear circular zone of inhibition of growth of the
organisms, which can be readily measured. The diameter of the zone is related in a known
way to the concentration of penicillin in the solution.

The dataset thus implies a balanced two-way ANOVA model with two random
effects: sample with six levels and plate with 24 levels. These random effects are
completely crossed. Other current robust estimating methods, except for the one of
Fellner (1986), cannot be applied here since the observations cannot be split into
independent groups.

To make things more interesting, we slightly modified the original dataset.
We scaled the first plate’s observation values down and we moved one further
observation down to the lowest original observation. The modified dataset is shown
in Fig. 6.

We fit the model in R (R Core Team 2014) using function rlmer of the R
package robustlmm published on CRAN (Koller 2016). The results of the classical
and robust fits are shown in Table 2. For the robust fit, we use the RSE method
tuned for 95% asymptotic efficiency. The robust method detects both alterations and
contains their effects. The plate variance component is only slightly elevated, much
less so than with the classical estimator. Increasing the severity of the contamination,
i.e., shifting down the first group even more, only slightly influences the robust
estimates, since the influences of the contamination on the estimates have already
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Fig. 6 Diameters of growth inhibition zones of 6 samples applied to each of 24 agar plates to
assess penicillin concentration. The lines join the observations of the same sample. The plates
have been reordered according to their mean response values. The observations displayed with
larger symbols have been modified to introduce some contamination

Table 2 Fitted models for the Penicillin example. The classical fits were computed with lmer.
The robust fits were computed using rlmer and the smoothed Huber function with tuning
constant .c = 1.345 for both .ψe and .ψb. For the variance components, weights were used with
.c = 2.28 (adjusted efficiency). The results are shown for the original and the modified data

Original Modified

Data estimation Classical Robust Classical Robust

Intercept 23.0 23.0 22.8 23.0

(std. error) (0.809) (0.843) (0.85) (0.848)

Random effects

B0.sd (plate) 0.847 0.869 1.409 0.939

B1.sd (sample) 1.932 1.964 1.955 1.967

.σ 0.550 0.545 0.609 0.566

reached the plateau. The classical estimates, on the other hand, will show a dramatic
increase in the estimated variance component—rendering the estimate useless just
because of one contaminated group.

5.2 Sleep Study

Belenky et al. (2003) studied the effects of sleep deprivation. 18 subjects chosen
from a population of long distance drivers were allowed to sleep for only three
hours each night for 10 days in a row. Each subject’s reaction time was measured
several times and averaged on each day of the trial.
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Fig. 7 Reaction times of subjects versus days of sleep deprivation. Each subject is shown in a
separate facet. The dashed black and dotted red lines show the fixed plus random effects obtained
by the classical and the robust methods, respectively. The darkness of the bullets reflects the
observation level robustness weights we. The subjects are ordered by increasing intercept

A model to study the average increase of reaction time per day allows for
a random intercept and a random linear effect of the day for each subject. The
expected values of these two effects form the fixed effects. This results in a block-
diagonal covariance matrix of the random effects, described by Eq. (13).

The data, the fitted values for classical and the robust fits as well as a robust
per-subject fit are shown in Fig. 7. For the robust fit, we use the RSE method
tuned for 90% asymptotic efficiency. While most of the subjects follow the general
population fit quite closely, others, such as subject 335, show even a negative trend.
Nevertheless, the robustness weights for the random effects do not show any clear
outliers. Subject 309 is given a robustness weight of 0.69, the lowest of all the
subjects. Subject 335 is given a weight of 0.81. There are only a small fraction
of observations with a low robustness weights on the random error level. The
observation on day 6 for Subject 332 is given the lowest robustness weight (value
0.15).

The estimated classical and robust coefficients are summarized in Table 3. The
estimates for the fixed effects are nearly identical. The robust estimator almost
doubles the random effects’ standard deviations and reduces the random errors’
standard deviation, compared to the classical fit. The correlation of the two random
effects turns from slightly positive to slightly negative. This negative trend is clearly
visible in the scatterplot of the predicted random effects shown in Fig. 8.
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Table 3 Fitted models for
the Sleep Study example.
Approximate standard errors
are shown in parentheses.
Estimators are the same as for
Table 2, except for the tuning
constants. They are c = 1 for
ψe, c = 2.09 for w(σ),
c = 3.011 for ψb (wk), and
c = 3.8 for w(η) and w(τ)

Estimation Classical Robust

Fixed effects

Intercept β0 251.4 251.8

(std. error) (6.82) (7.87)

Days β1 10.5 10.8

(std. error) (1.55) (1.72)

Random effects

B0.sd 24.74 29.59

B1.sd 5.92 6.59

Correlation b.corr 0.0656 −0.0751

σ 25.6 19.6

Fig. 8 Scatterplot of the
predicted random effects of
the robust fit for the Sleep
Study example
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6 Conclusions

We have developed a robust and flexible method of estimating linear mixed effects
models robustly by robustifying the classical estimating equations. Aside from
minor assumptions on the covariance matrices of the random effects (requiring a
block-diagonal matrix), and the residual errors (diagonal matrix, know up to a scale),
we do not make any additional assumptions to those for the classical methods. The
structure in the data, given by the design matrices .X and .Z, is arbitrary as long as
the model is estimable in the classical sense.

The main advantage of the proposed RSE estimator lies in its generality.
The competitors all cover only special mixed models. This is even true for the
Composite-.τ , which turns out to perform equally well as the robust estimating
equations method in the simulations.

The limited assumptions make it difficult to derive some sort of asymptotic
results. As in the classical case, such results will have to be established on a case by
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case basis (Miller 1977). However, the simulation study discussed in Sect. 4 suggests
that the asymptotic properties are as one expects from such a method.

The method has been implemented in the R package robustlmm and is freely
available on the official repository, CRAN. It comes with a vignette containing more
detailed examples and information on how to choose the .ψ-functions. The main
function has the same arguments as lmer of the R package lme4 by Bates et al.
(2015). This enables a quick and easy way of checking the classical estimates for
biases caused by contamination.

Acknowledgments The authors would like to thank Kali Tal for providing editorial help with an
earlier version of the manuscript.

Appendix

Linear Approximation of Estimated Quantities

In this section, we develop linear approximations to the residuals .̂ε* and the
estimated random effects .̂b*. We use these linear approximations to compute the
expected values in the estimating equations as well as the scaling factors .τ used in
the DAS approach.

Let .�β = β̂ − β, .�b∗ = b̂* − b∗, .ψ∗
e = ψe(ε

∗/σ)/λe, .ψ∗
b = �−1

b ψb(b∗/σ), .De =
Diag

(
ψ ′

e(ε
∗/σ)

)
/λe, .Db = �−1

b Diag(w′
b(uk)b∗

kb
∗ᵀ
k /σ 3 +wb(uk)I Jk

/σ )k=1,...,K with .uk =
b∗ᵀ

k b∗
k/σ

2, .X∗ = U−1
e X, and .Z∗ = U−1

e ZUb.
We linearize around .β and .b∗, which will be the “true” .β and .B∗ later on,

.ψe(̂ε*/σ)/λe ≈ ψ∗
e −De

(
X∗�β + Z∗�b∗)/σ , and �−1

b ψb

(̂
b*/σ

) ≈ ψ∗
b+Db�b∗/σ .

Plugging these expressions into the estimating equations (7), divided by .λe, and (11)
and combining both equations into one yields

.

[
MXX MXZ

MZX M̂ZZ

][
�β/σ

�b∗/σ

]

≈
[

X∗ᵀψ∗
e

Z∗ᵀψ∗
e − ψ∗

b

]

,

where

.MXX = X∗ᵀDeX
∗ , M̂ZZ = MZZ + Db , MZZ = Z∗ᵀDeZ

∗ ,

MXZ = X∗ᵀDeU
−1
e Z∗ , and MZX = M

ᵀ
XZ .
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Using the formula for the inversion of a partitioned matrix, we have

.

[
�β/σ

�b∗/σ

]

≈
[

Mββ Mβb

Mbβ Mbb

][
X∗ᵀψ∗

e

Z∗ᵀψ∗
e − ψ∗

b

]

, (14)

where

.Mbb =
(
M̂ZZ − MZXM−1

XXMXZ

)−1
, Mββ = M−1

XX + M−1
XXMXZMbbMZXM−1

XX ,

Mβb = − M−1
XXMXZMbb , and Mbβ = M

ᵀ
βb

or, equivalently,

.Mββ =
(
MXX − MXZM̂

−1
ZZ MZX

)−1
, Mbb = M̂

−1
ZZ + M̂

−1
ZZMZXMββMXZM̂

−1
ZZ,

Mbβ = − M̂
−1
ZZMZXMββ , and Mβb = M

ᵀ
bβ .

Plugging this into (14), we get an approximation for the residuals and for the
estimated random effects,

. ε̂* = U−1
e

(
y − Xβ̂ + ZUb b̂*

) = ε∗ − X∗�β + Z∗�b∗ ≈ ε∗ − σAeeψ
∗
e + σAebψ

∗
b .(15)

b̂* ≈ B∗ + σAbeψ
∗
e − σAbbψ

∗
b (16)

with

.Aee = X∗MββX∗ᵀ + X∗MβbZ
∗ᵀ + Z∗Mᵀ

βbX
∗ᵀ + Z∗MbbZ

∗ᵀ

= X∗M−1
XXX∗ᵀ +

(
X∗M−1

XXMZX − Z∗)Mbb

(
X∗M−1

XXMZX − Z∗)ᵀ ,

Abb = Mbb , Aeb = X∗Mβb + Z∗Mbb =
(
Z∗ − X∗M−1

XXMXZ

)
Mbb , and Abe = A

ᵀ
eb .

Covariance Matrices

The approximations (15) and (16) are used in the computation of covariance
matrices. In simpler setups, covariance matrices are calculated on the basis of
influence functions .IF by integrating .IF IFᵀ. .IF is obtained, in the same way as
for any M-estimator, from a linear approximation and results proportional to the .ψ-
function, the factor being the integral of its derivative, .λ = E0

[
ψ ′

e

]
. Even though we

have no rigorous proof for a generalization to our case, we apply this idea here.
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The expected values of .De and .Db are the identity matrices. When these expected
values are used as approximations, the matrices .M .. and .A.. depend only on .θ . The
calculation of covariance matrices is then straightforward. They will contain the
following expectations under the standard normal distribution:

.γ (1)
. = Eo[zψe(z)]/λ. γ (2)

. = Eo

[
ψe(z)

2
]
/λ2.

where the dot (..) stands for e or b. The corresponding expressions for the block-
diagonal case are .	

(1)
b =�−1

b Eo

[
ψ(b∗)b∗ᵀ]

and .	
(2)
b =�−1

b Eo

[
ψ(b∗)ψ(b∗)ᵀ

]
�−1

b . These
are diagonal matrices with entries .γ

(1)
b

(
k(j),mk(j)

)
and .γ

(2)
b

(
k(j),mk(j)

)
, respectively,

which depend on the dimensions of the blocks k. They are given by

.γ
(p)
b (k,m) = m−1E0,m

[
wk(u)pu

]/
λb(k,m) p = 1, 2 .

For fully diagonal .V b, .m = 1 and these formulas reduce to .γ
(1)
b and .γ

(2)
b .

The covariance matrix of the estimated fixed effects is

.VAR
(
β̂

) = σ 2VAR(�β/σ) = σ 2VAR
(
MββX∗ᵀψ∗

e + MβbZ
∗ᵀψ∗

e − Mβbψ
∗
b

)

= σ 2(MββX∗ᵀ + MβbZ
∗ᵀ)

VAR
(
ψ∗

e

)(
X∗Mββ + Z∗ᵀMbβ

) + σ 2MβbVAR
(
ψ∗

b

)
Mbβ

= σ 2γ (2)
e

(
MββMXXMββ + MββMXZMbβ + MβbMZXMββ + MβbMZZMbβ

)

+ σ 2MβbE0
[
ψ∗

bψ
∗ᵀ
b

]
Mbβ

= σ 2
(
γ (2)
e Mββ + Mβb

(
	

(2)
b − γ (2)

e I
)
Mbβ

)
. (17)

For the derivation of the last equality, we have used the following two identities:

.

MββMXXMββ + MββMXZMbβ = (
MββMXX + MβbMZX

)
Mββ =

(
I + M−1

XXMXZMbbMZX − M−1
XXMXZMbbMZX

)
Mββ = Mββ , and

MβbMZXMββ + MβbMZZMbβ =

Mβb

(
MZXMββ − (

M̂ZZ − Db

)
M̂

−1
ZZMZXMββ

)
= −MβbDbMbβ .

For the DAS standardization, we need the covariance matrix of the residuals .̂ε∗
i and

the .̂b∗
j ,

.VAR(̂ε*) ≈ V ∗
e = σ 2

(
I − 2γ (1)

e Aee + γ (2)
e AeeAee + Aeb	

(2)
b Abe

)
, and

VAR
(̂
b*

) ≈ V ∗
b = σ 2

(
I − 2	(1)

b Abb + Abb	
(2)
b Abb + γ (2)

e AbeAeb

)
.
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Refined Design Adaptive Scale

We first write down the equation determining .τe,i for the determination of .̂σ

through (9). The requirement that the ith term in the sum should be zero in
expectation translates to the implicit equation

.

∫
ψ(σ)

(
(e − ψe(e) − r)/τe,i

)
ϕ
(
r/σ

(R)
i

)
/σ

(R)
i drϕ(e)de

= κσ

∫
w(σ)

(
(e − ψe(e) − r)/τe,i

)
ϕ
(
r/σ

(R)
i

)
/σ

(R)
i drϕ(e)de

for .τi , where .ψ(σ)(e) = e2w(σ)(e), .ϕ is the standard normal density, .σ (R)
i is the standard

deviation of .Ri , and .κσ is defined below (9). The modification for the variance
components .θ� in the case of diagonal .V b is straightforward.

For random effects with block-diagonal covariance structure, we have

.̂b*k/σ ≈ B∗
k/σ − (Abb)kkλb(k,mk)ψk

(
B∗

k/σ
) − Rk

Rk =
∑

h�=k

(Abb)khλb(k,mk)ψk

(
B∗

h/σ
) +

∑

i

(Abe)kiψe

(
ε∗
i /σ

)
/λe

and .T k is determined by

.

∫
ψ

(η)

m(k)

(
T −1

k (b − ψk(b) − r)
)
ψ

(η)

m(k)

(
T −1

k (b − ψk(b) − r)
)
ᵀ exp

(
−rᵀ(V

(R)
k )−1r/2

)
dr exp

(
−‖b‖2/2

)
db

= κ�

∫
w

(δ)
m(k)

(
‖T −1

k (b − ψk(b) − r)‖2
)
exp

(
−rᵀ(V

(R)
k )−1r/2

)
dr exp

(
−‖b‖2/2

)
db · V ∗

k ,

where .ψ(η)(b) = b w(η)(‖b‖)1/2 and .V
(R)
k is the covariance matrix of .Rk. (Note that the

normalizing constants of the densities cancel.) Integration thus extends over .2m(k)

dimensions. With this choice of .T k, each term in the sum (12) has approximate
expectation zero. To see this, note that .b∗ᵀ

k Q�,k(̂θ )b∗
k = tr

(
b∗

kb
∗ᵀ
k Q�,k(̂θ )

)
. Therefore,

multiplying the last equation by .Q�,k(̂θ ) from the right and forming the trace proves
the result.

The last equation resembles the problem of estimating a robust covariance matrix
and can be computed along the same lines.
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Asymptotic Behaviour of Penalized
Robust Estimators in Logistic Regression
When Dimension Increases

Ana M. Bianco, Graciela Boente, and Gonzalo Chebi

Abstract In the framework of logistic regression in order to obtain sparse models
and automatic variable selection, penalized M-estimators that bound the deviance
have been previously studied for fixed dimension. In this chapter, we consider a wide
class of M-estimators that involves some well-known robust proposals and study
their asymptotic behaviour when the covariates dimension grows to infinity with
the sample size. Among other results, we obtain consistency, rates of convergence,
and we explore the oracle properties of the regularized M-estimators, for penalty
functions of different nature. Specifically, under suitable conditions, we prove that,
with probability tending to 1, these estimators only select variables corresponding
to non-null true coefficients, and we derive their asymptotic distribution.

Keywords Logistic regression · High-dimensional covariates · Penalty
functions · Robust estimation · Sparsity

1 Introduction

A common practice to reduce the complexity of a regression model is to bet
on sparsity. In this situation, it is assumed that the number of actually relevant
predictors, k, is lower than the number p of measured covariates. Sparse models
have been extensively studied in linear regression, but they are not limited to them.
In particular, in high-dimensional logistic regression, practitioners usually have to
face the challenge of robustly estimating sparse models, which is the topic of this
chapter.

Logistic regression is a widely studied problem in statistics and has been useful to
classify data. In the non-sparse scenario, the maximum likelihood estimator (MLE)
of the regression coefficients is very sensitive to outliers, meaning that we cannot
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accurately classify a new observation based on these estimators, neither identify
those covariates with important information for assignation. Robust methods for
logistic regression have been introduced and discussed in Bianco and Yohai (1996),
Cantoni and Ronchetti (2001), Croux and Haesbroeck (2003) and Bondell (2005,
2008), among others. The minimum divergence proposal due to Basu et al. (2017)
may be seen as a particular case of the Bianco and Yohai (1996) estimator with a
properly defined loss function. However, all these methods are not reliable under
collinearity, and they do not allow for automatic variable selection when only a few
number of covariates are relevant. These topics become more challenging when the
number of covariates is close to the sample size or even larger.

Some robust estimators for logistic regression in the sparse regressors framework
have already been proposed in the literature, in the last decade. Among others,
we can mention Chi and Scott (2014) who considered a least squares estimator
with a Ridge and Elastic Net penalty and Kurnaz et al. (2018) who proposed
estimators based on a trimmed sum of the deviances with an Elastic Net penalty. It is
worth noticing that the least squares estimator in Chi and Scott (2014) corresponds
to a particular choice of the loss function bounding the deviance considered in
Bianco and Yohai (1996). Finally, Tibshirani and Manning (2013) introduced a
real-valued shift factor to protect against the possibility of mislabelling, while
Park and Konishi (2016) considered a weighted deviance approach with weights
based on the Mahalanobis distance computed over a lower-dimensional principal
component space and that includes an Elastic Net penalty. In the present framework,
the statistical challenge is not only to provide new statistical procedures, but also to
show that they effectively provide variable selection and lead to the same asymptotic
distribution as its oracle counterpart. Some results in that direction were obtained
recently in Guo et al. (2017) and Avella-Medina and Ronchetti (2018) who treated
the situation of penalized M-estimators in generalized linear models by bounding
the quasi-likelihood. In this setting, Avella-Medina and Ronchetti (2018) considered
penalties that are a deterministic sum of univariate functions, while Guo et al.
(2017) proposed a penalty related to the ADALASSO one. Both of them studied the
asymptotic behaviour of penalized robust quasi-likelihood type estimators, when the
dimension p increases with the sample size n. Basu et al. (2021) considered robust
estimators based on the density power divergence using an adaptively weighted
LASSO penalty. Finally, Bianco et al. (2021) proposed a general family of penalized
estimators based on bounding the deviance with a general penalty term, possible
random, to produce sparse estimators and studied their asymptotic behaviour for
fixed p. In this sense, our aim is to fill the gap by studying the asymptotic
behaviour of the penalized robust estimators defined in Bianco et al. (2021) when
the dimension increases with the sample size. Unlike Guo et al. (2017), according
to a natural point of view in robustness, we do not assume that the parameter space
is a compact subset of .R

p and weaker assumptions on the penalty are required.
Besides, our results are not restricted to the LASSO or ADALASSO penalties as in
Avella-Medina and Ronchetti (2018) or Guo et al. (2017). Indeed, they are stated
in a general penalty framework that allows to include not only the two penalties
already mentioned but also SCAD and MCP penalties. The rest of this chapter
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is organized as follows. In Sect. 2, we briefly review the robust penalized logistic
regression estimators defined in Bianco et al. (2021). Sections 3 and 4 summarize
the asymptotic properties of the proposal. Proofs are relegated to the Appendix or
to the technical report available at Bianco et al. (2022).

2 Preliminaries: Robust Penalized Estimators

Throughout this chapter, we consider a sequence of logistic regression models,
where the number of covariates .p = pn diverges to infinity. To be more precise,
we consider a triangular array of independent Bernoulli random variables .{yn,i :
1 ≤ i ≤ n, n ≥ 1} and the corresponding triangular array of explanatory variables
.{xn,i : 1 ≤ i ≤ n, n ≥ 1}, where .xn,i ∈ R

p and .yn,i |xn,i ∼ Bi(1, π0,n,i ) with
.π0,n,i = P(yn,i = 1|xn,i) = F(xTn,iβ0,n) and .F(t) = exp(t)(1 + exp(t))−1. The
sequence .{β0,n : n ≥ 1} corresponds to the true regression coefficient parameters.
We will assume that for each n, .(yn,i , xn,i), .1 ≤ i ≤ n, are independent and
identically distributed.

Denote .DEV(y, t) = − log(F (t))y − log(1 − F(t))(1 − y) the deviance and
.ρ : R≥0 → R a loss function that is bounded, differentiable, and nondecreasing
with derivative .ψ = ρ′. For sparse models when the dimension is fixed, Bianco
et al. (2021) defined a family of regularized robust estimators as

.̂βn = argmin
β∈Rp

1

n

n
∑

i=1

φ(yn,i , xTn,iβ) + Iλn(β) , (1)

with the goal of penalizing candidates with many non-zero components. In (1),
.Iλn(β) is a penalty function, chosen by the user, depending on a tuning parameter
.λn that measures the estimated logistic regression model complexity, while

.φ(y, t) = ρ(DEV(y, t)) + G(F(t)) + G(1 − F(t))

= yρ( − log[F(t)]) + (1 − y)ρ(− log[1 − F(t)]) + G(F(t)) + G(1 − F(t)) ,

(2)

with .G(t) = ∫ t

0 ψ(− log u) du. Note that .G(F(t)) + G(1 − F(t)) is the correction
term needed to guarantee Fisher consistency in the non-regularized case, as
introduced in Bianco and Yohai (1996). When the model contains an intercept, this
component is usually not penalized. For that reason and for the sake of simplicity,
when deriving the asymptotic properties of the estimators, we will assume that the
model has no intercept. When the penalty function is properly chosen, the penalized
M-estimator defined in (1) is well defined even when .p > n and leads to sparse
models as we will show below.

As mentioned in Bianco et al. (2021), the estimators given through (1) define
a wide family that includes, beyond the penalized maximum likelihood estimator,
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the penalized least squares estimator proposed in Chi and Scott (2014), since it
corresponds to the bounded function .ρ(t) = 1−exp(−t) and the Elastic Net penalty
.Iλ(β) = λ

(

a‖β‖1 + [(1 − a)/2]‖β‖22
)

. When .Iλ(β) ≡ 0, taking as loss function
in (2) .ρ(t) = ρDIV(t) = (1 + 1/c0){1 − exp(−c0 t)}, we obtain the minimum
divergence estimators defined in Basu et al. (2017).

As it is well known, LASSO penalty tends to over-penalize large coefficients,
resulting in a larger and biased model. In contrast, the choice of an appropriate
non-convex penalty function can overcome this drawback. Among other non-convex
penalties, we can mention the Bridge penalty introduced in Frank and Friedman
(1993) and defined as .Iλ(β) = λ‖β‖q

q that is non-convex for .0 < q < 1, the
smoothly clipped absolute deviation (SCAD) penalty defined in Fan and Li (2001),
and the minimax concave penalty (MCP) proposed by Zhang (2010). Both SCAD
and MCP penalties can be written as .Iλ(β) = ∑p

j=1 Jλ(|βj |), where .Jλ(·) is a
non-negative, twice differentiable function in .(0,∞). More precisely, for any non-
negative real number b, the function .Jλ(b) equals .SCADλ,a(b) in the first case and
.MCPλ,a(b) in the latter, where

.SCADλ,a(b) = λb1{b≤λ} + 1

a − 1

(

a λ b − b2 + λ2

2

)

1{λ<b≤aλ} + λ2(a2 − 1)

2(a − 1)
1{b>aλ} ,

MCPλ,a(b) =
(

λb − b2

2a

)

1{b≤aλ} + aλ2

2
1{b>aλ} ,

with .1A the indicator of the set A. For both penalties, the positive constant a, which
must be larger than 2 for SCAD, is selected by the user. Since the loss functions
and penalties in this chapter are non-convex, we will also consider the following
restricted estimator:

.̂βn,R = argmin
‖β‖1≤R

1

n

n
∑

i=1

φ(yn,i , xTn,iβ) + Iλn(β), (3)

where .R > 0 is a fixed constant and .φ is the function given in (2). This type
of restrictions has been considered in Loh (2017) and Elsener and van de Geer
(2018)), when the minimization problem involves a non-convex function. As it will
be shown, consistency properties are easier to obtain for these restricted estimators.
However, in this chapter, we also give consistency results for the unrestricted
estimator defined in (1).

2.1 Assumptions

In order to derive the asymptotic results, the following assumptions on the loss
function .ρ used in (2) will be needed.

R1 .ρ : R≥0 → R is bounded and continuously differentiable with bounded
derivative .ψ and .ρ(0) = 0.
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R2 .ψ(t) ≥ 0, and there exists some .c ≥ log 2 such that .ψ(t) > 0 for all .0 < t < c.
R3 .ρ is bounded, twice continuously differentiable with bounded derivatives, i.e.,

.ψ and .ψ ′ = ρ′ ′ are bounded. Moreover, .ρ(0) = 0.
R4 .ψ(t) ≥ 0, and there exist values .c ≥ log 2 and .τ > 0 such that .ψ(t) > τ for

every .0 < t < c.
R5 .ρ is bounded, three times continuously differentiable, with bounded derivatives

.ψ , .ψ ′, and .ψ ′ ′ and .ρ(0) = 0.

Remark 1 Assumption R5 entails that the function .φ(y, t) defined in (2) is three
times differentiable with respect to t and that the related derivatives are bounded for
.y ∈ {0, 1}. On the other hand, if .ψ(0) �= 0 and assumptions R1 and R2 hold for
some constant .c > log(2), then condition R4 holds.

When considering the penalized minimum divergence estimators with tuning
parameter .c0, the loss function .ρ(t) = ρDIV(t) = (1 + 1/c0){1 − exp(−c0 t)}
automatically satisfies conditions R1 to R5 since .ψDIV(t) = ρ′

DIV(t) = c0 (1 +
1/c0) exp(−c0 t) > 0 for all t . Moreover, R1 to R5 also hold when considering the
function

.ρc0(t) =
(

t − 15

16 c0
t2 + 5

16 c30

t4 − 1

16 c50

t6

)

10≤t≤c0 + 5

16
c0 1t>c0 ,

which corresponds to truncating the identity function and adding a polynomial term
to ensure smoothness. It is worth mentioning that this loss function is a modification
of the one considered in Bianco and Yohai (1996) to ensure that R5 holds.

For the sake of simplicity and to avoid burden notation, henceforth, we will omit
the subscript n unless necessary. For instance, we will write .β0 instead of .β0,n.

We assume, without loss of generality, that only the first k covariates are relevant
for prediction purposes, i.e., .β0 = (βT

0,A, 0Tp−k)
T, where .β0,A ∈ R

k corresponds
to the active components, that is, it has all its coordinates different from zero. It is
worth mentioning that the number .k = kn of non-zero components may depend on
n, eventually growing with the sample size. For that reason, in order to obtain results
regarding the asymptotic distribution of our estimators, conditions on the quantity
.m0,n that involves only the coefficients in .β0,A and is defined as

.m0,n = min{|β0,j | : β0,j �= 0} (4)

will be required. As mentioned in Bühlmann and van de Geer (2011), variable
selection properties depend on the fact that the minimum signal .m0,n does not tend
to zero too fast.

To be consistent with the notation used for .β0, we will partition a vector of
covariates .x as .x = (xTA, xTNA)T, where .xA ∈ R

k and .xNA ∈ R
p−k . Besides, as done

for the covariates, we will also write the estimator of .β0 as .̂βn = (̂β
T
n,A,̂β

T
n,NA)T,

where .̂βn,A ∈ R
k corresponds to the active components of .β0 and .̂βn,NA ∈ R

p−k to
the null ones.
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Given a symmetric and positive semi-definite matrix .C ∈ R
p×p, the smallest

and largest eigenvalues of .C will be denoted as .ι1(C) and .ιp(C), respectively. From
now on, we denote as .Ψ (y, t) = ∂φ(y, t)/∂t and .χ(y, t) = ∂Ψ (y, t)/∂t . Note that
.Ψ (y, t) = − [y − F(t)]ν(t), while .χ(y, t) = F(t)(1−F(t))ν(t)−(y−F(t))ν′(t),
with

.ν(t) = ψ(− logF(t))[1 − F(t)] + ψ(− log[1 − F(t)])F (t) . (5)

The function .χ(y, t) always exists for the minimum divergence estimators, while for
other choices of the loss function .ρ, it is well defined when .ρ is twice continuously
differentiable as required in R3. We also have that .χ(0, s) = χ(1,−s). To lighten
the notation in the next assumptions, let .(yn, xn) be such that .(yn, xn) ∼ (yn,1, xn,1)

and denote

.H = Hn = E
(

xnxTn
)

. (6)

We will also consider the following hypotheses regarding the distribution of the
covariates.

Z1 .E

(

max
1≤j≤p

n
∑

i=1

x2
n,ij /n

)

= O(1), where .xn,ij is the j th coordinate of the

random vector .xn,i .
Z2 There exists a constant .K1 > 0 not depending on n such that .ιp(H) ≤ K1.
Z3 There exists a constant .τ1 > 0 not depending on n such that .ι1(H) ≥ τ1.

Z4 There exists a constant .K2 > 0 not depending on n such that .βT
0Hβ0 ≤ K2

2 .
Z5 .xn has a centred elliptical distribution with characteristic function .φxn(t) =

ξ(tTΓp t) for some semi-definite symmetric matrix .Γp ∈ R
p×p and some

function .ξ : R → R that does not depend on n, where to avoid burden notation,
.Γp = Γpn .

Z6 There exists a constant .K3 > 0 not depending on n such that .E ‖xn,A‖62 ≤ K3.
Z7 There exists a constant .τ2 > 0 not depending on n such that .ι1(BA) ≥ τ2, where

.BA = Bn,A = E
[

Ψ 2(yn, xTn,Aβ0,A)xn,AxTn,A

]

.

Remark 2 Assumption Z1 is needed to obtain rates of convergence with order
.(p logp/n)1/2 without requiring additional bounding conditions on the eigenvalues
of .H. This assumption holds, for example, if .xn ∼ N(0p, Ip) and .an = logp /n →
0. Indeed, let .Vj = ∑n

i=1 x2
n,ij , .V1, . . . , Vp are independent .Vj ∼ χ2

n . Then,
inequality (7) in Dasarathy (2011) allows to obtain the bound

.E

(

max
1≤j≤p

1

n

n
∑

i=1

x2
n,ij

)

= 1

n
E

(

max
1≤j≤p

Vn

)

≤ 4 an

1 − exp(−2 an)
.

Using the fact that .1 − x ≥ exp(−2 x) for .0 < x ≤ 1/2, we get that Z1 holds if
.an = logp /n → 0.
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Assumptions Z3, Z4, and Z5 will be used to derive consistency results for the
unrestricted estimator defined in (1). It is worth mentioning that, under Z3, the
matrix .Γ p in Z5 is nonsingular.

Note that Z3 and Z4 imply that .τ1‖β0‖2 ≤ VAR(xTnβ0) ≤ K2
2 , which together

with the fact that .‖β0‖2 = ‖β0,A‖2, leads to .
∑k

j=1 β2
0,j ≤ K2

2/τ1 for all n (even if
k grows with the sample size). In particular, .max{|β0,j | : β0,j �= 0} is bounded and
.m0,n = O(1/

√
k), with .m0,n defined in (4). Then, if .k → ∞, as the sample size

increases, and assumptions Z3 and Z4 hold, we have that .m0,n → 0.
Assumption Z2 is required to obtain rates of convergence with order .

√
n/p (see

Theorem 2b)). Finally, Z6 and Z7 will be used to derive the asymptotic normality
of the estimators when using the SCAD or MCP penalties.

Remark 3 It is worth mentioning that assumption Z5 holds if .xn is a scale mixture
of normal distributions of the form .xn ∼ Sn zn, where .Sn and .zn are independent,
.P(Sn > 0) = 1, .zn ∼ N(0p,Γp), and, in addition, .Sn has a distribution
that does not depend on n, i.e., for all n, .Sn ∼ S, for some positive random
variable S. Among others, assumption Z5 includes the contaminated normal and
the multivariate Student’s .Tm with degrees of freedom m not depending on n.

Remark 4 Analogous arguments to those considered in Remark 2.1 in Boente et al.
(2014) allow to show that if assumption Z5 holds and .Γp > 0 (which arises if Z3
also holds), then .xn is a scale mixture of normals with the structure described in
Remark 3. The proof of this statement may be found in Appendix 1.

Let .β0 = (β0,1, . . . , β0,p)T. To obtain the asymptotic distribution of the
estimators of .β0,A and the oracle property of the penalized estimators, we consider
the following assumptions regarding the growth of n, k, .λn and the coefficients in
.β0,A.

N1 .m0,n
√

n/k → ∞.
N2 .m0,n/λn → ∞.
N3 .k/n = O(λ2n).

Remark 5 It is worth mentioning that, if k and .β0,A are fixed,N1 holds, whereasN2
is equivalent to .λn → 0. On the other hand, if there exists .m0 > 0 (independent of n)
such that .m0,n > m0, then .k/n → 0 and .λn → 0 imply N1 and N2, respectively. If
additionally .m0,n has a finite upper bound, these conditions are equivalent. Finally,
if .m0,n = O(1/

√
k), as it is the case when Z3 and Z4 hold, then N1 and N2 imply

.k2/n → 0 and .k λ2n → 0. Note that the two latter conditions are the same when

.λn = O(1/
√

n). For other convergence rates of the penalty parameter, N1 and N2
give a relationship between the penalty parameter and the speed at which the number
of non-zero coordinates increases.
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3 Consistency and Rates of Convergence

Recall that .(yn, xn) ∼ (yn,1, xn,1), and then define .Ln(β) =∑n
i=1 φ(yn,i , xTn,iβ)/n

and .Ln(β) = Eφ(yn, xTnβ). Note that .Ln(β) is the empirical counterpart of .Ln(β).
It is worth mentioning that since the distribution of .xn and the dimension of .xn

and .β0 depend on n through .p = p(n), the function .Ln(·) also depends on n.
However, to avoid burden notation, from now on, we will omit the dependence on
n and write .L(β) instead of .Ln(β), unless necessary. In order to give a measure
of closeness between two predicted probabilities, given .βj ∈ R

p, .j = 1, 2, we
define .d2

n(β1,β2) = E[F(xTnβ1) − F(xTnβ2)]2, where the index n is used to make
explicit the dependence on the sample size. Note that .d2

n(̂βn,β0) can be written as

.d2
n(̂βn,β0) = E

{

[F(xTn̂βn) − F(xTnβ0)]2
∣

∣

∣(yn,1, xn,1), . . . , (yn,n, xn,n)
}

.

The following result shows that the estimators defined in (1) and (3) lead to
consistent predictions. The weak consistency of the unrestricted estimator defined

through (1), in the sense that .‖̂βn − β0‖2 p−→0, is also derived under additional
assumptions.

Theorem 1 Suppose that R1 and R4 hold. Let .̂βn and .̂βn,R be the estimators
defined through (1) and (3), respectively. Then, if .rn = √

p/n + Iλn(β0), we have
that:

(a) .d2
n(̂βn,R,β0) = OP(rn) and .d2

n(̂βn,β0) = OP(rn).
(b) If, in addition, .ι1(H) > 0, where .H is defined in (6), .‖β0‖1 ≤ R, and there

exists a constant .M > 0 such that .P(‖xn‖∞ ≤ M) = 1, for all .n ≥ 1, then
.‖̂βn,R−β0‖22 = OP(rn/ι1(H)). Therefore, if Z3 holds, .‖̂βn,R−β0‖22 = OP(rn).

(c) When Z3, Z4, and Z5 also hold, .p/n → 0 and .Iλn(β0) → 0, then

.‖̂βn − β0‖2 p−→0.

Remark 6 Note that Theorem 1(a) implies that .F(xTn̂βn) is consistent in the .L2-
norm if .p/n → 0 and .Iλn(β0) → 0. However, in contrast to the linear regression
setting where from Z3 this convergence implies the consistency of .̂βn, some
additional assumptions will be needed for the unrestricted estimator. The main
reason for this difference is the nature of the logistic regression model, where the
link function F is such that .F ′(t) converges to 0 when .|t | → ∞.

Note that according to Theorem 1 for the restricted estimator defined through (3)
the situation is different than that for the unrestricted one. Effectively, as for
regression models, a bound of the type

.E

[

(F (xTnβ) − F(xTnβ0))
2
]

≥ C ‖β − β0‖22 (7)

may be obtained for any .β such that .‖β‖1 ≤ R, only requiring Z3. Hence, for
the restricted estimator, all the results in the paper hold without Z5. It should be
highlighted that in Loh and Wainwright (2015), results for restricted penalized
maximum likelihood estimators are obtained requiring a sub-Gaussian condition
to the covariates, in addition to Z3.
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In contrast, when considering the unrestricted estimator defined through (1)
assumption Z5 on the covariates distribution is also needed to obtain (7). In
particular, Theorem 1(c) and Remark 3 imply that the consistency of .F(xTn̂βn) leads
to the consistency of the unrestricted estimator defined in (1), when .xn is a scale
mixture of normals.

It is also worth mentioning that the result given in Theorem 1(b) provides a
preliminary rate of convergence for the restricted estimator that will be improved
in Theorem 2, under suitable conditions.

From now on, .Bs(θ, δ) stands for the closed s-dimensional ball, with respect to
the usual .‖ · ‖2, centred at .θ with radius .δ, that is, .Bs(θ, δ) = {z ∈ R

s : ‖z − θ‖2 ≤
δ}. Moreover, when .δ = 1, we will write .Bs(θ) instead of .Bs(θ , 1). In order to
obtain rates of convergence for Lipschitz penalties, such as LASSO, or for bounded
differentiable ones, such as SCAD or MCP, but under weaker conditions for .λn in
the latter case, we will need the following additional assumptions:

P1 There exist .ε > 0 and a constant K that does not depend on .λn nor on n, such
that .

∣

∣Iλn(β1) − Iλn(β2)
∣

∣ ≤ λn K ‖β1 − β2‖1, for any .β1,β2 ∈ Bp(β0, ε).
P2 There exist a positive constant value .˜δ and non-negative sequences .{an}n∈N and

.{bn}n∈N, such that, for any .β with .‖β − β0‖2 ≤˜δ, the penalty .Iλn satisfies

.Iλn(β) − Iλn(β0) ≥ −an

√
k‖β − β0‖2 − bn‖β − β0‖22 . (8)

Remark 7 As mentioned in Remark 4 in Bianco et al. (2021), Ridge, Elastic Net,
LASSO, SCAD, and MCP penalties satisfy P1, while LASSO, SCAD, or MCP
penalties satisfy P2. Indeed, for the LASSO penalty, this assumption holds taking
.an = λn and .bn = 0. SCAD or MCP penalties can be written as .Iλn(β) =
∑p

j=1 Jλn(|βj |), where .Jλn(·) is a non-negative, twice differentiable function in
.(0,∞), .J ′

λn
(|β0,�|) ≥ 0, and .Jλn(0) = 0. Given .δ0 > 0, define

.an = max
{

J ′
λn

(|β0,�|) : 1 ≤ � ≤ p and β0,� �= 0
} = max

{

J ′
λn

(|β0,�|) : 1 ≤ � ≤ k
}

bn = bn(δ0) = sup{|J ′ ′
λn

(|β0,�| + τδ0)| : τ ∈ [−1, 1] , 1 ≤ � ≤ p and β0,� �= 0}
= sup{|J ′ ′

λn
(|β0,�| + τδ0)| : τ ∈ [−1, 1] , 1 ≤ � ≤ k} .

Using same arguments as those considered in the proof of Theorem 2(b) in Bianco
et al. (2021), it may be shown that (8) holds.

When considering the SCAD or MCP penalties, .J ′
λn

(t) and .J ′ ′
λn

(t) are equal to
zero if .t > a λn where a is the second tuning parameter of this penalty function
(which is assumed to be fixed by the user). Hence, if .m0,n > aλn for .n ≥ n0, where
.m0,n is defined in (4), we have that .an = 0 and .bn = 0 for a sufficiently large n. In
particular, this holds if there exists .m0 > 0 such that it does not depend on n, .m0,n >

m0, and .λn → 0 or if N2 holds. Moreover, observe that, since .m0,n = O(1/
√

k),
if Z3 and Z4 hold, there exists a value M such that if .

√
k m0,n ≤ M for all n, so the

condition .m0,n > aλn for .n ≥ n0 implies that .λn = O(1/
√

k).
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Theorem 2 gives convergence rates for our estimators. Its proof is based on
bounds for the increments of empirical processes given in Bühlmann and van de
Geer (2011) and Theorem 3.2.5 from van der Vaart and Wellner (1996), which uses
the so-called peeling device.

Theorem 2 Assume that R1 holds and that there exist constants .η > 0 and .τ > 0
such that if .‖β − β0‖2 ≤ η, then .L(β) − L(β0) ≥ τ‖β − β0‖22 for all .n ≥ 1. Let

.̂βn be the estimator defined in (1) or (3), and assume that .‖̂βn − β0‖2 p−→0.

(a) If P1 and Z1 hold and .λn = O(
√
logp/n), then

.‖̂βn − β0‖2 = OP

(
√

p logp

n

)

. (9)

(b) Under P1 and Z2, if .λn = O(
√
1/n), then

. ‖̂βn − β0‖2 = OP

(√

p

n

)

. (10)

(c) Assume that P2 is satisfied and .bn → 0, then:

(i) If Z1 holds and .an

√
k = O(

√
p logp/n), (9) is verified.

(ii) If Z2 holds and .an

√
k = O(

√
p/n), (10) is verified.

An important requirement in Theorem 2 is that there exist positive real numbers
.η and .τ such that .L(β) − L(β0) ≥ τ‖β − β0‖22 whenever .‖β − β0‖2 ≤ η. This
inequality states, in some sense, a local strong convexity condition to the population
risk .L. In this way, unlike van de Geer and Müller (2012), we avoid requiring
convexity to the function .t → φ(y, t), for each fixed y. Lemma 1 gives conditions
ensuring that this assumption holds and its proof can be found in Bianco et al.
(2022).

Lemma 1 Assume that Z2 to Z5 hold and that the loss function .ρ satisfies R1
and R4. Then, there exist positive constants .η and .τ such that .L(β) − L(β0) ≥
τ‖β − β0‖22 when .‖β − β0‖2 ≤ η.

