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Abstract. One highly discussed research topic is user privacy protection
and the usability of models in data mining tasks. Currently, the most k-
means clustering approach using differential privacy is based on trusted
third-party servers. However, malicious servers exist in many applica-
tions and cause privacy leakages of user data. The Personalized Local
Differential Privacy k-means algorithm (PLDP k-means) is proposed in
this paper. To satisfy the PLDP mechanism, a perturbation mechanism
is used to perturb the user data at the local side. Then clustering is com-
pleted by iteration between the local and server sides. The third-party
server remains inaccessible to the real user data and considers the users’
personalized privacy demands in the proposed algorithm. In addition,
the iterative centroid perturbation algorithm is proposed in this paper
for resisting inference attacks and improving the utility of clustering via
a privacy budget allocation sequence. Theoretical analysis demonstrates
the privacy of the proposed algorithm. Experimental results indicate that
the proposed algorithm effectively preserves the utility of clustering while
satisfying the PLDP mechanism.

Keywords: Cluster · k-means · Privacy protection · Personalized
Local Differential Privacy

1 Introduction

The popularisation of smart devices and the development of big data analytics
has led to tremendous growth in the generation, collection, and analysis of per-
sonal digital information. The useful information extracted from massive data
can bring immeasurable value [1,2]. As a classical data analysis method, clus-
tering is a type of unsupervised learning method. k-means is one of the most
popular clustering methods due to its efficiency and simplicity [3]. Although the
data analysis has great potential, it also has a risk of leakage of user privacy.
Sensitive information such as medical, location, and financial data can directly
lead to users’ private information leakage. Traditional anonymization methods
wipe out identifiers that cannot resist both differential and background knowl-
edge attacks. An attacker can correlate or identify users’ private information.
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 660–675, 2023.
https://doi.org/10.1007/978-3-031-22677-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22677-9_35&domain=pdf
https://doi.org/10.1007/978-3-031-22677-9_35


k-means Guaranteeing Personalized Local Differential Privacy 661

Therefore, ensuring there is no leakage of users’ private information and main-
taining a high level of utility in clustering becomes a problem that needs to be
solved.

The Differential Privacy (DP) model is currently considered as a reliable
model with rigorous and falsifiable privacy guarantees [4]. Compared with tra-
ditional protection models such as anonymity and random perturbation, dif-
ferential privacy has significant advantages in privacy preservation in cluster
analysis [5,6]. A differential privacy-based model for cluster analysis, which is
referred to as Differential Privacy k-means Algorithm (DP k-means), has been
widely applied for its efficiency and privacy preservation [7,8]. DPLloyd-Impr
made an improvement on DPLloyd by introducing the concept of sphere pack-
ing [9]. DP-KCCM, as a novel algorithm, is effective when cluster merging and
adaptive noise mechanisms are adopted to improve clustering utility [10]. The
above work improves DP k-means from data pre-processing, cluster delineation,
etc., and is based on trusted third-party servers. The servers can collect real user
data, perform clustering and uniformly add noise. However, with the develop-
ment of cloud computing and the diversification of data analysis demands, the
assumption that all third-party servers are trustworthy is not valid, as malicious
servers may steal and take advantage of users’ private information.

Local Differential Privacy (LDP) [11] was proposed because third-party
servers cannot be trusted. LDP has more stringent privacy requirements than
DP. It requires users to perturb their data at the local side and sends it to an
untrusted server. LDP has also been applied to practical cases to create feasible
solutions [12,13]. A k-means algorithm based on LDP was proposed in [14] to
protect location data through feature transformation and privacy budget allo-
cation. Although LDP can effectively address the problem of privacy leakage
on third-party servers, it still faces the challenge of reduced clustering utility
due to excessive noise [15]. Owing to the perturbation of user data at the local
side, the noise of LDP is larger compared to that of DP. The influence of noise
is further amplified in the clustering iterations. Also, most research on LDP
implicit assumption is that there is uniform protection of the private informa-
tion of all users. However, different users and data often have different privacy
requirements. To address the above issue, Personalized Local Differential Privacy
(PLDP) was proposed in [16], which allows each user to set the privacy level of
their data independently.

