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Preface

The 22nd International Conference on Algorithms and Architectures for Parallel Pro-
cessing (ICA3PP 2022) was held during October 10–12, 2022, and organized by the
Technical University of Denmark. Due to the COVID-19 situation, it was held fully
online.

ICA3PP 2022 was the 22nd in this series of conferences, which started in 1995,
devoted to algorithms and architectures for parallel processing and computing. ICA3PP
is now one of the most well-known international events that covers the many dimen-
sions of parallel algorithms and architectures, encompassing fundamental theoretical
approaches, practical experimental projects, and commercial components and systems.
With the emerging demands of computing systems and applications, the power of com-
puting systems has been remained a challenge. In recent years, various computing
solutions such as parallel computing algorithms and architectures have been proposed.
ICA3PP aims to bring together international academics and practitioners to exchange
ideas and present research on improving the efficiency, performance, reliability, security,
and interoperability of computing systems and applications.

This year, ICA3PP received 91 valid submissions, and each submissionwas reviewed
by at least three reviewers in a single blind process. Based on their significance, novelty,
technical quality, presentation, and practical impact, 33 full papers were accepted along
with 10 short papers, giving an acceptance rate of 36.3%. In addition to the paper pre-
sentations, the program of the conference included five keynote speeches from esteemed
scholars in the area:

1) Schahram Dustdar from TU Wien (Austria) with a talk on “Edge Intelligence - A
Research Roadmap”,

2) Zheng Yan from Xidian University (China) with a talk on “Trust, Security and
Privacy of 5G Positioning”,

3) Muttukrishnan Rajarajan from City, University of London (UK) with a talk on
“Future of digital identity management in decentralised and distributed settings”,

4) Ding Wang from Nankai University (China) with a talk on “How to Attack and
Generate Honeywords”, and

5) Song Guo from The Hong Kong Polytechnic University (China) with a talk on
“Neural-enhanced Edge Perception Systems”.

For the success of ICA3PP 2022,wewould like to take this opportunity to express our
sincere gratitude to the Program Committee members and reviewers for their dedicated
and professional service. We were honored to have so many renowned scholars be part
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of this conference. Finally, we would like to thank all speakers, authors, and participants
for their great contribution and support.

October 2022 Weizhi Meng
Rongxing Lu
Geyong Min

Jaideep Vaidya
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Efficient Remote Memory Paging
for Disaggregated Memory Systems

Tao Wang, Haikun Liu(B), and Hai Jin

National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and

Technology, Wuhan 430074, China
{twang hust,hkliu,hjin}@hust.edu.cn

Abstract. Memory disaggregation has attracted increasing attention
in recent years because it is a cost-efficient approach to scale memory
capacity for applications in a data center. However, the latency of remote
memory access is a major concern in disaggregated memory systems.
This paper presents VANDI, a virtual memory paging mechanism that
allows applications to use remote memory pools transparently. VANDI
enables effective data caching and prefetching mechanisms to address
the problem of high access latency in disaggregated memory systems.
VANDI exploits a low-complexity cache replacement strategy to opti-
mize the asynchronous staging queue so that the remote write latency
can be significantly reduced. VANDI can also prefetch data in multi-
granularity from a remote memory pool in an adaptive manner, and thus
further improves the hit rate of the local cache to reduce the read latency
of remote memory. Our extensive experiments using micro-benchmarks
show that VANDI can improve the performance of typical remote pag-
ing system–Infiniswap by up to 15×–102×. VANDI can also improve the
performance of state-of-the-art disaggregated memory system–Valet by
1.2×–2.7×. For typical machine learning workloads, VANDI can achieve
20% to 80% performance improvement compared with the state-of-the-
art Valet.

Keywords: Heterogeneous memory · Disaggregated memory · Virtual
memory · Cache replacement

1 Introduction

In cloud data centers, the memory requirement of applications are usually
dynamic due to the dynamics of cloud workloads. This often leads to imbal-
anced memory usage on different servers. The memory resource in some servers
may be underutilized, while other servers may be unable to satisfy the mem-
ory requirement of large data-centric applications. A previous study [17] has
observed that most servers in a cluster experience memory imbalance for more
than one half of operation time. Moreover, the utilization of allocated memory
is also rather low in most cases.
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 1–20, 2023.
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Recently, memory disaggregation [11] has been proposed to address the
memory capacity wall problem by dynamically scaling computing and mem-
ory resource independently. Disaggregated memory systems enable servers to
access remote memory like using the local memory. Typically, memory resource
in remote servers is pre-allocated as memory pools. When a server node has
not sufficient memory to execute a task, it allocates memory from a remote
server node with free memory resource to satisfy applications’ memory require-
ment. Although remote memory pools offer high scalability, the high latency and
low bandwidth of remote memory accesses are major concerns of disaggregated
memory systems.

The emergence of Remote Direct Memory Access (RDMA) [12] technol-
ogy provides a promising approach to address the problem of remote memory
accesses. RDMA technology can bypass the remote server’s OS kernel and even
CPUs to access the remote memory through an RDMA Network Interface Con-
troller (RNIC). Since the remote CPU is often not aware of one-sided RDMA
based memory accesses, RDMA can significantly reduce the CPU resource con-
sumption on the remote server. In addition, RDMA provides extremely low
latency and high bandwidth, which can alleviate the key concern of high latency
for distributed shared memory (DSM) pools [6]. With the emergence of Non-
Volatile Memory (NVM) [13] technologies, NVM has become increasingly pop-
ular to expand the capacity of main memory in a server. NVM has many good
features such as byte-addressability, near-zero standby power consumption, high
storage density, and low cost. Although it can offer rather fast memory accesses,
its performance is still several times slower than that of Dynamic Random Access
Memory (DRAM). Thus, it is more practical to exploit the advantages of both
DRAM and NVM memories in a heterogeneous memory architecture, which not
only enlarges the memory capacity, but also guarantees high-performance mem-
ory accesses and enhances the scalability of distributed shared memory systems.

Most DSM proposals focus on the scalability of memory capacity that dis-
aggregated memory systems can offer to a cluster. A few studies propose new
hardware/architecture [8,10], and new programming models [4,14] to implement
disaggregated memory systems. However, these proposals often lack application-
level transparency. Most applications need to be modified when they are going
to migrate to disaggregated memory systems. A few proposals explore a remote
memory paging mechanism [7,16,21] to use disaggregated memory transparently,
without modifying legacy applications. However, these disaggregated memory
systems still suffer from high latency of remote memory allocations and accesses.

In this paper, we present VANDI, a virtual memory paging mechanism based
on distributed heterogeneous memory pools. VANDI aims to address the problem
of high access latency of disaggregated memory systems. There are mainly three
root causes of high latency. First, the software overhead of local staging queue
is rather high, and thus increases the access latency of remote memory. Second,
each remote read operation has to fetch a whole page in the remote memory
pool, resulting in high data access latency. Third, the DRAM cache of the local
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server is often inefficiently utilized, leading to frequent page swapping between
the local server and the remote server.

We design and implement hot data caching and prefetching technologies in
VANDI to hide the high latency of remote memory accesses. First, we opti-
mize the staging queue of the DRAM cache in the local server to support asyn-
chronous remote memory paging. Second, we also design a simple and effective
page prefetching mechanism to further improve the cache hit rate and alleviate
the issue of DRAM cache pollution.

We evaluate VANDI with an I/O intensive workload FIO, and the big
data benchmark–Hibench such as Bayes, Kmeans Clustering, Logistic Regression
(LR) [9], and Linear workloads. Experimental results show that our caching and
prefetching mechanisms in VANDI can improve the hit ratio of the local cache by
95%. VANDI can improve the performance of the typical remote paging system–
Infiniswap [7] by up to 15×–102×. VANDI can also achieve 1.2×–2.7× perfor-
mance improvement compared with the state-of-the-art disaggregated memory
system–Valet [2]. For typical machine learning workloads, VANDI can achieve
20% to 80% performance improvement compared with the state-of-the-art Valet.

The remaining of this paper is organized as follows. Section 2 discusses the
challenges of disaggregated memory systems. Section 3 and Sect. 4 introduce the
design and implementation of VANDI in detail, respectively. Section 5 presents
the evaluation of VANDI. Section 6 describes the related work. We conclude in
Sect. 7.

2 Motivation

2.1 Remote Memory Access Latency

When we use RDMA technologies to access disaggregated memory, an RDMA
connection channel between the client and the server should be established. Pre-
vious studies show that the data transmission of RDMA read and write opera-
tions account for only 0.3% of the end-to-end latency, while the RDMA connec-
tion setup and memory region (MR) mapping operations account for 29% and 9%
of the end-to-end latency, respectively. In previous designs, RDMA connection
operations are removed from the critical path of RDMA read/write operations,
but the overhead of MR mapping operations is still significant. Valet [2] uses an
asynchronous queue to hide the latency of dynamic MR mapping, and uses lock-
free queues to cache data, and thus reduces the latency of data transmission.
However, its local memory is only used as an on-demand data cache, without
distinguishing the data access frequency (hotness), and thus often results in
inefficient use of the local cache and wastes network bandwidth due to cache
thrashing.

2.2 Expensive RDMA Read Operations

The local memory buffer is effective to hide the latency of RDMA write oper-
ations for applications because the writes can be staged in the buffer and then
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replicated to the remote MR asynchronously. However, since the RDMA read
operation is often on the critical data path, applications often should suffer
the high latency of remote memory accesses in disaggregated memory systems.
Although Valet provides a local memory buffer on the client node, its data hit
rate is relatively low as its LRU-based cache replacement strategy is not cost-
effective in some cases. Most disaggregated memory systems use extremely high-
speed RDMA networks for data transfer, but the remote memory access latency
is still an order of magnitude higher than that of the local DRAM access. If the
read request can hit the memory buffer locally as much as possible, the memory
access latency and the cost of data transmission can be significantly reduced. To
further improve the hit rate of the local cache, VANDI caches frequently-accessed
data and pre-fetches data that may be accessed in the future.

3 Design

In this section, we describe the detailed designs of VANDI, mainly including
an effective cache replacement strategy, a simple yet efficient data prefetching
strategy, and the integration of these two strategies.

3.1 Architectural Overview

VANDI is a virtual memory paging mechanism designed for disaggregated mem-
ory systems. It mainly optimizes data caching and prefetching mechanisms to
reduce the latency of remote memory accesses. Figure 1 shows the overall archi-
tecture of VANDI. The remote memory is accessed through a client/server model.
VANDI provides a local memory cache in the client node for remote memory
pools. Server nodes are classified into client and server modules according to the
deployment of programs. The client module pre-allocates a local DRAM buffer
as a memory pool, and write requests issued from the block device layer of the
OS kernel are temporarily stored in this cache. The server module pre-allocates
memory regions from the remote memory pool. To facilitate the remote memory
allocation for client programs, the remote memory pool is divided into fixed size
blocks (called REGION). The client’s local cache is logically divided into two
parts: the original cache and the prefetch cache. A Radix Tree (RT) is used to
store the auxiliary structure (called entry) of the meta data. An entry is mapped
with a data block (called element) in the local memory pool.

REGION actually divides a physically continuous memory space into many
blocks which are 1 GB by default. This division is to facilitate the MR mapping
between memory pools of the client and the server. For each RDMA operation,
the program’s local data is mapped to the remote REGION. When the read
request misses the cache, it will be read from the corresponding REGION in
the remote server. Each node can run different programs based on distributed
memory pools. A program only needs to modify a configuration file to change
the roles and dependencies of different nodes before running. Thus, it is easy to
deploy a legacy program over the distributed memory pool.
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VANDI Client Module. The VANDI client uses local DRAM as a cache to
mitigate the performance degradation due to remote memory accesses. Figure 2
shows the structure of the VANDI client module. Similar to Infiniswap, VANDI
creates a fix-sized block device that is mounted to a Linux swap partition. When
the local memory is used up, a few recently-unused pages in the main memory
will be swapped into the swap partition. We modify the page swapping mecha-
nism and the major page fault handler in the Linux kernel to change the original
data path, so that the data that will be written into the Linux swap partition
is forwarded to the pre-allocated MR in the remote memory pool. When the
program starts, the client registers the block device according to the configu-
ration information, and pre-allocates a contiguous memory pool of appropriate
size from the local DRAM. The memory pools in the client and the server are
partitioned according to the granularity of the element (i.e., 4 KB page) in the
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Fig. 3. The architecture of VANDI server module

memory pool. This paging granularity is consistent with the page size of the
Linux OS. This is convenient for data storing and accessing, without splitting
or coalescing the requested data.

The index of the local cache is implemented with a radix tree, which receives
the request from the block device to extract a key and map to an element (a
page) with a pointer. The radix tree is widely used for memory management
because the data structure offers high-performance indexing for storage and data
querying. The original cache and the prefetch cache share the same radix tree to
reduce the overhead of querying. However, their auxiliary queues are separated,
and the prefetched data will be promoted to the original cache if it is touched
in the prefetch cache. When a page is evicted from the original cache, the data
in the page will be added to the sending queue, and later will be written to the
remote memory pool. At this time, this page is added into a recycling queue.
A background program is responsible for reclaiming memory resource from the
local cache.

VANDI Server Module. Since one-sided RDMA operations are remote CPU
and OS kernel oblivious, the memory management at the server side should
be as simple as possible. Like the client side, the server also pre-allocates MRs
according to the configuration during the initialization. However, the difference
is that the server can use both large-capacity NVM and fast DRAM as the
remote memory pool.

Figure 3 shows the architecture of the server module of VANDI. The hybrid
DRAM and NVM are architected in a Non-Uniform Memory Access (NUMA)
machine. The memory pool at the server side is allocated through a NUMA
allocation mechanism. NUMA can select different memory nodes to store data
according to the relative position between the processor and the memory. Specif-
ically, the server can choose the NVM node to pre-allocate a memory pool which
is divided into multiple REGIONs according to the REGION size. Unlike the
client side, the memory REGION allocated at the server side is not divided into
4 KB pages because the server node only needs to satisfy the memory access
request from the client as much as possible and does not need to know how
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Fig. 4. An illustration of cache replacement

many pages are used. The client initiates an RDMA connection with the server
through two-sided RDMA operations, and uses the local memory address to cal-
culate the address offset in the remote memory pool. The client data address in
the remote memory pool is determined by the index and offset of the memory
REGION where the data is located. A REGION can only be mapped with one
client. However, when a client’s remote memory requirement exceeds the size
of a REGION, the client can initiate another RDMA connection to map a new
REGION. When the memory resource at the server side is used up, the server
will migrate data to other server nodes through the memory monitoring module,
and then update the mapping of the original REGION to the new server node.

3.2 Multi-level Cache

In this section, we will present the detailed design of the multi-level local cache
at the client side.

Two Levels of Logical Cache. The local cache at the client server is logically
divided into an original cache and a prefetch cache, and each cache uses an unique
queue to store cache entries. However, these two caches use a single radix tree
for data indexing. This can avoid querying two radix trees when VANDI checks
whether data is hit in the two caches. Due to the potential cache pollution caused
by data prefetching and the short lifetime of the prefetched data, the capacity of
the prefetched cache is set much smaller than that of the original cache, and the
capacity ratio of the two caches can be customized through a configuration file.
In the original cache, there are two cache queues, namely the list-S for storing
hot data and the linked list-Q for storing cold data. The capacity of the list-S
is much larger than that of the list-Q, and the total capacity of the two lists is
equal to the capacity of the local memory pool. This idea is derived from the
Low Inter-reference Recency Set (LIRS) caching algorithm.

Efficient Cache Replacement Strategy. Our cache replacement strategy
takes advantages of the data structure of the LIRS algorithm. There are two
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Fig. 5. The data prefetching module at the client server

important concepts, i.e., time interval Recency (R), and spatial interval Inter-
Reference Recency (IRR). R represents the time interval between two consecutive
data accesses, and IRR represents how many times other data have been accessed
between two consecutive accesses of a given data. IRR can reflect both temporal
and spatial locality. The data in our cache strategy has the following states:
Low Inter-reference Recency (LIR, hot data) state, High Inter-reference Recency
(HIR, cold data) state. The HIR state can be further divided into Resident HIR
(R HIR, resident cold data) state and Non-Resident HIR (NR HIR, non-resident
cold data) state. The data hotness of these states gradually decreases, and the
hotness determines whether the data should be evicted when the free cache is
not available. When a data will be evicted, the new data is placed in the head
of the stack and the head of the queue at the same time, and its status is set
as R HIR. Figure 4 shows the status of the data in the stack and the queue
during the cache replacement operation. In the original LIRS algorithm, even
when the cache is not full, data may be still evicted. In contrast, our optimized
replacement strategy only evicts data when the cache is full.

Prefetch Cache Promotion. Since the prefetched data may be never accessed,
we choose the First In First Out (FIFO) replacement strategy for the prefetch
cache. The prefetch cache is independent of the original cache. However, if the
prefetched data is touched in the cache, that implies that the data prefetching is
effective and the data may become hotter. The prefetched data will be promoted
to the original cache upon a prefetch cache hit. Then, the data state is updated
according to the cache replacement strategy for the original cache.

3.3 Adaptive Dynamic Prefetch

The principle of data prefetching is to fetch data blocks from the remote mem-
ory pool into the client’s local cache in advance if the data is predicted to
be accessed in the near future. Figure 5 shows the data prefetching module,
which includes historical access analyzing, prefetch triggering mechanism, adap-
tive prefetch granularity adjustment, data prefetch operation, and prefetched
data processing.
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Historical Access Analysis. Data prefetching is mainly exploited to acceler-
ate RDMA read operations. In order to analyze the data access characteristics,
it is necessary to extract the data request from the data path. Then, according
to the address of the data, multiple data addresses are split or integrated to
model the future access pattern via two schemes. The first one is a continuity
judgment, i.e., if the adjacent access addresses are strictly continuous, there may
be a sequential access pattern. In the second case, the accessed addresses are not
strictly continuous but are very close (using variance as a criterion). Prefetching
is triggered when these two conditions are met. Moreover, prefetching can be
also triggered when the cache hits the prefetched data.

Adaptive Prefetching Threshold. The threshold for triggering the prefetch
operation represents the difficulty of the current prefetch trigger, and the value
is not fixed. The initial value is set when the program starts (the value is equal
to 64 KB), and its value will increase or decrease according to the net benefit
of the current prefetching strategy. The strategy only depends on the change
of cache hit ratio and the prefetch coverage. The prefetch coverage reflects the
proportion of prefetched data that is touched in the cache. VANDI monitors the
cache hit rate and the prefetch coverage based on historical access information.
When the cache hit rate decreases, the prefetch threshold decreases because it
is easier to trigger prefetch and improve the hit rate. The prefetch coverage rate
reflects the hit rate of the prefetched data. A higher prefetch coverage rate often
implies lighter cache pollution. When the prefetch coverage rate declines, the
prefetch threshold should increase so that it is harder to trigger the prefetching,
and also reduce unnecessary prefetching.

Dynamic Adjustment of Data Prefetch Granularity. The default data
prefetching granularity is 64 KB (16 pages) when the prefetching is triggered.
Fine-grained data access can alleviate the cache pollution caused by wrongly
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prefetching. Since the throughput of remote data accesses for large data granu-
larity is much higher than that of multiple small granularity accesses, the data
granularity of prefetching has a significant impact on the performance of remote
memory accesses. First, if the historical access analysis indicates that the possi-
bility of sequential accesses will increase, so the prefetching module will increase
the granularity of prefetching to prefetch larger data blocks. On the other hand,
if the subsequent memory access hits the prefetched data, the prefetch mod-
ule also believes that the previous prefetching is effective, and then continues
to prefetch the subsequent data. Historical data access analysis can identify
sequential access patterns and trigger a basic prefetch operation (Fig. 6). When
the data is accessed immediately after fetching, the prefetch module will set the
granularity of the next prefetching to 64 pages (256 KB). If the subsequent access
hits continuously, the prefetch granularity will increase by 2 times again. The
maximum prefetch granularity can increase as large as 2 MB in VANDI.

4 Implementation

4.1 Redesign the Critical Data Path

VANDI uses a local memory pool to remove RDMA write operations from the
critical data path of client applications. All write operations can be temporarily
staged in the local cache, and then are written to the remote memory pool
asynchronously. VANDI focuses on the optimizations of the network bandwidth
utilization of RDMA operations and the cache hit rate at the client side.

The Pipeline and Staging Queues of Data Flow. Figure 7 shows a total
of seven queues in which data flows in the direction of the arrows. The first is a
staging queue for storing the original data temporarily. This queue is mainly used
to store data after encapsulating the bio structure of the dismantling request,
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and waits for the data to be cached and replaced. There are three queues in the
local cache, which are the list-S and list-Q of the original cache, and the prefetch
queue of the prefetch cache. The data then flows to the staging queue (a linked
list) in which the data is evicted by the FIFO replacement policy. Finally, the
data is passed to the sending queue and the recycling queue which temporarily
store the data to be sent to the remote memory pool, and the memory space of
the data will be reclaimed once the data has been sent out. The whole pipeline
adopts a producer-consumer model and uses a lock mechanism to avoid a large
amount of data accumulated in the pipeline by throttling data traffic moderately.

Data Sending and Memory Reclaiming. Figure 8 shows that data is not
sent immediately when it is picked up from the send queue. VANDI encapsulates
data blocks with continuous memory addresses into a large page according to
data indexes, and records the data length contained in the large page. This vec-
tored I/O mechanism is convenient for batch processing. It reduces the number
of RDMA operations and the corresponding software overhead. In VANDI, a
context resource pool is used to reduce resource allocation overhead caused by
frequent RDMA requests. The data structure of the context contains a buffer
of temporary data, the information of the RDMA connection, and the cache
prefetch strategy. When the data is successfully sent out, it moves to the recy-
cling queue. A recycling thread continuously removes data entries from the recy-
cling queue to avoid data accumulation. Since the data has been stored in the
remote memory pool at this time, the local cache does have to retain the data.
The memory reclaiming operation is performed as follows. First, the memory
space of the local memory pool mapped to the data entry is reclaimed. Second,
the data entry in the local cache is deleted.

Send Queue

Local_Page1 Local_Page2 Local_Page3 Local_Page4

Merge

Fig. 8. Merge operation before data sending

4.2 Page Writes

In the block device layer, the bio of a write request is often disclosed to determine
whether the data has been cached. If it is true, the data in the cache is updated.
Otherwise, the data is added into the memory pool and its index is added to the
radix tree. The data is then send to the staging queue and waits for an RDMA
write operation. At this time, the write request has been completed locally and
can be returned to applications. In the asynchronous RDMA write operation,
the data is sent out from the staging queue, and VANDI also checks whether it
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is hit in the local cache and determines the status of the data. When the cache
becomes full, cold data is evicted and sent to the remote memory pool.

4.3 Page Reads

For each read operation, VANDI first checks whether the data exists in the cache.
If it is not found, an RDMA read operation should be performed to read the data
from the remote memory pool, and then the data is stored in the original cache.
Upon a read, the access information is recorded, and later the historical access
analysis mechanism of the data prefetching module can analyze the memory
access records. If the read operation hits the original cache, the status of the
data is updated. If the read hits the prefetch cache, VANDI not only promotes
the data from the prefetch cache to the original cache, but also prefetches more
data from the remote memory pool.

5 Evaluation

Experimental Setup. We run experiments on physical servers connected with
56 Gbps Infiniband networks. Each server is equipped with Intel Xeon Gold
6230v2 processors (32 virtual cores 2.10 GHz), 64 GB memory, Mellanox Connect
X-3, and 1 TB Intel Optane DC persistent memory. The Optane memory is used
as main memory in a memory pool. We set the block I/O size to 4 KB, and set the
capacity of one REGION to 1 GB. The default capacity of the local memory pool
is 4 GB. We evaluate VANDI with FIO micro-benchmarks and seven popular
memory intensive applications including six machine learning applications and
one graph computing application, as shown in Table 1. We compare VANDI with
the state-of-the-art disaggregated memory systems–Infiniswap and Valet.

Table 1. Benchmarks and performance metrics.

Benchmarks Descriptions Metrics

FIO Caching scheme Cache hit ratio

FIO Data Prefetching scheme Cache hit ratio

FIO Adaptive granularity adjustment scheme Coverage ratio

FIO Using different sizes of the local memory pool Bandwidth

PageRank Graph computing workload in Ligra Execution time

Hibench Six ML workloads Execution time

5.1 Effectiveness of Our Optimization Schemes

Caching Scheme. We evaluate the caching scheme using FIO which performs
random data accesses with a zipfian distribution (i.e., a power-law probability
distribution). In our experiments, different memory access patterns can be set
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by changing a parameter theta of the zipfian distribution. A larger value of theta
implies more memory accesses are concentrated on a few pages. We measure the
cache hit rate under different data distributions. With the increase of theta, the
cache hit rate gradually increases, and approximates 95% when theta is 1.2. This
experimental result shows that the caching scheme in VANDI can effectively keep
hot data in the local cache of the client server, and thus improve the cache hit
rate.

Data Prefetching Scheme. In order to evaluate the effectiveness of the data
prefetching scheme, two data access patterns are used in our experiments. The
first is a random access pattern with a zipfian distribution, and the second
is a mixed sequential access pattern with 25% write operations and 75% read
operations. Figure 9 shows that the data prefetching scheme can only achieve
about 7% performance improvement compared with the non-prefetching scheme
for the random access pattern. However, the cache hit rate can be significantly
improved by about 80% for the mixed sequential access pattern. This is because
our data prefetching scheme can effectively identify the sequential access pattern
according to historical memory access records, but is hard to predict the random
access pattern.

Adaptive Prefetching Threshold Adjustment. In this experiment, the
prefetch coverage is evaluated by FIO with different write-read ratios of the
mixed sequential access pattern. The changes of the prefetch coverage rate can
reflect the effectiveness of the adaptive prefetching threshold adjustment strat-
egy when it is enabled or disabled. Figure 10 shows that the adaptive prefetching
threshold adjustment generally delivers higher prefetching coverage rate than the
fixed threshold, and the prefetching coverage rate is higher when the proportion
of read operations becomes higher. Because the adaptive prefetching thresh-
old adjustment can alleviate the cache pollution problem effectively. When the
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threshold of prefetching increases, the data granularity and frequency of prefetch-
ing will decrease, and thus causes less cache pollution.

Size of the Local Cache. In order to evaluate the impact of the local memory
pool size on the performance of VANDI, we exploit the FIO tool to measure the
I/O throughput of workloads using four data access patterns. Figure 11 shows
the FIO throughput is improved for the four workloads when the local cache
(Mempool) size increases. Even for 512 MB local cache, VANDI still has very
high I/O throughput relative to the larger cache. This implies that VANDI only
needs to utilize a small amount of local memory to achieve high throughput of
remote memory accesses.

5.2 Microbenchmarks

At first, we evaluate the performance of different disaggregated memory sys-
tems under different memory access patterns using FIO, and then we evaluate
the performance improvement of different disaggregated memory systems using
multithreaded FIO.

Memory Access Patterns. Figure 12 shows that the I/O throughput of dif-
ferent memory systems under different memory access modes. The native Linux
swap mechanism shows the lowest performance because data needs to be fre-
quently swapped between main memory and very slow Hard Disk Drive (HDD)
when the main memory is used up. VANDI can improve the system through-
put of both random and sequential access modes significantly. For the sequential
write mode, VANDI outperforms Infiniswap and Valet by 6.8× and 1.5×, respec-
tively. For the random write mode, VANDI outperforms Infiniswap and Valet by
102× and 1.6×, respectively. For the sequential and random read modes, VANDI
outperforms Infiniswap by 44× and 15×, respectively, and outperforms Valet by
2.7× and 1.2×, respectively. These results demonstrate that our caching and
prefetching schemes are beneficial for accelerating remote memory accesses.
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Fig. 13. The performance of four memory access modes under multithreading

Multithreading. Multi-threading can improve data parallelism and effectively
increase the system throughput. We also evaluate the throughput of FIO with
four memory access modes under the multithreading case, as shown in Fig. 13.
The I/O throughput is significantly improved under the multi-threading cases
for all memory access modes. The performance of Valet and VANDI using 8
and 16 FIO threads is much higher than that of single-threading. VANDI can
improve the throughput by 4×–5× in the case of multi-threading. However, the
performance does not increases linearly with the number of threads because the
bandwidth contention of RDMA operations becomes intensive for more client
threads. The software overhead caused by thread synchronization also offsets
the performance improvement of multi-threading.

5.3 Performance of Graph Computing Workloads

We chose the PageRank algorithm under the Ligra graph computing framework
as a real-world workload to evaluate the performance of VANDI. The Ligra
graph computing framework can generate different types of graph datasets. In
our experiments, we select the rMatGraph tool to generate an rMat graph with
223 million vertices, and the number of edges is 10 times more than the number
of vertices. We first measure the total amount of memory resource required by
the application, and then we limit the capacity of the local memory pool so that
the client application has to use the remote memory pool for memory resource
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Fig. 14. Execution time of PageRank under different memory resource constraints

extension. We configure the available local memory capacity to only satisfy 25%,
50%, and 75% memory requirement of PageRank in our experiments.

Figure 14 shows the execution time of the PageRank algorithm for four sys-
tems under different satisfactory rates of memory resource requirements. When
the satisfactory rate of the local memory resource required by the application
is lower, the application runs longer. Because remote page swapping operations
should be performed frequently due to insufficient memory resource, and thus
the performance overhead becomes larger. Linux needs to swap pages between
the main memory and the disk when the main memory is used up, and the exe-
cution time greatly increases when the local memory resource can only fit 25% of
the applications’ memory requirement. The three disaggregated memory systems
can swap pages between the local memory and the remote memory pool, and
achieve relatively high performance even when only 25% memory requirement is
satisfied by the local memory.

5.4 Performance of Machine Learning Workloads

We choose six machine learning applications in Hibench to evaluate VANDI.
Hibench is a big data benchmarking suite that can be use to evaluate the exe-
cution time, system throughput, and resource utilization of different big data
applications. Hibench relies on Hadoop [19] and Spark [20] platforms in our
experiments. The dataset in our experiments is generated by a dataset genera-
tor in Hibench.

Figure 15 shows the execution time of six machine learning workload in dif-
ferent memory systems. Since these machine learning applications are both
memory-intensive and compute-intensive, we constrain the capacity of local
memory at the client side to only satisfy 50% memory requirement of appli-
cations, and other memory requirement is satisfied by the remote memory pool.
The performance of these applications in the native Linux is still the lowest.
Since Infiniswap has not a local cache at the client side, it causes frequent page
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faults that trigger remote page swapping between the client and the remote mem-
ory pool. The cost of remote memory accesses has a significant impact on the
application performance. In contrast, VANDI can prefetch data from the remote
memory pool and store it in the local cache which can significantly reduce the
amount of remote memory accesses, and thus achieves significant performance
improvement compared with Infiniswap.

Figure 16 shows the performance improvement ratio of three disaggregated
memory systems relative to the Linux system. We find that Valet and VANDI
using a local cache can improve the application performance significantly by up
to 2.2×. Although VANDI uses NVM as the remote memory pool while Valet
uses all DRAM memory, Valet and VANDI generally achieve similar performance
improvement. The reason is that the local memory of Valet is only used as an
on-demand cache, with distinguishing the data hotness, and thus often results
in inefficient use of the local cache and wastes network bandwidth due to cache
thrashing.

6 Related Work

Distributed Shared Memory (DSM) [5] have long been studied in the past
decades. With the development of high-performance RDMA network technolo-
gies, disaggregated memory systems [7,8,18] have attracted increasing attention
in recent years. There are mainly three research directions on disaggregated
memory systems:

– The first category is to trade a little increase of remote memory access latency
for higher throughput, or to make a tradeoff between the system throughput
and memory energy consumption. Infiniswap [7] is a typical disaggregated
memory system that exploits the remote page swapping mechanism to use
remote memory resource transparently, without modifying source codes of
legacy applications. However, the remote memory access latency is extremely
long due to the software overhead of page fault handling. The most recent
work FastSwap [1] shares the same idea with Infiniswap, but exploits multiple
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work queues to achieve a high-throughput page swapping mechanism. The
work zombieland [15] exploits a disaggregated memory system to reduce the
energy consumption of cold data.

– The second category is to alleviate the problem of memory capacity wall and
memory load imbalance in a cluster through memory disaggregation. Most
disaggregated memory systems such as Infiniswap [7], Valet [2], and Gengar
[3] offer these functionalities for data center applications.

– The third category is to provide disaggregated memory services with low
latency similar to the local DRAM. AIFM [18] proposes a low-latency remote
memory access scheme by providing simple programming APIs at the appli-
cation level, avoiding the read-write amplification suffered by the remote
paging mechanism. Gengar [3] also has the same design principle as AIFM.
It offers high-performance user-level APIs to use remote memory resource.
Gengar redesigns the RDMA write primitive to shorten the write latency of
remote memory, and exploits a caching mechanism to reduce the read latency
of remote memory. Recently, we have witnessed the rapid development of
Compute Express Link (CXL) which is a high-performance cache-coherent
interconnect for processors, memory expansion devices, and accelerators. It
promises much lower latency and higher bandwidth relative to RDMA net-
works, and has a vast potential to build next-generation high-performance
disaggregated memory systems.

7 Conclusion

Memory disaggregation has been a cost-efficient approach to share large-capacity
memory resource among multiple servers in a data center. However, current
memory disaggregation systems still suffer from high latency of remote mem-
ory access. This paper presents VANDI, a virtual memory paging mechanism
that allows applications to use disaggregated memory resource efficiently and
transparently. VANDI enables effective data caching and prefetching mecha-
nisms to address the problem of high access latency in disaggregated memory
systems. VANDI reduces the latency of RDMA write operations by redesigning
the caching mechanism on the critical data path. VANDI also designs a sim-
ple and practical data prefetching mechanism to further improve the cache hit
rate of read operations. In this way, VANDI can effectively hide remote mem-
ory access latency and the cost of data migration. Our extensive experiments
using micro-benchmarks show that VANDI can improve the performance of the
typical remote paging system–Infiniswap by up to 15×–102×. VANDI can also
improve the performance of state-of-the-art disaggregated memory system–Valet
by 1.2×–2.7×. For typical machine learning workloads, VANDI can achieve 20%
to 80% performance improvement compared with the state-of-the-art Valet.
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Abstract. Deep learning based medical image diagnosis systems are of
increasing importance in the battle against COVID-19 epidemic. How-
ever, how to ensure patients’ data privacy and model’s privacy while
maintaining high accuracy and efficiency is widely considered a huge chal-
lenge. In this work, we propose a privacy-preserving COVID-19 inference
framework based on a modified additive secret sharing scheme. Most of
the prior works achieve the secure inference scheme by designing a series
of secure computing sub-protocols with respect to the operations involved
in plaintext DNN execution. However, they do not consider the optimiza-
tion of DNN model, which leads to poor performance in efficiency and/or
accuracy. To speedup the secure inference while maintaining a high accu-
racy, we co-design the DNN model and the secure execution protocol and
holistically optimize both aspects. Firstly, two optimization techniques
named fixed-point quantization and layer fusion are applied to the well-
trained model to obtain a secret sharing-friendly model. Then, based
on the modified additive secret sharing scheme, we manage to design
a series of interactive sub-protocols, such as secure convolution, secure
ReLU, secure average pooling and secure truncation, which achieve the
same or even higher security level with high efficiency. By using these
new sub-protocols, we propose a secure and efficient COVID-19 inference
system. In addition, users do not interact with the cloud except outsourc-
ing data and receiving the inference result. Our security analysis shows
that the scheme protects outsourced data security, model privacy as well
as inference result privacy. Experimental results on real-world datasets
indicate that our scheme is efficient and practical, and is expected to
play a role in the fight against COVID-19 epidemic.

Keywords: Privacy-preserving · Deep neural network inference ·
Additive secret sharing · Covid-19 inference

1 Introduction

Thanks to the advent of the era of big data and the continuous improvement of
the computing power of hardware, deep learning has been widely developed in
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real-world applications such as speech recognition [1], image classification [16]
and medical diagnosis [15]. At the meantime, the combination of cloud computing
and deep learning has produced a new AI application paradigm-Deep learning
as a service (DLaaS). There has been a mount of real world DLaaS productions
such as Google Prediction API, Amazon ML, Azure ML Studio. In this scenario,
the service provider holds the well-trained model. Users access the DL service
by sending their data to the server to obtain the inference result through a well
defined service interface and no need to concern with their limited computing
resources.

One of the biggest beneficiaries in real world applications is the medical
diagnosis. Since 2019 to now, COVID-191 caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and leading to
the COVID-19 pandemic, which has made a problematic situation for humans
all over the world. It is vital to detect the patient earlier and accurately during
the fight against the epidemic. In the period of pandemic, deep learning-assisted
diagnosis can bring great convenience to doctors and patients. Many researchers
have applied deep learning model to help medical institutions to detect the
cases. For COVID-19 cases, there are some symptoms in the lungs, which could
be identified by computed tomography(CT), magnetic resonance imaging(MRI)
and X-rays radiography. In this condition, multiple hospitals hold a pre-trained
DNN model for COVID-19 detection, they upload the model to the cloud to
provide online-diagnosis service for users. Users could upload their chest X-ray
images to the cloud for online diagnosis, thus eliminating the need for patients
to travel long distances to medical institutions and further reducing the flow
of personnel so as to avoid the risk of secondary propagation, which is vital
especially during the COVID-19 pandemic.

However, it has some problems during the cloud-based COVID-19 inference.
Firstly, the chest X-ray images contain patients’ privacy information, uploading
plaintext images directly to the cloud may violate the users’ privacy by revealing
their private data to the cloud. Moreover, the inference results could be exposed
to the cloud service provider and other parties (e.g. attackers) during the com-
munication between users and cloud, thus producing tremendous troublesome
to the users since the positive diagnosis results may bring discrimination to the
patients. Secondly, the pre-trained model is considered as an essential component
of the model owners’ intellectual property. Model owners (i.e. hospitals) invest a
significant amount of resources to gather the massive training datasets and train
the model. Hence, model owners will ensure their model privacy to guarantee
their profitability and maintain their competitive advantage. In the medical diag-
nosis, the data of patients is considered to be sensitive and should be protected
due to the health privacy regulations such as HIPAA [3]. Data anonymization
is a commonly used method in the release of private data, but related research
[24] has proved that data anonymization cannot protect the privacy of medical
data in some scenarios. Boulila et al. [7] proposed a privacy-preserving COVID-
19 classification framework based on Paillier homomorphic encryption. In this

1 Coronavirus disease 2019.
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framework, the data privacy was protected during the inference phase. The accu-
racy loss is less than 1% on the testing set. However, the computational overhead
of homomorphic encryption is high and the depth of their model reached 53 lay-
ers, which implies a very huge computational overhead during the inference. Guo
et al. [12] combined the Paillier homomorphic encryption with supervised learn-
ing to realize an efficient and accurate data-search based privacy-preserving med-
ical image classification and searching system. However the intermediate result
of the protocol may reveal some information about the query image to the cloud
server, thus infringes the privacy of image data. Moreover, the computational
overhead of homomorphic encryption is not negligible.

In this paper, we propose pCOVID, a novel privacy-preserving COVID-19
inference framework based on secure computing-friendly neural network opti-
mization and modified additive secret sharing. We note that most of the exist-
ing schemes support the computations involved in the model by constructing
corresponding secure computing protocols. However, due to the lack of collabo-
rative design, deep learning model and secure computing mechanism cannot be
well combined, which leads to inefficiency and reduced accuracy. To this end, we
consider a synergistic complementary design of the model and secure computing
protocol. Firstly, as the computational overhead of secure computing depends
on the bit width of finite field, we propose to perform fixed-point quantization
on the pre-trained model to reduce the bit width of the model parameters so as
to reduce the bit length of finite field needed to hold the computation involved
during the inference. Then, according to the structural characteristics of the
model, a layer fusion process is carried out to further reduce the computational
overhead of the secure execution. Thus, a secure computation-friendly model is
obtained. Then, we design a series of efficient secure computing protocols for the
optimized model based on the modified additive secret sharing scheme. Through
the usage of optimized DNN model and efficient secure computing protocols, our
scheme achieves efficient and accurate privacy-preserving COVID-19 detection
while ensures the privacy of users’ data, model parameters and inference results.
We highlight our contributions as follows:

1. We proposed a practical privacy-preserving COVID-19 inference framework-
pCOVID through the co-design of DNN model and modified additive secret-
sharing based secure computing protocols. pCOVID maintains the privacy
of both DNN model and users’ data during the inference while achieves an
accuracy of 95.2%

2. In view of that the computational and communication overhead of secure
computation protocols are highly dependent on the bit length of finite field,
we proposed to perform fixed-point quantization and layer fusion to optimize
the pre-trained model in a secret sharing-friendly way, which greatly reduced
the computational and communication overhead of secure inference phase and
thus realized efficient privacy-preserving COVID-19 inference.

3. We redesigned a set of lightweight additive secret sharing based sub-protocols,
which achieve the same security level but with higher efficiency compared
with existing works. Then, combined with the optimized model, we achieved
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the practical privacy-preserving inference of COVID-19 X-ray images. It is
expected to be deployed in the future to help people fighting against the
COVID-19 epidemic.

The remainder of this paper is as follows. In Sect. 2, we introduce the prelim-
inaries. In Sect. 3, we describe the system overview and threat model. Section 4
presents the model optimization methods and the details of secure execution pro-
tocols are presented in Sect. 5. Section 6 presents the proposed privacy-preserving
scheme. Section 7 gives the security analyses. Experimental evaluation is pre-
sented in Sect. 8, and Sect. 9 concludes the paper.

2 Preliminaries

In this section, we introduce some essential preliminary concepts, such as deep
neural network, neural network based COVID-19 detection and additive secret
sharing, which serve as the basis of our scheme.

2.1 COVID-19 Detection Using Convolutional Neural Network

Deep neural network (DNN) is a sequence of multiple computational layers that
transform the input into output. These layers can be divided into two classes
based on the type of operation: linear layers and non-linear layers. For linear
layers, it mainly includes convolution (Conv) layers, fully-connected (FC) layers,
average-pooling layers. For non-linear layers, it consists of activation layers and
max-pooling layers. We briefly explain these commonly used layers as follows.

Conv and FC layer. Conv and FC layer only involve the linear operation
during the inference phase. The Conv layer performs linear transformation over
the feature maps (images for the first Conv layer).

A convolution layer consists of a weight tensor2 A ∈ R
I×O×K×K Where I and

O denote the channels of input and output respectively and K denotes the kernel
size. The input of a Conv layer is a feature map represented as a multichannel
tensor X ∈ R

B×C×H×W where B denotes the batch size and C is the number of
channels. While H and W are the dimensions of feature map. The i-th channel
of the output is computed by sliding the kernel over the corresponding channel
of input and computing the convolution between the windowed input and kernel,
and adding the bias term bi to the result if the convolution layer contains a bias
vector b ∈ R

O.
Fully-connected layer is another form of linear transformation that operates

on the input vector. It contains a weight matrix W ∈ R
M×N . It takes a input

vector x ∈ R
N and conduct the matrix-vector product between W and x and

generates the output vector y ∈ R
M . The formulation of this transformation of

FC layer can be denoted as y = W · x + b where b is a bias vector.

2 Matrix and tensor are usually used interchangeably in this paper.
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Pooling. Pooling layers operate on each channel of the feature map outputted
by the preceding layer. The most commonly used pooling operations in DNN
are max pooling and average pooling. These pooling layers partition the input
feature map into a set of non-overlapping rectangles and compute the maximum
or the average values in each rectangle as output. Typically, pooling layers reduce
the size of feature map by a factor of k where k is the pooling window size.

Non-linear Activation. Non-linear activation layers introduce nonlinearity
into neural networks and allow to bound inputs to a finite range. Element-wise
non-linear transformation will be applied to the input during the inference. In
this paper, we particularly utilize the Rectified Linear Unit (ReLU) as the acti-
vation function for each activation layer. The result of ReLU(x) can be denoted
by max(x,0), where x is the element of feature map to be activated. It is easy to
notice that ReLU only involves comparison computations between x and 0.

Since the convolutional neural network can be trained to extract feature auto-
matically to learn the difference between various image categories, it also can be
used to distinguish COVID-19 positive images from normal images. There are
various CNN-based COVID-19 detection approaches have been proposed and
the results have been shown to be promising in terms of accuracy. Wang et al.
[25] proposed COVID-Net network architecture which achieved a test accuracy
of 93.3%. Khan et al. [18] proposed CoroNet, a deep CNN model to perform
image processing on X-ray images and classify them positively or negatively.
Apostolopoulos et al. [2] evaluated the performance of five pre-trained networks
regarding the detection of COVID-19 from chest X-ray images. The results
showed that VGG19 and MobileNetv2 achieved a high accuracy at 93.48% and
92.85% respectively.

Note that the number of hidden layers is a significant aspect to be considered
for obtaining good performance. Deeper model usually means better non-linear
expression ability and can learn more complex relationships from datasets. But it
is often prone to overfitting. Moreover, deep models with more parameters have
huge computational overhead during inference phase. Therefore, the number of
hidden layers must be well-defined for optimal performance. Based on the results
of our pre-experiments, we chose ResNet-18 as our backbone network for its good
performance.

2.2 Additive Secret Sharing

Additive secret sharing is one of the most important technologies in secure multi-
party computation. During the sharing process, the secret value will be securely
and randomly split into multi-shares and shared to multiple parties. The secret
can be reconstructed only when enough number of shares are combined. In this
paper, we only focus on the two-party involved situation. In this scenario, the
secret value x is randomly split into two shares 〈x〉A and 〈x〉B over Zq and sent
to party A and party B respectively, where Zq is the finite field with a nego-
tiated modulus q. To reconstruct secret value x, one of the two parties sends
his share to the other who calculates x = 〈x〉A + 〈x〉B mod q. We denote this
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reconstruction process as x ← Rec(〈x〉). In the following, for simplicity, we omit
the “mod q”.

In the following, we introduce three essential additive secret sharing based
computation protocols, which are the foundation of our proposed secure sub-
protocols.

1) Secure Addition Protocol (SAdd). It should be noted that each party can
execute addition locally without any communication. For example, party A
holds 〈x〉A and 〈y〉A and party B holds 〈x〉B and 〈y〉B , and they want to
compute z = x+ y. Due to the linearity of addition, each party only needs to
compute 〈x〉+ 〈y〉 locally, and the result is naturally the corresponding share
of x + y.

2) Secure Multiplication Protocol (SMul). Given the random shares of two
inputs

(〈x〉A, 〈x〉B
)

and
(〈y〉A, 〈y〉B

)
, it performs secure multiplication and

outputs
(〈z〉A, 〈z〉B

)
, where 〈z〉A+〈z〉B = x·y. During execution, the Beaver’s

triple [4] is required to execute the secure multiplication protocol for shared
values.

3) Secure Comparison Protocol (SCmp). The secure comparison protocol is
one of the most fundamental building blocks in our scheme. Given two shared
numbers 〈x〉 and 〈y〉, the SCmp returns 〈z〉. If x<y, z = 1, otherwise z = 0. We
use the secure comparison protocol proposed by Chen et al. [9]. The details
of SCmp are available in [9].

Note that the pre-computed arithmetic triples need be fresh for every multi-
plication. This generation process can be done off-line by the two parties through
using the Oblivious Transfer (OT) [23] or a trusted third party [21]. More details
about the pre-computed arithmetic triple generation can be found in reference
[4]. In this work, we mainly consider the on-line computation and communication
process.

3 System Model and Design Goal

3.1 System and Threat Model

As shown in Fig. 1, our privacy-preserving COVID-19 inference system involves
two non-colluding clouds, the model owner, multiple data owners and a trusted
third party.

– Clouds: There are two non-colluding clouds in our system, denoted as cloud
A and cloud B. Both of them maintain the model outsourced by the model
owner. They perform a series of secure protocols to execute secure inference
for users’ shared medical image data in a privacy-preserving way.

– Model Owner: There are multiple hospitals jointly trained a DNN model for
COVID-19 detection utilizing their local medical data. After that, to reduce
the execution overhead during the secure inference process, two model opti-
mization methods named fixed-point quantization and layer fusion will be
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performed on the well-trained model. And then, to preserve the private infor-
mation of the model, the model owner split the model into two shares and
sends them to cloud A and B respectively. The details of model optimization
will be given later in this paper.

– Data Owners: The users are the owners of image data. To get the diagnostic
results in a privacy-preserving way, users split their image data into two
additive shares before uploading them to the clouds and receive the shares
of inference results from cloud A and B respectively. It is easy to notice that
only the user can recover the inference result, the privacy of both data and
inference result are protected during the secure inference.

– Trusted third party: The trusted third party (T ) is responsible for the
generation of values needed during the secure execution. Note that the T is
only involved in the offline phase, it is not involved in the online phase and
thus does not receive any values from other parties.

It is easy to notice that, there is no communication between users and other
entities during the secure inference except for the data outsourcing, which means
the communication overhead for the users is negligible.

Addictive Secret Sharing based Secure Protocols

model share A model share B

image share A image share B

output A output BCloud Server A Cloud Server B

Model Owners

Data Owners

Trusted Third Party

Truncation tuples Truncation tuples

Fig. 1. System model

Our scheme is based on the semi-honest threat model, in which all the par-
ticipants will strictly follow the designed protocols, but each of them may try
to infer the private information of other parties based on their own data view.
Additionally, we assume that there is no collusion in the scheme, that means each
party will not collude with each other throughout the execution of protocols. We
remark that the two non-colluding cloud servers model is easy to realize in the
real world, in which cloud server A and B belong to different companies such as
Google and Amazon, and any collusion will damage their interests and reputa-
tions if caught by users. Consistent with prior works, our scheme strives to keep
the privacy of the users’ medical data and model owners’ DNN model weights
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and assumes the data-independent information such as layer types, kernel size of
each layers, number of layers, and the additive secret sharing computation ring
size can be public to both users and servers.

3.2 Design Goals

Our framework is expected to achieve the following design goals:

– Accuracy. The secure inference accuracy of our framework should be as high
as possible and the loss of accuracy compared with plaintext inference should
be negligible.

– Confidentiality. Our scheme should be secure under the semi-honest model.
Both users’ data and model weights have to remain confidential at any time
and only the corresponding user is able to see the inference result.

– Practicability. Our framework should be efficient in order to be practical
in real-world applications.

4 Secret Sharing Friendly Model Optimization

4.1 Fixed-Point Quantization

Deep neural network inference is a computationally intensive task, and the execu-
tion of neural network in secure domain will bring huger computational overhead.
How to reduce the execution overhead of the model in the ciphertext domain is
a challenging work.

There are some methods aim to reduce the DNN computational overhead in
plaintext domain such as additive neural network [8] and network pruning [14].
While these methods increase the plaintext execution efficiency, they cannot be
applied to reduce the execution overhead under the secure domain. Contem-
porary methods such as approximation of nonlinear layer and binarization of
network parameters could reduce the cost of secure execution, but they come at
the cost of reduced inference accuracy.

To approach this problem, we proposed the fixed-point quantization method
that can reduce the secure execution overhead for both linear layers and non-
linear layers. The motivation to implement fixed-point quantization is two-fold.
Firstly, the computational and communication overhead of secure execution is
highly dependent on the computation bitwidth, lower computation bitwidth
would significantly reduce the secure execution overhead. Secondly, the error
resiliency and redundancy of neural network parameters are well-proved [22],
thus we can replace the full-precision 32 bits float parameter format with low-
bit fixed-point data format, and the loss of accuracy can be negligible compared
with full-precision model.

We denote the fixed-point number as [QI,QF ] where QI denotes the integer
part of the number and QF is the fractional part of the number. We use the
notation 〈IL, FL〉 to denote a fixed-point representation where the bit width of
integer part is IL while the bit width of fractional part is FL. The smallest pos-
itive number that can be represented in the given fixed-point format is denoted
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as δ = 2−FL. And we define �x� as the largest integer multiple of δ less than or
equal to x.

The conversion of 32 bits float numbers to low bit fixed-point numbers
requires rounding operation. In this work, we use two rounding methods: (1)
Nearest rounding which rounds the float number to the nearest corresponding
fixed-point number; (2) Stochastic rounding [13] where the probability of round-
ing a real number to a fixed-point number is proportional to their difference.
Stochastic rounding is an unbiased rounding scheme, which has the property
that the expected rounding error is zero. Given a float number x and the tar-
get fixed-point representation 〈IL, FL〉, These two approximation schemes are
denoted as follows:

1) Nearest rounding

Round (x, 〈IL, FL〉) =

⎧
⎪⎨

⎪⎩

�x�, �x� ≤ x ≤ �x� +
δ

2

�x� + δ, �x� +
δ

2
<x ≤ �x� + δ

(1)

2) Stochastic rounding: The probability of rounding x to �x� is proportional to
their difference:

Round(x, 〈IL, FL〉) =

{
�x� , w.p. 1 − x−�x�

δ

�x� + δ , w.p. x−�x�
δ

(2)

We compared the two approximate methods in the subsequent experiments,
and the experimental results will be described in detail in the experiment section.

4.2 Layer Fusion

Recall that batch normalization is a commonly used operation in DNN models.
It is mainly applied on the output of preceding convolution layer to adjust the
range of numerical values by multiplying each row by αi and adding βi to the
result. Implementing the batch normalization operation in secure domain would
incur non-negligible computation cost. Thus, we consider to merge the batch
normalization layer with the preceding linear layer so as to execute the combi-
nation of convolution layer and batch normalization via a single linear operation
(i.e.,matrix-multiplication). For the merged layer, the new weight matrix rows
are αi · wi and bias values are αi · bi + βi, thus the BN layer can be removed
from the DNN model.

5 Additive-Secret-Sharing Based Protocols

5.1 Modified Additive Secret Sharing Scheme

The existing additive secret sharing schemes can only support the secure com-
putation of unsigned integers, and there will be errors in the secure computation
of signed integers. However, the mixed computation of both signed and unsigned
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integers will be involved during our secure computation protocols. To address the
correctness problem during the secure execution, we use the modified additive
secret sharing scheme proposed by Chen et al. [9]. In this scheme, the absolute
value of any plain text integer x is less than p, where p is a power of 2. The
split modulus q is set as q = 4 · p. During the sharing process, we first compute
x′ ← x mod q and then split x′ over Zq as the standard method introduced in
2.2. To recover x, we first compute x′′ ← 〈x′〉A + 〈x′〉B mod q. If x′′ < q/4, it
implies the plain text number corresponding to x′ is unsigned and we set x ← x′;
if x′′ > 3q/4, we set x ← x′′ − q, which means x is a signed integer. Besides, if
x ∈ [q/4, 3q/4], it implies that an error has occurred and we set x = error and
terminate the following processes.

5.2 Secure Convolution Protocol (SConv)

Algorithm 1: Secure Convolution Protocol (SConv)
Input: A has 〈W 〉A, 〈X〉A; B has 〈W 〉B , 〈X〉B .
Output: A outputs 〈Conv(W,X)〉A; B outputs 〈Conv(W,X)〉B .

Offline Phase:
1. T generates matrix beaver triples {〈A〉, 〈B〉, 〈C〉} where A has the same
dimension with W and B has the same dimension with X and sends shares of
them to party A and party B respectively .

Online Phase:
2. A: 〈E〉A = 〈W 〉A − 〈A〉A; 〈F 〉A = 〈X〉A − 〈B〉A.
3. B: 〈E〉B = 〈W 〉B − 〈A〉B ; 〈F 〉B = 〈X〉B − 〈B〉B .
4. A&B exchange the shares 〈E〉 and 〈F 〉, recover E ← Rec (〈E〉);
F ← Rec (〈F 〉).

5. A: 〈Z〉A ← Conv
(
F, 〈A〉A)

+ Conv
(
E, 〈B〉A)

+ 〈C〉A.

6. B: 〈Z〉B ← Conv (E,F ) + Conv
(
F, 〈A〉B)

+ Conv
(
E, 〈B〉B)

+ 〈C〉B .

The secure convolution is one of the most fundamental protocols in our scheme.
We notice that the convolution operation actually only involves element-wise
multiplication and addition, thus we design our secure convolution protocol by
incorporating the main idea of Beaver’s triplet [4]. As illustrated in Algorithm
1, our secure convolution protocol is divided into an offline phase and an online
phase. Since the offline phase is independent of the input, it can be executed by
the trusted third party T before, thus leading to an efficient online phase that
only involves interactions between cloud A and B.

Offline Phase. The trusted third party T generates the Beaver’s triplet in matrix
form (A,B,C) where A has the same dimension with W and B has the dimension
with X, C = A · B. Then A, B and C are split into two random shares and
distributed to cloud server A and B respectively.

Online Phase. Party A and B first mask their weight and input data by com-
puting 〈E〉 = 〈W 〉 − 〈A〉 and 〈F 〉 = 〈X〉 − 〈B〉. Then, they exchange shares
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of 〈E〉 and 〈F 〉 with each other to recover E and F . Finally, party A and
B compute 〈Z〉A = Conv

(
F, 〈A〉A

)
+ Conv

(
E, 〈B〉A

)
+ 〈C〉A and 〈Z〉B =

Conv (E,F ) + Conv
(
F, 〈A〉B

)
+ Conv

(
E, 〈B〉B

)
+ 〈C〉B , where Conv denotes the

convolution operation in plaintext domain.

5.3 Secure ReLU Protocol (SReLU)

In this subsection, inspired by main idea of the secure comparison protocol, we
propose our secure ReLU protocol, which is one of the most commonly used sub-
protocols in our scheme. It takes shares of preceding convolution layer’s output
as input and outputs the additive shares of ReLU(X).

This protocol is based on the following observations. Firstly, since ReLU only
involves element-wise comparison computations between input X and O(i.e. zero
matrix with the same dimension). The result of max (x, 0) depends on the sign
of x. In our modified additive secret sharing scheme, for any |x| ∈ Zp and shared
over Zq, we can observe that the most significant bit of x is 1 if and only if x < 0.
Obliviously, the MSB reflects the relationship between x and 0. To correctly
compute the ReLU function in secure domain, party A and B can firstly apply
bitwise addition to calculate the shared MSB of X as Z in parallel, then the
final result can be easily computed by invoking SMul (SAdd (〈1〉,−〈Z〉) , 〈X〉).
The details of secure ReLU protocol are available in Algorithm 2. The bitwise

Algorithm 2: Secure ReLU Protocol (SReLU)
Input: A has 〈X〉A; B has 〈X〉B .
Output: A outputs 〈ReLU(X)〉A; B outputs 〈ReLU(X)〉B .

Offline Phase:
1: T generates Beaver’s triples the sub-protocol uses and sends shares of them to

party A and B respectively.
Online Phase:

2: for each element x in X do
3: A: decomposes 〈x〉A into ul−1, · · · , u1 in bits;
4: B: decomposes 〈x〉B into vl−1, · · · , v1 in bits;
5: A&B: {〈c〉A, 〈c〉B} ← SMul (〈u1〉, 〈v1〉)
6: for i = 2 to l − 2 do
7: A&B: {〈a〉A, 〈a〉B} = SMul (〈ui〉, 〈vi〉)
8: A&B: {〈b〉A, 〈b〉B} = SAdd (〈ui〉, 〈vi〉)
9: A&B: {〈c〉A, 〈c〉B} = SAdd (〈a〉, SMul (〈b〉, 〈c〉))

10: end for
11: A computes 〈z〉A ← 〈ul−1〉A + 〈vl−1〉A + 〈c〉A
12: B computes 〈z〉B ← 〈ul−1〉B + 〈vl−1〉B + 〈c〉B
13: A sets 〈z〉A = 〈z〉A, B sets 〈z〉B = −〈z〉B
14: A&B: {〈z′〉A, 〈z′〉B} ← SMul (〈z〉, 〈z〉)
15: A&B: {〈ReLU (x)〉A, 〈ReLU (x)〉B} ← SMul (SAdd (〈1〉,−〈z′〉) , 〈x〉)
16: end for
17: A and B return 〈ReLU (X)〉A and 〈ReLU (X)〉B respectively.
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addition is from step 2 to 12, after that, party A and B convert the shared MSB
from Z2 to Zq.

Discussion. Recently, several additive secret sharing based secure ReLU proto-
cols have been proposed. Huang’s work [17] processes the ReLU function based
on their secure comparison protocol which takes extra computational cost to
convert shares from additive sharing to bit sharing. Additionally, they simply
set the activated shares as 0 when the value to be activate is less than 0, which
discloses the information about distribution of intermediate values. In Xia et
al.’s work [26], the real value to be activated is masked by multiplying a posi-
tive number. Since the range of real value will be disclosed to servers, it poses
security risks.

5.4 Secure Average Pooling Protocol (SAvgPool)

In this subsection, we introduce our secure average pooling protocol which will
be used during the secure inference.

For each pooling window, party A and B first compute 〈Sum〉 =∑N
i=1

∑N
j=1〈xi,j〉 where xi,j is element in current pooling window. Then, A and

B compute 〈S〉 ← SCmp (〈Sum〉, 〈0〉) and set 〈S〉A = 1−2·〈S〉A, 〈S〉B = −2·〈S〉B

to record the sign of Sum that if Sum < 0, S = −1 otherwise S = 1. Then A
and B compute 〈S′〉 ← SMul (〈S〉, 〈Sum〉) to get the shared absolute value of
Sum. Next, they attempt to get the division result 〈Z〉 between 〈S′〉 and N2

where the pooling window size is N . Finally, the pooling result is computed as

Algorithm 3: Secure Average Pooling Protocol (SAvgPool)
Input: A has 〈X〉A; B has 〈X〉B , pooling window size N
Output: A outputs 〈AvgPool (X)〉A; B outputs 〈AvgPool (X)〉B .
1: for each pooling window do
2: A computes 〈Sum〉A ← ∑N

i=1

∑N
j=1〈xi,j〉A

3: B computes 〈Sum〉B ← ∑N
i=1

∑N
j=1〈xi,j〉B

4: A&B: {〈S〉A, 〈S〉B} = SCmp (〈Sum〉, 〈0〉)
5: A sets 〈S〉A= 1 − 2〈S〉A, B sets 〈S〉B = −2〈S〉B
6: A&B:{〈S′〉A, 〈S′〉B} = SMul (〈S〉, 〈Sum〉)
7: A choose a random number r ∈ Zq, sets 〈u〉A = 〈S′〉A + rmod q, sends

〈u〉A to B.
8: B sets 〈u〉B = 〈S′〉B ,recover u ← Rec (〈u〉).
9: A sets 〈Z′

1〉A = −�r/N2�,〈Z′
2〉A = −�r/N2�.

10: B sets 〈Z′
1〉B = �u/N2�, 〈Z′

2〉B = �(u + q) /N2�.
11: A&B: {〈t〉A, 〈t〉B} = SCmp (〈u〉, 〈r〉), where 〈r〉A = r, 〈r〉B = 0.
12: A&B: {〈Z′〉A, 〈Z′〉B} = SAdd (〈Z′

2〉,−〈Z′
1〉)

13: A&B: {〈Z〉A, 〈Z〉B} = SAdd (SMul (〈t〉, 〈Z′〉) , 〈Z′
1〉).

14: A&B: {〈AvgPool (x)〉A, 〈AvgPool (x)〉B} = SMul (〈S〉, 〈Z〉)
15: end for
16: A and B return 〈AvgPool (X)〉A and 〈AvgPool (X)〉B respectively.
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〈AvgPool (x)〉 ← SMul (〈S〉, 〈Z〉). The division operation is based on the obser-
vation that |((S′ + r) /N2 − r/N2

) − S′/N2| < 1 where r is a random num-
ber and N2 is the public divisor. Thus the division result Z between 〈S′〉 and
N2 can be computed as Z ← (

(S′ + r) /N2 − r/N2
)
. Party A first generates

a random number r to mask S′ and sends 〈u〉A to B. After receiving 〈u〉A, B
recover u by running u ← Rec (〈u〉). To deal with the overflow situation, A
and B generates two candidates respectively for 〈Z〉 where 〈Z ′

1〉A = −�r/N2�,
〈Z ′

2〉A = −�r/N2� and 〈Z ′
1〉B = �u/N2�, 〈Z ′

2〉B = �(u + q) /N2�. After that, A
and B test whether u < r by running 〈t〉 ← SCmp (〈u〉, 〈r〉), where 〈r〉A = r
and 〈r〉B = 0. If u < r, it implies that an overflow has occurred and 〈Z ′

2〉 is
the corresponding result, otherwise 〈Z ′

1〉 is the right one. Then they compute
〈Z ′〉 ← SAdd (〈Z ′

2〉,−〈Z ′
1〉) and 〈Z〉 ← SAdd (SMul (〈t〉, 〈Z ′〉) , 〈Z ′

1〉), the final
result is computed as 〈AvgPool (x)〉 ← SMul (〈S〉, 〈Z〉).
Discussion. In [17], Huang et al. claimed that the secure average pooling oper-
ation can be performed locally. It is not tenable when the dividend is negative.
Actually, applying division operation to the shares locally will lead to errors in
reconstruction phase.

5.5 Secure Truncation Protocol (STrun)

In our modified additive secret sharing scheme, the secure multiplication of two
fixed-point values of FL-bits precision results at a shared value of 2FL-bits preci-
sion. In order to execute subsequent secure computations, truncation is necessary
to do to maintain the precision after secure convolution protocol. We design our
secure truncation protocol with the help of the trusted third party.

Algorithm 4: Secure Truncation Protocol (STrun)
Input: A has 〈X〉A after secure convolution, B has 〈X〉B after secure

convolution; number of bits FL needs to be truncated.
Output: A outputs 〈X ′〉A after truncation; B outputs 〈X ′〉B after truncation.

Offline Phase:
1: T generates a random float matrix R, where each element ri,j ∈ [0, 1)
2: T converts each element ri,j to fixed-point through stochastic rounding.
3: T computes R′ = R · 2FL, R′′ = R′ · 2FL, shares R′ and R′′ to A and B

respectively.
Online Phase:

4: A&B: {〈Z〉A, 〈Z〉B} = SAdd (〈X〉,−〈R′′〉)
5: A&B: exchange shares of 〈Z〉 to recover Z = X − R′′, set Z′ = Z/2FL.
6: A and B return truncation results 〈X ′〉A = 〈R′〉A and 〈X ′〉B = 〈R′〉B + Z′

respectively.
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Offline Phase. The trusted third party T generates a random float matrix R
where each element ri,j ∈ [0, 1) and converts it into fixed-point matrix R′. Then
T transforms R′ into integer and computes R′′ = R′ · 2FL. After that, T sends
secret shares of R′ and R′′ to party A and B respectively.

Online Phase. After receiving 〈R′〉 and 〈R′′〉, party A and B compute 〈Z〉 as
〈Z〉 ← SAdd (〈X〉,−〈R′′〉) and running Z ← Rec (〈Z〉) to recover the masked
value. Then, B truncates Z locally as Z ′ = Z/2FL and sets truncated share as
〈X ′〉B = Z ′+〈R′〉B and A sets its truncated share as 〈X ′〉A = 〈R′〉A. Obliviously,
X ′ is exactly the truncated value.

Discussion. The truncation protocol of [19] is designed to truncate locally after
secure multiplication. But their truncation protocol will introduce two probabil-
ity errors where the small error is at most 1 off from the desired result at the
chance of 1/2 and the harsh error is no more than q off from the desired result
at the chance of x/q where x is the value after multiplication. In order to avoid
the harsh error as much as possible, the finite field should be large enough, thus
rendering a large overhead on secure protocols.

×

+ +

Rec Rec

:

+

z

z'

Fig. 2. Secure truncation
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6 Privacy-Preserving COVID-19 Inference

Algorithm 5: Secure COVID-19 Inference Protocol (SCI)
Input: A has share of user’s image data 〈X〉A and model weight share 〈W 〉A;

B has share of user’s image data 〈X〉B and model weight share 〈W 〉B .
Output: A outputs the inference result 〈Y 〉A and B outputs 〈Y 〉B .
1: for each layer i in W do
2: if layer i is convolutional layer then
3: A&B execute SConv

4: A&B execute STrun

5: else if layer i is ReLU layer then
6: A&B execute SReLU

7: else if layer i is average pooling layer then
8: A&B execute SAvgPool

9: end if
10: end for
11: A&B return 〈Y 〉A = 〈W (X)〉A and 〈Y 〉B = 〈W (X)〉B respectively.

The details of privacy-preserving COVID-19 inference are available in algorithm
5. Firstly, the model owner and users outsource the model weight W and image
data X to the cloud servers respectively. Then, cloud A and B execute the
corresponding sub-protocols according to the type of current layer. After that,
cloud A and B send 〈Y 〉 to the user. After receiving 〈Y 〉A and 〈Y 〉B , the user
recover the inference result by running Y ← Rec (〈Y 〉). Note that only the user
itself can recover the inference result, the privacy of diagnostic result is protected
in our scheme.

7 Security Analysis

In this section, we analyze the security of the sub-protocols proposed including
SConv, SReLU, SAvgPool and STrun. Then, we demonstrate that our privacy-
preserving COVID-19 inference scheme can preserve the data confidentiality,
model confidentiality and result privacy against a semi-honest attacker A. The
security analysis of our system is under the typical universal composability
framework based on the semi-honest model, which relies on the following defini-
tion and lemmas.

Definition 1 (security under the semi-honest model [11]) We say a pro-
tocol is secure if there exists a probabilistic polynomial-time simulator S that can
generate a view for the adversary A in the real world and the view is computa-
tionally indistinguishable from its real view.

Lemma 1. A protocol is perfectly simulated if all its sub-protocols are perfectly
simulated [5].
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Lemma 2. [5] [6] If a random element r is uniformly distributed on ZN and
independent from any variable x ∈ ZN , then r ±x is also uniformly random and
independent from x.

The proofs of Lemma 1 and Lemma 2 are available in [5,6]. Since the sub-
protocols performed locally can be perfectly simulated, we mainly prove the
security for the ones that need interactions between cloud A and B in the fol-
lowing. The security proofs of SMul and SCmp are available in [9,17] respectively.
Based on the proofs of SMul and SCmp, we can easily prove that the SConv and
SReLU are secure under the semi-honest model in a similar way. Next, we prove
the security of other sub-protocols.

Theorem 1. The SAvgPool algorithm proposed is secure under the semi-honest
model.

Proof. In each loop of Algorithm 3, for step 2 and 3, the operations are performed
locally. From steps 4 to 6, the interaction only occurs in SMul and SCmp, whose
security has been proven. In step 7 and 8 of SAvgPool, cloud A’s execution
view can be denoted as ΠA

7−8(SAvgPool) = {r, 〈S′〉A, 〈u〉A} where r ∈ Zq is
randomly chosen by cloud A, 〈S′〉A is obtained through SMul in step 6. 〈u〉A =
〈S′〉A + r mod q. ΠS

A7−8(SAvgPool) is computationally indistinguishable from
ΠA

7−8(SAvgPool). Similarly, we can prove that cloud B’s execution view is also
computationally indistinguishable from simulator’s view. For step 9 and 10 in
SAvgPool, the operations are performed locally. In other steps of SAvgPool, the
interaction only occurs in SCmp, SAdd and SMul, whose security has been proven.
Thus, we draw a conclusion that both cloud A’s execution view and cloud B’s
execution view can be perfectly simulated. Based on the above analyses, we
conclude that SAvgPool is secure under the semi-honest model.

Theorem 2. The STrun algorithm proposed is secure under the semi-honest
model.

Proof. The execution view of cloud A can be denoted as ΠA(STrun) =
{〈X〉A, 〈Z〉A, 〈R′〉A, 〈R′′〉A, 〈Z〉B} where 〈Z〉B = 〈X〉B − 〈R′′〉B . It is trivial to
see that all these values are uniformly random. Thus the execution view of cloud
A in STrun is perfectly simulated. In a similar way, we can easily demonstrate
that the cloud B’s execution view can be perfectly simulated. Thus, we draw
the conclusion that STrun is secure under the semi-honest model.

Theorem 3. The privacy-preserving COVID-19 inference scheme is secure in
the semi-honest model, and also can preserve the data confidentiality, the model
confidentiality and inference result privacy against an active adversary.

Proof. In a similar way, we can prove our privacy-preserving COVID-19 infer-
ence scheme is secure under the semi-honest model. For our SCI, the interactive
information only occurs in SConv, SReLU, SAvgPool and STrun which all have
been demonstrated secure under the semi-honest model. Based on these analy-
ses, we can conclude that our privacy-preserving COVID-19 inference scheme is
secure under the semi-honest model.
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Next, we discuss that our scheme can protect the DNN model and data
confidentiality as well as result privacy against an active adversary A. If A
eavesdrops the transmission link between cloud A and B, the intermediate values
will be obtained by it. Since the model weights and user data as well as inference
result are secret shared over Zq, they are uniformly random for A. A cannot get
the original value of them unless it comprises cloud A and B simultaneously,
which is forbidden in our threat model. For the inference result, it is also random
for these two clouds. Thus, we can claim that out privacy-preserving COVID-19
inference scheme can protect the model privacy, the user data privacy and the
inference result privacy from the active adversary A.

8 Evaluation

In this section, we first evaluate the performance of our additive secret shar-
ing based secure protocols in theory. Then, to further assess the accuracy and
efficiency of our scheme, we conduct experiments to evaluate the performance
of our proposed sub-protocols and the privacy-preserving COVID-19 inference
scheme.

8.1 Theoretical Analysis

8.1.1 Computational Overhead
The computational overhead of our proposed sub-protocols is illustrated in
Table 1. Here, we suppose that the bit-length of the split modulus q is l, the
runtime of SMul with two shared multipliers is TSMul. We also suppose that the
input matrices of SConv, SReLU, SAvgPool and STrun are of size K × K for
simplicity, the pooling window size in SAvgPool is N .

Table 1. Computational and Communication overhead of Proposed Protocols

Protocol Computational overhead Communication overhead

SConv O(K2)TSMul O(4K2l)

SReLU O(2K2l)TSMul O(8K2l)

SAvgPool O(4K2/N2 · l)TSMul O(28K2/N2 · l)
STrun − O(2K2l)

For SConv, it runs SMul once for each element in input matrix, so it takes
O(K2)TSMul time. For SReLU, for each element in input matrix X, it runs once
SMul from steps 1 to steps 5, twice in each iteration from steps 6 to 10 and once
from steps 11 to 16. So it takes O(1 + (l − 3) · 2 + 1)TSMul for each element,
thus it takes O(2K2l)TSMul time. For SAvgPool, it runs SMul three times and
SCmp twice for each pooling operation in current pooling window, note that the
pooling window size is N , thus it takes O(4K2/N2 · l)TSMul time. For STrun, it
only runs SAdd once for each element, thus the computational overhead of STrun
is negligible.
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8.1.2 Communication Overhead
For SConv, the communication overhead occurs in the exchange of 〈E〉 and 〈F 〉
between two clouds. Since each element of 〈E〉 and 〈F 〉 is l − 1 bits at most, the
communication overhead of SConv is O(4K2l). For other protocols, the commu-
nication overhead mainly occurs in performing SMul where two multipliers are
both shared. As illustrated before, in SMul, each party sends the share of 〈e〉 and
〈f〉 to each other, so the communication overhead is 4(l − 1) bits at most. For
each element in SReLU, it operates SMul O(2l) times, and each SMul is mainly
operated over Z2 except for twice operated over Zq. So the communication over-
head of SReLU is O(4(2 − 1) × (2K2l)) = O(8K2l). In a similar way, we can
deduce the communication overhead of SAvgPool and STrun, which is available
in Table 1.

8.2 Experimental Performance

Our experiments are performed on a laptop equipped with Intel(R) Core(TM)
i7-10875H CPU @ 2.30 GHz (16 CPUs) and 16GB RAM. We use the pre-trained
ResNet-18 as our backbone network which contains 17 convolution layers and
1 FC layer and train it with PyTorch. Our proposed sub-protocols were imple-
mented in Python 3.8. The NumPy 1.19 package was used to implement secret-
sharing based secure protocols in parallel.

The COVID-19 Radiography Database3 is a stage released COVID-19 image
dataset which is widely used in many deep learning based COVID-19 inference
systems [10,20]. It contains 3616 COVID-19 positive cases along with 10,192
normal, 6012 lung opacity, 1345 viral pneumonia chest X-ray images up to now.
We randomly selected 700 positive images, 2000 normal images and 400 viral
pneumonia images to form the test dataset, and the rest of the image data
corresponding to these three categories is used as the training set.

In this subsection, we use this dataset to construct the privacy-preserving
COVID-19 inference system, and to show the performance of our secure infer-
ence system is comparable with the standard DNN inference system without pri-
vacy consideration. We first use this dataset to train a commonly used network
ResNet-18 as our backbone network and the max pooling layers are replaced
by average pooling layers for ease of implementation. The float baseline model
achieves a accuracy of 95.2% in plaintext domain.

Accuracy. We first evaluate the accuracy of our system. Since the bit length
of fractional part influences the inference accuracy, we evaluate the inference
accuracy for these two rounding methods with different bit length of fractional
part. We set the total bit length of fixed-point number as 16 and change the
bit length of fractional part. The result is shown in Fig. 6. The red dotted line
denotes the inference accuracy of the float model in plaintext domain. We can see
that, in both cases, the inference accuracy increase with the number of fractional
bits. This makes sense because during the rounding procedure the more bits the

3 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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fractional part allocated, the less decimal digits of the original value will be lost.
The accuracy loss is negligible when the fractional part bits is more than 8. Also
we can see that, the stochastic rounding method has smaller loss of accuracy,
which is more obvious when the number of bits of fractional part is less than 7.

Then, to further explore the impact of different data rounding methods and
number of fractional bits on the inference accuracy, we use the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) to evaluate the inference
accuracy. Their definitions are as follows:

MAE = (Σ|y′
i − yi|/m) , (3)

RMSE =
√

(Σ(y′
i − yi)2)/m) (4)

where y′
i denotes the inference result of fixed-point model and yi denotes the cor-

responding inference vector of baseline model. Experimental results are available
in Fig. 3 and Fig. 4. It is obvious to see that the stochastic rounding method has
less inference error compared with the nearest rounding method especially when
the number of fractional bits is less than 7. This is primarily because at reduced
fractional precision, some of the model weights are rounded down to zero when
using the nearest rounding. In contrast, the stochastic rounding preserves the
weight information statistically.

Fig. 3. MAE Fig. 4. RMSE

Efficiency. Then, we test the runtime of our privacy-preserving COVID-19 infer-
ence scheme. Since the split modulus q mainly influences the performance of
runtime of sub-protocols, we evaluate the system runtime with different split
modulus q, and the result is available in Fig. 5. We can see that even the bit
length of q is set as 64, the total runtime of our system is no more than 80 s which
is acceptable in practical application. Note that our experiments are conducted
on one CPU core, it can achieve higher efficiency by using multiple CPU cores
in parallel in the real-world cloud environments.
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Fig. 5. Total runtime Fig. 6. Inference accuracy

9 Conclusion

In this paper, we proposed a lightweight additive secret sharing based privacy-
preserving COVID-19 inference scheme. We first optimize the DNN model in a
secret sharing-friendly manner to reduce the computational and communication
overhead in the secure inference phase. Then, based on the modified additive
secret sharing scheme, we designed a series of efficient secure computing sub-
protocols, with the help of these sub-protocols, we achieved the efficient privacy-
preserving COVID-19 inference scheme. Our scheme maintains model privacy,
data privacy and inference result privacy. The experimental results showed that
our system achieves high efficiency and accuracy for COVID-19 X-ray image
inference while ensuring the privacy requirements. This shows that our scheme
has certain potential application value in the scenario of fighting against the
COVID-19 epidemic.
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Abstract. Mobile Edge Computing (MEC) has been regarded as a
promising technology to satisfy the growing demand for resource-
intensive applications in vehicle networks. Content caching and deliv-
ery, a critical problem in MEC, has attracted much research attention
in the past decade. However, most existing caching schemes in the vehi-
cle network scenario still confront two challenges: 1) High mobility of
vehicles results in unstable connectivity; 2) Fairly massive state spaces
of existing schemes have become their obstacles to good scalability. To
address these challenges, we propose a hierarchical reinforcement learn-
ing (HRL)-based mobility-aware content caching and delivery policy for
vehicle networks. First of all, we formulate the caching and delivery prob-
lem as a Markov decision process (MDP) problem. Our aim is to minimize
the time-averaged transmission cost in the vehicle network scenario. To
address the curse of dimensionality, we decompose the joint optimiza-
tion of content caching and delivery into the vehicle side and RSU side
subproblems. DDPG and Double-DQN are applied to address these two
subtasks. Furthermore, an LSTM-based location prediction module is
built to mine the mobility patterns of vehicles. Experimental studies and
analysis, which are conducted on a real-world dataset, demonstrate that
our approach outperforms other baseline schemes in terms of transmis-
sion cost and convergence speed.
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1 Introduction

The past decade has witnessed the widespread adoption of smart vehicles across
Intelligent Transportation Systems (ITS). Meanwhile, the wide commercial roll-
out of fifth-generation (5G) networks has facilitated a wide range of innovative
vehicle applications, such as in-car entertainment, autonomous driving and live
traffic monitoring [9]. However, there are some challenges in providing these
applications with high quality of experience (QoE) in Vehicle Networks (VN).
First of all, the emerging content will consume an extremely large data volume,
such as video streaming and Virtual Reality/Augmented Reality (VR/AR). Sec-
ondly, many multimedia applications also involve live interaction between users,
which requires low-latency content delivery [23]. These challenges are difficult
to solve in the traditional centralized cloud-based computation. Fortunately,
Mobile Edge Computing (MEC) has emerged as a promising paradigm to sup-
port these resource-demanding applications with stringent latency and reliability
requirements. MEC moves computing and storage resources to close proximity
to mobile users, such as Base Stations (BSs) and Road Side Units (RSUs), so
that the latency to users will be remarkably reduced [1,4]. At the same time,
cache nodes at the edge of networks can cache popular contents in advance,
which alleviates strain on the backhaul links.

Content caching and delivery is a critical problem in mobile edge computing,
which has attracted much research attention in recent years. Generally speaking,
the storage space of edge nodes is often limited, which necessitates the careful
design of an efficient content caching and delivery policy. Most existing caching
schemes can be classified into two categories: reactive caching and proactive
caching [8]. Firstly, Least Recently Used (LRU), Least Frequently Used (LFU),
and their variants are examples of reactive caching. These caching schemes are
driven by simple statistics of request history and mine user request patterns to
guide the cache decision. They are easy to implement and widely used in Content
Delivery Networks (CDNs). However, they are not suitable for the features of
vehicle network scenarios, such as high mobility and dynamic content popularity.
In contrast, proactive caching schemes predict content popularity in advance and
cache the most popular contents which are possible to be accessed in the recent
future. In proactive caching schemes, it is of vital importance to accurately
predict content popularity. A large number of existing studies in the broader
literature have investigated machine learning-based proactive caching schemes by
utilizing deep learning [13,19], reinforcement learning [12,15,23] and federated
learning [22], etc.

The advent of autonomous driving and demand for improved road safety
and in-car entertainment have led to the development of vehicle-to-everything
(V2X) technology and vehicle networks (VN). The integration of vehicle net-
work and MEC will greatly promote the sensing and computing capability of
vehicle network at the network edge. Despite recent advancements in Machine
Learning(ML)-based proactive caching, utilizing ML approaches for edge caching
in vehicle networks still confronts the following two challenges: 1) High mobility:
High movement of vehicles results in unstable connectivity, and vehicles may
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not have enough time to download the entire requested content during the time
staying in the area of one edge node. In order to improve the quality of expe-
rience, cache schemes must be mobility aware and enable multiple cache nodes
to collaborate; 2) Scalability: Most of existing studies use end-to-end reinforce-
ment learning techniques, which makes their state spaces very large and impairs
their potential to scale. Specifically, the state space expands exponentially as
the number of linked vehicles rises, delaying the model’s convergence. This is
so-called the curse of dimensionality [2].

In past decades, Hierarchical Reinforcement Learning (HRL) has been
regarded as one of the promising technologies to alleviate the curse of dimen-
sionality and scale reinforcement learning to the long-horizon tasks [10]. HRL
decomposes a long-horizon(i.e., large state and action space) reinforcement learn-
ing task into a hierarchy of subproblems or subtasks. This inspired us to come
up with our own solution for content caching and delivery for vehicle networks.
Different from the existing schemes of HRL-based caching [7,11], our scheme
focuses on the edge caching in vehicle network scenarios and applies a divide-
and-conquer strategy to reduce the dimensions. In this paper, we propose a hier-
archical reinforcement learning(HRL)-based mobility-aware content caching and
delivery policy for vehicle networks, which has better scalability and universality.
This caching scheme aims to minimize the time-averaged transmission cost in the
scenario of vehicle networks with high mobility and dynamic content popular-
ity. The content caching and delivery problem is formulated as an MDP problem
and decomposed into vehicle side and RSU side subproblems. Deep deterministic
policy gradient (DDPG) and double deep Q-network (Double-DQN) are applied
to solve these two subproblems. The major contributions of this paper are as
follows:

– We propose an HRL-based mobility-aware content caching and delivery policy
for vehicle networks with high mobility and dynamic content popularity. The
joint optimization of content caching and delivery is modeled as a Markov
decision process (MDP) problem. This framework aims to minimize the time-
averaged transmission cost in the scenario of vehicle networks.

– Borrowing ideas from HRL, we decompose the joint optimization of content
caching and delivery into vehicle side and RSU side subproblems. DDPG
and Double-DQN are used to address these two subtasks. Furthermore, a
Long Short Term Memory(LSTM)-based location prediction module is built
to mine the mobility patterns of vehicles. Through these efforts, we hope to
achieve better scalability and generality.

– Experimental studies and analysis are conducted on a real-world taxi tra-
jectory dataset, which demonstrates that our approach outperforms other
baseline schemes in terms of transmission cost and convergence speed.

The rest of this paper is organized as follows. Section 2 summarizes the related
work of this paper. Section 3 presents the system model. Section 4 formulates the
content caching and delivery problem and reformulates it as an MDP problem.
In Sect. 5, we introduce the detailed hierarchical reinforcement learning-based
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mobility-aware content caching and delivery policy for vehicle networks. Experi-
mental studies and analysis are provided in Sect. 6. Finally, Sect. 7 concludes the
paper and presents some future directions.

2 Related Work

Content Caching and Delivery in MEC. Mobile edge computing provides
cloud computing and caching capabilities at the edge of cellular networks. A
large number of recent works have been reported to investigate content caching
and delivery in mobile edge networks. Jiang et al. [5] proposed a cooperative con-
tent caching and delivery framework to minimize average content downloading
latency. The content caching problem is formulated as an integer-linear pro-
gramming problem and solved by using the subgradient method. The content
delivery policy is formulated as an unbalanced assignment problem and solved
by using Hungarian algorithm. Yao and Ansari [21] jointly optimized the content
placement and storage allocation for Internet of Things (IoT) to minimize the
total network traffic cost. Two heuristic algorithms were proposed in order to
reduce the computational complexity of the problem. Sun et al. [16] designed a
cooperative content caching approach among small cells, for which the tradeoff
between content delivery latency and storage cost was investigated.

Content Caching and Delivery in Vehicle Networks. The vehicle network,
which is a promising paradigm to support diverse vehicular applications, has
drawn much research attention with a wide range of works on content caching
and delivery. In [3], a vehicle-based distributed storage scheme via local vehicle-
to-vehicle (V2V) communications was proposed to cope with the vehicle mobility
issue. Structured redundancy via erasure coding was also introduced in order to
combat the volatile V2V links. In order to deal with the challenges of high
mobility and privacy, Yu et al. [22] proposed a mobility-aware proactive edge
caching scheme based on federated learning to leverage the private training data
distributed on local vehicles for predicting content popularity. Context-aware
adversarial autoencoder (C-AAE) was introduced to predict the highly dynamic
content popularity.

Content Caching and Delivery with DRL. In the past decade, with the con-
tinuous enhancement of computing power brought by graphics processing units
(GPUs), deep learning (DL) has aroused great interest and extensive research
with fruitful outcomes in academia. Deep reinforcement learning (DRL), which
combines the advantages of deep learning and reinforcement learning, is regarded
as a powerful tool to solve sequential decision making problems. As a result, much
effort has been made to utilize DRL to deal with content caching and delivery
in vehicle networks. Qiao et al. [12] formulated the joint content caching and
delivery optimization problem as a double timescale Markov decision process
(DTS-MDP), and deep deterministic policy gradient (DDPG) was leveraged to
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obtain a suboptimal solution. However, its state space was fairly large and the
method did not have good scalability. In [23], Zong et al. employed an ensemble
of constituent caching policies and a DRL agent was trained to adaptively select
the best-performing policy to control the cache. But the single cache node was
its downside and the migration to the vehicle network scenario was difficult as a
result. In [15], a QoE-driven edge caching method for the IoV was proposed to
solve the RSU caching optimization problem. A class-based user interest model
was established, which was more suitable for systems with a large number of
small files. A deep reinforcement learning method was designed to address the
QoE-driven RSU cache update issue effectively.

Most of the above-mentioned studies are end-to-end reinforcement learning
approaches, which leads to their state spaces being fairly massive and having
poor scalability. As the number of connected vehicles grows, the state space
increases exponentially, which results in slow convergence of the model. A more
systematic and theoretical analysis is required for the curse of dimensionality in
content caching and delivery problem. This motivates us to propose a hierarchical
reinforcement learning(HRL)-based mobility-aware content caching and delivery
policy for vehicle networks, which has better scalability and universality.

3 System Model

In this section, we propose the content caching and delivery framework in vehicle
networks including network model, communication model, mobility model and
request model.

3.1 Network Model

We consider a general model of mobile edge computing in vehicle networks with
different types of edge caching nodes, including a macro base station (MBS),
several road side units (RSU) and content requesting vehicles (CRV), as shown
in Fig. 1. Let N = {0, 1, ..., N} represent the index set of edge caching nodes, in
which 0 is the index of MBS and {1, 2, ..., N} is the index set of RSUs. Let K =
{1, 2, ...,K} denote the index set of CRVs to make requests to access contents.
The index set of all available contents is denoted by F = {1, 2, ..., F}. We assume
that the MBS is the centralized content provider and has the abundant storage
capacity to cache all available contents. Furthermore, each RSU n ∈ N and
each CRV k ∈ K are equipped with a limited caching storage capacity, which is
represented by Mn and Lk respectively.

The MBS serves all the RSUs with all the contents and the connections
between the MBS and RSUs use optical fibers. Vehicles traverse the coverage
areas of several RSUs and each CRV communicates with only one RSU through
wireless links at the same time. The system runs over an infinite period of time,
which is divided into slots, denoted as t = 0, 1, 2, ... . During the content caching
and delivery process, a CRV will require a desired content (e.g., navigation map
update, video streaming, etc.). Then, the local cache of CRV will be checked first
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MBS

RSU

CRV

Fig. 1. The network model consists of a macro base station (MBS), several road side
units (RSU) and content requesting vehicles (CRV).

to see whether the requested content is cached. The cache state of each content
for CRV k is denoted by CVk = {CV f

k ∈ {0, 1}|f ∈ F}, where CV f
k = 0 means

that content f is not cached and CV f
k = 1 means that content f is cached.

The CRV can receive immediate service if the content has already been cached.
If not, the request will be sent to the RSU to which the CRV is connected. In
the same way, the cache of RSU will be checked whether the requested content
is cached. The cache state of each content for RSU n is indicated by CRn =
{CRf

n ∈ {0, 1}|f ∈ F}, where CRf
n = 0 means that content f is not cached and

CRf
n = 1 means that content f is cached. If the content is located in the cache

of RSU, it will be transmitted to the CRV with a certain communication cost.
We call it a cache hit that the requested content could be available in the cache
of CRV or RSU. Otherwise, the CRV has to fetch the desired content from the
MBS (i.e., a cache miss), which will spend a higher communication cost. To sum
up, the object of this caching framework is to provide content delivery services
for smart vehicles with the communication cost as lower as possible.

Notably, the CRV may not be able to fetch all parts of the content in one time
slot due to high mobility. Let REk(t) denote the remaining size of the content
requested by CRV k in the time slot t. When the CRV enters the coverage area
of another RSU, the remaining part of the requested content will be transmitted
subsequently.

3.2 Communication Model

In wireless communication, we consider that MBS and RSU allocate the orthog-
onal spectrum resources to CRVs such that there is no interference between
wireless communications. The signal-to-noise ratio (SNR) between edge caching
node i and CRV j at time slot t is given by

γi,j(t) =
Pigi,j

σ2 +
∑

v∈K\{j} Pigi,v
,∀i ∈ N,∀j ∈ K (1)
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where Pi is the transmission power of edge caching node i, gi,j is the channel
gain between edge caching node i and CRV j, σ2 is the power of additive white
Gaussian noise.

Based on the assumption that the available spectrum resource is denoted as
Wmbs Hz for MBS and W rsu

n Hz for RSU n, wi,j(t) can be allocated as the
continuous bandwidth resource to CRV j by edge caching node i. According to
Shannon Theory, the data rate to fetch a segment of content f between edge
caching node i and CRV j is given by [14]

ri,j(t) = wi,j(t) ∗ log2 (1 + γi,j(t)) ,∀i ∈ N,∀j ∈ K (2)

where wi,j(t) is the bandwidth resource allocated to CRV j and γi,j(t) is the
SNR at time slot t.

3.3 Request Model

The request of CRV k is denoted by Qk(t) = f ∈ F, where k ∈ K,F = F∪{0}. If
there is no new request of CRV k, then Qk(t) = 0. The vehicle will not submit a
new request until the last request is served. We assume that the request history
of one CRV follows a Markov chain and the next request only depends on the
last request. We adopt the same vehicle request model as [17], where the request
transition probability from content i to j of CRV k is given by

pi,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P0, i ∈ F, j = 0

(1 − P0)
1

jβ
∑F

j′=1
1

j′β
, i = 0, j ∈ F

(1 − P0) 1
H , i ∈ F, j = (i + h) mod (F + 1), h ∈ {1, 2, . . . ,H}

0, otherwise.
(3)

To be specific, P0 indicates the probability that a vehicle does not have a new
request in the current slot (j = 0). When the vehicle does not have a request in
the last slot (i = 0), the request model depends on the content popularity, which
follows a Zipf-like distribution, and β indicates the parameter of the distribution.
Furthermore, each content i ∈ F has a set of H neighboring contents indicated
as Hi = {f ∈ F : f = (i + h) mod (F + 1), h ∈ {1, 2, . . . ,H}}, where H
is the number of neighboring contents. The transition probability from content
i ∈ F to its neighboring contents j ∈ Hi is modeled as a uniform distribution.
In other words, the vehicle randomly selects a content from neighbor contents
as the next request. Otherwise, the transition probability from i ∈ F to other
contents j /∈ Hi is zero.

For convenience of understanding, the notations used in this paper are sum-
marized in Table 1.
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Table 1. Summary of key notations.

Notation Description

N Index set of edge caching nodes(MBS, RSUs)

K Index set of content requesting vehicles(CRVs)

F Index set of all available contents

Mn Caching storage capacity of RSU n ∈ N

Lk Caching storage capacity of CRV k ∈ K

CRf
n(t) Cache state of each content f for RSU n in time slot t

CV f
k (t) Cache state of each content f for CRV k in time slot t

REk(t) Remaining size of the content requested by CRV k in time slot t

ri,j(t) Data rate to fetch a segment of content f between cache node i and CRV j

Qk(t) Request of CRV k at time slot t

pi,j Request transition probability from content i to j of CRV k

Lock(t) Region index where CRV k is located at time slot t

ΔCRf
n(t) Cache update action of RSU n for content f

ΔCV f
k (t) Cache update action of CRV k for content f

WM0,k(t) Allocated bandwidth to CRV k by MBS 0

WRn,k(t) Allocated bandwidth to CRV k by RSU n

ci,j(t) Transmission cost from edge caching node i to CRV j at time slot t

4 Problem Formulation

In this section, we formulate the joint optimization of content caching and deliv-
ery as a Markov decision process (MDP) problem. The detailed definitions of
MDP, including state space, action space and reward, will be given.

4.1 State Space

At the beginning of each time slot, the agent will receive environment state
information, including request content index, caching state, remaining size of
content and vehicle locations. Specifically, the state space contains the following:

1. Qk(t) ∈ F: request of CRV k at time slot t
2. CRf

n(t) ∈ {0, 1}: cache state of each content f for RSU n at time slot t

3. CV f
k (t) ∈ {0, 1}: cache state of each content f for CRV k at time slot t

4. REk(t) ≤ Smax: remaining size of the content requested by CRV k in time
slot t, where Smax denotes the max size of all contents

5. Lock(t) ∈ {1, 2, ..., L}: location of CRV k at time slot t, which is represented
by the region index the CRV is driving in. There will be more details about
transport regions in Sect. 6.

The joint state space of the MDP process is denoted by s(t) ∈ S:

s(t) = {Q(t),CR(t),CV(t),RE(t), Loc(t)}. (4)
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Thus, the size of the whole state space is |S| = (F +1)K ×2(N+K)F ×SK
max ×

LK , which grows exponentially with the number of vehicles K and has poor
scalability.

4.2 Action Space

After receiving the current environment state, the agent will decide which con-
tents should be stored to which cache nodes and how to allocate the bandwidth
resource, which would be done to the environment in order to achieve a lower
communication cost. To be specific, the action space contains the following:

1. ΔCRf
n(t) ∈ {−1, 0, 1}: RSU cache update action, where -1 means deleting

the content from the cache, 0 refers to maintaining the content cache states
and 1 means inserting the content into the cache

2. ΔCV f
k (t) ∈ {−1, 0, 1}: CRV cache update action, which has the same meaning

as ΔCR(t)
3. WM0,k(t) ≤ Wmbs: allocated bandwidth to CRV k by MBS 0
4. WRn,k(t) ≤ W rsu

n : allocated bandwidth to CRV k by RSU n.

The joint action space of the MDP process is denoted by a(t) ∈ A:

a(t) = {ΔCR(t),ΔCV(t),WM(t),WR(t)}. (5)

Thus, the size of the whole action space is |A| = 3(N+K)F × (Wmbs)K ×
(W rsu

n )NK . Same as above, the size of action space grows exponentially with the
number of vehicles K.

4.3 Reward

The objective of this content caching and delivery policy is to provide content
delivery services for smart vehicles with the communication cost as lower as
possible. Based on this assumption, we design the following cost function to
represent the transmission cost from edge caching node i(i.e., MBS and RSUs)
to CRV j in the scenario of vehicle networks:

ci,j(t) = pb
i ∗ min (REj(t), ri,j(t) ∗ Δt) ,∀i ∈ N,∀j ∈ K (6)

where pb
i means the price per unit bandwidth for edge caching node i, which

is higher for the MBS and lower for RSUs on account of different distances to
CRVs. We assume that the service provider adopts resource-usage-based pricing
[12]. If the remaining size of the content in one time slot (i.e., REj(t)) is smaller
than the maximum amount of data transmitted in one time slot (i.e., ri,j(t)∗Δt),
it will be billed according to the actual amount of data transmitted.

Further, the objective function can be given by the time-averaged transmis-
sion cost:

min lim
T→∞

1
T

T∑

t=1

N∑

i=0

K∑

j=1

ci,j(t). (7)
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Considering that general reinforcement learning algorithms are designed to
maximize cumulative reward and we need to minimize the transmission cost, we
apply the negative exponential function of the transmission cost as the reward
function:

R(t) = e− ∑N
i=0

∑K
j=1 ci,j(t). (8)

According to the Bellman equation, we can obtain the optimal policy for
environment state s:

μ∗(s) = argmax
a∈A

[

R +
∑

s′∈S

Pr (s′ | s, a)V (s′)

]

(9)

where s and a are the current state and action at time slot t, s′ is the next state
at time slot t + 1 and V (∗) is the value function of state.

5 Hierarchical Reinforcement Learning-Based Caching
and Delivery

In this section, we propose the hierarchical reinforcement learning (HRL)-based
mobility-aware content caching and delivery policy for vehicle networks, in order
to reduce the dimensions of state and action space and achieve better scalability
and universality. In addition, we apply the LSTM algorithm to mine the mobility
patterns of vehicles for the purpose of caching potential popular contents in
advance.

According to the problem formulated in Sect. 4, the state space and action
space are fairly massive and grow exponentially with the number of vehicles,
which results in poor scalability. Convergence will take a long time if we sim-
ply apply traditional reinforcement learning algorithms, such as Q-learning and
DQN. This leads to greatly reduced model scalability and actual application
value. To address the curse of dimensionality, we apply the hierarchical rein-
forcement learning and divide the joint optimization of content caching and
delivery into two subproblems (i.e., vehicle side and RSU side), as shown in
Fig. 2.

joint optimization of content caching and delivery

Subproblem :
vehicle side policy

for given ∆CR

Subproblem 2 :
RSU side policy

for given ∆CV,WM,WR

HRL-based policy

Fig. 2. The framework of hierarchical reinforcement learning(HRL)-based policy.
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Subproblem 1: vehicle side policy.

For given cache action in RSUs ΔCR(t)

μ∗
V (s) = argmax

ΔCV(t),WM(t),WR(t)

[

R +
∑

s′∈S

Pr (s′ | s, a)V (s′)

]

. (10)

Subproblem 2: RSU side policy.

For given cache action in CRVs {ΔCV(t),WM(t),WR(t)}

μ∗
R(s) = argmax

ΔCR(t)

[

R +
∑

s′∈S

Pr (s′ | s, a)V (s′)

]

. (11)

Note that the agent decision for cache action ΔCR(t) in RSU side only affects
the state CR(t) , which has no influence on the vehicle side. In other words,
adjusting the RSU side policy has much less influence on the vehicle side. Hence,
we first optimize the vehicle side policy in subproblem 1 with RSU side policy
fixed. We will apply DDPG algorithm to solve subproblem 1 in Sect. 5.1. Then,
we will optimize the RSU side policy in subproblem 2 with vehicle side policy
fixed and use Double-DQN algorithm to address subproblem 2 in Sect. 5.2.

5.1 Vehicle Side Policy

In this section, we fix the RSU side policy and optimize the vehicle side policy. In
this case, the state space is simplified to s(t) = {Q(t),CV(t),RE(t), Loc(t)} and
the action space is simplified to a(t) = {ΔCV(t),WM(t),WR(t)}. Accordingly,
the size of state space decreases to (F + 1)K × 2KF × SK

max × LK and the
size of action space decreases to 3KF × (Wmbs)K × (W rsu

n )NK . Considering the
massive action space, we choose the Deep Deterministic Policy Gradient (DDPG)
algorithm [6] to address this MDP problem. Different from the value-based DQN,
DDPG is policy-based (i.e., directly output actions) and absorbs the advantages
of DQN, which makes it more suitable for high-dimensional continuous action
spaces. The architecture of DDPG is shown in Fig. 3. In the following parts, we
will discuss the detailed modules of DDPG.

Actor Network µ Update. Different from stochastic policy, the actor network
μ learns a deterministic policy a = μ(s|θμ) with the actor network parameter
θμ. The input is the current state s and its output is the deterministic action
μ(s|θμ), which is used to update the actor network parameter with the output
of critic network Q(s, a):

∇θμμ = ∇aQ(s, a)∇θμμ(s|θμ). (12)
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s

S' Actor Target
μ’

Actor μ Critic

Critic Target
’

Update the Actor NetworkUpdate the Actor Network

Update the Critic Network

Fig. 3. The architecture of DDPG.

Critic Network Q Update. The critic network Q is responsible for evaluating
policies based on the action-value function Q(s, a) with the critic network param-
eter θQ. The input is the current state s and the actual action at = μ(s|θμ)+N
where N denotes the Ornstein-Uhlenbeck noise [18] that functions as the explo-
ration of policy. The output is the value function Q(s, a) which is used to update
the actor network parameter and calculate the TD error yt − Q(s, a) where yt

is the target value generated by critic target network Q′. The critic network
parameter θQ will be updated by minimizing the loss:

Loss = MSE(Q(s, a), yt) (13)

= MSE
(
Q(s, a), R + γQ′

(
s′, μ′(s′|θμ′

)
))

. (14)

Target Networks Update. The actor target network μ′ and critic target net-
work Q′ are applied to calculate the target value yt. Their architectures are
consistent with the primary networks. However, they are updated slowly com-
pared to the primary networks, which makes the learning performance stable
and robust. Exponentially weighted moving average (EWAM) scheme is applied
to update the target networks’ parameters θμ′

and θQ′
:

θμ′ ← τθμ + (1 − τ)θμ′
(15)

θQ′ ← τθQ + (1 − τ)θQ′
(16)

where τ ∈ [0, 1] is the weight parameter.

Experience Replay. DDPG draws on the experience replay of DQN. It con-
structs a replay memory to store a series of historical experiences [s, a, c, s′] to
avoid sample-correlation during the training process. The network parameters
can be updated by randomly choosing mini-batch samples from replay memory.
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5.2 RSU Side Policy

In this section, we fix the vehicle side policy and optimize the RSU side policy.
In this case, the state space is simplified to s(t) = {Q(t),CR(t), Loc(t)} and
the action space is simplified to a(t) = {ΔCR(t)}, which are only related to
RSUs. The dimension of state space decreases to (F + 1)K × 2NF × LK and
the dimension of action space decreases to 3NF . As can be seen, the dimensions
of state and action are reduced tremendously compared to the vehicle side and
the action space is discrete. For the purpose of accelerating the convergence, we
adopt the Double-DQN algorithm to solve subproblem 2.

Experience 
Replay

Environment Training DNN Target DNN

(s, a, r, s')

(s,a) s'

s

r

Q(s, a; θ)

Synchronize 
every N steps

Fig. 4. The architecture of the DQN algorithm. The Double-DQN shares the same
architecture and deep network as the DQN algorithm and differs from the DQN only
in the calculation of the target value.

Double-DQN [20] is the variant of the DQN algorithm and has the same
architecture and deep network as the DQN algorithm, as shown in Fig. 4. In the
DQN scheme, the deep neural network (DNN) Q is applied to estimate the state-
action reward Q(s, a). If we simply use one DNN, there are two key challenges
in the training step: 1) The target is unstable, where the objective function
for optimizing the DNN parameters depends on these parameters themselves;
2) The training samples are strongly correlated instead of independent, which
makes the gradient descent towards a deterministic direction and there is a
considerable probability that the training process will not converge. To address
these challenges, DQN takes two measures accordingly: 1) Freezing target DNN
Q′: The parameters of target DNN Q′ are fixed during several training steps
until the parameters of DDN Q are synchronized to the target DNN Q′, in order
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to keep the learning objective steady; 2) Experience replay memory D, which
consists of interactions between the client and the environment. In each training
step, DQN samples a batch of data from the experience memory as the training
data and calculates the target value as follows:

yt =

{
Rt if episode terminates at step t + 1
Rt + γ maxa′ Q′ (st+1, a

′; θ−) otherwise.
(17)

The loss function is defined as the mean square error: (yt − Q(s, a))2.
However, due to the max operation, the state-action value Q(s, a) would be

overestimated and the entire evaluation is overestimated accordingly since we
always tend to select the action argmaxa′ Q′ (st+1, a

′; θ−). To avoid this upward
bias, Double-DQN decouples the calculation operation by applying the training
DNN Q to select actions, while employing the target DNN Q′ to evaluate actions.
The only difference between Double-DQN and DQN is the calculation of the
target value, which alleviates the overestimation and instability:

yt =

⎧
⎨

⎩

Rt if terminate at step t + 1

Rt + γQ

(

st+1, argmax
a

Q′(st+1, a; θ); θ−
)

otherwise.

(18)

6 Experiments

In this section, we first introduce the experiment setup and the baseline schemes.
Then the performance of our proposed scheme is evaluated on a real-world
dataset and simulation results are given.

6.1 Experiment Setup

The schemes are implemented in Python 3.6 and experiments are run on a desk-
top computer with AMD R5 3600X CPU, 3.8GHz, 16G RAM under Ubuntu
18.04.5 LTS. Furthermore, we use the TensorFlow platform to implement the
DDPG and Double-DQN algorithm of the content caching and delivery policy.
The main parameters employed in the simulations are summarized in Table 2.

We apply the taxi trajectory dataset of the Xiamen island to simulate the
mobility of vehicles, which consists of latitudes, longitudes and GPS times, etc.
The road network of Xiamen island is used for the simulation, which contains
24,750 road nodes and 3,234 road segments. This road network covers the range
of [118.0660E,118.1980E] × [24.4240N,24.5600N]. The Xiamen island is divided
into 16 transport regions and a day is divided into 24 time slots.

Furthermore, we apply Long Short-Term Memory (LSTM) algorithm, which
has proven to be an effective solution to time series prediction problems, to
preprocess the trajectory data and mine vehicle mobility patterns before being
fed to the RL agent. Specifically, we apply 24 units of LSTM to predict the
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Table 2. Simulation Parameters.

Parameter Value/Description

Number of RSUs 16
Number of CRVs [30, 60]
Number of contents [10, 40]
Size of contents [20, 80] MB
Storage Capacity of RSU 200 MB
Storage Capacity of CRV [80, 120] MB
Bandwidth of MBS, RSUs [5, 20] MHz
Transmission Power of MBS 35 dBm
Transmission Power of RSU 33 dBm
Power of Gaussian Noise –95 dBm

location in the next time slot. At the beginning of each time slot, the vector
of the previous latitudes and longitudes would be given to the input of LSTM.
The output of LSTM is the latitude and longitude where vehicles may be in this
time slot. Then the latitude and longitude will be transferred into the index of
transport region, which is served as the location of CRVs at time slot t (i.e.,
Lock(t) in Sect. 4.1).

6.2 Baseline Schemes

For performance comparison, we present the baseline schemes as follows:

– Random: The contents cached in RSUs and CRVs are randomly selected from
all of the available contents.

– Least Recently Used (LRU): When the cache capacity of RSU or CRV is
already full, the least recently used content will be evicted. In other words,
the longest unrequested content will be removed.

– Least Frequently Used (LFU): When the cache capacity of RSU or CRV is
already full, the least frequently used content will be evicted. In other words,
the content with the smallest request frequency will be removed.

– Double Time-Scale DDPG (DTS DDPG) [12]: The cooperative caching prob-
lem is modeled as a double time-scale Markov decision process (DTS-MDP).
The content caching decision is made on the large time-scale while the joint
decision of vehicle scheduling and bandwidth allocation is implemented on
the small time-scale. The DDPG algorithm is implemented to obtain a sub-
optimal solution.

6.3 Simulation Results

Impact of the Number of Contents. As shown in Fig. 5, we compare the
transmission cost for different numbers of contents. We vary the number of con-
tents from 10 to 40. The capacity of CRVs is 100 MB and the number of CRVs
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Fig. 5. Impact of the number of contents
on the transmission cost.

Fig. 6. Impact of the number of contents
on the cache hit ratio.

is 50. It can be observed that the transmission costs of five approaches all obvi-
ously increase with the increase of the number of contents. This is because the
more contents there are, the more cache replacement is needed, which causes an
increase in the transmission cost. As expected, the proposed HRL-based caching
policy performs better with various numbers of contents compared to other base-
line schemes. The line chart in Fig. 6 demonstrates that the cache hit ratio has
a decreasing trend for all caching schemes as the number of contents increases.
Our proposed approach still performs better than other baseline schemes and
the advantage is even greater when the number of contents increases.

Fig. 7. Impact of the capacity of CRVs
on the transmission cost.

Fig. 8. Impact of the capacity of CRVs
on the cache hit ratio.

Impact of the Capacity of CRVs. Then, we compare the transmission cost
and cache hit ratio for different cache capacities of CRVs. We change the cache
capacity of CRVs from 80 MB to 120 MB. As we can see in Fig. 7, the increasing
cache capacity has a positive impact on the transmission cost. The transmission
cost decreases with the increase of cache capacity, especially for our proposed
HRL-based caching policy. This is reasonable because a larger cache capacity
enables CRVs to cache more popular contents simultaneously, which will reduce
the number of wireless communications to the MBS or RSUs. In Fig. 8, as the
cache capacity grows, our proposed approach is the best scheme and the Random
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scheme has the worst performance. This is because the Random scheme does not
consider the content popularity and has no ability to predict the next request.

Fig. 9. Impact of the number of CRVs on
the transmission cost.

Fig. 10. Impact of the number of CRVs
on the cache hit ratio.

Impact of the Number of CRVs. In addition, we change the number of CRVs
to compare the transmission cost and the cache hit ratio. We change the number
of CRVs from 30 to 60 and the number of contents is set to 100. The capacity of
CRVs is set to 100 MB. Figure 9 illustrates that our approach achieves the best
performance and the gap between HRL-based caching policy and DTS DDPG
policy becomes larger with the increasing number of CRVs. This reveals that our
approach has better scalability than DTS DDPG and is more suitable for large-
scale vehicle network scenarios. In Fig. 10, the cache hit ratio decreases with the
increasing number of CRVs. This is because the cache capacity is limited and
unable to satisfy all requests of vehicles. Furthermore, it is worth noting that
the LRU and LFU schemes have similar performances, as they are both driven
by simple statistics of request history and mine user request patterns to guide
the cache decision.

The Convergence Performance. Figure. 11 shows the convergence perfor-
mance of our proposed HRL approach and other baseline schemes. The number
of contents is fixed as 100. The capacity of CRVs is set to 100 MB and the
number of CRVs is 50. It can be observed that for HRL-based caching pol-
icy and DTS DDPG policy, the total content transmission cost of each episode
decreases rapidly and gradually maintains a relatively stable value with the
increase of training episodes. Meanwhile, there are no significant changes occur-
ring in the transmission cost with the increase of episodes for Random, LRU and
LFU schemes. This is consistent with the fact that they are not reinforcement
learning-based schemes. In addition, the HRL-based caching policy converges at
about 400 episodes, which is obviously faster than DTS DDPG. This shows that
it has better scalability from another aspect.
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Fig. 11. The convergence performance.

7 Conclusion

In this paper, we focus on the main challenges in vehicle networks, including
high mobility and scalability. An HRL-based mobility-aware content caching
and delivery policy for vehicle networks is proposed to achieve better scala-
bility and generality. The joint optimization of content caching and delivery is
decomposed into two subproblems. DDPG and Double-DQN are adopted to deal
with sequential decision problems. Experimental results demonstrate that our
approach reduces the dimension of state space and outperforms other baseline
schemes in terms of transmission cost and convergence speed. Our approach still
has huge room for improvement. In the future, we will continue to improve our
scheme in terms of more accurate location prediction and collaboration between
edge caching nodes.
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Abstract. Federated Learning (FL) is a distributed learning paradigm,
in which users share their gradients instead of local data to preserve pri-
vacy. Previous works have shown that the server in FL can reveal user’s
local data by inverting shared gradients. However, a large batchsize can
defense against these attacks effectively by obfuscating gradients calcu-
lated on each data. In this paper, we propose a novel Gradient Inversion
Attack which can compromise privacy in large-batch FL. Firstly, the
server constructs malicious model parameters which can mitigate the
confusion of gradients. Then users’ model parameters are tampered pur-
posely by the server. From users’ shared gradients computed on mali-
cious model parameters, the server can recover private local trainsets
perfectly in large-batch FL. Experiments on CIFAR100 show that our
method can recover 92%, 77% and 54% of the data points in a batch
with batchsize 128, 256 and 512, respectively. Compared with previous
works, our method has a higher performance and versatility.

Keywords: Federated learning · Gradient inversion · Privacy leakage ·
Malicious model parameters

1 Introduction

With the rapid development of electrical technology, Machine Learning is widely
used in various institutions, such as hospitals, banks and goverments. Different
institutions need to train a global model collaboratively while ensuring data
privacy. Federated Learning (FL) [8,11,19] is proposed to solve the question. In
FL, users train models on their local data and share gradients with a central
server. The central server computes average gradients and sends it back to all
participated users. People believe that privacy is preserved because their training
data is kept local.

The privacy-preserving of Federated Learning is based on the assumption
that shared gradients leak little privacy. However, recent works have overturned
the assumption and proven that the server can compromise privacy by inverting
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shared gradients. Generally, privacy attacks in FL can be divided into three cate-
gories: Membership-Inference [12,15], Property-Inference [3,10,12] and Gradient
Inversion [4,6,7,14,16,20–22].

(a) Original data.

(b) Ours.

(c) Deep leakage from gradients [22].

(d) Inverting gradients [4].

Fig. 1. Examples of recovered data compared of two optimization-based methods and
ours. The target model is a fully connected neural networks and the batchsize is 256.

Gradient Inversion is the most powerful attack of these three. Attackers can
recover victim’s private data directly by analyzing shared gradients. Hitaj et al.
[6] firstly proposed an attack on distributed deep learning based on Generative
Adversarial Networks (GAN) [5]. Attackers train a GAN with shared gradients to
generate a prototypical sample of victim’s private data. Zhu et al. [22] shows the
feasibility of recovering original training data from gradients by formulating it
as an optimization problem. Tremendous researches [4,7,20,21] have been made
to improve this optimization-based attack.

However, a large batchsize can defense against optimization-based methods
effectively. Because a large batchsize exacerbates the confusion of gradients, mak-
ing it harder to recover data by solving optimization problem. Experiments in
[4,20,22] show that these attack methods are effective only when the batch-
size of training is no more than 48. Latest works [1,2,17] try to attack privacy
in large-batch training by tampering architectures or parameters of the global
model purposely. While these methods are limited to models using ReLU lay-
ers. In this study, we propose a novel Gradient Inversion Attack to compromise
privacy in large-batch FL. We construct malicious model parameters to miti-
gate the confusion of gradients. Then private data can be recovered perfectly
and quickly by analyzing shared gradients. Figure 1 represents some examples



Compromise Privacy in Large-Batch FL 65

of recovered data with our method and optimization-based methods. We also
summarizes previous methods in Table 1 and compare them with our method.
The advantages of our method are as follows:

(1) Our attack method can recover more private data in a large batchsize such
as 128, 256 and 512. While optimization-based methods require a small
batchsize such as 1, 16 and 32.

(2) Our method is effective on models using different activation functions such
as ReLU, Tanh and Sigmoid.

(3) Our method can recover data points perfectly and quickly instead of spend-
ing much time solving optimization problems.

Table 1. Comparison of previous works and our method. AD: Auxiliary data, RID:
Recover individual data point, AF: Activation functions in target models, Opt: Opti-
mization for recovering data points.

Method Label-Free AD-Free RID Batchsize
1 −→ larger

AF-Free Opt-Free

Hitaj et al., 2017 [6] � � �
Zhu et al., 2019 [22] � � � �
Geiping et al., 2020 [4] � � � � �
Yin et al., 2021 [20] � � � �
Schuster et al., 2022 [1] � � � � �
Ours � � � � �

In this paper, we assume the server owns auxiliary data that is independently
and identically distributed with users’ private trainsets. It could be testsets pro-
vided by users for validating model performance. And we should point out that
recovered data points do not exist in auxiliary data. These are strong assump-
tions but can further reveal the great power of Gradient Inversion Attacks.
Figure 2 demonstrates the main idea of our attack method. Firstly, the server
constructs malicious model parameters with auxiliary data. Then tamper users’
model parameters by sending malicious averaged gradients ḡ. Each user will com-
pute gradients gi on malicious model parameters and share them with the server.
Finally, the server can recover users’ private data by analyzing shared gradients
gi. Our attack is based on the direct data leakage [13] in the FC layer. However,
gradient obfuscation in a batch hinders the data leakage effectively. So we uti-
lize malicious model parameters to mitigate the obfuscation in shared gradients,
making it possible to compromise privacy in large-batch FL. Figure 4 shows each
recovered data point in a batch with our attack method. We successfully recover
59 of 64 data points in a batch perfectly.

Our main contributions are as follows:

(1) We analyze the direct data leakage in a FC layer theoretically in both one
data training and mini-batch training. We confirm that large-batch training
can not guarantee users’ privacy in FL.
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(2) We propose a novel Gradient Inversion Attack. Exploiting malicious model
parameters, we can mitigate the obfuscation in shared gradients and com-
promise privacy in large-batch FL.

(3) We experimentally show that our method has a better performance and
versatility compared with previous methods. We also explain the reasons
for our outstanding performance on models using three different activation
functions.

Fig. 2. The illustration of our attack method. The server tampers local models by
delivering the malicious model parameters ḡ to all users. Then the server can recover
private trainsets successfully from shared gradients gi which is computed on tampered
local models.

2 Related Work

2.1 Federated Learning

Federated Learning [11] is a distributed learning paradigm which has gained
much attention in recent years. Users cooperate to train a global machine learn-
ing model via a privacy-preserving way in which gradients are shared instead
of private data. A central server trusted by most users coordinates the training
process by iteratively aggregating users’ gradients. In details, every user trains
the global model with their local data (Xi, Yi) in round k by optimizing the
model parameters θk using a loss function L. The server computes the aver-
age gradients 1

N

∑N
i=1 ∇θLθk(Xi, Yi) with N users’ shared gradients. The latest

average gradients are sent back to individual users and they can update local
models according to Eq. (1). This process is called as federated SGD and will
continue for many rounds until the global model converges.

θk+1 = θk − τ
1
N

N∑

i=1

∇θLθk(Xi, Yi) (1)
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2.2 Gradient Inversion Attack

GAN-Based Methods. Hitaj et al. [6] firstly propose a GAN-based method
to compromise privacy in FL. The GAN procedure pits a discriminative deep
learning network D against a generative deep learning network G. They use the
global model in FL as network D to help network G generate victim’s data.
Wang et al. [16] proposed mGAN-AI which works “invisibly” on the server side.
It enables a malicious server to target any client and compromise the client-
level privacy. However, these GAN-based methods can only be used to generate
class-wise data, not specific data points.

Optimization-Based Methods. The idea of optimization-based methods is
to generate fake data which can produce the similar gradients with real data. To
recover original data (x∗, y∗) from gradients ∇θLθ(x∗, y∗), DLG [22] formulates
it as the problem of

min
x,y

||∇θLθ(x, y) − ∇θLθ(x∗, y∗)||2 (2)

and solve this optimization problem with an L-BFGS solver. Zhao et al. [21] find
that the ground truth label y∗ can be directly obtained from gradients, making
DLG more stable and efficient. However, DLG works poorly on neural networks
with ReLU layers. As L-BFGS slover requires the model parameters are third
order derivable while ReLU makes higher-order derivatives discontinuous. To
make optimization-based methods more general, Geiping et al. [4] use the cosine
similarity to calculate the distance between fake and true gradients and solve it
with an Adam solver. The cosine similarity can compute both norm magnitude
and direction of gradients and improves the effectiveness of attacks. The very
recent work [7,20] introduce prior knowledge to constrain the search space of the
optimization problem and achieve a better result.

Malicious Parameters Methods. Different from two former methods, mali-
cious parameters methods [1,2,17] introduce a dishonest server who can tamper
gradients sent to users purposely. Fowl et al. [2] insert an imprint module into the
global model as a special layer to reveal private data. Improved methods with-
out modification of model architecture are proposed in [1]. They initialize users’
model parameters adversarially to recover private data in large-batch training.
However, their method only perform well on models using ReLU layers. In this
study, we construct more effective malicious parameters with auxiliary data.
We can recover more data than [1] on models using three different activation
functions.

3 Method

3.1 Threat Model

In FL, users and a central server cooperate to train a global model according
to the federated SGD. The server intends to recover users’ local trainsets from
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shared gradients. We assume the server has auxiliary data such as users’ testsets
which is used to construct malicious model parameters θ̂. The server can tamper
users’ normal model parameters θu as θ̂ by sending malicious averaged gradients
ḡ = θ̂ − θu. Then users train models on one batch of local data and share
gradients with the server. From shared gradients, the server can recover many
private data points. We will investigate the strength of Gradient Inversion attack
via malicious model parameters.

3.2 The Direct Data Leakage from Gradients

Data Leakage in Single-Data Training. Firstly, we introduce the direct
leakage of single data point in a biased FC layer. It was found in prior works
[13,22] and inspires our method in this study.

For a biased FC layer followed by a ReLU activation function, we let W ∈
R

m×n denote the weights and B ∈ R
m denotes the bias. The output yi of ith

neuron with the input x ∈ R
n is computed as

yi = wT
i x + bi (3)

where wi and bi are the ith row of W and B respectively. By back propagation,
we obtain the gradients of loss function L w.r.t weights wi and bias bi as

∂L
∂wT

i

=
∂L
∂yi

· ∂yi

∂wT
i

=
∂L
∂yi

· x (4)

and
∂L
∂bi

=
∂L
∂yi

· ∂yi

∂bi
=

∂L
∂yi

(5)

Joint Eq. (4) and Eq. (5), the single input x is recovered perfectly as

x =
∂L

∂wT
i

· (∂L
∂bi

)−1 (6)

if there exists any neuron in this FC layer with ∂L
∂bi

�= 0. For fully connected
neural networks (FCNN), we can recover its single input from gradients of the
first FC layer directly.

Data Leakage in Mini-Batch Training. In practical scenarios, the batchsize
is usually set as 32, 64 or greater values. For mini-batch training, we find that

Proposition 1. Consider a FC layer trained on a batch of data, the recovered
data x̃ computed from aggregated gradients is a linear combination of each orig-
inal input.
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Proof. When training on a batch of N data points, aggregated gradients ∂L
∂wT

i

and ∂L
∂bi

of the ith neuron are the average value of gradients computed on each
data. The aggregated gradients can be written as

∂L
∂wT

i

=
1
N

N∑

j=1

∂L
∂yi,j

· ∂yi,j

∂wT
i,j

=
1
N

N∑

j=1

∂L
∂yi,j

xj (7)

∂L
∂bi

=
1
N

N∑

j=1

∂L
∂yi,j

· ∂yi,j

∂bi,j
=

1
N

N∑

j=1

∂L
∂yi,j

(8)

So, the recovered data x̃ from gradients of the ith neuron can be computed as
follows

x̃ =
∂L

∂wT
i

· (∂L
∂bi

)−1 =
N∑

j=1

αjxj and αj =
∂L

∂yi,j
· (

N∑

n=1

∂L
∂yi,n

)−1 (9)

Here αj is the factor of each data point xj .

Equation (9) demonstrates that a large batchsize makes the recovered data
more confusing and protects data privacy to a certain extent. It is a common
solution applied in FL for defending against Gradient Inversion attacks and is
useful for both GAN-based methods and optimization-based methods. However,
the single-data-activated neuron (SDAN) in the FC layer still leaks privacy in
large-batch training.

Definition 1. (SDAN). Given a batch of training data {xj |j = 1, 2, · · · , N}. We
call the ith neuron as an SDAN w.r.t data xt if its output yi,j = wT

i xj + bi � 0
for all j �= t where wi, bi are the weights and bias of the ith neuron.

If the ith neuron followed by a ReLU layer is an SDAN w.r.t xt, the output
zi,j = max(yi,j , 0) = max(wT

i xj + bi, 0) = 0 for all j �= t. And the gradients ∂L
∂yi,j

will be 0 for all j �= t. The ReLU layer blocks the gradients on the data with a
negative output. So the aggregated gradients are only related with data xt. The
factor αj = 0 for all j �= t and Eq. (9) can be converted as x̃ = xt.

We find that data points can still be recovered perfectly via SDANs in large-
batch training. As attackers, we expect more SDANs exist in the first FC layer.
If every data point owns at least one SDAN in the first FC layer, we can recover
the whole batch of data directly.

3.3 Constructing Malicious Model Parameters

SDANs can help us compromise privacy from aggregated gradients in large-batch
training. However, there exists a small number of SDANs in a normal trained
model. To amplify the leakage of private data, we find it is possible to generate
more SDANs in the FC layer by constructing malicious model parameters.

Algorithm 1 shows our method of constructing malicious model parameters θ
for the first FC layer. Firstly, we initialize the model parameters with Algorithm



70 S. Zhang et al.

3 proposed in [1]. It initializes parameters by sampling from the Gaussian distri-
bution. This initialization can further improve the performance of our proposed
method. In Sect. 4.3, we make comparative experiments to validate performances
of our method with and without Algorithm 3.

Secondly, we train malicious parameters with auxiliary data to learn prior
knowledge. The trained malicious parameters can generate more SDANs accord-
ing to the feature distriubution of auxiliary data. In Algorithm 1, our objective
is to make each data owns its SDAN and the locations of SDANs do not over-
lap with each other. To realize this objective, we select suitable neurons to be
SDANs in each round of training. For the ith data xi in one batch, compute
its output Oi = Sigmoid(f(θ, xi)) ∈ R

L passing through a FC layer f with
L neurons followed by a Sigmoid layer. The Sigmoid layer scales the neuron
outputs f(θ, xi) in the range (0, 1). If we want the tth neuron to be the SDAN
w.r.t xi, the output ft(θ, xi) of the tth neuron should be a big positive value
and outputs fj(θ, xi) of other neurons should be small negative values. So Oi,t

should be close to 1 and Oi,j for j �= t should be close to 0. For each data, we
calculate the gradients ∇θl(Oi, t) of negative log likelihood loss function l
to update malicious model parameters. The malicious model parameters θ can
be expressed as

θ ← argmin
θ

Exi∼Daux
[−log(Sigmoid(fti(θ, xi)))] (10)

where ti is the index of the SDAN w.r.t each data xi.
Comparing with artificial assignments of SDANs, we let each data choose

their best SDANs automatically in the training process. Algorithm 2 TopkIndex
shows the selection of SDANs of each data. The list S records the neurons those
have already been chosen as SDANs by other data in the same batch. The list C
records the number of times each neuron is selected. Firstly, we exclude neurons
in list S and neurons with a selected times greater than c̄ which is the average
value of C. Then select the tth neuron as the SDAN w.r.t xi when Oi,t is the
largest among the remaining neurons. Additionaly, we set a parameter k to let
each data select multiple neurons as SDANs. A suitable value of k can generate
more SDANs and help us recover more data.

4 Experiments

In this section, we validate the performance of our proposed Gradient Inversion
attack. We introduce the metric Recovery Ratio R40dB which is the percentage
of recovered data in a batch. R40dB is defined as

R40dB =
N40dB

B
(11)

where N40dB is the number of recoverd data with PSNR greater than 40dB and
B is the number of data in a batch. The recovered data with a PSNR of 40dB
can be considered to be the same as original data. As the mean square error
between two figures is smaller than 1e − 4.
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Algorithm 1. Malicious Parameters Training
Input:

θ: parameters of one FC layer f with L neurons
k: the number of neurons to select per data
η: learning rate
Daux: auxiliary data
N : training batchsize

Output:
θ: malicious model parameters

1: θ ← ParametersInitialization(θ, N (μ, σ), s)
2: C ← 0 where |C| = L
3: c̄ ← 1

L
sum(C)

4: for r ← 1 to � |Daux|
N

� do
5: S ← ∅
6: for i ← 1 to N do
7: Oi = Sigmoid(f(θ, xi))
8: Ti = TopkIndex(Oi, k,S,C, c̄)
9: gi ← (1/|Ti|)∑ ∇θl(Oi, t) where t ∈ Ti

10: S ← S ∪ Ti

11: for each t ∈ Ti do
12: Ct ← Ct + 1
13: c̄ ← 1

L
sum(C)

14: ḡ ← 1
N

∑N
i=1 gi

15: θ ← θ − ηḡ
16: return θ

Algorithm 2. TopkIndex
Input:

Oi: the output computed on data xi

k: the number of neurons to select per data
S: indexes of neurons that has been selected in one batch training
C: the number of times each neuron is selected
c̄: the average value of elements in C

Output:
Ti: indexs of neurons selected by data xi

1: Ti ← ∅

2: for each s ∈ S do
3: Oi,s ← 0
4: for j ← 1 to |C| do
5: if Cj > c̄ do
6: Oi,j ← 0
7: While k > 0 do
8: t ← argmaxOi,t

9: Ti ← Ti ∪ {t}
10: Oi,t ← 0
11: k ← k − 1
12: return Ti
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Algorithm 3. Parameters Initialization
Input:

θ: weights (n dimensions) and bias of one FC layer with l neurons, θ ∈ R
l×(n+1)

N (μ, σ): the Gaussian distribution with mean μ and std σ
s: the scaling factor

Output:
θ: initialized parameters of one FC layer

1: for i ← 1 to l do
2: N ← {j|j ∼ U(1, n)} where U is the Discrete uniform distribution and |N| = n

2

3: P ← {j|j ∈ {1, 2, 3, · · · , n} , j /∈ N}
4: z− ∼ N (μ, σ) and |z−| = n

2

5: z+ ← −s ∗ z−
6: θi [N] ← Shuffle(z−)
7: θi [P] ← Shuffle(z+)
8: return θ

Our method can be applied to attack both the fully connected neural network
(FCNN) M1 and the convolutional neural network (CNN) M2. Two models used
in experiments are listed in Table 2. We construct malicious parameters for the
first FC layer according to Algorithm 1. If the model is M2, we use the method
in [1] to set the parameters of convolutional layers. It makes convolutional layers
transmit data unaltered up to the first FC layer. Figure 3 shows the detailed
parameters of first three filters of each convolutional layer. The first three chan-
nels stay the same as original data after the operation of CNN. Then we can
recover original data from gradients of the first FC layer in models.

We use two different datasets, namely Fashion MNIST [18] and CIFAR100
[9]. In our experiments, the server as an attacker constructs malicious model
parameters with auxiliary data (testsets of each datasets), trying to recover
users’ private data (trainsets of each datasets).

Fig. 3. Malicious model parameters of filters in convolutional layers in M2.
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4.1 Comparison with Previous Methods

We compare our method with work [1,13]. The performance of [13] is the baseline
which represents the normal degree of data leakage in a FC layer. As the parame-
ters of the FC layer in [13] are sampled from standard Gaussian distribution. For
our method, we use the testsets to train malicious parameters with batchsize 64,
k = 4 on CIFAR100 and with batchsize 64, k = 1 on Fashion MNIST. Fashion
MNIST is used to train model M1 and CIFAR100 is used to train model M2.
The training process runs for 300 epochs with the learning rate η = 1e − 3 in
the first 200 rounds and η = 1e − 4 in last 100 rounds. For the method in [1],
malicious model parameters are generated according to Algorithm 3 with mean
μ = 0, std σ = 2 and the scaling factor s = 0.97. Table 3 shows the recovery
ratio R40dB of three methods against gradients using different batchsize.

Table 2. The architectures of neural networks used in experiments. n: number of
neurons, act: activation function, f: number of kernels, k: size of kernel, s: stride, p: size
of padding.

M1: FC NN Architecture M2:CNN Architecture

Dense(n=1024, act=relu) Conv(f=6, k=3, s=1, p=1, act=relu)
Dense(n=2048, act=relu) Conv(f=12, k=3, s=1, p=1, act=relu)
Dense(n=3072, act=relu) Conv(f=24, k=3, s=1, p=1, act=relu)
Dense(n=2048, act=relu) Flatten()
Dense(n=1024, act=relu) Dense(n=1024, act=relu)
Dense(n=Number of classes, act=None) Dense(n=Number of classes, act=None)

Table 3. Recovery-ratio R40dB(%) of three methods against gradients using different
training batchsize B.