Remark 8 From Remark 7, we get that Theorem 2(a) and (b) may be applied to
the Ridge, LASSO, Elastic Net, SCAD, and MCP penalties. However, taking into
account that LASSO, SCAD, and MCP also verify P2, Theorem 2(c) allows to
obtain the rates of convergence given in (a) and (b), but with milder assumptions for
.λn. In particular, for the LASSO penalty, to obtain the considered convergence rates,
the parameter .λn must satisfy .λn

√
n k/p = O(1) instead of .λn

√
n = O(1), while

for the SCAD andMCP the required rate for .λn is easily derived from Remark 7. The
differences between uniformly Lipschitz penalties, that is, penalties satisfying P1
and those verifying P2 play an important role in the variable selection properties
of the estimator. The distinction between the theoretical properties of penalized
likelihood estimators using LASSO and folded-concave penalties, such as SCAD
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and MCP, was already discussed thoroughly by Fan and Peng (2004) and Fan and
Lv (2011), for generalized lineal models.

4 Variable Selection and Asymptotic Distribution

In this section, we derive the asymptotic distribution of the considered estimators.
In particular, we show that for the SCAD and MCP penalties, the robust penalized
estimator has the oracle property, that is, that the penalized M-estimator of the
non-null components of .β0, .̂βn,A has the same asymptotic distribution as that of
the non-penalized estimator obtained assuming that the last components of .β0 are
equal to 0 and using this restriction in the logistic regression model. As in other
settings, a key step is to derive variable selection properties, that is, to show that
the procedure correctly identifies variables related to non-null coefficients. When
the penalty parameter has a suitable rate of convergence, the variable selection
property is obtained for penalties satisfying inequality (12) below. Even though this
inequality trivially holds for the LASSO penalty, the rate conditions on .λn are not
fulfilled for this penalty, as it will be mentioned in Remark 9. With respect to SCAD
and MCP, Corollary 1 shows that inequality (12) also holds for these two penalties,
while in Remark 10 below we discuss the rates for .λn required to obtain a procedure
with automatic variable selection.

For notation simplicity, given a vector .b = (bT
1 ,b

T
2 )

T, where .b1 ∈ R
k and .b2 ∈

R
p−k , we will denote .Iλ(b1,b2) = Iλ(b), for any .λ > 0. The proofs of Theorem 3

and Corollaries 1 to 3 are omitted and may be found in Bianco et al. (2022). In
particular, that of Theorem 3 follows similar arguments to those considered in the
proof of Theorem 3 in Bianco et al. (2021), but adapted to the fact that the dimension
increases with the sample size.

Theorem 3 Let .̂βn be the estimator defined in (1) or (3), where .φ(y, t) is given
in (2) and the function .ρ : R≥0 → R satisfies R3. Let .{�n}n∈N be a sequence
such that .�n‖̂βn − β0‖2 = OP(1), and define .B = E

{

Ψ 2(yn, xTnβ0)xnxTn
} =

E
{

F(xTnβ0)
[

1 − F(xTnβ0)
]

ν2(xTnβ0)xnxTn
}

and

.cn =
√

ιp(B)√
n

+ ιp(H)

�n

, (11)

where the function .ν is defined in (5). Assume that for each .C > 0, there exist
constants .KC > 0 and .NC ∈ N such that for any .n ≥ NC and all vectors .u1 ∈ R

k

and .u2 ∈ R
p−k satisfying .‖u1‖22 + ‖u2‖22 ≤ C2, the following inequality holds

.Iλn

(

β0,A + u1
�n

,
u2
�n

)

− Iλn

(

β0,A + u1
�n

, 0p−k

)

≥ KC

λn

�n

‖u2‖2 . (12)

Then, if .λnc
−1
n → ∞, we have that .P(̂βn, NA = 0p−k) → 1.
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Remark 9 It is worth mentioning that if .�n = √
n/p and there exists a constant .K >

0 not depending on n such that .max
{

ιp(H), ιp(B)
} ≤ K), then .cn = O(

√
p/n), so

.λnc
−1
n → ∞ if .λn

√
n/p → ∞. Moreover, if there exists a constant .K� > 0 such

that .min
{

ιp(H), ιp(B)
} ≥ K�, both conditions .λnc

−1
n → ∞ and .λn

√
n/p → ∞

are equivalent, which implies that, in this case, the order required to the penalty
parameter in Theorem 3 is analogous to the one obtained in Bianco et al. (2021), for
fixed p.

Recall that, to obtain estimators with rate of convergence .
√

n/p, Theorem 2(b)
requires that the penalty parameter has order .λn = O(

√
1/n) entailing that

.λn

√
n/p → 0 when the dimension increases with the sample size that collides

with the rate condition .λn

√
n/p → ∞. In particular, since Elastic Net satisfies P1,

variable selection cannot be derived from Theorems 2(b) and 3.
Finally, when considering LASSO, Theorem 2(c) entails that to attain a rate of

convergence .�n = √
n/p, the penalty parameter should satisfy .λn

√
n/p = O(1/k),

which again contradicts the requirement .λn

√
n/p → ∞ needed to obtain the

selection variable property. Several authors have treated the variable selection
properties when using the LASSO penalty. Among others, we can mention the
discussions given in Fan and Li (2001), Fan and Peng (2004), Leng et al. (2006),
Meinshausen and Bühlmann (2006), Zhao and Yu (2006), Zou (2006), Yuan and Lin
(2007), and Fan and Lv (2011).

In particular, when considering penalized least squares estimators under a linear
regression model, Leng et al. (2006) showed that the LASSO penalty does not give
consistent model selection for fixed dimension p, normal errors, and orthogonal
designs. In fact, the lack of the variable selection property was already conjectured
in Fan and Li (2001) and proved later in Zou (2006). Yuan and Lin (2007) also
suggested that LASSO penalty must be carefully used as a variable selection
method. Zhao and Yu (2006) derived selection and strong sign consistency under a
strong irrepresentable condition for both small and large .p settings. As discussed in
Zhao and Yu (2006), when the strong irrepresentable condition fails, the non-active
covariates are sufficiently correlated with the active ones so as to be picked up by
LASSO, leading to the lack of the variable selection property of these penalized
estimators. It is worth mentioning that, recently, Lahiri (2021) in a key paper
provides necessary and sufficient conditions for variable selection consistency of
the LASSO least squares method in high-dimensional linear regression models.

As noted in Fan and Lv (2011) who studied penalized likelihood estimators in
the framework of generalized linear models, LASSO penalty does not generally lead
to the rate needed to achieve the oracle property. According to the results obtained
in Fan and Lv (2011) and in Theorem 3 above, this problem with LASSO penalty
arises for both penalized maximum likelihood and robust estimators.

The following corollary states that the variable selection property holds for the
SCAD and MCP penalties.
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Corollary 1 Let .̂βn be the estimator defined in (1) or (3), where .φ(y, t) is given
in (2) and the function .ρ : R≥0 → R satisfies R3. Let .{�n}n∈N be a sequence
such that .�n‖̂βn − β0‖2 = OP(1), and define .cn as in (11). Assume that .λnc

−1
n →

∞, .λn�n → ∞ and that .Iλn(β) is the SCAD or MCP penalty. Then, .P(̂βn, NA =
0p−k) → 1.

Remark 10 As mentioned in Remark 9, when we only assume that P1 holds, the
order of convergence required to .λn in Theorem 2(a) and (b) in order to derive
convergence rates for the robust penalized estimators is incompatible with the
condition .λnc

−1
n → ∞. However, according to Theorem 2, when using the SCAD

or MCP penalties, convergence rates for .̂βn are obtained by just requiring .λn → 0
whenever .m0,n = min{|β0,j | : β0,j �= 0} > m0 for every n. According to Remark 7,
under Z3 and Z4, .m0,n = O(1/

√
k), so .λn = O(1/

√
k), which is not contradictory

with the order for .λn required in Corollary 1. In particular, if .�n = √
n/p and

there exist positive constants K and .K� such that .K� ≤ min
{

ιp(H), ιp(B)
} ≤

max
{

ιp(H), ιp(B)
} ≤ K , the condition .λnc

−1
n → ∞ is equivalent to .n/(k p) → ∞

when assumptions Z3 and Z4 hold, while, if N2 holds, the condition .λnc
−1
n → ∞

implies .m0,n
√

n/p → ∞.
It is worth mentioning that if Z3 holds, then the condition .λn�n → ∞ required

in Corollary 1 is a consequence of .λnc
−1
n → ∞.

From Theorems 2 and 3, we can obtain the following corollary that allows to
improve the convergence rate of the estimators defined in (1) or (3). First, observe
that .Iλ(·) : Rp → R, so in all the previous results the penalties constitute a sequence
of functions, not only by their dependence on .λn, but also because their domains
depend on the sample size. However, to avoid the use of heavy notation, we will not
make this distinction explicit, so .Iλ(β) for .β ∈ R

p or .Iλ(b) with .b ∈ R
k will refer

to penalties with different domains. For the sake of clarity, we will use the subindex
k to indicate vectors in .R

k . To state Corollary 2, define

.̂bk = 1

n
argmin
bk∈Rk

n
∑

i=1

φ(yn,i , xTn,i,Abk) + Iλn(bk) , (13)

and consider the following assumption on the penalty function.

P3 If .bk ∈ R
k is such that .bk �= 0k , then .Iλ(bk) = Iλ

(

bk, 0p−k

)

.

Corollary 2 Let .̂βn be the estimator defined in (1) or in (3). Assume that
.P(̂βn, NA = 0p−k) → 1 when .n → ∞. Assume that P3 holds and that
.‖̂bk −β0,A‖2 = OP(

√
k/n), where .̂bk is defined through (13). Then, .‖̂βn −β0‖2 =

OP(
√

k/n).

Remark 11 First, observe that assumption P3 holds for the LASSO, SCAD, and
MCP penalties. More generally, it holds for every penalty function that can be
written as .Iλ(β) =∑p

j=1 Jλ(|βj |), where .Jλ(0) = 0.
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On the other hand, Theorem 2 gives conditions that guarantee .‖̂bk − β0,A‖2 =
OP(

√
k/n). In fact, to obtain .‖̂bk − β0,A‖2 = OP(

√
k/n), assumptions Z1 to Z5

can be replaced by analogous versions in which only the first k coordinates of .xn

and .β0 are considered. Moreover, denoting .HA = Hn,A = E
(

xn,AxTn,A

)

, we get
that Z4 is equivalent to .βT

0,AHAβ0,A ≤ K2
2 , which already gives a condition for the

first k components of .xn and .β0.

We now proceed to study the asymptotic distribution of the estimator .̂βn defined
through (1). Theorem 4 states that, for certain penalties that include SCAD and
MCP, the robust penalized M-estimator has the oracle property.

Given a vector .bk ∈ R
k , denote .A(k)

A (bk) ∈ R
k×k and .B(k)

A (bk) ∈ R
k×k the

matrices

.A(k)

A (bk) = E

[

χ(yn, xTn,Abk)xn,Ax
T
n,A

]

and B(k)

A (bk) = E

[

Ψ 2(yn, xTn,Abk)xn,Ax
T
n,A

]

.

In addition, we define .A(k)
A = A(k)

A (β0,A) and .B(k)
A = B(k)

A (β0,A), where the latter
equals the matrix .BA defined in Z7. Note that, in this case, given .vk ∈ R

k with
.‖vk‖2 = 1, the value .t2 = vTkB

(k)
A vk also depends on n. However, to simplify

the notation in Theorem 4 and Corollary 3, we will write t instead of .tn. Besides,
for .bk = (b1, . . . , bk)

T ∈ R
k with .bj �= 0, .1 ≤ j ≤ k, we define .∇Iλ(bk) =

∂Iλ

(

bk, 0p−k

)

/∂bk .

Theorem 4 Let .vk ∈ R
k be a vector such that .‖vk‖2 = 1, and denote .t2 =

vTkB
(k)
A vk . Assume that .limn→∞ P(̂βn,NA = 0p−k) = 1 and that .‖̂βn − β0‖2 =

OP(
√

k/n). Moreover, assume that N1, R5, Z6, and Z7 hold. Then, if .k2/n → 0
and

.
√

n‖∇Iλn(
̂βn, A)‖2 p−→0, (14)

we have that .
√

n t−1vTkA
(k)
A (̂βn, A − β0,A)

D−→N(0, 1).

Finally, Corollary 3 shows that the conclusion of Theorem 4 holds when
considering SCAD or MCP. Its proof is obtained by showing that MCP and SCAD
satisfy (14) under assumptions N2 and N3.

Corollary 3 Let .vk ∈ R
k be a vector such that .‖vk‖2 = 1 and .t2 = vTkB

(k)
A vk .

Assume that .limn→∞ P(̂βn, NA = 0p−k) = 1 and that .‖̂βn − β0‖2 = OP(
√

k/n).
Furthermore, assume that N1, N2, N3, R5, Z6, and Z7 hold. If .k2/n → 0 and .Iλn

is the SCAD or MCP penalties, then .
√

n t−1vTkA
(k)
A (̂βn, A − β0,A)

D−→N(0, 1) .

Remark 12 It is worth mentioning that the asymptotic normality stated in Theo-
rem 4 and Corollary 3 still holds if we require as convergence rate the rate derived
in Theorem 2, that is, .‖̂βn − β0‖2 = OP(

√
p/n), and we replace the condition

.k2/n → 0 by .p2/n → 0 and assumptions N1 and N3 by the requirements

.m0,n
√

n/p → ∞ and .p/n = O(λ2n), respectively.
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5 General Comments

An important issue when implementing penalized estimators is the choice of the
penalty parameter .λn, since it tunes the model complexity. Efron et al. (2004),
Meinshausen (2007), and Chi and Scott (2014) discussed this topic. Bianco et al.
(2021) recommended a robust K-fold criterion to select the penalty parameter and
showed the importance of considering a robust cross-validation criterion in order
to achieve reliable prediction and preserve the robustness of the whole procedure.
For the sake of completeness, we briefly describe their robust proposal. We begin
by randomly splitting the data into K disjoint subsets of approximately equal
sizes, with indices .Ij , .1 ≤ j ≤ K , the j th subset having size .nj ≥ 2, so that
.
⋃K

j=1 Ij = {1, . . . , n} and .
∑K

j=1 nj = n. Let .˜Λ ⊂ R be the set of possible

values for .λ to be considered. Denote as .̂β
(j)

λ the robust penalized estimator of .β0,
computed with penalty parameter .λ ∈ ˜Λwithout using the observations with indices
in .Ij . In order to provide a robust alternative to the classical K-fold procedure, it
seems natural to apply the same loss function .ρ as in (1) to the predicted deviance

residuals .d(yn,i , xTn,i
̂β

(j)

λ ). Hence, a robust cross-validation criterion may be defined
as

.RCV (λ) = 1

n

∑

1≤j≤K

∑

i∈Ij

φ(yn,i , xTn,i
̂β

(j)

λ ) .

The penalty parameter .λn is obtained through the minimization of .RCV (λ) over
.˜Λ. When .K = n, this method leads to the robust version of the leave-one-out
cross-validation procedure, which is a popular choice, but with a more expensive
computational cost. Bianco et al. (2021) numerically showed that, even when .β0 is
robustly estimated, the classical cross-validation criterion obtained using .ρ(t) = t

may lead to a poor variable selection result.
The penalized M-estimators may be implemented using a cyclical descent

algorithm. A detailed description of the algorithm as well as a suggestion on how
to choose the initial value to start it is given in Section S.6 in the supplementary
material of Bianco et al. (2021). The code allowing to compute the estimators is
publicly available online at https://github.com/gonzalochebi/penMlogistic.git.

Usually, when considering robust procedures for linear models, the estimators
are calibrated to attain a given efficiency preserving their robustness properties.
Some generalized linear models have particular features in this aspect, and the
logistic regression one is not an exception. Note that already in Avella-Medina
and Ronchetti (2018) the calibration problems arising under a Poisson model are
mentioned in their numerical study.

To illustrate the logistic case, let us consider the situation where neither the
number of active variables k nor the distribution of .xn,A depends on n. The
latter happens, for instance, when .Γp = Ip in Z5 (see Remark 3). Denote
as .x(k) a random vector with the same distribution than .xn,A. The oracle

https://github.com/gonzalochebi/penMlogistic.git
https://github.com/gonzalochebi/penMlogistic.git
https://github.com/gonzalochebi/penMlogistic.git
https://github.com/gonzalochebi/penMlogistic.git
https://github.com/gonzalochebi/penMlogistic.git
https://github.com/gonzalochebi/penMlogistic.git
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property stated in Corollary 3 implies that, when considering SCAD or MCP
penalties, .

√
n (̂βn, A − β0,A) has the same asymptotic distribution as the M-

estimator we would obtain with observations following the same distribution
as .(y, x(k)), where .y|x(k) ∼ F(x(k) Tβ0,A). More precisely, its asymptotic

covariance matrix equals .(A(k)
A )−1B(k)

A (A(k)
A )−1, where the matrices .A(k)

A =
A(k)

A (β0,A) and .B(k)
A = B(k)

A (β0,A) defined in Sect. 4 may be written as .A(k)
A =

E
(

F
(

βT
0,Ax

(k)
)[

1 − F
(

βT
0,Ax

(k)
)]

ν
(

βT
0,Ax

(k)
)

x(k)x(k) T
)

, with the function .ν is

given in (5), and .B(k)
A = E

(

F(βT
0,Ax

(k))
[

1 − F(βT
0,Ax

(k))
]

ν2(βT
0,Ax

(k)) x(k)x(k) T
)

.
These expressions show that, as in the fixed dimension case, in the logistic
regression model, the asymptotic efficiency of the robust estimator of the active
components depends on the true value of the parameter. Hence, in practical
applications, unlike under the usual linear model, these estimators cannot be
universally calibrated.

A numerical study designed to compare the robustness properties of the penal-
ized M-estimators defined through (1), for finite samples, can also be found in
Bianco et al. (2021) and its supplementary material. With respect to the summary
measures considered therein, their simulation results reveal that, either for clean or
contaminated samples, the estimators using the penalties SCAD or MCP perform
quite similarly and outperform the procedure based on LASSO. The situation of
independent and correlated variables, as well as two values for .β0,A, is also reported
in their supplementary file.

Appendix 1: Proofs of Remark 4 and of the Results in Sect. 3

Proof of Remark 4 Along this proof, for clarity, we strength the dependence of the
dimension p on n. Let wpn = Γ

−1/2
pn

xn. It is enough to show that wpn ∼ S zpn

for some positive random variable S whose distribution does not depend on n and
some pn-dimensional random vector zpn independent of S and such that zpn ∼
N(0pn, Ipn).

Using that the random vector wpn = (wn,1, . . . , wn,pn)
T = Γ

−1/2
pn

xn, we get
that wpn has a spherical distribution in R

pn with characteristic function given by
φwpn

(t) = ξ(‖t‖2), t ∈ R
pn . As it is well known, the function ξ is the characteristic

function of wn,1. The fact that wpn has a spherical distribution entails that wpn =
Tpnupn , where upn = wpn/‖wpn‖ has a uniform distribution on the pn-dimensional
unit sphere, and Tpn = ‖wpn‖ is a non-negative random variable independent
from upn . The distribution of upn may be represented as upn ∼ zpn/‖zpn‖, where
zpn ∼ N(0pn, Ipn) and is independent of Tn. Hence, we have that wpn ∼ DnSnzpn ,
where Dn = √

pn/‖zpn‖, Sn = Tn/
√

pn, and zpn = (z1, . . . , zpn)
T ∼ N(0pn, Ipn)

independent of Sn. Thus, wn,1 ∼ DnSnz1, with z1 ∼ N(0, 1) independent of Sn.
The weak law of large numbers and the fact that pn → ∞ as n → ∞ entail

that Dn
p−→1. Since the distributions of wn,1 and z1 do not depend on n, Sn must
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converge in distribution to a random variable S, with S being independent of z1.
Thus,wn,1 ∼ S z1, and the fact thatwpn is spherically distributed allows to conclude
that wpn ∼ S zpn , which is a scale mixture of normals, where the distribution of S

does not depend on n, concluding the proof. Note that, as mentioned in Kingman
(1972), the spherical symmetry of wpn entails that ξ is a radial characteristic
function of dimension pn, which is only possible if ξ(t) = ∫∞

0 exp
(−u t2

)

dG(u)

for some distribution function G, and this property also leads to the desired
result. �

From now on, in order to lighten the notation and when there is no confusion, we
will omit the subindex n in (yn,i , xn,i), 1 ≤ i ≤ n, as well as in (yn, xn) that has the
same distribution as (yn,1, xn,1). Lemmas 2 to 4 in this section are useful to prove
our theoretical results; their proofs can be found in Bianco et al. (2022).

To prove the consistency of the proposed estimators when p → ∞, we will
make use of Theorem 2.14.1 from van der Vaart and Wellner (1996). It is worth
to remind that since the dimension p diverges to infinity, the usual limit theorems
such as the law of large numbers or the central limit theorem are no longer useful.
Instead, in this context, we will need explicit bounds for the empirical process for a
fixed n, as the one obtained in Lemma 2 for the family of functions F = {f (y, x) =
φ(y, xTβ) : β ∈ R

p}. Given a function f : Rp+1 → R, we use the usual empirical
process notation, that is, Pnf = (1/n)

∑n
i=1 f (yi, xi ) and Pf = E[f (y, x)].

Lemma 2 Let φ be defined as in (2) and F = {f (y, x) = φ(y, xTβ) : β ∈ R
p}.

Under R1 and R2, we have that E
[

supf ∈F|(Pn − P)(f )|
]

≤ C1
√

p/n for some

constant C1 independent of n and p.

Lemma 3 For (π, π0) ∈ (0, 1) × [0, 1], define M(π, π0)

.M(π, π0) = π0ρ(− logπ)+(1−π0)ρ(− log(1−π))+G(π)+G(1−π) . (15)

(a) If assumptions R1 and R2 hold, then the function M(π, π0) can be extended to
a continuous function on [0, 1] × [0, 1].

(b) If assumptions R1 and R4 hold, then there exists a constant τ > 0 such that, for
each 0 < π < 1, M(π, π0) − M(π0, π0) ≥ τ(π − π0)

2.

Lemma 4 Let z = (Z1, Z2)
T ∈ R

2 be a random vector with a centred elliptical
distribution and characteristic function φz(u) = ξ(uTΥ u). Assume that E(Z2

j ) <

∞, for j = 1, 2, and denote Σ = COV(z), that is, Σ =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

=
−2ξ ′(0)Υ , with |ρ| ≤ 1. Additionally, assume that σ2 > 0 and that there exists
a constant K2 > 0 such that σ2 ≤ K2 and the distribution of Z verifies
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E
{[F(Z1) − F(Z2)]2

}

< [F(4K2) − F(2K2)]2/4, where F(t) = exp(t)/(1 +
exp(t)). Then:

(a) There exists a constant C0 that only depends on ξ such that σ1 ≤ C0 K2.
(b) There exists a constant C2 that only depends on K2 and ξ such that E[(Z1 −

Z2)
2] ≤ C2 E[(F (Z1) − F(Z2))

2].
Proof of Theorem 1 We will prove (a) only for the unrestricted estimator, and the
proof for the restricted one is similar. Using the definition of̂βn, we have that

.Ln(̂βn) ≤ Ln(̂βn) + Iλn(
̂βn) ≤ Ln(β0) + Iλn(β0) ,

which implies L(̂βn) − L(β0) ≤ [

Ln(β0) − L(β0)
] − [

Ln(̂βn) − L(̂βn)
] +

Iλn(β0). Let C1 be the constant from Lemma 2, which we will assume, with-
out loss of generality, to be greater than one. Consider the event An,T =
{

supβ |Ln(β) − L(β)| ≤ C1 T
√

p/n
}

. From Lemma 2 andMarkov’s inequality, we
get that P(An,T ) ≥ 1−1/T for T > 1. Thus, restricting to the eventAn,T , we obtain

.L(̂βn) − L(β0) ≤ 2C1 T

√

p

n
+ Iλn(β0) ≤ 2C1 T

{√

p

n
+ Iλn(β0)

}

. (16)

Straightforward calculations show that

.L(̂βn)−L(β0) = E

{

M(F(xT̂βn), F (xTβ0)) − M(F(xTβ0), F (xTβ0))

∣

∣

∣(y1, x1), . . . , (yn, xn)
}

,

with M defined in (15). Then, using Lemma 3, we obtain that there exists a constant
τ > 0 independent from n such that

.L(̂βn) − L(β0) ≥ τ E

{

[

F(xT̂βn) − F(xTβ0)
]2
∣

∣

∣(y1, x1), . . . , (yn, xn)
}

= τ d2
n(̂βn, β0) ,

which together with (16) concludes the proof for (a).
To prove (b), observe that if max{‖̂βn‖1, ‖β0‖1} ≤ R and ‖x‖∞ ≤ A, then the

Hölder inequality implies max{|xT̂βn|, |xTβ0|} ≤ AR. Using the fact that F ′(t)
is an even function, increasing in (−∞, 0] and decreasing in [0,∞), we obtain
that E

[

(F (xT̂βn) − F(xTβ0))
2
] ≥ (F ′(AR))2 ι1(H) ‖̂βn − β0‖22 . In particular,

when (Z3) holds, we have E
[

(F (xT̂βn) − F(xTβ0))
2
] ≥ τ1 (F ′(AR))2 ‖̂βn −

β0‖22, and the desired result follows from (a).
Finally, we prove (c). It suffices to show that given ε > 0 and δ > 0, there exists

n0 such that if n ≥ n0, then

.P(‖̂βn − β0‖22 ≤ ε) > 1 − δ . (17)

Assumption Z5 implies that, for every β ∈ R
p, zβ = (xTβ, xTβ0)

T has a centred
elliptical distribution with finite second moments and generating function ξ . From
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assumption Z3, we obtain that VAR(xTβ0) �= 0. On the other hand, since Z4 holds,
VAR(xTβ0) ≤ K2, where K2 does not depend on n.

Using that p/n → 0 and Iλn(β0) → 0, from (a), we conclude that

dn(̂βn,β0)
p−→0. Define the eventBn = {d2

n(̂βn,β0) ≤ [F(4K2) − F(2K2)]2/8
}

.

If ω ∈ Bn, then ẑβ(ω) = (xT̂βn(ω), xTβ0)
T satisfies the conditions of Lemma 4.

Hence, from item (b) of that Lemma, there exists C2 that only depend on ξ and
K2 (and is independent from ω and n) such that D2

n(
̂βn,β0) ≤ C2d

2
n(̂βn,β0) ,

where D2
n(β,β0) = E[(xTβ − xTβ0)

2] = (β − β0)
TH(β − β0). Moreover,

define the event Aε,n = {

d2
n(̂βn,β0) ≤ ε τ1/C2

}

, where τ1 is given in Z3.

The fact that dn(̂βn,β0)
p−→0 implies that limn P(Aε,n) = limn P(Bn) = 1, so

limn P(Aε,n∩Bn) = 1, and there exists n0 such that if n ≥ n0, P(Aε,n∩Bn) > 1−δ.
Note that for any ω ∈ Aε,n∩Bn, we have that D2

n(
̂βn,β0) ≤ C2 d2

n(̂βn,β0) ≤ ετ1 .

Besides, D2
n(
̂βn,β0) ≥ ‖̂βn − β0‖22 ι1(H) ≥ τ1‖̂βn − β0‖22, which implies

‖̂βn − β0‖22 < ε. Thus, (17) holds, concluding the proof. �

Proof of Theorem 2 We will only prove the result for the estimator ̂βn defined
in (1), since the proof for the restricted estimator given in (3) is analogous. It is
worth mentioning that R1 implies L(β) < ∞ for all β.

Let us show (a). Define vn(β) = Ln(β) − L(β) and �n = √

n/(p logp). We
will begin by bounding the increments of the empirical process vn and for that aim
define γ (y, s) = φ(y, s) and y ∈ {0, 1}. Observe that γ (y, s) is differentiable with
respect to its second argument with derivative γ ′(y, s) = Ψ (y, s), where Ψ (y, t) =
∂φ(y, t)/∂t = − [y − F(t)]ν(t), so ‖γ ′‖∞ ≤ 4‖ψ‖∞ < ∞. The mean value
theorem implies that |γ (y, s) − γ (y, s̃)| ≤ Cγ |s − s̃|, for any s, s̃ ∈ R with Cγ =
4‖ψ‖∞. Thus, Lemma 14.20 from Bühlmann and van de Geer (2011) allows to
conclude that for every M > 0,

.E

(

sup
‖β−β0‖1≤M

|vn(β) − vn(β0)|
)

≤ 4MCγ

√

2 log(2p)

n
E

(

max
1≤j≤p

1

n

n
∑

i=1

x2
ij

)

≤ MC1

√

logp

n
,

where the last inequality follows from Z1 and the constant C1 does not depend on
neither n nor p.

Using that ‖β − β0‖2 ≤ δ implies ‖β − β0‖1 ≤ √
p δ, we obtain

.E

(

sup
‖β−β0‖2≤δ

|vn(β) − vn(β0)|
)

≤ E

(

sup
‖β−β0‖1≤√

p δ

|vn(β) − vn(β0)|
)

≤ C1 δ

�n

.

Thus, from Markov’s inequality, we conclude that for each C > 0,

.P

(

sup
‖β−β0‖2≤δ

|vn(β) − vn(β0)| > C

)

≤ C1 δ

�n C
. (18)
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The proof follows using the same arguments as those considered in the proof of
Theorem 3.2.5 in van der Vaart and Wellner (1996) and is based on the so-called
peeling device. More precisely, let cn = P(‖̂βn − β0‖2 ≥ η), where η > 0 is
such that L(β) − L(β0) ≥ τ‖β − β0‖22 for each n ≥ 1 and ‖β − β0‖ ≤ η. Since

‖̂βn−β0‖2 p−→0, we have that cn → 0. For j ∈ N, define the setsAn,j = {β ∈ R
p :

2j−1 ≤ �n‖β −β0‖2 ≤ 2j } . Let M ∈ N. Using that̂βn minimizes Ln(β)+ Iλn(β),
we obtain Ln(̂βn)+ Iλn(

̂βn) ≤ Ln(β0)+ Iλn(β0). Thus, after some straightforward
calculations and denoting wn(β) = vn(β) + Iλn(β) + L(β), we get

.P(�n‖̂βn − β0‖2 ≥ 2M) ≤ cn +
∑

j≥M+1
2j ≤�nη

P
(

̂βn ∈ An,j

) ≤ cn +
∑

j≥M+1
2j ≤�nη

P

(

inf
β∈An,j

wn(β) − wn(β0) ≤ 0

)

.

Note that P1 implies Iλn(β)− Iλn(β0) ≥ −|Iλn(β)− Iλn(β0)| ≥ −λnK‖β −β0‖1.
Besides, given β ∈ An,j , ‖β−β0‖ ≤ η if 2j ≤ �nη, soL(β)−L(β0) ≥ τ‖β−β0‖22.
Then, if β ∈ An,j ,

.wn(β) − wn(β0) ≥ −|vn(β) − vn(β0)| − λnK‖β − β0‖1 + τ‖β − β0‖22 , (19)

allowing to conclude that P(�n‖̂βn − β0‖2 ≥ 2M) ≤ cn + dn, where

dn = ∑

j≥M+1 , 2j ≤�nη dn,j with dn,j = P

(

− supβ∈An,j
|vn(β) − vn(β0)|

−Kλn supβ∈An,j
‖β − β0‖1 + τ infβ∈An,j

‖β − β0‖22 ≤ 0
)

. Observe that if

β ∈ An,j , ‖β − β0‖22 ≥ 22j−2/�2n and ‖β − β0‖1 ≤ √
p‖β − β0‖2 ≤√

p 2j /�n , then −Kλn supβ∈An,j
‖β − β0‖1 + τ infβ∈An,j

‖β − β0‖22 ≥ αn,

where αn = −K
√

p λn 2j /�n + τ 22j−2/�2n, which entails that dn,j ≤
P
(

sup‖β−β0‖2≤2j /�n
|vn(β) − vn(β0)| ≥ αn

)

. Since λn = O(
√
logp/n), we get

that there exists a constant D > 0 such that λn ≤ D
√
logp/n for all n,

so choosing M ≥ 1 + log
(

8K Dτ−1
)

/log 2 = M0, we have that αn > 0.
Using (18), we obtain that for all j ≥ M + 1, dn,j ≤ C12j /(�2nαn). From
λn ≤ D

√
logp/n for all n, we conclude λn

√
p ≤ D/�n, which implies that

�2n αn ≥ 2j
(

τ2j−2 − KD
)

> τ 22 j /8 if j ≥ M + 1, so dn,j ≤ 2−j (8C1)/τ .
Given ε > 0, let Nε ∈ N be such that if n ≥ Nε, cn ≤ ε/2. Besides, let Mε ∈ N,
be such that Mε ≥ M0 and

∑

j≥Mε
2−j < τε/(16C1). Hence, for any n ≥ Nε, we

have P
(

�n‖̂βn − β0‖2 ≥ 2Mε
) ≤ ε, which concludes the proof of (a).

To derive (b), define �n = √
n/p and denote ιp the maximum eigenvalue of H.

Note that for any β such that ‖β−β0‖2 ≤ δ, we have that E[(xTβ−xTβ0)
2] ≤ δ2ιp.

Lemma 14.19 in Bühlmann and van de Geer (2011) implies that

.en = E

(

sup
‖β−β0‖2≤δ

|vn(β) − vn(β0)|
)

≤ E

⎛

⎝ sup
E[(xTβ−xTβ0)

2]≤δ2 ιp

|vn(β) − vn(β0)|
⎞

⎠ ≤ 4Cγ δ
√

ιp

√

p

n
.
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AssumptionZ2 ensures that ιp(H) ≤ K1 for all n; hence, en ≤ 4Cγ

√
K1δ

√
p/n =

4C
√

K1δ/�n. The proof follows now using the same arguments considered above
in the proof of (a).

To prove (c)(i), take �n = √

n/(p logp). From the inequality chain used in
(a), when bounding (19) but using (8) instead of assumption P1, we obtain that
Vn(β) = wn(β) − wn(β0) can be bounded as Vn(β) ≥ −|vn(β) − vn(β0)| +
τ‖β − β0‖22 − an

√
k‖β − β0‖2 − bn‖β − β0‖22. Hence, if αn = τ 22j−2/�2n −

an

√
k 2j /�n −bn 22j /�2n, we have that Vn(β) ≥ − supβ∈An,j

|vn(β)− vn(β0)|+αn,

for any β ∈ An,j . Thus, P(�n‖̂βn − β0‖2 ≥ 2M) ≤ cn + dn, where cn =
P(‖̂βn − β0‖2 ≥ η̃), dn = ∑

j≥M+1, 2j ≤�nη̃ dn,j , with dn,j = P(infβ∈An,j
Vn(β) ≤

0) ≤ P(supβ∈An,j
|vn(β) − vn(β0)| ≥ αn) and η̃ = min(η,˜δ) with ˜δ given

in P2. The fact that an

√
k = O(1/�n) entails that there exists D > 0 such that

an

√
k ≤ D/�n for all n. Let n0 ∈ N be such that for any n ≥ n0, bn ≤ τ/8,

and let M ≥ 1 + log
(

16Dτ−1
)

/log 2 = M0. Then, if n ≥ n0 and M ≥ M0, we
get that αn ≥ τ 22j /(16 �2n). Thus, dn,j ≤ P(sup‖β−β0‖2≤2j /�n

|vn(β) − vn(β0)| ≥
τ 22j /(16�2n)), which together with (18) entails that dn,j ≤ (16C1)/(τ 2j ), and the
result follows as in (a).

Finally, the proof of (c)(ii) is completely analogous, taking �n = √
n/p. �

Appendix 2: Proof of Theorem 4

To prove Theorem 4, we will need the following two lemmas whose proof may
be found in Bianco et al. (2022). The first one is a direct extension of Hölder’s
inequality to the case of the product of three random variables that we include for
the sake of completeness. The second result is analogous to Lemma 2, but now the
family of functions is indexed over a compact set in .R

3k .

Lemma 5 Let p, q, and r be real positive values such that .(1/p)+(1/q)+(1/r) =
1. Let U , V , and W be random variables that satisfy .E|U |p < ∞, .E|V |q < ∞, and
.E|W |r < ∞. Then, .E|U V W | ≤ (E|U |p)1/p (E|V |q)1/q (E|W |r )1/r .

Recall that .Bk(β0,A) stands for the closed unit ball in .R
k centred at .β0,A, and

denote as .Sk−1 = {b ∈ R
k : ‖b‖2 = 1} the unit sphere centred in .0k . To avoid the

use of heavy notation, the vectors .bk, vk,wk ∈ R
k will be denoted as .b, .v, and .w,

respectively.

Lemma 6 Let .hw,b,u : {0, 1} × R
k → R be defined as .hw,b,u(y, z) =

χ(y, zTb)wTzzTu, and consider the family of functions

.H = {hw,b,u , b ∈ Bk(β0,A),w,u ∈ Sk−1} . (20)

Then, under R5 and Z6, .E
[

suph∈H |(Pn − P)(h)|] ≤ C
√

k/n for some constant C
independent of n and p.
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Proof of Theorem 4 Let .An = {̂βn,j �= 0 for all 1 ≤ j ≤ k} and .Bn = {̂βn, NA =
0p−k}. Note that .P(Ac

n) = P(̂βn,j = 0 for some 1 ≤ j ≤ k) ≤ P(‖̂βn − β0‖2 >

m0,n). Using that .
√

n/k‖̂βn − β0‖2 = OP(1) and assumption N1, we obtain that
.P(Ac

n) → 0. On the other hand, as .P(Bn) = P(̂βn, NA = 0p−k) → 1, we get
that .P(Bn ∩ An) → 1, and for any .ω ∈ Bn ∩ An, every component of .̂βn, A

is different from zero. Then, using that .̂βn = (̂β
T
n, A, 0Tp−k)

T is the minimizer of

.Ln(β) + Iλn(β), we conclude that .̂βn, A minimizes .Ln

(

b, 0p−k

) + Iλn

(

b, 0p−k

)

over .b ∈ R
k , where we used for .Ln the same notation introduced in Sect. 4 for .Iλ.

Therefore, we obtain that .0k = ∇
(

∑n
i=1 φ(yi, xTi,Âβn, A)

)

/n+∇(Iλn(
̂βn, A)

)+ rn,

where .P(rn = 0) → 1. Hence, for any .v ∈ R
k with .‖v‖2 = 1, we have

.0 =∑n
i=1 Ψ (yi, xTi,Âβn, A) vTxi,A/n+vT∇Iλn(

̂βn, A)+vTrn. Given .b ∈ R
k , denote

.Mn(θ) = ∑n
i=1 Ψ

(

yi, xTi,A
[

θ ̂βn, A + (1 − θ)β0,A
]

)

vTxi,A/n and .An,A(b) =
∑n

i=1 χ(yi, xTi,Ab)xi,AxTi,A/n. Using the mean value theorem, we get that .Mn(1) =
Mn(0) + M ′

n(α) for some .α ∈ [0, 1]. Thus,

.0 = 1

n

n
∑

i=1

Ψ (yi, xTi,Aβ0,A)vTxi,A + vTAn,A(β∗
A)(̂βn,A − β0,A) + vT∇Iλn (

̂βn,A) + vTrn ,

(21)

where .β∗
A = α̂βn, A + (1 − α)β0,A for some .α ∈ [0, 1]. Observe that

.
√

n t−1
n vTAA(̂βn, A − β0,A) = S1,n + S2,n + S3,n, where, to make the dependence

on n explicit, we wrote .tn instead of .t = (vTB(k)
A v)1/2, and .S1,n = √

n t−1
n vT(AA −

AA(β∗
A))(̂βn, A −β0,A), .S2,n = √

n t−1
n vT(AA(β∗

A)−An,A(β∗
A))(̂βn, A −β0,A) and

.S3,n = √
n t−1

n vTAn,A(β∗
A)(̂βn, A − β0,A). We will show that .S3,n

D−→N(0, 1) and

that .Sj,n
p−→0, for .j = 1, 2.

We start by proving that .S1,n
p−→0. Given positive real numbers .ε, δ > 0, we

need to show that .P(|S1,n| < ε) > 1 − δ for n large enough. The fact that .‖̂βn −
β0‖2 = OP

(√
k/n
)

implies that, for any .δ > 0, there exists .C1 > 0 such that
.P(Dn) > 1 − δ/4 for all n, where

.Dn = {‖̂βn − β0‖2 ≤ C1
√

k/n} . (22)

Note that from R5, .χ1(y, s) = (∂/∂s)χ(y, s) is bounded. Then,

.|S1,n| ≤ √
n t−1

n E
∣

∣χ1(y, xTAβ∗∗
A )xTA(β0,A − β∗

A)vTxAxTA(̂βn, A − β0,A)
∣

∣ ,

where .β∗∗
A = α1β

∗
A + (1 − α1)β0,A for some .α1 ∈ [0, 1], and the expected value in

the last equality is taken only with respect to y and .xA. Hence, using the fact that .χ1
is bounded and applying Lemma 5 to the random variables .U = (β0,A − β∗

A)TxA,
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.V = vTxA and .W = (̂βn, A − β0,A)TxA (taking .p = q = r = 3), we obtain

.|S1,n| ≤ ‖χ1‖∞
√

n t−1
n E

∣

∣

∣(β0,A − β∗
A)TxA vTxA (̂βn,A − β0,A)TxA

∣

∣

∣

≤ ‖χ1‖∞
√

n t−1
n E

[

|(β0,A − β∗
A)TxA|3

]1/3
E

[

|vTxA|3
]1/3

E

[

|(̂βn,A − β0,A)TxA|3
]1/3

≤ ‖χ1‖∞
√

n t−1
n E

[

‖xA‖32
]

‖β0,A − β∗
A‖2‖̂βn,A − β0,A‖2 ,

where, in the last inequality, we used Cauchy–Schwarz’s inequality and the fact
that .‖v‖2 = 1. Therefore, for any .ω ∈ Dn, from (22) we have that .|S1,n| ≤
‖χ1‖∞C2

1K
1/2
3 t−1

n k/
√

n, where .K3 is the constant given in assumption Z6. Notic-

ing that Z7 entails that .tn = vTB(k)
A v ≥ ι1

(

B(k)
A

)

≥ τ2, we conclude that

.|S1,n| ≤ ‖χ1‖∞C2
1K

1/2
3 τ−1

2 k/
√

n. Finally, using that .k2/n → 0, we get that there
exists .n0 ∈ N such that for any .n ≥ n0, .Dn ⊂ {‖S1,n‖ ≤ ε}, which concludes the
proof.