Based on the above discussions, the main issue that needs to be addressed
is how to take into account the protection of users’ private information and the
utility of clustering in k-means clustering. A clustering framework based on the
PLDP k-means algorithm is proposed in this paper. Firstly, the user can perturb
sensitive data at the local side by the PLDP k-means algorithm and send it to the
server, which performs high-quality k-means clustering on the perturbed data.
Thus, the threat of malicious servers is eliminated while the users’ personalized
privacy demands are met. In addition, an iterative centroid perturbation algo-
rithm is proposed, which prevents privacy leakage caused by inference attacks
by perturbing the centroids in the iterative process. The proposed algorithm
also reduces the impact of perturbation on the clustering utility by designing a
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privacy budget allocation sequence. The main contributions of this paper are as
follows.

1) A clustering framework based on the PLDP k-means algorithm is proposed.
In the framework, the server does not access users’ private information while
ensuring quality clustering and users’ personalized privacy demands.

2) Iterative centroid perturbation algorithms are proposed to address the poten-
tial leakage of private information during iteration. They help prevent infer-
ence attacks and further protect users’ private information.

3) Theoretical analysis demonstrates the privacy protection capability of the
proposed mechanism, and extensive experiments show that the proposed algo-
rithm has better or similar performance than existing DP k-means algorithms.
To the best of our knowledge, this paper is the first attempt at adopting PLDP
in k-means clustering.

The rest of this paper is organized as follows. The basic concepts required for
this framework and the related technical foundation are introduced in Sect. 2.
The proposed approach is present in Sect. 3. The experimental results and anal-
ysis are illustrated in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Preliminaries

In this paper, the concept of personalized local differential privacy is adopted. To
make the paper more self-contained, some basics of LDP and PLDP are briefly
introduced in this section.

Differential privacy is a privacy-preserving model widely used in data anal-
ysis, in which the real data of all users is protected by a trusted data collector.
However, the prerequisite of a trusted data collector usually does not hold in
real-world applications. LDP is an extension of DP that extends to the local
settings. LDP implements data sanitization locally by designing random pertur-
bation algorithms that comply with differential privacy requirements. This way,
sensitive data information is protected without relying on trusted third-party
collectors. The following is the formal definition of LDP.

Definition 1. (ε-LDP). A randomized mechanism F : D → R satisfies ε-LDP
iff for any possible output result t∗ (t∗ ⊆ R) on any two records t and t′ (t, t′ ⊆ D)
that satisfies Eq. 1.

Pr [F (t) = t∗] ≤ eε × Pr [F (t′) = t∗] . (1)

The parameter ε is the privacy budget, which is public and usually set in
[0,2]. The value of ε determines the probability of outputting the same result t∗

for any two input values t and t′ of the algorithm F . Thus, stronger (weaker)
privacy guarantees are provided by smaller (larger) values of ε.

The LDP provides a way to protect private data on the local side of the
user, but different privacy protection requirements may exist for different users
and data. Therefore, PLDP is adopted to satisfy different privacy requirements
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in this paper. Each user in PLDP has a set of optional parameters (Gi, εu), εu

representing the desired strength of privacy protection for that user, i.e., the
privacy budget. Gi represents a security range specified by the user containing
his real data, where the user data is indistinguishable from other data.

Definition 2 ((Gi, εu)-PLDP). Given a set of privacy requirements (Gi, εu) to
one user n, a randomized mechanism F : D → R satisfies (Gi, εu)-PLDP iff for
any possible output result t∗ (t∗ ⊆ R) on any two records t and t′ (t, t′ ⊆ Gi) that
satisfies Eq. 2.

Pr [F (t) = t∗] ≤ eεu × Pr [F (t′) = t∗] . (2)

when Gi is set to the domain D, and all users are unified ε, PLDP is equivalent
to LDP.