FashionMNIST CIFAR100
[13] [1] Proposed [13] [1] Proposed

B=64 45.92 ± 4.98 66.10 ± 5.54 99.58±0.86 59.46 ± 5.77 95.92 ± 2.75 97.87±1.82
B =128 27.47 ± 2.94 44.94 ± 4.09 96.91±1.81 45.27 ± 4.21 85.08 ± 3.51 91.98±2.66
B =256 14.40 ± 1.84 31.04 ± 3.03 81.40±2.91 26.74 ± 3.31 67.73 ± 4.00 77.16±3.02
B =512 8.08 ± 2.14 18.75 ± 3.78 46.03±5.67 12.85 ± 1.47 43.06 ± 2.73 53.96±2.54

Compared with two other methods, our method has advantages in two
aspects:

High Recovery Ratio. In general, our method performs better that others
in all cases. Figure 4 illustrates all images in a batch recovered by our proposed
method. Results of [13] is the normal degree of direct data leakage in FC layers.
With the batchsize B gets larger, the average data leakage of each batch in
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[13] decreases from 45.92% to only 8.08% on Fashion MNIST. It demonstrates
that a large batchsize can prevent privacy leakage. With the help of malicious
parameters, our method and [1] both can recover more data points than [13].
Compared with [1], R40dB of our method is about 30% higher on Fashion MNIST
and 10% higher on CIFAR100 when B = 512. As the auxiliary data contain the
prior knowledge of trainsets of users. The training process makes the malicious
parameters adaptive to the distriubution of users’ local data, generating more
SDANs in the first FC layer. We further increase the upper bound of Gradient
Inversion attacks via malicious model parameters.

High Stability. The standard deviation of our method is lower than others
in most cases. As the training of malicious parameters in our method can get
the maximum expected value of recovery ratios for different batches of data.
It is an important feature for active attacks. Considering the victims have a
possibility to detect the malicious parameters, we expect to recover more data
points in a small rounds of attacks. The low deviation can ensure the success of
our attacks. While work [1,13] sample parameters from Gaussian distriubution,
it brings much instability.

Fig. 4. The recovered data of our attack against gradients trained on one batch of 64
data points. The odd columns show the original figures and the even columns show the
recoverd figures. We can reconstruct 59 of 64 data points perfectly.

4.2 Performance on Models Using Different Activation Functions

Methods in [1,13] and ours are all based on the direct data leakage caused by
ReLU. However, our method can perform well on models using different activa-
tion functions which is challenging to other methods. We further improve the
versatility of these Gradient Inversion attacks based on malicious parameters.
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In this section, we validate the performance of three methods on the model
M1 using different activation functions, including ReLU, Tanh and Sigmoid.
The results are shown in Table 4. As we can see, our method achieves a much
higher recovery ratio than others when the model uses Tanh and Sigmoid.

Table 4. Recovery ratio R40dB(%) of three methods on the model M1 using different
activation functions.

Fashion MNIST CIFAR100
[13] [1] Proposed [13] [1] Proposed

ReLU 45.76 ± 4.99 66.88 ± 5.53 99.55±0.91 63.50 ± 5.48 95.37 ± 2.84 97.88±1.87
Tanh 20.04 ± 4.45 15.61 ± 4.59 94.21±3.77 55.18 ± 6.01 16.66 ± 5.05 88.85±3.89
Sigmoid 4.99 ± 2.10 4.15 ± 2.32 73.22±6.96 39.93 ± 7.14 11.71 ± 4.85 71.37±5.99

Fig. 5. The gradients of three activation functions.

To explain the reason why our method is more effective for different activation
functions, we should analyze the outputs of neurons. In Sect. 3.2, we expect each
neuron can output a positive value PO on one specific data (positive data points)
and output negative values NO on other data (negative data points). Because
ReLU truncats the gradients, the factors α of negative data points all equal 0 in
Eq. (9). While gradients of Tanh and Sigmoid are continuous as shown in Fig. 5.
In this case, we can still recover data of high quality if the factor of the positive
data point is large enough and those of negative data points are small enough.

We denote the outputs of neurons as y and outputs of activation functions
as z = AF (y). From Eq. (9), we know αi,j ∝ ∂L

∂yi,j
. Due to ∂L

∂yi,j
= ∂L

∂zi,j

∂zi,j

∂yi,j
, we

find that αi,j ∝ ∂L
∂yi,j

∝ ∂L
∂zi,j

∂zi,j

∂yi,j
∝ ∂zi,j

∂yi,j
. The gradients of activation functions

gi,j = ∂zi,j

∂yi,j
have an important influence on performance of data recovery. Figure 5

shows the gradients g of three activation functions w.r.t the input y. So PO
should be small but positive to increase the gradient g and the factor α of
positive data points will get larger. NO should be small enough to decrease g
and the factor α of negative data points will get smaller.
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(a) The distribution of outputs on posi-
tive data points.

(b) The distribution of outputs on nega-
tive data points.

Fig. 6. The distribution of neuron outputs on positive and negative data points.

We trained the model M1 on CIFAR100. On the first FC layer, we collected
outputs of specific neurons from which we can recover data with PSNR greater
than 40 dB. Figure 6 illustrates the distribution of PO and NO of our method
(PO1, NO1 ) and the method in [1] (PO2, NO2 ). Obviously, PO1 are smaller
positive values than PO2 for positive data points. NO1 are smaller negative
values than NO2 for negative data points. So our method can make the factor
of positive data larger than that of negative data. And we can recover more data
points from aggregated gradients in the case of Tanh and Sigmoid.

From Fig. 5, we also find that the gradient of Tanh decreases much faster
than that of Sigmoid. It makes more negative data points have a lower factor
in recoverd data. So the recovery ratios in the case of Tanh are generally higher
than those in the case of Sigmoid.

4.3 Factors Affecting the Performance of Our Method

Local Gradient Update. In practical FL, users will update their model
parameters for several epochs and then send gradients to the central server. The
local updates may change our malicious parameters and decrease the recovery
ratio. Figure 7 shows the variation of recovery ratio with local training epochs.
In each epoch, the user trains local models with 10 batches of data and the
batchsize is 64. As we can see, the recovery ratio can remain the same if the
user uses a small learning rate 1e − 3 or 5e − 3. The largest learning rate 5e − 2
makes the recovery ratio decrease from 0.98 to 0.52 only in one epoch. So the
performance of our attack depends on the local learning rate and epochs. If local
updates make small changes to the malicious parameters, our method can still
recover much original data.
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Fig. 7. The recovery ratio dependent on the local training epochs and learning rate in
practical FL.

The Initialization of Malicious Parameters. In Algorithm 1, we use Algo-
rithm 3 proposed by [1] to initialize parameters before training. Figure 8 shows
the impact of parameter initialization on performance of our method. Without
parameter initialization, our method can have the similar recovery ratio with [1]
on ReLU in Fig. 8(a), but have higher recovery ratios on Tanh and Sigmoid in
Fig. 8(b). In this study, we innovatively combine the method of sampling from
Gaussian distriubution with the training of malicious parameters. Our method
achieves the highest recovery ratios in cases of any batchsize and any activation
functions. Overall, our work further improves the effectiveness and generality of
Gradient Inversion Attacks based on malicious model parameters.

(a) Performances of three cases on models
using ReLU.

(b) Performances of three cases on models
using different activation functions.

Fig. 8. Impacts of parameters initialization on performance of our method. p: our pro-
posed method, i: the parameters initialization in [1], p/i: our method without param-
eters initialization.
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The Number of Neurons to Select Per Data. In Algorithm 2, we let
each data select k neurons to be its SDANs. We make numerous experiments
to investigate the impact of k on performance of our method. Figure 9 shows
the recovery ratios R40dB on different values of k. When k = 1, 2, 4, we can
obtain high recovery ratios. The best value of k is 4 on CIFAR100 and 1 on
Fashion MNIST. We think setting k = 1 is more suitable for datasets with a
small interclass distance such as MNIST and Fashion MNIST. In these datasets,
images of the same class are similar and more likely to activate the same neuron.
So letting each data select only one neuron can achieve higher recovery ratios.
For CIFAR100, the interclass distance is larger. Setting k = 4 can generate
more SDANs for each data point and improve the performance of our Gradient
Inversion Attack.

(a) On CIFAR100 datasets. (b) On Fashion MNIST datasets.

Fig. 9. The impact of different k on recovery ratios R40dB .

5 Conclusion

In this paper, we have proposed a novel Gradient Inversion Attack to compromise
privacy in large-batch FL. Our attack is based on the direct data leakage from
a FC layer. It is a common way to reveal privacy from gradients. However,
we find that a large batchsize can obfuscate gradients and defense against this
attack effectively. To mitigate the confusion of gradients, we design a method to
construct malicious model parameters purposely. The server can tamper local
model parameters before users compute gradients. From users’ shared gradients,
nearly the whole batch of private data can be recovered perfectly. Experiments
show that our method performs better not only on large-batch trainings, but also
on models using different activation functions. We can recover 97%, 77% and 54%
of the data points in a batch with batchsize 64, 256 and 512, respectively. Our
work further reveals the power of Gradient Inversion Attacks in FL.
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Abstract. Persistent memory gains increasing popularity in recent
years. Many persistent memory systems leverage memory access mon-
itoring to achieve user-transparent crash consistency enforcement. How-
ever, traditional program analysis-oriented memory access monitor-
ing mechanisms incur prohibitive performance overheads in persistent
memory applications. Especially, for applications developed for systems
with hybrid DRAM and persistent memory, existing memory tracking
approaches cannot distinguish volatile and persistent memory writes,
which leads to significant unnecessary runtime cost.

This paper describes PMemTrace, a lightweight and efficient memory
access monitoring approach for persistent memory. PMemTrace conducts
best-effort pointer analysis to speculatively reduce as many redundant
instrumentations to volatile writes as possible at compile time. Besides,
PMemTrace enforces thread-local memory access permission control with
the Memory Protection Keys (MPK) hardware primitive in recent Intel
processors to track the mistakenly filtered persistent writes.

The evaluation results show that PMemTrace substantially outper-
forms the state-of-the-art memory tracking systems.

Keywords: Memory access monitoring · Memory protection key ·
Compiler instrumentation · Pointer analysis

1 Introduction

Persistent memory (PMEM) is a new kind of memory which offers data dura-
bility, byte-addressability, disk-like capacity, and DRAM-like speed at the same
time [1]. These novel properties of persistent memory make it possible for pro-
grams to directly access persistent data via CPU load and store instructions
instead of traversing the legacy block-oriented storage stack. Intel and Micron
have released commercial Optane DC persistent memory to the market in April
2019. Though byte-grained data persistence is promising, it is not easy to build
correct and high-efficient persistent memory applications, especially to ensure
the crash-consistency [2].

Modern processors typically involve multiple levels of caches to achieve higher
memory performance. The hardware-controlled cache line eviction policy makes
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 81–97, 2023.
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memory stores reach the main memory layer out of the program order. Pro-
grams have to deliberately perform enforced cache line eviction and memory
fence operations to ensure correct recovery. To ease crash-consistency enforce-
ment, a large number of persistent memory systems, such as durable memory
transactions, persistent threads, durable data structures, have been proposed in
recent years. Many of these systems incorporate memory monitoring mechanisms
to transparently collect persistent write trace [3].

However, traditional analysis-oriented memory monitoring techniques, such
as page protection, compiler instrumentation, etc., introduce prohibitive perfor-
mance overheads in persistent memory programs [4–12]. Page protection-based
memory monitoring collects page-grained memory traces through page fault han-
dling. The target pages are firstly specified as read only. Once the program writes
to a write-protected page, a page fault will be triggered. The page fault han-
dler records the page access, then remove write-protection from this page thus
that the faulting write could be completed. Several inherent drawbacks make
protection-based memory monitoring sub-optimal for persistent memory. Firstly,
page-level monitoring cannot take full advantages of the byte-addressability of
persistent memory. Besides, only the first write to a page will trigger a pro-
tection fault. The program have to re-protect the target pages to collect more
detailed access records. This further constrains the flexibility of protection-based
method. Moreover, frequent access permission changes lead to frequent trans-
lation lookaside buffer (TLB) flushes, making protection-based monitoring less
efficient.

Compiler instrumentation inject function calls around each write operation
during compiling, it supports byte-granularity trace, and is more flexible than
protection-based monitoring. Due to processors access DRAM and persistent
memory via same set of memory instructions, compiler instrumentation cannot
distinguish durable writes to persistent memory and volatile writes to DRAM.
Thus, compiler instrumentation has to consequently monitor volatile writes and
durable writes together. However, tracing volatile writes to DRAM is pointless
in persistent memory system. Given that volatile writes dominate real word
persistent memory applications [6], the redundant instrumentations are non-
negligible.

Based on previous observation, we propose PMemTrace, a lightweight and
efficient memory access monitoring solution dedicated for persistent memory. In
particular, PMemTrace leverages alias analysis to speculatively avoid instrumen-
tation to DRAM writes. Addressing the best-effort feature of alias analysis tech-
niques, PMemTrace also incorporates lightweight thread-local memory access
permission control via the Memory Protection Keys (MPK) hardware primitive
in recent Intel processors to ensure each single write to persistent memory could
be monitored, no matter how accurate the alias analysis method is.

In comparison of the state-of-theart NVthreads and PMThreads systems,
PMemTrace substantially outperforms in the stress test running with zero to
forty threads. Using the 100,000-scale ycsb dataset, we investigate the efficiency
and accuracy of PMemTrace. The results report negligible false positive rate
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(0–0.288%) and false negative rate (3.84–4.14%) compared to the percentage of
correct instrumentation.

In summary, we make the following contributions:

– We propose a lightweight and high-efficient memory monitoring method dedi-
cated for persistent memory systems. It will potentially ease the programming
of persistent memory.

– We investigate an approach to combine static and dynamic memory moni-
toring methods and manage to achieve a solution that is insensitive to alias
analysis accuracy.

– We explore the possibility to make more use of the newly-released MPK
extensions to achieve more lightweight and flexible protection-based memory
monitoring.

2 Related Work

Memory Techniques Employed in Existing Persistent Memory
Systems. NVthreads [13] is a programming model that adds persistence to
legacy multi-threaded C/C++ programs, it performs user-transparent memory
access monitoring through page protection. NVthreads leverages synchroniza-
tion operations, such as lock acquire and release, to determine the boundaries of
failure-atomic regions. Each time the program enters a failure-atomic region, the
runtime needs to write-protect the whole persistent memory heap so that the per-
sistent writes in this region could be tracked. For applications with fine-grained
failure-atomic regions, NVthreads will suffer considerable performance degrada-
tion due to frequent page faults. Atlas [14] and PMthreads [15] monitor persis-
tent memory access via compiler instrumentation. Atlas incorporates a LLVM
pass that inserts a call to the access tracking function before each memory store
instruction, with the address and value passed to that function. As the processor
access persistent memory and DRAM with a same set of memory instructions,
it is impossible for the LLVM pass to statically determine either a memory store
will modify persistent memory or not. Consequently, the LLVM pass has to con-
servatively instrument each individual store instruction, which incurs significant
redundant tracking over DRAM writes. PMThreads provides a page fault handler
for memory monitoring in addition to compiler instrumentation.

Distinguishing Durable and Volatile Memory Stores. There have been
efforts in the literature that try to statically discriminate durable writes to per-
sistent memory and volatile writes to DRAM [4,16–20]. AGAMOTTO [21] is a
crash-consistency bug detection framework for persistent memory applications.
It adopts symbolic execution to explore the state space of its target program. To
prioritize exploration towards program locations that access persistent memory
heavily, AGAMOTTO adopts pointer analysis to identify instructions modify-
ing persistent memory. The pointer analysis procedure maps each pointer in
the program to a set of memory locations. Pointers have non-empty intersec-
tions between the sets of the memory locations they mapped to are regarded as
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aliased. Besides, pointers returned by persistent memory allocations are consid-
ered as persistent pointers. AGAMOTTO treats memory stores taking operands
aliased with persistent memory pointers as persistent writes.

3 PMemTrace Design

3.1 Architecture Overview

Write(Addr, Val)

Memory Type Analysis

Persistent Memory DRAM

Fig. 1. PMemTrace architecture.

PMemTrace combines compiler instrumentation with page protection. The per-
sistent heap is initially write-protected. The compiler pass incorporates a pointer
analysis component that speculatively classifies memory write instructions into
durable writes (solid arrows in Fig. 1) and volatile writes (dashed arrows in
Fig. 1). For durable writes, a tracking function is inserted before the write
instruction. Meanwhile, a durable write is surrounded with a pair of code snip-
pets that respectively removes and recalls the write-protection over the persis-
tent heap so that it could silently modify the write-protected persistent memory
region without triggering a page fault (① in Fig. 1). Durable writes that are
mis-predicted as volatile writes (② in Fig. 1) will be tracked in the page fault
handler. Concerning volatile writes, mis-predictions (④ in Fig. 1) simply pro-
duce some redundant DRAM access records without affecting the correctness of
PMemTrace.

3.2 Pointer Analysis

We employ the CFL-Steens algorithm for context-insensitive pointer alias anal-
ysis. The algorithm constructs a variable usage graph based on the CFL reach-
ability formula proposed by Xin Zheng [22]. Each node is a memory location,
and each edge is an action (dereference, reference, or assignment) that occurs at
that memory location. Two variables are aliased if one value can reach another
value’s node through the graph, and the language formed by all actions conforms
to a context-free grammar, as shown in Fig. 2.
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dereference

assignassign

assign

reference

Fig. 2. Example of alias analysis.

CFL-Steens divides the alias types of two pointers into four types: MustAlias,
PartialAlias, MayAlias and NoAlias. In order to avoid long-chain pointers
that may exist in some persistent memory systems with epoch buffers, we use
MayAlias to determine whether a write operation will access persistent memory
objects. This method is more tolerant of the judgment criteria of aliases, which
may cause false positives. However, false positives do not affect the correctness
of memory traces compared to false negatives. The impact on performance is
insignificant compared to the DRAM instrumentation overhead.

Through the algorithm outlined in Radu Rugina [23], CFL-Steens transforms
the graph into a set of variables (n = variables) that may alias in O(n log n)
time, thus limiting the time of graph search for each query. The accuracy of
this analysis is about the same as that of the first-level context-sensitive Steens-
gaard algorithm [24], with O(n) and O(n + m logm) time complexity on trees
and graphs, respectively, which is faster than the current Most alias analysis
algorithms.

3.3 Lightweight Thread-Local Access Permission Control

PKRU

PKEY:

Perm: r/or/w n/a ... r/wr/w

0 1 8 14 15
...r/or/w n/a ... r/wr/w

0 1 8 14 15
...

Fig. 3. PKRU register.

PMemTrace achieves lightweight thread-local access control leveraging the MPK
extensions in recent Intel processors. MPK provides group-wise permission con-
trol via tagging memory pages with protection keys (pkey), it dedicates 4 pre-
viously unused bits in the page table entry (PTE) to a memory protection key,
thus can provide up to 16 distinct page groups. Unlike traditional page pro-
tection mechanism, in which changing permissions involves expensive system
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calls and TLB invalidations, MPK inherently supports lightweight permission
switching. In a MPK-capable CPU, each core has a userspace register PKRU with
two separate bits (Access Disable and Write Disable) for each key, as shown
in Fig. 3. User programs could access PKRU with the unprivileged RDPKRU and
WRPKRU instructions to gain thread-local protection rights control.

Table 1. Linux kernel pkey-related system calls.

Syscall Description

Pkey alloc pkey allocation

Pkey free pkey release

Pkey mprotect Tagging PTEs with pkey

4 Implementation

Linux has already incorporated system calls for interaction with the MPK hard-
ware since kernel version 5.13 that deal with pkey allocation, pkey release, and
pkey tagging.

1 int = (”/pmem/pool” , ) ;
2 void = ( , , , , , 0) ;
3 int = (0 , ) ;
4 ( , , , ) ;
5 ( ) ;
6 ( ) ;

Fig. 4. Programming model.

Figure 4 shows how PMemTrace interacts with the MPK mechanism. More
specifically, the code region from line 1 to 4 sets up the persistent memory pool,
allocates a pkey, and tags the persistent pool with pkey. Line 5 and 6 in Fig. 4
give wrapper functions for WRPKRU, which respectively grants and withdraws
WRITE permission to the pages tagged with pkey via modifying the PKRU register.
In particular, line 3 sets the Write Disable bit of pkey in PKRU, indicates that
the pkey-tagged pages are read only. Access flags passed into pkey mprotect at
line 4 (PROT READ|PROT WRITE) configures the corresponding page table entries of
the persistent memory pool. The effective access permission is determined by the
intersection of the ones specified in the page table entries and the PKRU register.
Thus, Line 3 and 4 eventually write-protects the persistent memory pool.

As WRPKRU is a unprivileged instruction and the PKRU register is private to
each core, permission control with pkey enable write and pkey disable write
is extremely lightweight and inherently thread-local, which makes frequent fine-
grained permission switching possible. In our evaluation, changing permission
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with pkey enable write and pkey disable write incurs less than almost 50%
overhead (see details in Sect. 5).

We allocate a pkey to persistent memory at the same time as it is allocated.
This process is implemented by changing the memory allocator hoard, and the
user allocates and releases persistent memory through the two interface functions
xxmalloc and xxfree.

With write-protection enforced, any write access to the persistent memory
pool will violate the pkey restriction and send a SIGSEGV signal. Given the
pointer analysis result, PMemTrace statically removes thus pkey restriction for
the predicted durable writes that are expected to access persistent memory.
Specifically, a pkey enable write(pkey) is inserted before each durable write
instruction to make it execute silently without triggering a exception, with a
pkey disable write(pkey) injected right after the durable write to re-protect
the persistent memory pool.

The way to search for instrumented objects is given in Algorithm 1. Table 2
gives the notation descriptions in the pseudocode.

Table 2. Notation descriptions.

Notation Descriptions

Ptr The base address of PMEM

Need trace A boolean variable used to determine
whether a function is worth tracing

AliasStores The set of aliased instructions

NoAliasStores The set of non-aliased instructions

StoreInst Store instructions

CallInst Call instructions

For durable writes omitted during best-effort pointer analysis, exceptions
will be fired. PMemTrace registers a custom SIGSEGV signal handler to track
the faulting write. To let the faulting instruction continue, the signal handler
also clears the corresponding Write Disable bit of the PKRU value saved in the
FPU context. When the signal handler returns, the value of the PKRU regis-
ter is restored from the exception stack, the persistent memory pool becomes
writable. To track subsequent uninstrumented modifications to the persis-
tent memory pool, the memory pool has to be re-protected. Addressing this
problem, PMemTrace conservatively inserts a pkey disable write on pkey
after each write instruction that is considered as volatile write during pointer
analysis.
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Algorithm 1. Local Search Based Algorithm
Input: Function F, global pointer ptr
Output: whether the function has been modified
1: need trace ← false
2: for instruction I ∈ F do
3: if I is a CallInst then
4: if I calls xx malloc then
5: ptr ← I
6: else if I is a memory call then
7: need trace ← true
8: end if
9: end if

10: end for
11: for instruction I ∈ F do
12: if I is a StoreInst then
13: if ptr && need trace then
14: if pointer of I and ptr is MayAlias then
15: ++AliasStores
16: else
17: ++NoAliasStores
18: end if
19: else
20: ++NoAliasStores.
21: end if
22: else if I is a CallInst then
23: if I calls xx free then
24: ptr ← nullptr
25: end if
26: end if
27: end for
28: return false

5 Evaluation

5.1 Environment

All the experiments are executed on a dual-socket NUMA machine running
Ubuntu 20.04, kernel 5.4.0. Each socket has an Intel(R) Xeon(R) Gold 6230
CPU @2.10 GHz, containing 20 physical cores, giving a system total of 40 physi-
cal cores (no hyperthreading). Each Xeon chip shares 55 MB of L3 cache between
its 20 cores, and each core has 1.3 MB L1d cache, 1.3 MB L1i cache and 40 MB
L2 cache. Each socket is populated with 32 GB of DRAM and 128 GB Optane
DC persistent memory in App Direct mode, providing a total of 64 GB main
memory and 256 GB persistent memory. All benchmarks are built with clang++
6.0.1. The compiler instrumentation is implemented in LLVM 6.0.1. All figures
report the average of 10 execution runs.
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5.2 Performance

We first measure the overheads of memory tracking of PMemTrace, NVthreads
and PMthreads on two different concurrent data structures. PMemTrace-F
(PMemTrace without alias-analysis) and PMThreads-I tracks DRAM memory
modifications at instruction-level. PMThreads-P that leverages page protection
mechanisms to monitor DRAM writes PMThreads at page-level. The data struc-
tures considered are:

– FAST-FAIR, a concurrent persistent B+Tree. We instruct the tree node con-
structor (destructor) to allocate (release) tree nodes with xxmalloc (xxfree).

– Lock-Coupling List, a concurrent ordered linked list from synchrobench.
Again, we replace malloc and free with xxmalloc and xxfree for persistent
heap management of linked list nodes.

We analyse the scalability of PMemTrace via execution with the 1, 2, 4, 8,
10, 16, 20, 32, and 40 threads. For each read:write operations configuration(1:9,
1:1, 9:1), we run for a fixed number of operations and measure the through-
put achieved by all the threads. For the B+tree, we generate 2,000,000 8-byte
keys following the uniform distribution. The microbenchmark program dynam-
ically generates 8-byte values for each insert. For all the evaluations towards
B+tree, we insert 1,000,000 key-value pairs during the warming-up phase, and
measure the aggregated throughput achieved in 1,000,000 operations under dif-
ferent read:write ratios. For the ordered linked list, the stress test program inserts
40,000 uniformly distributed elements to the list during warming up, and per-
forms an extra 40,000 list operations with the configured read:write ratio.

Figure 5 and Fig. 6 give the aggregated throughput of all the threads. These
figures demonstrate that, as parallelism increases, the throughput scales of
PMemTrace surpasses all of others at close to 40 threads. Furthermore, the
throughput results of PMemTrace-F and PMThreads-I show that MPK can
reduce almost 50% overhead for instrumentation. Obviously less data is persisted
in the linked list in comparison to the B+tree, leading to similar performance
for PMemTrace, PMThreads and PMemTrace.

5.3 Efficiency

MPKs are applied in both trace paths, which enable page fault handlers to track
memory total accurately with less overhead. We set up a pair of comparative
versions, one that only uses the page fault handler setting MPK and one that
instrumented every store instructions(Full-Instrumentation). Table 3 gives the
overheads of Full-instrumentation and Only-Fault-handler for 100000, 200000,
400000, 800000, 1600000 storage operations (PM:DRAM = 1:1), concluding that
even with a lightweight hardware protection mechanism, page fault handler is
still inferior to Full-Instrumentation in performance.

Full-Instrumentation treats all store instructions in functions with memory
calls as instrumentation objects and uses MPK to track them. Therefore, the
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Fig. 5. Stress test B+ tree.
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Fig. 6. Stress test linked list.
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Fig. 7. Cost of different paths.

Fig. 8. Cost of different data structs.

Table 3. Latency at different operand sizes.

100000 200000 400000 800000 1600000

Full-Instr. 16335 17164 28993 57549 116551

Only-Fault. 281901 542509 1079079 2150921 4299546
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Table 4. Compile-phase alias pointers detection.

Instructions Percentage

May alias to PM 47 23.86%

No Alias to PM 150 76.14%

only performance difference between Full-Instrumentation and PMemTrace is
due to alias analysis.

Table 4 lists the number of MayAlias store instructions and NoAlias store
instructions found at the static compilation level. This result proves that PMem-
Trace has a certain ability to distinguish writes to PMEM and DRAM at com-
pile time, but does not reflect the actual overhead when the program has a large
number of iterations. Therefore, we set three different PM/DRAM ratios (1:9,
1:1, 9:1), and adjusted the number of write operations to PMEM at data scales
of 100,000, 200,000, 400,000, 800,000, and 1,600,000, and collect the runtime
latencies of both. Figure 7 shows that PMemTrace results in lower latency as
the proportion of writes to DRAM gradually increases, which is sufficient to
demonstrate the benefit of alias analysis in filtering invalid instrumentation.

Since the effect of alias analysis is highly correlated with the proportion
of persistent memory operations, we also tested the PMemTrace and Full-
instrumentation overheads of of three common data structures hash map, prior-
ity queue, and out-of-order map persistence operations using 100,000-scale data
in the yscb dataset. We evaluted the throughput of these three data structures
executed by 1, 2, 4, and 8 threads. Figure 8 shows that operation scales of PMem-
Trace are basically the same as the Full-instrumentation, but the performance
is always better. We conclude that although MPK can greatly reduce latency,
alias analysis is still necessary in the operation of general data structures.

5.4 Accuracy

This section will evaluate the accuracy of the two trace paths of PMemTrace
while the program is running. We define PMtrue to be PMEM store opera-
tions that are tracked and correctly detected, DRAMfalse to be falsely detected
DRAM memory operations, and PMfalse to be untracked but detected by our
page fault Handler detected. Using the experimental conditions in the previous
section, we select two data structures for one update corresponding to one per-
sistence operation (vector) and multiple persistence operations (hash map), and
measure the average of PMtrue, DRAMfalse and PMfalse under 1, 2, and 4
thread executions for them.
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Fig. 9. Accuracy of hashmap and vector.

Figure 9 shows that as the parallelism increases, the average false positive rate
of both data structures remains consistent, and the false negative rate increases
slightly. We believe that alias analysis will lead to unavoidable instrumentation
of some DRAM writes (e.g., prepare data) that are similar in time and space
to PMEM writes. When the number of threads performing concurrent write
operations increases, some instrumentation functions are not executed, and the
corresponding write operations are tracked by the page fault handler.

Consider evaluation parameters as:

– False Positive Rate:

DRAMfalse

PMtrue + DRAMfalse + PMfalse

– False Negatives Rate:

PMfalse

PMtrue + DRAMfalse + PMfalse

Compared with uninstrumented persistent pointers, instrumentation of
volatile pointers have no effect on the correctness of memory monitoring, there-
fore we used a wider standard of alias analysis. Table 5 shows that the false neg-
ative rate due to loose aliasing criteria is negligible, even 0% in single-threaded
or dual-threaded execution.
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Table 5. False positive & false negative rates.

hash-map False Positive Rate False Negatives Rate

Thread-1 0% 0%

Thread-2 0% 0%

Thread-4 0% 4.144%

vector False Positive Rate False Negatives Rate

Thread-1 0.288% 0%

Thread-2 0.288% 0%

Thread-4 0.288% 3.845%

6 Conclusion

This paper presents PMemTrace, a lightweight and efficient memory access moni-
toring approach optimized for persistent memory. The key insight of PMemTrace
is to speculatively avoid redundant instrumentation on volatile memory writes.
Leveraging the lightweight thread-local access permission control provided by
the MPK hardware primitive in recent Intel CPUs, PMemTrace also captures
the persistent memory accesses mistakenly omitted in the static analysis stage.
Our evaluation results show that PMemTrace substantially outperforms exist-
ing memory access monitoring approaches and manages to save up to 76.14%
unnecessary volatile writes instrumentation.
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Abstract. API-call sequence, a significant dynamic feature of the soft-
ware, is widely applied to malware detection. Unfortunately, native
approaches to API-call analysis are time-consuming and cause heavy per-
formance penalties. To improve the efficiency of API-call analysis, this
paper proposes a novel dynamic analysis approach named SeqTrace based
on Intel Process Trace (PT) and Virtual Machine Introspection (VMI)
technologies. First, we propose an API-call Tracing approach based on
the Intel PT feature of the CPU. It leverages Intel PT to trace the execu-
tion of analyzed samples and logs relative information of their API calls
with slight overhead. Then, to efficiently translate the semantics of API
calls from logged information, we design Semantic Decoder based on VMI
technology. Moreover, we implement a prototype API called SeqTrace on
the QEMU/KVM platform and evaluate it through a set of experiments.
Compared with previous approaches, the experimental results show that
SeqTrace achieves API-call sequence tracing with fine-grained semantic
information and reduces the tracing overhead by more than 80%.

Keywords: API call · Intel Process Trace · Virtual Machine
Introspection · Malware analysis

1 Introduction

The API-call sequence is a significant dynamic feature of the software. Assisted
by deep learning approaches [2–7], it is widely applied to malware detection.
Most previous studies focus on improving the security and information accuracy
of the API-call analysis. For example, CWSandbox [9] installs drivers or modules
within a monitored OS to catch API-call sequences using API hooking and
DLL injection. Within the same OS with malware, it is system-aware and easily
bypassed. To solve the problem, Nitro [8] traces API using Virtual Machine
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Introspection (VMI) technique. It is OS-agnostic because implemented on the
virtual machine manager (VMM). However, it introduces heavy overhead for
interpreting semantic information of processes in guest VM from raw data caught
in the VMM layer. Unfortunately, more than 500 thousand malware are detected
daily, according to the report [10]. Therefore, existing approaches are too time-
consuming to analyze an increasing number of samples. Therefore, efficiency is
as important as security and accuracy in malware analysis.

The critical challenge for achieving efficiency analysis is the semantic gap.
Using existing approaches based on VMI, once catching an API in guest OS, it
would suspend the VM, trapped into VMM and analyze semantic information
in VMM. This trapping and analyzing mechanism is ineffective and introduces
heavy performance penalty for guest VM. To solve this problem, some existing
approaches deploy the analyzing system in guest OS to mitigate the semantic
gap at the cost of security, which is fatal in malware detection. For timely and
effective malware detection, we achieve an efficient and security approach for
API-call analysis.

With this in mind, this paper proposes the dynamic analysis framework
named SeqTrace. It first leverages hardware-based VMI to monitor the pro-
cess creation and destruction behavior in guest VM. Once catching the cre-
ation behavior of the process we are concerned about, SeqTrace triggers CPU-
embedded Intel PT to transparently and efficiently log the relative instruction
sequence of the API call. Then, the logged instruction sequence is interpreted
into an API-call sequence through a designed Intel PT decoder. Finally, Seq-
Trace exports a serialized tree of API calls from the start to the end of one
process, which can be used as an input feature of deep learning networks to
distinguish whether it is malicious. To our knowledge, our proposed SeqTrace is
the first system that combines Intel PT and VMI to trace API-calls sequence in
VMM. Benefit from deployed in VMM, it is capable of tracking and analyzing
malware in kernel space and user space with high security. With the assistance
of Intel PT, it can capture and log malware behaviors with lower performance
overhead. Specifically, the performance penalty of SeqTraces keeps below 15%.
Especially, it is below 7% in CPU-intensive experiments. Moreover, compared to
the Drakvuf approach, SeqTrace reduces the performance penalty by more than
80% in both IO-intensive and CPU-intensive experiments.

In summary, the main contributions of this paper are as follows:
First, we propose an IPT-based API-call Tracing approach, which leverages

Intel PT to dynamically trace the execution of malware in real-time.
Second, to obtain API-call sequences, we design VMI-based Semantic

Decoder to effectively translate the semantic information from the raw data
caught by Intel PT component.

Last, we have implemented a prototype system named SeqTrace based on
the QEMU-KVM virtualization platform and conducted a set of experiments to
demonstrate its effectiveness.

The remaining of this paper is organized as follows. Section 2 introduces some
background technologies. Section 3 describes the overview of our framework and
shows how SeqTrace achieves API call analyzing with Intel PT and VMI. Section 4
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illustrated the implementation details of our framework. We evaluate our SeqTrace
in 5. Finally, Sect. 6 reviews related works and Sect. 7 conclude the work.

2 Background

2.1 Virtual Machine Introspection

Virtual Machine Introspection (VMI), which is first introduced in [11], provides
a novel technique for tracing and analyzing the instantaneous state of the vir-
tual machine in Virtual Machine Monitor (VMM). It leverages the advantage
of hardware virtualization to silently intercepts semantic information of VM on-
demand, such as the state of memory, I/O, and API call. It is OS-independent
and OS-agnostic because it runs in the VMM. Therefore, it would not be com-
promised by malware running in guest OS except for VM escape, so it supports
attacks analysis at the kernel level. Supported by hardware virtualization, VMI
is to trigger VM trapping by setting some specific event registers, i.e., MSR,
and then grabbing semantic information from VM. Unfortunately, the trapping
mechanism would result in heavy performance overhead for VM because it could
suspend VM for analysis. To capture more semantic information about VM exe-
cution, previous approaches usually sacrifice the VM’s performance to catch
more information.

2.2 Intel Processor Trace

As an embedded feature of the latest CPU hardware, Intel Process Trace
(PT) [13] enables tracing the execution of processes with hardware assistance.
It is able to fetch the complete control flows with a slight performance over-
head. The flows traced by Intel PT are outlined and extracted in real-time and
then stored in the forms of specific packets, including Taken/Not-Taken Packet
(TNT), Target IP Packet (TIP), Flow Update Packet (FUP), and Page Informa-
tion Packet (PIP). Each type of packet represents a different kind of branching
information. For example, PIP packets record the switches of processes (i.e.,
change of CR3 registers) and the TIP packets indicate indirect call (i.e., call
or ret) in process. The packets recorded by Intel PT are highly condensed and
directly written to memory, so the performance overhead caused by Intel PT
is slight. Due to this advantage, Intel PT has been widely used in control flow
tracing and behavior analysis. However, packets captured by Intel PT are raw
data, which is obscure and exists a semantic gap in VM behavior. Therefore, it
requires semantic translation before application in the field of security analysis,
which always depends on the information of the guest OS, such as kernel symbol.

3 Design of SeqTrace

This section will describe the design of SeqTrace. We start by presenting the
architecture and the challenges to be addressed. Then, we propose an IPT-
based API-call Catching Approach and VMI-based Semantic Decoder to tackle
the challenges.
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Fig. 1. The architecture of SeqTrace.

3.1 System Architecture

SeqTrace is an API-call analysis system for malware detection. It uses the tech-
nologies of VMI and Intel PT to effectively extract API-call sequences of malware
samples. Its architecture consists of Initiator, Semantic Monitor, Process Tracer,
and Addr2Semantic Decoder, as illustrated in Fig. 1. As the entrance to Seq-
Trace, Initializer is responsible for automatically creating virtual machine envi-
ronments according to malicious samples and loading them into it for dynamical
analysis. Then, Semantic Monitor, the semantics warehouse of SeqTrace, main-
tains a Semantic Translation Table of VM. It employs the VMI technology to
monitor VM execution and seize process creation or API loading operations to
dynamically update the Semantic Translation Table. To obtain the execution of
a specific malware sample, Address Tracer is designed to catch API-call-related
information by leveraging Intel PT technology. Meanwhile, a ring buffer named
Address Data Buffer is created to store API information caught by Address
Tracer. However, the data in Address Data Buffer is address sequences of proce-
dure and API, and there is a semantic gap between these data and the execution
feature of the malware sample, so it cannot be directly delivered into the analy-
sis model for malware detection. Therefore, Addr2Semantic Decoder is designed
to translate address sequences in Address Data Buffer into high-level semantic
information according to the Semantic Translation Table.

There are two significant challenges in achieving SeqTrace and we will
describe how to solve them in detail in the following subsections:
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– Tracking the execution of process incurs a high-performance penalty for VM.
To mitigate this penalty, we propose the IPT-based API-call Tracing App-
roach in Sect. 3.2.

– There is a semantic gap between the logged information and the behavior
of the procedure. Therefore, we design a VMI-based Semantic Decoder to
decode the logged information by Intel PT in Sect. 3.3.

3.2 IPT-Based API-Call Tracing Approach

The existing VMI-based API-call analysis approach is time-consuming because
its trapping-and-analyzing mechanism causes a heavy performance penalty. To
mitigate this problem, we introduce Intel PT technology to trace the API-call
behavior of the procedure. As mentioned in Sect. 2.2, Intel PT could effectively
trace execution and branch information of processes with negligible performance
overhead. Unfortunately, it only logs address information of the process execution
in the form of raw data. Therefore, it is a challenge to interpret the semantic
data from logged raw data to get the API-call sequence.

To solve this problem, we propose the IPT-based API-call Tracing App-
roach. As illustrated in Sect. 2.2, it employs Intel PT to efficiently log the execu-
tion trace of the procedure and then extracts API-call-related information from
logged information. However, hundreds of MB of data traced by Intel PT within
one second lead to heavy pressure on Data Buffer and Decoder, which become
a bottleneck in malware analysis. To narrow the data and reduces unnecessary
computation, we introduce a VMI technology named Libvmi [14]. Specifically,
by using information from VMI technology, Analysis Director can get the pro-
cess information of running malware sample, including associated process id and
which permission level it is running in. Then, Analysis Director dynamically
adjusts the configuration of VM and setting of Intel-PT to trace specific pro-
cesses at specific permission levels. Therefore, the data collected by Intel-PT
would be strong pertinence.

As illustrated in Fig. 2, to achieve IPT-based API-call Tracing, the Analysis
Director, QEMU-PT, and KVM-PT are running in user-land, QEMU, and KVM
respectively. Firstly, the Analysis Director automatically probes the startup of
VMs, obtains their information, and delivers the initial setting of Intel-PT to
QEMU-PT. QEMU-PT runs in QEMU and listens to commands from user-land.
Once receiving the settings of Intel-PT, it interacts with KVM-PT to set up Intel
PT for execution tracing. During the malware execution, the Intel-PT would
trace all procedures in the VM and store the data in Data Buffer. Meanwhile,
Analysis Director gets the identifications of malware-associated procedures uti-
lizing VMI data from the KVM-PT component and decoded by the QEMU-PT
component. Then, Analysis Director targets the Intel-PT to specific malware
procedures of VM. In this way, it minimizes the ranges of Intel-PT traces, thus
mitigating the performance penalty caused by tracing and improving analysis
performance.
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Fig. 2. The workflow of IPT-based API-call Tracing Approach.

3.3 VMI-Based Semantic Decoder

The data recorded by Intel PT are instructions with API addresses, thus there is
a semantic gap between the recorded data and the behavior of malware. There-
fore, it is difficult to recognize the feature of malware using the data recorded
by Intel PT. Previous approaches utilize binary translation to obtain semantic
information about malware. By Leveraging disassembled data, the analyzer can
reconstruct a static API-call tree of the malware sample. However, there are two
problems. Disassembled binary does not satisfy the requirements for dynami-
cal analysis because it only provides the static feature. On the other hand, the
approach of binary translation is unsuitable for non-binary malware samples.
To accurately extract semantic information from dynamically recorded data by
Intel PT, we propose a Semantic Decoder based on VMI technology.

The core idea of the VMI-based Semantic Decoder is to maintain semantic
translation tables using VMI technology and then dynamically decode the logged
address data into API-call sequences according to the semantic tables. As illus-
trated in Fig. 3, it mainly consists of three parts, i.e., data filtering, construction
of semantic translation tables using VMI technology, and semantic decoding from
address to API-call sequences. Next, we will introduce the workflow in detail.

Data Filtering. First of all, Intel PT traces the execution of malware samples
and records their execution paths with several types of data packets. Because
only two kinds of packets are relevant to API-call sequences, i.e., TIP and PIP
packets, we should filter the recorded data by discarding any data other than
these two types. Then, we catch switch operations of processes (i.e., change of
CR3 registers) from PIP packets and get instructions about the indirect call (i.e.,
call or ret) from TIP packets. Specifically, PIP packets are produced when pro-
cess switching and they record the value of CR3 registers (i.e., process address),
so we can get the address of running processes from PIP packets. TIP packets
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Fig. 3. The workflow of VMI-based Semantic Decoder.

indicate the call of an API function, so SeqTrace can obtain the API address
from TIP packets.

Construction of Semantic Translation Tables. Since we have obtained
the address sequences of Processes and APIs trigged by malware, we are only
required to recognize what they are. Therefore, we build semantic translation
tables to decode the address sequences leveraging VMI technology. Specifically,
the APIs associated with Process switching, e.g., PspInsertProcess and PspEx-
itProcess for Windows VM, are monitored by the VMI component to update the
mapping between addresses and process names in the Process Semantic Transla-
tion Table. Meanwhile, the VMI component monitors the APIs associated with
the indirect call, e.g., LdrpLoadDll and LdrpInitializeProcess, to dynamically
maintain the API Translation Table.

Semantic Decoding. The address sequences of processes and APIs are stored
in the Data Buffer. To decode the address sequences into semantic information,
i.e., name of processes and APIs, we designed an Addr2Semantic Decoder. It
reads the address from Data Buffer and looks up the Process Translation Table
and API Translation Table to translate the address into Process name or API
name. In this way, we obtain the malware sample’s processes name and corre-
sponding API-call sequences.

Assisted by VMI technology, SeqTrace precisely and effectively decodes
the data traced by Intel PT into high-level semantic information for malware
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analysis. It makes full use of the advantages of both technologies and achieves
better performance with lower overhead.

4 Implementation

We implement SeqTrace on the QEMU/KVM platform, adding 2800 LOCs in
KVM for trapping API, 3900 LOCs in Qemu for decoding trapped raw data into
API address and 800 LOCs in user space for loading samples automatically and
interpreting API-call sequence. In the following section, we will present some
key implementation details.

4.1 Semantic Recognition

As an analysis technology at the VMM layer, VMI triggers a VM-Exit event
when trapping an API and pauses VM until the analysis is finished. There-
fore, VMI would introduce significant performance overhead during the analysis
process. To mitigate this problem, we propose an IPT-based API-call Tracing
Approach to trace the execution of processes. As mentioned above, the addresses
of processes and APIs have been recorded by Intel PT in the forms of TIP pack-
ets and PIP packets. To get the API-call sequences of a specific process, we only
need to maintain semantic translation tables utilizing VMI and then translate
the addresses sequences into corresponding semantical information, including
process name and sequences of the API name. The detailed steps are as follows.

First of all, VMI technology is employed to maintain the semantic translation
tables, i.e., the Process Translation Table and API Translation Table. It utilizes
the Intel-x hardware feature to dig the semantic information by accessing and
analyzing the entire memory space of the VM.

To maintain the Process Translation Table, the Decoder intercepts the action
of process creation, acquires its CR3, and dynamically updates the table. By
analyzing the workflow of process creation, we find that there is an EPROCESS
struct to manage the process information, and a PsActiveProcess link to manage
all processes in the kernel. Therefore, the Process Translation Table is initialized
when SeqTrace boots by reading the information in the PsActiveProcess link.
Specifically, SeqTrace access the chain of kernel Process according to the PsAc-
tiveProcess, walk through the process chain and analyze the information of every
EPROCESS struct node to get the information of every process. It acquires the
process name and process address by analyzing the ActiveProcessLinks in the
EPROCESS struct. In this way, the initial mappings of process addresses and
process names are obtained. Moreover, once a process is created, the PspInsert-
Process, an API running in ring 0, is responsible for inserting or deleting the
EPROCESS struct of the newly created process into the PsActiveProcess link.
And the PspExitProcess is triggered to delete the corresponding EPROCESS
struct from the PsActiveProcess link when the process dies. Consequently, both
APIs are intercepted by SeqTrace to dynamically update the semantic informa-
tion of the Process Translation Table.
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To maintain the API Translation Table, Decoder not only needs to grab the
semantic information of preloaded APIs but also has to intercept APIs loaded on
demand. Specifically, the Decoder component walks through the list of running
processes to acquire the semantic information of the preloaded APIs when Seq-
Trace is booted up. Taking VM with Windows OS as an example, the PEB and
PEB LDR DATA chain in the EPROCESS struct stores semantic information
of APIs. Therefore, the Decoder walks through the chain of PEB LDR DATA,
grabs the mapping of address and API name, and then stores them into API
Translation Table. Next, Decoder tries to intercept the API call of LdrpLoadDll
and LdrpInitializeProcess to be aware of the change of API call semantic infor-
mation. For this purpose, Decoder walks through the running process chain from
which we can find the base address of LdrpLoadDll and LdrpInitializeProcess.
Then, the VMI component of Decoder utilizes HEMC [16] to intercept those
APIs, i.e., LdrpLoadDll and LdrpInitializeProcess. In this way, the VM will be
trapped into VMM once one of these APIs is loaded into memory. Next, Decoder
reads the address from the ESP (Extended Stack Pointer) register or RSP (Rex
prefix Stack Pointer) register and dynamically updates the semantic information
into the API Translation Table.

By leveraging semantic mapping information from Process Translation Table
and API Translation Table, we could effectively decode the address sequences
of processes and APIs into corresponding semantic name sequences. Therefore,
using the VMI technology, SeqTrace decouples the execution tracing and seman-
tic analyzing. It does not need to acquire abundant semantics when tracing the
execution of processes in VM and performs semantic recognition in parallel with
VM running. Although a small number of APIs is monitored to maintain the
semantic tables, it is triggered at a very low frequency compared to those long-
running execution. Hence, the proposed approach would significantly reduce the
performance overhead of the system.

4.2 Adaptive Configuration of Intel PT

This subsection describes how to effectively adaptively configure the Intel PT to
support process tracing.

Firstly, the Analysis Director captures the VMs startup execution by moni-
toring the change of the /dev/KVM file, which is a device file created by QEMU.
Then, it obtains the configurations of VM involving vCPUs with the help of VMI.
Next, the Analysis Director would transfer the configurations of VMs and the
privilege spaces (user-space or kernel-space) that would be monitored to QEMU-
PT. As a bridge between Analysis Director and KVM-PT, QEMU-PT calls the
IOCTL to deliver the configurations to KVM-PT once receiving that information
and allocates memory space to store the traced address data.

Then, to configure the Intel PT, KVM-PT parses the configuration from
QEMU-PT and sets a specific bit of the MSR register to enable process tracing
on specific vCPUs. In addition, the Information Filter in KVM-PT would filter
the traced data and save the required data (i.e., related to a particular process
or permission space) in the Data Buffer of QEMU-PT.
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Next, QEMU-PT would decode the recorded data in Data Buffer into process
and API-call sequences. The specific workflow has been described in Sect. 4.1.
Finally, QEMU-PT delivers the decoded data to the Analysis Director to conduct
further analysis.

Based on Intel PT and VMI technology, SeqTrace is OS-independent and
OS-agnostic because it is implemented in VMM and does not need to prein-
stall agents inside VM. Moreover, the Intel PT provides ways to efficiently trace
the execution data of processes running inside the VM, then VMI technology
achieves semantic translation to translate the traced data into semantic infor-
mation, including process and API-call sequences. Therefore, it would be safer
and more efficient to analyze malware leveraging our SeqTrace.

5 Experiment

In this section, we evaluate SeqTrace by a set of experiments. We first demon-
strate the effectiveness of SeqTrace. Then, we measure the performance gain of
SeqTrace approach compared to the native approach.

Fig. 4. The excerpted RVA of Windows functions.
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5.1 Experimental Setup

All experiments are conducted on physical servers configured with Intel Xeon
6230 processors and 256 GB DDR4 RAM running Red Hat 7.4 with a 64-bit
3.10.0 Linux Kernel and QEMU-2.9.0. We configure the VM with two vCPU
and 4 GB RAM running Windows 7 with 32-bit.

We compare our SeqTrace with kAFL [15] and Drakvuf [38], both of which are
existing approaches for API-call analysis. DRAKVUF [38] set specific addresses
to achieve accurate interception of API calls. The kAFL utilizes Intel PT and
disassembling to conduct analysis. In the following sections, we will conduct
multiple experiments with these approaches to measure their performance.

5.2 Pretreatment

Before conducting experiments, SeqTrace grabs the relative virtual address
(RVA) of APIs from the kernel of the guest OS preparing for semantic transla-
tion as mentioned in HEMC [16]. In Our experiments, we have gotten the RVA
of more than 700 high-risk Windows APIs. As shown in Fig. 4, it is some RVA
of APIs from Windows OS.

5.3 Effectiveness of SeqTrace

To prove the effectiveness of SeqTrace, we employ 1,000 malicious samples that
are downloaded from VirusSign [39] to conduct our effectiveness evaluation. In
the experiments, all malicious samples and specific malware are deployed in VM,
and SeqTrace runs in VMM to acquire and analyze their behaviors. SeqTrace
can directly obtain the running log outside VM and there is no need to install
an agent inside VMs.

With the help of qemu-nbd, malicious samples and typical malware are
dynamically loaded into VMs and automatically triggered to execute. During the
execution, SeqTrace could get the API-call sequences in real-time by leveraging
the IPT-based API-call Tracing Approach and VMI-based Semantic Decoder.
As illustrated in Fig. 5, it is the log of API-call sequences in the form of XML,
from which the API-call sequence for one operational action can be obtained.
Furthermore, we can grab the complete API-call sequence of one process by in-
depth filtering. These API-call sequences can be fed into the machine learning
models to detect the malicious behaviors of samples. However, it is worth noting
that the API-call sequence of some processes in Fig. 5 is missing and only 700
kinds of high-risk Windows APIs could be grabbed in advance. Therefore, some
API addresses failed to be matched successfully. In this experiment, one thou-
sand malicious samples are executed with the running of SeqTrace, and we get
a series of log files that occupy more than 2 GB of disk space. We extract the
complete API-call sequences from the log files, and then the API-call sequences
are fed into the TextCNN model to recognize whether the samples are malicious.
By analyzing those API-call sequences, SeqTrace can identify many malicious
samples. The experiment results prove the effectiveness of SeqTrace.
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Fig. 5. The running behavioral log.

5.4 Overhead Evaluation

To evaluate SeqTrace thoroughly, we deploy the following workload in the VM
to represent a variety of characteristics:

– HD Tune Pro benchmarks [17] is used to measure the driver’s performance,
which means an IO-intensive workload.

– Fritz Chess benchmarks [18] is a computer chess test program, and it is fre-
quently used to test CPU performance.

To measure the gain of performance, we analyze 260 kinds of APIs and 700
kinds of APIs respectively leveraging SeqTrace, and comparing them against
those of kAFL and Drakvuf. These high-risk APIs (e.g. APIs related to file
operation or process operation) are obtained and summarized from engineering
applications with millions of samples which may be increased or adjusted with
the accumulation of engineering experience in the future. Figure 6 and Fig. 7
show the performance overhead in various configurations. Specifically, SeqTrace-
260 and Drakvuf-260 explore 260 kinds of the same APIs at the user level. In
addition, SeqTrace-700 and Drakvuf-700 analyze the 700 kinds of APIs involving
user-level API and kernel-level API.

Overhead of IO-Intensive Application. HD Tune Pro is often used to mea-
sure the driver’s performance as a hard disk utility with many functions. In this
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Fig. 6. Performance overhead of IO-intensive application.

experiment, HD Tune Pro is employed as an IO-intensive application to calcu-
late the performance penalty caused by SeqTrace. As illustrated in Fig. 6, we
obtain the performance of an application in terms of minimum transfer rate,
maximum transfer rate, average transfer rate, and burst transfer rate. And then
calculate the performance overhead by the ratio of performance degradation
to performance value in normal execution without taking API-call tracing. As
reported in Fig. 6, KAFL incurs the least performance penalty, i.e., 5.79%, but
there is a semantic gap for behavior analysis. For Drakvuf, although only an
11.54% performance penalty is incurred in the Drakvuf-260 case, it incurs 80.43%
penalty in the Drakvuf-700 case. Therefore, the performance overhead caused
by Drakvuf is heavily influenced by the number of traced APIs. SeqTrace incurs
14.69% and 14.78% performance penalty for SeqTrace-260 and SeqTrace-700
respectively. Therefore, SeqTrace mitigates the performance penalty by 81.62%
(i.e., 80.43%−14.78%

14.78% ) for 700 samples cases. Thus, the results prove that Seq-
Trace is almost unaffected by the variation of the API number for IO-intensive
applications.

Overhead of CPU-Intensive Application. Fritz Chess Benchmark is a com-
puter chess test program that is frequently used to measure CPU performance. In
this experiment, Fritz Chess Benchmark is employed as a CPU-intensive appli-
cation to measure the performance impact on the CPU when using SeqTrace.
The experiment results are reported in Fig. 7. The contrast ratio and per thou-
sand steps of CPU are used to evaluate the performance overhead of SeqTrace.
As illustrated in Fig. 7, SeqTrace incurs stable performance overhead, i.e., 5.87%
and 6.07% for SeqTrace-260 and SeqTrace-700 respectively, which is similar to
the IO-intensive Application. As expected, Drakvuf is heavily influenced by the
number of traced APIs, i.e., 32.24% and 50.51% for Drakvuf-260 and Drakvuf-
700 respectively. It can be seen that SeqTrace reduces the performance penalty
by 81.79% (i.e., 32.24%−5.87%

32.24% ) and 87.96% for 260 samples and 700 samples cases
respectively. Compared to 3.94% of KAFL, SeqTrace introduces slightly more
performance overhead, but it gets more ample semantic information. The results
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prove that the performance overhead of SeqTrace is independent of the num-
ber of analyzed APIs. The reason is that SeqTrace leverages Intel PT to trace
API addresses and Process addresses with a low-performance penalty. Moreover,
SeqTrace only requires intercepting four APIs(i.e., PspInsertProcess, PspExit-
Process, LdrpLoadDll, and LdrpInitializeProcess) for semantic translation no
matter how many APIs are analyzed. Therefore, the performance overhead of
SeqTrace is little affected by the number of analyzed APIs.

Overhead of Comprehensive Application. In this subsection, we use some
real-world applications, i.e., unzip, zip, and virus scan, to evaluate the perfor-
mance of SeqTrace and report the performance overhead in Fig. 8.

As illustrated in Fig. 8, the performance overheads caused by SeqTrace-260
are 15.82%, 8.16%, and 14.13% for unzip, zip, and virus scan workload respec-
tively. As expected, the results of SeqTrace-700 are similar to SeqTrace-260,
which means that the number of traced APIs has little effect on the perfor-
mance overhead. For KAFL, the performance overheads are 7.02%, 6.67%, and
4.99% respectively. It can be seen that SeqTrace introduces slightly higher per-
formance overheads than kAFL. It is mainly due to SeqTrace employing VMI
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to trap some APIs. Although SeqTrace leads to a slightly higher performance
penalty, it obtains specific semantic information of API-call sequences that kAFL
cannot get.

Combining the experiments of CPU-intensive and IO-intensive applications,
we find SeqTrace performs better on CPU-intensive applications than IO-
intensive applications. Moreover, compared to existing approaches, SeqTrace
significantly reduces the performance overhead and would be less affected by
the workloads and configurations.

6 Related Work

API-call sequence analysis has been researched and applied in many fields. For
example, Mamoun [30] designs an automatic system and employs the n-gram
and reverse engineer to extract behavior features of malware. Ashkan Sami [31]
directly extracted API calls from PE files, which are used to create an attribute
set to detect malware programs. Cheng Wang [32] utilizes the decompile analysis
to get the API sequence of malware and form them into the behavior characteris-
tic. Then, they employ the Bayes algorithm to see suspicious programs according
to those characteristics. However, these static analysis approaches extract API-
call sequences from code segments, so they are unsuitable for unknown malware
analysis.

CWSandbox [9] propose dynamic approaches for API-call analysis. It lever-
ages API hooking and dynamic library injection techniques to hook functions
into the malware programs, intercept relevant APIs, and automatically analyze
malware. Cuckoo [33] employs API hooking to intercept all appropriate API calls
and then generates API-call sequences. Based on Cuckoo Sandbox, UNVEIL [2]
Leverage filesystem driver of window OS to intercept filesystem activity for ran-
somware detection. Unfortunately, the monitoring tools that run with the same
privileges as malware are vulnerable to being compromised by malware. To solve
this problem, Bin Shi proposes ShadowMonitor [34] approach. It consists of two
compartments, i.e., the main compartment and shadow compartment, which are
assigned to different access privileges and would not be discovered or accessed
by malware running in VMs.

With the development of hardware virtualization technology, another
dynamic analysis approach named external dynamic analysis is proposed. It
is implemented in the hypervisor, so it does not need an agent in the guest
OS. Therefore, the dynamic analysis tools are OS-independent. For example,
XenAccess [35] accessed the memory and disk data to reconstruct the semantics
of the API call using Xen’s infrastructure. Ether [36] intercepted instruction,
memory, and API-call information outside VMs and provided a transparent
method for malware analysis. Bryan presents an open-source software named
Libvmi [14] to get the entire memory of guest VMs and monitor their run-time
internal state. Nitro [8] proposes an event-driven mechanism to trap kernel API
calls and register sensitive events. It is triggered when registered events occur.
NOR [37] presents an event-driven snapshot to get activities of VMs with lower
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performance overhead. To obtain the API address, DRAKVUF [38] traps specific
addresses instead of some address pages to achieve accurate API interception.

As the new processor feature introduced in the fifth or above-generation
Intel processors, Intel PT provides the ability to trace the execution branches
of processes with a slight performance penalty. Most of researches utilize this
technology in fuzzing [15,19–21] and integrity check of control-flow [22–25].
For example, PT-CFI [27] combines Intel PT and disassembling technology to
detect control flow hijacking. Intel PT and disassembling are also employed in
kAFL [15] to examine the security of kernel components. However, we find that
Intel PT has not independently been used to accomplish one task in PT-CFI
and kAFL. The reason is that Intel PT only traces the address data and has
no semantic information. Therefore, data decoding is required before using for
malware analysis. Disassembling is an approach employed to solve this problem
in some researches [28,29], but it is not convenient and flexible. It is because we
must obtain the binary code previously. If the binary code is not acquired or
known, we cannot decode the traced data and get the semantic information.

Compared to previous works, our SeqTrace mitigates the performance over-
head and improves the efficiency of API-call analysis by combining the technol-
ogy of VMI and Intel PT. It first leverages the Intel PT to effectively trace the
execution of malware and dynamically grab API-call data. Then, it utilizes VMI
to translate the data with no semantic information into API-call sequences.

7 Conclusion

This paper presents SeqTrace, a novel dynamic API-call sequence tracing app-
roach implemented in VMM for malware detection. SeqTrace first proposes an
IPT-based API-call Tracing Approach, which takes full advantage of Intel PT’s
hardware feature to effectively record information of malware execution. Next,
it designs a VMI-based Semantic Decoder to achieve semantic translation lever-
aging the abundant semantic features of VMI. A set of experiments proves that
SeqTrace achieves a significant performance improvement in tracing API-call
sequences and it would be helpful in practice malware analysis.

Due to the limitation of Intel PT technology, SeqTrace can only work on
Intel 5th generation and above processors. It can obtain all execution streams
under Linux and Windows operating systems and is not limited by application
types in the operating system. Before using SeqTrace to achieve data, we need
to obtain the corresponding address data in advance, such as the RVA address of
the API. In the future, we can use SeqTrace for automated vulnerability mining
and fuzzing.
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Abstract. Cross-platform power/performance prediction is becoming
increasingly important due to the rapid development and variety of
software and hardware architectures in an era of heterogeneous multi-
core. However, accurate power/performance prediction is faced with an
obstacle caused by the large gap between architectures, which is often
overcome by laborious and time-consuming fine-grained program pro-
filing on the target platform. To overcome these problems, this paper
introduces CP 3, a hierarchical Cross-platform Power/Performance Pre-
diction framework, which focuses on utilizing architecture differences to
migrate built models to target platforms. The core of CP 3 is the three-
step hierarchical transfer learning approach, hierarchical division, partial
transfer learning, and model fusion, respectively. CP 3 firstly builds a
power/performance model on the source platform, then rebuilds it with
the reduced training data on the target platform, and finally obtains a
cross-platform model. We validate the effectiveness of CP 3 using a group
of benchmarks on X86- and ARM-based platforms that use three differ-
ent types of commonly used processors. Evaluation results show that
when applying CP 3, only 1% of the baseline training data is required
to achieve high cross-platform prediction accuracy, with power predic-
tion error being only 0.65%, and performance prediction error being only
4.64%.

Keywords: Cross-platform prediction · Performance model · Power
model · Transfer learning

1 Introduction

Power and performance prediction plays a critical role in parallel and distributed
computing, especially for application development, energy-efficiency optimiza-
tion, power-aware resource management, and job scheduling [1–3]. For the multi-
core systems nowadays, the architecture evolves quickly and becomes increas-
ingly heterogeneous. The diverse computation units (e.g., CPU and GPU) and
Instruction Set Architectures (ISAs, e.g., X86 and ARM) further increase the
complexity and heterogeneity of the systems, making it common for applications
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W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 117–138, 2023.
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to run on different platforms. Despite the fact that the same application is run-
ning on two different CPU architectures, the application performance differs by
a factor of 100. As a result, power and performance evaluations across different
platforms are more challenging than ever [4–6].

Developing a power and performance model to determine the average power
consumption and execution time of a program is a crucial part of power and
performance evaluation since it is inexpensive, non-intrusive, and has few side
effects. In cross-platform scenarios, however, it becomes more difficult due to the
complexity of the applications and gaps between platforms. Previous works have
focused on certain parts (basic blocks or phases) of programs rather than the
whole application in order to reduce the complexity of problem-solving. These
approaches were based on a belief that good cross-platform predictions are only
possible through studying the behavior of machine-independent programs [5–7].
Programm phases that perform the same computation behave similarly across
platforms, implying that their performance metrics display the same or similar
trends, but their execution times differ. On the basis of this, they divide the
program into multiple phases, and then match the phases, forecasting the power
consumption and performance on the target platform.

Although phase-based approaches offer a solution for cross-platform predic-
tion, there are two issues. Firstly, this assumption is not always valid due to
the difference in computing and memory access capabilities across different plat-
forms. Even if the same workload is performed, there is a large difference in pro-
gram behavior, which leads to inaccuracy, as shown in Fig. 1 (c). Furthermore,
this method requires running a small set of benchmarks offline and collecting
performance data, such as performance monitoring counters (PMCs), in order
to fully describe each machine’s power and performance characteristics. After
that, the neural network is trained to generalize the cross-platform relationships
between program phases and phase characteristics. In order to achieve satis-
factory accuracy with neural networks, a large amount of training data must
be collected. This is a labor-intensive and time-consuming process. Considering
both of these issues, we no longer focus on the phase similarity of the applica-
tion itself, but rather on the differences between architectures. In our case, we
make some adjustments to the power/performance model of the known platform
using transfer learning to make it suitable for the target platform. Recent years
have witnessed the widespread use of transfer learning in the field of perfor-
mance prediction, which uses less training data by transferring knowledgeacross
environments.

In this work, we propose CP 3, a Cross-platform Power/Performance
Prediction framework, to achieve high model accuracy with as few training data
as possible. The core of CP 3 is a three-step hierarchical transfer learning app-
roach, which utilizes architecture differences to migrate the power/performance
model on the known platform while reducing training data. There are three steps
of CP 3. Step 1. Hierarchical division. We observed that application-related
features that are closely relevant to the application but platform-independent
make negligible impacts on the model accuracy. Based on this, we divide the
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(a) (b) (c)
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Fig. 1. The similarity of program phases that execute the same load varies by platforms.
Sub-figures (a), (b) and (c) show that IPC variation on platforms A, B, and C. From
(a) to (b), only the execution time changes, but the shape does not change. From (a) to
(c), not only the execution time changes, but also the shape is different due to different
computing and memory access capabilities.

features and still use the PMCs that are closely related to the application but
not related to the platform when modeling on the target platform. In addition,
we recollect platform-related features and combine them to complete the model
training. Step 2. Partial transfer. On the basis of hierarchical division, we
use transfer learning to learn the relationship between the source platform and
the target platform and conduct model transfer. The transfer learning approach
could significantly reduce the number of needed samples for satisfactory accu-
racy. The hierarchical division guides us to divide features into multiple layers,
therefore reducing the number of features contained in a training sample; the
transfer learning approach reduces the number of training samples. Step 3.
Model Fusion. We further adopt a model fusion approach, by combining the
application-layer model of the source platform with the platform-layer model of
the target platform, and obtain the cross-platform model.

To summarize, we make the following contributions:

– We find great data reduction potentials by figuring out those features with
nearly “zero” contributions to the prediction model. Specifically, we show
that the application-related features have little impact on cross-platform
power/performance modeling.

– We design CP 3 that achieves a high model accuracy while reducing the train-
ing data from the sample and feature dimensions simultaneously.

– We conduct extensive experimental evaluations on CP 3 in real-world cross-
platform scenarios. The results demonstrate that CP 3 uses only 1% of the
baseline training data while achieving prediction errors of 0.8% and 4.6% for
power and performance prediction, respectively.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the motivation. Section 4 proposes and details the design
of CP 3. Section 5 presents the experimental environment and Sect. 6 evaluates
CP 3. Finally, Sect. 7 concludes the paper.
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2 Related Work

Cross-platform prediction, which predicts power and performance on an
unknown platform using data from the known platform’s power and perfor-
mance statistics, has been an active study topic. The difficulty of creating an
accurate and low-overhead power/performance model stems from how compli-
cated software and hardware are. So far, three different types of approaches have
been put forth: simulation-based, analytical modeling-based, and learning-based
approaches.

Although accurate, simulation-based techniques like cycle-accurate instruc-
tion set simulations [8] have obvious performance issues. Traditional analytical
modeling techniques, on the other hand, are accurate to a certain extent but are
computationally inefficient. In order to do this, cross-platform prediction meth-
ods based on machine learning are suggested. Accuracy is maintained while
speedups of orders of magnitude are offered via learning-based techniques (as
shown in Table 1).

Table 1. Overview of existing cross-platform approaches.

Target Method Granularity Way

[9] performance linear regression whole program instrumentation

[7,10] power & performance convex optimization basic block instrumentation

[6] performance stochastic dynamic coupling binary sampling

[5] power & performance neural network phases sampling

[11] performance transfer learning whole program sampling

CP 3 power & performance transfer learning whole program sampling

Currently, learning-based methods use settings where training and prediction
are carried out at a finer granularity to attain high accuracy. These methods
necessitate either instrumenting the source code to retrieve the basics [7,9,10],
sampling the binary file [6], or extracting the application phase using hard-
ware counters [5]. Zheng et al. successively introduced instrumentation-based
and sampling-based approaches for power and performance prediction of the
whole program as well as for different phases [6,7,9]. However, all these
instrumentation-based methods are limited to predicting a single application
where source code is available. In addition, instrumentation has a non-negligible
execution overhead. In order to estimate power and performance across var-
ious hardware configurations, Kim et al. [5] developed P 4, a sampling-based
framework that first performs offline characterization and then formulates the
power/performance model. By concentrating on certain parts (basic blocks or
phases) rather than the entire program, these techniques significantly reduce
the difficulty of problem solving. Nonetheless, they made the assumption that
program phases that carry out the same computation behave identically across
platforms, but this assumption isn’t necessarily the case because different plat-
forms have varied computing and memory access capabilities. Apart from this,
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a large amount of training data is required to guarantee high model accuracy,
which brings heavy data collection overhead.

Recent years have witnessed the widespread use of transfer learning in the
field of performance prediction. It reduces learning costs (training data) by trans-
ferring knowledge about performance behaviors across environments. Sun et
al. [12] modeled the correlation between the execution time and runtime fea-
tures through automatically instrumenting an MPI program. Marathe et al. [13]
introduced a deep learning technique augmented with domain transfer learning
to identify high performing application configurations in static cross-platform
modeling. Malakar et al. [14] proposed that for homogeneous platforms, using
1% of training data on the target platform to retrain the model on the source
platform can predict the remaining 99% of the performance data on the tar-
get platform. Amit et al. [15,16] explored the transfer learning technique for
cross-platform or cross-system prediction. Differently, they regarded hardware-
related features, i.e. configurations as features to form dataset. Kumar et al. [11]
used transfer learning to achieve performance prediction from simulated systems
to physical systems and across different architectures. Meanwhile, they point
out that prediction accuracy in memory-bound applications is higher than in
compute-bound applications due to the variability of processor manufacturing.
Although these studies have reduced training samples through transfer learning,
they have not fully exploited the data reduction potential. Kumar’s work is most
similar to ours, but differs in that we achieve power/performance prediction for
different architectures. Moreover, not only using off-the-shelf transfer learning
approaches, we propose a hierarchical transfer learning method combined with
feature characteristics, which greatly reduces the training data and ensures the
model accuracy.

3 Motivation

The application-related features have little impact on cross-platform power/ per-
formance modelling, which inspires us to consider hierarchical division. In this
section, we test the correctness of this point.

Generally, the features required in modelling can be divided into three levels,
i.e., application level, platform level, and intermediate level. Features at the
intermediate level that are generated when a program runs on a certain platform
are a mix of application-related and platform-related features. Here, we split the
intermediate features into two parts and propose four cases. Table 2 describes
four cases for comparisons. In four artificially presented cases, different levels of
features are mixed to be used as inputs to CP 3 training. Case 1 uses all levels
of feature for modelling, Case 2 uses all features except those at the application
level, Case 3 uses some application-related features at the intermediate level, and
Case 4, which is implemented by CP 3, uses all platform-related features. The
MAPEs are tested under these cases and the experimental results are shown in
the last two rows of Table 2.

We reach two important observations through Table 2, which inspires us to
propose the hierarchical transfer learning approach.
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1. One observation is that application-related features do not signifi-
cantly affect model accuracy in the cross-platform scenario. Hence,
removing the application-related features does not have a significant impact
on the model’s accuracy. For example, in Table 2, removing features causes
the reduction of accuracy by less than 0.5%, which inspires us to propose
CP 3.

2. Another very important observation is that when only using input param-
eters for modelling, model accuracy will be greatly reduced. This
also illustrates the important role of platform-related features as opposed to
application-related features in modelling, further demonstrating why remov-
ing application-related features is a rational decision.

Table 2. Feature levels involved in four cases.

Case 1 Case 2 Case 3 Case 4

Application � �
Inter. (app) � � �
Inter. (plat) � � �
Platform � � �
MAPEpower 0.91% 0.91% 10.30% 0.97%

MAPEperfromance 1.22% 1.52% 3.86% 1.54%

Inspired by the above two points, we consider to further stratify the inter-
mediate features into platform-related and application-related, and propose a
hierarchical transfer learning method.

4 Methodology
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Fig. 2. Overview of the CP 3 framework.
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Figure 2 gives the overview of the CP 3 framework, which has two phases, i.e.,
the training phase and prediction phase. In the training phase, CP 3 adopts
the proposed three-step hierarchical transfer learning approach to construct the
cross-platform model. In the prediction phase, collecting the required features
on the target platform as the input to the cross-platform model, CP 3 outputs
the execution time T and the average power consumption P .

The hierarchical transfer learning approach consists of three steps. In the
first step, we split all features into two parts, that is, features with a three-
level structure are further divided into four levels (two parts). In this way, it
is no longer necessary to collect all the features on the target platform. In the
second step, we consider reducing the sample size by applying partial transfer.
Finally, we use the model fusion approach, to realize the combination of the
application-layer model of the source platform and platform-layer model of the
target platform and obtain the cross-platform model. The rest of this section
elaborates the three-step hierarchical transfer learning approach.

4.1 Hierarchical Division

Figure 2 gives the schematic diagram of the hierarchical division approach. As
we mentioned before, the features required in modeling can be divided into three
levels, i.e., application level (App. in Fig. 2), platform level (Plat. in Fig. 2), and
intermediate level (Inter. in Fig. 2). App. features refer to the input parame-
ters of the application and the configuration parameters set by the user when
submitting the job (as shown in Table 6). Plat. features refer to the hardware
specifications , such as CPU frequency, memory capacity, and cache size (as
shown in Table 5). Inter. features refer to power/performance statistics gener-
ated when a specific application runs on a specific platform. These features are a
mix of application-related and platform-related features. Performance monitor-
ing events are representative features at the intermediate level, which directly
reflects the CPU activities caused by the interaction between applications and
platforms. Each time the program is run, the above three types of features can
be collected to form a vector xi(1 < i < N), N is the total number of samples.

Based on our observations, relying on existing three-level features will not be
able to determine a minimum number of critical features on the target platform
that will cover the training data in full. For this reason, we propose a hierarchical
division method, an embedded feature selection method [17] that includes spar-
sity reduction, feature reduction, and feature division, allowing further selection
of features at the intermediate level automatically.

Sparsity Reduction. First, LASSO [18] regression is used for sparsity reduc-
tion. The training data has strong sparseness because it is made up of input
parameters from multiple applications, thus being different and rarely overlap-
ping. It can be seen from Table 6 that the input parameters of Graph500 and
SMG2000 do not overlap. LASSO regression is a data dimensionality reduction
method, which adds L1 penalty term on the basis of linear regression model,
which is shown in Eq. (1),
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1
N

ΣN
i=1(�wT · �xi + b − �yi)2 + λ‖w‖1 (1)

where �xi is the eigenvector, �wT is the corresponding weight vector, N is the total
number of features containing in �xi, �yi is the actual value on the target platform,
b is the constant, λ‖w‖1 is the L1 penalty term. The addition of the L1 penalty
term completes the feature selection. By compressing the original coefficients,
the originally small coefficients are directly compressed to 0, so that the features
corresponding to these coefficients are regarded as insignificant features. The
insignificant features are directly discarded, thereby reducing the sparsity. By
applying LASSO regression, we select k features for subsequent processing.

Feature Reduction. Modern computing systems have more than 100 perfor-
mance monitoring events, but they can only collect a few of them simultaneously
because of monitoring overhead, which makes it crucial to select a small number
of PMCs with the highest relevance. To pick out as few features as possible that
have high relevance as possible, we quantify features’ importance by introducing
the Decision Tree [19] based feature selection method, therefore l pivot features
are selected.

The construction process of Decision tree is actually the process of selecting
the best features. Decision tree is usually a process of recursively selecting the
optimal features, and splitting the features so that each sub-data set has the best
fitting effect. Building a tree realizes feature selection and feature importance
ranking. In a built decision tree, the features closer to the root node are more
important. With Decision Tree, we select the pivot features that contribute a lot
to the accuracy of the power or performance model on the given platform.

Feature Division. To minimize the number of features, we propose the idea
of hierarchical division under the guidance of hierarchical thinking that further
partitioning the current three-level features to form four feature levels. The core
of hierarchical division is to divide features at the intermediate level into two
types, i.e., features that are related to platforms and features that are related
to applications. From top to bottom, the four levels of the source platform are
the top application-level features, intermediate application-level features, inter-
mediate platform-level features, and the bottom platform-level features.

Following the discovery of the l pivot features, we calculate the Pearson
Correlation Coefficients [20] (PCCs) Papp and Pplatform for the the application-
level pivot features and platform-level pivot features respectively as Eq. (2),

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − μX)(Y − μY )]
σXσY

(2)

where ρX,Y is the PCC, X represent the pivot feature set at the intermediate
level and Y represent the feature set at the application level, cov(X,Y ) is the
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co-variance of X and Y , σX and σY are variance of X and Y , μX and μY are
standard deviation of X and Y respectively, E represents expectation.

We choose l−n (l−n = 2 in the paper) pivot features at the application level
with ρapp greater than the preset threshold as the application-related features
at the intermediate level and select n (n = 8 in the paper) pivot features at the
platform level with ρplatform greater than the preset threshold as the platform-
related features at the intermediate level. The pivot features at the application
level and the application-related features at the intermediate level are used as
the upper two levels of training data, and the pivot features at the platform
level and platform-related features at the intermediate level are used as the
bottom two levels of training data. The feature size required for modeling reduces
considerably after applying hierarchical division, and only the platform-related
features are required in modeling.

Table 3. Pivot Features on platforms A, B, and C.

No. A B C

1 cpu-migrations L1-dcache-load-misses BUS ACCESS LD

2 idq.ms dsb occur branch-misses ASE SPEC

3 l1d pend miss.pending cpu-migrations VFP SPEC

4 llc misses.pcie read bus-cycles EXC DABORT

5 llc references.pcie read iTLB-loads EXC TRAP IRQ

6 major-faults major-faults BR MIS PRED BTB INDIR

7 page-faults uncore iio free running 0
/bw out port1/

BR MIS PRED RETURN

8 offcore requests.demand rfo uncore iio free running 1
/bw out port2/

ETM EXT OUT0

9 offcore response.pf l2 rfo.llc
hit.any response

uncore iio free running 1
/util out port3/

L2 TLB ACCESS PF

10 uops issued.flags merge uncore iio free running 2
/util out port2/

L2 TLB REFILL

4.2 Partial Transfer

Another big challenge faced in cross-platform modeling is how to overcome the
huge gap between the source platform and the target platform. Owing to the
completely different architectures, platform-related features are different on dif-
ferent platforms. This is generally overcome at the cost of a large number of
samples for training on the target platform in previous studies. Different from
previous studies, we apply partial transfer based on the structural correspon-
dence learning (SCL) [21] algorithm.

SCL is an unsupervised learning framework, which makes use of the unlabeled
data from the target domain to extract some relevant features that may reduce
the difference between the domains. There are three steps of SCL. In the first
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step, we define a set of pivot features (the number of pivot features is denoted
by n) on the unlabeled data from both domains. Although SCL has long been
thought to be able to reduce the difference between domains, how to select the
pivot features is difficult and domain-dependent. In this paper, we modify the
way of selecting pivot features, and provide more details in Sect. 4.1, finally
obtaining n pivot features after feature selection.

In the second step, we remove these pivot features from the data and treats
each pivot feature as a new label vector. The n classification problems can be
constructed. The adopted classifier in this paper is Decision Tree. By assuming
each problem can be solved by the linear classifier, so SCL can learn a matrix
W s. The goal of partial transfer is to minimize the loss function [22] L, namely

min L(〈�wT
is · �xit|1 ≤ i ≤ m〉, �yt) (3)

where matrix Xt = [�x1t, �x2t, ..., �xmt] represents n features and m samples of
CP 3 on the target platform. Each sample vector �xit has n feature components.
The corresponding weight matrix of Xs is W s. We use the matrix W s on the
source platform to make predictions. �wT

is ·�xit represents the ith sample predicted
value (1 ≤ i ≤ m) of CP 3 on the target platform, and yit represents the i sample
observed value of CP 3 on the target platform. For each i (1 ≤ i ≤ m), Eq. (3)
needs to satisfy the minimization of |yit − �wT

is · �xit|.
Matrix W s is shown as Eq. (4),

W s = [�w1s, ..., �wks, �w(k+1)s, ..., �wms] (4)

where vectors �w1s, ..., �wks represent the weights corresponding to application-
related feature vectors �x1s, ..., �xks on the source platform. And vectors
�w(k+1)s, ..., �wms represent the weights corresponding to platform-related feature
vectors �x(k+1)s, ..., �xms.

In the third step, we apply singular value decomposition (SVD) [23] to matrix
W s. Under the optimal goal as Eq. (3) shows, its corresponding weight vec-
tors are �w1s, ..., �wks, which become �w1t, ..., �wkt through the iterative weighted
method,

W t = [�w1t, ..., �wkt, �w(k+1)t, ..., �wmt] (5)

W ∗
t ← arg min L � [�w∗

1t, ..., �w∗
kt, �w∗

(k+1)s, ..., �w∗
ms] (6)

where the transformation from �w∗
(k+1)s, ..., �w∗

ms to �w∗
(k+1)t, ..., �w∗

mt adopts the
modified SCL method. Let W s = UDV T, then θ = UT can be obtained, and
finally the features �xit on the target platform can be transferred to new features
θ�xit, achieving the alignment of the pivot features on the source platform and
target platform.
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4.3 Model Fusion

Figure 3 gives the flow chart of three-step cross-platform modeling based on
the proposed hierarchical transfer learning. In the first step, with hierarchical
division, the features at the intermediate level are further divided into two sub-
levels, forming a four-level structure. The upper two levels are application-related
features, which are used to construct the application-layer model Su, and the
lower two levels are platform-related features, which are used to construct the
platform-layer model Sd. In the same manner, the application-layer model Tu

and the platform-layer model Td of the target platform can be developed. Models
such as Su and Tu, which use application-related features as their training data,
do not change when applied in cross-platform scenarios, i.e., Su = Tu, so there is
no need to retrain Tu on the target platform. This observation will be verified in
Sect. 6. In the second step, to migrate the built model from the source platform
to the target platform quickly, the proposed partial transfer is applied to reduce
the sample size, realizing the migration from Sd to Td. In the third step, the
model fusion algorithm is used to combine the application-layer model Su on
the source platform with the platform-layer model Td of the target platform to
produce the cross-platform model of the CP 3 framework. The rest of this section
elaborates on this algorithm.
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Fig. 3. Schematic of three steps of the hierarchical transfer learning approach.

The model fusion algorithm is essentially a layered weighted modeling
method [24], which can be divided into two layers. As Fig. 3 shows, the first
layer is the individual layer, which refers to the already-trained application-
layer model of the source platform and the platform-layer model of the target
platform, the second layer is the fusion layer, which refers to the cross-platform
model that combines all the individual layers’ models. The model fusion algo-
rithm includes two steps. In the first step, we take the training data x1 and x2

as the individual layer’s input, and obtain the models Su and Sd. The outputs
of the individual layer are the predicted values ỹ1, ỹ2. In the second step, we use
ỹ1 and ỹ2 as the inputs of the fusion layer to obtain the output, Y . Elements y1
and y2 are the actual values corresponding to ỹ1 and ỹ2.
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Algorithm 1. Model fusion algorithm
Require:

Training datasets D1 = {(x1, y1)}, D2 = {(x2, y2)};
Elementary learning algorithms �1,�2;
Secondary learning algorithm �3.

Ensure:
CP 3 Model H.
// construct models at the individual layer

1: h1 = �1(D1);
2: h2 = �2(D2);
3: ỹ1 = h1(x1);
4: ỹ2 = h2(x2);

// construct the fused model
5: D3 = {([ỹ1, ỹ2], [y1, y2])};
6: H = �3(D3).

The descriptions of the modeling process of CP 3 appear in Algorithm 1. The
elements x1 and y1 form the training dataset D1, and the elements x2 and y2
form the training dataset D2. Elementary learning algorithms �1 and �2, such
as gradient boosting tree [25], can be used to train models Su and Td. The final
results of Su and Td are h1 and h2, respectively. [ỹ1, ỹ2] and [y1, y2] form the
training dataset D3. CP 3 adopts the secondary learning algorithm �3 to obtain
the final result, H.

5 Experimental Setup

This section describes the platforms, benchmarks, training data and metrics used
in this paper.

5.1 Platforms and Environment

The experiments are conducted on three different computing platforms, denoted
as A, B, and C. Table 4 gives the hardware parameters of each platform. These
three platforms have different characteristics. B with the latest model of Intel
x86 processor has higher processor frequency, bigger DRAM capacity, and better
performance than A. A is a 16-node cluster. C is a node with an ARM-based
processor.

All three platforms support frequency scaling and three processor frequency
levels (maximum, medium, minimum) are set for each platform, i.e., minimum
frequency, medium frequency, and maximum frequency, which are detailed in
Table 4. Different frequency levels can be set using the cpufreq governor [26] on
platforms A and B. For C, three frequency levels can be set in the registers.
Compilers used for compilation are GCC 5.4.0, GCC 4.8.5, and GCC 4.9.0 for
A, B, and C, respectively. OpenMPI 4.0.5, OpenMPI 4.1.0, and OpenMPI 4.0.1
are used as MPI libraries on platforms A, B, and C, respectively.
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Table 4. Configurations of three platforms.

Platform A Platform B Platform C

Max. (frequency) 2.6GHz 3.2GHz 2.2GHz

Mid. (frequency) 2.2GHz 2.8GHz 1.8GHz

Min. (frequency) 1.8GHz 2.2GHz 1.4GHz

#cores per CPU 10 8 64

#CPUs per node 2 2 1

Hyper-threading Yes Yes No

Mem size per node 64 GB 384 GB 128 GB

Cache size per node 25 MB 24.75 MB 16 MB

#nodes 16 1 1

Network InfiniBand NA NA

5.2 Benchmarks

We choose Graph500 and SMG2000 to evaluate the CP 3 framework. Graph500
(version 3.0.0) [27] is a widely used benchmark for data-intensive computing. Its
computing kernel is the breadth-first search (BFS) of the graph starting from
a single source vertex. SMG2000 [28] is a parallel semi-coarse multi-grid solver
for linear systems, which is produced by finite difference, finite volume, or finite
element discretization of diffusion equations. This solver is crucial to reach better
scalability for simulating radiation diffusion. Table 6 gives the input parameters
of Graph500 and SMG2000, which are also regarded as features at the application
level in the CP 3 framework.

5.3 Training Data

We collect training data by running benchmarks on three platforms three times
or more until the 95% confidence bound under different configurations as shown
in Table 5. As explained below, we use a variety of techniques to obtain different
features, i.e., hardware parameters, application parameters, and runtime PMCs,
and labels, i.e., performance and power consumption.

Table 5. Features at the platform level of CP 3

Parameter Type Range

Platform number Numerical [0, 1, 2]

#nodes Numerical [1, 16]

#processes Numerical [1, 640]

frequency Numerical [Min freq, Mid freq, Max freq]

#threads / core Numerical [1, 2]

Mem size Numerical [64, 128, 384]

Cache size Numerical [25, 24.75, 16]
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– The hardware parameters can be collected through reading the operating
system, and the application parameters can be extracted via shell scripts from
the log file to obtain fields related to input parameters and user configuration
parameters.

– Performance monitoring events are collected by the perf [29] tool every 1000
ms on platforms A and B. Additionally, to access PMCs on platform C, we
have developed our own Linux loadable kernel module (LLKM).

– We record the start time and end time of the program to obtain the execution
time of the program.

– We use the perf tool on A and B to record the processor and memory power
usage by reading performance monitoring events /power/energy-pkg/ and
/power/energy-ram/ at 1000 ms interval. On platform C, cascading the I2C
interface of the power supply and the CPU enables us to read the real-
time processor voltage and current by directly accessing the registers 0x8b
and 0x8c, therefore the real-time CPU and DRAM power consumption are
obtained at a sampling rate of 1000 ms. Using the real-time power consump-
tion per second, we calculate the average power consumption of the program
from all the instantaneous power consumption throughout its execution.

Every benchmark runs for more than 60 s and up to 60 min. Note that PMCs
on three platforms are sampled in a fixed interval (1000 ms) when running bench-
marks under different problem scales as Table 6 shows. To ensure the robustness
of CP 3, we randomly select 10,000 samples of the source platform. Additionally,
to reduce the profiling overhead, we only collect 1000 samples (or less) of the
target platform to obtain the cross-platform model.

Table 6. Features at the application level of CP 3.

Benchmark Parameter Type Range

Graph500 SCALE Numerical (Integer) [8–26]

edgefactor Numerical (Integer) [8, 16, 32, 64]

SMG2000 nx / ny /nz Numerical (Integer) [100–250]

Px / Py / Pz Numerical (Integer) [4, 8, 16, 64]

cx / cy / cz Numerical (Float) [0.1–1.0]

5.4 Metrics

The Mean Absolute Percentage Error (MAPE) is used to evaluate the CP 3

framework. Eq. (7) gives the detailed representation of MAPE,

MAPE =
100%
n

n∑

i=1

| ŷi − yi
yi

|,MAPE ≥ 0 (7)

where yi represents the observed average power or execution time for the ith

sample. ŷi represents the predicted average power and execution time for the ith
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sample. The closer the MAPE value is to zero, the higher the CP 3 accuracy.
For the remainder of this paper, we use MAPEpower and MAPEperf denote
the MAPE of power and performance model.

The coefficient of determination (R2) is used to determine the fit of the model
as Eq. (8) shows,

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

, 0 ≤ R2 ≤ 1 (8)

where yi and ŷi are the same as those in Eq. (7). ȳi represents the average of all
samples i (1 ≤ i ≤ n). The larger the value of R2, i.e., the closer R2 is to 1, the
better the model fit.

6 Evaluation of CP3

We conduct a group of experiments to evaluate the effectiveness of CP 3. Eval-
uation results show that CP 3 achieves high accuracy with only 1% of the base-
line training data when i) across different architectures and (b) across different
platforms belonging to the same architecture. We also explore the application-
generality and hardware-generality of CP 3 with different benchmarks and dif-
ferent frequency levels. The rest of this section details the evaluation results.

6.1 Overall Results

Table 7. Overall results of CP 3

Power Performance

MAPE R2 MAPE R2

Same architecture Platform A → Platform B 0.97% 0.99 2.54% 0.99

Platform B → PlatformA 0.62% 0.99 1.86% 0.99

Different architecture Platform A → Platform C 0.52% 0.99 2.58% 0.98

Platform C → Platform A 0.33% 0.99 1.33% 0.99

Platform B → Platform C 1.13% 0.99 9.9% 0.84

Platform C → Platform B 0.33% 0.99 9.63% 0.86

On the three platforms involved in this paper, we conduct a group of experi-
ments in terms of power prediction and performance prediction, and calculated
the MAPE and R2 values. Table 7 presents the evaluation results in different
scenarios. As shown in Table 7, the average MAPE value for all experiments of
power prediction is 0.65% with CP 3, and the maximum MAPE value is only
1.13% (B → C). According to Table 7, all R2 values of power prediction are all
above 0.9, which illustrates the good fit of CP 3. The average MAPE value for
all experiments of performance prediction is 4.64% and the maximum MAPE
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(a) Power

(b) Performance

Fig. 4. Comparisons with the baseline in terms of accuracy and overhead

value is only 9.9% (B → C). The average R2 value is 0.94 and all R2 values are
between 0.84 and 0.99.

Following the same data used in the paper, we set the baseline that a model
trained with all the samples and all the features. In comparison with baseline,
CP 3 only has a 1% data overhead. This is because CP 3 selects only 10 pivot
features (less than 10%) from more than 100 PMCs provided by the platforms
and only 1000 samples (10% of all the samples), so as to yield only 1% data
overhead(10% x 10%). To illustrate CP 3’s effectiveness, we set four cases in sce-
nario A → B, i.e., (a) the baseline (with 100% overhead), (b) all the samples and
10% features (with 10% overhead), (c) 10% samples and all the features (with
10% overhead), and (d) 10% samples and 10% features (with 1% overhead). The
MAPEs for case (a), (b), (c) and (d) are 0.2%, 0.4%, 0.7%, and 0.65% in power
prediction, and 2.45%, 2.87%, 3.98%, and 4.67% in performance prediction. We
plot the relationship between accuracy and overhead in Fig. 4. Note that the
red bars represent the percentages of data when compared case (a)-(d) with the
baseline. It can be observed that CP 3 (case (d)) offers a significant reduction in
data overhead (only 1%) and a slight increase in MAPE (only 0.5% for power
prediction and 2% for performance prediction) in comparison to the baseline.

6.2 Across Different Architectures

The most challenging problem in cross-platform modeling is how to achieve
accurate prediction across different architectures. Different architectures, such



CP3: Hierarchical Cross-Platform Power/Performance Prediction 133

as X86 and ARM, have significant differences in instructions such as branch and
conditional jump, and etc.

Table 3 lists the pivot features of the three platforms. It is known that plat-
forms A and B are X86-based platforms while C is an ARM-based platform.
According to Table 3, platforms belonging to the same architecture have high
similarities in the distribution of pivot features. However, a significant difference
exists between X86-based platforms and ARM-based platforms. The pivot fea-
tures of the X86-based platforms focus on the description of the CPU branches,
CPU stalls, cache, offcore and uncore parts. In addition to focusing on bus
access, memory access, and cache access, ARM-based platforms’ pivot features
mainly focus on exceptions and scheduling stalls, which is the main difference
between the pivot features of X86-based platforms and ARM-based platforms.
This difference in architectures often leads to lower accuracy of cross-architecture
modeling.

This section uses platform A or B as the source platform (X86-based), C as
the target platform (ARM-based) to carry out cross-architecture experiments,
namely A → C, and B → C. Table 7 gives the overall power and performance
prediction results. For all cross-architecture scenarios, CP 3 can achieve accurate
power and performance prediction. Corresponding to A → C, C → A, B → C,
and C → B, the MAPE values of power prediction are 0.52%, 0.33%, 1.13%, and
0.33%, respectively, and all R2 values can reach 0.99. The average MAPE value
is 0.58% and the average R2 value is 0.99 when performing power prediction. For
performance prediction results, the MAPE values are 2.58%, 1.33%, 9.9%, and
9.63%, respectively, and the R2 values are 0.98, 0.99, 0.84, and 0.86, respectively.
The average MAPE value is 5.86% and the average R2 value is 0.92. It can
be observed from Table 7 that when performing cross-architecture performance
prediction, using B as the source platform leads to a relatively higher MAPE
and lower R2 value than other scenarios. The reason may be that platforms A
and C can obtain fewer performance monitoring events than B due to hardware
platforms’ limitation, which describes CPU activities less specific, leads to lower
accuracy of CP 3 in scenarios B → C and C → B.

The selection of the source platform does affect the model’s prediction accu-
racy. All experimental results show that when the source platform supports
fewer performance monitoring events and the target platform supports more
performance monitoring events, the MAPE value of cross-platform prediction is
lower. As shown in Table 7, after changing the source platform from A to C, the
MAPE value becomes from 0.52% to 0.33%. Also, the MAPE value decreases
from 1.13% to 0.33% when using C as the source platform rather than B. It’s
easy to observe that after exchanging the source platform and the target plat-
form, the MAPE value becomes 2x to 4x of the original scenario. Table 7 also
shows the similar trends for performance prediction. Different source platforms
differ in specifications and performance monitoring events, making the predic-
tion accuracy difference after exchanging the source platform and the target
platform.
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6.3 Across Same Architectures but Different Platforms

When the source platform and the target platform adopt the same architec-
ture, the accuracy of CP 3 is higher than that of cross-architecture scenarios.
This section evaluates the effectiveness of CP 3 when across different platforms
belonging to the same architecture. Table 7 gives the power and performance
prediction results of two sets of experiments. Corresponding to A → B and B →
A, the MAPE values of power prediction are 0.97%, and 0.62%, respectively, and
R2 values are all 0.99. The average MAPE value is 0.8% and the average R2 value
is 0.99 when performing power prediction. For performance prediction results,
the MAPE values of performance prediction are 2.54%, and 1.86%, respectively,
and R2 values are all 0.99.

As can be seen from Table 7, the prediction accuracy under the same archi-
tecture is improved compared to the accuracy under different architectures when
performing performance prediction. This phenomenon occurs because experimen-
tal platforms with the same architecture have similarities in instructions and types
of performance monitoring events. The similarity in instructions brings the like-
ness of various computing components’ activities and provides higher accuracy for
the model. The similarity of the types of performance monitoring events reduces
transfer learning difficulty, making the model more accurate and better fitting.

6.4 Generality of CP 3

(a) Power

(b) Performance

Fig. 5. Impact of different frequency level on CP 3.
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Different Frequency Levels. CPU frequency affects the accuracy of cross-
architecture power prediction. As Fig. 5 shows, three frequency levels are set for
each platform. Frequency does affect the accuracy of power/performance predic-
tion, but its impact has no apparent law. As Fig. 5 shows, in some scenarios, such
as B → C, and C → B, the higher the frequency, the higher the accuracy, while
in other scenarios, such as A → C, C → A, the lower the frequency, the higher
the accuracy. This result occurs because frequency can directly affect power con-
sumption, so the frequency value plays an essential role in power prediction while
having little effect on performance prediction.

(a) Power

(b) Performance

Fig. 6. Impact of different benchmarks on CP 3.

Different Benchmarks. CP 3 is suitable for power or performance prediction
of a variety of applications, and the accuracy is related to the number of input
parameters of the applications. The greater the number of input parameters, the
higher the prediction accuracy. Figure 6 shows the experimental results of CP 3

for benchmarks Graph500 and SMG2000. From Fig. 6, it can be seen that in the six
sets of experiments, no matter when performing performance prediction or power
prediction, the MAPE values of SMG2000 are lower than that of Graph500, and
the R2 values are higher. The average MAPE value of Graph500 is 4.08% while
the average MAPE value of SMG2000 is 2.28% when performing performance
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prediction. And the average MAPE value of Graph500 is 0.65% while the average
MAPE value of SMG2000 is 0.49% when performing power prediction. SMG2000
can always achieve better prediction accuracy no matter in terms of performance
or power consumption because SMG2000 has more input parameters. Table 6
shows there are three input parameters for Graph500 and nine input parameters
for SMG2000. Having more input parameters makes the application-layer model
more accurate, bringing higher prediction accuracy and lower MAPE value.

6.5 Comparisons

Table 2 describes comparison results between our approach and Kumar’s
work [11]. Similarly with Table 2, we split all features into four layers. As exper-
imental results show, the two methods have the same error when predicting
performance, and the accuracy of CP 3 is basically the same as that of Kumar’s
work when predicting power consumption, in which the former is slightly worse
than the latter. But it is worth noting that the amount of data used by CP 3 is
one-tenth of that of Kumar’s work (Table 8).

Table 8. Feature levels involved in four cases.

Kumar’s work [11] CP 3

Application �
Inter. (app) �
Inter. (plat) � �
Platform � �
MAPEpower 0.91% 0.97%

MAPEperfromance 1.22% 1.54%

7 Conclusion

To reduce data overhead brought by time-consuming program profiling in
learning-based cross-platform prediction, this paper presents CP 3, which focuses
on utilizing architecture differences to migrate built models to target platforms
with as little data as possible. Evaluation results show that CP 3 uses only 1%
of the baseline training data to achieve only 0.65% of the prediction error for
power prediction and 4.64% for performance prediction on average. Now CP 3

is only validated on multi-core general-purpose processors. Future research will
explore other architectures. Additionally, by exploring the differences in different
architectures, we aim to further improve the accuracy of CP 3 across different
architectures.
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Abstract. Lane-change sensing is one of the fundamental requirements
to enable autonomous driving and safety-critical Intelligent Transporta-
tion System (ITS) applications. This work presents a deep-learning app-
roach for detecting the lane changing of vehicles using onboard smart-
phone, aiming at achieving low-cost and scalable sensing and comple-
menting computer vision-based solutions in special traffic conditions
such as heavy fog weather. Specifically, we first present a lane-change
sensing framework based on accelerometer and gyroscope readings from
the onboard smartphone, which supports offline trajectory data collec-
tion and training, as well as online real-time lane-change sensing. Sec-
ond, in light of the fact that Temporal Convolutional Network (TCN)
is computational-efficiency for sequential tasks, we propose a TCN-
based Lane-Change Sensing (TCN-LCS) algorithm, which consists of a
dynamic sequence length adaptation method for offline training, and a
sliding window inference strategy for online inference. Finally, we build
the system prototype and give an extensive performance evaluation in
real-world traffic environments. The experimental results conclusively
demonstrate the feasibility and efficiency of the proposed framework and
solution.
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1 Introduction

With the emerging of autonomous driving and rapid development of safety-
critical Intelligent Transportation Systems (ITSs), such as cooperative intersec-
tion control [10], the lane-level tracking of vehicles has received great attention
in both academia and industry. Currently, the most prevalent vehicle localization
technologies are based on Global Navigation Satellite System (GNSS) [14,16],
but they cannot support lane-level tracking because of ionospheric effects, satel-
lite clock errors and multipath interferences, etc. Computer vision (CV) based
lane detection is another mainstream technology to enable lane-level tracking
[2,9,20]. Nevertheless, these solutions may not work in extreme weather con-
ditions such as heavy fog and heavy rain, or in particular driving situations
such as the blurred line of lanes, which may compromise system robustness.
Some other studies have investigated the lane-level tracking based on laser rang-
ing [12,24] or Wi-Fi fingerprinting [6,7,11,25,26], and even more some studies
have consider the deployment and security of Wi-Fi AP [18,19]. However, these
approaches require additional on-board hardware such as LiDAR (Light Detec-
tion and Ranging) or roadside infrastructures such as Wi-Fi APs, which may
render system practicality and scalability.

To compensate for the limitations of aforementioned primary technologies,
the lane-change sensing based on inertial sensors and data fusion have been
explored in recent studies [8,15,22,27]. Zheng et al. [27] leveraged steering angel
and vehicle speed from CAN-bus to detect lane-change with Hidden Markov
Model (HMM) based classifier and k-nearest neighbor (KNN) classifier. Schle et
al. [15] gave a comprehensive analysis on lane-change detection features includ-
ing distance between the vehicle and left/right lane marking, orientation angel
and lateral displacement, etc., and proposed a generative model based on Naïve
Bayesian approach to detect lane-change. Klitzke et al. [8] proposed a lane-
change detection framework based on unsupervised learning, which modelled
the vehicle state as six driving primitives according to the distance to the lane
line, and the vehicle driving primitive is unsupervised classified by HMM and the
lane-change behavior is recognized by Dynamic Time Wrapping (DTW). Woo
et al. [22] proposed a lane-change detection method based on vehicle-trajectory
prediction, where the distance to the centerline, the lateral velocity and the
potential feature are formulated as the feature vector, and the Support Vector
Machine (SVM) is adopted as the classifier. However, these solutions require
pre-deployment of infrastructure and additional hardware, or need to acquire
data from on-board sensors, which is inconvenient and will incur extra costs.

Since smartphones have received increasing popularity over recent years,
more and more smartphone-based vehicular applications are developed, some
studies have investigated vehicle lane-change tracking using onboard smart-
phones [4,13,23]. Xu et al. [23] designed a pattern-based approach to detect
lane-change behavior with lateral acceleration of onboard smartphone, which is
obtained by empirical analysis of historical vehicle lane-change data. Chen et
al. [4] proposed a system called VSense, where a bump-based steering detection
algorithm based on gyroscope thresholds is designed, which can detect four types
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of vehicles steering behaviors. Ouyang et al. [13] further analyzed the smartphone
gyroscope data under various vehicle behaviors (i.e., turn, lane-change and U-
turn) to deal with continuous sensor waveforms and detect multiple vehicles
steering behaviors. Nevertheless, these approaches are normally based on Dead-
Reckoning (DR) and empirical threshold estimation, which may suffer from error
accumulation over time and the inflexible/unpractical setting of the threshold.
Therefore, some researchers try to infer vehicle behaviors with exploring sensor
data on continuous time series, instead of discrete readings. In these studies, the
technology of deep learning has gained more attention than traditional meth-
ods. Florian et al. [21] utilized Long Short-Term Memory (LSTM) network to
estimate the point in time a lane change actually happens and performed a high
accuracy. Shahverdy et al. [17] modeled the vehicle behavior inference problem
as a classification problem and converted the sensor data into image, then fed
it into a two-dimensional (2D) Convolutional Neural Network (CNN) for the
identification of driving behaviors. However, these methods don’t consider the
limitations of mobile phone performance or the structural characteristics of the
sensor data different from the images.

With above motivations, this work is dedicated to proposing an effective vehi-
cle lane-change sensing architecture and a tailored algorithm based on onboard
smartphone sensor readings. Specifically, the designed architecture will support
the collection and processing of historical vehicle trajectories for the offline data
training and the online lane-change sensing. On this basis, a Temporal Convo-
lutional Network (TCN) [1] model is trained for detecting lane-change behav-
iors of vehicles. The rationale is that TCN performs convolution operation in
time dimension, which is more suitable for the sequential task of inertial sensor
data than 2D-CNN. And compared with mainstream Recurrent Neural Net-
works (RNNs) , TCN, which adopts one-dimensional convolution and dilated
causal convolution, is more computation-effective on tasks with time sequential
data and more suitable for being deployed onboard. The main contributions of
this work are summarized as follows:

– We present an effective vehicle lane-change sensing system architecture based
on onboard smartphone, which consists of an offline classifier training phase
and an online lane-change sensing phase. Specifically, during offline classifier
training phase, the system continuously collects the inertial data sequence of
the onboard smartphone, which enables the training the lane-change sensing
model. During the online lane-change sensing phase, the real-time obtained
inertial data sequences are input into the trained classifier to infer the vehicle
behavior (i.e., Left Lane-Change, Right Lane-Change and No Lane-Change).

– We propose a Temporal Convolutional Network based Lane-Change Sensing
(TCN-LCS) algorithm. Specifically, a dynamic sequence length adaptation
method is designed to align the inertial data sequence, and the Mini-Batch
Gradient Descent (MBGD) is adopted for offline training. Further, the sensor
data with corresponding labels are adopted to train the TCN model, which
detects lane-change behavior of the vehicles in real-time. Finally, a sliding
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window inference strategy is proposed to enhance the robustness and improve
the accuracy of lane-change sensing.

– We build the system prototype and give an extensive performance evalua-
tion in real-world traffic environments. Specifically, an android-based APP
is implemented to collect inertial sensors’ readings. Different types of mobile
devices have been deployed in different models of vehicles. We have driven
over 150 km under different traffic conditions, including highways, city roads,
tunnels, flyovers, and campus roads for data collection, offline TCN training
and online testing. The experimental results conclusively demonstrate the
effectiveness of the proposed solution.

The rest of this paper is organized as follows. Section 2 presents the system
architecture. Section 3 proposes the TCN-LCS algorithm. In Sect. 4, we build the
system prototype and carry out real-world experiments. Finally, we conclude this
paper in Sect. 5.

2 System Architecture

In this part, we propose a vehicle lane-change sensing system architecture, which
utilizes only smartphone’s inertial data to detect lane-change behavior. As shown
in Fig. 1, the system architecture consists of the offline classifier training and
the online lane-change sensing phases. In particular, during the offline classifier
training phase, vehicles’ driving data and corresponding labels are input into
the designed model as the training set. On the other hand, during the online
lane-change sensing phase, the onboard smartphone continuously collects the
sensors’ data sequences, which are input into the lane-change behavior classifier
to obtain real-time vehicle behavior. Detailed designs are elaborated as follows.

Offline Classifier Training Phase: The goal of this phase is to train the vehi-
cle lane-change behavior classifier based on the historical driving data. Specifi-
cally, a large number of historical vehicles driving data are collected, including
onboard smartphone sensors data reflecting the vehicle driving behavior and
auxiliary data used to identify accurate vehicle behavior, such as video record-
ing for front view. After that, feature extraction is carried out on the raw sensor
data to generate features called inertial sequence and corresponding labels are
generated through auxiliary data processing. Finally, the training set composed
of features and labels drives the training the lane-change behavior classification
model.

Online Lane-Change Sensing Phase: It is designed to sense the vehicle lane-
change behavior using trained classifier along with the real-time collected inertial
sequence data from the onboard smartphones. First, a background process is
implemented to collect the real-time inertial sensors’ readings from the onboard
smartphone, including acceleration and angular velocity. Second, the sensor data
is preprocessed to form the inertial sequence to conform to the model input, and
it is input into trained lane-change behavior classifier periodically. Finally, the
classifier outputs the lane-change event, which is one of the three categories, i.e.,
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No Lane-Change (No-LC), Left Lane-Change (Left-LC) and Right Lane-Change
(Right-LC).

Fig. 1. System architecture

3 TCN-Based Lane-Change Sensing

In this section, we propose a TCN-LCS algorithm to enable the sensing of vehi-
cle lane-change based on the sequence data of inertial sensors. TCN is an effec-
tive model for processing tasks with time sequential data, and it is also suit-
able for being developed at end devices such as smartphones due to its low
overhead and computation-efficiency characteristics [1]. In general, the proposed
TCN-LCS algorithm consists of an offline-training phase and an online-inference
phase. As shown in Fig. 2, in the offline training phase, a data-preprocessing
method is firstly designed to process the raw inertial sensor data, which includes
a data deduplication mechanism to remove the redundant sensor readings and a
sequence length adaptation mechanism to dynamically align the length of iner-
tial data sequences. In the online inference phase, a sliding window inference
strategy is proposed to accurately locate the period of a lane-change behavior
and select corresponding sensor readings for model inference.
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Fig. 2. Workflow of TCN-LCS

3.1 TCN-Based Lane-Change Behavior Classifier

The basic rationale is to exploit the sequential data of acceleration aT and angu-
lar velocity ωT to infer the vehicle lane-change behavior yT , where T represents
the length of time window. The goal of such a classifier is to find a mapping
f(aT , ωT ) → yT to minimize the differences between actual observations and
corresponding predictions. Figure 3 shows the classifier architecture, where five
TCN blocks are sequentially connected, and a slice layer and an FC (Fully Con-
nected) layer are adopted to produce the output. Details of the classifier are
elaborated as follows.

Fig. 3. TCN-based lane-change behavior classifier

TCN Blocks: Each TCN block consists of two TCN units and a residual connec-
tion. TCN units sequentially connect a weight normalization (WN), a rectified
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linear unit (ReLU) and a spatial dropout after a dilated causal convolution,
which consists of causal convolution and dilated convolution. Specifically, the
causal convolution is used for temporal data, which ensures the output at time
t only derives from inputs at time t-1. In contrast, the dilated convolution only
accesses every n-th element from inputs, which can expand the receptive field
of the network output to historical data. Therefore, it reduces the number of
network layers and the complexity of the model. Then, the WN is used to nor-
malize the weight matrix for eliminating the dependence on batch distribution
when training sequential data. ReLU and dropout are adopted to effectively
avoid the gradient disappearance and overfitting. Finally, a residual connection
is applied in each TCN block, which allows layers to learn modifications from the
identify mapping rather than the entire transformation and it has been proved
as a computation-efficient deep network architecture [5].

Slice Layer and FC Layer: Due to the characteristics of convolutional net-
works, the dimension of output features with TCN blocks is determined by the
length of input sequence and the number of feature channels (i.e., the num-
ber of hidden units per layer). Recall that TCN leverages causal convolution to
ensure that future data will not leak to the past (i.e., the data after time t will
not be used to calculate the output at time t), and thus, after dilated causal
convolution, only the output at the last timestamp contains the whole historical
information of the input time sequence data. Since the goal is to identify whether
the vehicle changes lanes from a sequential data of inertial sensors, a slice layer
is added to slice the output features and only keep those of the last timestamp.
Then, the feature vector obtained by slicing is input to the FC layer to produce
the classification result. Finally, we utilize log-softmax function to enlarge the
probability distance of each classification and speed up loss calculation.

Gradient Descent Strategy: The Mini-Batch Gradient Descent (MBGD) is
adopted for model training, which can effectively avoid slow convergence and
local optimum problems by using a set of samples for training at a time. Specially,
we randomly select eight inertial data sequences as a mini-batch to train TCN
every time.

3.2 Offline Training Procedures

For the offline training of TCN-LCS, two types of inertial sensors (i.e., accelerom-
eter and gyroscope) are collected from the onboard smartphone. The set of
sensor readings along the trajectory is denoted by Traj = (A,Ω), where
A = (a1, a2, a3, . . . at−1, at), which is the accelerometer’s readings, at is the
acceleration at the time t. The set of gyroscope’s readings is denoted by
Ω = (ω1, ω2, ω3, . . . , ωt−1, ωt), where ωt is the angular velocity at the time t.
Due to the network congestion, the duplicated sensor data with the same times-
tamp might collected, which may undermine the model training. To deal with
such a problem, we design a data deduplication mechanism by traversing sensor
readings collected along the trajectory and deleting the duplicated data based on
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the sampling timestamp. On this basis, the raw sensor readings will be processed
to generate training set by following two steps.

Historical Data Preprocessing: In order to train the TCN model, the col-
lected inertial sensors readings are further divided into inertial data sequences,
which is denoted by IDS = (aT , ωT ), where aT and ωT represent acceleration
and angular velocity in the time slice T, respectively. Each inertial data sequence
can be considered as the input of TCN model and the corresponding label for
each sequence has three categories, namely, Left-LC, Right-LC and No-LC, rep-
resenting left, right and no lane-change, respectively. First, we separate the sensor
data related to the lane-change behavior as the positive samples. Specifically, the
start time and the end time of a lane-change behavior is determined based on the
ground truth, which is manually labeled via the recorded video along the vehicle
trajectory. Second, the labeled timestamps are used to segment the lane-change
related sensor readings into the inertial data sequences. Third, the correspond-
ing label (i.e., Left-LC, Right-LC) is determined by the vehicle’s lane-change
direction at the corresponding period. Finally, we separate the sensor readings
according to the lane-change behavior, and split the rest inertial sensor data of
the trajectory sequentially with a fixed length as the negative samples.

Sequence Processing: The separated positive samples may have different
length since the duration of the lane-change behavior is affected by the com-
plex traffic conditions and notably different driving behaviors. Figure 4 shows
the statistical analysis of the duration of around 180 times lane-change behav-
iors. We observe that the mean duration for lane-change is around 4.5s, and
the variance is about 0.82. In view of this, we design a sequence length adapta-
tion mechanism to dynamically align the inertial data sequences in a mini batch
during TCN model training.

Specifically, the sequence length adaptation mechanism consists of three
steps. First, it determines the maximum length of inertial data sequence in
current batch and sets it as the input data length. Second, it leverages zero
post-padding to align the length of all the inertial data sequence in this batch
by adding a certain number of zero values at the tail of inertial data sequences
that have insufficient sensor readings. Third, since the zeros has their physical
meaning when being processed as the inertial sensor data, an extra input channel
called data-mask channel is added to distinguish the origin and padded value in
inertial data sequences. Data-mask channel has the same length with the filled
inertial sensor readings (i.e., acceleration data and angular velocity data) and it
uses one bit value for each reading to indicate its validity.

Moreover, the training data set may suffer from the unbalance sample prob-
lem, since the time duration of lane-change may much shorter than that of
driving along the same lane. To address such a problem, we further adopt an
over-sampling method called SMOTE [3] to ensure that the number of positive
and negative samples are approximately equivalent. Specifically, it first randomly
selects n samples from the K-nearest neighbors of a sample from minority class.
Then, new samples are randomly synthesized between the selected sample and
its neighbors.
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3.3 Online Inference Procedures

The online-inference stage consists of feature extraction, mask channel expansion
and inference phases, in which the first two stages are used to generate the input
of the classifier trained in the offline training phase. And during the feature
extraction stage, when collected inertial sensors data are split with the fixed
length for inference, the sensor readings related to one lane-change behaviors
may be separated into two slices, which could undermine the inference accu-
racy. Therefore, we design a sliding window inference strategy to tackle such a
problem. The general idea of the strategy is to increase the inference times with
slide window so as to accurately locate the time period of lane-change. On this
basis, the raw sensor readings will be processed through the following two steps
to form the input of trained classifier.

Feature Extraction: Firstly, the sliding window is applied for real-time sensor
data collection. Let L and T denotes the length and the step size of the sliding
window, respectively. During online inference, every L inertial sensor readings
are input into the TCN model for one lane-change behavior detection. Once a
positive behavior (i.e., the output of classifier is Left-LC or Right-LC) is detected,
the start point of the sliding window will be reset to the next timestamp when
the lane-change is completed. Otherwise, we move forward T readings for the
next detection. In addition, to tackle the problem of different durations of lane-
change, the values of L and T are chosen based on the average lane-change
duration trained based on the current road segments.

Expand Mask Channel: Recall that the trained TCN-based lane-change
behavior classifier expects to receive three channels of data input, namely two
inertial sequence channels (i.e., acceleration channel and angular velocity chan-
nel) and a data-mask channel. And the data-mask channel is used to distinguish
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the origin and padded value in inertial data sequences. Since there is no padded
data existed for the real-time inertial sensor data, the mask channel for real-time
inertial sensor data is set to 1.

After the above two steps, the preprocessed inertial sequences from real-time
onboard smartphone inertial sensors along with the extended data-mask channel
are input into the trained TCN-based lane-change behavior classifier, and the
classifier outputs the prediction of current vehicle lane-change behavior.

4 Performance Evaluation

4.1 Experimental Setup

Fig. 5. Experimental setup

We have built the system prototype based on the architecture described in
Sect. 2. In particular, an Android-based APP is developed for data collection, and
the APP has been installed on 4 different types of smartphones (i.e., Huawei Pad
BTV-DL09, MI note 3, RedMI K20 pro and OnePlus 7 pro), which are mounted
in the front of the vehicle, as shown in Fig. 5(a). The APP interface is shown in
Fig. 5(b), which enables real-time display of three-axis reading of accelerometer,
gyroscope and GPS positioning results (i.e., longitude and latitude). We have
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driven over 150 km in both campus and urban areas in Chongqing, China for
data collection. Specifically, we have driven along the route as shown in Fig. 5(c),
crossing Shapingba District and Gaoxing District, for a number of rounds (the
route is about 25 km), and the route contains a variety of road conditions includ-
ing highways, city roads, tunnels, flyovers, and campus roads. Two different vehi-
cle models (i.e., Ford Focus and Jeep Great Commander) are adopted for data
collection. 80% of the collected data are used for offline training of the TCN-LCS
model, 10% are used for model validation and the remaining 10% are used for
online testing. To obtain the ground truth, we have shot the video during data
collection and then analyzed the video frame by frame to detect the accurate
timestamps for vehicles’ current lane positions and lane-change behaviors.

4.2 Experimental Results

Effectiveness of TCN-LCS on lane-change detection: First, we conduct
an experiment to evaluate the accuracy of TCN-LCS on lane-change detection.
The fixed length of inertial data sequences related to No Lane-Change is set to
200, and the hyperparameters of TCN-LCS model are set as follows. The values
of epoch size and dropout are set to 20 and 0.05, respectively. In the test data
set, there are 359 No-LC samples, 40 Left-LC samples and 37 Right-LC samples
(Table 1).

Table 1. Confusion matrix

Ground truth Evaluation
No-LC Left-LC Right-LC

No-LC 354 3 2
Left-LC 0 38 2
Right-LC 1 1 35

The experimental results are summarized in Tabel 1. As shown, TCN-LCS
identified 38 Left-LC and 35 Right-LC from the total of 40 Left-LC and 37
Right-LC, respectively, given the recall of 95% and 94.6%, respectively. On the
other hand, 3 No-LC samples and 1 Right-LC samples were incorrectly identified
as Left-LC, and thus the precision of Left-LC is 90.48%. On the other hand, 2
No-LC samples and 2 Left-LC samples were incorrectly identified as Right-LC,
and thus the precision of Right-LC is 89.74%. Based on the above analysis, the
F1 scores of lane-change detection, which is the harmonic mean of the precision
and recall, are both 0.92 for Left-LC and Right-LC.
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Fig. 6. Comparison with 2D-CNN and LSTM

Comparison with 2D-CNN and LSTM: In this part, we compared the pro-
posed TCN-LCS with two baselines, which are 2D-CNN [17] and LSTM respec-
tively. The precision of Left-LC and Right-LC and computation time are used as
the evaluation metrics and the experimental results as shown in Fig. 6. As shown
in Fig. 6(a), our model achieve the best precision in the lane-change detection,
and LSTM acquires a very close precision, but its computation time is higher
than TCN-LCS. The computation time of three methods are shown in Fig. 6(b),
due to the "image" converted by inertial sensor data is too small, 2D-CNN can
satisfy the size of receptive field with few layers, so its computation time is rela-
tive low. Realistically, although 2D-CNN has achieved great success in the field
of image classification, converting time-series inertial sensor data into "images"
may be not appropriate. On the contrary, TCN performs convolution operation
in time dimension, which can achieve preferable performance.

Effect of Different Traffic Environments: In this part, we evaluate the
online performance of TCN-LCS under different traffic environments, including
campus roads, city roads and highways. The parameters of the sliding window
inference strategy are configured as follows: the length of sliding window L is set
to 300, 200 and 200 in campus roads, city roads and highways, respectively. The
step size T is set to 50 in all the traffic environments. The experimental results
are shown in Fig. 7. In the campus road scenario, TCN-LCS detected all the lane-
change behaviors excepting the last continuous right lane-change, as shown in
Fig. 7(a), given the accuracy of 100% and the recall of 80%. The primary reason is
that due to continuous lane-change behaviors, the sensor data of the second lane-
change might be incompletely processed. Similar issues also existed in the city
road scenario. The lane-change detection results in city road environments are
shown in Fig. 7(b), As noted, there were two incorrect identifications out of eight,
given the accuracy of 75%. Finally, note that since there is no ominously lane-
change on the highway, as shown in Fig. 7(c), all the lane-change behaviors were
correctly detected in highway environments, given 100% accuracy and recall.
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Fig. 7. Evaluation under different traffic environments

5 Conclusion

This paper investigated an effective vehicle lane-change sensing approach using
onboard smartphone inertial sensors. Firstly, a system architecture was proposed
to enable low-cost and scalable lane-change sensing, which consists of an offline
classifier training phase based on the historical vehicle driving data and an online
lane-change sensing phase based on the real-time collected inertial sensor data.
Further, a TCN-LCS algorithm was proposed. In particular, during the offline
training phase, a data pre-processing method is designed to process the raw iner-
tial sensor data, and a dynamic sequence length adaptation method is designed to
address the inconsistency of inertial sequence length. During the online inference
phase, a sliding window inference strategy is proposed to improve the robust-
ness and accuracy of lane-changing behavior detection. Finally, we implemented
the system prototype and collected the data for TCN model training by driving
over 150 km in different traffic environments, including campus roads, city roads,
highways, etc. A comprehensive experimental evaluation has been conducted in
real-world environments, which conclusively demonstrated the effectiveness of
the proposed solutions.
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Abstract. With the rapid development of service computing technology, more
and more companies and organizations are encapsulating and publishing their
operational data or resources to the Internet in the form of Web services, resulting
in an exponential increase in the number of Web services. To automatically gener-
ate or recommend a group ofWeb services according to the user’s natural language
requirements description, to build aMashup application tomeet the user’s require-
ment is a hot topic in service computing. Some researchers enhance the quality of
Web service recommendation by using auxiliary information into the recommen-
dation system. However, they mainly focus on adding external information (e.g.,
pre-training of external corpora) to enhance semantic features, while some internal
statistical features of the corpus such as word distribution on labels and frequency
are not fully exploited. Compared to other exterior knowledge, statistical features
are naturally compatible withWeb service recommendation tasks. To fully exploit
the statistical features, this paper proposes aWeb service recommendationmethod
based on adaptive gate network and xDeepFM model. In this method, firstly, the
description document of Web services is taken as the basic corpus, the semantic
and statistical information in the corpus are mined by utilizing the adaptive gate
network, and the statistical features are encoded by a variational encoder. Sec-
ondly, the similarity between Web services is derived from the semantic features,
at the same time the popularity and co-occurrence of Web services are calculated.
Thirdly, the xDeepFM model is used to mine the explicit and implicit higher-
order interactions in the sparse matrix which consists of the above information
to recommend Web services for Mashup application. Finally, a multiple sets of
experiments based on the dataset crawled from the ProgrammableWeb have been
conducted to evaluate the proposed method and the experimental result shows that
the proposed method has better performance in the AUC and Logloss compared
with the state-of-art baseline methods.
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1 Introduction

With the booming development of the Internet and its related technologies, the deep
integration of information technology and service industry, represented by big data [1],
has promoted far-reaching changes in the software industry, while accelerating the cross-
field integration and innovative development of service computing technology [2]. As
the most prospective technology based on service-oriented computing (SOC) [3], Web
services are widely used in applications based on service-oriented architecture (SOA)
by providing services through a typical Web services protocol to ensure that application
services from different platforms can interoperate. Therefore, a growing amount of
modern organizations and companies are encapsulating their business, data or resources
into online services and publishing them on the Internet, which leads to a significant
increase in the number ofWeb services [5].Web services composition enables developers
to create applications tailored to their needs and quickly build Mashup applications
[6]. As it overcomes the problem of information island [4], it provides an efficient
and fast solution for the integration of applications in the distributed heterogeneous
environment, thus becoming the most critical aspect in facilitating the efficiency of
service development.

The emergence of a large number of online services brings information over-
load. Therefore, recommendation systems are attracting more and more attention from
researchers as an effective solution to the information overload problem. Traditional rec-
ommendation methods mainly include content-based, collaborative filtering and hybrid
recommendation methods [6]. Among this, content-based recommendation is based on
the item’s content, which is simple and effective, but the content features are limited and
only one kind of recommendation result can be returned. Collaborative filtering, on the
other hand, makes recommendations based on the interaction between users and items,
but it is limited by cold starts, data sparsity, and insufficient feature depth interaction
capabilities. Hybrid recommendation methods [8] are expected to better improve the
quality of recommendations, which usually combine the collaborative filtering recom-
mendations and content-based recommendations to overcome the problems inherent in
using a single approach.

In the process of recommendation, exploring different kinds of auxiliary information
can promote the quality and performance of the recommendation system, and enable it
to provide more relevant recommendation results based on the existing Web services
description documents [9]. Nevertheless, how to effectively introduce complex and dif-
ferent kinds of auxiliary information into recommendation systems is an important issue
faced by researchers [22]. Several researchers use deep recommendation models and
techniques such as factorization machine (FM) [10], to extract wide range of relevant
features from heterogeneous andmulti-source information to enrich the deep feature rep-
resentation of users and items. However, the above research works often tend to focus
on describing the description documents of Web services when adding auxiliary infor-
mation, while ignoring the original features such as word distribution and frequency,
which are intrinsic, static, and easy to retrieve [25][26]. One of the most representative
algorithms that utilizes statistical information is term frequency-inverse document fre-
quency (TF-IDF) [25], which is a direct information retrieval technique for document
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modeling. However, due to the limitation of bag-of-words, TF-IDF is unable to cap-
ture fine-grained semantics using word location information, which makes TF-IDF less
advantageous than other deep learning models.

Recently, some researchers have proposed the adaptive gate network (AGN) model
[12]. This model is able to train in a corpus to obtain statistical information. It uses
a novel adaptive gate network to add corpus-level statistical features (e.g., word fre-
quency, word distribution on labels) to low-confidence semantic features to enrich the
semantic features and thus improve the performance of model. Since the above statistical
features are derived from the Web services description documents, which are naturally
compatible with the recommendation task. So it can effectively enrich the knowledge of
recommendation system and promote the performance of the recommendation accord-
ingly. xDeepFM model, on the other hand, is capable of jointly learning both explicit
and implicit higher-order interaction features. It completes the high-order explicit inter-
action between Web service features through compressed interaction network (CIN). In
addition, xDeepFM uses DNNs to learn the implicit higher-order interactions between
features. Thus, xDeepFM can fully exploit the explicit and implicit higher-order features
in the Web service description documents. Inspired by the above researches, this paper
proposes a Web services recommendation method based on AGN and xDeepFM [13],
denoted as AGN-xDeepFM. In this method, firstly, it applies AGN to extract the seman-
tic features of the Web service description document carrying statistical information.
Then, it calculates the similarity, popularity and co-occurrence between Web services,
and using them as the input of the xDeepFMmodel. Finally, xDeepFMmines the above
information and recommends the most appropriate Web services for building Mashup
application. To sum up, the main contributions of this paper are outlined as below:

• To our best knowledge, this is the first attempt by using deep learning technology
to fully mine the statistical information of word frequency and labels distribution at
corpus level to achieve efficient Web service recommendation.

• A new Web service recommendation method AGN-xDeepFM is proposed in this
paper. It rises the accuracy of similarity calculation by adding the statistical infor-
mation of word frequency and labels distribution to the semantic features in the
description documents of Web services through the AGN model, and uses the
xDeepFM model to fuse multi-dimensional features such as similarity, popularity
and co-occurrence to recommend Web services.

• The experiments are conducted on real datasets of ProgrammableWeb platform and
the experimental results show that the AGN-xDeepFM outperforms other popular
Web service recommendation methods based on deep neural network and effectively
improves the performance and quality of Web service recommendation.

The remainder of this paper is organized as follows. In Section II, the research work
related to Web service recommendation is introduced in detail. Section III provides a
detailed description of the AGN-xDeepFM proposed in this paper. Section IV analyzes
and discusses the experimental results and variable parameters. Section V summarizes
the work in the paper and presents the future work.
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2 Related Work

Web services with various functionality are constantly emerging on the Internet, devel-
opers can create more complex, composable Web service applications, such as Mashup,
by aggregating various Web services from diverse platforms through the typical Web
protocols [14]. Effective Web service recommendation method can facilitate Web ser-
vice discovery, composition and application. There are many research findings on Web
service recommendation based on collaborative filtering algorithm, but the recommen-
dation quality and effect are not satisfying due to the limitation of data sparsity and cold
start. To overcome these problems, some researchers improve the performance of Web
service recommendation by adding auxiliary information to the recommendation system
[15].

Currently, many researchers study on the application of deep neural networks in
Web service recommendation, such as CNN proposed by Conneau [16], which operates
directly at the character level and can perform convolutional and pooling operations
using smaller convolutional kernels. Shi et al. [17] proposes a recommendation system
forminingWeb services’ functional description documents usingLSTM.Wang et al. [18]
presents a QoS prediction algorithm which utilizes LSTM to predict future reliability.
Based on the Text-GCN model proposed by Yao et al. [23], the WSC-GCN model is
designed by Ye et al. [24] to model and predict the network structure of word hiding in
documents. These works show that usingDNNs can achieve better results inWeb service
recommendation. Ye et al. [19] devises a Wide&Bi-LSTM method for Web service
functionality description document modeling that fully exploits the content semantic
information of Web service functionality description documents in both breadth and
depth to achieve automatic Web services classification. Kang et al. [20] propose the
NAFMmethod, which uses neural and attentional factorization machine forWeb service
recommendation. All the mentioned works achieve good results, which indicate that the
proper using of external auxiliary information can effectively improve the performance
of the recommendation model.

In recommendation systems, the interaction features of services and users are often
discrete and sparse, so some researchers use logistic regression (LR) [21] to model these
discrete, high-dimensional features. However, the LR ignores the relationship between
different features, so some researchers propose the factorization machines (FM) [10]
model, which alleviates the problems caused by sparse matrices by interacting with
feature vectors. To explore the interactional features of services and users, many scholars
apply deep neural networks to integrate the information between different features and
utilize the DeepFM model [13], which mines the input sparse matrix by deep neural
networks to integrate low-order feature interactions and high-order feature interactions,
and consequently improves the efficiency and accuracy of the recommender system.

Recently, Li et al. [12] proposes the adaptive gate network approach in 2021, which
uses a valve component to selectively add statistical information to semantic information
for improving the performance of recommendation models. Lian et al. [13] designs a
method called eXtreme deep factorization machine (xDeepFM) in 2018, which learns
explicit and implicit higher-order feature interactions and lower-order feature interac-
tions. Inspired by these works, this paper proposes a Web service recommendation
method that fuses AGN and xDeepFM. In this method, firstly, it selectively integrates the
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statistical and semantic information of corpus-level Web service description documents
to obtainmore accurate similarity betweenWeb services. Then, it uses xDeepFM to learn
high-order and low-order feature interactions to fully explore the multi-dimensional
information ofWeb service, such as similarity, popularity, co-occurrence, so as to obtain
better Web service prediction and recommendation results. Finally, the experiments
results show that the proposed method effectively improves the quality of Web service
recommendation.

3 AGN-xDeepFMMethod

The framework of AGN-xDeepFM method is shown in Fig. 1, which includes data
processing, similarity calculation based on AGN model, Web service prediction based
on xDeepFM, and Web service recommendation.

Fig. 1. The Framework of the Proposed Method

• Pre-processing. To eliminate the information which is unfavorable to the Web service
recommendation, the pre-processing is performed.