Let us show that .S2,n
p−→0. Define .un = (̂βn, A − β0,A)/‖̂βn, A − β0,A‖2, and

note that

.S2,n = √
n t−1

n ‖̂βn,A − β0,A‖2
{

E

[

χ(y, xTAβ∗
A)vTxAx

T
Aun

]

− 1

n

n
∑

i=1

χ(yi , xTi,Aβ∗
A)vTxi,Ax

T
i,Aun

}

= √
n t−1

n ‖̂βn,A − β0,A‖2(P − Pn)(hv,β∗
A ,un

) ,

where the function .hvn,β∗
A ,un

is defined in (20). Let .ε and .δ be positive real numbers.

Using that .P(Bn) = P(̂βn, NA = 0p−k) → 1, we get that there exists .n0 ∈ N such
that, for any .n ≥ n0, we have .P(Bn) > 1 − δ/4. On the other hand, recall that
.P(Dn) > 1− δ/4, where .Dn is defined in (22). Hence, if .˜Dn = {‖̂βn, A − β0,A‖2 ≤
C1

√
k/n}, we have that .Bn∩Dn ⊂ ˜Dn leading to .P(˜Dn) > 1−δ/2. Moreover, define

the event .Cn = {

suph∈H|(Pn − P)(h)| < (2C/δ)
√

k/n
}

, where .H is defined
in (20) and C is the constant from Lemma 6. Applying Markov’s inequality, we
get that .P(Cn) > 1 − δ/2, which implies that .P(˜Dn ∩ Cn) > 1 − δ. Let .n1 ≥ n0
be such that, for any .n ≥ n1, .C1

√
k/n < 1. Then, restricting to the event .˜Dn ∩ Cn,

we obtain .|S2,n| ≤ C3 k/(δ
√

n) , where .C3 = 2CC1/τ2, and we again used that
.tn ≥ τ2. Finally, the fact that .k2/n → 0 entails that there exists .n2 ≥ n1 such that

.˜Dn ∩ Cn ⊂ {|S2,n| ≤ ε} for all .n ≥ n2, thus .S2,n
p−→0.

To conclude the proof, it remains to see that .S3,n
D−→N(0, 1). Using (21), we have

that .S3,n = ∑3
j=1 S3j,n, where .S31,n = n−1/2 t−1

n

∑n
i=1 v

TΨ (yi, xTi,Aβ0,A)xi,A,

.S32,n = −√
n t−1

n vT∇Iλn(
̂βn, A), and .S33,n = −√

n t−1
n vTnrn. Using that .P(rn =

0) → 1, the fact that (14) and Z7 hold, it is easy to see that .S32,n
p−→0 and

.S33,n
p−→0. It remains to show that .S31,n

D−→N(0, 1). Write .S31,n = ∑n
i=1 Wn,i ,

where .Wn,i = −t−1
n Ψ (yi, xTi,Aβ0,A)vTxi,A/

√
n . Note that .EWn,i = 0 for all
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.n ∈ N and .1 ≤ i ≤ n, whereas .nEW 2
n,i = t−2

n vTE
[

Ψ 2(y, xTAβ0,A)xAxTA
]

v =
t−2
n vTB(k)

A v = 1, which implies .
∑n

i=1 EW 2
n,i = 1. To apply the central limit

theorem for triangular arrays, we will show that the Lyapunov’s condition holds,
that is, that there exists a value .δ > 0 such that .limn→∞

∑n
i=1 E

[|Wn,i |2+δ
] = 0.

Note that .t2+δ
n n1+δ/2

E|Wn,i |2+δ = E
[|Ψ (y, xTAβ0,A)|2+δ|vTxA|2+δ

]

. Hence, using
the fact that .‖v‖2 = 1, .Ψ is bounded and Cauchy–Schwarz’s inequality, we obtain

.

n
∑

i=1

E[|Wn,i |2+δ] ≤ 1

t2+δ
n

1

n
δ
2

‖Ψ ‖2+δ∞ E‖xA‖2+δ ≤ 1

n
δ
2

1

τ 2+δ
2

‖Ψ ‖2+δ∞ K
2+δ
6

3 ,

where the last inequality is a consequence of the fact that .t−1
n is bounded

and assumption Z6 holds. Hence, Lyapunov’s condition holds, and using the
Lindeberg–Feller’s central limit theorem for triangular arrays, we conclude that

.S31,n
D−→N(0, 1) and the desired result follows. �
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Conditional Distribution-Based
Downweighting for Robust Estimation of
Logistic Regression Models

Weichang Yu and Howard D. Bondell

Abstract We propose a new approach to robust estimation for logistic regression
based on the conditional covariate distribution given the binary response. Instead
of downweighting observations based on the marginal distribution often adopted in
common approaches (e.g., the Mallows class), we propose using the conditional
distributions that align with a case-control perspective of binary regression. We
justify our proposed weighting scheme by showing that our method based on this
new perspective leads to sensible weights in scenarios where the existing methods
perform poorly. Through simulated and real datasets, we show that our proposed
estimator achieves superior performance over the existing estimators in terms of
both robustness and efficiency.

Keywords Case-control · Efficiency · M-estimation · Robustness

1 Introduction

Binary regression is an appealing model choice among the existing classification
models in recent years. Much of its appeal is attributed to its explainability, par-
ticularly the direct correspondence between a research hypothesis and a statement
about the regression coefficients. Moreover, when the canonical link function is
specified, the resultant model is known as logistic regression, and its coefficients
can be directly interpreted as an odds ratio.

The most common method for estimating logistic regression coefficients is the
maximum likelihood estimation method whereby the estimator minimizes the sum
of deviances. However, the maximum likelihood estimate (MLE) is very sensitive to
influential outliers (Pregibon 1981, 1982). A small number of influential points can
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have huge effects on the coefficient estimates as evidenced in several real datasets
(Pregibon 1982).

A diverse range of methods has been proposed to circumvent this susceptibility
to outliers. One approach is to assess the outlyingness of each observation through
a statistic and delete highly influential outliers. Some examples of statistics for
assessing influence include the coefficient gradient (Pregibon 1981), symmetric
Kullback–Leibler divergence (Johnson 1985), and Cook’s distance (Cook 1977;
Martin & Pardo 2009). While these methods allow us to simply use the MLE
after removing outliers, there is no guarantee that they identify all outliers and
avoid erroneous deletion of non-outliers. Moreover, these methods may not be
able to identify outliers that exert minor influence individually but are collectively
influential as is the case of some datasets in Pregibon (1982).

Other methods include minimizing a robust function of the deviance (Bianco
& Yohai 1996; Pregibon 1982), deleting extreme outliers, and then maximizing
a trimmed correlation (Feng et al. 2014), or incorporating the distribution of the
contamination in estimating the regression coefficients (Copas 1988). In particular,
Bianco and Yohai (1996) proposed an estimator that minimizes a functional
of the deviance to ensure Fisher consistency—a desirable property for robust
estimators whereby the estimator yields the true parameter value if data from the
entire population are used. Moreover, their proposed method does not require any
computation of robust covariance matrix estimates and has comparable efficiency to
the MLE in the absence of outliers.

A popular approach toward robust estimation for logistic regression is to find
the root of a weighted score function. Here, the idea is to downweight observations
with high leverage or is highly influential in some sense. Stefanski et al. (1986)
and Künsch et al. (1989) propose the bounded-influence estimators in which the
weights depend on a residual component and an elliptical contour component.
Their proposed estimators minimize the asymptotic variance–covariance of an M-
estimator subject to an upper bound constraint on the influence function (defined
as the effect of an infinitesimal point mass contamination of the joint distribution
of the covariate and the response). The conditionally unbiased bounded-influence
estimator (CUBIF; Künsch et al. 1989) introduces a observation-specific pertur-
bation to ensure conditional Fisher consistency—an even stronger version of the
Fisher consistency in the regression context whereby the estimator yields the true
parameter value if data from the entire population are used (for any fixed covariate
value). Carroll and Pederson (1993) propose the use of a weighting scheme in
which observations are downweighted according to their leverage or predicted
probabilities. In fact, they show that their estimator’s bias is close to the MLE for
small samples without outliers.

Several of the downweighting-based methods utilize elliptical contours based
on the marginal covariate moments or predicted probabilities to identify outliers.
While this strategy would lead to good performance when the outliers are very
extreme, they may fail in two cases—(i) the outlier is extreme with respect to
the conditional distribution .X|Y but is non-extreme with respect to the marginal
distribution of .X, (ii) the sample is unbalanced. The reason for their potential failure
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can be better understood from a generative model perspective. In case (i), such
outliers are allocated high weight despite having a strong effect on the estimate.
An example is when a group 1 observation is located near the group 0 centroid. In
case (ii), all observations from the smaller group would be allocated low weights as
the marginal likelihood of the smaller group observations is very small.

To address this issue, Bondell (2005) proposed an estimator that minimizes the
Cramer–von-Mises distance between the empirical distribution under the hypothe-
sized logistic regression model and the nonparametric empirical distribution. The
proposed estimator yields highly efficient estimates when the model is true and
demonstrates robustness under small deviations.

We propose an alternative solution to address the limitations with the existing
downweighting-based methods. Our proposed method is a modification of the
Mallows class estimator discussed in Carroll and Pederson (1993). The resulting
estimator is no longer a member of the Mallows class as its weight depends on a
group-specific Mahalanobis distance. We show that the proposed estimator leads to
substantial improvement in both efficiency and robustness.

In Sect. 2, we review various classes of M-estimators for logistic regression
and provide details on two major limitations. In Sect. 3, we describe our proposed
estimator and how they address the two major limitations with the existing
downweighting-based methods. In Sect. 4, we present a numerical study to compare
the performance of our proposed estimator with the existing methods. Section 5
concludes.

2 M-Estimators for Logistic Regression

Consider the set of independently and identically distributed data .D = {(xi , Yi)}ni=1,
where the response .Y ∈ {0, 1}, the covariates .x ∈ Rp, and our interest is to estimate
the unknown parameters of the conditional distribution of Y given .x:

.p(Yi = 1 | xi ) = Q(x�
i θ),

where .Q(z) = 1/(1 + e−z). The class of M-estimators .θ for logistic regression is
the solution to the equation:

.

n∑

i=1

�(xi , yi , θ , ξ) = 0, (1)

where .�(xi , yi , θ , ξ) = w(xi , yi , θ , ξ){yi − Q(x�
i θ) − c(xi , θ , ξ)}xi and .ξ is a

vector of tuning parameters for the weight function. Observe that the LHS is a
weighted sum of observation-specific score contributions. Note that the correction
function c ensures that the estimating equation is conditionally unbiased, i.e.,
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.E[�(X, Y, θ , ξ) |X] = 0, and hence, we have

.c(x, θ , ξ) = E{w(x, Y, θ , ξ)(Y − Q(x�θ)) | x}
E{w(x, Y, θ , ξ) | x} .

In the existing literature, a well-known measure of robustness for M-estimators is
the influence function:

.IF(x, y;�ξ , Fθ ) = A(θ)−1�(x, y, θ , ξ),

where .A(θ) = −EX,Y { ∂
∂θ

�(X, Y, θ , ξ)} and .(X, Y ) ∼ Fθ . The influence function
measures the effect of contaminating the original data distribution .Fθ by an
infinitesimal point mass contamination at .(x, y), i.e., the effect on the resultant
estimator if the true distribution is .εδ(x,y) + (1 − ε)Fθ instead of .Fθ , where .ε → 0.

Here, the different types of M-estimators differ by the quantities which the
weights depend on. For the Schweppe class, .w = w(xi , yi , x�

i θ) and .c(xi , θ , ξ) �= 0
for most specifications in this class, where .ξ is a vector of tuning parameter. This
class of estimators includes the CUBIF, where

.wCUBIF = wb

(
|yi − Q(x�

i θ) − c(xi , θ , ξ)|
√
x�
i B

−1xi

)
,

.wb(a) = max{−b/a,min(1, b/a)} for .a > 0, b is a tuning parameter, and .Bmay be
obtained via equations (2.8) and (2.9) in Künsch et al. (1989). The CUBIF estimator
is an example of a bounded-influence estimator that minimizes the variance of
.� among all estimators with bounded influence in some sense, where the tuning
parameter b corresponds to a bound for IF.

For the Mallows class, the weights depend on the study design and/or predicted
probabilities, i.e., they do not depend on Y . For example, Carroll and Pederson
(1993) proposed two alternative weights

.w(xi , ξ) = {1 − d(xi , ξ)/(b2(p − 1))}I{d(xi , ξ) ≤ b2(p − 1)},

where .di is a robust distance metric and

.w(x�θ, c, λ) = [Q(x�θ){1 − Q(x�θ)}]c[Q(x�θ)λ + {1 − Q(x�θ)}λ].

It can be shown that the above Mallows class estimators have bounded IF .‖x‖w is
bounded. Here, the Mallows class estimator has several advantages. First, the weight
functions are simpler to work with as they do not depend on Y unlike the Schweppe
class estimators. Moreover, the resultant estimating equation is less complex as the
correction factor equals zero. However, a disadvantage is that without using the
response, points are downweighted due to their potential outlyingness, rather than
actually being an outlier. This results in a loss of efficiency at the true model. Our
formulation partially addresses this drawback.
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2.1 A New Perspective to Outlier Downweighting

Most robust logistic regression estimators are proposed to attenuate the effects of
outliers that are traditionally defined as observations with large residuals or high
leverage (with respect to the marginal covariate moments). This definition is directly
adapted from the linear regression context (Copas 1988). However, this implicit
definition does not take into account the difference between the logistic regression
and the linear regression in terms of their covariate distributions. Consequently,
observations that are unusual with respect to the conditional distributions may
still be considered plausible based on the marginal contours. This calls for a
re-thinking of the definition and generating process of an outlier. Copas (1988)
provided a discriminant-based definition to an outlier—any observation with .y = 1
and predicted probability close to 0 or .y = 0 and predicted probability close
to 1. However, this definition does not directly address the problem due to the
mixture profile of the covariate distribution in the logistic regression context. Here,
we provide a definition of outliers based on a generative model perspective: an
observation .(x, y) is an outlier if .p(x | Y = y) is small. In Fig. 1, we illustrate
the difference between two weighting schemes for the covariate distributions in (3)
and .p(Y = 1) = 0.5 by plots of 99% probability contours. Observe that group
1 observations located in the neighborhood around .(−1.5,−1.5) are allocated
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Fig. 1 (Left) Marginal weighting scheme: plot of 99% probability contour based on marginal
covariate moments. Observations in the cyan region are allocated substantial weights, whereas
observations in the orange region are allocated lowweights. (Right) Conditional weighting scheme:
plot of 99% probability contour based on marginal covariate moments. Observations in the gray
(brown) region are allocated substantial (low) weights regardless of its class label. Observations in
the pink region are allocated substantial (low) weight if it belongs to group 1 (0). Observations in
the blue region are allocated substantial (low) weight if it belongs to group 0 (1)
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substantial weights by the marginal weighting scheme but are allocated low weights
by the conditional weighting scheme.

We provide details on how our new perspective to outlier identification can be
incorporated into the existing Mallows class weighting scheme in the next section.

3 Modified Mallows Class Approach

We propose a modified Mallows estimator that circumvents the issues described in
the previous sections. In particular, the proposed weighting scheme depends on a
group-specific Mahalanobis distance, i.e.,

.w(x, Y, θ , ξ) = w(x, Y, ξ) = ν{1 − (ν/h)2}3I{|ν| ≤ h},

where .ν = √
d/(p − 1),

.d =
⎧
⎨

⎩
(x − μ̂1)

��−1
1 (x − μ̂1), if Y = 1;

(x − μ̂0)
��−1

0 (x − μ̂0), if Y = 0,

and .μ̂k and .	̂k are robust estimators of the group-specific mean and variance for
.Y = k, and .k = 0, 1. Note that the weight function w is adapted from Carroll and
Pederson (1993). Since the weights depend on the response, our proposed estimator
does not belong to the Mallows class. The weights taper toward 0 as the distance of
the data point increases with respect to its group-specific mean. The corresponding
correction function is

.c(x, θ , ξ) = E{w(x, Y, θ , ξ)(Y − Q(x�θ)) | x}
E{w(x, Y, θ , ξ) | x}

= w1(1 − Q(x�θ))Q(x�θ) + w0
{−Q(x�θ)

}
(1 − Q(x�θ))

w1Q(x�θ) + w0(1 − Q(x�θ))

= C(w0, w1,Q(x�θ)),

where .wk = w(x, k, θ , ξ) and .C(t, u, v) = {(1− v)t + vu}−1v(1− v)(u − t). Note
that the second equality follows by taking expectation with respect to .p(Y |x) =
Q(x�θ). Hence, the modified Mallows estimator .̃θM satisfies the equation:

.

n∑

i=1

wyi

{
yi − Q(x�

i θ̃M) − C(wi0, wi1,Q(x�
i θ̃M))

}
xi = 0.



Conditional Distribution-Based Downweighting for Robust Logistic Regression Models 355

Since .̃θM has no closed-form expression, we may utilize a Newton’s algorithm to
compute its numerical value. Denote

.F(θ) =
n∑

i=1

wyi

{
yi − Q(x�

i θ) − C(w0i , w1i ,Q(x�
i θ))

}
xi .

The derivative of F is

.
∂
∂θ

F(θ) =
n∑

i=1

wyi
xi

{
− ∂

∂θ
Q(x�

i θ) − ∂
∂θ

C(w0i , w1i ,Q(x�
i θ))

}
,

where .
∂
∂θ

Q(x�
i θ) = Q(x�

i θ){1 − Q(x�
i θ)}x�

i and .
∂
∂θ

C(wi0, wi1,Q(x�
i θ)) =

(wi1−wi0){(1−Q(x�
i θ))2wi0−Q(x�

i θ)2wi1}{(1−Q(x�
i θ))wi0+Q(x�

i θ)wi1}−2

∂
∂θ

Q(x�
i θ). Thus, the Newton’s algorithm is

.θ (τ+1) = θ (τ ) −
[

∂
∂θ

F(θ (τ ))
]−1

F(θ (τ )).

The influence function of our proposed modified Mallows estimator is given by

.IF (x, y; θ) = {A(θ)}−1�(x, y, θ , ξ),

where

.A(θ) =
∫

Q(x�θ){1 − Q(x�θ)}η(w0, w1,Q(x�θ))xx� F(dx),

where .η(t, u, v) = (1 − v)u + vt − (u − t)C(t, u, v). Under standard regularity
conditions, we have

.
√

n(̃θM − θ�)
d−→ N(0,�(θ�)), (2)

where .θ� denotes the data true coefficient value,

.�(θ�) = {A(θ�)}−1B(θ�){A(θ�)−1}�,

and

.B(θ) =
∫ [

Q(x�θ)w2
1{1 − Q(x�θ) − C(w0, w1,Q(x�θ))}2

+ (1 − Q(x�θ))w2
0{−Q(x�θ) − C(w0, w1,Q(x�θ))}2

]
xx� F(dx).
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4 Numerical Study

We compare the performance of our proposed estimator with the maximum
likelihood estimator (MLE), the Mallows estimator (Carroll & Pederson 1993), and
the CUBIF estimator (Künsch et al. 1989) in three simulation scenarios and one real
dataset. We use the implementations of the Mallows and CUBIF estimators in the
R package robust. The tuning parameters of each robust estimator are specified
such that its estimated relative efficiency with respect to the MLE is approximately
90.5%, based on 500 simulated balanced datasets (.n1 = 100; .n0 = 100) without
outliers and the covariate distributions:

.xi |yi ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N

((
2
2

)
,

(
1 0
0 1

))
, if yi = 1;

N

((
0
0

)
,

(
1 0
0 1

))
, if yi = 0.

(3)

This procedure leads to the following specifications: bpar. = 0.824 and cpar. = 2
for CUBIF; wt.tuning. = 3.005 for Mallows; .h = 5.3 for modified Mallows. For
our proposed method, we used the Mallows estimate as the starting value as they
are known to be fast to compute. In practice, any robust estimator will make a good
starting value. In addition, under standard conditions of uniqueness of the MLE,
our estimating equation will also have a unique solution, provided that one specifies
positive-definite estimates for the group-specific covariance matrices.

4.1 Simulation Settings

By using the aforementioned calibration procedure to achieve similar efficiency, we
assess the robustness of the methods with the following scenarios. In scenario 1,
we compare the performance of the estimators on 500 simulated balanced datasets
(.n1 = 100; .n0 = 100). Each dataset contains one outlier that belongs to group
1 and is positioned at various points along the line .x1 = x2. In scenario 2, we
compare the performance of the estimators on 500 simulated unbalanced datasets
(.n1 = 40; .n0 = 160). There are no outliers in these datasets. In scenario 3, we
compare the performance of the estimators on 500 simulated unbalanced datasets
(.n1 = 40; .n0 = 160). Each dataset contains one outlier that belongs to group 1 and
is positioned at various points along the line .x1 = x2.

The covariate distributions for all scenarios are in Eq. (3). To assess the perfor-
mance of the estimators, we compute the mean squared error (MSE) and estimated
coverage probability of each method for each scenario.
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4.2 Simulation Results

The MSEs of all methods for scenario 1 are presented in Fig. 2. When the outlier
is positioned close to its own centroid and hence fits the model well, all robust
methods demonstrate lower efficiency in comparison to the MLE. However, the
key comparison is in the region of moderate outliers (outliers positioned between
.(−2.1,−2.1) and .(−0.4,−0.4)) that are challenging to identify and downweight.
When the outlier is in this region, our proposed modified Mallows estimator
outperforms the other robust estimators. This is because outliers located along
this segment are mostly allocated low weights by the modified Mallows method,
whereas they are allocated large weights by CUBIF and Mallows estimators. For
example, the Mallows estimator would allocate the same weight to a group 1
outlier at .(−1,−1) and a group 1 non-outlier at .(3, 3). All robust methods perform
comparably well when the outlier is very extreme. Nonetheless, we observe a
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Fig. 2 Average total MSE against outlier position along the line .x1 = x2. The average total MSE
is computed over 500 balanced datasets, each consisting of one outlier
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slight increase followed by a plateau for the modified Mallows estimator as the
outlier position becomes more extreme. This is attributed to the susceptibility of the
modified Mallows estimator to near-complete linear separability. More specifically,
the modified Mallows estimator tends to allocate lower weights to data points near
the true decision boundary than those data points near its respective centroid. When
the dataset is near-complete separable, then a higher weight on the outlier ironically
improves the accuracy of the estimate.

In scenario 2, the estimated relative efficiencies of the robust estimators with
respect to the MLE are: 92.8% (mod-Mallows), 84.2% (CUBIF), and 83.0%
(Mallows). Based on these relative efficiencies, it is evident that the modified
Mallows estimator does not suffer from a loss of efficiency in the unbalanced
case. The poorer performance by both CUBIF and Mallows estimators is due to
low weights inadvertently allocated to the data points from the minor group. This
is consequential to the unbalanced design that skews the overall centroid toward
the centroid of the larger group. The results of scenario 3 are presented in Fig. 3.
Observe that the results of the comparison between the robust methods are similar to
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Fig. 3 Average total MSE against outlier position along the line .x1 = x2. The average total MSE
is computed over 500 unbalanced datasets, each consisting of one outlier
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that of scenario 1, albeit a large MSE for CUBIF and Mallows due to the unbalanced
sample and the presence of an outlier.

The estimated coverage probabilities for scenario 1 are provided in Fig. 4. Our
proposed method yields confidence intervals that are significantly more accurate
than both the Mallows class and CUBIF confidence intervals when the outlier
is not extreme (located along the segment between .(−1.5,−1.5) and .(0, 0)). We
note that the CUBIF confidence interval is the most inaccurate among all the
robust confidence intervals when the outlier is extreme. The estimated coverage
probabilities for scenario 3 are provided in Fig. 5. Here, the differences in coverage
probabilities between the various robust methods are more pronounced. When the
outlier is not extreme, our proposed method yields confidence intervals that are
about 10% to 25% closer to the 95% line than the CUBIF and Mallows confidence
intervals.
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Fig. 4 Empirical coverage probabilities of 95% confidence intervals for each method (based on
500 balanced datasets with one outlier). The red dashed line marks a probability of 95%. A
coverage probability that is close to 95% indicates accurate coverage
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Fig. 5 Empirical coverage probabilities of 95% confidence intervals for each method (based on
500 unbalanced datasets with one outlier). The red dashed line marks a probability of 95%. A
coverage probability that is close to 95% indicates accurate coverage

4.3 Leukemia Dataset

We assess the performance of the robust logistic regression estimators in the
leukemia dataset that has been previously analyzed by Cook and Weisberg (1982),
Johnson (1985), and Bianco and Yohai (1996). The dataset consists of white blood
cell count (WBC, .X1), the albumin–globulin status of the white blood cells (AG,
.X2), and a binary survival outcome variable Y . From Fig. 6, it is evident that there
is an outlier from group 1. In fact, the dataset is often used in the literature for
comparing the performance of robust logistic regression estimators. We consider
the following logistic regression model for the data:

.p(Yi = 1 | xi ) = Q(θ0 + θ1xi1 + θ2xi2).

We compare the performance of the robust estimators against the MLE computed
using all observations and the MLE computed without the outlier. The coefficient
estimates and their corresponding standard errors are provided in Table 1. Results
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Fig. 6 Scatter plot of covariates for patients who survived .≥52 weeks (left) and who survived
.<52 weeks (right). Note the outlier at .(wbc, ag, y) = (100000, 1, 1) that corresponds to .i = 15.
Observation .i = 8 is misclassified under the MLE computed using the full dataset and is correctly
classified under the MLE computed without the outlier

Table 1 Coefficient estimates and standard errors of various logistic regression estimation meth-
ods

Coefficient MLE MLE w/o outlier CUBIF Mallows ModMallows

.θ0 −1.31 0.21 −0.63 0.13 0.09

(0.81) (1.08) (0.91) (1.09) (1.10)

.θ1 −3.18 −23.54 −9.61 −21.61 −19.94

(1.86) (13.54) (5.20) (13.49) (14.26)

.θ2 2.26 2.56 2.26 2.50 2.43

(0.95) (1.23) (1.04) (1.21) (1.22)

indicate that a more accurate classifier may be obtained by downweighting the
outlier (.i = 15). In particular, observation number 8 is misclassified under the MLE
computed using all observations and is correctly classified under the MLE computed
without the outlier.
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Fig. 7 Observation-specific weights allocated by the robust estimation methods. The vertical
dotted line marks the weights for the outlier

The coefficient estimates for the Mallows and modified Mallows estimators are
similar to the MLE without the outlier. The CUBIF estimator demonstrated some
robustness, but its estimates are not as close to the MLE (without outlier) as its
weight on the outlier is not as small (refer to Fig. 7). Also, note that as expected, the
Mallows estimator tends to downweight more observations to achieve its robustness,
while the proposed modification achieves the robustness while still keeping the
weights higher. This reflects its ability to maintain higher efficiency alongside
robustness.

5 Discussion

In this chapter, we propose a robust logistic regression estimator that involves
modifying the weighting scheme of the Mallows class estimators. Our proposed
approach is motivated by a new perspective to robust logistic regression modeling
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in which outliers are downweighted using the conditional covariate distribution. We
justify our proposed method by showing that it leads to a sensible weighting scheme,
whereas the existing robust estimators inadvertently downweight observations in the
smaller group in an unbalanced dataset and fail to downweight outliers positioned
near the mode of the complement group. We show that our proposed estimator is
competitive with several existing methods. In particular, our proposed estimator
achieves lower MSE when the outliers are positioned near the mode of the
complementary group, whereas it achieves similar MSE when the outlier is either
very extreme or in the absence of outlier.

We acknowledge that our proposed estimator may not perform well when the
dataset without the outlier is nearly separable. To circumvent this issue, one may
introduce a carefully positioned pseudo-observation to mitigate the effects of the
separability. We recommend computing the group-specific leverages to assess the
presence of a potential outlier before choosing a suitable estimator.

Taken together, the advantages of our proposed estimator suggest that it is viable
option for robust logistic regression estimation.

Supplementary Codes
Supplementary codes for this article are available on the following website: https://
github.com/weichangyu10/ConditionalWeightedLogistic.
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Bias Calibration for Robust Estimation in
Small Areas
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Abstract It is well known that the existence of outliers in a sample can significantly
affect the estimation of population parameters. Intuition suggests that this is even
more the case in the context of small area estimation. If influential, outliers may
heavily affect parameter estimates for areas in which they occur, especially when the
domain-sample size is tiny. An obvious remedy is to use robust estimators but with
the drawback of a potential bias. We compare different approaches, including some
new ones, for bias calibration in this context. Among other findings, the simulations
indicate that the new proposals can lead to more efficient estimators compared to
existing methods. We conclude the study applying our estimators to obtain Gini
coefficients in labor market areas of the Tuscany region of Italy. The new methods
reveal a different picture than existing methods. We extend our ideas to predictions
for non-sampled areas.
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1 Introduction

Robust Statistics has been an important research area of Dave Tyler, whose contri-
butions have been sometimes outside the mainstream literature. In our contribution
for this Festschrift in his honor, we discuss robustness issues related to prediction,
an area somewhat neglected in the robustness literature.

Small Area Estimation (SAE) has developed rapidly in recent years such that
nowadays it is used in all kinds of official statistics, ranging from business decisions
to attribution of health services or allocation of government funds. This is partly
due to the high demand of statistics by policy makers on the one side, but also to
the increasing data availability together with recent computational advances on the
other side. Using sample surveys is a cost effective tool to provide estimates for
characteristics of interest at population and sub-populations’ (area/domain) level.
This information, coming along with auxiliary data through administrative channels,
is used for a better estimation of domain level parameters. Consequently, when
sample sizes in the individual domains are too small (“small areas”) to obtain
reasonable mean square errors by means of direct estimates, then SAE “borrows
strength from other existing sources of information.” For a comprehensive review
on this subject we refer to Tzavidis et al. (2018), Rao and Molina (2015), Chambers
and Clark (2012), Longford (2005). Indirect estimators based on an explicit linking
model are referred to as model-based estimators. Among these we concentrate on
mixed effects models (MEM) with area-specific random effects that capture the
between area variation beyond what is accounted for by auxiliary covariates, see Rao
(2008), Datta (2009), Pratesi (2016), Jiang and Lahiri (2006), Pfeffermann (2013).

SAE techniques are intrinsically sensitive to outliers due to the small samples
considered. Therefore, robust estimators have been proposed and developed in this
field. Main streams of research on this topic are the robust version of the EBLUP
(REBLUP) proposed by Sinha and Rao (2009), and the M-quantile (MQ) approach
of Chambers and Tzavidis (2006). The former is based on bounded estimating
equations for MEM. The latter captures the between area variation through the
estimation of area-specific quantiles as coefficients; besides being robust against
outliers it avoids problems associated with random effect prediction. For more
recent developments on this method see Salvati et al. (2012), Pratesi et al. (2009),
or Marchetti et al. (2017).

In robust estimation of finite population parameters, Chambers (1986) in his
seminal paper, distinguished between projective and predictive estimation. The
former refers to classical robust estimation where outliers are down-weighted or
discarded in the estimation. In contrast, predictive estimation accounts for the
so-called representative outliers, i.e., in-sample extreme observations which are
likely to occur also among the non-sampled units. Calibration is necessary for
the bias caused by down-weighting or disregarding these observations. A general
bias calibration approach for the estimation of the finite population Cumulative
Distribution Function (CDF) is proposed by Chambers and Dunstan (1986), and its
robust version is presented in Welsh and Ronchetti (1998). For the SAE context,



Bias Calibration for Robust Estimation in Small Areas 367

Tzavidis et al. (2010) introduced a general approach for the bias correction of
existing robust estimators, and Chambers et al. (2014) discussed different methods
to estimate the mean squared error (MSE) for those bias calibrated estimators.
Although we concentrate here onMEM based SAEmethods, it should be mentioned
that many national statistical institutes have implemented other model-based estima-
tors like GREG, and combined them with the so-called winsorization approach for
robustness; see a recent paper by Favre-Martinoz et al. (2021) and the comparison of
one-sided winsorization with M-estimation via asymmetric Huberization by Clark
et al. (2017). We are not aware of a winsorization approach for bias calibration, and
we will consider instead asymmetric Huberization.

There is an increasing literature on data transformation in SAE with MEMwhich
is related to the issue mentioned above. Its main motivation is the fact that most
of the inferential methods rely, some quite heavily, on the normality assumption
for both, random area and individual effects. While taking the log of income and
expenditures is quite common in empirical studies also for reasons of interpretation
and theory about the underlying model, Box-Cox and Zellner transformations are
typically not justified on theoretical grounds, but rather a device to achieve the
desired distribution. If the variable of interest, however, is the untransformed one, a
bias problem pups up here too (due to Jensen’s inequality). Quite recently, Tzavidis
et al. (2018) and Rojas-Perilla et al. (2020) introduce these transformations with
data-driven parameters and automatic bias calibration. Kreutzmann et al. (2019)
implemented these methods in the R-package emdi. These methods seem to work
very efficiently for poverty and inequality mapping. Though their objective and
nature are quite different from that of robust estimation in the presence of outliers,
this seems to be a promising alternative approach. For comparison and completeness
we therefore included them in our study, even though one has to be careful with the
resulting conclusions.

In this article we first review the existing bias calibration methods for robust SAE.
Then we propose two novel ideas for calibration of non-linear parameter estimators.
First we argue that in situations where the errors come from highly skewed, heavy
tailed distributions, one should use an asymmetric calibration to reflect the data
generating process. We show how this can be implemented when deriving non-
linear area parameters such as the Gini index. Then we suggest to linearize the
area parameter by means of a von Mises linear approximation obtained by means
of the Influence Function (IF) of the statistic, and then apply a calibration on this
linear parameter. In both cases, bias calibration leads to more efficient estimators
if the correction is done using the asymmetric Huber function with data-driven
tuning parameter. Simulations indicate that the latter offers the lowest absolute bias,
while the former achieves the lowest MSE compared to the existing bias calibration
techniques. This proposal can be generally used for any other linear or non-linear
parameter in small areas.

Finally note that in SAE in the absence of closed form formulae or good
approximations, the MSE is often estimated by bootstrap; see, for example, Hall and
Maiti (2006b), Hall and Maiti (2006a), and Chatterjee et al. (2008). These bootstrap
methods or other Monte Carlo methods introduced for MEM in SAE are typically
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used to estimate the MSE of robust, bias calibrated estimators. Therefore we do
not discuss the explicit MSE calculation for the different bias calibrated robust
estimators. This again would be interesting but beyond the scope of this comparative
study.

Section 2 introduces the general framework and the notation. In Sect. 3 we
propose approaches to deal with the non-linear population parameters, using an
asymmetric calibration of the estimates. Section 4 compares the performance of
these and other existing methods by means of simulations. Section 5 discusses
practical issues like the optimal tuning for the asymmetric calibration. In Sect. 6
we apply the methods to the EU-SILC survey and the census in Italy, to estimate
Gini coefficients in the Tuscany region. Section 7 concludes.

2 General Framework and Notation

Consider the entire population (so-called super-population) .U of size N , that is
partitioned in d mutually disjoint sub-populations .Uj of size .Nj , corresponding
to our small areas .j = 1, · · · d. For each area j we observe the outcome of
interest .Yij for a sub-sample, .sj , of individuals .i = 1, . . . , nj but not for the
so-called unsampled subset .rj of size .Nj − nj . However, we assume that the
auxiliary information .X, is available for all units, providing predictive power for the
unobserved part of the population. This assumption could be avoided if we focus
only on the linear parameters such as the mean of the area. The .xij for individual i

in area j is a column vector of dimension p that has 1 as its first component. We
are interested in doing inference on .Yij for the area-level. When .nj is too small
for direct estimation, which would lead to large variances, or is not appropriate for
other reasons, then model-based small area estimators are used. They apply a model
on the super-population, typically to predict the unobserved .Yij for the subsets .rj .
Being interested in the distribution and the corresponding non-linear parameters
(see Tzavidis et al. 2010), we do not consider area-level models like those in Fay
and Herriot (1979), Dick (1995) or Pratesi and Salvati (2008). Instead, we consider
unit level models that link the unit outcomes .yij to the unit-specific covariates .xij,
see, e.g., Battese et al. (1988).

As a basic setting, assume that the following mixed effect model (MEM) is in
place for the sampled as well as for the unsampled units (i.e., without sampling
selection bias):

.yij = xT
ijβ + zT

ij uj + εij , ∀j = 1, . . . , d, & ∀i = 1, . . . , nj , (1)

where .β is the p-dimensional vector of fixed effects, and .uj the random effects
of the same dimension as .zij ⊂ xij . In our application we concentrate on the
commonly used nested error models, where .zij contains only the 1. Standard

assumptions are .uj
i.i.d∼ (0, σu), and .εij

i.i.d∼ (0, σe) being individual error terms
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independent from the random effects. In our setting, however, to be more realistic
we deviate from this assumption and allow for error terms that may belong to a
heavily skewed distribution with potentially heavy tails for which the mean is not
necessarily equal to zero. In addition, heteroscedasticity might be present.

Fitting the model to the sample at hand, one obtains estimates of the model
parameters which are used to predict the unobserved .Yij . By the substitution prin-
ciple, once the Cumulative Distribution Function (CDF) for each area is estimated,
further distribution related quantities (functional statistics) can be derived. Tzavidis
et al. (2010) pointed out that the CDF estimate is particularly useful in cases
where there are extreme values in the small area sample data, or if the small area
distribution is highly skewed. The area-specific true CDF for a finite population in
area j can be expressed as:

.Fj (t) = N−1
j

[∑
i∈sj

1{yij ≤ t} +∑k∈rj
1{ykj ≤ t}

]
(2)

= N−1
j

[∑
i∈sj

1{yij ≤ t} + (Nj − nj )F
(2)
j (t)

]
.

Population parameter that can be expressed as a functional of .Fj (t) can conse-
quently be estimated as a functional of .F̂j (t). In a naive setting we may use a plug-in
estimator to obtain

.F̂j (t) = N−1
j

⎡
⎣∑

i∈sj

1{yij ≤ t} + (Nj − nj )F̂
(2)
j (t)

⎤
⎦, (3)

F̂
(2)
j (t) = 1

Nj − nj

∑
k∈rj

1{ŷkj ≤ t}.

In this case, the estimation of the distribution is obtained by predicting the
unobserved units as .ŷkj . This may be done by using different prediction methods
suggested in the literature such as EBLUP, EB, HB, etc. In the presence of outliers
or heavy tailed distribution, one would rather replace unobserved .Yij by robust
predictors. For instance, we could use robust mixed linear models to get an estimate
of the model parameters and predict the robust version of EBLUP (called REBLUP)
introduced by Sinha and Rao (2009). Alternatively one may use the M-quantile
approach of Chambers and Tzavidis (2006) for estimation, and proceed accordingly.
As mentioned above, other robust predictors can be used as the above distribution
estimators are not predictor specific; these include estimators based on the one- or
two-sided winsorization approach or on asymmetric Huberization.
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3 Bias Calibration for Non-linear Parameter Estimates

Estimators for linear population parameters such as the mean or the total are well
studied in the SAE literature. Estimating non-linear functionals is much more
involved, and the calculations are not straightforward anymore. In such a case, a
rather general approach is to use the estimate of the area-specific CDF .Fj and then
compute the statistics of interest by .T̂j = T (F̂j ). However, in Eq. (3) using the
expected value of any robust estimators to predict the outcome for non-sampled
units i in area j results in a cumulative bias in the estimator .F̂j . Specifically in
the presence of heteroskedastic and/or asymmetric errors, the bias will not cancel
out by summation, see Tzavidis et al. (2010). The problem is even more prominent
when there exist representative outliers (Chambers 1986), because these are extreme
observations in the sample which are likely to occur also among the non-sampled
units. To account for such bias, a calibration step is needed which has also the side-
effect of causing some efficiency gains; see Chambers and Dunstan (1986), Welsh
and Ronchetti (1998), Rao et al. (1990), Jiongo et al. (2013) for the SAE context.

A basic bias calibration for the CDF was proposed by Chambers and Dunstan
(1986), namely

.F̂ CD
j (t) = N−1

j

⎡
⎣∑

i∈sj

1{yij < t} + n−1
j

∑
i∈sj

∑
k∈rj

1{ŷkj + (yij − ŷij ) < t}
⎤
⎦. (4)

In this case the effect of residuals, .yij − ŷij , is not bounded. Welsh and Ronchetti
(1998) extended this idea to obtain a bounded version of the prediction of a finite
population CDF

.F̂ BC
j (t) = N−1

j

⎡
⎣∑

i∈sj

1{yij < t} (5)

+ n−1
j

∑
i∈sj

∑
k∈rj

1{ŷRob
kj + wjφj {(yij − ŷRob

ij )/wj } < t}
⎤
⎦,

where .̂yRob
ij and .̂yRob

kj are robust predictions of the observed and unobserved
outcome, respectively, and .wj are robust estimates of the scale of the residuals
in their area, like the median absolute deviation (MAD). Here, .φj is a bounded
influence function that can change over areas. Welsh and Ronchetti (1998) focus
on one finite population; we extend this to several areas. They illustrate that in
order to get a more efficient estimate for a finite population CDF, the truncation
constant must change at different quantiles of the CDF, with larger constants for
more extreme quantiles. Other calibration approaches are given for instance in Rao
et al. (1990) and Jiongo et al. (2013).



Bias Calibration for Robust Estimation in Small Areas 371

Practitioners can use any robust method that has been developed in the field of
SAE for estimation of the parameters in (1) and the prediction of .̂yRob

ij and .̂yRob
kj

in (5). In this article we focus on the two most commonly used methods, namely
REBLUP (Sinha and Rao 2009) and MQ (Chambers and Tzavidis 2006) in (5),
together with a Symmetric Bias Calibration. We refer to them as REBLUP-BC and
MQ-BC, respectively. Further building upon (5), we propose a skewed calibration
that accounts for asymmetry of the error terms, and we extend this idea to correct for
the bias in a linearized version of non-linear parameter estimates. This could also be
interpreted as an extension of the calibration method of Welsh and Ronchetti (1998)
to Eq. (5).

When there is extra knowledge available to the researcher, she should exploit
this information to better calibrate the estimated CDF, and thereby its statistical
functionals, say .Tj for area j . For instance, it is common knowledge that income,
wealth, or expenditure distributions are strongly skewed with a heavy tail to the
right. One can use this information when predicting the distribution of each domain
by applying an asymmetric calibration procedure. This requires two truncation
constants for the skewed version of the Huber function:

.ψc,γ (r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−c( 2
γ 2+1

) if r ≤ −c,

2
γ 2+1

r if −c < r < 0,
2γ 2

γ 2+1
r if 0 ≤ r < c,

c(
2γ 2

γ 2+1
) if r > c.

(6)

Here, c defines the width of the truncation window, and .γ the degree of skewness.
Like in the classical case of symmetric calibration, one chooses the optimal c and
.γ by minimizing .MSE(Tj ). In presence of heteroskedasticity, we recommend to
consider area-specific sets .(cj , γj ).