Differential privacy has two important combinatorial properties: the sequen-
tial and parallel combinatorial properties, which are formally defined as follows.

Property 1 (sequence combinability). Given a dataset D and privacy algorithms
F = {F1, F2, . . . , Fn} , Fi(1 ≤ i ≤ n) satisfies the εi-DP. Then the sequence
combination of {F1, F2, . . . , Fn} on D satisfies ε-DP, where ε =

∑n
i−1 εi.

Property 2 (parallel combinability). Given a dataset D, divide it into n disjoint
subsets, D = {D1, . . . , Dn}, let F be any privacy algorithm that satisfies εi-DP,
then the algorithm F satisfies εmax-DP on D.

3 Proposed Approach

In this section, the PLDP k-means clustering algorithm is proposed, and its
privacy is demonstrated. Existing privacy issues in clustering analysis are first
analyzed. The overall flow of the proposed framework is then described, and the
corresponding design of the perturbation mechanism based on PLDP theory is
given. Finally, the privacy of the proposed overall system is proved theoretically.

3.1 Overview

The privacy issues faced by DP and LDP k-means clustering model and the
solutions are analyzed in this subsection. A third-party data collector collects
sensitive data (e.g., location, income, cases, etc.) from many users, processes it
using the k-means algorithm, and shares or publishes the model results to part-
ners or public platforms. When users are faced with third-party collectors (e.g.,
service providers, etc.) asking for their data, protecting their privacy becomes
an issue that must be addressed. DP is considered an effective solution to this
problem by perturbing the user’s data on a third-party server so that neither
the attacker nor the subsequent release can cause a leakage of the user’s privacy.
However, the attacker may be external, or the data collector may be malicious,
knowing all the user’s real data. LDP protects user data assuming that third-
party servers are not trusted. The way solves the problem of malicious data
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collectors is that the data is perturbed by the LDP at the local side and then
uploaded to the server. The new problem is that due to LDP properties, there
are limitations in protecting user data, and the availability of perturbed data
is generally considered inferior to that of DP. At the same time, the risk of
privacy leakage cannot be completely avoided by simply perturbing the data in
clustering. So the problem is to design a model that achieves a better utility of
clustering while avoiding the influence of malicious collectors.

A clustering framework based on the PLDP k-means algorithm is proposed
in this paper to address the issues mentioned above. A randomized perturbation
algorithm satisfying PLDP is used to perturb the user’s local data, eliminating
the risk of malicious collectors while satisfying personalized privacy requirements
and enhancing the utility of clustering. Meanwhile, an iterative clustering cen-
troid perturbation algorithm perturbs the real clustering information locally to
prevent privacy leakage due to inference attacks.

3.2 Proposed Framework

A framework based on PLDP k-means that can solve the above problem is
proposed, and its overall framework is shown in Fig. 1. The clustering model has
a user set U = {u0, u1, . . . , un−1}, an attribute set A = {a0, a1, . . . , ad−1}. Each
user has a d-dimensional data vector Si = {s0, s1, . . . , sd−1}. where 0 < i < n,
0 < j < d and d = |Si| is the number of attributes. sj corresponds to a numerical
value of aj . The target of k-means is to classify the user data into k clusters
C = {c0, c1, . . . , ck−1}.
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Fig. 1. Cluster privacy-preserving framework based on PLDP k-means.

As shown in Fig. 1, a clustering privacy-preserving framework based on PLDP
is proposed. The proposed framework consists of two parts: the local side and
the collector server. The local side describes how the user data is perturbed by
the PLDP perturbation algorithm. The collector server describes how k-means is
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performed based on the perturbed data. The user data Si is perturbed to get S∗
i

by Algorithm 1 at the local side and then sent to the server. The server generates
k initial centroids by the initial centroid selection algorithm and attribute set A,
then sends them to the local side. The next clustering iteration is performed. The
local side calculates the distance between the real user data Si and each centroid
received from the server to find the nearest centroid ci and the corresponding
clusters. The found centroid ci is then perturbed to get c∗

i by Algorithm 2 and
sent to the server. The server updates a new set of centroids based on the received
C∗ and the perturbed data S∗

i by Algorithm 3, then sends them to the local side.
The iterative process is repeated until the results converge.