• Similarity calculation based on AGNmodel. The AGNmodel is applied to explore the
semantic and statistical features of the available APIs, and the similarity is calculated
between Mashups and Mashups, APIs and APIs.

• Web service prediction based on xDeepFM. The xDeepFM is used to mine complex
feature composition relationships and predict the probability of Web APIs that is
called by Mashups. Meanwhile, Web service prediction is achieved in the modeling
of xDeepFM by inputting the similarity between Mashups, the similarity between
APIs, and the popularity and co-occurrence of APIs.

• Web service recommendation. As for users’ Mashup requirement, the matched APIs
are identified by using AGN model and the called probability is predicted by uti-
lizing xDeepFM model. The predicted scores are ranked, the high-quality APIs are
recommended for Mashup creation.
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3.1 Data Preprocessing

Web service description document is composed of elements such as words, phrases,
sentences, paragraphs, and as the length of the elements increases, the information con-
tained in the documents becomes richer, but the number of feature compositions will also
increase. It is necessary to eliminatemeaningless information from the document corpus.
This allows the model to perform semantic mining in a Web service corpus which con-
tains Mashups and Web APIs with higher information density. The data preprocessing
mainly includes the below steps:

• Load the experimental data: use pandas to load experimental data set and remove
the data with incomplete information and messy code.

• Tokenization: apply NLTK (Natural Language Toolkit) in python to divide the Web
service description documents into series of phrases or words according to space
characters, i.e., divide Web service description document into the list of characters,
and distinguish the punctuation marks from words.

• Remove stop words and stemming: exploit the deactivation word list in NLTK
to percolate words and punctuation that are not useful for semantic mining. At the
same time, the suffixes from words are removed such as “ing”, “ly”, “s”, in a rule-
based way. For instance, “betrayal” will be extracted as “betray” and “incentive” will
be extracted as “incent”. This process will effectively improve the accuracy of the
subsequent similarity calculations.

• One-hot encoding: utilize the prefix array to build the dictionary space, the words
in the dictionary space and Web service description documents are converted into
one-hot vectors, which are used as the input data of AGN-xDeepFM model.

3.2 Similarity Calculation Based on AGN Model

The input of AGN model is consist of the description documents of Mashup and API.
AGN is able to fuse content semantics and statistical information of Mashup and API.

AGNModel.The structural composition of the AGNmodel which comprises threemain
components, i.e., V-Net component, S-Net component (Bert base) andValve component,
is illustrated in detail in Fig. 2.

Global Information. TCoL is obtained directly from the corpus of Web service descrip-
tion document. These features are raw, but by identifying the relevance of words, exten-
sive information can bemined and utilized for feature selection and information retrieval.
That is to say, the importance of a word ω will increase if the distribution of that word
is higher or lower in a particular category.

Definition 1: Given a word ω in Web service description and a Web service description
document with c categories, the term-count-of-label (TCoL) vector for the word ω is:

�ω = [
�1, . . . . . . �c

]
(1)

where �i is the number of words ω in category i. Now, given a sentence s = {ωi}mi=1 in
Web service description, then the TCoL of the sentence is:

�s =
[
�ω1, . . . . . . �ωm

]
(2)
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Fig. 2. The AGN Model.

V-Net. V-Net stands for variational encoding network. In V-Net, statistical information
which is initially incompatible with the semantic features of the Web service descrip-
tion document will be converted to a valid representation. In this paper, variational
autoencoder (VAE) is used to encode TCoL, which can restrict the latent space to a rep-
resentation encoded by amultivariate gaussian distribution, thus obtaining a high-quality
statistical feature matrix. Before fusing TCoL with the semantic features of Web service
description document, it is necessary to generate TCoL from all sentences in the Web
service description document, and obtainA = {Cs

(i)}Mi=1
. It is a composition ofM discrete

TCoL variables C with id i. Assume that the TCoL vector of all Web service description
document is obtained by the process pθ (C|a). In the process, there is a latent variable a of
TCoL vector involved that is obtained by sampling from a prior distribution pθ (a). Then,
variational approximation qϕ(a|C) is used to jointly learn the TCoL vector’s variational
parameters ϕ and θ as a way to solve the intractable problem of computing the posterior
pθ (a|C) of TCoL vector. Therefore, the model is optimized by maximizing the marginal
likelihood which consists of the sum of the marginal likelihoods of individuals C.

logpθ (C) = DKL(qϕ(a|C)||pθ (a|C)) + L(θ, ϕ;C) (3)

Next, the likelihood term L(θ, ϕ;C) of TCoL vector can be derived to obtain a
variational lower bound on the marginal likelihood, i.e.,

L(θ, ϕ;C) = −DKL(qϕ(a|C)||pθ (a)) + Eqϕ(a|C)[logpθ (C|a)] (4)

The variational framework is applied to the autoencoder by using the re-
parameterization, and two encoders are exploited to respectively generate two sets α and
β as the mean value and standard deviation of the prior distribution. Since the approx-
imate prior used in this paper as a multivariate gaussian distribution, the variational
posterior is represented by the diagonal covariance:

logqθ (a|C) = logN (a;α, β2I) (5)
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Thus, by training the unsupervised VAEmodel, the probabilistic encoder obtains the
latent variable Ca, which is the global representation of the TCoL of the Web service
description document. The training of V-Net is independent of the other components,
Ca is generated at the beginning of the model and fused with the semantic information
of the Web service description document through the Valve component.

S-Net. S-Net stands for semantic representation projection network, which can extract
the semantic features from Web service description document and project them into
an information space for evaluation. The input of S-Net is a fixed-length Web service
description sentence s. Then the specific function of the component is described as
follows:

Firstly, a pre-trained Bert base model is used forWeb service feature map extraction:

M = Bert(s) (6)

M denotes the Web service feature map extracted by the Bert model.
Next, the semantic features of the Web service description document are mapped

into the information space through a dense layer:

FM = WM · M + bM (7)

FM denotes the semantic features of the Web service description document in the
information space, which facilitates Valve components to perform information merging.
Finally, input FM into the sigmoid-activated function to obtain F ′M = σ

(
FM

)
, where σ

represents the sigmoid equation used to evaluate the confidence of the semantic features
of the Web service description document.

Valve Components. Valve component can merge the semantic information and statistic
information of Mashup and Web APIs. Since the TCoL representation Ca of the trained
Web service description document is obtained offline. To utilize the statistical features
of the Web service document effectively, this paper uses a dense layer to project Ca into
the information space which is shared with the semantic features of the Web service
description documents:

FC = WC • Ca + bC (8)

The Valve component fuses FM and FC and outputs a statistically-informed content
semantic feature FU via an AdaGate function:

FU = AdaGate
(
FM ,F

′M
,FC , ε

)

= ReLU
(
FM

) + Valve(F
′M

, ε) � FC
(9)

where ReLU is the activation function. The values in F
′M

are expressed as probabilities,
and the purpose of the Valve function is to use the statistical features of Web service to
strengthen the entries with low confidence (α → 0.5), in order to match the elements in

FC . Means that for each m ∈ F
′M

:

Valve(m, ε) =
{
m, 0.5 + ε ≥ α ≥ 0.5 − ε

0, otherwise
(10)
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where ε is a hyper-parameter that adjusts the confidence threshold. Therefore, using the
Valve(m, ε) function as a filter is able to integrate the necessary statistical information
of the Web service description document into the semantic features of it at the element
level.

Similarity Calculation. After obtaining FU that combines the statistical features
with semantic features, a cosine similarity function is used to calculate the similarity of
the feature vector for each Web service description document f ∈ FU with all the other
feature vectors for Web services description documents:

Similarity(f , t) = ∑n
i=1

∑n
j=1(fi×tj)√

f 2i ×
√∑n

j=1 t
2
j

(11)

where f denotes the feature vector of the current Web service description document
and t denotes all the other feature vectors for Web services description documents.
Similarity(f , t) ∈ [0, 1], its value more closes to 1 means the higher the similarity of the
two Web services, and vice-versa.

3.3 Web Services Recommendation based on xDeepFM

xDeepFM Model. The input of the xDeepFM model is a discrete multi-dimensional
information matrix which is composed of information such as one-hot codes, similarity
scores of Web services, co-occurrence and popularity of Web service. This model will
learn from the input matrix and predict the score or probability that the target Mashup
will invoke Web API.

xDeepFM is composed of three components, i.e., CIN, DNN, and Linear part, which
first reduces the discrete information in the input discrete multi-dimensional information
matrix containing Web service features into a dense, low-dimensional, real-value vector
by embedding layer, and then inputs it into CIN, DNN respectively. The CIN crosses the
feature vectors byusingvector-wise fashion.The embeddingmatrix is represented inCIN
as X 0 ∈ R

m×D. The row i of X 0 denotes the embedding vector of Web service features
corresponding to the i field, there are totallym real-value vector withD-dimension. Each
layer of CIN will produce an intermediate results, and the output matrix of the k layer is
denoted as X k ∈ R

Hk×D, H0 = m and Hk denotes the number of feature vectors in the
k layer, where the intermediate results are calculated as follows:

X k+1
h,∗ = ∑Hk

i=1

∑m
j=1 ϒ

k+1,h
i,j

(
X k
i,∗ ◦ X 0

j,∗
)

(12)

where ϒ
k+1,h
i,j denotes a scalar value that is a parameter on the position of row i and

column j. X k
i,∗ denotes the feature vector in the i-th row of the output matrix at the k

layer in the CIN, and X k+1
h,∗ denotes the feature vector in the h-th row in X k+1.

After obtaining the output of each layer, all intermediate results in each layer of
CIN will be pooled to transform X k into a vector vk = [vk1, vk2, . . . , vkHk

] with the

length Hk, and stitched together to obtain v+ = [v1, v2, . . . , vk ] and the output is the
multidimensional discrete features c = 1

1+exp((vk+)
TW ◦

)
of the Web service after feature

vector crossover. Among this, the W
◦
is a parameter vector with the length

∑Hk
k=1.
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DNN learns the implicit higher-order feature interaction, which is complementary to
CIN and further enhances the effectiveness of the model for service recommendation.
Linear takes the original Web service features without embedding as input, denoted
as y = σ(WT

lineara), where a is the original Web service multidimensional discrete
information matrix and σ is the activation function.

The above components are combined to obtain the final output y
∧

of the xDeepFM
model, where y

∧ ∈ (0, 1). If y
∧ ≥ 0.5, then the Web API is recommended to the Mashup,

and if y
∧

< 0.5, then the Web API is not recommended to the Mashup:

y
∧ = σ

(
WT

lineara + WT
dnnX

k
dnn + WT

cinv
+ + b

)
(13)

where WT
linear , W

T
dnn, and WT

cin respectively correspond to the trainable parameters of
the linear component, DNN component, and CIN component, b is a global bias item.
Consequently, xDeepFM module effectively improves the effectiveness of Web service
recommendations through above processing.

The Popularity and Co-occurrence of Web Service. The popularity of Web service
represents the QoS information and users’ preference, and its calculation formula is as
follows:

pop(ai) = Inv(ai)−MinInv(Category(ai))
MaxInv(Category(ai))−MinInv(Category(ai))

(14)

where Inv(ai) indicates the number of the Web API “ai” invoked by all Mashups, and
MinInv(·) indicates the smallest number of the Web API invoked by Mashup in the
history record, and MaxInv(Category(ai)) indicates the maximum number of the Web
API invoked in the history record, and Category(ai) indicates the Web APIs that belong
to the same category as the Web API “ai”.

The co-occurrence of Web service refers the association relationship of Web service
composition, which can be calculated by exploiting Jaccard similarity coefficient:

Co
(
ai, aj

) = |ai ⋂ aj|
|ai ⋃ aj| (15)

where
∣∣ai

⋂
aj

∣∣ indicates the total number that Web API “ai” and Web API “aj” are
invoked by the same Mashup,

∣∣ai
⋃

aj
∣∣ indicates the total number of Web API “ai” and

Web API “aj” are invoked by all Mashups.

4 Experimental Result and Analysis

4.1 Dataset and Experimental Setting

To evaluate the proposed method, this paper uses a real dataset of Web services crawled
from the ProgrammableWeb platform. The dataset contains about 6000 Mashups and
nearly 20,000 Web APIs, which includes detailed Web service description documents
and their tag information. The top 30 categories with the highest quantity ofWeb services
in this dataset is shown in Table 1. Moreover, the experimental data is divided into 60%
training set, 20% validating set, and 20% testing set.
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Table 1. Category Number Statistics of Top 30 Mobile Applications

Category Number Category Number Category Number

Tools 850 Telephony 338 Games 240

Financial 758 Reference 308 Photos 228

Messaging 601 Security 305 Music 221

eCommerce 546 Search 301 Stocks 200

Payments 526 Email 291 Cloud 195

Social 501 Video 289 Data 187

Enterprise 472 Travel 284 Bitcoin 173

Mapping 437 Education 275 Other 165

Government 369 Transportation 259 Project Management 165

Science 368 Advertising 254 Weather 164

4.2 Evaluation Metrics

The evaluation metrics include AUC and Logloss, which are widely used in the recom-
mendation system to evaluate the model performance from different aspects. The AUC
is the area under the ROC curve:

AUCi = ∫ 1
0ROCi(fpr)d(fpr) (16)

InROC space, the coordinates (fpr, tpr) represent the trade-off between false positive
cases and true positive cases, fpr stands for false positive rate and tpr stands for true
positive rate. AUC ∈ (0, 1), when 0.5 < AUC < 1, the model outperforms the random
classifier, and the closer the value of AUC is to 1 indicates that the model is better for
Web service recommendation.

Logloss measures the accuracy of the classifier by penalizing the incorrect clas-
sification. A smaller Logloss means that the model is more accurate in Web service
recommendation, and the Logloss reflects the average bias of the sample:

Logloss = − 1
N

∑N
i=1

(
pilog

(
pi
∧)) + log

(
1 − pi

∧) × (1 − pi) (17)

Among this, N denotes the total sample quantity of mobile applications, pi
∧

denotes
the predicted tag of the i-th sample, and pi denotes the actual tag of the i-th sample.

4.3 Baselines

• AGN-DeepFM: The adaptive gate network is used to compute similarity and the
DeepFM is applied to recommend Web services. The DeepFM learns both low-order
and high-order feature interactions, reducing the usage of parameters and sharing the
embedding of FM and DNN.
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• CNN-xDeepFM:The convolutional neural network is used to compute similarity, and
the xDeepFM is exploited to recommendWeb services. CNN utilizes multiple kernels
of different sizes to extract key information from Web service description document,
thus enabling more efficient extraction of important features.

• CNN-DeepFM: The convolutional neural network is used to compute similarity, and
the DeepFM is exploited to recommend Web services.

• LSTM-xDeepFM: The long short-term memory neural network is used to compute
similarity, and the xDeepFM is exploited to recommendWeb services. The LSTM can
fully apply the historical context information in theWeb service description document
to enhance the performance of Web service recommendation.

• LSTM-DeepFM: The long short-term memory neural network is used to compute
similarity, and the DeepFM is exploited to recommend Web services.

• Transformer-xDeepFM: The transformer is used to compute similarity, and the
xDeepFM is exploited to recommend Web services. Transformer achieves better
accuracy by using only encoder-decoder and attention mechanism.

• Transformer-DeepFM: The transformer is used to compute similarity, and the
DeepFM is exploited to recommend Web services.

4.4 Experimental Results and Analysis

The experimental results are shown in Figs. 3 and 4, where the horizontal axis indicates
the training size and the vertical axis indicates the performance metrics. In general,
the proposed AGN-xDeepFM method has a better performance than other comparative
methods in terms of AUC and Logloss.

Fig. 3. AUC

• AGN-xDeepFM has the best performance compared to the baseline methods. The
difference between AGN-xDeepFM and Transformer-xDeepFM is small when the
training size is 0.8, and the difference in AUC is only 0.13% and the difference in
Logloss is only 0.15%. However, the difference in AUC increases to 1.09% and the
difference in Logloss increases to 1.1%when the training size is equal to 0.9. It shows
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Fig. 4. Logloss

that the using the original corpus-level statistical information to deep learning forWeb
service recommendation can effectively raise its performance.Andwith the increasing
of Web service data, the more significant the improvement of AGN-xDeepFM com-
pared with other methods. It is clear that methods that use the xDeepFM have better
recommendation quality compared to methods that use the DeepFM when the train-
ing size grows from 0.2 to 0.9. This is because the methods using xDeepFM consider
both high-order and low-order items, and take into account both explicit and implicit
combinations when recommending, thus effectively improving the performance of
Web service recommendation.

• The recommendation performance of the AGN-xDeepFM gradually raises with the
increasing of the experimental data. Especially, when the training size increases from
0.2 to 0.5, the recommendation performance of the AGN-xDeepFM raises the most.
Among them, AUC increases by 4.45% and Logloss decreases by 35.29%. This is
because as the experimental data adds, the hidden information of Web services mined
by the AGN-xDeepFM is also increased, which effectively improves the performance
of Web service recommendation. However, when the training size goes up from 0.8
to 0.9, the performance improvement of it is slower than that before. It is because
in the increasing process of the experimental data, the information obtained by the
recommendation system tends to be saturated and the information of the Web service
contained in the categories with low ranking is less than that before, which is equiv-
alent to the increase of “dirty” data to a certain extent, resulting in the performance
degradation of Web service recommendation.

4.5 Hyper-parameter Analysis

• To prevent the AGN-xDeepFM model from over-fitting, this paper deeply investi-
gates the effect of dropoutrate on the AGN part of the AGN-xDeepFM, as shown in
Fig. 5(a) and (b), which demonstrate the change process of AUC and Logloss when
the dropoutrate grows from 0.1 to 0.8 in steps of 0.1. It can be seen that the AGN-
xDeepFM has the best performance when the dropoutrate is equal to 0.5, as well as
the AUC value gradually increases and the Logloss value gradually decreases when
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the dropoutrate tends to 0.5. This verify that a suitable value of the dropoutrate in the
AGN-xDeepFM improves the generalization ability of the model.

• To explore the effect of sentence length s in the AGN-xDeepFM, the value range of s
is from 8 to 256. From Fig. 5(c) and (d), it can be seen that AUC shows an increasing
trend and Logloss indicates a decreasing trend when s <= 64 and forms a stable and
optimal performance when s > 64. That is to say, constantly increasing the value of
s does not significantly improve the performance of the AGN-xDeepFM, but instead
will consume more memory in the experiment. Thus, the length of sentence s is set to
64.

• It is noted that the hyperparameter ε in the Valve component defines the confidence
interval for triggering information fusion. In the experiment, we use 0.1 as the step
size and train with different ε values when growing from 0 to 0.5 to explore the effect
of ε. From Fig. 5(e) and (f), we can see that the Valve component can effectively com-
bine the information from different sources. Comparing to models without statistical
information (i.e., ε = 0) or models that completely use statistical information (i.e.,
ε = 0.5), adaptively exploiting a part of statistical information can achieve better rec-
ommendation performance, and the AGN-xDeepFM has the best performance when
ε = 0.2. This phenomenon effectively argues that it is useful to selectively integrate
semantic and statistical information, not all statistical information, and some of them
may bring noise to the model.

Fig. 5. Hyper-parameter Analysis

5 Conclusion

This paper focuses on the problem of how to recommend Web service efficiently and
accurately, and proposes a Web service recommendation method AGN-xDeepFM by
combining AGN model and xDeepFMmodel. In this method, it firstly fuses the corpus-
level statistical and semantic information of Web service description document, which
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enriches the feature information of Web service description document. Then, it extracts
the multi-dimensional features of Web service and uses xDeepFM to learn the explicit
and implicit higher-order feature interactions for Web service recommendation. Finally,
the experimental results show that the AGN-xDeepFMmethod is much better than other
baseline methods in recommendation performance. In the future work, we will focus
on exploring the using of federal learning models to Web service recommendation to
further improve its performance on the premise of ensuring data privacy.
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Abstract. The cross-chain technology is used to solve the problem of
data islands between blockchains. Existing cross-chain techniques are
challenging to resolve the conflict between transaction privacy and trans-
action regulation. Due to the decentralized nature of the blockchain, data
on one chain are hard to get verified on another chain. Users cannot
exchange across different heterogeneous chains without exposing trans-
action information. Also, cross-chain transactions increase the barrier to
regulation from governments. To fill the gap, this paper proposes an inno-
vative regulated privacy-preserving cross-chain transaction framework,
called PXCrypto, which can achieve cross-chain transactions on any het-
erogeneous blockchain while regulating transactions and users’ identities.
PXCrypto maps heterogeneous tokens to the PXCrypto consortium chain
by presenting cross-chain asset proofs, and then uses the corresponding
wrapped tokens for trading. The scheme leverages a proxy multi-party
computation mechanism to achieve cross-chain confidential transactions
using an order matching mode to protect the bid prices on transaction
orders. PXCrypto conducts transaction-related calculations through a
pre-elected committee to regulate these transactions through the regula-
tory authority. We implement the scheme and accordingly conduct the
evaluations. The results prove its security, efficiency, and practicality.

Keywords: Blockchain · Cross-chain · Privacy · Regulation

1 Introduction

Blockchain [1] is a distributed shared database that combines asymmetric encryp-
tion, digital signatures, hash functions, P2P networks, and other technologies.
Thanks to its unique design, blockchain brings many advance properties cover-
ing openness, decentralization, accountability and transparency. It acts as the role
of traditional reliable third parties but, surprisingly, without centralization risks.
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Based on that, the blockchain technology has been vigorously developed during the
past decades, and as a result, got widely used in many fields such as the Internet
of things, medical treatment, finance, and other fields. However, we observe that
several challenging barriers still exists, significantly hindering the further adoption
of blockchain technologies.

In multiple business scenarios, the blockchain adopts different data struc-
tures, consensus mechanisms, and cryptographic algorithms. It is not easy for
the chains with different purposes to be aggregated in one chain. The differences
in the block structure, communication mode, and architectures make it difficult
for one chain to parse the data on other chains. The great heterogeneity causes
blockchains to be separated from each other, in which data cannot be circulated
between chains. Meanwhile, on-chain data has uncertainty, and a legal block
may be abandoned in the future. Most importantly, the blockchain relies on a
decentralized architecture, and on-chain members rely on consensus to trust each
other. This makes it difficult for users to trust the blocks from other chains.

Cross-chain technologies can effectively break the gap between heterogeneous
blockchains, allowing data to smooth flow and get validated across chains. Exist-
ing cross-chain schemes use a large number of smart contracts for transactions,
however, they lack corresponding smart contract privacy protection strategies.
Users can freely view the cross-chain transactions, which increases the risk of pri-
vate information disclosure and hinders the adoption of applications with privacy
requirements. Meanwhile, the regulation of transactions is also worth discussing.
At present, transactions on public chains such as Bitcoin [1] and Ethereum [2]
are unsupervised. After many ICO projects have completed financing, it is diffi-
cult to regulate the landing of the project, resulting in huge risks for investors.
If governments aim to regulate economic values behind digital currencies, they
must strike a balance between transaction privacy and regulation.

– We propose a regulated privacy-preserving cross-chain transaction scheme,
named PXCrypto, to achieve cross-chain transactions on any heterogeneous
blockchain. The scheme can realize confidential cross-chain transactions (hid-
ing order prices) as well as regulate the transactions and users’ identities.

– We construct two modules to realize PXCrypto. The first module is the
cross-chain asset proof scheme that can be used across any heterogeneous
blockchains. The second is the privacy-preserving proxy multi-party computa-
tion (PMPC) protocol that realizes confidential transactions on blockchains.
It uses an order matching mode for transactions to protect order prices and
regulate transactions and users’ identities. We formally prove its security.

– We further implement PXCrypto with comprehensive evaluations. Our imple-
mentation is built on the permissioned blockchain Hyperledger Fabric [3], to
construct a stable and regulation-supported environment. The results prove
that our scheme is satisfactorily efficient and feasible in practice.

Paper Structure: Section 2 gives the building block to construct PXCrypto.
Section 3 introduces proposed system. Section 4 describes the cross-chain asset
proof module and Sect. 5 describes the confidential transaction module. Section 6
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analyzes PXCrypto in terms of security. Section 7 provide implementations and
evaluations. Section 8 presents related work covering common cross-chain tech-
niques and privacy schemes. Section 9 summarizes this work.

2 Building Block

In this section, we provide the preliminaries surrounding our proposed scheme.
We introduce the concept of both blockchain and secure multi-party computation.

Blockchain Structure. Since the birth of Bitcoin [1], a large number of dif-
ferent types of blockchains have been proposed. Blockchain is a chain structure
composed of a series of sequential blocks. Each block includes the block header
and the block body. The block header mainly includes the hash of the previous
block and the identification of the block, while the block body stores the detailed
information of the block, such as transactions and transaction verification sig-
natures. Researchers gradually found that the existing blockchain architecture
is difficult to meet the requirements of users. In this way, Ethereum [2] has been
introduced. Ethereum introduces smart contracts (SC) and utilizes them to real-
ize state transitions. Various blockchain applications can be built on the top of
the SC-supported platforms. At the same time, with the development of smart
contracts, a suite of blockchain tokens based on ERC20/ERC721 [4,5] standards
are created. The tokens can be easily exchanged within the same blockchain
platform but are hard in heterogeneous platforms. In this paper, we aim to
implement a scheme to support token transactions across different blockchains.

Secure Multi-party Computation. Secure multi-party computation was first
proposed by Yao [6]. Secure multi-party computation protocols can meet the fol-
lowing two security requirements: (i) input privacy: Input privacy refers to that
the secure multi-party computation protocol can protect participants’ input and
privacy; (ii) computational correctness: Computational correctness indicates that
the secure multi-party computation protocol can obtain the correct execution
results. At present, the mainstream secure multi-party computation framework
can be divided into three categories: Yao’s garbled circuit [7], SPDZ protocols
[8] [9], and aby framework [10,11]. Secret sharing schemes [12,13] and oblivious
transfer protocols [14] are widely used in these three schemes. In our system,
we adopt the secret sharing scheme to protect the secret (e.g., the bid price) of
users’ orders. We ensure that the information on these orders cannot be disclosed
to others. Meanwhile, we adopt SPDZ [8] to realize the order matching. In this
way, no transaction information can be exposed during the matching process.

3 System Overview

In this section, we first present the system model and actors, as well as define
the notations used in PXCrypto. Then, we introduce our system goals.
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3.1 Actor

PXCrypto is a cross-chain asset trading scheme, allowing users to exchange dif-
ferent types of tokens on our relay chain. To operate these tokens, PXCrypto
includes the following roles in the system:

– User. PXCrypto users are those who own digital assets on one chain and plan
to exchange the assets on another chain.

– Regulatory Authority. The regulatory authority is responsible for the manage-
ment of users’ identities, providing registration services for users on the chain,
and recording the related identity information. Disputes in cross transactions
can be handled by the regulatory authority.

– Asset Pledge Service Provider. The asset pledge service provider can be under-
taken by the official or chain users. The asset pledge service provider accepts
the transfer of users in other chains and transfers the corresponding wrapped
tokens in the relay chain to users in the chain.

– Committee. Committee undertakes the task of transaction matching. They
receive the shares generated by users, execute the secure multi-party com-
puting protocol with received fragments, and record the results on-chain.

– Data Relayer. The data relayer carries the node data from the source chain
and transfers data to the relay chain.

Fig. 1. Overall architecture

3.2 System Model

PXCrypto can establish communications between two different blockchains. We
design a scheme that allows users to map the assets from the source chain to
the relay chain and enable exchanges on the relay chain. Users can transfer the
tokens from the source chain to the asset pledge service provider, and obtain the
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corresponding wrapped tokens in the relay chain. In this way, users can trade
those tokens through orders on the relay chain. If the user wants to redeem
his pledge deposit, he can also transfer the corresponding wrapped tokens back
to the service provider, which will transfer the tokens from the source chain to
the user’s designated account. The overall system architecture is shown in Fig. 1.
The regulatory authorities can view the asset pledge on the source chain and the
order matching process on the relay chain. In contrast, users can only view their
own order details, but they do not know other people’s bids. Here, we provide
the usage of each component. We also present notations in Table 1.

– Source Chain. The source chain refers to the blockchain from which the tokens
are sent. It indicates the asset origination.

– Relay Chain. The relay chain refers to the blockchain to which the tokens are
sent. It represents the transfer destination.

– Source Token. In our scheme, users can convert tokens on the source chain
into the corresponding wrapped token on the relay chain, and then use the
wrapped token to finish the trade on the relay chain.

– Wrapped token. A wrapped token is a token that represents a cryptocurrency
from the source chain. The value of a wrapped token is worth the same as
the original one. Tokens on different source chains are converted into different
wrapped tokens on the relay chain.

– Service smart contracts (SSC). A smart contract subordinate to the asset
pledge service provider. Users can input the number of tokens, the hash value
of a transaction, and the address where the user wants to receive the wrapped
token in SSC. After the service provider signs the contract, the user can
publish the transaction on the source chain.

3.3 System Goals

Under this blockchain model, we derive the following goals for PXCrypto.

– Privacy. Ordinary blockchain users cannot view the bids and quantity of
others in the order. Instead, they can only see the final transaction price.

– Atomicity. Users can atomically swap their tokens with other users in the
relay chain. The trade either fully succeeds or fails followed by a rollback.

– Auditability. Regulatory authority should read any information about users
and their orders. Meanwhile, the regulatory authority should also view all the
asset pledge service provider’s pledge information.

– Decentralization. Any user in PXCrypto can transfer and swap the corre-
sponding wrapped tokens without any trusted third parties.

– Efficiency. PXCrypto uses an order matching mode. In a single order match-
ing cycle, the matching of each order should take an average of one second to
ensure the execution speed of cross-chain transactions.
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Table 1. Notations

Symbol Explanation

R the relay chain
S the source chain
H hash value of the transaction
Tx transactions proposed by users
u users in PXCrypto
a digital asset users pledge when they elect for committee
p exchange rate price in orders
q other order information besides p

pkR, skR the public key and private key of the regulatory authority
n the size of the committee
t the threshold value of secret sharing
E,D the asymmetric encryption and decryption algorithm
SSS the Shamir Secret Sharing scheme [12]
(s1, s2, ..., sn) ← SSS(p, t, n) the protocols of the Shamir Secret Sharing scheme
[si] = Epki

(si) encrypted shares
o = {[s1], [s2], ..., [sn], q} orders in the proposed PXCrypto
oR = {[p], [q]} backup order
MPC multi-party computation program
T order matching cycle

4 Cross-Chain Asset Proof Scheme

In this section, we will introduce the three phases to construct the cross-chain
asset proof protocol, including cross-chain asset proof, cross-chain asset redemp-
tion and appeal handling. We provide details as follows.
Cross-Chain Asset Proof. We assume a user Alice controls a unit of tokens on
the source chain S and hope to exchange tokens on the relay chain R, while an
asset pledge service provider Bob controls a unit of wrapped tokens. Cross-chain
asset proof scheme is shown in Fig. 2a PXCrypto completes the cross-chain asset
proof scheme through the following steps.

– Setup. Alice obtains the public key of Bob on the source chain. She generates
a transaction Tx on the source chain in advance and stores the hash value
H. Alice enters the number of tokens, the hash value of the transaction,
and the address where he wants to receive the wrapped token in the relay
chain to SSC. If Bob is willing to undertake this contract, he can sign Alice’s
information and put the signature into SSC.

– Transaction Publish. After Alice receives and verifies Bob’s signature, she can
publish the transaction Tx.

– Transaction Check. Bob confirms whether the transaction Tx with a hash
value H has been recorded on the source chain.

– Receive. Bob transfers the wrapped token with the quantity a to Alice’s
address on the relay chain R.
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Fig. 2. Architectures for asset proof, asset redemption and appeal handling

Cross-Chain Asset Redemption. We assume a user Alice controls a unit of
wrapped tokens on our relay chain R and wants to redeem those tokens on
source chain S, while the issuer of those wrapped tokens belongs to Bob. The
redemption scheme is shown in Fig. 2b PXCrypto completes the cross-chain asset
redemption scheme through the following steps.

– Setup. Alice obtains the public key of Bob on the relay chain. Alice generates
a transaction Tx on the relay chain in advance and stores the hash value H.
Alice enters the number of wrapped tokens, the hash value of the transaction,
and the address where he wants to receive tokens in the source chain to SSC.
Bob must accept the redemption request within a limited time.

– Transaction Publish. Alice publish the transaction Tx.
– Transaction Check. Bob confirms whether the transaction Tx with a hash

value H has been recorded on the relay chain.
– Receive. Bob transfers the token of quantity a to the address specified by

Alice on source chain S.

Appeal Handling. Alice is the initiator in our process and also the first party to
execute the transfer, meaning that she needs to bear additional risks. We require
an asset pledge service provider to pledge a large number of digital assets in
advance. The appeal handling scheme is shown in Fig. 2c If Alice has submit-
ted the transaction and the asset pledge service provider fails to perform the
corresponding transfer, Alice can apply to the regulatory authority for a ruling.
PXCrypto completes the appeal handling scheme through the following steps.

– Submit. Alice submits the contract SSC and the published transaction Tx to
the regulatory authority.

– Judge. Regulatory authority confirms the following conditions: (i) whether
SSC contains Bob’s signature; (ii) whether transaction Tx has been confirmed
on-chain, (iii) whether the hash value of the transaction Tx is equal to the
hash H that is recorded in SSC; (iv) whether asset pledge service provider
Bob has submitted the corresponding transaction. If the above four conditions
are met, the regulatory authority can transfer Bob’s corresponding amount
of pledge to Alice.



PXCrypto: A Regulated Privacy-Preserving Cross-Chain Transaction Scheme 177

5 The Confidential Transaction Scheme

This section introduces the confidential transaction scheme on the consortium
chain in PXCrypto. First, we describe the order matching mode adopted by
PXCrypto for cross-chain transactions. Then, we propose a new mechanism
called proxy multi-party computation (PMPC) for confidential transactions. At
last, we give details on how to realize regulation for transactions and users’
identities.

5.1 Order Matching Mode

According to the cross-chain asset proof scheme (Sect. 4), users can map the
tokens from external blockchains to the PXCrypto consortium chain, and use
the corresponding wrapped tokens for trading. PXCrypto uses an order match-
ing mode for dealing with cross-chain transactions. Users submit an order in
PXCrypto to declare the token types that they aim to exchange and then bid
with their expected prices for the exchange rate. PXCrypto periodically collects
users’ orders and completes order matching according to a certain logic, so as
to achieve efficient and reasonable cross-chain transactions. PXCrypto’s order
matching logic refers to Binance [15]. This allows multiple buy and sell orders to
be matched at the same time, and the final transaction is carried out according
to the unified transaction price. Here, we present a simple example of our order
matching mode. For simplicity, assume that all orders trade the same token,
the last deal price of that token is 100. There are two buy orders and three sell
orders in the current order matching cycle. The prices of two buy orders are (100,
120), and the corresponding transaction volumes are (100, 200). The prices of
three sell orders are (130, 140, 90) and the corresponding transaction volumes
are (200, 100, 300). According to the order matching rule, the final deal price is
100, and the total volume is 300. As a result, all the buy orders are successfully
traded, while only the sell order with a price of 90 is made the deal within this
cycle.

As for the incentive mechanism of PXCrypto, although this is not the main
focus of this paper, we can briefly introduce an idea according to the design
of our order matching mode. After the order matching is completed, a certain
percentage of the commission fees based on the transaction price and volume
can be paid to the committee members as an incentive (Fig. 3).

5.2 Proxy Multi-party Computation (PMPC)

This section describes the proposed proxy multi-party computation protocol,
which realizes users’ cross-chain transactions while preserving their privacy.

Proxy Multi-party Computation. In addition to users and the regulatory
authority, PXCrypto sets up a committee for order matching.
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Fig. 3. PMPC modular design

– Users. Users can submit orders to buy and sell different wrapped tokens at
any time. PXCrypto periodically matches users’ orders through the PXCrypto
committee. When the order matching is completed, users can query the result
and conduct cross-chain transactions by atomic swapping.

– Committee. When PXCrypto is initialized, the committee elected by users will
be formed. The committee is responsible for calculating matching results of
transaction orders and earning fees. PXCrypto reads unmatched orders from
the PXCrypto consortium chain and processes multi-party computations off-
chain. Then, it submits matching results on-chain after calculation.

– Regulatory Authority. The regulatory authority reviews the transaction fair-
ness and user identities and deals with transaction disputes in PXCrypto.

PMPC Protocol. The proposed PMPC protocol mainly consists of two algo-
rithms and one protocol: the threshold secret sharing algorithm of order price
Pshare, the order matching algorithm OrderMatching and the protocol for com-
mittee election ComElect. Most of the operations of these algorithms and proto-
cols are on-chain, but a small number of off-chain operations are included. We
give their concrete constructions as follows.
Protocol ComElect. Protocol ComElect describes how PXCrypto elects its com-
mittee members from all applied users. PXCrypto presets an integer n to specify
the number of committee members. When PXCrypto initializes, m users will try
to elect to become a committee member to gain benefits. For simplicity, we con-
sider m is greater than or equal to n. We use {a1, a2, ..., am} to represent the
asset pledged by m users {u1, u2, ..., um}. Protocol ComElect will select the top
n users with the most pledged assets as committee members.

– Pledge. Each user ui pledges its asset ai for the committee membership.
– Sort. PXCrypto sorts the assets {a1, a2, ..., am} in descending order and

obtains {ai1 , ai2 , ..., ain , ..., aim}.
– Select. PXCrypto chooses the users {ui1 , ui2 , ..., uin} as committee members.
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Protocol ComElect

System Input: The size of committee n.

User Input: Assets {a1, a2, ..., am} pledged by m users {u1, u2, ..., um}.

Output: Election result {ui1 , ui2 , ..., uim}
1.Each user ui pledge its asset ai for PXCrypto committee membership.

2.{ai1 , ai2 , ..., ain , ..., aim} ← sort descending(a1, a2, ..., am).

3.Select user {ui1 , ui2 , ..., uim} as PXCrypto committee members.

Algorithm Pshare. Algorithm Pshare. describes how PXCrypto protects orders’
prices submitted by users as private information. According to the number of
committee members n in PXCrypto, PXCrypto sets up a threshold value t sat-
isfying t < n. When a user generates an order, it first uses the (t, n)-Shamir
threshold secret sharing protocol [12] to split the plaintext price into n shares,
and use the public key of the current committee member to encrypt each share
correspondingly. For regulatory needs, the user also uses the public key of the
regulatory authority to encrypt the entire plaintext order and sent it to the
regulatory authority as a backup.

Algorithm Pshare

User Input: Exchange rate price p, other order information q.

Public parameters: The public key of the regulator pkR, the size of the committee n,

the threshold value t, public keys of each committee member {pk1, pk2, ..., pkR},

an asymmetric encryption algorithm E and decryption algorithm D.

Private parameters: Encrypted order o, backup order oR.

Output: Matching results res.

1.The user performs (t, n)-SSS and obtains corresponding shares {s1, s2, ..., sn} ← SSS(p, t, n)}.

2.For each si, the user calculates [si] = Epki(si), using committee members’ public keys for encryption.

3.The user submits o = {[s1], [s2], ..., [sn], q} as encrypted orders to PXCrypto blockchain.

4.The user calculates [p] = EpkR(p), [q] = EpkR(q), using the regulatory authority’s public key for encryption.

5.The user submits oR = [p][q] as the backup order to the regulatory authority.

Algorithm OrderMatching. Algorithm OrderMatching describes how PXCrypto
committee members periodically match orders. For simplicity, we consider all
orders in OrderMatching to be an exchange between the same two tokens, and
the first committee member is responsible for submitting the results to the chain.
During each order matching cycle, the PXCrypto committee will read all orders
from the blockchain that are not currently matched. According to the price
shares contained in the encrypted order, the committee members will decrypt
each order to obtain their share. After decryption, each committee member takes
its share as private input and performs secure multi-party computation for order
matching off-chain. The secure multi-party computation will output deal price
and transaction volume. Then, the committee calculates the matching result
and publishes it to the blockchain. Users can query the matching results of the
current matching cycle on-chain after the order matching is completed. Users can
obtain information including the purchase and sell orders, deal price, transaction
volume, and transaction time. The buyer and seller complete the atomic asset
swap and finally reach a confidential transaction.
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Algorithm OrderMatching

Input: Encrypted order {o1, o2, ..., ol}
Public parameters: Encrypted orders {o1, o2, ..., ol}, an asymmetric encryption algorithm E and

decryption algorithm D, a multi-party computation program MPC.

Private parameters: Private keys of the committee members {sk1, ..., skn}.
Output: Matching results res.

1.For each member u1 in the committee:

a. Read {o1, o2, ..., ol} from PXCrypto consortium chain.

b. For each oj = {[s1]j , [s2]j , ..., [sn]j , qj}, j = (1, ..., l), calculates private input for the multi-party

computation inputi[j] = Dski([si]j).

c. Takes array inputi as ui’s private input.

2.The committee runs the program MPC off-chain, calculates (dp, e, b1, ..., bl) ← MPC(input1, ..., inputn),

where dp is the deal price, e is the transaction volume and bj = {0, 1}, where bj = 0, pj ≤ dp and

bj = 1,, pj ≥ dp, (j, 1, ..., l) is the comparison result between the secret price p and dp of each order.

3.The committee member u1 clears buy/sell orders in chronological order, ensuring that each order is filled

completely. Once the order o is fully filled, u1 considers it is matched.

4.u1 obtains res = {oj1 , ..., ojl′ }||{ojl′+1 , ..., ojl}, where {oj1 , ..., ojl′ } are l′ matched orders

and {ojl′+1 , ..., ojl} are l − l′ unmatched orders.

5.Committee member u1 submit res to PXCrypto consortium chain.

Protocol PMPC. Based on the above algorithms and the protocol, we construct
the proxy multi-party computation protocol as follows. The protocol can com-
plete cross-chain confidential transactions and protect users’ order prices.

– Set-up. PXCrypto execute protocol ComElect to form its committee.
– Generate. Users generate their buying or selling orders using algorithm Pshare,

and submit {(o1, oR1 ), (o2, oR2 ), ..., (ol, oRl )} ← Pshare{(p1, q1), ..., (pl, ql)}.
– Match. PXCrypto committee runs OrderMatching and submit the result res =

{oj1 , ..., ojl′ }||{ojl′+1 , ..., ojl} ← OrderMatching(o1, o2, ..., ol) on-chain.
– Trade. Users deal cross-chain transactions according to the matching results

computed by PXCrypto committee.

5.3 Transaction Regulation Scheme

This section describes the transaction regulation scheme in PXCrypto. The reg-
ulation of transactions is carried out by the regulatory authority. In PXCrypto,
the regulatory authority acts as a trusted party to certify the node assets on the
chain, as well as regulates the order matching in PXCrypto. As the order match-
ing of PXCrypto is completed by the committee, collusion may happen among
the committee members to deliberately break the order matching processes to
make profits. At this time, PXCrypto can regulate malicious transaction match-
ing results. When an honest user on the blockchain finds that the calculation
of the order matching result of a certain cycle is incorrect, i.e. a user submits a
buying order with a higher price than the deal price of the matching result, users
can pay a certain amount of tokens as a pledged deposit, and submit a trans-
action regulation request to the regulatory authority. The regulatory authority
will accordingly verify whether the order matching result in this cycle is correct.
Here, we introduce our transaction regulation module TXRegulation.
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TXRegulation. Algorithm TXRegulation describes how the regulatory author-
ity ensures the fairness of transactions. The honest user is called the reporter in
the algorithm, the reporter will provide its own unmatched order as a part of the
request. When a user submits an order in PXCrypto, in addition to performing
threshold secret sharing of the plaintext price, it also encrypts the plaintext infor-
mation of the order with the public key of the regulatory authority and sends it to
the regulatory authority for backup. When the regulatory authority receives the
transaction regulation request from the user, the regulatory authority decrypts
the corresponding orders included in that cycle and recalculates them according
to the order matching rules. The regulatory authority will generate an author-
itative order matching result for comparison with the order matching results
generated by the committee. We discuss two cases as follows.

– Case1 False ← TXRegulation: This indicates that the committee members
have behaved evil. The pledge deposit of the user node will be refunded.
All committee members will be punished, and the staked assets during the
election from committee members will be frozen. Their membership qualifi-
cations will be accordingly canceled. Then, a new committee will be elected
to perform subsequent order matching.

– Case2 True ← TXRegulation: This indicates that the user node has sent a
malicious request. His pledge deposit will be frozen as punishment.

Through the above-mentioned regulation scheme, users can maintain their
interests, the regulatory authority can ensure that the calculation results of order
matching are correct. At the same time, such a mechanism increases the cost
of evil behaviors for committee nodes and ensures the fairness of PXCrypto
cross-chain transaction order matching.

Algorithm TXRegulation

Input: Reporter’s unmatched order o′

Public parameters: Backup orders {oR1 , ..., oRm}
Private parameters: Private key of the regulatory authority skR

Output: True or False

1.The regulatory authority find the certain order matching cycle T, where o′ belongs to T.

2.The regulatory authority filter out the specified orders {oR1 , ..., oRl } belong to T in {oR1 , ..., oRm}.
3.For each oRi = {[pi][qi]}, the regulatory authority decrypts pi = DskR([pi]), qi = DskR([qi]),

4.The regulatory authority calculates (dp, e, b1, ..., bl), since the regulatory authority has known the plaintext (p, q) of each order.

5.The regulatory authority clears buy/sell orders in chronological order, ensuring that each order is filled completely.

6.The regulatory authority obtains {oRj1 , ..., oRjl′ }||{oRjl′+1
, ..., oRjl}, where {oRj1 , ..., oRjl′ } are l′ matched orders

and {oRjl′+1
, ..., oRjl} are l − l′ unmatched orders.

7.If o′ ∈ {oRj1 , ..., oRjl′ }, output False, else output True.

5.4 Identity Regulation Scheme

This section describes the identity regulation scheme in PXCrypto. PXCrypto
adopts the Idemix mechanism in Hyperledger Fabric. Idemix can effectively prove
that one party owns the signature and corresponding attributes through zero-
knowledge proof, without revealing the signature and the selected attribute value
itself. This proof is also verifiable using the public key of the regulatory authority
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that originally signed the certificate and cannot be forged. Only users who know
the secrets issued by the regulatory authority at the time of registration can
generate proof about the secret and its attributes.

When a user on the chain registers in PXCrypto, the user applies to the
regulatory authority. The regulatory authority will generate the user’s identity
certificate based on the attributes owned by the user, and provide the user’s reg-
istration ID and a secret. The user executes the registration command with the
registration ID and the secret, then obtains its public and private key assigned
by the regulatory authority. When regulating transactions in PXCrypto, it is
often necessary to establish a relationship between transaction data and users’
identities. By binding transaction data with user registration IDs, it is possible
to protect user privacy in PXCrypto through the Idemix mechanism while veri-
fying which data is generated by which users. In this way, PXCrypto regulatory
authority can regulate nodes’ behaviors on the chain.

For regulated cross-chain confidential transactions, PXCrypto firstly sets up
a regulatory authority and uses a notary-based cross-chain approach to map the
tokens of other heterogeneous blockchains to the PXCrypto consortium chain.
Through the cross-chain asset proof, the tokens on heterogeneous blockchains
are exchanged for corresponding wrapped tokens. In the process of confidential
transactions, PXCrypto proposes proxy multi-party computation. The user’s
plaintext price in the order is protected through asymmetric encryption and
threshold secret sharing. Finally, the regulatory authority arbitrates the trans-
action results and regulates the identities of users on the chain, which ensures
the security and fairness of transactions in PXCrypto.

6 Security and Property Analysis

This section analyzes PXCrypto in terms of security and advanced properties.
We give our security analysis by adopting the real-ideal simulation paradigm
[16]. To be noted, we merely present security proofs in sketch due to page limits.

6.1 Security Analysis

PXCrypto contains two major programs, namely the Shamir secret sharing algo-
rithm (SSS) and the multi-party computation algorithm (MPC). For the SSS,
it is not actually profitable for the committee members to collude with each
other to restore the explicit price of the order, the committee would have to
tamper with the result of the secure multi-party computation to make a profit.
We follow the crux of real-ideal simulation proof systems [16] to demonstrate
that our scheme is provably secure where the system can indistinguishably oper-
ate between the real scenario and the ideal scenario. As a sketch, we focus on
the proofs of main programs, rather than surrounding primitives. Here are the
details.
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Definition 1 (PMPC). The PMPC protocol can be denoted as a tuple with
a series of elements as (K,SSS,MPC, f1, f2), where K is a finite field, SSS is
the Shamir secret sharing scheme in Pshare, MPC is the multi-party computation
program in OrderMatching. SSS realizes a polynomial-time function f1 by exe-
cuting Lagrange interpolation for the secret recovery. MPC realizes a polynomial-
time function f2 by computing the order matching result.

Definition 2 (Secure PMPC). Let κ be the security parameter, xi be the
confidential input of committee member Pi, Vi denote the final view of Pi, yi
denote the final output of Π, and Πj (j = 1, 2) denote SSS and MPC of PMPC
executed in real scenarios, respectively. We say that Πj securely realizes fj in the
presence of semi-honest adversaries if there exist a simulator Sj such that, for
every subset of corrupt parties C and all inputs (x1, ..., xn), the distributions of

RealΠj
(κ,C;x1, ..., xn)

c≡ Idealfj ,Sj
(κ,C;x1, ..., xn)

are indistinguishable under κ, where RealΠj
(κ,C;x1, ..., xn) := {Vi|i ∈ C},

(y1, ..., yn), and Idealfi,Si
(κ,C;x1, ..., xn) := Sj(C, {(xi, yi)|i ∈ C}), (y1, ..., yn).

For for every non-uniform polynomial-time algorithm D there exists a negligible
function μ(·) such that for every x and every κ,

|Pr[D(RealΠi(κ,C; x)) = 1] − Pr[D(Idealfi,Si(κ,C; x)) = 1]| ≤ μ(κ).

Lemma 1. Given any t shares in SSS, the order price can be reconstructed by
the committee whereas any t − 1 shares or less cannot reveal any useful infor-
mation about the order price in Pshare. We refer to [17] for relevant proofs.

Proof (Lemma 1). Pshare adopts the threshold Shamir secret sharing scheme.
The security of Pshare follows the crux concept of Shamir’s scheme. Let t denote
the threshold value. The algorithm uses the polynomial f(x) of degree t − 1 to
share the secret where a0 is the order price. Each share in Shamir’s scheme is a
result of substituting i in the polynomial function to obtain f(i). The process
will not leak any knowledge of a0. For insufficient participants, the result fails
since the polynomial f(x) cannot be recovered at a degree less than t − 1. ��
Theorem 1. Π1 is secure against semi-honest adversaries under Definition 2.

Proof (Theorem 1). In Π1, each committee member Pi computes f1 by a set of
shares collecting from other committee members. Let S denote an adversary in
the ideal world, A denote an adversary in the real world and α denote the secret
shared in Π1. Every output yi = α obtained by committee member Pi should
be identical. Considering totally m members exchange mutually their shares,
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we obtain RealΠ1 = [xA, {xik �= xA|k = 1, ...,m − 1}, α]. Then, we present the
behaviors of S in the ideal world as follows:

– S invokes A with its initial input denoted by xA.
– S adopts the Shamir secret sharing scheme and generates a total of m − 1

shares with the polynomial function corresponding to xA and α.
– S sends the above m−1 shares to A, simulating the communication conducted

by A and other committee members. Hence, we have Idealf1,S1 = [xS , {xS1
ik

�=
xS |k = 1, ...,m − 1}, α].

Since S uses the same secret sharing scheme (SSS in Pshare, proved secure in
Lemma 1) as A, the shares {xS1

ik
} simulated by S follow the same distribution

as {xik}. Thus, there exists a negligible function μ(·) for SSS, such that

|Pr[D(RealΠ1(κ,C; xi)) = 1] − Pr[D(Idealf1,S1(κ,C; xi))) = 1]| ≤ μ1(κ).

��
Lemma 2. For any arithmetic circuit C over K, MPC processed by committee
members P1, ..., Pn in algorithm OrderMatching cannot reveal any information
about the order price. We refer to this paper [18] for relevant proofs.

Proof (Lemma 2). MPC in the PMPC protocol starts by letting each committee
member share each of his inputs and send a share to each other. The arithmetic
circuit C over K is then processed gate by gate, maintaining as invariant where
all inputs and intermediate results are secret-shared, i.e., each value a ∈ K is
shared by a1, ..., an, where Pi holds ai. Assuming that the input values to a
gate are a and b, determined by shares a1, ..., an and b1, ..., bn, respectively. We
present the related operations, covering addition and multiplication as follows.

– Addition. For i = 1, ..., n, Pi computes ai +bi. The shares a1 +b1, ..., an +bn
determine a + b as required by the invariant.

– Multiplication. For i = 1, ..., n, Pi computes ai · bi = c̃i.
– Resharing step. Pi parses the share c̃i, resulting in shares of ci1, ..., cin

and sends cij to the committee member Pj .
– Recombination step. For j = 1, ..., n, committee member Pj computes

cj =
n∑

i=1

ricij , where (r1, ..., rn) is a fixed recombination vector [18]. The

shares c1, ..., cn determine c as required by the invariant.

The addition and multiplication operations can return correct results by the
linearity of the secret sharing, and by the multiplication property. For privacy,
the sharing of a result c during the multiplication operations starting from a, b
is random and the corresponding results for addition are trivial. ��
Theorem 2. Π2 is secure against semi-honest adversaries under Definition 2.
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Proof (Theorem 2). Let S denote the adversary in ideal world, A denote the
adversary in real world. By Lemma 2, input values a and b in every addition and
multiplication gates are secretly shared in Π2. f2 computes the matching results
gate by gate. Let ai and bi be the input of A.

For addition, we have RealΠ2 = [(ai, bi), {aj + bj |j �= i, j = 1, ..., n}, a + b].
We can simulate the behaviors of S as follows:

– S invokes A with its initial input ai, bi.
– S adopts corresponding SSS and generates n − 1 shares with the polynomial

corresponding to (ai, bi) and a + b, denoted by {aS2
j + bS2

j |j �= i, j = 1, ..., n}.
– S sends the above n − 1 shares to A, simulating the communication exe-

cuted by A and other committee members. Hence, we have Idealf2,S2 =
[(ai, bi), {aS2

j + bS2
j |j �= i, j = 1, ..., n}, a + b]. The shares {aS2

j + bS2
j } sim-

ulated by S follow the same distribution as {aj + bj}.

For multiplication, We can simulate the behaviors of S as follows:

– S invokes A with its initial input ai, bi. S and A locally compute ai · bi = c̃i.
– During the resharingstep, S follows A secretly parses c̃i into ci1, ..., cin.
– Then, S secretly shares c in cS2

1 , ..., cS2
n , and reshares them in

{cS2
11 , ..., cS2

n1}, ..., {cS2
1n, ..., cS2

nn, }

respectively, where cS2
ij = cij , j = 1, ..., n.

– During the recombination step, S sends A the set {cS2
ji |j = 1, ...n} to simulate

the shares that A obtains. Then, A computes ci =
n∑

j=1

rjc
S2
ji .

– S sends A with the set {cS2
j |j �= i, j = 1, ..., n} to simulate the shares that A

gets for recovering c. Therefore, we have RealΠ2 = [(ai, bi), {cji, cj |j �= i, j =
1, ..., n}, c] and Idealf2,S2 = [(ai, bi), {cS2

ji , cS2
j |j �= i, j = 1, ..., n}, c].

The shares {cS2
ji , cS2

j } simulated by S follow the same distribution as {cji, cj}.
Hence, there a negligible function μ(·) for MPC, such that

|Pr[D(RealΠ2) = 1] − Pr[D(Idealf2,S2) = 1]| ≤ μ2(κ).

��
Theorem 3. The proposed PMPC protocol is secure against semi-honest adver-
saries under Definition 1 and Definition 2.

Proof (Theorem 3). Let Π3 denote the PMPC protocol, the view in the real and
ideal world of Π3 is the combination of Π1 and Π2. We use RΠi

as shorthand for
Pr[D(RealΠi

) = 1] and IΠi
for Pr[D(Idealfi,Si

) = 1]. By integrating Theorem 1
and Theorem 2, we can conclude that:



186 Y. Zhang et al.

|RΠ3 − IΠ3 |
= |RΠ3 + (RΠ1 − IΠ1) + (RΠ2 − IΠ2) − (RΠ1 − IΠ1) − (RΠ2 + IΠ2) − IΠ3 |
≤ |RΠ1 − IΠ1 | + |RΠ2 − IΠ2 | + |RΠ3 − RΠ1 − RΠ2 | + |IΠ1 + IΠ2 − IΠ3 |
= |RΠ1 − IΠ1 | + |RΠ2 − IΠ2 |
≤ μ1(κ) + μ2(κ)

Therefore, we can observe that the PMPC protocol Π3 can be distinguishable
with a negligible probability, indicating that PMPC is proved to be secure against
semi-honest adversaries under Definition 1 and Definition 2. ��

6.2 Advanced Properties

Then, we give qualitative discussions of the enhanced properties.

– Privacy. We adopt an order matching mode to deal with users’ cross-chain
transactions. Its security is guaranteed by the secure multi-party computing
protocol, and the user’s order price is kept confidential during the process.

– Atomicity. The user’s order is either fully matched and completed, or the
order will be rolled back. PXCrypto does not make an incomplete deal.

– Auditability.The regulatory authority can inquire about all transactions. In
the cross-chain asset proof scheme, the regulatory authority can handle the
user’s appeal and punish the asset pledge, or service provider. while in the
confidential transaction scheme, the regulatory authority can maintain the
fairness of transactions and regulate the identity of the user.

– Decentralization. There is no need for other trusted third parties in PXCrypto.
If the asset pledge service provider refuses to execute subsequent transactions,
it will be punished for the previously submitted pledge. If the Committee
transmits mismatched data, the final result of the order matching is incorrect,
which can be detected instantly.

– Efficiency. PXCrypto can effectively ensure that the average matching cal-
culation time of each order is less than one second (evaluation details refer
to Sect. 7). As the number of orders within a single order matching cycle
increases, the total required calculation time will become longer. The effi-
ciency of the scheme can be maintained by reasonably setting the upper
limit of the orders that can be accommodated during a single order matching
period.

7 Implementation and Evaluation

Experimental Configurations. We establish the experimental environments
on the hardware laptop, equipped with 1 Core CPU and 2G memory. The operat-
ing system is Ubuntu 20.04 64-bit long-term version. Within the environment, we
build the consortium blockchain on the top of Hyperledger Fabric, with specific
versions of Fabric v2.3.1 and Fabric CA v1.4.9. The consortium chain is con-
tained in the Docker version 20.10.7 with 20.10.7-0ubuntu1 20.04.1. Supporting
components are Node.js v16.14.0 and NPM v7.14.0.
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Fig. 4. Efficiency

Implementation (Sketch). We emphasize
two main algorithms in PMPC. For the algo-
rithm Pshare, we adopt Python to generate
the shares of order prices and use jsrsasign
package in Node.js to implement RSA asym-
metric encryption and decryption algorithms.
For the algorithm OrderMatching, we use
MP-SPDZ [19] to implement the multi-party
computation (MPC) program, together with
the Shamir Secret Sharing implementation
[12,18]. The output of the MPC program
in PMPC contains the deal price, transaction volume, and comparison result
between order prices and deal prices. We provide the results of ten successful
matched orders (OrderMatching in Fig. 5 at Appendix A). Here, the size of com-
mittee is 3.

Evaluation. We discuss the performance in terms of efficiency and practicality.
Firstly, we demonstrate the efficiency of the PMPC protocol by analyzing the
average order matching time. We measure the computation time required by the
committee as the number of orders increases during a single order matching cycle
(See Fig. 4). PXCrypto currently has acceptable efficiency in small-scale order
matching, but in large-scale order matching, order matching rules need to be
optimized to reduce the number of ciphertext operations in secure multi-party
computation. Then, compared with mainstream cross-chain solutions such as
Cosmos [20] and Polkadot [21], PXCrypto realizes the confidential transactions
of users on the chain by hiding the order prices. At the same time, with the help
of the nature of the consortium chain, PXCrypto can regulate the user’s identity
and the fairness of confidential transactions. Our scheme provides satisfactory
practicability that can be practically applied to the actual management.

8 Related Work

This section provides the related work surrounding our scheme.

Cross-Chain Scheme. Blockchain is characterized by its decentralization
where participants need to verify all the blocks on-chain. The cross-chain tech-
nique, thus, becomes a solution to enhance the scalability of blockchain. Rip-
ple [22] proposed the Interledger scheme, designing connectors for users on dif-
ferent blockchain chains. Zamyatin et al. [23] proposed Xclaim and leverage
chain relays to realize cross-chain transactions through verifiable smart con-
tracts. Lightning network was proposed to deal with the transactions on Bitcoin
in their sidechain. In the scheme, the hash-locked smart contract is adopted to
ensure the atomic operation of both sides of the transaction. The Consensys team
designed BTCRelay [24], which realized the data exchange between Ethereum
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and Bitcoin through a relay. Kwon et al. [20] proposed a cross-chain network:
Cosmos, consisting of two major components: hub and zone. Cosmos adopt inter-
blockchain communication (IBC) protocol for communication between hubs and
zone and verify cross-chain data through the public key of relayers. Gavin et
al. [21] introduced Polkadot, which includes the relay chain, parachains, and
bridges. In Polkadot, parachains undertake different functions, while the relay
chain as the hub processes the data across each parachain to provide cross-chain
services. Bridges interact with existing chains as the interface.

Privacy Scheme. The pseudonym mechanism of addresses in blockchain has
risks of being associated with the user’s real identity under analytic tools. The
total transparency feature makes all the transaction contents disclosed to the
public. Researchers have widely discussed this problem. CryptoNote protocols
[25] utilize the ring signature to hide the public key of the transaction initiator.
The user’s private key can connect multiple public keys to hide the transac-
tion recipient. Several protocols, such as [26], adopt homomorphic encryption
to hide the transaction contents. The scheme uses the Pedersen Commit to seal
the plaintext values into ciphertext. At the same time, many researchers also
employ zero-knowledge proof to hide the transaction information, such as Zero-
coin [27], and Zerocash [28]. Other techniques like multi-party computation [29]
and mixers [30] are also used to provide blockchain privacy. Besides the crypto-
based solutions, the hardware-assisted technique [31] is another route to hide
the transaction contents. Hawk [32] equipped the system with TEE to protect
the confidentiality of contract states. Similarly, Ekiden et al. [33] also adopted
TEE to protect state privacy. As in this work, we focus on the confidentiality of
the order matching process, rather than the complete smart contract privacy.

9 Conclusion

In this paper, we provide a regulated privacy-preserving cross-chain transaction
scheme called PXCrypto. PXCrypto contains two modules, namely the cross-
chain asset proof scheme and the confidential transaction scheme. The former is
responsible for the proof of cross-chain assets and provides users with conver-
sion services between the tokens on the source chain and wrapped tokens on the
relay chain. While the latter is responsible for token transactions and provides
users with trading services for wrapped tokens. PXCrypto uses an order match-
ing mode for token transactions. The implementation adopts threshold secret
sharing and secure multi-party computing protocol to ensure privacy during the
order matching process. At the same time, PXCrypto has introduced the regu-
latory authority, which can examine all transaction information and guarantee
the fairness of cross-chain transactions. We accordingly implement both modules
and present our evaluations. The results prove its efficiency and practicability.
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Appendix A

We give the screenshot (cf. Fig. 5) of ten matching orders. We conduct experi-
ments using the MP-SPDZ’s Shamir-party protocol. For simplicity, we run the
computation program for three committee nodes in the same terminal. The order
matching results consist of three parts: the deal price is 815, the transaction vol-
ume is 5409, and the price comparison outcomes between each order price and
deal price (1 for true and 0 for false).

Fig. 5. Example output of the MPC program in PMPC

References

1. Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin. https://
bitcoin.org/bitcoin.pdf 4 (2008)

2. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow pap. 151(2014), 1–32 (2014)

3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: EUROSYS, pp. 1–15 (2018)

4. Erc-20 token standard. https://ethereum.org/en/developers/docs/standards/
tokens/erc-20 (2022)

5. Erc-721 token standard. https://ethereum.org/en/developers/docs/standards/
tokens/erc-721 (2022)

6. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science (SFCS), pp. 160–164. IEEE (1982)

7. Yakoubov, S.: A gentle introduction to yao’s garbled circuits. preprint on webpage
at https://web.mit.edu/sonka89/www/papers/2017ygc.pdf (2017)

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://web.mit.edu/sonka89/www/papers/2017ygc.pdf
https://doi.org/10.1007/978-3-642-32009-5_38


190 Y. Zhang et al.

9. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

10. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: Network and Distributed System Secu-
rity Symposium (NDSS) (2015)

11. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learn-
ing. In: Conference on Computer and Communications Security (CCS), pp. 35–52
(2018)

12. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
13. Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf.

Theory 40(3), 786–794 (1994)
14. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint

Archive (2005)
15. Binance order matching examples. https://docs.binance.org/match-examples.html

(2022)
16. Evans, D., et al.: A pragmatic introduction to secure multi-party computation.

Found. Trends Priv. Secur. 2(2–3), 70–246 (2018)
17. Phiri, K.K., et al.: Linear (t, n) secret sharing scheme based on single polynomial.

Int. J. Appl. Eng. Res. 13(14), 11600–11605 (2018)
18. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation

from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

19. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 1575–1590 (2020)

20. Kwon, J., et al.: Cosmos whitepaper. A Netw. Distrib, Ledgers (2019)
21. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework. White

Paper 21, 2327–4662 (2016)
22. Bailie, A.H., Thomas, S.: Interledger: creating a standard for payments. In: Pro-

ceedings of the 25th International Conference Companion on World Wide Web
(WWW), pp. 281–282 (2016)

23. Zamyatin, A., Harz, D., et al.: XCLAIM: trustless, interoperable, cryptocurrency-
backed assets. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 193–
210. IEEE (2019)

24. Btcrelay’s documentation. http://btc-relay.readthedocs.io/en/latest (2022)
25. Saberhagen, N.V.: CryptoNote v 2.0 (2013)
26. Wang, Q., et al.: Preserving transaction privacy in bitcoin. FGCS 107, 793–804

(2020)
27. Miers, I., Garman, C., Green, M., Rubin, A.: Zerocoin: anonymous distributed e-

cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp.
397–411. IEEE (2013)

28. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)

29. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) FC
2018. LNCS, vol. 10958, pp. 64–77. Springer, Heidelberg (2019). https://doi.org/
10.1007/978-3-662-58820-8 5

https://doi.org/10.1007/978-3-642-40203-6_1
https://docs.binance.org/match-examples.html
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
http://btc-relay.readthedocs.io/en/latest
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5


PXCrypto: A Regulated Privacy-Preserving Cross-Chain Transaction Scheme 191

30. Zhang, R., et al.: Security and privacy on blockchain. CSUR 52(3), 1–34 (2019)
31. Rujia Li et al.: Sok: TEE-assisted confidential smart contract. PETS 2022, 711–

731 (2022)
32. Kosba, A., et al.: Hawk: the blockchain model of cryptography and privacy-

preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 839–858. IEEE (2016)

33. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on Security
and Privacy (EuroSP), pp. 185–200. IEEE (2019)



CRFs for Digital Signature and NIZK
Proof System in Web Services

Burong Kang1,2,3 , Lei Zhang1,2(B) , Yafang Yang4 , and Xinyu Meng1,2

1 Engineering Research Center of Software/Hardware Co-design Technology
and Application, Ministry of Education, East China Normal University,

Shanghai 200062, China
{52174501012,52174501013}@stu.ecnu.edu.cn, leizhang@sei.ecnu.edu.cn

2 Science and Technology on Communication Security Laboratory,
610041 Sichuan, China

3 Research Institute of China Telecom Corporation Limited, Shanghai 200062, China
4 School of Computer Science, Fudan University, Shanghai 200433, China

18110240046@fudan.edu.cn

Abstract. Web services are service-oriented computing technology
which allows computers running different operating domains to access
and share each other’s databases. Each web service is an application
(like online business) which may require the private information of users.
Thus, it will be important to preserve these web users’ individual pri-
vacy. The traditional approaches to achieve this goal in web security is
to use the cryptographic technologies, such as digital signature, NIZK
proof system. Whereas, some recent research results indicate that these
cryptographic technologies may suffer from the algorithm substitution
attack (ASA). ASA means that the cryptographic technology would be
embedded some backdoor in the process of its implementation by the
attacker, and with the backdoor information the attacker can steal the
user’s private information. To address this problem, the concept of cryp-
tographic reverse firewall (CRF) has been introduced, which could sani-
tize the messages inputting and outputting the user’s computer. In this
paper, we construct the CRFs for the efficient Pointcheval-Sanders (PS)
signature as well as the NIZK proof system.

Keywords: Web security · Cryptographic reverse firewall · Digital
signature · Non-interactive zero knowledge proof system · Algorithm
substitution attack

1 Introduction

Web services are service-oriented computing technology which allows computers
running different operating domains to access and share each other’s databases.
Each web service is an application (like online business) which may require the
private information of users [1–4]. Many current web services architectures are
based on the interaction of three types of entities: the service requestor, the ser-
vice provider and the service registry. Generally speaking, the service provider
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advertises its services in a service registry. The service requestor finds a suitable
service from the service registry, and subsequently interacts with the associated
service provider. In summary, there are two levels of security in web services.
That is the transport-level security and the message-level security. The former
is commonly provided by the SSL/TLS protocols. However, as mentioned in [5],
the transport-level security is insufficient to the security of web services mes-
sages. For example, web services security requires integrity ensuring the message
has not been tampered with [3,5]. This is generally accomplished with digital
signatures. Thus, message-level security which could be achieved through the
cryptographic technologies is an important aspect of web security.

The cryptographic technologies in the real world are commonly employed
by users of web services under the assumption that they are implemented
faithfully in the web system. However, the Snowden incident in 2013 revealed
the fact to the world that the cryptographic technologies implemented in the
machines of ordinary users are possibly suffered from the malicious subversions
and backdoors conducted by some powerful attackers (e.g., NSA, manufacturers,
supply-chain intermediaries), even though the underlying cryptographic primi-
tives used to implement cryptographic technologies have been proven theoreti-
cally secure [6,7]. With the subverted or backdoored cryptographic implemen-
tations, the attacker can steal the user’s private information (e.g., secret keys)
without the awareness of users [8,9]. In practice, many significant instances of
such attacks have been found out, such as the backdoor in the standardized
Dual_EC_PRNG, the mass surveillance of NSA to the famous companies (e.g.,
Microsoft, Facebook, Apple, Google, etc.), so and so forth [10]. This kind of
attack was originally termed as kleptography two decades ago [7]. Whereas, it was
not paid more attention then. Motivated by Snowden revelations, it was recon-
sidered and redefined as the algorithm substitution attack (ASA) [11]. Various
of cryptographic primitives, ranging from (public-key and private-key) encryp-
tions, signatures, to protocols, proof systems, have been analysed to have the
risk of ASAs [8–10,12]. Thus, ASA has been a major threat to cryptographic
technologies.

Nowadays, to make cryptographic technologies defeat ASAs, some
approaches have been proposed [12–16,18–20]. However, as summarized in [6],
most of these approaches require various assumptions. Fortunately, it is also
pointed out in [6] that the cryptographic reverse firewall (CRF) proposed in [12]
is quite powerful since it could secure the fully black-box use of (possibly sub-
verted) algorithms without complex detection mechanisms. CRF is an additional
entity locating between the user’s machine and the outside world [9,12,21,22].
The core idea of CRF is to modify the messages that user sends and receives as
he/she engages in a cryptographic primitive potentially [12]. In such a way, the
user’s private information will not be leaked out, even if the user’s machine is
subverted. A well-designed CRF should satisfy three properties, i.e., functional-
ity maintaining, security preserving, and exfiltration resistance [12]. The func-
tionality maintaining requires that the CRF should not break the functionality
of the underlying primitive when the user’s machine is working correctly [12].
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The security preserving guarantees that regardless of how the user’s machine
behaves, the presence of the CRF will provide the same security guarantees as
the properly implemented primitive [12]. The exfiltration resistance means that
regardless of how the user’s machine behaves, the presence of the CRF will pre-
vent the machine from leaking any information to the outside world [12]. The
significant challenge is how to design CRF for all kinds of existing cryptographic
primitives?

Until now, there have been the generic and instantiated constructions of CRFs
applied to various cryptographic primitives, including message-transmission pro-
tocols, key agreement protocols, private function evaluations, public key encryp-
tions, oblivious transfer protocols, interactive zero knowledge proof system, etc.
Digital signature (DS) is one of the most fundamental cryptographic primitives
and is not able to avoid ASAs which allow attacker to successfully extract the
signing key of signer (i.e., service requestor) [8]. As a result of [8], two concrete
ASAs (i.e., the biased-randomness attack and the small-randomness attack) are
mounted on DS. The probability of the attacker to recover the signing key of
the user is related to the length of the key and the randomness. Fortunately, a
generic treatment to these ASAs on DS, as another significant result of [8], is
that constructing CRFs in the signer’s side for the re-randomizable DS schemes.
In other words, the CRF could be deployed in the side of service requestors
in the web system to achieve the goal of protecting their privacy. Whereas, no
instantiation of DS scheme with CRF is given. Thus, we attempt to provide the
instantiations of DS schemes with CRF.

Similarly, zero knowledge proof system is also a significant cryptographic
technology in web services. It includes the interactive zero knowledge (IZK) proof
system and the non-interactive zero knowledge (NIZK) proof system. The for-
mer requires that the prover and verifier interact with each other, the later only
requires that there be some common public random string which the prover
and verifier have access to. As demonstrated in [22] and [17], NIZK proof sys-
tem could be used in web system by the user to request a legitimate service
from the service provider. In [22], the authors first formalise the definitions of
CRF for IZK proof system and its security properties (i.e., completeness preser-
vation, strong soundness preservation, strong zero knowledge preservation and
exfiltration resistance). As instantiations, they construct CRFs for a class of
Sigma protocols-which are special types of IZK proof system-in the sides of both
prover and verifier. Whereas, we find that no CRF-based protection for NIZK
proof system has been proposed so far. Thus, there is no doubt that constructing
CRFs for NIZK proof system schemes is meaningful.

1.1 Related Work

Nowadays, with the rapid development of the web systems, the web security
has become a more and more crucial challenge. A common way to address the
secure issues in web services is to use the cryptographic method, like the sig-
nature. From the aspect of practice, it will be a more efficient way to achieve
the web security through specifying some standard signature algorithms. The
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standard XML Signature (including the traditional DSA and RSA-SHA1 signa-
ture algorithms) [23] is a fundamental building block for message-level security
in web services which are based on XML. However, as noted in [23], the public
keys of this standard algorithms are stored in standard X.509 certificates. This
could result in the certificates management issue. To solve this issue, in 2007,
Crampton et al. explored the application of identity-based cryptography in web
services [5]. Their result stated that identity-based cryptography is naturally
suitable for the message-level security needed by web services because it has
some attractive properties. Whereas, as we all know, the identity-based cryptog-
raphy is confronted with the key escrow problem. More recently, some research
results indicate that signature algorithms would not avoid the ASAs.

In CCS 2015, Ateniese, Magri and Venturi initiated the formal study of ASA
against DS [8]. Concretely, in their ASA model, a pseudorandom function with
secret key-which could be regarded as a trapdoor embedded by attacker into
signing algorithm-is used to bias the generation of randomness. As a result, each
signature produced with biased randomness under signing key would leak one
bit of signing key to attacker. In such a way, it will be possible for attacker to
successfully recover a complete signing key and violate the security of signature
scheme as long as he collects at least the same number of (sequential) signatures
as the length of signing key. It is worth noting that their ASA against DS is state-
ful and is mounted on signature schemes in symmetric manner. Subsequently,
Wang et al. proposed universal asymmetric (stateless) ASA against a certain
class of signature schemes (i.e., splittable signatures) [24]. Unlike the symmetric
ASA against DS in which the trapdoor key embedded into signing algorithm and
the key used to extract signing key of users are actually the same one, in the
asymmetric setting they are different. In other words, a pair of public/private
keys is needed for attacker. The public key is inserted into the subverted signing
algorithms, while secret key is used to recover signing key. In particular, Liu et
al. showed that several existing signature schemes (e.g., DSA, Waters scheme,
Paterson scheme, etc.) are subjected to their asymmetric ASA.

All these feasible ASAs on signature schemes encourage cryptographers to
explore of effective countermeasures. In [8], Ateniese, Magri and Venturi con-
sidered this issue. Particularly, to protect signature schemes from the ASAs,
they gave a generic construction of CRF for digital signature schemes. Briefly
speaking, a CRF for a signature scheme is deployed in the side of signer and is
an online external entity that could modify and sanitize the signature produced
by the subverted signing algorithm before it is sent out from users machine to
the outside world. Their results also show that every rerandomizable signature
scheme is able to resist arbitrary ASAs with particular CRF. Moreover, they
prove that such a CRF for rerandomizable signature scheme could maintain the
correctness and will preserve the existential unforgeability under chosen message
attack (EUF-CMA) of the original signature scheme. In practice, Ouyang et al.
studied the possibility of CRF construction for identity-based signature (IBS)
proposed in [10]. Whereas, as we all know, IBS has the problem of key escrow.
We find that this problem is not avoidable in the CRF of IBS too. Thus, it will
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be meaningful to study that weather it is possible to construct CRF for some
simpler signature scheme.

At present, the ASAs mounted on IZK and NIZK proof system and cor-
responding countermeasures are also studied. In [25], Bellare, Fuchsbauer and
a Scafuro provided definitions and the securities of NIZK proof system in the
presence of the subversion of common reference string (CRS). Later, Fuchsbauer
studied the CRS subversion of succinct non-interactive arguments of knowledge
(SNARK) [26]. In [27], Baghery amplified result of [25] and construct NIZK argu-
ments that can achieve subversion zero-knowledge and simulation (knowledge)
soundness at the same time. Whereas, we can find that these three researches
mainly focus on the parameter subversion of primitives instead of ASAs of them.
In [28], Berndt, Wichelmann, and Pott studied ASAs on cryptographic protocols.
As they point out that ZK proof systems could be regarded as protocols and thus
could be the attack aims of their ASAs against protocols. Subsequently, Ganesh
et al. constructed CRFs for several IZK proof systems (i.e., sigma protocols) to
make them resistant to ASAs [22]. Also, they researched the relations among the
(possible) security definitions for the prover’s CRF. Recently, Chakraborty con-
sidered CRF construction for strong simulation extractable NIZK (SSE-NIZK)
argument systems when they aimed at building CRF for multiparty computation
protocols [21]. Whereas, their construction is not a generic CRF construction for
NIZK proof system. Thus, we provide a generic CRF construction for NIZK proof
system and formolized its securities.

1.2 Our Contributions

Considering the above security threats of ASAs to DS and NIZK proof system, in
this paper, we focus on making these cryptographic primitives resistent to ASAs
with the constructions of CRFs. Briefly speaking, our contributions mainly con-
tain the following two parts: 1) Since not any signature scheme could be built a
CRF, it will be necessary to provide an efficient instantiation of CRF for digital
signature. We build CRF for the wildly-used and efficient Pointcheval-Sanders’s
signature scheme (PS signature). The security proofs of this CRF are proven by
the hybrid technique. The comparisons result show that our construction has
lower theoretical computational cost than the existing CRF constructions for
signatures. 2) Since there is no research result about the generic CRF construc-
tion for NIZK proof system at present, we formalize definitions of CRF for NIZK
proof system and its securities. Then, we propose a generic CRF construction
for NIZK proof system and prove its securities. Furthermore, we also point out
that the CRF for Groth-and-Sahai’s NIZK proof system could be referred to as
an efficient instantiation.

The rest of this paper is organized as follows. Some preliminaries are given
in Sect. 2. The CRF construction for digital signatures are stated in Sect. 3. We
propose the generic construction of CRF for randomizable NIZK and give the
corresponding proofs of securities in Sect. 4. Section 5 is the conclusion.
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2 Preliminary

2.1 Notations and Definitions

Throughout this paper, we use λ to denote the security parameter. Let X be a
finite set and A be an algorithm. We denote by x ←$ X the random selection
of an element x from X, by y ←$ A(x1, . . . ; r) the running of algorithm A with
inputs (x1, . . . ; r) and output y. If a probabilistic algorithm’s running time is
polynomial in k, we call it probabilistic polynomial-time (PPT).

Definition 1 (Bilinear Groups [29]). Bilinear groups are a set of three cyclic
groups G1,G2 and GT of prime order q, along with a bilinear map ê : G1×G2 →
GT which satisfies the following properties:

1. Bilineary : For all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zq, ê(ga, g̃b) = ê(g, g̃)a·b.
2. Non-degenerate : For all g �= 1G1 , g̃ �= 1G2 , ê(g, g̃) �= 1GT .
3. Efficiently computability : For all g �= 1G1 , g̃ �= 1G2 , ê(g, g̃) can be computed

efficiently.

There are three types of pairings [29], in Type 1, G1 = G2; in Type 2,
G1 �= G2 but there is an efficiently computable homomorphism φ : G2 → G1; in
Type 3, G1 �= G2 and there is no efficiently computable homomorphism between
G1 and G2.

Definition 2 (NP Relations [30]). Proofs are related to the membership in
an NP language L defined by an NP relation. Suppose R : {0, 1}∗ × {0, 1}∗ →
{ture, false}. For all x ∈ {0, 1}∗, let R(x) = {w : R(x,w) = ture} be the witness
for x. R is an NP relation if it is PPT. Let L(R) = {x : R �= ∅} be the language
associated to R. an The fact that R is an NP relation means that L(R) ∈ NP.

Definition 3 (Computational Indistinguishability [31]). Two distribu-
tions X and Y are called (t, ε)-computationally indistinguishable (denoted by ≈c)
if for any distinguisher D running in time t, |Pr[D(X) = 1]−Pr[D(Y ) = 1]| � ε.

2.2 Digital Signature

A digital signature scheme DS = (Setup,KGen,Sign,Verf) consists of the follow-
ing algorithms associated with the security parameters λ [32].

• Setup : Takes as input the security parameters λ and outputs the system
parameter Param.

• KGen : Takes as input the system parameter Param, outputs a sign-
ing/verification key pair (sk, vk) ∈ SK × VK, where SK and VK denotes
the space of signing and verification keys.

• Sign : Takes as inputs the signing key sk, a message m ∈ M, and a random
coin r ∈ R, outputs a signature σ ∈ Σ, where M is the message space, R is
the randomness space, Σ is the signature space.

• Verf : Takes as inputs the verification key vk and a message/signature pair
(m,σ), outputs a decision bit that equals 1 iff σ is a valid signature for m.
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Definition 4 (Correctness [32]). Let DS = (Setup,KGen,Sign,Verf) be a dig-
ital signature scheme. We say DS satisfies correctness if for all λ ∈ N, for all
(sk, vk) ←$ KGen(1λ), and all message m ∈ M, we have Verf(vk, (m,σ)) = 1,
where σ ←$ Sign(sk,m; r).

Definition 5 (EUF-CMA [32]). Let DS = (Setup,KGen,Sign,Verf) be a digi-
tal signature scheme. We say DS is (t, q, ε)-existentially unforgeable if for all
PPT adversaries B running in time t, it holds that Pr[Verf(vk, (m∗, σ∗)) =
1 ∧ m∗ /∈ Q : (vk, sk) ←$ KGen(1λ); (m∗, σ∗) ←$ BSign(sk,·(vk))] ≤ ε where
Q = {m1, . . . ,mq} denotes the records the messages which are queried to the
Sign oracle.

Definition 6 (Re-randomizable Signatures [32]). Let DS = (Setup,KGen,
Sign,Verf) be a digital signature scheme. DS is efficiently re-randomizable if
there is a PPT algorithm ReRan such that, for all λ ∈ N, (sk, vk) ←$ KGen(1λ),
messages m ∈ M, and all signatures σ such that Verf(vk, (m,σ)) = 1, we have
that the output distribution of ReRan is identical to that of Sign(sk,m).

2.3 NIZK Proof System

Let R be an NP relation in NP language L. An NIZK proof system Π for relation
R consists of three PPT algorithms (Π.Setup,Π.Prove,Π.VerifyProof) specified as
follows [30].

• Π.Setup: Takes as input the security parameter 1λ, and outputs a common
reference string crs.

• Π.Prove: Takes as input the 1λ and parameter crs, an instance x, a witness w ∈
R(x) such that R(crs, x, w) is hold, and outputs a proof π. This randomised
algorithm is run by prover.

• Π.VerifyProof: Takes as input the 1λ and system parameter crs, an instance
x, a proof π, and outputs d ∈ {ture, false} indicating that weather π is a valid
proof that x ∈ L(R). The algorithm is deterministic and is run by the verifier.

For an NIZK proof system Π = (Π.Setup,Π.Prove,Π.VerifyProof), it should
satisfy some properties, i.e., completeness, soundness, zero knowledge, witness
indistinguishability [25,30]. Informally, zero-knowledge captures the notion that
a verifier learns nothing from the proof but the truth of the statement. Witness
indistinguishability merely guarantees that different witnesses cannot be distin-
guished by malicious verifier. Soundness means an adversary cannot convince
an honest verifier of a false statement. Completeness means all honest verifiers
accept all correctly computed proofs. We recall the formal definitions of them in
the following.

Definition 7 (Completeness). For any x ∈ L(R) and security parameter λ,
the completeness requires that Pr[Π.VerifyProof(1λ, crs, x, π) = ture] = 1 where
crs ←$ Π.Setup(1λ), π ←$ Π.Prove(1λ, crs, x, w) and the probability space is taken
over the random coin tosses of prover and verifier.
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Definition 8 (Soundness). For any x /∈ L(R), security parameter λ and
any malicious prover, the soundness requires that there exists a negligible func-
tion ε such that Pr[Π.VerifyProof(1λ, crs, x, π) = ture] ≤ ε, where crs ←$

Π.Setup(1λ), π ←$ Π.Prove(1λ, crs, x, w) and the probability space is the same
as in the completeness.

Definition 9 (Zero Knowledge). This property requires that there exists a
simulator S that could choose the common reference string by itself and pro-
duce a distribution space {S(x, λ)}x∈L(R) for the output of proof, which is indis-
tinguishable from the distribution space {(crs,Π.Prove(1λ, crs, x))}x∈L(R), where
crs ←$ Π.Setup(1λ).

Definition 10 (Witness Indistinguishability). This property requires that
for an adversary B = (B1,B2), there exists a negligible function ε such
that Pr[crs ←$ Π.Setup(1λ), (x,w1, w2, state) ← B1(crs), b ←$ {0, 1}, π ←$

Π.Prove(1λ, crs, x, wb), b′ ← B2(state, π) : R(x,w1) = R(x,w2) = ture ∧ b =
b′] ≤ 1/2 + ε.

2.4 Randomizable NIZK Proof System

Let R be an NP relation in NP language L. A randomizable NIZK proof system
Π for relation R consists of four PPT algorithms (Π.Setup,Π.Prove,Π.VerifyProof,
Π.RandProof). The first three algorithms are the same as that in Sect. 2.3. We will
specify the algorithm Π.RandProof in the following [33].

• Π.RandProof: Takes as input the proof π for instance x in relation R, and
produces a new proof π′ for the same instance x. The updated proof π′ must
be indistinguishable from π.

The resulting proof produced by Π.RandProof must be indistinguishable from
a new proof for an instance x. We allow the adversary to choose the instance
x, the proof π that is used as input for Π.RandProof, and the witness w that is
used to form a new proof of the same instance. Formally:

Definition 11. For Π = (Π.Setup,Π.Prove,Π.VerifyProof,Π.RandProof), we say
that it is a (t, ε)-randomizable NIZK proof system if for all PPT adversary
B = (B1,B2) running in time t, there exists a negligible function ε such
that Pr[crs ←$ Π.Setup(1λ), (x,w, π, state) ← B1(crs), b ←$ {0, 1}, π0 ←$

Π.Prove(1λ, crs, x, w), π1 ←$ Π.RandProof(crs, x, π), b′ ← B2(state, πb) :
R(x,w) = ture ∧ Π.VerifyProof(1λ, crs, x, π)] ≤ 1/2 + ε.

The randomizable NIZK proof system has the same security properties as
NIZK one. Here, we omit the formal definitions of these properties. We suggest
readers seeing them in the Sect. 2.3.
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3 Cryptographic Reverse Firewalls for Digital Signatures

3.1 Definitions of CRF for Digital Signatures

The subversion attacks for digital signatures and the formal treatment to this
issue is firstly studied in [8]. Subversion attacks for digital signatures are modeled
as the ability of the adversary B to replace the genuine signing algorithm with
a different algorithm within a certain class A of ASAs. Let DS be a digital
signature scheme. A subversion of DS is an algorithm Ã ∈ A. The algorithm
Ã(·, ·; ·) takes as input a signing key sk ∈ SK, a message m ∈ M, and a random
coin r ∈ R, and outputs a subverted signature σ̃ = Ã(sk,m; r) ∈ Σ. Note that
algorithm Ã is completely arbitrary, with the only restriction that it should keep
the same input-output interfaces as the original signing algorithm. In addition,
subversions A for digital signatures is required to satisfy the verifiability and
secret undetectability. The former means that the signatures produced using the
subverted signing algorithm Ã (almost) always verify under the corresponding
verification key vk. The latter captures the inability of ordinary users to tell
whether signatures are computed using the subverted or the genuine signing
algorithm.

Definition 12 (Cryptographic Reverse Firewalls w.r.t. DS). Let DS be
a digital signature scheme. The cryptographic reverse firewalls (CRFs) for DS
is a tuple of algorithms WDS = (WDS .Setup,WDS .Patch). WDS .Setup takes as
input the security parameters λ and a verification key vk ∈ VK, outputs some
initial public state δ ∈ {0, 1}∗. WDS .Patch takes as input the current state δ and
a message/signature pair (m,σ), outputs a possibly modified signature σ′ or the
fault symbol ⊥ and an updated state δ′ (Fig. 1).

Fig. 1. The framework of digital signature scheme with CRF for signer.

The CRFs for digital signature schemes denoted by WDS is a stateful algo-
rithm. As demonstrated in [12], CRF is required to satisfy three basic proper-
ties, i.e., functionality-maintaining, weakly unforgeability-preserving, and weakly
exfiltration-resistance. The functionality-maintaining property requires that the
WDS should preserve the functionality of the underlying signature scheme, i.e., if
a signature σ of message m is computed with the signing key sk, and the firewall
is initialized by the corresponding verification key vk, the patched signature σ′

should be a valid signatures for m under vk. The weakly exfiltration resistance
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property requires that the patched signatures are indistinguishable from real
signatures to the eyes of an adversary. We review the formal definitions of them
in the following.

Definition 13 (Functionality-Maintaining CRF w.r.t. DS). Let DS
be a digital signature scheme with cryptographic reverse firewall WDS =
(WDS .Setup,WDS .Patch). We say that WDS is functionality-maintaining for
DS, if for any polynomial p(λ) and any vector of inputs (m1, . . . ,mp) ∈
M, for any (sk, vk) ←$ KGen(1λ), δ ←$ WDS .Setup(1λ, vk), σ1 ←$

Sign(sk,m1), . . . , σp ←$ Sign(sk,mp), σ′
1 ←$ WDS .Patch(m1, σ1, δ), . . . ,

σ′
p ←$ WDS .Patch(mp, σp, δ), there exists a negligible probability ε such that

Pr[Verf(vk, (mi, σ
′
i)) = 0] ≤ ε, where the probability is taken over the coin tosses

of all involved algorithms.

Definition 14 (Unforgeability-Preserving CRF w.r.t. DS). Let DS
be a digital signature scheme with cryptographic reverse firewall WDS =
(WDS .Setup,WDS .Patch), A be some class of SAs for DS. We say that WDS
is (t, n, q, ε)-unforgeability-preserving for DS against SAs if for all adversary B
running in time t, we have that Pr[B wins] ≤ ε in the following game.

1. The challenger C runs (sk, vk) ←$ KGen(1λ), computes δ ←$

WDS .Setup(vk, 1λ), gives (vk, δ) to B.
2. The adversary B is allowed to have access to oracle Sign(sk, ·). Upon input

the i-th query message mi, this oracle returns σi ←$ Sign(sk,mi). Let Q =
{m1, . . . ,mq} be the list of all the messages queried signature oracle.

3. The adversary B can adaptively choose an algorithm Ãj ∈ A which meets the
verifiability, and get the correspondingly WDS .Patch(δ, (·, Ãj(sk, ·))). Upon
input the i-th query message m̃i,j for i ∈ [q] and j ∈ [n], the oracle returns
σi,j ←$ WDS .Patch(δ, (m̃i,j , Ãj(sk, m̃i,j))) and updates the state δ. Let Q̃j =
{m̃1,j , . . . , m̃q,j} be the list of all the messages queried for each Ãj .

4. Finally, B outputs a message/signature pair (m∗, σ∗); we say that adversary
B wins the above game if and only if Verf(vk, (m∗, σ∗)) = 1 and m∗ /∈ Q∪Q̃,
where Q̃ =

⋃n
j=1 Q̃j .

Definition 15 (Exfiltration-Resistance CRF w.r.t. DS). Let DS be
a digital signature scheme with cryptographic reverse firewall WDS =
(WDS .Setup,WDS .Patch). We say that WDS is (t, n, q, ε)-exfiltration-resistance
for DS if for all adversary B running in time t, we have that |Pr[B wins]− 1

2 | ≤ ε
in the following game.

1. The challenger C runs (sk, vk) ←$ KGen(1λ), computes δ ←$

WDS .Setup(vk, 1λ), samples b ←$ {0, 1}, gives (vk, δ) to B.
2. The adversary B can adaptively choose an algorithm Ãj ∈ A for j ∈ N which

meets the verifiability. Each of such algorithm implicitly defines an oracle
that can be queried adaptively at most q ∈ N times.



202 B. Kang et al.

• Upon input a query in of form (j,mi,j) for j ∈ [n] and i ∈ [q], this
oracle returns the i-th query message m̃i,j for i ∈ [q] and j ∈ [n], the
oracle returns σi ←$ Sign(sk,mi) if the challenge bit b = 1; otherwise, it
returns σi,j ←$ WDS .Patch(δ, (mi,j , Ãj(sk,mi,j))). In the case that Ãj is
not defined, this oracle outputs ⊥.

• Note that B does not need to ask all q queries before choosing the next
algorithm, i.e. the queries to each oracle Ãj can be interleaved in an
arbitrary manner.

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins the game if and
only if b = b′.

3.2 Review on the PS Signature Scheme

PS Assumption We denote by Param = (q,G1,G2,GT, g, g̃, ê) the system
parameter generated by the PSS.Setup algorithm. Let y, x ∈ Zq, X̃ = g̃x,
Ỹ = g̃y. For all PPT adversary A given the access to the O(X̃, Ỹ , ·) oracle which
inputs a value m ∈ Z∗

q and outputs (A = ga, B = Xa · gaym) where a ∈ Z∗
q is

chosen randomly, the probability Pr[x, y ∈ Zq, X̃ = g̃x, Ỹ = g̃y, (m,A,B) ←$

AO(X̃,Ỹ ,·)(Param, X̃, Ỹ ) : m /∈ Q ∧ m ∈ Z∗
q ∧ A ∈ G1 ∧ B = Ax+ym] is negligible,

where Q is the list of queries that A made to O(X̃, Ỹ , ·) oracle [32].

PS Signature. We construct a secure cryptographic reverse firewall for
the pairing-based signature scheme proposed by Pointcheval and Sanders
(PS signature). This signature scheme is provably secure under the
LSRW assumption. The PS signature scheme PSS consists of algorithms
(PSS.Setup,PSS.Gen,PSS.Sig,PSS.Ver) which are reviewed as below [32].

• PSS.Setup: Takes as input the security parameter 1λ, and outputs the system
parameter Param = (q,G1,G2,GT, g, g̃, ê). We note that G1 = 〈g〉, G2 = 〈g̃〉
are two cyclic groups of prime order q, ê : G1 ×G2 → GT is a Type 3 bilinear
map.

• PSS.Gen: Takes as input the system parameter Param, chooses x, y randomly
from Zq, computes X̃ = g̃x, Ỹ = g̃y, sets the verification key vk = (X̃, Ỹ )
and the signing key sk = (x, y).

• PSS.Sig: Takes as input the message m and the signing key sk, chooses a
randomness A ∈ G1, computes B = Ax+ym, sets and outputs the signature
σ = (A,B).

• PSS.Ver: Takes as input the verification key vk, the message m and purported
signature σ, checks that weather the verification equation ê(A, X̃ · Ỹ m) =
ê(B, g̃) holds. If it holds, the σ is a valid signature on message m.

The PS signature scheme is stated to be a re-randomizable signature scheme
in [32]. That is, according to the Definition 6, there must be an algorithm
PSS.ReRan which could re-randomize the signature σ produced from the PSS.Sig
in the PS signature to generate an updated signature σ′. In the following, we
give the algorithm PSS.ReRan.
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• PSS.ReRan: Takes as inputs the signature σ = (A,B) on message m, randomly
chooses α ∈ Z∗

q , computes and outputs σ′ = (Aα, Bα). The new signature σ′

is also valid for message m.

3.3 The CRF Construction for PS Signature Scheme

Our CRF construction for PS signature is depicted in Fig. 2. Intuitively, the
firewall uses the re-randomizable property of the underlying PS signature in
order to “sanitizes” the signatures produced by the signer, in such a way that a
functionality-maintaining subverted signer cannot signal information about the
signing key through them. In the following, we present the CRF construction for
PS signature in detail.

• PSS.Setup: Takes as input the security parameter 1λ, and outputs the system
parameter Param = (q,G1,G2,GT, g, g̃, ê). We note that G1 = 〈g〉, G2 = 〈g̃〉
are two cyclic groups of prime order q, ê : G1 ×G2 → GT is a Type 3 bilinear
map.

• PSS.Gen: Takes as input the system parameter Param, chooses x, y randomly
from Zq, computes X̃ = g̃x, Ỹ = g̃y, sets the verification key vk = (X̃, Ỹ )
and the signing key sk = (x, y).

• WPSS .Setup: Takes as input the verification key vk = (X̃, Ỹ ), selects an
element α from Z∗

q , and compute X̃ ′ = X̃α,Ỹ ′ = Ỹ α. This algorithm outputs
the re-randomised verification key vk = (X̃ ′, Ỹ ′).

• PSS.Sig: Takes as input the message m and the signing key sk, chooses a
randomness A ∈ G1, computes B = Ax+ym, sets and outputs the signature
σ = (A,B).

• WPSS .Patch: Takes as input the signature σ = (A,B) and a randomness
α, computesA′ = Aα and B′ = Bα2

, outputs a re-randomised signature
σ′ = (A′, B′).

• PSS.Ver: Takes as input the verification key vk′, message m and signature σ′,
checks that weather the verification equation ê(A′, X̃ ′ · Ỹ ′m) = ê(B′, g̃) holds.
If it holds, the σ′ is a valid signature on message m.

3.4 Security Proofs of the CRF for PS Signature Scheme

Theorem 1. For the PS digital signature scheme PSS = (PSS.Setup,PSS.Gen,
PSS.Sig,PSS.Ver), which satisfies the correctness and existentially unforgeability,
the CRF for the signer of PSS shown in Fig. 2 maintains the correctness and
preserves the unforgeability for PSS, moreover it is exfiltration resistance. We
denote by WPSS = (WPSS .Setup,WPSS .Patch) the CRF for the signer of PSS.
In the following, we present the construction in detail.

Proof. We will prove each property of the firewall below.
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Signer

(x, y) ←$ Z2
q

X̃ = g̃x, Ỹ = g̃y

m ∈ Z∗
q

A ←$ G1

B = Ax+my

vk=(X̃,Ỹ )−−−−−−→

σ=(A,B)−−−−−−−→

Signer′s Firewall

α ←$ Z∗
q

X̃ ′ = X̃α, Ỹ ′ = Ỹ α

A′ = Aα, B′ = Bα2

vk′=(X′,Y ′)−−−−−−−−→

σ′=(A′,B′)−−−−−−−→

Verifier

ê(A′, X̃ ′ · Ỹ ′m) ?=
ê(B′, g̃)

Fig. 2. Signer’s reverse firewall for the PS signature

(1) Functionality-Maintaining: This property can be proved very simply.
The signer generates a pair of (sk, vk), then it computes the signature σ =
(A,B = Ax+my) for message m. Next, the signer transfers the signature σ to
the CRF. The CRF then updates the signature as σ′ = (A′ = Aα, B′ = Bα2

)
and sends it to the verifier. When the signer’s CRF receives public key, it
chooses a random secret α ∈ Z∗

q , and sets X̃ ′ = X̃α, Ỹ ′ = Ỹ α and passes
the re-randomized public key vk′ = (X̃ ′, Ỹ ′) to the verifier. As a result, the
verifier could use the rerandomized public key and signature to verify the
equation.

ê(A′, X̃ · Ỹ m) = ê(A′, g̃xα+ymα) = ê(Aα(xα+ymα), g̃) = ê(B′, g̃) (1)

(2) Unforgeability-Preservation and Exfiltration-Resistance: For any
subverted implementation on the PS signature, the signer maintains the
functionality. We will prove these securities using the game sequence. That
is, prove the security game of PS signature with CRFs is indistinguishable
from the original security game of PS signature in [32]. Next we consider
the following games:
Game 0. It is identical to the security game of unforgeability-preserving
CRF w.r.t. DS in Sect. 3.
Game 1. Same as Game 0 except that the generation of the verification
key of users. That is, in Game 0 the verification key is vk′ which is com-
puted with algorithms PSS.Gen∗ and WPSS .Setup. Whereas, in Game 1
the verification key is vk that is actually computed with the honest (not be
subverted) algorithm PSS.Gen.
Game 2. Same as Game 1 except that the generation of the signature of
signers. That is, in Game 1 the signature σ′ = (A′, B′) of message m is
computed with algorithms PSS.Sig∗ and WPSS .Patch. However, in Game
2 the signature is σ = (A,B) that is computed with algorithm PSS.Sig.
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Now, we will find that Game 2 is actually the security game of PS digital
signature.

Then, we prove the indistinguishability between the pairs Game 0 and
Game 1, Game 1 and Game 2 respectively. For the pair Game 0 and Game
1, verification key vk′ in Game 0 is the re-randomized value of vk in Game 1
by the reverse firewall WPSS .Setup. According to the key malleability, we could
get that the distribution of vk′ is identical to that of vk (i.e., both of them
have the distribution G2). That is, Game 0 and Game 1 are indistinguishable.
Further, we use the same way to prove the indistinguishability between Game
1 and Game 2. Concretely, we note that the signature σ′ in Game 1 is the
re-randomized value of original signature σ by the reverse firewall WPSS .Patch.
According to the signature malleability, we could obtain that the distribution of
σ′ is identical to that of σ (i.e., both of them have the distribution G1). That
is, Game 1 and Game 2 are indistinguishable. As a result, the PS signature
with CRF is unforgeability-preserving since the original PS signature scheme has
been proven to be EUF-CMA secure.

3.5 Computation and Communication Cost

In this section, we compare our CRF for PS signature with both the sim-
ple signature scheme (S-CRF) and ID-based signature scheme (IBS-CRF) con-
structed in [10]. For simplicity of presentation, we denote these signatures by
DS = {S, IBS,PSS} in the following two tables. And, only expensive operations
are considered. These two tables show that our CRF for PS signature is more
suitable for being realized in the real life.

Table 1. Comparisons of computational cost.

Scheme DS.Setup WPKG DS.Gen WDS DS.Sig DS.Ver

S-CRF [10] E × × 2E (lm + 1)Pm + 3E 3P

IBS-CRF [10] E 3E (lu + 1)Pm + 3E 2E (lu + lm + 2)Pm + 5E 4P

Our PS-CRF 0 × 2E 4Pm Pm 2P

In Table 1, E denotes exponential operation, Pm denotes point multiplication
operation, P denotes bilinear paring operation, lu denotes the number of bit
values of identity, lm denotes the number of bit values of message. Note that
Bit value indicates the total number where bit number equals 1 in a bit string.
We use the symbol × to denote that no such an algorithm is involved in the
corresponding CRF constructions. From Table 1, it is easy to see that our CRF
for PS signature is the most efficient one because it needs the least computational
cost than the other two CRF constructions.
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Table 2. Comparisons of communication cost.

Scheme DS.Setup WPKG DS.Gen WDS DS.Sig

S-CRF [10] (4 + |m|)|G1| × × 4|G1| 2G1

IBS-CRF [10] (5 + |u|+ |m|)|G1| (10 + 2|u|+ 2|m|)|G1| 2|G1| 5|G1| 3|G1|
Our PS-CRF |G1|+ |G2| × 2|G2| 2(|G2|+ |G1|) 2|G1|

Table 2 compares our CRF construction for PS signature with the other two
CRF constructions in the field of communication cost, where |G1|, |G2| denote
the length of an element in groups G1, G2, and |m| denotes the length of a
message, |u| denotes the length of identity. Meanwhile, the content in the table
represents the size of the parameters transferred in each operation, the opera-
tion DS.Ver only outputs “accept” or “reject”, so there is no need to account its
commutation cost because of its cost is ignoble. Also, we use the symbol × to
denote that no such an algorithm is involved in the corresponding CRF con-
structions or its commutation cost is ignoble. From Table 2, we can learn that
compared with other two constructions, our construction also has advantage to
be employed in the practical web services system because its communication cost
is not determined by the lengths of message and identity.

4 CRF Construction for NIZK Proof System

With the randomizability property of randomizable NIZK, it is feasible to con-
struct a CRF in the side of prover. In the following, we will give the definitions
of CRF for randomizable NIZK proof system and its security properties.

4.1 Definitions of CRF W.r.t. NIZK and Its Securities

In this section, we consider the scenario where a malicious verifier attacks either
the ZK or the WI property of the underlying NIZK proof system. Meanwhile,
the implementation of the prover’s algorithm is subverted. In this case, the CRF
is attached to the prover and sanitizes its incoming and outgoing messages. Of
course, the most basic requirement is that the CRF should not ruin the protocol’s
functionality in case both parties are honest. This requirement is captured by the
definition below. Note that even though we adopt the definition of NIZK proof
system in common reference string model, it will be the same way in which the
definitions and securities of CRF could be formalized for the one in random
oracle model.

Definition 16 (Cryptographic Reverse Firewalls w.r.t. NIZK). Let Π
be an non-interactive zero knowledge proof system. The cryptographic reverse
firewalls for Π is a tuple of algorithms WΠ = (WΠ.Setup,WΠ.Patch). WΠ.Setup
takes as input the security parameters λ, outputs some initial public state δ ∈
{0, 1}∗. WΠ.Patch takes as input the current state δ and a proof π, outputs a
possibly modified proof π′ or the fault symbol ⊥ and an updated state δ′ (Fig. 3).
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Fig. 3. The framework of randomizable NIZK systems with CRF for Prover.

As for security, we consider three different properties for the CRF
w.r.t. NIZK proof system, that is, the zero knowledge-preserving, witness
indistinguishability-preserving, and exfiltration-resistance, as formally defined
below. Looking ahead, since as we will show it is impossible to obtain any of
these notions against an arbitrarily subverted prover, we formalize a weaker
form of subversion where a tampered prover still needs to preserve the com-
pleteness property of the underlying NIZK proof system. A first natural require-
ment is to ask that a CRF should preserve the zero knowledge property of the
underlying NIZK proof system, even when the prover’s implementation has been
tampered with. Similarly, it is natural to consider CRFs preserving the witness
indistinguishability property of the underlying NIZK proof system, even when
the prover’s implementation has been tampered with. A different type of con-
cern is exfiltration, in which a tampered prover’s implementation attempts to
leak secret information (e.g., about the witness) to the adversary. Following [22],
we model exfiltration resistance of a CRF by asking that it should be hard to
distinguish transcripts obtained by running the honest prover composed with the
firewall from transcripts obtained by running a subverted prover composed with
the firewall, even in case the verifier is malicious. Note that for the CRF w.r.t.
NIZK proof system, it is impossible to investigate the soundness-preserving prop-
erty because there will be a contradiction between the precondition of soundness
and the subversion of prover. The former considers a malicious prover who aims
to convince verifier of a tampered false statement, the latter might make an
actually honest prover look like malicious. Thus, in the following we formalise
the definitions of the above three properties.

Definition 17 (Completeness-Preserving CRF w.r.t. NIZK). Let Π be
an non-interactive zero knowledge proof system for relation R, satisfying com-
pleteness. We say that CRF WΠ = (WΠ.Setup,WΠ.Patch) is completeness-
preserving for the prover, if for any polynomial p(λ) and any vector of inputs
(x1, . . . , xp) ∈ L(R), for any crs ←$ Π.Setup(1λ), π1 ←$ Π.Prove(1λ, crs, x1, w1),
πp ←$ Π.Prove(1λ, crs, xp, wp), δ ←$ WΠ.Setup(1λ), π′

1 ←$ WΠ.Patch(π1, δ),
. . . , π′

p ←$ WΠ.Patch(πp, δ), there exists a negligible probability ε such that
Pr[Π.VerifyProof(1λ, crs, xi, πi) = ture] ≤ ε, where the probability is taken over
the coin tosses of all involved algorithms.

Definition 18 (Zero Knowledge-Preserving CRF w.r.t. NIZK). Let Π
be an non-interactive zero knowledge proof system for relation R, satisfying zero
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knowledge. We say that CRF WΠ = (WΠ.Setup,WΠ.Patch) is zero knowledge-
preserving for the prover, if there exists a simulator S that could choose the com-
mon reference string by itself and produce a distribution space {S(x, λ)}x∈L(R)

for the output of proof, which is indistinguishable from the distribution space
{(crs,WΠ.Patch(π, δ))}x∈L(R), where crs ←$ Π.Setup(1λ), δ ←$ WΠ.Setup(1λ),
and π ←$ Π.Prove(1λ, crs, x, w).

Definition 19 (Witness Indistinguishability-Preserving CRF w.r.t.
NIZK). Let Π be an non-interactive zero knowledge proof system for rela-
tion R, satisfying witness indistinguishability. We say that CRF WΠ =
(WΠ.Setup,WΠ.Patch) is witness indistinguishability-preserving for the prover,
if for an adversary B = (B1,B2), there exists a negligible function ε such
that Pr[crs ←$ Π.Setup(1λ), (x,w1, w2, state) ← B1(crs, x), b ←$ {0, 1}, π ←$

Π.Prove(1λ, crs, x, wb), δ ←$ WΠ.Setup(1λ), π′ ←$ WΠ.Patch(π, δ), b′ ←
B2(state, π′) : R(x,w1) = R(x,w2) = ture ∧ b = b′] ≤ 1/2 + ε.

Definition 20 (Exfiltration-Resistance CRF w.r.t. NIZK). Let Π be
an non-interactive zero knowledge proof system for relation R. We say that
CRF WΠ = (WΠ.Setup,WΠ.Patch) is exfiltration resistance for the prover,
if for any adversary B, it is hard for it to distinguish the distribution space
{π : π ←$ WΠ.Patch(Π.Prove(1λ, crs, x, w), δ)}x∈L(R) from the distribution space
{π : π ←$ WΠ.Patch(Π̃.Prove(1λ, crs, x, w), δ)}x∈L(R), where crs ←$ Π.Setup(1λ),
δ ←$ WΠ.Setup(1λ), and Π̃.Prove is the subverted algorithm producing proof.

4.2 Generic Construction of CRF W.r.t. NIZK

Our generic construction of CRF WΠ = (WΠ.Setup,WΠ.Patch) for NIZK proof
system is depicted in Fig. 4. Intuitively, the firewall uses the re-randomizable
property of the underlying NIZK proof system in order to “sanitizes” the proofs
produced by the prover, in such a way that a completeness-preserving subverted
prover cannot reveal the information about the witness through it. In the fol-
lowing, we present the CRF construction for NIZK proof system in detail.

• Π.Setup: Takes as input the security parameter 1λ, and outputs a common
reference string crs.

• WΠ.Setup: Takes as input the security parameters λ, outputs some initial pub-
lic state δ ∈ {0, 1}∗. Note that this state value is allowed to be set as empty.
It will depend on the concrete underlying NIZK proof system to determine
whether set an empty state value. If the value of state value is not empty, the
CRF construction is called to be stateful; otherwise, it is stateless.

• Π.Prove: Takes as input the 1λ and parameter crs, an instance x, a witness w ∈
R(x) such that R(crs, x, w) is hold, and outputs a proof π. This randomised
algorithm is run by prover.

• WΠ.Patch: Takes as input the current state δ and a proof π, outputs a pos-
sibly sanitized proof π′ or the fault symbol ⊥ and an updated state δ′. Note
that this algorithm could be realized through the Π.RandProof algorithm in
randomizable NIZK Proof System, i.e., (π′, δ′) ←$ Π.RandProof(π, δ).
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• Π.VerifyProof: Takes as input the 1λ and system parameter crs, an instance
x, a proof π, and outputs d ∈ {ture, false} indicating that weather π is a valid
proof that x ∈ L(R). The algorithm is deterministic and is run by the verifier.

Fig. 4. Prover’s reverse firewall for the randomizable NIZK proof system

4.3 Security Proof

Theorem 2. Let Π = (Π.Setup,Π.Prove,Π.VerifyProof,Π.RandProof) be a ran-
domizable non-inter-active zero knowledge proof system for relation R, satisfying
completeness and zero knowledge. Then, the CRF WΠ = (WΠ.Setup,WΠ.Patch)
for the prover of Π (shown in Fig. 4) preserves completeness and is
zero knowledge-preserving, witness indistinguishability-preserving, and weakly
exfiltration-resistant for the prover.

Proof. We will prove each property of the firewall in the following.

(1) Completeness-Preserving: It is obviously to see that the CRF WΠ con-
structed for NIZK proof system shown in Fig. 4 preserves the completeness
property because the construction requires the proof sanitized by the reverse
firewall WΠ in the side of prover should be verified by the verifier.

(2) Zero Knowledge-Preserving: Now, we show that the fact that Π satisfies
the zero knowledge property implies that the sanitized Π with firewall WΠ

satisfies zero knowledge too, i.e. there exists a PPT simulator Ŝ producing a
distribution space {Ŝ(x, λ)}x∈L(R) for the output of proof which is indistin-
guishable from the distribution space {(crs,WΠ.Patch(π, δ))}x∈L(R). More
formally, there exists a PPT Ŝ such that:

{(crs,WΠ.Patch(Π.Prove(1λ, crs, x, w), δ))}x∈L(R) ≈c {Ŝ(x, λ)}x∈L(R) (2)

The latter can be explained as follows. By contradiction, assume that there
exists a PPT distinguisher D and some polynomial p(λ) such that for all
PPT simulators Ŝ and R(x,w) = ture, it holds:

∣
∣
∣Pr[D(crs,WΠ.Patch(π, δ)) = 1] − Pr[D(Ŝ(x, λ)) = 1]

∣
∣
∣ ≥ 1/p(λ).

We consider a simulator S for the underlying NIZK proof system Π, which
could run the simulator Ŝ for the CRF WΠ of Π in the side of prover as an
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inner algorithm. Now, we find that the view of S perfectly emulates that of
Ŝ. More formally, it holds:

∣
∣Pr[D(crs,Π.Prove(1λ, crs, x)) = 1] − Pr[D(S(x, λ)) = 1]

∣
∣ ≥ 1/p(λ),

which contradicts the zero knowledge property of Π.
(3) Witness Indistinguishability-Preserving: It is straightforward that the

reverse firewall WΠ of Π satisfies this property because of the well-known
fact that zero knowledge implies witness indistinguishability, but not vicev-
ersa [22]. Therefore, we conclude that if the CRF WΠ of Π in the side of
prover satisfies zero knowledge, then WΠ of Π also satisfies witness indis-
tinguishability.

(4) Weakly Exfiltration-Resistance: Since we have proved WΠ is zero
knowledge preserving, there exists a PPT simulator Ŝ such that the distribu-
tion of proofs sanitized by WΠ is indistinguishable from the ones outputted
by Ŝ. More formally, we denote this as below.

{(crs,WΠ.Patch(Π̃.Prove(1λ, crs, x, w), δ))}x∈L(R) ≈c {Ŝ(x, λ)}x∈L(R),

for any crs ←$ Π.Setup(1λ),δ ←$ WΠ.Setup(1λ), and any subverted proof
generation algorithm Π̃.Prove. As Ŝ works for an arbitrarily subverted
Π̃.Prove, it works in particular for Π̃.Prove = Π.Prove. Thus, the follow-
ing holds:

{
(crs,WΠ.Patch(Π.Prove(1λ, crs, x, w), δ))

}
x∈L(R)

≈c {Ŝ(x, λ)}x∈L(R).

Combining the above two equations, we could obtain that for any subverted
Π̃.Prove, the following holds:

{(crs,WΠ.Patch(Π̃.Prove(1λ, crs, x, w), δ))}x∈L(R)

≈c

{
(crs,WΠ.Patch(Π.Prove(1λ, crs, x, w), δ))

}
x∈L(R)

,

and thus WΠ is weakly exfiltration resistant for the prover.

4.4 Instantiation of CRF for NIZK Proof System

According to the above analyses, we find that to construct the CRF for the NIZK
proof system, the premise is to choose the randomizable NIZK proof system.
Therefore, to give the instantiation of the CRF construction for NIZK proof, we
first need to find a randomizable NIZK proof system. Since Blum et al. initially
proposed the original computable NIZK proof system in 1991 and Groth et al.
constructed the first statistical NIZK proof system in 2006, various NIZK proof
systems have been proposed up to now. However, by studying and comparing
these NIZK schemes, we find that most of them are not randomizable. Fortu-
nately, we can see in [33] that Belenkiy and Camenisch et al. first introduced the
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conception of randomizable NIZK proof system in order to construct an efficient
entrustable anonymous credential system. The NIZK scheme proposed by Groth
and Sahai in 2008 is extended to a randomizable NIZK proof system. For more
detailed construction of randomization algorithm and correctness proof process
of this system, we recommend to see [33]. We will omit it. It is not difficult to find
that this instantiation construction can be completed by inserting the extended
Groth-Sahai rerandom NIZK proof system in [34] into the CRF construction of
the NIZK proof system shown in Fig. 4.

5 Conclusion

In this paper, to make the two wildly used cryptographic primitives in the web
services resist to algorithm substitution attacks, we construct the cryptographic
reverse firewalls for both of these primitives. The cryptographic reverse firewall
is an additional entity and could sanitize the messages inputting and outputting
the user’s computer. In such a way, even though the cryptographic algorithms
implemented in the user’s computer might have been embedded some backdoor,
the security of the messages sent and received by the user will be guaranteed. To
provide an efficient instantiation of CRF for signature scheme, we construct CRF
for the PS signature scheme. The comparison results show that our PS-CRF is
more efficient than the existing S-CRF and IBS-CRF. Moreover, we provide a
generic CRF construction for NIZK proof system and meanwhile formolize its
security definitions. The security proofs are given in a rigorous way. We also
consider using the Groth-Sahai’s NIZK proof system could be referred to as an
efficient instantiation of it.
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Abstract. Pattern counting is a crucial task in graph pattern min-
ing. Accurate counting is not affordable as the datasets grow larger
and larger, and approximate counting is getting popular to provide
an estimated answer quickly. However, current approximate counting
approaches are still time-consuming and not scalable for extra-large
graphs. This paper proposes SPAC, a fast and flexible pattern approx-
imate counting method, based on the observation that pattern number
distribution to degrees also follows power-law as the vertices, the common
feature in graph datasets. By leveraging the distribution, SPAC can effi-
ciently choose a small number of degrees as samples, fit the coefficients,
and then calculate the pattern frequency directly. To provide flexibil-
ity for different use-cases, SPAC supports both accurate and approx-
imate counting in the sampling phase. Moreover, edge weighting and
interpolation techniques are adopted to emphasize the sample tail to
improve fitting accuracy. The prototype of SPAC is implemented with
GraphX on Spark, and is evaluated against various well-known graphs.
The experimental results show that SPAC is up to 10x faster than accu-
rate counting, keeping the same error level below 10%. Compared to
existing approximate counting, SPAC is 1.4x–9x faster in general, while
the error could be reduced to 20% of the current systems.

Keywords: Graph mining · Graph pattern mining · Graph pattern
counting · Approximate calculation · Power-law distribution

1 Introduction

Along with the exponential increment of Internet data recently, the development
of big data technology has been promoted drastically. It is crucial to process differ-
ent kinds of data efficiently. A large part of the massive data is generated from the
connection and interaction between separate entities like individuals. Intrinsically,
such data could be organized into graph data structure [5]. A graph is composed of
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vertices and edges, in which entity information is usually stored as vertices and the
relationship between them is translated into edges. Therefore, it is straightforward
to explore the correlation among the data by investigating the topology and met-
rics of the graph. Typical graph computing applications, like social networks [27]
and webpage links [9], have been conducted successfully. For example, by modeling
“users” and “follow ” relation as vertices and edges respectively, graph algorithms
could be applied to find out answers to many interesting questions, like “shortest
paths between friends”, “the largest community” and so on.

As one of the most widely adopted graph processing approaches, graph pat-
tern mining (GPM) seeks for subgraphs (known as the “pattern”) identical with
the query graph structure expected by the users from the graph data. Typical
GPM use-cases include finding motifs [24], frequent subgraph mining (FSM) [37]
and clique mining [6]. The key algorithm in graph pattern mining is “pattern
counting”, the ability to compute pattern frequencies. However, this is a very
hard computational task. In fact, determining if one subgraph exists at all in
another larger network (i.e., subgraph isomorphism) is an NP-Complete prob-
lem [8]. Determining the exact frequency is even harder, and millions or even
billions of subgraph occurrences are typically found even in relatively small net-
works. Existing algorithms for accurate counting can take hours [10,36]. For
example, in a cluster of 20 nodes, the distributed GPM framework Arabesque
needs more than 10 h to count triangles in a graph of 1 billion edges [33], which
is unacceptable for many scenarios.

With the rapid increase of graph data, for example, large social network
maps such as Twitter and Facebook, it is challenging to count patterns accu-
rately. In the meanwhile, it is reported that exact results are not necessary for
many applications [19,27]. For example, FSM only concerns which patterns are
more frequent or whose counting is above a threshold. Therefore, recent systems
turn to approximation theory and techniques to estimate the pattern occurrence
for an acceptable balance between efficiency and accuracy [2,4]. Compared to
Arabesque, ASAP [17] proposes an approximate method based on edge sam-
pling, which improves the performance by two orders of magnitude, while only
resulting in error below 5%.

Most approximate counting algorithms use sampling to reduce the graph
size before processing. However, there are still expensive edge search operations
in the sampling process. Additionally, in order to guarantee the accuracy level
for large-scale graphs, ASAP needs to instantiate many more estimators for
sampling, whose overhead might be the same as accurate calculation eventually.
These issues indicate that it is challenging to design efficient GPM approximate
algorithms considering performance, accuracy, and computational complexity.

Actually, most real-world graphs follow the power-law distribution [34], in
which the distribution function f of a key variable x is a power function, f(x) ∼
x−k. To be specific, d (vertex degree) and v#(d) (vertex number of degree d)
in many graph comply with the law: v#(d) = c · d−k. Many different graph
algorithms leverage the distribution feature for various improvement [1,7,20].
With respect to pattern counting, we observe that the contribution of vertices
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of different degrees to pattern counting varies a lot: the low-degree and a small
number of medium-degree vertices account for much more than that of the high-
degree ones. Unfortunately, most current approaches do not consider the power-
law distribution, and uniformly process all vertices and edges. That means some
calculations are useless in terms of estimation. Gao [12] samples uniform random
graph according to degrees and deduced the relationship between the degree
sequence and triangle number by strictly limiting 2 ≤ k ≤ 3.

To address these challenges, we propose SPAC (Scalable Pattern
Approximate Counting), a fast and flexible pattern counting method for power-
law graphs. SPAC is devised based on the observation that pattern number and
degree sequence follow the power-law distribution in power-law graphs. There-
fore, it makes sense to fit the distribution by sampling a small number of degrees
and then directly calculate the pattern number in the whole graph. Since SPAC
avoids estimating in the entire dataset, it is much faster. To further reduce the
sampling overhead, on the one hand, SPAC efficiently picks up sample points
according to the power-law feature. And on the other hand, SPAC could use
current approximate algorithms in the sampling phase in case of large datasets.
Otherwise, accurate algorithms is applied by instead. These are the APP and
ACC modes. Moreover, SPAC allows users to choose the samples manually, pro-
viding flexibility for real-world applications. The prototype of SPAC is imple-
mented with GraphX on Spark, and is evaluated against various well-known
graph datasets. The experimental results show that SPAC is up to 10x faster
than accurate counting, keeping the same error level below 10%. Compared to
existing approximate counting, SPAC is 1.4x–9x faster in general, while the
error could be reduced to 20% of theirs. Basically, APP is 2x–5x faster than
ACC . These results indicate that SPAC is scalable for extra-large scale graphs.

A summary of our contributions is as follows:

– We reveal that pattern number and degree also follow the power-law distri-
bution in power-law graphs.

– Based on the above observation, we propose SPAC, a lightweight, fast and
flexible pattern counting solution. It is a complementary of certain approxi-
mate approaches.

– We conduct extensive experiments with various well-known datasets. SPAC
brings up to 9 times speedup overall.

The rest of this paper is organized as follows. Section 2 discusses the related
work including accurate counting and approximate counting. Then, Sect. 3 intro-
duces the design of SPAC as well as optimization details. The implementation
of the prototype is described in Sect. 4 briefly, and Sect. 5 evaluates the proto-
type and presents the experimental results. Finally, we conclude this paper and
describe the future plans in Sect. 6.

2 Related Work

Basically, pattern counting algorithms can be classified into two categories: accu-
rate counting and approximate counting.
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2.1 Accurate Counting

Accurate counting determines the exact frequency of the queried pattern. Given a
k-size (k vertices) pattern, the classical algorithm first enumerates all connected
subgraphs with k vertices, then uses graph isomorphism algorithms to classify
the subgraphs to find a specific pattern. MFinder [24] applies the following steps
to each edge of the network: the edge is initially stored into an empty set S,
which recursively grows with edges that are not in S but share an endpoint with
at least one edge in S; when |S| = k, checks whether the subgraph induced by S
is found for the first time by maintaining a hash table of the found subgraphs.

Grochow and Kellis [16] propose an efficient single pattern search method.
The vertex backtracking algorithm is applied to each vertex. It tries to build a
partial mapping from the pattern to the target graph by building all possible
assignments based on the number of neighbors.

Encapsulation methods leverage the common topological features of the pat-
tern or extract the pattern features to avoid repeated calculations for isomor-
phism. For example, Ribeiro and Silva [28] design a prefix tree of the graph.
Each node of the tree represents a different graph, in which the parent node and
its child nodes share a common substructure. Then, it searches all isomorphic
patterns from the root of the prefix tree.

Instead of static graphs, DOTTT [26] counts temporal triangles in graphs
where edges come with timestamps. DOTTT extends the idea of degeneracy
orientations from static graph triangle counting to temporal triangle counting,
and runs twice as fast as existing state-of-the-art temporal triangle counters.

2.2 Approximate Counting

Due to the unacceptable computational complexity and low necessity of accurate
counting, a variety of approximate counting methods are proposed for large
graphs [3]. The main idea is to generate a reduced subgraph with sampling,
accurately count on the subgraphs and then scale the subgraph result to estimate
the final result.

Lim et al. [22] samples the edges with a constant probability, and checks the
pattern once an edge is selected. It does not needs any other prior knowledge of
the graph, and uses a Bloom filter to check duplicated edges. It takes more than
5min to process 4 million vertices by a 60% sampling probability, and the error
reaches as high as 20% on a server with 3.5GHz Intel CPUs and 32GB RAM.

FURL [18] and PartitionCT [35] assign ranks to edges and hash them to
a large number of buckets. Each bucket only keeps the smallest edge. Once
a new edge is stored, they search whether it can form a pattern with edges
in other buckets. After all edges are processed, the subgraph result is scaled
with HyperLogLog [11] to estimate the real pattern number in the entire graph.
Although the hash sampling process is lightweight, the total execution is still
time-consuming. On the graph with 1.13 million vertices, PartitionCT runs 100 s
with 8×106 buckets and the error is 10% on a computer with a Quad-Core Intel
Xeon E3-1226 v3 @ 3.30GHz.
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SWTC [15] proposes a sliding window-based algorithm to count triangles
approximately in streaming graphs with duplicate edges. The core of SWTC is
a fixed-length slicing strategy that addresses both unbiased sampling and cardi-
nality estimation issues with a bounded memory usage. Given memory bound,
SWTC outperforms Bounded-Priority-Sampling [13] in terms of estimation accu-
racy.

ASAP [17] launches a great number of estimators in parallel to sample the
graph uniformly. Each estimator executes the neighborhood sampling algorithm
and estimates the pattern number with Bayesian probability. Finally, ASAP
aggregates the results of all estimators. The more estimators are created, the
better the accuracy will be. ASAP provides ELP (error-latency-profile) to allow
users to balance the calculation cost and result accuracy. In a graph of 3 million
vertices, ASAP takes 40 s with 5% error in a cluster of 16 Amazon EC2 r4.2x
large instances.

All approximate counting methods do some sort of sampling, and all of them
consider the vertices and edges equally. That is, the graph is sampled uniformly,
which does not actually take into account the power-law feature of most graphs.
This is how SPAC behaves differently from the existing methods. Moreover,
SPAC calculates with equations instead of counting (sampling indeed) one by
one in traditional approaches, which makes SPAC faster and more scalable for
extra-large graphs.

3 Design

This section first describes the key observation based on which SPAC is designed,
then the workflow in detail, including the optimization techniques and policies
used by SPAC.

3.1 Pattern Number Distribution to Degrees

Without loss of generality, the probability of each edge appearing in the pattern
is equal: the more edges, the greater the probability of forming the pattern.
Therefore, it is very likely that the distribution between degree and pattern
number should be similar to the one between degree and edge number.

As aforementioned, the power-law distribution applies to many graph
datasets, showing the relation between distinct degree (d) and vertex number of
this degree (v(d)), i.e., v(d) = C · d−k. Then, we could get the mapping from a
particular degree to the number of the edges (e(d)) connected to all vertices of
this degree as in Eq. 1, which apparently also follows power law.

e(d) = v(d) · d = C · d−k · d = C · d−k+1 (1)

Therefore, we make the hypothesis that the pattern number p(d) of degree
d (i.e., patterns formed by the edges of the vertices of the degree), also satisfies
the power law as in Eq. 2.
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Fig. 1. Pattern number distribution to the degrees. All experiments use
TriangleCounting function provided by GraphX [14], which is an accurate counting
algorithm.
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(a) Vertex distribution to degree. (b) Cumulative vertex distribution.

(c) Pattern # distribution to degree. (d) Cumulative pattern # distribution.

Fig. 2. Distributions of vertex and pattern number to degrees as well as their cumu-
lative distributions for Amazon dataset [38]. 3-motifs (triangles) as the patterns are
counted. All of them follows the power law.

p(d) = C0 · d−α + C1, (C0 > 0, C1 > 0) (2)

We tested Eq. 2 against several typical graph datasets as Fig. 1. These graph
datasets are very representative, from social networks to e-commerce, and range
from 4 thousand to 4 million vertices. Except “Facebook”, all other graphs follow
the power-law distribution.

For the pattern counting problem, the final result is the total occurrence of
the pattern in the entire graph, which could be calculated by the cumulative
distribution function P (d) as in Eq. 3. Similarly, it is also a power function.

P (d) ≈
∫ d

1

p(x)dx =
C0

−α + 1
d−α+1 + C2

= Ad−β + B (A < 0, B > 0, β > 0)
(3)

Figure 2 illustrates the equations with Amazon dataset [38]. Figure 2a is the
original power-law distribution for degree and vertex number, and the cumulative
function is presented in Fig. 2b. For the sake of simplicity, taking triangles as the
patterns, Fig. 2c shows triangles frequency for vertices of distinct degrees, and
Fig. 2d depicts the cumulative results. Apparently, the y-value of the rightmost
point in Fig. 2d is the final result of pattern counting.

Based on Eq. 3, SPAC is designed to use formula fitting with pretty
lightweight sampling to calculate the final result, which is more efficient than
existing methods. The workflow of SPAC is illustrated in Fig. 3, and the follow-
ing sections will introduce each phase in detail.
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4. Estimate final result2. Sample

2.1 Pick Degrees

2.2 Partial Count

3. Fit formula

ACC APP

EndStart

1. Preprocess

1.1 Deduplication

1.2 Normalization

Fig. 3. SPAC workflow.

3.2 Preprocess

Partial Count. SPAC needs the graph to be power-law, otherwise the pattern
computed is biased. Before confirming its distribution, we have to preprocess the
dataset: deduplicate and normalize edges.

SPAC can not count patterns for directed graphs currently. For example,
in directed graphs, 3 vertices may contribute more than 1 triangle considering
edge directions. Fortunately, most typical pattern counting applications do not
care about the directions, so directed datasets could be converted to undirected
graphs. However, this conversion may lead to duplicated edges, therefore, SPAC
needs to dedupliacate edges to keep the dataset as a simple graph. Additionally,
SPAC normalizes the edge identification by taking the smaller vertex id as the
edge source and the bigger one the sink. This is just for edge reference but not
direction. Finally, SPAC collects the degree and vertex number information to
verify its distribution by checking the R2 in fitting v(d) = c · d−k. Though R2

is an insufficient measure for nonlinear regression, it is good enough in many
cases [25]. Table 1 lists the R2 values of several datasets. For power-law obeyed
graphs, their R2 are very close to 1, while the outlier “Facebook” is very small.
SPAC will stop in case a dataset’s R2 is below 0.7, a recommended threshold.

Table 1. R2 of power-law distribution fitting for various graph datasets.

Dataset R2 Dataset R2 Dataset R2 Dataset R2 Dataset R2

Amazon 0.893 DBLP 0.955 Epinions 0.976 Youtube 0.926 LiveJournal 0.897
Pokec 0.787 Twitch 0.774 Twitter 0.856 GitHub 0.900 Facebook 0.112

3.3 Sample

The sampling phase consists of two steps: first, select some degrees (vertices
indeed) as the samples and then count the pattern frequency for each sample.
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(a) Len: 15%, Err: 102.25%, Time: 1.1s (b) Len: 25%, Err: 50.57%, Time: 3.2s

(c) Len: 35%, Err: 26.64%, Time: 5.6s (d) Len: 45%, Err: 18.83%, Time: 10.4s

Fig. 4. Fitting results of different sample sequence length, 15%, 25%, 35% and 45%
of total degrees, respectively. Len is the sample sequence length, Err is the error rate
and Time is the run time.