The idea behind .ψc,γ (.) is the general presentation of skewed distributions along
Fernandez and Steel (1998). The tuning parameter .γ is always positive; while .γ = 1
represent the original Huber function, values greater and smaller than 1 provide
left and right skewed windows, respectively. From the definition of .F̂ BC

j |̂uj
, r is a

standardized residual divided by a robust estimate of its scale. Several choices of the
latter are available. We use the one proposed by Rousseeuw and Croux (1993) which
is based on the absolute pairwise differences of the residuals. It is an alternative
to more traditional robust estimates and performs better for skewed distributions.
Looking closer at .ψc,γ (.) one can see that this is very similar to the skewed Huber
function of Chambers and Tzavidis (2006) defining the M-quantile method; namely

.ψc,q(r) = 2φc(r)[q1{r > 0} + (1 − q)1{r ≤ 0}],

where .φc(.) is the classical Huber influence function, and .q = γ 2

γ 2+1
the quantile

index of the conditional outcome distribution, cf. Fig. 1. Notice, however, that here
the skewed Huber function is used for calibration, not for estimation. We keep the
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Fig. 1 The relation between q in .ψc,q(.) and .γ in .ψc,γ (.)

residuals effect bounded when searching for the shape of the true distribution. In
practice, the optimal tuning constants are chosen by considering a mesh of a .(c, γ )

plane, and estimate the MSE (via bootstrapping) for each combination. As long as
one allows for .γ = 1, our method includes symmetric calibration.

Provided with the tuning parameter(s), the new area-specific CDF estimates are

.F̂ ABC
j |̂uj

(t) = 1

Nj

⎡
⎣∑

i∈sj

1{yij < t} (7)

+ (nj )
−1
∑
i∈sj

∑
k∈rj

1

{
ŷRob
kj + wjψcj ,γj

(
yij − ŷRob

ij

wj

)
< t

}⎤
⎦

with .ψcj ,γj
as in (6) but area-specific. Functionals and parameters like the Gini

index can be calculated subsequently for each area. When REBLUP or MQ is
used to predict .̂yRob

kj in Eq. (7), we refer to this method as REBLUP-ABC or MQ-
ABC, respectively. As already discussed above, these are not the only options; other
predictors or robustness approaches like, e.g., winsorization can be used for .ŷRob

ij .
One may also argue that using an asymmetric Huberization could be useful in some
applications throughout, not only for bias calibration. Our choices here, admittedly,
were also driven by illustration and presentation aspects.

3.1 Linearization by the Influence Function

As mentioned above, we propose to first linearize the parameter of interest by means
of the IF before applying our calibration. As the idea applies to all kind of predictors,
we can suppress the superscript Rob here. We illustrate the idea with the popular
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example of the Gini coefficient. Consider the first order expansion introduced by
von Mises (1947):

.T (G) − T (F ) =
∫ +∞

−∞
IF (y; T , F )d(G(y) − F(y)) + O

(
‖G − F‖22

)
, (8)

where F is the (model) distribution, G a distribution in its neighborhood, and
.IF (.; T , F ) the influence function as defined by Hampel (1974). For .G := F̂j ,
this gives for .zij := IF (yij ; T , Fj )

.T̂j := T (F̂j ) ∼= T (Fj ) + 1

Nj

Nj∑
i=1

IF (yij ; T , Fj ) = T (Fj ) + 1

Nj

Nj∑
i=1

zij . (9)

Replace the unknown population parameter in (9) with a robust version .T̃j , i.e.,

.T̂j = T̃j + 1

Nj

⎡
⎣∑

i∈sj

zij +
∑
k∈rj

ẑkj

⎤
⎦, (10)

where .̂zkj := IF (ŷkj ; T , Fj ). Substituting robust predictors for all unobserved
units, the calibration (hereafter IF-BC) is obtained by

.T̂j = T̃j + 1

Nj

⎡
⎣∑

i∈sj

zij +
∑
k∈rj

ẑkj + Nj − nj

nj

∑
i∈sj

wjφ(
zij − ẑij

wj

)

⎤
⎦, (11)

where .wj is a robust estimate of the scale of the pseudo-residuals .ζij = zij − ẑij in
area j , and .φ(.) the Huber function. Extending this idea to asymmetric calibrations
(see Sect. 3) gives

.T̂j = T̃j + 1

Nj

⎡
⎣∑

i∈sj

zij +
∑
k∈rj

ẑkj + Nj − nj

nj

∑
i∈sj

wjψcj ,γj
(
zij − ẑij

wj

)

⎤
⎦, (12)

with .ψcj ,γj
as in (6) with area-specific .cj , γj . This bias calibration is referred to as

IF-ABC.

Calibration of the Gini Coefficient
In Sect. 6 we apply this to the Gini index defined as being twice the area between
the 45.◦ line and the Lorenz curve:

.T (F ) = 2 · I (F )

μ(F )
− 1,

where .I = I (F ) = ∫ +∞
0 tF (t)dF (t), and .μ = μ(F) = ∫ +∞

0 tdF (t).
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Suppressing the area sub-index j , the influence function of this functional is

.IF (y; T , F ) = 2 · ( 1
μ

[∫ +∞

y

tdF (t) − I

])+ 2 · y

μ

[
F(y) − I

μ

]
; (13)

see Appendix (7) for the derivation of (13). Then, using (9) one obtains

.T̂ ∼= T (F ) + 1

N

N∑
i=1

2 · ( 1
μ

[∫ +∞

yi

tdF (t) − I

])+ 2 · yi

μ

[
F(yi) − I

μ

]

= T (F ) + −4I

μ
+ 2

μ
· 1

N

N∑
i=1

[∫ +∞

yi

tdF (t) + yiF (yi)

]
,

where in the last equality we approximate .
1
N

∑N
i=1 yi by .μ(F). Replacing .T (F ) =

2 · I
μ

− 1 gives

.T̂ ∼= −T (F ) − 2 + 2

μ
· 1

N

N∑
i=1

[∫ +∞

yi

tdF (t) + yiF (yi)

]
. (14)

Setting .zi = ∫ +∞
yi

tdF (t) + yiF (yi), the Gini (our non-linear parameter) in (14) is
approximated by a linear function in .zi , which suggests an alternative estimator for
the Gini coefficient. By replacing the unknown population parameters in (14) with
robust estimates, substituting robust predictors for the unsamples units, and denoting
by .T̃ and .μ̃ the resulting estimates of the Gini coefficient and the population mean,
respectively, we obtain a robust but biased estimate

.T̂ = −T̃ − 2 + 2

μ̃
· 1

N

[∑
i∈s

zi +
∑
k∈r

ẑk

]
,

where .̂zk := IF (ŷk; T , F ) as in Eq. (10). Adding calibration (12), in area-specific
notation, i.e., reintroducing the sub-index j , one finally obtains

.T̂ ABC
j = −T̃j − 2 (15)

+ 2

μ̃j

· 1

Nj

⎡
⎣∑

i∈sj

zij +
∑
k∈rj

ẑkj + Nj − nj

nj

∑
i∈sj

wjψcj ,γj
(
zij − ẑij

wj

)

⎤
⎦.

Summarizing, the implementation steps for the Gini estimate are:

Step 1. Use a robust estimator of the MEM to get robust predictions for unob-
served y.
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Step 2. In each area j , use observed .yij for sampled, and robustly predicted for
unsampled outcomes. Denote this vector by .Ỹj and calculate .T̃j , .μ̃j .

Step 3. Put .Ỹj in ascending order, say .Ỹ(i)j , and compute .zij = 1
N

∑
h≥i ỹ(h)j +

i
N

ỹ(i)j for the sampled units, and .̂zkj = 1
N

∑
h≥k ỹ(h)j + i

N
ỹ(k)j for the

unsampled ones. Now take only predicted outcomes for all units, sort
them, and define .̂zij = 1

N

∑
h≥i ŷ(h)j + i

N
ŷ(i)j .

Step 4. Use (15) to get the bias calibrated estimates of the Gini coefficient for
each area.

Slight modifications of Step 3 could be used for defining .ẑij for the sampled units,
but this is the computationally simplest version that we implemented in the next
sections.

4 Model-based Simulation Study

To assess and compare the performance of existing and new proposals we conducted
a series of simulations. We focus on bias and MSE of Gini estimates of various
small area estimators under different scenarios. These methods can be grouped into
“New-BC”: REBLUP-ABC, MQ-ABC, and IF-ABC, denoting the new proposals
introduced above, the most popular “Uncalibrated” estimators: EBLUP (Battese
et al. 1988), REBLUP (Sinha & Rao 2009), MQ (Chambers & Tzavidis 2006), their
bias corrected version “Classical-BC”: REBLUP-BC and MQ-BC (Chambers et al.
2014), and “TF” which contains only the transformation based EBP (Rojas-Perilla
et al. 2020) provided by the emdi R-package (see Sect. 1). It uses a EBP with data-
driven Cox-Box transformation followed by a bias correction through parametric
bootstrap. As said, this is not explicitly made for robust estimation in the presence
of outliers, but particularly appropriate for asymmetric heavy tailed distributions.

There is no need to add simulations to the existing studies that look at standard
scenarios for robust estimation like normal errors contaminated by extreme values.
It is clear by construction that robust methods outperform non-robust ones and
that bias calibrated versions will have smaller bias then. It has been studied less,
however, what happens in the so-called representative outliers case with asymmetric
extreme errors, in particular if the basic error distribution is not normal. As we look
at the CDF in each small area, i.e., in the case of very small samples, there is hardly
a difference in simulating directly a heavily skewed distribution with fat tails or a
less skewed error distribution with slim tails but contaminated by extremes. This
also explains why we included in our study the data-driven transformation based
EBP (referred to as TF) and why it is sufficient to present only simulation results
corresponding to the scenarios described below. Simulations with other, partly more
complex scenarios, did not provide deeper insight. We generate a population of
size .N = 15′000, composed of .D = 50 areas with .Nj = 300 units in each
area .j = 1, ...,D. Then we draw a sample of size .nj = 15 from each area using
SRSWOR (simple random sampling without replacement). The auxiliary variables



376 S. Ranjbar et al.

.Xij are i.i.d. .logNormal(mean = 1, sd = 0.5), and the outcome Y is generated
by .yij = 100 + 5xij + uj + εij . We repeat each procedure .T = 1000 times to
calculate the relative prediction error (RPE) resulting from the difference between
Gini predictions and their true values for each area j :

.RPE(Gini
(t)
j ) = predicted value(Gini

(t)
j ) − true value(Ginij )

true value(Ginij )
.

The expected value of these relative errors over repeated sampling provides an
estimate of the relative bias and MSE in each area, namely

.RBj = 1

T

T∑
t=1

RPE(Gini
(t)
j ) , RRMSEj =

√√√√ 1

T

T∑
t=1

(
RPE(Gini

(t)
j )
)2

.

As discussed in Sect. 3, the proposed new methods are expected to be especially
beneficial when we are dealing with asymmetric distributions as in the case of
incomes or expenditures. To create realistic scenarios, the error terms are generated
from skewed t distributions with different degrees of freedom (df ) and/or measures
of skewness (.λ) to generate the inequality we observe in different countries. Notice
that the Gini coefficient typically ranges between 0.2 and 0.5. To avoid confusion,
we use a different notation for the skewness parameter here than we used for tuning
in the bias calibration. In all scenarios we keep the distribution of the random area
effects as .u ∼ N(0, 1). Note that McCulloch and Neuhaus (2011) showed that for
linear MEM which only contain random intercepts uncorrelated with error terms
or covariates, a misspecification of the random effect distribution introduces no or
just a relatively small bias to the estimators of model parameters; see their paper for
more details. This implies that the choice of the distribution of .uj would not impact
our general conclusions and this is in accordance with our original simulations (not
shown here). Table 1 summarizes the scenarios we considered in our simulations.

Table 1 Summary of scenarios: each simulation has .D = 50 areas with population size of .Nj =
300 units, and a sample size of .nj = 15 units from each area. Random effects are .u ∼ N(0, 1),
error terms are .ε ∼ St (df, λ), where .St (·, ·) denotes a right-skewed t distribution with df degrees
of freedom, and .λ > 0 its skewness parameter as introduced in Fernandez and Steel (1998).
Population Gini coefficient refers to the average of calculated Gini coefficients using population
data over all areas

Population Gini

Scenarios df .λ coefficient

1-a 3 45 0.23

1-b 3 75 0.36

1-c 3 105 0.50

2-a 5 45 0.18

2-b 5 75 0.28

2-c 5 105 0.40



Bias Calibration for Robust Estimation in Small Areas 377

Relative Bias and RRMSE for the 50 areas are shown in the form of box plots
for each method and scenario in Figs. 2 and 3. We summarize the results in Table 2
by giving the median of Relative Bias and RRMSE over the 50 areas under each
scenario for all considered estimators. Looking at the distances between the boxplots
and the red line, the first finding is that the calibrating methods outperform by
far the three uncalibrated methods. The second finding is that the new calibrating
methods clearly outperform the existing ones with symmetric calibration. Perhaps
this is not surprising as we constructed the ABC methods such that they data-
adaptively nest the BC methods. In spite of being purely data-driven, the box
plots do not generally show an increase in the variability. An exception is the
IF-ABC method, which in turn seems to be the best method in many scenarios
for minimizing the bias. The third finding is that the data-adaptive-transformation
based EBP, TF, achieves the minimum RRMSE in all the cases. It seems that
our simulation scenarios (asymmetries and heavy tails) can be handled better by
such a data-adaptive transformation than by correcting for outliers coming from a
contamination. However, as said in our discussion above, in small samples (referring
to the .nj ) a contamination can hardly be distinguished from a heavy tail and/or
asymmetry. As in practice we never know the truth, we would consider these
two methods (TF and IF-ABC) as interesting complements. If the samples are
sufficiently large, then working with mixtures (Chakraborty et al. 2019) would be
another alternative.

5 Some Practical Issues

Before we apply these methods to our data for estimating the inequality in the
different Labor Market Areas (LMAs) in Tuscany, we need to briefly address two
practical issues. The first one arises when we need to provide a robust prediction
for out-of-sample areas. In our data set (EU-SILC 2008), out of the 57 LMAs
in Tuscany, only 29 are sampled. The second issue is of technical nature, as the
proposed methods require two tuning parameters for calibration. Here we provide
practical solutions for both problems.

5.1 Full Calibration vs. Partial Calibration

Recall that calibration is based on fitted model residuals: once a model is accepted
to reflect well the Data Generating Process of the super-population and in the
absence of sample selection problems, it is fitted to the sample to predict the
unobserved outcomes using the auxiliary data. Clearly, one can also calculate
robust predictions for the units with observed outcomes. The difference between
the observed outcomes and their predictions is used for calibration. There are
several ways to use these residuals to account for (representative) outliers. When
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Fig. 2 The relative bias and square root relative MSE of the Gini coefficients, under scenarios
1-a:c from top to bottom
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Fig. 3 The relative bias and square root relative MSE of the Gini coefficients, under scenarios
2-a:c from top to bottom



380 S. Ranjbar et al.

Table 2 Median of the areas’ relative Bias and RRMSE, for the methods compared. For the exact
data generating process of each scenario (1-a) to (2-c) see Table 1

Scenario (1-a) (1-b) (1-c)

Method Rel. bias RRMSE Rel. bias RRMSE Rel. bias RRMSE

EBLUP −0.77 0.78 −0.83 0.84 −0.86 0.86

REBLUP −0.76 0.76 −0.81 0.82 −0.84 0.84

MQ −0.75 0.75 −0.80 0.81 −0.82 0.82

REBLUP-BC −0.51 0.52 −0.59 0.59 −0.63 0.63

MQ-BC −0.50 0.51 −0.56 0.57 −0.58 0.58

REBLUP-ABC −0.25 0.27 −0.31 0.32 −0.33 0.34

MQ-ABC −0.24 0.26 −0.30 0.31 −0.31 0.32

IF-ABC −0.03 0.38 −0.12 0.33 0.03 0.3

TF 0.11 0.16 0.02 0.07 0.002 0.05

Scenario (2-a) (2-b) (2-c)

Method Rel. Bias RRMSE Rel. Bias RRMSE Rel. Bias RRMSE

EBLUP −0.73 0.74 −0.81 0.81 −0.84 0.84

REBLUP −0.72 0.73 −0.80 0.80 −0.83 0.83

MQ −0.72 0.72 −0.79 0.79 −0.82 0.82

REBLUP-BC −0.44 0.45 −0.54 0.54 −0.59 0.60

MQ-BC −0.43 0.44 −0.52 0.52 −0.56 0.56

REBLUP-ABC −0.17 0.20 −0.23 0.25 −0.26 0.28

MQ-ABC −0.16 0.19 −0.22 0.24 −0.25 0.27

IF-ABC −0.02 0.41 −0.14 0.32 −0.014 0.32

TF 0.06 0.10 0.02 0.06 0.01 0.05

we introduced our method, these residuals were used area-wise to correct for the
bias in each specific area separately. Let us call this procedure “Partial Calibration.”
An alternative is to use each time the entire set of residuals (see Jiongo et al. 2013)
and we call this procedure “Full Calibration.” There are some differences between
our concept and the one of Jiongo et al. (2013), where they also correct for the bias
in the prediction of random effects. In our case, predicted area effects are considered
as fixed, because we focus on the conditional CDF of each area. This is related, but
again different, to what they call “Conditional Calibration.” We introduce here a
full calibration as partial calibration does not (or hardly) work for areas with no
(or hardly any) observed outcome. Our proposal for these is to combine the full
calibration idea with ours by choosing area-specific tuning constants for calibration
even if using all residuals. This leads to a compromise that seems to work well
(simulations not shown). Both, partial and this flexible full calibration are used and
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compared in the application, see next section. The full calibration analogues for (7)
and (15) are

.F̂j |̂uj
(t) = 1

Nj

⎡
⎣∑

i∈sj

I (yij < t)

+ n−1
∑

i∈⋃
h

sh

∑
k∈rj

I

{
ŷRob
kj + wψc,γ

(
yih − ŷRob

ih

w

)
< t

}⎤⎥⎥⎦

T̂j = −T̃j − 2 (16)

+ 2

μ̃j

· 1

Nj

⎡
⎢⎢⎣
∑
i∈sj

zij +
∑
k∈rj

ẑkj + Nj − nj

n

∑
i∈⋃

h

sh

wψc,γ (
zih − ẑih

w
)

⎤
⎥⎥⎦,

where .zij = ∫ +∞
yij

tdFj (t) + yijFj (yij ), and w a robust estimate of the scale of the
entire vector of pseudo-residuals.

5.2 Choice of the Tuning Parameters

The choice of tuning parameters can play an important role in robust estimation
and calibration. Therefore we provide a partly data-driven guideline to find optimal
parameters for tuning, namely c and .γ in (6). In symmetric calibration the
convention is to use a rule of thumb for the width of truncating windows. But there
also exist some guidelines for the best choice of tuning constants for calibrating
certain population parameters, see, e.g., Welsh and Ronchetti (1998).

Generally, optimum tuning should minimize the MSE of the final estimator.
For estimating the MSE of linear population parameter estimators, some analytic
approximations have been proposed like first order Taylor expansion (Prasad & Rao
1990), defining the estimator as pseudo linear parameter (Chandra et al. 2011), or
other approximations (Chambers et al. 2014). However, these do not account for the
calibration, as they focus on the variance, not the bias. More importantly, there exist
no general closed form expressions for the MSE of non-linear parameter estimators.
Therefore, it is common to use the bootstrap; see Sect. 1. A non-parametric bootstrap
(Hall & Maiti 2006a) can be used to obtain the MSE for our bias calibrated
estimators.

One can estimate the MSE for different values of .(cj , γj ) and select the tuning
parameters that minimize the MSE. Note that rough MSE approximations will
do, as long as they lead to the correct ranking. Such a procedure is explained in
the Appendix. The drawback of this technique is that it can be computationally
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expensive. For cases where the computational burden is too heavy, we suggest the
following alternative. Fix .cj as in the case of symmetric calibration along existing
rules-of-thumb, see Chambers et al. (2014). For .γj , needed for the asymmetric
calibration, we propose

.γ̂j =
√

n−
j /n+

j , (17)

where .n−
j and .n+

j are the numbers of negative and positive centered residuals in
area j . When using IF-ABC from Eq. (15), these refer to the residuals of the .zij s.
Appendix 7 provides some details on the derivation of this formula, which follows
ideas used by Fernandez and Steel (1998) to estimate a transformation parameter to
achieve a given skewness for a distribution.

In the simulations of Sect. 4, all .cj were fixed to 4 and 12 for symmetric and
asymmetric calibration, respectively. In the case of IF-ABC the optimal choice had
been between 3 to 4, depending on the scenario. For all asymmetric scenarios the
area-specific estimate of .γj was calculated according to (17). When .γj is not stable
due to very small samples or no observations, we may take .γ̂ = √n−/n+,where
.n−, .n+ are the numbers of negative and positive centered residuals over the entire
sample.

6 Estimating the Gini Coefficient for Labor Market Areas in
Tuscany

In the following income study, our main interest focuses on the income inequality in
LMAs regions of Tuscany, Italy. We apply the newly developed methods to estimate
the Gini coefficient for all LMAs being provided with the EU-SILC 2008 sample
survey of Italy and the 2001 census as an auxiliary source of information. From the
survey we model the household equivalised disposable income on other explanatory
variables at household and individual level. Since both, EU-SILC sample and
census, have comparable covariates for individual characteristics, we can exploit the
unit level model for this SAE. Specifically, the set of explanatory variables included
in this study are gender, marital status, employment status and the years of education
of the head of the household (household representative in the survey), as well as
household size and household ownership status of the residence.

LMAs do not match with administrative boundaries, such that, though graph-
ically and economically of great interest, they are not necessarily considered in
the survey planning such as the EU-SILC database. Consequently, most of these
regions must be regarded as small areas; see Table 3 for the number of observations
in each area, and their ratio to the population size. In all LMAs less than 1% of
the population is sampled. Moreover, for the 57 LMAs regions of Tuscany in the
census, only for 29 of them we find observations in the sample. For the remaining
28 LMAs, direct estimation is not even possible. For these out-of-the-sample areas
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Table 3 Description of
EU-SILC data: population
and sample size for the 29
sampled LMAs areas

Area Population size Sample size Percentage sampled

1 13,265 75 0.57%

2 26,237 27 0.10%

3 29,875 17 0.06%

4 57,848 80 0.14%

5 45,010 33 0.07%

6 43,300 59 0.14%

7 47,363 73 0.15%

8 18,772 25 0.13%

9 15,081 48 0.32%

10 35,350 35 0.10%

11 281,036 261 0.09%

12 28,929 27 0.09%

13 70,240 59 0.08%

14 23,590 25 0.11%

15 71,461 95 0.13%

16 4619 25 0.54%

17 38,736 24 0.06%

18 33,258 29 0.09%

19 49,371 57 0.12%

20 11,577 27 0.23%

21 12,511 23 0.18%

22 44,078 118 0.27%

23 10,243 22 0.21%

24 42,662 75 0.18%

25 13,087 26 0.20%

26 38,111 35 0.09%

27 14,204 15 0.11%

28 2829 13 0.46%

29 92,408 132 0.14%

we use our fully calibrated indirect model predictions. For the other 29 regions
we can alternatively also use partial calibration. We compare the results obtained
with direct estimators, robust indirect estimators without calibration, REBLUP with
symmetric and asymmetric calibration, as well as IF-ABC. For the sake of brevity
we only show some selected results. Our rules-of-thumb (Sect. 5.2) suggest .c = 3
and .c = 2 for REBLUP-ABC and IF-ABC, respectively. We also study the effect of
choosing the .γj and .γ according to the proposed method (17) compared to a range
of alternative values.
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6.1 Results for LMAs in Sample Areas with Partial Calibration

We first estimate the parameters for the 29 sampled LMAs (see Table 3) based on
the presumingly more precise partial calibration. Apart from the robustness study
regarding the choice of .γj , Figs. 4 and 5 show the differences in the estimation of
the Gini coefficient due to different calibration methods. Since we do not know the
true values, we compare the results with the direct estimates which is supposed
to be unbiased but with a large variance. We further compare them to indirect
robust estimates. While Fig. 4 illustrates how Gini estimates of the areas vary over
the different methods, Fig. 5 shows how asymmetrically bias calibrated estimates
change with the choice of tuning parameters. It shows nicely that our bias calibrated
estimators are not just alternatives to direct or robust indirect estimators, but actually
offer an extremely useful compromise: while applying the smoothing-out of outlier
effects, the bias calibration recovers the variation of the Gini coefficient over areas.
The .γj parameters allow us to move smoothly from one extreme to the other. The
estimator (17) has a clear trend towards keeping the bias small, which is typically in
the spirit of what practitioners would demand.

6.2 Results for All Areas with Full Calibration

If we want to predict the Gini coefficient for the 28 unsampled LMAs, we have to
switch to full calibration. This can result in a heavy smoothing, making all areas
looking quite similar unless the distributions of the covariates change dramatically
over areas. For comparison reasons we give the estimates of the Gini coefficients
with full calibration for all LMA areas, i.e., sampled and non-sampled—even though
in practice one would probably take partial calibration for the sampled ones. In the
28 unsampled areas we predict income for all households by setting the area random
effect .û. = û(0.5), i.e., to the median of predicted random effects. Then we use the
entire vector of residuals to correct for the bias. Regarding tuning parameters, c is
fixed as before, but .γ is now estimated once for all areas (i.e., for simplicity not even
varying for sampled areas) using again the entire vector of residuals in the algorithm
introduced in Sect. 5.

In Figs. 6 and 7 we see the stronger smoothing effect of full calibration. Note that
the scales in the maps are automatically set by R, and therefore different to those
in Fig. 4. Perhaps surprisingly, here REBLUP-ABC is closer to IF-ABC than to
REBLUP-BC. Figure 7 is confirming both, what we already found in the context of
partial calibration (i.e., a strong bias correction effect) as well as what we have seen
in Fig. 7 (i.e., the variation over areas has been strongly smoothed). Not surprisingly,
the effect of the .γ choice seems to be attenuated.
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Direct REBLUP−BC

REBLUP−ABC IF−ABC

<=0.20 0.20−0.25 0.25−0.30 0.30−0.35 Non Sampled

Fig. 4 Gini estimates for the 29 sampled LMAs of Tuscany using different estimation method
with partial calibration
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Fig. 5 Gini estimates, comparing direct and robust indirect estimators with REBLUP-ABC (a)
and IF-ABC (b) calibration; the 29 sampled areas using partial calibration

Taking all together, we can clearly recommend the use of asymmetric bias
calibration for the indirect robust estimators in SAE. One may prefer the calibration
via CDF when the aim is to minimize the MSE, but the asymmetric calibration
through IF if the aim is to minimize the bias. In both cases, full calibration is only
recommended for out-of-sample areas to provide some bias correction also for these
areas.

There might be some situations where the combination of the two full and partial
calibration is more beneficial but this is a potential for future research and is out of
the scope of this paper.
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REBLUP−ABC IF−ABC

REBLUP−BC

<=0.20 0.20−0.22 0.22−0.24 0.24−0.26

Fig. 6 Gini estimates for all 57 LMAs of Tuscany using different estimation methods with full
calibration
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Fig. 7 Gini estimates, comparing robust indirect estimators with REBLUP-ABC (a) and IF-ABC
(b) calibration; all areas using full calibration

7 Conclusions and Further Discussion

We review bias calibration methods that exist in the literature of SAE and extend
these by the use of an asymmetric Huber function. This nests also the existing
methods but can be quite beneficial when the practitioner is dealing with skewed
distributions. Furthermore, for the problem of estimating non-linear parameters we
propose to use linear approximations through the influence function to robustify and
calibrate these linearized versions. Necessary tuning parameters can be chosen data-
adaptively, and modifications of the calibration allow its application to non-sampled
areas. Our simulations confirm the efficiency gain using these approaches compared
to the existing bias calibration methods. While this was mainly shown along the
objective of estimating the Gini coefficient, it is clear that these methods can be
applied to other settings. However, we also find that the quite recently proposed
transformation based EBP with Monte Carlo based calibration (Kreutzmann et al.
2019; Rojas-Perilla et al. 2020) is a very attractive alternative or complement,
at least in the context of right skewed distributions. Further note that if quantile
estimation is the main focus, the paper of Chen and Liu (2019) provides various
alternatives to address non-normality.
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We use these methods to estimate the income inequality for all LMAs in Tuscany,
Italy. In this application we can illustrate the usefulness of calibration which exhibits
quite serious shifts indicating important bias corrections. Also, it shows that full
calibration, though useful for doing bias calibration in the non-sampled areas, has
a strong smoothing effect. Thus, partial calibration should be the preferred choice,
where applicable.

Acknowledgments We would like to thank the editors and two anonymous referees for their
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Appendix

Influence Function of the Gini Coefficient

Consider the Gini coefficient .T (F ) = 2 · I (F )
μ(F )

− 1, where .I = I (F ) =∫ +∞
0 tF (t)dF (t), .μ = μ(F) = ∫ +∞

0 tdF (t), and define .Fε,y(t) = (1 − ε)F (t) +
εδy(t), where .δy(t) = 1{t ≥ y}. Then

.T (Fε,y) = 2
∫ +∞
0 t

(
(1 − ε)F (t) + εδy(t)

)
d
[
(1 − ε)F (t) + εδy(t)

]
∫ +∞
0 td

[
(1 − ε)F (t) + εδy(t)

] − 1

= 2

(1 − ε)
∫ +∞
0 tdF (t) + ε

∫ +∞
0 tdδy(t)

{
(1 − ε)2

∫ +∞

0
tF (t)dF (t)

+ ε(1 − ε)

∫ +∞

0
tδy(t)dF (t) + ε(1 − ε)

∫ +∞

0
tF (t)dδy(t)

+ ε2
∫ +∞

0
tδy(t)dδy(t)

}
− 1.

Using the definition of Dirac delta function we obtain

.

∫ +∞

0
tF (t)dδy(t) = y · F(y),

∫ +∞

0
tδy(t)dδy(t) = y.

Therefore, it follows

.T (Fε,y) = 2 · (1 − ε)2I + ε(1 − ε)
∫ +∞
y

tdF (t) + ε(1 − ε)yF (y) + ε2y

(1 − ε)μ + εy
− 1,

(18)
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and by definition given in Hampel (1974), the influence function of the functional
T is

.IF (y; T , F ) = d

dε
T (Fε,y) |ε=0= 2 ·

(
−2I + yF(y) + ∫ +∞

y
tdF (t)

)
· μ − I · (y − μ)

μ2

= 2 ·
(
1

μ

[∫ +∞

y

tdF (t) − I

])
+ 2 · y

μ

[
F(y) − I

μ

]
.

Bootstrap for RMSE and Tuning Parameter Selection

Bootstrap procedures are quite popular in SAE as they account for the dependence
structure of the data, see Hall and Maiti (2006a) and Sperlich and José Lombardia
(2010). Notice that the so-called naive or pair bootstrap is not adequate in this con-
text. Given the large literature on bootstrap-based MSE estimation, we concentrate
here on the conditional RMSE estimation. We propose a bootstrap method that is
computationally inexpensive but helps us in approximating the MSE or RMSE for
choosing the tuning parameters. Since we focus on the conditional distribution for
each area (see (7)), we only sample from the error terms but not from the random
effects. Once random effects are predicted, we consider them as fixed. This will,
indeed, disregard the between area variation and will lead to an underestimation of
the RMSE. However, recall that the aim is not to provide a precise estimate of the
RMSE, but to find the tuning parameters minimizing RMSE.

It is well known that the presence of outliers in the residuals can harm the residual
bootstrapping procedure. To avoid this problem, we do the bootstrap sampling from
the pool of huberized residuals, see Singh (1998) for the breakdown theory of
bootstrap quantiles. To evaluate the RMSE for a given pair .(cb, γb), we need, say,
“a more relaxed” pair .(c = c2 > cb, γ = 1), to huberize the residuals a priori for the
bootstrap sampling, see step 4 below. Specifically, the bootstrap algorithm consists
of the following steps:

1. Fit the model with a robust estimator without calibration to get estimates and
predictions for fixed and random parameters.

2. Pick a combination of .cboot and .γboot from a mesh over a predefined domain.
3. Estimate the bias calibrated parameter of interest for each area, say .Ĝini

BC
j ,

called “the original estimate” hereafter. Now, .{yij } ∪ {ŷkj } for .j ∈ sj and .k ∈ rj

are considered to be the original population values for area j .
4. Get the residuals for each area from the original fit, and huberize them as

.r̂esij = ψc2,1
(
(yij − ŷij )/ŵj

) · ŵj , with c2 > cboot ,

.ŵj being robust estimates of the scale for the residuals of area j , e.g.,

.ŵj = (1.4826 × median(| ε̂ij |)).
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5. Sample randomly with replacement, separately from each area set of the
huberized residuals, and stack them to build a vector of bootstrap residuals
.res∗

ij .
6. Construct the bootstrap sample by setting .y∗

ij = ŷij + res∗
ij .

7. Using this bootstrap sample together with the original design of x, fit the
bootstrap sample to predict the unobserved units, .y∗

kj , for .k ∈ rj .

8. The bootstrap population outcome set is .U∗(b)
j = {yij } ∪ {y∗

kj }. For this popula-
tion, estimate the parameters of interest, e.g., .Gini

∗(b)
j where the calibration is

done by means of the bootstrap model residuals.

9. Repeat steps 4.-7., B times, each time calculating the error .

(
Gini

∗(b)
j −Ĝini

BC
j

Ĝini
BC
j

)
.

10. The estimated RRMSE and Bias are approximated by

.RRMSE(cboot , γboot ) = 1

B

B∑
b=1

⎛
⎝Gini

∗(b)
j − Ĝini

BC
j

Ĝini
BC
j

⎞
⎠

2

,

.Bias(cboot , γboot ) = 1

B

B∑
b=1

⎛
⎝Gini

∗(b)
j − Ĝini

BC
j

Ĝini
BC
j

⎞
⎠.

11. Repeat steps 2.-10. for all sensible combinations of .{cboot and .γboot }, and choose
the pair .{cboot , γboot } that gives the smallest RRMSE.

Details on the Estimator for Tuning Parameters

Let .f (.) be a unimodal symmetric distribution around 0. Fernandez and Steel (1998)
define a class of asymmetric distributions by

.p(ε | γ ) = 2

γ + 1
γ

{
f (

ε

γ
)1(−∞,0)(ε) + f (γ ε)1 [0,∞ )(ε)

}
. (19)

It follows that

.
Pr(ε < 0 | γ )

P r(ε ≥ 0 | γ )
=
∫ 0
−∞

2
γ+ 1

γ

f ( ε
γ
)dε

∫∞
0

2
γ+ 1

γ

f (γ ε)dε
,

and by change of variables

.
Pr(ε < 0 | γ )

P r(ε ≥ 0 | γ )
=
∫ 0
−∞ f (z)γ dz∫∞
0 f (z) 1

γ
dz

= γ 2, (20)
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where the last equality holds since .f (.) is symmetric around 0. Assume that our
model residuals, used for calibration, follow distribution (19), and try to estimate
the two probabilities involved in (20) by

.P̂ r(ε < 0 | γ ) = n−

N
, P̂ r(ε ≥ 0 | γ ) = n+

N
,

where .n−, .n+, and N are the numbers of positive, negative, and total residuals.
Therefore, a heuristic estimation of .γ , i.e., the skewness factor for the residuals
is .γ̂ = √n−/n+. A feasible algorithm to obtain data-driven tuning parameters in (6)
is the following

1. Center the block of residuals in each area.
2. Fix the constant c at a given value. Values between 2 and 4 seem to provide a

good performance in practice, see Chambers et al. (2014).
3. Count the number of positive and negative centered residuals in each area: .n+

j

and .n−
j for area j and set .γ̂j =

√
n−

j /n+
j .
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The Diverging Definition of Robustness in
Statistics and Computer Vision

Peter Meer

Abstract Statistics and computer vision have a different role for robustness.
Statisticians are primarily concerned with the theoretical properties of estimators
when models are only approximately true. In computer vision, performance takes
precedence over theoretical considerations. This divergence is exemplified in
statistics by the robust M-estimator in contrast to the RANdom SAmple Consensus
(RANSAC) and the Multiple Input Structures with Robust Estimator (MISRE) in
computer vision. All three have defined algorithms, but the M-estimator is based
on theoretical results, while RANSAC and MISRE only emphasize recovering
significant inlier structures. I offer suggestions for how the theory of theM-estimator
can be further applied to MISRE, or MISRE can be applied to M-estimator.

Keywords Robustness · M-estimator · RANSAC · MISRE

1 Collaborations

My friendship with Dave Tyler goes back almost 30 years. In 1991, I took a position
in the Department of Electrical and Computer Engineering at Rutgers University.
My research focused on robust computer vision and, after settling in, I began to
attend seminars at the Department of Statistics. I collaborated with Javier Cabrera
on the application of bootstrapping in computer vision problems and got to know
others in the department as well.

I do not remember exactly when I first met Dave Tyler, but we had fascinating
discussions and quickly became friends. We were interested in how each other’s
fields treated robustness. As an expert on M-estimators, Dave taught me a lot in
these conversations. Most importantly, perhaps, I learned that you do not have to be
good at statistics, you just have to be friends with someone who is good at statistics.
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And Dave dove into the applications of robustness in computer vision, leading to
some fruitful collaborations.

Dave and I worked together on two National Science Foundation grants
(“Statistical Problems in 3D structure recovery,” with Javier Cabrera, and “Modern
statistical techniques for computer vision,” between 1996 and 2003). He served on
four Ph.D. committees for my students, three of whom also co-authored with him.
That work brought in approaches from statistics that were little-known in computer
vision, showing the value of cross-field interaction. In a chapter of “Empirical
Evaluation Techniques in Computer Vision,” Matei et al. (1998) analyzed the
performance assessment when resampling 3D rigid motion of points. Starting from
the Cook diagnostics in the volume of Rousseeuw and Leroy (1987, p. 227), the
empirical influence functions .ÊIF -s were computed by bootstrapping each point
separately. This gives a stricter measure and the covariance matrices for rotation and
translation, as well as more precise confidence regions of the input. In a conference
about Content-based Access of Image and Video Libraries (CBAIVL-99), Fort
Collins, CO, 1999 and in a journal paper in Pattern Recognition Letters, 2003,
Comaniciu et al. (2003) used the Bhattacharyya distance between two arbitrary
distributions, the query and the database, in a completely different way than it was
already used in computer vision. The average recognition rates were better when
applying it for VisTex textures and the Brodatz database. In the conference paper
in 2001 IEEE Conference on Computer Vision and Pattern Recognition, Chen et al.
(2001) used the M-estimator with S-estimator for the auxiliary scale in very simple
experiments, only three synthetic 2D lines. The limitations in the images were not
the mirrors from the theory of statistical robust estimators.

Dave’s natural curiosity, flexibility, and interest in computer vision led him to
be an editor for the special issues on “Robust computer vision” in the journal
“Computer Vision and Image Understanding” in 2000. He also participated in
computer vision conferences in Seattle, WA, in 1994 and Wadern, Germany, in
1998. His invited lecture in Seattle, M-estimates, S-estimates and CM-estimates:
A Review, showed how robustness is interpreted in statistics. At that point, M-
estimation was still considered as a potentially successful approach in computer
vision.

Meanwhile, I was also participating in statistics conferences in Raleigh, NC,
1995; Halifax, Canada, 1996; Anaheim, CA, 1997; and Leeds, England, 2000. My
approach was always to emphasize the computer vision point of view. We collab-
orated to write Smoothing the gap between statistics and image understanding, a
comment on Edge preserving smoothers for image processing in J. Amer. Statist.
Assoc. in 1998, Vol. 93, pp. 526–541. We wrote that “in any interdisciplinary
endeavor, successful cross-fertilization requires much more than just applying
statistical tools to another problem domain.” And we approached the question of
image smoothing from two viewpoints: that of a user of the technique –the computer
vision approach– and the methodological contribution—the statistics approach.
That notion is at the heart of this essay: how is robustness viewed through the lenses
of these different fields?
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2 Statistics vs. Computer Vision

Dave noted the idea that computer vision had an “independent development of
robust statistics” Tyler (2013, p. 84). Robustness in statistics means that a given
distribution, generally Gaussian, is corrupted with a few outliers which have to
be deleted before the final estimation. The outliers may have the same distribution
with other parameters, another distribution, or no distribution at all. The theoretical
properties for robustness are analyzed by statisticians; for example, the breakdown
point is the largest part of the data beyond which a robust estimator becomes
useless; efficiency measures of quality of the robust estimator with .O(n2) being
better than .O(n3); the influence function is an infinitesimal perturbation which in
order to remain robust and result in a small, smooth, and rescinding output. All these
theoretical considerations are taken into account in robust statistical estimation.
For example, the largest breakdown point in statistics is 50%, for least median
of squares, Rousseeuw (1984), which has low efficiency .O(n3). But in computer
vision, the emphasis is on recovering the inlier structure without being particularly
concerned about theory.

Dave discussed two computer vision robust estimators in Tyler (2013, pp. 86–
92). The Hough transform appeared in Hough (1959) and the RANdom SAmple
Consensus (RANSAC) in Fischler and Bolles (1981). The Hough transform is not
really robust, since it mainly works for lines in 2D and 3D, the space has to be
quantized before applying the transform and the background noise in the data is very
important, among other problems. RANSAC is discussed in greater detail below.

Stigler (1973) had a wonderful paper about the origin of robustness in statistics.
It was only in 1953 that George E.P. Box gave a formal statistical definition of
robustness, but statisticians had used the concept for at least 250 years. In 1763,
James Short, an English astronomer, had estimated the sun’s parallax based on
observations of the transit of Venus. For the correct results he averaged three
means: the sample mean, the mean of all observations with residuals less than
one second, and the mean of those with residuals less than half a second. In 1818,
Pierre-Simon Laplace proved that errors which are too large relative to the others
should be rejected before estimation. In 1886, Simon Newcomb introduced a more
robust estimator that gave “less weight to the more discordant observations.” The
Huber (1964) M-estimator is similar to this pioneering work. And in 1888, Francis
Edgeworth showed that “the median may possess an advantage over the sample
mean.” These historical examples would be considered “robust” today.

John W. Tukey wrote in 1960, as Stigler (2010, p. 278) recalled, that the
estimation of the scale of the normal distribution is less efficient if a few values at
a distance of three standard deviations are contaminated. Huber (1964) translated
this observation into the first robust statistical paper where contributions of the
more distant points were systematically reduced. As Morgenthaler (2007, p. 277)
explained, statisticians know the pitfalls of reliance on model assumptions over
experimental facts. “All statisticians today are aware of the dangers of a data analysis
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that owes more to model assumptions than experimental facts.” They know that the
experimental procedure is at least as important as the chosen model.

The M-estimator has an objective function .ρ(u) which is nonnegative .ρ(u) ≥ 0
with .ρ(0) = 0, symmetric .ρ(−u) = ρ(u) and nondecreasing with increasing of .|u|.
M-estimator starts with the whole dataset and uses iterative reweighted least squares
at each step to eliminate outliers above a given threshold. Convergence is achieved
when the deviation becomes under a given very small threshold between the steps.