Local Side Method. As shown in Fig. 1, the local side consists of two core
components, user data perturbation, and centroid perturbation.

User Data Perturbation. In contrast to the usual LDP k-means approach of
converting the data into binary strings and then perturbing each dimension to
obtain the perturbed results before aggregation, this paper normalizes the user
data vector Si to [−1,1] through data pre-processing for the next perturbation
process. Because each bit of the binary string has to be equally assigned privacy
budget ε, which may cause excessive noise problems when the budget is small,
or the number of bits in the string is large.

The Duchi solution [17] is a multidimensional data perturbation scheme based
on LDP. Since Si has already completed data pre-processing to obtain S′

i ={
s′
0, s

′
1, . . . , s

′
d−1

}
, the Duchi-based PLDP mechanism can be used to perturb

user data. In the clustering model of this paper, a set of privacy parameters
(Gi, εu) can be self-selected by each user. εu represents the user’s selected privacy
budget, i.e., the user’s requirement for the strength of data protection. Averaging
εu by user data dimension d to obtain εd = εu

d . Gi = {g0, g1, . . . , gd−1} represents
the user’s acceptable security range, and gj(0 < j < d) represents the security
range of the j-th dimensional data. e.g., a set of age data distributed between
[1,100]. A user data is 25 years old, and after LDP perturbation, the perturbed
data range is between [1,100], representing the user’s expectation that their
age data is indistinguishable in the range [1,100], a wide privacy requirement
that is generally unnecessary. In PLDP, the user needs to choose a security
range gj . The range and size of gj is user-defined, and the user’s real data
values must be included within the security range. For example, gj=[10,40] means
that the age is indistinguishable within the range [10,40] to satisfy the user’s
privacy demands. wj and mj are defined as the size and midpoint of gj . Since
a secure region symmetric about 0 needs to be obtained, each user moves the
secure range, and the user data points within the range move to s′′

j = s′
j − mj .

After processing the S′′
i =

{
s′′
0 , s′′

1 , . . . , s′′
d−1

}
representing Si is obtained. The

perturbation mechanism is defined by
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Pr
(
s∗

j = x | s′′
j

)

=

⎧
⎨

⎩

2·s′′
j ·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1) , if x = wj

2 · eεd+1
eεu −1 + mj ,

− 2·s′′
j ·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1) , if x = −wj

2 · eεd+1
eεd−1 + mj .

(3)

Since a range move was performed on S′
i before the perturbation, mj is added

to the perturbation result x in Eq. 3 to restore the data. After completing the
perturbation, send S∗

j to the server, which gets all the perturbation data and
calculates the mean value of each dimension of the data.

The overall process of user data perturbation is shown in Algorithm 1, where
S∗

i is obtained according to Eq. 3 perturbation and then sent to the collector
server. The privacy proof of the Algorithm 1 is described in Sect. 3.3.

Algorithm 1. User data perturbation.
Require: privacy budget εu, security range Gi = {g0, g1, . . . , gd−1}, user ui data vec-

tor Si = {s0, s1, . . . , sd−1} , 0 < i < n, 0 < j < d
Ensure: user ui data vector after perturbation S∗

i = {s∗
0, s

∗
1, . . . , s

∗
d−1}

1: Si is normalized to obtain S′
i = {s′

0, s
′
1, . . . , s

′
d−1}

2: S′
i range moves to obtain S′′

i = {s′′
0 , s′′

1 , . . . , s′′
d−1}

3: for j ← 0 . . . d − 1 do
4: wj = |gj |
5: mj is the centroid of gj

6: p ← Bernoulli
(

2·s′′
j ·(eεd −1)+wj ·(eεd+1)