Determine Degrees. There are two principles to select sample points: (1)
no more than enough, and (2) no repeated counting. As Fig. 2d illustrated, the
curve goes up in low degree area very quickly, and then maintains quite a long
flat tail. So, in order to fit Eq. 3 precisely, it is better to keep enough low degree
samples until the bend part, where the curve starts to go flat. Since Eq. 3 is the
cumulative distribution, all patterns in a smaller degree will also appear in a
larger degree. To avoid repeated calculation, SPAC counts incrementally. For
example, to count the patterns for degree d+1, SPAC incrementally introduces
edges of all d+1 degree vertices into the subgraph during counting degree d. To
further simplify the calculation, all edges from d + 1 degree vertices to higher
degrees are included as well. Because the pattern is counted starting from every
vertex, a k-size pattern will be counted for k times in total, so the results should
be divided by k. Only new edges involved patterns will be searched, and those
founded before will not be recomputed. Therefore, SPAC picks up continuous
subsequence from the begin the degree list as samples. The remaining challenge
is how to determine the length of the sample sequence. It is actually a trade-off
between sampling overhead and fitting accuracy.

Figure 4 shows the influence of different sample sequence lengths for Amazon
dataset. It is clear that the bigger the sample (the longer the sequence), the more
accurate the result. However, 25% is a better balance than the others considering
the computing overhead. The turning points are different for different graphs,
and SPAC searches them with a heuristic method.
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We define fitting error in Eq. 4. El is the error rate with sample sequence
length l, dmax the largest degree of the graph, Pl the fitted cumulative function
formula, Pl(dmax) the calculated final pattern number with the fitted formula,
and Ptrue the real pattern number.

El =
|Pl(dmax) − Ptrue|

Ptrue
(4)

The heuristic is based on the property presented in Fig. 4. As a convex curve,
the gradient of the cumulative distribution gradually decreases: the initial steep
part until the turning point contributes more to error rate reduction, compared
to the degrees afterward. Theoretically, the turning point is where the gradient
drops suddenly to a small value near 0. From the smallest degree, SPAC counts
the pattern, extends to the next degree in the sample, and repeats until the gra-
dient reaches a threshold. In this way, the sample sequence length is determined.
Usually, the sampled vertices only take a small portion of the entire dataset,
which benefits the counting process in Sect. 3.2.

The above approach counts the pattern accurately for each degree, while
sometimes it is acceptable to use approximate results for quick investigation.
The former mode is called ACC and the latter APP in SPAC. Due to the larger
variance of estimated counts in APP mode, the gradient threshold should be
smaller than that of ACC , and it is affordable to enlarge the sample sequence
length because APP is much faster than ACC .

SPAC is flexible in choosing the threshold manually for a particular error
rate. Moreover, SPAC prototype also allows the user to set the sample sequence
length directly: the larger the sample, the more accurate the result as Fig. 4.

Now it is time to count the pattern frequency for each sample degree. As
discussed before, ACC works in an incremental style to prevent redundant cal-
culation, while APP uses the ASAP algorithm [17] to estimate. Our experiment
results show that APP runs much faster than ACC , but its error does not
increase significantly. It depends on the major objective to decide which one to
choose. For better accuracy, ACC is preferred, while for rapid screening, APP
stands out. SPAC leaves this flexibility decision to users.

The directly computed pattern frequency in APP mode needs to be adjusted
to align with the incremental counting in ACC . Figure 5 shows that only the
patterns (triangles) whose vertices all appear in the sampled subset could be
counted, like Δ(1, 2, 3), Δ(2, 5, 6), but those crossing the boundaries are ignored,
like Δ(3, A,B) and Δ(3, B, 6). SPAC estimates them by a “scaling factor” f .
Given the total edges in the sampled subset and the remaining one are a and b,
respectively, the probability that all edges of a pattern located in the sampled
subset (or, the probability a pattern can be scanned) is ( a

a+b )
K , where K is the

number of pattern edges. Similarly, the probability in the remaining set, like
Δ(A,B,D), Δ(D,F,G) is ( b

a+b )
K . If APP finds n triangles, the estimated real

number including the crossing boundaries ones is Eq. 5, so the scaling factor is
f = (|E|K − bK)/aK , where |E| = a + b.
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Fig. 5. Vertex 3 and 6 are newly added as the new degree, thus Δ(3, A, B) and
Δ(3, B, 6) should be estimated by the scaling factor f .

n′ =
n(

a
a+b

)K
·
(
1 −

(
b

a + b

)K
)

= n · (a + b)K − bK

aK
= n · |E|K − bK

aK

(5)

3.4 Fit Formula

After obtaining the necessary samples, it is almost ready to fit Eq. 3. According
to Sect. 3.2, most samples are from the lower degree part and very few from the
high degree part, so the curve tail might not be fitted well, leading to a big fitting
error. To address this potential issue, SPAC adopts two optimization policies to
augment the sampled data: sample weighting and sample interpolation.

It is possible to use the classic nonlinear least square methods like Gauss
Newton iteration to fit the coefficients. However, these methods treat all samples
equally, and the fitted curve tail will departure from the truth in case of few
samples in the flat part. SPAC improves this with weighted least square method,
in which sample points are assigned different weights to emphasize certain ones
in the curve. Specifically, SPAC weights the sample with its degree, so the high
degree samples will have heavier weights. This is reasonable because they are
near the turning points and have a significant impact on the curve shape. In this
way, they could still affect the fitting error even though there are just a few such
samples.

Another sample argument technique is to interpolate the end part of the sam-
ples, especially for ACC mode. The degrees of a graph are often non-continuous.
Especially at the high degree part, the distribution is very dispersed. As we
know, the end part of the samples is very flat and relatively stable in the curve,
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Table 2. Graph datasets.

Datasets Vertices Edges

LiveJournal [21] 4,847,571 68,993,773
Pokec [32] 1,632,803 30,622,564
Youtube [38] 1,134,890 2,987,624
Amazon [38] 334,863 925,872
DBLP [38] 317,080 1,049,866
Twitch [31] 168,114 6,797,557
Twitter [23] 81,306 1,768,149
Epinions [29] 75,879 50,8837
GitHub [30] 37,700 28,9003
Facebook [23] 4,039 88,234

so it is safe to interpolate the missing degrees, which to some extent increases the
weights of these samples. This is helpful in maintaining the shape of the curve
tail during fitting. In the meanwhile, SPAC does not do interpolation for APP
mode by default. This is because, for some datasets, the high degree samples are
very scattered, and too many interpolated points are needed, which will amplify
the errors introduced by APP itself.

With sample weighting and interpolation, SPAC can greatly improve the
fitting result as discussed in Sect. 5.

4 Implementation

The prototype of SPAC is implemented with GraphX [14], Apache Spark [39]
and SciPy package. GraphX loads datasets from the disk, and transforms them
into vertices and edges. Then SPAC conducts operations of preprocessing and
sampling phases in Fig. 3 with Spark, and finally fits Eq. 3 with SciPy. SPAC
consists of about 2300 lines of Scala code and 200 lines of python. In order to
compare with ASAP, we also reimplemented ASAP’s core algorithm according
to [17].

5 Evaluation

In this section, we first describe the experiment environment and datasets, then
evaluate SPAC with existing accurate and approximate solutions, and finally
show its limitation on a non-power-law graph.

5.1 Experiment Setup

We evaluate SPAC with many real-world graphs as in Table 2. The datasets are
selected to cover different scenarios. First, they are of different scales, as small
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Fig. 6. Run time of SPAC and accurate counting.

as thousands of vertices and as large as millions of vertices. Second, the non-
power-law graph “Facebook” is also tested to show how SPAC performs with
unexpected datasets. All experiments are tested with 3-motif (triangle) pattern
on an Aliyun r7 ECS: Intel Xeon (Ice Lake) Platinum 8369B CPU, 128G RAM
and 100G SSD, equipped with Ubuntu 20.04 LTS and openJDK 8.

5.2 SPAC and Accurate Counting

Figure 6 presents the run times of SPAC, including APP and ACC , and the
typical accurate counting method. SPAC can finish the tasks much more quickly
than accurate counting. The speedup for ACC and APP are about 1.5x–2x
and 3x–10x, respectively. This is primarily due to the small sequence lengths
(percentage of sampled vertices), ranging from 20% to 65%, with an average of
47%, detected by SPAC automatically. Moreover, all the error rates are below
10%, an acceptable threshold for real-world applications, i.e., the final result is
in the same magnitude as the actual number. Since the error rate of accurate
counting is always 0, errors are not illustrated in the figure. Generally, APP runs
faster than ACC , especially for Amazon, DBLP, Twitter, Epinions and GitHub.



SPAC: Scalable Pattern Approximate Counting in Graph Mining 227

Fig. 7. Run time and error of SPAC and approximate counting (our implemented
ASAP).

5.3 SPAC and Approximate Counting

As a new approximate counting method, SPAC should be compared with similar
systems. However, we can not access the source codes of any existing approximate
counting systems publicly. ASAP is regarded as the state of the art method, so
we reimplemented its estimation part according to [17] to evaluate SPAC. For
the sake of simplicity, ASAP is used directly to refer to our implementation.

Figure 7 illustrates the run time as well as the errors of SPAC and ASAP.
Compared to ASAP, the run time of SPAC is reduced greatly, ranging from 1.4x
to 9x. This is mainly because ASAP uses a huge number of estimators to sample
over the entire graph, while SPAC stops sampling very early at the turning
point, usually only including 30%–50% vertices. Additionally, APP is still the
fastest. In terms of error, ASAP and SPAC does not surpass each other always.
This is because the automatically sought turning points might lead to different
fitting accuracies for different datasets.

Figure 8 presents how error rate varies along with the sample sequence length
(in run time) for SPAC. The curves are basically the ELP model for ASAP. Not
surprisingly, the error decreases as the run time increases, while SPAC can
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mostly deliver better results than ASAP. Due to the larger variance of APP , the
ACC curve is more stable, but APP still reaches compelling accuracy.

5.4 Exception: Facebook

As mentioned in Table 1 and Fig. 1j, the “Facebook” dataset does not strictly
satisfy the power-law distribution. In Fig. 6, the errors of “Facebook” for ACC
and APP are 37.8% and 82.4%, respectively, much higher than the threshold. All
“Facebook” sub-figures in Fig. 7 and Fig. 8 also show the worst results. According
to the design principle of SPAC, it might not work as expected with non-power-
law graphs. This will be further investigated in the future.

Fig. 8. The ELP of SPAC: how error changes with sample sequence length (in run
time).
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6 Conclusion and Future Work

Pattern counting, which computes the number of target pattern in a graph,
is a very important problem with wide applications in social network analysis,
anomaly detection, web mining, and the like. In this paper, we propose SPAC
for fast and flexible pattern counting based on the observation that pattern
number distribution to degrees also follows power-law. By leveraging the distri-
bution, SPAC can efficiently choose a small number of degrees as samples, fit
the coefficients, and then calculate the final result directly. To provide flexibility
for different use-cases, SPAC supports both accurate and approximate counting
in the sampling phase, the ACC and APP modes. Moreover, edge weighting and
interpolation techniques are adopted to emphasize the sample tail to improve
fitting accuracy. The design enables SPAC to support extra-large scale graphs.

The prototype of SPAC is implemented with GraphX on Spark, and is eval-
uated against various well-known graph datasets. The experimental results show
that SPAC is up to 10x faster than accurate counting, keeping the same error
level below 10%. Compared to existing approximate counting, SPAC is 1.4x–9x
faster in general, while the error could be reduced to 20% of the current systems.

In the future, we will first investigate SPAC to support non-power-law
graphs. In addition, SPAC can only count undirected graphs currently, we plan
to extend it to deal with directed graphs as well as larger and more complicated
patterns.
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Abstract. In recent years, HPC and AI fusion, which refers to applying
AI technology to traditional HPC applications, has become a new trend.
HPC and AI fusion requires supports for multiple precisions used in both
domains. While, supporting multiple precisions in a single computing
unit is not easy. Prior research typically targets on modifying a high-
precision FMA to support low precisions. However, such efforts suffer
from disadvantages of increased latency and limited compute throughput
for low-precision operations, high area and power overhead, and limited
support of new data formats appeared in AI domain. To address this
issue, we propose Haica, a double-precision FMA and low-precision sys-
tolic array fused architecture, to achieve HPC and AI fusion. Our work
has two innovations. First, we propose a low-cost multiple-low-precision
FMA by taking advantage of the commonality among FP16, BF16, and
TF32. Second, inspired by the idea of splicing high precision with low pre-
cision, we replace the multiply and merge modules in a double-precision
FMA with a modified systolic array that is composed of the proposed
low-precision FMAs. We implement the logic design of Haica using RTL
and evaluate its overhead. Results show that compared to the naive com-
bination of a double-precision FMA and single-half-mixed-precision sys-
tolic array, Haica provides extra support for BF16 and TF32 with only
7.87% area and 33.26% power overhead. This demonstrates that Haica
achieves HPC and AI fusion in a cost-effective manner.

Keywords: Artificial intelligence · High performance computing ·
Fused multiply add · Systolic array

1 Introduction

Due to the significant advantages of Artificial Intelligence (AI) technology, recent
years have seen a widespread adoption of AI technology in many application
domains, such as computer vision [11], natural language processing [4], time series
classification [19], human activity recognition [20], Malware detection [15], etc.
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Applying AI technology to traditional High Performance Computing (HPC) appli-
cations, known as HPC and AI fusion, has become a new trend. HPC and AI fusion
is a generalized concept, it includes but not limited to running HPC applications
using lower precisions. For example, HPL-AI [5], a benchmark suite that appeared
in recent years, converts the major computation in Linpack from double precision
to half precision, which significantly accelerates the computation while preserving
the accuracy. Such a fusion also includes using AI algorithms or models to solve
problems in HPC applications. For instance, Han et al. used ResNet to perform
moist physics parameterization [6]. Prior research [8,13] also illustrated the bene-
fits of HPC and AI fusion.

To achieve this fusion, supports for multiple precisions are required since
different precisions are used in HPC and AI domains. In traditional HPC domain,
double precision (FP64) that follows IEEE-754 standard [16] is used. However,
in AI domain, low precisions are desired. For example, in training scenarios, in
addition to the commonly-used FP32 and FP16 formats that follow IEEE-754
standard, several new formats, such as BF16 (BFloat16) [10] and TF32 (Tensor
Float32) [3], have also emerged; in inference scenarios, FP16 and low-precision
integer (e.g., INT8) are common data formats.

However, supporting multiple precisions in a single computing unit is not
easy because different precisions differ a lot in data formats, especially between
high precision and low precision. In industry, Tensor Processing Unit (TPU)[9]
released by Google and A100 [3] released by NVIDIA are two representative
products that aim at providing tremendous computing power for AI applica-
tions. TPU organizes its computing units in form of systolic array [12], which
is a regular and array-based architecture. The latest systolic array supports
INT8× INT8+ INT16 and BF16×BF16+ FP32 matrix operations. A100 orga-
nizes its computing units in form of a tree-based architecture called Tensor Core
[3]. A100 supports multiple precisions, including INT8, FP16, BF16, TF32, and
FP64. Although Tensor Core covers mainstream precisions used in HPC and AI
domains, its details are not publicly available; thereby, preventing researchers
from conducting detailed analysis.

In the academic community, research usually targets on modifying the
floating-point Fused Multiply Add (FMA) [7,14], the key computing unit of
processors, to support two or more precisions. Arunachalam et al. [1] proposed
an FMA component that supports two precisions. Chen et al. [2] proposed an
FMA component that supports multiple precisions. Zhang et al. [21] extends a
quadruple-precision FMA to provide support for double/single/half/mixed preci-
sion and dot-product operations. However, prior research suffers from four major
shortcomings. First, sharing a common pipeline by high-/low-precision opera-
tions increases the latency of low-precision operations, because high-precision
operations require more pipeline stages than low-precision operations. Second,
supporting low-precision operations by modifying a high-precision FMA limits
the compute throughput of low-precision operations due to limitations on input
data width. Third, they incur high area and power overhead because of the giant
difference between high-precision and low-precision data formats. Last but not
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least, they do not support new data formats appeared in AI domain, e.g., BF16
and TF32.

To this end, we propose Haica, a double-precision FMA and low-precision
systolic array fused architecture, to support HPC and AI fusion. Different from
prior research that adopts a high-to-low routine, i.e., supporting low precisions
by modifying a high-precision FMA, we follow a low-to-high manner. We first
propose a low-cost multiple-low-precision FMA by taking advantages of the com-
monality among multiple low precisions. Inspired by the idea of splicing high
precision with low precision, we propose Haica, which uses a 4× 4 systolic array
(composed of the proposed low-precision FMAs) to replaces the multiply and
merge modules in a double-precision FMA. We implement the logic design of
Haica using Register Transfer Level (RTL) and verify its correctness. We use
Synopsys Design Compiler (DC) tool to evaluate its overhead. Results show that,
compared to the baseline, the naive combination of a double-precision FMA and
a 4× 4 systolic array (composed of single-half-mixed-precision FMAs), Haica
provides extra supports for BF16 and TF32 at the expense of 7.87% area over-
head and 33.26% power overhead.

This paper makes the following contributions:

– We propose a low-cost multiple-low-precision FMA component by taking
advantages of the commonality among multiple low precisions, including
FP16, BF16, and TF32.

– We construct a 4× 4 systolic array using 16 proposed FMAs to support
multiple-low-precision operations with higher operation rate and lower over-
head.

– We propose Haica, a double-precision FMA and low-precision systolic array
fused architecture to support HPC and AI fusion. Evaluation result shows
that Haica supports multiple precisions in a cost-effective manner.

The rest of this paper is organized as follows. Section 2 discuses related work.
Section 3 introduces background on data formats, FMA, and systolic array.
Section 4 motivates the need for an efficient multiple-low-precision computing
architecture. Section 5 presents the detailed architecture of Haica. Section 6 eval-
uates Haica and analyzes its overhead. Section 7 concludes this paper.

2 Related Work

To our knowledge, this is the first work to provide supports for mainstream
precisions used in HPC and AI domains by fusing FMA and systolic array. In
this section, we discuss previous research related to HPC and AI fusion, and
architecture for multiple-precision support.

2.1 HPC and AI Fusion

One representative case of HPC and AI fusion is running HPC applications
with lower precision. HPL-AI is such an instance. By converting the major
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computation from double precision to half precision, the computing speed is
improved significantly. Haidar et al. [5] evaluated HPL-AI using V100 GPU,
results showed that the performance of mixed-precision operations is improved
by 3× with acceptable accuracy loss. Another representative case of HPC and
AI fusion is using AI technology to solve problems in HPC applications. Han
et al. [6] proposed a new moist physics parameterization scheme based on deep
learning. Compared to traditional HPC approach, the new scheme speedups the
computing considerably and improves determination coefficients significantly.
Kurth et al. [13] proposed “exascale deep learning” for climate data analysis,
which achieved 1.1 EFLOPS peak performance by taking advantage of GPU’s
excellent single-/half-precision performance. Jia et al. [8] achieved parallelized
deep learning simulation on Summit. On this basis, the performance of molecu-
lar dynamic simulations is improved significantly by combining double-precision
operations with mixed-/half-precision operations. Our proposal—Haica, a com-
puting unit that supports multiple-precision operations, can be used to facilitate
HPC and AI fusion.

2.2 Architecture Support for Multiple Precisions

In the academic community, the architecture supports for multiple precisions are
typically based on FMA unit used in HPC processors. Wu et al. [18] proposed
an FMA component that supports double-/single-precision multiply-add opera-
tions and single-precision complex operations. Tannenbaum et al. [17] proposed a
configurable FMA component that supports single-/half-precision multiply-add
operations, half-precision multiplication and accumulation operations, which has
been applied to V100 GPU. Arunachalam et al. [1] proposed an FMA compo-
nent that supports two precisions, which reduces area by 48% and power by
49% with fusing technology, compared to a double-precision FMA. Chen et al.
[2] proposed an FMA component that supports multiple precisions, including
double-/single-/half-precision floating-point operations and 64-/32-/16-bit inte-
ger operations with 51% area overhead and 32% power overhead relative to a
double-precision FMA. Zhang et al. [21] extends a quadruple-precision FMA to
provide supports for double/single/half/mixed precision and dot product opera-
tions at the expense of 10.6% area overhead. Zhang et al. [22] proposed a flexible
16-bit floating-point/fixed-point FMA architecture, where the bit width of expo-
nent and mantissa can be flexibly exchanged.

The above research has two major shortcomings. First, the proposed FMAs
do not support new data formats appeared in AI applications, such as BF16
and TF32. Second, due to the giant difference between high-precision data for-
mats and low-precision data formats, these proposals suffer from high hardware
overhead. Instead of supporting high precisions and low precisions in a single
FMA, our work first proposes an FMA that only supports low precisions and
then replaces the multiply and merge modules in a double-precision FMA with
a systolic array that is built on the proposed FMA. Compared to the above
research, our work supports more precisions with lower hardware overhead.
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3 Background

Section 3.1 describes commonly-used data formats that follow IEEE-754 stan-
dard and new data formats appeared in AI domain. Section 3.2 describes the
architecture of a classical FMA. Section 3.3 introduces the architecture of sys-
tolic array.

3.1 IEEE Floating-Point Standard and New Data Formats

IEEE-754 [16] is a standard for binary floating-point arithmetic. Three
commonly-used floating-point formats are specified in the standard: half preci-
sion, single precision, and double precision, which are 16-bit, 32-bit, and 64-bit,
respectively. IEEE-754 has three basic components: sign, exponent, and man-
tissa. The sign represents a number is positive or negative, exponent determines
the range of a number, while mantissa determines the precision. The relationship
between the representation and true value is shown in Eq. (1).

X = (−1)s × 2e−bias × (1.f) (1)

where, s, e, f , bias represent sign, exponent, mantissa, and exponent offset,
respectively. Exponent offsets of half, single, and double precision are 15, 127,
and 1023, respectively.

Fig. 1. Encoding formats of commonly-used precisions.

In recent years, some new data formats, e.g., BF16 and TF32, appear in AI
applications. The encoding formats of BF16, TF32, and three IEEE-754 rep-
resentations are shown in Fig. 1. It can be seen that these formats differ in
exponent and mantissa length. BF16 has the same exponent length as FP32,
making it easier to accumulate with FP32 after multiplication. TF32 reduces
mantissa to 10 bits but keeps exponent as 8 bits, which helps to reduce over-
head for multiplication. Both BF16 and TF32 have 8-bit exponent (the same as
FP32). This makes it easy to support in an FMA with fusing technology. In this
paper, we regard the same exponent length between BF16 and TF32, and the
same mantissa length between FP16 and TF32 as commonality.
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Fig. 2. Architecture of a classical floating-point FMA [7].

3.2 FMA Architecture

The floating-point FMA is the key computing unit in a processor. Its perfor-
mance has a non-negligible impact on processor performance. In 1990, Hokenek
et al. from IBM proposed the concept of FMA [7], which merged the multi-
ply instruction and add instruction into one instruction to reduce overhead and
delay. The architecture of classical FMA is shown in Fig. 2. In the first stage of
pipeline, multiply, exponent calculation, and product alignment are processed
in parallel; thereby, the data alignment is overlapped. The intermediate result
(refers to mantissa multiply-add) is obtained by the end of first stage. In the
second stage, an Leading Zero Anticipator (LZA) is used to predict the num-
ber of zeros. The introduction of LZA allows paralleled post-normalization and
addition operations, which converts the mantissa of result to standard format.
Combined with exponent and sign processing, the final result is obtained after
normalizing and rounding. This is the mainstream floating-point FMA archi-
tecture, which is used in IBM’s Power series processors, Intel’s Itanium series
processors, and other processors.

To reduce the delay of classical FMA, Lang et al. [14] proposed an optimized
design, whose key idea include 1) combining the addition and rounding within a
dual adder, and 2) the normalization is performed before the addition. Besides,
they modified the design of LZA so that the leading bits of its output are pro-
duced first and can be used in normalization. Compared to the classical FMA,
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the latency-optimized FMA reduces delay by 15–20% at the expense of incur-
ring higher hardware overhead. In this paper, we base our work on the classical
FMA due to its widespread adoption and lower overhead. However, our proposal,
Haica, can also be built on the latency-optimized FMA.

3.3 Architecture of Systolic Array

Systolic array is the major computing unit in Google’s TPU [9], whose architec-
ture is shown in Fig. 3. In systolic array, weight is transferred from top to bot-
tom, and activation is transferred from left to right. The output of each column
is summed by the accumulators. Systolic array achieves high data reuse and low
requirement for memory access by taking advantages of data flow inside the array.
The systolic array in the first generation of TPU supports INT8× INT8+ INT16
matrix operations, while in the second and third generation, the systolic array
is extended to support BF16×BF16+ FP32 matrix operations. Since then, an
increasing number of AI processors adopted array-based computing architecture.

Fig. 3. The architecture of systolic array.

4 Motivation

The requirements for various precisions in HPC and AI domains have driven
the supports of multiple precisions in FMA. To satisfy these requirements, the
academia has made considerable efforts. We summarize relevant work in Table 1.
The research listed in this table adopted a high-to-low routine, more specifically,
supporting lower precisions by modifying a higher-precision FMA. However, we
find that all works listed in Table 1 suffer from the following shortcomings.
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Table 1. Related work comparison

Work Supported precision Architecture

[18] FP64/FP32 Double-precision FMA
[1] FP32/FP16 Single-precision FMA
[2] FP64/FP32/FP16/INT Double-precision FMA
[21] QP128/FP64/FP32/FP16/mixed Quadruple-precision FMA
[22] flexible 16-bit floating-point and fixed-point Half-precision FMA

First, sharing a common pipeline by high-/low-precision operations increases
the latency of low-precision operations, because high-precision operations require
more pipeline stages than low-precision operations. For example, the latency of
FP16 operations will increase from 1 cycle (in a half-precision FMA) to 7 cycles
(in an FMA proposed in [2]).

Second, supporting low-precision operations by modifying a high-precision
FMA limits the compute throughput (in other words, operations-per-cycle) of
low-precision operations due to limitations on input data width. For example,
when FP16 operations are executed in a double-precision FMA, the compute
throughput of FP16 is only 4x of FP64, which is far behind the 16x achieved by
systolic array or tensor core.

Third, aforementioned research incurs high area and power overhead due to
the giant difference between high-precision data formats and low-precision data
formats. For example, the proposal in [2] increased area by 51% and power by
32% compared to the classical double-precision FMA (introduced in Sect. 3.2).
Zhang et al. [21] proposed a multiple-precision FMA based on a quadruple-
precision FMA with 10% area overhead. In reality, 10% area overhead is non-
negligible considering the huge area of the quadruple-precision FMA. Last but
not least, these works do not support new data formats appeared in AI domain,
such as BF16 and TF32. What is more, it can be inferred that supporting these
new data formats in a double-precision FMA will be ineffective in terms of area
and power.

We identify two reasons for this high hardware overhead. First, the difference
between high precision (e.g., FP64) and low precision (e.g., FP16) is significant,
thereby, the modules in a double-precision FMA cannot be reused directly by
low-precision FMA, and considerable efforts are involved in modifying these
modules. Second, the area cost and power consumption in a double-precision
FMA is dominated by multiply and merge modules. Therefore, it is not easy
to reduce hardware overhead without considerable optimization to these two
modules. To confirm this, we implemented the classical double-precision FMA
using RTL, and evaluated its overhead using Synopsys DC tool with a commer-
cial 28 nm standard cell library. The frequency is set to 2.5GHz. The area and
power breakdown are shown in Fig. 4(a) and 4(b), respectively. It can be seen
that the multiply and merge modules incur more than 70% area and power over-
head, demonstrating that the multiply and merge modules are two area-hungry
and power-hungry modules in the double-precision FMA.
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Fig. 4. Overhead of each module in a double-precision FMA.

Therefore, to support multiple precisions in a single computing unit, an effi-
cient architecture is important and urgent. In this paper, we follow a low-to-high
manner to implement the multiple-precision FMA. Two key insights are utilized
to reduce hardware overhead. First, supporting multiple low precisions by mod-
ifying a single-half-mixed-precision FMA (rather than a double-precision FMA)
can significantly reduce hardware overhead and implementation complexity by
taking advantages of the commonality among FP16, BF16, and TF32. Second,
splicing high precision with low precision (rather than extending high preci-
sion to support low precision), i.e., organizing multiple-low-precision FMAs in
the form of systolic array and replacing the multiply and merge modules in a
double-precision FMA with the systolic array, is more cost-effective and achieves
higher compute throughput for low-precision operations. In the next section, we
will describe the architecture of our proposal in detail.

5 Haica: An HPC and AI Fusion Architecture

Based on the analysis in Sect. 4, supporting high and low precision by sim-
ply modifying FMA is ineffective. To address this issue, we propose Haica, an
multiple-precision computing architecture, to support HPC and AI fusion. The
key ideas of Haica are as follows. Haica first modifies a single-half-mixed-precision
FMA to provide extra supports for BF16 and TF32 (Sect. 5.1). The modified
FMA incurs less hardware overhead by taking advantages of the commonality
among FP16, BF16, and TF32. Then Haica replaces the multiply and merge
modules in a double-precision FMA with a systolic array that is composed of
the modified FMAs (Sect. 5.2). With such a design, Haica provides supports
for INT16, FP16, BF16, TF32, and FP64 operations in a cost-effective manner.
Finally, we discuss additional issues related to Haica (Sect. 5.3).

5.1 Multiple-Low-Precision FMA

The commonality among FP16, BF16, and TF32 makes it a better choice
to support these data formats in a single-half-mixed-precision FMA. In this
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section, we propose a multiple-low-precision FMA to support the following oper-
ations: FP16×FP16+ FP32, BF16×BF16+ FP32, TF32×TF32+ FP32, and
INT16× INT16 + INT32.

Fig. 5. The architecture of multiple-low-precision FMA.

The architecture of multiple-low-precision FMA is shown in Fig. 5, which
is mainly composed of data preprocessing module (Operand Input and Abnor-
mal Process in Fig. 5), exponent processing module (Align Number and Expo-
nent Calculation), order alignment module (Order Alignment), multiply module
(Multiply), merge module (Merge), and post-processing module (LZA, Normal-
ized Alignment, Exponent Correction, Rounding). The input of this FMA is
split into exponent and mantissa. The mantissa of two multiplication operands
is sent to the multiplier to get the intermediate result. Each input’s exponent is
sent to exponent processing module to calculate the order difference, and then
the addend is aligned according to order difference. The aligned addend and the
intermediate result are added up. Next, rounding and index correction is per-
formed after alignment. Finally, the output is selected, and overflow is checked.
To reduce hardware overhead, fusing technology is applied to exponent process-
ing, order alignment, and post-processing modules.
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Data preprocessing module is responsible for splitting the input into sign,
exponent, and mantissa, and checking abnormal input and result. As shown in
Fig. 1, FP16 has a 5-bit exponent, while BF16 and TF32 have an 8-bit expo-
nent; BF16 has a 7-bit mantissa, while FP16 and TF32 have a 10-bit mantissa.
Therefore, the exponent of FP16/BF16/TF32 is 5-bit or 8-bit, and the mantissa
is up to 10 bits. For mantissa that is less than 10-bit, zero padding, i.e., adding
zeros, is performed.

Exponent processing and order alignment modules do the following work:
calculating the amount of alignment, aligning the addend, predicting the sign
and exponent of the final result. The order alignment is shown in Fig. 6. The
major difference among the three data formats lies in the calculation of order
difference and the number of alignment.

Fig. 6. Order alignment.

The multiply-add calculation is shown in Eq. (2), where manA, manB, manC
and Ea, Eb, Ec represent mantissa and exponent of operand A, B and C, respec-
tively. d and q represent order difference and common factor, respectively. p0 and
p1 represent exponent offset, which are 15 and 127, respectively. Under FP16, the
order difference d is Ec−Ea−Eb+ 2p0−p1 = Ec−Ea−Eb+ 2×15−127 = Ec−
Ea−Eb−97, the common factor q equals Ea + Eb−2×15 + 27 = Ea + Eb−3,
and the alignment number equals d− 27. Under BF16 and TF32, the order dif-
ference d is Ec−Ea−Eb+ 2× 127− 127 = Ec−Ea−Eb+ 127, the common
factor q is Ea+Eb−2×127+27 = Ea+Eb−227, and the number of alignment
is still d− 27.

The reason for selecting d − 27 as the number of alignment is as follows.
Mantissa width of addend C is 24-bit (1 bit ahead of decimal point), and the
mantissa multiply result of A×B is 48-bit (2 bits ahead of decimal point). If
two zeros are filled for rounding, we have to align C for 24 + 2 + 2 − 1 = 27
bits without considering order difference, so the final number of alignment is
d−27. Therefore, we can calculate the order difference and number of alignment
according to data format. In the order alignment module, the highest number is
76. Thus, it can be implemented through three levels. The first level aligns 0 to
7 bits according to alignnum[2 : 0]; the second level aligns 0 to 48 bits with a
stride of 8 bits through alignnum[5 : 3]; and the third level determines whether
aligning 64 bits.
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A×B+C=manA×2Ea−p0×manB×2Eb−p0+manC×2Ec−p1

= manA×manB×2Ea+Eb−2p0+manC×2Ec−p1

= 2q×(manA×manB×2−27+manC×2Ec−p1−q)

(2)

Multiply and merge modules are two key modules of an FMA, which are
responsible for performing mantissa multiplication and merging the result with
addend. We use 4-based Booth coding to generate partial products and use 4-2
CSA compression tree to merge them. Merge module first adds the sum and
carry (output of the multiply module) up and then merges with the aligned
addend mantissa to get the intermediate result. Note that, under three formats,
the mantissa length of multiplication operand is 10-bit. However, to support
INT16× INT16+INT32 operation in the FMA, both multiply and merge mod-
ules use 16-bit inputs.

Once the intermediate result is ready, post-processing, including LZA, nor-
malization alignment, exponent correction, and rounding, is performed. Since the
addend and final result is single precision, we can directly use the post-processing
module of single-precision FMA without modification. The post-processing mod-
ule includes several sub-modules. LZA module predicts normalization number
of alignment according to intermediate result. Normalization alignment module
aligns the result to ensure that the highest bit of mantissa is 1. Exponent correc-
tion and rounding module correct and round the final exponent and mantissa.
The final result is obtained after merging with the abnormal result.

In particular, we integrate integer multiplication and addition operation
(INT16× INT16+INT32) in the multiple-low-precision FMA, which is per-
formed by specific individual sub-components. As the logic for supporting integer
operation is very simple, we will not describe its logic in detail. In Sect. 6, for
fairness, the single-half-mixed-precision FMA uses the same logic as the multiple-
low-precision FMA to implementation INT16 operations.

5.2 Haica: A Double-Precision FMA and Low-Precision Systolic
Array Fused Architecture

Inspired by the idea of splicing high precision with low precision, we can perform
expensive double-precision operations in a low-precision systolic array. In this
section, we propose Haica, a double-precision FMA and low-precision systolic
array fused architecture, to support high and low precision with lower over-
head. Before describing the architecture of Haica, we first present necessary
modifications to the systolic array cell when the multiple-low-precision FMA is
integrated.

The architecture of the modified systolic array cell is shown in Fig. 7. The
systolic array cell comprises of an FMA and five registers, including two north
data registers, a west data register, a sum data register, and a control register.
Compared to single-half-mixed-precision FMA, the multiple-low-precision FMA
increases the width of register and input data. This is because if the width of west
and north data remains 16 bits, the input data with TF32 format will be loaded
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in two cycles; as a result, it takes two cycles to perform one operation. This
causes severe power jitter. To address this issue, we increase the width of north
and west data to 19 bits, and south output remains 32 bits. With this change,
TF32 operation can be performed in one cycle, and power jitter is avoided. We
use the modified cell to construct systolic array.

Fig. 7. The architecture of modified systolic array cell.

The overall architecture of Haica is shown in Fig. 8. It is modified on basis of
a double-precision FMA. Haica consists of Data Pre-process, Exponent Process,
Order Alignment, a modified 4× 4 systolic array, LZA, Exponent Correction,
Normalized Alignment, Rounding and Abnormal Process modules. Instead of
implementing a double-precision FMA and low-precision systolic array sepa-
rately, we use the systolic array to replace the multiply and merge modules, two
most expensive modules in a double-precision FMA. In this way, the major com-
putation involved in FP64 operation is performed by the systolic array. Totally,
Haica supports INT16, INT64, FP16, BF16, TF32, and FP64 operations.

We first discuss the width of Haica’s input data and output data. Haica sup-
ports FP64 operations, where multipliers A and B, addend C, and output D are
64 bits. Meanwhile, Haica supports 16 parallel mixed-low-precision operations.
Both BF16 and FP16 are 16 bits, and FP32 is 32 bits, thereby the width of A
and B are still 64 bits, but the width of C and D must be 128 bits. Therefore,
the width of A and B remain unchanged, and we modify the width of addend
and output to 128 bits. As the systolic array takes 19-bit TF32 inputs, Haica can
perform 4 parallel TF32×TF32+FP32 operations under current configuration.

The key idea of splicing high precision with low precision is shown in Fig. 9.
According to IEEE-754 standard, FP64 has a 52-bit mantissa. To equally split
the mantissa, we extend the 52-bit mantissa to 64-bit with zero padding. Then
each extended input of the multiplier is split to four inputs, that is, a1-a4 and
b1-b4 in Fig. 9, each with 16-bit mantissa. On this basis, the 64-bit mantissa
multiplication can be completed with 16 INT16 multiplication. This split makes
it feasible to implement the double-precision operations in a 4× 4 systolic array.
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Fig. 8. The architecture of Haica.

Fig. 9. Splicing high precision with low precision.
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To achieve this goal, the data width inside the systolic array is adjusted.
More specifically, the width of west data and north data is still 19-bit; while,
the width of the sum varies correspondingly. For instance, the width of sum in
the first to the last row is 32-bit, 48-bit, 64-bit, and 80-bit, respectively. Finally,
four 80-bit output data are merged into one 128-bit product through the merge
unit. The modified systolic array is shown Fig. 10(a) and the rule of data flow
in the systolic array is shown in Fig. 10(b). As we clarified, to adapt to TF32,
zero padding is used to convert the width of west and north data from 16-bit to
19-bit.

Fig. 10. Architecture and data flow of systolic array.

According to Fig. 9 and Fig. 10(a), a1× b1 is performed in the first cell of the
first row with 32-bit product. Similarly, a1×b2, a1×b3, and a1×b4 are performed
in the second to fourth cell of the first row, respectively. Therefore, all products
of the first row are 32-bit. a2× b1 is performed in the first cell of the second row
and is accumulated with result of a1 × b1. According to the multiplication rule
in Fig. 9, the accumulation result is 48-bit. Similarly, the output of other cells in
the second row is also 48-bit. Thus, the output of cells in the third and fourth
row are 64-bit and 80-bit, respectively.

To achieve the 16-bit mantissa multiplication, only minor modification is
required. More specifically, the data width inside the systolic array needs widen
correspondingly. We take the first cell of the second row as an example. The
FMA takes 16-bit multiplication operand and 32-bit addend as input. To get
the result of a2× b1, the lower 16 bits of a1× b1 are directly taken as the lower
16 bits of a2 × b1, which have been calculated by the first cell of the first row.
Similarly, the merge unit takes four 80-bit adders instead of 128-bit adders as
input. This design reduces unnecessary modification.

Except for modifications to systolic array and merge module, the other mod-
ules of Haica are similar to the double-precision FMA. For example, modules
such as Exponent Process, Order Alignment, LZA, and Normalized Alignment
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remain the same as original double-precision FMA, while certain control logic is
added to Data Pre-process, Rounding and Abnormal Process modules to adapt
to a variety of operation modes. As the modification is minor, we do not describe
corresponding logic in detail.

5.3 Discussion

In this section, we discuss additional issues related to Haica, including the
pipeline cycles, the compute performance of supported operations, and require-
ment for data access.

As Haica is a fully-pipelined architecture, we briefly analyze the pipeline
cycles of Haica. For low-precision operations, it performs INT16, FP16, BF16,
and TF32 operations in the 4× 4 systolic array, which can complete 16 multiply-
add operations in one cycle. For FP64 operations, we use the classical 7-stage
double-precision FMA for analysis, where multiply and merge modules are in
stage 2 and stage 3, respectively. Eight cycles are taken to complete the mul-
tiplication operations in systolic array due to data dependence, i.e., the data
stage starts from the top leftmost cell and ends at the bottom rightmost cell.
In contrast, it takes only two cycles to complete the multiplication operations
in the double-precision FMA. Consequently, it takes 13 cycles to complete an
entire FP64 operation in Haica rather than 7 cycles in the double-precision
FMA. The extra cycles are caused by larger startup overhead. However, from
pipeline perspective, Haica is still able to generate one output per cycle if there
are enough FP64 multiply-add operations. In addition, increasing pipeline stages
(from 7-stage to 13-stage) requires more registers to store intermediate results,
this may have an impact on processor’s FP64 performance due to increased reg-
ister consumption. However, this impact is minor for low-precision-dominated
applications.

To adapt to TF32 operations, the width of north data and west data is
increased to 19-bit, which causes instruction and memory access issues. To
address this issue, we regard TF32 as 32-bit because it is stored as 32-bit data
in memory with 13-bit zeros. Before sending to systolic array, the 32-bit input is
tailored to 19-bit for calculation. This method can effectively address the irregu-
lar data width issue at the expense of limiting input data width to 32-bit, which
is twice of 16-bit precision formats, e.g., BF16 and FP16. For TF32 format, two
west inputs are sent to the third and fourth row, and two north inputs are sent
to the third and fourth column, leaving other inputs being zeros. Therefore, only
four cells perform the computation in reality, achieving 25% peak performance
of FP16 operations.

In general, Haica can perform one INT64× INT64 operation, one
FP64×FP64 +FP64 operation, 4 parallel TF32×TF32+FP32 operations, and
16 parallel FP16×FP16+FP32, BF16×BF16+FP32, INT16× INT16+INT32
operations. Although Haica differs A100 Tensor Core [3] in microarchitecture,
they support similar operations and achieve similar operation rate, except that
TF32 achieves 25% peak performance of FP16 in Haica.
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6 Experiment

We implement the logic design of Haica using RTL. Then we verify its correctness
using test signal method. We perform module-level test, function point test,
and random number test. Results show that our proposed fusion architecture
satisfies the correctness requirement. Finally, we evaluate the overhead of Haica
using the physical synthesis method. Synopsys DC tool is utilized to analyze the
frequency, area, and power consumption. The result is based on a commercial
28nm standard cell library.

Table 2. The overhead of multiple-low-precision FMA.

Single-half-mixed-
precision FMA

Single-precision FMA Proposed FMA

Supported
operations

FP16×FP16+FP32
INT16× INT16+INT32

FP32×FP32+FP32 FP16×FP16+FP32
BF16×BF16+FP32
TF32×TF32+FP32
INT16× INT16+INT32

Highest frequency 1.35 GHz 1.08 GHz 1.2 GHz
Area (1 GHz) 3632.90µm2 (100%) 5701.72 µm2

(156.95%)
4727.94µm2 (130.14%)

Power (1 GHz) 3.9542 mW (100%) 5.5734 mW (140.95%) 6.5702 mW (166.16%)

We first evaluate multiple-low-precision FMA by comparing it against single-
precision FMA and single-half-mixed-precision FMA, because 1) our proposed
FMA is based on a single-half-mixed-precision FMA, 2) TF32 is supported by
the single-precision FMA since TF32 is an alternative to FP32. Note that the
single-half-mixed-precision FMA supports INT16× INT16+INT32, as described
in Sect. 5.1. Because our proposed FMA is a component-level design, we use
the highest frequency as the metric for performance, as [22] did. Area and power
under 1GHz are used for overhead analysis, and results are normalized to single-
half-mixed-precision FMA. The result is shown in Table 2. It can be seen that
the frequency of our proposed FMA reaches up to 1.2GHz, which is slightly
lower than single-half-mixed-precision FMA (1.35GHz), while slightly higher
than single-precision FMA (1.08GHz). Compared to single-half-mixed-precision
FMA, our proposed FMA increases area by 30% and power by 66%. Compared
to single-precision FMA, the proposed FMA incurs less area overhead but more
power overhead because our proposed FMA adds certain control logic to support
BF16 and TF32. Experimental results demonstrate that our proposal provides
extra supports for BF16 and TF32 with reasonable overhead by taking advan-
tages of fusing technology.

Then we analyze the overhead of the proposed 4× 4 systolic array (shown in
Fig. 7) by comparing it against a basic 4× 4 systolic array that is composed of
16 single-half-mixed-precision FMAs. Area and power under 1GHz are used for
overhead analysis. The result is shown in Table 3. It shows that our proposed
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Table 3. The overhead of proposed systolic array.

4× 4 Systolic array Proposed Systolic array

Supported
operations

FP16×FP16+FP32
INT16× × INT16+INT32

FP16×FP16+FP32
BF16×BF16+FP32
TF32×TF32+FP32
INT16× INT16+INT32

Area (1 GHz) 60926.01µm2 (100%) 78462.51µm2 (128.78%)
Power (1 GHz) 53.9944 mW (100%) 83.5463 mW (154.73%)

systolic array increases area by 29% and power by 55% compared to the basic
systolic array. The overhead increment is similar to a single FMA scenario (our
proposed FMA relative to a single-half-mixed-precision FMA) because FMA is
the major unit of a systolic array. Note that we make minor modifications (data
width) to the proposed systolic array to make it compatible with other compo-
nents in Haica. However, the major computing unit—the proposed multiple-low-
precision FMA remains unchanged. Thus, the overhead of the systolic array in
Haica (result is not shown) is similar as the reported result in Table 3.

Table 4. The overhead of Haica.

Double-precision FMA
+4× 4 systolic array

Non-fused Haica Haica

Supporting
operations

FP16×FP16+FP32
FP64×FP64+FP64
INT64× INT64
INT16× INT16+INT32

FP16×FP16+FP32
BF16×BF16+FP32
TF32×TF32+FP32
FP64×FP64+FP64
INT64× INT64
INT16× INT16+INT32

FP16×FP16+FP32
BF16×BF16+FP32
TF32×TF32+FP32
FP64×FP64+FP64
INT64× INT64
INT16× INT16+INT32

Area (1 GHz) 87239.01µm2 (100%) 104775.50µm2

(120.10%)
94106.84µm2 (107.87%)

Power (1 GHz) 58.8452 mW (100%) 88.4068 mW (150.24%) 78.4200 mW (133.26%)

Finally, we evaluate the overhead of Haica by comparing it against a base-
line (naive combination of a double-precision FMA and the basic systolic array
in Table 3) and a non-fused Haica (naive combination of a double-precision
FMA and the proposed systolic array without fusion). For fairness, the double-
precision FMA is extended to support INT64 operation. The result is shown
in Table 4. It shows that, compared to the baseline, Haica provides extra sup-
ports for BF16 and TF32 at the expense of 7.87% area overhead and 33.26%
power overhead. Such an overhead is acceptable because the baseline will incur
more than 50% area and power overhead if the baseline supports the exact same
operations as Haica. Compared to the non-fused Haica, Haica reduces area by
10.18% and power by 11.3% by taking advantages of fusing technology.
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Although the above analysis shows that Haica incurs certain area and power
overhead than a single FMA, we think that Haica is still cost-effective because
modern processors typically integrate multiple FMAs with different precisions to
satisfy applications’ requirements for varied precisions and exploit component-
level parallelism. While, Haica has the capability of supporting mainstream pre-
cisions and achieving considerable operation parallelism using just one modified
FMA. Compared to multiple independent FMAs, Haica incurs significantly less
area and power overhead. For fairness, we do not compare Haica against rele-
vant work listed in Table 1 because aforementioned research supports different
precisions as Haica. It is not easy to compare them in a fair manner. In addition,
despite tensor core supports similar precisions as Haica, we are still unable to
compare Haica with tensor core due to a lack of publicly available documents.

7 Conclusion

To achieve HPC and AI fusion, supporting multiple precisions in a single com-
puting unit is desired. Academia typically aims at modifying a single FMA to
support two or more precisions. However, prior works suffer from non-negligible
hardware overhead and limited supports for new data formats appeared in AI
domain. To address this issue, we propose Haica, a double-precision FMA and
low-precision systolic array fused architecture, to support HPC and AI fusion.
Evaluation result shows that, compared to the baseline, a naive combination of a
double-precision FMA and a basic systolic array, Haica provides extra supports
for BF16 and TF32 with only 7.87% area and 33.26% power overhead.
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Abstract. Although GPUs have been used to accelerate various con-
volutional neural network algorithms with good performance, the
demand for performance improvement is still continuously increasing.
CPU/GPU overclocking technology brings opportunities for further per-
formance improvement in CPU-GPU heterogeneous platforms. How-
ever, CPU/GPU overclocking inevitably increases the power of the
CPU/GPU, which is not conducive to energy conservation, energy effi-
ciency optimization, or even system stability. How to effectively constrain
the total energy to remain roughly unchanged during the CPU/GPU
overclocking is a key issue in designing adaptive overclocking algorithms.
There are two key factors during solving this key issue. Firstly, the
dynamic power upper bound must be set to reflect the real-time behav-
ior characteristics of the program so that algorithm can better meet
the total energy unchanging constraints; secondly, instead of indepen-
dently overclocking at both CPU and GPU sides, coordinately over-
clocking on CPU-GPU must be considered to adapt to real-time load
balance for higher performance improvement and better energy con-
straints. This paper proposes an Adaptive Overclocking Algorithm (AOA)
on CPU-GPU heterogeneous platforms to achieve the goal of perfor-
mance improvement while the total energy remains roughly unchanged.
AOA uses the function Fk to describe the variable power upper bound
and introduces the load imbalance factor W to realize the CPU-GPU
coordinated overclocking. Through the verification of several types con-
volutional neural network algorithms on two CPU-GPU heterogeneous
platforms (Intel�Xeon E5-2660 & NVIDIA�Tesla K80; Intel�Core™i9-
10920X & NIVIDIA�GeForce RTX 2080Ti), AOA achieves an average
of 10.7% performance improvement and 4.4% energy savings. To ver-
ify the effectiveness of the AOA, we compare AOA with other methods
including automatic boost, the highest overclocking and static optimal
overclocking.
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1 Introduction

Almost all kinds of convolutional neural network algorithms and scientific com-
puting programs generally use GPU for acceleration [4,8]. CPU-GPU heteroge-
neous platforms are becoming more and more widely used. Both CPU and GPU
provide overclocking mechanisms, and moderate overclocking brings opportu-
nities for further performance improvement. Although the CPU has the Intel
Turbo Boost Technology [15], and the GPU has the Nvidia GPU Boost Tech-
nology [22], automatic overclocking through the system has certain limitations.
It is meaningful to consider the goal that how to improve the performance by
adaptively overclocking on CPU-GPU heterogeneous platforms while constrain-
ing the total energy consumption unchanged.

Existing researches on overclocking algorithms have targeted both homoge-
neous and heterogeneous platforms. One of the state-of-art algorithms for homo-
geneous platforms is to set a static frequency upper bound [38], which overclocks
the frequency to the given upper bound in active state. Another existing method
is overclocking under power constrain [14]. When the processor utilization is high
and current power does not reach the power upper bound, the frequency keeps
increasing. However, how to control the overall energy consumption of a certain
task or program is a problem, especially for heterogeneous platforms with fewer
overclocking algorithms [31]. A common way to improve CPU-GPU energy effi-
ciency is to adjust CPU and GPU frequency on heterogeneous platforms. During
the entire frequency adjustment process, the CPU and GPU are usually regarded
as a whole for consistent frequency adjustment [36]. When it comes to CPU-GPU
frequency adjustment on heterogeneous platforms, load balance between CPU
and GPU is one of the key issues to consider. Frequency adjustment brings
greater challenges to load balance.

For overclocking on CPU-GPU heterogeneous platforms, a commonly used
method is overclocking under a given power upper bound, which achieves the
purpose of improving performance while satisfying the total energy constraint.
How to effectively keep the total energy unchanged during the CPU/GPU over-
clocking process is a key issue, which mainly includes two key factors.

– The static power upper bound is difficult to reflect the individual differences
in performance and power of programs’ behavior, which brings problems to
improving program performance and the accuracy of power control. In addi-
tion to CPU/GPU frequency, the real-time usage of the program on the pro-
cessor (such as instructions per cycle, processor core utilization, etc.) can also
affect instantaneous processor power. Therefore, power upper bound must be
dynamic, not static.

– Overclocking may cause or even aggravate the load imbalance of CPU-GPU
heterogeneous platforms, thereby affecting performance improvement and
total energy constrain. Independent overclocking of the CPU and GPU may
cause the originally balanced load to become unbalanced, which is detrimen-
tal to our goals. When the CPU-GPU load imbalance increases, the perfor-
mance has room for improvement, because the performance of heterogeneous
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computing depends on the side with longer running time. Also, additional
energy is consumed due to waiting. Therefore, CPU-GPU overclocking must
be coordinated, considering real-time load balance.

Based on the two key factors in the design of overclocking algorithms, the
solutions in this article are as follows.

– For the first key factor, turn the static power upper bound of overclocking
into the adaptive variable power upper bound. The overclocking algorithm
sets the initial power upper bound k0 by calculating the expected power
upper bound according to the characteristics of the usage of various programs
on a given platform. In the dynamic overclocking process, the power upper
bound k is adaptively adjusted to achieve precise real-time power control for
individual program characteristics, according to the real-time usage of the
current program on the CPU and GPU.

– For the second key factor, the load imbalance factor W is used to characterize
whether the program is in the load balance state or load imbalance state, and
to further adjust the overclocking range after normal overclocking for a further
performance improvement.

In summary, this paper has the following three contributions.

1. Aiming at the challenge of constraining the total energy in overclocking, we
find two key factors that affect adaptive overclocking: dynamic variable power
upper bound k and coordinated overclocking (load imbalance factor W ) at
both sides of the CPU and GPU.

2. We propose an Adaptive Overclocking Algorithm on CPU-GPU Heteroge-
neous platforms (AOA), which first adjusts the dynamic power upper bound
k of CPU and GPU separately according to the real-time operation of the
current program on the CPU-GPU heterogeneous platforms; and introduce
load imbalance factor W to coordinate overclocking range by improving load
imbalance phenomenon for further performance improvement and better total
energy constrain.

3. AOA is implemented and verified on two heterogeneous platforms
(Intel�Xeon E5-2660 & NVIDIA�Tesla K80; Intel�Core™i9-10920X &
NIVIDIA�GeForce RTX 2080Ti) using convolutional neural network algo-
rithms. The experimental results show that the AOA improves the perfor-
mance by 10.7% on average and 4.4% energy savings. To verify the effec-
tiveness of the AOA, we compared AOA with methods including automatic
boost, the highest overclocking and static optimal overclocking.

The structure of this article is as follows: Sect. 2 introduces the background
and related work of overclocking methods on heterogeneous platforms. Section 3
illustrates the design ideas of overclocking algorithms and the description of
AOA. Section 4 introduces the experimental platform and the experimental
results of AoA on two heterogeneous platforms. Section 5 discusses the impact
of two key factors on AOA effect. Section 6 is the concluding remarks.
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2 Related Work

2.1 DNN in CPU-GPU Platforms

The heterogenous architecture becomes widely used in high performance com-
puting [18,35], which is inseperable from the requirement for boost performance
(high accuracy and fast training speed) of DNNs. While convolutional neural
network (CNN) is one of the most successful deep neural network (DNN) mod-
els and have been applied in various fields such as computer vision and speech
recognition [12,20], the cost of high power and energy attracts widespread atten-
tion [21,26,32].

Th inspires researches on energy efficiency of DNN models on CPU-GPU
platforms. Sun et al. study the performance, power and energy characteristics
of CNNs when running on CPU and GPU [29]. Rodrigues et al. [25] propose an
evaluation framework that combines standard deep learning frameworks such as
Caffe [17] and cuDNNv5 [8] to measure the performance and energy of DNNs.
Mittal et al. [21] survey on methods for analyzing and improving GPU energy
efficiency.

2.2 Energy Efficiency Optimization Methods

Existing energy efficiency optimization methods for heterogeneous platforms
mainly have two types of ideas. One type of methods to improve energy effi-
ciency is to reduce power or energy consumption while maintaining performance,
which is realized by dynamic voltage frequency scaling (DVFS, usually frequency
reduction). Yao [37] study the energy efficiency of CNN on high performance
GPUs. Through a large number of comparative experiments on GPU architec-
ture, DVFS settings and DNN configuration, they studied the impact of GPU
DVFS on deep learning energy consumption and performance based on experi-
ence. Tang et al. [30] also research on the impact of GPU DVFS on the energy
and performance of deep learning. However, reduced frequencies sometimes mean
slower system configurations, which to some extent violate latency and through-
put requirements of heterogeneous platforms in the context of high performance
computing.

Another type of methods is to improve performance while controlling power
and energy consumption, which is mainly achieved by overclocking. Existing
works research on the effect of overclocking on performance [31]. Sasikala et al.
[24] exploit the techniques of overclocking and throttling to enhance the per-
formance while maintaining the system reliability. Wu et al. [33,34] improves
energy efficiency by processor overclocking and memory frequency scaling. Yang
et al. [36] treat the CPU and GPU as a whole for consistent frequency modula-
tion. However, there are significant imbalance in both frequency and computing
ability of CPUs and GPUs, which is ignored by consistent frequency modulation.

Researches show that load imbalance between CPU and GPU in some pro-
grams (such as BFS) also has important impact on performance [10]. Acun
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et al. [5] agree that performance inhomogeneity in power constrained environ-
ments drastically limits supercomputing performance. Chen et al. [7] investigate
the optimization possibilities of the performance of parallel systems utilizing the
time-dimension communication features. Chasapis et al. [6] research on the effect
of manufacturing variability on computing ability. Gholkar et al. [11] show that
a power capped job suffers from performance variation of otherwise identical
processors leading to overall sub-optimal performance.

3 AOA Design

3.1 Key Issue and Key Factors in AOA

Key Issue - Energy Constraint. Overclocking brings performance improve-
ment together with inevitable increase in instantaneous power, which makes the
total energy likely to increase or decrease. If the total energy can be restrained
from increasing during the overclocking process, it will not only save the energy
consumption of the task (E = P · t), but also improve the energy efficiency
(EDP = E · t). How to effectively constrain the total energy unchanged in the
overclocking process is a key issue in the overclocking algorithm design.

Furthermore, dynamic overclocking is more beneficial to meet the constant
total energy constraint than static overclocking, so we adopt dynamic overclock-
ing instead of static overclocking.

The algorithm is designed with the total energy unchanged as the con-
straint. There are usually three control conditions: controlling the total energy
unchanged, controlling frequency not exceed the max frequency, and controlling
power not exceed the power upper bound.

There are some problems in designing dynamic overclocking by controlling
the total energy unchanged. Since the total energy is the accumulation of power
over a period of time, the total energy consumption of the program cannot be
obtained before the program finishes running. Therefore, it is not possible to
design dynamic overclocking by controlling the total energy unchanged in the
algorithm. Setting the power upper bound for overclocking can avoid the above
problem. The power can be obtained in real-time during the running of the
program. Compared with the total energy, power upper bound can be directly
used as a constraint that is easier to control dynamic overclocking.

There are also some problems in controlling the frequency not to exceed
the upper bound. Although the performance improvement goal can be achieved
by using frequency as the control condition, it is difficult to meet the constraint
condition of constant total energy. The reason is that in addition to frequency, the
real-time occupation factors of the processor by the program (such as instructions
per cycle, processor core utilization, etc.) also affect instantaneous power. The
formula (1) reflects the relationship between the processor clock frequency f and
the instantaneous processor power P :

Ptotal = αCV 2f + Pstatic (1)
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where α is the CMOS circuit switching factor that reflects the busyness of the
processor. As shown in Table 1, taking platform A as an example, when the CPU
frequency f is at 2.6 GHz, the power values under 10% and 88% utilization
are 60W and 140W respectively, with a difference of 133%. Compared with
controlling frequency not exceeding max frequency, controlling instantaneous
power not exceeding a given power upper bound is more helpful to achieve the
goal of remaining the total energy unchanged.

Key Factors - Power Upper Bound and Load Balance

Key factor 1: The power upper bound must be dynamic, not static.
In the process of dynamic overclocking, if the upper bound of power is fixed

to a value, that is not the most appropriate because it will bring difficulties
to the control of total energy. We define a variable upper bound of dynamic
power kP that is a variable parameter and different from the hardware power
capping. Among them, P is the power value of the processor at the default
frequency f0. Considering that the value of P has a certain fluctuation relative
to the same frequency f0 under actual conditions, we take the typical power
value of the processor as P . k is the Power Upper Bound Factor, which satisfies
1 ≤ k ≤ 1.2. When k = 1, it means no overclocking; when k = 1.2, it means that
the processor power after overclocking cannot be greater than 1.2 times of P .
1.2 is an empirical value obtained from historical experiments on the platform,
and the value setting varies slightly on different platforms.

The design of the dynamic power upper bound is based on two considerations.
One is the determination of the initial value of the overclocking power coefficient,
and the other is the dynamic change process of the overclocking power coefficient.

Define k0 as the initial value of variable power upper bound factor. By run-
ning various test programs on a given hardware platform (considering the balance
of program feature distribution), the power and energy results of the processor
under different occupancy conditions can be obtained, and then the power upper
bound under the constraint of constant total energy can be obtained. The over-
clocking power coefficient k0 is determined from this.

On the basis of k0, the variable overclocking power coefficient kt at time t is
calculated by the function Fk.

kt ← Fk(k0, Ut) (2)

where Ut represents the real-time processor occupancy of the program at time
t, which is calculated according to processor utilization utilization percentage,
i.e. Ut = utilization percentage × f .

Particularly, on the GPU side, the function of overclocking power coefficient
is as follows.

kGPU
t ← FGPU

k (k0, UGPU
t ) (3)

On the CPU side, the function of overclocking power coefficient is as follows.

kCPU
t ← FCPU

k (k0, UCPU
t ) (4)
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Key factor 2: Overclocking at both sides of the CPU and GPU must be coordi-
nated, and real-time load balancing must be considered.

In order to judge whether the program is in a load balance state dur-
ing the running process, the Load Imbalance Factor W and the threshold
γ are introduced. Load imbalance factor at time t is denoted as Wt where
Wt = UGPU−UCPU

UGPU+UCPU . As shown in Fig. 1, the program running on the CPU-
GPU heterogeneous platform may be in the load balance state (slash fill area,
|Wt| ≤ γ) or in the load imbalance state (color fill area, |Wt| > γ).

0
γ-γ

load balance area

More load on GPUMore load on CPU
W

load imbalance area load imbalance area

Fig. 1. Introduce load imbalance factor W to describe load balance area and load
imbalance area (Color figure online)

When the program is in the load imbalance area, adjust the CPU and GPU
frequencies according to the load balance adjustment function Ff to make the
program in the load balance area again.

(fCPU , fGPU ) ← Ff (fCPU , fGPU ,Wt) (5)

When W > γ, the workload on GPU side is heavier, the function Ff increases
the GPU frequency fGPU or decreases the CPU frequency fCPU , where fGPU

base ≤
fGPU ≤ fGPU

max , fCPU
base ≤ fCPU ≤ fCPU

max , as follows.
⎧
⎨

⎩

fGPU ← fGPU + ΔfGPU , if (fGPU + ΔfGPU ≤ fGPU
max )

fCPU ← fCPU − ΔfCPU , else if (fCPU − ΔfCPU ≥ fCPU
base )

(fCPU , fGPU ) unchanged, else

(6)

When W < γ, the workload on CPU side is heavier, the function Ff increases
the CPU frequency fCPU or decreases the GPU frequency fGPU . The overclock-
ing range is the same as before and the details are as follows.

⎧
⎨

⎩

fCPU ← fCPU + ΔfCPU , if (fCPU + ΔfCPU ≤ fCPU
max )

fGPU ← fGPU − ΔfGPU , else if (fGPU − ΔfGPU ≥ fGPU
base )

(fCPU , fGPU ) unchanged, else

(7)

3.2 Description of AOA

The flowchart of the Adaptive Overclocking Algorithm (AOA) is shown in Fig. 2.
Among them, the variable power upper bound factors on CPU and GPU are
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denoted as (kCPU
t+1 , kGPU

t+1 ). Based on the tth overclocking cycle CPU and GPU
usage ratio UCPU

t and UGPU
t , kCPU

t+1 and kGPU
t+1 are updated on CPU and GPU,

respectively. (corresponding to Factor 1, represented by blue and yellow colors
in Fig. 2).

The gray box part is dynamic overclocking under variable power upper bound
power control. On the basis of the normal CPU and GPU overclocking (repre-
sented by blue and yellow colors respectively), the frequency values at both CPU
and GPU are further updated according to the load balance factor Wt (fCPU

t+1 ,
fGPU
t+1 ), that is, CPU-GPU cooperative overclocking (corresponding to Factor 2,

blue and yellow mixed colors).

Fig. 2. Flow graph of the adaptive overclocking algorithm. (Color figure online)

The detailed description of the algorithm sees Algorithm 1.
Dynamic overclocking will cause additional time overhead. We evaluate the

time overhead incurred by one overclocking operation or frequency scaling oper-
ation. Manually insert N times of overclocking or frequency scaling operations,
then run the same program, and get the execution time of the program with the
N times of overclocking, denoted as T . The default time of the program without
overclocking is denoted as T0. Comparing T and T0 can obtain the additional
time overhead due to the N times of overclocking or frequency scaling opera-
tions. Finally, the time overhead for a single overclocking or frequency scaling is
calculated that is about 4 ms.
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Algorithm 1. Adaptive Overclocking Algorithm

Input: program, k0, P
CPU/GPU
base , f

CPU/GPU
base , f

CPU/GPU
max , ΔfCPU/GPU .

Output: kt, f
CPU/GPU
t (t = 1, 2, 3..., tend).

1: t ← 1, kt ← k0;
2: for each overclocking cycle t (t = 1, 2, 3, ..., tend) do

3: Sample data: U
CPU/GPU
t , P

CPU/GPU
t , f

CPU/GPU
t , Wt;

4: Output kt and f
CPU/GPU
t ;

5: Update Power Upper Bound Factor k
CPU/GPU
i+1 ←

Fk(k
CPU/GPU
0 , k

CPU/GPU
t , U

CPU/GPU
t );

6: if (P
CPU/GPU
t ≤ k

CPU/GPU
t × P

CPU/GPU
base ) then

7: f
CPU/GPU
t+1 ← f

CPU/GPU
t + ΔfCPU/GPU ;

8: else
9: f

CPU/GPU
t+1 ← f

CPU/GPU
t ;

10: end if
11: (fCPU

t+1 , fGPU
t+1 ) ← Ff ((fCPU

t , fGPU
t ), Wt);

12: end for
13: return kt, f

CPU/GPU
t

4 Experimental Results and Analysis

4.1 Experiment Environment

Heterogeneous Platform Hardware Environment. The experiments are
carried out on two CPU-GPU heterogeneous platforms, called platform A and
platform B, respectively. The specific configuration is shown in Table 1.

Table 1. Configuration parameters of platforms A and B

Environment Platform A Platform B

CPU GPU CPU GPU

Processor type Intel� Xeon E5-2600 v3 NVIDIA� Tesla K80 Intel� CoreTM i9-10920X NVIDIA� GeForce RTX 2080Ti

Frequency 2.6 GHz 575 MHz 3.5 GHz 1455MHz

Power 105W 150 W 165 W 285W

#cores 10 2496 12 4352

#CPU (#GPU) 2 4 1 2

Hyperthreading Disable – Disable –

Auto-boost Supported Supported Supported Not available

Software Environment

Dataset and Benchmark. As for data set, this article uses ImageNet [9], a very
famous data set in the field of image vision (CV). ImageNet is a recognition sys-
tem that simulates human beings and is currently the world’s largest database in
the field of image recognition. After being proposed in 2009, ImageNet triggered
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the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge), the most
influential competition in the field of deep learning in the following years.

As for benchmark, this article has selected several classic CNN models [27]
that have won the previous ILSVRC competitions, including alexnet [19], resnet
[13] and vgg [28]. The specific program code is officially provided by pytorch on
GitHub [23].

Monitoring Tools. On heterogeneous platforms, the power and performance indi-
cators on CPU and those on GPU need to be monitored separately.

The power of the CPU is monitored by the dstat [1] tool. dstat allows
users to view all your system resources in real time, and provides detailed and
selective information, such as power/energy-pkg. The performance monitoring
counters (PMC) of the CPU is monitored by perf [2]. perf is an analyzer tool
that can abstract CPU hardware differences in Linux performance measurement
and provides a simple command line interface based on the perf events interface
exported by the latest version of the Linux kernel.

The performance and power of the GPU are monitored through the NVIDIA
System Management Interface (nvidia-smi [3]). nvidia-smi is a command line
utility, based on the NVIDIA Management Library (NVML), designed to help
manage and monitor NVIDIA GPU devices.

Parameter Settings. According to the AOA in Fig. 2, the parameters involved
in the paper mainly include the variable power upper bound factor k, the load
imbalance threshold γ and the frequency gear Δf . In the experiment, k0 = 1.1,
and γ = 0.2.

Table 2. Frequency gear settings of platforms A and B

Gears Platform A (MHz) Platform B (MHz)

CPU ΔfCPU GPU ΔfGPU CPU ΔfCPU GPU ΔfGPU

0 2100 – 575 – 2700 – 1350 –

1 2200 100 614 39 2800 100 1365 15

2 2300 100 653 39 3000 200 1380 15

3 2400 100 692 39 3200 200 1395 15

4 2500 100 732 40 3300 100 1410 15

5 2600 100 771 39 3500 200 1425 15

6 – – 810 39 – – – –

7 - – 849 39 – – – –

The setting of frequency gear depends on the support of CPU and GPU
hardware platform (see Sect. 4.1). For CPU frequency modulation, Intel pro-
vides the official overclocking tool XTU [16] for Intel Turbo Boost Technology.
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However, the manual mentions that XTU only supports consumer-level prod-
ucts, not enterprise-level servers. The CPU frequency is set by the ‘cpupower
frequency-set’ command.

For CPU frequency setting, Platform A uses 1350 MHz as the default CPU
frequency, and sets up five CPU frequencies at 100 MHz intervals as overclocking
options; Platform B uses 2.7 GHz as the default CPU frequency, and sets it
upwards [2.8 GHz, 3.0 GHz, 3.2 GHz, 3.3 GHz, 3.5 GHz] as CPU overclocking
options.

For GPU frequency setting, nvidia-smi provides a list of core frequencies
supported by the GPU. Platform A uses 575 MHz as the default GPU frequency,
and sets up seven GPU frequencies at an interval of about 39 MHz as overclocking
options; Platform B uses 1350 MHz as the default GPU frequency, and sets up
seven frequencies at 15 MHz intervals as overclocking options.

In summary, we set the CPU/GPU frequency modulation gear Δf in the
experiment as shown in Table 2.

Comparisons. Other methods compared to the AOA method are shown below.

default: The default frequency is fixedly set to gear 0 in Table 2.
staticmax: The staticmax frequency is fixedly set to the max gear in Table 2.
staticbest: The staticbest frequency is fixedly set by running the program at
each frequency combination once, and selecting the configuration correspond-
ing to the result with the best energy efficiency as the staticbest frequency.
auto: The automatic frequency is set by official overclocking tools, XTU [16]
for Intel Turbo Boost Technology and nvidia-smi for GPU overclocking.

4.2 AOA Overall Result

This section compares the results of AOA and default, and gives the AOA on
utilization UCPU/GPU , power PCPU/GPU , and frequency fCPU/GPU result of
platform A. In this chapter, the default CPU and GPU frequency is set to gear
0 in Table 2.

On platform A, the result of alexnet is shown in Fig. 3, the result of resnet
is shown in Fig. 4, and the result of vgg is shown in Fig. 5. The two semi-axes of
the vertical axis in the figure are both positive axes, the upper half represents
the result on the GPU side, and the lower half represents the result on the CPU
side.

Taking resnet as an example in Fig. 3. From the perspective of change trend,
due to the design of epoch in the CNN algorithm, its utilization and power reflect
periodicity in the time dimension. Comparing the results of AOA (solid black
line) and default (dashed gray), we can find that the utilization value of a single
epoch in alexnet has little change (in Fig. 3-a); but in terms of running time,
AOA is overall shorter than default. From Fig. 3-b, it can be further seen that
the change trend of power and utilization is consistent, and the power curve of
AOA is slightly higher than the default. This increase in power is caused by the
increase in frequency.
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Fig. 3. UCPU/GPU , PCPU/GPU and fCPU/GPU for alex in default frequency and AOA
on platform A.

Fig. 4. UCPU/GPU , PCPU/GPU and fCPU/GPU for resnet in default frequency and
AOA on platform A.

Figure 3-c shows the adaptive dynamic adjustment effect of AOA on fre-
quency. Corresponding to the utilization rate and power diagram, it can be found
that when the utilization rate and power increase, AOA automatically increases
the frequency according to the algorithm flow (Fig. 2). When the utilization rate
and power decrease, the AOA automatically increases the frequency. Adapt to
lower frequency.

On platform A, comparing AOA and default, the performance of alexnet is
increased by 7.8%, and the energy is reduced by about 11%; the performance of
resnet is increased by 8.3%, and the energy is increased by about 0.2%; the per-
formance of vgg is increased by 16.1%, and the energy is reduced by 2.5%. The
experimental results have reached the expected goal of the algorithm design,
which is to improve the performance under the constraint of constant total
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Fig. 5. UCPU/GPU , PCPU/GPU and fCPU/GPU for vgg in default frequency and AOA
on platform A.

energy. It is worth noting that the reduced energy can actually be used to further
improve performance, and the overclocking frequency supported by the platform
in the experiment has reached the upper bound.

Due to space limitations, the results on platform B are shown in Table 4.
On platform B, it is difficult to increase energy efficiency because the power of
NVIDIA GeForce RTX 2080Ti increases rapidly when the frequency overclocks
slightly. Comparing AOA with default, even though the average performance is
increased by 1.5%, and the average energy is increased by about 3.5%, AOA
performs better in constraining total energy compared to max frequency.

4.3 Comparison with Other Methods

Platform a Comparison Results. This section compares the energy and
performance between AOA and other methods, including default (frequency with
gear 0), static max frequency (staticmax), static best frequency (staticbest) and
automatic overclocking (auto).

The detailed comparison result on platform A is shown in Table 3. The
calculation of Energy ‘savings’ and Time ‘improvement’ in Table 3 is as
follow:savings =

(
1 − Emethod

Edefault

)
×100%; improvement =

(
1 − Tmethod

Tdefault

)
×100%.

As for comparison with the maximum frequency, the method for determining
the maximum frequency is to set the maximum frequency on the CPU side and
GPU side respectively.

As for comparison with the static optimal frequency, the method for deter-
mining the static optimal frequency is: according to setting multiple sets of static
CPU-GPU frequencies, a set of results with the best performance under the con-
straint of not increasing the total energy is obtained. According to experimental
results, in static frequency modulation, when the frequencies on both CPU and
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GPU are set to the maximum value, the performance improvement goal can be
best met under the energy constraint.

Moreover, we compares the energy efficiency of AOA and automatic over-
clocking technology of CPU-GPU heterogeneous platforms. The method of auto-
matic overclocking is: turn on Intel Turbo Boost Technology [16] on CPU, and
turn on Nvidia GPU Boost Technology [22] on GPU.

Table 3. Comparison of AOA and other methods on platform A

AOA vs Others alexnet resnet vgg AVE

Energy (J) [savings] Default 366068.37 403126.65 438716.4 402637.14

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 339484.11 430984.6 448662.53 406377.08

[7.26%] [−6.91%] [−2.27%] [−0.64%]

staticbest 339484.11 403126.65 431870.19 391493.65

[7.26%] [0.00%] [1.56%] [2.94%]

auto 358028.78 419412.02 460568.18 412669.66

[2.20%] [−4.04%] [−4.98%] [−2.27%]

AOA 326077.16 403948.64 428037.8 386021.20

[10.92%] [−0.20%] [2.43%] [4.38%]

Time (s) [improvement] Default 888 908 1002 932.67

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 728 822 779 776.33

[18.02%] [9.47%] [22.26%] [16.58%]

staticbest 728 908 832 822.67

[18.02%] [0.00%] [16.97%] [11.66%]

auto 723 755 779 752.33

[18.58%] [16.85%] [22.26%] [19.23%]

AOA 819 833 841 831.00

[7.77%] [8.26%] [16.07%] [10.70%]

Freq (MHz) [fCPU ,fGPU ] Default [2100,575] [2100,575] [2100,575] –

staticmax [2600,849] [2600,849] [2600,849] –

staticbest [2600,849] [2100,575] [2400,771] –

Auto [Turbo Boost, GPU Boost]

AOA Dynamic adjust

Platform B Comparison Results. The detailed comparison result on plat-
form B is shown in Table 4.
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Table 4. Comparison of AOA and other methods on platform B

AOA vs Others alexnet resnet vgg AVE

Energy (J) [savings] Default 140507.8 172697.6 329068 214091.13

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 141491.1 186065.9 338351 221969.33

[−0.70%] [−7.74%] [−2.82%] [−3.75%]

auto Not available

AOA 143051.8 179545.8 342651 221749.53

[−1.81%] [−3.97%] [−4.13%] [−3.30%]

Time (s) [improvement] default 606 532 1106 748.00

[0.00%] [0.00%] [0.00%] [0.00%]

staticmax 588 522 1069 726.33

[2.97%] [1.88%] [3.35%] [2.73%]

auto Not available

AOA 600 533 1077 736.66667

[0.99%] [−0.19%] [2.62%] [1.14%]

Freq (MHz) [fCPU , fGPU ] Default [2700,1350]

staticmax [3500,1455]

Auto Not available

AOA Dynamic adjust

Similar to the experimental setup of platform A, we also compared the effects
of default, auto, staticmax and AOA of CNNs on platform B. We got the best
results when using vgg as a neural network model. Compared with the bench-
mark setting, AOA has a performance improvement of 2.62% but caused a 4.13%
increase in energy consumption; on the alexnet network, AOA reduces energy
by 1.81%, but it brings a 1% performance loss; AOA does not work well on
resnet and does not cause performance improvement, but it increases energy
consumption by 3.97%.

As a result, the energy efficiency optimization effect of the AOA algorithm on
platform A is better than that on platform B. Besides CPU itself, there are many
factors that determine the performance of the CPU, such as the speed of the hard
disk, the size of the memory, and the data throughput of the interconnection net-
work, are all important factors that restrict the performance of the processor. As
a server platform, platform A has higher reliability and performance of matching
facilities than platform B, which is a computer host. Therefore, the performance
improvement from overbanding is better than that of platform B. And the CPU
and GPU power consumption of platform A is lower than that of platform B, as
shown in the Table 1, the impact of overclocking on power consumption is lower
than that of platform B. Therefore, the energy efficiency optimization effect of
platform B is not as good as that of platform A.
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5 Discussion for Key Factors

This section considers the evaluation of the key factors involved in AOA (see
Sect. 3.1). Consider the energy constraint and performance improvement effect
of the AOA algorithm when the dynamic power upper limit factor k and the
load imbalance factor W change.

5.1 Impact of Factor 1: The Power Upper Bound Must Be
Dynamic, Not Static

This section shows that the dynamic variable power upper limit k is necessary
to meet the constraint of no increase in total energy. The variable power upper
limit factor defined by AOA is based on the initial value k0, and changes within a
certain range according to the variable power upper bound function Fk according
to the Ut obtained during the sampling period. The result is shown in Table 5.

Table 5. Evaluation on Parameter k

Parameter k alexnet resnet vgg

Energy(J) [savings] Default 366068.4 403126.6 438716.4

[0.00%] [0.00%] [0.00%]

k = 1.1 382594.0 437027.9 457669.4

[−4.51%] [−8.41%] [−4.32%]

k = 1.15 362765.6 436204.3 458734.5

[0.90%] [−8.20%] [−4.56%]

aoa 326077.2 403948.6 428037.8

[11.92%] [−0.20%] [2.44%]

Time(s) [improvement] Default 888 908 1002

[0.00%] [0.00%] [0.00%]

k = 1.1 862 861 825

[2.70%] [4.19%] [16.67%]

k = 1.15 819 833 841

[2.93%] [5.18%] [17.66%]

aoa 837 835 816

[7.77%] [8.26%] [16.07%]

5.2 Impact of Factor 2: Overclocking at both Ends of the CPU
and GPU Must Be Coordinated, and Real-Time Load Balancing
Must be Considered

The load imbalance factor W defined by AOA mainly affects the result of AOA
frequency modulation through the function Ff . According to the formula 5 of
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the function Ff , when the maximum/small frequency changes, it will affect the
frequency modulation direction of AOA for load imbalance. In the experiment,
the default frequency is always used as f

CPU/GPU
min . When f

CPU/GPU
max is set to a

small value, f
CPU/GPU
t is easier to reach the upper limit judgment condition, and

then the direction of further frequency modulation is changed from increasing
the local frequency value to decreasing Frequency value at the other end. The
influence of the maximum frequency change is shown in Table 6.

Table 6. Evaluation on parameter fmax

Parameter [fCPU
max ,fGPU

max ] alexnet resnet vgg

Energy(J) [savings] Default 366068.4 403126.6 438716.4

[0.00%] [0.00%] [0.00%]

AOA[2400,771] 395969.9 432592.5 454511.72

[−8.16%] [−7.31%] [−3.60%]

AOA[2600,849] 326077.2 403948.6 428037.8

[11.02%] [−0.20] [2.44%]

Time(s) [improved] Default 888 908 1002

[0.00%] [0.00%] [0.00%]

AOA[2400,771] 898 867 824

[−1.13%] [4.51%] [17.76%]

AOA[2600,849] 819 833 841

[7.77%] [8.25%] [16.07%]

6 Conclusion

Although GPUs have been used to accelerate various convolutional neural net-
work algorithms with good performance, the demand for performance improve-
ment is still continuously increasing. CPU/GPU overclocking brings opportuni-
ties for further performance improvement in the CPU-GPU heterogeneous plat-
form. How to effectively constrain the total energy to remain roughly unchanged
during the CPU/GPU overclocking is a key issue in designing adaptive over-
clocking algorithms.

This paper proposes an Adaptive Overclocking Algorithm (AOA) on the CPU-
GPU heterogeneous platform to achieve the goal of performance improvement
while the total energy remains roughly unchanged. AOA uses the function Fk

to describe the variable power upper bound, which embeds real-time CPU and
GPU usage information of the program, and introduces a load imbalance factor
W to realize the CPU-GPU coordinated overclocking. Through the verification
of a convolutional neural network program on two CPU-GPU heterogeneous
platforms, AOA achieved an average of 10.7% performance improvement, while
4.4% energy saved on platform A. Also, we compared AOA with other three
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methods, including programs with static max frequency, programs with static
best frequency and automatic overclocking. The comparison results show that
AOA performs the best with regard to the goal of improving performance while
constraining total energy.
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Abstract. Graph analytics plays a significant role in various applica-
tion domains. However, the performance of graph analytics is limited by
the inefficiencies of the cache hierarchy. In recent years, plenty of works
focus on eliminating the irregular data accesses to accelerate graph ana-
lytics. However, we find that even regular data accesses cannot fully uti-
lize cache hierarchy because current cache management is independent
of execution characteristics. To this end, we propose GEM, a Graph-
specialized Execution-aware cache Management at the L1D cache. GEM
perceives from execution patterns in graph analytics and exploits cus-
tomized cache management for regular data accesses without any pre-
processing phase. More specifically, GEM identifies when the regular data
accesses will occur and employs a length-aware fetch and reuse-aware
replacement accordingly. We implement GEM on a popular multi-core
simulator and evaluate the performance on various algorithms using sev-
eral large real-world graphs. The result shows that GEM outperforms the
state-of-the-art graph-specialized cache management by 21.1% on average
and up to 44.5% in the best case, with up to 66% reduction of expensive
off-chip memory accesses.

Keywords: Graph analytics · Cache management · Fetch ·
Replacement

1 Introduction

Graph analytics is a vital component in many application domains such as social
network analysis [16,23,31,43,45] and computational biology [8,34]. For exam-
ple, there exist an average of 1.45 billion active users on Facebook every day [20].
By encoding each user as a vertex and the relationship between users as an edge,
Facebook has established a super-large social network graph and provided sev-
eral interfaces to complete graph-relevant analysis such as friend recommenda-
tion [39], advertisement promotion [1], and purchase intention prediction [12].
For another example, in the biological field, Boolean model [27] expresses each
gene as a vertex, encodes the attributes carried within the gene into the vertex
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 273–292, 2023.
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state value, and connects genes following their causation. In this way, Boolean
model predicts the connections between unknown gene points.

However, graph analytics suffers from poor performance due to the under-
utilized cache hierarchy. On the one hand, graph processing algorithms produce
one data access, which usually reads or writes 4− or 8−byte data, less than
every ten instructions [32]. Such a low compute-to-computation ratio makes the
performance of graph analytics limited by the efficiency of the cache hierarchy.
On the other hand, on-chip caches cannot store real-world graphs which con-
tain millions of vertices and edges. Intensive irregular memory accesses existing
in graph applications magnify the impact of frequent cache misses. According
to [4], during 45% of the total execution cycles, the core has to stall and wait for
data to be returned from DRAM, indicating that cache hierarchy is underutilized
and thus hurts the graph analytics performance.

Hardware-based optimization has always been a hot topic in the field of graph
analytics. Most prior schemes [3,14,32,33,35,44,46,47] focus on eliminating the
irregular data accesses, improving their locality, and reducing expensive off-chip
memory traffic. For example, GRASP [14] and P-OPT [3] evict the cachelines
in LLC with a lower reuse possibility. PHI [33] and GraphPulse [35] coalesce
multiple irregular data accesses if they target to the same vertex. However, they
paid less attention to other data accesses, which were always thought to be
cache-friendly.

In our work, we observe that the cache hierarchy is not perfect-performed
for regular data accesses because current cache management is unaware of the
execution characteristics in graph analytics. The execution can be classified into
three phases: the Neighbor-Locating phase, the Neighbor-Scanning phase, and
the State-Update phase. Although data accesses during the Neighbor-Scanning
phase are regular, current cache hierarchy can be further optimized by learn-
ing from the Neighbor-Locating phase and performing execution-aware cache
management.

To this end, we propose GEM, a Graph-specialized Execution-aware cache
Manegement, which learns from execution patterns in graph analytics and
exploits the synergy between cache managements and execution characteristics.
GEM contains a length-aware fetch policy and a reuse-aware replacement policy.
The length-aware fetch policy first recognizes the number of cachelines that will
be required in the future. Then the policy sends a memory request with a required
number to DRAM directly, which loads the specified number of cachelines from
DRAM to L1D. The reuse-aware replacement policy initializes the reuse times
when inserting a cacheline and updates reuse times upon each L1D hit. When
evicting a cacheline, the replacement policy chooses the cacheline whose reuse
times is 0, which indicates that this cacheline will no longer be accessed.

To summarize, our contributions are as follows:

– We quantity the inefficiencies of current cache management for regular data
accesses and analyze the reasons.

– We propose GEM, a graph-specialized execution-aware cache management
strategy. GEM contains an L1D fetch and replacement policy that collabo-
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rates with graph application execution details, which reduces DRAM accesses
and improves cache hierarchy utilization.

– We implement GEM on a simulator and evaluate the performance on various
graph applications. GEM improves the performance by 21.1% on average (and
by up to 44.5%) compared with the state-of-the-art cache management, and
reduces expensive off-chip memory traffic by 17.8% on average (and by up to
66%).

The rest of the paper is organized as follows. In Sect. 2, we introduce the
background of graph analytics. Sect. 3 discusses the motivation of our work.
Sect. 4 illustrates the schemes of our proposed GEM. In Sect. 5, we character-
ize the methodology used in GEM. The performance and related analysis are
provided in Sect. 6. Several related works are introduced in Sect. 7. Finally, we
conclude our work in Sect. 8.

2 Background

2.1 Graph Processing Models

Most graph analytics adopts pull- [6,40] or push-based [7,38] processing models
to traverse the entire graph and update one vertex’s state value according to its
neighbors’ state values under specific functions.

In push-based models, one source vertex broadcasts its own state value S
to its outgoing neighbors. Then each outgoing neighbor performs a user-defined
function φ utilizing S and its previous state value N ′ to generate a new state
value N , as illustrated in Eq. 1. In pull-based models, one destination vertex
collects the state values of all incoming neighbors. Then the destination vertex
modifies its state value upon the accumulated influence.

N = φ(S,N ′) (1)

The only difference between the two models is that push-based model
updates destinations’ state values following outgoing edges while pull-based
model updates sources’ state values following incoming edges. Both the mod-
els run iteratively until convergence. We will take the push-based computation
model as an example in our next discussion.

2.2 Graph Representation

As the scale of the real-world graphs becomes larger and the sparsity becomes
higher, Compressed Sparse Row (CSR) format becomes a widely used storage-
efficient representation to encode graphs [6,14,28,32,38].

As shown in Fig. 1, one graph allocates three arrays, i.e., Offset array, Neigh-
bor array, and State array, to maintain outgoing neighbors and information car-
ried by each vertex. For each vertex, the Offset array holds an 8-byte pointer
pointing to its first outgoing neighbor in the Neighbor array, which records an
edge from source to destination. The Neighbor array stores all edges in the form
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Fig. 1. Compressed sparse row representation.

of destination vertex IDs, and edge-weighted values are stored here as well for
weighted graphs. The State array holds the current state value for each vertex,
which usually occupies 4- or 8-byte storage space. In the rest of the paper, we
call cachelines from the Offset array as the offset cachelines, cachelines from the
Neighbor array as the neighbor cachelines, and cachelines from the State array
as the state cachelines.

2.3 Graph Analytics Execution Phases

Corresponding to three arrays in Fig. 1, the execution of graph analytics can be
classified into three phases: the Neighbor-Locating phase, the Neighbor-Scanning
phase, and the State-Update phase. The Neighbor-Locating phase identifies
the start and end addresses for Neighbor-Scanning phase. Then the Neighbor-
Scanning phase obtains all outgoing neighbor IDs locating within the start and
end addresses. Finally, the State-Update phase updates outgoing neighbor’s state
value according to neighbor IDs one by one.

Taking v_2 as a source vertex, during the Neighbor-Locating phase, the
graph application reads v_2 and v_3 in the Offset array to identify the first
and last outgoing neighbors of v_2 (i.e., the fourth and the sixth entries in the
Neighbor array). Then during the Neighbor-Scanning phase, the graph applica-
tion reads the adjacent elements in the Neighbor array to obtain all outgoing
neighbor IDs of v_2 (i.e., 0, 3, and 4). Finally, during the State-Update phase,
the graph application updates the state values of outgoing neighbors (i.e., v_0,
v_3, and v_4) in the State array following Eq. 1.

3 Motivation

In this section, we first explore data accesses contributions caused by the
three phases mentioned above. Then we investigate the under-utilization of cur-
rent cache management and make an in-depth analysis. Finally, we propose
two opportunities to guide GEM. The experimental platform and more graph-
relevant details can be found in Sect. 5.

3.1 Data Accesses Breakdown

We classify data accesses into three types based on which phase it occurs. Notic-
ing that during the Neighbor-Locating phase, all data accesses target to the
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Fig. 2. Data access breakdown from different phases in L1D.

Offset array, we name them offset accesses. The other two types are neighbor
accesses and state accesses accordingly.

Figure 2 illustrates the data accesses breakdown in L1D. It is obvious that
neighbor accesses and state accesses take the most portion of the total L1D
accesses, which are about 41.4% and 58.1% separately. On the other hand, off-
set accesses occupy only 0.5% of the total L1D accesses averaging across all
data points. This is because that the average degrees (i.e., the average neigh-
bor numbers) in the real-world graphs are generally large. Once determining the
neighbor IDs’ range of one source vertex, graph processing algorithms generate
a large amount of neighbor accesses and state accesses without any further offset
accesses until updating all neighbors’ state values.

Because of the huge percentage gap between different data accesses, it is
worth to focus on neighbor accesses and state accesses instead of offset accesses.

3.2 Underutilized Cache Hierarchy

If a graph is stored in the CSR format, the locality characteristics of neigh-
bor accesses and state accesses are distinct. Neighbor accesses appear to exhibit
a high spatial locality because the neighbor IDs are stored contiguously and
sequentially in the Neighbor array. However, state accesses are much more ran-
dom and suffer from poor locality in the cache hierarchy. Therefore, plenty of
works [3,14,32,33,35,44,46,47] focus on eliminating the irregular state accesses
and hence accelerating graph analytics.

To investigate cache hierarchy utilization for regular data accesses, we profile
cache miss ratio of neighbor accesses. As indicated in Fig. 3, about 6.8% of the
total neighbor accesses are missed in L1D. In the worst case of application SSSP,
L1D neighbor accesses miss ratio is as high as 13.4% averaging across all input
graphs, resulting in significant performance loss. Moreover, the average miss
ratios of neighbor accesses in L2 and LLC are all more than 99%, denoting that
once the neighbor data cannot be found in L1D, it will be hardly found in L2
and LLC.

The reason is that, although neighbor accesses are sequential within each
cacheline, there does not exist an efficient way to fetch enough cachelines from
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Fig. 3. Cache hierarchy miss ratio for neighbor accesses.

lower-level storage. For example, in Fig. 1, assuming that in the Neighbor array,
v_0 and v_3 are stored in one cacheline while v_4 is stored in the next cacheline.
To access v_4, one L1D miss occurs because the core does not know how many
cachelines will be required to obtain all neighbor IDs of the source vertex v_2,
and the cacheline maintaining v_4 cannot be found in L2 or LLC neither. It is
more attractive to fetch all neighbor data that will be accessed before entering
the Neighbor-Scanning phase, motivating us to design an intelligent fetch policy
to improve the utilization of cache hierarchy for neighbor accesses.

Another problem with current cache management comes from the replace-
ment policy. As introduced in Sect. 2.3, the core reads neighbor IDs during
the Neighbor-Scanning phase for one-time, which means that once one neighbor
cacheline is read out, that cacheline will not be used again. On the contrary,
state cachelines may be accessed multiple times because one destination vertex
may have several neighbors. In such a case, an efficient replacement policy should
know exactly which cacheline will not be accessed and evict that cacheline imme-
diately. However, the conventional LRU cache replacement policy just records
the history of each cacheline, but cannot predict the future. To avoid cache pollu-
tion and save space for highly-reused cachelines (i.e., state cachelines), we intend
to propose a replacement policy based on future reuse times.

3.3 Opportunity

Motivated by the inefficiencies of current cache management, combining with
the execution characteristics of graph analytics, we propose the following two
opportunities in GEM for neighbor accesses:

– A length-aware fetch policy for L1D. Through perceiving the Neighbor-
Locating phase, we can calculate how many cachelines will be required during
the Neighbor-Scanning phase to obtain all neighbor IDs. A required number of
cachelines should be fetched from lower-level storage by one memory request.
Moreover, because neighbor cachelines can not be found in L2 or LLC once
missed in L1D, there should exist a direct path between L1D and DRAM to
allow neighbor data be fetched quickly and enable L2 and LLC maintaining
other highly-reused data.
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– A reuse-based replacement policy for L1D. Because neighbor cachelines are
accessed only once, an intelligent replacement policy should identify when a
neighbor cacheline has been read out. When evicting a cacheline, the replace-
ment policy should select finished neighbor cachelines to save space for highly-
reused cachelines.

– Both the fetch and replacement policies are connected with the execution
characteristics of graph applications. Overall, GEM learns necessary infor-
mation from the execution patterns and guides the cache management.

4 GEM Design

4.1 Length-Aware Fetch Policy

To reduce the high L1D miss ratio and improve the cache utilization during
the Neighbor-Scanning phase, we propose a length-aware fetch policy in GEM.
First, the policy learns how many neighbor cachelines will be required to obtain
all neighbor IDs of current source vertex from the Neighbor-Locating phase.
Then, all neighbor cachelines are packed into one super-block and returned to
L1D, avoiding frequent L1D misses and abundant data accesses. In addition,
motivated by the observation that neighbor cachelines can hardly be found in
L2 or LLC once missed in L1D, the length-aware fetch policy enables super-block
to be fetched from DRAM directly instead of inserting in L2 or LLC, eliminating
the considerable energy consumption for lower-level cache tag lookups. Next, we
will describe the implementation details.

Identification. To complete the perception, the length-aware fetch policy is
supposed to classify data access types (i.e., offset access, neighbor access, and
state access) and execution phases instantly. Fortunately, the two identifica-
tions are bounded together (e.g., offset accesses only occur during the Neighbor-
Locating phase).

In our design, we utilize the CSR storage format to track which array a data
access targets to. In the graph software framework, we insert multiple interfaces
at the location where the framework allocates memory space for the three arrays.
Once the framework loads an input graph, the interfaces sends the start and end
addresses to the core and the core records addresses in several 64-bit registers.
As a result, the core maintains six addresses before the application execution.
During the graph analytics execution, when the core sends a memory request,
it compares the target address with the six registers to find which array the
request targets to. Such a comparison is quickly because it is completed by the
core. Then each data access are classified based on its target address and thus
the core identifies the execution phases as well.

Perception. To perceive where and how many cachelines to fetch, GEM learns
from offset accesses which have been identified. As introduced in Sect. 2.3, off-
set data determines the start and end locations of neighbor accesses. Once the
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cacheline required by one offset access is loaded into L1D, the core reads two
consecutive pointers stored in that cacheline and knows where and how many
cachelines easily.

For example, in Fig. 4, to perceive necessary knowledge of v_2’s neighbor
cachelines, the core: ❶ reads v_2 in the Offset array and gets the start address
of v_2’s neighbors (i.e., the fourth element in the Neighbor array); ❷ reads v_3
in the Offset array and gets the start address of v_3’s neighbor (i.e., the seventh
element in the Neighbor array); ❸ calculates the number of v_2’s neighbors by
subtraction (i.e., three neighbors). For now, by perceiving the offset data, the
core learns significant information including the first neighbor address (i.e., the
fourth element in the Neighbor array) and the number of neighbors of v_2 (i.e.,
three neighbors).

Fig. 4. Perception of where and how many cachelines are required for v_2’s neighbor
cachelines.

M-Fetch. To efficiently fetch multiple neighbor cachelines, we introduce M-
Fetch, a new memory request with a starting address and cacheline number
knowledge. Because the cache utilization of L2 and LLC is extremely low for
neighbor accesses, we add a direct path between L1D and DRAM to send M-
Fetch request and return neighbor cachelines from DRAM to L1D.

The starting address comes from the perception of offset data. However, the
cacheline numbers are counted by an additional computation, which depends on
neighbor numbers and each neighbor ID’s storage occupancy. For example, each
neighbor ID occupies 8-byte storage and one source vertex has 16 neighbors,
requiring 2 cachelines to maintain all neighbor IDs in the Neighbor array. The
core finishes the calculation, generates the corresponding M-Fetch request, and
sends the request to DRAM.

Insertion. After DRAM receives a request M-Fetch request, it reads the
required number of cachelines from the row buffer and packs them into one
super-block, then sends the super-block back to L1D directly. In such a case, L1D
receives a super-block containing multiple cachelines. L1D inserts each cacheline
into the corresponding set separately based on our reuse-based replacement pol-
icy, which will be introduced in Sect. 4.2.

Architecture and Workflow. Figure 5 and Fig. 6 demonstrate the architec-
ture and workflow of our length-aware fetch policy. First, there exist six address
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registers in the core to identify offset accesses through a quick address compar-
ison. Once an offset access is identified and the corresponding offset cacheline
is loaded into L1D, the core reads two consecutive data in the cacheline and
sends the information to ReqGen module. The ReqGen module is responsible to
generate a M-Fetch request carrying where and how many cachelines knowledge.
Then the ReqGen module sends the M-Fetch request to DRAM directly following
path ❷ in Fig. 5. After DRAM receives a M-Fetch request, it reads the required
number of cachelines from the starting address and packs them into one super-
block, then returns the super-block to L1D directly following path ❷ in Fig. 5.
To simplify the architecture design, the bandwidth of direct path ❷ is set the
same as the original path ❶, so cachelines from one super-block are transferred
sequentially following a fixed bandwidth. Moreover, we set a maximum number
of neighbor cachelines in one super-block (64 shows the best performance in our
experiments). If the total neighbor cachelines of one source vertex exceed the
limitation, the remaining neighbor cachelines will be processed following path ❶
as normal requests.

Fig. 5. Length-aware fetch policy architecture

4.2 Reuse-Based Replacement Policy

To improve L1D cache efficiency, we propose a reuse-based replacement policy
in GEM. The key insight behind the policy is that a neighbor cacheline will not
be used again once all elements are read out. In such a case, a smart replacement
policy should know whether a neighbor cacheline has been finished and evict it
immediately to avoid cache pollution. Moreover, an accurate eviction will also
save space for cachelines that have a chance to be accessed in the future (e.g.,
state cachelines). Figure 7 demonstrates the required bits and workflow of the
reuse-based replacement policy.

Cacheline Identification. Because the reuse-based policy is only valid for
neighbor cachelines, we add an additional bit, Neighbor Bit (as shown in Fig. 7
❶), in L1D tag array to record whether a cacheline is a neighbor cacheline or
not. The Neighbor Bit is set as 1 if the cacheline comes from a super-block.
Otherwise, the Neighbor Bit is set as 0, indicating a non-neighbor cacheline.



282 M. Zou et al.

Fig. 6. Length-aware fetch policy workflow

Initialization and Update. For each neighbor cacheline, the reuse-aware
replacement policy initializes its reuse times when inserting into L1D and
updates the remaining reuse times upon each L1D hit. An additional field is
added in L1D tag array, named Reuse Times (as shown in Fig. 7 ❶).

As shown in Fig. 7 ❷, if a neighbor cacheline is not the last cacheline in a
super-block, it will be accessed totally. For example, if one neighbor ID occu-
pies 8-byte storage, one 64-byte cacheline will be accessed up to 8 times. Such
a neighbor cacheline’s Reuse Times is initialized as 8. The situation is a little
different for the last neighbor cacheline in a super-block. To simplify the replace-
ment logic and minimize the hardware overhead, we initialize the Reuse Times
of the last neighbor cacheline as 4. During the execution, upon each hit access,
L1D reads its Neighbor Bit in the tag array. If this is a neighbor cacheline hit,
L1D reduces its Reuse Times by 1 and updates its last accessed time. Otherwise,
L1D only updates its last accessed time, as shown in Fig. 7 ❸.

Eviction. When needs to evict a cacheline, L1D first searches whether there
exists a neighbor cacheline (i.e., Neighbor Bit is 1) that will not be accessed (i.e.,
Reuse Times is 0). If finds out, L1D evicts that cacheline. Otherwise L1D per-
forms the LRU-based replacement policy. In such a scheme, even if we initialize
the Reuse Times of the last neighbor cacheline from one super-block as 4, it still
will be evicted based on the LRU policy, as shown in Fig. 7 ❹.
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Fig. 7. Reuse-based replacement policy workflow.

5 Evaluation

5.1 Profiling Platform

We use Zsim [37], an execution-driven simulator, to measure performance with
4 OoO cores clocked at 4GHz and a 8MB shared LLC. To simulate memory
behaviors accurately, we extend Zsim with DRAMsim3 [26], a detailed and cycle-
accurate memory model supporting DDR4 protocol. Table 1 lists more configu-
ration parameters. We fast forward the graph loading phase and run 100 million
instructions to warm up cache. Then we mark the Region of Interest (ROI ) in
the code covering only pull- and push-based iterations. We collect status in ROI
for 600 million instructions across all cores, similar to prior work [4].

5.2 Applications

We use five graph algorithms, Breadth-First Search (BFS), Betweenness Central-
ity (BC), Connected Component (CC), PageRank (PR), Single-Source Shortest
Path (SSSP), covering both push- and pull-based computation models, from the
widely used GAP [6] benchmark for our evaluation. Table 2 summarizes all appli-
cations.

5.3 Datasets

For our profiling, we use six real-world graphs detailed in Table 3. These graphs
vary in size and degree distributions but all exceed the LLC capacity. As inputs
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to the graph algorithms, all graphs are encoded in CSR format. We combine the
six real-world graphs with the five classic algorithms, producing 30 workloads in
total, to be used in all evaluations mentioned in this research.

Table 1. System configurations

Core 4 OoO cores, 4GHz clock frequency, 128-entry ROB, 4-wide issue width,
16 MSHRs per core

L1-I/D Cache private, 8-way 32KB per core, 64B cache line, 4 cycles access latency

L2 Cache private, 8-way 256KB per core, 64B cache line, 12 cycles access latency

LLC shared, 32-way 8MB, 64B cache line, 32 cycles access latency

Memory Controller 64-entry read/write queue, FR-FCFS [36] scheduling policy, Open-Page,
address interleaving: rochrababgco

DRAM 4 channels, 2 ranks/channel, 4 bankgroups/rank, 4 banks/bankgroup,
16Gb DDR4-2400 × 8 chips, 8KB row buffer size [19], tRCD/tRAS/tWR
17/39/18 cycles, peak bandwidth 76.8 GB/s

Table 2. Graph applications

Application Brief description Model

BFS [5] Traverses a graph from one root vertex until all neighbors are
accessed and returns a distance array

Push

BC [7,29] Creates an array containing the centrality scores of each vertex to
find the center

Push

CC [41] Labels vertices into disjoint subsets to calculate how many
components exist in the graph

Both

PR Ranks all vertices based on incoming neighbors round by round until
convergence or hit iteration limitation

Pull

SSSP [48] Finds the shortest paths from one source vertex to all other vertices
in a weighted graph

Push

Table 3. Graph datasets

Dataset Abbrv. |V| |E| Ave. Degree

Orkut [25] or 9M 327M 36

Dbpedia [2] db 18M 136M 8

PLD [24] pld 43M 623M 14

Mpi [9] mpi 53M 1963M 37

Twitter [23] tw 62M 1468M 24

uk-2002 [11] uk 134M 261M 2
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Fig. 8. Comparison of Performance. The results are normalized to the baseline design
with LRU cache replacement policy. GEM_F means the application speedup when
only adopting the length-aware fetch policy while GEM utilizes both the length-aware
fetch policy and reuse-based replacement policy.

6 Result

In order to evaluate the effectiveness of GEM, we first show the experimental
results of GEM individually for better comparison. Their performance are com-
pared with existing state-of-the-art hardware optimizations [14,21]. Then, we
quantitatively analyze how GEM effectively improves the performance.

6.1 Performance

We use the Instructions Per Cycle (IPC) to denote the system performance.
Figure 8 summarizes the normalized performance improvement of DRRIP1 [21],
GRASP2 [14], and GEM over the LRU baseline. To prove the performance
improvements of length-aware fetch and reuse-aware replacement separately,
GEM_F denotes the application speedups when only adopting the length-aware
fetch policy while GEM denotes the application speedups when applying both
fetch and replacement managements.

As shown in Fig. 8, using the length-aware fetch policy alone outperforms
the LRU baseline with average speedups for BFS, BC, CC, PR, and SSSP are
6.7%, 9.1%, 5.3%, 26%, and 25.1%, respectively. Overall, the length-aware fetch
policy yields 14.4% average speedup and up to 39.7% in the best case (on PR-or)
over the LRU baseline. On the other hand, using the reuse-aware replacement
policy alone provides an average speedup of 6.6% for BFS, 8.1% for BC, 10.3%
for CC, 7.9% for PR, and 11.5% for SSSP. Among all of the 30 workloads, the
reuse-aware replacement policy yields 8.3% speedup on average and up to 18.7%
in the best case (on BC-pld) over the LRU baseline. Finally, GEM with inte-
grated the length-aware fetch and the reuse-aware replacement policy achieves
1 source code from https://github.com/ChampSim/ChampSim/blob/master/

replacement/drrip.llc_repl.
2 source code from https://github.com/faldupriyank/grasp.

https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl
https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl
https://github.com/faldupriyank/grasp
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Fig. 9. LLC MPKI reduction for DRRIP, GRASP, GEM_F, and GEM over the LRU
baseline. GEM_F means the application speedup when only adopting the length-aware
fetch policy while GEM utilizes both the length-aware fetch policy and reuse-based
replacement policy.

the performance improvement of 13.3% for BFS, 17.3% for BC, 15.6% for CC,
33.9% for PR, and 36.5% for SSSP. Benefiting from the two optimizations, GEM
yields an average speedup of 25% (max 44.8%) over the LRU baseline. Com-
pared with the state-of-the-art graph-specialized cache management GRASP,
GEM improves the performance by 21.1% on average and up to 44.5% in the
best case. As for prior techniques, DRRIP only slightly improves performance
by 2%, and GRASP yields an average speedup of 5% over the baseline. This
is mainly because DRRIP and GRASP can not capture information from the
execution patterns of graph analytics.

6.2 LLC MPKI Reduction

To analyze the reason of performance improvements brought by GEM, we collect
LLC MPKI (Misses Per Kilo Instructions) of different schemes and show the
result in Fig. 9.

Figure 9 demonstrates that the length-aware fetch policy reduces the LLC
MPKI by 12.3%, 5%, 10.9%, 33.9%, and 36.7% on average for BFS, BC, CC, PR,
and SSSP separately. Overall, the length-aware fetch policy reaches an average of
13.4% LLC MPKI reduction compared with the LRU baseline and up to 69.3%
in the best case (on SSSP-uk). The reuse-aware replacement policy reduces the
LLC MPKI by 5.8% for BFS, 7.7% for BC, 9.2% for CC, 5.3% for PR, and 7.3%
for SSSP. As a result, GEM integrated with the length-aware fetch and the reuse-
aware replacement policy reduces the expensive LLC MPKI by 22% on average
over the LRU baseline. When compared with the state-of-the-art GRASP, GEM
also reduces LLC MPKI by 17.8% on average and up to 66% in the best case
(SSSP-uk).

LLC misses reduction indicates a more efficient cache hierarchy. The reasons
behind the LLC misses reduction can be summarized in two aspects:
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– The length-aware fetch policy perceives the number of cachelines that will be
accessed and fetch all neighbor cachelines in one packed super-block. Unlike
prior works [4,42], the length-aware fetch policy focuses on regular accesses
and learns from the execution characteristics. The length-aware fetch policy
is accurate, which will not cause cache pollution. Because one DRAM access
fetches multiple neighbor cachelines, the length-aware fetch policy reduces
the expensive DRAM accesses significantly.

– The reuse-Aware Replacement policy is an intelligent replacement policy for
neighbor cachelines. It initializes each neighbor cachelines reuse times and
updates the times during the execution. So reuse-aware replacement policy
identifies which neighbor cacheline will not be accessed accurately. In such a
way, neighbor cachelines will only occupy a few number of cachelines in L1D,
saving space for cachelines that have a chance to be accessed in the future.

– Overall, the design of GEM is bounded with the execution characteristics
of graph analytics closely. It achieves significant performance improvements
without any pre-processing phase and prediction behaviors. Through perceiv-
ing important knowledge from the execution phases, GEM outperforms the
state-of-the-art schemes.

6.3 Limitations

Although GEM shows significant performance improvements, there exists one
main limitation of GEM. GEM is based on CSR storage format to identify
different access patterns fast and accurately. If a graph is stored in other format
(e.g., sparse matrix), GEM will require a more complex mechanism such as
history table to predict which memory access will trigger GEM. We leave it in
our future work.

7 Related Work

7.1 Architectural Optimizations

GRASP [14] classifies the memory space as the hot vertices region and the
cold vertices region after reordering and guarantees the cachelines from the
hot vertices region to stay longer in cache. P-OPT [3] evicts cachelines based
on the re-reference information of vertices. GRASP and P-OPT reduce cache
misses to improve the application performance. DepGraph [47] dispatches differ-
ent dependency-chains to different cores, allowing efficient asynchronous vertex
state updates on multi-core processors. In this way, DepGraph improves the
locality in private cache. PHI [33] coalesces multiple state updates in cache if
they target to the same vertex and applies the merged state value to the memory
controller together. GraphPulse [35] proposes a graph-specialized accelerator to
coalesce updates in a FIFO queue. PHI and GraphPulse exploit temporal local-
ity and reduce memory traffic through the coalescence. However, they mainly
focus on eliminating the irregular accesses (i.e., state accesses) to speedup the
graph applications. In our work, we prove that optimizing regular accesses (i.e.,
neighbor accesses) can also enhance the performance.
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7.2 Software Optimizations

Software optimizations pre-process the storage space of a graph input instead
of modifying the hardware architecture. Reordering is one of the most popu-
lar and effective scheme to make the graph analytics behavior more friendly
to hardware architectures. The significant basis of reordering is the power law
distribution [15,17], which means that in real-world graphs, a small fraction of
vertices occupy most connections. Reordering schemes re-place these vertices in
continuous memory space to make better use of cache hierarchy. Most reordering
schemes utilize the average degree (i.e., edge number / vertex number) to classify
vertices deserving reordered. HubSort [49] only reorders vertices whose degree is
greater than the average degree while maintains vertices whose degree is lower
than the average degree in there original memory location. Degree-Based Group-
ing (DBG) [13] divides multiple groups and set the degree range for each group.
Then DBG inserts vertices one by one to its corresponding group. Although
reordering scheme shows performance improvements, it requires additional pre-
processing overhead. Moreover, when the graph is too large, the storage space
of reordered vertices exceeds the cache capacity, limiting the effectiveness.

7.3 Cache Bypassing

Adaptive Cache Bypassing [18], Annex Cache [22], and LMP [30] utilize a predic-
tor to determine whether a memory access should bypass the cache. AMB [10]
tracks the history access information for cache blocks, skipping specific cache
layers or bypassing memory requests to DRAM based on the recorded knowl-
edge. Our proposed GEM outperforms the prior works in two ways. On the one
hand, GEM directly utilizes the execution characteristics of graph applications
according to simplified address comparison, and determines whether to send the
requests to DRAM directly or not, which is accurate and avoids the unnecessary
history tracking latency. On the other hand, GEM learns necessary knowledge
from the execution phases and knows how many cachelines will be required in
the future. GEM fetches multiple cachelines in one DRAM accesses, improving
hardware resource utilization.

8 Conclusion

Graph processing plays an essential role in big data applications and is becoming
more and more important. However, prior works mainly focus on eliminating
the irregular memory accesses. In this work, we prove that even regular data
accesses have an optimization space. We propose GEM, which contains a length-
aware fetch policy and a reuse-aware replacement policy. GEM perceives the
execution patterns in graph analytics and learns necessary information from the
execution. The length-aware fetch policy fetches a required number of cachelines
from DRAM directly to avoid frequent L1D misses. The reuse-aware replacement
policy identifies which cacheline will not be accessed in the future and evicts it
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immediately. On a set of graph workloads, GEM improves the performance by
21.1% on average and up to 44.5% over the existing state-of-the-art hardware
optimization.
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Abstract. With cyber attacks becoming more complex and advanced,
a separate intrusion detection system (IDS) is believed to be insufficient
for protecting the whole computer networks. Thus, collaborative intru-
sion detection networks (CIDNs) are proposed aiming to improve the
detection performance by allowing various nodes to share required infor-
mation or messages with other nodes. To defeat insider threats during the
sharing process (e.g., malicious information), trust management is a nec-
essary security mechanism for CIDNs, where challenge-based CIDNs are
a typical example that sends a special kind of message, called challenge,
to evaluate the reputation of a node. The previous work has proven that
challenge-based CIDNs can defeat most common insider threats, but it
may still suffer from some advanced insider threats, e.g., passive message
fingerprint attack (PMFA). In this work, we develop EnergyCIDN, an
enhanced challenge-based CIDN by adopting an energy-aware trust man-
agement model against advanced insider attacks. In the evaluation, we
study the performance of EnergyCIDN under both simulated and practi-
cal Internet of Things (IoT) environments. The results demonstrate that
EnergyCIDN can perform better than many similar schemes in identify-
ing advanced malicious nodes.

Keywords: Intrusion detection · Collaborative network · Insider
attack · Energy consumption · Trust management

1 Introduction

The Internet of Things (IoT) is a network system consisted of sensors, software
and many interrelated computing devices. Various organizations are gradually
adopting IoT devices for more efficient operations, enhanced customer service,
and increased decision-making process [4,5]. The IoT market is expected to rise
to 1.39 trillion by 2026, based on the report from Mordor Intelligence [1]. Such
increase is partially caused by the COVID-19 pandemic, e.g., the need of remote
monitoring, Internet-enabled devices.
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On one hand, the wide adoption of IoT can benefit people’s daily lives and
increase the service quality, such as checking the precise quantity of supplies in
the house. On the other hand, IoT has become one main target platform for
cyber hackers. For instance, a report from VentureBeat revealed that more than
0.9 billion IoT related attacks have been happened in 2021, including DDoS and
phishing [2]. Hence the IoT security market, which aims to promote IoT security
devices and software, is expected to grow from 3.86 billion in 2021 to 5.09 billion
in 2022, and finally achieve 15.06 billion by 2026 [3].

In the current security market, an intrusion detection system (IDS) is one
of the essential security solutions used to protect IoT environments. An IDS
often identifies security threats via either signature-based detection or anomaly-
based detection. The former relies on the signature database while the latter
depends on the accuracy of pre-established normal profile [44]. However, an IDS
is often isolated, which is considered as insufficient when existing cyber attacks
become more complex. For this sake, collaborative intrusion detection networks
(CIDNs)1 are proposed to improve the detection performance by allowing IDS
nodes to share required information/data with other nodes [51].

Unfortunately, CIDNs may suffer from the same insider threats as a dis-
tributed network, where a malicious node can share false information to influence
the network performance. To defend against such kind of attack, trust manage-
ment is an important mechanism. As a typical example, challenge-based CIDNs
can measure the trustworthiness of a node through sending a special type of mes-
sage, called challenge, and judging the received feedback [12]. A line of research
has shown the effectiveness of challenge-based trust management against most
common insider attacks (e.g., newcomer attack, betrayal attack), but it was also
found to be susceptible to advanced insider attacks [25], such as Passive Message
Fingerprint Attacks (PMFA) [21] and Bayesian Poisoning Attacks (BPA) [40].

– PMFA: This is a type of collusion attack, in which several malicious insider
nodes can share the information with each other, and then attempt to respond
maliciously to selected messages.

– BPA: This is a kind of collusion attack, which enables several malicious nodes
to exchange information and model received messages. Then these nodes can
only send a malicious response to those messages whose aggregated appear-
ance probability of normal requests is above the selected threshold.

Contributions. By analyzing these advanced attacks above, we identify that
most of them require the malicious nodes to exchange the received messages
for determining the target message. However, such interactions may increase the
power consumption in an IoT environment. Hence analyzing the power consump-
tion can be helpful for enhancing the performance of challenge-based CIDNs.
Motivated by this observation, in this work, we propose an energy-aware trust
management scheme for challenge-based CIDNs, named EnergyCIDN. Our con-
tributions can be summarized as below.
1 It is also known as distributed intrusion detection system (DIDS) or collaborative

intrusion detection system (CIDS).
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– To enhance the robustness of challenge-based trust management against
advanced insider attacks, we design and develop EnergyCIDN, an energy-
aware challenge-based CIDNs, which can measure the reputation of a node
by considering energy consumption. This is because most malicious nodes
need to send more messages with each other.

– Under EnergyCIDN, we introduce a hybrid trust management model consist-
ing of challenge-based trust, packet-based trust and energy-aware trust. The
hybrid trust model aims to evaluate the trustworthiness of a target node more
accurately and efficiently.

– In the evaluation, we investigate the performance of EnergyCIDN in the
aspects of trust computation and alarm aggregation, under both simulated
and practical network environments. Our experimental results demonstrate
that EnergyCIDN can be more robust against advanced insider attacks, com-
pared with similar trust management schemes.

Paper Organization. Section 2 describes our proposed energy-aware challenge-
based CIDNs with major components and hybrid trust management. Section 3
introduces our experimental setup under both simulated and practical network,
and analyzes the collected results. Section 4 overviews similar research studies
on collaborative intrusion detection. We discuss open challenges and future work
in Sect. 5 and conclude the work in Sect. 6.

2 Our Proposed Approach

This section aims to introduce the energy-aware challenge-based CIDN frame-
work, e.g., the major components and the hybrid trust model including challenge-
based trust, packet-based trust and energy-aware trust.

2.1 Energy-Aware Challenge-Based CIDN Framework

Figure 1 illustrates the high-level view of our energy-aware challenge-based
CIDNs, which consists of several major components: IDS module, collaboration
component, trust management component and P2P communication.

– IDS module can perform the actual detection of various cyber attacks, by
using either signature-based, anomaly-based or hybrid detection methods.

– Collaboration component is mainly responsible for assisting a node in mea-
suring the reputation of a target node by sending out normal requests or
challenges, and collecting the corresponding feedback. As shown in Fig. 1,
node A can send a normal request or a challenge to node B and node C, and
then receive the relevant feedback.

– Trust management component is responsible for evaluating the reputation of
other nodes via a specific trust approach. Challenge-based mechanism is a
kind of trust approach that computes the trust values through comparing
the received feedback with the expected answers. Each node can send out
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Fig. 1. The framework of energy-aware challenge-based CIDN.

either normal requests or challenges for alert (or alarm) ranking. To further
protect challenges, the original work [12] assumed that challenges should be
sent out in a random manner and in a way that makes them difficult to be
distinguished from a normal alarm-ranking request.

– P2P communication. This component is responsible for connecting with other
IDS nodes physically and providing network organization, management and
communication among IDS nodes.

Network Interactions. In a CIDN environment, each IDS node can select its
own partners according to defined policies, and construct a partner list. When a
node wants to join the network, it should firstly apply and get a unique proof of
identity (e.g., a public and a private key pair) via a trusted certificate authority
(CA). In practice, if a node asks for joining the network, it has to send a request
to one nearby CIDN node. Then, a decision can be made based on the acceptance
policy, and a temporary partner list will be available. More specifically, a CIDN
node can send two major types of messages: normal request and challenge.

– A challenge mainly contains a set of IDS alarms, where a testing node can
send these alarms to the tested nodes for labeling the severity of alarms. Since
the testing node knows the alarm severity in advance, a satisfaction level can
be calculated for the tested node, based on the received feedback.

– A normal request is sent by a node, which can be used for performing alarm
aggregation in improving the detection performance of a single detector. The
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aggregation process usually only considers the feedback from highly trusted
nodes. As a response, the corresponding IDS node should send back alarm
ranking as their feedback.

Threat Model. In this work, we focus on two types of insider attacks: 1) common
insider attacks, such as newcomer attack (a malicious node registers a new iden-
tity) and betrayal attack (a trusted node suddenly becomes malicious), which
adopt a maximum harm model (by always trying to send false information); and
2) advanced insider attacks, such as PMFA (a type of collusion attack where
several malicious nodes can identify normal request by exchanging received mes-
sages) and Bayesian Poisoning Attacks (a type of collusion attack where several
malicious nodes can identify normal request via Bayesian modelling).

2.2 Hybrid Trust Management

Challenge-Based Trust. In practice, a CIDN node with the challenge-based
trust management model can send a challenge in an average rate of ε, according
to the requirements. Usually, the rate should be small for those nodes who have
a very high or low trust value. For other nodes, the rate should be high in order
to provide superior confidence in whether the target node is trusted or not. To
ensure the effectiveness of such model, a pseudo random generation process can
be used to send challenges.

Node Expertise. Different detectors may have their own detection superiority.
This work thus accepts three levels of expertise: low (0.1), medium (0.5) and
high (0.95), which can be formed by using the following functions [12,19].

f(p|α, β) =
1

B(α, β)
pα−1(1 − p)β−1

B(α, β) =
∫ 1

0

tα−1(1 − t)β−1dt

(1)

where p (∈ [0, 1]) indicates how much it is possible to figure out an intrusion,
f(p|α, β) describes how to compute the possibility by considering expertise level
of el and difficulty level of dl (∈ [0, 1]). Intuitively, a bigger el can result in a
higher possibility, whereas a bigger dl can decrease the possibility. Generally, α
and β can be computed as below.

α = 1 +
el(1 − dl)
dl(1 − el)

r

β = 1 +
el(1 − dl)
dl(1 − el)

(1 − r)
(2)

where r ∈ {0, 1} represents the prospective result. Given a fixed dl, the detection
performance of a node should depend on its particular level of proficiency. That
is, an expert node should perform better than a non-expert node.
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Node Trust Evaluation. As explained earlier, the ultimate trust value should
rely on how much the received answers satisfy the expected feedback. Based
on former work [12,22], the trust value of a node i according to node j can be
derived as below.

T i,j
ft = (ws

∑n
k=0 F j,i

k λtk∑n
k=0 λtk

− Ts)(1 − x)dc + Ts (3)

where n indicates how many responses (or answers) are received, λ is a factor to
allocate more weight on the recent response, F j,i

k ∈ [0, 1] represents the satisfac-
tion level on the received answer of k (number), and ws is an adaptive weight:

a) ws =
∑n

k=0 λtk

m if the received answers are less than a threshold of m; and b)
ws = 1 if the received answers are larger than m. Then x counts the percentage
of “don’t know” answers received within a given time slot, and dc is a parameter
to control how much punishment should be given.

Packet-Based Trust. This type of trust is computed based on the received
benign packets and the total packets from the target node. It is relatively objec-
tive as compared to the feedback-based trust and is helpful for determining a
trusted route and identifying malicious nodes.

Similar to previous work [30], suppose N packets are sent from an IP address,
of which k packets are proven to be normal. Our main objective is to estimate
the possibility of P (VN+1 = 1|n(N) = k): the status of (N + 1)th packet when
we know N packets are normal. Based on the Bayesian Inference, we can have
the following:

P (VN+1 = 1|n(N) = k) =
P (VN+1 = 1, n(N) = k)

P (n(N) = k)
(4)

We then apply the marginal probability distribution2 and have the following:

P (n(N) = k) =
∫ 1

0

P (n(N) = k|p)f(p) · dp (5)

P (VN+1 = 1, n(N) = k) =
∫ 1

0

P (n(N) = k|p)f(p)p · dp (6)

As no prior information about p is given, we can assume that p is governed
by a uniform prior distribution f(p) = 1, where p ∈ [0, 1]. Hence in terms of
Eq. (2) to Eq. (5), we can have the following:

P (VN+1 = 1|n(N) = k) =

∫ 1

0
P (n(N) = k|p)f(p)p · dp∫ 1

0
P (n(N) = k|p)f(p) · dp

=
k + 1
N + 2

(7)

2 Marginal distribution of a subset of random variables is the probability distribution
of the variables contained in the subset.
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Then the packet-based trust of node i according to node j (denote T i,j
pt ) can

be written as:
T i,j

pt =
k + 1
N + 2

(8)

where k is the amount of received benign packets and N is the total amount of
received packets.

Energy-Aware Trust. Followed by the previous studies [15,46], in this work,
we consider that the energy consumption of node i by sending s-bits of data to
node j at a distance d can be computed as follows:

Esendj =
{

s × Ebit + s × εfs × d2, d < d0
s × Ebit + s × εmp × d4, d ≥ d0

(9)

Then the energy consumption of node j by receiving s-bits data sent from
node i is shown as below:

Ersvj = s × Ebit (10)

where Ebit denotes energy consumption of transmitting one bit by the trans-
mitter; εfs and εmp denote the energy consumption of the free-space and the
multi-path fading model. d0 is the threshold value for an amplifier to adjust its
power, which can be calculated as below.

d0 =
√

εfs

εmp
(11)

For node j, the energy consumption of aggregating s-bits data can be com-
puted as below:

Eagrj = s × Efuse (12)

where Efuse means the energy consumption of fusing one bit of data. Assume
that the initial energy of each node is E0, then the remaining energy of a node
can be derived as:

REt
j = REt+1

j − Esendj − Ersvj − Eagrj (13)

Hence the energy-aware trust value (Tet) at node j can be calculated based
on the above equations, as below:

Tet =
REt

j

E0
(14)

Single Fused Metric. We develop a single fused metric, named total trust
(Ttotal), to facilitate the trust evaluation as below:

Ttotal = W1 × Tfd + W2 × Tpt + W3 × Tet (15)

where W1, W2 and W3 are weight values, and W1 + W2 + W3 = 1. If given a
threshold of t, we can measure the status of a node as below.

– If Ttotal ≥ t, then the node is regarded as a trusted one.
– If Ttotal < t, then the node is regarded as a malicious one.
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2.3 Alarm Aggregation

This is an important and critical process for a CIDN to enhance the detection
performance by aggregating alarms and making a detection result. That is, a
node can send a normal request for alarm rankings from other trusted nodes
based on Ttotal. As an example, node j can aggregate the feedback Fi(a) from
node i and judge the current network status, e.g., the aggregated rank of alert
a, by using a weighted majority approach as below.

Rj(a) =

∑
T≥r T i

totalD
j
i Fi(a)∑

T≥r T i
totalD

j
i

(16)

where Rj(a)(∈ [0, 1]) indicates the aggregated rank of alert a by node j. Then r
is the trust threshold where node j only accepts the alarm rankings from those
nodes whose reputation is higher than this threshold. T i

total(∈ [0, 1]) indicates
the total trust value of node i. Dj

i (∈ [0, 1]) describes how many hops between
these two nodes.

3 Evaluation

In this section, we provide two experiments to study the performance of Ener-
gyCIDN under both a simulated and a practical network environment.

– Experiment-1. This experiment set up a simulated IoT environment, and
explored the performance of EnergyCIDN in the aspects of trust evaluation
and aggregation error, under both common and advanced insider attacks.

– Experiment-2. This experiment collaborated with an IT organization, and
investigated the performance of EnergyCIDN in a practical IoT network,
under both common and advanced insider attacks. Figure 2 illustrates the
high-level view of the practical network.

3.1 Experiment-1

CIDN Settings. In the simulated environment, we deployed a total of 50 nodes
that were randomly distributed in a 50 × 50 grid area. The open-source IDS –
Snort [47] was implemented in every CIDN node, as IDS module. Each node
can detect nearby nodes and build a list of partner nodes after a period of time.
To measure the reputation of partner nodes, each node can send out challenges
randomly to its partners with an average rate of ε. There are two levels of request
frequencies: εl and εh. For the nodes that have an unclear trust value around
the threshold, the frequency should be set as high εh.

Table 1 summarizes the parameters for the simulated environment, i.e., the
initial trust value was set as 0.5. All the parameters are selected based on prior
work [11,19,22].
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Table 1. Parameter settings in the simulated environment.

Parameters Value Description

λ 0.9 Forgetting factor

m 10 Lower limit of received feedback

d 0.3 Severity of punishment

εl 10/day Low request frequency

εh 20/day High request frequency

r 0.8 Trust threshold

Ts 0.5 Trust value for newcomers

Satisfaction Measurement. To simulate the satisfaction, let Pe ∈ [0, 1]
denote the prospective response and Pr ∈ [0, 1] denote the received response.
Then we can use the following function FL (∈ [0, 1]) to measure the satisfaction
level.

FL = 1 − (
Pe − Pr

max(c1Pe, 1 − Pe)
)c2 Pe > Pr (17)

FL = 1 − (
c1(Pr − Pe)

max(c1Pe, 1 − Pe)
)c2 Pe ≤ Pr (18)

where c1 manages the severity of punishment for incorrect estimates, and c2
manages the satisfaction sensitivity. A larger c2 means that the satisfaction is
more sensitive to the feedback. In this work, we adopted c1 = 1.5 and c2 = 1,
based on prior work [11,22].

Trust Convergence. Figure 3 depicts the convergence of trust values under
the original challenge-based CIDN and our proposed EnergyCIDN. It is found
that the convergence trend was dependent on the expertise level of a node.

CIDN-
enabled IoT

…

…

…

DMZ

Internet

……

Fig. 2. The high-level architecture of the
practical network: CIDN-enabled IoT
with the deployed DMZ.
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Fig. 3. Convergence of trust values
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ent expertise nodes.
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Generally, the more senior the node, the higher the trust value. In addition, our
EnergyCIDN could result in a slower increase of trust values compared with
the original one, which is more robust to newcomer attacks, as malicious nodes
cannot obtain a high reputation value in a short time. It is figured out that the
trust value will become stable after 30–35 days.

Trust Evaluation Under Common Insider Attacks. According to our
threat model, we consider two types of common insider attacks: newcomer attack
and betrayal attack. However, in practice, the ultimate goal of newcomer attack
is to obtain a high reputation and then start sending malicious traffic or data,
which can be considered as the first phase of betrayal-attack life circle. In addi-
tion, newcomer attack can be mitigated by the original challenge-based CIDNs,
as each node has to register and get a valid identity. Hence, in this work, we
only present the performance of detecting betrayal attacks.

We then randomly selected two expert nodes (I = 0.95) to perform the
betrayal attack. Figure 4 and Fig. 5 describe the average trust values of malicious
nodes and the error rate between the original challenge-based CIDNs and our
proposed EnergyCIDN.

– Figure 4 shows that both the original challenge-based CIDN and our Ener-
gyCIDN could keep decreasing the trust values of malicious nodes, while our
method can decrease the reputation faster, i.e., the original scheme needed
4 days but our method only required 2 days to reduce the trust values of mali-
cious nodes below the trust threshold. This is because our method utilized a
hybrid trust model, which can be more sensitive to traffic changes.

– Figure 5 shows the error rate caused during the alarm aggregation. It is visible
that the original scheme has an error rate of around 15% and 19% for false
positive and false negative. By contrast, our EnergyCIDN could reduce the
rate to 6.9% and 10%. This is because our method can identify the malicious
nodes faster, and then exclude them from the alarm aggregation process.
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during the alarm aggregation.
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Trust Evaluation Under Advanced Insider Attack. To investigate the
effect of advanced insider attacks, we mainly consider two attack types: Passive
Message Fingerprint Attacks (PMFA) and Bayesian Poisoning Attacks (BPA).
As they are a type of collusion attack, we randomly selected three expert nodes
to perform the corresponding attack. Figure 6 and Fig. 7 depict the reputation
of malicious nodes and the error rates under the original challenge-based CIDNs
and our EnergyCIDN.

– As shown in Fig. 6, the trust value of PMFA/BPA malicious nodes could
be maintained above the trust threshold, because the malicious nodes could
identify normal requests by exchanging the received messages. In addition,
it is found that BPA malicious nodes could maintain a higher trust value
than PMFA malicious nodes, as BPA nodes could identify normal requests
more precisely. By contrast, our method could detect all these malicious nodes
quickly, though one additional day was required to decrease the reputation of
BPA nodes below the threshold. This is because our method adopts packet-
based trust and energy-aware trust, which could identify anomalies if a node
exchanges an unusual amount of packets.