In the early 1990s, researchers in computer vision still borrowed robust estima-
tors from statistics: the M-estimator and the least median of squares (LMedS) of
Rousseeuw (1984). The use of LMedS was diminishing because the procedure was
not powerful enough to always detect more than one structure in a real image. Since
the correct recovery of the inlier structure is the main focus in computer vision, the
underlying theory behind the statistical estimators was never taken into account.

Much of Dave’s work is about multivariate location, scatter, regression, and
symmetric clutter distribution, mostly in relation to the different types of M-
estimation. His work exemplifies the robustness literature in statistics. As mentioned
above, Dave pointed out that computer vision has a different view of robustness,
with which I am in complete agreement. This difference is driven by the different
goals of the two fields. Statisticians are concerned with the theoretical properties of
the estimators. As Dave put it in Tyler (2013, p.4), “are statistical methods which
are good under the model reasonably good if the model is only approximately true?”
But computer vision is concerned with performance and flexibility, and less so with
the underlying theory.

To emphasize this point, I will describe both the commonly used RANdom
SAmple Consensus (RANSAC) estimator which was conceived more than 40 years
ago, and the new Multiple Input Structures with Robust Estimator (MISRE). Both
of them, like the M-estimation, return parametric structures, but they approach the
problem in different ways. I conclude by proposing a direction towards an M-
estimator/MISRE combination which may lead to fruitful research on robustness
in computer vision or statistics.

3 RANSAC

The RANdom SAmple Consensus (RANSAC) estimator, Fischler and Bolles
(1981), is similar to very old methods that even predate least squares estimation.
Around 1749, the German cartographer and astronomer Tobias Mayer (1723–1762)
derived 27 equations to study the orbit of the moon from observations of a crater on
the moon. To find the three unknowns, he used the method of averages, summing up
groups of nine equations into a new equation. This approach increased the accuracy
of his observations, Hald (2007, p. 44) and Stigler (1986, pp. 16–25).

The Croatian polymath Roger Joseph Boscovich (1711–1787) published a
method to measure the ellipticity of the earth’s oblate shape in 1755. With
measurements from five locations, he obtained solutions for two unknowns in all ten
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pairs. The average of the solutions was incorrect and he removed two “so different
from the others” pairs of points. The average of the eight remaining solutions was
satisfactory, Hald (2007, pp. 45–46) and Stigler (1986, pp. 39–50).

Both Mayer and Boscovich reduced the scope of the estimation to the number of
unknown. But Mayer used sums, while Boscovich computed the minimum number
of points needed to solve the problem. Boscovich also eliminated two pairs. These
were the forerunners of elemental subsets and the removal of data above a threshold.

The computation of RANSAC is very different from the computation of the
statistical M-estimator. The objective function at the input, which has to be
recovered robustly, can be a polynomial line, a nonlinear function like an ellipse, or
a .3× 3 matrix for 2D homography, etc. A three-dimensional example will illustrate
this concept in the second part of the paper. If the objective function is nonlinear,
RANSAC first transforms it into the linearized function, associating each term with
a separate variable.

The 2D ellipse, the computer vision vector .y = [x y]� becomes

.f (y) = (y − yc)
�Q(y − yc) − 1 −→

5∑

i=1

xiθi − α (1)

x = [x y x2 xy y2]� and 4θ3θ5 − θ24 > 0.

The five-dimensional .θ multiplies the elements of .x, and .α = (y�
c Qyc − 1) is the

scalar term of the linearized function.
The 2D homography, connecting the projective coordinates of two planes in the

two images, has the input .y = [x y x′ y′]� and the .3 × 3 objective function
.H = [h1 h2 h3]� becomes

.f(y) =
⎡

⎣
x′
h

y′
h

w′
h

⎤

⎦ −
⎡

⎣
hT
1

hT
2

hT
3

⎤

⎦

⎡
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x

y

1

⎤

⎦ x′ = [x y 1]h1
[x y 1]h3 y′ = [x y 1]h2

[x y 1]h3 (2)

x[1] = [−x − y − 1 0 0 0 x′x x′y x′]�
x[2] = [0 0 0 − x − y − 1 y′x y′y y′]�,

where .[x′
h y′

h w′
h]� are the projective coordinates and .[x′ = x′

h

w′
h

y′ = y′
h

w′
h

]� are the

measured coordinates. If .f(y) is equal to zero and .x′ and .y′ are divisions, the two
nine-dimensional vectors can be seen.

Robust estimation in computer vision has the elemental subset as the building
block. An elemental subset is a randomly chosen minimum number of input points
required to estimate the linearized objective function. An 2D ellipse needs five
points. A 2D homography needs only four points because each point has two
equations. The returned parameters are correct only for an inlier structure. The total
number of elemental subsets in real-world problems is very large. Therefore, only a
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reduced number M elemental subsets are taken, with M given before estimation. M
can range from a few hundred to a few thousand, depending on the specific problem;
using a larger M will not increase the accuracy of the estimation.

Before estimation, the scale of the inliers, .σ , is also given. Points inside .±σ from
the scalar term are retained for an elemental subset. The .σ is unique, therefore,
RANSAC will not work if multiple inlier structures with very different noise
processes are present.

There is no deep theory behind RANSAC. The estimator is considered to be
correct if the significant inlier structures are outputted correctly with very few
outliers classified as inliers or vice versa. Because the amount of noise corrupting
the inliers is unknown, there is no theory for predicting a minimum number for M .
Each objective function class, like ellipse or homography, can have vastly different
M even if they have the same number of inliers and outliers.

Assume n data points. RANSAC is computed by repeating the following procedure
M times:

• Choose an elemental subset by random sampling without replacement.
• Define a linear model candidate by the minimum number of points.
• Assume the candidate is valid for all n points. Compute the distances between

each point and the model.
• Distances less than .±σ from the .α give the inlier consensus set.

The largest consensus set after M trials, i.e., the smallest set of outliers, is a returned
elemental subset. Apply total least squares (TLS) to the selected inlier points and
obtain the RANSAC estimate. If the input was nonlinear, project the estimate back
to the input.

Figure 1 shows a noisy 2D line estimation with RANSAC in the presence of
outliers (Fig. 1a). The least squares fit is completely erroneous (Fig. 1b). Before the
estimation, the user selects M , the number of elemental subsets, and .σ , the scale
of the inliers. Pick a minimum of two points for a model; measure the distances
for each point from the model; retain only the points inside .±σ from the model
(Fig. 1c–e). Only a few points are retained. After M repetitions, a few models will
be around the sought inlier structure. The one with the minimum number of outliers
is the RANSAC estimate (Fig. 1f).

RANSAC can fail for several reasons: if the .σ is not in the range of permissible
values; if in a sequence of images the scale is significantly changed; if there are
asymmetric outliers in the image; if an elemental subset cannot be defined uniquely
from the minimum number of points; or if the data contains too many outliers, with
the limiting value set by the input.

RANSAC uses randomly chosen minimum elemental subsets to build the largest
consensus set, given a number of trials. In the last 25 years, RANSAC became
the primary approach for robust computer vision. To eliminate some problems
with RANSAC, many types of similar estimators were proposed which are more
complicated. The theories behind those newer approaches were generally taken
from statistics. But they emphasized the issues that were convenient for the authors’
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Fig. 1 RANSAC estimate for a noisy 2D line. (a) Many outliers are present in the input data. (b)
Least squares fit is completely erroneous. (c) Define a model by taking two points (colored red).
(d) Distances for all input points are measured from the model. (e) Retain only those points which
have maximum .±σ distance from the model. (f) Repeat the procedure M times. A few models will
be close to the sought inlier structure. The one with the minimum number of outliers is the solution
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purposes and rarely focused on the limitations; if a method recovered significant
inlier structures, it was considered suitable. A new RANSAC-type estimator was
compared to similar approaches based on a comparison of a few images and
objective functions, and unsurprisingly, authors almost invariably found that their
proposed approach was superior.

RANSAC-type estimators used at least one of the following: guided sampling,
distributions for the outliers and/or for the inliers, optimized model verification,
detection of the degenerate configurations, and global regularization functionals.
Jin et al. (2021) write “...it remains unclear how well they perform in real-world
settings, compared to a well-tuned RANSAC.” While these new RANSAC-type
estimators were cited frequently, they were seldom used in real-world situations.

4 MISRE

In RANSAC, the input parameters have to be tuned correctly for an estimator to
work. But in the M-estimator, reweighted least squares corrects the estimate in a
few steps. Any RANSAC-type estimator aims to achieve consensus maximization
for an inlier structure, which is only as good as the presumed separation between
the inliers and outliers. Yang et al. (2021) recently published a new algorithm, the
Multiple Input Structures with Robust Estimator (MISRE), which is more universal
than RANSAC-type estimators. The inlier structures or outlier parts are treated
similarly and therefore each of them is an independent iteration. MISRE robustly
recovers a mathematical function for the significant inlier structures.

The universality of MISRE is divergent from RANSAC, which often needs
different input parameters. MISRE uses the same two constants for all 2D and 3D
estimation. But universality of MISRE cannot take into account pre-processing or
post-processing of the images, which need specific thresholds. MISRE begins like
RANSAC. The original objective function is linearized; elemental subsets are taken;
and the user specifies the number of elemental subset trials. However, beside M no
input parameter is given.

A vector objective function is recovered, like the 2D homography. There are a
total of n points at the beginning and the input noise for the inliers can have arbitrary
scales.

There are a total of .ζ different Jacobian matrices, .C[c]
i c = 1, . . . ζ , which project

the nonlinear input to the linear function and have to be processed with the same
elemental subset .θ, α. The Mahalanobis distances in the null-space start from the
scalar term .α and are computed without the unknown scale.

.d
[c]
i = |x[c]�

i θ − α|
√

θ�C[c]
i θ

≥ 0 c = 1, . . . ζ i = 1, . . . n. (3)
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The .ζ different Jacobian matrices give different .d
[c]
i distances for the different

.x[c]
i . The most conservative choice, the largest Mahalanobis distance, is chosen for
each point.

These Mahalanobis distances are ordered ascendingly for each of the M trials.
Take the elemental subset which have the minimum sum of the Mahalanobis
distances at five percent of the total data. This is the first constant of MISRE and
is the same for all iterations in this problem. Therefore is no intrinsic bias in the
algorithm since each iteration starts from the same number of points.

The elemental subset is .θ̂w and .α̂w. Divide the ordered sequence into equal
Mahalanobis distances, denoted .�d5, where .�d5 corresponds to the first five
percentage of the Mahalanobis points starting from .α. The k-th .�d5 segment has
.nk points.

Expand the sequence, increasing with another .�d5 each time. The second
MISRE constant is equal to number two: the expansion finishes when the average
number of points in the already-processed segments is larger than twice the number
of points in the next segment.

.
1

k

k∑

i=1

ni > 2 nk+1 k = 1, 2, 3 . . . (4)

Increasing with .1% at the start the total number of data points, .η = 6%, 7% . . .,
the same process is repeated again and again. Each expansion is independent
because the input data is independent from other starting data.

When the second constant is satisfied, the expansions stop. The region of interest
is defined from five percent to the total points till where the second constant is
already satisfied at the starting point, giving .ηf with a distance extended .ktη times.
The largest Mahalanobis distance in the region of interest is the estimated standard
deviation.

.σ̂ = max
η=5%,...,ηf

ktη�dη. (5)

For inlier structures, the .σ̂ is relative small, while for an outlier part the .σ̂ is large.
The .σ̂ was based on a single elemental subset. Take another .0.1M elemental

subsets from the points between .α̂w ± σ̂ . For each subset find the closest mode to .α

by mean shifts, Comaniciu and Meer (2002). All n points participate.
The total least squares (TLS) for .α̂tls has .nst points and standard deviation .σ̂ t ls ,

giving the density of the structure as the ratio

.
nst

σ̂ tls
, (6)

and .nst points are removed from the input. The processing of a next iteration with
.n − nst begins if there are more from 5% of the total input data.



404 P. Meer

If the unprocessed points are already less than five percent of the total input data,
the structures are sorted in descending order based on the densities (6). Until this
point, inlier structures and outlier parts are not distinguished. The user specifies the
cutoff between the significant inlier structures and the first outlier part, based on
where the .σ̂ t ls increase is substantial.

The stronger inlier structures are always recovered, even when a weaker inlier
structure turns into outliers. Classifying based on the standard deviations and not
the densities can introduce small units of inliers or outliers between other significant
inlier structures. Fusing two structures needs specific thresholds.

In the paper Yang et al. (2021), the pseudocode of the algorithm is also given,
along with numerous examples for 2D images and 3D sequences. Circular cylinder
estimation in 3D starts from 22 images in 2D with a 2D image is at the top-left
of Fig. 2. The 6500 point are identifier in 3D (top-right, Fig. 2). Using the paper of
Beder and Förstner (2006) start with .P, the most general nine-dimensional solution

.P =
[
D d
d� d

]
, (7)

where .P the .4× 4 symmetric matrix and linearize .P with the .9× 3 Jacobian matrix.
A circular cylinder has five degrees of freedom, four for the axes and one for the
radius. If .P is a circular cylinder, the .3×3 matrix .D has to have two identical singular

Fig. 2 3D recovery of circular cylinders. Top-left: one of the 22 images in 2D. Top-right: the
6500 points recovered in 3D. Bottom left and right: The 2262 inlier points viewed in two different
angles. Images partially © 2021 IEEE. Reprinted, with permission, from Yang et al. (2021)
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values, and the third one is equal to zero. The three-dimensional vector .d has to be
an eigenvector of the .3 × 3 matrix .D. These four constraints have to be verified, up
to a small threshold, for every nine-dimensional elemental subset chosen.

Take .M = 2000 and process the points till below 325 points, which is equal 5%.
The first two structures are inliers with a total of 2262 points (bottom, Fig. 2). The
number of outliers is almost three times as many as the number of inliers. This can
occur when a lot of outliers belong to another objective function, like a plane; this
can be addressed in the algorithm.

5 Possible Cooperation

All three estimators, M-estimator, RANSAC, and MISRE, return mathematical
objective functions based on well-defined but vastly different algorithms. The M-
estimator starts from the total number of the input points and after a few iterations
converge to a robust solution with fewer points which are mostly inliers. Before
the estimation, the user has to give a threshold (scale value) for the inlier structure.
MISRE picks up a sufficiently large number of elemental subsets M randomly, with
each subset giving a minimal solution. The scale value for the inlier structure is
obtained from the largest Mahalanobis distance in the region of interest. This comes
from a single elemental subset.

In each iteration, the M-estimator computes an iterative reweighted least squares
where only the weight of the input points are potentially changed. To achieve to the
final estimate, MISRE has to do total least squares over all the already participating
input datapoints.

Assume that both estimates have the same input data, the same inlier structure
and the same noise. Then, the two estimates would have very similar M-estimator
and MISRE input sequences and the returned objective functions at the output will
be very close one to the other.

Can this parallel approach yield more insight into these different approaches to
robustness? How do the breakdown point, the efficiency and the influence function
change when applied to MISRE, especially for multiple inlier structures where M-
estimator can fail? Are the new values sensible? If MISRE’s scale value is used in
the M-estimator, will the estimation change? If the M-estimator’s scale is applied
to MISRE, how large the change will be? Many questions can be examined, but the
answers should come only through the experimentation.

Dave Tyler’s influence goes far beyond his work on the M-estimator, even if
this essay is limited to that contribution. As ideas of robustness in statistics and
computer vision diverged, collaboration between the two fields diminished though
–more importantly– Dave and I remain good friends. Perhaps a new generation can
reignite the fruitful sharing of ideas between our fields.

Acknowledgments I thank Jonathan Meer for all the suggestions which made this essay possible.
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Part IV
Other Methods



Power Calculations and Critical Values
for Two-Stage Nonparametric Testing
Regimes

John Kolassa, Xinyan Chen, Yodit Seifu, and Dewei Zhong

Abstract Interim analysis techniques for clinical trials provide improved power
with smaller average sample sizes. These techniques crucially require multivariate
probability calculations for determining critical values. Most existing techniques
rely on multivariate normal approximations to the joint null distribution of test
statistics evaluated on potential interim and full data sets. More accurate critical
values for nonparametric testing with an interim analysis are given, using a new
multivariate Cornish–Fisher expansion. While earlier authors demonstrated that
such an expansion is possible, it has never been implemented before this manuscript.
Generally, the superior accuracy of power calculations via an Edgeworth series is
demonstrated. Example calculations giving sample sizes from desired power are
provided. Calculations are implemented in an R package.

Keywords Cornish–Fisher expansion · Multi-stage testing

1 Introduction

With more and more drugs being developed for rare diseases (Pharmaceutical
Research and Manufacturers of America 2019), the rarity of the disease and the
need for new therapy can potentially result in small sample sizes for pivotal trials
(Chow and Huang 2020; Rom and McTague 2020). For trials with small sample
sizes, if the efficacy response is not approximately normally distributed, designing
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a study that is based on mean differences under the normality assumption might
result in inflating the type-I error. In such cases, it may be more accurate to design
a trial based on testing for differences in location using a nonparametric procedure
such as the Mann–Whitney test. One of the advantages of such rank-based testing
is that these procedures are robust to aspects of the distribution of the underlying
distributions, like asymmetry, because the statistics are distribution-free. One of the
disadvantages of rank-based testing is that desirable test properties of parametric
tests may not apply in this case; Amrhein (1995) demonstrates that a related test
is biased. If the hypothesized efficacy is present, there is also a need to make
these therapies available to patients as soon as possible, especially if the indication
does not otherwise have a standard therapy. In this chapter, we propose a group-
sequential trial design when comparing two treatments, using a Mann–Whitney test
at each stage. One interim analysis is done to potentially stop early for efficacy.
The proposed analysis methodology is highly accurate and computationally efficient
when compared to available exact methods.

Our proposed methods are appropriate to interim analyses in which each subject
has one assessment, and study enlargement considered is via the recruiting of new
subjects that will presumably act independently and not via more assessment on
existing subjects.

While trials for rare diseases tend to be quite small, small trials exist in other
contexts, including phase I and II trials, and particularly those in which early
stopping is considered important.

This manuscript addresses the design of a trial incorporating such an interim
analysis. The present work might be extended to allow for early stopping for safety
or futility and for the consideration of multiple interim analyses. It may also be
extended to multi-stage designs to select among multiple treatments (Whitehead
and Jaki 2009).

Wilding et al. (2011) discuss exact inference for two-stage trials, using the
Wilcoxon statistic (Mann and Whitney 1947), and present a recursive algorithm for
probability atoms for the resulting bivariate test statistic. Exact inference is slow,
even for moderate sample sizes, making it difficult to routinely use for derivation
of sample sizes and power. The present work follows up on Kolassa (1995), who
provided power and sample size calculations for an application of the Wilcoxon
statistic with no interim analysis. Rahardja et al. (2009) and Shieh et al. (2006)
summarize work on power calculations for one-stage tests.

Section 2 of this chapter sets out assumptions and notation for later calculations.
Section 3 reviews existing multi-dimensional exact calculations. Section 4 reviews
Edgeworth probability function approximate calculations. Section 5 reviews uni-
variate Cornish–Fisher quantile approximations. Section 6 presents a new approx-
imation to multivariate quantiles. Section 7 applies this new approximation to
quantile estimation for multivariate rank tests. Section 8 discusses continuity
correction. Section 9 provides guidance on sample size. Section 10 provides an
example calculation for the critical values. Section 11 presents accuracies for the
probability calculations for some experimental configurations. Section 12 discusses
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errors in critical values. Section 13 discusses errors in calculation of powers.
Section 14 presents conclusions.

2 Assumptions

This section lays out notation for the two-stage rank-based testing problem and
specifies the assumptions under which the analysis is performed.

Consider a study with two treatments (active treatment versus control). Under
the two-sample testing plan with an interim analysis, the investigator initially
collects observations from each of the treatment and control groups. Denote the
initial number of control observations as .m1, and denote the control observations as
.X1, . . . , Xm1 . Similarly, denote the initial number of treatment observations as .n1,
and denote the treatment observations as .Y1, . . . , Yn1 .

Suppose that the control observations have distribution function F and that
treatment observations have distribution function G. The null hypothesis is that there
is no difference in distribution between treatment and control observations:

.H : F(x) = G(x) ∀x,

and the alternative hypothesis is that the treatment observations are systematically
greater than the control observations:

.K : F(x) ≥ G(x)∀x, F (y) > G(y) for some y.

A more specific alternative hypothesis is that the distribution function for treatment
subjects is offset that of the control subjects, in the direction leading to larger values
under the alternative:

.K ′ : F(x) = G(x − �) ∀x,

for some .� > 0. Note that both the general alternative K and the specific alternative
.K ′ are inherently one-sided.

The first step in assessing the presence or absence of shift in distribution uses the
Wilcoxon statistic

.U1 =
m1∑

i=1

n1∑

j=1

I (Xi < Yj ), (1)

where I takes the value 1 if its argument is true and 0 otherwise. The investigator
compares .U1 to the critical value .c1(m1, n1) such that

.P0[U1 ≥ c1] ≤ α1. (2)



412 J. Kolassa et al.

If .U1 ≥ c1, the investigator declares treatment superior to controls and termi-
nates the trial. Otherwise, the investigator collects and additional .m2 observations
.Xm1+1, . . . , Xm1+m2 from controls, and .n2 observations .Yn1+1, . . . , Yn1+n2 from
treated subjects, and calculates

.U2 =
m1+m2∑

i=1

n1+n2∑

j=1

I (Xi < Yj ), (3)

the Wilcoxon statistic for the combined data set. Assume that

.X1, . . . , Xm1+m2 , Y1, . . . , Yn1+n2 (4)

are jointly independent with continuous distributions, that .X1, . . . , Xm1+m2 iden-
tically distributed, and that .Y1, . . . , Yn1+n2 identically distributed. Then, .U2 is
compared to the critical value .c2, for .c2(m1, n1,m2, n2) such that

.P0[U1 ≥ c1 or U2 ≥ c2] ≤ α2. (5)

If .U2 ≥ c2, the investigator declares treatment superior to controls.
Subscript 0 on probabilities in (2) and (5) indicates that probabilities are

calculated under the null hypothesis. Hence, the critical values .c1 and .c2 are
calculated under the null hypothesis that .X1, . . . , Xm1+m2 , Y1, . . . , Yn1+n1 are all
identically and independently distributed, with a continuous distribution.

The primary contribution of this manuscript is in describing the procedure for
calculating .c2 of (5).

The next section discusses asymptotic approximations to the critical values that
avoid exact calculations discussed in §1.

3 Existing Probability Calculations

Fix and Hodges (1955) give recursion relations for probabilities for the univariate
statistic, and an expression for the first four null univariate moments, for use in
an Edgeworth series. As with the univariate Mann–Whitney statistic, the bivariate
statistic has null probabilities that can be calculated using a recursion relation;
that recursion is similar to that presented by Wilding et al. (2011). This recursion
is too slow for routine use in moderate samples, but available for assessing the
accuracy of the probability approximations presented in this manuscript, if one is
willing to devote enough computing time. This recursion, described in the appendix
and specified by (22) and (23), was used to calculate true probability atoms with
no Monte Carlo error. Our fastest implementation of this recursion (in Fortran),
using integer arithmetic and significant caching of intermediate values, took 10 h
to generate probabilities for the largest configuration studied, with m1 = n1 =
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m2 = n2 = 9. Hence, while this recursion is useful for studying the behavior of the
technique, it is too slow for routine clinical trial design use; that is, it is too slow for
power calculation and far too slow to invert for sample size calculation.

Approximate calculations based on Edgeworth series techniques will be substi-
tuted for calculating the probabilities involved in (2) and (5).

4 Approximating Corner Probabilities

Solution to (2) and (5) for .c1 and .c2 will begin with an approximation to the two
probabilities. This will be done using an Edgeworth series, using the moments to
order 4. This approximation is well known McCullagh (1987), although seldom
implemented in practice for dimensions higher than one. The approximation is most
easily described in terms of variables rescaled to give expectation 0 and marginal
variances 1:

.V = (V1, V2) for V1 = (U1 − μ1)/σ1, V2 = (U2 − μ2)/σ2 (6)

for

.

μ1 = m1n1/2, σ1 = √
m1n1(m1 + n1 + 1)/12

μ2 = (m1 + m1)(n2 + m2)/2,

σ2 = √
(m1 + m2)(n1 + n2)(m1 + m2 + n1 + n2 + 1)/12

⎫
⎪⎪⎬

⎪⎪⎭
. (7)

Let .κi,··· ,k be the cumulant of components .i, . . . , k of .(V1, V2). Sundrum (1954)
gives expressions for the first four univariate moments, including under alternative
hypotheses, using combinatoric arguments. Zhong and Kolassa (2017) give bivariate
moments, under both the null and alternative distributions. Cumulants are calculated
from moments via the standard multivariate relations. Assume that a cumulant of
order r is of size .O(N2−r ), as is the case for the Wilcoxon statistics. Here,

.N = m1 + n1 + m2 + n2, (8)

with .m1, .n1, .m2, and .n2 roughly proportional to N .
McCullagh (1987) approximates the density for .V = (V1, V2) by

.e4(v) = φ(v, ρ)
{

1 +
2∑

i=1

2∑

j=1

2∑

k=1

κi,j,khijk(v)
3! +

2∑

i=1

2∑

j=1

2∑

k=1

2∑

l=1

κi,j,k,lhijkl(v)
4!

+
2∑

i=1

2∑

j=1

2∑

k=1

2∑

l=1

2∑

m=1

2∑

n=1

κi,j,kκl,m,nhijklmn(v)[10]
6!

}
+ o

(
1

N

)
(9)
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with .ρ = κ12, .φ(·, ρ) the bivariate normal density with expectations 0, marginal
variances 1, and covariance .ρ. The functions .hijk are defined as

.hij (v) = d

dvi

d

dvj

φ(v, ρ)/φ(v, ρ)

hijk(v) = − d

dvi

d

dvj

d

dvk

φ(v, ρ)/φ(v, ρ)

hijkl(v) = d

dvi

d

dvj

d

dvk

d

dvl

φ(v, ρ)/φ(v, ρ);

these polynomials depend on .ρ, but this dependence is suppressed.
This density approximation may be integrated term-wise to get an approximation

to tail probabilities. Define

.Ē4(v) =
∫ ∞

v1

∫ ∞

v2

e4(w) dw1dw2. (10)

The leading term of (9) integrates to .�(v, ρ), the bivariate normal cumulative
distribution function with expectations 0, variances 1, and correlation .ρ. Terms
involving h functions with indices including both 1 and 2 integrate to terms of the
same form, with one index equal to 1 and one index equal to 2 both dropped.

Terms involving the functions h with all indices 1, or with all indices 2, are more
complicated. Take, for instance, a term like .κ1,1,1h111(v)φ(v, ρ). Note that

.φ(v, ρ) = exp(−v2
1/2)

(2π)1/2
× exp(−(v2 − ρv1)

2/(2(1 − ρ2)))

(2π)1/2
√

1 − ρ2
.

Integration with respect to the first argument gives .κ1,1,1h11(v)φ(v, ρ). Subsequent
integration with respect to the second argument gives

.κ1,1,1h11(v)φ(v1)�̄((v2 − ρv1)/

√
1 − ρ2),

where .φ and .� with a scalar first argument and without a correlation second
argument refer to the one-dimensional standard normal density and distribution
function, respectively. Hence, these terms without indices for each dimension as
superscripts to h are polynomial multiples of a normal density and a normal
conditional distribution function, rather than of the bivariate normal density. Careful
accounting for such terms can give a distribution function counterpart to (9). Kolassa
(2003) gives more details about these calculations. Furthermore, Wold (1934)
provides adjustments, called Sheppard’s corrections, to multivariate cumulants, and
Kolassa and McCullagh (1990) argued that these were the appropriate cumulant
corrections for an improved Edgeworth approximation in the univariate case. In this
case, Shepard’s corrections are of smaller order than .O(1/N).
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Kolassa and McCullagh (1990) argue that Edgeworth approximations to lattice
variables (that is, variables that take values on an affine transformation of the inte-
gers) require continuity correction. Kolassa (1989) extends this argument to random
vectors. While their work was specific to sums of independent and identically
distributed variables, the argument holds in the Mann–Whitney–Wilcoxon case as
well.

Because of this complication, the bivariate Edgeworth approximation to tail
probabilities is cumbersome and was constructed using the symbolic computation
software Mathematica Wolfram Research, Inc. (2018). The series was constructed
by expanding the exponentiated cumulant generating function and applying Fourier
inversion term-wise. The symbolic computation software writes mathematical
expressions into code for a computer language (in this case, Fortran) accessible
from our R package TwoStage. This package and the package on which it depends,
bivcornish, are hosted on Github; if one runs
library(devtools)
install_github("kolassa-dev/bivcornish")
install_github("kolassa-dev/TwoStage")
they will be installed.

Obtaining a one-dimensional distribution function approximation by term-wise
integration avoids these complications and is given by

.�̄(v) + φ(v)
{κ1,1,1h11(v)

3! + κ1,1,1,1h111(v)

4! + κ1,1,1κ1,1,1h11111(v)

72

}
+ o(1/N).

(11)

5 Existing Approximate Critical Values

Equations (2) and (5) define the critical values. In cases with the distribution of .V
continuous, (2) and (5) may be interpreted as holding with equality, and Takeuchi
(1978) and Takemura and Takeuchi (1988) prove that expansions of the form

.c1 = μ1 + σ1(x10 + x11/
√

N + x12/N + o(1/N)), . (12)

c2 = μ2 + σ2(x20 + x21/
√

N + x22/N + o(1/N)) (13)

hold, although we know of no published work that determines .x21 or .x22. The
univariate expansion of Cornish and Fisher (1938), obtained by approximately
inverting (11), provides values for .x10, .x11, and .x12:

.

x10 = zα1 , x11 = κ1,1,1(z2
α1

− 1)

6
√

N
,

x12 = 3κ1,1,1,1(z3
α1

− 3zα1) − 2(κ1,1,1)2(2z3
α1

− 5zα1)

72N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (14)
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6 A New Bivariate Quantile Approximation

The new bivariate Cornish–Fisher expansion is determined by equating .Ē4(x10 +
x11N

−1/2 + x12N
−1, x20 + x21N

−1/2 + x22N
−1) = 1 − α2, for .Ē4 defined in (10),

and expanding the result in powers of .N−1/2 and equating terms. The leading terms
determine .x20 to be .zα1,α2 , for .zα1,α2 solving

.�((zα1 , zα1,α2), ρ) = 1 − α2. (15)

One equates factors multiplying .N−1/2 and .N−1 to zero and solves for .x21 and .x22.
Then,

.x21 = 1

6
(1 − ρ2)−2

[
κ222

(
z2
α1,α2

− 1
)(

ρ2 − 1
)2 +

√
1 − ρ2m−1

(
(κ111zα1 + κ222zα1,α2)ρ

3 + (κ222zα1 + κ111zα1,α2)ρ
2 − (2κ111zα1

+3κ122zα1 + 3κ112zα1,α2 + 2κ222zα1,α2)ρ

+3(κ112zα1 + κ122zα1,α2)
)]

, (16)

where .m = �̄((zα1 − ρzα1,α2)/
√

1 − ρ2)/φ((zα1 − ρzα1,α2)/
√

1 − ρ2). Symbolic
computation software was used to invert the Edgeworth series to give the expression
for .x22. The expression for .x22 is extensive enough that we do not include it.
Mathematica Wolfram Research, Inc. (2018) was used to write .x22 into Fortran
code called by the R package TwoStage. The appendix presents a continuous,
asymmetric example of this new Cornish–Fisher expansion.

7 Application to Rank Tests

When planning a multi-stage two-sample test, one first chooses an overall test level,
.α2, and a smaller level for the first stage of the test, .α1. One then approximates the
critical values .c1 and .c2, defined in (2) and (5), via the Cornish–Fisher expansion
(12) and (13). In this case, moments (and hence the correlation .ρ) are given by
Zhong and Kolassa (2017). The null value for .ρ is

.

√
m1n1(m1 + n1 + m2 + n2 + 1)√

(m1 + m2)(n1 + n2)(m1 + n1 + 1)

(Spurrier and Hewett 1976). This manuscript gives only the .O(1/
√

N) term for (13)
in (16), while computer code to calculate the .O(1/N) term is incorporated in the R
package TwoStage. Again, N is the total sample size in both stages combined, as
in (8).
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Power is calculated using the Edgeworth approximation (10); our calculations
below use the formulae coded into TwoStage.

8 Continuity Correction for the Two-Stage Wilcoxon Statistic

The continuity correction to .c1 involves moving critical values to the nearest integer
plus half. However, moving this critical value changes approximation to the level
of the test in the first look at the results, reflecting the fact that in this case with
a discrete test statistic, only a discrete set of test levels is possible. We propose
adjusting this first test level .α1 to reflect the actual tail probability; we do this
approximately via the univariate Edgeworth approximation (11).

9 Sample Size Calculation

Sample levels are generally determined by first specifying a proportion of the
observations to be treatments and controls in the first and second stages of the
experiment. Choose the proportions

.λ11 = m1/N, λ21 = n1/N, λ12 = m2/N, λ22 = n2/N. (17)

This framework allows for differing ratios of treated individuals to control indi-
viduals in the two stages. For example, if one wants twice as many treated as
control individuals in the first stage, and the same number of treated and control
in the second stage, with both stages involving the same total number of subjects,
then .λ11 = 1/6, .λ12 = 1/3, .λ21 = 1/4, and .λ22 = 1/4. Under the null
hypothesis, .P

[
Yi ≥ Xj

] = 1/2. The Mann–Whitney–Wilcoxon test has power
under alternatives for which this probability is different from .1/2; specify the
alternative as

.P
[
Yi ≥ Xj

] = ω + 1/2 (18)

with .ω > 0 measuring the difference from the null hypothesis. This quantification
of the degree by which the alternative hypothesis differs from the null is entirely
general, in that every pair of continuous distributions yields a value of .ω in .[0, 1],
but a more intuitive parameterization is given by Kolassa and Seifu (2013).

By analogy with the single-stage approach, one might take the joint statistic vec-
tor .(U1, U2), subtract the null expectations, and divide by the standard deviations,
to obtain components that are marginally standard normal, and note that, under
the alternative hypothesis, components of this vector have an expectation that is a
multiple of .ω and .

√
N . One then might equate the bivariate probability of rejecting

the null hypothesis to the desired power and solve for N .
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Specifically, consider .V of (6), with the approximate null moments

.

μ1 = λ11λ21N
2/2, σ1 = N3/2

√
λ11λ21λ·1/12

μ2 = 1

2
λ1·λ2·N2, σ2 = N3/2

√
λ1·λ2·/12

⎫
⎪⎬

⎪⎭
. (19)

Then, the null distribution of .V is approximately bivariate normal, with unit
variances, and correlation

.

√
λ11λ21(1 + 1/N)√
λ1·λ2·(λ·1 + 1/N)

= ρ̃ + O(1/N),

for .ρ̃ =
√

λ11λ21√
λ1·λ2·λ·1

. As above, reject the null hypothesis if .V1 ≥ zα1 or if .V2 ≥ zα1,α2 .

The mean of .V under the alternative hypothesis given by (18) is .μ1 =√
12Nλ11λ21/λ·1 and .μ2 = √

12Nλ1·λ2·1. As is the case in classical one-stage
power calculation, variation in the mean of the test statistic as one moves from
the null to the alternative hypothesis has more bearing on sample size than does
movement in the covariance matrix and so initial power calculation is made leaving
standard deviations and the correlation at their null values.

Power is given by .1 − �((zα1, zα1,α2) − ω
√

12N(
√

λ11λ21/
√

λ·1,
√

λ1·λ2·)). An
approximation to the sample size yielding power .1 − β is the solution N to

.�((zα1 , zα1,α2) − ω
√

12N(
√

λ11λ21/
√

λ·1,
√

λ1·λ2·) = β. (20)

In the simple one-stage case, one would apply the normal quantile function to both
sides of the analog to (20), to obtain a power formula involving the normal quantile
associated with the desired power; in this multi-stage case, this approach is not
possible, since no univariate quantile function exists in this case.

However, one might bound the desired N below by the value associated with the
Wilcoxon test with no intermediate assessment; Rahardja et al. (2009) give this as

.N = (zα2 + zβ)2/(12λ1·λ2·ω2). (21)

This might be taken as the starting value for a search using (12) and (13) to calculate
critical values and (10) to determine a refined approximation to power.

One routinely chooses the overall significance level .α2 to be the same as one
would use in a study without an interim analysis. The quantity .α1 ought to be chosen
in light of the costs associated with extension of the study to the second stage and
in light of the expected effect size. If one expects a large effect, then .α1 might be
chosen relatively large, in order to avoid the necessity of the second stage; if a small
effect is expected, .α1 might be taken smaller.
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10 An Example Calculation

The tools developed in this manuscript are designed to help with planning a multi-
stage clinical trial. The experience of subjects in this study is to be summarized
by a single continuous measurement, in order to test the null hypothesis that the
distribution of this measurement in the control arm is the same as the distribution
in the treatment arm vs. the alternative hypothesis that the distribution of treatment
measurements is stochastically larger than the distribution for control subjects. In
order to avoid assumptions of normality of the responses, the observations are
compared using the Mann–Whitney–Wilcoxon test. Testing is performed in two
stages, according to the scheme outlined in the introduction. Below we demonstrate
the application of this sequential trial design through a recent pivotal clinical trial
where the sample size was small. Small trials are conducted in order to speed clinical
discovery, to avoid unnecessary suboptimal treatment regimes for patients, and to
control trial costs. The group-sequential trial design is of importance for the same
reasons.

Henricson et al. (2012) present data including results for a six-minute walk test
for patients with Duchenne muscular dystrophy (DMD) and controls. Participants
are male, between 4 and 12 years. Patients with DMD included some treated with
a variety of oral corticosteroids. The 22 control subjects showed a six-minute walk
result, in meters, with a mean of 623 and a standard deviation of 66, and the 17
DMD subjects showed a mean of 352 and a standard deviation of 87. These results
were measured after one year of follow-up.

Cahalin et al. (2012), reporting on this same test in a different population, report
negligible skewness, but significant excess kurtosis, for six-minute walk values, and
so a tool that does not require normality of these observations is important.

In this section, we demonstrate how to design a hypothetical study with a
two-stage two-arm analysis, using the multivariate Cornish–Fisher and Edgeworth
techniques. We consider a population like the DMD population and a conceptual
treatment that might improve walk test performance by cutting the decline by 40%.
Patients like those with DMD in historical DMD studies will be randomized to
treatment or control. The study will be powered to detect an increase in six-minute
walk results, that is, 40% of the decline found by Henricson et al. (2012). We
approximate the walk results for both control and treated individuals as standard
normal, with approximate standard deviation .σ = 70 and expectations .μ1 = 352
and .μ2 = 352+ .4× (623−352) = 460, respectively. Hence, the null hypothesis is
equal distributions for treated and controls, approximately normal with expectations
352, and common standard deviation 75, and the alternative hypothesis is that
treated individuals will have six-minute walk tests with expectations 352 and 460
and common standard deviation 72. Note that .(μ2 − μ1)/σ = 1.5.

The randomization will be one to one. We plan this study with the same number
of observations in each arm and at each stage (that is, .λij = 1/4 for .i, j = 1, 2
in (17)) with first-stage one-sided size .α1 = 0.02, as defined in (2), and ultimate
one-sided size .α2 = 0.05, as defined in (5), and 85% power.
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This implies that .ω = �(1.5/
√

2) − .5 = 0.3556, and approximation (21) gives
.N = 20.69. Dividing by four, and rounding to the nearest integer, gives 5 subjects
per arm in each of the two stages. The uncorrected Gaussian approximation to the
first critical value .c1 is 22.32, which, when rounded to the nearest midpoint of
the integer lattice, gives 22.5. (Recall that the lattice midpoints are of the form an
integer plus one half; the Edgeworth approximations are designed to have the proper
error behavior if evaluated at such continuity-corrected points.) The conventional
Cornish–Fisher approximation is 22.147, which is also rounded to 22.5.

Both first-stage critical values are rounded to an integer lattice plus half and
so the approximate first-stage test level is changed. The Gaussian approximation
to the nominal 0.02 level for the rounded Gaussian critical value is 0.0184. The
Edgeworth approximation to the tail beyond the rounded Cornish–Fisher critical
value is 0.0108.

The uncorrected bivariate Gaussian approximation to the second critical value,
with first-stage test level 0.0184, is 73.5. The new Cornish–Fisher approximation to
the second critical value, using the first-stage test level of 0.0108, is 72.5.

True levels for the resulting tests are calculated via Monte Carlo, taking
1,000,000 sets, each consisting of two groups of 10 standard normals, are given
in Table 1, and show a slight improvement for the new method. The improvement is
larger for the second example in Table 1, with test levels 0.01 and 0.025.

Powers are calculated in the same manner as test levels, but with the second group
shifted by 1.5. The recommended total sample size, 20, is quite small and is smaller
than that of Henricson et al. (2012). Never the less, it is larger than other recent
clinical trials on DMD Peripheral and Central Nervous System Drugs Advisory
Committee (2016).

Various authors suggest different strategies for setting critical values for the
various analysis stages. Pocock (1977) suggests choosing critical values to keep
nominal test levels at each stage equal. O’Brien and Fleming (1979), in the case with
equal sample sizes in each of two stages, suggest an approach fixing .c1 = c2

√
2,

making stopping early somewhat rarer. The proposed calculations are also exhibited
for approximate nominal levels chosen to be equal in Table 1. The stopping rule of
O’Brien and Fleming (1979) is generally more powerful than that of Pocock (1977),
as is expected.

11 Results

In this section, we evaluate approximations to critical values for one-sided tests of
size 0.05 and evaluate approximations to test power. Tables with stages 1 and 2
group totals all 2 (that is, .m1 = n1 = m2 = n2 = 2), through group totals all
9 (that is, .m1 = n1 = m2 = n2 = 9), are examined. This upper limit on group
sizes was determined by the largest experimental configurations for which counts
given by (22) and (23) could be performed using long integer arithmetic. Hence, we
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Table 1 Exact and approximate test levels. First-stage test levels as suggested by Pocock (1977)
are marked with .a, and as suggested by O’Brien and Fleming (1979) are marked with .b. The
first six columns are target test level for stage 1 of the test, target test level after stage 2, critical
values for the two stages using the bivariate normal distribution, and critical values using the
Cornish–Fisher expansion. The following five columns are actual test level after stage 2 using the
uncorrected bivariate normal critical values (labeled Unc.), the actual test level using corrected
critical values from the Cornish–Fisher expansion (labeled Corr.), true power for the Cornish–
Fisher critical values, approximate power calculated by applying a bivariate normal approximation
to the Cornish–Fisher critical values, and approximate power calculated by applying the bivariate
Edgeworth approximation to Cornish–Fisher critical values

Critical values Levels Power

Uncorrected Corrected

bivariate Cornish–

.α1 .α2 normal Fisher Unc. Corr. True Normal Edge.