2·wj ·(eεd+1)

)

7: if p = 1 then
8: s∗

j =
wj

2
· eεd+1
eεd+1

+ mj

9: else
10: s∗

j = −wj

2
· eεd+1
eεd+1

+ mj

11: return S∗
i

Centroid Perturbation. As shown in Fig. 1, the local side enters the iterative
process after the user data perturbation is completed. The centroids from the
server are first accepted, then iteration centroids are calculated based on the real
user data. Although the server cannot infer privacy information from the user
data, the clustering information of the user belonging to that cluster, i.e., the
iteration centroids sent to the server in each iteration, may reveal user privacy.
Because the clusters to which users belong are calculated from real data, over
multiple iterations, the server can infer the approximate distribution or exact
value of the user data as the clusters to which users belong change, and the
iteration centroids are updated. For example, assuming the user data is two-
dimensional location data, the user can be positioned in a circular region in each
iteration. In multiple iterations, overlapping these circular regions will help the
server locate the user’s exact location or exact location range.

To address the problem that iterative centroids may cause user privacy leak-
age, the iterative centroid perturbation algorithm is proposed in this paper to
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generate perturbed iterative centroids using a random perturbation mechanism.
Also, The centroids in the first few iterations of the clustering change greatly,
while the centroids in the last few iterations change only a little. Suppose the
privacy budget is distributed equally, i.e., given the same amount of noise in
each round. In that case, it will cause the problem of poor clustering utility or
failure to converge. A privacy budget allocation mechanism in which the privacy
budget for each round is incremented with the number of iterations is proposed
in this paper. i.e., a smaller privacy budget is used for the first few rounds to add
a larger noise. As the number of iterations increases, the privacy budget is incre-
mented, and the noise is gradually reduced. The iterative centroid perturbation
algorithm is described in Algorithm 2.

Algorithm 2. Iterative centroid perturbation algorithm.
Require: privacy budget εu, user’s clustering centroid ci, cluster centroid set C, the

maximum number of iterations L, number of current iterations lc, number of cen-
troids k

Ensure: centroid after perturbation c∗
i

1: Generate a privacy budget allocation sequence by P (n) = 2 · P (n −
1)

(
2 < n < L, P (0) = P (1) = 1

2L−1 · εu
)

2: εn = P (lc)

3: p ← Bernoulli
(

eεn

eεn+k−1

)

4: if p = 1 then
5: c∗

i = ci
6: else
7: c∗

i ← random sample from {C/ci}
8: return c∗

i

As shown in Algorithm 2, the K-Randomized Response (K-RR) is used to per-
turb the user clustering information. Since K-RR can be applied to multivariate
perturbations, there is no need to encode the centroids. The privacy budget allo-
cation algorithm is inspired by the Fibonacci sequence. Since the goal of budget
allocation is to construct an allocation scheme that increase by degrees and sums
to ε, a privacy budget allocation sequence is constructed in this paper. Assuming
that there are L iterations and the recursive formula for the sequence is as follows,
P (n) = 2·P (n−1)

(
2 < n < L,P (0) = P (1) = 1

2L−1 · εu

)
, e.g. L=5, then we have

a privacy budget allocation sequence P =
{

1
16 · εu, 1

16 · εu, 1
8 · εu, 1

4 · εu, 1
2 · εu

}
,

the privacy budget for the third iteration is ε3 = 1
8 · εu and the sum is εu. The

iteration centroid perturbation is shown in the following Eq. 4.

Pr [c∗
i = ci] =

{
p = eεn

eεn+k−1 if c∗
i = ci

q = 1
eεn+k−1 if c∗

i �= ci

. (4)

where εn represents the privacy budget for the current number of iterative
rounds, L is the maximum number of iterative rounds, k is the number of cen-
troids and c∗

i represents the iteration centroid after perturbation. The detailed
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procedure for the iterative centroid perturbation algorithm is described in
Algorithm 2.