– Figure 7 shows the average error rate caused by PMFA/BPA malicious nodes
under the original challenge-based CIDNs and our EnergyCIDN. It is found
that these attacks could cause a roughly 35% error rate under the original
scheme, but our method could reduce the rate to 11% for both false positive
and false negative. This is because our method can detect malicious nodes,
the slight increase is due to the one-day delay compared with the detection
of betrayal attacks.

Based on the collected results, our proposed energy-aware method is viable
to enhance the robustness of challenge-based CIDNs in the aspects of both trust
evaluation and alarm aggregation.
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3.2 Experiment-2

To explore the performance in a practical environment, we conducted a study in
a CIDN-enabled IoT environment by collaborating with an IT organization. By
balancing the security and privacy policies, the deployed environment includes
70 CIDN nodes, which can communicate with outside network via a DMZ. The
security administrators from the participating organization were responsible for
the environmental setup and audit. Similar to our experiment in the simulated
environment, we also explored the effect of common insider attack (betrayal
attack) and advanced insider attacks.
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Fig. 9. Error rate under betrayal attack
during the alarm aggregation.

Trust Evaluation Under Common Insider Attacks. We randomly selected
two expert nodes (I = 0.95) to perform a betrayal attack. Figure 8 and Fig. 9
describe the average trust values of malicious nodes and the error rates under
the original challenge-based CIDNs and our EnergyCIDN.

– Figure 8 validates that both the original challenge-based CIDN and our pro-
posed EnergyCIDN could identify malicious nodes under betrayal attack. It
is observed that the original scheme required four days while our method
only needed two days to confirm the malicious nodes. Further, we found that
energy-aware trust is beneficial in the practical environment, as a real IoT
node is more sensitive to power consumption than a simulated environment.
This resulted in a more rapid decrease of trust values compared with that in
the simulated environment.

– Figure 9 describes the error rate caused during the alarm aggregation. It is
found that the error rate is around 16% and 18% for false positives and false
negatives, but the rate could be decreased to around 5% and 8% with our
method. The results validate that our method could achieve a lower error rate
by identifying the malicious nodes faster.
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and BPA during the alarm aggregation.

Trust Evaluation Under Advanced Insider Attack. In this experiment, we
explored the effect of Passive Message Fingerprint Attacks (PMFA) and Bayesian
Poisoning Attacks (BPA). Figure 10 and Fig. 11 present the trust values of mali-
cious nodes and the error rates under the original challenge-based CIDNs and
our EnergyCIDN.

– Figure 10 validates the observations in the simulated experiment: that is, the
original challenge-based CIDN could not identify PMFA and BPA malicious
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Fig. 12. The comparison with the state-of-the-art regarding error rates.
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nodes, where BPA malicious nodes could have a higher reputation than the
PMFA nodes. In the comparison, our method could decrease the trust values
of both PMFA and BPA malicious nodes steadily. Also, we found that energy-
aware trust is very helpful in a practical IoT environment, by analyzing the
anomalies in power consumption against advanced malicious nodes.

– Figure 11 demonstrates that PMFA/BPA malicious nodes could cause an
error rate of 38% and 36% under original challenge-based CIDNs. By con-
trast, our method could reduce the error rate to 10% and 12% respectively.
This is because our EnergyCIDN could decrease the reputation of malicious
nodes steadily to below the threshold and remove the negative impact.

Figure 12 further compares the error rates among several similar trust
schemes, including energy-aware scheme [15] and information-aware scheme [46].
It is found that our proposed method could outperform these relevant schemes
by leveraging the composed benefits from the challenge-based, packet-based and
energy-aware trust.

On the whole, our practical results validate the observations in the simulated
environment. It is proved that our method can provide enhanced performance
against advanced insider attacks, in the aspects of detection efficiency and alarm
aggregation.

4 Related Work

In real-world applications, a separate IDS often has no information about its
deployed and protected environment, opening a chance for attackers and cyber-
criminals. Due to the lack of contextual information, it becomes very hard for an
IDS to figure out complicated attacks. Motivated by this issue, there is a great
need for building a distributed system or collaborative network to enhance the
detection performance [53].

Distributed Systems. Distributed systems have been widely used in various
domains over the past years. For example, Porras et al. [43] introduced a system
of EMERALD (Event Monitoring Enabling Responses to Anomalous Live Dis-
turbances) with the aim to examine malicious actions in a large network (e.g.,
different layers). It used conventional IDS techniques to model and correlate
distributed high-volume events. Snapp et al. [45] described a distributed intru-
sion detection system (DIDS), which could improve the examination process by
refining and analyzing data in a centralized way. To mitigate the influence of
DDoS attacks, COSSACK system [42] could work intelligently without the sup-
port and inputs from humans. Based on the actual scenarios, it could automati-
cally create rules and signatures for detection. Yegneswaran et al. [55] described
DOMINO (Distributed Overlay for Monitoring InterNet Outbreaks) with the
aim to enhance the collaboration process in the distributed network. DOMINO
system is believed to be heterogeneous, scalable, and robust.

Collaborative Intrusion Detection. A collaborative system encourages an
IDS node to collect and exchange information with other nodes. Li et al. [17]
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found that most distributed intrusion detection architectures could not be scal-
able under different communication mechanisms. Thus, they proposed a dis-
tributed detection system by means of a decentralized routing infrastructure.
However, one big limitation is that all nodes in their approach should be intra
trusted. This may lead to insider attacks, which are one common threat for
various distributed systems and collaborative networks.

To protect distributed/collaborative systems against insider attacks, it is
very important to design suitable trust mechanisms to measure the reputation
in such systems and networks [28]. As an example, an overlay IDS was proposed
by Duma et al. [8], aiming to defeat insider threats. It consists of a trust-aware
engine for correlating alarms and an adaptive trust mechanism for handling
trust. Tuan [50] explored the impact of game theory on detection improvement
in a P2P network. They observed that: if a trust system was not designed with
a proper incentive mechanism, then the more nodes within the system, the less
likely that a suspicious node could be pointed out.

Fung et al. [11] proposed a kind of challenge-based CIDNs, aiming to evaluate
the trustworthiness of an IDS node based on the received answers. They firstly
proposed a collaboration framework for host-based detection and then designed
a method to highlight the recent behavior of a node. To enhance such challenge
mechanisms, Li et al. [18] defined a concept of intrusion sensitivity that can
measure the detection sensitivity of an IDS. Generally, the intrusion sensitivity
of an IDS can be varied according to attack types. They then introduced an
intrusion sensitivity-based trust management model [19], which could allocate
the value of intrusion sensitivity by using various machine learning algorithms,
such as KNN classifier [35]. For pollution attacks in which a set of malicious
nodes can collaborate to send fake information and influence alarm rankings, Li
et al. [20] conducted a study and found that intrusion sensitivity can be used
to figure out malicious nodes quickly. The results demonstrated that the use of
intrusion sensitivity can be beneficial to distributed intrusion detection. Other
related work regarding how to improve the performance of intrusion detection
can refer to [9,10,31–34,37,38,52].

Blockchain-Based Intrusion Detection. The application of blockchain tech-
nology in the intrusion detection domain has become popular in recent years.
Meng et al. [39] provided the first insights on how to combine these two (IDS
and blockchain) and discussed the potential challenges and future directions.
More specifically, they argued that blockchain technology can be beneficial in
improving an IDS in the aspects of data sharing, trust computation and alarm
aggregation. For rule-based detection, Li et al. [24] discussed how to design a rule-
based IDS with blockchain technology by establishing a verifiable rule database.
This idea was followed their former work [49]. For anomaly-based detection,
Golomb et al. [13] introduced a detection framework called CIoTA, which used
blockchain technology to assist anomaly detection by sharing a machine learning
model with each other. For firewall construction, Steichen et al. [48] designed
ChainGuard, an OpenFlow-based firewall that could safeguard blockchain-based
SDN and confirm malicious events / behavior within the network. Chiu and
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Meng [7] developed BlockFW, a blockchain-based rule-sharing Firewall, which
could provide validation and monitoring from multiple nodes. BlockFW could
perform better than a traditional central-managed security solution as it can
continue to serve correctly under a stressful network condition. Other related
work can be referred to [6,14,16,26,27,41,54].

5 Discussion and Future Directions

Our EnergyCIDN showed promising results in both simulated and practical IoT
environment, while as it adopts a hybrid trust model, some topics have to be
discussed in our future work.

– The effect of each trust. Due to the page limit, the main focus of this work
is to study the feasibility and the practicality of our proposed EnergyCIDN.
We consider the composed benefits from all trust types in the experiments,
but it is an important topic to explore the effect of each trust type, which
can help better understand the detection effectiveness.

– Diverse advanced insider attacks. In this work, we mainly focus on Pas-
sive Message Fingerprint Attacks (PMFA) and Bayesian Poisoning Attacks
(BPA), which are two major advanced threats to CIDNs. Our results figured
out that analyzing the power consumption is an effective approach for detec-
tion. While some other advanced insider attacks can be considered such as
special on-off attack (SOOA) [22,23] and random poisoning attack [36].

– Blockchain-based trust type. In this work, we adopt a hybrid trust model
by considering challenge-based, packet-based and energy-aware trust. Cur-
rently, with blockchain technology being developed very fast, incorporating
a blockchain-based trust could be helpful to enhance the existing trust eval-
uation. Such idea has been studied in the literature (e.g., [29]), and can be
explored in our future work.

6 Conclusion

In this work, we developed EnergyCIDN, an energy-aware challenge-based CIDN
that adopts a hybrid trust management model including challenge-based, packet-
based and energy-aware trust. With a single fused metric, in the evaluation, we
explored its performance in the aspects of trust evaluation (trust value) and
alarm aggregation (error rate), under both simulated and practical IoT environ-
ment. Our results indicated that our EnergyCIDN could decrease the reputa-
tion of betrayal malicious nodes much faster than the original challenge-based
CIDNs, and could identify advanced insider attacks (Passive Message Finger-
print Attacks and Bayesian Poisoning Attacks) effectively. For this sake, our
method could have a much lower false rate (false positive and false negative)
as compared with similar trust schemes. Overall, the results demonstrate the
feasibility and the effectiveness of our proposed EnergyCIDN. This work aims to
stimulate more research on the enhancement of collaborative intrusion detection.
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Abstract. Intrusion detection is an effective means to deal with net-
work attacks. Currently, the commonly used detection methods are based
on machine learning. However, traditional machine learning-based meth-
ods are centralized architectures that require uploading data to cloud
servers, which face serious latency and data security issues. Federated
learning (FL) can collaboratively train a machine learning model with
good performance while the data is kept locally on the client, which can
effectively make up for the shortcomings of the centralized architecture.
Most of the current research on using FL methods in machine learning-
based intrusion detection ideally consider the data to be independent
and identically distributed (IID), which doesn’t conform to real scenar-
ios. In the real world, due to the different environment of the client,
the types of attacks contained in the data owned by each client may
be different. Therefore, we study the effects of various non-independent
and identically distribution (non-IID) settings on FL in detail and give
specific partitioning methods. In addition, we also propose a FL data
rebalancing method based on auxiliary classifier generative adversarial
networks (ACGAN), which is experimentally validated on the UNSW-
NB15 dataset. Experiments show that the proposed data augmentation
method can well improve the impact of non-IID data on FL.

Keywords: Federated learning · Intrusion detection · Non
independent identically distributed · Data augmentation · ACGAN

1 Introduction

With the rapid development of information technology, a large number of net-
work services and applications have been applied to our daily life. While the
network brings us convenience, it also faces huge security challenges. Tradi-
tional Internet security technologies such as firewalls and user authentication
can’t comprehensively protect networks and systems from increasingly complex
attacks [4].

Intrusion detection [9] is an effective means to deal with network attacks.
It can not only monitor malicious behaviors from outside the network, but also
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monitor malicious behaviors inside the network, and provide real-time detection
of malicious in the networks. Intrusion detection methods are mainly divided
into the following three kinds [22]: methods based on statistical information,
methods based on rules and methods based on machine learning. At present, the
most commonly used method is based on machine learning [14].

In the past decade, various machine learning-based intrusion detection meth-
ods have been proposed. A popular approach is to use deep learning techniques
to identify network anomalies [6]. Deep learning can learn complex patterns
from high-dimensional data, which makes it a suitable solution for detecting
network attacks. However, traditional deep learning-based approaches are cen-
tralized architectures. The data needs to be centralized in a cloud or data center
before the intrusion detection model can be trained. Due to the huge amount of
data and the need for centralized processing, this brings great challenges to the
performance of the server. Data transmission also brings a lot of communica-
tion overhead, causing delay problems. In addition, the data contains sensitive
information, and there is a risk of privacy leakage [21].

These limitations can be overcome by federated learning methods. Federated
learning [16] is a new device-based distributed machine learning method. FL
adheres to the ideal of “sending the code to the data end instead of sending the
data to the code end”, which avoids the transmission and centralized storage of
user data and ensures that user privacy data is not uploaded. FL allows a large
number of device to collaboratively training a machine learning model, which
can train a machine learning model with good performance based on the local
data of the device to improve the performance of intrusion detection.

Most of the current research on intrusion detection combined with FL ideally
believe that the data on the client is IID [1,11,17]. However, in a real-world set-
ting, due to the different environment of the client, the data collected varies from
device to device, and the types of attacks contained in the data owned by each
client may be different. In addition, the number of anomalies usually accounts
for only a small part of the whole training set, which poses great challenges for
FL training.

In order to make up for the shortcomings of existing research, we study
FL-based intrusion detection on non-IID settings. We investigate the impact of
non-IID settings on model training by setting different non-IID data partitions.
Taking advantage of ACGAN’s ability to generate corresponding category data
according to specified label, rebalance the data with the help of FL to improve the
impact of non-IID data. From the experimental results, our algorithm performs
better than other state-of-the-art rebalancing techniques in the extreme non-IID
case. The contributes of our work are as follows:

1) We consider more comprehensive non-IID data scenarios and give detailed
partitioning methods.

2) We introduce a data rebalancing method for non-IID data, ACGAN-based
federated learning data augmentation method.

3) We conduct extensive experiments on the UNSW-NB15 dataset to show
the impact of the non-IID data setting on FL, and demonstrate that the
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proposed data augmentation method can well improve the impact of non-IID
data on FL.

The rest of this paper is organized as follows. Section 2 presents related work.
Section 3 introduces the background knowledge of FL, data augmentation and
so on. Section 4 details the non-IID data setting, ACGAN-based federated learn-
ing data augmentation method. Section 5 experiments show the impact of non-
IID data setting on FL, and verify the performance of ACGAN-based federated
learning data augmentation algorithm under non-IID data setting. Finally, we
conclude this paper in Sect. 6.

2 Related Work

Currently, there are many research papers on the use of FL methods in
deep learning-based intrusion detection. The related work can be divided into
two categories: without considering data distribution and considering data
distribution.

Without considering data distribution. Zhao [27] et al. proposed a FL-based
multi-task neural network MT-DNN-FL to simultaneously perform anomaly
detection tasks and traffic classification tasks. Popoolao [20] et al. proposed
a FL method for zero-day botnet attack detection to avoid data privacy leakage
issues in IoT edge devices, using a deep neural network architecture for network
traffic classification. Man [15] et al. proposed an intelligent intrusion detection
mechanism FedACNN, which assists the deep learning model CNN to complete
intrusion detection through the FL mechanism. Liu [12,13] et al. proposed a
FL-based CNN-LSTM model to detect anomalies. The CNN-LSTM model uses
CNN units to capture fine-grained features and retains the advantages of LSTM
units in predicting time series data. Yodav [25] et al. proposed an unsupervised
deep learning method based on FL, which uses an autoencoder to learn from
unlabeled data. The data distributions considered in these studies are all IID
under ideal conditions. Although the detection effect is good, they can’t reflect
the real situation.

Considering data distribution. Campos [2] et al. evaluated a federated IDS
method based on multi-class classifiers, considering different data distributions,
for detecting different attacks in IoT scenarios. Chen [5] et al. proposed FedA-
GRU, an intrusion detection algorithm for wireless edge network, aiming at the
risk of network attack faced by wireless edge networks. These studies consider
the case of non-IID, but don’t give a division method, artificially specify the
data owned by each client, and the number of clients is fixed, so it’s not easy
to study multi-client scenarios. Only experiments were conducted on non-IID
data, but no improvement method was proposed for optimization based on poor
performance under unbalanced conditions. Wang [23] et al. proposed a novel
peer-to-peer algorithm P2PK-SMOTE for training supervised anomaly detec-
tion deep learning models in non-IID scenarios, including rebalancing the local
training dataset by synthesizing data points in the minority class mechanism.
Weinger [24] et al. pointed out that non-IID data would limit the effectiveness of
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deep learning model, and proposed to improve classification performance through
data augmentation, including random sampling, SMOTE and ADASYN. These
studies have made some improvements to quantity skew scenes, but due to the
data augmentation method used is oversampling, it can only generate data of
existing categories, and can’t solve the situation of label skew.

Overall, there are still many deficiencies in current research on FL-based
intrusion detection under non-IID settings. Therefore, we consider various non-
IID scenarios in detail, give a specific division method, and propose an improved
method according to the poor performance of FL under non-IID data.

3 System Model

In this section, we introduce the basic concepts of federated learning, Dirichlet
distribution and data augmentation.

3.1 Federated Learning

In federated learning, it is generally considered that it consists of a central server
and K clients. Each client has a local dataset Dk = {xj , yj}|Dk|

j=1 , where |Dk|
represents the total number of data samples for client k, xj is the jth sample, yj

is corresponding label. yj ∈ {1, 2, ..., C}, C represents the number of labels. The
local loss of client k can be defined as:

Lk(ωk) =
1

|Dk|
∑

j∈Dk

�(xj , yj ;ωk) (1)

where �(xj , yj ;ωk) is the loss corresponding to the data {xj , yj}, ωk is the local
model parameters of client k. The global loss for K clients can be denoted as:

L(ω) =
∑K

k=1 |Dk|Lk(ωk)∑K
k=1 |Dk|

(2)

where ω is the global model parameters aggregated by the central server. The
goal of FL is to find the optimal model parameters ω∗:

ω∗ = argmin
ω

L(ω) (3)

In order to obtain ω∗, the server and clients need to conduct T rounds of com-
munication. Each round of communication requires the following steps:

Step 1 (Initialization): In the tth round of training, the server randomly selects
a subset St from K clients, then the global model parameters ωt−1 are distributed
to them.

Step 2 (Local training): The selected client use the local data Dk to train
the received global model ωt−1, then send the model parameters ωt

k obtained by
training to the server.

Step 3 (Aggregation): The server collects the local model parameters
uploaded by the client, and runs an aggregation algorithm (e.g., FedAvg) to
get the aggregation model ωt.
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3.2 Dirichlet Distribution

In order to generate non-IID data sets in different cases, we assisted the imple-
mentation by the Dirichlet distribution [8,26]. Dirichlet distribution is an impor-
tant multi-dimensional continuous distribution in probability statistics, often
referred to as Dir(α), and its distribution is controlled by the parameters of the
positive real vector α. The definition of Dirichlet distribution can be formalized
as the following description, let θ = [θ1, ..., θm] be an m-dimensional vector, for
any i ∈ [1, 2, ...,m], there are θi ≥ 0 and

∑m
i=1 θi = 1. Let k-dimensional vector

α = [α1, ..., αk], for any i ∈ [1, 2, ..., k], αi > 0. If θ ∼ Dir(α1, ..., αk), then the
following Dirichlet distribution probability density function exists:

P (θ1, .., θm) =
Γ (

∑
k αk)∏

k Γ (αk)

m∏

k=1

θαk−1
k (4)

Γ (αk) =
∫ +∞

0

xαk−1e−xdx(x > 0) (5)

The parameter α can control the skew degree of the generated data distribution.
The smaller α, the higher the non-IID level of each client’s data distribution;
otherwise, the client’s data distribution tends to the IID settings. For example,
as shown in Fig. 1, we show the data distribution for 10 labels and 10 clients
when α = [0.5, 100]. When α = 0.5, the amount of data in the same category
varies greatly between clients. When α = 100, the amount of data in the same
category has little difference between clients.

Fig. 1. Heatmap of data distribution under different α parameters.

3.3 Data Augmentation

SMOTE. Synthetic Minority OverSampling Technique (SMOTE) [3] is a com-
monly used data oversampling technique, which is an improved scheme of random
oversampling algorithm. Random oversampling adopts the strategy of simply
copying samples to increase the data, which is prone to the problem of model
overfitting. The basic idea of the SMOTE algorithm is to analyze a few samples
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Xfake

Xreal

Fig. 2. ACGAN structure diagram.

and artificially synthesize new samples to add to the dataset according to the
few samples. Specifically, SMOTE first applies K-Nearest Neighbors (KNN) to
each xi ∈ D to compute its neighbors, and then randomly selects a xj

i from its
neighbors to apply linear interpolation, a newly synthesized instance xsyn can
be denoted as:

xsyn = xi + (xi − xj
i ) × δ (6)

where xi and xj
i both come from D, xj

i is a randomly selected one from the k
neighbors of xi, and δ is a random number in the range [0, 1]. Synthesized data
points xsyn are added to the dataset for training.

ACGAN. ACGAN [19] is a data generation model, which can generate cor-
responding categories of data according to labels. As shown in Fig. 2, ACGAN
consists of a generator and a discriminator. The input of the generator consists
of noise data z and corresponding class labels c, which are used to generate
sufficiently realistic fake data. The discriminator has two functions: one is to
distinguish the real and fake data, and the other is to classify the data. The
objective function of ACGAN is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] +Ez∼pz(z)[log(1− D(G(z|y)))] (7)

where G is the generator, D is the discriminator, x ∼ pdata(x) represents the
distribution obeyed by the real data, z ∼ pz(z) represents the distribution obeyed
by the noise data, log(·) is the logarithmic function, E(·) represents the excepted
value. The goal of the discriminator is that the discriminant result D(x|y) for
real data tends to 1, while the discriminant result D(G(z|y)) for the fake data
generated by the generator tends to 0. The goal of the generator is to make the
discriminator result D(G(z|y)) of the discriminator tend to 1.

Algorithm1 describes the training process of the ACGAN model. The
ACGAN model is trained by iterative training generator G and discriminator D.
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Algorithm 1: ACGAN training algorithm
Input: Number of iterations E, D training steps Sd, G training steps Sg, batch

size m, real data distribution pdata, noisy data distribution pz, G model
parameters ωg, D model parameters ωd, learning rate η;

Output: Data generator G, data discriminator D;
1 for e = 1, 2, ..., E do
2 phase 1: Train the discriminator
3 for s = 1, 2, ..., Sd do
4 Sample m samples from pdata : {(x1, y

real
1 ), ..., (xm, yreal

m )};
5 Sample m noise samples from pz : {(z1, yfake

1 ), ..., (zm, yfake
m )};

6 Fixed parameters of G to prevent updating of G;
7 LS = 1

m

∑m
i=1(�s(D(xi), 1) + �s(D(G(zi)), 0));

8 LC = 1
m

∑m
i=1(�c(D(xi), yreal

i ) + �c(D(G(zi)), yfake
i ));

9 Discriminator parameters update : ωd ← ωd − η∇(LS + LC);
10 end
11 phase 2 : Train the generator
12 for s = 1, 2, ..., Sg do
13 Sample m noise samples from pz : {(z1, yfake

1 ), ..., (zm, yfake
m )};

14 Fixed parameters of D to prevent updating of D;
15 LS = 1

m

∑m
i=1 �s(D(zi), 1), LC = 1

m

∑m
i=1 �c(D(G(zi)), yfake

i );
16 Generator parameters update : ωg ← ωg − η∇(LS + LC);
17 end
18 end

4 Algorithm and System Design

In this section, we first introduce the non-IID setting implemented on the data.
Then we introduce a federated learning data augmentation method based on
ACGAN. Finally, we introduce an intrusion detection architecture based on fed-
erated learning.

4.1 Non-IID Data Setting

We consider three non-IID data [10] cases: 1) Quantity skew: different clients
have the same category, but the number of samples in the same category varies
greatly. 2) Label skew: different clients have very different categories, but the
number of samples in the same category is almost the same. 3) Mixed skew:
consider both quantity skew and label skew.

The non-IID division of data is shown in Table 1. When we divide the data,
the data is divided into two classes: normal class and attack class, and consider
their division separately. For normal class data, since there is only one class and
each client generally has a large amount of such data, there is no label skew,
and only the quantity skew needs to be considered. For the attack class, since
there are multiple categories of attack classes, both label skew and quantity skew
need to be considered. The Dirichlet distribution is used to simulate the quantity
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skew among different clients. c is used to denote the number of attack classes
the client has.

Quantity skew. For normal class data, since each client has a large amount of
such data, set the parameter α_norm=0.5. For attack class data, each client
has all attack categories. Since the amount of attack data owned by each
client is uncertain, five cases are considered, and the parameter α_att is set
to 10,1,0.5,0.1 and 0.01, respectively.

Label skew. Since when the parameters of Dirichlet distribution are large,
the data distribution will tend to IID, so set the parameters of normal class and
attack class α_norm=α_att=100. For the number of attack categories each
client has, consider two cases. One is that the number of categories owned by
the client is fixed, but the specific categories owned are random. The other is
the number of categories owned by the client is random, as is the class that has
owned. For the first case, set the client to have 1,3,5 and 7 attack categories. For
the second case, random(1, 8) is used to randomly select the number of attack
categories possessed by the client.

Mixed skew. Consider both quantity skew and label skew. For normal class
data, set α_norm=0.5. For attack class data, set α_att=0.5 when the number
of classes owned by the client is fixed. Set α_att to 10,1,0.5,1,0.01 in the case
that the number of categories owned by the client is random.

Table 1. Non-IID data partitioning

Non-IID scenarios Normal class (quantity) Attack class
Category Quantity

Quantity skew α_norm = 0.5 c = 8 α_att= 10,1,0.5,0.1,0.01
Label skew α_norm =100 c = 1, 3, 5, 7 α_att= 100

c = random(1,8)
Mixed skew α_norm =0.5 c = 1, 3, 5, 7 α_att= 0.5

c = random(1,8) α_att= 10,1,0.5,0.1,0.01

4.2 Federated Learning Data Augmentation Based on ACGAN

Non-IID data can make the trained aggregate model deviate from the optimal
model. Research shows [7]: under non-IID data, by adding a small amount of data
to the client, the performance of the FL algorithm can be improved. Therefore,
data augmentation is a good way to improve the poor performance under non-
IID data. Generative adversarial network (GAN) is a commonly used method
of data augmentation, which can generate a large number of various fake data,
and the generated fake data can effectively avoid the user’s private information.
As an improvement of GAN, ACGAN can generate data with specified labels.
Therefore, we propose ACGAN-based federated learning data augmentation.

The proposed ACGAN-based federated learning data augmentation frame-
work is shown in Fig. 3. The FL server trains to generate an ACGAN model,
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Fig. 3. Framework of federated learning data augmentation based on ACGAN.

and then distributes the generated model to clients, and each client uses the
generated model to augment local data. Specific steps are as follows:

Phase 1: The client uploads the distribution information of the local sample
data to the FL server. Let S1, ..., Sn represents n clients participating in federated
learning, N c

i represents the number of data samples of the cth class of the ith

clients Si, c ∈ [1, ..., C], C represents the total number of data classes. Each client
uploads its own local data statistics information Ni = [N1

i , ..., NC
i ] to the server.

Phase 2: The server computes global statistics information and trains the
ACGAN model. After the server receives the statistical information Ni sent
by the client i, it needs to process it to obtain the global statistical information
Navg. Navg = [N1

avg, ..., N
C
avg], N c

avg represents the average data volume of the
cth class of all clients. N c

avg = 1
n

∑n
i=1 N c

i . Since the server can only collect a
small amount of training data, it is difficult to use this data to train an ACGAN
model with good performance, so we use the SMOTE method to augment data
and use the augmented data to train the ACGAN model.

Phase 3: The server distributes data generation model G and global statistics
Navg. The client needs to use G to augment local data, and decide whether to
augment it and the amount of data augmented according to Navg.

Phase 4: The client augments local data with G and Navg sent by the server. The
client compares the difference between its own local data statistics information
and the global statistics information sent by the server. If the client Si has
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samples of the cth class, it needs to compare the sizes of N c
i and N c

avg. If N c
i

is smaller than N c
avg, N c

avg − N c
i samples of the ith class need to be generated

by the generator. If N c
i is greater than N c

avg, it remains unchanged. If the client
Si does not have the samples of the ith class, N c

avg samples of the ith class are
generated by the generator. Algorithm2 describes the implementation of the
above four steps.

Algorithm 2: Federated learning data augmentation algorithm based on
ACGAN
Input: Client local data statistics information N = [N1, ..., Nn], category

statistics information [N1, ..., NC ], client set S, total number of clients
n, total number of data categories C;

Output: The trained ACGAN generator G, augmented dataset;
1 Server :
2 Initialization Nc = 0, c ∈ [1, ..., C];
3 Get client local data statistics information N ;
4 for c = 1, 2, ..., C do
5 for i = 1, 2, ..., n do
6 Nc = Nc + Nc

i ;
7 end
8 Nc

avg = 1
n
Nc;

9 Add Nc
avg to Navg;

10 end
11 Train the ACGAN model;
12 Distribute the generative model G and global statistics Navg to all clients;
13 Client :
14 for i = 1, 2, ..., n do
15 Client Si sends Ni = [N1

i , ..., NC
i ] to server;

16 end
17 Receive generative model G and global statistics information Navg;
18 for i = 1, 2, ..., n do
19 for c = 1, 2, ..., C do
20 if Nc

i < Nc
avg then

21 Use G to expand the amount of data in this category to Nc
avg;

22 end
23 end
24 end

4.3 Intrusion Detection Based on Federated Learning

The flow chart of intrusion detection based on federated learning is shown in
Fig. 4. The input training data first goes through the ACGAN-based federated
learning data augmentation module to obtain an augmented dataset with rela-
tively balanced data distribution among clients. The client uses this dataset as a
local dataset and participates in FL to collaboratively train an intrusion detec-
tion model. Afterwards, the client uses the trained intrusion detection model to
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classify the test data to distinguish whether the data belongs to the normal class
or the attack class. If the data belongs to the attack class, the specific attack
class is given.

The federated learning data augmentation module based on ACGAN can
effectively augment client data and improve the impact of non-IID on federated
learning intrusion detection. The data augmented by the client does not need to
be generated by the FL server, avoiding the communication overhead required for
data transmission. Each client generates augmented samples based on different
random inputs, so that the augmented data samples have high diversity.

Intrusion detection technology based on federated learning can help break
the problem of data silos, enabling each client to train intrusion detection model
with the help of other client’s private dataset. It can better learn the pattern
and distribution of attack and normal samples, improve the detection rate of
attacks, and can also protect the privacy and security of the dataset.

...

Fig. 4. Flow chart of intrusion detection based on federated learning.

5 Performance Evaluation

In this section, we conduct simulation experiments on representative public
dataset to demonstrate the impact of the non-IID data setting on federated
learning and verify the performance of the ACGAN-based federated learning
data augmentation algorithm under the non-IID data setting.

5.1 Experimental Setup

Dataset Introduction. The raw network packets of the UNSW-NB15 [18]
dataset were created by the IXIAPerfectStom tool of the Network Scope Lab of
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the Australian Centre for Cyber Security. The dataset has a total of 2540044
records, and each record has 49 features. There are a total of 9 types of attacks in
the dataset, namely: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode, Worms.

Data Preprocessing. Since the classification uses the CNN model, the times-
tamp data is of little significance for the classification, so we choose to delete the
times-tamp feature. Since the data features have both numerical type and string
type characteristics, and the CNN model can only handle numerical types, the
LabelEncoder vectorized encoding is performed on the srcip, destip, proto, state,
service, attack-cat feature columns, and the String are converted to numeric
types. Since the data value ranges of different columns of the data are quite
different, Z-score standardization is performed on the data so that the mean
value of the data is 0 and the standard deviation is 1. In addition, considering
that the amount of data in Worms attack is too small, it is not conducive to
non-IID data division, so this kind of attack is removed from the data set. In
order to better verify the training effect of the model, the dataset is divided into
training set and test set, and the ratio of training set to test set is 7:3.

Hyperparameter Settings. In the experimental setup, a total of K = 100
clients participate in federated learning. In each round, we choose 10% of the
clients to participate in the training (i.e., C = 0.1). Each client trains on its local
dataset Dk for 5 epochs with a batch size of 100 (i.e., E = 5 and B = 100). The
number of communication rounds between the client and the server is 50, that
is, T = 50.

5.2 Results of Running on Non-IID Data

First, we evaluate the performance of the intrusion detection model on the
dataset under centralized, federated learning IID and non-IID. Our experimen-
tal results are shown in Fig. 5. From the figure, we can clearly observe that the
accuracy of FL on IID data is not different from that of centralized learning.
However, the accuracy of FL on non-IID data is significantly different from that
of centralized. Convergence of FL on IID data is as stable as centralized. Com-
pared to centralized, FL has relatively poor convergence on non-IID data. The
experiment well verifies our previous analysis. On non-IID data, the accuracy
and convergence of FL will be greatly affected.

In order to better study the accuracy and convergence of FL on non-IID
data, we conducted more detailed experiments, as shown in Fig. 6. Experiments
show that quantity skew has a greater impact on the accuracy of FL, label skew
has a greater impact on the convergence of FL, and label skew is more serious
than quantity skew.

Figure 6(a) shows the accuracy of FL under different quantity skew. It is not
difficult to see from the figure that the degree of quantity skew has little impact
on the convergence of FL, but has a great impact on the accuracy of FL. As the
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Fig. 5. Accuracy on centralized, federated learning IID and non-IID.

degree of quantity skew increases, the accuracy of FL gradually decreases, and
the convergence also begins to deteriorate.

Figure 6(b) shows the accuracy of FL under different label skew. It is not
difficult to see from the figure that the label skew has little effect on the accuracy
of FL, but has a great impact on the convergence of FL. As the degree of label
skew increases, the convergence of FL gradually deteriorates. In particular, when
each client has only one attack class data, FL don’t converge.

Figure 6(c) and 6(d) show the accuracy of FL under different mixed skew.
Comparing Fig. 6(c) and 6(b), it is not difficult to find that in the case where
the degree of quantity skew is not very extreme, the situation displayed under
the mixed skew is more similar to the label skew. Comparing Fig. 6(d) and 6(a),
it is not difficult to find that the convergence under mixed skew is worse than
that under quantity skew. Under the action of label skew, extreme quantity skew
don’t converge.

5.3 Performance of Federated Learning Data Augmentation
Algorithm Based on ACGAN

In this subsection, we show the performance of ACGAN-based federated learning
data augmentation and compare our method with the SMOTE method in [23,
24].

Figure 7(a) shows the performance of our method under severe quantity skew
and label skew. It can be clearly seen from the figure that our method has high
robustness. After the data is augmented by our method, the FL training not
only has high accuracy, but also has good convergence.

Figure 7(b) shows the performance of our method and the comparison method
SMOTE under mixed skew. It can be seen from the figure that compared with
the SMOTE method, our method is slightly higher than SMOTE in accuracy,
but significantly better than SMOTE in convergence. Since the SMOTE method
can only augment the existing category data of the client, this method can only
solve the quantity skew, not the label skew. Since our method adopts ACGAN,
it can solve both quantity skew and label skew.



326 Y. Liu et al.

Fig. 6. Accuracy on non-IID data.

Fig. 7. Performance of FL data augmentation algorithm based on ACGAN.

5.4 Hyperparameter Analysis

In this subsection, we investigate the impact of different hyperparameter settings
on our algorithm. We mainly study the effect of different client participation ratio
C, different client training epochs E, and client batch size B on the accuracy
and convergence of the algorithm.
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Figure 8(a) shows the effect of client participation ratio C on our algorithm.
As can be seen from the figure, with the increase of the C, the accuracy of our
algorithm is not improved, but the convergence is improved. This shows that the
C only affects the convergence of our algorithm.

Figure 8(b) shows the impact of client local training epochs E on our algo-
rithm. As can be seen from the figure, with the increase of the E, the convergence
of our algorithm is not improved, but the accuracy is improved. This shows that
the E only affects the accuracy of our algorithm.

Figure 8(c) shows the impact of client batch size B on our algorithm. As can
be seen from the figure, with the decrease of the B, the accuracy of our algorithm
decreases and the convergence also deteriorates. This shows that the B not only
affects the accuracy of our algorithm but also affects the convergence.

Fig. 8. Performance of our algorithm under different hyperparameters.

6 Conclusion

We investigate FL-based intrusion detection on non-IID data. The effects of
various non-IID setting on FL are considered in detail, and specific partitioning
methods are given. In addition, a data rebalancing method for FL based on
ACGAN is also proposed. We conduct extensive experiments on the UNSW-
NB15 dataset, and the experiments show that non-IID data affects the accuracy
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and convergence of FL, and in extreme cases, the model fails to converge. The
proposed data augmentation method can well improve the impact of non-IID
data on FL, and our algorithm performs better than other state-of-the-art data
rebalancing methods.
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Abstract. Currently, pay-as-you-go cache systems have been widely
available as storage services in cloud computing, and users usually pur-
chase long-term services to obtain higher discounts. However, users’
caching needs are not only constantly changing over time, but also
affected by workload characteristics, making it difficult to always guar-
antee high efficiency of cache resource usage. Cache sharing is an effec-
tive way to improve cache usage efficiency. In order to incentivize users
to share resources, it is necessary to ensure long-term fairness among
users. However, the traditional resource allocation strategy only guar-
antees instantaneous fairness and is not thus suitable for pay-as-you-go
cache systems. This paper proposes a long-term cache fairness alloca-
tion policy, named as FairCache, with several desired properties. First,
FairCache encourages users to buy and share cache resources through
group purchasing, which not only allows users to get more resources
than when they buy them individually, but also encourages them to lend
free resources or resources occupied by low-frequency data to others to
get more revenue in the future. Second, FairCache satisfies pay-as-you-
go fairness, ensuring that users’ revenue is proportional to the cost paid
in a long term. Furthermore, FairCache satisfies truthfulness property,
which ensures that no one can get more resources by lying. Finally, Fair-
Cache satisfies pareto efficiency property, ensuring that as long as there
are tasks in progress, the system will maximize resource utilization. We
implement FairCache in Alluxio, and the experimental results show that
FairCache can guarantee long-term cache fairness while maximizing the
efficiency of system resource usage.
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1 Introduction

Data caching in today’s big data era has been widely available in various data
centers [1] and supercomputers [2], which generally takes memory devices as
cache storage and has become an indispensable part of big data parallel process-
ing frameworks [3,4] and distributed file systems [5–7]. It affects not only the
execution performance of the program, but also the quality of services (QoS)
provided to users.

Every moment, tens of thousands of users submit a large number of cache
requests to the cloud servers. Cloud service providers will charge fees based on
users’ use of resources. To meet the demands of different types of users, cloud
service providers propose various pricing strategies based on the length of use.
When a user has short-term needs (e.g., an hour or a day), she can choose to pay
per unit of time, which is a common way of charging for short-term services. The
final fee is the price of a unit resource multiplied by the total usage. Conversely,
when a user wants to obtain long-term usage rights (e.g., several months or
years), she should opt for a paid subscription, as there will be a certain discount.
This method not only saves user costs (compared to hourly payment), but also
encourages users to always use cloud services and establish long-term friendly
cooperative relationships.

However, since users’ needs are time-varying, even if they purchase long-term
services, there is no guarantee that these resources will always be fully utilized.
This not only leads to higher costs, but also raises two problems: 1) Resource
Fragmentation Problem. When users’ demands are not enough to occupy all the
space, the remaining capacity cannot be used by others, resulting in a waste of
idle resources. 2) Cache Inefficiency Problem. Even if user demands occupy the
entire capacity, these demands may be low frequency data, which can lead to a
reduction in the system global efficiency.

To solve these problems, users can group purchase [8] resources and share
them with each other. Firstly, compared with purchasing resources individually,
group purchasing can get more resources for the same cost. Second, cache sharing
can improve system global efficiency allowing users to obtain more benefits. Since
different users have different needs at the same time, and the needs of the same
user are also time-varying, users can lend their temporarily idle or inefficient
cache resources to other users who are more in need through cache sharing,
and take it back when needed in the future. Although there are security issues
involved in cache sharing, there are mechanisms to ensure user privacy, which
is not within the scope of this paper. However, in practice, users can be selfish
and wants to cache as much data as possible into the memory, regardless of the
popularity of the data. A problem then comes out that how to incentivize users
to share cache given that users can be selfish, and improve the utilization and
efficiency of cache resources while guaranteeing the long-term fairness for users.

The traditional Max-Min Fairness (MMF) [9] aims to maximize the mini-
mum share of resources obtained by users to achieve fairness, which has been
widely used in various data processing frameworks [10–12]. However, the imple-
mentation of such a MMF policy in these frameworks does not consider historical
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allocations of users, which is considered by us as Memoryless Cache Allocation
Fairness (MCAF). With the following three problems, we argue that MCAF can
not be applied to a pay-as-you-go cache sharing system.

Resource Inefficiency Problem. Consider a cache sharing system consisting
of three users A, B and C. During Δt, SA

1 , SB
1 , SC

1 are the fair resource shares
obtained by user A, B and C, and SA

2 , SB
2 , SC

2 are their actual cache demands.
Assume that user A’s SA

1 > SA
2 , user B’s SB

1 < SB
2 and C’s SC

1 < SC
2 , user C’s

data is hotter than user B’s. In an ideal situation, both user A and B will lend
some resources to user C to cache more hot-data. However, since MCAF is to
maximize the minimum needs of users, user B preempts user A’s idle resources
together with user C, resulting in inefficiency for cache resources.

Truthfulness Problem. In practice, users in the shared system may not be
honest and we should have a robust policy to guarantee that users can not get
benefits when cheating. However, we argue that MCAF can not guarantee this.
Consider a sharing system consisting of three users A, B and C. Assume that
user A is a liar who caches cold data, user B and C are honest and cache hot
data. During Δt, due to user C’s SC

1 > SC
2 , (SC

1 − SC
2 ) should be lent to user

B for cache efficiency improvement. But user A will preempt user C’s resources
with user B by falsely reporting demands without being punished, violating
truthfulness property (see the Truthfulness in Sect. 2). Furthermore, if all users
are dishonest, vicious competition will be formed, which not only reduces the
system resource usage efficiency, but also breaks the sharing incentive.

Pay-as-You-Use Fairness Problem. According to the pay-as-you-use rule,
the total amount of resources a user receives over time t should be proportional
to the cost she pays (see the Pay-as-you-use Fairness property in Sect. 2). Since
users’ needs are time-varying, there should be an adaptive policy to adjust the
resource share allocated to each user for pay-as-you-use fairness in the long run,
but MCAF can not guarantee it. Consider user A and B sharing a system. During
Δt1, suppose SA

1 < SA
2 and SB

1 > SB
2 , then MCAF will lend user B’s (SB

1 −SB
2 )

to user A. In the next time period Δt2, SA
1 < SA

2 and SB
1 < SB

2 . Since MCAF
does not take into account the user’s historical behaviors, user B can not take
back the resources lent in Δt1 from user A, but can only obtain SB

1 . Therefore,
during (Δt1 + Δt2), user B should be able to get the resources of 2 · SB

1 , but in
fact only get the resources of (SB

1 + SB
2 ). In a long term, user B can not get the

amount of resources that she should get, which is unfair to her.
We propose FairCache to solve the above three problems, which is a policy

to guarantees a fair allocation of resources in the long run. FairCache satisfies
four desired sharing properties, including Sharing Incentive, Truthfulness, Pay-
as-you-use Fairness and Pareto Efficiency. First, considering that users’ needs are
time-varying, FairCache encourages users to share cache resources, and ensures
that users get more benefits in a sharing environment through adaptive cache
replacement policy than that of nonshared case. Second, FairCache satisfies
truthfulness, it guarantees that no user can get more benefits by cheating. Fur-
thermore, FairCache encourages users to sacrifice current fairness in exchange for
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future benefits. So in a long-term, pay-as-you-go fairness can be satisfied. Finally,
FairCache can maximize the utilization and efficiency of cache resources, and no
one can obtain more resources without reducing the resource share of other users.

Organization. Section 2 proposes four desirable properties of resource alloca-
tion in a sharing environment. Section 3 gives a motivation example to illustrate
the differences among different allocation policies and emphasizes the importance
of cache sharing. Section 4 proposes FairCache and points out that it satisfies
four desired properties. We then improve the performance of FairCache with a
knob θ to ensure that users maximize resource usage efficiency as much as pos-
sible while guaranteeing fairness in a long-term. Section 5 shows our evaluation
results. First, by describing the details of resource allocation under FairCache
and MCAF, we show that FairCache can guarantee the long-term fairness of
users, while MCAF always suffers from sharing loss. We then show how Fair-
Cache adjusts the knob to balance fairness and efficiency. We also evaluate the
performance and overhead of FairCache, and the results show that FairCache is
a lightweight scheduler suitable for multi-users. In Sect. 6 we review the related
work. Finally, we conclude the paper in Sect. 7.

2 Desired Properties for Cache Sharing

In this section, we present four desired properties that we believe a nice cache
allocation policy should satisfy, which are necessary for cache sharing systems
in the long run.

Sharing Incentive: Sharing incentive not only enable each user to obtain more
cache resources through group-purchasing with others than purchasing inde-
pendently, but also improve cache resource utilization and efficiency. Otherwise,
users are not willing to share resources. ∀i ∈ [1, n], if user i satisfies the following
equation, the policy is sharing incentive,

Ri(t) > ˜Ri(t), (1)

where Ri(t) and ˜Ri(t) denote the total resources obtained by user i in time
period t under shared and non-shared, respectively.

Pay-as-You-Use Fairness: The total resources that users obtain over a period
of time t should be proportional to the cost they pay. Otherwise, users will be not
willing to yield resources to other users even though they do not need. Pay-as-
you-use fairness is a necessary condition to ensure sharing incentive. ∀i ∈ [1, n],
Ri(t) purchased by user i should satisfy the following condition,

Ri(t) = Ri(Δt1) + Ri(Δt2) + · · · + Ri(Δtm), (2)

where t = Δt1 + Δt2 + · · · Δtm , and each allocation Ri(Δtj) for user i may be
greater than, equal to, or less than Ri(t)

m .

Truthfulness: We should have a robust policy to ensure that no one can harm
others by lying about cache demands. Otherwise, it will reduce system efficiency
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and be unfair to other honest users. The policy is truthfulness when the following
holds,

∀i ∈ [1, n], Ri(t) ≥ Ri(t), (3)

where Ri(t) and Ri(t) denote the resources obtained by user i in honesty and
cheating, respectively.

Pareto Efficiency: In a cache sharing system, it is not possible to make any-
one obtain more cache resources without reducing the resource allocation of
others. This property can maximize the utilization of the cache resource and
prevent the waste of fragmented resources. If another allocation scheme ̂R(t)
can not be found such that any two users i and j satisfy simultaneously, 1)
∀i ∈ [1, n], Ri(t) ≤ ̂Ri(t), 2) ∃j ∈ [1, n], Rj(t) < ̂Rj(t), then the Pareto Effi-
ciency is optimal.

3 Background and Motivation

Since the workload characteristics of users change over time, unbalanced cache
demands among users often occur. Ideally, in a pay-as-you-go sharing system,
users can balance their respective needs by sharing resources, thereby improving
resource utilization and efficiency. However, sharing cache is risky because some
users will definitely lose in the short-term. If the system cannot guarantee the
long-term fairness of users, users will not be willing to share. To be able to
describe the problem more clearly, we give a motivation example as follows.

Example 1. Consider a cache sharing system with two users User 1 and User
2 of 100GB DRAM. Each user maintains a file access queue, and their cache
demands (i.e., file size and access frequency) change over time, as shown in
Table 1. The time interval between two resource allocation operations is denoted
as Δt (Δt1 = Δt2 = Δt3).

Table 1. Changes in the cache demands of User 1 and User 2 during Δt1 ∼ Δt3.

Time User 1 User 2

Δt1 D1,1: 40G, 25times/s D2,1: 20G, 16times/s

D1,2: 50G, 20times/s D2,2: 50G, 12times/s

Δt2 D1,1: 20G, 30times/s D2,1: 50G, 40times/s

D1,2: 10G, 25times/s D2,2: 40G, 35times/s

Δt3 D1,1: 30G, 50times/s D2,1: 30G, 80times/s

D1,2: 50G, 40times/s D2,2: 40G, 60times/s

Figure 1a is the allocation result under isolation status. Although this policy can
guarantee users’ fairness, the resources are not fully utilized. It can be seen that
during Δt2, User 1 does not use her cache resources completely, resulting in a
waste of 20G resources. Each user obtains 150G of accumulated resources, but
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in fact User 1 only uses 130G. Under this policy, the global efficiency (see the
definition in Sect. 4.3) of system resources is 10630(= 40 · 25 + 10 · 20 + 20 · 30 +
10 · 25 + 30 · 50 + 20 · 40 + 20 · 16 + 30 · 12 + 50 · 40 + 30 · 80 + 20 · 60).

Under the MCAF policy of Fig. 1b, User 1 can lend her temporary free
resources to User 2 during Δt2, which nicely solves the problem of resource
waste in isolation. However, during Δt3, User 2’s demands are greater than the
resources she gets, User 2 will not return the resources borrowed from User 1
during Δt2 due to the memoryless of MCAF. Although the global efficiency is
increased to 11330(= 40 · 25 + 10 · 20 + 20 · 30 + 10 · 25 + 30 · 50 + 20 · 40 + 20 ·
16 + 30 · 12 + 50 · 40 + 20 · 35 + 30 · 80 + 20 · 60), this comes at the expense of
fairness for User 1.

The FairCache allocation policy in Fig. 1c considers the long-term fairness
of users, it solves the problem of MCAF borrowing but not returning, thereby
incentivizing users to share caches. It can be seen that User 2 returns 20G
resources to User 1 during Δt3, which maintains absolute fairness for both users
and increases the global efficiency to 10930(= 40 · 25+10 · 20+20 · 30+10 · 25+
30 · 50 + 40 · 40 + 20 · 16 + 30 · 12 + 50 · 40 + 20 · 35 + 30 · 80).

Fig. 1. A motivation example with two users in a long-term cache sharing systems for
a comparison of Isolation, MCAF, FairCache allocation policies.

In summary, cache sharing is beneficial to users in the long-term, it not
only allows users to obtain more resources but also improves the utilization and
efficiency of resources. However, cache sharing must ensure the fairness of all
users. If a policy like MCAF hurts some users’ fairness, users are unwilling to
share. Therefore, it is a challenge to motivate users to share caches and maximize
resources utilization and usage efficiency while ensuring long-term user fairness.

4 Long-Term Cache Fairness Framework

We first present the overall definition of FairCache policy, and then prove that
the proposed policy satisfies the four desired allocation properties mentioned
above. Following that, we further propose an optimization scheme on the basis
of FairCache to improve the global efficiency. Finally, we also give a brief analysis
of the proposed optimization strategy.
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4.1 FairCache Allocation

FairCache Allocation Model Definition. Consider a long-term cache shar-
ing system, n users U = {u1, u2, ..., un} share R cache resources, where ui

denotes the i-th user. Each user ui needs to process a set of m files Fi =
{fi,1, fi,2, ..., fi,m}, where fi,j represents the j-th file to be accessed by user
ui. In real-world applications, a single file fi,j may be visited multiple times, i.e.
freqi,j , and the access frequencies of different files can vary a lot. We denote the
access frequencies of all files as Freq = {freq1,1, freq1,2, ..., freqn,m}. The cache
system can periodically decide whether to cache or evict a caching file according
to its access frequency. The time interval between two resource allocation oper-
ations is denoted as Δt. Hence the theoretical fair resources ri(Δt) reserved for
user ui in a specified time period Δt can be formulated as Eq. (4),

ri(Δt) =
R · wi

∑n
j=1 wj

, (4)

where wi is the weight for user ui. Therefore, the cumulative theoretical fair
resources Ri(t) group-purchased by user ui in a period of time t can be repre-
sented as Eq. (5),

Ri(t) =
∫ t

0

ri(Δt) d(Δt). (5)

In addition, the cache resources currently demanded by user ui is denoted as
gi(Δt). If one user has abundant resources, idle resources will be preempted by
other users (i.e., ri(Δt) − gi(Δt)). Consequently, the resource obtained by user
ui actually in each time period Δt is ai(Δt), and total resources Ai(t) assigned
to user ui in t time in real cases should be formulated as Eq. (6),

Ai(t) =
∫ t

0

ai(Δt) d(Δt). (6)

In this situation, the target resource allocator can temporally violate the
resource fairness across multiple users in a specified time period Δt (i.e., ri(Δt) >
ai(Δt) or ai(Δt) < ri(Δt)). In return, it can turn to guarantee the pay-as-you-use
fairness under the constraint of the max-min fairness, which can be formulated
as Eq. (7),

A1(t)
R1(t)

=
A2(t)
R2(t)

= . . . =
An(t)
Rn(t)

. (7)

FairCache Analysis. FairCache can achieve a long-term fairness in a cache
sharing environment. The core idea of FairCache is to restore resources from
user u with the largest cumulative resources Ai(t) by evicting files cached, and
reassign the cache space to user u

′
with the smallest Aj(t). Consequently, the

difference in accumulated resources obtained among users can be continuously
narrowed, and fairness can be guaranteed in the long-term. As shown in Algo-
rithm1, when user u

′
wants to access file f

′
, the system will first check if there is

enough cache space to keep it. If there is not enough space, FairCache will evict
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Algorithm 1. The naive implementation of FairCache.

1: function FairCacheAllocation(u
′
, f

′
)

2: while f
′
.size > DRAM.availableSize do

3: � DRAM does not have enough space.
4: Select fi,j with the lowest priority cached by user ui with the largest Ai(t).
5: u = U.getLargestAllocationUser().
6: f =u.getLowestPriorityF ile().

7: if f
′
.getFreq ≤ f.getFreq AND u

′
= u then

8: return CACHE ABORT.
9: else � f

′
replaces the f .

10: DRAM.evict(f).
11: DRAM.availableSize+ = f.size.
12: DRAM.availableSize− = f

′
.size.

13: u
′
.cumulativeAllocation+ = f

′
.size

14: return CACHE SUCCEED.
15: end if
16: end while
17: DRAM.add(f

′
). � DRAM has enough space to cache f

′
.

18: DRAM.availableSize− = f
′
.size.

19: u
′
.cumulativeAllocation+ = f

′
.size.

the file in the cache to reserve space for f
′
(Line 2–16 ). In this case, candidate

files to be removed are from user u with the largest cumulative resources Ai(t)
(Line 4–6 ). Note that, candidate files are determined by the cache replacement
strategy adopted. In LRU, priority is negatively correlated with time interval,
and in LFU files with a low access frequency will have a low priority. Under the
max-min fariness strategy, files priority are prioritized according to the decreas-
ing order of the resource allocation. For the same user, we do not consider the
priority relationship between file f

′
and file f , as long as f

′
is not accessed more

frequently than f no replacement occurs, since user will not benefit from it (Line
7–8 ). There are two cases where system can evict a cache file (Line 9–15 ). For
the same user, when the access frequency of f

′
is greater than f , f is replaced

by f
′
. The other case is when u

′ �= u, whenever f
′

has a higher priority than
f , a replacement is to be made. Specifically, this is to ensure fairness among
multiple users, even if f is accessed more frequently than f

′
, forced file eviction

can be triggered because f
′
.getPriority > f.getPriority. Otherwise, files can

be directly cached while there are enough free resources (Line 17–19 ).

4.2 FairCache Property Proof

Theorem 1. FairCache is sharing incentive.

Proof. Assuming that there are a group of k users assigned with the same weight
purchases R GB cache resources with a cost M . Consequently, each user could
obtain R

k cache resources at the cost of M
k . When one user try to purchase cache

resources individually with the same budget, she will receive r GB (r < R
k )
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Table 2. List of properties for Isolation, MCAF and FairCache.

Property Allocation policy

Isolation MCAF FairCache

Sharing incentive �
Pay-as-you-use fairness � �
Truthfulness � �
Pareto efficiency � �

resources, as group-buying often has a larger discount. Hence, one user can
only gain Δt · r resources in a period of time Δt. In contrast, she can receive
Δt· Rk in total with the proposed FairCache policy and the group-buying method.
Likewise, these resources can improve caching efficiency. It can be proved that
FairCache conforms to the sharing incentive property.

Theorem 2. FairCache satisfies pay-as-you-use fairness.

Proof. In a cache sharing system, since user’s own cache demands will change
over time, and the demands among users are unbalanced, if there are unused
resources, others will preempt them. However, users do not have to worry about
short-term fairness loss. Because FairCache finds user i with the smallest Ai(t)

Ri(t)

every time and allocates resources to her first, the gap in total resources among
users is continuously narrowed to ensure long-term fairness for users. Thus, Fair-
Cache can guarantee the pay-as-you-use fairness in a long-term sharing system.

Theorem 3. FairCache satisfies the truthfulness.

Proof. According to Theorem2, users can preempt idle resources in the system.
Suppose user ui artificially increases the frequency of file fi,j from freq1 to freq2
by fake access during Δt1, thereby obtaining more resources m than user uj .
Then during Δt2, no matter whether the freq3 of fi,j is high or low, m should be
returned to uj . There must exist freq3 > freq1, such that m·(freq1−freq3) < 0,
i.e., ui loses her own benefits after cheating, users won’t cheat because they don’t
benefit from cheating. Hence, FairCache satisfies the truthfulness property.

Theorem 4. FairCache satisfies the pareto efficiency.

Proof. FairCache encourages users to share unused cache resources to improve
cache utilization, which means that cache can always be fully utilized as long as
there are enough demands. In other words, no one can acquire more resources
without reduce the amount resources obtained by others. Therefore, FairCache
meets the pareto efficiency property.

Finally, we summarize the properties satisfied by Isolation, MCAF and Fair-
Cache in Table 2. Since the isolation policy is non-shared, resources unused by
users are wasted, thus, it violates the sharing incentive and pareto efficiency.
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Both MCAF and FariCache are allocation policies designed for the sharing sys-
tem. However, due to the memoryless of MCAF, it can only guarantee pareto
efficiency. The proposed policy FairCache can achieve all those properties.

4.3 Efficiency Optimization for FairCache Policy

Although FairCache has high resource utilization, it still suffers from cache inef-
ficiency problem. Cache efficiency φfi,j (Δt) is formulated as Eq. (8). It refers to
as fi,j ’s contribution to the system in each round,

φfi,j (Δt) = freqi,j · size(fi,j), (8)

where size(fi,j) is the size of fi,j . Hence, the cumulative global efficiency gener-
ated by system resources over a time period t can be expressed as,

φ(t) =
∫ t

0

n
∑

i=1

m
∑

j=1

φfi,j (Δt) d(Δt). (9)

Let’s review Fig. 1c in the motivation example in Sect. 3. During Δt3, User
2 gives up caching 20G D2,2 and returns these resources to User 1 to cache
D1,2. Although the result guarantees users’ fairness, the system loses 400(=
20 · 60 − 20 · 40) efficiency in this round because the frequency of D1,2 is lower
than that of D2,2. In the long run, due to the time-varying needs of users,
sometimes users will cache lots of cold data. Although her cache utilization is
high, the cache efficiency is low. In fact, a resource allocation system should not
only guarantee fairness constraints in many practical situations, but should also
be sensitive to data popularity. For the user herself, whether these cold data are
cached will not have much impact on the user’s current benefits (e.g., eviction of
5G data accessed once per second will only lose efficiency 5). However, from the
perspective of the global system, if these resources are used by users who need
them more, it will not only benefit others, but also improve the cache efficiency.
In addition, since FaiCache guarantees long-term fairness, users do not need to
worry about not being able to get these resources back in the future.

In practice, there is no universal rules to distinguish hot and cold data prior
to execution. According to the characteristic that file access follows the Zip dis-
tribution [21,22], generally speaking, 20% of the data occupies 80% of the access
time. We should improve FairCache to make it sensitive to hot and cold data,
so that in each round of resource allocation it will restrict users to cache only
20% of the hot data and encourage everyone to share the remaining capacity
with others. By this means, it can not only help guarantee the long-term fair-
ness across users, but also improve the global cache efficiency. We introduce an
efficiency knob θ to solve the problem of the naive FairCache. θ represents the
threshold of the replacement frequency of a file, which can be adjusted by the
user by considering characteristics of current workloads. Files satisfying the cri-
teria controlled by θ will be filtered out first, and the max-min fairness is applied
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otherwise. In order to measure users’ fairness in resource allocation, we define
γi(t) as Fairness Degree (FD) for ui as follows,

γi(t) =

∫ t

0
ai(Δt) d(Δt)

∫ t

0
ri(Δt) d(Δt)

. (10)

When γi(t) < 1, it represents that the resource allocation for ui does not meet
the pay-as-you-go fairness within this time period, and the resource fairness is
satisfied in other instances. Since cache resources are shared across multiple users
in the pay-as-you-go sharing systems, if γ(t) of some users are larger than 1, there
must be a set of users whose fairness are violated. To describe the fairness of
multiple users, two additional metrics, sharing loss Φ(t) and sharing benefit Θ(t),
are introduced. They can be formulated as Eqs. (11) and (12),

Φ(t) =
n

∑

i=1

min {γi(t) − 1, 0} , (11)

Θ(t) =
n

∑

i=1

max {γi(t) − 1, 0} , (12)

where we can deduce that Φ(t) is less than 0 and Θ(t) is greater than 0. Our
objective is to guarantee γ(t) for all users should be equal to 1 under a specified
time period t, i.e., each user should get a fair resource distribution.

FairCache with Efficiency Optimization. As shown in Algorithm 2, Fair-
Cache maintains two additional file sets termed as FileSetefficiency and
FileSetfairness (Line 2–3 ). FileSetefficiency contains files can be safely evicted
with the LFU policy, which are all low-frequency, while FileSetfairness stands for
a set of files in the cache whose access frequency values are larger than a given
threshold θ. When user u

′
wants to access f

′
, FairCache first checks whether

there is enough free cache space for it. If it is satisfied, f
′
will be cached directly

(Line 44–46 ). Otherwise, the eviction operation will be executed (Line 4–43 ).
FairCache is a two-stage cache allocation policy. The first stage FileSetefficiency
is designed to enhance the efficiency of cache resource usage (Line 9–19 ), which
adopts the LFU strategy to assign cache resources to users, and the objective
of the other stage FileSetfairness is to guarantee the long-term fairness across
users in an efficient way (Line 20–42 ). When f ∈ FileSetefficiency, it means
that f needs to be replaced by a file that is accessed more frequently than it
(Line 10–15 ), otherwise f will continue to occupy cache resources (Line 16–18 ).
When f ∈ FileSetfairness, the process of resource allocation depends not only
on the frequency of file access, but also on the cumulative resource share of users.
When f

′
.getFreq ≤ f.getFreq, the file can not be replaced under normal circum-

stances (Line 21–23 ), because the user does not profit from it. However, there is
a special case where f

′
can replace f when user u

′
has less total resources than

user u and u
′
and u are not the same user. This is done to guarante fairness for

user u
′

(Line 24–29 ). When f
′
.getFreq > f.getFreq, the normal replacement
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Algorithm 2. FairCache with Efficiency Optimization.

1: function FairCacheAllocation(u
′
, f

′
)

2: FileSetefficiency = {fi,j |i ∈ [1, n], j ∈ [1, m], freqi,j < θ}.
3: FileSetfairness = {fi,j |i ∈ [1, n], j ∈ [1, m], freqi,j ≥ θ}.

4: while f
′
.size > cache.availableSize do

5: � DRAM does not have enough space.
6: Select fi,j with the lowest priority cached by user ui with the largest Ri(t).
7: u = U.getLargestAllocationUser().
8: f = u.getLowestPriorityF ile().
9: if f ∈ FileSetefficiency then � Efficiency stage.

10: if f
′
.getFreq > f.getFreq then

11: cache.evict(f).
12: cache.availableSize+ = f.size.
13: cache.availableSize− = f

′
.size.

14: u
′
.totalAlloc+ = f

′
.size

15: return CACHE SUCCEED.
16: else if f

′
.getFreq ≤ f.getFreq then

17: u.totalAlloc+ = f.size
18: return CACHE ABORT.
19: end if
20: else if f ∈ FileSetfairness then � Fairness stage.

21: if f
′
.getFreq ≤ f.getFreq then

22: if u
′
= u OR u

′ �= u AND u
′
.totalAlloc > u.totalAlloc then

23: return CACHE ABORT.
24: else if u

′ �= u AND u
′
.totalAlloc ≤ u.totalAlloc then

25: cache.evict(f).
26: cache.availableSize+ = f.size.
27: cache.availableSize− = f

′
.size.

28: u
′
.totalAlloc+ = f

′
.size

29: return CACHE SUCCEED.
30: end if
31: else if f

′
.getFreq > f.getFreq then

32: if u
′
= u OR u

′ �= u AND u
′
.totalAlloc ≤ u.totalAlloc then

33: cache.evict(f).
34: cache.availableSize+ = f.size.
35: cache.availableSize− = f

′
.size.

36: u
′
.totalAlloc+ = f

′
.size

37: return CACHE SUCCEED.
38: else if u

′ �= u AND u
′
.totalAlloc > u.totalAlloc then

39: return CACHE ABORT.
40: end if
41: end if
42: end if
43: end while
44: cache.add(f

′
). � Cache has enough space to cache f

′
.

45: cache.availableSize− = f
′
.size.

46: u
′
.totalAlloc+ = f

′
.size.



342 Z. Zhou et al.

strategy should be executed (Line 32–37 ). However, when the total resources
of user u

′
are greater than user u (u

′ �= u), the system does not allow f to be
replaced by f

′
even though there will be some efficiency loss (Line 38–39 ). In

this case, cache resources should be allocated to user u in preference to reduce
the fairness loss.

FairCache with Efficiency Optimization Analysis. θ acts as an efficiency
knob for the resource allocator, which can be flexibly adjusted by the user based
on workload characteristics to achieve a trade-off between the long-term fair-
ness and the overall efficiency. Actually, although the system can guarantee the
fairness of users in a long term under FairCache policy, different θ represent
different degrees of sacrifice that users are willing to make in each round of
allocation (i.e., tolerating temporary unfairness). Because the value of θ will be
affected by the size and distribution of data access frequency, there are three sit-
uations as follows: 1) When θ = 0, it means that no file in DRAM will enter into
FileSetefficiency, then FairCache will degenerate into Max-Min Fairness Fair-
Cache. 2) When θ → +∞, it means that all files will enter into FileSetefficiency,
and every round of resource allocation will replace all data in the cache, then
FairCache becomes LFU. 3) When θ ∈ [0,+∞), there is always another θ

′
that

makes the resource allocation of users whose frequencies range from θ to θ
′

unchanged, we call it θ Invalid Range (θ−IR).

5 Evaluation

To evaluate the performance of the proposed algorithm, we implement FairCache
with Alluxio-1.4.0 and conduct experiments on multiple macro-benchmarks and
micro-benchmarks.

5.1 Experimental Setup

Alluxio Cluster. We build a ten nodes Alluxio cluster with one master node
and nine slave nodes. Each node has 16 GB of memory and 8 CPU cores. We
allocate 6 GB of DRAM resources to each node.

Macro-benchmark. We run three real-world macro-benchmarks: 1) Syn-
thetic Facebook Workload: We pick one of the all-day workloads (i.e.,
FB2010 samples 24 times 1hr 0.tsv) [25] from SWIM and synthesize a new
workload based on the data fields (i.e., job submission duration, time interval
and frequency of job submissions, and job submission size). These jobs come from
the Hive benchmark [24], which consists of four types of select queries, rankings-
uservisits join, rankings selection, uservisits aggregation and grep select. 2) Pur-
due Workload: We choose five benchmarks (i.e., Grep, Ranked Inverted Index,
Word-count, Inverted-index and Term-vector) from Purdue MapReduce Bench-
marks Suite [26] and use 40 GB of data generated from the Wikipedia data [27]
as the input for these benchmarks. 3) TPC-H Workload: TPC-H [28] is a bench-
mark that provides decision support by querying and analyzing user behavior
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records. To simulate continuous queries, we generate 400 datasets. Each dataset
is about 200 MB and contains 8 tables ranging from 5 KB to 80 MB.

Micro-benchmark. Assume that four users share a cache system equally and
each user has an access list of 20 files. We assume that the access demands of
users are independent of each other and will not access the same files.

In the following section, we use macro-benchmarks to generate four access
queues for users to describe the variation of user cache demands and FairCache
resource allocation in a long-term sharing environment, while evaluating the
results of user fairness degree and the performance and overhead of the FairCache
policy. We then use micro-benchmarks to show that users have the flexibility to
balance fairness and efficiency by changing θ.

5.2 Testbed Experimental Results

FairCache Resource Allocation. Figure 2 describes the resource allocation
of four users under FairCache. Figure 2a and 2b show the users’ current demands
and allocated cache, while Fig. 2c shows the users’ accumulated cache resources.
We set up an access window of size 1000 to update the access frequency and
track the cache allocation of four users running the macro-benchmarks over 20
windows, where users’ demands can change or not between any two windows.

Fig. 2. Detailed description of the FairCache resource allocation process with four
users.

During windows 1–5 in Fig. 2a, there are many unused cache resources due
to insufficient demands of user 1 and 2. The system reserves a small amount
of resources for user 1 and 2 and gives the remaining resources to user 3 and
4. Then, user 1 and 2’s cache demands increase rapidly in windows 6–10, and
everyone’s demands exceed their fair share. Although user 3 and 4 still have lots
of demands, they release some cache occupied by cold-data and give them back
to user 1 and 2. When user 1 and 2’s demands decrease again in windows 11–15,
the resources that unused or occupied by cold-data will be fully utilized by user
3 and 4 again. Finally, when user 1’s cache demands increase sharply in windows
16–20, other users will return resources to ensure cache efficiency. However, due
to the fairness guarantee of FairCache, cache resources that user 1 gets in Fig. 2b
are decreasing, despite she maintains high demands. Conversely, user 3’s cache
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Fig. 3. (a) and (c) show the overall benefit/loss of MCAF and FairCache. (b) and (d)
show the fairness degree of each user in MCAF and FairCache.

demands has not changed, but the resources she obtains are constantly increas-
ing. In Fig. 2c, eventually the total amount of resources obtained by each user
reaches equilibrium (i.e. the curve gets closer and closer).

Sharing Fairness Degree. We show in Sect. 4.3 that reducing sharing loss
and ensuring pay-as-you-go fairness as much as possible in a long-term is an
effective way to incentivize users to share cache resources. Figure 3a and 3c show
the sharing benefit and loss of four users under MCAF and FairCache policies.
Figure 3b and 3d describe the variation of the fairness of each user over time in
more detail. We can find the difference between MCAF and FairCache.

First, because both allocation policies are enforced in a shared environment,
this will result in more benefits for some users (compared to the isolated status).
For example, both user 3 and 4 in Fig. 3b and 3d get more resources.

Second, FairCache is much better than MCAF. As shown in Fig. 3c, users
can tolerate temporary unfairness in order to get more benefits in the future,
because FairCache will definitely guarantee fairness to users in the long run. In
contrast, the sharing loss problem of MCAF in Fig. 3a remains until all tasks
are completed (i.e., ≈ −0.58). This is due to the memoryless nature of MCAF,
which makes it impossible for users who lend unused resources at the moment
to recover the same amount of resources when needed in the future, resulting in
long-term unfairness.

Finally, when resource allocation is just starting, FairCache also has the
problem of sharing loss in Fig. 3c, which is actually unavoidable. Because the
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Fig. 4. A long-term cache sharing system under different knobs consisting of four users,
each user has 6 GB DRAM. We emphasize that the sensitivity of θ to the balance of
fairness and efficiency is influenced by the distribution of file size and access frequency.

purpose of FairCache is to ensure a long-term sharing fairness for users, some
users will temporarily sacrifice current fairness in order to obtain more benefits
in the future, without worrying about not being able to recover the lent resources
in the future at all.

Fairness vs. Efficiency. First, FairCache can balance fairness and efficiency by
adjusting θ. Since cache efficiency is positively correlated with hit ratio, hit ratio
is used to represent the efficiency defined in Sect. 4.3. In Fig. 4, users can flexibly
adjust θ according to the actual allocation. When θ is small, cache allocation is
more biased towards fairness, and conversely the system will consider cache hit
ratio improvement more. When θ exceeds a certain threshold, the resource allo-
cation policy will become global LFU, when fairness is minimized. In addition,
since θ−IR ∈ [0, 10], changing θ will not affect the cache hit ratio.

Second, different file sizes and access frequency distributions also affect the
resource allocation of users in the shared system. In Fig. 4a, although the access
frequency of user 3 and 4 is much higher than that of user 1 and 2, since users
access to files follows the Zipf distribution, when θ increases, user 1 and 2 can
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still cache some popular files that are accessed frequently. As shown in Fig. 4c,
the hit ratio of user 1 and 2 decreases when their access to files follows the
uniform distribution compared to Fig. 4a. This is because user 1 and 2 lack the
high frequency files in the Zipf distribution to grab more resources. Nevertheless,
user 3 and 4 still have some cold-data accessed less frequently than user 1 and 2
in the uniform distribution. We change the size of the files accessed by the users
in Fig. 4b and 4d, which are compared with Fig. 4a and 4c, respectively. Since
some files have become smaller in size, users can write more data to the cache
and therefore the hit ratio per user has increased. This illustrates that not only
the file access frequency distribution, but also the difference in file size accessed
by users can affect the cache allocation and hit ratio of system.

FairCache Performance and Overhead. Seven allocation policies are given
in Fig. 5a to evaluate the performance of the system, including isolated states
under non-shared, MCAF, LFU, Max-Min Fairness, and three different θ for
FairCache.

First, as can be seen from Fig. 5a that allocating resources under isolated
status has the lowest performance, with only 46% of the data having an average
response time of 1000 ms. This is because unused resources can not be fully
utilized in a non-shared environment. In contrast, due to other allocation policies
all have different degrees of cache sharing, the average response time for 55%–
62% of the data is within 1000 ms, which improves the system performance.

Moreover, although LFU is the global efficiency optimal policy, its CDF curve
is slightly lower than that of the Max-Min Fairness policy. This is because many
small-sized and low-frequency files present in the system are cached under the
Max-Min Fairness policy, so the CDF curve of Max-Min Fairness accounts for
a large proportion of the low response time. In fact, the low response time of
the file does not mean that the cache resources are used efficiently, because the
cache efficiency is determined by both the file size and the access frequency.

Finally, when θ → 0, its CDF curve will be more and more close to a Max-
Min Fairness curve, and when θ → +∞, its CDF curve will be more and more
close to an LFU curve. This shows that in different scenarios, users can flexibly
balance fairness and efficiency by adjusting θ.

We conduct 100 trials in Fig. 5b to evaluate the overhead of FairCache. Over-
head refers to the time it takes for FairCache to decide whether and how to cache
files for different numbers of users. We use the TPC-H dataset and consider a
number of users from 10 to 100, each accessing 20 files, 0.25–1 GB in size. First,
the result shows that the overhead time increases linearly with the number of
users. Furthermore, the overhead of FairCache is lower compared to the gener-
ally read/write time of files in Fig. 5a. In summary, FairCache is a lightweight
scheduler suitable for multi-users pay-as-you-go cache sharing systems.
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Fig. 5. Performance and overhead of FairCache in the cache sharing system.

6 Related Work

Cache Resource Allocation. Traditionally, efficiency first replacement strate-
gies (e.g., LRU and LFU) and their improved versions [29,30] are widely adopted
in the allocation of cache resources. To improve LRU, Nathan et al. [19] proposed
the concept of least hit density and applied it to a key-value caching strategy,
which strictly filters objects that contribute little to the cache hit rate based on
conditional probability. Rodriguez et al. [31] designed a new class of adaptive,
machine-learned caching algorithms, CACHEUS, to address four workload prim-
itive types by utilizing a combination of experts. Two new experts, SR-LRU and
CR-LFU, are used to handle scan and churn workload primitive types. However,
the above work is aimed at improving the hit rate under non-shared, and can not
be applied to the cache sharing system, otherwise it will lead to poor resource
fairness across users. An allocation mechanism using Cobb-Douglas preferences is
given in [33] to determine each user’s fair share of hardware resources, while intro-
ducing modest performance penalties. For big data processing systems, Kunjir
et al. [20] developed a cache management platform ROBUS by using random-
ization over small time batches. A proportionally fair allocation mechanism is
adopted to satisfy the core property. Both FairRide [21] and OpuS [22] are based
on the max-min fairness [9]. They can be applied scenarios where multiple users
share cache files by using delay blocking to prevent users from “free-riding” to
achieve fairness and efficiency in the target system. Tang et al. [23] proposed a
new cache allocation policy ElastisSEM for DRAM and SSD, which contains a
knob to achieve a balance between fairness and efficiency. Although the above
methods can guarantee users’ fairness in a shared environment, they do not con-
sider the time-varying needs of users due to memoryless, and can not be applied
to a pay-as-you-go cache sharing system. The work of Choi et al. [32] is similar to
ours, which addresses the problem of cache allocation in a long-term shared envi-
ronment. They predict users’ data access patterns by a learning-based regression
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method to improve the cache hit rate. However, this method does not guarantee
users’ fairness, and users are not willing to share in practice.

Fairness and Efficiency Scheduling Policy. Jian et al. [13] proposed a new
method to quantify fairness and introduced Index of Fairness ranging from 0 to
1. Zukerman et al. [14] discussed the trade-off between efficiency metrics, such
as utilization, throughput, revenue and fariness in telecommunication networks,
and introduced the concept of α-fairness. Joe-Wong et al. [15] proposed a unified
mathematical framework to better quantify the fairness in a multi-resource allo-
cation environment, and developed two fairness functions to achieve a trade-off
between fairness and efficiency. However, these works are limited to theoretical
discussions and can not be directly used for verification in practical systems. In
contrast, the FairCache policy proposed in this paper can be implemented in
Alluxio. Niu et al. [16] proposed a meta-scheduler FLEX to aggregate existing
schedulers, which can dynamically select the most suitable scheduler according
to characteristics of current workloads and users’ SLA. Both Tetris [17] and
Qknober [34] are heuristic fairness-efficiency schedulers that control resource
allocation through knobs On the basis of the CPU-GPU coupled architecture,
Tang et al. [18] proposed an elastic multi-resource fair allocation strategy EMRF
to balance between fairness and efficiency. However, due to the different charac-
teristics of computing resources and cache resources, the cache resources we focus
on have new challenges, such as resource inefficiency problem, truthfulness prob-
lem and pay-as-you-use fairness problem, which can not be solved by directly
adopting the above methods. Moreover, the above methods can only guaran-
tee part of the fairness of users, while our proposed method can guarantee the
long-term fairness of users.

7 Conclusion

Pay-as-you-go cache sharing systems have been widely adopted in cloud com-
puting, and cache fairness in such environments directly affects the experience
of users, which is our primary consideration. However, we found that existing
resource fairness policies, which are applied in frameworks such as YARN and
Mesos, can not be directly applied in pay-as-you-go cache sharing systems due to
three serious problems, i.e., resource inefficiency problem, truthfulness problem
and pay-as-you-use fairness problem. In this paper, we proposed a long-term
cache fairness allocation policy, FairCache, to solve the problems above. We
also proposed four properties as metrics to measure fairness policies in a pay-
as-you-go cache sharing system. FairCache can help improve the overall cache
resources utilization and achieve a long-term fairness by permitting users to lead
resources to others and get more revenue in the future. To further promote global
cache efficiency, we propose an efficiency knob θ for FairCache. It allows users
to adjust θ setting to achieve a tradeoff between fairness and efficiency. Finally,
we provided an implementation of the proposed FairCache in Alluxio. Exper-
iment results demonstrated that the proposed fairness policy could efficiently



Long-Term Fairness Scheduler for Pay-as-You-Use Cache Sharing Systems 349

achieve long-term fairness across multiple users in a cache sharing system while
maximizing the utilization and efficiency of system cache resources.
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Abstract. Graph analytics is increasingly important for solving prob-
lems in various fields. Matrix-based graph analytics has obtained much
attention due to its high performance and ease of optimization. In the
general architecture, due to the extremely high sparsity and complex
connectedness of graphs, matrix-based graph analytics suffers from the
deep and heavy pipeline as well as the low efficiency of the memory
subsystem. Meanwhile, lots of accelerators based on application-specific
integrated circuits (ASICs) for graph analytics are not flexible enough to
support various matrix operations of diverse matrix-based graph algo-
rithms, which have different graph semantics and dataflow.

In this paper, we present MatGraph, an energy-efficient and flexible
architecture to support matrix-based graph analytics efficiently. Mat-
Graph is based on coarse-grained reconfigurable architectures (CGRAs)
which have both high energy efficiency and flexibility. According to the
matrix operations on graphs, we conduct an abstract from the operators
to define reduced instructions and design a lightweight pipeline to achieve
high parallelism of instructions in CGRAs. To eliminate the impact of the
highly sparse graph data, we design a bitmap-aware instruction filtering
unit to filter out invalid instructions for each PE and increase the on-chip
reuse of instructions. Furthermore, we propose a bidirectional data-aware
sparsity removing scheme to eliminate the sparsity and redundant off-
chip data accesses. Overall, MatGraph achieves 9.35x, 2.28x speedup,
and 11.17x, 7.15x energy savings on average compared to state-of-the-
art (SOTA) CPU-based and GPGPU-based solutions respectively. Com-
pared to the SOTA graph analytics accelerator, MatGraph also achieves
1.59x speedup and 1.61x less energy.
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1 Introduction

In the big data era, studying relationships among data demonstrated in the form
of graphs has gained considerable attention. Graph analytics has become vital
for solving problems in various scenarios including bioinformatics [16], social
network analysis [19], autonomous vehicles [26] and brain science [3].

Therefore, lots of graph analytics software frameworks [4,21,28] and hard-
ware accelerators [7,13,27,30,34] have been proposed to deal with various situ-
ations in recent years. The programming models of these works mainly can be
divided into vertex-centric model [21], edge-centric model [28] and matrix-based
model [4]. Vertex-centric model is widely used by recent works [13,34] due to its
high productivity, but it’s limited by unpredictable vertex behaviors and difficult
to optimize the efficiency of memory accesses.

Matrix-based model is known for its high performance mentioned in [29,31]
and good mathematical theory making it easier to analyze program behaviors
than the vertex-centric model. However, because graphs are characterized by
irregular connectedness and extremely high sparsity, matrix-based graph analyt-
ics suffers from the low efficiency of the memory subsystem and the low energy
efficiency on general architectures including CPUs and GPGPUs owing to their
complex and redundant pipelines. Many hardware accelerators based on ASICs
for graph analytics are not flexible enough to support various generalized matrix
operations in matrix-based graph analytics.

In this paper, we propose MatGraph, an energy-efficient and flexible archi-
tecture for matrix-based graph analytics. To flexibly support various matrix
operations defined for different matrix-based graph algorithms based on semir-
ings [4], we conduct an abstraction from the different semirings and define dozens
of reduced instructions according to our abstraction of operators of semirings.
We design a lightweight pipeline in processing elements (PEs) of CGRA to
efficiently support the execution of reduced instructions. Utilizing the coarse-
grained dataflow parallelism in CGRAs, we can achieve high parallelism of
instructions to support various matrix operations in matrix-based graph ana-
lytics with high energy efficiency.

Due to the high sparsity of graph data, a CGRA accelerator for graph analyt-
cis still confronts the following two challenges. (1) Owing to massive irregu-
lar sparse graph data, the instructions among PEs cannot be reused,
resulting in a large amount of instruction off-chip movement overhead,
(2) Massive irregular sparse data produces a large number of invalid
computations and redundant off-chip memory accesses. Therefore, to
address the two challenges above, (1) We propose a bitmap-aware instruction
filtering strategy to filter out invalid instructions for each PE while increasing
the on-chip reuse of instructions among PEs and alleviating the instructions
off-chip movements caused by highly sparse graph data. (2) To further reduce
the invalid computations and redundant memory accesses, we propose a bidi-
rectional data-aware sparsity removing mechanism to eliminate the sparsity of
graph data.
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Our contributions are summarized as follows:

– We conduct an operator’s abstraction from the various matrix operations for
matrix-based graph analytics and define the reduced instructions for these
operators to flexibly support distinctive matrix-based graph algorithms.

– We propose a flexible and energy-efficient architecture named MatGraph
based on CGRA. It has lightweight pipelines to support the reduced instruc-
tions we propose while leveraging the dataflow execution model to achieve
high parallelism of instructions.

– We design a bitmap-aware instruction filtering unit to filter out invalid
instructions for each PE while increasing the on-chip reuse of instructions
among PEs and alleviating the off-chip instruction movements. Additionally,
we propose a bidirectional data-aware sparsity removing mechanism to fur-
ther reduce the redundant off-chip data accesses and eliminate the sparsity
of graph data.

– We implement MatGraph in RTL to attain its area and energy consumption
and evaluate MatGraph using a detailed microarchitectural simulation to
show improved performance compared to the state-of-the-art framework and
accelerators.

2 Backgrounds

In this section, we first introduce common graph representations. Then, we make
a brief description of the matrix-based graph analytics. Finally, we introduce the
characteristics of CGRAs.

2.1 Graph Representation

A graph could be intuitively considered as an adjacency matrix, where the rows
refer to the vertices and the matrix elements represent the edges. Figure 1(a)
depicts an example graph G < V,E >. As shown in Fig. 1(c), it’s the out-degree
adjacency matrix of the example graph G, where the row index represents source
nodes and the column index represents destination nodes. However, real-world
graphs are highly sparse, which means that there would be many zero values
in the adjacency matrix. These zero values incur the waste of both storage and
computing resources. Thus, lots of other representations, which are suitable for
highly sparse graph data, like the compressed sparse row (CSR), and compressed
sparse column (CSC) have spawned. As presented in Fig. 1(b), we can express
graph G using compressed formats to reduce storage like the compressed sparse
row (CSR). The CSR consists of three arrays, containing a row array, edge array,
and property array. The row array stores the first pointer of its neighborhood
list in the edge array for each vertex. The edge array stores neighborhood lists
for all vertices and the property array stores the property value of each vertex.
Compressed sparse column (CSC) is similar to CSR except for its edge array
stores the ingoing edges of each vertex.
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Fig. 1. (a) graph G, (b) graph adjacency matrix, (c) CSR representation for graph G,
(d) shows computing vertex in-degrees of graph G using matrix multiplication. Vector
x is all ones and the output vector y indicates the number of incoming edges of each
vertex.

2.2 Matrix-Based Graph Analytics

Various graph analytics frameworks come with a variety of programming models,
mainly falling into three categories: vertex-centric model [21], edge-centric model
[28] and matrix-based model [4]. Of these models, vertex-centric model and edge-
centric model are widely used due to ease of use, but it is difficult to optimize
because of their unpredictable program behavior.

Matrix-based model have gained more attention because it’s based on strong
mathematical theory and can achieve good performance. Based on the graph
theory of Denes Konig, operations on the adjacency matrix of a graph are equal
to conducting graph analytics [18]. To illustrate this theory, a simple example
of calculating in-degrees is shown in Fig. 1(d). Multiplying the graph adjacency
matrix (unweighted graph) with a vector of all ones produces a vector of vertex
in-degrees. Matrix-based model are based on the theory that graph algorithms
can be described as matrix operations on different semirings [4] which are the
basic mathematical definitions of matrix-based graph algorithms. The semirings
of four well-known graph analytics algorithms, i.e., Breadth-First Search (BFS),
Single Source Shortest Path (SSSP), Triangle Counting (TC), and PageRank
(PR) are shown in Table 1. For different matrix-based graph algorithms, diverse
generalized “multiply (⊗)” and “add (⊕)” matrix operations are used to repre-
sent miscellaneous graph semantics. As shown in Algorithm 1, we take BFS as
an example of matrix-based graph algorithms.

Table 1. Semirings for different algorithms.

Semirings Domain
⊕ ⊗

0 Graph semantics Algorithms

lor-land {F, T} ∨ ∧ F Connectivity BFS

min-plus R ∪{+∞} min + +∞ Shortest path SSSP

integer arithmetic N + · 0 Number of paths TC

real arithmetic R + · 0 Strength of paths PR
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Algorithm 1: An Example of Matrix-based Graph Analytics: BFS

input : Adjacency Matrix A
output: Property Vector Y

1 for i = 1 to MaxIterations do
2 for v = 1 to MaxVertex do
3 if v is active then
4 create sparse vector X

5 y = SpMV(A,X, semirings(⊕.⊗))
6 for j = 1 to length(y) do
7 v = getVertex(j)
8 if getNewProperty(v) �=oldVertexProperty(v) then
9 set v is active

10 Y [v] = getNewProperty(v)

11 return Y

2.3 Coarse-Grained Reconfigurable Architectures

CGRAs have been developing rapidly stemming from 1990s [6,14]. This architec-
ture is a natural coarse-grained implementation based on the concept of reconfig-
urable computing proposed in 1960s [10]. It has gained much attention because
it not only has high energy efficiency and performance like ASICs but also has
great programmability [9,32].

CGRAs have a close relationship with dataflow architecture [5,12] because
they often integrate with the dataflow mechanism. The operations of CGRAs can
be driven by configuration flow or dataflow. The configuration of CGRAs defines
PE’s operations and interconnections. CGRAs can utilize efficient dataflow
between PEs via interconnections, which is not supported in conventional CPUs.
With the combination of dataflow and control flow, CGRAs can avoid over-
serialized execution among PEs and exploit coarse-grained parallelism. Mean-
while, CGRAs can further support explicit data communication among PEs
which can reduce the energy overhead of data movement among PEs. There-
fore, this hybrid mode with dataflow and control flow is the important reason
for CGRAs’ high performance and energy efficiency. In this paper, we design a
graph analytics engine based on CGRAs which combines the control flow and
dataflow model to enable high performance without sacrificing energy efficiency
and programmability.

3 Motivations

In this section, we motivate our work by recognizing the challenges of graph
analytics and the constraints of prior work.
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3.1 Challenges of Graph Analytics

The vertex-centric model is popular for graph analytics due to its high produc-
tivity. However, real-world natural graphs usually are highly sparse and follow
power-law distribution wherein a small set of vertices are with a large fraction
of all connections in the graph. The features of real-world graphs lead to a poor
locality for data accesses and unpredictable vertex behaviors in vertex-centric
graph analytics. Thus, vertex-centric model is difficult to optimize for better
performance.

While for matrix-based graph analytics, more regular matrix operations sub-
stitute lots of random memory accesses which often happen in vertex-centric
model. Regular and predictable matrix operations often lead to a better locality
and regular memory access. Matrix-based model based on a solid mathematical
theory [4] often shows high performance [29]. In our opinion, the matrix-based
model could be a feasible approach to achieve better performance.

Unfortunately, in general architectures like CPUs, their complex pipelines
are too deep and redundant for matrix-based graph analytics resulting in low
performance and energy efficiency. Furthermore, graphs often show extremely
high sparsity and this makes the performance of graph analytics on general
architectures poor [15]. As shown in Fig. 2(a), we use LAGraph [23], which is
a representative framework for matrix-based graph analytics, to run the BFS
algorithm on the Intel Xeon CPU as an example. The datasets we use in the
example are the RMAT Graph [25] listed in Table 4. Specifically, we use RMAT
graphs with a vertex scale of 21 and the average vertex degrees ranging from 4 to
256 in this example. We can see the overall IPC is still very low, less than 0.25,
which means running matrix-based graph algorithms on the general architecture
is inefficient. At the same time, we observe that as the density of the dataset
increases, the sparsity decreases, and the IPC increases, it shows that the overall
efficiency is closely related to the sparsity of the dataset. Additionally, the density
of the graph dataset is very low, and the sparsity is very high, up to 99.999%.
Such high sparsity of graph data poses a great challenge to matrix-based graph
analytics.

Recently, lots of accelerators based on the ASICs for vertex-centric graph
analytics are proposed. Their architectures based on ASICs are often fixed and
cannot be changed or reconfigured. However, matrix-based graph algorithms
consist of different matrix operations which have distinguished execution behav-
iors and dataflow [22]. As depicted in Fig. 2(b), different algorithms have diverse
computing kernels. These computing kernels have different dataflows, the preci-
sions of operations, data access patterns, and reusability. For instance, the SpMV
kernel of BFS works on bool values, while the SpMM kernel of TC operates on
integer values. They differ more in the precision requirements and data access
patterns of the graph data. It is challenging to design an architecture with fixed
dataflow for matrix-based graph analytics. Thus, we need a lightweight and flexi-
ble matrix-based graph analytics engine to achieve high performance and energy
efficiency.
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Fig. 2. (a) The IPC of BFS changes with the density of the data set, (b) Execution time
breakdown of diverse computing kernels in different matrix-based graph algorithms.

3.2 Overcoming Challenges

As mentioned in Sect. 3.1, it’s clear to find that the drawbacks of the program-
ming models and general architectures conflict with each other and cannot be
solved easily.

Opportunities. We observe that the important operators of matrix-based graph
analytics are often no more than 20 operations. It’s a better choice for us to
design an energy-efficient accelerator with lightweight pipelines for matrix-based
graph analytics with few reduced instructions which are necessary for graph
operations. Additionally, as mentioned in Sect. 3.1, assorted matrix-based graph
algorithms show great demands for hardware flexibility. According to Sect. 2.3,
CGRA is popular because it can be used to achieve both high performance and
flexibility. Thus, CGRA is an ideal base platform for us to accelerate matrix-
based graph analytics. Based on these observations, we proposed MatGraph, a
flexible and energy-efficient CGRA engine with reduced instructions for matrix-
based graph analytics to tackle the challenges described above.

Challenges. However, as shown in Fig. 2, The sparsity of each graph dataset is
more than 99.999%. Due to the high sparsity of graph data, a CGRA accelera-
tor still confronts the following two challenges. (1) Due to massive irregular
sparse graph data, the instructions of different PEs cannot be reused,
resulting in a large amount of instruction off-chip movement over-
head, (2) Immense irregular sparse graph data produces a large num-
ber of invalid computations and redundant off-chip memory accesses.
Therefore, to address the two challenges above, (1) we propose a bitmap-aware
instruction filtering strategy to increase the on-chip reuse of instructions and
filter invalid computations caused by highly sparse graph data. (2) To further
reduce the invalid computations and redundant memory accesses, we propose a
data-aware bidirectional sliding window mechanism to eliminate the sparsity of
graph data.
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4 Design

4.1 Overview Architecture

In this section, we introduce our proposed architecture named MatGraph based
on CGRA.

Hardware Implementation. Our proposed architecture is shown in Fig. 3(a),
it is mainly composed of many tiled PEs, on-chip Scratchpad Memory (SPM),
controllers, networks on chip (NoCs), and a prefetcher. As demonstrated in
Fig. 3(b), each PE consists of an instruction filtering unit, dispatcher, instruc-
tions and operands buffer, routers, as well as a pipelined and lightweight com-
puting unit without data hazards. It performs like a pipelined in-order core to
execute instructions in a dataflow manner. Figure 3(c) depicts the organization
of on-chip memory, which is in the form of a ping-pong buffer. In this way, the
memory latency can be overlapped with the computing phase.
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PE PE PE PE

PE PE PE PE
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Fig. 3. (a) Overall architecture, (b) PE architecture, (c) Ping-Pong on-chip SPM.

Execution Model. To improve the parallelism of instructions and achieve
high utilization of computing units of PEs, we adopt a codelet model as an
execution model. The codelet model is inspired by a dataflow parallel execution
model [11]. In this model, the total codes of an application are split into several
codelets. A codelet contains a sequence of hardware instructions. There exist
some dependencies among the codelets. As shown in the Fig. 4, according to
the relationships of codelets, we can express the program of an application as
a Codelets Dataflow Graph (CDG) and then map this CDG into the PEs. The
execution of the codelet should follow the sequence in the CDG. A codelet will
not issue until all conditions are met: 1) the data it depends on is available. 2)
hardware resources it will use are idle. In this dataflow model, we can achieve
high instruction and data-level parallelism.
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Function bfs(src):

distances[src]=0

cur_vec[src] = 1

res_vec[n] = 0

Load matrix A

while not finish

res_vec = SpMV(A, cur_vec)

cur_vec = res_vec

return res_vec
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Fig. 4. Codelet execution model.

4.2 Reduced Instructions Based on Semirings

It’s very challenging to flexibly support various matrix-based graph algorithms
because they consist of different matrix operations meaning different execution
patterns. To achieve this goal, we design a set of reduced instructions based on
semirings [22]. As shown in Table 1, different semirings can express different graph
semantics. According to different semirings, we design a set of reduced instructions
from different matrix operations. As shown in Table 2, our defined instructions
include 15 fixed-length instructions which are formatted as [FUNC, RS3, RS2,
RS1, OPCODE] where OP is the operation code of the instructions, RS1-RS3 are
three operands and FUNC is an additional field for other extendable functions.

Table 2. Reduced instructions and their functions.

Instructions Functions

ADD PeRAM[RS3] = PeRAM[RS1] + PeRAM[RS2]

MUL PeRAM[RS3] = PeRAM[RS1] + PeRAM[RS2]

MADD PeRAM[RS3] = PeRAM[RS1] * PeRAM[RS2] + PeRAM[RS3]

AOR PeRAM[RS3] = (PeRAM[RS1] && PeRAM[RS2]) ‖ PeRAM[RS3]

MIN PeRAM[RS3] = min{PeRAM[RS1], PeRAM[RS2]}
MAX PeRAM[RS3] = max{PeRAM[RS1], PeRAM[RS2]}
AND PeRAM[RS3] = PeRAM[RS1] && PeRAM[RS2]

OR PeRAM[RS3] = PeRAM[RS1] ‖ PeRAM[RS2]

XOR PeRAM[RS3] = PeRAM[RS1] ⊕ PeRAM[RS2]

AND-Bitwise PeRAM[RS3] = PeRAM[RS1] & PeRAM[RS2]

OR-Bitwise PeRAM[RS3] = PeRAM[RS1] | PeRAM[RS2]

XOR-Bitwise PeRAM[RS3] = PeRAM[RS1] ⊕ PeRAM[RS2]

LOAD PeRAM[RS3] = DRAM[Base addr + {RS1, RS2}]

STORE DRAM[Base addr + {RS1, RS2}] = PeRAM[RS3]

MOVE {PE[RS2], PeRAM[RS3]} = PeRAM[RS1]
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There are a total of 15 instructions that can be categorized into three types.
The details of the instructions are as follows.

Load and Store Instructions. We use the load and store instructions to
transfer data between the on-chip memory and the local memory inside the PEs.
They adopt the base-offset addressing mode to access the data residing in the
memory. The base address of load and store usually are respectively specified in
the dispatcher of each PE. With the base plus the offset value in the instructions,
we can access the data residing in the on-chip or off-chip memory.

Computational Instructions. There are 12 computational instructions in
total. These instructions work on the data reading from the local PE RAM.
By combining these computational instructions, various matrix operations of
matrix-based graph algorithms can be flexibly supported.

Move Instruction. The move instruction is the key point to achieving the
dataflow models described in Sect. 4.1. It is responsible for transferring data
from the source PE to the destination PE. This enables PEs to share on-chip
instructions and operands easily.

4.3 Bitmap-Aware Instruction Filtering

To resolve the invalid instructions for each PE and reduce instruction off-chip
movements caused by highly sparse graph data, we designed an instruction fil-
tering unit in each PE called Bitmap-aware Instruction Filtering (BIF). The
BIF design is driven by two key factors: (1) By dividing the matrix data into
uniformly sized sub-matrices, all PE can share a set of instructions to reduce
the overhead of lots of instruction movements, although the valid values in each
matrix block are different, only the invalid values of the corresponding instruc-
tions need to be filtered out to complete the execution. (2) Storing matrix data
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Fig. 5. Bitmap-aware instruction filtering unit.
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in the form of a bitmap sacrifices smaller storage in exchange for greater per-
formance gains, and a bitmap can also be directly used for computation in the
graph traversal algorithm when checking connectedness such as BFS.

Figure 5 presents an overview of the structure of the BIF. The BIF repeatedly
collects the valid index of non-zero values and instructions and transfers them
to the computing unit. First, BIF obtains the non-zero index of each vector by
reading the bitmap of the input matrix data that participates in the computa-
tions. The bitmap values of the two vectors from different input bit-matrix are
performed with the AND operation to get the index of non-zero values in the
results vector further. Then, BIF utilizes the non-zero index of the correspond-
ing instruction and operands buffer to fetch the corresponding valid instructions
and operands. Finally, it sends the fetched valid instructions and operands to
the computing unit to complete the computations. In summary, using BIF, we
can achieve the sharing of a set of instructions among PEs to increase on-chip
reuse of instructions and reduce off-chip instructions movements. Besides, we
can filter out invalid instructions for each PE, avoiding invalid computations.

4.4 Sparsity Removing with Bidirectional Sliding Window

Even if we convert the matrix data into a bitmap to guide the filtering of instruc-
tions and data shown in Sect. 4.3, there still be a lot of redundant data accesses
and superfluous storage of the bitmap. The overhead of storing bitmaps and
redundant data accesses is still not to be overlooked. In order to further reduce
the impact of highly sparse graph data, we propose a bidirectional data-aware
sliding window to remove data sparsity.

Graph Partition. Graph partitioning is an important method to process large
graphs and achieve good scalability of graph analytics. We use the method of
[20,34] to partition graph data, which is the basis of our bidirectional data-aware
sparsity removing scheme in the next subsection. A graph adjacency matrix is
divided into intervals (I) and shards (S) which are not disjoint. As the example
Graph G shows in Fig. 6 (a), we group the 4 vertices as an interval and group
the 4 * 4 edges as a shard. There are 4 intervals (from I1 to I4) and 4 * 44 shards
(from S (1,1) to S (4,4)) in total. As shown in Fig. 6 (c) and (d), we call the
two matrices of graph matrix multiplication row matrix A and column matrix B
respectively. The row matrix A is stored in CSR format and the column matrix
B is stored in CSC format.
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Fig. 6. Static partition and bidirectional data-aware sparsity removing to reduce redun-
dant accesses. (a) Graph partition, (b) Window sliding and constringing, (c) Row
matrix sliding window, (d) Column matrix sliding window.

Bidirectional Data-Aware Sparsity Removing (BSR). Finding the com-
mon valid part of two matrices when performing matrix multiplication can effec-
tively reduce redundant data accesses and superfluous storage of the bitmap,
but it is also time-consuming. To eliminate the sparsity and find the common
valid part efficiently, we propose a bidirectional data-aware sparsity removing
mechanism. For the column matrix, we firstly set the window size as the same
as edge shards and slide the window down until getting an edge in the top row.
Then, we constring the window size by moving the bottom row upward until an
edge is met. The row matrix is similar to the process of the column matrix but
it slides and constringes in the horizontal direction. After the row matrix and
column matrix finish the process of window sliding and constringing, we make
intersecting effectual shards of the row matrix and column matrix to get the
common valid part. The detailed processes of window sliding, constringing, and
intersecting are demonstrated in Algorithm 2.
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Algorithm 2: GetOneCommonValidShard
input : Row Matrix A, Column Matrix B, Intervals I, Shards S, Vertex v
output: Ivalid

�Window Sliding

1 //For Column Matrix B
2 while edge(rowstart, v) == ∅ do
3 rowstart ← rowstart + 1;

4 rowend ← rowstart + Windowhight;
5 rowstart ← rowend + 1;
6 //For Row Matrix A
7 while edge(columnstart, v) == ∅ do
8 columnindex ← columnindex + 1;

9 columnend ← columnstart + Windowwidth;
10 columnstart ← columnend + 1;

�Window Contringing

11 //For Column Matrix B
12 while edge(rowend, v) == ∅ && ∀ v in Ii do
13 rowend ← rowend − 1;

14 //For Row Matrix A
15 while edge(columnend, v) == ∅ && ∀ v in Ii do
16 columnend ← columnend − 1;

�Window Intersecting

17 if rowend ≥ columnstart‖columnend ≥ rowstart then
18 Ivalidstart ← max{rowstart, columnstart};
19 Ivalidend ← min{rowend, columnend};

20 else rowend < columnstart‖columnend < rowstart

21 Ivalidstart ← 0; //common shard does not exist.
22 Ivalidend ← 0;

23 Ivalid ← I[Ivalidstart , Ivalidend ];
24 return Ivalid;

Window Sliding. Figure 6 (b) shows the flow of window sliding. For each vertex
interval, the top edge blocks window gradually slides downward and it stops
when meets an edge on its top row. After that, a new window with the same
size starting from the bottom row of its previous window slides down and stops
with the same criterion. All the positions where windows stop are valid shards.
As presented in Fig. 6 (c), for row matrix A, the window slides in the horizontal
direction (i.e. sliding rightward). Figure 6 (d) shows column matrix B uses the
same mechanism but the window slides in the vertical direction (i.e. sliding
downward).

Window Constringing. Figure 6 (b) also depicts the process flow of window
constringing. The window sliding can only filter the sparse area on the top size,
however, sparsity still exists on the bottom side. To reduce the sparsity remaining
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on the bottom side, for column matrix B, the bottom row of each window moves
upward until it meets an edge, and the window is constringing. For row matrix
A, its window constringing in the horizontal direction (i.e. sliding leftward).

Window Intersecting. After the row matrix and column matrix obtain their
valid effectual shards, we compare the upper bound and bottom bound of the
horizontal shards in the row matrix and vertical shards in the column matrix
respectively to get the common valid edges. Figure 6 (c)(d) shows the process of
finding the common effectual part of the row matrix and the column matrix. The
edges in the red color box (labeled with 1, 2, etc. in row matrix A and column
matrix B) are the common valid part in each shard.

5 Methodology

5.1 Experimental Setup

To evaluate the effectiveness of MatGraph, we implement it in Verilog and syn-
thesize it utilizing Synopsys Design Compiler with TSMC 12 nm GP standard
VT library to evaluate its’s power and area accurately. For the performance eval-
uation, we build an in-house cycle-accurate simulator and integrate the Ramu-
lator [17] as its memory subsystem. The area, power, and access latency for the
on-chip SRAM are estimated using Cacti 6.5 [24]. The energy for DDR4-2400 is
estimated using 38 pJ/bit as in [2].

5.2 Baselines and System Configuration

We choose the LAGraph [23], which is a representative matrix-based graph ana-
lytics framework on CPU and a GPU-based matrix-based graph analytics frame-
work GraphBLAST [35], to compare the performance and energy consumption
of MatGraph. Besides, we evaluate Graphicionado [13], a state-of-the-art graph
analytics accelerator, to compare the performance and energy savings with Mat-
Graph. Table 3 lists the system configuration in details.

Table 3. System configuration for evaluation.

LAGraph GraphBLAST (V100) Graphicionado MatGraph

Compute Unit 2x Intel Xeon Silver 16 Cores @ 2.1 Ghz 5120x Cores @ 1.25 Ghz 128x Streams @ 1 Ghz 128x PEs @ 1Ghz

On-chip Memory 40MB 34MB 40 MB 40MB

Off-chip Memory 12 * 19.2 GB/s DDR4 900GB/s HBM 2.0 12 * 19.2 GB/s DDR4 12 * 19.2 GB/s DDR4

5.3 Graph Algorithms and Datasets

We use BFS, SSSP, PR, and TC algorithms to evaluate MatGraph. Table 4 shows
the graph datasets used for our evaluation. Random integer weights between 0
and 255 are assigned for the unweighted real-world graphs. We have both small
and large graphs, which have diverse average vertex degrees. FR has the smallest
average vertex degree, while the average vertex degree of HO is the largest, which
means a better locality.
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Table 4. Datasets used in the evaluation.

Graph Vertices Edges Brief explanation

Flickr (FR) [8] 0.82M 9.84M Flickr Crawl

Soc-Pokec (PK) [8] 1.63M 30.62M Social Pokec Network

LiveJournal (LJ) [8] 4.00M 68.99M LiveJournal Follower

Hollywood-2009 (HO) [8] 1.14M 113.90M Movie Actors Social

Indochina-2004 (IN) [8] 7,41M 194.11M Crawl of Indochina

Com-Orkut (OR) [8] 3.07M 234.37M Orkut Social Network

RMAT scale 21 (RM21) [25] 2.1M 33.55M Synthetic graph

6 Results

In this section, we first compare the results of our work (MatGraph) with
LAGraph, GraphBLAST, and Graphicionado in terms of speedup and energy
efficiency and provide analysis. Then, the area breakdowns of RFU and PE are
presented.

6.1 Overall Results

SpeedUp. We first compare the performance speedup of MatGraph normal-
ized to LAGraph, GraphBLAST, and Graphicionado in Fig. 7. The geometric
mean across all algorithms is labeled as GM in the last set of bars. Overall,
MatGraph achieves 9.35x, 2.28x, and 1.59x speedup over LAGraph, Graph-
BLAST, and Graphicionado. MatGraph’s main performance advantage comes
from highly effective memory bandwidth utilization and reduction of off-chip
memory access. Then, we analyze the performance improvement of each appli-
cation in detail. Compared to LAGraph, the highest speedup achieved by Mat-
Graph is 15.71x which happens on PR on the OR dataset. The lowest speedup
MatGraph achieved is 5.38x on TC using the FR dataset. The speedup of
the TC algorithm is smaller than other algorithms since the preprocessing of
LAGraph efficiently improves the locality of memory accesses by sorting the
vertices according to their degrees. On the other hand, compared to Graph-
BLAST, MatGraph achieves higher speedup on the PR algorithm due to fewer
random accesses to off-chip memory. For BFS and SSSP, it’s because most of
the active vertices have an edge list smaller than off-chip memory access vertices
causing the low utilization of bandwidth.

Overall, MatGraph has an efficient lightweight pipeline without data haz-
ards to execute instructions with high instruction parallelism. Besides, using a
bitmap-aware instruction filtering unit, all PEs can share the same instructions
and the off-chip memory accesses of instructions brought by highly sparse matrix
data are further avoided. On the other hand, by utilizing the bidirectional data-
aware sparsity removing, redundant memory accesses are further eliminated.
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Fig. 7. MatGraph performance speedup over LAGraph, GraphBLAST, and Graphi-
cionado.

Thus, MatGraph has higher bandwidth utilization to upgrade the performance
than others.

Energy Efficiency. Figure 8 demonstrates the energy savings of MatGraph
over LAGraph, GraphBLAST, and Graphicionado. Overall, the energy savings
of all algorithms over LAGraph is 11.17x. While average energy savings across
all algorithms over GraphBLAST is 7.15x because GPU consumes much more
energy for the irregular off-chip memory accesses and low bandwidth utilization,
especially in the case of BFS on HO dataset and SSSP on IN dataset. Compared
to Graphicionado, MatGraph achieves 1.61x energy savings. The energy savings
mainly comes from (1) less off-chip memory access due to higher on-chip instruc-
tion and data reuse and exact prefetch, and (2) the more efficient execution of
instructions due to more lightweight instructions and pipeline.
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Fig. 8. Energy savings of MatGraph over LAGraph, GraphBLAST, and Graphi-
cionado.

Off-Chip Memory Accesses. Figure 9 presents the total off-chip memory
accesses reduction ratio of MatGraph over LAGraph, GraphBLAST, and Graphi-
cionado during runtime. Overall, MatGraph reduces off-chip memory accesses
by 61%, 43%, and 25% on average compared to LAGraph, GraphBLAST, and
Graphicionado respectively. The main reasons are as follows: (1) Using our pro-
posed instruction filtering scheme, MatGraph enables PEs to share the same
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instructions, which increases the reuse of on-chip instructions and reduces off-
chip movements of instructions. (2) Utilizing bidirectional data-aware sparsity
removing, MatGraph further reduces redundant off-chip data accesses to allevi-
ate the severe off-chip memory accesses.
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Fig. 9. Memory accesses of MatGraph normalized over LAGraph, GraphBLAST, and
Graphicionado.

Utilization of Memory Bandwidth. As depicted in the Fig. 10, MatGraph
achieves 53% memory bandwidth utilization on average. Graphicionado has sim-
ilar bandwidth utilization to MatGraph due to its large on-chip memory and a
good locality to access edge data. A large amount of random accesses causes low
bandwidth utilization of 23%, and 36% for LAGraph, and GraphBLAST respec-
tively. PageRank and TC have static task vectors and incur more regular memory
accesses for instructions and graph data. Therefore, MatGraph, LAGraph, and
GraphBLAST all have higher bandwidth utilization. However, BFS and SSSP,
all have lower bandwidth utilization and MatGraph have 1.5x–2x bandwidth
utilization over LAGraph and GraphBLAST. Since the bidirectional data-aware
sparsity removing scheme brings better graph matrix data access locality for
MatGraph.
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Area. Figure 11 shows the area breakdown of MatGraph except for off-chip
memory and a single PE in MatGraph. The total area of MatGraph is 20.71 mm2

and a PE in MatGraph takes 0.18 mm2. The whole PE array consumes 47% of
the whole chip area which is the majority. After that, SPM is used as the on-
chip memory which consumed 36% overall. Such an architecture with a large
on-chip SPM confronts our design of exact prefetching and hiding the latency of
instruction and data access with computing. In a single PE, the operand buffer
and instruction buffer consume up to 74% which dominates the majority of the
area. With a large memory within PE, our design principle of increasing the on-
chip instruction and data reuse among PEs works well to reduce off-chip memory
access.
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Fig. 11. (a) Area breakdown of MatGraph, (b) Area breakdown of a PE.

6.2 Effects of Optimizations

Figure 12 shows the detailed effects of the different optimizations. The leftmost
bar represents the baseline case, which is without optimizations. Then, the opti-
mization includes bitmap-aware instruction filtering (BIF), and bidirectional
data-aware sparsity removing (BSR). As depicted, enabling BSR achieves 2.23x
speedup on average. Applying BIF with BSR for MatGraph provides a total
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3.10x speedup on average. BSR has a great impact on BFS and SSSP due to
dynamic task vectors with different sparsity, which leads to lots of off-chip mem-
ory accesses. While PR and TC have less improvement with BSR optimization
because it has fixed task vector and fewer off-chip memory accesses. All algo-
rithms have performance improvement with BIF optimization, especially PR
and TC, which demonstrates it’s essential for MatGraph to increase the on-chip
reuse of instructions and filter invalid computations and memory accesses.

7 Related Works

CPU-Based Graph Analytics Frameworks. Lots of vertex-centric graph
analytics frameworks are proposed due to ease of use like Pregel [21]. Similar
edge-centric graph analytics is proposed by X-stream [28] to optimize the irreg-
ular memory access in the vertex-centric model. Both vertex-centric and edge-
centric models lack a strong mathematical theory and are difficult to optimize for
better performance. CombBLAS [4] is the pioneering framework of matrix-based
graph analytics offering a set of linear algebra primitives to graph analytics. Pre-
vious work [29] demonstrates the performance benefits of matrix-based graph
analytics. To make matrix-based graph analytics programming easier, Graph-
BLAS [22] is proposed to simplify the programming of the matrix-based model.
Hence, in terms of performance, we conclude that matrix-based models are a
good choice for graph analytics.

GPU-Based Graph Analytics Frameworks. With the hundreds of CUDA
cores and high bandwidth memory on GPU, GPU-based graph frameworks [33]
achieve great performance improvement over CPU solutions. However, they need
expensive preprocessing to transform irregularity to be regular to take advantage
of its architecture and it also consumes a lot of energy to support a large number
of threads. Nevertheless, our work achieves 2.28x speedup and 7.15x energy
savings compared to GraphBLAST [35] which is the state-of-the-art matrix-
based graph analytics framework on GPGPU.

Hardware Accelerator of Graph Analytics. There are lots of customized
graph analytics accelerators. First, GraphR [30] targets to leverage the efficient
compute capacity of ReRAM to accelerate the matrix operations of graph appli-
cations. Nevertheless, ReRAM technology is still not widely applied. Our work
presents a practical solution by leveraging the off-the-shelf DDR4 and flexible
CGRA architecture. On the other hand, many vertex-centric model-based graph
analytics accelerators were explored. Graphicionado [13] uses specified on-chip
memory to reduce random off-chip memory and pipelined data path to optimize
vertex-centric graph analytics. GraphDyns [34] adds dynamic work distribution
to further address irregularities in graph applications.

FPGA-based accelerators [7] utilize the high bandwidth of on-chip memory in
FPGA to reduce irregular memory access but are limited by hardware resources
in FPGA. Finally, recent works [1] offload the workloads into the logic layer of
3D memory technology like Hybrid Memory Cube (HMC) to accelerate graph
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applications with high bandwidth. However, the logic layer has a limited area
budget and frequency. Unlike the above architecture, our work utilizes mature
CGRAs to accelerate matrix-based graph analytics which has both high perfor-
mance and flexibility.

8 Conclusion

In this paper, we present an energy-efficient and flexible hardware accelerator
for matrix-based graph analytics named MatGraph. We use CGRAs as our base
which are famous for their good performance and high flexibility. We define
reduced instructions and design a lightweight pipeline to efficiently support
matrix operations. To eliminate the impact of high sparsity of graphs, we pro-
pose an instruction filtering scheme to reduce invalid computations and increase
the reuse of instructions. In addition, we design bidirectional data-ware sparsity
removing based on the static partitions mechanism to reduce the redundant data
accesses and further reduce the sparsity of graph data. Compared to LAGraph,
GraphBLAST, and Graphicionado, Mat achieves 11.17x, 7.15x, and 1.61x less
energy on average.
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Abstract. As high-speed SSDs supporting multi-queue interfaces are
widely used in shared storage systems, scheduling strategies should
ensure fair sharing of device resources. However, when facing the work-
load of different I/O characteristics, service time-based schedulers can-
not achieve proportional bandwidth sharing totally, while sector-based
schedulers often lead to insufficient resource utilization. Therefore, it is
a great challenge to simultaneously achieve fair bandwidth sharing with-
out compromising resource utilization.

This paper proposes a dynamic cost-aware fair queueing I/O sched-
uler (D-IOCost), guaranteeing fair bandwidth sharing while maximiz-
ing resource utilization for multi-queue systems. D-IOCost dynamically
updates the weights of the I/O flows according to the service time of
sector-sized requests to ensure fairness and adjusts the request dispatch
parallelism based on I/O characteristics to maximize resource utilization.

Experimental results show that the I/O proportionality of D-IOCost is
improved more than 10-times higher than the Linux latest I/O schedulers
IOCost under the mixed workloads. Meanwhile, D-IOCost achieves more
than 30% performance improvement over MQFQ, the state-of-the-art
multi-queue fair queueing scheduler, especially for small read requests.

Keywords: Fair sharing scheduler · Performance · SSD

1 Introduction

Shared storage has become a popular solution in recent decades due to its lower
hardware and management cost. With improved SSD performance, NVMe SSD
based on the PCIe interface provides a multi-queue I/O structure to maximize
the performance, enabling it to support parallel I/O of multiple applications.
For example, the Samsung 980 Pro can perform one million I/O operations per
second [1,2]. Therefore, achieving fairness and maximizing resource utilization is
the primary concern when multiple applications access high-performance SSD.

Fair queueing schedulers [4,6,7,9–11] are a class of algorithms to schedule
the I/O resource fairly among multiple applications. Due to its work-conserving
nature, fair queueing schedulers support higher performance than budget-based
c© Springer Nature Switzerland AG 2023
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I/O schedulers [5,8]. Device-level schedulers [6,7,11] implemented in the SSD
firmware allow for device-side parallelism at the cost of flexibility and feasibility.
The latest device-level fair queueing scheduler D2FQ [11] is designed on top of the
NVMe weighted round robin with the urgent priority class (WRR) feature, but it
can not apply to all SSDs. Consequently, the host-level fair queueing scheduling
schedulers implemented at the block layer are widely used for fairness, which fall
into sector-based and service time-based fair queueing schedulers.

The sector-based fair queueing schedulers [10,21] take the sector-based size
of the request as the I/O cost to share the bandwidth resources fairly. The latest
sector-based I/O scheduler MQFQ [10] in the multi-queue block layer introduces
the constant parallelism value D (the number of outstanding requests) and the
throttling threshold value T to achieve the trade-off between resource utilization
and fairness. However, they are affected by the characteristic of the workload,
leading to decreased resource utilization and unfairness.

According to the workload characteristics, the service time-based fair queue-
ing schedulers [4,9,12] use the request service time as I/O cost, realizing the fair
sharing of device time, not bandwidth. When the workload characteristics of the
flows1 are different, the sector-sized I/O costs of the flows are various. Conse-
quently, the number of sectors served by the flow in a period is disproportionate
to its target weight, so bandwidth sharing is unfair. Target weights are set via
quality of service parameters. I/O proportionality [3] refers to the bandwidth
observed by I/O flows competing for I/O resources in a shared storage environ-
ment. I/O is said to be proportional if each flow’s bandwidth is proportional to
the relative target weight of the total bandwidth.

This paper proposes a dynamic cost-aware fair queueing I/O scheduler (D-
IOCost) for multi-queue shared storage systems, guaranteeing fair bandwidth
sharing while maximizing resource utilization. It takes the request service time as
I/O cost and reallocates the flow’s resource management parameters (i.e., weight)
for fair bandwidth sharing. The dispatch parallelism is dynamically adjusted
according to the workload characteristics to maximize resource utilization in
this scheduler. Meanwhile, the time window is updated in real-time to guarantee
the accuracy of the dispatch parallelism.

The D-IOCost scheduler is implemented at the Linux Cgroup layer [12], which
supports fair bandwidth while maximizing the SSD throughput sharing on multi-
queue storage. Implementing an I/O scheduler in the multi-queue block layer can
be expensive because per-process I/O scheduling queues are necessary. Since
adding a new policy at the Linux Cgroup layer is more accessible to implement
by reusing most of the existing throttling layer code.

The D-IOCost scheduler is evaluated under the FIO workloads and realis-
tic workloads. Due to the cost-aware characteristic of D-IOCost, it adjusts the
flows’ weights for fair bandwidth sharing. As a result, the fairness of D-IOCost
is improved more than 10-times higher than the latest service time-based I/O
schedulers IOCost [9] under the mixed workloads. Since D-IOCost adjusts the

1 An I/O flow refers to a series of I/O requests issued by a resource principal, such as
a container, virtual machine, or application.
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request dispatch parallelism based on the I/O characteristics, it achieves more
than 30% performance improvement over MQFQ [10], the state-of-the-art sector-
based multi-queue fair queueing scheduler, especially for small read requests.
This paper has the following contributions:

1. We successfully demonstrate building a dynamic cost-aware fair queueing I/O
scheduler (D-IOCost), guaranteeing fair bandwidth sharing while efficiently
maximizing resource utilization with various workloads on multi-queue sys-
tems.

2. In D-IOCost, the flow’s weight and the request dispatch parallelism are
adjusted dynamically according to the workload I/O characteristics for fair
bandwidth sharing while maximizing resource utilization.

3. The detailed experimental results show that D-IOCost can provide better I/O
proportionality and higher resource utilization.

The rest of this paper is structured as follows: the background and moti-
vation are explained in Sect. 2 and the design of our method is introduced in
Sect. 3. Experimental results are shown in Sect. 4. Finally, Sect. 5 concludes with
a summary and future work.

2 Background and Motivation

With the rapid increase in the performance and capacity of SSDs, a single SSD
storage device can simultaneously serve requests from multiple I/O flows. Then,
fair sharing of SSD bandwidth is critical to meeting the service level agreements
(SLAs) [13–15].

Offloading the I/O scheduling function to a device is a device-level approach
for fair-sharing, but it is unsuitable for all SSDs and flows. FlashBlox and FLIN
[6,7] partition SSD channels which allow for hardware-enforced isolation at the
cost of flexibility in the number of flows. D2FQ [11] is designed to implement
fairness on top of the device-side I/O scheduling feature (i.e., NVMe WRR), but
it is not applied to the SSDs lacking WRR support.

Hence, the host-level schedulers [5,9,10,16,25] implemented at the block layer
of the I/O stack are widely used for fairness. M. Bjørling et al. proposed a new
multi-queue I/O architecture [16,25] to accommodate parallel I/O requests from
multiple flows. After that, many fair sharing schedulers, such as BFQ [5] and
MQFQ [10], were proposed for multi-queue shared storage systems. They can be
categorized as budget-based I/O schedulers and fair queueing I/O schedulers.

2.1 Budget-Based I/O Scheduler

Budget-based I/O schedulers provide an independent scheduling queue for each
flow. They allocate the budgets of the flows based on the target weights so that
the bandwidth sharing is weight-based proportional. Hence, the Linux resource
control architecture Cgroup [12] has become an attractive technology for fair
bandwidth sharing due to its support for the weights (priorities) control.
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In current Linux systems, the BFQ [5,8] scheduler and WDT [17] throttler
are the typical budget-based I/O schedulers that support Cgroup on the multi-
queue storage system. BFQ preserves a per-process queue for each flow and
allocates the budget based on the target weight. It uses the budget to choose the
next process to schedule. When a process is scheduled, the next budget increases
if it consumes its allocated budget, negatively affecting the I/O proportionality.
Meanwhile, per-process I/O scheduling queues introduce significant overhead in
the multi-queue block layer. To guarantee the I/O proportionality matches the
target weight and reduces the overhead, Ahn and Min propose the WDT [17]
throttler at the Linux Cgroup layer. WDT describes a workload-dependent IO
scheduler that distributes the bandwidth via target weights but can’t occupy
the whole bandwidth. Since the budget-based schedulers do not support work-
conserving, storage devices may remain idle even for pending requests. As a
result, storage device resources can not be fully utilized.

2.2 Fair Queueing I/O Scheduler

The proportional fair queueing schedulers [4,9,10,20] distribute the performance
proportionally to the target weights of the application. Target weights are set
via quality-of-service (QoS) parameters. Since it supports work-conserving, it
has become an attractive solution for the fair sharing of storage resources. The
fair queueing scheduling schedulers assign resources (e.g., bandwidth or device
time) according to a system notion of virtual time unit (e.g., sector or service
time). Consequently, fair queueing schedulers are divided into sector-based and
service time-based fair queueing schedulers.

The sector-based fair queueing schedulers take the number of sectors served as
the virtual time to improve I/O proportionality guarantees. SFQ [20] uses a single
central queue to control the dispatch of requests. SFQ assigns a start tag and
a finish tag when each request arrives and dispatches requests according to the
increasing order of the start tag. Due to the central queue dispatching requests
in order, SFQ cannot fully utilize the high-concurrency device. To solve this
problem, SFQ(D) [21] allows up to D requests to be dispatched simultaneously.
However, SFQ(D) still cannot support high resource utilization on multi-queue
systems because of out-of-order request completion for the busy server case.

To address the above problem, MQFQ [10] proposes the latest sector-based
fair queueing approach for multi-queue SSDs. It assigns a separate priority queue
to each CPU core for high performance and maintains fairness by keeping track
of the minimum virtual time of the process. It uses the dispatch parallelism
parameter D to control the number of outstanding requests for better I/O effi-
ciency in devices with internal parallelism. Fairness is achieved by the threshold
parameter T , which limits the amount of service a flow can receive over its
share. However, D is affected by the platform latency (Tplatform)2, which is the
most critical factor affecting request latency in low-latency SSDs. Consequently,
MQFQ can not maximize resource utilization.
2 The platform latency refers to the latency caused by software (I/O issue and comple-

tion, DMA) and hardware (e.g., chipsets) [18,23]. Wooseong [19] enables the reduc-
tion of the DMA latency to minimize overall system latency.
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The service time-based fair queueing schedulers (e.g., Flashfq [4], FIOs [22],
and VSSD [24]) compute the I/O cost according to an offline calibration for
high resource utilization. It employs the normalized accumulated service time of
the I/O flow to define its virtual time, which realizes the fair sharing of device
time resources for a single-queue storage system. After that, Linux version 5.2
proposes a work-conserving multi-queue I/O fair sharing scheduler IOCost [9],
which uses the request service time as the I/O cost based on Flashfq. It recovers
the loss of total bandwidth when it misestimates the service received by flows,
resulting in unfairness.

The service time-based fair queueing schedulers support fair bandwidth shar-
ing with the same workloads but not for the different workloads. The sector-sized
I/O costs of the flows are consistent with the same workloads. When the service
time of the flow is in proportion to its target weight, so does the flow’s number of
sectors served, sharing the bandwidth fairly. It can’t support the I/O proportion-
ality with the different workloads due to the inconsistent sector-sized I/O costs.
Therefore, a cost-aware scheduler that can maximize resource utilization while
supporting fair bandwidth sharing with the different workloads is necessary for
the multi-queue shared storage system.

3 Design and Implementation

This paper proposes a dynamic cost-aware fair queueing I/O scheduler (D-
IOCost) on the multi-queue system, supporting fair bandwidth sharing while
maximizing resource utilization. The D-IOCost scheduler consists of three parts:
1) the weights of the I/O flows are dynamically reallocated based on the sector-
sized request’s service time to achieve fair bandwidth sharing; 2) the dispatch
parallelism is adjusted dynamically according to the I/O characteristics for max-
imizing resource utilization; 3) the time window is adjusted to guarantee the

Fig. 1. Structure of D-IOCost scheduler
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accuracy of the dispatch parallelism. It is implemented on the Linux Cgroup
layer, as shown in Fig. 1.

Figure 2 shows the overview of D-IOCost’s process. We assume that n tasks
with different I/O target weights run concurrently. Flow-x represents a flow
with the target weight x. The process of D-IOCost is logically separated into the
Fairness Path and the High-performance Path. D-IOCost dynamically adjusts
resource allocation parameters (i.e., weight and dispatch parallelism) based on
I/O characteristics and historical running information to ensure fairness and
high performance.

Fig. 2. Overview of D-IOCost’s process

The Fairness Path makes the number of sectors served by the flow i (i=1...n)
proportionate to its target weight (Wtargeti) in a period. First, D-IOCost extracts
the feature from the bios of flow i and calculates the sector-sized I/O cost (C̄seci).
D-IOCost reallocates the resource management parameter weight (Wi) of the
flow i based on its sector-sized I/O cost and target weight to achieve fair band-
width sharing, as described in Sect. 3.1. Meanwhile, to reduce the impact of
aggressive tasks on fairness, D-IOCost adjusts the C̄seci according to the history
of bandwidth resource usage information (Hsectori) in step 6©.

The High-performance Path periodically adjusts the dispatch parallelism to
ensure high resource utilization. In step 2©, D-IOCost collects the read/write
average I/O cost (C̄sr

rw) and request count (Countsrrw) to adjust the dispatch
parallelism parameter (D) and virtual time dispatch rate (Drate) to maximize
resource utilization, as described in Sect. 3.2. In step 3©, D-IOCost adopts the
dynamic time window algorithm to guarantee the accuracy of the D value,
according to the feedback of the previous D in step 5©. We further discuss the
algorithm in Sect. 3.3. In step 4©, D-IOCost flushes the bios to the SSDs.

3.1 Weight Reallocation

D-IOCost takes the service time as the I/O cost, and the virtual time in D-
IOCost reflects device time usage. For each flow, its virtual time is defined as
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the start tag of its first backlogged request. Assuming the flow has multiple
pending requests, dispatching this first request would increase the flow’s virtual
time by s/w, where w is the flow’s weight and s is the service time of the request.
The global virtual time progresses along with the wall clock at a rate specified
by the virtual time dispatch rate (Drate). D-IOCost provides fairness between
only active flows, and it throttles a flow if its virtual time is far ahead of the
global virtual time.

D-IOCost assigns a start and finish tag to each request when it arrives and
dispatches requests in increasing order of start tags. The start tag for a request
is set to be the maximum of the global virtual time and the last finish tag of the
flow. The finish tag for a request is its start tag plus its cost, normalized to the
weight of the flow. Table 1 lists variables used in the weight reallocation module
(WR) for fairness: per-flow parameters and descriptions.

Table 1. Per-flow parameters and descriptions

Parameters Descriptions

Cr
i The I/O cost of the request r

Cr
seci The sector-sized I/O cost of the request r

C̄seci The average sector-sized I/O cost of flow i

Hsectori The historical sector numbers served by flow i

prpideal(fi) The idel I/O proportionality of fi
prpresult(fi) The obtained I/O proportionality of fi
Ri The ratio of historical information to the average I/O cost in fi

Sectorri The sector-based size of the request r

V Ti The virtual time of flow i

Wtargeti The QoS target weight of flow i

Wi The resource management weight of flow i

The absolute I/O cost of request r in the flow i (i = 1...n) is indicated as
Cr

i (r = 1...m) according to an offline calibration, which is divided by the flow’s
weight (Wi) to derive the relative I/O cost. The Wi is expressed as the resource
allocation proportion of the flow among its siblings, as shown in Eq. (1). Each
flow tracks its virtual time, which advances on each IO by the IO’s relative cost.
For example, a flow with Wi of 0.5 has a 50% share of the device time, and the
relative cost of the IO is Cr

i /Wi. Then the virtual time of the flow i (i = 1...n)
in the interval [t1,t2] can be expressed as V Ti(t1,t2) in Eq. (2):

n∑

k=1

Wi = 1 (1)

V Ti(t1, t2) =
∑m

r=1 C
r
i

Wi
(2)
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If flows have the same virtual time, their I/O resource usages are proportional
to weights (Wi), and the fairness is satisfied. An allocation for flows i (i = 1...n)
is fair if for every time interval [t1,t2], we have:

V Ti(t1, t2) − V Tn(t1, t2) = 0; (3)

The service timed-based D-IOCost scheduler can directly use the wall-clock
time to calculate the global virtual time GV Ti without tracking the minimum
per-flow virtual times in real time. The global virtual time progresses along with
the wall clock at a rate specified by the virtual time dispatch rate (Drate). The
Drate is the virtual time against the wall clock and is updated periodically,
which controls how fast or slow the global virtual time runs compared to the
wall clock. For example, if Drate is at 150%, the global virtual time runs at the
1.5x speed of the wall clock and generates 1.5x more IO service than the device
cost model specifies. Comparing the flow’s virtual time and the global virtual
time will decide whether to throttle the flows’ requests or not. The requests of
the flow i are throttled only when its start tag exceeds the global virtual time.

To guarantee better I/O proportionality, the weight reallocation module
(WR) in D-IOCost reallocates the weight (Wi) of the flow i (i = 1...n) separately
based on its average sector-sized I/O cost (C̄seci) and target weight (Wtargeti)
(shown as the step 1© in Fig. 2). To make the number of sectors served by the
flow i proportional to the target weight, the I/O cost of the request k in the flow
can be made of sector-sized I/O cost (Cr

seci), and the request size is expressed
as (Sectorrseci) (r = 1...m). The average I/O cost of flow i (C̄seci) is calculated
according to Eq. (4), and the ratio of historical information to the I/O cost (Ri)
is initialized to 1. We are substituting the target weights (Wtargeti) and I/O cost
(C̄seci) of the current time window into Eqs. (2) and (3), deriving Eq. (5). When
all flows are backlogged, and the weights’ distribution meets Eq. (5), D-IOCost
can guarantee the fair bandwidth sharing on the different workloads.