(%) (%) .c1 .c2 .c1 .c2 (%) (%) (%) (%) (%)

3 subjects at each time in each arm

5.00 10.00 0.5 9.5 0.5 9.5 11.5 11.5 86.33 85.66 84.60

5 subjects at each time in each arm

2.00 5.0 22.5 73.5 22.5 72.5 4.68 5.31 91.23 93.74 92.4

1.00 2.5 23.5 77.5 23.5 76.5 2.31 2.67 83.66 85.69 85.36

3.01.a 5.0 21.5 74.5 21.5 74.5 4.99 4.99 90.29 90.73 89.25

1.46.a 2.5 22.5 80.5 22.5 79.5 2.23 2.42 77.33 77.47 78.46

0.88.b 5.0 23.5 72.5 23.5 72.5 4.84 4.84 92.33 93.68 92.59

0.26.b 2.5 25.5 76.5 24.5 76.5 2.16 2.40 85.30 85.57 85.66

8 control and 7 treatment subjects at each time

2.00 5.0 53.5 186.5 53.5 186.5 5 5 98.34 99.2 98.25

1.00 2.5 56.5 193.5 55.5 193.5 2.34 2.58 96.23 97.48 96.22

examined .84 = 4096 configurations in all, all with one-sided critical values with
stage 1 size .02 and ultimate size .05.

12 Errors in Levels for Approximate Critical Values

We compare bivariate normal and Cornish–Fisher approximations to critical values.
Generally, because of the discrete nature of the values of the Wilcoxon test statistic,
the corrected and uncorrected tests tend to be conservative.

Approximately, one quarter of these tables exhibited a different integer value for
one or both critical values. Absolute errors in levels of normal and Cornish–Fisher
critical values for these tables in which the critical values differed are given in Fig. 1.

The Cornish–Fisher approximation provides better size control for most config-
urations in which approximations differ and for all configurations in which either
approximation gives substantial errors.



422 J. Kolassa et al.

Fig. 1 Error in sizes of approximations to test

13 Errors in Approximations to Power

We compare normal and Edgeworth power approximations. The Cornish–Fisher
critical values are used for both. The alternative model features independent
univariate normals with mean offset by .δ, with .δ chosen to give approximate
..8 power for the final stage Mann–Whitney test using all .m1 + n1 + m2 + n2
observations, ignoring the first stage. All 4096 configurations were examined. For
almost all configurations, the Edgeworth approximation proved more accurate than
the bivariate normal. These absolute errors are displayed in Fig. 2.
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Fig. 2 Errors in approximations of powers of tests

14 Conclusions

With more and more targeted therapies being developed to treat rare diseases
(e.g., Eteplirsen for DMD and Symdeko for cystic fibrosis), small sample sizes
for confirmatory trials are becoming more common. Furthermore, there is a need
for making these therapies available to patients as soon as possible, if the efficacy
is very promising. Hence, sequential analyses that are more accurate and easier to
implement such as the one developed here is a step in the direction of bringing
promising therapies to patients sooner.

For constructing the two-stage Mann–Whitney–Wilcoxon procedure, the bivari-
ate Cornish–Fisher expansion provides improved control of test size over its
bivariate normal competitor. The bivariate Edgeworth series provides a more
accurate approximation to powers of this test. Both of these approaches should be
used with continuity correction.
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Appendix 1: A Bivariate Recursion for Exact Probabilities

The univariate recursion is constructed by counting the number of data set orderings
leading to the statistic value and decomposing them into orderings based on one
fewer value from the first group and one fewer value from the second group. The
bivariate recursion is similar to the above univariate recursion and is similar to that
of Wilding et al. (2011).

Let .b(u1, u2,m1, n1,m2, n2) represent the number of orderings of (4) for which
.U1 = u1 and .U2 = u2. This number is zero if any of the sample sizes .m1, n1,m2, n2
is negative, if either statistic value is negative, or if either statistic value is larger
than its maximum value. It is also zero if both additional sample sizes for stage 2
are zero but the second statistic value exceeds the first. If all sample sizes are zero,
then the sums in (1) and (3) are empty, and both statistic values are zero; hence
.b(0, 0, 0, 0, 0, 0) = 1. These end conditions are given by

.b(u1, u2,m1, n1,m2, n2) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if any of m1,m2, n1, n2, u1, u2 is negative or

if u1 > m1n1 or u2 > (m1 + m2)(n1 + n2)

0, if n1 = 0 or m1 = 0, and u1 > 0

1, if m1 = 0 and n1 = 0 and u1 = 0

and m2 = 0 and n2 = 0 and u2 = 0.

(22)

Otherwise, the number of rearrangements of the data (4) giving rise to statistic
values .u1 and .u2 are the sum of four contributions. First, add those with sample sizes
.m1 − 1, n1,m2, n2, with an additional value from the first group in the first sample
that exceeds all values in the sample, and hence leaves the statistic value unchanged.
Second, add those with sample sizes .m1, n1 − 1,m2, n2, with an additional value
from the second group in the first sample that exceeds all values in the sample,
and hence increases the first statistic by .m1 and increases the second statistic by
.m1 + m2. Third, add those with sample sizes .m1, n1,m2 − 1, n2, with an additional
value from the first group in the second sample added that exceeds all values in
the sample, and hence leaves the statistic value unchanged. Fourth, add those with
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sample sizes .m1, n1,m2, n2 − 1, with an additional value from the second group
in the second sample added that exceeds all values in the sample, and hence leaves
.U1 unchanged, and increases the second statistic by .m1 + m2. This leads to the
following recursion:

.b(u1, u2,m1, n1,m2, n2) := m1b(u1, u2,m1 − 1, n1,m2, n2)

+ n1b(u1 − m1, u2 − m1 − m2,m1, n1 − 1,m2, n2)

+ m2b(u1, u2,m1, n1,m2 − 1, n2)

+ n2b(u1, u2 − m1 − m2,m1, n1,m2, n2 − 1). (23)

Numerical examples in Figs. 1 and 2 exhibit comparisons of probability approxima-
tions to bivariate probabilities and quantiles for .U = (U1, U2), to the exact values.

Appendix 2: A Continuous Example with Nonzero Skewness

Our aim in determining the expansion for .c2 is to apply the techniques to Wilcoxon
testing, but the same quantile approximation may be used more generally. Before
application to the Wilcoxon statistic, which is somewhat atypical, because the
third cumulants are zero, leading to a less dramatic effect, and because the
Wilcoxon statistic is discrete, and hence lacks the continuity that the technique
was developed for. Instead, we present a more general example consisting of a
continuous distribution with nonzero third order cumulants.

Consider .Y1, .Y2, .Y3 independent exponentials. Let .U1 = Y1 + Y3, and .U2 =
Y2 + Y3. Figure 3 compares Edgeworth (E) or Cornish–Fisher (CF), normal (N),
and Monte Carlo (MC, taken with 500,000 samples and treated as the truth). Panels
are:

(a) compares difference of E and N upper tail univariate probability approximation
from the MC approximation, as a function of the MC approximation.

(b) compares error of E and N upper tail bivariate probability approximation, as a
function of the ordinate.

(c) Gives contours of MC upper tail probabilities.
(d) Represents CF and N approximation to upper tail, vs. MC value. CF and N

values exhibit some dependence on target for first univariate tail, and so are
represented as a range.

Note from panel b that the Edgeworth approximation fails to dominate the normal
approximation only for a narrow band between the contours marked 0 in the middle
of the plot.
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Abstract Big data presents many challenges in modern statistics and data analysis.
While a large number of observations can lead to increased precision in statistical
parameter estimation and prediction, computational and storage costs may present
a problem. Since there is often significant redundancy in large data in a lower
dimensional setting, it seems reasonable that big datasets can be compressed to a
smaller number of observations with comparable statistical performance, where the
amount of compression scales with the dimensionality. We propose an extension
of the “data nuggets” methodology of Beavers et al. (2020) for a compression-
based approach to statistical modeling in big data. We utilize the linear regression
model to showcase the idea, establish a theoretical foundation, and explore finite-
sample performance via simulation analysis. Data nuggets are shown to provide
a significant improvement over random sampling in model parameter estimation
and out-of-sample prediction performance in the linear regression setting, and the
concept is promising for other models as well.
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1 Introduction

A significant amount of modern statistics and data analysis is focused on big data,
which has become common in every industry from finance and economics to science
and medicine. This big data can be in the form of a large dataset consisting of
millions of observations, such as a hospital database containing demographic and
medical information on many patients, or even constant-flowing streaming data,
as will be collected on the order of Exabytes, or millions of Terabytes, using the
Square Kilometer Array (Zhang and Zhao 2015). Limitations in analyzing such
data include but are not limited to computational time, memory constraints, and
long-term storage.

A reasonable approach to avoid such limitations is reducing the size of the
data. For example, a simple random sample of the data could be used; however,
this will likely result in decreased precision of estimation or prediction, increased
uncertainty, and variability among samples, depending on the desired amount of
reduction. For these reasons, a completely random sample is often not desirable
unless the size is very large, which defeats the purpose.

1.1 Literature Overview

A better solution to the problem of representing big data is using a representative
sample, instead of a completely random sample. By a representative sample, we
refer to a set of points that accurately reflect the full data in terms of distribution.
For example, B. A. Flury introduced the concept of “principal points,” a set of points
that minimize the expected Euclidean distance of a random vector to the nearest
point within the set (Flury 1990, 1997). Tibshirani (1992) introduced the concept
of “principal curves,” essentially a generalization of linear principal components
(Tibshirani 1992). Mak proposed the concept of “support points,” a similar idea to
Flury’s “principal points” except with a different distance measure (Mak and Joseph
2018).

Another closely related idea is data compression. DuMouchel et al. (1999)
introduced the concept of “data squashing,” a type of lossy data compression that
results in a set of fewer weighted observations (DuMouchel et al. 1999). There are
several published papers related to this concept of “data squashing” (DuMouchel
2002). These include Owen (1999) and Madigan et al. (2001). All of these
approaches involve the same underlying framework of likelihood approximation
with compressed data.
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1.2 Data Nuggets

The aforementioned methods for representative sampling and data compression
inspired the concept of “data nuggets” by Beavers et al. (2020), which falls in
the intersection of both frameworks (Beavers et al. 2020). Data nuggets are a set
of points in a higher dimensional space that represent a reduction in size, i.e., the
number of observations, of the original data while retaining the general structure
of the data, including on the periphery. Each data nugget corresponds to a set
of observations in the original data and is described by three parameters: center,
scale, and weight. Essentially, each data nugget is a set of summary statistics
corresponding to the observations in one subset in a partition of the data. The
nuggets are created in such a way that within-nugget distance between points is
minimized while keeping computational time feasible.

The original creators of the data nuggets methodology were motivated by a big
data example in flow cytometry, in this case, researching the level of expression of
specific proteins on the surface of B-cells using clustering and principal component
analysis (Beavers et al. 2020). The primary issue was estimation of the covariance
matrix due to the size of the data, since this particular dataset contained over one
million observations; however, the authors showed that the covariance matrix can
be reasonably recovered using a much smaller number of data nuggets, since the
within-nugget variation is minimized during the generation of these nuggets.

Beavers et al. (2020) applied the data nuggets methodology in an unsupervised
learning setting for purposes of clustering or principal component analysis. How-
ever, compression-based methodology in general also has applications in supervised
learning, e.g., statistical modeling and prediction. We extend the idea of data
nuggets to supervised learning for purposes of modeling and prediction. In this
setting, the data contains a response variable, which must be factored in during
nugget generation. Otherwise, the central idea is similar—create a set of points that
represents the original data, where each point is a summary of a set of observations
in the original dataset according to some partition, and the partitioning process is
designed to minimize internal variability. We will focus on the linear regression
model to illustrate the concept, but the idea is applicable in the general setting with
some adjustments.

2 Setup

Consider data .{(x∗
k , y∗

k )}Nk=1 consisting of N observations, where .x∗
k is a p-

dimensional covariate vector with numeric or binary entries and .y∗
k is a continuous

response. Suppose the data is partitioned into .M << N data nuggets .{Di}Mi=1, where

.Di is a set of summary statistics for nugget i and .N = ∑M
i=1 ni . Relabel the data as

.(xij , yij ) for .i = 1, . . . ,M and .j = 1, . . . , ni so that the data subset .{(xij , yij )}ni

j=1
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for fixed i corresponds to nugget .Di . We want to fit a linear regression model using
only the information contained in the data nuggets.

There are two key components to this process that require specification. First, it
must be decided how the data nuggets are formed, relating to both the partitioning
of the observations and summarization of observations within each nugget. Second,
an appropriate estimator for model parameters using only the nugget information
must be determined. We discuss both of these issues here.

2.1 Formation of Nuggets

First, the N observations must be partitioned into M disjoint sets, where M is the
desired number of nuggets. There are two readily available options for partitioning
using Beavers’ algorithm: use only the feature variables in distance computation,
or use both the features and response. There are several problems with the latter,
particularly how to generalize to different classes of response and appropriately
weigh the response in distance calculations as the number of features increases.
Therefore, we will use Beavers’ algorithm with only the features for distance
computation.

Second, assuming that a partition has been completed, the observations within
each nugget must be represented by a set of summary statistics. One of these must
be the weight or the number of observations within the nugget. For a center or
location parameter, several options were explored, including:

A. X-center defined as within-nugget covariate centroid
Y -center defined as within-nugget mean response

B. X-center defined as within-nugget covariate centroid
Y -center defined by within-nugget model prediction at X-center

C. X-center defined as random point within nugget
Y -center defined by within-nugget model prediction at X-center

Option C had variable performance and is not recommended. Options A and B
performed similarly in most cases, since the prediction at theX-center is likely close
to the mean due to the minimization of internal feature distance in nugget creation.
Variable parameters can include different specifications for X, Y , and XY variation.
The exact parameters required depend on the estimator that will be used.

2.2 Estimation with Nuggets

Assume that the data have been reduced to M nuggets. Let .(xi, yi) be center or
centroid; .sx

i the x-scale (vector) or internal x-variability, i.e., corresponding entry on
the within-nugget covariance matrix for covariates only; .sy

i the y-scale or internal y-
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variability; .sxy
i the xy-scale (vector) or internal xy-covariability; and .ni the weight

of the .ith data nugget. The following estimators were considered:

A. A weighted least-squares (WLS) estimator, with weights .wi = ni .
The minimum nugget parameters are .(xi, yi, ni).

B. A WLS estimator, with weights .wi ∝ 1/sx
i such that .

M∑

i=1
wi = N .

The minimum nugget parameters are .(xi, yi, ni, s
x
i ).

C. An ordinary least-squares (OLS) “mimic” estimator, which tries to approximate
the OLS estimator of .β in the full data case, .β̂LS .
The minimum nugget parameters are .(xi, yi, ni, s

x
i , s

y
i , s

xy
i ).

Option A seemed to perform the best. For Option C, the “mimic” estimator is
simply the ordinary least-squares estimator in the full data case where the within-
nugget covariation matrix for X is approximated by a diagonal matrix. The general
approach can be inferred from Theorem 1 in the next section. This option did not
have good performance in general and required too many parameters.

3 Asymptotics

We examine the theoretical asymptotic properties of the previously defined data
nugget regression parameter estimators in the homoscedastic linear regression
setting. This includes consistency of the coefficient and variance estimators and
asymptotic normality.

The following results will be consistent with the notation in the previous section.
Given N points .{(xij , yij )}, .M << N nuggets of the form .Di = (xi, yi, ni) are
formed, where .xi = n−1

i

∑ni

j=1 xij and .yi = n−1
i

∑ni

j=1 yij for .i ∈ {1, . . . ,M} and
.j ∈ {1, . . . , ni}.

3.1 Intuition

Our goal is to perform linear regression and associated statistical inference using
only the information contained in the nuggets .{Di}Mi=1. The following result
provides some intuition for performing that statistical inference.

Theorem 1 Consider the linear model .yij = x′
ij β + εij for .i = 1, . . . ,M and

.j = 1, . . . , ni . Define .xi = n−1
i

∑ni

j=1 xij , .yi = n−1
i

∑ni

j=1 yij , and .s
y
i = (ni −

1)−1 ∑ni

j=1(yij − yi)
2.
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1. The residual sum of squares (RSS) for this model can be written in the form:

.RSS =
M∑

i=1

ni(yi − x′
iβ)2

︸ ︷︷ ︸
(A)

+
M∑

i=1

(ni − 1)sy
i

︸ ︷︷ ︸
(B)

+β ′
(

M∑

i=1

(ni − 1)Cov(Xi)

)

β

︸ ︷︷ ︸
(C)

+ 2β ′
⎛

⎝
M∑

i=1

⎛

⎝nixiyi −
ni∑

j=1

xij yij

⎞

⎠

⎞

⎠

︸ ︷︷ ︸
(D)

where .Cov(Xi) is the covariance matrix of .(xi1, . . . , xini
).

2. The ordinary least-squares (OLS) estimator of .β, denoted by .β̂LS , is given
explicitly by the following equation, provided the model matrix is of full rank:

.β̂LS =
[(

1

N

M∑

i=1

nixix
′
i

)

+
(
1

N

M∑

i=1

(ni − 1)Cov(Xi)

)]−1

∗
⎡

⎣

(
1

N

M∑

i=1

nixiyi

)

−
⎛

⎝ 1

N

M∑

i=1

⎛

⎝nixiyi −
ni∑

j=1

xij yij

⎞

⎠

⎞

⎠

⎤

⎦

Proof The derivation of the mathematical form for the residual sum of squares in
(1) is straightforward. Let .RSS(i) denote the contribution of .{(xij , yij )}ni

j=1 to the

RSS such that .RSS = ∑M
i=1 RSS(i). Note that the RSS can be represented as

.RSS(i) =
ni∑

j=1

(yij − x′
ij β)2 =

ni∑

j=1

[
(yi − x′

iβ) + (yij − yi) + (xi − xij )
′β

]2

Upon expansion, we obtain the following expression:

.RSS(i) =
ni∑

j=1

(yi − x′
iβ)2

︸ ︷︷ ︸
(A)

+
ni∑

j=1

(yij − yi)
2

︸ ︷︷ ︸
(B)

+
ni∑

j=1

((xij − xi)
′β)2

︸ ︷︷ ︸
(C)

+ 2
ni∑

j=1

⎡

⎢
⎣(yij − yi)(xi − xij )

′β
︸ ︷︷ ︸

(D)

+ (yi − x′
iβ)(yij − yi)

︸ ︷︷ ︸
= 0

+ (yi − x′
iβ)(xi − xij )

′β
︸ ︷︷ ︸

= 0

⎤

⎥
⎦

where the last two terms are identically zero, since .
∑ni

j=1(xij − xi) = ∑ni

j=1(yij −
yi) = 0 by definition. Re-expressing terms (B), (C), and (D) and noting that .RSS =
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∑M
i=1 RSS(i) conclude the proof of claim (1). Regarding claim (2), we know that

.β̂LS = argmin
β

{RSS} and is a solution to the following equation:

.0 = 1

2

(
∂RSS

∂β

)

= −
M∑

i=1

nixiyi +
(

M∑

i=1

nixix
′
i

)

β +
(

M∑

i=1

(ni − 1)Cov(Xi)

)

β

+
M∑

i=1

⎛

⎝nixiyi −
ni∑

j=1

xij yij

⎞

⎠

In the full-rank case, rearrangement and re-scaling yield our claim (2). It can be
verified that .β̂LS is indeed a minimizer by checking the second derivative. ��

This theorem provides a decomposition of the least-squares estimator in the
full data case into terms involving nugget parameters and terms involving internal
nugget variability (which may be unknown after nugget formation). A reasonable
estimator of .β is the case-weighted least-squares estimator .β̂N defined by

.β̂N =
(

M∑

i=1

nixix
′
i

)−1( M∑

i=1

nixiyi

)

Note that .β̂N is unbiased for estimating .β, which is a desirable property. The
corresponding response variance estimator .σ̂ 2

N for .σ 2 is

.σ̂ 2
N = 1

M − (p + 1)

M∑

i=1

ni(yi − x′
i β̂N )2

For relatively large M , it is reasonable to replace .M − (p + 1) by just M in the
denominator. We will use the latter for simplicity of notation in the development
of asymptotic results, but the derived asymptotic results are the same for both
estimators. In the following section, we will establish the asymptotic properties of
these estimators as both the number of observations N and number of nuggets M

tend toward infinity.

3.2 Consistency of Coefficient Estimator

The following theorem provides conditions under which .β̂N is consistent for the
estimation of .β.
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Theorem 2 Consider the linear model .yij = x′
ij β + εij for .i = 1, . . . ,M and .j =

1, . . . , ni , where .(εij )(i,j) are i.i.d. with .E[εij |xij ] = 0 and .Var[εij |xij ] = σ 2 < ∞.
Assume that the following conditions are satisfied:

1. . lim
M→∞

(

max
1≤i≤M

sx
i

)

= 0

2. . max
1≤i≤M

{ni} < K for some constant .1 ≤ K < ∞

Then, .β̂N is consistent for estimating .β, i.e., .β̂N − β = op(1).

To simplify the argument, we will first introduce a lemma.

Lemma 1 Define .δij = xij − xi . If . lim
M→∞ sx

i = 0 and .ni < K for some positive

constant .K < ∞, then . lim
M→∞

∥
∥δij

∥
∥

L2
= 0 for all .j = 1, . . . , ni .

Proof If .ni = 1, then trivially .sx
i = 0 and .

∥
∥δij

∥
∥

L2
= 0 for .j = 1, . . . , ni . If .ni ≥ 2,

then .sx
i can be expressed as

.sx
i = tr(Cov(Xi)) = 1

ni − 1

ni∑

j=1

tr(δij δ
′
ij ) = 1

ni − 1

ni∑

j=1

∥
∥δij

∥
∥2

L2

and, in the limiting case, we have

. lim
M→∞

⎡

⎣ 1

ni − 1

ni∑

j=1

∥
∥δij

∥
∥2

L2

⎤

⎦ = lim
M→∞ sx

i = 0

Since .2 ≤ ni < K and .
∥
∥δij

∥
∥2

L2
≥ 0 for all .(i, j), the result follows. ��

Now, we use the lemma to prove the consistency result using our decomposition.

Proof It is known that .β̂LS = β + op(1), so by Theorem 1 and the continuous
mapping theorem, it suffices to show that:

1. . lim
M→∞

1

N

M∑

i=1
(ni − 1)Cov(Xi) = 0

2. .
1

N

M∑

i=1

(

nixiyi −
ni∑

j=1
xij yij

)

= op(1)

We start with claim .(1). Since . lim
M→∞ sx

i = 0 for all i and thus . lim
M→∞

∥
∥δij

∥
∥

L2
= 0 for

all .(i, j) by our lemma, we know that

. lim
M→∞

∥
∥
∥δij δ

′
ij

∥
∥
∥

F
= 0
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The within-nugget covariance matrix can be represented in terms of deviations .δij :

.
1

N

M∑

i=1

(ni − 1)Cov(Xi) = 1

N

M∑

i=1

ni∑

j=1

δij δ
′
ij

By the triangle inequality, in the limiting case, we have

. lim
M→∞

∥
∥
∥
∥
∥
∥

1

N

M∑

i=1

ni∑

j=1

δij δ
′
ij

∥
∥
∥
∥
∥
∥

F

≤ lim
M→∞

1

N

M∑

i=1

ni∑

j=1

∥
∥
∥δij δ

′
ij

∥
∥
∥

F
= 0

This implies claim (1). Next, we prove claim (2). Note that we can represent .xij =
xi + δij , .yij = x′

iβ + δ′
ij β + εij , and .yi = x′

iβ + εi for .εi = n−1
i

∑ni

j=1 εij and so

.

ni∑

j=1

xij yij =
ni∑

j=1

(xi + δij )(x
′
iβ + δ′

ij β + εij )

After some algebraic manipulation, our quantity of interest can be represented as

.
1

N

M∑

i=1

⎛

⎝nixiyi −
ni∑

j=1

xij yij

⎞

⎠ = 1

N

M∑

i=1

ni∑

j=1

(
xiδ

′
ij β + δij x

′
iβ + δij δ

′
ij β + δij εij

)

Observe that several terms have limit zero by the Cauchy–Schwarz inequality:

. lim
M→∞

∥
∥
∥
∥
∥
∥

1

N

M∑

i=1

ni∑

j=1

xiδ
′
ij

∥
∥
∥
∥
∥
∥

F

= lim
M→∞

∥
∥
∥
∥
∥
∥

1

N

M∑

i=1

ni∑

j=1

δij x
′
i

∥
∥
∥
∥
∥
∥

F

= lim
M→∞

∥
∥
∥
∥
∥
∥

1

N

M∑

i=1

ni∑

j=1

δij δ
′
ij

∥
∥
∥
∥
∥
∥

F

= 0

By the WLLN under our finite variance assumption,

.
1

N

M∑

i=1

ni∑

j=1

δij εij = op(1)

Claim (2) follows from the decomposition and these limiting results. ��

3.3 Consistency of Variance Estimator

The following theorem provides conditions under which .σ̂ 2
N is consistent for the

estimation of .σ 2. For simplicity of notation, we will use M instead of .M − (p + 1)
in the denominator of .σ̂ 2

N , but the developed asymptotic results are the same.
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Theorem 3 Consider the linear model .yij = x′
ij β + εij for .i = 1, . . . ,M and .j =

1, . . . , ni , where .(εij )(i,j) are i.i.d. with .E[εij |xij ] = 0 and .Var[εij |xij ] = σ 2 < ∞.
Assume that the following conditions are satisfied:

1. . lim
M→∞ sx

i = 0 for all .i = 1, . . . , M

2. . max
1≤i≤M

{ni} < K for some positive constant .K < ∞

3. . lim
M→∞

[
1

M

M∑

i=1
nixix

′
i

]

= G, where .‖G‖F < ∞

Then, .σ̂ 2
N is consistent for estimating .σ 2, i.e., .σ̂ 2

N − σ 2 = op(1).

Proof First, note that our assumptions imply consistency of .β̂N . Define .εi =
n−1

i

∑ni

j=1 εij , where .Var[εi |xi1, . . . , xini
] = n−1

i σ 2. The variance is

.σ̂ 2
N = 1

M

M∑

i=1

ni(yi − x′
i β̂N )2 = 1

M

M∑

i=1

ni((yi − x′
iβ) + x′

i (β − β̂N ))2

Upon expansion of terms, we have

.σ̂ 2
N = 1

M

M∑

i=1

ni(yi − x′
iβ)2

︸ ︷︷ ︸
(1)

+ (β̂N − β)′
[
1

M

M∑

i=1

nixix
′
i

]

(β̂N − β)

︸ ︷︷ ︸
(2)

− 2

M

M∑

i=1

ni(yi − x′
iβ)x′

i (β̂N − β)

︸ ︷︷ ︸
(3)

Regarding (1), by the WLLN we have convergence in probability to .σ 2:

.
1

M

M∑

i=1

ni(yi − x′
iβ)2 = 1

M

M∑

i=1

(
√

niεi)
2 = σ 2 + op(1)
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where we have used the fact that .E[(√niεi)
2|xi] = Var(

√
niεi |xi) = σ 2 for all

.i = 1, . . . ,M . Term (2) is .op(1) by Assumption 3 and consistency of .β̂N . Term (3)
is .op(1) by similar reasoning, since by the WLLN,

.
1

M

M∑

i=1

niεixi = op(1)

Combining these results, the consistency of .σ̂ 2
N follows. ��

3.4 Asymptotic Normality of Coefficient Estimator

The following theorem establishes the asymptotic normality of .β̂N .

Theorem 4 Consider the linear model .yij = x′
ij β + εij for .i = 1, . . . ,M and

.j = 1, . . . , ni , where .(εij )(i,j) are i.i.d. with .E[εij |xij ] = 0 and .Var[εij |xij ] = σ 2.
Assume that the following conditions are satisfied:

1. . lim
M→∞ sx

i = 0 for all .i = 1, . . . , M

2. . max
1≤i≤M

{ni} < K for some constant .1 ≤ K < ∞

3. . lim
M→∞

1

M

M∑

i=1
nixix

′
i = G, where .0 < ‖G‖ < ∞ and .|G| �= 0

Then, .β̂N has an asymptotic normal distribution; in particular,

.
√

M(β̂N − β)
L→ N

(
0,G−1

)

Furthermore, the asymptotic variance is the same whether .β̂N or .β̂LS is used.

Proof First, consider the quantity .β̂N − β, for which

.
√

M(β̂N − β) =
(

1

M

M∑

i=1

nixix
′
i

)−1(
1√
M

M∑

i=1

nixiεi

)

Regarding the first term, by assumption we know that

. lim
M→∞

(
1

M

M∑

i=1

nixix
′
i

)−1

=
(

lim
M→∞

1

M

M∑

i=1

nixix
′
i

)−1

= G−1
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Regarding the second term, note that by the central limit theorem (CLT):

.
1√
M

M∑

i=1

nixiεi
L→ N

(
0, σ 2G

)

Therefore, by Slutsky’s theorem, we have

.
√

M(β̂N − β)
L→ N

(
0, σ 2G−1

)

It remains to show that .Var(β̂N ) − Var(β̂LS) = op(1). By the continuous
mapping theorem, it suffices to show the following, where (1) was established by
Theorem 3:

1. . lim
M→∞ σ̂ 2

N = lim
M→∞ σ̂ 2

LS = σ 2

2. . lim
M→∞

⎡

⎣
(

M∑

i=1
nixix

′
i

)−1

−
(

M∑

i=1

ni∑

j=1
xij x

′
ij

)−1
⎤

⎦ = 0

Regarding statement (2), if we again define .δij = xij − xi , so .xij = xi + δij , then

.

M∑

i=1

ni∑

j=1

xij x
′
ij =

M∑

i=1

⎛

⎝nixix
′
i +

ni∑

j=1

(
xiδ

′
ij + δij x

′
i + δij δ

′
ij

)
⎞

⎠

Since . lim
M→∞ sx

i = 0, by our lemma, we have

. lim
M→∞

M∑

i=1

ni∑

j=1

(
xiδ

′
ij + δij x

′
i + δij δ

′
ij

)
= 0

In the limiting case, this implies that

. lim
M→∞

M∑

i=1

ni∑

j=1

xij x
′
ij = lim

M→∞

M∑

i=1

nixix
′
i

and statement (2) follows. Thus, the asymptotic variances are the same. ��
These results show that the nugget estimators have similar asymptotic properties

to the full-data estimators. Finite-sample performance will be explored next.
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4 Example

We present a sample analysis using data nuggets in linear regression. Our data
consist of a few hundred thousand hospital patients with liver cancer from the
national inpatient sample (NIS) database. We want to predict the length of a patient’s
hospital stay, in days, based on demographics, comorbidities, insurance, and some
other relevant information.

A sample of 5000 data nuggets was formed from the original data consisting
of over .200,000 observations, which is roughly a .98% reduction in the number
of observations. Coefficient estimates and standard errors using the full data and
5000 nuggets in a model with ten parameters are compared. Table 1 displays the
results using the untransformed response Y . Table 2 displays the results using the
transformed response .log(Y + 1), which was decided after an exploratory analysis.

The results show that 5000 nuggets perform very well in estimating the param-
eters. The point estimates are very close to the least-squares estimate in the full
data. The standard errors are inflated by roughly .30%; however, the number of
data nuggets is only roughly .2% of the number of original observations, and a
random sample would provide estimates with standard errors several times larger.
For sufficiently large samples, since standard errors are inversely proportional to the
square root of the sample size, the standard error using a random sample of size
M from a dataset of size N is expected to be inflated by a multiple of .

√
N/M; in

this case, a random sample of .M = 5000 from a dataset of size .N � 200,000 is
expected to provide standard errors approximately greater than or equal to .

√
40 > 6

times as large as when using the full data, whereas the standard errors using 5000
data nuggets did not even double.

Table 1 Regression for length of hospital stay, untransformed response

Term Est-full Est-nugget SE-full SE-nugget

(Intercept) 15.32693 15.32693 0.02409 0.03958

mxraceWTRUE 0.94200 0.93929 0.02468 0.04057

mxAGE 4.25668 4.29443 0.02940 0.05007

mxV3 1.47874 1.47388 0.02578 0.04290

mxpay1TRUE 3.94812 3.92996 0.02822 0.04675

mxZIPINC.QRTL2 −0.14651 −0.14620 0.02850 0.04682

mxZIPINC.QRTL3 −0.11484 −0.11469 0.02832 0.04652

mxZIPINC.QRTL4 0.09829 0.09857 0.02826 0.04642

mxZIPINC.QRTLA 0.02658 0.02655 0.02410 0.03960

mxhospdTRUE 1.29200 1.29103 0.02426 0.03986

mxV4 −0.51078 −0.51163 0.02420 0.03980
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Table 2 Regression for length of hospital stay, transformed response

Term Est-full Est-nugget SE-full SE-nugget

(Intercept) 2.492691 2.492691 0.001125 0.001478

mxraceWTRUE 0.046703 0.046588 0.001152 0.001514

mxAGE 0.304493 0.305995 0.001372 0.001869

mxV3 0.072390 0.071835 0.001204 0.001601

mxpay1TRUE 0.148963 0.148325 0.001318 0.001745

mxZIPINC.QRTL2 −0.012482 −0.012477 0.001330 0.001748

mxZIPINC.QRTL3 −0.015472 −0.015478 0.001322 0.001737

mxZIPINC.QRTL4 −0.006428 −0.006432 0.001319 0.001733

mxZIPINC.QRTLA 0.002652 0.002650 0.001125 0.001478

mxhospdTRUE 0.084561 0.084516 0.001132 0.001488

mxV4 −0.029690 −0.029648 0.001130 0.001486

5 Simulations

We performed a simulation analysis to evaluate the performance of data nuggets
in linear regression parameter estimation and prediction. The number of nuggets
used and the number of features were varied to compare performance. Results using
simple random samples are provided for comparison.

Consider the following homoscedastic linear regression model in which the
response Y depends linearly on two covariates .X1 and .X2:

.Y = 10 + 3X1 + X2 + ε, ε ∼ N(0, 22)

Let .X1, . . . , XP for .P ≥ 2 be the feature variables in our data, where P is specified
for each simulation. Note that if .P > 2, then the model coefficients are zero for
.i ∈ {3, . . . , P }. All covariates are generated independently from standard normal
distributions. The mean and variance of these distributions are irrelevant, since
centering and scaling could always be performed.

We simulate .N = 105, i.e., one hundred thousand, observations for .P ∈
{2, 5, 20, 50} feature variables .X1, . . . , XP and continuous response Y according to
the model. We present the results of simulations for both estimation and prediction.

5.1 First Simulation Set: Prediction

The first set of simulations evaluates the out-of-sample predictive performance
of linear regression models fit using various numbers of data nuggets from the
same original dataset. Model performance was evaluated using root-mean-square
prediction error (RMSE) and mean absolute prediction error (MAE) measures under
fivefold cross-validation. For each data split, a model is trained using data nuggets
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Table 3 Data nugget simulation: prediction, two covariates

Random sample

RMSE MAE

N AVG SD AVG SD

50 1.9084 0.1905 1.6110 0.1605

100 1.9601 0.1328 1.6043 0.1319

500 2.0095 0.0773 1.6109 0.0668

1000 2.0011 0.0497 1.6020 0.0396

5000 1.9988 0.0183 1.5957 0.0163

10,000 1.9992 0.0151 1.5952 0.0149

1e.+05 1.9996 0.0000 1.5950 0.0000

Data nuggets

RMSE MAE

M AVG SD AVG SD

50 1.9996 0.0098 1.5950 0.0060

100 1.9996 0.0098 1.5950 0.0060

500 1.9996 0.0098 1.5950 0.0060

1000 1.9996 0.0098 1.5950 0.0060

5000 1.9996 0.0098 1.5950 0.0060

10,000 1.9996 0.0098 1.5950 0.0060

Table 4 Data nugget simulation: prediction, five covariates

Random sample

RMSE MAE

N AVG SD AVG SD

50 2.0592 0.2554 1.7213 0.2139

100 2.0438 0.1603 1.6661 0.1406

500 1.9762 0.0678 1.5866 0.0583

1000 2.0067 0.0383 1.6037 0.0360

5000 1.9900 0.0213 1.5901 0.0172

10,000 1.9969 0.0109 1.5933 0.0095

1e.+05 1.9938 0.0000 1.5908 0.0000

Data nuggets

RMSE MAE

M AVG SD AVG SD

50 1.9938 0.0178 1.5908 0.0174

100 1.9938 0.0178 1.5908 0.0173

500 1.9938 0.0178 1.5909 0.0173

1000 1.9938 0.0178 1.5909 0.0173

5000 1.9938 0.0178 1.5908 0.0174

10,000 1.9938 0.0178 1.5908 0.0173

generated from the training data, while the predictive measure is evaluated based
on that training model and the testing data. The mean and standard deviation of
trial results are reported to account for variation between runs. Results generated
using data nuggets are a summary of five runs, while results generated using random
samples are a summary of twenty-five runs.

Tables 3, 4, 5, and 6 display the prediction results for .P ∈ {2, 5, 20, 50}. For
each value of P , two tables are provided: the left table displaying results for random
samples, including the full data, and the right table displaying results for data
nuggets. For .P ∈ {2, 5}, the average prediction error when using even a small
number of nuggets is practically identical compared to using the entire dataset.
For .P ∈ {20, 50}, the average prediction error when using a very small number
of nuggets is at least comparable to a random sample of .5% − 10% of the original
data. Data nuggets also have the advantage of providing more consistent prediction
performance, while random sampling results are generally much more variable,
especially when the random sample is relatively small.
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Table 5 Data nugget simulation: prediction, twenty covariates

Random sample

RMSE MAE

N AVG SD AVG SD

50 2.3915 0.4608 1.9913 0.3915

100 2.1791 0.1387 1.7937 0.1055

500 2.0305 0.0669 1.6301 0.0556

1000 2.0147 0.0435 1.6134 0.0356

5000 1.9997 0.0228 1.5966 0.0183

10,000 1.9937 0.0105 1.5896 0.0089

1e.+05 1.9945 0.0000 1.5908 0.0000

Data nuggets

RMSE MAE

M AVG SD AVG SD

50 1.9957 0.0078 1.5919 0.0094

100 1.9953 0.0084 1.5915 0.0101

500 1.9950 0.0080 1.5912 0.0101

1000 1.9951 0.0079 1.5911 0.0100

5000 1.9948 0.0082 1.5911 0.0102

10,000 1.9949 0.0080 1.5912 0.0101

Table 6 Data nugget simulation: prediction, fifty covariates

Random sample

RMSE MAE

N AVG SD AVG SD

100 2.8849 0.4049 2.3625 0.3340

500 2.1146 0.0698 1.6927 0.0537

1000 2.0494 0.0402 1.6376 0.0296

5000 2.0108 0.0186 1.6022 0.0159

10,000 2.0057 0.0160 1.5987 0.0126

1e.+05 1.9977 0.0000 1.5933 0.0000

Data nuggets

RMSE MAE

M AVG SD AVG SD

100 2.0061 0.0052 1.6001 0.0065

500 2.0002 0.0047 1.5950 0.0054

1000 2.0002 0.0037 1.5953 0.0051

5000 1.9995 0.0041 1.5947 0.0053

10,000 1.9986 0.0043 1.5939 0.0055

5.2 Second Simulation Set: Estimation

The second set of simulations evaluates the estimation performance in linear
regression models fit using data nuggets. Estimation results for the two non-zero
coefficients .β1 = 3 and .β2 = 1 were obtained. Only the results for .β1 are shown
here, but similar trends hold for .β2. The results include the absolute estimation error
for the parameter and standard error magnitude. The mean and standard deviation
of trial results are reported to account for variation between runs. Results generated
using data nuggets are a summary of five runs, while results generated using random
samples are a summary of twenty-five runs.

Tables 7, 8, 9, and 10 display the estimation results for .P ∈ {2, 5, 20, 50}.
For each value of P , four tables are provided that compare the estimation of .β1
using data nuggets and random samples of varying size. For .P ∈ {2, 5}, a very
small number of nuggets performs at least as well as a random sample of size
.10,000. For .P ∈ {20, 50}, a small number of nuggets performs around as well
as .5000–10,000 nuggets. Again, data nugget performance is generally much more
consistent between runs compared to random sample performance.
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Random sample

B1 EST ERR B1 STD ERR

N AVG SD AVG SD

50 0.2461 0.1503 0.2919 0.0292

100 0.1326 0.1121 0.2112 0.0224

500 0.0517 0.0431 0.0890 0.0033

1000 0.0442 0.0309 0.0633 0.0021

5000 0.0213 0.0144 0.0284 0.0004

10,000 0.0112 0.0089 0.0200 0.0002

1e.+05 0.0041 0.0000 0.0063 0.0000

Data nuggets

B1 EST ERR B1 STD ERR

M AVG SD AVG SD

50 0.0052 0.0022 0.0064 0.0006

100 0.0051 0.0003 0.0063 0.0004

500 0.0036 0.0006 0.0065 0.0002

1000 0.0039 0.0003 0.0064 0.0000

5000 0.0041 0.0001 0.0064 0.0000

10,000 0.0042 0.0001 0.0063 0.0000

Table 8 Data nugget simulation: estimation, five covariates

Random sample

B1 EST ERR B1 STD ERR

N AVG SD AVG SD

50 0.2445 0.1110 0.2985 0.0566

100 0.2083 0.1371 0.2031 0.0147

500 0.0489 0.0363 0.0893 0.0037

1000 0.0467 0.0367 0.0635 0.0019

5000 0.0197 0.0152 0.0283 0.0004

10,000 0.0160 0.0113 0.0200 0.0002

1e.+05 0.0069 0.0000 0.0063 0.0000

Data nuggets

B1 EST ERR B1 STD ERR

M AVG SD AVG SD

50 0.0134 0.0047 0.0090 0.0005

100 0.0092 0.0039 0.0074 0.0008

500 0.0078 0.0017 0.0073 0.0002

1000 0.0070 0.0037 0.0069 0.0001

5000 0.0071 0.0031 0.0066 0.0001

10,000 0.0076 0.0007 0.0065 0.0000

Table 9 Data nugget simulation: estimation, twenty covariates

Random sample

B1 EST ERR B1 STD ERR

N AVG SD AVG SD

50 0.2892 0.2158 0.3734 0.0779

100 0.1574 0.1170 0.2194 0.0278

500 0.0695 0.0490 0.0923 0.0065

1000 0.0508 0.0354 0.0636 0.0022

5000 0.0172 0.0142 0.0284 0.0004

10,000 0.0169 0.0116 0.0200 0.0002

1e.+05 0.0020 0.0000 0.0063 0.0000

Data nuggets

B1 EST ERR B1 STD ERR

M AVG SD AVG SD

50 0.0098 0.0103 0.0139 0.0027

100 0.0040 0.0038 0.0135 0.0024

500 0.0069 0.0033 0.0105 0.0004

1000 0.0077 0.0068 0.0101 0.0001

5000 0.0029 0.0016 0.0087 0.0001

10,000 0.0024 0.0014 0.0082 0.0001
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Table 10 Data nugget simulation: estimation, fifty covariates

Random sample

B1 EST ERR B1 STD ERR

N AVG SD AVG SD

100 0.1784 0.1516 0.2782 0.0324

500 0.0630 0.0511 0.0934 0.0044

1000 0.0467 0.0371 0.0646 0.0018

5000 0.0287 0.0166 0.0284 0.0004

10,000 0.0112 0.0126 0.0201 0.0002

1e.+05 0.0036 0.0000 0.0063 0.0000

Data nuggets

B1 EST ERR B1 STD ERR

M AVG SD AVG SD

100 0.0194 0.0156 0.0265 0.0042

500 0.0113 0.0035 0.0157 0.0008

1000 0.0107 0.0055 0.0144 0.0003

5000 0.0086 0.0059 0.0117 0.0002

10,000 0.0051 0.0040 0.0105 0.0000

6 Extensions

The focus of this chapter has been on the utilization of data nuggets methodology to
predict a continuous response using a linear regression model in big data. There are
many additional scenarios that can be considered. These include different classes
of response; for example, a binary or categorical response, for which a logistic
or multinomial regression model could be used. There are also so-called machine
learning models, such as decision trees and ensembles, which are often used for
prediction in big data.