Collector Server Method

Initial Centroid Selection. The server randomly generates k d-dimensional initial
centroids C based on the S∗

i and sent them to the user.

Aggregation and Centroid Computation. The server groups the user perturbation
data S∗

i according to the perturbation centroid C∗ =
{
c∗
0, c

∗
0, . . . , c

∗
K−1

}
sent

from the local side. In each cluster, the mean of each dimension of S∗
i is calculated

separately, and the centroid C is updated in this way.

ci =
1

|c∗
i |

·
⎧
⎨

⎩

∑

S∗
i ∈c∗

i

s∗
0,

∑

S∗
i ∈c∗

i

s∗
1, . . . ,

∑

S∗
i ∈c∗

i

s∗
d−1

⎫
⎬

⎭
(5)

where ci is the new centroid updated by the calculation, |c∗
i | is the number of user

data belonging to c∗
i , and

∑
S∗

i ∈c∗
i
s∗

j is the intra-class sum of the j-th dimensional
data. Send the new centroid to the local side after the calculation is completed.
Clustering iterations are performed as described above until the clustering is
complete. The main steps of the centroid update are shown in Algorithm 3.

Algorithm 3. Centroid update algorithm.
Require: centroid after perturbation C∗, user ui data vector after perturbation S∗

i ,
number of centroids k

Ensure: centroid after update C
1: for i ← 0 . . . k − 1 do
2: ci =

1

|c∗
i | ·

{∑
S∗

i ∈c∗
i

s∗
0,

∑
S∗

i ∈c∗
i

s∗
1, . . . ,

∑
S∗

i ∈c∗
i

s∗
d−1

}

3: return C = {c0, c1, . . . , ck−1}

3.3 Privacy Analysis

This section proves that Algorithms 1 and 2 satisfy the definition of differential
privacy and further proves that the overall framework satisfies the definition of
differential privacy.

Theorem 1. Algorithm 1 provides (Gi, εu)-PLDP for each uesr ui with (Gi, εu).

Proof. For any two values s′
j1, s

′
j2 ∈ gj and s∗

j ∈ {wj

2 · eεu+1
eεu −1 + mj ,−wj

2 ·
eεu+1
eεu −1 + mj

}
, there is s′′

j1 = s′
j1 − mj , s′′

j2 = s′
j2 − mj . Then there is

Pr
(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) =
Pr

(
s∗

j | s′′
j1

)

Pr
(
s∗

j | s′′
j2

)

=

2·s′′
j1·(eεd −1)+wj ·(eεd+1)

2·wj ·(eεd+1)

2·s′′
j2·(eεd −1)+wj ·(eεd+1)

2·wj ·(eεd+1)

.

(6)
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or
Pr

(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) =
− 2·s′′

j1·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1)

− 2·s′′
j2·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1)

. (7)

Using Eq. 6 as an example,

Pr
(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) =
2 · s′′

j1 · (eεd − 1) + wj · (eεd + 1)
2 · s′′

j2 · (eεd − 1) + wj · (eεd + 1)
. (8)

It can be seen from Eq. 8 that when s′′
j1 = wj

2 , s′′
j2 = −wj

2

(
s′′

j1 = −wj

2 , s′′
j2 = wj

2

)
,

Eqs. 6 and 7 to obtain the maximum value,

Pr
(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) ≤ eεd . (9)

Algorithm 1 satisfies (gj , εd)-PLDP by Eq. 9. Since S′
i =

{
s′
0, s

′
1, . . . , s

′
d−1

}
,

Gi = {g0, g1, . . . , gd−1}, and εd = εu

d ,
∑d−1

j=0 εd = εu. According to Property 1 of
Sect. 2, differential privacy has the sequence combinability property. So for user
ui with (Gi, εu), Algorithm 1 satisfies (Gi, εu)-PLDP.