C̄seci =
∑m

r=1 Sector
r
i ∗ Cr

seci∑m
r=1 Sector

r
i

∗ Ri (4)

Wi =
Wtargeti ∗ C̄seci∑n

k=1 Wtargetk ∗ C̄seck

(5)

To reduce the impact of aggressive tasks on fairness, the D-IOCost uses the
history of bandwidth resource usage information in reallocating the sector-sized
I/O cost of flow. Step 6© in Fig. 2 shows that when the difference between the
flow’s actual bandwidth usage proportion and the ideal I/O proportionality is
more than the threshold value H (initialized to 5%), the average I/O cost (C̄seci)
of flow i will be changed.

As shown in Eqs. (6) and (7), prpideal(fi) is the target weight share among
the whole target weights, and prpresult(fi) is the obtained bandwidth share of
the entire bandwidth. Ri is the ratio of historical information to the average
I/O cost in fi, representing the fairness of the current flow, shown as Eqs. (8).
When the prpresult(fi) is smaller than the prpideal(fi), we need to improve the
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bandwidth share. Therefore, the average I/O cost of the flow i (C̄seci) in Eqs. (4)
is reduced proportionally according to the Ri to increase the bandwidth share
of the flow. Otherwise, the average I/O cost is increased.

prpideal(fi) =
Wtargeti∑n

k=1 Wtargetk

(6)

prpresult(fi) =
Hsectori∑n

k=1 Hsectork
(7)

Ri =
prpresult(fi)
prpideal(fi)

(8)

3.2 Dynamic Dispatch Parallelism

The dispatch parallelism parameter D in D-IOCost controls the number of out-
standing requests and is a trade-off between high resource utilization and fair-
ness, similar to MQFQ. While a larger D may better utilize the device, it can
be unfair because of the higher request waiting time. Therefore, D-IOCost will
stop dispatching once there are D outstanding requests in the saturated device,
as shown in step 4© of Fig. 2. Table 2 lists primary global variables and relative
descriptions used in the following modules to maximize performance.

Table 2. Global parameters and descriptions

Parameters Descriptions

C̄sr
rw The average I/O cost in different I/O format

Countsrrw The request counts in different I/O format
D The dispatch parallelism
Drate The virtual time dispatch rate
DT The error threshold value of dispatch parallelism
H The percentage error of I/O proportionality
P The percentage error of the Drate

Tplatform The latency caused by software and hardware
TW The time window size
VD The dispatch parallelism amplitude ratio
VLastD The VD based on the last statistical period
Vmax The max threshold of VD

V
′

The error threshold value of trend of VD

To ensure fairness and maximize resource utilization, the D-IOCost sched-
uler minimizes the latency caused by software (I/O issue and completion) and
hardware (e.g., chipsets), which refers to Tplatform. The D-IOCost extracts the
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following features from a bio request: 1) read or write, 2) random or sequential,
and 3) request size. It indicates that the I/O cost of request r in flow i (Cr

i )
consists of two parts: one is the platform time Tplatform, based on the 4KB
sequential and random IO per second (IOPS4KB) for reads and writes, and the
other is the data transfer time Ttransfer according to the 4KB-based request size
(Size4KB) and read/write byte per second (Bps):

Ttransfer =
1sec
Bps

∗ 4KB ∗ Size4KB (9)

Tplatform =
1sec

IOPS4KB
− 1sec

Bps
∗ 4KB (10)

Cr
i = Tplatform + Ttransfer (11)

The D-IOCost proposes that D is adjusted dynamically according to the
Cr

i and Ttransfer of different workloads (as shown in Eq. (12)). The Depth is
initialized to 64, and D is modified to maximize resource utilization when the
workload changes, as shown in step 2© of Fig. 2.

D =
Cr

i ∗ Depth

Ttransfer
(12)

The dynamic dispatch parallelism module (DDP ) is shown in Algorithm1.
Due to the different performance of read and write in sequential and random for-
mat on the SSD, D is adjusted dynamically considering the different I/O charac-
teristics. The I/O characteristics parameters rw means read or write I/O type,
and sr means sequential or random I/O access format. DDP must determine
whether it is a read-intensive, write-intensive, sequential, or random format. It is
evaluated by the average I/O cost (C̄sr

rw) and request count (Countsrrw). Because
the D is related to the IO per second (IOPS), it is updated by the one whose
request counts are the most, as shown in Eq. (12).

Algorithm 1. The Dynamic Dispatch Parallelism Algorithm

Input: C̄sr
rw, Countsrrw, D̄,Drate,DT , P

Output: D
(rw, sr) ← max(Countsrrw)
D ← Csr

rw∗Depth
Ttransfer

if (abs(D − D̄) > DT ) then
if (D > D̄) then
Drate ← Drate ∗ (1 + P )

else
Drate ← Drate ∗ (1 − P )

end if
end if

According to the device saturation, the D-IOCost adjusts the virtual time
dispatch rate (Drate) by the parameter D. The D̄ is the average D. When the
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D deviates from the D̄ more than DT , we need to judge the state of the device
saturation. If the D̄ is lower than D, the device is not saturated, and Drate will be
increased by the threshold value P . Otherwise, the device is saturated, and Drate

is adjusted downwards. D-IOCost uses the percentage threshold P to change
Drate gradually, which is initialized to a binary index table to prevent aggressive
flows. It over-provisions the parameter DT for the maximum throughput of the
device can always be met, DT is initialized to 8.

3.3 Dynamic Time Window

Since parameter D is updated periodically in the time window (TW ), a suitable
TW is critical to guarantee the accuracy of D. The shorter the TW , the better
I/O control timeliness, i.e., higher frequency tuning, which helps reduce control
errors. However, the number of I/O requests sampled in a small TW may not be
sufficient to provide accurate statistics, leading to inaccurate D and Drate and
performance fluctuations. Therefore, choosing an appropriate TW is critical to
the fine-grained tuning of D to realize the trade-off between the timeliness of
I/O control and the statistical accuracy of the information.

This paper uses the dispatch parallelism amplitude ratio (VD) to evaluate the
stability of the dispatch parallelism in the microsecond to provide the timeliness
of I/O control. The smaller the value of VD, the more accurate the parameter
D, and the better timeliness of I/O control. Let Dk be D measured in the kth
second of the microsecond period (t1, t2). Let T = [t2− t1], and D̄ is the average
D, then the VD in this period can be calculated by the Eq. (13):

VD(t1, t2) =

∑t2
k=t1

|Dk−D̄|
D̄

T
(13)

The Dynamic time window module (DTW ) is shown in Algorithm2. The
DTW algorithm aims to find a suitable solution to TW , provided that VD is
less than the predefined thresholds Vmax, which is initialized to H. The DTW
algorithm will operate if the VD is larger than the threshold Vmax. When the
current VD is ahead of the last dispatch parallelism amplitude ratio VLastD by
the threshold V

′
, the DTW algorithm sets the lower limit of the time window

(TWmin) to TW . Otherwise, TW will become the upper limit of the time window
(TWmax). The function of the threshold V

′
is to reduce the influence of different

I/O characteristics interference on the amplitude ratio measurements, which is
initialized to H*VLastD.

As a heuristic optimization algorithm, the time complexity of the DTW
algorithm is low. Assuming that the initial search space size of time window size
(TW ) is N in the first iteration, this value will be N/2 in the second iteration.
According to the above logic, the DTW algorithm’s time complexity can be
computed as O(logN). The average values of TWmax and TWmin will be used
as the input parameters for the next round of optimization. The DTW algorithm
will continue to optimize TW until VD is less than the threshold value Vmax or
the difference between TWmax and TWmin is less than the minimum search range
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MIN_R (initialed as 32ms). The DTW algorithm returns TW and configures
it as the time window size to achieve the accurate D and Drate in the DDP
module, as shown in steps 3©, 4©, and 5© of Fig. 2.

Algorithm 2. The Dynamic Time Window algorithm

Input: TWmax = 512ms, TWmin = 32ms, TW = TWmax, VD, VLastD, V
′
, Vmax

Output: TW, VLastD

while (VD > Vmax) and (TWmax − TWmin > MIN_R) do
if ((VD − VLastD) < V

′
) then

TWmax ← TW
else

TWmin ← TW
end if
TW ← (TWmin + TWmax)/2

end while

4 Experimental Evaluation

This section evaluates the D-IOCost scheduler in terms of fairness and perfor-
mance. The D-IOCost scheduler is implemented in the 5.6 Linux kernel at the
Cgroup layer. Table 3 shows our experimental configuration, and we use a 24-
core server with an Intel(R) Xeon(R) CPU E5-2643 v3 @3.40GHz processor.
A PCIe-attached Intel P3700 NVMe SSD fulfills nearly 0.5M IOPs for 4KB
requests in the D-IOCost setup.

Table 3. Experimental configuration

Hardware Cpu Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.4 GHz
Memory DDR4 128 GB
Storage Intel DC P3700 series 800 GB SSD

Software OS Ubuntu 18.04 LTS
Kernel Linux 5.6.13
FIO libaio, random, read, direct I/O

We measure the impact of D-IOCost on realistic workloads(described in
Table 4) and workloads with known characteristics generated by FIO [26]. We
choose four realistic enterprise workloads. Financial1 and Financial2 were col-
lected from OLTP applications running at two large financial institutions [27].
MSR-web_2 and MSR-proj_0 are block I/O traces collected from enterprise
servers at Microsoft Research Cambridge [28]. These traces represent various
environments, including a write-intensive pattern (e.g., MSR-proj_0), a read-
intensive pattern (e.g., MSR-web_2), small-sized request patterns (e.g., Finan-
cial1 and Financial2), large-sized request patterns (e.g., MSR-web_0 and MSR-
proj_0), a sequential pattern (e.g., MSR-web_2) and random patterns (e.g.,
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MSR-proj_0, Financial1, and Financial2). Table 4 lists the workload traces’
characteristics, and the request data size unit is KB. In our experiments, work-
loads are executed by 12 concurrent threads with a queue depth of 32.

Table 4. Feature of realistic workloads

Workloads Workload characteristics
Read ratio Av.W.Size (KB) Av.R.Size (KB)

MSR-web_2 99.2% 21.1 53.8
MSR-proj_0 12.5% 41.0 17.8
Financial1 23.2% 3.8 2.3
Financial2 82.4% 2.8 2.3

Then, we compare D-IOCost to the two latest schedulers in the block layer:
1) MQFQ [10], the state-of-the-art sector-based multi-queue fair-queueing I/O
scheduler. It introduces a dispatch parallelism value D = 64 and a threshold
value T = 45K to find a design point that provides most of the fairness of tradi-
tional fair queueing with most of the performance of fully independent queues.
2) Linux IOCost scheduler [9], the latest service time-based proportional share
I/O scheduler included for the Cgroup layer since Linux 5.2, which is designed
for containerized environments and provides scalable, work-conserving, and low-
overhead IO control for storage devices. However, D2FQ [11] is designed to imple-
ment fairness on top of the device-side NVMe WRR I/O scheduling feature, but
it is not applied to the SSDs lacking WRR support. As a result, we do not com-
pare D2FQ with D-IOCost, which is implemented at the block layer and suitable
for all SSDs.

Providing fairness is the primary goal of fair queueing schedulers when mul-
tiple flows contend on a storage device. We evaluate the schedulers on a host
system by concurrently running four flows (denoted Flow-x, where x is the target
weight) with different workloads. I/O proportionality [3] refers to the bandwidth
observed by flows competing for I/O resources, which is normalized I/O band-
width. To accurately quantify the I/O proportionality, a new metric called pro-
portionality variation (PV ) [3] is present by Eq. (14). N is the number of flows
considered, prpideal(fi) and prpresult(fi) are the ideal I/O proportionality and
the obtained I/O proportionality of fi. Essentially, PV captures how much the
actual I/O proportionality digresses from the ideal I/O proportionality. Hence,
a lower PV means I/O proportionality is better matched.

PV =
1
N

∗
N∑

i=1

|prpideal(fi) − prpresult(fi)| (14)
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4.1 Fairness and Performance on Different I/O Request Size

Figure 3 and Fig. 4 show the fairness and performance of three schedules under
the FIO workloads with different I/O request sizes. The x-axis denotes the work-
loads with different sizes: 4KB, 8KB, 32KB, 64KB, and the three schedulers
we measure, while the y-axis represents the I/O proportionality (i.e., normalized
bandwidth) and total bandwidth.

Fig. 3. I/O proportionality of schedulers with FIO workloads

The results in Fig. 3 show that as the request size increases, D-IOCost and
IOCost can almost achieve fair bandwidth sharing like the MQFQ. Because
the sector-sized I/O costs of the flows are consistent with the same workloads,
the service received by the flows is weight-based proportional. D-IOCost and
IOCost can always keep fairness without weight adjustment under the same
FIO workloads. Meanwhile, MQFQ uses sector-based resource management to
guarantee I/O proportionality efficiently.

Fig. 4. Total bandwidth of schedulers with FIO workloads
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As shown in Fig. 4, we observe that D-IOCost and IOCost can always
ensure high performance under FIO workloads except for MQFQ. D-IOCost can
dynamically update resource allocation parameters based on I/O characteristics.
IOCost modifies the latency target to support the work-conserving feature. The
resource utilization of MQFQ is low under the workload with a small request
size owing to the inaccurate dispatch parallelism. Especially in 4KB read request
testing, the performance of the D-IOCost is more than 30% higher than MQFQ.

4.2 Fairness and Performance on Different I/O Type and Access
Format

This section first discusses schedulers’ fairness and total bandwidth with the
same realistic workloads. In Fig. 5, the x-axis denotes the workloads with the
same realistic workloads and the three schedulers we measure, while the y-axis
represents the I/O proportionality. This result shows that the three schedulers
almost guarantee fair bandwidth sharing under the same realistic workloads.

Fig. 5. I/O proportionality of schedulers with same realistic workloads

To quantify how well proportionality coincides with the given target weights,
Fig. 6 (a) shows the PV values of the I/O schedulers. We can see that D-IOCost
and MQFQ do a little better than IOCost in fair bandwidth sharing. Because
with the same realistic workloads, IOCost supports the work-conserving proper-
ties mainly by updating the latency target leading to some unfairness.
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Fig. 6. PV values and total bandwidth of schedulers with same realistic workloads

Figure 6 (b) shows the total bandwidth of three schedulers with the same
realistic workloads. The D-IOCost scheduler shows higher total bandwidth than
MQFQ by up to 16% on average, especially 20% with the Financial2 and MSR-
proj_0 workloads. It is due to MQFQ failing to update the request dispatch
parallelism parameter D when the request size is small. However, D-IOCost can
adjust the D based on the I/O characteristics.

Finally, We discuss the fairness and total bandwidth of three schedulers with
different realistic workloads. To verify the effect of our dynamic adjustment
strategy, we build mixed workloads with four realistic workloads with various
I/O characteristics (as shown in Table 5).

Table 5. Experimental configuration of mixed workloads

Weight= 800 Weight= 400 Weight= 200 Weight= 100

Workload1 MSR-web_2 Financial1 Financial2 MSR-proj_0
Workload2 MSR-proj_0 MSR-web_2 Financial1 Financial2
Workload3 Financial2 MSR-proj_0 MSR-web_2 Financial1
Workload4 Financial1 Financial2 MSR-proj_0 MSR-web_2

Fig. 7. I/O proportionality of schedulers with mixed workloads
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The I/O proportionality of three schedulers with mixed workloads is shown in
Fig. 7. The I/O proportionality of D-IOCost and MQFQ are close to the target
weights, while IOCost deviates more than those. The PV value of D-IOCost
and MQFQ are far less than IOCost in Fig. 8 (a). Especially in workload3 and
workload4, the bandwidth of flows in IOCost observed is disproportionate to
the target weight. The I/O proportionality of D-IOCost and MQFQ is improved
more than 10-times higher than IOCost. Due to the cost-aware characteristic,
the service time-based D-IOCost scheduler does well as the sector-based MQFQ
scheduler in fair bandwidth sharing. Unfortunately, updating the latency target
does not guarantee the work-conserving feature of IOCost under the latency-
sensitive mixed workloads such as workload3 and workload4. IOCost needs to
modify the weight to counter the compromising of bandwidth caused by wrong
estimates, leading to unfairness. The results demonstrate that D-IOCost and
MQFQ support better I/O proportionality than IOCost.

Fig. 8. PV values and Total bandwidth of schedulers with mixed workloads

Figure 8 (b) shows the total bandwidth of these three schedulers with mixed
workloads. We observe that D-IOCost and IOCost outperform the MQFQ by up
to 13% on average. Due to the workload-adaptive characteristic of D-IOCost, it
adjusts the request dispatch parallelism based on the I/O characteristics for max-
imizing resource utilization. Meanwhile, the work-conserving IOCost scheduler
supports high performance by configuring the weight and latency targets. MQFQ
fails to update the dispatch parallelism value D and the throttling threshold T
according to the workload, leading to low resource utilization.

The D-IOCost provides I/O resources management that is low overhead,
work-conserving, cost-aware, and allows for QoS proportional configuration. D-
IOCost can ensure no noticeable overhead due to its split between the issue
path and the planning path, just like the IOCost [9]. From this, the overhead
of D-IOCost (e.g., I/O cost analysis, weight reallocation) is always negligible.
However, the overhead of MQFQ is high under the workload with a small request
size owing to the inaccurate dispatch parallelism.
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5 Summary

With the advent of modern SSDs that can deliver one million I/O operations
per second, it has become increasingly difficult for the operating system to fulfill
its responsibility for fairness without compromising the total bandwidth.

This paper proposes D-IOCost, a cost-aware, high-performance fair-queueing
I/O scheduler on multi-queue systems. With judicious use of historical usage
information and workload I/O characteristics, D-IOCost dynamically modifies
the weights for fair bandwidth sharing and the request dispatch parallelism for
maximizing resource utilization. Experiments confirm that the fairness of D-
IOCost is enhanced more than 10-times compared to the Linux IOCost sched-
ule, and the performance of D-IOCost is significantly improved by up to 30%
compared to MQFQ. In conclusion, the D-IOCost can simultaneously maintain
fair bandwidth sharing while maximizing resource utilization. In the future, we
plan to extend our scheme to leverage different kinds of I/O cost computation
for a better quality of service (e.g., request latency, IOPS, or bytes per second).
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Abstract. Binary code analysis is a process of analyzing the software or
operating system when source code is inaccessible. This scenario occurs
when one needs to analyze malware, a compiled software, or a closed-
sourced operating system such as Windows, IOS, etc. In these scenar-
ios, the source codes are deliberately made inaccessible by the vendor
or programmer for various reasons. Binary analysis contains a wide
range of analysis aims, techniques and methodologies. We concluded the
methodologies into two categories: data-driven analysis and software-
engineering-based analysis. Each category has a similar process in their
methodology. We also concluded their limitation and summaries the chal-
lenges and future work.

1 Introduction

Binary code analysis is to perform various analyses on software or operating
system at the binary code level when source code is unavailable. This survey
focuses on binaries in popular platforms, including 1)common personal computer
platforms (i.e., Windows and Linux), 2)Android, and 3)IOS.

The current research on binary analysis can be divided into two categories:
1) data-driven binary analysis and 2) software-engineering-based binary anal-
ysis. Data-driven binary analysis automatically learns the model through
training. The model can be used for prediction, signature inference, etc.
Software-engineering-based binary analysis requires various traditional
static (offline), dynamic (online) program analysis techniques, and other auto-
mated program analysis methods to address specific research questions. Gen-
erally, Software-engineering-based binary analysis can be divided into 1)
offline analysis, online analysis, and hybrid analysis. Offline analysis
does not require the program to execute with concrete inputs. It statically or
symbolically analyzes the program. It consists of two steps: 1) Preprocessing,
which prepares the binary code by abstracting it to higher-level representation

c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 392–411, 2023.
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or graph representation or finding initial points of interest, and 2) static anal-
ysis which uses static and symbolic analysis to analyze the prepared binary.
Online analysis requires the program to be executed dynamically with con-
crete inputs. It contains two steps: 1) dynamic tracing, which records run time
information, and 2) trace processing which further analyzes the traced dynamic
information. Hybrid analysis uses both offline analysis and online analysis. It
contains four steps: 1) preprocessing that prepares the binary code (i.e., abstract
to higher-level representation or graph representation, or find initial points of
interest), 2) static analysis which uses static and symbolic analysis to analyze
the prepared binary, 3) dynamic tracing that records run time information, and
4) trace analysis to further analyze the traced dynamic information.

We surveyed the works across a wide range of topics, including malware clas-
sification and detection, program maliciousness detection, binary code similarity
detection, reverse engineering, binary code exploitation, binary code rewriting,
binary code vulnerability detection, etc. Existing surveys only focus on one or
several topics of binary code analysis. [38] surveyed PDF-based adversarial mal-
ware detection, [2] surveyed dynamic analysis evasion techniques utilized by
malware, [5] concluded the symbolic execution techniques utilized by program
analysis, [7] introduced state-of-the-art attacks on Android platforms, [50] sur-
veyed binary rewriting problems. However, there lacks a survey concluding the
general binary code analysis.

The contribution of this survey paper include:

– We reviewed recent years’ high-quality conference papers on binary analysis
and concluded their common methodology and techniques, as well as limita-
tions.

– We concluded the challenges and future trends for binary code analysis.

The survey is organized as follows: Sect. 2 introduces data-driven method-
ology techniques. Section 3 introduces software-engineering-based methodology
and techniques. Section 4 discusses the challenge and possible future trend of
binary analysis. Section 5 concludes the survey.

2 Data-Driven Binary Code Analysis

The data-driven binary analysis includes traditional machine-learning-based
algorithms (e.g., k-Nearest Neighbor (k-NN), Support Vector Machines (SVM),
Random Forests (RF), etc.) and deep learning algorithms (e.g., recurrent neuron
network (RNN), Deep neuron network (DNN), and their variations). We catego-
rize all the data-driven works by their platform, features extracted, and learning
model in Table 1.

2.1 Feature Engineering for Binary Representation

Graph-Based Features. Mamadroid [41] uses call-graph-based features.
Firstly, the call graph of the app’s API calls was extracted. Then, the sequences of
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Table 1. Data-driven category. IF shorts for Instruction Features. MSCS shorts for
Maximally Suspicious Common Subgraph
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Platform Graph-based Features IF Learning Model

Mamadroid [41] � � �
HSOMINER [43] � � � � �
Genius [21] � � �
Gemini [55] � � �
DEBIN [28] � � � �
SAD THUG [11] � � � � �
Astroid [23] � � �
Drebin [3] � � �
EKLAVYA [18] � � �
Asm2Vec [19] � � �
DeepVSA [27] � � �

API calls were categorized into two different levels, package name (e.g., java.lang)
and family name (e.g., java, android, google). They further capture the frequency
of the transition between every two calls by using Markov Chain.

HSOMINER [43] converts the code to an intermediate language (IR), builds a
global control flow graph (CFG), and a backward data dependency graph (DDG).
HSOMINER locates the basic blocks containing sensitive activities and uses CFG
and DDG to produce condition-path graph (CPG). Then, HSOMINER extract
features such as 1) trigger conditions leading to invoking the hidden activities,
2) behaviour differences between the paths with and without hidden activities,
and 3) condition-path relation such as data dependency between some operation
or variable with other variables within the condition.

Genius [21] extracts features based on a Attribute Control Flow Graph
(ACFG). The features include statistical features and structural features. Sta-
tistical features include string constants, numeric constants, number of transfer
instructions, number of calls, number of instructions, and number of arithmetic
instructions. Structural features include the number of offspring and between-
ness centrality, which measures a node’s centrality in a graph. Gemini [55] also
uses the ACFG-related features proposed in Genius. The difference lies in the
processing and learning of the ACFG features.
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DEBIN [28] lifts the assembly code into an intermediate representation called
BAP-IR and builds a dependency graph. Then it extracts various program ele-
ments, including functions, register variables, memory offset variables, types,
flags, instructions, constants, locations, and unary operations from the graph as
the feature.

SAD THUG [11] decomposed the input image file into a sequence of segments
and abstracted it to a directed graph. Then they capture possible transitions
from one segment to another as a benign feature. They regard the segment
order and length within those transitions as features. Because of the imbalance
of malicious and benign image files, they only train on features extracted from
benign images.

Astroid [23] extracts maximally suspicious common subgraph (MSCS) for all
the samples in each malware family. They capture the MSCS’s features such as
node type, node metadata, control flow between nodes, etc.

Instruction Feature and Embedding. Drebin [3] extracts disassembled code
features such as the existence of restricted API calls, used permissions, suspi-
cious API calls, and network IP addresses. Some other works learn instructions’
semantics by using Natural Language Processing (NLP) methods and models.
EKLAVYA [18] uses the skip-gram negative sampling method and word embed-
ding technique to learn the embedding of each instruction. They also consider
each instruction’s contextual information in the embedding. Asm2Vec [19] uses
the PV-DM model to learn the embedding representation of each instruction
from assembly code using unsupervised learning. DeepVSA [27] uses Long-Short-
Term-Memory (LSTM) to learn a one-hot embedding of each instruction.

2.2 Model Training for Binary Analysis

In this step, the extracted features are fed to the model in order to train a
model for different tasks such as malware prediction, vulnerability detection, etc.,
according to the research problem. Both traditional machine learning methods
deep learning models, and sometimes, self-defined learning model are used.

MAMADroid [41] builds the Markov Chain based on the API call sequences
to learn the frequency of the transition between every two calls. The frequency
of the API call sequences indicates the maliciousness of the app.

Drebin [3] converts all the features to a one-hot vector and uses Support
Vector Machines (SVM) to learn the model classifying malware based on these
features.

HSOMINER [43] takes the trigger condition and their corresponding paths
related features, as well as the label indicating whether the instance is HSO or
not to train an SVM classification model.

SAD THUG [11] uses all the training samples’ segment graphs to feed the
training algorithm to construct a discrete finite automaton, which captures pos-
sible transitions from one segment to another in common image files.
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[21] uses the extracted ACFG and calculates raw feature similarity. Then it
clusters the features based on spectral clustering in order to generate a codebook
representing image file bugs.

DEBIN [28] extracts program elements to build a dependency graph. DEBIN
uses the Extremely Randomized Trees (ET) model and some other rules to pre-
dict which element is known (and should not be predicted), and which is not
(thus should be predicted). DEBIN uses a Conditional Random Field (CRF)
model to represent the conditional probability distribution and performs a Max-
imum a Posterior (MAP) inference to decide the most likely assignments for
unknown elements.

Asm2vec [19] uses the PV-DM model (an extension to word2vec model) to
learn the vector representation from assembly code. The vectors to be learnt
are the repository function vector, each token’s lexical semantic vector and its
prediction vector. Later, the learnt assembly code vectors can be used for binary
code similarity detection.

EKLAVYA [18] trains recurrent neuron network (RNN) models for four tasks:
counting each function’s arguments based on instructions from the caller, count-
ing each function’s arguments based on instructions from the callee, recovering
arguments’ types based on instructions from the caller, and recovering argu-
ments’ types based on instructions from the callee. The trained model can be
later used for recovering disassembled binary code function types.

Gemini [55] uses the Basic Structure2vec Approach to aggregate graph topol-
ogy and vertex-wise features recursively. Next, [55] uses Siamese architecture to
learn parameters in the network, by taking pairs of ground truth similar ACFGs
as input and optimizing an objective function. The trained model can be used
later for predicting whether the two given binary functions are similar or not.

DEEPVSA [27] uses a bidirectional LSTM model for each instruction to gen-
erate an individual instruction embedding. The forward and backward networks
are used in this step. It also uses a sequence-to-sequence model that takes the
instruction embeddings as input and predicts the label, such as memory access
regions for each instruction.

Astroid [23] learns the signature from the samples (i.e., generate the com-
mon subgraph from several input malicious family ICCGs). They designed and
optimized their customized objective function, which encodes the scale of vertex
coverage and the suspiciousness of the produced common subgraph.

2.3 Model Prediction, Evaluation, and Explanation

To test the performance of the trained machine learning model, one should test
the model on binaries collected from the wild. However, generally, there is no
available ground truth data (and labels) for the binary code in the wild. Thus it
is common practice to divide the collected ground truth binary code with labels
into training and testing datasets and use the testing set to validate the model
performance and measure the model efficiency.

Various measurements can be applied to evaluate the model performance,
including Accuracy, Recall, Precision and F1-score. Specifically, MAMADroid
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[41] evaluates F-measure, precision, and recall on the malware classification
result. Drebin [3] evaluates accuracy and false positive rate on the malware
classification result. HSOMINER [43] evaluates precision and a recall of the
HSO prediction result. SAD THUG [11] measures the true positive ratio and
the true negative ratio of the malicious image file prediction. [21] measures the
true positive rate and accuracy of the image file bug prediction. DEBIN [28]
measures accuracy, precision, recall, and F1 on the program element prediction.
Asm2vec [19] measures true positive ratio, recall, false positive, and precision on
the similarity prediction result. EKLAVYA [18] measures the accuracy of func-
tion information predictions. Gemini [55] measures accuracy and ROC curve on
the similarity prediction result. DEEPVSA [27] measures the precision, recall,
and F1 on the VSA information prediction results. Astroid [23] measures the
accuracy and false positive rate of the malicious app prediction.

Model efficiency can refer to both the prediction time and training time.
However, prediction time is of more importance since the training process can
be executed beforehand and directly deployed on the user side. A good model
means good performance with minimal prediction time.

3 Software-Engineering-Based Binary Code Analysis

Software-engineering-based binary analysis is widely used to analyze binary code.
The methods can be divided into 1) Offline analysis, which analyzes the binary
code without actually executing the program, 2) Online analysis, which requires
executing the program with concrete value; and 3) Hybrid analysis which com-
bines both offline and online methods.

3.1 Offline Analysis

Offline analysis statically analyzes the program. It contains two steps in the
methodology, including 1) Preprocessing, which prepares the binary code, and 2)
Program analysis which performs the actual static analysis. Through preprocess-
ing, binary codes are abstracted to higher-level representation (e.g., binary code
to Intermediate Representation (IR)), or graph-based representation. Sometimes
the preprocessing extracts initial instructions of interest. In Program analysis,
traditional static program analyzing methods (i.e., code slicing, taint analysis,
data-flow analysis, boolean satisfiability reasoning) and symbolic execution are
widely used. Some other methods, such as calculating feature geometric centre
and Natural Language Processing (NLP) based methods, can also be included
(Table 2).

Prepossessing. Certain works prepossess the binary code by finding the desired
instructions of interest. BATE [8] uses pattern matching to find Control Flow
Guard (CFG) related code gadgets called PR gadgets and S gadgets as vulnerable
primitive gadgets. KEPLER [53] firstly statically identifies five kinds of code
gadgets as candidate vulnerable primitive gadgets.
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Table 2. Offline Analysis category. HR shorts for Higher-level Representations. BSR
shorts for Boolean Satisfiability Reasoning.
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Platform Preprocessing Program Analysis

BATE [8] � � �
KEPLER [53] � � �
OOAnalyzer [45] � � �
NORAX [14] � � �
UROBOROS [48] � � �
RAMBLR [47] � � � �
TriggerScope [24] � � �
XPMChecker [57] � � �
Flowdroid [4] � � �
IccTA [36] � � � �
Arcade [1] � � �
Apposcopy [22] � � �
MassVet [12] � � �
CoP [37] � � � �
Bingo [10] � � � �
Cruiser [34] � � �

Some other works preprocess the binary code by abstracting the binary code
into higher-level representations. OOAnalyzer [45] firstly disassembles the binary
and lifts the assembly instructions to a semantic presentation. It partitions the
binary code into separate functions. NORAX [14] converts an input binary from
machine code to assembly code in linear sweep fashion. UROBOROS [48] also lin-
early disassembles the binary and uses a validator to check the disassembled result.
RAMBLR [47] disassemble each basic block. It also classifies binary code content
into code, pointers, arrays, etc. TriggerScope [24] unpacks the Android APK and
lifts it into a custom Intermediate Representation (IR). IccTA [36] transforms the
Dalvik bytecode into Jimple and extracts Inter-ComponentCommunication (ICC)
links along with the collected data (e.g., ICC call parameters or Intent Filter val-
ues). MassVet [12] disassembled into a SMALI representation. CoP [37] firstly dis-
assembles the binary code and lifts it to an intermediate representation.
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Also, some work preprocesses binary code by translating binary code into a
graph representation. XPMChecker [57] parses APK files and builds the inter-
procedure control flow graph (ICFG). Flowdroid [4] unzips APK file and parses
its layout XML file, DEX file, and manifest file. Afterwards, Flowdroid gener-
ates the dummy main method out of the list of lifecycle and callback methods
and produces the inter-procedural control-flow graph (ICFG). IccTA [36] uses
the modified FlowDroid [4] to build a complete control flow graph of the app.
Arcade [1] builds a CFG after identifying public entry points or APIs. It also
produces an Access-Control Flow Graph (AFG) from the built CFG, and trans-
forms it into the protection map. Apposcopy [22] firstly performs pointer analysis
and constructs the inter-component call graph (ICCG). Cruiser [34] finds View
Controllers (VCs) with conditionally triggered UIs. To do so, Cruiser builds two
labelled view controller graphs (LVCGs) from binaries and other layout files.
CoP [37] construct CFG and call graphs (CG). Bingo [10] disassembles the given
binary and builds the CFG. RAMBLR [47] recovers Control-flow Graph (CFG).

Program Analysis. Symbolic execution emulates the execution with abstract
values rather than concrete values. It abstracts each operand as a symbolic for-
mula after symbolic execution. Because of its semantic-preserving nature, it is
wildly used as a program analysis method with diverse purposes. BATE [8] and
KEPLER [53] use symbolic execution to validate the exploitability of stitching
the candidate vulnerable code gadgets. OOAnalyzer [45] uses symbolic execu-
tion to represent low-level instruction behaviour as entity fact. CoP [37] uses
symbolic execution to represent the semantics of each basic block. Bingo [10]
extracts semantic features by using symbolic expressions to capture the relation-
ship before and after a partial trace. TriggerScope [24] uses symbolic execution
to extract block predicate.

Data-flow analysis takes some initial instructions as input and extracts all
possible instructions to which the input instruction can be propagated. IccTA
[36] uses a precise data-flow analysis to detect Inter-Component Communication
(ICC)-based privacy leaks.

Code slicing takes some initial instructions as input and extracts all the
data-flow or control-flow relevant instructions within the binary. NORAX [14]
uses code slice to help transform the binary code. RAMBLR [47] uses program
slicing to perform data identification and type recognition. XPMChecker [57]
uses backward slicing along the ICFG to collect all instructions necessary to
construct the URL. It also uses the program slice to reconstruct the string-
related operations.

Taint analysis takes some untrustworthy instructions that might introduce
malicious user inputs and extract the possible sink instructions (i.e., the instruc-
tions derive value from the potential malicious user input) by analyzing the
information flow (i.e., data flow and control flow) of the program. Flowdroid
[4] implemented both forward and backward taint analysis. Apposcopy [22] uses
taint-analysis to construct an inter-component call graph (ICCG) and data flow
(Table 3).
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Table 3. Online Analysis category. BSR shorts for Boolean Satisfiability Reasoning.
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Platform Dynamic Tracing Trace Processing

Tartarus [33] � � � � �
BareCloud [32] � � � � �
Droidunpack [20] � � �
VMHunt [54] � � � � � �
Syntia [9] � � �
BB-DSE [6] � � �
Binsim [40] � � � � � �
RAZOR [44] � � � � � �
BinUnpack [16] � � � �
Malgene [31] � � �
Malton [56] � � � � �
[26] � � �
TAINTINDUCE [17] � � �

Boolean satisfiability reasoning is a technique to solve the Boolean satisfiabil-
ity problem (or SAT problem). It determines whether there exists an interpreta-
tion satisfying a given Boolean formula. In program analysis, this technique can
be used to check whether the condition at some point of the program holds as the
preconditions of the point can be represented in the form of boolean formulas.
Arcade [1] uses Boolean satisfiability reasoning to extract the least privileged
permission(s) the app needs to hold. Bingo [10] uses the Z3 constraint solver to
generate input/output samples from symbolic expressions and feed them to the
machine learning module to find the semantically similar functions.

Some works use other program analyses after processing. MassVet [12] calcu-
lates the geometric centres of the view graphs and control flow graphs. Cruiser
[34] uses Natural Language Processing (NLP) techniques to identify inconsis-
tency within the app text information. UROBOROS [48] identifies the symbol
reference in the binary code and symbolizes them.

3.2 Online Analysis

Online analysis requires the program to be executed with concrete inputs. During
execution, run time information is traced (e.g., memory or CPU states, executed
instructions, system and API call, etc.). Then based on the traced information,
various analyses are performed (e.g., traditional program analyzing methods,
machine learning, program synthesizing, etc.).
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Dynamic Tracing. Dynamically executed instructions can reveal adequate
semantic information. Tracing the memory or CPU states before and after exe-
cuting each instruction can retrieve more information. Tartarus [33] uses shadow
memory to log the malware execution trace along with memory and CPU states.
BareCloud [32] traces the execution of some pre-computed memory addresses.
Droidunpack [20] traces instructions on Linux and DVM and supports Android
Runtime (ART) tracing using hooking techniques. VMHunt [54] dynamically
runs virtualized binary and logs the trace, including memory addresses of instruc-
tion, instruction name, source and destination operands, run time information,
etc. Syntia [9] traces the dynamically executed instructions. Backward-Bounded
Dynamic Symbolic Execution (BB-DSE) [6] also traces dynamically executed
instructions. Binsim [40] records executed instruction with their opcode and
operands. It also records memory access addresses. RAZOR [44] traces the exe-
cuted instructions with their memory addresses and raw bytes. [26] generates
execution traces. TAINTINDUCE [17] records dynamic execution trace. Specif-
ically, this contains the memory addresses and complete registers states before
and after each instruction. BinUnpack [16] traces the malware dynamic execution
instruction using kernel-level DLL hijacking techniques. This technique substi-
tutes the DLL in the standard DLL loading with a new version with monitoring
functionality embedded. BinUnpack also dumps processes’ memory.

System and API calls are also two tracing objects as they can demonstrate
code behaviour to a certain extent. BareCloud [32] uses bare-metal analysis hosts
and three malware analysis systems for dynamic tracing. It traces Windows API
calls and system calls. Malgene [31] produces two sequences of system call under
two different execution environments (i.e., Malware has evasive behaviour in
one environment and does not have evasive behaviour in another environment).
Malton [56] generates logs by instrumenting the native code and Android Run-
time (ART). The logs contain the method invocations information. Binsim [40]
record invoked system calls and their data flow dependencies. RAZOR [44] traces
indirect jumps and calls targets.

Some other objects containing important execution information can be
traced. BareCloud [32] also traces network traffic, user environment data (e.g.,
browser history, user document files, etc.), and disk-level state changes. Malton
[56] also traces different layers’ taint propagations and the results of the con-
colic executions. RAZOR [44] traces conditional branches that are both taken
or non-taken.

Trace Processing. Comparing different traces can help infer important infor-
mation. BareCloud [32] extracts malware behaviour by diffing the traced mal-
ware logs and a normal program log. Malgene [31] applies sequence alignment
algorithms borrowed from bioinformatics to align the system call sequences to
find the evasive behaviour and extract the evasion signature. Binsim [40] matches
traces by using the system call alignment methods from MalGene [31] to check
binary code similarity.
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Existing program analysis techniques can be utilized to analyze the traced
instructions further. Typical techniques include code slicing, taint analysis,
symbolic execution, concolic execution etc. Malton [56] characterizes malware
behaviours by taint analysis, the path exploration technique, and concolic exe-
cution. VMHunt [54] locates virtualized codes and deobfuscates the virtualized
codes by using a backward slicing algorithm and Multiple Granularity Symbolic
Execution. Binsim [40] performs dynamic slicing to check similarity. RAZOR
[44] also uses basic block symbolization to extract debloat code.

Boolean satisfiability (or SAT) reasoning at a certain point in the program
can help check the reachability of a branch and can be used to compare simi-
larities. Backward-Bounded Dynamic Symbolic Execution (BB-DSE) [6] reasons
whether execution flow can not reach some instruction address. This was done
by backward and bounded reasoning that goes from some point in the program
backwards and uses the SMT solver to decide whether all the predecessor condi-
tions are satisfied. Binsim [40] uses the weakest precondition (a kind of boolean
formula) to check similarity.

Program synthesis from the trace can help simplify the program’s semantic
information and thus deobfuscate the program. Syntia [9] randomly derives input
and output pairs as the semantic of that trace window and uses the Monte Carlo
Tree Search method to synthesize the program.

Machine learning can also be used for analyzing traces. [26] learns the
developer-intended but costumer-unwanted codes using machine learning-based
methods.

Some work implements their analysis patterns into scripts for automation.
BinUnpack [16] extracts the imported address table (IAT) and compares it with
the unpacking routine IAT to discover any rebuilt IAT at run time. Tartarus
[33] finds all the dynamically generated code (also known as code waves) by
comparing the instruction’s shadow table and the shadow table of the process
current instruction is within. Tartarus also finds the code injection by con-
structing the code injection graph. Droidunpack [20] analyzes Android packer
behaviour, including Hidden OAT/DEX code extraction, Self-modifying code
detection, Multi-layer unpacking detection, and Java native interface inspection.
RAZOR [44] collects all the relevant paths that might be missed in tracing by
using heuristic rules. TAINTINDUCE [17] learns taint rules by systematically
generating seed states and mutating them to generate different input values.
TAINTINDUCE learns the rule by identifying 1) a set of input bits which can
influence the specific output bit and 2) the pre-conditions by tracking both direct
dependencies and conditional dependencies (Table 3).

3.3 Hybrid Analysis

Hybrid analysis both requires online analysis and offline analysis. It contains four
steps: 1) Preprocessing that abstracts binary code into higher-level representa-
tion or graph-based representation, or extract initial points of interest. 2) Static
analysis that uses traditional static and symbolic analysis, 3) Dynamic tracing,
which executes the program with concrete value and traces run time information;
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Table 4. Hybrid Analysis category. BSR shorts for Boolean Satisfiability Reasoning.
DEI shorts for Dynamically Executed Instructions. PCI shorts for Provide Comple-
mentary Information. HR shorts for Higher-level Representation.
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Platform Preprocessing Static Analysis Dynamic Tracing Trace Analysis

K-Hunt [35] � � � � � �
Tiger [15] � � � � � � �
CACOMPARE [29] � � � � � �
RootExplorer [25] � � � � �
Angr [46] � � � � � � � � � �
WARDroid [39] � � � � � �
IntelliDroid[51] � � � � � �
FlowCog [42] � � � � �
[49] � � � � �
TIRO[52] � � � � �

and 4) Trace analysis that performs diverse analysis (e.g., traditional program
analysis methods, etc.).

Preprocessing. Abstracting the original binary code into graph representation
is widely used for preprocessing. K-Hunt [35] disassembles the binary code and
recovers the CFG to generate basic blocks. Tiger [15] constructs this app’s call
graphs (CG). CACOMPARE [29] preprocesses the binary through disassembling
and generating CFG. RootExplorer [25] uses IDA Pro to disassemble the binary
code and recover the CFG. Angr [46] can transform binary code into CFG.

Lifting binary code into higher-level representations can help further static
analysis. Tiger [15] disassembles the app’s DEX bytecode to the SMALI Interme-
diate Representation (IR). Angr [46] is a binary analysis framework. It supports
translating to intermediate representation from multiple architectures using lib-
VEX, and PyVEX.

Finding initial points of interest within the binary code is also a preprocess-
ing purpose. Tiger [15] locates all of the app’s network sinks (i.e., the messages-
sending APIs). WARDroid [39] identifies points of interest (POIs) in the APK by
extending FlowDoroid [4]. IntelliDroid [51] firstly identifies targeted API invo-
cations by abstracting API calls. FlowCog [42] finds special statements (i.e.,
activation event and guarding condition) for each data flow. [49] first identifies
message handling functions.
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Static Analysis. Traditional program analysis techniques are widely used,
including taint analysis, data-flow analysis, code slicing, and symbolic execu-
tion. WARDroid [39] uses backward taint propagation to track the data flow
relating to web API. It then reconstructs the app’s program dependence graph
(PDG) by constructing a call-graph, points-to analysis, def-use chains analysis,
and taint analysis. Tiger [15] performs backwards slicing to find the statements
sent out through the sink. IntelliDroid [51] extracts call path constraints by using
a forward control- and data-flow analysis. FlowCog [42] associates Android views
with data flow or the activation event and guarding condition of the data flow by
using a set of data flow analyses. Angr [46] supports static vulnerability discovery
(e.g., recovering control flow, vulnerability detection with data modelling, and
vulnerability detection with flow modelling). [49] uses symbolic analysis to infer
response messages with symbolic constraints. K-Hunt [35] uses taint analysis to
detect vulnerable cryptography implementation.

Boolean satisfiability (or SAT) reasoning at a certain point in the program
is critical in understanding preconditions. WARDroid [39] also builds a tem-
plate in the form of Z3-compliant formulas (i.e., a boolean formula) and regular
expressions. It generates potential vulnerable inputs and requests by solving the
boolean formula. RootExplorer [25] identifies feasible execution paths leading to
successful root exploit execution by symbolic execution. RootExplorer uses an
SMT solver to solve the preconditions that need to be met.

Some works use other analyzing techniques. K-Hunt [35] computes the ratio
of x86/64 arithmetic and bitwise instructions (e.g., mul, xor, etc.) for each block
and consider the block as a candidate crypto basic block if the ratio reaches
some threshold. TIRO [52] detects potential obfuscation location and deobfus-
cate the code by using IntelliDroid [51]. CACOMPARE [29] traverses the CFG
to recognize arguments needed for the execution by observing their behaviour on
stacks. It also detects switch statements that include all the possible destination
addresses of the indirect jumps.

Dynamic Tracing. Dynamically executed instructions and buffers used can
reveal adequate information. K-Hunt [35] uses Intel PIN to trace dynamic exe-
cuted instructions and buffers relevant to key generation and key propagation.
Angr [46] supports dynamic execution tracing.

Program output can be dynamically traced to retrieve information extremely
challenging to retrieve statically. WARDroid [39] sends the forged valid and
invalid HTTP request to the server and gets the response. IntelliDroid [51]
dynamically extracts the concrete values at runtime that satisfy the constraints.
FlowCog [42] has an optional dynamic analysis module to output certain strings
and view IDs which can not be resolved statically. Tiger [15] uses partial execu-
tion on the Dalvik virtual machine (VM) to record output traffic tokens.

System call or API call can demonstrate program semantics. TIRO [52]
statically instruments the ART runtime and the application for both language-
based obfuscation and runtime-based obfuscation. The tracing object is the caller
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method, the invocation site, and the actually executed method. CACOMPARE
[29] traces library function calls. RootExplorer [25] traces system calls.

Some works trace other dynamic information. K-Hunt [35] traces execution
statistics (e.g., the number of executions for a basic block, data bundles ran-
domness). CACOMPARE [29] emulates the execution with randomly produced
inputs. The semantic signature it collects includes function input and output val-
ues, comparison operands and condition codes. [49] records the execution stack
of the app when the app is dynamically executing.

Trace Analysis. Some works use dynamic traces to infer information. K-Hunt
[35] uses inputs of different size magnitudes to test basic blocks’ data sensitivity.
K-Hunt also measure the randomness of the collected data bundle, with both
Chi-Square distribution and Monte Carlo π approximation tests. WARDroid [39]
uses an edit distance algorithm to infer whether the server accepts the invalid
request. Tiger [15] compares input and output traffic tokens to test the impact
of each input on the invariant portion of the output. CACOMPARE [29] uses
input and output relations as a signature to calculate the similarity between two
signature sequences.

Some works use the traced information further analyzes the program. TIRO
[52] uses the observed information (e.g., the executed caller method, the invo-
cation site, and the actually executed method) to build the static call graph
and deobfuscate the obfuscated code. Angr [46] supports dynamic vulnerabil-
ity discovery (e.g., dynamic concrete execution), and exploitation (e.g., crash
reproduction, exploit generation, exploit hardening). RootExplorer [25] uses the
traced system calls to form a behaviour graph. [49] uses the traced stack execu-
tion information to pair the app’s requests and responses.

Some works use the dynamic trace as a complementary method to acquire
information that is hard to retrieve statically. Thus the traced information is
provided directly to the static analyzing module. IntelliDroid [51] applies the
recorded runtime concrete value to forge inputs that lead to the invocation of
the targeted API. FlowCog [42] uses the dynamically resolved strings and view
IDs to assist semantic extraction.

4 Challenge and Future Work

4.1 Binary Optimization and Obfuscation

Binary optimization poses a challenge for automatic binary analysis. The com-
piler usually performs binary optimization to speed up the speed of the binary
executable. For example, whole program optimization, linker reusing identical
function implementations, and function inlining can make binary code very com-
plex, thus significantly increasing the difficulty of binary analysis [45]. Analyzing
the optimized binary code, such as compiled with inlining, needs new research.
Binary obfuscation refers to transforming a program into another executable
one with the same functionality, with an unreadable code implementation. Like
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optimization, obfuscation also makes binary code complex and hard to analyze.
Some existing anti-obfuscation tools can deal with simple obfuscation, but spe-
cial obfuscation techniques still can bypass the tools, such as x86 obfuscation and
hooking techniques [52]. A possible countermeasure is to explore the separation
of application and run-time memory. Some recent obfuscation even transforms
part of the original executable binary code into another low-level language. For
example, on Windows and Linux platforms, the code virtualizer transforms part
of the binary code into Virtual Code only understood by the specific virtual
machine. Also, When analyzing mobile APK, sometimes unsupported code for-
mats can be encountered, such as native code and JNI code [39], native code,
and Javascript code [42]. This remains to be future work.

4.2 Adversarial Binary Analysis

In machine learning-based binary analysis, machine learning technology can be
the target of a cyberattack to evade detection. Typical adversarial machine learn-
ing for binary analysis includes poisoning attack, trojan and backdoor attack,
reprogramming, inference attack, and evasion attack. Poisoning attack could
inject carefully crafted binary samples into the training set to degrade the per-
formance of machine learning methods. It has demonstrated its effectiveness in
worm signature generation, DoS attack detection and PDF malware classifica-
tion [30]. Trojan and back door attacks aim to maintain the model’s behaviour
under regular input while misbehaving under particular triggers. Reprogram-
ming attack aims at reprogramming the model to perform the task chosen by
the attacker instead of performing the original task. Evasion attack occurs when
the model is fed with the adversarial example that seems to belong to a category
by humans but is classified to be another category by the model. Examples are
adversarial work in [13] against malware detection and evading [43] by mimick-
ing legitimate branches. Evasion attack can even evade domain knowledge-based
works. For example, the security technique proposed in [42] is vulnerable to click-
jacking attacks and UI redress attacks. The binary analysis method develops in
[57] is vulnerable to the Java reflection attack that hides the invocation of Web
resource manipulation API, as well as the attack on identifiers for recognizing
Web principals and app principals through obfuscation. Another binary analysis
method proposed in [34] is vulnerable to crowdturfing UI hiding techniques. As
a countermeasure, Optical Character Recognition (OCR) tool can be used to
extract the texts from images in the resource files. As a result, it is possible to
identify enough UI semantics.

4.3 Advanced Dynamic Attacks

Advanced dynamic attacks can evade static and dynamic binary analysis. For
example, the binary analysis technique proposed in [41] cannot handle attacks
like reflection, dynamic code loading, or native code. For example, the static anal-
ysis tool developed in [43] has poor accuracy due to Android’s Inter-Component
Communications (ICC). Dead code remains a challenge [15] for dynamic analysis
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because the sinks are not executed at runtime. A possible countermeasure is to
build a reachability test to reduce the impact of the dead code. There exist some
advanced anti-dynamic techniques to prevent dynamic analysis. For example,
several custom packers can evade dynamic analysis by monitoring the movement
of the mouse cursor [16]. The countermeasure may create a more realistic envi-
ronment that simulates user interaction. Moreover, a general countermeasure to
anti-emulator evasion is to make the dynamic analysis environment more trans-
parent. Furthermore, advanced dynamic attacks can generate or self-modify code
in runtime, bypassing current dynamic binary analysis [14]. Dynamic linking in
programming is also an unsolved problem for binary analysis [45]. A potential
solution is to load the executable in conjunction with all of the required dynamic
libraries for analysis.

5 Conclusions

In this survey, different categories of binary analysis are reviewed. These cate-
gories include data-driven and software-analysis-based binary code analysis. We
reviewed the works with many different application scenarios and aims such as
exploitation, malicious behaviour and malware detection, code clone detection,
vulnerability detection, etc. We introduced them based on the common method-
ology. We compared the different and similar techniques used in each category.
We also concluded the limitations of existing works and possible future direc-
tions.
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Abstract. NVMe over Fabrics (NVMeoF) is a new emerging stor-
age disaggregation protocol specially designed for datacenters with
high-performance NVMe SSDs and interconnection networks. However,
existing NVMeoF implementations cannot meet the differentiated I/O
demands of the diverse applications running in datacenters. This is
because the applications usually show significantly different I/O char-
acteristics and requirements, e.g., some applications (L-apps) are sensi-
tive to latency while other applications (T-apps) show high throughput
demands to storage systems. When L-apps and T-apps access remote
NVMe SSDs via a same NVMeoF storage network, the I/O requests
issued from these applications are equally treated and handled following
the same I/O path in state-of-the-art NVMeoF implementations. This
will finally incur severe I/O interference between L-apps and T-apps.

In this paper, we propose LTNoT, an end-to-end packet processing
scheme with dedicated I/O pipelines for L-apps and T-apps in NVMe
over TCP (NoT) implementation. Specifically, LTNoT separates T-apps
and L-apps resources in each NVMeoF queue pair to achieve inter-queue
I/O isolation, transfers capsule and data in batch along with the T-
app pipeline to achieve interrupt-coalescing, and introduces immediate-
delivery and workqueue-priority to optimize L-app request process. We
implemented LTNoT in Linux Kernel and evaluated it using real-world
benchmarks and applications. Our experimental results demonstrate that
LTNoT can achieve 48.13% and 53.38% lower L-apps latency than i10
and NoT respectively, increase bandwidth by up to 33.31% than NoT
on average, thus LTNoT can effectively alleviate the I/O interference
issue in NVMe over TCP without introducing any negative performance
impacts on either L-apps or T-apps.

Keywords: NVMe over fabrics · Inter-queue I/O Isolation · LTNoT

1 Introduction

For decades, all the hardware components needed by a datacenter server are
physically packaged to run user programs [1]. With the trend towards cloud
computing and storage, the ever-increasing number of deployed servers incurs
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serious issues in datacenters [3,13], such as inefficient resource utilization, poor
hardware elasticity, coarse failure domain, and bad heterogeneity support, etc.
[4,36]. These issues can be potentially alleviated by the new emerging resource
disaggregation architecture that separates hardware resources of servers into
network-attached components, manages all the components remotely, and allo-
cates resources for applications elastically. Currently widely used storage disag-
gregation technology separates computing and storage into different nodes [13],
and connects them through a storage network to achieve independent expansion
and on-demand allocation of storage resources.

As flash-based SSDs perform superior performance and are widely used in
large-scale storage systems, the software overhead of traditional SCSI storage
interface protocol prevents SSDs from exposing their high performance to upper-
layer applications [24]. The novel NVMe protocol leverages the high throughput
PCIe interconnect to utilize the internal parallelism of SSDs to the maximum.
NVMe allocates a large number of deep paired submission and completion queues
based on host memory. These paired parallel queues are the interface between
the NVMe driver and the NVMe controller, through which they cooperate to
manage queues and complete I/O operations. NVMe enables users to take full
advantage of the performance potential of concurrent high-speed storage devices
by efficiently supporting more processor cores, channels per device, I/O threads,
and I/O queues.

In terms of disaggregated storage systems, the software overhead of iSCSI
prevents NVMe SSDs from exposing their high performance to remote compute
nodes. Just as extending SCSI to iSCSI on top of Ethernet protocol, NVMe over
Fabrics (NVMeoF) is the latest extension of NVMe for remote storage access
which allows remote access to NVMe controllers through high-speed RDMA,
FC [7,18], and TCP networks [11]. NVMeoF eliminates the unnecessary pro-
tocol conversion initially required in the I/O path from host to remote NVMe
SSDs and provides ultra-low remote access latency [32,37], thus realizing high-
performance storage area networks. NVMeoF has been replacing iSCSI as the
dominant remote storage interface protocol of disaggregated storage systems.

Although providing high-performance network transmission, deploying the
RDMA-enabled or FC-enabled network infrastructure of the datacenter on a
large scale is not feasible, since which will bring unacceptable expenses [9,10].
Given this problem, Intel, Cisco and other companies have jointly developed the
NVMe-over-TCP (NoT) protocol standard, which has been approved as a new
NVMeoF transport layer standard [22]. NoT standard allows using the existing
common network infrastructure in datacenter to realize the NVMeoF storage
network, while inheriting the defects of the TCP/IP stack. With the throughput
supported by network and storage hardware technology reaching the order of
millions of magnitude, its performance bottleneck has shifted to the processing
efficiency for NVMeoF command message and data message in the software layer.

However, existing NVMeoF implementations cannot meet the differenti-
ated I/O demands of the diverse applications running in datacenters. This is
because the applications usually show significantly different I/O characteristics
and requirements, e.g., some applications (L-apps) are sensitive to latency such
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as web search and image services, while other applications (T-apps) show high
throughput demands to storage systems. When L-apps and T-apps access remote
NVMe SSDs via a same NVMeoF storage network, the I/O requests issued from
these applications are equally treated and handled following the same I/O path
in state-of-the-art NVMeoF implementations [20,35,38]. This will finally incur
severe I/O interference between L-apps and T-apps. Typically, i10 proposed by
Hwang et al. which is NVMeoF interrupt-coalescing method optimized for NoT
can not meet the I/O requirements of L-apps, and even cause inflated latency
problem. NoT is even worse that it falls short of the system throughput demand.
Therefore, how effectively avoid the I/O interference between multiple applica-
tions running simultaneously on the CPU is a dominant challenge yet.

In this paper, we propose LTNoT, an end-to-end packet processing scheme
with dedicated I/O pipelines for L-apps and T-apps in NVMe over TCP imple-
mentation, to alleviate the I/O interference between multiple simultaneous appli-
cations in the CPU. Overall, our key insight are as follows:

• Inter-Queue I/O Isolation. We propose to set two dedicated I/O critical
paths for each core by separating latency-sensitive and throughput-oriented
resources between LTNoT queue pairs to achieve inter-queue I/O isolation.

• Specific Pipeline. LTNoT always transfers NoT PDUs in different policy along
with specific L-apps or T-apps I/O pipeline to achieve isolated interrupt-
coalescing or immediate-delivery.

• Workqueue Priority. LTNoT further introduces differentiated weight of iowork
thread in L-apps and T-apps NoT queue to achieve preliminary priority
scheduling.

We implemented LTNoT in Linux Kernel and evaluated it by FIO bench-
marks and applications [2,29]. Our experimental results demonstrate that
LTNoT can achieve 48.13% and 53.38% lower L-apps latency than i10 and NoT
respectively, increase bandwidth by up to 33.31% than NoT on average, thus
LTNoT can effectively alleviate the I/O interference issue in NVMe over TCP
without introducing any negative performance impacts on either L-apps or T-
apps.

The rest of the article is organized as follows. Section 2 presents the back-
ground and motivation. Section 3 and 4 provide an overview of LTNoT and
describe the detailed design, respectively. We evaluate the performance of LTNoT
in Sect. 5 and discuss the related work in Sect. 6. Finally, we make a summary
of this paper.

2 Background and Motivation

2.1 NVMe-over-TCP

Benefiting from the continuous upgrading of network card devices, the propor-
tion of network delay in remote storage access is reduced. The processing over-
head of I/O has gradually become the main reason for the performance degra-
dation when accessing NVMe SSD through NVMeoF in storage disaggregation
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[17,21,39]. The overhead is not only the necessary time for I/O processing on
the storage block device, but also a series of performance interference items such
as context switching, redundant operation and data replication. The latter is the
mitigable performance interference of the NVMeoF layer. NoT is a recent trans-
port extension of NVMeoF released in 2019 [28,34], which provides regulations
of how the queue pairs of host and remote NVMe controller are mapped to TCP
connections and CPU cores. NoT specifically defines how command capsule,
response capsule, and data are encapsulated within TCP PDUs. Despite using
TCP transmission will lose performance to a certain extent, it can compensate
for the potential performance loss using offloading, smart NIC, or FPGA.

NoT host initially needs to establish a connection to remote NVMe controller
in target to enable message transfers. The process of connection is to create
multiple one-to-one mappings between host-based queues and controller-based
queues. Each host-based queue pair and its associated controller-based queue
pair will be mapped to a specific TCP connection and an individual CPU core.
And each CPU core will only handle the transfers between its associated queue
pairs. As long as the connection remains, NoT host and target drivers encapsulate
the NVMe commands, response, and data into fabric-neutral capsules which
are further encapsulated within TCP PDUs and transferred on top of standard
TCP/IP protocol stack [30]. Generally, there are five kinds of PDUs used in NoT
implementation, i.e., CMD (Command) PDU, R2T (Ready to Transfer) PDU,
H2CData (Host to Controller Data) PDU, C2HData (Controller to Host Data)
PDU, and Resp (Response) PDU.

2.2 NoT-Inherent CPU Overhead

NoT has promoted NVMeoF deployment scenarios to the most common Ether-
net infrastructures in datacenters [31]. Meanwhile, the CPU overhead for I/O
processing in NoT has become one of the main bottlenecks to keep NoT per-
formance growing continuously along with the high-speed network technologies.
Specifically, in the standard NoT implementation, when an I/O request from
blk-mq attempts to access a remote NVMe device, NoT will take over the I/O
request and encapsulate it into a CMD PDU, after which NoT ring the door-
bell immediately to signal host driver to transfer the PDU. In the following I/O
critical path, both NoT host and target will incur several interrupt requests to
inform CPU to handle received PDUs. The number and type of PDUs generated
by a single I/O request vary depending on the type and size of the I/O request.
Different from NoT, NVMe-over-RDMA eliminates CPU-involved data transfers
and only needs CPU to handle command and response capsules. Both NoT host
and target will endure severe context-switching overhead introduced by diverse
PDUs under I/O intensive workloads [5].

Fortunately, it has been proved that delaying ringing doorbells to accumulate
multiple requests in each NoT queue and process the requests in batch can sig-
nificantly reduce CPU overheads and amortize the software overhead of TCP/IP
stack, which is exactly what i10 primarily does [19,23]. Compared with standard
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NoT implementation, i10 delays the time of ringing doorbell in the I/O criti-
cal path by temporarily gathering multiple PDUs transferred by the same NoT
queue into a jumbo packet. Once the threshold is satisfied, i10 just wakes up the
send thread of the NoT queue and sends all these packaged PDUs to the remote
NoT queue as only one TCP transmission message. In this way, all the PDUs
transferred in a same batch will incur only one interrupt request to CPU and the
context switch overhead of NoT can be reduced. However, accumulating PDUs
from the requests with differentiated I/O demands will be difficult to abstract
the I/O request-level interference between L-apps and T-apps in NoT.

2.3 Blk-Switch

blk-switch is a newly proposed Linux blk-mq that applications use to access
data on local or remote servers [20], which is mainly modified in the block layer
of the Linux kernel. Its main contribution is to rebuild the block layer queues
conceptually similar to a network switch. In the original storage stack, each
core is bound with a blk-mq and a unique NVMeoF or NVMe local queue [5].
However, blk-switch decouples it and introduces a block layer architecture of
multi ingress blk-mqs and multi egress NVMe queues mapping for the Linux
storage stack. For a certain blk-mq, the number of multi egress queues is the
number of NUMA nodes, since the queue mapping is only established in its
corresponding core and the same numbered cores of adjacent NUMA nodes.
Based on this, blk-switch applies the classical technologies in computer network
literature (request scheduling, load balance and application scheduling) to the
Linux storage stack. This multi exit queue design enables blk-switch to direct
the requests submitted in the ingress queue on the core to the egress queue on
any core according to the application performance objectives (T-app and L-app)
and CPU load.

blk-switch counts the outstanding requests size on each egress queue at the
block layer, thus observing the relatively idle and non-idle cores. Accordingly, it
executes request or application scheduling on the core to achieve latency improve-
ment and load balancing. The two scheduling methods can effectively handle the
transient load and persistent load unbalance on a single core respectively. Thus
blk-switch can maintain low latency and high throughput when multiple L-apps
and T-apps compete for host resources at the computing, storage and network
layer. However, compared with such loadable modules as NVMeoF, modifica-
tions at the block level require recompiling the entire kernel and will introduce
extra processing overhead for the whole system. Moreover, in practical imple-
mentation, blk-switch divides the original NVMeoF or NVMe local queues into
two parts: half of them are used to process L-app requests, and others to pro-
cess T-app requests. blk-switch adopts the i10 queue for batch as the NVMeoF
queue, which is not suitable to further improve the latency performance of the L-
app. It leverages the redundant queues and resources in exchange for the latency
performance of the L-app, rather than optimizing the per-core Linux queue.
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Fig. 1. L-app latency and Per-core Bandwidth performance with varying workloads.

2.4 Motivation

As shown in Fig. 1, we simulate the workload with different intensity by varying
the iodepth of the T-app (16 KB read fio thread). Apparently, the L-app (4
KB read fio thread with iodepth=1) latency performance of i10 and NoT gets
worse with the increase of workload intensity and cannot meet the user’s demand
for low latency. While NoT even shows bandwidth performance deteriorations
compared with i10. Therefore, we need to reconsider the request sending strategy
of NoT implementation. The exploration of request processing flow and details of
NVMe-over-TCP and i10 help us design the latency-sensitive requests (L-reqs)
and throughput-oriented requests (T-reqs) separation system. We highlight four
key observations that guide LTNoT design decisions.

• Different types of requests require isolated processing mechanisms. We pro-
pose to separate L-req and T-req resources in each LTNoT core to achieve
isolated L-app and T-app queue pairs, thus realizing the exclusive processing
pipeline to carry custom-designed optimization.

• The latency overhead of L-req can be appropriately mitigated by instanta-
neous forwarding. Once the NVMeoF controller receives the L-req, the request
processing queue will immediately submit it to the socket sending thread, thus
mitigating the extra overhead of processing delays.

• The throughput of T-req can be effectively improved through batch pro-
cessing. Aggregating multiple T-reqs into a jumbo packet transmission can
amortize the overheads from network processing and TCP/IP software stack,
thus the throughput performance of NoT can be improved.

• The priority of different pipelines should be considered. Giving the L-app
queue a higher priority can further improve the latency performance of L-req,
thus further alleviating the I/O interference between multiple applications.

3 System Overview

In this section, we provide an overview of the high-level design and insightful
ideas of LTNoT. As shown in Fig. 2, LTNoT generally manages the data between
the block layer and the TCP stack layer, transparent to any file system and
application. As the end-to-end path between the host application and the target
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NVMe storage device, LTNoT hardly affects the operation of the application,
just modifies the processing pipeline throughout the Linux kernel.

Firstly, applications with different requirements (T-app or L-app) are auto-
matically divided onto specific cores by the operating system. And read/write
request generated by applications is interpreted into bio and transferred to the
block layer through an I/O system call. The block layer performs operations such
as bio merging and converts the bio into the request to add it into the blk-mq
per-core.

The request of blk-mq is through calling queue_rq() function transmitted to
the underlying NVMeoF layer, where L-reqs and T-reqs enter the corresponding
(CPU, target, type) NVMeoF sending queues – L-app queue and T-app queue
respectively. The two types of requests are processed and transmitted in an
isolated and custom-designed way in the individual pipeline, and finally sent to
the paired NVMeoF receiving queue at the target side through the TCP network.
And this reconstructed NVMeoF queue is named as LTNoT queue, which will be
discussed in detail in Sect. 4. After that, the LTNoT queue at the target receives
data from the TCP receiving buffer according to the granularity of the request,
and then parses the request, regenerates the bio, and uploads it to the block
layer.

At this time, the request temporarily leaves the L-app and T-app pipeline.
The block layer performs the same steps as accessing the local NVMe storage
device. Then NVMeoF layer obtains the request result returned from the NVMe
SSD, reentering the L-app or T-app pipeline. After that, the LTNoT queue pair
sends the result back to the host side in the same way as aforementioned, thus
accomplishing one I/O processing.
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We design specific processing strategies for the T-app and L-app pipelines
depicted in Sect. 4.2 to meet different I/O demands. In addition, we also set dif-
ferent priority weights for the two types of LTNoT queues, to speed the I/O path
of L-reqs to achieve further latency optimization. Simultaneously, we describe
how we modify the data structure to exhibit the priority and I/O demand in the
whole kernel. We describe this ingenious technique in Sect. 4.3.

4 LTNoT Design

LTNoT mainly designs three modules - inter-Queue I/O isolation, T-app and L-
app pipelines and LTprio. In this section, we will describe their implementation
in detail.

4.1 Inter-Queue I/O Isolation

The implementation of LTNoT L-app and T-app isolated queue pairs mainly
depends on three holistic mechanisms: first, each CPU allocates two dedicated
queues corresponding to latency-sensitive and throughput-oriented applications
and establishes one-to-one queue matching between host and target, which
enables logically isolation; second, T-app and L-app queues apply for two sets of
dedicated resources respectively, particularly the two socket resources to estab-
lish an individual TCP connection, which enables physically isolation; third,
T-app and L-app queues are initialized as two work individuals and added to
the CPU workqueue to ensure that the I/O processing and communication in
queue pair can run in parallel. The application-type-aware inter-queue I/O isola-
tion avoids the trouble caused by high contention and mutex. And it can exploit
the benefits of designing dedicated strategies for T-reqs and L-reqs, which shed-
dings the performance limitation of the unified processing pipeline. Each queue
pair is responsible for the I/O of one type of application and do not affect each
other, providing a great dependency for batch or immediate-delivery. Next, we
will introduce some intriguing implementation details.

LTNoT interface with blk-mq and NVMe queue. Whether accessing storage
on remote or local, it will call queue_rq function to transmit the request on the
host side. The difference is that one enters the NVMeoF layer and the other
enters the NVMe device layer. LTNoT queue uses this NVMeoF interface to
connect to blk-mq, which ensures that we can effectively obtain and analyze the
I/O requests from the upper block layer originating from different applications.
Here LTNoT enables a judgment function to determine the demand type of
request, and wakes up L-app or T-app workqueue accordingly. On the contrary,
after LTNoT receives the data or command returned by the opposite end of the
queue, the final processing results can be fed back to the upper layer as before. On
the target side, after receiving and parsing the request, LTNoT queue transfers
the processed request to the block layer to regenerate the bio. After the NVMe
SSD returns the I/O processing results to the NVMe completion queue (CQ), it
also calls the queue_rq interface to transfer the request from the NVMe device
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layer to the NVMeoF layer. Here LTNoT performs the same operation as the
host side, thus the processing results of different types of requests can reenter the
corresponding L-app or T-app pipeline and finally be transmitted to the host.

Communication over individual sock. LTNoT queues execute data interaction
by creating sockets and maintaining long-term TCP connections between queue
pairs. Due to the separation of T-app and L-app requests, the originally shared
single sock is no longer applicable to the modified LTNoT pipelines with signif-
icant discrepancy. Therefore, we create a socket for L-app and T-app pipeline
respectively, and manually change the socket settings according to the request
demand, such as buffer size and function selection introduced in Sect. 4.2.

We mainly consider two schemes of L-app and T-app separation process-
ing (1) intra-queue I/O isolation and (2) inter-queue I/O isolation. The for-
mer scheme can simplify the I/O classification and processing operations since
requests and resource classification can be performed directly in one NVMeoF
queue. Nevertheless, due to the chaotic and complicated data transmission, it is
difficult to run the two dedicated pipelines in parallel and easy to cause com-
petition trap or even result in performance deteriorations. On the contrary, the
latter strategy can solve the problems and achieve good performance improve-
ment through parallelism and targeted design. Notably, we adopt the method of
inter-queue I/O isolation, and implement it on both the host side and the target
side.

4.2 T-app and L-app Pipelines

As shown in Fig. 3, after the T-req wakes up the T-app queue, it firstly is tem-
porarily packaged and encapsulated in PDU freight, which is a newly established
container for accumulating PDUs. The queue then enters the quiesce state, wait-
ing to be waked up again. In this process, the T-app queue ceaselessly aggregates
the corresponding requests until triggering the sending condition, and then sends
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freight to the other end of queue pairs through the T-app queue sock. LTNoT
merges multiple NVMeoF requests in PDU freight to realize interrupt-coalescing.
A single interrupt can process more requests and send a jumbo packet, so as to
improve throughput by reducing context switching and using TCP hardware
acceleration such as TSO and GRO.

The trigger condition is that freight reaches the preset PDU-group size or
the number of PDUs, or a high-precision timer with the goal of forcibly sending
exceeds the timeout threshold. Whenever the freight receives the first request,
the corresponding high-precision timer will be waked up and in turn, whenever
the freight is sent, the timer thread will be canceled. The PDU-group size is set
to 64KB which is the partition upper limit of TSO technology, and the time-
out threshold is 75ms (a high-quality setting obtained from experiments). The
number of PDUs is set loosely as 16 to avoid aggregating too many requests.
Due to the aggregation of T-requests, the buffer originally dynamically adjusted
by Linux Kernel is not suitable for sending the jumbo packet. Therefore, we
manually set the TCP static buffer with an upper limit of 8MB through set-
sockopt(). Moreover, since the freight is typically 64KB PDU group in batch,
we use kernel_sendmsg() function rather than the kernel_sendpage(), because
the performance of the former is much better than that of the latter for sending
long flow data. kernel_sendmsg() can copy the kernel I/O vector to the socket
buffer as a function parameter, which significantly improves the throughput in
the presence of freight.

On the receiving side of the queue pair, it receives the header first from the
sock receiving buffer, then parses the header information, analyzes the length of
subsequent data, and finally receives data according to the parsed length. The
T-app queue repeats the process of receiving requests, which not only realizes
the unpacking of freight but also parses each I/O request. Subsequently, either
submitting the regenerated bio or returning the results to the upper application,
the request gets off the T-app pipeline.

After entering the L-app queue, L-req is immediately forwarded to the other
end of queue pairs through the L-app queue sock without aggregation, so as
to improve latency performance. After the request is sent through the sending
thread, the L-app queue enters a quiesce state, waiting for the return of the
request result or a new I/O request to be waked up again. The receiving thread
of the queue pair works like T-app. Given that one L-req is forwarded instantly
at a time, the setting of sock buffer dynamically adjusted by Linux Kernel is
suitable. Moreover, we choose kernel_sendpage() instead of kernel_sendmsg()
as the sending function in the L-app pipeline, since it behaves better than the
latter for sending short flow data. kernel_sendpage() avoids data replication on
the transmission side when sending data per page.

4.3 LTprio and Priority

Under the trade-off between acceptable latency and bandwidth, giving a higher
priority for L-app queue work benefits the whole system since the L-req can be
sent for processing faster. Since we have achieved inter-queue I/O isolation of
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the host side and the target, interestingly, we can actively change the priority
weights of the L-app/T-app pipeline when allocating work-queue. In order to
avoid starvation due to LTNoT priority, the NVMeoF driver will force sending
to exhaust the requests if the aforementioned PDU group size falls short of the
threshold and the high-precision timer timeout for the T-app pipeline.

In the Linux kernel, it is vastly challenging to infer the workload require-
ments of user layer applications and predict the priority of I/O requests. On the
contrary, we can extend the LTNoT characteristic in the kernel by observing the
priority parameter ’ioprio’. Figure 4 illustrates how the LTNoT system refers to
the workload attribute in the whole storage stack. The user API of FIO has a
’prioclass’ parameter, through which it can pass the request with the tag ’prio’ to
the kernel space. When the I/O request generates a bio, the block layer will mod-
ify the tag ’io_ioprio’ to inherit the request ’prio’. After that, the blk-mq request
is transferred to the NVMeoF controller by calling the queue_rq interface with
the NVMeoF layer, where LTNoT modifies the request structure by adding a flag
bit to mark the type of request (T-req or L-req). For this purpose, the LTNoT
system provides a named LT_set_iotype thread, which allows the LTNoT queue
to configure and dynamically change the properties of each request. At this time,
the flag is set to latency-sensitive or throughput-oriented by judging the ioprio,
so as to realize the design of request type/urgency, adapting to the workload
attribute of the application. In addition, it is necessary for the NVMeoF driver
and underlying layer to inherit this workload attribute. Therefore, we maintain
the flag for the NVMeoF host and target queue to penetrate the whole stor-
age stack. Therefore, LTNoT can capture attributes for each application in the
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kernel and populate the NVMeoF request with the flag ’prio’. If the incoming
I/O request has an unspecified attribute, it is assigned as a throughput-oriented
request by default.

5 Performance Evaluation

In this section, we evaluate the detailed behavior of LTNoT using realistic work-
loads.

5.1 System Implementation

We implement LTNoT as a loadable kernel module of Linux 4.20.0 by adding
1,221 lines of C codes based on the standard NoT implementation. Specifically,
LTNoT extends the NVMeoF request structure (a tag for marking the request
type) and defines two types of data structures, i.e., freight and hrtimer. We
add several flags for recording the parameters used by freight and hrtimer. The
hrtimer thread works with the help of the existing high-precision timer function
in the Linux source code. By judging the flag ’prio’ in the request, NVMeoF
realizes the category determination of T-req and L-req, so as to enter the corre-
sponding processing pipeline. Through flags ’nr_req’ and ’fgt_timer’ recorded
in the T-app queue, LTNoT determines a freight should be transferred in time
or delayed for more aggregation. The detailed implementation of LTNoT can be
reached at https://github.com/jackey-gu/LTNoT.

5.2 Experimental Setup

We build an LTNoT prototype using two 2-socket servers that are equipped with
Mellanox CX-5 EX. The two network interface cards (NICs) are directly con-
nected through an optical fiber link and only enabled the Ethernet port in the
experiments. Besides, we do not make any special changes to the NICs to demon-
strate that LTNoT is general to common Ethernet infrastructures. NVMe SSD
and RAM are configured with large redundancy. FIO and RocksDB are used as
benchmarks to evaluate the performance of LTNoT. To comprehensively evaluate
the behavior of LTNoT, we compared LTNoT with standard NoT implementa-
tion in the Linux kernel and the recently proposed i10 implementation. The
detailed hardware and software configurations are described in Table 1. Unless
otherwise specified, our test sets up a T-app thread and an L-app thread (a 4KB
read FIO thread with ’prio’ = 1) on the NVMe SSD device.

5.3 Evaluation Results

We use the L-app latency and the system total bandwidth as the metrics to
measure the effectiveness of LTNoT in alleviating I/O interference between mul-
tiple applications, since these are exactly the performance demands for different
types of services.

https://github.com/jackey-gu/LTNoT.
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Table 1. Hardware and software configurations

Host Target

CPU 2-socket Intel (R) Xeon (R)
CPU E5-2692v2@2.20 GHz
12cores per socket,
NUMA enabled (2 nodes)

2-socket Intel (R) Xeon (R)
CPU E5-2660v2@2.60 GHz
10cores per socket,
NUMA enabled (2 nodes)

MEM 125 GB of DRAM 64 GB of DRAM

NIC Mellanox CX-5 EX (100 G)
TSO/GRO = on, LRO = off, DIM disabled
Jumbo frame enabled (4096 B)

SSD N/A 1.6 TB DERA D5457 NVMe SSD

IRQ N/A irqbalance enabled

OS Centos 7 (kernel 4.20.0)

FIO version = fio–3.7, rw = randrw, size = 15 G
cpus_allowed = 0–23, runtime= 300,
engine = libaio
gtod_reduce= off, Direct I/O = on
CPU affinity enabled, group_reporting= 1
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Fig. 5. Latency and bandwidth comparison with varying number of L-apps.
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Fig. 6. Latency and bandwidth comparison with varying iodepth.

Performance with Varying Number of Threads. Figure 5 depicts the aver-
age latency and bandwidth performance with different number of L-apps in a
single core. The experiments that the FIO threads access remote RAM and
NVMe SSD of target show similar results, which proves the scalability of LTNoT
on SSDs with better performance in the future. Figure 5(a) and (b) shows that
in the SSD device test, LTNoT experiences a 50.74% and 62.68% reduction in
latency performance on average compared with i10 and NoT. And it improves
the NVMeoF bandwidth by 64.03% in comparison to NoT. With the increase
of the number of L-apps, the bandwidth of LTNoT, NoT and i10 will decrease.
This is because as the proportion of requests with 4KB block size increases, the
IOPS increases but the overall bandwidth decreases. However, since LTNoT will
preferentially process the L-app requests, the bandwidth deterioration is more
than that of i10.

LTNoT achieves similar performance trends when evaluated with RAM, as
shown in Fig. 5(c) and (d). However, the overall performance improvements of
RAM are higher than that of NVMe SSD. This is because the I/O processing
overhead of SSD devices is worse than that of RAM devices, which limits the
demonstration of the performance benefits of LTNoT at the software level. Nev-
ertheless, LTNoT has a 67.22% and 75.28% latency improvement over i10 and
NoT, respectively, and a 64.97% throughput improvement compared with NoT.

Performance with Varying Iodepth. Figure 6 plots the average and tail I/O
latencies and bandwidth with different T-app iodepth configurations. Compared
with i10, both the average latency and tail latency of LTNoT can be significantly
reduced by 26.76% on average and by up to 62.54% when the iodepth is set
to 128. Besides, the latency reduction shows an obvious upward trend as the
iodepth increases. When iodepth is low, LTNoT has slightly lower I/O latency
than i10 and NoT. This is because the number of I/O requests from T-app is
relatively sparse, and the delay mainly comes from the inherent overhead of
CPU request processing and network data transmission. L-req is less disturbed
by T-req, thus the income of LTNoT is weakened. On the contrary, when we use
the I/O workloads with much higher iodepths, L-req can exploit the performance
benefits of inter-queue I/O isolation well by amortizing the unnecessary overhead
from waiting for T-reqs and request aggregation.

As the L-app and T-app resources are isolated and the requests with different
attributes are handled differently, LTNoT can always achieve better performance
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Fig. 7. Latency and Bandwidth comparison with varying write ratio.
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Fig. 8. Latency and Bandwidth comparison with varying block sizes.

than NoT with various I/O workloads. As shown in Fig. 6(c), LTNoT can get
25.32% higher bandwidth than NoT on average and it is nearly the same as i10.
The bandwidth improvement of LTNoT shows a trend of continuous growth with
the increase of iodepth compared with NoT. This is mainly because increasing
iodepth will speed up the PDU aggregation in freights in the T-app pipeline,
thus sending the 64KB jumbo packet continuously.

Performance with Varying Read/Write Ratios. In this experiment, we
evaluate the impact of inter-queue I/O isolation by setting different read/write
IO request ratios in FIO benchmarks. As shown in Fig. 7, compared with NoT,
LTNoT shows obvious advantages in average latency and bandwidth. Compared
with i10 and NoT, LTNoT decreases the average latency by 47.73% and 56.63%
on average respectively. In the test of read-only and write-only, LTNoT presents
up to 48.1% latency reduction and 41.57% latency improvement than i10. No
matter how the read/write ratio changes, LTNoT maintains a stable improve-
ment for the latency performance of L-app. In terms of bandwidth performance,
LTNoT shows about 34.61% improvement in comparison to NoT.

Performance with Varying Block Sizes. We further evaluate the perfor-
mance of LTNoT using the workloads with different request sizes, i.e., configuring
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Fig. 9. Latency and Bandwidth comparison with number of cores.

different block sizes in FIO benchmarks. Figure 8 shows the latency and band-
width comparisons with varying I/O request sizes to access remote NVMe SSD
block devices. Apparently, the latency performance of LTNoT is much better
than NoT and i10 and improves by 50.77% and 59.32% on average respectively.
In addition, LTNoT can provide a bandwidth improvement of 52.31% than NoT.
As shown in the experiment, the improvement of latency and throughput by
LTNoT remain steady as the block size increases.

Scalability with Number of Cores. To further understand the performance
scalability of LTNoT in the systems with multiple CPU cores, we evaluate the
performance of LTNoT with different numbers of CPU cores from 1 to 8. Notably,
as shown in Fig. 9(a) and 9(b), 6 cores is a dividing point of latency and total
bandwidth performance, where the trend lines of the three tested systems change
dramatically. This is because when accessing remote storage with 6 cores, the
bandwidth of the whole system has reached the upper limit. In this case, the
system cannot provide higher bandwidth as the number of cores increases. Thus
the isolated queue design in LTNoT can not significantly mitigate the system
performance loss caused by network congestion. When the number of cores is
less than 6, both i10 and LTNoT present better total bandwidth performance
than NoT and it is almost proportional to the number of CPU cores. And the
bandwidth of LTNoT is steadily 45.37% improved than NoT. Besides, for a fixed
number of CPU cores involved in this experiment, LTNoT always performs better
than i10 and NoT in latency, 37.69% and 40.29% respectively. This indicates that
LTNoT will not incur any performance loss compared with i10 and NoT before
congestion. Different from bandwidth, the per-core bandwidth of i10 and LTNoT
is obviously reduced as the number of CPU cores is used in this experiment as
shown in Fig. 9(c).

RocksDB Performance. We use RocksDB, a widely-deployed key-value stor-
age system, as a real application to evaluate the performance of LTNoT. With
Ext4 filesystem to format the SSD block device and the default db_bench tool,
we populate a 55GB database containing 1,000,000,000 pieces of data. The
RocksDB is deployed on both the host side and the target side. In order to
minimize the impact of all the cache layers in the kernel, we enable direct I/O
in the experiments. After mounting the remote SSD device on the host side, we
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Fig. 10. Latency and Bandwidth comparison with RocksDB test.

generate a readrandom workload as the L-app to test single thread performance
of single core with the block size of 4KB. We generate an FIO thread as the
T-app whose iodepth is set to 32 with the block size of 16KB in this experiment.

Figure 10 shows the evaluation results of average latency performance and
bandwidth performance. In terms of latency performance, LTNoT gains about
a 36.78% improvement over i10 and has a greater 51.81% improvement com-
pared with NoT. Compared with the FIO tests, due to the high application
layer overhead of RocksDB, the latency performance improvement of LTNoT
is slightly reduced. As the RocksDB test is to operate on the file system while
FIO is to directly read the block device, thus the additional operation overhead
in RocksDB leads to this latency performance difference. Since the application
layer and filesystem increase the delay by 100μs, the benefits obtained from the
modification of the kernel software layer are partially overshadowed. While the
bandwidth performance of the T-app generated by FIO is negligibly impacted in
the RocksDB test. The throughput of LTNoT is almost 0.73 times higher than
that of NoT.

6 Related Work and Discussion

Resource Disaggregation. There have been many resource disaggregation
proposals from industry in the past few years, such as the Machine of HP [12]
and the composable system of IBM [8]. In addition, several key technologies have
been well studied in academia. Lim et al. proposed disaggregating memory that
can be used as network swap device and accessed through memory instructions
transparently [26,27]. Shan et al. proposed LegoOS to manage disaggregated sys-
tems. InfiniSwap disaggregates memory from host CPU and swaps local memory
to remote memory via RDMA [14]. These remote memory systems significantly
promote the development of high-speed network technologies, which simultane-
ously mitigate the communication overhead for disaggregated storage systems.

Storage Disaggregation. Accessing remote storage through networks is a com-
mon practice in production systems. As the novel NVMe protocol leverages the
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high throughput PCIe interconnect to utilize the internal parallelism of SSDs
to the maximum, the software overhead of iSCSI significantly prevents NVMe
SSDs from exposing their high performance to remote hosts. Disaggregating
NVMe SSDs is a more challenging task and have been studied in ReFlex [25],
Decibel [33], and PolarFS [6]. Their basic design is to tightly integrate network
and storage layers to minimize the software overhead in the I/O path, thus the
high performance of the storage devices can be fully utilized by remote hosts.

NVMe over Fabrics. In recent years, NVMeoF has been replacing iSCSI as
the dominant remote storage interface protocol of disaggregated storage systems.
As the latest extension of NVMe for remote storage access which allows remote
access to NVMe controllers through high-speed networks, NVMeoF can eliminate
the unnecessary protocol conversion initially required in the I/O path from host
to remote NVMe SSDs and provides ultra-low remote access latency. NVMeoF
can dramatically reduce network and processing overheads, thus achieving neg-
ligible performance degradation for remote storage access.

There have been a few studies for improving the I/O management strategies
in NVMeoF. Guz et al. characterized the overhead of NVMe over RDMA and
concluded that NVMeoF only causes negligible performance degradation while
iSCSI decreases I/O throughput by 20% [15]. Gao et al. proposed i10 that allows
unmodified applications to operate directly on the kernel’s TCP/IP stack and
saturates a 100Gbps link for remote accesses using CPU utilization similar to
SPDK and NVMe over RDMA [19]. Besides, several studies have presented the
effectiveness of NVMeoF on real storage systems for big data and deep learning
platforms. Choi et al. have evaluated the performance of NVMeoF with shared-
disk file systems. Zhu et al. explore the use of NVMe storage disaggregation for
support of deep neural networks [40]. Han et al. have improved the performance
of the most popular Hadoop filesystem with NVMeoF [16].

7 Conclusion

In this paper, we introduce the design, implementation and evaluation of LTNoT,
an inter-queue I/O isolated NVMe-over-TCP design that only modifies in the
Linux kernel. LTNoT proposes the specific I/O process policy of latency-sensitive
path and throughput-oriented path, thus alleviating the I/O interference between
multiple simultaneous applications in the CPU. We implemented LTNoT in
Linux Kernel and evaluated it by realistic benchmarks. Our experimental results
demonstrate that LTNoT can the good trade-offs between latency and through-
put compared with NVMe over TCP or i10.
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Abstract. Although the holy grail to store and manipulate data in Edge
infrastructures is yet to be found, state-of-the-art approaches demon-
strated the relevance of replication strategies that bring content closer
to consumers: The latter enjoy better response time while the volume
of data passing through the network decreases overall. Unfortunately,
locating the closest replica of a specific content requires indexing every
live replica along with its location. Relying on remote services for such a
aim enters in contradiction with the properties of Edge infrastructures as
locating replicas may effectively take more time than actually download-
ing content. At the opposite, maintaining such an index at every node
would prove overly costly in terms of memory and traffic.

In this paper, we propose a decentralized implementation of content
indexing called AS-cast. Using AS-cast, every node only indexes its closest
replica; and all connected nodes with a similar index compose a partition.
AS-cast is (i) efficient, for it uses partitions to lock down the traffic gener-
ated by its operations to relevant nodes, yet it (ii) guarantees that every
node eventually acknowledges its closest replica despite concurrent opera-
tions. Our prototype, implemented on PeerSim, shows that AS-cast scales
well in terms of generated messages and termination time.

As such, AS-cast can constitute a novel building block for geo-
distributed services in need of efficient resource sharing in the vicinity of
regions.

Keywords: Edge infrastructures · Decentralized content indexing ·
Scoped broadcast · Logical partitioning protocol

1 Introduction

The data storage paradigm shifted from centralized in the cloud to distributed
at the edges of the network. This change aims at keeping the data close to
(i) its producers since data may be too expensive or sensitive to be transmit-
ted through the network; and (ii) its consumers so data may quickly and effi-
ciently reach them [13,16,35]. To favor this transition, new designs for data man-
agement across Edge infrastructures have been investigated [9,10,17,19]. They
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 433–454, 2023.
https://doi.org/10.1007/978-3-031-22677-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22677-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-22677-9_23


434 A. Lebre et al.

enable strategies to confine traffic by writing data locally and replicating con-
tent according to effective needs. However, locating content remains challenging.
Retrieving a content location may actually take more time than retrieving the
content itself. Indeed, these systems, when not using a centralized index hosted
in a Cloud, rely on distributed hash tables (DHT) spread across different nodes
composing the infrastructure [29]. When a client wants to access specific content,
it requests a remote node to provide at least one node identity to retrieve this
content from. After retrieving the content, the client can create another replica
to improve the performance of future accesses, but it must recontact the indexing
service to notify of the creation of this new replica.

Such approaches are in contradiction with the objectives of Edge infrastruc-
tures that aim at reducing the impact of latency as well as the volume of data
passing through the network. First, accessing a remote node to request con-
tent location(s) raises hot spots and availability issues. But most importantly,
it results in additional delays [3,12] that occur even before the actual download
started. Second, the client gets a list of content locations at the discretion of
content indexing services. Without information about these locations, it often
ends up downloading from multiple hosts, yet only keeping the fastest answer.
In turn, clients either waste network resources, or face slower response time.

To address the aforementioned limitations, every node that might request
or replicate content must also host its own content indexing service in a fully
decentralized fashion [25]. At any time, it can immediately locate the closest
replica of specific content. A naive approach would be that every node indexes
and ranks every live replica along with its location information. When creating
or destroying a replica, a node would notify all other nodes by broadcasting its
operation [7,18]. Unfortunately, this also contradicts Edge infrastructure objec-
tives, for such a protocol does not confine the traffic generated to maintain its
indexes. A node may acknowledge the existence of replicas at the other side of
the network while there already exists a replica next to it.

To mitigate the broadcasting overhead, a node creating a replica should notify
all and only nodes that have no closer replica in the system. This would create
interconnected sets of nodes, or partitions, gathered around a source being their
respective replica. A node deleting its replica should notify all members of its
partition so they can rally their new closest partition. Some periodic adver-
tisement protocols [20,36] already provide both creation and deletion. Yet, their
functioning requires (i) to generate traffic even when the system is quiescent, and
(ii) the use of synchronous communications [36] or physical-time-based intervals
tuned according to network topology parameters such as network diameter [20].
In this paper, we address the content indexing challenge as a distributed parti-
tioning problem. Our contribution is threefold:

• We highlight the properties that guarantee decentralized consistent partition-
ing in dynamic infrastructures. We demonstrate that concurrent creation and
removal of partitions may impair the propagation of control information crucial
for consistent partitioning. Yet, nodes are able to purge stale information for-
ever using only neighbor-to-neighbor communication, hence leaving room for
up-to-date information propagation, and eventually consistent partitioning.
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(a) Node R effi-
ciently advertises
its content by
epidemic prop-
agation. Every
node requests R if
needed.

(b) Node G creates
a second replica
splitting the red
set in two. Nodes
request their closest
replica host.

(c) Node B creates
another replica.
Node B needs to
notify only a small
subset of nodes.

(d) G destroys its
replica. Nodes that
belonged to its
partition must find
the closest partition
they are in.

Fig. 1. Partitions grow/shrink depending on creations/removals of replicas.

• We provide an implementation entitled AS-cast that uses aforementioned
principles to adapt its partitioning to creations and deletions of partitions
even in dynamic systems where nodes can join, leave, or crash at any
time. AS-cast’s efficiency relies on a communication primitive called scoped-
broadcast that enables epidemic dissemination of messages as long as receiv-
ing nodes verify an application-dependent predicate.

• We evaluate AS-cast through simulations using PeerSim [30]. Results empir-
ically show that (i) AS-cast manages to quickly disseminate messages to the
subset of relevant nodes; (ii) AS-cast’s overhead decreases when the num-
ber of partitions increases; (iii) AS-cast does not generate traffic in quiescent
systems; and (iv) AS-cast operates even in networks subject to physical par-
titioning.

The rest of this paper is organized as follows. Section 2 illustrates the moti-
vation and problem behind our proposal. Section 3 describes dynamic consistent
partitioning and its implementation. Section 4 presents our evaluations. Section 5
reviews related work. Section 6 concludes and discusses future work.

2 Motivation and Problem

Numerous studies addressed content indexing in geo-distributed infrastructures
ranging from centralized services to fully decentralized approaches [23]. We advo-
cate for the latter where nodes host the service themselves so they do not need
to request remote – possibly far away third-party – entities to retrieve content
locations. More precisely, we propose to consider the content indexing issue as
a dynamic logical partitioning problem. This section motivates our positioning
and explains the shortcomings of existing implementations.

Dissemination: Figure 1 depicts an infrastructure comprising 17 interconnected
nodes spread across France. In Fig. 1a, a single Node R hosts the content, so every
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other node downloads from this node when it needs it. In that regard, Node R
only needs to disseminate a message notifying all other nodes of its new content.
Node R can use uniform reliable broadcast [18] and epidemic propagation [14] to
guarantee that every node eventually knows the content location by efficiently
using neighbor-to-neighbor communication.

Location: Then, in Fig. 1b, another Node G creates a replica of this content.
Similarly to Node R, it notifies other nodes of this new replica. However, to avoid
that north nodes request its replica, and south nodes request the northern one,
nodes hosting a replica must add location information along with their notifi-
cations. As a consequence, every node eventually knows every replica location
and can download from its closest host. Red nodes would request Node R while
green nodes would request Node G.

Scoped Broadcast: Then, in Fig. 1c, another Node B creates a replica of this
content. Similarly to Node R and Node G, Node B can notify other nodes of
this new replica. However, the set of nodes that could actually use this new
replica is actually much smaller than the network size. Uniform reliable broad-
cast is not designed for such a context and would generate a lot of unnecessary
traffic. Instead, nodes need a communication primitive that propagates notifica-
tions within a scope by evaluating a predicate, starting at its broadcaster (the
source). In other terms, nodes propagate notifications as long as they consider
them useful based on location information they carry. We call such a primi-
tive scoped broadcast (see Sect. 3.1), for messages transitively reach a subset of
interconnected nodes (the scope). Using this primitive, nodes can lock down the
traffic of content indexing to relevant nodes.

Logical Partitioning: Every node ends up with at least one known replica that
is its closest. The set of interconnected nodes with the same closest replica is a
partition. Every node belongs to one, and only one, partition (see Sect. 3.2). In
Fig. 1c, there are three logical partitions.

Dynamic Partitioning: In Fig. 1d, Node G destroys its replica. Every node
that belonged to its green partition must choose another partition to be in.
While it makes sense for Node G to scoped broadcast its removal, Node B and
Node R cannot afford to continuously advertise their replica to fill the gap left
open by Node G. A better approach would consist in triggering scoped broad-
cast at bordering nodes of red and blue partitions once again. In other words,
the scope of scoped broadcast changes over receipts by nodes. This dynamic
partitioning raises additional challenges related to concurrent operations where
removed partitions could block the propagation of other partitions (see Sect. 3.3).
Next Section details the properties of scoped broadcast and dynamic partition-
ing, and provides an implementation called AS-cast.

3 Adaptive Scoped Broadcast

To provide dynamic logical partitioning using scoped broadcast, all live nodes
must collaborate to disseminate messages that notify new or removed sources to
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Table 1. Summary of notations.

Notation Short Description

G Graph Represents a network
V Vertices Represents the set of nodes, or processes
E Edges Represents the set of asynchronous communication links
wxy weight Positive weight of the edge 〈x, y〉
πxz/Πxz path/best Path List of contiguous edges from Node x to Node z

|πxz|/|Πxz| Sum of weights Positive sum of weights of the path
σx state The local state of Node x

bx(m) broadcast Node x creates a new message m that must be delivered by all nodes
dx(m) deliver Node x delivers the message m

ry(m)/ryx(m) receive Node y receives the message m from any neighboring node/Node x

sxy(m) send Node x sends the message m to Node y

fx(m) forward Node x forwards the message m to its neighbors
m ⊕ σ Aggregator Aggregates σ into the metadata of message m

φ(μ, σ) Predicate Checks the metadata μ using the state σ

♦ P Eventually Eventually predicate P is true
e1 → e2 Happens before The event e1 happened before the event e2. d, s, r etc. are events
Dx Delivered Set of delivered messages by Node x.
αd

x or αd
πxz

add source Message that notifies the adding of Source x in the network
δx Source deletion Message that notifies the possible deletion of Source x by Node x

S(m) Stale message Message m conveys stale control information

all and only interested nodes. This section reviews step-by-step the properties
that allow nodes to converge to the desired state together. It first defines scoped
broadcast, then uses it to guarantee consistent partitioning when a node can
only become a new source in the system. It highlights the issue when a node can
also remove its status of source. It shows that using local knowledge and scoped
broadcast, nodes can still reach dynamic consistent partitioning when they are
able to detect possible blocking conditions in the dissemination of required noti-
fications, even in dynamic networks where nodes join, leave, or crash at any time.
For convenience, Table 1 summarizes the notations used throughout the paper.

3.1 Scoped Broadcast

In this paper, we consider Edge infrastructures as a set of interconnected
autonomous systems comprising heterogeneous nodes interconnected by com-
munication links. Nodes involved in the management of content may crash but
are not byzantine. Nodes can reliably communicate through asynchronous mes-
sage passing to other known nodes called neighbors. We define scoped broadcast
as a communication primitive that propagates a message around its broadcaster
within an application-dependent scope.

Definition 1 (Autonomous system). An autonomous system is a network
comprising nodes and communication links that we represent as a graph of
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vertices and edges: G = 〈V,E〉 with E ∈ V × V . A path πxz from Node x
to Node z is a sequence of contiguous edges [〈x, y1〉, 〈y1, y2〉, . . . , 〈yn, z〉].
Definition 2 (Scoped broadcast). When Node x scoped broadcasts bx(m) a
message m, every correct node y within a scope receives ry(m) and delivers
it dy(m). The scope depends on the state σ of each node, the metadata μ
piggybacked by each message, and a predicate φ verified from node to node:
(bx(m) ∧ ry(m)) =⇒ ∃πxy : ∀z ∈ πxy, φ(μz, σz).

This definition encompasses more specific definitions of related work [22,28,
38]. It underlines the transitive relevance of messages. It also highlights that
the functioning of epidemic propagation is well-aligned with the objectives of
scoped broadcast. As consequence, we assume implementations relying on the
forwarding of messages from neighbor-to-neighbor.

Definition 3 (Forwarding). When x forwards fx(m) a message m, it sends
it (sxy(m)) to all its neighbors y accumulating and aggregating (⊕) metadata
that depends on its local knowledge σx: fx(m) =⇒ ∀〈x, y〉 ∈ E : sxy(m ⊕ σx).

We use scoped broadcast to efficiently modify the state of each node depend-
ing on the partitions that exist in the system to reach consistent partitioning.

3.2 Consistent Partitioning

At any time, a node can decide to become a source, hence creating a new partition
in the system by executing an Add operation. This partition includes at least its
source plus neighboring nodes that are closer to this source than any other
one. Such a distance (or weight) is application-dependent: in the context of
maintaining distributed indexes, this would be about link latency that nodes
could monitor by aggregating pings; or operational costs when dealing with
multiple tenants.

Definition 4 (Consistent partitioning (CP)). Assuming a set of sources
S ⊆ V , a positive weight wxy associated with each edge 〈x, y〉 ∈ E, we define con-
sistent partitioning as a set of logical partitions Ps∈S where each node x belongs
to the partition of its closest source s, i.e., there exists a path πsx with a sum
of weights |πsx| = ∑{wpq|〈p, q〉 ∈ πsx} smaller than any other path, with |πxx|
being x’s greatest lower bound.

Unfortunately, nodes do not share a common global knowledge of the network
state. For nodes to eventually (♦ ) reach consistent partitioning (CP), each source
s must send Add notifications αs to all nodes that are closer to it than any other
source, along with enough metadata to allow them to decide of their closest
source. Based on Definition 2 and Definition 3, this consists in ensuring that
each node x eventually receives α

|Πsx|
s where Πsx is the best path from any

source to it; the best value |Πsx| being built over forwarding along this path.
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Theorem 1 (Forwarding of Best (FB) =⇒ ♦CP). Assuming that each
node x stores its outgoing weights (∀〈x, y〉 ∈ E : wxy ∈ σx), a total order on
messages based on weights (md

s < md′
s′ when d < d′ ∨ (d = d′ ∧ s < s′)), reliable

communication links (sxy(m) ⇐⇒ ♦ ryx(m)), nodes eventually reach consistent
partitioning if each node delivers its best (i.e., smallest) message among received
messages Rx, and forwards its best message among delivered messages Dx such
that fx(αd

s) =⇒ ∀〈x, y〉 ∈ E : sxy(αd
s⊕wxy ), i.e., by accumulating the respective

weight of used edges.
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Fig. 2. Efficient consistent partitioning using S-cast. Partition Pa includes a while
Partition Pd includes b, c, and d. Node c and Node d never acknowledge the existence
of Source a, for Node b stops the propagation of the latter’s notifications.

Proof. Whenever a node s becomes a source, it broadcasts hence delivers its own
message ds(α

|πss|
s ). Whatever its set of received messages, it acknowledges that it

belongs to its own partition Ps since α
|πss|
s = minDs and it remains forever since

|πss| is its greatest lower bound. Such a source forwards its notification to its
neighbors. Every neighbor eventually receives its notification since communica-
tion links are reliable. Whatever the order of received messages Rx at neighboring
node x, total order ensures that it delivers notifications αd

s when d = |πss|+wsx =
min |πs′x| where min |πs′x| is the lightest weight of x to any source s′, s′ being s
in this case. Among these neighbors, at least those that fulfill the latest condi-
tion forward their respective notification. By transitivity, the message originating
from s reaches all nodes that belong to Ps at least through their respective light-
est path: ∀y ∈ V, s, s′ ∈ S : min |πsy| < min |πs′y| =⇒ ♦ dy(α

min |πsy|
s ). When the

system becomes quiescent, i.e., no node becomes source anymore, every node
eventually acknowledges the partition it belongs to, i.e., nodes eventually reach
consistent partitioning together. In addition, the protocol terminates: a node
never delivers hence forwards a message after it received, delivered, and for-
warded the message of its closest source from its lightest path.

Algorithm 1 shows the instructions that implement a reactive forwarding of
best to reach consistent partitioning in a static network where nodes never join,
crash, nor leave the system. As soon as a node receives a better message, it
delivers and forwards it. The trade-off consists in decreasing termination time
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Algorithm 1: Add-only CP protocol at Node p.
1 Op, Wp // set of neighbors and weights
2 Ad

s → α∞
∅ // smallest distance d to Source s

3 func Add( ) receiveAdd(∅, α0
p) // become source

4 func receiveAdd(q, αd′
s′ ) // notification from q

5 if αd′
s′ < Ad

s then // check predicate (φ)
6 Ad

s ← αd′
s′ // deliver and update (σ)

7 foreach n ∈ Op do sendn(αd′
s′ ⊕wpn) // forward to neighbors

at cost of increased traffic. Figure 2 illustrates the behavior of this algorithm on
a system comprising 4 nodes a, b, c, and d. Both a and d become sources. They
scoped broadcast notifications α0

a and α0
d. They initialize their own state with

the lowest value 0 (see Line 3), and send a message to each of their neighbors by
accumulating the corresponding edge weight (see Line 7). In Fig. 2c, b receives
α1

d. Since it improves its own partition distance, it keeps it and forwards it to its
neighbors. In Fig. 2d, b discards α2

a, for it does not improve its partition distance.
Neither c nor d will ever acknowledge that Source a exists. The protocol lacks of
obvious traffic optimization, e.g., grey messages are useless in this scenario. Nev-
ertheless, the system discards last transiting messages after it reached consistent
partitioning.

Adding logical partitions to a static network is straightforward and
lightweight. Unfortunately, removing partitions or introducing dynamic network
membership increases complexity and costs caused by concurrent operations.

3.3 Dynamic Consistent Partitioning

At any time, a source can revoke its status of source by executing a Del opera-
tion, hence deleting its partition from the system. All nodes that belong to this
partition must eventually choose another partition to belong to.

Definition 5 (Dynamic consistent partitioning (DCP)). A DCP protocol
enables nodes to join or leave the set of sources at any time while ensuring
eventual consistent partitioning.

Delete operations bring a new notion of order between events, and most
importantly between message deliveries. A node s that performs a Del operation
implicitly states that its preceding Add operation becomes obsolete. Their results
– scoped broadcast in the form of Add notifications αs – should be canceled by
the corresponding Del notifications of staleness δs. We focus on the last delivery
of each node, since the best is also the last, as highlighted by Algorithm 1.

Definition 6 (Happens-before (→) [27]). The transitive, irreflexive, and
antisymmetric happens-before relationship defines a strict partial order between
events. Two messages are concurrent if none happens before the other.
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Definition 7 (Stale messages). Only the latest broadcast of a node matters.
A message m conveys stale control information S(m) as soon as its broadcaster
broadcasts another message: S(αx) = ∃δx : bx(αx) → bx(δx). A node only deliv-
ers or sends messages that it assumes up-to-date. For convenience, we define
last(D) = αs ∈ D : �αs′ ∈ D : dx(αs) → dx(αs′).

δa�a b c

d

δa α1
d α2

d

α0
d

(a) a deletes its partition.
It notifies all nodes that be-
long to its partition.

�α3
d

a b c

d

α1
d α2

d

α0
d

(b) δ stops when it encoun-
ters another partition. b an-
swers with its partition.

α5
d�

a b c

d

δa→α3
d α1

d α2
d

α0
d

(c) a receives, delivers, and
forwards the message α3

d.
Every node belongs to Pd.

Fig. 3. Efficient removal of a partition using scoped broadcast.

A naive attempt at implementing DCP resembles echoes in acoustics: a sound
propagates in the air before crashing into surrounding walls to finally come back
altered. Following the principles of scoped broadcast as stated in Definition 2, a
node x that receives a staleness notification δs forwards it only if the latter targets
its current partition αs. These messages propagate as long as they remain in the
deleted partition. When they reach the bordering nodes of the deleted partition,
it creates an echo of bordering partitions that will go backward to fill the gap
left open by removals using forwarding of best (FB) as stated by Theorem 1.

Definition 8 (Forwarding of staleness (FS)). Any source can broadcast a
staleness notification at any time. Every node x delivers and forwards a received
staleness notification δs if it targets its best up-to-date delivered message:
(last Dx = αs ∧ dx(αs) → rx(δs)) =⇒ dx(δs) → fx(δs).

Definition 9 (FB+: echos). In addition to FB, a node x that receives but does
not deliver a staleness notification δs replies by – or echoes – its best up-to-date
delivered message:
(last Dx = αd

s′ ∧ δs′ �∈ Dx ∧ dx(αd
s′) → rxy(δs)) =⇒ rxy(δs) → sxy(αd

s′⊕wxy ).

Figure 3 illustrates the behavior of this implementation (FB+ ∧ FS). Two
partitions initially exist: Pa and Pd that respectively include {a}, and {b, c, d}.
In Fig. 3a, a deletes its partition. FS in Definition 8 states that a must notify all
its neighbors – here only b – that may belong to its partition. In Fig. 3b, b receives
but does not deliver δa since δa does not target its current partition Pd. FB+ in
Definition 9 states that b must echo back its own best up-to-date message α3

d, for
it may be the best for a. Figure 3c shows that every node eventually belongs to
Pd, therefore reaching consistent partitioning. Unfortunately, this protocol does
not ensure consistent partitioning in every scenario.



442 A. Lebre et al.

Lemma 1 (FB+ ∧FS �=⇒ DCP). Forwarding best up-to-date, staleness, and
echoes is not sufficient to guarantee dynamic consistent partitioning.

Proof. Stale control information (see Definition 7) may impair the propagation
of both (i) notifications about actual sources, and (ii) notifications about deleted
partitions. In Fig. 4, a, b, c are chained with FIFO links, i.e., nodes receive the
messages in the order of their sending. In Fig. 4a, a and c become sources, sending
their respective notification message to b. In Fig. 4b, a and c delete their partition
while b receives, delivers, and forwards α2

a. In Fig. 4c, b receives, delivers, and
forwards α1

c , for it improves its best partition. Then it receives and discards δa,
for its best partition does not match the deleted one. It echoes back α3

c to a.
In Figs. 4d and 4e, a and b handle transiting notifications. Finally, Fig. 4f shows
that c is stuck in the deleted Pa for not having received δa that b blocked earlier.
The system does not reach consistent partitioning.
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Fig. 4. The naive propagation of messages is insufficient to guarantee consistent par-
titioning. If c had children, they would stay in the wrong partition too.

The issue is that each node trusts its parent to forward all staleness noti-
fications relevant to it. When this fails, as in Fig. 4, not only a node (c) may
wrongfully stay in a partition (Pa) when its source (a) already deleted it, but
it may contribute to its inconsistency by not forwarding farther but up-to-date
messages from live sources.

A first step to avoid staying in inconsistent state is to extend the behavior
of each node so nodes such as c, that would remain in a wrong partition, use
their history of receipt and delivery to detect the possible blocking of staleness
notifications that can hinder reaching consistent partitioning. In Fig. 4, b blocked
the staleness notification δa that c needs since it belongs to a ephemeral partition
Pc that c acknowledges to be stale before b does. Therefore, c can detect the
possible blocking of δa since it acknowledges that its parent b received, delivered,
and forwarded the stale notification α1

c . In other terms, Node c acknowledges
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that between the delivery of α1
c and the delivery of δc, Node b blocked all other

δ messages and therefore, it could have blocked the most important staleness
notification: δa.

Lemma 2 (FB+ ∧ FS =⇒ Detector existence). Assuming FB+ and FS,
a chain of delivery on πxz of αx with αx = last Dz, if x broadcasts a staleness
notification δx, either (A) z eventually delivers it, or (B) a node y in such a
chain of delivery π′

xz eventually detects the possible blocking of δx.

Proof. Assuming a chain of delivery πxz = [x, . . . , z] of αx with αx = last Dz

and dx(δx), we must prove that whatever the possible states of nodes that belong
to this chain, it either leads to outcome (A) or (B).

(I) Same last partition: ∀y ∈ πxz : αx = last Dy, with forwarding of stale-
ness (Definition 8), fπxz [k](δx) =⇒ ♦ dπxz [k+1](δx) except if δx ∈ Dπxz [k+1]

meaning that πxz[k+1] already delivered and forwarded δx following another
delivery chain. Therefore, z eventually receives, hence delivers δx (outcome
A).

(II) Different last partitions: ∃y ∈ πxz \ {x, z} : αs = last Dy, by (I), the
staleness notification reaches the first of such a node y = πxz[k]. Forwarding
of staleness (Definition 8) states that the forwarding stops when y already
delivered δx (δx ∈ Dy covered by (I)) or delivered a better message αs =
last Dy. With y′ = πxz[k +1], forwarding of best (Definition 9) implies three
possible results:
(i) y′ equivalent to y: αs′ = last Dy′ with αs′ �= αx hence y′ ⇐⇒ y which

leaves two possible results as follows:
(ii) y′ in Px from another parent: ry′(αs) ∧ αx = last Dy′ ∧ αx < αs

which means that a shorter path of delivery π′
xz exists that either forwards

appropriate staleness notifications (covered by (I)) or detects a possible
blocking of the latter as follows:

(iii) y′ in Px with y as parent). but does not deliver the y’s last partition
for it already delivered the corresponding staleness notification: ry′(αs)∧
δs ∈ Dy′ ∧αx = last Dy′ which detects a possible blocking of δx (outcome
(B)). Without global knowledge, y′ assumes it belongs to the shortest and
only path of delivery of αx thus it cannot further delegate the detection
to another node.

As a second step, detecting nodes must proactively purge the system from
their forwarded notifications. For instance in Fig. 4f, c detects the blocking of
the staleness notification δa. It could broadcast δa in order to acknowledge the
staleness of its own α3

a and inform neighboring nodes that delivered it as well.
Unfortunately, there exists false positive in the blocking detection. Lemma 2’s
proof shows that the detection at y′ does not depend on δx. Therefore δx may
not exist but y′ still receives αs after the delivery of δs from the path it received
and delivered αx. Figure 5 highlights this behavior. In Fig. 5b, a does not delete
its partition. In Fig. 5f and because of scoped broadcast, c received the same
series of messages as in Fig. 4f. Yet, c must assume the existence of δa and act
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accordingly by forcing the staleness of its best delivered message and disseminate
this information to its neighbors. To avoid flooding the system with false positive
staleness notifications, we reduce the scope of staleness notifications by including
only downstream nodes. In Fig. 5f, false positives would generate traffic at c and
in turns, to its children if it had any. Nevertheless, this would not affect a nor b.
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Fig. 5. From c’s perspective, Fig. 4e and Fig. 5e are similar in terms of received mes-
sages, but the outcomes eventually differ. Yet, c must act on Fig. 5e, and acknowledge
then propagate the possible staleness of Partition Pa.

Definition 10 (FS+: forwarding staleness downstream). Any node can
broadcast a staleness notification at any time. A child node x delivers and for-
wards a received staleness notification if it comes from the path of delivery of its
best up-to-date delivered message.

It is worth noting that forwarding of staleness as stated in Definition 8
becomes a specific case of Definition 10 where the source itself forwards a stal-
eness notification downstream. The notification must reach all nodes in its par-
tition since the source has no nodes upstream, and belongs to the delivery path
of all nodes that delivered this message.

Theorem 2 (FB+ ∧ FS+ =⇒ DCP). A protocol guarantees dynamic con-
sistent partitioning if it implements forwarding of best up-to-date messages with
echos, forwarding of staleness messages downstream, and the detection of possible
blocking triggers the forwarding of staleness notifications downstream.

Proof. Detection triggers forwarding of staleness downstream which completes
the case study of Lemma 2 by ensuring that, when a source broadcasts its stal-
eness notification, all nodes that belong to its partition eventually deliver such
a staleness notification. All downstream bordering nodes also eventually receive
such a staleness notification and echo back their best delivered message. This
triggers another competition as in Theorem 1 for the nodes that delivered the
staleness notification.
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Algorithm 2 shows the instructions of our implementation called AS-cast that
enables dynamic consistent partitioning. It implements forwarding of best (see
Line 13) and echos (see Line 21). To implement forwarding of staleness down-
stream as stated in Definition 10: (A) each node maintains a vector of versions
that associates the respective known local counter of each known source, or has-
been source. It constitutes a summary of known progress of other nodes; (B)
each notification message α carries the list of identifier and counter of each node
that forwarded it. In the worst case, both these structures grow linearly with
the number of nodes in the system O(V ). Nevertheless, following the principles
of scoped broadcast, we expect that nodes only acknowledge a small subset of
sources and messages; (C) each staleness notifications δ only carry the identifier
and counter of the node – source or detector – that generated it. Only down-
stream nodes may deliver such message, since they carry the identifier of the
generator. To implement the detection as stated in Lemma 2, each node only

Algorithm 2: AS-cast: DCP protocol at Node p.
1 Op, Wp // set of neighbors and weights
2 Ad

π ← α∞
∅ // best α so far

3 V ← ∅; V [p] ← 0 // vector of versions

4 func Add( )
5 V [p] ← V [p] + 1
6 receiveAdd(p, α0

∅)

7 func Del( )
8 V [p] ← V [p] + 1
9 receiveDel(p, δp,V [p])

10 func receiveAdd(q, αd′
π′) // notification of source creation

11 if αd′
π′ < Ad

π and ¬isStale(αd′
π′) and ¬isLoop(αd′

π′) then
12 Ad

π ← αd′
π′∪〈p,V [p]〉

13 foreach n ∈ Op do sendn(Ad
π⊕wpn)

14 else if isParent(q) and isStale(αd′
π′) then

15 receiveDel(q, δp,V [p]+1) // detection of possible inconsistency
16 updateVersions(π′)

17 func receiveDel(q, δs,c) // notification of a possible source removal
18 if ∃〈s, c′〉 ∈ π : c′ < c then
19 Ad

π ← α∞
∅

20 foreach n ∈ Op \ q do sendn(δs,c)
21 else if Ad

s �= α∞
∅ then sendq(Ad

π⊕wpq )
22 updateVersions([〈s, c〉])
23 func onEdgeUp(q) // new communication link to q

24 if Ad
π �= α∞

∅ then sendq(Ad
π⊕wpq )

25 func onEdgeDown(q) // link to q removed (crash or leave)
26 if isParent(q) then receiveDel(q, δp,V [p]+1)

27 func isStale(αd′
π′) return ∃〈q, c〉 ∈ π′ : c < V [q]

28 func isLoop(αd′
π′) return 〈p, _〉 ∈ π′

29 func isParent(q) return 〈q, _〉 = π[|π| − 1]
30 func updateVersions(π′) for 〈q, c〉 ∈ π′ do V [q] ← max(V [q], c)
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requires to know the direct parent of its best delivered message which is already
included in the piggybacked path of this message. Receiving a message known to
be stale from this parent triggers the generation of staleness notifications that
can only be delivered by downstream nodes (see Line 14).

By reusing AS-cast’s default behavior of echos and downstream staleness,
Algorithm 2 also enables dynamic consistent partitioning even in dynamic net-
works subject to physical partitioning where nodes can join, leave, or crash at
any time. Adding a node is equivalent to add as many edges as necessary. Since
adding an edge may improve shortest paths, the protocol triggers a competition
using echos of Definition 9. Removing a node is equivalent to removing all its
edges. Removing an edge between two nodes may invalidate the shortest path
of one of involved nodes plus downstream nodes, or impair the propagation of
staleness notifications. Therefore, the protocol reuses its detectors of Lemma 2
to remove irrelevant messages from the system.

AS-cast follows the principles of scoped broadcast to efficiently and consis-
tently propagate notifications to nodes that need them despite concurrent oper-
ations. Next Section aims at providing the empirical evidence of scalability and
properties of the proposed approach.

4 Experimentation

In this section, we discuss the evaluations of AS-cast we conducted on top of
PeerSim, a simulator to evaluate and assess distributed algorithms in large scale
networks [30]. All the code of this experimentation section is available at: https://
gitlab.inria.fr/STACK-RESEARCH-GROUP/as-cast.

4.1 Scalability and Trade-Off of AS-cast

Description: We build a network comprising 10k nodes. First, we chain nodes
together, then we add another link per node to another random node. Since
links are bidirectional, each node has 4 communication links on average. We
set the latency of links between 20 and 40 ms at random following a uniform
distribution. To favor more concurrent operations, we set weights and latency to
different values: each link has a weight between 5 and 15 set randomly using a
uniform distribution. This allows nodes to receive messages in different orders,
therefore generating more messages to reach consistent partitioning.

To evaluate dynamic consistent partitioning, we first create 100 partitions
one at a time: nodes reach consistent partitioning before we create each new
partition. Second, we remove every partition one at a time, in the order of their
creation, hence starting from the first and oldest partition that had been added.

We measure the average number of messages per node per second; and the
time before reaching consistent partitioning after adding or removing a partition.

Results: Figure 6 shows the results of this experiment. The top part shows the
average traffic per node per second divided between α and δ messages. The
bottom part shows the time before reaching consistent partitioning.

https://gitlab.inria.fr/STACK-RESEARCH-GROUP/as-cast
https://gitlab.inria.fr/STACK-RESEARCH-GROUP/as-cast
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Figure 6 confirms that AS-cast’s overhead depends on the size of partitions.
This corresponds to a complexity in terms of number of messages of O( |E|

|V |·|P | )
where E is the number of links, V is the number of nodes, and P is the number
of partitions. In other terms, the pth partition contains 1/p nodes and reduces
the size of closest partitions so every partition has 1/p nodes on average.
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Fig. 6. Dynamic consistent partitioning overhead of AS-cast.

Therefore, the first partition is the most expensive, for α messages must reach
every node which takes time and generate more traffic. AS-cast quickly converges
towards consistent partitioning in 350 ms. The last and 100th partition added
around 21 s is the least expensive. By using scoped broadcast, control information
only reaches a small subset of the whole network.

Figure 6 also confirms that AS-cast’s delete operations are roughly twice as
expensive as creation ones. Indeed, the top part of the figure shows that after 21 s,
when the experiment involves removals, traffic includes both α and δ messages.
The latter aims at removing stale information and triggering competition while
the former aims at updating shortest paths. As corollary, the convergence time
increases, for δ messages must reach the partition borders before sound com-
petitors propagate their partition. This delete operation involves concurrency:
removals still propagate while the competition has started.

Figure 6 shows that the overhead of adding the 1st partition does not corre-
spond to the overhead of deleting this 1st partition. When adding it, messages
must reach all nodes while when removing it, messages must reach a small subset
of this membership. AS-cast’s overhead actually depends on current partitions
as opposed to past partitions.

Finally, Fig. 6 highlights that after 49 s, i.e., after the 100 creations and the
100 deletes, nodes do not generate traffic anymore. Being reactive, AS-cast has no
overhead when there is no operation in the system. AS-cast’s overhead actually
depends on its usage.



448 A. Lebre et al.

4.2 Traffic Containment in Dynamic Inter-autonomous Systems

Description: We build a network by duplicating the GÉANT topology [26] –
an infrastructure of 271 nodes spanning across Europe – and we link these two
clusters with a high latency link: 200 ms simulating cross-continental communi-
cations such as Europe-America. The experiments comprise 2×271 = 542 nodes
and we derive intra-cluster latency from their nodes’ geographic location.
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Fig. 7. Partitioning overhead of 2 clusters connected by a long distance link.

We evaluate the traffic of AS-cast by measuring the average number of mes-
sages per node over the experiments. In the first experiment, at 50 ms, only one
node becomes source, hence there is only one partition for the whole distributed
system. In the second experiment, at 50 ms, two nodes become sources, one per
cluster. Afterwards both scenarios are identical. At 850 ms, we remove the link
between the two clusters. At 1.7 s, we insert back this link.

Results: Figure 7 shows the results of this experimentation. The top part dis-
plays the results with one source while the bottom part displays the results with
one source per cluster.

Figure 7 confirms that concurrent Adds may reach consistent partitioning
faster. In particular, the top part of Fig. 7 depicts a slow down in traffic around
300 ms due to the high latency inter-continental link. The first plateau shows
the source’s autonomous system acknowledging this source, while the second
shows the other autonomous system catching up. The inter-continental link is a
bottleneck that does not exist when each cluster has its own source.

Figure 7 highlights that AS-cast operates well even when physical partitions
appear. Indeed, the disconnection of the inter-continental link existing between
the two clusters either leads to (i) additional traffic when the nodes do not have
any source in their cluster because nodes need to purge all indexes about the
remote unreachable source until reaching consistent partitioning; or (ii) a status
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Table 2. Related work summary.

Approaches Without
Third-party

Update Eventually
Consistent

Reactive or
Cyclic

Centralized [1,2,17,33] ✗ One ✓ R
DHT [6,11,23] ✗ Few ✓ R
Vector-based routing [21,32] ✓ all ✓ R/C
Replicated store [34] ✓ all ✓ R/C
Timeout-based [15,20] ✓ Scope ✗ C
Random walks [36] ✓ Scope ✓ C
Spanning Forest [4] ✓ Scope ✓ C
This paper ✓ scope ✓ R

quo as nodes of each cluster already target the source in their respective cluster.
Finally, Fig. 7 shows that, when adding back the inter-continental link, the two
clusters can communicate again. In the experiment involving one source for two
clusters, it generates traffic. After a 200 ms delay corresponding to the inter-
continental link latency, the cut off cluster starts to communicate α messages
again. Eventually, all nodes belong to the same partition. However, in the exper-
iment involving one source per cluster, the new link does not trigger noticeable
traffic, for nodes already know their closest source in their cluster.

Overall, these experiments highlight the scalability of AS-cast in dynamic
networks such as Edge infrastructures. Next Section reviews state-of-the-art
approaches that can index content in geo-distributed infrastructures.

5 Related Work

Content indexing services in geo-distributed infrastructures allow nodes to
retrieve specific content while leveraging the advantages of replication. These
systems mostly rely on dedicated location services hosted by possibly remote
third-party nodes; but cutting out the middleman requires that each node main-
tains its own index in a decentralized fashion. Table 2 summarizes the pros and
cons of state-of-the-art approaches.

Third-party: Dedicated services are popular, for they propose the simplest
mean to deploy such a service. They must maintain (i) the list of current replicas
along with their respective location; and (ii) the network topology to determine
the closest replica for every requesting node.

A central server that registers both these information facilitates the compu-
tation, for it gathers all knowledge in one place [1,2,17,33]. However, it comes
with well-known issues such as load balancing, or single point of failure.
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Distributing this index among nodes circumvents these issues [5,6,11,23,
37,39], but still raises locality issues where nodes (i) request to possibly far
away location services the content location, and then (ii) request the actual
content from possibly far away replicas. For instance, using distributed hash
tables (DHT) [6,11,23], each node stores a part of the index defined by an
interval between hash values. Hash values are keys to retrieve the associated
content location. Before downloading any content, a node requests its location
using its key. After round-trips between possibly distant DHT servers, the node
gets available replicas. Contrarily to AS-cast, such services do not ensure to
include the closest replica.

In addition, they often do not include distance information along with replica
location. Determining where resides the closest replica for every requesting node
necessarily involves some knowledge about the current topology. Maintaining
a consistent view of an ever changing topology across a network is inherently
complicated [8,32]. As a consequence, the requesting node ends up downloading
from multiple replica hosts, yet only keeping the fastest answer. Nodes either
waste network resources, or face lower response time.

Fully Decentralized: Cutting out the middleman by hosting a location service
on each and every node improves response time of content retrieval. However,
it still requires every node to index every live replica as well as their respective
distance in order to rank them. Named Data Networking (NDN) [21] broad-
casts information about cache updates to all nodes in the system. Having the
entire knowledge of all the replica locations along with distance information car-
ried into messages, each node easily determine where the closest copy of specific
content resides, without contacting any remote service. In a routing context,
distance-vector routing protocols such as BGP or OSPF [32] similarly broadcast
information to all other nodes to infer a topology map of the network and derive
routing tables. Conflict-free replicated datatype (CRDT) [34] for set data struc-
tures could also implement such a location service. Nodes would eventually have
a set of all replicas, assuming eventual delivery of messages. Such solutions imply
that every node receives every message, which contradicts the principles of Edge
infrastructures that aim at reducing the volume of data passing through the
network. On the opposite, each node running AS-cast only registers its closest
replica. This allows AS-cast to use scoped broadcast as a communication prim-
itive to lock down the traffic generated by content indexing based on distances.

Scoped Flooding: Some approaches also confine the dissemination of messages.
Distance-based membership protocols such as T-Man [24] make nodes converge
to a specific network topology depending on targeted properties. Following peri-
odic exchanges, they add and remove communication links to other nodes to
converge towards a topology ensuring the targeted properties. While member-
ship protocols and AS-cast share common preoccupations, AS-cast does not aim
at building any topology and never modifies neighbors of nodes.

The most closely related approaches to AS-cast come from information-
centric networking (ICN) [15,20] and distributed clustering [36]. The sources
advertise themselves periodically. Advertisements either stop as soon as they
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reach uninterested nodes [15,20], or propagate through most likely interested
nodes [36]. However their cyclic operation requires that (i) they constantly gen-
erate traffic even in quiescent systems where nodes do not add nor destroy repli-
cas; and (ii) they either operate in synchronous systems [4,36] or must define
physical-clock-based timeouts the value of which depends on network topology
properties such as network diameter [15,20]. Unfitting timeouts lead to prema-
ture removals of live replicas; or slow convergence where nodes wrongly believe
that their closest replica is live while it was destroyed. On the opposite, AS-cast
quickly informs each node of its closest replica even in large and dynamic net-
works with asynchronous communications; and has no overhead in quiescent
systems.

6 Conclusion

With the advent of the Edge and IoT era, major distributed services proposed by
our community should be revised to mitigate as much as possible traffic between
nodes. In this paper, we addressed the challenge of content indexing as a dynamic
logical partitioning problem where partitions grow and shrink to reflect content
locations, and infrastructure changes. Using an efficient communication primi-
tive called scoped broadcast, each node composing the infrastructure eventually
knows the node hosting the closest replica of a specific content. The challenge
resides in handling concurrent operations that may impair the propagation of
messages, and in turn, lead to inconsistent partitioning. We highlighted the prop-
erties that solve this problem and proposed an implementation called AS-cast
for Adaptive Scoped broadcast. Simulations confirmed that nodes quickly reach
consistent partitioning together while the generated traffic remains locked down
to partitions.

As future work, we plan to leverage the hierarchical properties of intercon-
nected autonomous systems [31] to further limit the propagation of indexes
within interested systems only. We expect that such an improvement would
greatly benefit the autonomous systems, and particularly those hosting a large
number of contents. Indeed, AS-cast ensures that every node eventually acknowl-
edges its closest content replica. This feature unfortunately becomes an issue
when each node is only interested by a small portion of content.

We also plan to evaluate our proposal within a concrete storage system such
as InterPlanetary File System (IPFS) [6]. This would assess the relevance of
AS-cast in real systems subject to high dynamics, and compare it against its
current DHT-based indexing system that does not include distance in its oper-
ation. More generally, we claim that AS-cast and its extension can constitute
novel building blocks for geo-distributed services. For instance, AS-cast could
complement content delivery infrastructures [37] by efficiently sharing between
nodes attached to the same CDN server the locations of web objects that have
already been downloaded. This would further improve the containment of web
traffic in our networks, and in turns, reduce the overall traffic footprint.
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Abstract. The next POI recommendation aiming at recommending the
venues that people are likely interested in has become a popular ser-
vice provided by location-based social networks such as Foursquare and
Gowalla. Many existing methods attempt to improve the recommenda-
tion accuracy by modeling the long- and short-term preferences of people.
However, these methods learn users’ preferences only from their own his-
torical check-in records, which leads to bad recommendation performance
in sparse dataset. To this end, we propose a novel approach named long-
and short-term preference learning model based on heterogeneous graph
convolution network and attention mechanism (LSPHGA) for next POI
recommendation. Specifically, we design a heterogeneous graph convolu-
tion network to learn the higher-order structural relations between User-
POI-Categories and obtain the long-term preferences of users. As for the
short-term preference, we encode the recent check-in records of users
through self-attention mechanism and aggregate the short-term pref-
erence by spatio-temporal attention. Finally, the long- and short-term
preference is linearly combined into a unified preference with personal-
ized weights for different users. Extensive experiments on two real-world
datasets consistently validate the effectiveness of the proposed method
for improving recommendation.

Keywords: POI recommendation · Long- and short-term preference ·
Graph neural network · Attention mechanism · Spatio-temporal context

1 Introduction

With the rapid growth of Location-Based Social Networks (LBSNs), such as
Foursquare, Yelp and Gowalla, the next Point-of-Interest (POI) recommendation
which aims at providing personalized location recommendations to a user based
on her/his historical check-in sequence has attracted wide attention from both
academia and industry. The next POI recommendation not only helps users find
their interested places from a large number of POIs, but also brings profits to
the business to attract more potential customers [3,5,24,25]. Both long-term
c© Springer Nature Switzerland AG 2023
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and short-term preferences of users play an important role in deciding which
POI they want to visit. The long-term preferences denoting the user’s general
interests are stable, while the short-term preferences learned from the recent
check-in records represent user’s recent interests and usually tend to change
over time. The user’s long-term and short-term preferences co-determine the
next POI they will check-in [21].