Consider data consisting of N observations of P covariates .X1, . . . , XP and a
response Y , where the class or nature of Y is currently unspecified. We want to form
M data nuggets, .M << N , in a similar fashion to the methodology showcased in the
case of linear regression with a continuous response. The partitioning process will
remain the same, but the summarization of the within-nugget response information
will depend on the specific scenario. The estimation procedure will depend on the
model. We explore a few additional scenarios.

Suppose the response Y is binary with two possible outcomes, where we will
assume .Y ∈ {0, 1} with .Y = 1 termed a “success” and .Y = 0 a “failure.” The
within-nugget response can be summarized by either the number of successes or
proportion of success within the nugget, both of which are equivalent since the
nugget weight is already stored. If response variability is an issue, the nuggets
can be further split such that there is no response variability within each nugget.
Regarding estimation, a binomial regression model using the compressed data
would be appropriate, since the sum of independent Bernoulli random variables has
a binomial distribution.

As a generalization of the previous case, suppose the response Y is categorical
with at least two possible outcomes, where we will assume .Y ∈ {0, 1, . . . , K − 1}
with .Y = 0 as a reference category. The within-nugget response can be summarized
by a vector of length .K − 1 indicating the number of occurrences or proportion
of occurrence of each outcome aside from the reference category, which can be
recovered with the nugget weight. A multinomial regression model would be
appropriate.
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An extension to survival data is important to consider but difficult to visualize.
At worst, the entirety of the within-nugget response information can be stored. For
small nuggets, this is highly recommended. For large nuggets, it is reasonable to
consider summarizing the within-nugget response by some model, such as a simple
Weibull model if the fit is appropriate.

For non-classical predictive modeling methods such as decision trees and
ensembles, similar procedures can be used. A continuous or binary response can
be summarized by a mean or proportion. Quantities such as the likelihood can be
approximated by using the nugget weights and possibly within-nugget variability
estimates. Since these methods often rely more heavily on local behavior, a
reasonably large number of nuggets (appropriately scaled with the data dimension)
are recommended.

7 Discussion

We have discussed the extension of Beavers’ mathematically informed,
compression-based “data nugget” methodology to supervised learning, using
linear regression as a motivating example but discussing other models as well.
The examples and simulations presented show that this methodology provides
a significant improvement over random sampling in model parameter point and
interval estimation, as well as out-of-sample prediction performance, in the linear
regression setting. The methodology is promising for simplifying computation in
large-scale predictive data analysis.

We are currently developing an R package which implements this methodology.
This includes functions to form data nuggets in the presence of a response and
perform statistical inference with nuggets using statistical modeling. The package
calls upon the datanugget package by Beavers et al. to partition the data into sets,
which will become data nuggets in the supervised setting (Beavers et al. 2020). We
are also working on a related Shiny application to demonstrate the methodology.

In the future, we would like to investigate the performance of data nuggets
in other settings that were discussed, including logistic regression, modeling of
time-to-event data, and non-classical predictive modeling. This includes a rigorous
simulation analysis for point estimation, confidence interval estimation, and out-of-
sample prediction, as well as the establishment of theoretical asymptotic guarantees.
We believe that non-classical supervised methods (Amaratunga et al. 2014) such
as SVM, random forest, boosting, and deep learning would benefit most from
data nuggets due to the significantly greater computational complexity compared
to least-squares regression, which is the most economical computationally among
supervised methods. Another potential application is functional data analysis
(Boente et al. 2014). There will always be finite computing power, and direct
analysis of big data using these supervised methods may not be possible, which
our methodology attempts to address.
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Regarding the development of asymptotics, we have assumed that the sample
size tended to infinity. Tukey (Fernholz and Morgenthaler 2003) used to say that if
the population distribution is known, then asymptotics are not necessary. While we
do not often know the exact distribution of the population, a big data sample should
provide a close approximation. Even if the exact population distribution is known,
statistical computations on the full data may not be possible. Thus, in the future, we
are interested in exploring asymptotics as the number of data nuggets converges to
a known large finite population size.

Another vital area of future research is a comprehensive study of factors related
to the compression or estimation that may affect quality of interest. For example,
more nuggets are required to maintain similar quality of inference as the data
dimensionality increases, likely due to the difficulty of distance computation and
clustering in higher dimensions. Other factors such as correlation structure may
play a role in the quality of compression and inference. This would require further
simulation work.

8 Conclusion

We have presented an extension of Beavers’ “data nugget” methodology for data
reduction and compression to the field of supervised learning with a focus on
linear regression with a continuous response. We established theoretical asymptotic
guarantees in terms of consistency and asymptotic normality such that our coef-
ficient estimator has the same asymptotic distribution as the ordinary least-square
estimator in the big data setting as the number of nuggets grows toward the sample
size, which demonstrates that these estimators perform as expected asymptotically.
For finite-sample performance, several simulation studies were conducted to show
that a small number of nuggets provide excellent prediction performance and
standard errors many times smaller than random samples of comparable size,
closely approximating the standard errors in the full data case in many scenarios.
Thus, data nuggets provide a significant decrease in the size of the data without
significantly increasing the uncertainty in estimates. There are many opportunities
for future research and investigation in this area, including further development of
asymptotics and extensions to other statistical models, including classic regression
models for different response classes and even predictive machine learning models.
The development here provides a solid basis for handling big data in statistical
modeling, which we believe in general is one of the most pressing issues in applied
statistical data analysis today.
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Improved Convergence Rates of Normal
Extremes

Yijun Zhu and Han Xiao

Abstract It is well known that the convergence of the normal extremes to the
limiting Gumbel distribution is extremely slow, at the rate of .(log n)−1. We show
that after a monotone transform, the convergence rate of the squared normal
extremes can be improved to .(log n)−3. Simulations confirm that the convergence
is much faster than existing results uniformly, especially when the sample is of
moderate sizes around hundreds or thousands. More importantly, it is observed that
the convergence rate at the upper tail is substantially improved, which has direct
implications for hypothesis tests based on the maximum type test statistics.

Keywords Extreme value theory · Gumbel distribution · Normal distribution ·
Rate of convergence

1 Introduction

Let .X1, X2, . . . be a sequence of independent standard normal random variables, and
let .Mn := max{X1, X2, . . . , Xn} be the maximum of the first n of them. According
to the extreme value theory (see Leadbetter et al. 1983, for an overview), after
proper centering and rescaling, the limiting distribution of .Mn is the extreme value
distribution of type I, or the so-called Gumbel distribution, with the distribution
function .G1(x) = exp(−e−x). In fact, if we define

.αn = (2 log n)−1/2

βn = √
2 log n − log(log n) + log(4π)

2
√
2 log n
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then .α−1
n (Mn − βn) converges to .G1 in distribution, i.e.,

. lim
n→∞ P

[
α−1

n (Mn − βn) ≤ x
]

= lim
n→∞ �n(αnx + βn) = exp

(−e−x
)
, x ∈ R,

(1)

where .�(·) is the distribution function of .N(0, 1).
The rate of convergence in (1) is extremely slow. The fact was noted by Fisher

and Tippett (1928) and studied more precisely by Hall (1979), who proved that the
convergence rate in (1) is no better than .(log log n)2/ log n. Hall (1979) also found
that if .βn1 is the solution of the equation

.2πβ2
n1 exp(β

2
n1) = n2 (2)

and .αn1 = β−1
n1 , then

.
C1

log n
< sup

−∞<x<∞

∣∣∣P [α−1
n1 (Mn − βn1) ≤ x] − G1(x)

∣∣∣ <
C2

log n
, (3)

where .C1 and .C2 are absolute constants. In other words, the convergence rate can
be improved to .(log n)−1 by choosing a better centering constant .βn1. In the same
paper, it was further proved that the rate cannot be better than .(log n)−1 by choosing
a different sequence of normalizing constants.

It is equivalent and sometimes more convenient to study the limiting behavior of
.Mn through its squared version .M2

n . There are counterparts of (1) and (3) for .M2
n .

More importantly, Hall (1980) found that with suitably chosen constants .an and .bn,
the normalized sequence .a−1

n (M2
n − bn) converges to .G1(x) with the rate .(log n)−2.

A detailed overview of the progression regarding the convergence rates of normal
extremes will be provided in Sect. 2.3 via the squared version .M2

n .
While the aforementioned results are all on the uniform convergence rates, the

convergence to .G1 in the upper tail is of particular interests when performing
hypothesis tests using maximum type statistics. For example, the stepdown pro-
cedure of Romano and Wolf (2005) for multiple testing requires the knowledge
about the upper quantiles of the maximum test statistic. Cai et al. (2014) used the
maximum coordinate-wise difference of two transformed sample mean vectors to
test the equality of two high-dimensional means.

In Fig. 1, we plot the empirical distributions of .M2
n with different choices of

normalizing sequences. The black line is the theoretical cumulative distribution
function (CDF) .G1, the dashed, red, and green lines (labeled by .bn1, .bn2, and .bn3,
respectively) are empirical CDF corresponding to convergence rates in (1), (3), and
.(log n)−2, respectively. Figure 2 zooms in on the upper tails. Despite the fact that
the red line is associated with a faster convergence rate than that of the dashed one,
Fig. 2 shows that it is consistently farther from the theoretical CDF in the upper
tail, even when the sample size is as large as .105. This need not contradict the
theories on the uniform convergence rates because we see in Fig. 1 that the dashed
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line deviates apparently from the black one in the lower tail. However, tests based
on the statistic in (3) will be quite off and have no advantage over the statistic in (1).
On the other hand, the green line, corresponding to the rate .(log n)−2, shows the
potential to outperform the dashed one, when the sample size is sufficiently large,
as shown in the bottom right panel of Fig. 2. The issue is that the green line is
below the theoretical CDF, indicating that the corresponding asymptotic test is not
conservative.

Our major finding is that the convergence rate can be further improved to
.(log n)−3 by applying a monotone transform to .M2

n . Let .bn := 1
2 [�−1(1 − 1/n)]2.

Define .Yn through the following transform of .M2
n :

.Yn :=
[

1 −
(
1 + M2

n − 2bn

8b2n

)−1](
4b2n + 2bn − 2

)
.

The results in Sect. 2 imply the following rate of convergence:

. sup
−∞<x<∞

|P(Yn ≤ x) − G1(x)| <
C3

(log n)3
.

The blue lines in Fig. 1 give empirical CDF of .Yn, which are almost identical with
.G1 even when the sample size is as small as 200. When zoomed into the upper tail
in Fig. 2, the faster convergence of .Yn is more clearly seen. Furthermore, if .Yn is
used as the test statistic for the asymptotic test, it is not only more accurate but also
always conservative, since the blue curve sits above the black one (for .G1) in the
upper tail.

The rest of this chapter is organized as follows. We present and prove the
pointwise and uniform convergence rates of .Yn in Sects. 2.1 and 2.2, respectively. In
Sect. 2.3, we demonstrate how the faster convergence rate is achieved by comparing
with existing results. Similar convergence rates regarding the k-th maxima are pre-
sented in Sect. 2.4. Numerical analysis and an application on testing the covariance
structure are given in Sect. 3. Additional figures, tables, and some technical results
are relegated in the Appendix.

We conclude this section by a brief review of the literature on the convergence
rates of normal extremes. Cohen (1982b) showed that the penultimate approx-
imation can achieve the .(log n)−2 rate and considered the extension to other
types of extreme value distributions in Cohen (1982a). Daniels (1982) proposed
another nonlinear transformation which leads to faster convergence. Rootzén (1983)
investigated the convergence rates of the extremes from a stationary Gaussian
process. Hall (1991) found that the extreme of a continuous time Gaussian process
also has a logarithmic convergence rate. For convergence rates of extremes from
a non-Gaussian sequence, we refer to Hall and Wellner (1979), Smith (1982),
Leadbetter et al. (1983), de Haan and Resnick (1996), Peng et al. (2010) and the
references therein.
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2 Main Results

We will first consider the pointwise convergence rates in Sect. 2.1 and then illustrate
how the faster rates are achieved by modifying the normalizing constants and
applying a transform of .M2

n in Sect. 2.3. The uniform convergence rates are given
in Sect. 2.2. In Sect. 2.4, we present the corresponding results for the k-th maxima.
We make the convention that .C,C1, C2, . . . are generic absolute constants, whose
values may vary from place to place.

2.1 Pointwise Convergence Rates

Let .bn be the solution of the equation .1−�(
√
2bn) = 1/n. Recall that .Yn is defined

as

.Yn :=
[

1 −
(
1 + M2

n − 2bn

8b2n

)−1](
4b2n + 2bn − 2

)
. (4)

According to the definition, .
√
2bn is the .(1−1/n)-th quantile of the standard normal

distribution. Since .M2
n ≥ 0 and .b5 ≈ .35, the transform given in (4) is strictly

monotone when .n ≥ 5, which we shall assume in the sequel.
Using the Newton–Raphson approximation (see Appendix 4 for detailed deriva-

tions), it can be shown that

.bn = log n − 1
2 log log n − 1

2 log 4π + O(log log n/ log n).

We first prove the pointwise convergence rate of .Yn to .G1. It is convenient to express
the result through .bn, which is of the order .log n.

Theorem 1 For each fixed .−∞ < x < ∞,

.P(Yn ≤ x) − G1(x) = G1(x)e−x · 4x
3 + 15x2 + 30x

24b3n
+ O(b−4

n ).

Proof Define the function .gn(x) as the inverse transform of (4)

.gn(x) =
[(

1 − x

4b2n + 2bn − 2

)−1

− 1

]

· 8b2n + 2bn. (5)
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Since (4) is a monotone transform, the event .[Yn ≤ x] is equivalent to .[M2
n ≤

gn(x)]. It can be shown that

.gn(x) = 2bn + 2x − x

bn

+ x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+ O(b−4

n ). (6)

When n is large enough, .gn(x) > 0, and we let .xn = [gn(x)]1/2. Note that

.P(Mn ≤ xn) > P (M2
n ≤ x2

n) = P(Mn ≤ xn) − P(Mn < −xn) > P (Mn ≤ xn) − 2−n.

(7)

According to Lemma 2.4.1 in Leadbetter et al. (1983), for any .0 ≤ z ≤ n,

.0 ≤ e−z −
(
1 − z

n

)n ≤ z2e−z

2
· 1

n − 1
. (8)

Let .τn(x) = n[1 − �(xn)], and it follows that

.P(Mn ≤ xn) = [1 − (1 − �(xn))]
n = exp[−τn(x)] + O(n−1). (9)

To evaluate .τn(x), we make use of the following series expansion of the normal
tail probability (Abramowitz and Stegun 1964): for any .z > 0 and any positive
integer m,

.1 − �(z) = φ(z)

z

{
1 − 1

z2
+ 1 · 3

z4
+ · · · + (−1)m1 · 3 . . . (2n − 1)

z2m
+ Rm

}
,

where

.Rm = (−1)m+1(2m + 1)!!
∫ ∞

z

φ(t)

t2m+2 dt,

which is less in absolute value than the first neglected term. In particular, when
.m = 3, it holds that for any .z > 0,

.

(
1

z
− 1

z3
+ 3

z5
− 15

z7

)
φ(z) < 1 − �(z) <

(
1

z
− 1

z3
+ 3

z5
− 15

z7
+ 105

z9

)
φ(z).

(10)
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According to the definition of .τn(x) and (10), we first do the Taylor expansion (up
to the order .b−4

n ) for

.φ(xn) = 1√
2π

· exp
(

−bn − x + x

2bn

− x2 + 3x

4b2n
+ 2x2 + 5x

8b3n

)

= e−xe−bn

√
2π

·
(
1 + x

2bn

− x2 + 6x

8b2n
− 5x3 + 6x2 − 30x

48b3n
+ O(b−4

n )

)
,

and

.
1

xn

=
(
2bn + 2x − x

bn

+ x2 + 3x

2b2n
− 2x2 + 5x

4b3n

)−1/2

= 1√
2bn

(
1 − x

2bn

+ 3x2 + 2x

8b2n
− 5x3 + 8x2 + 6x

16b3n
+ O(b−4

n )

)
.

Combining the two preceding equations and rearranging the terms, we have

.
φ(xn)

xn

= e−xe−bn

√
4πbn

·
(
1 − x

2b2n
− 4x3 + 3x2 − 6x

24b3n
+ O(b−4

n )

)
.

According to (10), we also calculate

.1 − 1

x2
n

+ 3

x4
n

− 15

x6
n

= 1 − 1

2bn

+ 2x + 3

4b2n
− 4x2 + 14x + 15

8b3n
+ O(b−4

n )

=
(
1 − 1

2bn

+ 3

4b2n
− 15

8b3n

)
·
(
1 + x

2b2n
− x2 + 3x

2b3n
+ O(b−4

n )

)
.

Recall that .bn is the solution of the equation .1 − �(
√
2bn) = 1/n. According to

the approximation to normal probability function in (10), we have

.
ne−bn

√
4πbn

=
(
1 − 1

2bn

+ 3

4b2n
− 15

8b3n
+ O(b−4

n )

)−1

. (11)

Therefore,

.

(
1 − 1

x2
n

+ 3

x4
n

− 15

x6
n

)
nφ(xn)

xn

= e−x ·
(
1 − x

2b2n
− 4x3 + 3x2 − 6x

24b3n
+ O(b−4

n )

)

·
(
1 − 1

2bn

+ 3

4b2n
− 15

8b3n
+ O(b−4

n )

)−1
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·
(
1 − 1

2bn

+ 3

4b2n
− 15

8b3n

)
·
(
1 + x

2b2n
− x2 + 3x

2b3n
+ O(b−4

n )

)

= e−x

(
1 − 4x3 + 15x2 + 30x

24b3n
+ O(b−4

n )

)
.

Since .nφ(xn)/x
9
n = O(b−4

n ), we have by (10)

.τn(x) = e−x

(
1 − 4x3 + 15x2 + 30x

24b3n

)
+ O(b−4

n ).

According to (9), it follows that

.P(Yn ≤ x) − G1(x) = exp(−τn(x)) + O(n−1) − G1(x)

= G1(x)e−x · 4x
3 + 15x2 + 30x

24b3n
+ O(b−4

n ).

The proof is complete. 	

Using (10) and the Newton–Raphson method, we have the following expansions for
.bn:

.bn = log n − �

2
+ � − 2

4 log n
+ �2 − 6� + 14

16(log n)2
+ O

(
(log log n)3

(2 log n)3

)

, (12)

where

.� = log log n + log 4π.

Therefore, Theorem 1 implies that .Yn converges to .G1 with the rate .(log n)−3. The
detailed derivation of (12) is given in the Appendix.

2.2 Uniform Convergence Rate

In this section, we establish the uniform convergence rate.

Theorem 2 There exists an absolute constant .c1, such that

. sup
−∞<x<∞

|P(Yn ≤ x) − G1(x)| <
c1

(log n)3
.

We prove Theorem 2 using two lemmas. Recall that .gn(x), defined in (5), is the
inverse transform of (4).
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Lemma 1 Let .{cn} be an increasing sequence of positive integers such that
.c4n/bn → 0, and then

.gn(x) = 2bn + 2x − x

bn

+ x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+ d1n(x)

b3n
,

where .limn→∞ sup−cn≤x≤cn
|d1n(x)| = 0.

Proof According to (5), for .−cn ≤ x ≤ cn, we can obtain the following expansion:

.gn(x) = 2bn + 8b2n ·
[(

1 − x

4b2n + 2bn + 2

)−1

− 1

]

= 2bn + 2xγn + x2γ 2
n

2b2n
+ x3γ 3

n

8b4n
·
(
1 − xγn

4b2n

)−1

, (13)

where

.γn =
(
1 + 1

2bn

− 1

2b2n

)−1

.

When .n ≥ 13, .bn > 1, by series expansion of .γn, we have

.γn = 1 − 1

2bn

+ 3

4b2n
− 5

8b3n
+ e1n

b4n

γ 2
n = 1 − 1

bn

+ e2n

b2n

γ 3
n

(
1 − xγn

4b2n

)−1

= 1 + e3n.

The following bounds can be easily verified: .|e1n| ≤ 1, .|e2n| ≤ 2, and .|e3n| ≤ 1.
Then, by simplifying (13), we have

.gn(x) = 2bn +2x − x

bn

+ x2 + 3x

2b2n
− 2x2 + 5x

4b3n
+ 16xe1n + 4x2e2n + x3(1 + e3n)

8b4n
.

The proof is completed by noting that

. sup
−cn≤x≤cn

∣∣∣∣
16xe1n + 4x2e2n + x3(1 + e3n)

8bn

∣∣∣∣ ≤ 8cn + 4c2n + c3n

4bn

→ 0

under the condition .c4n/bn → 0.
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Lemma 2 Let .{cn} be the same sequence as used in Lemma 1, and then

.τn(x) = e−x

(
1 − 4x3 + 15x2 + 30x

24b3n
+ d2n(x)

b3n

)
,

where .limn→∞ sup−cn≤x≤cn
|d2n(x)| = 0 for all .−cn ≤ x ≤ cn.

Proof Recall that .xn := [gn(x)]1/2. Using the normal tail probability bound in (10),
we have

.

∣∣∣∣τn(x) − nφ(xn)

(
1

xn

− 1

x3
n

+ 3

x5
n

− 15

x7
n

)∣∣∣∣ ≤ 105nφ(xn)

x9
n

. (14)

Write

.nφ(xn)

(
1

xn

− 1

x3
n

+ 3

x5
n

− 15

x7
n

)
=

(
xn√
2bn

)−1

· nφ(xn)√
2bn

·
(
1 − 1

x2
n

+ 3

x4
n

− 15

x6
n

)
.

(15)

Let

.x1n := x

bn

− x

2b2n
+ x2 + 3x

4b3n
− 2x2 + 5x

8b4n
+ d1n(x)

2b4n
,

where .d1n(x) is defined in Lemma 1. For the first term on the right-hand side of (15),
by Lemma 1,

.

(
xn√
2bn

)−1

= (1 + x1n)
−1/2 = 1 − x1n

2
+ 3x1n

8
− 5x3

1n

16
+ R1n(x1n). (16)

Under the condition .c4n/bn → 0, it holds that .sup−cn≤x≤cn
|x1n| ≤ 5cn/bn, and thus

. sup
−cn≤x≤cn

|R1n(x)| = o(1)

b3n
.

The terms on the right-hand side of (16) except for .R1n(x1n) can be expanded as

.

(
xn√
2bn

)−1

− R1n(x1n) = 1 − x

2bn

+ 3x2 + 2x

8b2n
− 5x3 + 8x2 + 6x

16b3n
+ d3n(x)

b3n
.

Note that for each fractional term in .x1n, the power of x is no greater than that of
.bn, and the same claim holds for the series .d3n(x)/b3n. Furthermore, the first term
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(of the smallest power of x) in the expansion of .d3n(x) is .x3/bn, which goes to 0
uniformly over .−cn ≤ x ≤ cn. Therefore, we conclude

. lim
n→∞ sup

−cn≤x≤cn

|d3n(x)| = 0.

The other two terms in (15) can be treated similarly:

.
nφ(xn)√

2bn

= ne−xe−bn

√
4πbn

·
(
1 + x

2bn

− x2 + 6x

8b2n
− 5x3 + 6x2 − 30x

48b3n
+ d4n(x)

b3n
+ R2n(x)

)
,

1 − 1

x2
n

+ 3

x4
n

− 15

x6
n

=
(
1 − 1

2bn

+ 3

4b2n
− 15

8b3n

)

·
(
1 + x

2b2n
− x2 + 3x

2b3n
+ d5n(x)

b3n
+ R3n(x)

)
,

where

. sup
−cn≤x≤cn

|d4n(x)| → 0 and |R2n(x)| = o(1)

b3n
,

sup
−cn≤x≤cn

|d5n(x)| → 0 and |R3n(x)| = o(1)

b3n
.

Combining all the preceding bounds together with (11), we have

.nφ(xn)

(
1

xn

− 1

x3
n

+ 3

x5
n

− 15

x7
n

)
= e−x

(
1 − 4x3 + 15x2 + 30x

24b3n
+ d6n(x)

b3n

)
.

Using similar arguments as those for .d3n, we can verify that

. lim
n→∞ sup

−cn≤x≤cn

|d6n(x)| = 0.

It is easy to show that .sup−cn≤x≤cn
nφ(xn)/x

9
n = o(b−3

n ). So, the proof is complete
in view of (14).

	

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2) Let .c1 be a generic absolute constant which may vary
from place to place. We consider three scenarios: .x < −cn, .−cn ≤ x ≤ cn, and
.x > cn, with .cn = 4 log bn. Obviously, this choice of .cn satisfies the condition
.c4n/bn → 0.
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We begin with the situation .−cn ≤ x ≤ cn. By (7), it holds that

.

∣∣∣∣P(Yn ≤ x) −
(
1 − τn(x)

n

)n∣∣∣∣ ≤ 2−n.

By (8) and Lemma 2, we have

.|P(Yn ≤ x)−G1(x)| ≤ 2G1(x)e−x

( |4x3 + 15x2 + 30x|
24b3n

+ |d2n(x)|
b3n

)
+ 1

2n
+ 1

n
,

when n is large enough. Since .sup−cn≤x≤cn
|d2n(x)| → 0, it suffices to show that

. sup
−cn≤x≤cn

∣∣∣G1(x)e−x(4x3 + 15x2 + 30x)

∣∣∣ < ∞.

Numerical evaluations show that

. sup
−∞<x<∞

∣∣∣G1(x)e−x(4x3 + 15x2 + 30x)

∣∣∣ < 20.

Therefore, we have

. sup
−cn<x<cn

|P(Yn ≤ x) − G1(x)| <
c1

(log n)3
.

Now, we consider the second scenario .x > cn. We will show that both .G1(x) and
.P(Yn ≤ x) are close to 1, and their differences from 1 are of the order .1/(log n)3.
Since .x > cn = 4 log bn,

.G1(x) = exp(−e−x) > exp(−b4n) ≥ 1 − 1/b4n. (17)

On the other hand, recall the definition of .g(·) in (5)

.1 − P(Yn ≤ x) ≤ P(Yn ≥ 4 log bn) = P
[
M2

n ≥ g(4 log bn)
]

≤ P

(
M2

n ≥ 2bn + 4 log bn · 8b2n
4b2n + 2bn − 2

)
.

Note that .8b2n/(4b
2
n + 2bn − 2) > 1.5 for .n ≥ 33. Let .y2

n = 2bn + 6 log bn, and then

.P(M2
n ≥ y2

n) ≤ P(Mn ≥ yn) + 1/2n.
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Let .τn = n[1 − �(yn)]. Using the normal tail probability bounds (10), we have

.τn ≤ n√
2π

(2bn + 6 log bn)
−1/2 · exp(−bn − 3 log bn)

= ne−bn

√
3πbn

(
1 + 3 log bn

bn

)−1/2

· exp(−3 log bn).

Recall .1 − �(
√
2bn) = 1/n, so that by (10),

.
ne−bn

√
4πbn

(
1 − 1

2bn

)
< 1.

When .n ≥ 33, we have

.

(
1 + 3 log bn

bn

)−1/2

·
(
1 − 1

2bn

)−1

< 1,

and it follows that

.τn < exp(−3 log bn) = 1/b3n.

Using (8), we deduce that when n is large enough,

.P(Mn ≥ yn) = 1− (�(yn))
n = 1−

(
1 − τn

n

)n ≤ 1−e−τn + 1

n − 1
≤ τn + 1

n − 1
.

Therefore, we conclude

.1 − P(Yn ≤ x) <
1

b3n
+ 1

n − 1
+ 1

2n
<

c1

(log n)3
,

for some absolute constant .c1. The preceding inequality, together with (17),
completes the proof for .x > cn.

Finally, we consider .x < −cn by showing that both .G1(x) and .P(Yn ≤ x)

converge to 0 faster than .1/(log n)3. Using the definition of .bn, we have when .n ≥
33 and .x < −cn = −4 log bn,

.G1(x) = exp(−e−x) < exp(−b4n) < 1/b4n.

On the other hand, when .x ≤ −4 log bn,

.P(Yn ≤ x) ≤ P [M2
n ≤ g(−4 log bn)] ≤ P

(
M2

n ≤ 2bn − 4 log bn · 8b2n
4b2n + 2bn − 2

)
.
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Again since .8b2n/(4b
2
n+2bn−2) > 1.5 when .n ≥ 33, if we let .y′

n
2 = 2bn−6 log bn,

then

.P(Yn ≤ x) ≤ P(Mn ≤ yn).

Let .τ ′
n = n[1 − �(y′

n)], and we have by (10),

. exp(−τ ′
n) < exp

{

− ne−bn

√
4πbn

(
1 − 3 log bn

bn

)−1/2

·
(
1 − 1

(2bn − 6 log bn)2

)
· exp(3 log bn)

}

< exp{− exp(3 log bn)}
< 1/b3n,

when n is large enough. We conclude by (8)

.P(Yn ≤ x) <
1

b3n
+ 1

n
<

c1

(log n)3
,

which completes the proof. 	


2.3 Comparisons of Different Convergence Rates

The best uniform convergence rate that can be obtained for .M2
n , if only centering and

rescaling is allowed, is .(log n)−2. We will give a summary of the progression in the
literature. We also explain why the transformed .M2

n can have a faster convergence
rate .(log n)−3.

In order for .M2
n to have the limiting distribution .G1, the simplest option is to

choose

.bn1 = log n − log(log n)/2 − log(4π)/2;

then as a counterpart of (1), it holds that .
1
2 (M

2
n − 2bn1) ⇒ G1, where we use .⇒

to denote the convergence in distribution. Using similar arguments as given in Hall
(1979), it can be shown that the convergence rate is .(log log n)2/ log n. Similarly
as (2), if .bn1 is the solution of the equation

.4πbn2 exp(2bn2) = n2
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and .M2
n is centered by .bn2, then the rate of convergence is analogous to (3)

.
C1

log n
< sup

−∞<x<∞

∣∣∣P
[
1
2 (M

2
n − 2bn2) ≤ x

]
− G1(x)

∣∣∣ <
C2

log n
. (18)

Again, (18) can be established following the proof in Hall (1979).
We note that .

√
2bn1 is an approximation of the .(1− 1/n)-th quantile of standard

normal distribution obtained by using the following approximation of the tail
probability:

.1 − �
(√

2bn1

)
≈ 1√

2π
· 1√

2 log n
· exp(−bn1) = 1

n
,

and .bn2 is obtained by the following approximation of .1 − �(
√
2bn2):

.1 − �
(√

2bn2

)
≈ 1√

2π
· 1√

2bn2
· exp(−bn2) = 1

n
.

If we choose .bn3 through a more precise approximation of .1 − �(
√
2bn3)

.1 − �
(√

2bn3

)
≈ 1√

4πbn3

(
1 − 1

2bn3

)
exp (−bn3) = 1

n
,

and set .an3 = 2 − 1/bn3, then .a−1
n3 (M2

n − 2bn3) ⇒ G1 with the convergence rate

.
C1

(log n)2
< sup

−∞<x<∞

∣∣∣P
[
a−1
n3 (M2

n − 2bn3) ≤ x
]

− G1(x)

∣∣∣ <
C2

(log n)2
. (19)

The way we represent the preceding result is slightly different from the original one
given by Hall (1980). The choices of .an3 and .bn3 differ from those in Hall (1980)
by smaller order terms, which do not affect the convergence rates. We choose the
current formulation in order to have a better comparison with our main result.

To achieve a better rate of convergence, we first choose .bn precisely through
.1 − �(

√
2bn) = 1/n. Second, observe that the events in (18) and (19) can be

written as

.M2
n ≤ 2bn2 + 2x

M2
n ≤ 2bn3 + 2x − x/bn3,

respectively. According to (6), the event .[Yn ≤ x] implies that

.M2
n ≤ 2bn + 2x − x

bn

+ x2 + 3x

2b2n
+ O

(
b−3
n

)
. (20)
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We see that a term of order .O(b−2
n ) is needed on the right-hand side to achieve

the convergence rate .(log n)−3 in Theorem 1. In fact, it is this expansion which
motivates the proposed nonlinear transform .Yn.

2.4 k-th Maxima

In this section, we present pointwise and uniform convergence rates for the
k-th maxima .Mn,k , defined as the k-th largest among the first n variables
.{X1, X2, . . . , Xn}. These results follow from almost the same arguments as those
for the maxima, so we state them without proofs.

Theorem 3 Let .bn be the solution of the equation .1−�(
√
2bn) = 1/n. For a given

positive integer k, define

.Yn,k :=
⎡

⎣1 −
(

1 + M2
n,k − 2bn

8b2n

)−1
⎤

⎦
(
4b2n + 2bn − 2

)
.

(i) For each fixed .−∞ < x < ∞, it holds that

.P(Yn,k ≤ x) − Gk(x) = G1(x)
e−kx

(k − 1)! · 4x
3 + 15x2 + 30x

24b3n
+ O(b−4

n ),

where .Gk(x) := G1(x)
∑k−1

j=0 e−jx/j !.
(ii) There exists a constant .c2 > 0, such that

. sup
−∞<x<∞

|P(Yn,k ≤ x) − Gk(x)| <
c2

(log n)3
.

3 Applications and Numerical Comparisons

3.1 Numerical Comparisons

In this section, we numerically compare the convergence rates of different versions
of the normalized .M2

n , introduced in Sect. 2.3. Specifically, we compare with .G1(x),
the CDF of .Yn1 := 1

2 (M
2
n−2bn1), .Yn2 := 1

2 (M
2
n−2bn2), .Yn3 := (2−1/bn3)

−1(M2
n−

2bn3), and .Yn, labeled by .bn1, .bn2, .bn3, and .bn, respectively, in Fig. 1. The vertical
lines mark .90%, .95%, and .99% quantiles of the Gumbel distribution. We see that
the distribution of .Yn (blue curve) is uniformly closer to .G1(x), no matter what the
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sample size is. Figure 2 zooms into the upper tail for a clearer visualization. An
interesting finding is that the faster theoretical convergence rates of .Yn2 and .Yn3
over .Yn1 are not reflected through the plots for .Yn2 even when the sample size is as
large as .105. The distribution of .Yn3 starts to be closer to .G1(x) in the upper tail
when .n = 105. We remark that the inferior performances of .Yn2 and .Yn3 need not
necessarily contradict the theoretical convergence rates: from Fig. 1, it is seen that
the convergence of .Yn1 is much slower in the left tail. On the other hand, in Fig. 2, it
is more clearly seen that .Yn always has a faster convergence rate, compared with the
rest. Furthermore, the CDF of .Yn lies above .G1(x), indicating that if a hypothesis
test is based on the maximum type statistic, then it is guaranteed to be conservative
by using .Yn. This is in contrast to .Yn3, which is always below .G1(x). Similar
patterns are observed for the second maxima in Fig. 3. Two additional figures for
the 3rd and 4th maxima are given in the Appendix.

Let .cα be the .(1 − α)-th quantile of .G1(x). We find the smallest sample size n

such that .P(Yn > cα) reaches .±10% of .α. The results are summarized in Table 1
for all of .Yni, i = 1, 2, 3 and .Yn. Overall .Yn needs much smaller sample sizes. Such
sizes do not exist for .Yn2 when .n ≤ 106, so we choose not to report them.

3.2 An Example

In this section, we consider an example on testing the covariance structure. Suppose
.x1, . . . , xN is a sequence of independent and identically distributed p-dimensional
random vectors. Let .R = {ρij }1≤i,j≤p be the correlation matrix of .x1. Consider the
hypothesis testing problem:

.H0 : R = Ip vs H1 : R = Ip.

Jiang et al. (2004) proposed to use the maximum absolute sample correlation .LN =
max1≤i<j≤p |ρ̂ij | as the test statistic and proved that . 12 (NL2

N − 2bn1) converges in
distribution to .G1, where .n = p(p − 1). We consider the test statistics .TNi, i =
1, 2, 3, and .TN , which are defined in the same way as .Yni and .Yn in Sect. 3.1, but
replacing .M2

n therein by .NL2
N . The p-values are calculated by comparing the test

statistics with the Gumbel distribution .G1. By treating the sample correlations .Nρ̂ij

as iid standard normal random variables, we obtain another approximation of the
p-value, given by .1 − [�(NL2

N)]n. The test done this way is named as .T0.
For the asymptotic tests considered here, two approximations are involved: (i)

Gaussian approximation of .ρ̂ij and (ii) approximation of the maximum by the
Gumbel distribution. It has been understood that Gaussian approximation usually
has a much higher convergence rate, especially in view of the recent development
on the topic (see, for example, Chernozhukov et al. 2013, and a series of follow-
up works). Therefore, the bottleneck is the convergence rate of the maximum to
the Gumbel distribution. We report the empirical rejection probabilities based on
5000 repetitions in Table 2 and Table 3, where .xi ∼ N(0, Ip), and .xi has iid
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Table 1 Smallest sample
size to reach .±10% of the
nominal level

.α .Yn1 .Yn2 .Yn3 .Yn

.10% 92 – 1230 293

. 5% 995 – 3639 686

. 1% 359,965 – 38,208 4126

Table 2 The empirical rejection probabilities .(%) when .xi is .N(0, Ip)

.n = 256 .n = 512 .n = 1024

p Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

32 .T0 8.96 4.42 0.72 9.64 4.86 0.94 10.74 5.60 1.28

.TN1 8.62 4.02 0.62 8.94 4.48 0.78 10.28 5.02 1.10

.TN2 7.10 3.36 0.48 7.72 3.80 0.54 8.48 4.18 0.80

.TN3 10.06 5.12 1.02 10.64 5.46 1.16 11.92 6.42 1.62

.TN 8.94 4.28 0.66 9.46 4.72 0.88 10.64 5.36 1.20

64 .T0 7.68 3.78 0.80 9.94 5.34 0.80 9.42 4.74 1.00

.TN1 7.48 3.30 0.66 9.46 4.72 0.70 9.02 4.44 0.84

.TN2 6.26 2.76 0.62 8.42 3.96 0.66 7.88 3.84 0.70

.TN3 8.44 4.10 0.96 10.60 5.88 0.90 10.06 5.12 1.10

.TN 7.68 3.76 0.72 9.88 5.24 0.80 9.36 4.70 0.96

128 .T0 7.60 3.32 0.62 9.30 4.86 0.80 9.86 4.82 0.98

.TN1 7.34 3.12 0.60 8.90 4.52 0.72 9.56 4.58 0.82

.TN2 6.26 2.72 0.60 7.86 3.82 0.66 8.20 4.00 0.68

.TN3 8.16 3.82 0.66 9.78 5.14 0.90 10.14 5.30 1.14

.TN 7.60 3.32 0.62 9.30 4.78 0.78 9.86 4.76 0.92

256 .T0 6.44 2.94 0.34 8.64 3.96 0.62 8.54 4.22 0.74

.TN1 6.08 2.70 0.28 8.46 3.78 0.58 8.38 3.98 0.64

.TN2 5.40 2.38 0.24 7.42 3.28 0.52 7.48 3.64 0.42

.TN3 6.80 3.10 0.42 8.92 4.26 0.72 9.16 4.42 0.80

.TN 6.44 2.92 0.34 8.66 3.94 0.60 8.54 4.20 0.70

.t7 entries, respectively. We see that the empirical sizes of .TN , .TN1, and .T0 are in
general close to the nominal ones, and their performances are stable across different
sample sizes and dimensions. The results are also consistent with our findings in
Sect. 3.1. More extensive simulations, covering more sample sizes and dimensions,
continue to support the observations above. These results are omitted for the sake of
space.
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Table 3 The empirical rejection probabilities .(%) when .xi has iid .t7 entries

.n = 256 .n = 512 .n = 1024

p Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

32 .T0 9.84 4.82 1.02 9.18 4.70 1.24 10.22 5.28 1.12

.TN1 9.28 4.36 0.76 8.82 4.34 1.06 9.58 4.66 0.92

.TN2 7.84 3.74 0.66 7.28 3.72 0.92 8.26 3.90 0.68

.TN3 10.74 5.70 1.36 10.04 5.32 1.40 11.38 6.12 1.20

.TN 9.70 4.66 0.84 9.14 4.44 1.16 10.02 5.02 0.98

64 .T0 9.28 4.28 0.94 10.18 5.02 0.82 9.02 4.78 1.00

.TN1 8.96 3.88 0.70 9.80 4.50 0.68 8.46 4.54 0.78

.TN2 7.70 3.44 0.52 8.42 3.94 0.56 7.44 3.82 0.70

.TN3 9.72 4.74 1.04 10.76 5.44 0.98 9.82 5.28 1.14

.TN 9.24 4.22 0.84 10.18 4.94 0.78 9.00 4.74 0.88

128 .T0 9.14 4.64 0.82 9.74 4.90 1.30 9.96 4.76 0.94

.TN1 8.90 4.32 0.76 9.32 4.60 1.14 9.58 4.44 0.84

.TN2 7.82 3.90 0.56 8.10 3.76 0.84 8.26 3.84 0.70

.TN3 9.64 4.84 0.90 10.20 5.16 1.50 10.32 5.10 1.08

.TN 9.14 4.58 0.80 9.74 4.80 1.20 9.96 4.66 0.90

256 .T0 9.08 4.32 0.94 10.20 4.98 0.98 9.98 5.36 1.30

.TN1 8.80 4.02 0.88 9.96 4.74 0.84 9.68 5.02 1.18

.TN2 7.92 3.50 0.86 8.82 4.18 0.80 8.84 4.52 1.10

.TN3 9.36 4.72 1.04 10.58 5.30 1.04 10.48 5.62 1.38

.TN 9.08 4.30 0.94 10.20 4.98 0.94 9.98 5.30 1.20

4 Conclusion

We propose a monotone transform of the squared normal extreme and prove that
its pointwise and uniform convergence rates are both of the order .(log n)−3, which
improves the existing results in the literature. The theoretical improvements are also
demonstrated and supported numerically.
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Appendix

Expansion of bn

Recall .bn is the solution of the equation .1−�(
√
2bn) = 1/n. We use the following

approximation to the normal density:

.1 − �(z) =
(
1

z
− 1

z3
+ 3

z5
− 15

z7

)
φ(z).