Theorem 2. Algorithm 2 provides εu-LDP for each uesr ui throughout the clus-
tering process.

Proof. For any two values ci1, ci2, c
∗
i ∈ C there is

Pr [ci1 = c∗
i ]

Pr [ci2 = c∗
i ]

=
eεn

eεn+k−1
1

eεn+k−1

= eεn .

(10)

Algorithm 2 satisfies εn-LDP. For all iterations, the Property 1 sequence com-
binability property of Sect. 2 is applied. Since

∑L
lc=1 εn = εu, for the whole

clustering process, Algorithm 2 satisfies εu-LDP.

4 Experimental Evaluation

In this section, experiments are designed to investigate the improvements in the
proposed framework compared to the existing DP k-means algorithm and how
the relevant parameters influence the utility of the proposed framework.

4.1 Experimental Environment and Datasets

The hardware platform for this experiment uses Intel Core i7-11700 CPU @
2.50GHz, and 32.00GB RAM. The experimental platform uses python 3.7.
Two databases from the UCI dataset were used for the experiments. The Blood
dataset records 748 individual blood donations from the Blood Transfusion Ser-
vice Centre in Hsinchu city. Each record has five attributes. The Adult dataset
is a dataset extracted from the 1994 census database. There are 488,42 records
with 14 attributes per record. In this paper, six numerical attributes are retained
for each record.
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4.2 Experimental Setup and Evaluation Metrics

This paper focuses on three aspects of experimenting with the proposed frame-
work.

1) Compare the utility of clustering with existing algorithms [9,10] for uniform k
values under different ε. To the best of our knowledge, this paper is the first
attempt at adopting PLDP in k-means clustering, so the extant advanced
DP k-means algorithm was selected for comparison with the algorithm pro-
posed in this paper. The PLDP k-means algorithm proposed in this paper
is compared with the DPLloyd-Impr algorithm [9], and the DP-KCCM algo-
rithm [10]. The DPLloyd-Impr algorithm completes the initial centroid selec-
tion by an initial centroid selection algorithm and then adds the Laplace
noise to each round on average. In the DP-KCCM algorithm, the privacy
budget allocation algorithm and the cluster merging algorithm are combined
to enhance the clustering utility, and noise is injected through the Laplace
mechanism. It is worth noting that both of these algorithms are based on dif-
ferential privacy mechanisms and do not prevent attacks by malicious servers.

2) Compare the effects of different setting on the utility of clustering. Two sets
of experiments are set up to understand the impact of key mechanisms on the
utility of clustering. Firstly, the effect of privacy budget allocation methods
on clustering utility was explored. Secondly, experiments were conducted on
the effect of the iterative centroid perturbation algorithm on the clustering
model.

3) Comparing the effect of different parameter distributions on clustering util-
ity. Users can set their privacy budget εu and the size of the security range
wj according to their privacy needs in PLDP. All users’ privacy parameters
cannot be the same in practical applications. To understand the effect of
key parameters on clustering utility, three sets of experiments were set up
to investigate the effect of different parameters and different distributions on
clustering utility.

In this paper, the utility of clustering is assessed using the Normalised Intra-
Cluster Variance (NICV) [9]. The essential goal of the k-means algorithm is
to divide the data into k clusters based on minimizing the error function, with
distance as the evaluation metric. Therefore NICV can directly reflect the utility
of clustering, while the NICV value can also reasonably reflect the impact of
privacy protection mechanisms on the utility of clustering. The smaller NICV
value means the better utility of clustering. NICV is defined as follows,

NICV =
1
N

k∑

i=1

∑

S′
i∈ci

‖S′
i − ci‖2 (11)

where N represents the total number of users, k represents the number of cen-
troids, S′

i represents the user data Si normalized to [−1,1], and S′
i ∈ ci represents

the centroid ci is the closest centroid to S′
i.
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4.3 Experimental Analysis

The results of the experiments are shown below. The first experiment explores
the performance of two existing algorithms [9,10] and the PLDP k-means pro-
posed in this paper under different privacy budgets ε. The data were normalized
to [−1,1], wj was set to 0.1, and the maximum number of iterations was set
to 12. For comparison purposes, this experiment will unify the privacy budget
εu and wj for users. As seen in Fig. 2, PLDP k-means performs better than
DPLloyd-Impr [9] and performs similarly to DP-KCCM [10]. However, the algo-
rithm proposed in this paper does not require a trusted third-party server, which
means that the PLDP k-means algorithm can obtain a similar or better cluster-
ing utility while eliminating the risk of malicious servers.