Recently, several methods for POI recommendation by learning the user’s
long- and short-term preferences have been proposed. Early study proposed com-
bining Markov chains with matrix factorization method [3] to learn the long- and
short-term preference of users. Later on, recurrent neural networks (RNNs) with
memory mechanism have produced excellent results in various sequential learn-
ing problems. Many studies [4,15,19,22,26] extended classic RNNs structure to
make them have the ability to capture the long- and short-term preference.

Among these existing methods, two important challenges are not well
addressed. First, high-order structure information in check-in data is still not
effectively utilized. High-order structural information is ubiquitous in LBSN. For
example, if two users have check-in records in many of the same POIs, it indi-
cates that they have similar preferences and are more likely to visit POIs which
the other has checked-in. When a user visits many POIs in the same category
multiple times, he/she prefers to visit other POIs in this category. Due to the
sparsity of user check-in data, the high-order structure information, such as simi-
lar users and same category of POIs, is indispensable for learning user preference.
However, most current methods focus on learning user’s preference only depend
on their own check-in record while ignoring high-order structure information in
check-in data. Second, existing methods based on RNNs do not take full advan-
tage of the rich spatio-temporal context information in the user’s trajectory.
From a temporal perspective, these methods ignore the temporal periodicity of
user mobility. Specifically, the periodicity of human activities is universal. Users
tend to go to restaurants for breakfast in the morning. In the evening, they pre-
fer shopping malls or gymnasiums. From a spatial perspective, these methods
cannot effectively learn the spatial correlations between non-contiguous visits.
For example, given a user’s POI check-in sequence {l1, l2, l3}, suppose l1 is the
user’s home, l2 is a play ground, l3 is a restaurant near l1. In this case, the user’s
movement from l2 to l3 is mainly determined by the short distance between l1
and l3, rather than the visit order between l2 and l3. However, most existing
methods are difficult to capture it duo to they only consider the spatial distance
between adjacent visits.

To this end, we propose a novel long- and short-term preference learning
model based on heterogeneous graph convolution network and attention mecha-
nism (LSPHGA for short) for the next POI recommendation. To thoroughly
model users’ long-term preferences, we construct a heterogeneous user-POI-
category graph from the users’ check-ins and use heterogeneous graph convolu-
tion network to learn the higher-order relationships among users, POIs, and cate-
gories through the message propagating between nodes. In modeling users’ short-
term preferences, we encode users’ current trajectory through self-attention
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networks, and propose a spatio-temporal attention mechanism to aggregate users
short-term preferences. Finally, we fuse the users’ long- and short-term prefer-
ences and use the results for the final POI recommendation. Experimental results
on real-world datasets show that our model significantly outperforms state-of-
the-art methods on next POI recommendation.

The main contributions of this paper are summarized as follows:

1) We propose LSPHGA, a long- and short-preference learning model based on
heterogeneous graph convolution network and attention mechanism for next
POI recommendation.

2) We construct a heterogeneous user-POI-category graph and design a hetero-
geneous graph convolution network to learn user long-term preference with
high-order information to mitigate the influence of data sparsity for the next
POI recommendation.

3) We use self-attention mechanism to capture the correlation between users’
historical check-ins, and propose a new attention mechanism to aggregate
users’ short-term preference through spatio-temporal contextual information.

4) We conduct extensive experiments on two public datasets to evaluate the per-
formances of the proposed method. Our method is superior to the advanced
method on next POI recommendation.

2 Related Works

Early studies use Markov chains [16] to predict the probability of the next behav-
ior via a transition matrix. FPMC [17] introduces matrix factorization model to
deal with the sparsity of check-in data. Based on FPMC, FPMC-LR [3] has
been proposed to learn transition regularities with localized spatial constraint.
NLPMM [2] combines the personalized Markov chain with the global Markov
chain to capture global behavioral patterns.

Although these Markov chain based models partly address data sparsity, they
do not understand the relationship among the check-in records of the user’s entire
trajectory. Challenged by the defects of Markov models, the recurrent neural
network model has received extensive attention. STRNN [11] captures temporal
cyclic effect and geographical influence by adding a time-specific and distance-
specific transition matrix, respectively. HST-LSTM [8] proposes a hierarchical
model that captures users’ historical trajectory in an encoder and decoder man-
ner. DeepMove [4] proposes a historical attention model that captures the multi-
level periodicity of user check-in. PLSPL [22] combines attention mechanism for
learning user’s long-term preference with LSTM for learning user’s short-term
preference and uses user-based linear combination unit to learn the weight of
long- and short-term preferences. STGN [26] modified basic LSTM by adding
spatiotemporal gates to capture long- and short-term preference. CAPRE [1]
encodes user-generated textual contents into content embedding to capture user
interests. LSTPM [19] uses a context-aware nonlocal network to model user’s
long-term preferences, and a geo-delated RNN to conquer the limitation of RNNs
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in short-term user preference modeling. ATCA-GRU [13] proposes a category-
aware model by combining the attention mechanism with GRU.

Due to its high efficiency and effectiveness, self-attention mechanism [20]
has been widely applied in the field of natural language processing and has
achieved excellent results in many tasks. In recent years, it was also used in next
POI recommendation to capture the relationships between the user’s check-ins.
GeoSAN [10] uses the self-attention encoder to capture long-term sequential
dependence and proposes the self-attention based geography encoder to repre-
sent the exact GPS positions of locations. STAN [14] first uses the self-attention
mechanism to aggregate spatiotemporal correlation with linear interpolation and
then though the attention matching layer recalls the target by considering per-
sonalized item frequency.

In the above-mentioned research, only partially of them learn both the long-
term and short-term preferences of users. And all of them ignore high-order
structure information in the user check-in data. Thus, in this paper, we propose
LSPHGA, which not only captures high-order information in the user’s long-
term preference learning, but also utilizes spatio-temporal information to learn
the user’s short-term preference.

3 Preliminaries

In this section, we give problem formulations and term definitions. Let U =
{u1, u2, . . . , uM} be a set of users, L = {l1, l2, . . . , lN} be a set of POI, C =
{c1, c2, . . . , cO} be a set of categories of POI, where M , N , and O are the numbers
of users, POIs, and categories, respectively.

Definition 1 (historical trajectory). The trajectory of user u is temporally
ordered check-ins. Each check-in is a four-tuple (u, t, l, p) that represents the
context of the interactions, which means that the user u at time t visited POI l
that is located in the GPS coordinate p = (lonl, latl).

Definition 2 (user-POI-category graph). In this paper, we utilize the check-
in sequences of all users to construct a user-POI-category graph G = (V,E), as

Fig. 1. Heterogeneous user-POI-category graph
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shown in Fig. 1, which is a heterogeneous undirected graph. V is the node set in
the graph, which is construct by including the user set U , the POI set L, and the
category set C. E represents the edge set in the graph, which contains two types
of edges: user-POI and POI-category. The edge of user-POI ei,j represents the
user ui has been to the POI lj. Particularly if user ui has visited POI lj several
times, there will be multiple edges between i and j. The edge of location-category
ei,j represents the ci is the category of lj.

Definition 3 (current trajectory). Given the historical trajectory of user u,
we take the most recent n check-in records of u as the current trajectory. We
set the current trajectory of user u as Su = {su

1 , su
2 , . . . , su

n}. If user’s trajectory
length m < n, we pad zeros to the right until the length grows to n and mask off
the padding items during calculation.

Definition 4 (next POI recommendation). Given the heterogeneous user-
POI-category graph G and the current trajectory Su of user u, the task of the
next POI recommendation is to predict the possibility of the candidate POI lc ∈ L
that user will visit at the time tn+1.

4 Our Model

In this section, we introduce our model. As illustrated in Fig. 2, our model con-
tains four main parts: the embedding layer, the long-term preference learning
module, the short-term preference learning module, and the prediction layer.
We first describe each part in detail in the following sections. Then we give the
objective function and the training algorithm of our approach.

Fig. 2. The architecture of our model.



460 S. Zhou et al.

4.1 Embedding Layer

The embedding layer is used to encode user, POI, and category into latent rep-
resentations. For user, POI, and category, we denote their embedded represen-
tations as eu ∈ Rd, el ∈ Rd, and ec ∈ Rd, respectively, where d represents the
dimension of embedding space. For long-term preference learning, the output of
embedding layer is latent representation of nodes in the heterogeneous graph.
For short-term preference learning, the embedding of each user current trajectory
Su can be denoted as E(u) = {el1 , el2 , . . . , eln} ∈ Rn×d. Since the self-attention
encoder cannot capture relative positions in the sequence like RNN, we follow [7]
to add positional embedding into E(u).

4.2 The Long-Term Preference Learning Module

This module aims to learn the long-term preference of users by capturing the
high-order structure information from the user-POI-category graph. Inspired by
RGCN [18], we design a heterogeneous graph convolution network (HGCN),
which first samples neighbor nodes for each node, and then updates its repre-
sentation by aggregating the information from sampled neighbour nodes.

Graph neural networks typically update the representation of the node with
all of its neighbors. However, user check-ins usually have long tail effects, where
there are some POIs visited by many people and some POIs visited by few peo-
ple [12]. In other words, the neighbor number of the nodes in the graph exists
a huge difference, which makes it difficult for our model to update the repre-
sentation of the node efficiently. To reduce computational overhead and improve
computational efficiency, we follow [6] to uniformly sample a fixed number of
neighbors for each node instead of using its entire neighbors.

(a) one-layer (b) multi-layer

Fig. 3. The structure of HGCN. Taking the POI node updating as example.

After neighbour sampling, we use HGCN to learn the representation of each
node. A single layer of HGCN can be divided into two stages: information prop-
agation and information aggregation. In the stage of information propagation,
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each node propagates information to their sampled neighbor nodes and mean-
while gathers the representations of them. As shown in Fig. 3(a), the POI node
though relations user → POI and category → POI gathers the representations
of users visited in it and own category, respectively. To preserve the original
representation of the node, we add a relation of self-connection to each node.
In the stage of information aggregation, each node aggregates the information
from its neighbors and updates its representation. We calculate the updated
representation of nodes by:

h′
i = W0hi +

∑

r∈R

∑

j∈Nr
i

1
|Nr

i |Wrhj (1)

where h′
i is the updated representation of node i, hi is the original representation

of node i, Nr
i is the set of sampled neighbors of node i under relation r, Wr is

the transformation matrix assigned for relation r.
A single layer of HGCN can only capture the relationship between each node

and its immediate neighbor nodes. To capture high-order relationships in graph,
we extend the HGCN from one layer to multiple layers and utilize high-order
propagation to gather information from high-order neighbor nodes. Taking the
2-order propagation path l2 → u1 → l1 and l5 → c1 → l1 in Fig. 3(b) as an
example. The user u1 and category c1 respectively gather the embedding of l2
and l5 to update their representation and then propagate their representation
to l1. Through 2-order propagation, the POI l1 can receive the information from
2-order neighbor l2 and l5. After the propagation in the l-th layer, each node
updates its representation as follows:

h
(l)
i = σ(W (l)

0 W
(l−1)
i +

∑

r∈R

∑

j∈Nr
i

1
|Nr

i |W
(l−1)
r h

(l−1)
j ) (2)

where hl
i is the representation of node i at l layer, W

(l)
r is the transformation

matrix assigned for relation r at l-th layer, which is different for each layer. And
the σ is the activation function.

4.3 The Short-Term Preference Learning Module

Self-Attention Encoder. To capture the interdependence in the user’s tra-
jectory, we use self-attention encoder [20] to update the representation of each
check-in in the user’s trajectory. The self-attention encoders contains multiple
self-attention blocks, each of which consists of a self-attention layer and a feed-
forward network (FFN). Given the representation matrix E of the user’s current
trajectory, self-attention layer computes a new representation matrix A after
converting them through distinct transformation matrices of query, key, and
value WQ,WK ,WV ∈ Rd×d as follows:

A = Attention(EWQ, EWK , EWV ) (3)
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Attention(Q,K, V ) = softmax(
QKT

√
d

)V (4)

After each self-attention layer, we apply the FFN layer, which is a two-layer
feed-forward network, to endow model with non-linearity:

F = ReLU(AW1 + b1)W2 + b2 (5)

where W1,W2 ∈ R
d×d and b1, b2 ∈ R

d×1.
For stabilizing and speeding up the training process, the residual connection

and layer normalization are applied in the self-attention layer and the FNN layer.

Spatio-Temporal Attention Aggregation. To leverage the spatio-temporal
context more effectively, we propose a spatio-temporal attention mechanism to
aggregate the representation updated by the self-attention encoder. We first
compute the spatio-temporal attention weight Wi,j of the historical check-in si

with respect to the candidate POI lj. The weight of spatio-temporal attention
can be calculated as follows:

Wi,j = WP (ΔTi,j) · WT (ΔTi,j) · WD(ΔDi,j) (6)

WP (ΔTi,j) =
cos(2πΔTi,j) + 1

2
(7)

WT (ΔTi,j) = e−αΔTi,j (8)

WD(ΔDi,j) = e−βΔDi,j (9)

where ΔTi,j = |ti −tj | is temporal interval(in days) between check-in time ti and
prediction time tj , ΔDi,j = Haversine(pi, pj) is spatial distance between check-
in POI li and candidate POI lj . WP (ΔTi,j) is temporal periodic weight with
outputs bounded in [0, 1] and when the temporal interval is close to an integer
day, the temporal periodic weight is close to 1. WT (ΔTi,j) and WD(ΔDi,j) are
temporal interval weight and spatial distance weight, respectively. The check-in
which position near the candidate POI or time close to predict time tend to
have stronger predictive power. Thus, we use exponential decay to model those
factor. α and β are temporal decay rate and spatial decay rate, controlling how
fast the weight decreases over time ΔTi,j and spatial distance ΔDi,j .

Then, we learn user’s short-term preference by fusing the output of self-
attention encoder with different weights:

ushort
j =

∑

i

exp(Wi,j)∑
i exp(Wi,j)

· li (10)

where ushort
j is user’s short-term preference for candidate POI lj , li is the updated

representation of i-th check-in.
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4.4 Prediction Layer

The aim of the prediction layer is to calculate the preference score of each can-
didate POI in the POI set. To better integrate the user’s long- and short-term
preferences, we compute the preference score of candidate POI lj for user ui as
follows:

yi,j = λui
· hui

· hlj + μui
· hui

· hck + γui
· us

i,j · elj (11)

where hui
, hlj , and hck is the representation of user ui, candidate POI lj , and

the category of candidate POI ck at the last layer of the heterogeneous graph
convolution network, respectively. us

i,j is the vector of the short-term preference
of user ui for candidate POI lj . elj is the embedding of candidate POI lj . λui

,
μui

, and γui
are the weight of the long-term POI preference, long-term category

preference, and short-term preference for user ui, which can be learned by our
model.

4.5 Model Optimization

Most existing methods use binary cross-entropy loss to optimize their model.
However, for each positive sample, the binary cross-entropy loss only samples one
negative item from unvisited locations, which can not make fully effective use of
the large number of unvisited locations. To this end, we adopt a negative sampler
that samples K negative items from unvisited locations for each positive sample.
In particular, after each training step, we will sample a new set of negative items.
The loss is calculated as:

L = −
∑

Su∈S

(
log

(
σ(yu,p)

)
+

K∑

k=1

log
(
1 − σ(yu,nk

))
(12)

where S is the training set of user check-in, p is the target POI, nk is the negative
sample, which is not in the set of visited locations by user u.

5 Experiments

5.1 Datasets

We evaluate our model on two public Foursquare check-in datasets collected from
New York City (NYC) and Tokyo (TKY) [23]. Each check-in record of datasets
contains user ID, POI ID, category name, GPS coordinate and timestamp. We
remove users with fewer than 5 check-ins and POIs which have been visited fewer
than 5 times. Then we take the first 80% check-ins of each user as the training
set, the latter 20% as the test set. The overall statistics of both datasets after
preprocessing are shown in Table 1.
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Table 1. Dataset statistics.

NYC TKY

Number of users 1083 2293
Number of POIs 9989 15177
Number of categories 382 362
Number of check-ins 157806 494807

5.2 Baseline Models

We compare our method with the following baselines:

– STRNN [11]: This model extends the RNN structure by applying time-
specific transition matrices and distance-specific transition matrices to model
spatio-temporal contexts.

– TMCA [9]: This model employs LSTM-based encoder-decoder network and
introduces multi-level context attention and temporal attention mechanisms
to select relevant historical and contextual factors.

– STGN [26]: This model improves LSTM architecture by adding two pairs of
time and distance gates to model users’ long-term and short-term preference
respectively.

– DeepMove [4]: This model utilizes GRU to model long-range and complex
dependencies in historical sequence and capture the multi-level periodicity of
human mobility by an attention mechanism.

– PLSPL [22]: This model learns users’ long-term preference with the atten-
tion mechanism and learns short-term preference by two parallel LSTM from
location-level and category-level.

– LSTPM [19]: This model uses context-aware non-local network structure
to model users’ long-term preference and utilizes geo-dilated RNN to model
users’ short-term preference.

– GeoSAN [10]: This model uses geography encoder to represent the geo-
graphical location of the POI and applies self-attention network to capture
long-term sequential dependence of user’s trajectory.

5.3 Evaluation Matrices

To evaluate the next POI recommendation performance, we adopt two widely-
used metrics of ranking evaluation, i.e., Recall@k and NDCG@k. Recall@K
counts the fraction of correct POIs which can emerge in the top-k recommended
lists. NDCG measures the quality of top-K ranking list by the position of correct
POIs. The two evaluation metrics are higher, and the recommendation perfor-
mance is better.
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5.4 Settings

We set the embedding dimension to 60 and the training epoch to 50 for all
methods, the other parameters of the baselines to the default values. In the long-
term preference learning module, we set the number of the neighbours to 20 in
neighbours sampling and the layer of heterogeneous graph convolution networks
to 2. In the short-term preference learning module, we user three layers of self-
attention modules for self-attention encoder, and the temporal decay rate α and
the spatial decay rate β are set to 0.1 and 1000 respectively. We train our model
using the Adam optimizer with a learning rate of 0.003 and set the dropout ratio
to 0.5. When calculating the loss function, for each positive record, we randomly
sample 10 negative samples.

(a) Recall@k on NYC (b) NDCG@k on NYC

(c) Recall@k on TKY (d) NDCG@k on TKY

Fig. 4. Performance comparison of models on two datasets.

5.5 Comparison with Baselines

In this section, we analyze the performance of our proposed model and com-
pare it with other baselines, as shown in Fig. 4. We can observe that our pro-
posed method consistently outperforms all the baselines on two datasets and in
terms of all evaluation metrics. Our proposed method archives average 11.2% and
10.1% improvements over the best-performing baseline in terms of Recall@5 and
NDCG@5. This obviously indicates the superior effectiveness of our method.
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Among baseline models, the self-attention model GeoSAN outperforms RNN-
based models in most cases, which demonstrates the advantage of the self-
attention network in modeling users’ trajectory. Among RNN-based models,
LSTPM and PLSPL have relatively better performances, due to their consider-
ation of users’ long- and short-term preference. Compared with other methods,
TMCA and PLSPL have better performance in TKY than NYC. The main rea-
son may be that the number of POI in TKY is more than NYC and as the
number of POI increases, category information plays a more important role in
learning users’ preferences.

5.6 Ablation Study

In this section, we conduct a series of ablation experiments to analyze the effec-
tiveness of the different components in our model. We drop different components
and form the following variants of our model.

– Remove STP(Short-Term Preference): We remove the short-term preference
learning components of LSPHGA and only utilize the long-term preference
of user to recommend POI.

– Remove LTP(Long-Term Preference): We remove the long-term preference
learning components of LSPHGA and only utilize the short-term preference
of user to recommend POI.

– Remove HSI(High-order Structure Information): We remove the high-order
structure information though using only one layer of heterogeneous graph
convolution network, which makes nodes in the graph can only propagate
information with their 1-order neighbour node.

– Remove TPW(Temporal Periodic Weight): We remove the temporal periodic
weight in the spatio-temporal attention aggregation, ignoring the effect of
periodicity of time.

– Remove TIW(Temporal Interval Weight): We remove the temporal interval
weight in the spatio-temporal attention aggregation, ignoring the effect of
time interval.

– Remove SDP(Spatial Distance Weight): We remove the spatial distance
weight in the spatio-temporal attention aggregation, ignoring the effect of
spatial distance.

Table 2 shows the results of the ablation study. We found that -LTP per-
forms better than -STP. We suppose that -LTP can capture complicated spatio-
temporal information and sequential patterns, which is crucial for next POI
recommendation. Meanwhile, compared with -STP and -LTP, which only use
users’ long-term or short-term preferences, the complete method has better per-
formance. This evidence that both users’ long- and short-term preferences have
positive impacts on their choice POI which they will go next. The experimen-
tal results of -HSI show that learning high-order structure information from the
heterogeneous graph is crucial for improving the recommendation performance.
And the results of the last three variants show that adding temporal periodic
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Table 2. Performance comparison of different variants of LSPHGA.

Dataset Variants Rec@1 Rec@5 Rec@10 NDCG@5 NDCG@10

NYC LSPHGA 0.1903 0.4111 0.4838 0.3076 0.3391
-STP 0.1457 0.3514 0.4093 0.2653 0.2830
-LTP 0.1678 0.3762 0.4387 0.2824 0.3073
-HSI 0.1806 0.3902 0.4569 0.2926 0.3218
-TPW 0.1874 0.4025 0.4724 0.3023 0.3324
-TIW 0.1743 0.3868 0.4495 0.2864 0.3149
-SDW 0.1705 0.3809 0.4427 0.2825 0.3095

TKY LSPHGA 0.1725 0.3591 0.4352 0.2678 0.2921
-STP 0.1358 0.3094 0.3844 0.2248 0.2589
-LTP 0.1523 0.3263 0.4011 0.2437 0.2760
-HSI 0.1630 0.3409 0.4162 0.2585 0.2867
-TPW 0.1687 0.3524 0.4286 0.2622 0.2878
-TIW 0.1621 0.3376 0.4136 0.2513 0.2784
-SDW 0.1589 0.3317 0.4081 0.2481 0.2734

weight, temporal interval weight, and spatial distance weight all can improve the
recommendation performance. Overall, the performance of our model is better
than all variants, and it also proves the effectiveness of different components of
the model.

5.7 Influence of Hyper-parameters

Influence of Embedding Dim. We vary the dimension of embedding d in
the embedding layer from 10 to 90 with step 10. Figure 5 shows that our model
achieves the best performance at d = 60, indicating that such dimension set-
ting can best represent the information of user, POI, and category. And the
performance of our model first increases with the growth of d and then lightly
declines when d further increases. The reason is that the larger dimension has
better expressive ability, but too large dimension also leads to the decrease of
generalization performance and causes over-fitting issues.

Fig. 5. Impact of embedding dimension.
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Influence of Spatio-Temporal Decay Rate. We experiment a series
of temporal decay rate α = [100, 10−1, 10−2] and spatial decay rate β =
[102, 103, 104, 105] in the spatio-temporal attention aggregation. Figure 6 shows
the results. When increasing the temporal decay α and the spatial decay factor
β, we observe that the prediction performance increases, and then decrease after
α = 10−1 and β = 104. This reflects that both spatial distance and temporal
interval are very important factors for predicting the next location, but too large
α and β will make model ignore the role of temporal periodic.

(a) Recall@5 on NYC (b) NDCG@5 on NYC

Fig. 6. Results of different decay rate.

6 Conclusion

In this paper, we propose a novel model named LSPHGA for the next POI recom-
mendation problem by learning the long- and short-term preferences of users. To
learn the long-term preferences of users, we first construct a heterogeneous graph
to represent the information of users’ check-in, and use the heterogeneous graph
neural network to learn the higher-order structural relationships in the heteroge-
neous graph through information propagation and information aggregation. We
further use the self-attention mechanism to learn the correlation of users’ recent
check-in, and propose a spatio-temporal attention aggregation mechanism to
effectively aggregate users’ recent trajectory through spatio-temporal context
information. The experimental results demonstrate that our proposed approach
significantly improves the recommendation accuracy compared with the state-
of-the-art methods. Besides, through ablation study, we show the importance of
each part of our model at improving recommendation performance.
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Abstract. Secure wildcard pattern matching (SWPM) involves both
sender and receiver entities, where the sender holds long text and the
receiver holds short pattern containing wildcard characters. The receiver
only learns the position information which the short pattern string
appears in the long text string, and does not disclose any information
to either party other than the input length. However, standard SWPM
considers single kind of wildcard which is not suitable in many scenarios,
e.g., normal genes mutate into different kinds of mutated genes in the
gene matching scenario.

In our study, to better address the above problem, we construct an
extended SWPM variant called secure multiple types wildcard pattern
matching (SMTWM). In SMTWM functionality, the pattern contains
multiple types of wildcard characters, such as (*, #). Besides, wild-
cards of each type can match special and different characters in the text.
Considering the DNA sequence which contains ‘AGCT’ as example, the
wildcard ‘*’ can match A and G, and the whidcard ‘#’ can match C
and T. We propose a SMTWM protocol based on the oblivious trans-
fer (OT) and the private equality test (PEQT) protocol in semi-honest
model. Furthermore, the protocol simply needs a few number of public
key operations and some fast symmetric key primitive using OT exten-
sion technique. Our experiments have shown that when the length of
pattern is 28 and the length of text is 216, the running time is less than
0.4 and 2.5 s in the LAN and WAN.

Keywords: Secure wildcard pattern matching · Secure multiple types
wildcard pattern matching · Oblivious transfer · Private equality test ·
Oblivious transfer extension

1 Introduction

Pattern matching is a basic algorithmic problem that attempts to locate the
position of short pattern in longer text, and one of the most important variant
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of that is the wildcard pattern matching (WPM), and a wildcard character means
that can be replaced by any character in the character sets. Wildcard pattern
matching has been intensively studied and is widely used in various life scenarios.
Secure wildcard pattern matching (SWPM) [1] involves both sender and receiver
entities, where the sender holds long text and the receiver holds short pattern
containing wildcard characters. The receiver only learns the position information
which the short pattern string appears in the long text string, and does not
disclose any information to either party other than the input length. Secure
wildcard pattern matching could be applied in a number of domains, such as
database queries [2], Bio-genetics [3] and information retrieval [4]. Two types of
adversarial models are commonly considered: the malicious model and the semi-
honest model. In the malicious model, the adversary can follow any polynomial-
time strategy. In the semi-honest model, the adversary is assumed to comply
with the protocol while trying to learn information from the protocol text. The
protocols constructed in this paper can be used against semi-honest adversaries.

Traditional SWPM only considers single kind of wildcard, however, since
patterns may contain incorrect characters and gaps, handing such issues in the
pattern is essential. Especially, in the case of DNA sequences where a patient’s
DNA sequence has errors and cannot be matched to DNA sequences in the
national gene bank, we can deal with them by inserting multi wildcards (‘*’, ‘#’)
into the pattern. It is well known that the DNA sequence consists of four types
of nitrogenous bases: adenine(A), guanine(G), cytosine(C) and thymine(T). For
generality and simplicity, we consider the wildcard ‘*’ used in the pattern to
replace ‘A’ and ‘G’, and the wildcard ‘#’ to replace ‘C’ and ‘T’. Therefore, the
essential problem is finding where p ∈ {A,G,C, T, ∗,#}m occurs in the text
t ∈ {A,G,C, T}n. According to whether the pattern string contains wildcards,
we divide pattern matching into the following categories, i.e. pattern without
wildcards (ACT), pattern with a single wildcard (AC*), pattern with multiple
types wildcard patterns (AC*TG#T). Most early works in secure computing
dealt with patterns without wildcards [5] or with single wildcards [6]. Patterns
with multiple types wildcard provide the user with more flexibility in searching
than patterns with a single wildcard. It is easy to see that pattern matching
and its variants are widely used, but there are increasing threats to the privacy
of data. For example, a hospital querying a national database for a patient’s
DNA sequence does not want patient’s DNA sequence information to be leaked
to national database, and the information in the national database cannot be
leaked to the hospital. Therefore, we consider secure multiple types wildcard
pattern matching (SMTWPM) problem in semi-honest model.

We focus on the following application scenario: the national gene bank stores
human genetic data, when a human genetic disease occurs(nitrogenous base is
mutated), the gene bank is searched for mutated genes similar to those of the
patient, and the better the gene sequence match, the more accurate the diagnosis
of the patients condition and the more efficient the treatment. Concretely, the
national gene bank holds a text t ∈ {A,G,C, T}n and the hospital holds a
pattern p ∈ {A,G,C, T, ∗,#}m, that is, the pattern p includes multiple types
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of wildcard. In particular, the wildcard * can only match the characters (A,G)
and wildcard # can only match the characters (C,T) in the wildcard pattern
matching. We proposed a SMTWM protocol that expects the hospital to receive
the location of pattern p in the text t, while the national gene bank does not
receive any information. That is, two security properties should be satisfied: 1)
The pattern p is kept secret from the national gene bank, and 2) The hospital
does not know any information about the text t other than the location of p.
The model figure is shown in Fig. 1.

1.1 Related Works

There are two methods to ensure pattern matching computation. The first is
a particular protocol, while the latter is a common protocol. In this paper, we
mainly pay attention to particular protocol. According to our knowledge, the
first person to considered secure pattern matching in secure computation was
Troncoso-Pastoriza [7], they constructed a privacy preserving query protocol
based on oblivious automata evaluation. Blanton [8] dealt with secure pattern
matching in outsourcing scenario through techniques such as finite automaton
and oblivious transfer, and applied it into DNA search problem. To address the
private DNA matching problem, Katz et al. [9] constructed SPM protocols built
on Yao’s garbled circuit, the protocol improves the pattern matching efficiency
with new keyword search and is resistant to malicious adversaries. Work on
the above, these articles did not refer anything about pattern matching with
wildcards. So far, we have observed that Baron et al. [10] first constructed a
SPM protocol for solving the SPM problem with single character wildcards.
The protocol was used to match patterns containing a single wildcard charac-
ter with substring patterns of an arbitrary alphabet. Kerschbaum and Beck [11]
constructed a new protocol for pattern matching with additional homomorphic
encryption schemes with Bloom filters. Since then, Defrawy’s [12] comparative
experiments with some pattern matching protocols, showed the essential role of
pattern matching in the fields of data sharing, private data protection, etc. To
solve variants of the SPM problem, Hazay et al. [13] constructed some new pro-
tocols, which were more useful than earlier solutions. Yasuda et al. [4] conducted

Fig. 1. Secure wildcard pattern matching in gene matching
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a protocol to the SPM issue by using [14]’s ring-LWM based SWHE to analyse
individual DNA sequences, but the solution is suitable for cloud computing.
Recent developments in the field have been dominated by functional extensions
to secure pattern matching, including approximate pattern matching, outsourc-
ing pattern matching and wildcard pattern matching.

Wildcard pattern matching means that wildcard bits in a pattern can be
replaced by any characters in the set of characters, and setting wildcard bits
in a pattern can act as a bulk lookup. Hazay and Toft [15] transformed wild-
card matches into exact matches by secretly replacing wildcards by two parties
and resisting malicious adversaries. The protocol has communication complex-
ity and computational complexity cost of O(n + m) and O(nm), respectively.
This paper [4] constructed a security belt SPM protocol that is suitable for non-
binary data and had been experimentally tested on real DNA sequences to query
a gene sequence of length 16,500 in one second. In recent years, Kolesnikov et
al. [16] solved the SPM problem by constructing a new security belt SPM pro-
tocol. Their protocol first used the OT protocol, where the two parties jointly
input their data information and the receiver gets the output information, and
then invokes the private equality test protocol to determine if the computed
values are equal, if the values are equal it means pattern match successful. The
protocol has a communication complexity and computational complexity cost of
O(nm) and O(k), respectively. In 2020, Wei et al. [17] proposed a secure extended
wildcard pattern matching protocol based on the cut-and-choose OT protocol.
They first proposed extended wildcard pattern matching, which allows a client
to obtain the entire set of substrings matching its pattern string, instead of the
corresponding positions. Saha et al. [18] proposed a symmetric SPM-RW proto-
col and a public-key SPM-CW protocol to solve the pattern matching problem
of repeated wildcard (RW) and compound wildcard (CW), using homomorphic
encryption, polynomial packing and other techniques, respectively. The final cal-
culation of the Hamming distance and the Squared Euclidean distance was used
to determine whether the patterns match.

Approximate pattern matching is successful as long as the different informa-
tion of the substrings and pattern strings in the text meets a given threshold. In
real life, since many data are collected with varying degrees of variation and are
not absolutely consistent, so approximate matching is widely used in fields such
as face recognition, data mining and computational biology. In 2009, Jarrous
and PIinkas [19] constructed an approximate pattern matching protocol that is
resistant to malicious adversaries, using mainly oblivious polynomial evaluation
techniques to solve the Hamming distance problem for functions of two inputs
only. The communication complexity and computational complexity of protocol
are O(nm), respectively. After that, other works [20–23] also used some tools to
address the approximate pattern matching issues, such as Fast Fourier transform
(FFT) techniques, threshold secret sharing and the oblivious transfer (OT) pro-
tocol. In addition to the above works, which are all constructed under the stan-
dard model, the cloud-based security model matching issue is also considered.
In 2018, Faust et al. [24] constructed the first SPM protocol in an outsourcing



SMTWM: Secure Multiple Types Wildcard Pattern Matching Protocol 475

scenario, which is built on subset sum issues, while the protocol is secure in mali-
cious adversary and semi-honest adversary models. In recent years, [25–27] and
others have also done research related to the secure pattern matching problem
with cloud assistance, and improved the efficiency and security of the protocol.

1.2 Our Contributions

Our specific contributions in this paper are as follows.

1. We construct a new protocol denoted as secure multiple types wildcard pat-
tern matching (SMTWM) protocol based on OT and PEQT, which is used to
address traditional SWPM problem in which the pattern string contains mul-
tiple types wildcards. Furthermore, in the pattern wildcards of each type can
match special character. The SMTWM protocol is secure against semi-honest
adversaries. More precisely, the protocol allows two parties (one holding a text
string t and the other holding a pattern string p including multiple types wild-
card) to determine whether t contains p, at the same time, without revealing
either t or p to the other party.

2. We will show how to use this protocol to address the multiple types wildcard
pattern matching issues. In this case, the two parties involved in the protocol,
the sender holds text string t and the receiver holds the pattern string p.
Especially, the string p contains two types of wildcard * and #, the wildcard *
is used to replace AT and the wildcard # is used to replace CG. They perform
the protocol to determine whether p can be found in t without disclosing their
strings. Our experiments have shown that when the length of pattern is 28

and the length of text is 216, the running time is less than 0.4 and 2.5s in the
LAN and WAN.

1.3 Paper Organization

Our paper consists of six sections. In Sect. 2, we focus on the preliminaries
and definitions essential to our protocol. Second, in Sect. 3 we constructed a
SMTWM protocol by using OT and PEQT. In Sect. 4, we focus on efficiency of
the SMTWM protocol. Then, in Sect. 5 we focus on the experiment of secure
SWTWM protocol. The conclusion is drawn in last section of our paper.

2 Preliminaries and Definitions

2.1 Oblivious Transfer

The Oblivious Transfer (OT) protocol as far back as 1981 Rabin [28] work, is
a universal cryptographic primitive that is extensively applied to secure two-
(multi-)party computing. In the OT protocol introduced by Rabin, the sender
transmits a information to the receiver and the receiver has a 1/2 probability
of receiving the message. After executing the OT, the sender does not know if
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the receiver has received the information, while the receiver does. In the 1-out-
of-2 OT, the sender has two secret inputs (x0, x1) and the receiver has a choice
bit b. After the protocol is executed, the receiver obtains the output xb and
the sender obtains no output. In this paper, we use the extended case 1-out-
of-4(OT 1

4 ), where the sender has 4 secret inputs (x1, x2, x3, x4) and the receiver
has a choice value b ∈ {1, 2, 3, 4}, and the receiver learns the output xb from
the 4 values at the end of the protocol. Figure 2 gives a detailed description of
the functional function of the OT 1

4 protocol. We emphasize that OT extension
technique of Kolesnikov [16] can be used to improve the efficiency OT protocols,
such that only 128 base OTs can achieve the execution of 106 OTs. Therefore,
the computational complexity of OT extension protocol is just O(k), where k is
security parameter which is 128.

Fig. 2. Oblivious transfer functionality OT 1
4

2.2 Privacy Equality Test

Private Equality Test (PEQT) allows two parties to input strings x0 and x1

respectively. Then, the receiver only learns 0 or 1 to show whether x0 and x1

are equal and the sender learns nothing. A detailed description of the function-
ality of PEQT protocol is given in Fig. 3. As shown in Kolsenikov [33], PEQT
protocol can be constructed using efficient OT extension technique, such that
the computational complexity of PEQT is also O(k) which is the same as OT
extension.

2.3 Secure Multiple Types Wildcard Pattern Matching
Functionality

The pattern in wildcard pattern matching contains multiple types wildcard infor-
mation, so a successful match implies that the non-wildcard positions have equal
values and wildcard values can match the particular character. The meaning of
the symbol � is as follows, if p � t we say that t matches pattern p. For simplicity,
we consider our secure multiple types wildcard pattern matching functionality
over DNA sequence consists of ‘AGCT’. Besides, we only consider two wildcard
‘*’ and ‘#’, where ‘*’ matches only the characters A and G, and ‘#’ matches
only the characters C and T. We emphasize that our propose functionality can
be extended to general case where the alphabet of the text and the types of
wildcards can be arbitrary. Figure 4 gives a detailed description of our secure
multiple types wildcard pattern matching functionality.
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Fig. 3. Private equality test functionality Fpeqt

Fig. 4. Secure wildcard types pattern matching functionality Fsmtwm

As shown above, the function Fsmtwm involves two parties, the National Gene
bank DO inputs the text information t ∈ {A,G,C, T}n and the integer m, and
the hospital U inputs the pattern information p ∈ {A,G,C, T,#, ∗}m and the
integer n. The wildcard * matches only the characters AG, and the wildcard #
matches only the characters CT. The hospital U outputs the starting position of
the pattern p occurs in the text t. In other words, the protocol of the functionality
Fsmtwm is used to find out if the pattern containing multiple types wildcard is
the match of (n − m + 1) substrings of length m in text t. In particular, U
can only learn the position of the start of the matching substring based on the
function, however, U does not have information about the matching wildcard for
substring of length m in text t.

2.4 Computationally Indistinguishability

Assume that X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N are
2 distributional overall and for any non-uniform polynomial-time algorithm D,
the following inequality holds if there exits a negligible function ξ(.) for each
a ∈ {0, 1}∗ and each n ∈ N:

|Pr[D(X(a, n) = 1)] − Pr[D(Y (a, n) = 1)]| ≤ ξ(n) (1)

Then we say that the 2 distribution ensembles are computationally indistinguish-
able, denoted as X ≡ Y .

2.5 Security Definition

The protocol in this paper considers its security mainly in the context of a
secure two-party computational model under semi-honest adversaries, using the
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ideal/realistic simulation paradigm to provide a formal definition of security [29–
31], with the formal definition as follows:

Definition 1. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a two-input single-output
function, π be a real protocol, and we say that the protocol π is safe to compute
f in a semi-honest model, for every polynomial-time algorithm A in π, there
is a corresponding algorithm S in the ideal world simulation that satisfies the
following equation, where i ∈ {1, 2},

{IDEALf,S(z),i(x, y, z, n)} c≡ {REALπ,A(z),i(x, y, z, n)} (2)

x, y is the secret input for both sides, z is the auxiliary input, and n ∈ N.

3 Secure Multiple Types Wildcard Pattern Matching
Protocol

In the section, we propose a secure multiple types wildcard pattern matching
protocol for the above functionality Fsmtwm in semi-honest adversary model. The
protocol is constructed using oblivious transfer protocol and private equality
test protocol. Through the oblivious transfer, the hospital U (receiver) learns
without knowing the text information each value corresponding to a certain
value of the quadruple. Through the privacy equality test protocol, the hospital
obtains where its pattern appears in the text of the National Gene Bank. In the
following, we firstly show the main idea of our proposed protocol, and then give
the concrete construction and security proof of the protocol.

3.1 The Idea of Protocol

In this subsection we use an example to show the whole idea of the protocol.
Especially, the pattern p contains two types of wildcard * and #, the wildcard *
is used to matching AG and the wildcard # is used to matching CT. For example,
the National Gene bank DO has a string t = (AGGCTCT ) and Hospital U has
a pattern containing wildcards p = AG ∗ CT#. For simplicity and convenience,
we denote A,G,C,T as 1,2,3,4, such that t = 1223434 and p = 12 ∗ 34#. Besides,
the text t contains two substrings t

′
1 = (122343) and t

′
2 = (223434) with the

same length as the pattern.
Firstly, the hospital U (pattern owner)represent each value in p = 12 ∗ 34#

using a quadruple in which each value Sj
i ∈ (0, 1)∗ is randomly chosen with the

length of a security parameter (such as 40 bits), where j ∈ (1, 2, 3, 4) and i ∈
[1,m]. The purpose is to reduce the error probability to be negligible when two
un-matched strings match successfully. Concretely, the pattern owner executes
as follows:

– for non-wildcard, the quadruple contains four different values ∈ (0, 1)∗ like
(S1

i , S2
i , S3

i , S4
i ).
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Fig. 5. The main ideas of the protocol

– for wildcard ‘*’, the quadruple contains values ∈ (0, 1)∗ like (S1
i , S1

i , S3
i , S4

i )
where the first two values are equal.

– for wildcard ‘*’, the quadruple contains values ∈ (0, 1)∗ like (S1
i , S2

i , S3
i , S3

i )
where the last two values are equal.

According to the above rules, the pattern p = 12 ∗ 34# is represented as
⎡
⎢⎢⎢⎢⎢⎢⎣

(S1
1 , S2

1 , S3
1 , S4

1)
(S1

2 , S2
2 , S3

2 , S4
2)

(S1
3 , S1

3 , S3
3 , S4

3)
(S1

4 , S2
4 , S3

4 , S4
4)

(S1
5 , S2

5 , S3
5 , S4

5)
(S1

6 , S2
6 , S3

6 , S3
6)

⎤
⎥⎥⎥⎥⎥⎥⎦

Besides, the pattern owner will act as sender in 1-out-of-4 OT protocols using
these values as inputs. Then the National Gene bank DO will act as receiver in
1-out-of-4 OT protocols using t

′
1 = (122343) and t

′
2 = (223434) as the choice

values. Concretely,

– for t
′
1 = (122343), the National Gene bank DO learns(S1

1 , S2
2 , S1

3 , S3
4 , S4

5 , S3
6)

and sets S1 = S1
1 ⊕ S2

2 ⊕ S2
3 ⊕ S3

4 ⊕ S4
5 ⊕ S3

6 .
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– for t
′
2 = (223434), the National Gene bank DO learns (S2

1 , S2
2 , S3

3 , S4
4 , S3

5 ,
S4
6) and sets S2 = S2

1 ⊕ S2
2 ⊕ S3

3 ⊕ S4
4 ⊕ S3

5 ⊕ S4
6 .

Afterwards, the hospital U and the National Gene bank DO run PEQT
protocol in which the hospital U computes a value S according to its pattern
p = 12 ∗ 34# and the values chosen to represent the pattern. Specially, the
hospital U chooses S1

1 , S2
2 , S1

3 , S3
4 , S4

5 and S3
6 for each value in p = 12 ∗ 34#,

and sets S = S1
1 ⊕ S2

2 ⊕ S2
3 ⊕ S3

4 ⊕ S4
5 ⊕ S3

6 . Then the hospital U uses the above
value S as its input to the PEQT protocol where the National Gene bank DO
inputs S1 and S2 separately. Finally, the hospital U outputs 1 for the value S1

which means that the sub-string t
′
1 matches the pattern p successfully, however,

U outputs 0 for the value S2 which means that the sub-string t
′
2 does not match

the pattern p. The detailed drawing is shown in Fig. 5.

3.2 Protocol Construction

In this subsection, we propose the whole construction of our SMTWPM protocol.
The propose protocol mainly contains the following steps:

1. Hospital U constructs the quadruple (S1
j , S2

j , S3
j , S4

j ), j ∈ [1,m], where
(1,2,3,4) represents the value of (A,G,C,T) after encoding. For each value
in p we construct a quadruple in which each value Sj

i ∈ (0, 1)∗ is randomly
chosen with the length of a security parameter (such as 40 bits), where j ∈
(1, 2, 3, 4) and i ∈ [1,m]. Specifically, when a position corresponds to the
wildcard character *, the quadruple for that value is constructed as (S1

j ,
S1

j , S3
j , S4

j ), and when a position corresponds to the wildcard character #,
the quadruple for that value is constructed as (S1

j , S2
j , S3

j , S3
j ), when the

character at a position is a non-wildcard value, the quadruple for that value
is constructed as (S1

j , S2
j , S3

j , S4
j ). These values will be used in OT protocols

as the inputs of the sender (actually is the hospital U).
2. The National Gene bank DO runs a 1-out-of-4 oblivious transfer protocol

with Hospital U, where U is the sender of the OT, and the input is the m
quadruples chosen randomly and DO acts as the receiver of OT whose input
is the encoded text message t

′
i,j = (ti,1, ti,2......ti,m) in which i ∈ [1, n−m+1].

After the OT protocol is executed with U, the DO as receiver learns a certain
value of Sσ

j for each value of the quadruples, where σ is the choice value in each
sub-strings, σ ∈ {1, 2, 3, 4}, j ∈ [1,m]. Then, DO sets Si = Sσ

1 ⊕Sσ
2 ⊕......⊕Sσ

m

where i ∈ [1, n − m + 1].
3. The National Gene bank DO runs the Private Equality Test (PEQT) protocol

with the hospital U. The DO acts as the sender of the PEQT, and the inputs
are the values Si, and U is the receiver of the PEQT with input is S, where
S = Sp1 ⊕ Sp2 ⊕ ...... ⊕ Spm and pi is each value of the pattern p. After the
PEQT protocol is executed and the hospital U output 0 or 1. Specifically, if
the national gene bank DO and hospital U inputs are equal, the receiver U
outputs 1, otherwise it outputs 0. Figure 6 gives a detailed description of the
multiple wildcard pattern matching protocol:
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Correctness. The correctness of the protocol means that after a successful run
of the protocol, Hospital U must end up with the correct result. Specifically, if
there is a substring in the data t of the National Gene bank DO that is equal
to the pattern string in Hospital U, then Hospital U must output a match of 1.
On the contrary, if there is no substring in t that is equal to the pattern string,
then Hospital U outputs 0. To illustrate the above two situations:

1. If the match is correct, it is shown that among the (n−m+1) substrings with
length m in the text t, there exists at least one substring of length m that is
exactly equal to the pattern p. For this matched substring, the DO obtains
the same values corresponding to pattern p chosen by the Hospital U, as a
result, both the two parties input same values in PEQT protocol. Therefore,
the Hospital U outputs 1 which means that the above substring matches the
pattern successfully.

2. For a substring that fails, it means that at least one value in the substring
does not match the corresponding value in the pattern p, we assume that
tj 	= pj . As a result, the National Gene bank DO will obtain a different value

Fig. 6. SMTWM: secure multiple type wildcard pattern matching protocol
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from OT protocol in position i, which is not the value corresponding pj in the
pattern p. Therefore, in the following PEQT protocol, the two parties inputs
two different values and the Hospital U outputs 0 which indicates that the
above substring fails to match the pattern p.

Security. Intuitively speaking, the security of the 1-out-of-4 OT protocol ensures
that the National Gene bank DO cannot discover the pattern information of the
hospital U. Note that the DO’s message records contain only the information
received from the U in the 1-out-of-4 OT protocol, so the privacy of the DO’s
input is protected. Considering the security of the U, in case the pattern string
cannot match the substring in text string. The values obtained by the DO are
random, so the DO does not know which value is relevant to the U input. In
addition to this, all values in all positions are chosen at random. Therefore, DO
has no ability to distinguish between wildcards and non-wildcard values, nor
does it distinguish between random values and the original pattern information.
Therefore, if the values do not match, DO cannot obtain any information other
than the failed match result.

Theorem 1. Assume the oblivious transfer protocol and the privacy equality
test protocol are secure under semi-honest model, then FSMTWM function can
be safely computed through the πSMTWM protocol in semi-honest model.

Proof. The πSMTWM protocol is shown to be secure, assuming that the oblivi-
ous transfer protocol primitive is implemented using an ideal functional function,
and the following two scenarios are confirmed, the National Gene bank DO is
corrupted or the Hospital U is corrupted.

Simulating U. Assuming that in the real protocol U is corrupted by adversary
A, we construct a polynomial-time simulator S, which calls the input of A and
uses it to simulate the protocol.

1. S receives the input p ∈ {A,G,C, T, ∗,#}m and n from A, and uses them as
input to the function FSMTWM , S that learns all the matching positions.

2. Suppose the matching result contains matching positions i1, i2......ir and the
substring ti1 , ti2 ......tii , which means that a string of m bits starting from i
successfully matches pattern p.

3. For i = i1, i2......ir, S chooses random values Si,j , j ∈ [1,m], and generates
a quadruple for each bit in the order of protocol step 1. However, for other
unmatched substrings, S randomly selects a quadruple. Note that since S
is unknown to anything about the unsuccessful substrings, the values corre-
sponding to these quadruples are arbitrary.

4. Using the above quadruple, S simulates the execution of the OT protocol with
the aim of sending output to the adversary A. Next, it needs to be shown that
the joint output distribution of the simulated execution is computationally
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indistinguishable from the distribution of the actual protocol. Specifically, we
must proof the following equation.

{IDEALFMWPM ,S(1k),DO((t,m), (p, n))} c≡
{HY BRID

OT 1
4

πMWPM ,A(1k)DO
((t,m), (p, n))}

(3)

The two distributions only differ in that the simulator S randomly selects the
quadruples that it should have been received from the DO after the oblivious
transfer, while the adversary A receives the values of the quadruples directly from
the DO after the oblivious transmission in the real protocol. However, since the
simulator S knows the final matching result, the values it randomly selects are
equivalent to the information derived from the values received by the adversary.
Therefore, we consider the above simulation process to be indistinguishable from
realistic protocol computation.

Simulating DO. Assuming that DO is corrupted by adversary A under the real
protocol, we construct a polynomial-time simulator S where S calls the input of
A and uses it to simulate the protocol.

1. S calls A with the input integer m and text t ∈ {AGCT}n.
2. S simulates the oblivious transfer protocol and receives a quadruple which

is produced by A according to its own input. S does not have access to the
actual input of U during the simulation, so the oblivious transfer function’s
receiver is that it selected at random a pattern p of equal length.

3. S sends the adversary A’s input to the function FSMTWM . We are aware
that the function FSMTWM is a function in which only U learns an output,
so it is necessary to show that there is no difference between the computation
distribution generated by the ideal simulation and the actual implementation.
In particular, we are supposed to prove the equation below:

{IDEALFMWPM ,S(1k),U ((t,m), (p, n))} =

{HY BRID
OT 1

4
πMWPM ,A(1k)U

((t,m), (p, n))}
(4)

We note that when we simulate protocol π, S selects a random pattern p to
be used as an input to U. Still, U has its own text t in actual protocol π, and this
is the only difference between the ideal world simulation process and the actual
protocol implementation. Given that the oblivious transfer protocol we use it
secure against semi-honest adversaries, S is computationally indistinguishable
with respect to U’s input. This security property assures that the emulation of
S is non-differentiable from the execution of the real protocol. In general we have
completed the proof of Theorem 1.
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4 Protocol Efficiency

We will focus our efficiency analysis on three aspects of the protocol: round
complexity, computational complexity and communication complexity, and give
a comparison with the efficiency of related work.

1) Round Complexity. The secure multiple types wildcard pattern matching pro-
tocol we constructed requires a total of 4 rounds of interaction. Among them,
2 rounds are required in the oblivious transfer protocol. In the privacy equal-
ity test protocol, 2 interactions are required.

2) Computational complexity. In a multiple types wildcard pattern matching
protocol m(n−m+1) 1-out-of-4 OT and n−m+1 PEQT instance operations
are required, so the computational complexity is O(mn

′
) and n

′
= n−m+1.

Luckily, the OT extension in [32] can further reduce this overhead. One way
to reduce the amount of OT instances required in an encryption protocol
is offered by the OT extension protocol. Firstly, the two parties involves in
the protocol run some instances of the basic OT. Then some symmetric key
operations are computed locally. We would like to emphasise the number of
basic OTs as a security parameter k, k 
 nm. Considering our protocol,
which requires nm OT operations, some base OTs could be reduced from nm
to k, k 
 nm using OT extensions.

3) Communication complexity. Firstly, in the secure multiple types wildcard pat-
tern matching protocol, an OT extension protocol needs to be executed once
to achieve the (n − m + 1) × m matrix effect. Secondly, a single execution of
the privacy equality test also requires (n−m+1)×m. Therefore, the commu-
nication complexity of the secure multiple types wildcard pattern matching
protocol is O(nm).

In Table 1, we present the results of the comparison between the protocols
constructed in the paper and the relevant pattern matching protocols. Specifi-
cally, we compare the efficiency of the protocols in terms of three aspects: round
complexity, computational complexity, and communication complexity, where n
and m are the input lengths of the national gene pool and hospital in the pattern
matching protocol, respectively, and k is the security parameter.

Table 1. Results of the comparison of some existing related protocols.

Protocol Rounds Computation Communication Security model Wildcard types

[13] O(1) O(nm) O(nm) Malicious Single wildcard

[20] O(1) O(nlogm) O((m + n)k2) Malicious Single wildcard

[10] 2 O(m + n) O(nk) Semi-honest Single wildcard

Ours 4 O(k) O(nm) Semi-honest Multiple types wildcard
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Table 2. Total time in seconds of our protocol in different settings.

Setting Pattern length m Text length n

216 218 220 222 224

LAN 28 0.31(s) 0.81(s) 1.84(s) 8.15(s) 32.12(s)

210 0.42(s) 0.95(s) 2.42(s) 10.43(s) 32.23(s)

212 0.73(s) 1.95(s) 6.82(s) 25.05(s) 103.16(s)

214 2.04(s) 7.81(s) 30.29(s) 120.21(s) 492.34(s)

WAN 28 2.07(s) 3.81(s) 10.22(s) 35.69(s) 140.91(s)

210 2.54(s) 5.63(s) 17.21(s) 62.53(s) 255.86(s)

212 4.57(s) 12.92(s) 43.32(s) 169.10(s) 762.14(s)

214 12.23(s) 44.50(s) 171.98(s) 626.84(s) 2765.13(s)

5 Experiments

In this section, we use experimental results to measure the performance of a
secure multiple types wildcard pattern matching protocol. Our protocol is con-
structed based on OT as well as PEQT. In the OT phase, we use the OT exten-
sion technique, which requires only a small number of basic OT protocols and
some symmetric operations to achieve a large number of OT protocols, signifi-
cantly reducing the number of OT protocols. The efficient PEQT protocol also
achieves the effect of many PEQT protocol executions with a basic OT proto-
col and cheap symmetric operations. We ran the experiments on a PC running
Windows 10 with an Intel(R) Core(TM) i5 CPU and 16 GB RAM. We run each
side as a single thread on the same machine, communicating over the local host
network, using the Linux tc command to emulate a network connection, setting
the LAN to 10 Gbps network bandwidth and the WAN to 400 Mbps network
bandwidth.

In this experiment, the length of text information is n and pattern informa-
tion is m. We take pattern length to be m = 28, 210, 212, 214 and text length
to be n = 216, 218, 220, 222, 224 respectively, the running time of the protocol in
LAN and WAN is shown in Table 2. Our experiments have shown that when 28

is length of pattern string and 216 is length of text string, the running time spent
less than 0.4 and 2.5 s in the LAN and WAN.

We show the results of experimental in Fig. 7 and Fig. 8. As Fig. 7 shows,
when the length of the text is 216 and the length of the pattern is 28, the
protocol takes is 0.31 s to execute, and it increases significantly when the text
length is larger than 220. As Fig. 8 shows, when the length of the text is 216 and
the length of pattern is 28, the protocol takes is 2.07 s to execute and it increases
significantly when the text length is larger than 222.
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Fig. 7. Total running time in LAN setting

Fig. 8. Total running time in WAN setting

6 Conclusion

Our work focuses on constructing a secure SMTWM protocol in a semi-honest
adversary model. The protocol is mainly designed and constructed based on
oblivious transfer and privacy equality test techniques. We allow the hospital
(the schema holder) to obtain information about the location of the short schema
string in the long text string, with particular attention to the fact that the short
schema string contains multiple types wildcard bits. The overall communication
complexity of the protocol is O(nm) and the computational complexity is O(k),
where n and m are the input lengths of the national gene bank and the hospital,
and k is the security parameter.
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Abstract. Recently, the robustness of machine learning against data poisoning
attacks is widely concerned. As a subclass of poisoning attack, the label flipping
attack can poison training data resulting in reducing the classification performance
of training model. This attack poses a more serious threat in complex network or
high-noise environments, such as in the environment of Internet of Things. In
this paper, a new label flipping attack method and its defense strategy are pro-
posed. First, a label flipping attack based on agglomerative hierarchical clustering
is proposed. The attack uses agglomerative hierarchical clustering to identify vul-
nerable samples in training data and then carries out label flipping on them. To
defend against this attack, a TrAdaBoost-based label correction defense method
is proposed. This method uses the TrAdaBoost algorithm to update the weight
of the contaminated data, and then uses the updated weight value to judge and
remark the contaminated training samples. The contaminated samples are cleaned
and used to retrain the classifier. Compared with the state-of-the-art methods, the
proposed attack strategy can reduce the accuracy of the model more effectively
and the proposed defense method can better protect the classification model.

Keywords: Machine learning · Label flipping attack · TrAdaBoost ·
Agglomerative hierarchical clustering

1 Introduction

In recent years, Machine Learning (ML) technology has performed well in classifica-
tion problems andmodel prediction, becoming an effective tool for solving classification
problems and prediction problems, and is widely used in sensor networks[1], verifica-
tion code recognition, image classification, recommendation system [2] and Internet
of Things (IoT) environment [3]. Data used in Machine learning usually comes from
an unreliable or unbelievable environment, which enables attackers to exploit this vul-
nerability to carry out poisoning attacks and cause huge and irreversible losses [4]. For
example, in an IoT environment, devices can communicate with each other and attackers
can access IoT devices and inject poison samples or maliciously modify training data

© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 490–506, 2023.
https://doi.org/10.1007/978-3-031-22677-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22677-9_26&domain=pdf
https://orcid.org/0000-0003-2532-045X
https://orcid.org/0000-0002-3677-5559
https://orcid.org/0000-0003-3888-8167
https://orcid.org/0000-0002-2054-9215
https://doi.org/10.1007/978-3-031-22677-9_26


A Label Flipping Attack on Machine Learning Model 491

to carry out poisoning attacks, which may eventually cause irreversible damage, such as
large-scale user information leakage, life, and property loss. A threat model of data poi-
soning attack in an IoT environment is shown in Fig. 1. In Fig. 1, some IoT devices run
on the Android operating system, and we assume that the attacker can access certain IoT
devices. The attacker then has the opportunity to manipulate the data being transmitted
to and from each other. The machine learning algorithm is then exposed to the attacker,
and the attacker may add poison samples or maliciously flip labels to fool the ML algo-
rithm. Thus, the training data set is contaminated. If the attacker uses contaminated data
to retrain the ML-based classification model, the classifier will perform an incorrect
classification. Therefore, it is very important to study poisoning attack methods and the
corresponding defense strategies against machine learningmodels. In recent years, more
and more researchers have focused on machine learning-oriented poisoning attacks and
their defense methods. As a subclass of poisoning attacks, label flipping attacks and their
defense method are also key research directions.

ML 

model 

Attacker

A part of IoT 

dataset

The remainder of 

IoT dataset

Add poison 

samples or 

maliciously flip 

labels

Contaminated 

training dataset

Fig. 1. A data poisoning attack threat model in an IoT environment

With the increasing demand for ML models, the security of models is widely con-
cerned. Similar to most studies on poisoning attacks and their defense methods [5], this
study focuses on poisoning attacks and their defense strategy under the condition of
black-box ML [6], and proposes a framework of label flipping attacks and their defense
strategy. On the one hand, potential security vulnerabilities of ML-based model in IoT
environment is found, and a label flipping attack strategy based on agglomerative hier-
archical clustering is proposed to reduce model accuracy. On the other hand, a label
correction defense method based on TrAdaBoost is proposed to resist interference from
the proposed attack on the classification model.

Our contributions are as follows.

1. A framework of label flipping attack on machine learning model and its defense
method is proposed.

2. A label flipping attack method based on agglomerative hierarchical clustering is
proposed. First, the training data is aggregated and hierarchically clustered, then the
labels of the training data are flipped according to the clustering results, and finally
the obtained contaminated training set is used to train the classification model.

3. A label correction defense method based on TrAdaBoost is proposed. First, the
TrAdaBoost algorithm was used to update the weights of the contaminated training
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set, and then the poisoned samples were identified and relabeled according to the
weight values of the obtained samples. Finally, the new training set after being
cleaned was used to retrain the classification model.

The remaining parts are organized as follows: Sect. 2 introduces the related work
on label-flipping attack and defense methods. Section 3 describes the framework of the
label flipping attack and its defense in detail, including a label flipping attack onmachine
learning model and its defense method. Section 4 verifies the effectiveness of the label
flipping attack based on agglomerative hierarchical clustering and the performance of the
proposed label correction defense method based on TrAdaBoost through experiments
on real datasets. Section 5 is a summary of the entire paper.

2 Related Work

Domestic and foreign scholars have conducted a lot of research on poisoning attacks
and their defense method. This section will elaborate related work from the perspective
of poisoning attack strategy and defense strategy against poisoning attack.

2.1 Poisoning Attack

In recent years, industry and academia have been exploring the potential vulnerabilities
of machine learning models brought by uncertainty and instability of training data, and
based on this, effective poisoning attack strategies have been proposed. Data poisoning
attacks on machine learning models mainly include maliciously modifying training data
and injecting poison samples [7]. Liu et al. [8] implemented a poisoning attack by
injecting poisoning samples into the training set. In the proposed method, enhanced
conditional DCGAN produced image data with poisonous labels and injected it into the
training set, and then the poisoning attack was executed by retraining the model. This
attack has a good attack effect, but the time complexity of poisoning sample generation
is high. Some researchers implemented attacks by maliciously modifying training data
labels. For the problem of the distance between unbalanced samples, Paudice et al. [9]
flipped the labels of the points far from the decision boundary to get a better attack
effect. This method could reduce classification accuracy; however, it could not carry out
targeted poisoning attacks. Taheri R.et al. [10] proposed a label flipping attack algorithm
based on contour clustering, which was based on the distance between samples and did
not apply to data with poor classification boundaries between samples. All of the attacks
mentioned above are based on the distance between samples, which makes the time
complexity of the algorithm high.

To solve the problem of uneven sample distribution, Zhang et al. [11] proposed
a label flipping attack based on a naive Bayes classifier. This attack method selects
the samples to be attacked and performs label flipping by calculating the entropy of
training samples,which can reduce the classification accuracymore effectively compared
with existing machine learning algorithms. All the above attacks are aimed at specific
models. To solve the problem of adopting specific attack methods on different models,
Vasu et al. [12] proposed an attack method that is not limited to model categories,
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that is, a binary label flip attack based on gradient. The proposed attack method is not
limited by model categories, that is, it can be applied to different binary models and has
good portability. However, this attack is computationally inefficient in small datasets.
For data of a special type, effective attack methods are also proposed in the literature
[13, 14]. Ma et al. [13] proposed a poisoning attack of the pair-comparison estimation,
which can significantly reduce the performance of the collator. The defense method
proposed in this paper can be applied to any type of data poisoning attack. However,
in the case of large datasets with many feature types, it will be difficult to extract data
features and the defense effect is reduced. The poisoning attack methods above are all
attacks on offline data. To solve the problem of detecting online data poisoning attacks,
Pang et al. [13] proposed a cumulative poisoning attack method for real-time data.
This attack has a good effect on two typical real-time data flow models. However, the
attack is not universal. At present, a variety of attack methods are highly dependent on
the training data used. The literature [11] proposed a data-independent poisoning attack
method, namely, a neural network structural space poisoning attack. The proposed attack
method overcomes the dependence of traditional data poisoning attacks on training data.
However, the attack is limited only to the search space of a certain neural network
structure, which is not applicable to neural networks with other structure types. Aiming
at the problems of low attack success rate and limited classification model in existing
poisoning attack strategies, this study proposes a label flipping attack strategy which is
suitable for multiple classification models and can effectively reduce the classification
accuracy of models.

2.2 Defense Against Poisoning Attack

Existing research usually implements the defense against poisoning attacks by improving
the robustness of the classification model or identifying and processing abnormal data
points. For example, in the literature [15], the authors completed the defense against
poisoning attacks by enhancing the robustness of the model. The author proposed a
defense method based on data complexity that can effectively distinguish contaminated
data and identify attacked samples, greatly improving the robustness of the classification
model. In this paper, a random smoothing approach,which is not limited to point-to-point
defense, is used to defend against label flipping attacks.

Some literatures defend poisoning attacks by recognizing and dealing with abnormal
data points in training sets. Paudice et al. [9] adopted the outlier detection method to
detect and remove outliers for correct classification. However, due to the small space
between the sample data, benign data may be mislabeled, resulting in misclassification
of the sample data. To solve the problem that edge data is prone to be misclassified, the
author proposed a semi-supervised defense method based on clustering [10, 16], which
effectively improved the classification accuracy of the training model, but it costs a lot
of time. For the deficiency of existing methods only in defending against attacks for a
specific classification model, some researchers put forward the poison attack defense
strategy for multiple classification models. Ppkc et al.[17] proposed a defense method
applicable to various algorithms by combining transfer learning with a defense algo-
rithm. The proposed framework reduces the influence of contaminated data sets on the
trainingmodel and significantly improves the robustness of the classificationmodel. The



494 Q. Li et al.

defense method proposed by Elan et al. [18] can be applied to any type of data poisoning
attack. However, in the case of large datasets with a large number of feature types, data
features are difficult to extract, and the defense effect will be reduced. Tavallali et al. [19]
proposed a label flipping attack method based on synthetic reduced nearest neighbors
and proposed a corresponding defense method, which could identify malicious samples
up to 80%. To solve the problem of label noise, Cheng et al. [20] proposed a data ster-
ilization framework based on semi-supervised learning technology, which has a good
defense effect against label flipping attacks based on the entropy method, but classi-
fication accuracy is still to be improved. In our paper, aiming at the problems of low
model classification accuracy of existing defense methods and unable to apply to differ-
ent classification models, we propose a new defense method, which can not only apply
to a variety of classification models but also improve the robustness of the classification
model under label flipping attack.

3 Label Flipping Attack and Its Defense Method

3.1 The Overall Block Diagram

With the wide application of machine learning in various fields, a variety of methods of
poisoning attacks onmachine learningmodelswas proposedone after another. Therefore,
it is increasingly important to study the robustness of machine learning models against
poisoning attacks. To solve the problem of model robustness under poisoning attack,
this paper explores a label flipping attack and studies its defense method. In the attack
stage, a label flipping attack based on agglomerative hierarchical clustering is proposed.
In the defense stage, we have proposed a label correction defense method based on
TrAdaBoost algorithm. The overall block diagram of the system is shown in Fig. 2.

3.2 Label Flipping Attack Based on Agglomerative Hierarchical Clustering

A label flipping attack is a subclass of data poisoning attacks. The attacker implements
the label flipping attack by maliciously modifying training data or injecting poison
samples into the training set to reduce model performance. In this paper, we assumed
that the distance between samples in the same class (benign or malicious) is small, and
the distance between samples in a different class is large. Based on this assumption,
we first use an agglomerative hierarchical clustering algorithm to classify the training
samples, then a label flipping attack is performed. Since the samples on the classification
boundary are away from the clustering center, they belong to the ambiguous category.
If the labels of these samples are flipped, it is not easy to find them. Therefore, we flip
the labels on the classification boundary to perform a label flipping attack.

Figure 3 shows the label flipping process. First, the training data is classified into
benign and malicious clusters by agglomerative hierarchical clustering. Then, the sil-
houette clustering value [21, 22] of the sample is calculated according to the clustering
results to select the sample data that are vulnerable to pollution. Finally, the label flip
attack is carried out on the selected susceptible data to obtain a contaminated training
set, and the contaminated training set is used to train the classification model to poison
it.
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Fig. 2. The block diagram of the label flipping attack and its defense mechanism

Training samples

Agglomerative hierarchical clustering

Calculate the silhouette clustering value

The silhouette 

clusteing value < 0

Flip the labelKeep the label 

unchanged

Get the contaminated

training sample

Train the classifier

YesNo

Fig. 3. Flow diagram of the label flipping attack

The steps of label flipping attack based on agglomerative hierarchical clustering
are as follows:(1) An agglomerative hierarchical clustering algorithm is used to cluster
the training data and the training data is clustered into benign samples and malicious
samples. (2) According to the clustering results, the samples vulnerable to contamination



496 Q. Li et al.

are selected, that is, the samples with a fuzzy clustering boundary. These samples have
no obvious attribution category and are suitable for label-flipping attack. Set Li as the
label of i-th sample in the dataset, that is:

Li=
{

(xi, yi), SV>0
(xi,|1 − yi|), otherwise

. (1)

If the Silhouette clustering Value (SV) of a training sample is greater than 0, it indicates
that the sample is correctly clustered. If the clustering silhouette value is less than or
equal to 0, it indicates that the classification boundary of the sample is fuzzy and is
suitable for label flipping attack. (3) Label flipping is performed on selected susceptible
training data samples, that is, samples whose silhouette value is less than or equal to
0. Label flipping means that the label value 1 is converted to 0, that is, malicious data
labels are labeled as benign data labels. Thus, the attacked training set had a large number
of false negative data. (4) After labels are flipped, a contaminated training set will be
obtained, and this contaminated data set will be used to train the classification model to
perform label flipping attacks.

The attack process is shown in Algorithm 1.

In this paper, we assumed that the training data are separated into two classes (benign
and malicious). In practice, malware can also be further classified, that is, the training
data can be clustered into multiple classes.

3.3 Label Correction Defense Method Based on TrAdaBoost

In this section, we propose a TrAdaBoost-based label correction defense method for
label flipping attacks based on agglomerative hierarchical clustering.

Figure 4 shows the defense process of a label-flipping attack. First, a source domain
dataset (pure) and an auxiliary domain dataset (contaminated) are combined as input to
theTrAdaBoost algorithm, and theTrAdaBoost algorithm initializes [23] and updates the
weights of the training data. After several iterations, the training sampleswill be assigned
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a new weight. In the process of updating weight, if a sample from the contaminated
dataset is misclassified, its weight will be reduced; otherwise, its weight will increase. If
the sample from the pure set is misclassified, its weight will be increased; otherwise, its
weight will be reduced. A training sample whose weight value is greater than a certain
threshold is considered to be attacked and its label is relabeled, then a relabeled training
set is obtained. Finally, the relabeled training set is used to retrain the classification
model.

Greater than the 

attack threshold ?

Increase 

weight

YesNo

Source domain 

dataset (pure)

Auxiliary domain 

dataset (contaminated)

Training dataset

Training sample

From the auxiliary 

dataset ?

No Yes

Misclassified? Misclassified?
YesNo NoYes

Reduce 

weight

Increase 

weight

Reduce 

weight

Keep the label 

unchanged
Relabel the label

Retrain the classifier

New training dataset

Fig. 4. Flow diagram of the defense process
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The principle and the specific steps for updating weights are as follows:
Step 1: The source domain data set, which is composed of a small pure data set, and

the auxiliary data set, which is composed of the contaminated training set, are combined
into a new data set as the input for the TrAdaBoost algorithm. The weights of the training
samples are initialized as follows:

w1
i =

{
1/n, i = 1,..., n
1/m, i = n + 1,..., n + m

(2)

where, w1
i is the initial weight value of the contaminated training set and the pure set,

n represents the sample number of the pure set and m represents the sample number of
the contaminated training set.

Step 2: The initial weight in Step 1 is updated by the TrAdaBoost algorithm for many
times, and finally a new weight is obtained. In the process of updating the weight, if the
contaminated samples aremisclassified, theweights of the samplewill be reduced,which
shows that the distribution of the sample is not in accordance with the data distribution of
the trained model. In contrast, if the sample label in the contaminated training is judged
correctly, the sampleweightwill be increased,which shows the distribution of the sample
in accordance with the distribution of the trained model. However, if a sample in the pure
set ismisclassified, theweight of the samplewill increase, indicating that the information
of the training sample has not been well learned in the training process. Therefore, a
larger weight should be assigned to the sample in the model-training process. On the
contrary, if a sample in the pure set is correctly judged, it means that the sample is well
learned and a smaller weight can be assigned to the sample. The weight update formula
is as follows:

wt+1
i =

{
wt
iβ

|ht(xi)−c(xi)|, i = 1, ..., n
wt
iβ

−|ht(xi)−c(xi)|
t , i = 1, ...,m

(3)

where wt+1
i represents the weight of the contaminated training set and the pure

set after t iteration, xi represents the i-th sample, c(xi) represents the real cate-
gory to which the sample belongs and ht represents the classifier obtained by invok-
ing the Learner in the TrAdaBoost algorithm. β and βt are the weight coeffi-
cient, and β =1/(1+√

2(lnn)/N),βt=εt/(1-εt). N represents the maximum number of

iterations. The error rate of ht in the auxiliary datasets is εt=
∑n+m

i=n+1
wt
i |ht(xi)−c(xi)|∑n+M

i=n+1 w
t
i

.

By the TrAdaBoost algorithm, the attacked samples and the unattacked samples will
have completely different weight values after N iterations. Therefore, the weights can be
used to distinguish attacked training samples from unattacked samples. The pseudo-code
of the proposed defense algorithm is shown in Algorithm 2.
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In Algorithm 2, the TrAdaBoost algorithm is used to update the weights of the
training samples. Because the weight of poisoned data is different from that of clean
training data, we can distinguish poisoned data from unattacked data according to the
updated weights.

4 Experimental Evaluation

In this section, we evaluate the effectiveness of the proposed label-flipping attack and its
defense mechanism through experiments. Drebin’s Permission datasets and Genome’s
Permission datasets were used in the experiment. Drebin dataset comes from Android
resources [24], and Genome is also an Android dataset [25]. The training set, the test
set, and the validation set are divided in a proportion of 8:1:1.

4.1 Experimental Results of Label Flipping Attack

In this section, we evaluate the proposed label flipping attack based on agglomerative
hierarchical clustering under different attack rates on Drebin and Genome datasets.

The Drebin datasets contain 5560 applications from 179 different malware families
[24]. A sample in the Drebin dataset includes three features, and they are Permission,
Intent, and API. Since Permission is directly related to the specific functions of the
application, we think that Permission is a more important feature than API and Intent.
Therefore, in this paper, we focus on the effect of flipping Permission features on clas-
sification results. The Genome dataset [25] is an Android sample data set supported by
a National Science Foundation (NSF) project, which contains 1260 applications from
49 different families. A sample in the Genome dataset consists of three features: Per-
mission, Intent, and API. Similarly to the Drebin dataset, for a sample in the Genome
dataset, we also focus on its Permission feature.

The attacked classifiers are the Random Forest classifier (RF), Support Vector
Machine classifier (SVM), Decision Tree classifier (DT), Multilayer Perceptron clas-
sifier (MLP), AdaBoost and Logistic Regression classifier (LR), and the performance
index are classification accuracy and F1-score.
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In the experiment, a label of Permission feature in Drebin dataset was flipped accord-
ing to agglomerative hierarchical clustering. The classification results under different
flipping rate are shown in Figs. 5 and 6.

Fig. 5. Classification accuracy of the classifiers under different attack rates (Drebin)

Fig. 6. F1-score of the classifiers under different attack rates (Drebin)

As seen from Figs. 5 and 6, with the increase in label flipping rate, classification
accuracy and F1-score values of different classifiers decrease continuously, indicating
that the performance of the classifiers is damaged, that is, the proposed attack method
is effective for different classifiers. It can also be seen from Figs. 5 and 6 that, under
the same flipping rate, different classifiers got different degrees of decrease; the reason
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is that the structure and the principles of these classifiers are different. Compared with
attack effects under other flipping rates, the attack effect is the best when the flipping rate
is 20%, which illustrates that the attack effect increases with increasing label flipping
rate, and this is easy to understand.

For Genome dataset, we attack the Permission feature and evaluate the attack effect
on different classifiers. The attack effects under different label flipping rates are shown
in Figs. 7 and 8.

Fig. 7. Classification accuracy of the classifiers under different attack rates (Genome)

Fig. 8. F1-score of the classifiers under different attack rates (Genome)

It can be seen from Figs. 7 and 8 that the classification accuracy and F1-score of the
classifiers decrease continuously with the increase of label flipping rate, which indicates
that the proposed attack effectively reduces the classifier performance and achieves a
good attack effect. It can also be seen from Figs. 7 and 8 that under the same flipping
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rate, the attack effect on different models is different. When the label flipping rate was
20%, the F1-score of different classifiers decreased to below 50%, indicating that the
proposed attack method achieved good results on the Genome data set.

To verify the effectiveness of the proposed attack method, the classification accuracy
of the proposed attackmethod is comparedwith the randomflipping attack, label flipping
attack based on density clustering, and k-means-based label flipping attack on RF, SVM,
DT, MLP, AdaBoost, and LR classifiers on Drebin dataset. The results are shown in
Table 1.

Table 1. Performance comparison of different attack algorithms (under flipping rate 20%)

Attack algorithm Accuracy

RF SVM DT LR MLP

Random label flipping attack 92% 93% 88.6% 90.4% 91%

Label flipping attack based on
K-means[10]

74.97% 75.38% 76.23% - -

Label flipping attack based on density
clustering

76.6% 76.7% 76.7% 76.2% 76.8%

Label flipping attack based on agglomerative
hierarchical clustering

71.7% 69.5% 71.5% 69.2% 72%

As can be seen from Table 1, the effect of the proposed label flipping attack based on
agglomerative hierarchical clustering is significantly better than the random label flipping
attack, the label flipping attack based on K-means and the label flipping based on density
clustering, which indicates the effectiveness of the proposed attack method. The results
in Table 1 show that, under the attack rate of 20%, the proposed attackmethod can reduce
the classification accuracy of all used model to less than 72%.

4.2 Experimental Results of Defense

In this section, we evaluate the proposed label correction defense method based on
TrAdaBoost, and we test the classification accuracy and F1-score on RF, SVM, DT,
MLP, AdaBoost, LR, and other classifiers. The results on the Drebin dataset are shown
in Figs. 9 and 10.

It can be seen from Figs. 9 and 10 that, with the increase in label flipping rate, the
classification accuracy and F1-score of the classifiers almost remain stable and are sig-
nificantly better than the results under label flipping attack, indicating that the proposed
defense method can defend the label flipping attack. It can also be seen from Fig. 9
that, when the label flipping rate is at a ratio of 20%, the classification accuracy of the
classifier remains at 88.5% or greater, and the maximum can reach 90%, indicating that
the defense method has achieved a good effect on Drebin dataset.

We also evaluated the proposed defense method on the RF, SVM, DT, MLP,
AdaBoost, and LR classifiers on Genome dataset. Experimental results under different
label flipping proportions are shown in Figs. 11 and 12.
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Fig. 9. Accuracy after defensive measures under different attack rates (Drebin)

Fig. 10. F1-score after defensive measures under different attack rates (Drebin)

Fig. 11. Accuracy after defensive measures under different attack rates (Genome)

As can be seen from Figs. 11 and 12, with the increase in label flipping rate, the
accuracy and F1-score of the classifiers are both stable at around 85%, indicating that
the proposed defense method can defend against label flipping attacks and achieve a
good effect. It can also be seen from Figs. 11 and 12 that at the same flipping rate,
different classifiers have different defense effects, partly because different classifiers
have different classification structures. Additionally, when the label flipping rate was
20%, the F1-score of different classifiers remained at approximately 85%, indicating
that the proposed defense method achieved good results on Genome dataset.
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Fig. 12. F1-score after defensive measures under different attack rates (Genome)

To verify the superiority of the proposed defense method, the proposed method is
compared with the Label-based Semi-supervised Defense method (LSD), the Cluster-
ing based Semi-supervised Defense method (CSD), the KNN-based Semi-Supervised
Defense method (KSSD), and the AdaBoost-based Semi-Supervised defense method
(AdaSSL) in the literature [20] on Drebin dataset. The experimental results are shown
in Table 2.

Table 2. Comparison of different defense methods (under attack rate 20%)

Defense algorithm Accuracy

RF SVM DT LR MLP

LSD[10] 85.85% 86.26% 85.9% - -

CSD[10] 86.59% 87% 87.52% - -

KSSD[26] 79.31% 79.72% 80.7% - -

AdaSSL[20] - 84.69% - 83.82% 85.23%

Label correction defense algorithm based on
TrAdaBoost

89.6% 90% 88.5% 89.2% 89.5%

As shown in Table 2, the proposed TrAdaBoost-based label correction defense algo-
rithm is superior to the LSD, CSD, KSSD and AdaSSL defense methods, indicating the
superiority of the proposed defense method. As can be seen from Table 2, when the
attack rate is 20%, the proposed defense method can achieve an accuracy of 88.5% or
better on RF, SVM, DT, LR, and MLP, indicating that the proposed defense method can
effectively protect attacked classifiers.

In this paper, we only study the effect of flipping Permission feature on classification
results. In the future, we will use the SHapley Additive exPlanations (SHAP) technique
to explore the effect of flipping the labels of other features on the classification results.
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5 Conclusions and Limitations

In this paper, we propose a label flipping attack strategy based on agglomerative hier-
archical clustering. Meanwhile, to defend the proposed label flipping attack method,
we propose a TrAdaBoost-based label correction defense method. Finally, we verified
the effectiveness of the proposed attack and defense methods on Drebin and Genome’s
Permission datasets. Extensive experimental results show that our proposed attack and
defense methods achieve better results than the state-of-the-art methods.

Our method has some disadvantages. The proposed label flipping attack and its
defense strategy are only for the binary classification problem, the problem of multiple
classifications is not involved in this paper. The paper only studied the effect of the
flipping Permission feature on the classification results, and the effect of flipping other
features on classification results needs to be explored further. In the defense stage, a
small clean dataset is also not easy to obtain. Moreover, the computational complexity
of the algorithm is high because the pairwise distances of all samples in every class must
be calculated each time. These disadvantages may limit the application of the proposed
method in real world.

In the future, we will evaluate our proposed methods on the latest datasets. We will
also focus on applying our proposed defense method to the multi-classification problem.
And we will explore a new poisoning attack method, and the attacked models will be
extended to deep learning models such as graph neural networks. We hope that the
robustness of the machine model can be improved by studying the poisoning attack and
its defense methods.
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Abstract. Programmers of high-performance applications face many
challenging aspects of contemporary hardware architectures. One of the
critical aspects is the efficiency of memory operations which is affected
not only by the hardware parameters such as memory throughput or
cache latency but also by the data-access patterns, which may influ-
ence the utilization of the hardware, such as re-usability of the cached
data or coalesced data transactions. Therefore, a performance of an algo-
rithm can be highly impacted by the layout of its data structures or the
order of data processing which may translate into a more or less optimal
sequence of memory operations. These effects are even more pronounced
on highly-parallel platforms, such as GPUs, which often employ specific
execution models (lock-step) or memory models (shared memory).

In this work, we propose a modern, astute approach for managing
and implementing memory layouts with first-class structures that is very
efficient and straightforward. This approach was implemented in Noarr,
a GPU-ready portable C++ library that utilizes generic programming,
functional design, and compile-time computations to allow the program-
mer to specify and compose data structure layouts declaratively while
minimizing the indexing and coding overhead. We describe the main
principles on code examples and present a performance evaluation that
verifies our claims regarding its efficiency.

Keywords: Memory layout · Data structure · Cache · Parallel ·
Performance · Reusable

1 Introduction

This paper aims to tackle memory-related performance issues, which represent
one of the most crucial performance optimization topics. In hardware, memory
access is optimized by providing faster memories closer to the chip (like HBM2),
multi-level caches and transfer buffers, and even specialized explicit near-core
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https://doi.org/10.1007/978-3-031-22677-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22677-9_27&domain=pdf
https://doi.org/10.1007/978-3-031-22677-9_27
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memories (such as AVX512 registers or shared memory in Nvidia GPUs). Soft-
ware developers benefit from these features by creating specialized, cache-aware
algorithms, often tailored for a particular architecture.

The design of the way that the program data is laid out in memory is one of
the crucial steps that ensures memory access performance. Even simple design
choices like row- or column-major matrix storage impact the performance within
the complex memory cache models by simplifying address translations, improv-
ing cache hit ratio and prefetching, or ensuring the alignment required for coa-
lesced SIMD operations [7,14]. For parallel algorithms, the complexity of the
problem becomes much broader because of cache-line collisions, false-sharing,
non-uniform memory architectures, a variety of synchronization issues [3,11,18],
and other factors. Many-core platforms (GPUs in particular) only amplify this by
enforcing specific data access patterns in lockstep execution, advocating the use
of programmer-managed caches (like shared memory), and having a significantly
lower cache-to-core ratio in comparison to the CPUs [13].

The best layout is quite often elusive and needs to be discovered empiri-
cally. Furthermore, it often differs even among the utilized cache levels [10,12,17].
Consequently, the optimal implementations are often complicated, and most of
the optimization-relevant code is not portable between hardware architectures.
Enabling simple implementations of layout-flexible data structures and algorithms
would improve the code portability (and value); however, systematic approaches
are quite rare, often over-complicating the code logic and making the algorithm
implementation not maintainable or usable beyond the community of specialists.

1.1 Motivational Example

To explain the motivation, objectives, and contributions of our research, we have
selected a matrix multiplication problem widely known in computer science. For
the sake of simplicity, we use the most straightforward implementation with
O(N3) complexity (computing C = A × B of square matrices N2):

for (size_t i = 0; i < N; ++i)
for (size_t j = 0; j < N; ++j) {

C[i][j] = 0;
for (size_t k = 0; k < N; ++k)

C[i][j] += A[i][k] * B[k][j];
}

Having a fixed algorithm structure (i.e., order of the operations), the memory
layout of the matrices is the main issue affecting the performance. In this context,
the layout is defined by transforming the abstract indices (i, j) into an offset,
subsequently used to compute the actual memory address. For instance, the most
common matrix layout is row-major, which computes the offset as i∗W+j (where
W is the width of the matrix). A few examples of possible layouts are depicted
in Fig. 1.

The aforementioned code sample used traditional C notation A[i][j] which
enforces the row-major layout, which is sub-optimal for this algorithm. Having
the second matrix in a col-major layout or using a z-curve for all matrices will
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(a) row-major (b) col-major (c) row-tiles (d) z-curve (e) Hilbert curve

Fig. 1. Examples of common matrix layouts

improve cache utilization, and the algorithm would run several times to several
orders of magnitude faster, depending on the platform. Therefore, we need to
introduce layout flexibility into the code.

A typical object-oriented solution would be to create a class abstraction that
would define a uniform interface for accessing matrix elements whilst enabling
different implementations through derived classes. A slightly better and more
reusable solution would be to separate the offset computation into a policy class
that would be injected into the matrix as a template parameter:

class RowMajor {
static size_t offset(size_t i, size_t j, size_t W, size_t H) {

return i*W + j;
}

};

template<typename T = float, class Layout = RowMajor>
class Matrix {

/* ... */
T& at(size_t i, size_t j) {

return _data[Layout::offset(i, j, _W, _H)];
}

};

The policy class makes the matrix implementation flexible (in terms of select-
ing the proper layout) and efficient (since the compiler can inline the static
method). However, several drawbacks make this solution imperfect. The inter-
face between the Matrix class and its layout policy (RowMajor) is created ad-
hoc by the author of the main class, which complicates the code reusability of
the layout policies in potentially compatible situations. The interface also pre-
vents efficient constant propagation and caching of intermediate values. Further-
more, the strong encapsulation may prevent low-level optimizations, portability
to other architectures (e.g., GPUs), and complicate data structure composition
(e.g., when matrices in an array need to be interleaved).

We aim to design a more straightforward, more programmer-friendly solution
to implementing layout-agnostic algorithms, focusing on enabling performance
optimizations and parallel processing.

1.2 Objectives and Contributions

Our main objective was to create a library that allows the users to quickly
adapt their algorithms and data structures for different memory layouts, with
a particular focus on the following targets:
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• Once an algorithm is adapted, it becomes layout-agnostic—i.e., no subsequent
internal code modifications should be required to change the layout of the
underlying data structures.

• The layout representation should not be coupled with memory allocation so
that it could be used in different scenarios and different memory spaces (i.e.,
directly applicable with memory-mapped files or GPU unified memory).

• The interface should define an easily comprehensible abstraction for indexing
(offset computation) that would hide its (possibly complex) nuances.

• The indexing mechanism should enable the compiler to evaluate constant
expressions at compile time (e.g., fold constant dimensions of a structure into
the generated code).

• The code overhead should be minimal, preferably smaller than with well-
established practices, such as providing template policy classes to govern lay-
out or allocation.

We have implemented Noarr header-only library1 for C++ as a prototype
that achieves the outlined objectives. C++ was chosen as a widely-used main-
stream language that provides complete control over memory layout and allo-
cation and is widely used for programming performance-critical applications,
including parallel HPC systems and GPGPU computing. Its fundamental fea-
tures, like the templating system and operator overloading, open possibilities for
generic programming, compile-time optimizations, and the design of a functional-
like interface, which simplifies the use of the library. Furthermore, the separation
of indexing from (CPU-specific) memory management allowed us to directly uti-
lize the library with Nvidia CUDA code, easily porting the layout-agnostic code
on contemporary GPUs.

We believe that Noarr will make a significant contribution to simplifying the
coding process and increasing performance in many scenarios, especially:

• Empirical exploration of possible layouts—i.e., finding the optimal combina-
tion of layouts for given data structures and algorithms by measuring the
performance of all possible implementations.

• Implementing applications and libraries in which the optimal layout of data
structures needs to be selected at runtime (e.g., based on the size of the
problem or the best available architecture).

• Allowing simple yet efficient (semi)automatic layout transformations in case
the input or output layouts differ from the optimal layouts for the computa-
tion.

Although the issues mentioned above can be identified in a large variety of
data structures and algorithms, we are focusing mainly on regular data struc-
tures such as nested multi-dimensional arrays and structures (in the C/C++
sense). However, despite this narrow scope, we have identified that this prob-
lem is quite challenging, especially regarding optimizations for massively parallel
environments like GPUs.
1 Noarr is available as open-source on GitHub under MIT license: https://github.com/

ParaCoToUl/noarr-structures.

https://github.com/ParaCoToUl/noarr-structures
https://github.com/ParaCoToUl/noarr-structures
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The paper is organized as follows. Section 2 explains the key principles and
benefits of the layout-agnostic algorithm design. The performance aspects of
offset computation overhead are summarized in Sect. 3. In Sect. 4, we provide
insights into the current implementation of the Noarr library. Related work and
main conclusions are summarized in Sects. 5 and 6.

2 Extensible Memory Layout Structures

One of the most significant challenges of the outlined problem is to create an
indexing abstraction that would follow the fundamental code design principles
(especially in object-oriented programming, which is one of the most widely
adopted paradigms), thus allowing the programmer to write neat and maintain-
able code, whilst minimizing performance overhead and making heavy use of the
compile-time optimizations.

In this work, we propose using first-class indexing structures which can be
detached entirely from the allocated memory and the data structures them-
selves. The indexing structure has a specific type (templated class) composed
of predefined base types and a corresponding instance (object). This way, the
information being passed to the layout-agnostic algorithm is divided into two
parts:

• the data type passed via (inferred) template parameter, which bears the struc-
ture and constant parameters,

• and the object, which bears all dynamic parameters (such as sizes of non-
constant dimensions of the data structure).

Before we focus on the benefits, let us emphasize the C++ cornerstones of
Noarr that are pretty important for understanding the main principles (details
are provided in Sect. 4).

• The indexing structure type composition is straightforward as the user merely
combines predefined Noarr templated classes. Furthermore, thanks to the
templating system, it is easy to create partially-defined structures, thus pro-
moting code reusability. The construction of derived or augmented types (like
binding the constant dimensions) is implemented in a functional manner,
which is quite comprehensive and easy to write. Finally, modern C++ con-
structs like auto or template type inference make these type modifications
easier to handle since only the instance object is passed down.

• The dimensions of the data structure are denoted using chars (typically let-
ters), which are much more mnemonic than numbers or the order of definition.
Furthermore, they can be used to define additional abstraction so that struc-
tures with the same set of named dimensions can be treated as compatible,
regardless of the order of their definition or their actual layout representation.

• Finally, the implementation makes heavy use of constexpr functions which
allow the compiler to be inlined, resolve, and even precompute many pieces
of the layout-related code, thus making it more efficient. For instance, the
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1 template <char I, char J, class struct_lhs_t, class struct_rhs_t, class struct_out_t>
2 __global__ float matmul_tile(const float* lhs_in, const float* rhs_in, float* out, const

struct_lhs_t lhs_s, const struct_rhs_t rhs_s, struct_out_t out_s) {↪→
3 constexpr size_t tile_w = 16;
4 constexpr auto tile_s = noarr::array<I, tile_w, noarr::array<J, tile_w,

noarr::scalar<float>>>();↪→
5 __shared__ float l_tile[tile_w * tile_w];
6 __shared__ float r_tile[tile_w * tile_w];
7 const uint32_t x = blockIdx.x * tile_size + threadIdx.x;
8 const uint32_t y = blockIdx.y * tile_size + threadIdx.y;
9

10 float acc = 0.f;
11 for (uint32_t i = 0; i < lhs_s.get_length<J>(); i += tile_w) {
12 tile_s.get_at<I, J>(l_tile, threadIdx.y, threadIdx.x) =
13 lhs_s.get_at<I, J>(lhs_data, y, threadIdx.x + i);
14 tile_s.get_at<I, J>(r_tile, threadIdx.y, threadIdx.x) =
15 rhs_s.get_at<I, J>(rhs_data, threadIdx.y + i, x);
16 __syncthreads();
17

18 for (uint32_t j = 0; j < tile_w; j++)
19 acc += tile_s.get_at<I, J>(l_tile, threadIdx.y, j)
20 * tile_s.get_at<J, I>(r_tile, threadIdx.x, j);
21 __syncthreads();
22 }
23 out_s.get_at<I, J>(output_data, y, x) = acc;
24 }

Listing 1: CUDA matrix multiplication kernel based on Noarr library

constant dimensions can be translated into the expressions where the actual
memory offsets are being computed, which may allow optimizations like pre-
computing constant subexpressions.

Utilizing memory layouts as first-class objects can introduce some flexibility
into the code. In this section, we demonstrate the two main ideas of the proposed
approach: The ability to easily decouple memory allocation from its interpreted
layout and the possibility of writing memory-layout-agnostic functions. Listing 1
presents an example that employs both these ideas using Noarr library.

2.1 Decoupling the Memory Management

In C++, memory is usually acquired following one of two scenarios—either it is
allocated internally by a wrapping data structure (the ‘owning’ semantics), or it
is provided by the caller (the ‘borrowing’ semantics). When the indexing struc-
ture is decoupled from the memory allocation and combined with the borrowing
semantics, it can cover many elaborate memory management scenarios, such
as file memory-mapping or sharing memory among threads (this also includes
CUDA unified memory or shared memory).

In Noarr, the layout objects are entirely independent of memory manage-
ment. To simplify the situation for programmers, it also provides a wrapper
structure bag, which binds the layout structure with any pointer, acting as a
smart pointer with borrowing semantics. The layout can be used alone to com-
pute linearized offsets from input indices, which is also applicable in hypothetical
scenarios beyond pointer-based memory addressing.
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We present an example of a matrix multiplication kernel implemented in
CUDA (Listing 1) to demonstrate the possibilities opened by proper decoupling.
In the code, a GPU kernel performs the multiplication in tiles where each 16×16
tile of the output matrix is computed by one thread block, and each element is
handled by one thread. A thread block cooperatively fetches a pair of tiles from
the input matrices (one pair at a time) into the shared memory; all threads of
the block then use the cached tiles to update their intermediate scalar products
(which are kept in their registers) before iteratively loading successive pairs of
tiles. Once all tiles are processed, each thread writes its aggregated result into
the output matrix.

The example focuses on a typical pattern in GPU programming—a man-
ual caching of data in the shared memory. Unlike global memory (accessible by
all threads), the shared memory is an integral component of a streaming mul-
tiprocessor; thus, it is dedicated to the threads within the same thread block.
Unsurprisingly, the two types of memory are allocated and managed in slightly
different ways, albeit both use pointer-based addressing. The global memory is
usually allocated before the execution of a kernel (i.e., by the host) and passed
to a kernel as an argument (lhs in, rhs in, and out on line 2 of Listing 1).
The shared memory is acquired inside the kernel by defining a C array with
shared prefix (l tile and r tile on lines 5–6).

Considering also the host memory (where a copy of matrices also needs to
reside), the programmer must manage three (partial) copies in three different
memory spaces. A uniform abstraction (that supports owning and borrowing
semantics) streamlines the code significantly. Furthermore, in this particular
instance, we could also take advantage of having a different layout for different
matrices—e.g., the optimum is reached if the left-side matrix is in the row-major
while the right-side matrix is in the column-major format.

Listing 1 demonstrates, how the problem is solved using Noarr. The tiles
are loaded into the shared memory on lines 12–15. The variables lhs s and
rhs s represent the layout objects, which are bound with global memory point-
ers (lhs in and rhs in respectively) to read data from input matrices (lines 13
and 15). Another layout object tile s is used for two shared memory pointers
representing the cached tiles (lines 12 and 14). With these layout objects, differ-
ent types of memory could be accessed using the same interface. Additionally,
the code is ready for future layouts modifications and promotes the reusability
of the existing layout structures.

2.2 Layout-Agnostic Functions

Formally, we may define the layout-agnostic property as a unique form of poly-
morphism. Layout-agnostic functions are implemented in a way that does not
require altering their code when the layout of the used data structures needs
to be changed. As hinted in the introduction, the layout selection may signifi-
cantly affect performance. In extreme cases, the relative performance improve-
ment achieved by optimal layout selection can reach orders of magnitude.
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To demonstrate this effect, we show how the layout choice changes the perfor-
mance of the matrix multiplication kernel from Listing 1, which is already written
as layout-agnostic. Running the kernel with different layout configurations for
each matrix is implemented by simply passing different function arguments (and
corresponding template parameters, which the compiler can automatically infer
in typical cases). We utilize this flexibility to find a layout combination that
exhibits the best performance quickly.

For the sake of this example, we coded the following matrix layouts:

• Row-major layout (labeled R, which we use as a baseline)
• Column-major (C, a transposition of row-major layout)
• R tiles in C order (RC), which divides the matrix logically into 16 × 16

sub-matrices (tiles); data in each sub-matrix is stored with row-major layout,
while the sub-matrices are organized in column-major layout

• C tiles in R order (CR) is analogical to RC layout, but the tiles use column-
major layout internally, and are ordered in row-major fashion

• CC and RR are defined analogically

The layout of all inputs and outputs of the matrix multiplication is thus
expressed as a triplet of individual matrix layouts. For example, R × C = R
denotes a multiplication where the left and the output matrices are in row-
major, and the right-side input matrix is in the column-major layout. Since the
kernel 1 already caches tiles explicitly in the shared memory, we expect the tiled
layouts to perform better. Likely, the RR × RC = R should exhibit the best
performance (given the properties of the algorithm).

We have created a benchmark that tested the performance of the presented
algorithm using all layout combinations possible. In each test, the input matrices
were loaded to the GPU global memory already transformed into the selected
matrix layouts, the kernel was executed, and its execution time was measured
and recorded. A relevant selection of the experimental results is shown in Fig. 2.
The graphs present the normalized times (in picoseconds and femtoseconds)—
i.e., kernel execution times divided by the asymptotical amount of work (N3 in
this case). Details regarding our experimental setup can be found in Appendix A,
and the complete set of results can be found in our replication package2.

The result verified that RC is superior to the baseline row-major layout in
both input positions. Furthermore, the R × C = R configuration (often praised
on sequential architectures) exhibits worse than the baseline on massively paral-
lel hardware. While this was expected, the primary outcome of this benchmark
is methodological: A selection of input and output layouts can be tested system-
atically without reimplementation effort, while the larger exploration size of the
selection (enabled by low coding overhead) provides a solid guarantee that the
best-identified solution is indeed a good choice for a high-performance software.

2 https://github.com/asmelko/ica3pp22-artifact.

https://github.com/asmelko/ica3pp22-artifact
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Fig. 2. Speedups of selected layout combinations relative to (row-major) baseline

1 template <char X, char Y, typename bag_in_t, typename bag_out_t>
2 static void transform(const bag_in_t& input_bag, bag_out_t& output_bag) {
3 for (size_t i = 0; i < input_bag.get_length<X>(); i++)
4 for (size_t j = 0; j < input_bag.get_length<Y>(); j++)
5 output_bag.at<X, Y>(i, j) = input_bag.at<X, Y>(i, j);
6 }

Listing 2: Key part of transformation routine for 2-index (2D) arrays

2.3 Transformations

The layout-agnostic algorithms can benefit from performance gains achieved by
choosing the best layout for a given problem configuration and architecture.
However, in real-world scenarios, the layout of the input and output data struc-
tures is often prescribed as an inherent part of the algorithm interface or selected
by the caller (in the case of generic interfaces).

If the algorithm is complex enough and the performance gap between the
prescribed layouts and optimal layouts is high, the data structures may be copied
and transformed into their optimally organized counterparts to speed up the
algorithm. With Noarr, the transformation can be handled in a generic way.
Following our examples with matrices, Listing 2 presents the central part of a
generic transformer for 2D structures.

In fact, we are currently extending Noarr to handle the transformations in
a generic way for any-dimensional structures, and we are exploring techniques
how to select the best way of iterating the structures (e.g., selecting the best
ordering of nested loops) in order to optimize memory transfers and caching.
However, this research is well beyond the scope of this paper.

Transformation Overhead Assessment. Employing transformations may be
beneficial only under specific circumstances. Simply put, the algorithm must save
more execution time than how long it takes to transform all the necessary data.
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We want to demonstrate the overhead assessment on the previously introduced
matrix multiplication example.

We have analyzed the layout transformation overhead for various matrix sizes
and layouts. The key results are summarized in Fig. 3. We have observed that
in the case of larger matrices (N > 10, 000), the overhead is negligible, primar-
ily because of the asymptotic complexity difference between the transformation
algorithm (O(N2)) and the multiplication (O(N3)). For smaller matrices (with
N around 1000), the relative ratio of the transformation to computation time
expectably increased, and the transformation overhead caused the baseline to
perform the best.
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Fig. 3. Layout transformation times compared to actual matrix multiplication times

As demonstrated, deciding whether or when a layout transformation can be
beneficial may be complicated; however, with Noarr, both the experiments and
the actual decision to apply or not to the transformation can be implemented
very quickly.

3 Performance Impact of Constant Expressions

One of the essential features of Noarr is that the first-class structures propagate
along with their templated types, allowing us to embed statically defined prop-
erties (most importantly, the constant dimensions of the structure) into the type
itself. Therefore, the compiler can employ optimizations like compile-time eval-
uation of constant expressions or exact-sized loop unrolling, which might lead
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to more efficient execution or even automated vectorization. These optimiza-
tions rarely produce a game-changing improvement in performance; thus, the
programmers often overlook them. However, utilization of Noarr structure will
introduce them naturally so the result code could run faster without any addi-
tional effort whilst maintaining other benefits like memory allocation decoupling
or coding in a layout-agnostic manner.

To present the main idea, let us have an array A of N vectors in R
D where N

is a variable, and D is a constant3. We want to compute the Euclidean distance
between every vector in the array and given vector q (e.g., to find k nearest
vectors, which is quite a typical task in many data-processing problems):

for (size_t i = 0; i < N; ++i) {
float dist = 0.0f;
for (size_t d = 0; d < D; ++d) {

float diff = A[i*D + d] - q[d];
dist += diff * diff;

}
dist = std::sqrtf(dist); // ...

}

When D is a constant, the compiler could unroll the loop entirely without
additional branches. It might even attempt to unroll the outer loop if D is
sufficiently small. The speedup achieved by having constant D may easily reach
factor 3× for very small values of D (e.g., D = 2)4.

3.1 Indexing Performance

To demonstrate the impact of Noarr structures, we have selected a 3D stencil
problem as an example. Stencil is a simple function computed iteratively for
every element of a regular grid. We have used an averaging stencil executed on
a 3D grid which could be used as an approximative simulation of gas diffusion,
for instance. Our objective is to emphasize the difference between situations
when the grid dimensions are constant (at compile time) and when they are
determined at runtime.

The main code of the stencil is in Listing 3. Run-time variables size x,
size y, and size z denote the dimensions of the cube. The first part of this
experiment aims at exposing only the compile-time optimizations of index com-
putations, so we ensure that no optimizations related to constant dimensions
are performed. Please note that the loops do not visit points residing on the
faces of the grid so that we can ignore the border cases of the stencil function;
thus, there are no branches in the code which leads to simpler and more stable
measurement.

A näıve C-like implementation of the internal stencil function is presented
in Listing 4. It uses the same variables in the loop to index the data pointers,

3 If the code needs to handle several different dimensionalities D, it will be compiled
for each D independently thanks to the power of C++ templates.

4 If we measure only the Euclidean distance computation.
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1 template <typename... Args> void run_stencil_grid(Args&&... args) {
2 for (size_t x = 1; x < size_x - 1; x++)
3 for (size_t y = 1; y < size_y - 1; y++)
4 for (size_t z = 1; z < size_z - 1; z++)
5 stencil(std::forward<Args>(args)..., x, y, z);
6 }

Listing 3: Main stencil for-loop

preventing the compiler from doing more elaborate compile-time optimizations.
This code is used as a baseline for the performance comparison.

1 inline void stencil(const float* in, float* out, size_t x, size_t y, size_t z) {
2 float sum = in[x * size_y * size_z + y * size_z + z];
3 sum += in[(x + 1) * size_y * size_z + y * size_z + z];
4 sum += in[(x - 1) * size_y * size_z + y * size_z + z];
5 sum += in[x * size_y * size_z + (y + 1) * size_z + z];
6 sum += in[x * size_y * size_z + (y - 1) * size_z + z];
7 sum += in[x * size_y * size_z + y * size_z + z + 1];
8 sum += in[x * size_y * size_z + y * size_z + z - 1];
9 out[x * size_y * size_z + y * size_z + z] = sum / 7;

10 }

Listing 4: Näıve implementation of stencil function

Making the dimensions constant may help the compiler to generate more
optimal code. In C++, this can be achieved simply by defining the size * vari-
ables as constexpr; however, such constants need to be declared at the global
level, which significantly undermines any encapsulation or reusability of the code.
Better way is to use fix-sized containers like std::array and make the stencil
code templated so it can be used with any compatible containers (including
std::vector).

1 using cube = noarr::array<'x', 1048576, noarr::array<'y', 32, noarr::array<'z', 32,
noarr::scalar<float>>>>;↪→

2 using bag = noarr:bag<cube, noarr::helpers::bag_policy<std::unique_ptr>>;
3

4 inline void stencil(const bag& in, bag& out, size_t x, size_t y, size_t z) {
5 float sum = in.at<'x', 'y', 'z'>(x, y, z);
6 sum += in.at<'x', 'y', 'z'>(x + 1, y, z);
7 sum += in.at<'x', 'y', 'z'>(x - 1, y, z);
8 sum += in.at<'x', 'y', 'z'>(x, y + 1, z);
9 sum += in.at<'x', 'y', 'z'>(x, y - 1, z);

10 sum += in.at<'x', 'y', 'z'>(x, y, z + 1);
11 sum += in.at<'x', 'y', 'z'>(x, y, z - 1);
12 out.at<'x', 'y', 'z'>(x, y, z) = sum / 7;
13 }

Listing 5: Noarr implementation of stencil with constant-sized array
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Noarr provides a fixed layout structure array, which fulfills a similar role,
but it can be easily integrated into more complex nested structures (even with
custom layouts). Listing 5 presents the internal stencil rewritten for Noarr. The
dimensions of the grid are no longer passed as variables, but they are embedded
in the type of the bag structure as constants. Line 1 shows the assembling of the
layout structure using a predefined array template.

To evaluate the performance, we have selected a grid of a specific size (220 ×
32 × 32) which confines the meaning of the diffuse simulation for a specific
environment (e.g., gas in a pipe). The main reason is that the performance
improvement caused by the compile-time optimizations is difficult to measure on
regular structures since it takes only a small portion of overall time (especially
when the computation causes many cache misses). This shape requires more
index computations relative to other operations, making the difference more
pronounced in the measurements.
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Fig. 4. Wall times of 100 stencil iterations (plotted lines represent the local regression
of the measured times)

Figure 4 shows the comparison results of the two presented stencil imple-
mentations on three platforms using two compilers. The benefits of compile-time
optimizations are visible on every platform and with both tested compilers, albeit
there is only a small difference in some configurations. The details regarding the
experimental methodology are summarized in Appendix A.
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3.2 Constant-Loops Optimizations

The second part of this experiment extends the compile-time optimizations to
the nested stencil grid loops. It requires replacing size * variables in the main
loops (Listing 3) with constants (i.e., constexpr or template arguments) so the
compiler has enough information to perform exact loop-unrolling and better
vectorization-related optimizations.

1 template <typename bag_t> constexpr void run_stencil_grid(bag_t in, bag_t out) {
2 for (size_t x = 1; x < in.get_legth<'x'>() - 1; x++)
3 for (size_t y = 1; y < in.get_legth<'y'>() - 1; y++)
4 for (size_t z = 1; z < in.get_legth<'z'>() - 1; z++)
5 stencil(in, out, x, y, z);
6 }

Listing 6: Updated stencil for-loop with bag structure

However, converting these variables to constants may be quite tedious, espe-
cially if we want the code to be generic for both constant and non-constant
scenarios. This particular issue can be easily overcome by utilization of Noarr
bag structures. Having the layout information encoded both in the structure
type and the object, method get length can query dimension sizes and returns
a constant or variable based on the layout specification, all this being decided
at compile time. The grid loop function from Listing 3 needs to be rewritten as
demonstrated in Listing 6.
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Fig. 5. Stencil execution times of two optimizations—compile-time indexing and the
addition of constant-induced loop unrolling (indexing+looping)

Figure 5 presents the performance improvements of exposing constant vari-
ables to the grid iteration loop. We have included only measurements of programs
compiled by gcc since clang was not able to take advantage of the constant val-
ues when they are passed through the bag structure interface.
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4 Implementation and Technical Insights

The Noarr library5 is logically divided into three levels, each building on top of
the previous one: structures, functions, and object wrappers. The first two layers
provide a rather low-level functional approach, while the last one encapsulates
the first two into a more traditional C++ object-oriented design.

4.1 Structures

A structure is an object that stores information about a data layout. It exposes
the information via a simple interface, providing its size in bytes (size()), the
range of indices it supports (length()) and a current offset from the beginning
of the structure in bytes (offset()).

The most trivial structure is scalar (Listing 7), which wraps the ‘base’ values
to be used in more complex layouts. Scalar often wraps simple types like float,
but it can also wrap any fixed-size C++ type (such as struct or std::tuple).
The methods length() and offset() of scalar always return 0 because scalar
represents only a single element.

1 template<class T>
2 struct scalar : contain<> {
3 static constexpr size_t size() noexcept { return sizeof(T); }
4 static constexpr size_t offset() noexcept { return 0; }
5 static constexpr size_t length() noexcept { return 0; }
6 };

Listing 7: A core part of the scalar structure used for wrapping simple values

The array structure (Listing 8) is more complicated: Like std::array, it rep-
resents a fixed-size array with a named dimension and statically defined number
of elements of a given substructure type. Unlike scalar which wraps a trivial
type, array is contains a Noarr structural type.

An important aspect of the structures is their ability to be combined and
nested to create a structure tree. For instance, the composition of scalar and
array is quite straightforward:

• array<'a', 10, scalar<float>> defines an array of 10 floats,
• array<'i', 4, array<'j', 8, scalar<int>>> represents a 4 × 8 row-major integer

matrix layout,
• array<'j', 8, array<'i', 4, scalar<int>>> represents the same matrix in a column-

major layout.

5 https://github.com/ParaCoToUl/noarr-structures.

https://github.com/ParaCoToUl/noarr-structures
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1 template<char Dim, size_t L, class T>
2 struct array : contain<T> {
3 constexpr size_t size() const noexcept {
4 return contain<T>::template get<0>().size() * L;
5 }
6 constexpr size_t offset(size_t i) const noexcept {
7 return contain<T>::template get<0>().size() * i;
8 }
9 static constexpr size_t length() noexcept { return L; }

10 };

Listing 8: Noarr array structure (some methods are omitted for brevity)

All structures inherit from class contain, which has several purposes: It
serves as recursive storage for the wrapped structure, holds some useful meta-
information about the nested substructures, and stores possible additional data
for the structure, such as dynamic dimension length or the current offset index.
Querying for various properties, which is its main purpose, is demonstrated in
Listing 8. The array implements the size() function using the information
(size) from its immediate substructure (line 4). In the example, queries work
recursively on subsequent immediate substructures until the recursion is halted
in scalar::size(). Using this mechanism, contain allows us to create the
nested hierarchy of the structure tree easily.

There are several other built-in structures in Noarr library, such as vector
and tuple (analogical to std::vector and std::tuple), which provide suffi-
cient arsenal for composing memory layouts of many regular-shaped data struc-
tures. Moreover, the library design makes it open for extensions, and program-
mers may implement additional custom layout structures.

4.2 Functions

Noarr functions are C++ constexpr functions that serve as an expressive tool
for obtaining complex information from the structure trees. They are used to
compute offsets for memory pointers to provide indexation, transform structures,
and query dimension lengths using a single, extensible functional interface.

Calling function f on a structure s is achieved using the (overloaded) ‘pipe’
operator |. Expression s | f denotes that f is applied on s (note this may
sometimes differ from f(s) as detailed later in this section).

For example, the function get length() traverses structure tree and calls
length() on a substructure with the given dimension name:

size_t i_len = a_structure | get_lenght<'i'>();

The function set length() proceeds similarly, but when a matching sub-
structure is found, the whole structure is reconstructed to carry the new length.
The following example shows that functions can be additionally chained one
after another. Notably, all structures are immutable, which allowed us to ensure
that unsized s does not carry any unnecessary data:
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auto unsized_s = vector<'i', vector<'j', scalar<float>>>();
auto sized_s = unsized_s | set_length<'i'>(4) | set_length<'j'>(8);

A function application on a structure may fail, such as when querying a length
of a non-existing dimension. We say the function is not applicable on a structure.
Taking the aforementioned two functions into account and the fact that every
structure forms a structure tree, it is possible that a function is not directly
applicable on the topmost structure but is applicable on some structures in the
structure tree. For this reason, we distinguish three piping mechanisms that
govern different means of the function-structure application:

• Top application (or direct application). This is the simplest form of piping,
where s | f is equivalent to f(s). In other words, the function is applied
directly to the topmost structure.

• Get application. Given the piping s | f, if f(s) is not applicable the pip-
ing mechanism attempts to apply f to the substructures of s recursively. It
fails if f does not apply to any of the substructures or if it applies to more
substructures. The trivial representative being get length(), because there
should be exactly one node in a structure tree with a specified dimension.

• Transform application. s | f either results in top application when f(s) is
applicable or f is transformatively applied on all direct substructures of s. If
the latter, the structure is reconstructed with these changes to the substruc-
tures.

The piping mechanism is implemented using C++ constexpr functions and
metaprogramming. Together with the static nature of substructure hierarchies
that encompasses the structure layer, the implementation is very efficient since
it provides the necessary space for compiler optimizations. We can demonstrate
this by precisely describing the operations executed when a function with the
get application is applied to a structure. Let us have the following structure and
function:

auto v4 = vector<'a', vector<'b', vector<'c', vector<'d', scalar<int>>>>>();
auto f = get_length<'d'>();

Expression v4 | f must perform a traversal of the structure tree to find the
matching dimension. Fortunately, the way the structures and functions are imple-
mented ensures that there is no run-time loop in the implementation. Because
all substructures are known in compile-time, the traversal loop is unrolled using
metaprogramming techniques. Furthermore, because the values are also known
at compile-time, the result can be partially evaluated and, in turn, no run-time
code is generated. In summary, applying v4 | f produces four unrolled func-
tion applications, three of which produce no operation at all (and usually get
discarded by a compiler), and only one results in calling length() on a sub-
structure that can be evaluated by the compiler.
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4.3 Object Wrappers

Object wrappers provide object-oriented management of structures, functions,
and the actual data. Noarr library offers two kinds of such objects—structure
wrappers and bags.

A wrapper simplifies the work with structures by bundling the applications
of the most common Noarr functions into member methods. That way, with a
wrapper w of a structure s we can directly write w.get_length<'d'>() instead
of s | get_length<'d'>().

A bag provides the same interface as a wrapper but also contains a pointer to
the underlying memory. To work with the data, it implements a member method
at<Dims...>(idxs...) that is used to index the data pointer with respect to the
enveloping structure layout. This method is a wrapper for the library function
get at. Without using a bag, the indexing might look like this:

auto s = array<'j', 8, array<'i', 4, scalar<float>>>();
float* ptr = allocate_memory_bytes(s.size());
float x = s | get_at<'i', 'j'>(ptr, 2, 3);

The bag binds the layout together with data, systematizing the computation on
the last line as follows:

auto b = bag(s, ptr);
float x = b.at<'i', 'j'>(2, 3);

Furthermore, to manage an explicitly bound external pointer, bag can also
allocate the underlying memory automatically if no pointer is given (i.e., it also
carries the semantics of a smart pointer). Technically, bag can belong to either
one of two semantic groups according to the way it acquires data:

• Owning semantics. The bag is constructed only with a structure to envelop.
The data pointer of exact length is automatically allocated using standard
memory management (e.g., by unique ptr), and the length is determined by
calling size() on the wrapped structure.

• Borrowing semantics. The bag is constructed with both structure and data
pointer. In this case, the deallocation, as well as ensuring the proper data-
block length, has to be enforced by the caller.

5 Related Work

A significant group of works that touch the problem of memory layouts are
parallel programming languages such as X10 [5], Chapel [4] or Legion [2]. Apart
from providing syntax for simple parallel code expression, these languages allow
for data decomposition into regions that can be mapped within the same memory
space or more complex non-uniform memory spaces. Hence, the memory layout
expression addressed by these works is only researched to the point of high-level
data distribution among processing elements.

Application-specific library generators, or active libraries, also utilize mem-
ory layouts. The most known representatives are ATLAS [19], SPIRAL [15]
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and FFTW [9] specializing in linear algebra, signal processing, and Fast Fourier
Transform, respectively. They are trying to mitigate portability issues of man-
ually optimized programs by selecting the best interprocedural optimizations
for the hosting system using autotuning. Usually, these optimization strategies
include some form of memory layout selection. It is important to note that active
libraries target different stages in programming than Noarr; rather than perform-
ing the layout selection from the hardcoded set of layouts, Noarr provides means
to implement such layout selections in a more extensible and object-oriented
way.

The most related works we found are Kokkos [16], and GridTools [1]. These
libraries allow the coupling of arbitrary data structures with memory layouts
which can be either selected from a set of predefined layouts or programmatically
customized.

GridTools specialize in block-structured grid applications such as combus-
tion, seismic, and weather simulations, working with generalized stencil-like pat-
terns. The library defines a storage infrastructure component that controls the
layout, alignment, and padding of stored data fields. A layout is specified in
code at compile time by selecting one of the predefined target backends, each
well suited for a specific use case, such as vector instructions or GPU kernels. The
library can be extended with new programmer-specified backends, but the layout
can be altered only by permuting dimension order in a regular n-dimensional
array.

An interesting approach is taken in the Kokkos library, which specifies the
View class that couples the definition of data memory space, allocation, and lay-
out altogether using C++ policy classes, yielding an object of similar function-
ality as our bag. The memory resource and allocation mechanism are abstracted
and defined by the template argument. Kokkos provides multiple memory spaces
such as HostSpace, CudaSpace, CudaHostPinnedSpace, thus representing CPU
and GPU physical memory and their combinations.

In Kokkos, the memory layout is either implicitly deduced from the memory
space or explicitly specified as another template parameter. The library imple-
ments row and column-major layouts together with the layout with strides with
custom sizes. Kokkos allows user-defined memory layouts by defining a new lay-
out policy and implementing a function that defines a bijective mapping between
index space and memory addresses. However, this mapping must be defined on
a regular n-dimensional array, using a minimal API that fits the View class.

Language-wise, our approach is similar to (and inspired by) known concepts
from functional programming. Materialized, first-class composable references to
sub-structures uncoupled from data have been extensively studied as optics [8].
In particular, the internal structures that implement the selection of array slices
at certain indexes are similar to the concept of indexed lenses—kind of references
that transparently provide information about the current index in a complicated
structure, as summarized by Clarke et al. [6] In the future, it might be interesting
to examine whether more advanced optics may be modeled in C++ for array
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accesses, e.g., expressing repeated data accesses similarly to lens-based traversals
or reconstructing the user-facing indexes from known offsets using isomorphisms.

6 Conclusion

We have presented a new high-performance approach for managing the complex-
ity of offset computation in array-like data structures in modern C++. We intro-
duced first-class layout structures that can be used to describe complex array lay-
outs and run the required offset computations. The implementation is based on
C++ template metaprogramming, exposing a rich interface for manipulating the
structures with index mnemonics while enabling many compiler optimizations by
properly separating static compile-time parameters and known constants from
dynamic data.

The technique promotes complete decoupling of array indexing from mem-
ory allocation, which makes it applicable for many scenarios, including direct
processing of memory-mapped files or re-using the same data structure layout
in various memory spaces (e.g., offloading computations to GPUs). We showed
that the layout structures, combined with the C++ templating system, make it
easier to create layout-agnostic algorithms and functions, leading to a simpler
selection of optimal layouts for a given hardware platform and problem configu-
ration. Additionally, the utilization of layout structures makes it easier to create
semi-automated layout transform routines, which can improve the performance
of many algorithms.

We have implemented the proposed ideas in Noarr, a prototype library
demonstrating the viability of the approach. We demonstrated the benefits in
several examples and experiments; most importantly, we showcased the ability
to write shorter program source code that promotes easier experimentation and
compilation into faster solutions. The library is publicly available as an open-
source portable to all mainstream compilers, including CUDA nvcc, and may be
readily used in designing new libraries that consider performance a priority. We
expect that the approach will simplify the research focusing on optimizations
and automatic tuning of the performance of complex parallel algorithms.

Acknowledgements. This work was supported by Charles University institutional
funding SVV 260451.

A Experimental Methodology

The main objective of the benchmarking was to measure the speedups achieved
by different layout combinations to support the claims mentioned in the work6.
A more complex performance evaluation is beyond the scope of this paper and
is planned in future work.

6 More details and the data are in the replication package https://github.com/
asmelko/ica3pp22-artifact.

https://github.com/asmelko/ica3pp22-artifact
https://github.com/asmelko/ica3pp22-artifact
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A.1 GPU Benchmarking Setup

In the results, we present mainly the kernel execution times measured by the
high-precision system clock, which is available on all platforms. The relative
standard deviations in 20 collected measurements of each result were less than
5% of the mean value in all cases, so we report only the mean values.

Due to the page limit, the presented results were limited to matrices of sizes
(1008 × 1008) and (10, 080 × 10, 080). However, more extensive testing on other
problem instances, including a broader range of matrix sizes and non-square
matrices, exhibited similar results.

The results were collected on the following platforms:

• NVIDIA Tesla V100 SXM2 (Volta, CC 7.0, 1.3 GHz), Rocky Linux 8
• NVIDIA GeForce RTX 2060 (Turing, CC 7.6, 1.7 GHz), Windows 10
• NVIDIA GeForce RTX 3070 laptop (Ampere, CC 8.6, 1.6 GHz), Windows 11

All platforms used CUDA toolkit 11.6 with an up-to-date driver. These
devices represent three of the most recent Nvidia architectures and three typical
hardware platforms (server, desktop PC, and laptop). Hence, we claim that the
measurements sufficiently represent contemporary CUDA-enabled GPUs.

A.2 CPU Benchmarking Setup

We ran the kernel in 100 iterations for the stencil benchmark, plotted the local
regression outlining the mean value, and distinguished the outliers. The mea-
surements were conducted using the following CPUs:

• AMD Ryzen 5 5600X (hi-end desktop CPU, 3.70 GHz), Windows 10
• Intel Core i7-10870H (laptop CPU, 2.20 GHz), Windows 11
• Intel Xeon Gold 5218 (server CPU, 2.3 GHz), Rocky Linux 8.

Due to the fact that some compilers may optimize constexpr expressions
better than others, we compiled the benchmark using clang++ v12 and g++ v11
compilers with -03 flag. We also compiled the stencil benchmark using the MSVC
C++ compiler, but the results showed that it could not sufficiently optimize
Noarr code in the current version; hence, MSVC results are not included.

All benchmarking datasets were synthetic, with data sampled randomly from
the same uniform distribution. We consider synthetic validation sufficient since
the performance of the benchmarked algorithms is not data-dependent.
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Abstract. Deep learning has become a hot field of research. Previously, the deep
learning algorithms were mainly run by the CPU and GPU. With the rapid devel-
opment of deep learning, it has been found that the previous processors can no
longer carry the specific large-scale calculations of deep learning, and customized
accelerators of deep learning have become popular. The main workload of most
deep learning is theGeneralMatrix-matrixMultiplication (GEMM), and emerging
GEMM are highly sparse and irregular. The TPU and SIGMA are state-of-the-art
GEMM accelerators in recent years, but the TPU does not support sparsity, and
the SIGMA has insufficient utilization in some Processing Elements (PEs). In this
paper, we design and implement the SparG, a flexible sparse GEMM accelera-
tor. The SparG has a specific PE structure, a flexible distribution network, and
an efficient reduction network. For sparse and irregular GEMMs, the SparG can
maintain high utilization of PEs while taking advantage of sparsity. We run sparse
and irregular GEMMs in the TPU, SIGMA, and SparG. The experimental results
show that the performance of the SparG is the highest (30x better than the TPU,
and 3.6x better than the SIGMA), and the SparG brings only a small amount of
additional hardware overhead (~20% more than the TPU, and ~10% more than
the SIGMA).

Keywords: Deep learning · GEMM · Accelerators

1 Introduction

In recent years, deep learning has become very popular. Different deep learning models
are widely used in several important fields, including data mining [1], machine transla-
tion [2], recommendation [3], natural language processing [4], and search technology.
Before the appearance of dedicated neural network processors, the running of deep learn-
ing algorithms mainly used the CPU and GPU. The explosion of big data applications
have propelled the development of deep learning, but it also poses serious challenges to
the data processing speed and scalability of traditional computer systems [5]. Traditional
Von Neumann computer architectures are relatively inflexible, with separate processing
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and data storage components. Frequent data movement between traditional architecture
processors and off-chip memory limits the system performance and energy efficiency.
Hardware accelerators are customized with flexible architectures to run tensor compu-
tations efficiently for machine learning models. Deep learning accelerators are usually
composed of a large number of highly parallel computing and storage units, which can
accelerate the computing tasks in deep learning. Therefore, the design of dedicated chips
of deep learning has gradually begun to rise.

The core computational task of most deep learning models in training and inference
is the General Matrix-matrix Multiplication (GEMM). Accelerating the GEMM has
become a major goal of hardware accelerator design. State-of-the-art GEMM accelera-
tors include Google’s TPU and the SIGMA [6, 7]. The TPU uses a systolic array as its
hardware structure. A systolic array is a two-dimensional array composed of PEs, and
the data flows only between PEs. Systolic array can reduce the exchange of data with the
global cache and can reduce the data loading time, so it can reduce energy consumption
and speed up the GEMM. Systolic arrays can efficiently compute the dense GEMM,
but cannot take advantage of sparsity. Compared to accelerators that support sparsity,
the TPU introduces additional computation time and energy consumption when running
sparse GEMMs. The SIGMA is the latest sparse GEMM accelerator, which uses the
Bitmap format for sparse data encoding and uses the Benes network for data routing.
It proposes a FAN tree for accumulating irregular data, which accumulation time can
reach O(log2N). The PE array utilization of the stationary matrix of SIGMA is high.
However, in the SIGMA, the sparsity of the streaming matrix is not fully exploited, so
its PE array utilization of the streaming matrix is insufficient.

We propose the SparG, a novel GEMM accelerator that supports sparsity. The SparG
has a simpler and more efficient architecture than the SIGMA. The SparG can fully
exploit the sparsity of both the streaming matrix and the stationary matrix. Therefore,
both the streaming matrix and the stationary matrix have a high PE utilization. An
irregular addition tree, PipelinedAdder Tree (PAT), that supports pipelined accumulation
is used in the SparG. The accumulation time of irregular data can reach O(1).

In summary, this paper makes the following contributions.

1. We design a novel architecture of the SparG for irregular and sparse GEMM, and
the PE utilization of both the streaming matrix and the stationary matrix can achieve
close to 100%.

2. Wepropose aflexible distribution networkPEBus, and a pipelined reduction network
PAT. The time of PE Bus for data loading is O(1), and the time of the PAT for
accumulating irregular data is O(1).

3. Experimental results show that the performance of SparG is 30x better than TPU
and 3.6x better than SIGMA. The hardware overhead of SparG is ~20% more than
TPU and ~10% more than SIGMA.

The rest of the paper is organized as follows. Section 2 introduces the background.
Section 3 describes the disadvantages of TPU and SIGMA. Section 4 describes the
architecture of SparG. Section 5 evaluates the SparG through experiments. Section 6
describes the related work. Section 7 summarizes the conclusion.
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2 Background

2.1 Matrix Multiplication in Deep Learning Workloads

The CNN (Convolutional Neural Network) is one of the most successful algorithms of
deep learning [8]. The CNN usually includes the convolutional layer, the ReLU layer,
the pooling layer, and the fully connected layer. The main workload of CNN is the
convolution operation of the convolution layer and the matrix multiplication operation
of the fully connected layer. At present, the neural network processor usually converts the
convolution operation into the matrix multiplication. Im2col is a traditional method that
converts 3D convolution operations into matrix multiplications. Therefore, the GEMM
operation is the core computing operation of deep learning training and inference. In
particular, the GEMM operation can account for more than 70% of the computing cycle
[7]. Thus, accelerating the GEMM is the main goal of hardware acceleration.

2.2 Sparsity in Deep Learning Workloads

Tensors in deep learning are always sparse. Multiple factors induce the sparsity to the
tensors in deep learning models.

CNN uses the ReLU activation function to turn negative values to zeros [9]. The
sparsity of input activations can reach 40% in CNN [10]. Max pooling also amplifies the
sparsity [11]. Neural networks use drop-out layers to avoid overfitting. With drop-out,
only partial activations are kept, which leads to the sparsity as well [12].

The weight pruning technique removes unimportant weights. The widely used prun-
ing algorithms introduce significant sparsity. For example, more than 60% weights in
the convolutional layer and 90% weights in the fully connected layer can be removed
[13].

Pruning of input activations also leads to the sparsity [14]. The MASR reconstructs
batch normalization [15], achieving about 60% input activation sparsity of RNN. For
attention-based NLP models, SpAtten prunes unimportant tokens and heads [16]. It
reports that the computation and DRAM accesses can be reduced by up to 3.8 times and
1.1 times respectively, while maintaining the model accuracy.

GANs use transposed convolutions in degenerate networks, where the input data is
first amplified by inserting zeros between values. For the transposed convolution layers
in GANs, there is 60% sparsity on average [17].

The design of deep learning accelerators needs to take into account the sparsity of
tensors. Accelerators taking advantage of sparsity can eliminate inefficient computations
and improve performance. By processing only operations involving non-zero values, the
execution time and energy consumption of computations can be reduced. Meanwhile, by
storing only non-zero values, the memory requirements can be reduced, reducing both
on-chip and off-chip memory access counts [18].

3 Inefficiency of TPU and SIGMA

3.1 TPU

Google’s TPU is designed for data center applications [6]. The main computing compo-
nent of the TPU is the Matrix Multiply Unit, which is a systolic array composed of 256
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× 256 computing units. The TPU passes the data between the computing units so that
each data is processed multiple times. Thus, the TPU can significantly reduce the I/O
operations. The TPU applies the weight stationary dataflow. The weight matrices are
fixed in the systolic array, and the input matrices are transmitted and processed between
the computing units in a certain order. Not only the input matrix is passed between the
systolic array computing units, but also the partial sum is passed between the systolic
array computing units. The calculated results are streamed out of the systolic array and
stored in the result accumulator.

The systolic array is efficient for dense GEMMs, but not for sparse GEMMs.
When computing a sparse matrix, the systolic array sends zeros into the multiplier
for multiplication, resulting in additional computing time and energy consumption.

3.2 SIGMA

The SIGMA is a GEMM accelerator that supports sparsity [7]. The basic building block
in the SIGMA architecture is a processor called the Flexible Dot Product Engine (Flex-
DPE). Several Flex-DPEs are connected via a simple NoC to create the full SIGMA
compute fabric. EachGEMMoperation uses a contiguous set of Flex-DPEs. SIGMAuses
the Benes network to support flexibility in data loading. Benes is an N-input N-output
multi-level non-blocking network. Benes has 2log(N) + 1 stages, and each stage has N
tiny 2*2 switches. Benes allows communication between any source and any destination
without any contention [19]. The data communication time of the Benes network is O(1).
TheSIGMAuses theBitmap scheme to encode sparse data and supports the calculationof
sparsematrices without decompression. For sparse irregular workloads, the performance
of the SIGMA is 5.7x higher than the TPU. Although the SIGMA supports sparsity well,
it has the problem of insufficient PE utilization for the streaming matrix, which will be
discussed in detail later in Sect. 3.3.

3.3 Mapping of Sparse Irregular GEMM

In this section, we map a sparse irregular GEMM to the systolic array, SIGMA, and
SparG, respectively. Figure 1a shows a sparse irregular GEMM. The MK matrix is the
streaming matrix and the KN matrix is the stationary matrix.