Then .
√
2bn is the solution of the following equation:

.
1√
2π

e− x2
2

(
1

x
− 1

x3
+ 3

x5
− 15

x7

)
= 1/n. (21)

Our goal is to use three consecutive applications of the Newton-Raphson approxi-
mation method to obtain the solution of (21) and then calculate .bn accordingly. Let

.f (x) = 1√
2π

e− x2
2

(
1

x
− 1

x3
+ 3

x5
− 15

x7

)
.

then the derivative of .f (x) is:

.f ′(x) = 1√
2π

e− x2
2

(
−1 + 105

x8

)
.

We start from

.x0 = √
2 log n − �

2
√
2 log n

,

where

.� = log log n + log 4π.

By Newton-Rhapson approximation method,

.f (x0) + f ′(x0)(x1 − x0) = 1/n.

Then we can obtain:

.x1 = √
2 log n − �

2
√
2 log n

− �2 − 4� + 8

8(2 log n)3/2
.
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Repeat this procedure for two more times, we have

.x2 = √
2 log n − �

2
√
2 log n

− �2 − 4� + 8

8(2 log n)3/2
− �3 − 8�2 + 32� − 56

16(2 log n)5/2
.

.x3 =√
2 log n − �

2
√
2 log n

− �2 − 4� + 8

8(2 log n)3/2
− �3 − 8�2 + 32� − 56

16(2 log n)5/2

− 15�4 − 184�3 + 1152�2 − 4128� + 7040

384(2 log n)7/2
.

Then by .bn = x2
3/2, it can be easily calculated:

.bn = log n − �

2
+ � − 2

4 log n
+ �2 − 6� + 14

16(log n)2
+ O

(
(log log n)3

(2 log n)3

)

.

Additional Figures

In this section we provide comparisons of the CDFs of the third and fourth maxima
(Figs. 4 and 5).
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Local Spectral Analysis of Qualitative
Sequences via Minimum Description
Length

David S. Stoffer

Abstract The idea of signal detection in the frequency domain for qualitative-
valued time series was developed in Stoffer et al. (Biometrika 80(3):611–622, 1993)
under the assumption of homogeneity. The tool is called the spectral envelope and is
related to the concept of scaling qualitative data. After reviewing the basic ideas, we
present a method for fitting a local spectral envelope to heterogeneous sequences
based on a minimum description length (MDL) criterion for choosing the best
fitting model based on parsimony. Inherent in the methodology is the detection of
breakpoints in long sequences. Because the search space is immense, optimization
is accomplished via a genetic algorithm (GA) to effectively tackle the problem.
Numerical examples are given using sleep state data and DNA sequences.

Keywords Breakpoint detection · Categorical time series · Genetic Algorithm ·
MDL · Nonstationary processes · Spectral envelope

1 Introduction

Qualitative-valued time series are frequently encountered in diverse applications
such as economics, medicine, psychology, geophysics, and genomics, to mention
a few. The fact that the data are categorical-valued does not preclude the need to
detect signals in the same way that is done with quantitative-valued time series.
Here, we explore an approach based on scaling and the spectral envelope, which
was introduced in Stoffer, Tyler, & McDougall (1993).

First we discuss the concept of scaling categorical variables, and then we use
the idea to develop spectral analysis qualitative-valued processes. In doing so,
the spectral envelope and optimal scaling are introduced, and their properties are
discussed. The spectral envelope and the corresponding optimal scaling is a popu-
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Table 1 Per Minute Infant EEG Sleep States (read down and across)

REM NR2 NR4 NR2 NR1 NR2 NR3 NR4 NR1 NR1 REM

REM REM NR4 NR1 NR1 NR2 NR4 NR4 NR1 NR1 REM

REM REM NR4 NR1 NR1 REM NR4 NR4 NR1 NR1 REM

REM NR3 NR4 NR1 REM REM NR4 NR4 NR1 NR1 REM

REM NR4 NR4 NR1 REM REM NR4 NR4 NR1 NR1 REM

REM NR4 NR4 NR1 REM REM NR4 NR4 NR1 NR1 REM

REM NR4 NR4 NR2 REM NR2 NR4 NR4 NR1 NR1 NR2

REM NR4 NR4 REM REM NR2 NR4 NR4 NR1 REM

NR2 NR4 NR4 NR1 REM NR2 NR4 NR4 NR1 REM

REM NR2 NR4 NR1 REM NR3 NR4 NR2 NR1 REM

lation idea. We also discuss efficient estimation in the homogeneous case. Pertinent
theoretical results are also summarized. Examples of using the methodology on
sleep state sequences and DNA sequences, which are typically heterogeneous, are
given. The examples include an analysis of a gene in the Epstein–Barr virus and
Herpesvirus saimiri. The main contribution is the development of a local procedure
using minimum description length (MDL) coupled with optimization via a genetic
algorithm (GA).

Our work on the spectral envelope was motivated by collaborations with
neurologists who performed sleep studies on neonates with an interest in sleep
cycles. For example, Table 1 shows the per minute sleep state of an infant taken
from a study on the effects of prenatal exposure to alcohol. Details can be found in
Stoffer et al. (1988), but briefly, an electroencephalographic (EEG) sleep recording
of approximately 2 h is obtained on a full term infant 24–36 hours after birth, and
the recording is scored by a pediatric neurologist for sleep state. There are two main
types of sleep, Non-Rapid Eye Movement (Non-REM), also known as quiet sleep
and Rapid Eye Movement (REM), also known as active sleep. In addition, there are
four stages of Non-REM (NR1 —NR4), with NR1 being the “most active” of the
four states, and finally awake (AW), which naturally occurs briefly through the night.
This particular infant was never awake during the study.

Neurologists usually order sleep states by brain activity, however, the idea of
ordering sleep states is somewhat tenuous. For example, for a typical normal healthy
adult, sleep begins in stage NR1 and progresses into stages NR2, NR3, and NR4.
Sleep moves through these stages repeatedly before entering REM sleep. But sleep
does not progress through these stages in sequence. Typically, sleep transitions
between REM and stage NR2 so that one can move between the states without
passing through other sleep states. Finally, there is no evidence to support that
distance between say, NR4 and NR3 is the same as between NR2 and NR1 (in
addition, state NR2 is considered a transitional state rather than an actual state of
sleep).

However, it is not too difficult to notice a pattern in the data if one concentrates on
REM versus Non-REM sleep states. But, it would be difficult to try to assess patterns
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Fig. 1 Time plot of the EEG sleep state data in Table 1 using the scaling in (1) [TOP] and using the
scaling in (2) [BOTTOM]

in a longer sequence–or if there were more categories–without some graphical aid.
One simple method would be to scale the data, that is, assign numerical values to
the categories and then draw a time plot of the scales. One obvious scaling that is
frequently used by neurologists is:

.NR4 = 1, NR3 = 2, NR2 = 3, NR1 = 4, REM = 5, AW = 6, (1)

and the top of Fig. 1 (often referred to as a hypnogram) shows the time plot using
this scaling. Another interesting scaling might be to combine the quiet states and the
active states:

.NR4 = NR3 = NR2 = NR1 = 0, REM = AW = 1 . (2)

The time plot using scalings (1) and (2) shown Fig. 1 is similar and we notice
the general cyclic (in and out of REM sleep) behavior of this infant’s sleep pattern.
Figure 2 shows the estimated spectrum of the sleep data using the scalings in both (1)
and (2). Note that there is a large peak at the frequency corresponding to 1 cycle
every 60 min using either scaling. Most of us would feel comfortable with this
analysis even though we made arbitrary and ad hoc choices about the particular
scaling. It is evident from the data (without any scaling) that if the interest is in infant
sleep cycling, this particular sleep study indicates that the infant cycles between
REM and Non-REM sleep at a rate of about one cycle per hour.

The intuition used in the previous example is lost when one considers a long
nucleotide DNA sequence. Briefly, a DNA strand can be viewed as a long string
of linked nucleotides. Each nucleotide is composed of a nitrogenous base, a five
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Fig. 2 Estimated spectrum of the EEG sleep state data in Table 1 based on the scaling in (1) [solid
line] and on the scaling in (2) [dashed line]. The peaks in each correspond to a frequency of one
cycle every 60 min

carbon sugar, and a phosphate group where four different bases can be grouped by
size, the pyrimidines, thymine .(T) and cytosine .(C), and the purines, adenine (A) and
guanine .(G). The nucleotides are linked together by a backbone of alternating sugar
and phosphate groups with the .5′ carbon of one sugar linked to the .3′ carbon of the
next, giving the string direction. DNA molecules occur naturally as a double helix
composed of polynucleotide strands with the bases facing inwards. The two strands
are complementary, so it is sufficient to represent a DNA molecule by a sequence of
bases on a single strand. Thus, a strand of DNA can be represented as a sequence of
letters, termed base pairs (bp), from the finite alphabet .{A,C,G,T}. The order of the
nucleotides contains the genetic information specific to the organism. Expression
of information stored in these molecules is a complex multistage process. One
important task is to translate the information stored in the protein-coding sequences
(CDS) of the DNA. A common problem in analyzing long DNA sequence data
is in identifying CDS that are dispersed throughout the sequence and separated
by regions of noncoding (which makes up most of the DNA). Table 2 shows part
of the Herpesvirus saimiri (HVS) DNA sequence. The entire sequence consists of
approximately 157,000 bp.

One could try scaling according to the purine-pyrimidine alphabet, .A = G = 0
and .C = T = 1, but this is not necessarily of interest for every nucleotide sequence.
There are numerous other alphabets of interest, for example, one might focus on
the strong-weak hydrogen bonding alphabet .S = {C,G} = 0 and .W = {A,T} =
1; the bp C and G have a strong hydrogen bonding interaction whereas A and T
have a weak bonding. In addition, there is no compelling theory that states that
any reduction alphabet should be considered. While model calculations as well as
experimental data strongly agree that some kind of periodic signal exists in certain
DNA sequences, there is a large disagreement about the exact type of periodicity. In
addition, there is disagreement about which nucleotide alphabets are involved in the
signals; for example, compare Ioshikhes et al. (1996) with Satchwell et al. (1986).
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Table 2 Part of the Herpesvirus saimiri (HVS) DNA Sequence(read across and down)

GGTCGCGAGG GTCTAGCGCC TCGAAACCGG CTCGGAGCAC AAGCAGACTC TAGCCCCCTC

CCCTAGTACA CAGAGCCCAG CAGGCAGCTA CAGCCGCTCA ACGCGAGTCC CTCCCCTTGC

TCAAGCTCTT TAGTACACTT TTTGTCTTTT ATACAATAGT TTTATTACTG CATAGTATAA

GACATTTACT GCAGCACTAT GTGATTCACT TTGATTCTTT TACATTTTTT TAAACATAAT

TACTAGCATT AAACCAATTA TGATTAATAG CAAAACAATA ATAACTAGCA GCAATAGGAT

AGTTACAGAA CAGTCTGTGC ATTTGTCACC TTCTTGCTCG TGTTCACTGT GCAGGCTTCC

GACTTCTGCG TAGACATGTT CTTCACTTCC TGCTCCTCCG CAGCCACTGA CACGTACTGC

TGATAAGCCT ACTGGGGTGC TTAAATGTGA TGAGCTCCGT GAGCCAGATG GTGTTGGTAA

GCCTACTGCT CCCGATAGTG CTGTTGGTCT TCCTGGGCAT CCGCTTTCTT GCACTGGGTG

GCCAAGCAAG CAGTAGGGAT TATAAGGCCC AAAGGGCCCT GCATTTAAAA GCGTTACAGG

TAAGTATGGT GTAGGTCCAT CATCTCCATC ACTTCTTTCA TCAGTATTGT GTGGAGGATC

TCCGTTGCTT TCATCGTTTT CTTGTGGGTC TCCTTCACCT AGACCTCTTG CCATTTTCTT

ACACGTCTAA GCTTCAGTTT GTTTAGCTGA TTCTTGTAGT GTTGTCTGTC TTGCTAATTC

If we consider the naive approach of arbitrarily assigning numerical values
(scales) to the categories and then proceeding with a spectral analysis, the result
will depend on the particular assignment of numerical values. The obvious problem
of being arbitrary is illustrated as follows: Suppose we observe the sequence
.ATCTACATG . . . , then setting .A = G = 0 and .C = T = 1 yields the numerical
sequence .011101010 . . ., which is not very interesting. However, if we used the
strong-weak bonding alphabet, .W = {A,T} = 0 and .S = {C,G} = 1, then the
sequence becomes .001001001 . . ., which is very interesting.

In addition, if one considers the sequence .{G,A,T,A,G,A,T,A, . . .}, it is
repeating every four bp (GATA . . . ). But, the sequence is also repeating every two
bp if we consider the sequence in terms of not-A [.Ā] and A, (.Ā A Ā A . . . ). It should
be clear then, that one does not want to focus on only one scaling. Instead, the focus
should be on finding scalings that bring out all of the interesting features in the data.
Rather than choose values arbitrarily, the spectral envelope approach selects scales
that help emphasize any periodic feature that exists in a categorical time series of
virtually any length in a quick and automated fashion. In addition, the technique
can help in determining whether a sequence is merely a random assignment of
categories.

2 Spectral Envelope

As a general description, the spectral envelope is a frequency based, principal
components technique applied to a multivariate time series. In this section we will
focus on the basic concept and its use in the analysis of categorical time series.
Technical details can be found in Stoffer, Tyler, & McDougall (1993). In addition,
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various extensions and applications may be found in McDougall, Stoffer, & Tyler
(1997) and Stoffer, Tyler, & Wendt (2000).

In establishing the spectral envelope for categorical time series, we addressed
the basic question of how to efficiently discover periodic components in categorical
time series. Let .{Xt ; t = 0,±1,±2, . . .} be a categorical-valued time series with
finite state-space .C = {c1, c2, . . . , ck+1}. Assume that .Xt is stationary and .pj =
Pr{Xt = cj } > 0 for .j = 1, 2, . . . , k + 1. For .β = (β1, β2, . . . , βk+1)

′ ∈ Rk+1,
denote by .Xt(β) the real-valued stationary time series corresponding to the scaling
that assigns the category .cj the numerical value .βj , for .j = 1, 2, . . . , k + 1. Our
goal was to find scalings .β so that the spectral density, .f (ω;β) assuming it exists,
of the scaled process is in some sense interesting, and to summarize the spectral
information by what we called the spectral envelope.

We chose .β to maximize the power (variance) at each frequency .ω, across
frequencies .ω ∈ (−1/2, .1/2], relative to the total power .σ 2(β) = var{Xt(β)}.
That is, we chose .β(ω), at each .ω of interest, so that

.λ(ω) = sup
β �∝1

{
f (ω;β)

σ 2(β)

}
, (3)

where .1 is the .(k + 1) × 1 vector of ones. Note that .λ(ω) is not defined if .β ∝ 1
because such scalings correspond to assigning each category the same value; in this
case .f (ω; β) ≡ 0 and .σ 2(β) = 0. The optimality criterion .λ(ω) possesses the
desirable property of being invariant under location and scale changes of .β.

As in most scaling problems for categorical data, it was useful to represent the
categories in terms of the vectors .e1, .e2, . . . , ek+1, where .ej represents the .(k+1)×1
vector with a one in the j -th row, and zeros elsewhere. We then defined a .(k + 1)-
dimensional stationary time series .Y t by .Y t = ej when .Xt = cj . The time series
.Xt(β) can be obtained from the .Y t time series by the relationship .Xt(β) = β ′Y t .
Assume that the vector process .Y t has a continuous spectral density matrix denoted
by .f Y (ω). For each .ω, .f Y (ω) is a .(k+1)×(k+1) complex-valued Hermitian matrix.
Note that the relationship .Xt(β) = β ′Y t implies that .f Y (ω; β) = β ′f Y (ω)β =
β ′f re

Y (ω)β, where .f re
Y (ω) denotes the real part of .f Y (ω). The optimality criterion

can thus be expressed as

.λ(ω) = sup
β �∝1

{
β ′f re

Y (ω)β

β ′V β
,

}
(4)

where .V is the variance-covariance matrix of .Y t . The resulting scaling .β(ω) is
called the optimal scaling.

In this case, .Y t is a multivariate point process and any particular component of
.Y t is the individual point process for the corresponding state (for example, the first
component of .Y t indicates whether or not the process is in state .c1 at time .t). For
any fixed t , .Y t represents a single observation from a simple multinomial sampling
scheme. It readily follows that .V = D − p p′, where .p = (p1, . . . , pk+1)

′, and .D
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is the diagonal matrix .D = diag{p1, . . . , pk+1}. Since, by assumption, .pj > 0 for
.j = 1, 2, . . . , k + 1, it follows that .rank(V ) = k with the null space of .V being
spanned by .1. For any .(k + 1) × k full rank matrix .Q whose columns are linearly
independent of .1, .Q′V Q is a .k × k positive definite symmetric matrix.

With the matrix .Q as previously defined, and for .−1/2 < ω ≤ 1/2, define .λ(ω)

to be the largest eigenvalue of the determinantal equation

.|Q′f re
Y (ω)Q − λQ′V Q| = 0,

and let .b(ω) ∈ Rk be any corresponding eigenvector, that is,

.Q′f re
Y (ω)Qb(ω) = λ(ω)Q′V Qb(ω).

The eigenvalue .λ(ω) ≥ 0 does not depend on the choice of .Q because for any two
such matrices .Q1 and .Q2, there exists a nonsingular matrix .M such that .Q1M =
Q2M . Although the eigenvector .b(ω) depends on the particular choice of .Q, the
equivalence class of scalings associated with .β(ω) = Qb(ω) does not depend on
.Q. A convenient choice of .Q is .Q = [I | 0 ]′, where .I is the .k × k identity matrix
and .0 is the .k × 1 vector of zeros. For this choice, .Q′f re

Y (ω)Q and .Q′V Q are the
upper .k×k blocks of .f re

Y (ω) and .V , respectively. This choice corresponds to setting
the last component of .β(ω) to zero.

The value .λ(ω) itself has a useful interpretation; specifically, .λ(ω)dω represents
the largest proportion of the total power that can be attributed to the frequencies
.ωdω for any particular scaled process .Xt(β), with the maximum being achieved by
the scaling .β(ω). Because of its central role, .λ(ω) was defined to be the spectral
envelope of a stationary categorical time series.

The name spectral envelope is appropriate since .λ(ω) envelopes the standardized
spectrum of any scaled process. That is, given any .β normalized so that .Xt(β) has
total power one, .f (ω;β) ≤ λ(ω) with equality if and only if .β is proportional to
.β(ω).

Although the law of the process .Xt(β) for any one-to-one scaling .β completely
determines the law of the categorical process .Xt , information is lost when one
restricts attention to the spectrum of .Xt(β). Less information is lost when one
considers the spectrum of .Y t . Dealing directly with the spectral density .f Y (ω) itself
is somewhat cumbersome since it is a function into the set of complex Hermitian
matrices. Alternatively, one can view the spectral envelope as an easily understood,
parsimonious tool for exploring the periodic nature of a categorical time series with
a minimal loss of information.

The constraint that .β(ω) is real-valued leads to restricting attention to the real
part of the spectrum as seen in (4). If we allow complex-valued scalings, then we
would concentrate on the latent roots and vectors of the complex-valued spectral
matrix function, .f Y (ω). In this case, the problem is related to principal component
analysis or canonical analysis of time series in the spectral domain as discussed in
Brillinger (2001, Ch. 9, 10). Although Brillinger formulates the problem in terms
of data compression, the problems are similar and the relationship is discussed in
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more detail in Stoffer, Tyler, & Wendt (2000, Sec. 7) As a note, we mention that this
technique is not restricted to the use of sinusoids. In Stoffer et al. (1988), the use
of the Walsh basis of square-waves functions that take only the values .±1 only, is
described.

If we observe a finite realization of the stationary categorical time series .Xt ,
or equivalently, the multinomial point process .Y t , for .t = 1, . . . , n, the theory
for estimating the spectral density of a multivariate, real-valued time series is
well established and can be applied to estimating .f Y (ω), the spectral density
matrix of .Y t . Given an estimate .f̂ Y (ω) of .f Y (ω), estimates .̂λ(ω) and .̂β(ω) of the
spectral envelope, .λ(ω), and the corresponding scalings, .β(ω), can then be obtained.
Estimation is discussed briefly in the next section.

2.1 Estimation

In view of the dimension reduction mentioned in the previous section, the easiest
way to estimate the spectral envelope is to fix the scale of the last state at 0, and then
select the indicator vectors to be k-dimensional. That is, to estimate the spectral
envelope and the optimal scalings given a stationary categorical sequence, .{Xt ; t =
1, . . . , n}, with state-space .C = {c1, . . . , ck+1}, perform the following tasks.

(i) Form .k × 1 vectors .{Y t , t = 1, . . . , n} as follows.

.

Y t = εj if Xt = cj , j = 1, . . . , k ;
Y t = 0 if Xt = ck+1 ,

where .εj is a .k × 1 vector with a 1 in the j -th position as zeros elsewhere, and
.0 is the .k × 1 vector of zeros.

(ii) Calculate the (fast) Fourier transform of the data,

.d(ωj ) = n−1/2
n∑

t=1

Y t exp(−2πitj/n) .

Note that .d(ωj ) is a .k × 1 complex-valued vector. Calculate the periodogram,

.In(ωj ) = d(ωj )d
∗(ωj ) ,

for .j = 1, . . . , 
n/2�, where .
∗ denotes conjugate transpose.

(iii) Smooth the periodogram as preferred to obtain .f̂ Y (ω), a consistent estimator,
and retain the real part of the spectral matrix estimate. Time series texts
such as Shumway & Stoffer (2017) that cover the spectral domain will have
an extensive discussion on consistent estimation of a spectral density. Most
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spectral density estimators can be written in the form

.f̂ Y (ω) =
∫ 1/2

−1/2
Kn(ω − λ)In(λ)dλ, (5)

where .Kn(ω) is the spectral window. The integral is typically approximated by
a sum, and the amount of smoothing is controlled by the bandwidth (.bn) of the
window.

(iv) Calculate the .k×k covariance matrix of the data, .S = n−1 ∑n
t=1(Y t −Y )(Y t −

Y )′, where .Y is the sample mean of the data.
(v) For each .ωj = j/n, for .j = 1, . . . , 
n/2�, determine the largest eigenvalue

and the corresponding eigenvector of the matrix .2n−1S−1/2f̂ re
Y (ωj )S

−1/2.
Note that .S−1/2 is the inverse of the unique square root matrix of .S.

(vi) The sample spectral envelope .̂λ(ωj ) is the eigenvalue obtained in the previous
step. If .b(ωj ) denotes the eigenvector obtained in the previous step, the optimal
sample scaling is .β̂(ωj ) = S−1/2b(ωj ); this will result in k values, the .k+1-st
value being held fixed at zero.

Any standard programming language can be used to do the calculations. The R
package astsa (Stoffer 2021), which supports the text (Shumway & Stoffer 2017),
includes a script that will calculate the spectral envelope as well as additional scripts
to handle various types of data files.

Under the conditions for which .f̂ Y (ω) has an asymptotic distribution (e.g., see
Brillinger 2001, Thm. 7.4.4), if .λ(ω) is a distinct root (which implies that .λ(ω) > 0),
then, independently, for any collection of Fourier frequencies .{ωi; i = 1, . . . , M},
M fixed, and for large n and .ν2

n ∼ n bn (.n, νn → ∞ but .bn → 0),

.νn

λ̂(ωi) − λ(ωi)

λ(ωi)
∼ AN(0, 1) . (6)

For example, when estimation is accomplished by a symmetric moving average of
the periodogram,

.f̂ Y (ω) =
rn∑

q=−rn

hqIn(ωj+q) , (7)

where .{ωj+q; q = 0,±1, . . . ,±rn} is a band of frequencies and .ωj is the
fundamental frequency closet to .ω, and such that the weights satisfy .hq = h−q ≥ 0
and .

∑rn
q=−rn

hq = 1, then

.ν−2
n =

rn∑
q=−rn

h2
q .
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If a simple average is used, .hq = 1/(2rn+1), then .ν2
n = (2rn+1) and the bandwidth

is .bn = ν2
n/n. Based on these results, asymptotic normal confidence intervals and

tests for .λ(ω) can be readily constructed.
Significance thresholds for consistent spectral envelope estimates can easily be

computed using the following approximations. Using a first order Taylor expansion
we have

. log λ̂(ω) ≈ log λ(ω) + λ̂(ω) − λ(ω)

λ(ω)
,

so that (.n, νn → ∞, .bn → 0)

.νn[log λ̂(ω) − log λ(ω)] ∼ AN(0, 1). (8)

It also follows that .E[log λ̂(ω)] ≈ log λ(ω) and .var[log λ̂(ω)] ≈ ν−2
n . If there is no

signal present in a sequence of length n, we expect .λ(j/n) ≈ 2/n for .1 < j < n/2,
and hence approximately .(1 − α) × 100% of the time, .log λ̂(ω) will be less than
.log(2/n) + (zα/νn) where .zα is the .(1 − α) upper tail cutoff of the standard normal
distribution. Although this method is a bit crude, from our experience, thresholding
at very small .α-levels (say, .α = 10−4 to .10−6, depending on the size of n) works
well. Finally, we mention that inference for estimators of the scaling vectors .β(ω)

is discussed extensively in Stoffer et al. (1993, Theorems 3.1–3.3).

2.2 An Example

As a simple example of the kind of analysis that can be accomplished, we consider
the gene BNRF1 (3741 bp long) from Herpesvirus saimiri (HVS). Since we are
considering the nucleotide sequence consisting of four bp, we use the following
indicator vectors to represent the data:

.Y t = (1, 0, 0)′ if Xt = A; Y t = (0, 1, 0)′ if Xt = C;
Y t = (0, 0, 1)′ if Xt = G; Y t = (0, 0, 0)′ if Xt = T,

so that the scale for the thymine nucleotide, T, is set to zero. Figure 3 shows the
spectral envelope estimate of the entire coding sequence. The figure also shows a
strong signal at frequency 1/3; the corresponding optimal scaling is .A = 0.27,C =
0.56,G = 0.79,T = 0.0, which indicates the signal is not in terms of any alphabet
that collapses the nucleotides such as the purine-pyrimidine (0–1) alphabet, which
biotechnologists tend to use, would lead to wrong conclusions. To establish the
heterogeneity of the gene, the bottom of Fig. 3 shows the spectral envelope for the
first, second and third 1000 bp of the sequence. Clearly each segment has different
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Fig. 3 TOP: Sample spectral envelope of the gene BNRF1 (3741 bp long) from the Herpesvirus
saimiri. BOTTOM: Sample spectral envelope for the first, second and third 1000 bp of the gene

results; the first segment may be noise, the second segment has a peak at the period
of 3 bp, and the third segment shows peaks at the 3 and 10 bp periods.

The period of 10 by may be attributed to histones, which are proteins that act as
spools around which DNA winds and play a role in gene regulation. Bending occurs
at an approximate period of 10 bp. The idea of rotational signals for nucleosome
positioning is based on the fact that nucleosomal DNA is tightly wrapped around its
protein core. The bending of the wound DNA requires compression of the grooves
that face toward the core and a corresponding widening of the grooves facing the
outside. Since, depending on the nucleotide sequence, DNA bends more easily in
one plane than another, Trifonov & Sussman (1980) proposed that the association
between the DNA sequence and its preferred bending direction might facilitate the
necessary folding around the core particle.

Figure 4 shows a dynamic spectral envelope with a block size of 500. Evidently,
even within small segments of the gene, it is not homogeneous. There is, however, a
basic cyclic pattern that exists through most of the gene as evidenced by the peak at
.ω = 1/3 except at the end of the gene. Table 3 shows the optimal scalings at the one-
third frequency and we note that the corresponding alphabets can vary significantly.
In addition, there are some parts of the gene where the 10 bp cycle exists. In the next
section, we will develop a less ad hoc method.
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Fig. 4 Dynamic spectral envelope estimates for the BNRF1 gene of the Herpesvirus saimiri based
on blocks of 500 bp. The horizontal axis indicates the location of the 500 bp blocks used to
calculate the spectral envelope. Darker regions indicate larger values of the spectral envelope

Table 3 Blockwise (500 bp)
optimal scaling, .β̂( 1

3 ), for
HVS-BNRF1

Block A C G T

1.† 0.32 0.90 0.31 0

2 0.05 0.88 −0.47 0

3 0.14 0.59 0.80 0

4 0.33 0.62 0.71 0

5 0.49 −0.33 0.81 0

6 0.02 0.67 0.74 0

7.† 0.33 0.42 0.85 0

.† .λ̂( 1
3 ) is not significant in this block

3 Local Analysis

Let a categorical-valued time series .{Xt ; t = 1, . . . , n} consist of an unknown
number of segments, m, and let .ξj be the unknown location of the end of the j th
segment, .j = 0, 1, . . . , m, with .ξ0 = 0 and .ξm = n. Then conditional on m and
.ξ = (ξ0, . . . , ξm)′, assume that the process .{Xt } is piecewise stationary. That is,

.Xt =
m∑

j=1

Xt,j δt,j , (9)

where for .j = 1, . . . , m, the indicator processes .Y t,j corresponding to .Xt,j

have spectral density .fj (ω) that may depend on parameters, and .δt,j = 1 if
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.t ∈ [ξj−1 + 1, ξj ] and 0 otherwise. The piecewise assumption is not very restrictive
because slowly varying series may be approximated by a piecewise process (e.g.,
Adak 1998). Estimation is discussed in the next three subsections and an example
is given in the fourth subsection.

3.1 Local Whittle Likelihood

An essential part of the local procedure is the calculation of the local likelihood. In
our case, the estimation of the spectral matrix is done nonparametrically via kernel
smoothing. Hence, Whittle’s form of the likelihood (Whittle 1957) suits our analysis
because it depends only on the Fourier transform of the data.

Consider a realization .x = {x1, . . . , xn} from process (9), where the breakpoints
are known. Let .nj be the number of observations in the j th segment. We assume
that the spectra are positive definite, and that each .nj is large enough for the local
Whittle likelihood to provide a good approximation. Given a partition of the time
series .x, the j th segment consists of the observations .xj = {xt : ξj−1+1 ≤ t ≤ ξj },
.j = 1, . . . , m, with underlying spectral densities .fj and Fourier transforms .dj

evaluated at frequencies .ωkj
= kj /nj , for .0 ≤ kj ≤ nj − 1. For a given partition .ξ ,

the approximate likelihood of the time series is given by

.L(f1, . . . ,fm | x, ξ) ≈
m∏

j=1

(2π)−nj /2

×
nj −1∏
kj =0

exp
{
−1

2

[
log |fj (ωkj

)| + d∗
j (ωkj

)f −1
j (ωkj

)dj (ωkj
)
]}

, (10)

where .| · | denotes determinant. Conditional on the breakpoints, the local spectral
envelope functions can be defined in terms of the local spectral matrix functions in
an obvious manner.

3.2 Minimum Description Length

Here, we derive a minimum description length (MDL) criterion for choosing the best
fitting model, where “best” is defined as the model that enables the best compression
of the observed series .x = {x1, . . . , xn}.

There are various versions of the minimum description length principle as put
forth by Rissanen (1978, 1989) and the version adopted here is a two-part code. Let
.F denote the model and .F̂ the fitted model. In this case, the first part, denoted by .Ĉ,
represents the complexity of the fitted model .F̂, and the second part, denoted by .Â,
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represents the accuracy of the fitted model .F. The idea of the minimum description
length principle is to find the best pair of .Ĉ and .Â so that via encoding (or
compressing), .x can be transmitted (or stored) with the least amount of codelength
(or memory). To quantify this idea, let .CLF(·) denote the codelength of an object
based on model .F. Then we have the decomposition

.CLF(x) = CLF(Ĉ) + CLF(Â | Ĉ) (11)

for the data .x. This approach leads to familiar concepts such as BIC (Schwarz 1978)
where model accuracy is measured by the negative of the log-likelihood evaluated
at the estimated parameters, and complexity is based on the number of parameters
in the model and the sample size.

For the complexity term in (11), we must consider the various parameters
of the model, which includes the number of segments, m, the change points,
.ξ = (ξ1, . . . , ξm), and the individual bands in each segment, .B1, . . . , Bm where
.Bj ∼ njbnj

for .j = 1, . . . , m, is the number of frequencies included in the
smoothing band for segment j as described in (7). In this case we have

.CLF(Ĉ) = CLF(m)+ CLF(ξ1, . . . , ξm | m)+ CLF(B1, . . . , Bm | m, ξ) . (12)

The values .Bj determine the number of distinct bands of frequencies for which
.fj (ω) is estimated. We mention that Hannan & Rissanen (1988) presented a method
based on Rissanen (1978) to choose the bandwidth via stochastic complexity and
minimum description length (MDL) in the case of stationarity. However, their
approach is rarely used because it is overly complex and involves putting a prior on
the value of spectral density in each band, which in turn depends on the bandwidth
and leads to a somewhat circular argument.

To evaluate (12), the codelength for an integer m is .log2 m bits. For the second
term, we note that knowledge of the breakpoints, .ξj , is equivalent to knowledge of
the number of observations in segment j , namely .nj . Noting that the .nj are bounded
by the number of observations, n, we have a bound, .CLF(nj ) = log2 n so that

.CLF(ξ1, . . . , ξm | m) = CLF(n1, . . . , nm | m) = m log2 n .

Each bandwidth value will cost about .log2 Bj bits. In addition, the bandwidth
in each segment .j = 1, . . . , m is determined by maximizing the likelihood based
on the segment data of .nj observations. For this, we can use a result of Rissanen
that states a maximum likelihood estimate of p parameters computed from .nj

observations can be effectively encoded with .
1
2p log2 nj bits, making the third term

.CLF(B1, . . . , Bm | m, ξ) = log2 Bj + p

2

m∑
j=1

log2 nj ,
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where in this case, p is the number of parameters in the spectral matrix. For a k-
dimensional spectral matrix, there are k real-valued parameters on the diagonal and
.k(k − 1)/2 complex-valued parameters on the lower off-diagonals, each with one
real and one imaginary part (the upper off-diagonals are the conjugates); hence,

.p = k + k(k − 1) = k2 .

For the second term in (11), it is shown in Rissanen (1989) that the codelength
of the accuracy term, .Â, is the negative of the .log2 likelihood of the fitted model .Ĉ.
In our case, we use the Whittle likelihood approximation given in (10).

Combining the results and working with natural log instead of base 2, we obtain
an approximation to the MDL of the model,

.MDL = log m + m log n +
m∑

j=1

log Bj + k2

2

m∑
j=1

log nj

+
m∑

j=1

{nj

2
log(2π) + 1

2

nj −1∑
kj =0

[
log |fj (ωkj

)| + d∗
j (ωkj

)f −1
j (ωkj

)dj (ωkj
)
]}

.

(13)

3.3 Optimization via Genetic Algorithm

Because the search space is enormous, optimization is a nontrivial task, we use
a genetic algorithm (GA) to effectively tackle the problem. A tutorial may be
found in Whitley (1994). In addition, Matlab has a toolbox with supporting videos
demonstrating GAs that are also good references (Mathworks 2021). Our GA
is similar to the one specified in Davis et al. (2006) who used it to fit local
autoregressions to nonstationary univariate time series.

Briefly, genetic algorithms are a class of iterative optimization methods that use
the principles of evolutionary biology. The algorithm typically begins with some
initial randomly chosen population and each generation afterwards produces an
offspring population using genetic operators. Genetic operators include selection,
recombination or crossover, and mutation, which are based on the principle of
natural selection to find the best solution while using the principle of diversity to
avoid convergence to a local minima.

There are many variations of a genetic algorithm (GA). For example, parallel
implementations can be applied to speed up the convergence rate as well as to reduce
the chance of converging to suboptimal solutions (Alba et al. 1999). We implement
an Island model, where instead of running only one search in one giant population,
we simultaneously runs NI (Number-of-Islands) canonical GAs in NI different
sub-populations. The key feature is that a number of individuals are migrated among
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the islands according to some migration policy. The migration can be implemented
in numerous ways (e.g., Alba & Troya 2002) and here we adopt the migration policy
that after every .Mi generations, the worst .MN chromosomes from the j -th island
are replaced by the best .MN chromosomes from the .(j − 1)-st island, for .j =
1, . . . , NI . For .j = 1, the best .MN chromosomes are migrated from the NI -th
island. In our examples, we used .NI = 40, .Mi = 5, .MN = 2, and a sub-population
size of 40.

Chromosome Representation The performance of a genetic algorithm depends
on how a possible solution is represented as a chromosome. For our problem, a
chromosome should carry complete information for any model .F; i.e., the number of
segments m, the breakpoints .ξj , and the segment bands .Bj . Once these parameters
are specified, the Whittle likelihood is uniquely determined. For our problem, a
chromosome .δ = (δ1, . . . , δn) is of length n with gene values .δt defined as .δt = −1
if there is not a breakpoint at position t , and .δt = Bj if .t = ξj−1 and the band of the
j -th piece is .Bj . Furthermore, any band size, .Bj , is limited to .P0 = 2r0+1 = 21 (or
10 fundamental frequencies on either side of the center frequency) and a minimum
span on the .nj , ranging from 30 to 70 is specified depending on the size of the band.

Initial Population Generation The GAs start with an initial population of random
chromosomes, and the following strategy was used to generate each of them. First,
select a value for .B1 ∈ {0, . . . , P0} with equal probabilities and set .δ1 = B1. Then
the next .nj1 −1 genes .δ2, . . . , δnj1

are set to .−1 so that the minimum span constraint
is imposed for this first piece. The next gene .δnj1+1 in line will either be initialized as
a breakpoint with probability .π , or it will be assigned .−1 with probability .1−π . If it
is to be initialized as a breakpoint, then we set .δnj1

= r2, where .r2 is randomly drawn
from .{0, . . . , P0}. Otherwise, if .δnn1

is to be assigned .−1, the initialization process
will move to the next gene in line and decide if this gene should be a breakpoint
gene. This process continues in a similar fashion, and a random chromosome is
generated when the process hits the last gene .δn. In the example, we set .π = 10/n

where n is the length of the sequence.

Crossover and Mutation Once a set of initial random chromosomes is generated,
new chromosomes are generated by either a crossover or a mutation operation. In
our implementation we set the probability for conducting a crossover operation as
.1 − π . For the crossover operation, two parent chromosomes are chosen from the
current population. The parents are chosen with probabilities inversely proportional
to their ranks sorted by their MDL values so that chromosomes having smaller MDL
values have a higher chance of being selected. From these two parents, the gene
values .δt of the child chromosome is inherited as follows. First, .δ1 will take on the
corresponding value from either the first or second parent with equal probabilities. If
the value is .−1, then the same gene-inheriting process will be repeated for the next
gene in line. Otherwise, the bandwidth is that of the current piece with the minimum
span constraint imposed. The same gene-inheriting process will be applied to the
next available .δt .
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For mutation, one child is reproduced from one parent. The process starts with
.t = 1 and every .δt can take on one of the following three values: (i) with probability
.πr it will take the corresponding .δt value from the parent, (ii) with probability .πN it
will take the value .−1, or (iii) with probability .1 − πr − πN , it will take a randomly
generated bandwidth (subject to the constraints). In our example in the next section,
we set .πr = πN = 0.3.

Declaration of Convergence In our example, we use the Island Model in which
migration is allowed for every .Mi = 5 generations. At the end of each migration
the overall best chromosome is noted. If this best chromosome does not change for
10 consecutive migrations, or the total number of migrations exceeds 20, this best
chromosome is taken as the solution to this optimization problem.

3.4 Another Example

Here, we focus on an analysis of the CDS BNRF1 of the Epstein–Barr virus (EBV),
which is roughly 4000 bp long. We selected a subsequence of length .n = 1000
starting at bp 2500 of the CDS. We chose this section because we know from
previous experience (Stoffer, Tyler, & Wendt 2000) that, while most of the CDS
contains a signal of period 3, there is a part that appears to be noise. We kept
the choice of kernel and corresponding bandwidth simple in that we used the
modified Daniell kernel (which is the default in R) with two passes, but allowing
the bandwidth to grow. The Daniell kernel corresponds to simple averaging. The
modified version simply puts half weights at the ends. For example, if .r = 1 in (7),
the modified Daniell weights are (.1/4, 1/2, 1/4). Passing those again yields weights
(.1/16, 4/16, 6/16, 4/16, 1/16). If one thinks of the first set of weights as a discrete
distribution of a random variable with support .{−1, 0, 1}, then the second pass is the
distribution of the sum of two independent random variables with that distribution.
Thus, in the GA, the value of r in a segment is allow to grow. In this case we used
an approximation suggested by Tukey (1950) to obtain the band of the kernel in
segment j as .Bj = ν2

rj
in the notation below (7), where .2 rj + 1 is the width of the

band is segment j . In the case of simple averaging, the value is .Bj = 2rj + 1.
The GA found two breakpoints at .t = 456 and 851. Figure 5 shows the estimated

spectral envelope for each of the three segments as well as for the entire sequence
along with significance thresholds. The segment locations appear in the upper right
of each plot and the significance threshold used in the figure is 0.0001 for all plots.
The first segment shows the typical 3 bp cycle, which was seen in the first example
using HVS-BNRF1 and again in the spectral envelope of the entire sequence shown
at the bottom right (marked ‘ALL’). The large values near the zero frequency appear
to indicate fractional noise, which is not unusual for DNA sequences; e.g., see Voss
(1993). The second and third segments appear to be noise, but the variability in
the third segment is slightly larger than the second; in addition, there appears to be
fractional noise in the third segment.
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Fig. 5 The estimated spectral envelopes for the various segments found by the genetic algorithm
in a section of 1000 bp of EBV-BNRF1. The values in the upper right corner are the locations of the
segments. The horizontal dashed lines are 0.0001 significance threshold as discussed after (8). The
graphic on the bottom right is the spectral envelope for the entire 1000 bp and the corresponding
threshold is the 0.0001 level

Data Availability

The sleep data used in the introduction is included in the R package astsa (Stoffer
2021) and it is from the first subject included in the data frame sleep1. The DNA
sequences used throughout this manuscript may be found online at the National
Center for Biotechnology Information (NCBI). The Epstein–Barr virus sequence
may be found at NCBI (2021a) and the Herpesvirus saimiri sequence may be found
at NCBI (2021b). The EBV sequence is also included as a data set in astsa as is
the CDS BNRF1 of each virus (as bnrf1ebv and bnrf1hvs).
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