Fig. 2. Performance with respect to ε.

The second experiment explored the effect of different privacy budget alloca-
tion methods on the utility of clustering. A privacy budget allocation sequence is
designed in this paper. Such that the allocation of privacy budgets in iterations
presents a increase by degrees tendency. As shown in Fig. 3, the average privacy
budget allocation method and the proposed allocation method were compared.
It can be seen that the proposed method in this paper is significantly better
than the average method. This demonstrates that the proposed privacy budget
allocation algorithm in this paper can further improve the utility of clustering.

Fig. 3. Performance with respect to privacy budget allocation methods.



672 Y. Luo et al.

Iterative centroid perturbation algorithms are proposed to prevent privacy
leakage caused by inference attacks. To evaluate the impact of this algorithm on
the utility of clustering, a comparison experiment was conducted between using
the iterative centroid perturbation algorithm and using real centroids directly.
As shown in Fig. 4, the use of true centroids performed better than the use of the
iterative centroid perturbation algorithm. This illustrates that some usability is
sacrificed to improve privacy protection.

Fig. 4. Performance with respect to iterative centroid perturbation algorithm.

Fig. 5. Performance under the different W and the same E.

Fig. 6. Performance under the different E and the same W .
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Fig. 7. Performance with respect to wj and ε under the W1,E1.

The effect of the parameters is next explored. A fixed range is specified,
wj ∈[0.1,0.5], εu ∈[0.1,2]. Each user can take their parameters from the range.
Suppose the distributions of wj , εu are uniform (W1, E1) or normal (W2, E2)
respectively. W1 and W2, E1 and E2 have equal means. E2 and W2 have standard
deviations of 0.3 and 0.1, respectively. PLDP k-means algorithm and the two
variants of the algorithm based on this section discussed above, average, real
centroid, were used for testing. Figure 5 (Fig. 6) shows the results of the three
algorithms at different W (E) and the same E(W ) on the two datasets. The
control variables method shows that the results for W2 and E2 are better than
those for W1 and E1, respectively. Although the means of the two distributions
are equal, the normally distributed data are distributed with a high probability
around the mean and a lower probability for smaller εu and larger wj , which
leads to better NICV values.

The effects of wj and εu were further explored. The influence of varying wj ,
εu on the utility of clustering was explored for the W1,E1 cases, respectively.
As illustrated in Fig. 7, a larger wj (εu) results in the poorer (better) utility of
clustering.

Based on the experimental analysis above, the proposed algorithm in this
paper improves the utility of clustering while ensuring the strength of privacy
protection, and the experiments illustrate that the desired effect is achieved.

5 Conclusion

A clustering framework based on the PLDP k-means and an iterative centroid
perturbation algorithms is proposed in this paper. This framework not required
trusted third-party servers, and users are allowed to personalize their privacy
requirements by the proposed PLDP k-means algorithm. An iterative cen-
troid perturbation algorithm is also proposed that refines the privacy-preserving
scheme by perturbing the centroids in the iterative process. Experimental results
show that the proposed algorithm in this paper has better or similar performance
than the extant DP k-means algorithm. Besides, the PLDP k-means algorithm
requires only one upload of perturbation data, unlike the DP k-means algo-
rithm, but the computational and communication costs during the iteration are
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still nonnegligible. Future work is to analyze and reduce the computational and
communication costs of the PLDP k-means algorithm.
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