Figure 1b shows the mapping of the sparse and irregular GEMM in the systolic array.
The systolic array has 16 PEs. Due to the rigid structure of systolic array, only half of
the PEs can be used, and zeros need to be filled into the systolic array as well. Only half
of the KN matrix can be calculated each time. Once the calculation of the streaming
matrix is complete, the second half of the KN matrix must be loaded and calculated
again, which results in poor PE utilization and performance.

Similar to the discussion in the SIGMA paper [7], for the SIGMA and SparG, we
focus on two different types of PE utilization. Namely, the StrUtil, which represents the
PE array utilization of the streaming matrix, and the StaUtil, which represents the PE
array utilization of the stationary matrix.
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Fig. 1. The mapping of the sparse irregular GEMM in the systolic array, SIGMA, and SparG.

Figure 1c shows the mapping of the sparse irregular GEMM in the SIGMA which
includes 16 PEs. Due to the flexible distribution and reduction network, the SIGMAonly
maps non-zero elements of the stationary matrix. The StaUtil of the SIGMA can reach
100%. However, when the streaming matrix enters the array, insufficient StrUtil occurs.
In Fig. 1c, element ‘c’ and ‘0’ are in the same column. When ‘c’ enters the array, ‘0’
does not enter the array, so element ‘c’ enters the array alone. Since ‘c’ only uses part
of the PEs, other PEs will be idle. In the Fig. 1c (Cycle 2), the PE containing the values
(A, B, C, D, E, F, G) are used by ‘c’, so they are useful. While the PEs containing the
values (H, I, J, K, L, M, N, O, P) are not used by any element, so they are idle. Similarly,
when ‘d’ enters the array, the PEs containing the values (A, B, C, D, E, F, G) are useful,
while the PEs containing the values (H, I, J, K, L, M, N, O, P) are idle. Therefore, the
StrUtil of the SIGMA is insufficient (only 56% in this example).

Figure 1d shows themapping of sparse irregular GEMM in the SparGwhich includes
16 PEs. Similar to the SIGMA, the SparG only maps non-zero elements of the stationary
matrix to the PEs, The StaUtil of the SparG can reach 100%. Unlike the SIGMA, the
streaming matrix in the SparG is shifted. When the streaming matrix flows in, the zero
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elements are skipped, and the nearest non-zero element flows into the PE. In the Fig. 1d,
when element ‘c’ enters the array, element ‘e’ enters the array simultaneously. Similarly,
when element ‘d’ enters the array, element ‘f ’ enters the array simultaneously. In this
way, all PEs are effectively utilized. Therefore, the StrUtil of the SparG is 90% in this
example, which is much higher than that of the SIGMA.

4 The SparG Architecture

In this section, we propose the architecture of the SparG. As shown in Fig. 2a, the SparG
contains the Global Buffer, PE Array, Accumulator, and Controller. The Global Buffer
is used to store the block matrix in a Bitmap format, the PE Array is used to calculate
the block GEMM, the Accumulator is used to accumulate the block matrix, and the
Controller controls the progress of the SparG.
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Fig. 2. The architecture of SparG and the component of PE in the SparG.

4.1 Microarchitecture

PE and PE Groups
As shown in Fig. 2a, the SparG consists of several PE groups. Each PE group consists of
several PEs. As shown in Fig. 2b, the PE contains five registers, which are VIDSecReg,
VIDReg, StrSecReg, StrReg, and StaReg. The value ID (VID) indicates accumulation
group of the multiplication result of streaming data and stationary data. Multiplication
results of the same VID need to be added together. The value in the VIDSecReg is used
to select the VID to the VIDReg. The VIDReg is used to store the VID. The value in
the StrSecReg is used to select data on the PE Bus as the streaming data. StrReg is used
to store the streaming data. StaReg is used to store the stationary data. The values in
the VIDSecReg, the StrSecReg, and the StaReg are filled when loading the stationary
data and do not change when loading the streaming data. The StrReg and the VIDReg
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are filled when loading the streaming data. The PE contains several multiplexers. When
loading the streaming data, according to the signal on the PE Bus and the value in
the VIDSecReg, VIDMux_0 to VIDMux_4 select a VID and send it to the VIDReg
(more details are shown in Fig. 5 (Step vi-b)). According to the value in the StrSecReg,
the StrMux selects the data of the PE Bus and send it to the StrReg (more details are
shown in Fig. 5 (Step vi-a)). There is a multiplier in PE, which is used to calculate the
multiplication of stationary data and streaming data. The multiplication result and the
VID are output to the reduction network simultaneously.

If a PE group contains K PEs, the large size N × N matrix is divided into small
matrices of the size of K × N or N× K to perform block matrix operations. Several PE
groups are used to compute a block matrix multiplication. As shown in Fig. 5 (Step iii),
the number of PE groups required is determined when loading the stationary data.

Distribution Network
The distribution network is to load the stationary data and stream the other data. In
systolic array, the distribution network consists of horizontal and vertical forwarding
links between PEs. The data loading time of the systolic array is O(K) for a K × K
systolic array. The SIGMA uses the Benes network as the distribution network, and
its data loading time can be reduced to O(1). However, the Benes network requires
additional logic to generate the routing information.

The SparG uses PE Bus as the distribution network. Each PE group is connected to
a single PE bus, and the data loading time can reach O(1). Compared with the Benes
network, the bus structure is simpler, the wiring cost is less. In addition, data routing
is implemented through multiplexers in the PE, so the SparG do not require additional
logic to generate the routing information.

Reduction Networks
The reduction network is used to accumulate themultiplication results from the PE array.
The reduction network of the systolic array is rigid, and it can only accumulate the same
numbers of elements each time. Unlike the systolic arrays, flexible reduction networks
usually require to accumulate different numbers of elements. As shown in Fig. 3b,c, the
VID of ‘a’ has three elements that need to be added together. While the VID of ‘b’ has
four elements to be added together.

The ART is a reduction network used in the MAERI [20]. The ART is an adder tree
augmented with additional links. These additional links are used to forward the adder
output to other nodes of the same level, instead of the parent node. The ART is built
with three input adders, and two inputs are from the child nodes and one input is from
the sibling node. This induces a high hardware overhead.

The FAN is a reduction network used in the SIGMA [7]. The FAN is based on a
traditional binary adder tree. It places forwarding links between adders at different levels.
The average accumulation time of the ART or the FAN is O(log2N). However, neither
the ART nor the FAN can support pipelined accumulation, which significantly limits the
performance.
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Fig. 3. The structure and algorithm of PAT.

In this section,we proposed the PipelinedAdder Tree (PAT) as the reduction network,
which is a linear addition treewith pipeline registers. Similar to the FAN, the PAT is based
on the linear binary tree in Fig. 3a. By adding forwarding links on the linear binary tree,
the simplified FAN can be obtained in Fig. 3b. Then adding pipeline registers between
the stages of the simplified FAN can get the PAT in Fig. 3c. The value on the original
forwarding link is temporarily stored in the pipeline register and passed backward by the
pipeline register. For example, in Fig. 3b, ‘adder 6’ and ‘adder 7’ have a forwarding link.
In Fig. 3c, after adding the pipeline register, ‘adder 6’ is connected to the ‘Reg1 [7]’ of the
next stage and is passed down stage by stage, and finally reaches the ‘adder 7’.

The PAT runs in a pipelined manner, in which the input of each stage is the output
of the previous stage. Figure 3d presents the algorithm for the i-th level of PAT. The
input to the algorithm is the value of the pipeline register of this stage, the VID and
AdderID. And the output is the value of the pipeline register of the next stage. Line 1
of the algorithm traverses the AdderID in Lev_i. The Lev_i in line 1 of the algorithm
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corresponds to the number of pipeline stages in Fig. 3c. For example, if i is ‘2’, the
AdderID in Lev_i contains ‘3’ and ‘11’. Lines 2–4 of the algorithm assign initial values
to the output registers. Line 5 judges whether an add operation needs to be performed
according to the VID value. If an add operation is performed, lines 7–8 clear the two
registers to remove the two added elements. Then lines 9–26 determine which register
to put the sum into. The condition of line 9 to hold is that if the adder with this AddID
is on the left side of the parent node in the linear binary. If all AdderID in Lev_i are
traversed, the algorithm ends.

To show the advantage of PAT, we implement the linear binary tree, ART, FAN,
and PAT with the RTL Verilog. We use the Xilinx Vivado Design Suite to evaluate their
performance and hardware overhead. Each of these adder trees contains 31 adders. The
values of different batches are used for accumulation. As shown in Fig. 4, the PAT has
the highest performance due to pipelined accumulation. The PAT is about 3x faster than
the FAN or the ART. The hardware overhead of PAT is the largest due to the additional
pipeline registers. It is 2x more than the FAN or ART.

(a) Performance evaluation. (b) Hardware overhead evaluation. 
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4.2 Example

The following steps (corresponding to Fig. 5) describe a walk-through example of the
SparG. In this example, each PE group contains four PEs (NPE is 4).

Step i) Read two block matrices encoded in the Bitmap format. In this example, the
MK matrix is stationary and the KN matrix is streaming.

Step ii) Row-wise OR operation on the streaming bitmap, and take the output as the
valid bits of the column of the stationary bitmap. Then, the invalid elements are removed
from the stationary bitmap.

Step iii) The number of ones in the stationary bitmap corresponds to the number of
useful stationary values (Nsta). Since Nsta is 8 and NPE is 4, two PE groups are required
in this example.
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Step vii) Output the Multiplication Result Form PE Groups to Reduction Net

Step i) Get Bitmap Step ii) Remove invalid elements

Step iii) Determine the number of PE Groups

Step iv) Encode the Bitmap and Shift Streaming Bitmap left by row

Step v) Unicast Stationary Values, Rsta Values and Csta Values to PEs
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Fig. 5. An example of running the GEMM in the SparG.

Step iv) Encode the stationary bitmap and the streaming bitmap. For the stationary
bitmap, get the column number and row number of the value from the bitmap and put
them into the Csta and Rsta arrays. For the streaming bitmap, the column number is put
into the Cstr array. The values of the streaming matrix need to be shifted left by row as
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Fig. 5 (Step iv) shows. The column number and row number in the example only cost 2
bits.

Step v) Unicast the stationary value to each PE in the PE group. The stationary data
is put into the StaReg. The corresponding values in the Rsta and Csta arrays are also
allocated to the PE. The data in the Rsta array is put into the VIDSecReg. The data in
the Csta array is put into the StrSecReg.

Step vi) Broadcast the streaming value to each PE group by column. PEs need to
select a correct streaming value, and routing is required at this step. In the previous step,
there is already a value in the StrSecReg. This value is used as the control signal for the
multiplexer in Fig. 5 (Step vi-a). The multiplexer selects the value on the PE Bus and
stores it in the StrReg. When the streaming data enters the StrReg, the corresponding
Cstr value is also put into the PE. The Cstr value and the VIDSecReg value are taken as
the control signal of the multiplexer in the Fig. 5 (Step vi-b). The multiplexer selects the
corresponding VID and sent to the VIDReg.

The StaReg and the StrReg in the PE are connected to amultiplier. Themultiplication
result is generated after the stationary data and the streaming data are multiplied. The
multiplication result and the value in the VIDReg are sent to the reduction network
simultaneously.

Step vii) Since the streaming matrix is out of order (after shifted), the multiplication
results with the same VID may be generated in different cycles. It is necessary to add a
block FIFO before the reduction network. The value of the VID greater than or equal to
4 is blocked first, and the value of the addition ID greater than or equal to 8 is blocked in
the next cycle. Then the unblocked VID and multiplication result are send into the PAT.

The above unicast, broadcast, multiply and add operations are all performed in a
pipelined manner. A GEMM operation is complete once all non-zero values of the
streaming matrix have flowed in and the output has been generated.

5 Evaluation

5.1 Experimental Methodology

We have compared the SparG with state-of-the-art GEMM accelerators, the TPU and
SIGMA. To ensure evaluating the performance and hardware overhead with the same
experimental platform, we use RTL Verilog HDL to implement the TPU, SIGMA, and
SparG of the same scale. In our experiments, the systolic array of the TPU contains 8
× 8 PEs; the SIGMA contains 8 Flex-DPEs, and each Flex-DPE contains 8 PEs; the
SparG contains 8 PE groups, and each PE group contains 8 PEs. The data width is 8 bits.
We use the Xilinx Vivado Design Suite for logic simulation and synthesis. The clock
cycle during simulation is set to 8ns, and the main frequency during synthesis is set to
125MHz. Additionally, we implement the TPU, SIGMA and SparG with 16 × 16 PEs
for scalability analysis.

We have evaluated the GEMM with different sizes and different sparsities on the
TPU, SIGMA, and SparG. In our experiments, the sparsity of MK and NK matrices are
set to be the same. The TPU, SIGMA, and SparG all use the weight stationary dataflow.
That is, when calculating the GEMM of dimension M-K-N, the KNmatrix is stationary,
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and the MKmatrix is streaming. Other dataflows have similar performance trends to the
weight stationary dataflow, and we omit them for brevity.

5.2 Dense Regular and Dense Irregular GEMM

Figure 6 shows the performance and array utilization of the TPU, SIGMA, and SparG of
the 8 × 8 scale when running dense regular GEMMs. The performance is measured as
the count of cycles. The utilization is measured as the average of the StaUtil and StrUtil.
Since there is no sparsity and the matrix is regular, every matrix element in the GEMM
must be mapped. The array utilization of TPU, SIGMA and SparG are all 100%. The
TPU has O(SqrtN) distribution and reduction. The SIGMA has O(1) distribution and
O(Log2N) reduction. The SIGMA is ~10% faster than the TPU. The SparG uses the PAT
which has O(1) reduction. So the SparG is ~20% faster than the TPU and ~10% faster
than the SIGMA.
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Fig. 6. The performance and array utilization of the TPU, SIGMA, and SparG when running
dense regular GEMMs. The three numbers in the horizontal axis represent the size of GEMMs
(M-K-N).

Figure 7 shows the performance and array utilization of the TPU, SIGMA, and SparG
of the 8 × 8 scale when running dense irregular GEMMs. Since the array size of TPU,
SIGMA and SparG in our experiments is 8× 8, the GEMM is irregular when the size of
K dimension is less than 8. For dense and irregular GEMMs, the PEs in the TPU systolic
array cannot be fully filled, so the array utilization of the TPU cannot reach 100%. The
Underutilization of TPU array results in additional time cost. The SIGMAand SparG use
flexible distribution networks. All elements can be filled into PE, so the array utilization
of both can reach 100%. The high utilization brings high performance to the SIGMA
and SparG. In this experiment, the SIGMA and SparG are up to 10x faster than the TPU.
The SparG is ~10% faster than the SIGMA due to the more efficient pipelined reduction
network.
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Fig. 7. The performance and array utilization of the TPU, SIGMA, and SparG when running
dense irregular GEMMs.

5.3 Sparse Regular GEMM
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Fig. 8. The performance and array utilization of the TPU, SIGMA, and SparG when running
50%-sparse regular GEMMs.

Figures 8, 9 and 10 show the performance and array utilization of the TPU, SIGMA,
and SparG of the 8 × 8 scale when running regular GEMMs with different sparsities.
The vertical axis is on a logarithmic scale. Due to the introduction of sparsity, the TPU
must map zeros to the systolic array, resulting in an insufficient array utilization. As
shown in Fig. 1c, in the SIGMA, the StaUtil can be close to 100, but the StrUtil is low.
So the average utilization of the SIGMA is low as well. In the SparG, both the StaUtil
and the StrUtil are close to 100%, so the utilization of the SparG is the highest. Due
to insufficient utilization, the performance of the TPU is the worst. Due to the highest
utilization, the performance of the SparG is the best. In our experiments, for the sparse
regular GEMMs, the performance of the SparG is 10x better than the TPU and 3.6x
better than the SIGMA.With the sparsity increases, the performance difference between
the SparG, SIGMA and TPU becomes larger.

5.4 Sparse Irregular GEMM

Figure 11, 12 andFig. 13 show the performance and array utilization of theTPU,SIGMA,
and SparG of the 8 × 8 scale when running irregular GEMMs with different sparsity.
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Fig. 9. The performance and array utilization of the TPU, SIGMA, and SparG when running
60%-sparse regular GEMMs.
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Fig. 10. The performance and array utilization of the TPU, SIGMA, and SparG when running
70%-sparse regular GEMMs.

The ordinate is on a logarithmic scale. The sparsity and irregularity lead to worse array
utilization of the TPU, while that of the SparG is always the highest, and that of the
SIGMA is modest. The TPU performs the worst when dealing with sparse and irregular
GEMMs. Due to its low StrUtil, the performance of the SIGMA is worse than the SparG.
In our experiments, the performance of SparG is 30x better than TPU and 3.6x better
than SIGMA.As the increase of sparsity, the performance difference between the SparG,
SIGMA, and TPU becomes larger. On sparse and irregular GEMMs, the advantage of
SparG is very obvious.

5.5 Scalability Analysis

We implement the SparGwith 256 PEs for scalability analysis. The design of PEs and PE
groups is fixed. If a larger-scale SparG needs to be implemented, it is only necessary to
add additional PE bus and PE groups. And there is no need to change the original PE and
PE group. Figure 14 shows the performance and array utilization of the TPU, SIGMA,
and SparG with 256 PEs when running sparse and irregular GEMMs. Experimental
results show that the array utilization of SparG is the highest. And the performance of
the SparG is >30x better than TPU and 3.6x better than the SIGMA. Compare to the 8



SparG: A Sparse GEMM Accelerator for Deep Learning Applications 543

0

0.2

0.4

0.6

0.8

1

1

10

100

1000

10000

100000

U
til

iza
tio

n

Ru
nn

in
g 

Ti
m

e 
(c

yc
le

)
TPU SIGMA SparG TPU Utilization SIGMA Utilization SparG Utilization

Fig. 11. The performance and array utilization of TPU, SIGMA, and SparG when running 50%-
sparse irregular GEMMs.
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Fig. 12. The performance and array utilization of TPU, SIGMA, and SparG when running 60%-
sparse irregular GEMMs.
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Fig. 13. The performance and array utilization of TPU, SIGMA, and SparG when running 70%-
sparse irregular GEMMs.

× 8 scale SparG, the larger-scale SparG has high performance and utilization similarly.
Therefore, SparG has better scalability.
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Fig. 14. The performance and array utilization of the TPU, SIGMA, and SparG with 256 PEs
when running 70%-sparse irregular GEMMs.
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Fig. 15. The hardware overhead of the TPU, SIGMA, and SparG.

5.6 Hardware Cost Analysis

We evaluate the TPU, SIGMA, and SparG with 64 PEs. Figure 15 shows the hardware
overhead of the TPU, SIGMA, and SparG. The TPU requires fewer hardware resources
than the SparG due to its regular systolic array and simple distribution and reduction
network. Compared with the SIGMA, the distribution network of the SparG is sim-
pler, so the SparG requires less LUT (Look-up Tables) resources. Since the PE array
and reduction network require more register resources, the demand for FF (Flip-Flops)
resources of the SparG is larger. The external BRAM (Block Random Access Memory)
resources of the three arrays are similar. On average, the hardware overhead of the SparG
is ~20% more than the TPU and ~10% more than the SIGMA. Due to the large perfor-
mance improvement, we consider that the additional hardware overhead of the SparG is
acceptable.
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6 Related Work

6.1 Sparsity

Single-Sided Sparsity
The Eyeriss gates the multiplier when it sees an input activation of zero, but it does not
gate the multiplier on zero weights [21]. This gating approach can save energy, but not
save execution time. The Cnvlutin is a value-based approach to hardware acceleration
that eliminates most of the ineffectual operations about zero, improving performance
and energy with no accuracy loss [14]. The Cnvlutin compresses activation values based
on the ReLU operator, but it does not employ pruning to exploit weight sparsity. The
Cambricon-X exploits weight sparsity, keeping only non-zero weights in its buffer [22].
The Cambricon-X exploits the sparsity and irregularity of NN models for increased
efficiency, but it does not exploit activation sparsity. Unlike the Eyeriss, Cnvlutin, and
Cambricon-X, the SparG exploits both activation and weight sparsity.

Double-Sided Sparsity
The SCNN and SparTen are recent sparse CNN accelerators that utilize both activation
and weight sparsity [23, 24]. Specifically, SCNN employs a novel dataflow that enables
maintaining the sparse weights and activations in a compressed encoding, which elimi-
nates unnecessary data transfers and reduces storage requirements. TheSparTen achieves
efficient inner join operations by providing supporting for native two-sided sparse exe-
cution and memory storage. The EIE performs inference on compressed network model
and accelerates the resulting sparse matrix-vector multiplication with weight sharing
[25]. The EIE uses the packed representation of weights and activations, passing only
non-zero operands to multipliers. The Extensor finds the intersection of weights and
activations in compressed data, operating only on useful computations [26]. Our work
also exploits double-sided sparsity, but the SparG mainly targets sparse and irregular
GEMMs.

6.2 Flexible Interconnect

Eyeriss v2 is a DNN accelerator architecture designed for running compact and sparse
DNNs [27]. To deal with the widely varying layer shapes and sizes, it introduces a
highly flexible on-chip network, called hierarchical mesh, that can adapt to the differ-
ent amounts of data reuse and bandwidth requirements of different data types, which
improves the utilization of the computation resources. Furthermore, Eyeriss v2 can pro-
cess sparse data directly in the compressed domain for both weights and activations and
therefore is able to improve both processing speed and energy efficiency with sparse
models. Eyeriss v2 uses a flexible NoC to support sparsity but targets small mobile
CNNs instead of large GEMMs. MAERI is a DNN accelerator built with a set of modu-
lar and configurable building blocks that can easily support myriad DNN partitions and
mappings by appropriately configuring tiny switches [20]. MAERI uses a tree-based
interconnection network to achieve flexible mapping, but it cannot support the sparsity
of input features. FlexFlow can leverage the complementary effects among feature map,
neuron, and synapse parallelism to mitigate the mismatch [28]. FlexFlow develops a
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flexible dataflow architecture for different types of parallelism, but it is not for GEMMs.
SIGMA proposes a flexible non-blocking interconnect [7], SIGMA can support double-
sided sparsity in the GEMM but with the problem of insufficient utilization. The SparG
proposed in this paper adopts efficient and flexible distribution network PE Bus and
reduction network PAT.

7 Conclusion

In this paper, we design, implement and evaluate the SparG, a state-of-the-art GEMM
accelerator for sparse deep learning applications. The SparG has a specific PE structure, a
flexible distribution network, and a pipelined reduction network. And the SparG achieves
high array utilization to support high performance. For sparse and irregular GEMMs,
our experiments show that the performance of the SparG is 30x better than the TPU
and 3.6x better than the SIGMA. In addition, the SparG brings only a small amount of
additional hardware overhead.

Acknowledgments. This work is supported in part by the National Key R&D Project
No.2021YFB0300300, the NSFC (62172430, 61872374, 62272476), the NSF of Hunan Province
(2021JJ10052, 2022JJ10064).
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Abstract. The transformer is one of the most important algorithms in
the Natural Language Processing(NLP) field and widely used in com-
puter vision recently. Due to the huge computation requirements, the
current transformer acceleration work is mainly focused on GPUs of the
data center, away from signal sources such as voice and video. Digital
Signal Processor(DSP) is the traditional signal processing device and is
usually deployed on the edge. Therefore, it can effectively reduce the
processing time of the entire task by deploying deep learning models on
edge devices like DSP. However, there are several challenges to deploy-
ing transformer models on DSP efficiently. Firstly, the transformer is too
computationally intensive for DSP. Secondly, there is a lack of efficient
transformer operator libraries on DSP. In addition, the input sequence’s
variable length makes it difficult for optimization methods such as batch-
ing to work. To solve these challenges, we proposed a DSP accelerated
transformer inference engine, which consists of three components, an effi-
cient transformer operator library based on a very long vector and Very
Long Instruction Word(VLIW) architecture; an efficient memory opti-
mization strategy to manage large amounts of intermediate results and
alleviates data traffic problems due to insufficient on-chip memory; and a
sequence warp method that packs varied sequences to a large one based
on the sliding window and greedy algorithm. Experimental results show
that the proposed DSP transformer engine’s performance is comparable
with that of the mainstream NVIDIA GPU, while the DSP’s bandwidth
is only 1/20 of that of the GPU.

Keywords: Transformer · DSP · Acceleration engine · Deep learning
optimization

1 Introduction

In the early days of the rise of deep learning technology, researchers mainly used
deep models such as Recurrent Neural Network (RNN), LSTM [11], and GRU [4]
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to deal with problems in the NLP field. However, due to the inherent sequential
nature, these methods are not friendly to the parallel processing of tasks. In
addition, they are not good at dealing with long-term dependencies, which limits
the application of deep learning techniques in the NLP field. In recent years, the
transformer models represented with BERT [12] have achieved overwhelming
results in NLP tasks [13,17] (such as reading comprehension, translation, etc.).
In addition, more and more works apply transformers to computer vision [2,6,
9,25,28]. Currently, most transformer models are deployed on the GPU server,
which is far from the signal source. The data needs to be transmitted from the
signal acquisition terminal. In contrast, the DSP is closer to the signal, and using
deep learning methods to process the data on DSP will improve the efficiency
of the entire data processing chain. However, there are several challenges to
optimize the inference of transformer models on DSP.

First of all, transformer models bring massive challenges to the comput-
ing platform in terms of computational requirements and memory traffic. For
example, in a BERT(Large) model with seq length of 384, the inference com-
putation is about 229.5GFlops when considering General Matrix Multiplication
(GEMM) component only. While the 24-layer LSTM [11] and GRU [4] net-
work with 1024 units and feature dimension of 384, the computation is about
0.26GFlops and 0.19GFlops respectively. It makes it difficult for general DSPs
to meet the requirements.

Secondly, though the multi-head structure of the transformer is suitable for
parallel processing, the variable-length sequences make traditional deep neural
network optimizationmethods ineffective, such as batching.When extending short
sequences to fixed-length by zero-padding, an amount of extra computation will
be introduced. In addition, the uncertainty of the intermediate data results from
the variable length of the sequence, which makes memory optimization difficult.

Nowadays, the typical deep learning frameworks such as TVM [3], PyTorch
[21], and Tensorflow [1] could perform transformer model inference. However,
they focus on training or the traditional Convolutional Neural Network (CNN).
There are also some works of optimization of the inference of transformer mod-
els, such as NVIDIA’s FasterTransformer [20], Tencent’s TurboTransformer [7],
and ByteDance’s Lightseq [24]. These optimization methods are oriented to
NVIDIA’s GPU and achieve good performance by designing new operators for
the transformer and fusing kernels for the inference. However, the architecture
of DSP is very different from that of GPU, such as the VILW and long vector
feature. The existing deep learning framework and deep learning acceleration
library are inefficient or unusable on DSP. A new transformer operator library
needs to be built for DSP.

To solve the challenges, we proposed the first transformer inference engine
based on DSP. This engine consists of three parts: a high efficient operator library
for transformer on long vector architecture, a memory optimization strategy, and
a sequence warp scheduler. We optimized all the operators of the transformer
encoder with assembly code to fit DSP’s long vector architecture. In addition, we
fuse operators to reduce memory footprint. The memory optimization strategy
manages the expensive on-chip memory at runtime, keeping recently used data
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and replacing invalid data based on the lifecycle. To overcome the inefficiency
of zero-padding when batching varied length sequences, we proposed a sequence
warp approach to pack several sequences into a longer one and submit it to
the fixed-length issuer. Experimental results show that the performance of the
proposed DSP transformer engine is comparable with that of GPU [20], while
the bandwidth of DSP is 20 times lower than that of GPU. The innovative
contributions of this paper are as follows:

(1) We implement the first transformer inference engine on DSP. Through build-
ing a high efficient operator library for transformer on long vector architec-
ture, the proposed acceleration engine can achieve comparable performance
to that of FasterTransformer [20] on the GPU of RTX3090.

(2) We propose a memory optimization strategy to efficiently use the limited
on-chip memory based on variable lifetime. This method is significant for a
bandwidth-constrained processor with DDR.

(3) We propose a sequence warp method, which packs several sequences into
a very long and longer sequence based on a sliding window and a greedy
algorithm.

The rest of the paper is structured as follows: Sect. 2 and Sect. 3 will introduce
the background and related work on transformer; Sect. 4 will explain the pro-
posed DSP-based transformer engine in detail; Sect. 5 will present and analyze
our experimental results; Sect. 6 will share some conclusions.

2 Background

2.1 Transformer

The transformer [23] is widely used in the NLP field and has also brought rev-
olutionary progress to the computer vision field. Attention is the key idea of
the transformer, which can process different positions of the input sequence to
calculate the representation of the sequence. The transformer uses self-attention
layers (rather than RNN or CNN to handle inputs). Figure 1(a) shows the trans-
former architecture with encoder and decoder parts. In this paper, we only dis-
cuss the encoder parts. We firstly profile the structure of the typical transformer
model and extract functions as fine-grained as possible, as shown in Fig. 1(b)
and Fig. 1(c), H in the figure represents num heads, L in the figure represents
num layer. We divided the encoder part into four parts, XW, SelfAttention,
SelfOutput, and FFN, omitting the residual structure and incorporating layer-
norm into the previous part. The first one is the calculation of the matrix Q,
K, and V from the embedding vector, corresponding to three linear operators
with the same input embedding vector, where the matrix Q can be understood
as a matrix for querying other words. The matrix K can be understood as a
matrix queried by other words. The matrix V can be understood as the matrix
of the information of the extracted words. Then matrix Q, K, and V will be split
into several small ones by permute operation, and a transpose will be employed
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on the split Ki, the resulting Qi, Ki, and Vi are the inputs of the multi-head
attention part. The second part is SelfAttention, which focuses on calculating
the similarity between tokens by performing matrix multiplication operations on
the split Qi and Ki. Before multiplying with the split Vi, a softmax operation
is applied on the intermediate results of Qi ×Ki to strengthen attention on the
related words. It should be emphasized that the memory footprint will increase.
The third part is SelfOutput, which concatenates the results of SelfAttention
and collects information captured by different heads, and then a linear and a
layernorm operator will be applied. The last part is an FFN network, includ-
ing two linear operators, an activation operator, and a layernorm operator. It
will increase the vector space of the sequence, and an activation operator such
as Gaussian Error Linear Units(GELU [10]) is usually applied between the two
linear operators and apply a layernorm operator at the end.
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Fig. 1. Transformer architecture and encoder part.

2.2 Brief Introduction to the Processor

The processor is a high-performance floating-point multicore vector processor
for high-density computing, which integrates 22 vector processor cores. The pro-
cessor’s single-core architecture is shown in Fig. 2. The processor core consists
of a Scalar Processing Unit (SPU) and a Vector Processing Unit (VPU). The
SPU is responsible for the scalar calculation and flow control, and a shared reg-
ister is designed between the SPU and the VPU to exchange data. The SPU
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provides broadcast instructions to broadcast the data of scalar registers to the
vector registers of the VPU. The vector processor core supports the simultane-
ous transmission of 11 variable-length VLIW instructions, and the instruction
execution packet supports up to 5 scalar instructions and 5 vector instructions.
The instruction dispatch unit identifies the instruction execution packet and dis-
patches it to the corresponding functional unit for execution. The VPU provides
the major vector computing capability, integrating 16 Vector Processing Ele-
ments (VPE). Each VPE includes a local register file of 64-bit registers, and at
the same time, all the local registers of the same number of the VPE logically
constitute a 1024-bit vector register. Each VPE includes 3 FMAC operation
units, 1 BP unit, and 2 L/S data access units. The vector instructions assigned
to each VPE are executed independently simultaneously, and each clock cycle
supports concurrent execution of 3 FMAC operations. 2 vector L/S data access
units simultaneously support two-way 2048-bit vector data load and store. The
scalar memory of the processor includes the L1 Program Cache (L1P) and the
L1 Data Cache (L1D), of which L1D can be configured as full cache, full Static
Random-Access Memory (SRAM), and a mixture of both. The processor pro-
vides 768K large-capacity Array Memory (AM) for vector data access and pro-
vides Direct Memory Access (DMA) modes to achieve fast access to all levels
of storage space. The 22 cores of the processor implement data sharing and
exchange between cores through the Global Cache (GC) and shared DDR mem-
ory. The bandwidth difference between GC and DDR makes more data flow on
GC while improving computational efficiency.
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Fig. 2. Single-core architecture of the processor.
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3 Related Works

At present, the optimization direction of transformer inference acceleration is
mainly on GPU, CPU, and FPGA.

Acceleration on GPU. The acceleration is mainly on the GPU platform.
For example, Yuxin Wang [26] discussed the factors affecting transformer infer-
ence through energy efficiency and throughput, concluded that similar length
sequences should be batched, and finally proposed an alignment scheduling
scheme for optimization. However, the work is hardly optimized at the kernel
level. NVIDIA’s TensorRT [19], which is usually responsible for model inference,
improves performance by reconstructing the network structure and integrating
some operations and also supports INT8 and FP16 precision computing. The
computational graph and operator optimization used by TVM [3] also signifi-
cantly improve the transformer inference performance. NVIDIA has proposed a
library named FasterTransformer [20], which integrates a large number of opera-
tors to reduce GPU kernel scheduling and memory access, selects and optimizes
matrix multiplication that performs a large number of calculations simultane-
ously, and also provides the low-precision operators. ByteDance proposes a high-
performance training and inference library named Lightseq [24], which improves
performance by kernel fusion and dynamic GPU memory reuse. They use hierar-
chical auto-regressive search instead of beam search for sentence-level and token-
level classification applications. Most of the above works are only optimized at
inference runtime and cannot handle variable-length sequences. Tencent’s Turbo-
Transformer [7] proposes an engine that includes an inference runtime and server
system, optimizes edge operators such as softmax and layernorm, and adopts an
efficient memory management scheme during inference runtime. It also solves
the variable-length sequence problem that most libraries and frameworks do not
support on server systems. Gongzheng Li et al. [15] proposed EET, which opti-
mizes the sequence input by pre-filling decoding and thread block folding, mainly
to solve the long sequence length problem.

Acceleration on CPU. There is also a large number of great work on trans-
former inference based on CPU platforms. For example, Amir Ganiev et al. [8]
proposed a solution to improve the inference speed of offline batch jobs in Apache
Spark by using service-based concurrency. Wu et al. [27] optimize the BERT
through the MKL library and quantization based on the MXNET framework.
Dave Dice and Alex Kogan [5] mainly study matrix multiplication operations in
the transformer, perform relevant tests on whether weights are transposed, and
improve performance by reducing order overhead and optimizing strategies for
matrix multiplication microkernels.

Acceleration on FPGA. There is also a lot of work in hardware acceleration
of transformer using FPGA, which is generally optimized through optimization
methods such as quantization or clipping, compression, etc. For example, Zejian
Liu et al. [18] improved performance-per-watt through quantizing weights, acti-
vations, softmax, layer normalization, and all the intermediate results; Bingbing
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Li et al. [14] proposed an enhanced BCM-based compression method, optimized
the overall transformer computing process, and finally designed an FPGA archi-
tecture to support these. Panjie Qi et al. [22] used block-balanced pruning to
compress the model and developed the CBR format for block balanced sparse
matrices. Li et al. [16] proposed an FPGA-aware automatic ViT acceleration
framework, which can automatically find the best combination of quantization
based on the proposed mixed-scheme quantization.

4 Transformer Inference Engine on DSP

In this paper, we proposed a DSP accelerated transformer inference engine, as
shown in Fig. 3. This engine consists of three components, a high-efficiency oper-
ator library for transformer operators on long vector architectures, a software-
managed memory optimization strategy, and a sequence warp method. We build
microkernels to adapt long vector architectures by manually arranging assem-
bly instructions. Focusing on the transformer inference, we design an on-chip
memory allocation strategy based on variable lifecycle, which can reduce data
transmission between off-chip memory and on-chip memory. Referencing the
VLIW idea, our engine packs several sequences into a longer one and submits
it to the fixed-length issuer, which avoids the extra computation of the padding
method.

Engine

Sequence warp

Sequence queue

Sequence ... ...

Mircokernels library

Software-managed memory

optimization strategy

Inference runtime

Sequence...

Fig. 3. DSP accelerated transformer models engine.

4.1 High-efficiency Operator Library on Long Vector Architectures

Here, we illustrate the optimization of matrix multiplication (the most time-
consuming operation in the transformer) on the target DSP. We mainly focus
on task decomposition and memory optimization.
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Efficient Microkernels. For matrix multiplication of A×B = C in the trans-
former, we assume that A represents the embedding matrix of input sequence X
of size m × k, B represents the weights of k × n while C represents the output
of the size m× n. As shown in Fig. 2, the target processor has a small software-
managed GC marked gcs MB shared by all cores, and the basic idea is to utilize
the GC for data reuse and matrix blocking. Considering that the size of B is
usually larger than A or C, for example, when seq length = 384, when perform-
ing FP32 BERT(Large) model inference, the size of B is 4MB, while A the size
is only 1.5MB. In addition, the matrix A and C will be used by other functions,
and C will be set as the input for the next operation. We put A and C in GC
while B is in DDR memory space. According to the basic principle, we design an
adaptive blocking strategy for matrix multiplication of the transformer model
based on the size of the matrix and GC.

We partition the original matrix in a row-first manner and offload the com-
putation of different rows of matrix C to different kernels. Assuming that the
number of cores is nc, we divide the matrices A and C into nc blocks, labeled Ai

and Ci. The number of rows computed by each kernel is cr = m/nc (assuming
m is a multiple of nc).The matrix B will not be split because all kernels need to
use the matrix B.

As mentioned in the Sect. 2.2, L1D and AM are smaller in size than GC and
DDR. The data in GC (A and C) or DDR (B) should be divided into several
blocks and sent to L1D and AM to facilitate SPU and VPU operations. For
A×B = C, if we put the matrices A and B from DDR or GC to AM, an extra
transpose is required to pass a column of elements of the original matrix, so we
transform the typical matrix multiplication formula as shown in the Equation(1).

ci = ai0 × b0 + ai1 × b1 + ... + aik−1 × bk−1

while i = 0, 1, ...,m− 1
(1)

Figure 4(a) shows the row-wise GEMM vectorization algorithm. The sload
instruction means to load a aij element to scalar registers. The vload instruction
means to load bj vector to vector registers. The svmuladd instruction means to
multiply and add the element aij and all elements of the vector bj in the registers
to get cj . The vstore instruction means to store cj to AM. According to the delay,
we can execute the sload, the vload, and the svmuladd instructions in one cycle
through the VLIW instruction.

Figure 4(b) shows the GEMM microkernel algorithm based on VLIW. The
symbol & indicates that the instruction is executed on the same cycle as the
previous instruction. Assume that the instruction delay cycles of sload, vload,
svmuladd, and goto are 2, 1, 2, and 1. We load the first element of the first
of the matrix A to register R0 in the first cycle by sload instruction. We load
the first element of the second row of matrix A to the register R0 and the first
row of the matrix B to vector registers VR0, VR1, and VR2 by sload and vload
instruction in the second cycle. According to the delay period of sload, the value
of the register R0 is the first element of the first row of the matrix A in the third
cycle, and we multiply and add the first element of the first row of the matrix
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A and the first row of the matrix B by the svmuladd instruction and store the
result in registers VR4, VR5, and VR6, while j needs to be decremented. We
need to do something similar to the third cycle and jump the loop label if j > 0
in the fourth cycle. The GEMM of the first two rows of matrix C is completed
when j = 0, and we transfer the values of the registers VR4-VR9 to AM in the
fifth and the sixth cycle. This pipelining technique takes full advantage of the
MACs, and the utilization rate reaches the highest level.

Considering the memory space and the size of the matrix, we design an
adaptive blocking strategy to load the data blocks of the matrices A, B, and C.
The basic idea is to maximize the data reuse and bandwidth of on-chip memory.
Depending on the matrix size, we implement two blocking methods. One is tiling
on the dimension of m and n, and the other is tiling on all m, n, and k dimensions.

Fig. 4. Row-wise GEMM vectorization method and GEMM microkernel algorithm
based on VLIW.

For the tiling on m and n dimensions, from the perspective of the single-core
of the DSP, we block the matrix according to the size of L1D and AM of a
single-core. We split Ai into lp blocks in m dimension and split B into ap blocks
in n dimension. Correspondingly, since Ci is the result of multiplying Ai by B,
C will be split into lp blocks in the m dimension.

From the perspective of the multicore, the data blocking method and data
flow are shown in Fig. 5. A big block of A is transferred to GC with DMA, then
we divide this block into nc slices and scatter a slice for each core, as shown
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Fig. 5. Matrix A,B,C with mn-blocking method based on multicore.

in Fig. 5(a). To improve the memory efficiency, we broadcast one block of B
marked as Bi from DDR to AM for all cores, as shown in Fig. 5(b). By iterating
all blocks of B(from B0 to Bap−1), we can get the final result of Ci for all cores,
as shown in Fig. 5(c). We design a GEMM microkernel with m = 8 to better use
L1D and pipeline, tiling in the m dimension when the matrix A has more than 8
rows. Since the result of C will be set as the input of the next operator, we keep
C in the GC. However, this method is only suitable for the cols of A is small,
that 8×k×4 byte data from A can be resident in L1D. When k is large enough,
we adaptive to choose the other block method: tiling in all mkn dimensions.
From the perspective of single-core, the mkn-blocking method means tiling the
row of A and column of B based on the mn-blocking method. We divide the
data of matrix A and C in k dimension according to the size of L1D and AM
and split it into kp blocks. For each processing, the sub-block Aij of the slice
of Ai is multiplied by Bij of the slice of Bi to obtain the partial result of Cij

and accumulates on the divided dimensions to get the final Cij . According to
the above strategy, for a matrix multiplication operation with m = 8, k = 768,
n = 768, the single-core utilization is as high as 99.05%.

In addition, we use the kernel fusion optimization method, such as the fusion
of GELU, softmax, and layernorm with the previous operator, which effectively
reduces the transmission of data.
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4.2 Software-managed Memory Optimization Strategy Based
on Variable Lifecycle

From the perspective of flexibility, the current mainstream deep learning frame-
works(such as PyTorch and TensorFlow) support both training and inference
processing. Their memory allocation strategy mainly focuses on training and is
inefficient for inference without backpropagation. For training, due to the need
to retain intermediate results for backward processing, the lifecycle of data is
often longer than inference, resulting in frequent data transfers between on-
chip and off-chip memory. Observing that data are often read-only at the fixed
layer during inference processes, they have a relatively short lifecycle and can be
removed from on-chip memory after use. Specific memory allocations should be
considered to improve inference performance.

Memory Optimization Strategy. For the inference of deep learning models,
the memory footprints are mainly from the input data, weights, and output
data. Based on the following considerations, we put the weights in DDR while
the input/output data in GC. Firstly, the input data mainly come from the
output of the last layer(or function), and when keeping output data in GC can
avoid the time-consuming operator of loading input data from DDR to on-chip.
Secondly, we can reuse the data, and storing it on GC can effectively improve
bandwidth utilization, such as reusing the initial input X of the encoder when
computing Q, K, and V . The question is how to effectively use the GC to reduce
off-chip memory accesses. The basic idea is to keep recently used data on GC and
replace invalid data based on the lifecycle. Combining fine-grained task merge
strategies, the overall data distribution is shown in Fig. 6.
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Fine-Grained Task Merging to Reduce Intermediate Compute Result
Space Requirements. When processing the inference of transformer on GPU,
the current frameworks usually perform the same kernel on data by using massive
parallelism for high-efficiency throughput. For example, parallel processing can
be done on the heads of multi-head attention. Although this massively parallel
method can improve the utilization of GPU, it requires lots of space to save
intermediate results. For on-chip space-limited architecture, massive parallelism
may not be the best choice. In this paper, we propose two approaches to reduce
intermediate space requirements.

The first one is to reshape the execution process to reduce on-chip stor-
age requirements. The SelfAttention part includes three operators, namely Mat-
Mul0, Softmax, and Matmul1. When parallel computing is performed on all
heads on Matmul0, taking BERT(Large) as an example, assuming batch size=1
and seq length=384, an intermediate result of 9MB will be generated. When
seq length is increased, the size of the intermediate result may be larger than
GC and will have to be stored in DDR, which makes additional data transfer
between DDR and on-chip memory. To solve this problem, we reshape the execu-
tion process and merge the three operators of MatMul0, Softmax, and Matmul1
into one. We first perform the process of one head from MatMul0, Softmax to
Matmul1, then serialize on the multi-head. In this way, the intermediate result
generated by the MatMul0 and Softmax operators is only 0.5625MB, which
reduces GC requirements from 9MB to 0.5625MB. In addition, when executing
MatMul, it is also possible to parallelize the m dimension of the matrix.

The second one is to block large operators into small ones and fuse them.
In the FFN part, which includes three operators, namely Linear0, GELU, and
Linear1, after executing Linear0, the n dimension size of its weight is expanded
by four times, resulting in the expansion of the output by four times to 6MB
if taking a typical BERT(Large) model with seq length=384 as an example. To
reduce the on-chip memory requirement, we block the operators of Linear0 and
Linear1 on the k dimension. Since the operations of GELU are organized element-
wise, it will not increase the memory footprint. The total on-chip memory will
be reduced by np times if we block the FFN on the k dimension with the factor
of np. In our engine, if we divided the FFN into four blocks in the k dimension,
the intermediate result generated by the operator reduces GC requirements from
6MB to 1.5MB.

4.3 Sequence Warp

Reusing data can reduce memory access pressure, which is one of the ways to
affect performance. For deep learning models, weights can usually be reused by
increasing the batch size, but if the batch size increases, the space required for
input and output also increases with the batch size. According to the previous
strategy, we store intermediate results such as the inputs and the outputs in
the GC. Due to the limited space of the GC, increasing the batch size may
cause some data to be transferred to the DDR, so this method may not effec-
tively improve the inference performance. To solve this problem, we propose a
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Algorithm 1. Sequence warp with sliding window algorithm.
Require: sequence list;
Ensure: save sequence list;
1: sort sequence list in decreasing order based on sequence length;
2: sn ← size of sequence list;
3: Create saved sequence list as lists of size sn;
4: Create states as lists of size sn;
5: Create warp lists as lists of size sn;
6: states=0,warp lists=0, pk=0;
7: for pk < sn − 1 do
8: while i < sn do
9: j ←sn-1 ;

10: if(states[i] == 0)
11: while(j¿i and states[j]==0) do
12: Find the sum of pk sequences in the interval [i, j] equal to max seq length;
13: j ←j-1
14: update saved sequence list states list warp lists
15: endif
16: i ←i+1

sequence warp method that packs several sequences whose length is less than
max seq length into a longer one. In the inference processes of most transformer
applications, the sequence is first preprocessed, the zero-padding operation is
adopted when seq length < max seq length, and the mainstream framework
usually directly calculates the data of max seq length length now. Computing
redundant invalid information increases the amount of computation and requires
more GC.

Algorithm 2. Sequence warp with greedy algorithm.
Require: sequence list;
Ensure: save sequence list;
1: i ← 0;
2: while i¡ sn do
3: if(states[i] == 0)
4: Find the sum of max maxn consecutive sequences less than max seq length;
5: update saved sequence list,states list,warp lists
6: endif
7: i ←i+maxn

The analysis of the calculation process shows that whether or not to calculate
this part of the zero-padding data will not affect the final result. For the XW, Self-
Output, andFFNparts, whether it is the input or outputmatrix, seq length is only
related to the dimension of the row. Taking matrix multiplication as an example,
the row information of the output matrix is only related to the corresponding row
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information of the input matrix and the weights. In contrast, the weights are unre-
lated to seq length. If the part of the input data after zero-padding is invalid, the
corresponding part of the output data is also invalid. The same is true for other
operators such as GELU and layernorm. Therefore, there is no need to calculate
invalid information for the XW, SelfOutput, and FFN parts. However, when cal-
culating QKt in the SelfAttention part, the row dimension of the matrix Q and
the column dimension of matrix Kt are related to seq length. If not processed, it
will affect the accumulation of the k dimension in matrix multiplication, thereby
affecting the FFN part of the operation, resulting in uncontrollable errors. We hope
that the invalid data of the intermediate result after softmax approaches zero so
as not to affect the operator calculation of the FFN part. Moreover, we found that
when the execution of QKt is completed, the output will add attention mask and
apply the softmax operator to it, where attention mask is related to the length of
the sequence. When the seq length does not exceed max seq length, the value of
the attention mask corresponding to the sequence is −infinity, the intermediate
result add attention mask is still -infinity, and e−infinity is close to 0 after apply-
ing softmax. Therefore, the result of the invalid part will be close to 0 and will not
affect the result of subsequent parts.

To sum up, when seq length is less than max seq length, although invalid
data is not calculated to reduce computation, it still wastes some valuable mem-
ory space. To solve the problem, we propose the optimization method named
sequence warp. We will replace the memory space required by invalid data in
the input data and pack the valid information of multiple input data. It can
reuse the weight and improve the overall inference efficiency.

The optimization method of sequence warp proposed in this paper mainly
uses the sliding window algorithm and the greedy algorithm, as shown in
Algorithms 1 and Algorithms 2. First, we collect all sequences after embed-
ding named seq length list, and sort them in descending order according to
the seq length, then create three collections called saved sequence list, states
warp lists, saved sequence list as the final input to the acceleration engine,
states to check if the sequence has been added to saved sequence list, warp lists
is used to record whether the sequence needs to be packed. Finally, store sequence
pairs whose sum of pk(pk > 0&&pk < sn − 1) equals max seq length in
saved sequence list, and update states and warp lists. We use a greedy algo-
rithm to find sequence pairs where the sum of seq length of the remaining
sequences does not exceed max seq length, and when the state in all sequences
changes, it means that the rearrangement of all sequences has been completed.
and stored in saved sequence list. Then send saved sequence list to the accel-
eration engine to complete the transformer inference, and judge whether to
perform sequence warp and calculation according to the value of warp lists.
For example, there are eight input sequences with lengths of 384, 320, 64, 128,
128, 128, 256, and 64, and we first sort the data in descending order. When
max seq length = 384, the sequence of length 384 directly forms a pack, and
then uses the sliding window algorithm to pack the sequence pairs of lengths 320
and 64 and the sequence pairs of lengths 128, 128, and 128, and then uses the
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Fig. 7. An example of sequence warp for variable-length input when
max seq length=384.

greedy algorithm to warp the lengths of 256 and 32, and finally form 4 packs, as
shown in Fig. 7.

5 Experiment

In this section, we will show the benefits of optimization methods of our engine,
our tests BERT(Base), BERT(Large), and ALBERT [13] models, and the mod-
els’ parameters are as follows:

Table 1. Transformer model parameters

Model Num layer Num head Hidden size Inter size

BERT(Base) 12 12 768 3072

BERT(Large) 24 16 1024 4096

ALBERT 12 12 768 12288

All experiments were tested 10 times and averaged. We test the BERT(Large)
model throughput for question answering applications based on the SQuAD-1.1
dataset on a GPU platform (NVIDIA GeForce RTX 3090) and our DSP. On the
GPU platform, our tests are based on the PyTorch and the FasterTransformer,
and the results are shown in Fig. 9. Our throughput is close to the throughput
of NVIDIA GeForce RTX 3090 using PyTorch, and when the sequence length
becomes longer, our throughput tends to be greater than PyTorch and the Faster-
Transformer. It should be emphasized that the peak performance of the DSP is
lower than that of the NVIDIA GeForce RTX 3090, but the memory used by
NVIDIA GeForce RTX 3090 is GDDR6X, and the theoretical bandwidth exceeds
1 TB/s. In contrast, the memory used by DSP is DDR4, and the theoretical
bandwidth is only 43 GB/s. We tested the performance before and after opti-
mization on our engine. Figure 8 shows the overall benefit of our engine using the
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Fig. 8. Overall optimization speedup on our engine with fours datasets.

Fig. 9. Throughput of BERT(Large) with different library.

optimization method on the TREC, SST-2, SQuAD-1.1, and IMDB datasets. It
can be seen that the speedup increases with the increase of sequence length.
The maximum speedup of the BERT(Base), BERT(Large), and ALBERT mod-
els reaches 10.74x, 11.72x, and 13.98x on the TREC dataset, 9.28x, 10.11x, and
11.68x on SST-2 the dataset, 2.61x, 2.71x, and 2.75x on the SQuAD-1.1 dataset,
and 1.97x, 2.05x, and 2.06x on the IMDB dataset, respectively.

Kernel Library. As mentioned before, GEMM takes up most of the computa-
tion in the transformer inference. Figure 10 shows the time proportion of each
part of the operator on our engine before and after optimization, the time propor-
tion of GEMM operation is 82.00% and 89.81%, respectively, and the benefits
of this part mainly come from fine-grained task merging in the SelfAttention
and FFN parts, which brings a 1.32x speedup. Not only that, but we have also
optimized the edge operator, and the time proportion of each part has decreased.

The Benefits of Memory Management Strategies. We tested the benefits
brought by our memory allocation optimization strategy. When using our task
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Fig. 10. The proportion of operator time based on the BERT(Large) model with and
without kernel optimization.

Table 2. Memory footprints savings(MB) based on BERT(Large) model

Model Sequence length

64 128 192 256 320 384

BERT(Base) 8.81 21.75 38.81 60.00 85.31 114.75

BERT(Large) 19.13 49.50 91.13 144.00 208.13 283.50

ALBERT 11.81 29.25 52.31 81.00 115.31 155.25

merge strategy, the memory footprint savings used FP32 are shown in Table 2.
Let the sequence length be len, the formula is shown in Eq. (2).

Saved0 =
((num head− 1) × len + (inter size− hidden size)) × len× 4

1024 × 1024
(2)

The memory management strategy reduces the memory footprint and makes
our data flow better on GC. Figure 11 shows the latency benefits brought by the
memory management strategy of the SelfAttention and the FFN parts. There
is a small benefit when seq length is small since the GC space is enough to
put down the intermediate results. As seq length increases, the overall trend is
upward. The benefits mainly come from not needing to move data from GC to
DDR. BERT(Large) has the highest benefit in the SelfAttention part because
its heads nums is larger, while ALBERT has the highest benefit in the FFN part
because it’s inter size is larger, and the maximum speedup of BERT(Base),
BERT(Large), and ALBERT models can reach 1.40x, 1.44x, and 1.48x.

The Benefits of Sequence Warp. We also test the throughput of three FP32
models based on the TREC, SST-2, SQuAD-1.1, and IMDB datasets when using
sequence warp. Figure 12 shows the maximum speedup can reach 9.92x, 8.29x,
1.95x, and 1.58x compared to not using sequence warp, respectively, where
the sequence lengths of the SST-2 and TREC datasets are smaller than the
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Fig. 11. Latency benefits speedup of three models by using memory management
strategies.

Fig. 12. Speedup of sequence warp on four datasets.

SQuAD-1.1 and the IMDB datasets. We can see from the figure that when
the max sequence length is small because there are fewer sequence pairs that
can be packed, the effect of using sequence warp is not apparent. When the
max sequence length becomes larger, the throughput speedup of each dataset is
improved, and the speedup of the SST-2 and TREC datasets is better than the
SQuAD-1.1 and the IMDB datasets.

6 Conclusion

Our engine is designed to solve the huge computational load problem brought
by the transformer model and the memory management problem caused by the
variable length of the input sequence. It includes an efficient operator library,
which optimizes the GEMM operators that take up most of the time, optimizes
edge operators, and performs kernel fusion. These optimization methods support
the efficiency of the operator library. It includes a reasonable software-managed



566 K. Chen et al.

memory optimization strategy. The maximum speedup ratio can reach 1.48x and
save a lot of memory usage; It also includes a sequence warp method, which can
bring a maximum speedup of 9.92x. The overall maximum speedup using the
above method can reach 13.98x. By comparing it with GPU GeForce RTX 3090,
it can be seen that our engine an achieve comparable performance to the GPU.
It turns out that our engine can effectively increase throughput and achieve less
memory footprints.
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Abstract. The clouding server providers usually take workload con-
solidation to maximize server utilization. For eliminating performance
interference due to the competition among multiple shared resources,
resource partitioning becomes an important problem in daily commer-
cial servers scenario. However, partitioning the critical multiple resources
coordinately is particularly challenging due to the complex contention
behaviors and the large search space to be explored for finding the opti-
mal solution.

In this paper, we propose GCNPart, which focuses on allocating the
optimal shared compete resource partition for colocated applications to
optimize system performance. The existing resource partitioning frame-
works lack analysis and good modeling of applications, resulting in inef-
ficiencies or lack of generality. We formulate the resource partitioning
problem as a sequential decision problem. GCNPart builds an accurate
application performance model based on graph convolutional neural net-
works (GCN) to learn the mapping relationships from multiple resources
to applications, and then constructs deep reinforcement learning (DRL)
model to consider temporal information for real-time resource partition-
ing decisions. The extensive experiments evaluate that compared with
the existing resource partitioning frameworks, GCNPart improves sys-
tem throughput by 5.35% ∼ 26.57%.

Keywords: Workload consolidation · Performance interference ·
Resource partitioning · Deep reinforcement learning · Graph neural
network

1 Introduction

Huge data centers or cloud computing platforms usually colocate multiple appli-
cations on the same server to maximize the utilization of server resources.
However, applications may suffer severe performance degradation due to the
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 568–589, 2023.
https://doi.org/10.1007/978-3-031-22677-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22677-9_30&domain=pdf
https://doi.org/10.1007/978-3-031-22677-9_30


GCNPart: Interference-Aware Resource Partitioning Framework 569

competition for shared resources. The most critical shared resources that affect
application performance are Last Level Cache (LLC) and memory bandwidth
(MB) [25,35]. Considering that many modern applications support multi-process
concurrency, CPU cores are also important and need to be partitioned reason-
ably [6].

Resource partitioning has become a popular approach to reduce the con-
tention among the colocated applications [7,10,14,18,35]. By using the follow-
ing resource isolation tools, i.e., Intel’s Cache Allocation Technology (CAT) [21],
Memory Bandwidth Allocation (MBA) [4] and taskset, each application can be
allocated with dedicated resources and performance interference can be pre-
vented or mitigated. Although the partitioning problem has been extensively
studied, it’s pretty tough to well tackle the resource partitioning problem due to
several critical challenges.

– First, the solution space of the problem is prohibitively large. For a colocation
of 6 jobs, the total number of resource partitioning configurations is up to
1021 when 10 CPU cores and 10 cache ways are considered [6].

– Second, the interactions among multiple applications and multiple resources is
complex and non-linear (see Fig. 1). It is very difficult to establish an accurate
performance model to guide the exploration of search space.

– Third, real commercial server environments often face rapid and unpre-
dictable changes (i.e., phase change) as shown in Fig. 2, the method for
resource partitioning problem should make decisions online and can quickly
adapt to the new state.

– Forth, resource partitioning is a sequential decision problem. As shown in
Fig. 3, at every time when the system changes the partitioning scheme, the
application may suffer a performance loss (which we call transition penalty)
because each application’s running context and relevant data should be
migrated among CPU cores.

Fig. 1. Resource competition among applications. The left figure shows the sys-
tem throughput (indicated by instruction per cycle (IPC)) of two applications
(600.perlbench s and 602.gcc s from SPEC CPU2017 [3]) running alone and co-running
at different LLC settings; the right figure shows the system throughput of two appli-
cations running alone and co-running at different MB settings. If resource competition
is linear, the green line should be parallel to the yellow line, so resource competition
among applications is non-linear. (Color figure online)
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Fig. 2. Take benchmark 602.gcc s as an
example, applications usually have quick
and unpredictable phase changes (indi-
cated by IPC change).
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Fig. 3. Performance loss of applica-
tion 500.perlbench r during partitioning
scheme transitions. 500.perlbench r orig-
inally runs on CPU cores (0, 1), and
migrates to CPU cores (2, 3), (4, 5), (6,
7) respectively.

In theory, an optimal resource allocation strategy can be easily obtained
if a full long-term profile is performed for each application or if there is user-
generated resource information for a particular application. However, it is very
expensive and difficult to implement as the numbers and types of applications
continues to grow nowadays.

Therefore, previous work such as DICER [22], dCat [37], KPart [14],
DCAPS [35] tried to build performance models to estimate the performance
of colocated applications based on extensive domain knowledge, but these mod-
els can only handle a single resource and are not easily extended to multiple
resources. Other methods have attempted to eliminate the dependence on per-
formance models, either by directly ignoring the characteristics of the application
and adjusting online through the black-box method like CLITE [25], or by sim-
ply analyzing the application characteristics and adaptively adjusting resource
partitioning based on simple rules in a greedy manner such as Heracles [18],
Quasar [11], PARTIES [7], CoPart [23]. However, the black-box methods are
slowly to provide real-time resource partition and it is difficult to guarantee the
quality of the solution when the number of applications increases due to the
great resource partitioning decision search space. The approaches based on sim-
ple rules usually classify applications based on the resource sensitivity intuitively
first [23], and then allocate the resources in a greedy manner [7,18,23] accord-
ing to the real-time system state adaptively. However, the sensitivity or other
instinctive threshold like QoS is set by experience and can only be applied to
specific scenarios and optimization goals that researchers are familiar with. The
state-of-the-art approach DRLPart [6] builds the relatively accurate performance
model based on deep learning method without domain knowledge, but the model
did not well learn the mapping relationships from multiple resources to appli-
cations. The accuracy of the performance model was not enough, which greatly
affected the upper limit of performance improvement. Another disadvantage is
that DRLPart just regards resource partitioning problem as a single decision



GCNPart: Interference-Aware Resource Partitioning Framework 571

problem and does not consider the impact of the transition penalty effect of the
previous decision on the current decision.

So, without an accurate performance model, these solutions are limited by
the scale of applications and resources; or cannot make multiple resources par-
tition decision simultaneously; or cannot be used for more general scenarios. In
addition, all of these methods do not take into account that online resource parti-
tioning problem is a sequential decision problem, therefore they fail to explicitly
consider the impact of the previous decision on the current decision, which leads
to a decrease in performance improvement.

In the paper, we seek to solve the resource partitioning problem to maximize
system throughput. We propose GCNPart, a resource management framework
with a accurate performance model based on graph convolutional neural net-
works [34] and a resource partitioning decision making model based on deep
reinforcement learning decision model [30]. The performance model estimates the
performance of colocated applications under any resource partitioning schemes,
and the decision making model decides multiple resources partitioning at the
same time quickly in real-time. The main contributions of this paper include:

(1) Considering that the applications are always in phase change, GCNPart for-
mulates the resource partitioning problem as an sequential decision problem.
We extract the applications’ characteristics at different time state as input
features to establish a more realistic performance prediction model and a
real-time resource partitioning decision model.

(2) GCNPart presents a GCN-based performance prediction model, which mod-
els the mapping relationships from resources to applications by abstracting
them into graph structures to capture the nature of application interference
and resource contention. GCNPart improves the learning efficiency and the
performance of system throughput.

(3) GCNPart proposes a DRL-based partitioning decision making model to con-
sider the transition penalty when making partitioning decision, which can
cause significantly performance loss due to context switch and data migra-
tion among CPU cores and cache ways.

2 Motivation and Related Work

We motivate the need for new technology to solve the resource partitioning
problem. Existing solutions for resource partitioning are inadequate to varying
degrees, all of them do not take into account that online resource partitioning
is a serialization decision problem. We divide the existing approaches into 4
categories for discussion.

Greedy Tunning based on Simple Rules at Runtime without Perfor-
mance Model. The approaches like [7,11,18,23] do not rely on performance
model to estimate the performance of partitioning schemes. Instead, they use
greedy algorithms by simple rules to dynamically tune the partitioning scheme
in real time. Basically, they solve this problem by repeating the process of reduc-
ing a unit of resource allocated to an application and assigning that resource to
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another application. For example, CoPart [23], whose goal is to ensure fairness
among the colocated applications, repeatedly increases resource allocation for
low IPC applications and decreases resource allocation for high IPC applica-
tions until all applications have the same IPC.

Advantage and Limitation. The greedy tuning approaches are simplicity with
small overhead. However, they can only find sub-optimal solutions [25], because
they explore only one resource and tune the resource in small steps for an appli-
cation at a time. Besides, they need to design simple rules, which require domain
knowledge and vary from expert to expert.

Black-box Methods based on Approximate Performance Model. The
recent work CLITE [25] is the representation. CLITE samples a small num-
ber of partitioning schemes online based on Bayesian Optimization (BO) to
build approximate performance model and then searches solutions guided by
the model. CLITE updates the performance model with each search.

Advantage and Limitation. Even with not-accurate-enough model, CLITE can
partition the multiple resources coordinately through the evaluation from the
performance model, which solves the problems of the previous methods, and
CLITE does not rely on domain knowledge. However, due to the insufficient
accuracy of the model, CLITE can only find the near-optimal solution [25]. In
addition, BO will lose effectiveness in higher dimensions [26], in our context,
CLITE can only handle colocations of small sizes (less than 5-apps [6]).

Heuristic Search Guided by Domain Knowledge Performance Model.
The representative approaches in this category include DCAPS [35], dCat [37],
KPart [14], DICER [22] etc. These approaches generally slove the resource par-
titioning problem by building a performance model relying on extensive domain
knowledge and find the optimal partitioning scheme based on handcrafted heuris-
tic algorithms, where the quality of each scheme is evaluated by the performance
model.

Advantage and Limitation. Thanks to the performance model, this kind of meth-
ods have the opportunity to expand the methods to partition multiple resources
coordinately. However, they rely more heavily on domain knowledge while the
experts have different experiences or intuitions to analyze resource contention
behavior, which causes the model has bias and inaccuracy (e.g., DCAPS has a
IPC prediction model with 80.1% accuracy). When new scenes are encountered,
the heuristic algorithms need to be redesigned (at least the parameters of the
algorithm must be adjusted carefully).

Deep Reinforcement Learning (DRL) Framework based On Neurons
Networks Performance Model. The latest work DRLPart [6] is a repre-
sentation of this category. DRLPart builds the relatively accurate performance
model based on deep neurons networks to predict system throughput under any
resource partitioning schemes, and constructs DRL model to make partition
decisions online.
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Advantage and Limitation. DRLPart takes easy-to-collect performance counters
as the input features of neurons networks without the need of domain knowl-
edge and handcrafted heuristics. In addition, DRLPart is strong robustness, the
solving ability is not affected by high dimensions. However, in DRLPart, the
mapping relationships from resources to applications are not well represented in
the input features of the learning models, which requires the learning models
to learn them from raw features implicitly. As with all previous methods, DRL-
Part makes partitioning decisions without considering the transition penalty,
which can result in significantly performance loss due to context switch and
data migration among CPU cores and cache ways.

Summary: We need a resource partitioning framework, which 1) can make mul-
tiple resource allocation decisions simultaneously; 2) is not limited by application
scale and resource scale; 3) requires no expensive or limited domain knowledge.
In the previous approaches, DRLPart [6] meets the above requirements, so we
choose to design a more complete framework based on it. However, DRLPart has
defects as we dicussed in the previous paragraph, in order to overcome these, we
need to define the problem as a sequential decision problem first. And then we
build a more accurate model that can directly learn the mapping relationships,
and finally make real-time sequential resource partitioning decisions.

3 Problem Formulation

Given a set of applications which are colocating on the same server, our goal
is to find the optimal partitioning scheme such that the system throughput is
maximized. The system throughput particularly refers to the total (Instructions
Per Cycle) IPCs of the applications. Moreover, the proposed framework can be
easily extended to support other performance metrics. We consider the dynamic
system where the applications have phase changes. Thus, the partitioning scheme
should be updated adaptively.

We formulate the resource partitioning problem as a sequential decision prob-
lem. This requires us to consider the influence of the decision of the previous time
step and add temporal information into the modeling of the real environment.

We focus on the partitioning of the most important resources affecting the
application performance [6,25,35]: CPU cores, last level cache (LLC) and mem-
ory bandwidth (MB). The CPU is partitioned in core granularity. At least one
CPU core will be allocated to each application. We isolate LLC resource accord-
ing to Intel’s Cache Allocation Technology (CAT) [21], where one unit of LLC is
a cache way. CAT requests that the allocation of LLC for an application must be
defined as a set of contiguous indexed cache ways, and a cache way is allowed to
be shared by multiple applications (e.g., the allocation of LLC for two different
applications can be {4,5,6} and {5,6}). MB is partitioned according to Intel’s
Memory Bandwidth Allocation (MBA) [4], where one unit of MB is 10% MBA
level.
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4 GCNPart: Design

The design of GCNPart follows three principles.

Principle I: The quality of every partitioning decision should be guar-
anteed.

Inaccurate performance models are used to evaluate any resource partitioning
schemes, which can lead to exploration in the search space far away from optimal
solutions because the model built does not learn the mapping relationships from
resources to applications (i.e., application interference and resource contention).

Principle I intends to address the above issue and guarantees every partition-
ing decision’s quality by learning the nature of the relationship and improving
the accuracy of prediction.

Principle II: Modeling needs to be adaptable to phase change and low
overhead when making online decisions.

Principle II requires that the proposed framework can make fast online deci-
sions based on the real-time environment of the colocation.

Principle III: The proposed resource allocation framework can solve
the sequential decision making problem, successive partitioning deci-
sions should not be significantly different.

Principle III intends to minimize the transition penalty of the successive
partitioning schemes, which refers to the sharp performance loss at every time
when the system changes the partitioning scheme. The transition penalty is due
to context switch and data migration, which could be significant (see the example
in Fig. 3). Basically, the transition penalty is proportional to the amount of data
migrated. So, in order to minimize the transition penalty, we need to reduce the
data migration, meaning that successive partitioning decisions should be as close
as possible.

In recent years, deep reinforcement learning (DRL) has been widely used in
sequential decision making problems and achieved good results [28]. Compared
with traditional methods, DRL methods do not require domain knowledge, can
easily to partition the critical multiple resources coordinately, and the trained
model can be easily migrated to new scenarios. So, GCNPart takes DRL algo-
rithm to make resource partitioning decision.

4.1 Overview Design

The overview design of GCNPart is shown in Fig. 4, which consists of two com-
ponents. The modeling component takes charge of collecting samples and train-
ing the GCN performance prediction model and the DRL decision making model
offline. According to the real-time system state, the partitioning component gen-
erates new partition decisions periodically through DRL model, and applies the
partitioning decisions to the actual environment.

The key technologies include: (1) to address Principle I, we propose the GCN-
based performance prediction model, which uses graph struction to describe the
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Fig. 4. The Overview of GNCPart Design.

mapping relationships from resources to applications with high accuracy; (2) to
address Principle II, we propose a trained DRL based decision making model to
make sequential decision, it interacts with the real environment to collect real-
time state information and gives partitioning decisions in a short time; (3) to
address Principle III, we add the impact of transition penalty to the reward for
the DRL model to generate the final partitioning decision, which significantly
reduces the transition penalty;

4.2 The GCN-based Performance Prediction Model

The performance model is designed to predict the system throughput (indi-
cated by IPC) of any colocation under any resource partition scheme based on
graph convolutional neural networks (GCN). Due to phase changes, we need
to use colocation’s real-time state information to evaluate partitioning schemes
to make online decisions. That is, the input of the performance model should
be real-time state information, which contains current application features and
resource allocation. Inspired by DRLPart, the application real-time features can
be represented by performance counters, because they can be collected quickly
online with little cost and are not limited to specific applications.

Different from DRLPart, we first set up the mapping relationships from
resources to applications as graph (see Fig. 5), and use the graph node aggrega-
tion based on GCN to learn the nature of interference and resource competition
among applications. Then we explicitly express the temporal information into
the neural networks (see Fig. 6).

Figure 5 shows how the graph is defined. The nodes in the middle row rep-
resent the applications, the nodes in the bottom row represent the cache ways,
the nodes in the top row represent the CPU cores, and the edges between nodes
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represent the mapping from resources to applications. The node associated with
each application takes the performance counters of the application as its feature.
It is easy to see that the graph explicitly describes the mapping relationship from
resources to applications. Each application information after mutual interference
and resource partitioning are aggregated by nodes, it helps the performance
model to learn relationships more directly.

Apps

LLC ways

76 843 51 2

87 954 62 31

0CPU cores

10

Fig. 5. The graph representing resource allocations.

Consider a colocation of N applications. We use a N -tuple Ft = (f1
t , . . . , fN

t )
to denote the values of performance counters (PMCs) of applications at time step
t, where f i

t refers to the values of performance counters associated with the i-th
application. The impact of the resources containing positional information on
the application will vary from location to location, so they are the keys to learn-
ing the nature of resources-to-applications mappings. As shown in Fig. 5, only
the resources containing positional information (that is, CPU cores and LLC)
participate in the structure of the graph to perform node aggregation calcula-
tion. Because of the different position of the CPU cores on the motherboard,
such as the distance from the fan or power supply, there is a slight performance
difference among the cores. Position information should also be remembered for
LLC resource, because a unit of LLC is allowed to be shared by multiple appli-
cations. For example, the throughput of allocating {1,2}, {2,3,4} to app1 and
app2 is very different from the throughput of allocating {1,2}, {1,2,3} to app1
and app2, even though app1 and app2 are allocated to two and three cache ways
consistently. So we use Pt = (p1t , . . . , p

N
t ) to represent the allocation of resources

with positional information at time step t, where pit refers to the resources allo-
cation for the i-th application and pit = (ci, llci). In the tuple (ci, llci), ci is
the number of allocated CPU cores and llci = (llcli, llc

r
i ) denotes the number of

allocated cache ways. And then we use a tuple Bt = (b1t , . . . , b
N
t ) to represent

the allocation of memory bandwidth, where bit refers to the bandwidth level for
the i-th application. So, we use Ct = (Pt, Bt) to represent the total resource
partitioning scheme at time step t.
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Suppose a colocation of N -apps is at the real-time state S = (F,C).
We define the resource partition scheme A that we want to estimate perfor-
mance as (P

′
, B

′
), where P

′
denotes the allocation of CPU cores and LLC

resource, B
′

denotes the allocation of MB resource. The input of the perfor-
mance model is I = (S,A), which is composed by the current application fea-
tures F , the current resource partitioning scheme C, the resource partitioning
scheme we want to estimate A. The output of the prediction model is the pre-
dicted system throughput of the colocation under A scheme. Let the N -tuple
IPCA|S = (IPC1

A|S , . . . , IPCN
A|S) denotes the IPCs of applications if A is applied

to S, where IPCi
A|S refers to the IPC of the i-th application. Noted that, A is

not really put into the real system, and the IPCs associated with action A is
just prediction values.

Fig. 6. The GCN representing P and P
′
.

In DRLPart, the input feature of the prediction model is the simple concate-
nation vector of F , C, and A. However, this representation requires the model
to learn the mapping relationship of resources to applications from raw fea-
tures implicitly. Moreover, the sequential relationship between C = (P,B) and
A = (P

′
, B

′
) (A is the next partitioning scheme after C) is not indicated. To

address this issue, we design the following neural networks. We combine P and
P

′
in a single GCN which describes the mapping relationship explicitly. Figure 6

shows how the GCN is defined. As shown in Fig. 6, the left side of the GCN rep-
resents the partitioning scheme P , where the features of each application’s node
denoted by F . The right side of the GCN represents the partitioning scheme
P

′
, where the feature of each application’s node is an embedding generated by

the left side of the GCN. Unlike CPU cores and cache ways, memory bandwidth
has no positional information, so we map B and B

′
to high-dimensional vector

through a neural network layer (fully-connected (fc) embedding) that is different
from other resources (GCN embedding).
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Figure 7 shows the overall design of the prediction model. Both B and B
′

are mapped to high-dimension through a fc embedding layer. Then, three fc
layers are used to encode the graph and the output of the embedding layers,
and a multi-head attention module [32] is used to calculate the outputs of the fc
layers. Through the multi-head attention module, the final output is generated,
i.e. the IPCs of applications.

fc 

M
ul�-head Self-a�en�on

x6

IPCs at Next 
Time Step
(reward)

Predic�on Model

GCN

Embedding
Layer 

x3

CPU core 
Par��on

LLC way 
Par��on

Bandwidth 
Par��on

Current PMCs 
For Apps Run 

Colocated

Fig. 7. Design of the prediction model.

4.3 The DRL Decision Making Model

In recent years, deep reinforcement learning (DRL) has been widely used in
sequential decision making [28], resource partitioning problems [6,17,33] and
achieved good results. So, GCNPart takes DRL algorithm to periodically gen-
erates new partitioning decision according to real-time system state, and then
applies the decision to the real system.

RL is a method in which the agent selects an action according to the current
policy by observing the current environment state, and updates the policy based
on the feedback (i.e. the reward from the environment). Policy is learned through
interactions with the environment by trial-and-error, with the goal of maximizing
cumulative reward over time. Finding the optimal policy is not an easy task. Deep
neural networks (DNN) has strong fitting ability to establish the mapping from
input to output. It’s popular to use DNN to approximate the policy, which we call
Deep Reinforcement Learning (DRL). In addition, RL requires a large number
of interactions between agent and environment to train the model, the cost of
interactions is very expensive [30]. So we build the performance prediction model
based on GCN, which can precisely predict the performance of applications under
any given partitioning schemes. With the performance model, the DRL model
can estimate the reward in the training processes without interacting with the
real system, greatly reducing the training overhead.

We formally define the basic concepts (i.e., environment, state, action, policy
and reward) of a DRL model in the context of resource partitioning.
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Environment. The server is the environment, since we partition resources
among applications which is colocating on a server.

State. The real system state of the observed colocation. In our context, the
system state S = (F,C), where F denotes the current application features (indi-
cated by PMCs, more details can be found in Sect. 5), C represents the current
resource partitioning scheme.

Action. In our context, the action is the resource partitioning decision. At =
{a1

t , . . . , a
N
t } denotes the action at time step t, where ai

t refers to the resource
allocation for the i-th application. Note that At is a random scheme when collect-
ing data for the prediction model, where At is a partitioning decision generated
by the DRL model when the colocation running at real environment.

Policy. Our DRL method uses GCN-based prediction model to approximate
the policy model. The policy model maps the input (i.e., the system state St)
to the output (i.e., the partitioning decision At). There are three key parts that
should be carefully designed for the policy model: the representation of the input
features, the GCN-based prediction model and the format of the output.

We represent the input features as a graph, which constructs the mapping
relationships from resources to applications. The GCN-based prediction model
helps DRL model to estimate the reward of a given action without expensive
interactions with the real environment. The output is the real-time resource
partitioning decision.

The policy model maps the input (i.e. the system state St) to the output
(i.e. the partitioning decision At). Figure 8 presents the overall design of the
DRL model. The DRL model uses the same typical encoder-decoder architecture
as DRLPart, while GCNPart learns the policy through graph structure. The
encoder takes charge of compositing the input. Bt is mapped to high-dimension
through an embedding layer. Then, three fully-connected (fc) layers are used
to encode the graph and the output from the embedding layers. The input is
fed to the decoder network through an attention layer. The Gated Recurrent
Unit (GRU) is commonly used for sequential decision, so the decoder network

Fig. 8. Design of the DRL model.
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adopts GRU to generate the partitioning decision. The policy model is trained
by Actor-Critic algorithm.

Note that due to the transition penalty, successive partitioning decisions
should not be significantly different. We use a greedy strategy to map the CPU
cores to applications. The greedy strategy is guided by Principle III, which aims
to keep the new allocation of CPU cores as close as possible to that in the current
partitioning scheme for minimizing the transition penalty.

Algorithm 1 shows the details. For each application i from 1 to N , we use
O′

i to denote the CPU cores allocated to application i, and Oi to denote the
CPU cores to be allocated to application i in the partitioning decision. We
classify the applications into two sets I and I ′ (lines 3 to 4), where I denotes the
applications whose CPU cores will be decreased (i.e., ci < |O′

i|) and I ′ denotes
the applications whose CPU cores will be increased (i.e., ci > |O′

i|). For each
application i ∈ I, we randomly select ci CPU cores from O′

i, and recycle the
remaining CPU cores in O′

i to a temporary set T (lines 5 to 8). After that, for
each application i ∈ I ′, we keep its original CPU cores (i.e., the CPU cores in
O′

i) and allocate another ci − |O′
i| CPU cores which are randomly chosen in T

(lines 9 to 13).

Algorithm 1. CPU Cores Allocation Algorithm
Require: O′

i ← the CPU cores allocated to the i-th application in the original parti-
tioning scheme, 1 ≤ i ≤ N
ci ← the number of CPU cores allocated to the i-th application in the partitioning
decision, 1 ≤ i ≤ N

Ensure: Oi, the CPU cores allocated to the i-th application in the partitioning deci-
sion, 1 ≤ i ≤ N

1: T ← ∅, a temporary set
2: Oi ← ∅, for 1 ≤ i ≤ N
3: I ← {i|ci < |O′

i|, 1 ≤ i ≤ N}
4: I ′ ← {i|ci > |O′

i|, 1 ≤ i ≤ N}
5: for each i ∈ I do
6: randomly move ci CPU cores from O′

i to Oi

7: T ← T
⋃

O′
i

8: end for
9: for each i ∈ I ′ do

10: Oi ← Oi

⋃
O′

i

11: randomly move ci − |Oi| CPU cores from T to Oi

12: T ← T
⋃

O′
i

13: end for
14: return Oi, 1 ≤ i ≤ N

Reward. The goal of resource partitioning is to maximize the system throughput
(e.g., the total IPC of all the colocated applications). As mentioned earlier, the
system throughput is not only determined by the partitioning scheme, but also
affected by the transition penalty. So, the reward is defined as the weighted sum
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of the system throughput and the transition penalty. Specifically, let IPCi
At|St

denote the IPC of the i-th application if At is applied to St. The reward for time
step t is defined as

rt =
N∑

i=1

IPCi
At|St

− αPenaltyAt|St
(1)

where
∑N

i=1 IPCi
At|St

refers to the system throughput, PenaltyAt|St
denotes the

transition penalty and α is the weight of the penalty.

5 Implementation

This section gives the implementation details of the proposed framework.

Selection of the Performance Counters. As mentioned earlier, we use per-
formance counters as the application features at real-time. DRLPart selects the
20 most important PMCs from over 400 PMCs according to their correlations to
IPC under different resource partitioning schemes. For fair comparison, we use
the same PMCs as it.

Implementation of the GCN-based Prediction Model. We adopt the vari-
etal GCN [15] with Chebyshev filter of size 2 and a latent vector of dimension 257
to process the application features. The embedding layers are composed of neu-
ros of size 3 for both memory bandwidth allocation and the numbers of threads.
Three fc layers with neurons of sizes (512, 64, 1) are used to contact the embed-
ding vectors from GCN and embedding layers. We use the rectified nonlinearity
(ReLU) [20] as the activation function and add a dropout layer after each fc
layer (with probability 0.5) to prevent over-fitting and enhance generalization.
The hyperparameters of attention layers are set according to [32]. The model
uses Adam optimizer [5] with a learning rate of 10−3, takes smooth l1 loss as
the loss function, and is trained in batches with a batch size of 256.

Implementation of the DRL Decision Making Model. For the DRL
model, we set the same parameters as [6]. And then we carefully tune the weight
of transition penalty (i.e., the parameter α) in the reward, and find that α = 0.1
achieves the best performance in our evaluations.

6 Evaluations

We conduct extensive experiments to evaluate the proposed framework and com-
pare it with the state-of-the-art baselines. This section presents the details.

6.1 Experimental Settings

Platform. We implement and evaluate the proposed solution on a 2.20 GHz
10-core Intel R© Xeon R© Silver 4114 processor. The server has 128 GB memory
and provides hardware support of LLC and memory bandwidth partitioning.



582 R. Chen et al.

The server provides 11 cache ways (with 1 MB per cache way) and a total of
2666 MT/s memory bandwidth (10 levels for allocation, from 10% to 100%).
The server runs on a CentOS 7.5 with Linux version 4.12.0. For all the exper-
iments, the Hyper Threading and Turbo Boost features of the evaluated CPU
are disabled.

Applications. We use the same 120 applications as DRLPart for evaluations,
with the applications from SPEC CPU2017 [3], SPEC CPU2006 [2], and pyper-
foramce [1]. We consider an application Resource Sensitivity if its performance
degradation exceeds 15% when a type of allocated resource are reduced from
maximum to minimum when running alone. An application sensitive to only
one resource, sensitive to multiple resources, and insensitive to any resources is
respectively recorded as single-sensitive (Single-S), multiple-sensitive (Multi-S),
insensitive (IN-S).

6.2 Baselines

We compare GCNPart with four state-of-the-art baselines. The first baseline
NoPart simply consolidate multiple applications without considering resource
partitioning. The second baseline DCAPS [35] considers partitioning LLC only,
which determines a partitioning decision by a simulated-annealing-based search,
where the performance of partitioning decisions is estimated by a performance
model build based on domain knowledge. The third baseline CLITE [25] lever-
ages Bayesian Optimization to build approximate performance model online and
uses the performance model to guide searches for the near-optimal partitioning
scheme. The last baseline is DRLPart [6], which maps relatively simple relation-
ships from resources to applications for building a DRL-based model to partition
resources.

6.3 Performance of the Prediction Model

We first show the performance of the proposed prediction model. We only com-
pare the performance of prediction model with DRLPart, since the other base-
lines lack the prediction model for evaluating the performance of multi-resource
partitioning schemes.

Table 1. Performance of the prediction models over different colocation sizes.

4-apps 5-apps 6-apps 7-apps

DRLPart Mean Accuracy 92.87% 95.43% 96.83% 93.52%

RMSE 0.104 0.047 0.028 0.051

Our Mean Accuracy 94.97% 97.83% 98.60% 97.53%

RMSE 0.031 0.010 0.002 0.008
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Table 1 compares the mean accuracy and RMSE (root-mean-square error)
between the proposed prediction model and the one in DRLPart for different
colocation sizes. The mean accuracy is defined by 1

n

∑n
i=1 |yi − y′

i|/yi, where yi
is the actual observed value and y′

i is the predicted value. Both a higher Mean
Accuracy and a smaller RMSE indicate a higher prediction accuracy.

We have two observations from the results. First, our GCN-based prediction
model outperforms the one in DRLPart, which improves the mean accuracy by
1.8% (for 4-apps) to 4% (for 7-apps) and decreases the mean RMSE by 0.02 (for
6-app) to 0.05 (for 7-apps). For neural networks, the last 5% accuracy improve-
ment is very difficult. The increase of the accuracy of the prediction model can
significantly increase the upper limit of performance improvement. Intuitively,
as shown in Fig. 9, GCNPart shows a 6% performance improvement over DRL-
Part (9.65% → 15.65%). We attribute this to the adoption of GCN, which is
more powerful to represent the mapping relationship from resources to applica-
tions. Second, the prediction accuracy for 4-apps and 7-apps is slightly worse
than other colocation sizes for both models. This is because the colocations with
small size have more partitioning schemes and thus more diverse performance,
while the colocations with large size should face higher input dimensions and
more complex relationships. The accuracy of the prediction model in DRLPart
is especially low for small colocation size and large colocation size (only 92.87%
and 93.52%), but GCNPart has obvious improvement compared with DRLPart
in these two cases. This is because vectors are more affected by size changes
than structures, and neural networks should focus on learning high-dimensional
maps reflected by structures rather than vector lengths. Compared with taking
graph structure as input, training neural network in simple vector form will vary
greatly with colocation size, so it will be affected more by size change.

6.4 Overall Performance of the Partitioning Framework

We next show the overall performance of the proposed partitioning framework
and other baselines. We randomly generate 400 colocations, with 100 colocations
of 4-apps, 5-apps, 6-apps, and 7-apps respectively. The first row in the Table 2
shows the mean throughput of all the colocations achieved by each approach,
and the second row shows the throughput improvement of our framework over
each baseline.

Table 2. Overall performance of each approach over 400 colocations.

NoPart DCAPS CLITE DRLPart Our

Avg. Throughput 7.94 8.25 8.52 9.54 10.05

Throughput Imp. 26.57% 21.81% 17.96% 5.35% -

We have three observations. First, NoPart performs the worst among all the
approaches, with performance loss up to 26.57% (compared to our approach),
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which confirms the necessity of resource partitioning. Second, our approach out-
performs DCAPS, CLITE, with advantage of 21.81% and 17.96% respectively,
which demonstrates the advantage of modeling for the resource partitioning
problem. Our approach also outperforms DRLPart by 5.35%, which confirms
the benefits of improving the accuracy of the prediction model and reducing the
transition penalty. The improvement of 5.35% seems not much, because we use
random colocations for the experiment, there are colocations that are difficult
to improve the performance (such as the Type-D, Type-E, Type-F mentioned in
Sect. 6.6).

Figure 9 breaks down the results according to different colocation sizes, where
the y-axis represents the throughput improvement of each approach over NoPart.
We have two observations from the results. First, our approach always outper-
forms the baselines, but the advantage is different across different colocation
sizes. The proposed framework achieves the highest benefit for the colocation
size of 5-apps (33.51%), and less benefit for both small colocation size (e.g.,
22.06% for 4-apps) and large colocation size (e.g., 21.64% for 7-apps). The rea-
son is the same as that the accuracy of prediction model is slightly different for
different colocation sizes. Second, CLITE performs as bad as NoPart when the
colocation size is larger than 5. This is because CLITE is a method based on BO,
as the colocation size increases to 6, CLITE fails to make partitioning decision
online.

Fig. 9. Breakdown of performance over
different colocation sizes.

Fig. 10. System throughput for different
weight of transition penalty (i.e., α).

6.5 Impact of Transition Penalty

We next show how the transition penalty affects the performance. To this end, we
vary the weight (i.e., the parameter α) of the transition penalty in the reward of
the DRL model. We randomly generate 30 colocations for each size from 4-apps
to 7-apps. Figure 10 shows the average system performance of the 120 colocations
for each value of α. We observe that the system achieves the highest throughput
for α = 0.1, while lower throughout for both small and large α. The results
indicate the importance of an appropriate weight for the transition penalty. If
the transition penalty is over-weighted (i.e., α is too large), the partitioning
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decision will be opt to minimizing data migration, which may not be optimal for
maximizing system performance. In contrast, if the transition penalty is under-
weighted (i.e., α is too small), the partitioning decision will ignore the impact
of data migration, which may cause significant performance loss.

6.6 Impact of Resource Sensitivity

Colocations are composed by applications with different resource sensitivities,
resulting in different performance improvement boundary from resource parti-
tioning. Like DRLPart, colocations are classified into six classes based on the
type of applications that colocation contains (see Sect. 6.1). We use the following
tuples to indicate which applications each type of colocation contains: Type-A
(Multi-S), Type-B (Multi-S, Single-S), Type-C (Multi-S, IN-S), Type-D (Single-
S, IN-S), Type-E (Single-S), Type-F (In-S). We generate 100 colocations for
each colocation sizes, each colocation is composed by random types and random
numbers of applications.

Fig. 11. The throughput improvement of each approach compared to NoPart over
different colocation types.

We have several observations from the results in Fig. 11. First, the throughput
improvement is more significant for colocations of Type-A, Type-B than other
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colocation types for most of the approaches. Performance improvements from
Type-D and Type-F are always low. This is because the colocation has more
sensitive applications is more likely to benefit from resource partitioning because
of heavily resource contention. Second, compared to DRLPart, the proposed
framework has more significant improvement on Type-C. We attribute this to
that the applications in Type-C are significantly different (Multi-S vs. IN-S),
so the impact of resource partitioning is more significantly and the partitioning
decision should be made more carefully. Third, GCNPart always outperforms
the baselines, which confirms that the proposed partitioning framework is more
effective to handle complex situations.

7 Related Work

Traditional Resource Partitioning Methods. Resource partitioning for
applications with optimization goals (e.g., throughput, fairness) has been exten-
sively studied. Due to the lack of effective resource partitioning tools, the early
work [16,27] was based on emulators to simulate the partitioning performance,
which was far from the behaviors of the actual system. Recent approaches using
Intel CAT and MBA technologies to isolate LLC and MB, generally give resource
partitioning decisions based on the following two ways. The first is to adjust deci-
sions online without performance model according to expert-designed rules or
black-box methods. However, the experts can only make simple rules, which
are expensive with poor portability, such as [7,9,22,36,37][?]. As the scale of
resources and applications increases, black-box methods [25,29] such as BO often
fail to make decisions. The second way [14,19,24,31] is to build a dedicated per-
formance model and design heuristics to make decisions. However, such solu-
tions basically rely heavily on experts and cannot easily be extended to multiple
resources.

Machine Learning for Resource Management. Machine Learning has been
applied to resource management problems in recent years. [17,33] use RL to
decide the application placement on the cluster. [12] aims to maximize the net
profit of cloud provider by building the DRL model to learn resource partition-
ing and pricing policy. However, the methods mentioned above fail to consider
the performance interference. [8,13] which consider the performance interfer-
ence construct machine learning models to predict the performance among colo-
cated applications. However, resource partitioning is not considered in these
approaches. DRLPart is the fist attempt to adopt DRL for multiple-resources
partitioning problem.

8 Limitations

The limitation of the proposed framework is that it cannot be used in scenarios
where the application is running for a short time (e.g., serverless services) and
there are execution dependencies between the applications (e.g., loose-coupled
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microservices). This is because services such as serverless services usually can run
within a minute, the benefit from resource partitioning cannot keep up with the
speed at which the services run out. Loose-coupled microservices are composed
of cascaded services, and the performance of the applications in the current layer
is not known to be affected by the applications in the previous layer. This is not
the focus of this paper, need to have another design.

9 Conclusion

In this paper, we propose a resource partitioning framework based on deep
learning for improving system throughput on commodity servers. We solve the
resource partitioning problem by formulating it as a sequential decision problem.
First, we leverage GCN to construct an accurate performance prediction model
to evaluate the resource partitioning schemes where the model learns application
interference and resource contention directly and greatly assists in online parti-
tioning decisions. Then, we propose a DRL partitioning decision making model,
which takes temporal information into consideration and then generates optimal
successive partitioning decisions. We conduct abundant experiments to evaluate
the proposed framework and the results show that GCNPart is superior to the
baselines. In the future, we would like to extend the framework to cover more
scenarios and more optimization goals.
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Abstract. Neural network models is developing toward deeper and
wider to obtain higher accuracy and robustness. However, the lim-
ited physical memory capacity of existing hardware devices limits the
scale of the neural network that can be trained, and the limited com-
puting capacity resulting in excessively long training time. Therefore,
the distributed parallelism scheme based on multi-accelerator machines
becomes an effective method to training large-scale neural networks.
The pipeline parallelism is one of the distributed parallelism scheme,
which has large advantages in the training speed. But it also significantly
increases the peak memory usage and communication overhead, because
it needs to store multiply versions of activations. Our previous work has
proposed a data transfer mechanism and applied it to the PipeDream
design (a mature pipeline parallelism scheme), which offloads activations
in the pipeline to other memory devices, such as the CPU memory. The
data transfer mechanism greatly reduces the peak memory usage of the
PipeDream, but it brings a large amount of communication, which makes
the PipeDream lost a lot of training speed.

This paper proposes an optimized pipeline parallelism scheme, the
PipeFB, for applying the data transfer mechanism. The PipeFB deploys
the forward propagation and backward propagation of the neural net-
work on different computing nodes, which is different from the traditional
pipeline parallelism scheme. We implements the PipeFB and applies the
data transfer mechanism to it. The experimental results shows that our
design has the same peak memory usage as the PipeDream with the data
transfer mechanism, but the training speed of our design is 1.48 to 2.27
times faster.
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1 Introduction

Deep learning neural networks have been successfully applied in several fields
such as the computer vision [11,19,21], speech recognition [6,9], natural lan-
guage processing [3,7], recommendation system [2,18] etc. Since the DNN was
proposed, a large number of new neural network models have been emerging, and
these models are becoming deeper and wider. At the same time, the develop-
ment of big data technology provides a large amount of data [8,25], which makes
the scale of the dataset for machine learning increases rapidly. The increase in
the size of network models and the dataset makes the neural network training
becomes difficult. However, researchers are still willing to increase the depth of
the network model to obtain higher accuracy and robustness, although it will
increase training cost.

With the existing hardware technology [4,5,14], the limited physical mem-
ory capacity of the device limits the scale of the network model that can be
trained [20], and the limited computing capacity leads to an excessively long
training time [24]. Therefore, the distributed parallelism scheme becomes a com-
monly method for the large-scale neural network training. The distributed par-
allelism scheme deploys multiple accelerators on one machine or deploys multi-
ple machines to form a cluster, which accommodates large-scale neural network
models by gathering the physical memory capacity of multiple accelerators, and
effectively speed up training by parallelizing the computation.

The pipeline parallelism scheme is one of the distributed parallelism schemes,
which has obvious advantages in the training speed [10,12,26]. But it induces
excessive communication overhead and peak memory usage, which limit its per-
formance. Our previous work proposed a data transfer mechanism [13] and apply
it to the PipeDream [10](a mature pipeline parallelism scheme). The data trans-
fer mechanism offloads the activations in the pipeline to other memory devices,
which reduces the peak memory usage of the PipeDream, but it also makes the
PipeDream lost a lot of training speed. This is due to that applying the data
transfer mechanism introduces a large amount of communication.

This paper analyzes the communication of the PipeDream and the data trans-
fer mechanism, and proposes an optimized pipeline parallelism scheme: PipeFB.
The PipeFB deploys the forward propagation and backward propagation of the
training process on different computing nodes, which changes the communica-
tion behavior of the pipeline. And that’s why we named it PipeFB. The PipeFB
applies the data transfer mechanism by only inducing a small impact on train-
ing speed. In the experiment, we implements the PipeFB and applies the data
transfer mechanism to it. The experimental results show that our design has the
same peak memory usage as the PipeDream with the data transfer mechanism,
but the training speed is 1.48 to 2.27 times faster.
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2 Related Work

2.1 Memory Optimization on a Single Device

During the training process, the temporary data that needs to be used or gen-
erated is preferably placed in the memory device that is close to the computing
core, which ensures the data supply match the throughput of the computing core.
However, the memory capacity of existing hardware devices is usually limited.
Previous researches have made several explorations to address this challenge.

The training process requires storing the activations of each layer and can not
discard it until the backword propagation is finished. Based on this observation,
some existing neural network frameworks (torch [15], tensorflow [1], etc.) are
configured with an optional recomputation function. This function deletes the
activations, then recomputes it in the backward propagation. This method sig-
nificantly reduces the peak memory usage of training process, but recomputing
activations incurs a large time overhead.

The vDNN [16] proposes a prefetching and offloading technique. It offloads
the activations to the CPU memory and retrieves the data back when they are
needed. This method reduces the peak memory usage, but it brings large amount
of communications which slows down the training process. Therefore, Rhu et al.
further proposes a CDMA compression engine [17]. The CDMA engine com-
presses the activations before offloading it to the CPU memory, which relieves
the communication pressure.

The SuperNeurons [23] proposes a method that combines the data offloading
and the recomputing function. It offloads the output of the layers which con-
sume a large amount of computing resources (the Convolution layer etc.), and
recomputes the output of other layers which consume less computing resources
(the Pooling layer and the ReLU layer etc.).
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Fig. 1. The network model dividing and deploying process. The ‘a’ is activations and
the ‘g’ is gradients. The ‘w’ is the parameter of network, i.e. weight.

2.2 Distributed Parallelism Scheme

The distributed Parallelism Scheme are suitable for training tasks which limited
by memory capacity and computing capacity. One type of this scheme needs to
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divide the network model into multiply modules and deploy them to different
computer nodes. Figure 1 displays the dividing and deploying process. A 12-layer
network model is divided into 4 network modules, and then these modules are
deployed to 4 GPUs respectively. Each GPU only needs to calculate its own
module, and communicate with other GPUs.
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(b) The training process of the PipeDream.

Fig. 2. The blue square is forward propagation and the orange square is backpropaga-
tion. The number in the middle of the square is the ID of the mini-batch. (Color figure
online)

Figure 2a displays the training process of the model parallelism scheme. The
network model is divided and deployed according to the method of Fig. 1. In
forward propagation, each GPU receives upstream output to compute its own
module, then sends its output to the downstream GPU. And this operation is
reversed in the backward propagation phase. The model parallelism scheme has
the quite low memory usage because each GPU stores only one version of the
weights and activations, and its training speed is quite slow because only one
GPU is working at each moment.

The PipeDream [10] is a mature and representative work of pipeline paral-
lelism schemes. Figure 2b displays the training process of the PipeDream. The
PipeDream also adopts the network dividing and deploying method of Fig. 1.
When each GPU completes the backward propagation of the first mini-batch,
they enter a stable scheduling state of 1F1B(1 forward and 1 backward). In this
state, each GPU strictly switches the forward and backward computation. If
ignoring the communication delay, all GPUs are working at each moment, so
the PipeDream has the high training speed.

Since multiple mini-batchs are performed in parallelism, the PipeDream
introduces the weight stashing mechanism to avoid mismatching of weights and
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gradients. Under this mechanism, the corresponding weights and activations of
each mini-batch that unfinished will be stored, which will be selected for comput-
ing gradient in backward propagation. Meanwhile, the interval between the for-
ward and backward propagation of the front GPU is longer than that in the rear
GPU, so the front GPU stores more versions of data. Therefore, The PipeDream
not only has extremely high peak memory usage, but also has unbalanced mem-
ory usage among different GPUs. Even the PipeDream use the recomputation
function, its peak memory usage is still high.

3 Data Transfer Mechanism and Communication
Analysis

Our previous work proposes a data transfer mechanism which reduces the peak
memory usage of the PipeDream [13]. But it makes the PipeDream lost a lot of
training speed.

3.1 Data Transfer Mechanism

The data transfer mechanism offloads activations of the pipeline to other mem-
ory devices and retrieves the data back when it is needed, which reduces the
peak memory usage. And our work only transfers the activations, because the
memory usage of the activations is far more than the other data. There are two
destinations for offloading, one is the free memory of the other GPUs in the
pipeline (the memory usage of the rear GPU is much less than that of the front
GPU), and the other is the CPU memory. The former is named as G-transfer
and the latter is named as C-transfer.

G-transfer. Figure 3 displays the training process of the PipeDream with G-
transfer. The G-transfer mechanism offloads the activations to the free memory
of the rear GPU, and then retrieves the activations back in the backward prop-
agation. Since the memory capacity of the rear GPU is limited, the G-transfer
sets a constraint mechanism to prevent excessive transmission. When the mem-
ory usage of the rear GPU exceeds the front GPU, the G-transfer stops the new
data transferring until the rear GPU sends some data back and releases new
space. After the PipeDream applies the G-transfer, the amount of data in the
front GPU is decreased, so the peak memory usage of the pipeline is decreased.

C-transfer. Figure 4 displays the training process of the PipeDream with
C-transfer. The C-transfer offloads the activation to CPU memory, and then
retrieves the activations back in the backward propagation. Due to the capacity
of the CPU memory is large, all versions of activations can be offloaded. So each
GPU immediately offloads the data to the CPU memory once they finish the
forward propagation. After the PipeDream applies the C-transfer, the amount of
versions of activations stored in each GPU is reduced to 1. Therefore, the peak
memory usage of the pipeline is significantly decreased.
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Fig. 3. Training process of the PipeDream with G-transfer.
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3.2 Communication Analysis

Before analysis the communication of the PipeDream, there is a concept that
needs to be declared. The pipeline parallelism and the model parallelism scheme
involved in this paper use the recomputation function, so one version of activa-
tions actually only contains the input of the upper boundary layer and the output
of the lower boundary layer of the network module deployed in the GPU. And
the output of the upstream GPU is actually the input of the downstream GPU.
The communication traffic of activations of one boundary layers is considered as
1a, and the communication traffic of gradient is considered as 1g.

Communication Analysis of the PipeDream. Figure 5 displays the com-
munication of the PipeDream, which picks a complete training process of one
mini-batch. Completing this process requires 4 times communications of activa-
tions and 4 times communications of gradient. Since the execution of different
mini-batches is is parallelized, multiply GPUs needs communicate with others
at the same time, which resulting in high pressure on the communication band-
width.

Communication Analysis of the Pipedream with the G-transfer.
Figure 6 displays the communication of the PipeDream with the G-transfer. The
GPU 1 finishes the forward propagation at time T1 and immediately sends its
output to the GPU 2. Then the GPU 1 offloads its output to the GPU 5 and
GPU 4 simultaneously, because the output of GPU 1 is the input of GPU 2.
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Fig. 5. Communication of the PipeDream.

So the added communication traffic of this process is 1a. The GPU 2 needs to
offloads its output to the GPU 4 at time T4, and the added communication
traffic is 1a. At this point both GPU 1 and GPU 2 have offloaded a complete
activations. In the backward propagation, the GPU 1 and GPU 2 retrieve the
complete activations, and the added communication traffic is 1a and 2a respec-
tively. Therefore, the added communication traffic of the PipeDream applying
the G-transfer is 5a.
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Communication Analysis of Pipedream Combined with C-transfer.
Figure 7 displays the communication of the PipeDream with the C-transfer.
When the GPU 1 sends its output to the GPU 2, the data are sended to GPU
2 through the PCIe switch and the CPU memory, so it can be received by CPU
memory in the same time. So this process is regarded as once communication,
and the offloading process has no added communication traffic. Then the GPU
2 offloads its output in a same manner. The GPU 2 needn’t to offload its input
because its input is the output of GPU 1, and the GPU 1 had sended its output to
the CPU memory. In backward propagation, the GPU 1 and GPU 2 retrieves the
complete activations, and the added communication traffic is 1a and 2a respec-
tively. Therefore, the added communication traffic of the PipeDream applying
the C-transfer is 3a.
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4 Design of the PipeFB

4.1 Network Dividing and Deploying Method of PipeFB

The PipeFB adopts the same network model dividing method as the PipeDream
scheme, but it deploys the forward propagation and backward propagation of the
network module on different GPUs. Figure 8 displays the dividing and deploying
process of the PipeFB. In a 5-stage pipeline platform, the PipeFB divides the
network model into 3 modules, and then deploys the forward propagation on the
GPU 1, GPU 2 and GPU3; deploys the backward propagation on the GPU 3,
GPU 4 and GPU5.

The GPU 1 and GPU 2 need to send its output to the downstream GPU,
and send the complete activations to the GPU 4 and GPU 5 for the backward
propagation. The GPU 4 and GPU 5 need to receive activation from the GPU 1
and GPU 2 to perform the backward propagation, and need to send the updated
weights to GPU 1 and GPU 2.
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4.2 Communication Analysis of PipeFB

The PipeFB also uses the recomputation function by default like the PipeDream,
so the versions of activations of the PipeFB have the same characteristics as
that of the PipeDream, as we reminded in Sect. 3.2. The communication traffic
of activations of one boundary layers is considered as 1a, and the communication
traffic of gradients and weights is considered as 1g and 1w.

Figure 9 displays the communication of the PipeFB. Taking the GPU 1 as
an example, the GPU 1 sends its output to the GPU 2, GPU 4 and GPU 5,
and the communication traffic is 1a. The GPU 1 sends its output to the GPU
4 because its output is the input of the GPU 2, so the GPU 2 needn’t to send
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its input to the GPU 4 anymore. Then the GPU 2 sends its output to the GPU
4 and GPU 5, and the communication traffic is 1a. So the total communication
traffic of activations in the PipeFB is 2a. Plus the communication of weights and
gradients, the total communication traffic of the PipeFB is 2a+2w+2g.

4.3 Training Process of PipeFB

Figure 10 displays the training process of the PipeFB. Since the forward and
backward propagation of the network modules are deployed separately, the train-
ing process can be arranged in a pipeline parallelism manner without using any
scheduling method such as 1F1B.

Due to the GPU 4 and GPU 5 performs the backward propagation, they
receives the activations from the GPU 1 and GPU 2 for computing gradients,
and the received data will not be used until the backward propagation. Therefore,
the GPU 4 and GPU 5 need to store multi-version of activations and weights.
The GPU 1 and GPU 2 discard activations and weights are discarded after
the forward propagation, so they needs to store only one version of data. The
GPU 3 also needs to store only one version of data, because it performs backward
propagation immediately after forward propagation. Therefore, the peak memory
usage of the PipeFB usually occurs in the last GPU.

Fig. 10. Training process of the PipeFB. The blue square is forward propagation, and
the orange square is backpropagation. The number in the middle of the square is the
ID of the mini-batch. (Color figure online)

5 PipeFB with the Data Transfer Mechanism

5.1 PipeFB Applies the G-transfer

In the PipeFB scheme, the memory usage of the GPU deployed at the rear
position is larger than the GPU deployed in front position, because the rear
GPU stores more versions of activations and weights. However, the activations
is generated in the front GPU. Therefore, the way the PipeFB applies G-transfer
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is actually by delaying the initiation time of the offloading to make some versions
of activations stored in the front GPU.

Figure 11 displays the training process of the PipeFB with G-transfer. Taking
the GPU 1 and GPU 5 as an example, the GPU 1 finishes the forward propa-
gation at time T1, but sends its activations to the GPU 5 at time T3. Through
controlling the initiation time of the offloading, at time T5, the GPU 1 stores two
versions of activations, which belong to the mini-batch 3 and mini-batch 4; and
the GPU 5 also stores two versions of activations, which belong to the mini-batch
1 and mini-batch 2. Since the GPU 4 stores only two versions of activations in
the original PipeFB, there is no need to perform G-transfer between the GPU
2 and GPU 4. In such a 5-stage pipeline platform, the amount of versions of
activations of the PipeFB is reduced from 4 to 2 after it applies the G-transfer,
which reduces the peak memory usage.

Fig. 11. Training process of the PipeFB with G-
transfer.

Fig. 12. Communication of the
PipeFB with G-transfer.

5.2 Communication Analysis of the PipeFB with G-transfer

Figure 12 displays the communication of the PipeFB with G-transfer. The GPU
1 finishes the forward propagation at time T1, but sends its output to GPU 5
at time T3, and the added communication traffic is 1a. At this point the GPU
1 have offloaded its complete activations because the activations contains only
the output of the lower boundary layer. Therefore, the PipeFB applies the G-
transfer only increases the communication traffic of 1a, which is much less than
the PipeDream applies the G-transfer(5a).

5.3 PipeFB Applyies the C-transfer

When the PipeFB applies the C-transfer, the front GPU offloads its activa-
tions to the CPU memory, then the rear GPU retrieves the activations from
CPU memory. Figure 13 displays the training process of the PipeFB with the C-
transfer. The GPU 1 and GPU 2 offload its activations to CPU memory. Then,
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the GPU 4 and GPU 5 retrieve the corresponding activations from the CPU
memory to perform the backward propagation. In the 5-stage pipeline platform,
the amount of versions of activations of the PipeFB is reduced from 4 to 1 after
it applies the C-transfer, which significantly reduces peak memory usage.

Fig. 13. Training process of the PipeFB with C-
transfer.

Fig. 14. Communication of the
PipeFB with C-transfer.

5.4 Communication Analysis of the PipeFB with C-transfer

Figure 14 displays the communication of the PipeFB with C-transfer. Taking
the GPU 1 and GPU 5 as an example, when the GPU 1 sends its output to the
GPU 2, the data are sended to GPU 2 through the PCIe switch and the CPU
memory, so it can be received by CPU memory at the same time. This process
is regarded as once communication, so it introduces no added communication
traffic. At time T2, the GPU 2 sends its output to GPU 3 and CPU memory
in same manner. The GPU 2 needn’t to send its input, because its input is the
output of GPU 1, and the GPU 1 had sended its output to CPU memory. Then
the GPU 4 and GPU 5 retrieve the complete activations from the CPU memory,
and the communication traffic is 1a and 2a respectively. Therefore, the total
added communication traffic of the PipeFB applying C-transfer is 3a.

5.5 Summary

Table 1 summarizes the communication traffic of each scheme. The memory
usage of the weights is quite small compared to activations and gradients, so the
communication overhead of the weights can be ignored. Therefore, the PipeFB
with the data transfer mechanism has far less communication overhead than the
PipeDream with the data transfer mechanism.
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Table 1. The communication traffic of each scheme.

Original traffic Added traffic Total traffic

Pipedream Pipedream 4a + 4g 0 4a + 4g

G-transfer 4a + 4g 5a 9a + 4g

C-transfer 4a + 4g 2a 6a + 4g

PipeFB PipeFB 2a + 2g + 2w 0 2a + 2g + 2w

G-transfer 2a + 2g + 2w 1a 3a + 2g + 2w

C-transfer 2a + 2g + 2w 3a 5a + 2g + 2w

6 Evaluation

This paper establish a platform, which deploys 7 GPUs of RTX2070super. The
GPUs communicate through the PCIe channel, and the PCIe bandwidth is
16GB/s. In the experiment, we select the AlexNet [22], VGG-16 [19] and ResNet-
50 [11] as benchmark network, and we select 20 classes of Imagenet [8] as the
benchmark dataset. We divide the network model into 5 modules when deploy-
ing the model parallelism scheme and the PipeDream scheme, and divide the
network model into 3 modules when deploying the PipeFB scheme.

In the experiment, we apply the data transfer mechanism to the PipeFB and
PipeDream scheme, and we call them PipeFB-G, PipeFB-C, PipeDream-G and
PipeDream-C respectively.

6.1 Memory Usage Test

Figures 15, 16 and Fig. 17 display the memory usage of each scheme. Due to
the problem of storing multiply versions of data, the peak memory usage of
the PipeFB is high and close to that of the PipeDream. When the PipeFB
applies the G-transfer and trains the three network models, its peak memory
usage are reduced by 12.7%, 14.5%, and 19.6% respectively. The G-transfer has
limited effect in reducing the peak memory usage because it only offloads partial
versions of activations. In addition, the memory usage of GPU 1 and GPU 2 is
increased because the G-transfer keeps some versions of activations in the front
GPU.

When the PipeFB applies the C-transfer and trains the three network models,
its peak memory usage are reduced by 22.0%, 26.5%, and 58.6% respectively,
which is much less than that of the PipeFB-G. And the peak memory usage of
the PipeFB-C is close to that of the model parallelism scheme. The C-transfer
has significantly effect in reducing memory usage because it offloads all versions
of activations.

Compared with the PipeDream-G and PipeDream-C, the PipeFB-G and
PipeFB-C have the same low peak memory usage.
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Fig. 15. Memory usage of each
scheme when training AlexNet.

Fig. 16. Memory usage of each
scheme when training VGG-16.

6.2 Training Speed Test

We evaluate training speed by testing the time that each schemes finish a fixed
epoch. Figure 18 displays the training speed of each scheme. When the PipeFB
applies the G-transfer and trains the three network models, its training speed
loses 4.55%, 9.82% and 5.94% respectively. And when the PipeFB applies the
C-transfer, its training speed loses 33.9%, 19.4% and 18.7%. The training speed
lost caused by the G-transfer is less than the C-transfer, because the G-transfer
introduces less communication overhead. When the PipeDream applies the data
transfer mechanism, its training speed loss caused by G-transfer and C-transfer
is at most 61.2% and 67.5% respectively. The experiment shows that the PipeFB
applies the data transfer mechanism has a much lower cost than the PipeDream.

Fig. 17. Memory usage of each
scheme when training ResNet-50.

Fig. 18. Training speed of each
scheme.

The PipeFB-C has a large speed loss when trains the AlexNet. That’s
because the AlexNet’s model is small, so its communication overhead is relatively
large compared with its computation overhead. Therefore, the impact of added
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communication of the C-transfer in training speed is greater. However, in appli-
cations, there is no need to deploy the pipeline parallelism scheme to train small
networks like the AlexNet. So we focus on the large scale network model such as
the VGG-16 and ResNet-50, and we can see the PipeFB-G and PipeFB-C can
still maintain most of the training speed of the PipeFB. The experiment shows
that the PipeFB with the data transfer mechanism is more suitable for training
the network model with a larger amount of computation.

When training the VGG-16 and ResNet-50, the PipeFB and PipeDream
apply the data transfer mechanism have close effect on reducing the peak mem-
ory usage, but the former is 1.48 to 2.27 times faster than the latter. Especially,
the PipeFB-C has the same low peak memory usage as the model parallelism
scheme, but the PipeFB-C is 2.26 to 2.46 times faster, while the PipeDream-C is
only 1.28 to 1.67 times faster. So the experiment shows that the PipeFB applies
the data transfer mechanism can greatly reduce the memory usage and maintain
the training speed advantage of the pipeline parallelism.

7 Conclusion

The traditional pipeline parallelism schemes apply the data transfer mechanism
to reduces the peak memory usage will lost a lot of training speed. We propose
an optimized pipeline parallelism scheme: PipeFB. The PipeFB applies the data
transfer mechanism can greatly reduce the peak memory usage and maintain
the training speed. This contribution enables the pipeline parallelism scheme to
train more larger network models and keep its training speed advantage. Further
work will explore how to optimize the communication such as utilizing the data
compression.
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Abstract. With the rapid development of IoT applications, how to pro-
cess large and continuous data streams in real time for IoT applications has
become a challenge in recent years. This paper presents a model to predict
the Maximum Sustainable Throughput (MST) of data streaming appli-
cations at the edge, and then proposes GACP, a constraint programming-
base operator placement strategy to maximize MST using the genetic algo-
rithm. We evaluated the proposed operator placement strategy in terms of
MST, the number of edge servers in usage, and the percentage of commu-
nications within edge servers. Experimental results show that compared
with the existing heuristic algorithms, the proposed GACP strategy can
achieve better MST, which is 2–5 times higher than existing algorithms.

Keywords: Operator placement · Data streams · Edge computing ·
Genetic algorithm · IoT

1 Introduction

We are moving into a data-driven era, and it has become a challenge to pro-
cess large and continuous data streams in real time. In the last decade, dis-
tributed computing systems, such as Hadoop and Hive, have been widely used
and deployed to process big data. However, in recent years, a large number of IoT
applications have emerged, such as network monitoring, telecom data manage-
ment, sensor networks and so on. In these scenarios where real-time data flows
must be analyzed swiftly and changes must be quickly responded to, batch pro-
cessing model can no longer meet the requirements, which has the characteristics
of slow response and high latency. Therefore, stream data processing has received
extensive attention. In contrast to traditional databases, stream processing sys-
tems run continuous queries and analyze data in real time to provide continuous
output [12]. Academia and industry have been working on data stream process-
ing (DSP). Several programming architectures based on data streams, such as
Apache Spark and Twitter’s Storm, have been built.
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Edge computing supports distributed computing to reduce latency and band-
width bottlenecks by moving computations and storage to edge servers near end
users. The shared aim of reducing latency in DSP and edge computing has led
a constant increase in the deployment of stream processing applications in edge
environments. As a result, substantial research has been done on placement tech-
niques between edge servers [9] or across hybrid cloud and edge environment [11].
All of these research used the same measurements and optimization goals as prior
attempts that dealt with resource heterogeneity in the cloud [10]. Their specific
aims are to reduce latency or response time [9] as well as the overall data traffic
among edge nodes [4].

However, in practice, the amount of the data input stream is not always
constant. For existing deployments that minimizing latency and considering the
network heterogeneity of the edge environment, it is difficult to change when
the incoming data stream rate increased, especially when resources are limited
in the edge environment. The amount of data that a stream processing system
can receive while maintaining stable performance is called the Maximum Sus-
tainable Throughput. When the data input rate exceeds MST, the data intake
rate of the data stream processing system cannot keep up with the data input
rate. As a result, data will be continuously piled up, which will have a huge
negative impact on the performance of the data flow processing system [6]. MST
is currently recognized as an important indicator for DSP system performance
in the literatures [6,7]. Given the dynamics and volatility of data stream, we
propose MST should be considered an essential metric and optimization objec-
tive for operator deployment in edge scenarios. Therefore, we propose a model
for evaluating the deployment of operators in edge scenarios, and introduce a
genetic algorithm based on constraint programming.

The main contributions of this paper are listed as follows:

(1) We proposed a constraint programming model to solve the deployment prob-
lem of data streaming applications in edge environment. The model can pre-
dict the MST under different operator deployment strategies and give the
related constraints for the MST maximization problem.

(2) We proposed a genetic algorithm based on constrained programming. We
can select the optimal operator deployment scheme aiming at maximizing
MST by genetic algorithm.

(3) Comparing GACP with greedy algorithm [10] and graph partitioning algo-
rithm [3], experimental results show that GACP can support MST 2–5 times
higher than others.

2 Related Work

In a variety of data centers and the network’s edge, IoT applications have been
widely implemented. There are some solutions that placing some operators in
micro data centers closer to where the data is generated. Gu et al., aiming at
minimizing the communication cost of BDSP among geographically distributed
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data centers, modeled the deployment problem of flow processing applications
as a mixed integer linear programming (MILP) problem, which was solved by
multi-virtual machine placement algorithm (MVP) [4]. Fischer and Benoit et al.
argued that the problem of deploying IoT applications on edge heterogeneous
topologies is at least NP-hard [2,3].

Low latency is the goal of both data stream processing and edge computing.
In [10], Peng et al. proposed the R-storm system. Different from the default
Storm scheduling method, R-Storm considers edge node memory as a hard
resource constraint, CPU and bandwidth utilization as soft resource constraints,
and performs scheduling based on resource awareness to maximize throughput.
A task-parallel distributed stream processing system scheduling method based
on graph partitioning has been proposed [1]. Renart et al. proposed an IoT edge
framework (R-Pulsar) in [11], which dynamically splits IoT applications and
pushes partitions of them to the edge, reducing latency, data exchange volume,
and communication costs between edge and cloud. Considering the location of
IoT sensors, Happ et al. described the combined employment of brokers and
operators on current edge, fog, and cloud resources as an optimization problem
[5]. To solve the joint problem, a heuristic method is proposed. Lambert et al.
proposed a throughput capacity model for DSP on cloud computing to solve
the high latency and low processing throughput created by the edge computing
paradigm [8].

Many work focused on operator placement strategies in edge environments,
which mostly employ the same metrics and optimization goals as previous work
dealing with resource heterogeneity in the cloud. Specifically, these studies usu-
ally take the system’s throughput and ability to maintain low latency as indi-
cators to evaluate the success of DSP deployment at the edge while ignoring
MST. In this research, we suggest that it is particularly significant to use MST
as an optimization metric for operator deployment in highly dynamic network
environments. Therefore, on the basis of the above research work, we further
propose an application deployment method with the goal of maximizing MST,
namely the genetic algorithm based on constraint programming.

3 Operator Placement Strategy

3.1 System Overview

In this paper, the operator deployment of the IoT data streaming application
refers to the mapping problem of each operator to the server nodes. We designed
a scenario with four operators and three servers to illustrate the algorithm in
this paper, as shown in Fig. 1. The operator layer is a Storm topology, that is,
the logical dependencies of Spout and Bolt are given and the connection between
operator instances is omitted. We define that each op operator contains multiple
operator instances, assuming OP = {op1, op2, ..., opm}, the number of instances
of each operator is I = {I1, I2, ..., Im}. For example, in the operator layer, for
op1, I1 equals to 3. For any two server u, v, buv stands for their bandwidth.
Each edge server has a fixed number of slots ,which is the maximum number of
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Fig. 1. Stream processing application deployment model in edge environment.

operator instances that can be placed. We expect to deploy the operator on a
suitable edge server to maximize the MST of the entire system.

3.2 System Model

In this section, we propose a simple model designed to represent the bandwidth
consumption of operator placement and how to infer estimates of MST from it.
For simplicity, we will focus on communication, assuming that the CPU is not
the bottleneck (operators are sufficiently replicated). For convenience, the main
symbols in this paper are listed in Table 1.

Fig. 2. Example of placement scheme.

DAG(VO, EO,WO) represents the application with its operators and their
dependencies. VO is the set of operator instances. Note that two instances of the
same operator are two different vertices of VO. EO describes the data exchange
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Table 1. Notations.

Symbol Meaning

Im The number of operator instances of the mth operators

σ Optimal placement σ : VO → VN

D System maximum input rate

BU(σ, u, v) Actual bandwidth usage between nodes u, v

μoo′ Corresponding communication coefficient on

BE(σ, u, v) Bandwidth overflow

buv Standard bandwidth between nodes u, v

Sv Number of available slots on server node VN

Si A set of all operator instances whose operator type is i

Ini Total amount of data received at the ith stage

FSi Set of front stages with a path length of 1 from stage Si

Ci,j Output by Ei,j accounts for the weight of output by Si

αi The variation coefficient of a data stream related with Si

ri Total number of operator instances in ith stage

βi,j Communication coefficient related D given by Ei,j

xi,u The number of operator instances in Si placed on node u

between the two operator instances, and WO describes the amount of data
exchanged between the two operator instances. We assume that if Vx and Vv

are different operator instances of the same kind of operator, and both have a
dependency on Vz, then Wx,z = Wv,z. In DAG(VN , EN ), VN is a set of edge
server nodes, and EN describes the data exchange between the two edge servers.
Based on the relational dependency graph DAG(VO, EO,WO) of the operator
instance and the server placement graph DAG(VN , EN ) given above, we present
a placement scheme, as shown in Fig. 2.

In particular, if the operators with sequential dependencies are located on
the same edge server, we believe that the transmission between them does not
consume bandwidth. For example, op1 and op3 are deployed in edge server n1,
where no bandwidth is consumed and the connection between them is omitted, as
shown in Fig. 2. Note that there can be multiple instances of the same operator
in the same server. We define that the amount of data transmission between
the server node u and the server node v is equal to the accumulation of the
weights between the operator instances with dependencies on the node u and
the node v. Therefore, after matching all the operator instances in node u and
node v, the actual bandwidth transmitted between nodes u, v can be obtained
by accumulating WO. For example, in Fig. 2, the actual transmission bandwidth
of edge server n1 and edge server n2 is the sum of the corresponding weights of
E1,3 and E3,4. From this, we derive the following formulas.

For placement scheme σ, we define the actual bandwidth usage from node u
to node v as BU(σ, u, v), which is calculated as

BU(σ, u, v) =
∑

oo′∈EO,σ(o)=u,σ(o′)=v
WO(oo′) (1)
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where WO(oo′) = μoo′ × D, and oo′ ∈ EO. WO means the actual transmission
bandwidth between operator instances o and o′. μoo′ is a fixed multiplicative
factor given by the edges in EO (we assume that all communications changes
linearly when the input rate changes). We define bandwidth overflow BE as the
difference between the actual transmitted bandwidth and the standard band-
width. Note that if the the difference is negative, BE is considered to be 0.
More precisely, BE(σ, u, v) = max(0, BU(σ, u, v) − buv). We define MST τ
as the maximal input rate D if and only if BE(σ) ≤ 0. Combine the above
equations to get

∑
oo′∈EO,σ(o)=u,σ(o′)=v μoo′ × D ≤ buv ,which is equivalent to

D ≤ buv∑
oo′∈EO,σ(o)=u,σ(o′)=v μoo′ . Then, we get the formula for τ as

τ = min
u,v∈V 2

N

buv∑
oo′∈EO,σ(o)=u,σ(o′)=v μoo′

(2)

Definition of MST-Maximization Problem. Given a dependency graph
DAG(VO, EO,WO) between operator instances and a placement graph
DAG(VN , EN ) of edge server nodes, MST-Maximization problem is to find the
optimal placement σ : VO → VN of operator instances to maximize τ .

3.3 Constraint Programming Formulation

In the stage dependency graph DAG(VO, EO,WO), VO =
⋃

Si, EO is used to
describe the dependency between stages, and WO is used to describe the amount
of data exchanged and transmitted between the two stages. Let the data source
be S0 (the number of operator instances is 1), and the amount of data received
in this stage is D. For stage Si, the amount of data it accepts is the accumulation
of the corresponding weights of all the edges that have dependencies on it. More
precisely, {

In0 = D
Ini =

∑
j∈FSi

βj,i × D (3)

where FSi represents the set of pre-stages with a path length of 1 from the stage
Si. For example, the set of pre-stages of S4 is FS4 {S2, S3}. For Wj,i, if Sj is the
data source, the weight of the edge should be W0,i = D × C0,i × αi. If Sj is not
the data source, Wj,i = Inj × Cj,i × αi. Cj,i represents the weight of the data
volume output by edge Ej,i to the total output data volume of the stage Sj .
For example, in Fig. 1, W1,3 = D × C1,3 and C1,3 + C1,2 = 1. From this we get
a linear relationship between Wj,i and D. We describe this linear relationship
with the constant βj,i and give the following definition of β: β is a property of
an edge. Suppose Ej,i is the edge corresponding to Sj pointing to Si, then the
communication coefficient of this edge is βj,i, and the data transmission amount
corresponding to this edge is Wj,i = βj,i × D. More precisely,

{
β0,i = C0,i × αi FSi = {0}

βj,i = (
∑

x∈FSj

βx,j) × Cj,i × αi else (4)
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Constraint programming (CP) is a linear programming approach, in which
decision variables can be multiplied. We apply a constraint programming to the
maximization problem of MST. We define the decision variable: ∀i ∈ [0, N ], ∀v ∈
VN , xi,u where xi,u represents the number of operators in stage Si placed on the
node u. The formulas for applying linear constraints to the MST-Maximization
problem are as follows.

∀i ∈ [0, N ] ,∀v ∈ VN , xi,v ≥ 0 (5)

∀i ∈ [0, N ] ,
∑

v∈VN

xi,v = ri (6)

∀v ∈ VN ,
∑

i∈[0,N ]

xi,v ≤ Sv (7)

∀u, v ∈ VN , u �= v
∑

i∈[1,N ],j∈FSi

xi,uxj,v
βj,i × D

rj × ri

+
∑

j∈[1,N ],i∈FSj

xj,vxi,u
βi,j × D

ri × rj
≤ buv (8)

Equation (5) ensures that the number of instances of each operator deployed
on each server is greater than or equal to 0. Equation (6) ensures that all operator
instances in each stage are deployed to the server. Equation (7) ensures that the
total number of operator instances deployed on the server is less than the number
of slots. Equation (8) ensures that the actual bandwidth between any two edge
servers does not exceed the standard bandwidth during actual transmission.

4 Proposed Algorithm

4.1 Genetic Algorithm Based on Constraint Programming

Because the genetic algorithm has a relatively complete mathematical model and
theory, it has good performance in solving many NP-hard problems. Applying
the genetic algorithm to the scenario of this paper and combining the constraints
proposed above, we propose a genetic algorithm based on constraint program-
ming called GACP.

4.2 Algorithm Description

First, we should initialize the population. The upper bounds UB and lower
bounds LB of each gene variable are given according to the constraints pre-
sented above. We generate random numbers uniformly distributed between UB
and LB of the variable to ensure that each generated chromosome is legitimate.
More precisely, mopi,nj

= LB(opi)+(UB(opi)−LB(opi))∗rand. After randomly
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generating an initial population of 5,000 legitimate candidate solutions, we repli-
cate the chromosomes with good fitness performance in the original population
and mutate the existing population to generate a new generation of population
secondly. Iterate continuously until we reach our preset maximum evolutionary
generation. In the iteration, we calculate MST as the optimization objective
function, and use the objective function to find the maximum placement scheme
of MST within the search range. Finally, the best fitness, and the best placement
scheme are output, as shown in Algorithm 1.

Algorithm 1. Genetic Algorithm
Input: DAG(op), DAG(node)
Output: AnswerOpm,Vn , BestF itness
1: Initialize DAG(op)Weight array randomly
2: Initialize Bandwith array randomly
3: Initialize OpInstanceNum array randomly
4: Initialize Slot array ← 8
5: Initialize MaxGeneration ← 100
6: Initialize PopulationSize ← 5000
7: Initialize InitialPopulation array ← Init(Papulationsize)
8: for i to MaxGeneration do
9: Select(Papulation)

10: Cross(Papulation)
11: Mutation(Papulation)
12: Update BestF itness
13: Update AnswerOpm,Vn

14: i ← i + 1
15: end for

5 Baseline Approaches

Inspired by R-Storm scheduler proposed by Peng [10], who uses resource-aware
scheduling algorithm to improve system throughput, we design two Greedy
strategies, namely GD-I and GD-II. Both of them aim to maximize the MST
of the system by increasing intra-server node communication, that is, reducing
communication between two server nodes.

5.1 Greedy Intra-node Communication (GD-I)

First, we number the operators in the operator dependency graph according
to the DFS (depth-first search) rule. Second, we select the server node with
the most available slots, assign the operator instance numbered 1 to this node,
and select the operator instance that has a dependency on it and assign it to
this node. Then select an operator that has a dependency on the operator just
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assigned and assign it to the node. Repeat the above operation until the number
of slots in the node is used up, which is to make more operators within the node
have dependencies. Using this assignment for each server node, we can get a set
of unique solutions. Note that because the server nodes are connected in pairs,
we assume there is no difference between the two servers. Finally, we output the
matrix solution and its corresponding MST.

5.2 Greedy Improved Intra-node Communication (GD-II)

For the scenario where the number of operator instances of each operator is
smaller than the number of server slots, we propose a more efficient strategy to
improve intra-node communication. Compared with GD-I algorithm, GD-I algo-
rithm only tends to assign all the instances of this operator to nodes (instead of
only allocating one instance of this operator) every time an operator is allocated.

5.3 Graph Partitioning (GP)

The strategy we propose here is based on the graph partition problem. The
goal is to divide the vertices of the operator instance dependency graph into
n sets with the same cardinality, while minimizing the edge weight (referring
to the weight of one set to another). More precisely, let G = (V,E,W ) be a
graph with edge weights, P = (p1, p2, ..., pn) be a partition of V , i.e., ∪Pi = V ,
∀i �= j, pi ∩ pj = ∅. The edge-cut of this partition are defined as uv ∈ Ecut if
and only if u ∈ pi, v ∈ pj , i �= j. Graph partitioning is a well-known technique
for reducing communication between processes. Applying it to this scenario, we
define the weight between different sets as the amount of communication. In
order to use as many server node resources as possible (more links to share the
communication between nodes), we define n as the number of server nodes, and
the cardinality value as the ratio of the total number of operator instances to
n. Use the above GD-II strategy to reduce the edge cut weight, that is, the
traffic between nodes (increase the proportion of traffic within nodes). Finally,
we output the matrix solution and its corresponding MST.

5.4 Random Strategy (RS)

We randomly generated 500 reasonable placements and obtained their MST,
intra-node communication, and the average number of server nodes used, and
recorded the average value.

6 Experimental Results and Analysis

6.1 Experiment Configurations

Parameter Setting. We set up 8 slots per edge server. The weights of each
edge in the operator dependence graph are random within the range of 0.1–0.9,



614 S. Chen et al.

and the weights of edges linked at the same starting node add up to 1. The
proportion of actual received data of each operator α is random in [1/3, 1] or [1,
3]. Bandwidth between edge server nodes is random in [10Mbps, 100Mbps]. We
take MST, proportion of intra-node communication, and the number of server
nodes used as the metrics of experimental evaluation.

In the experiment, we first took the number of edge servers as an independent
variable, which is changed in the range of [6, 13]. For each operator Opm, Im

is fixed to 4. Since some of the experimental variables were random, we did
multiple experiments and recorded the average value of each metric when the
independent variables obtained the same value. Subsequently, we took the total
number of operator instances as independent variable, which changes in [20, 40].
It is worth mentioning that, when the independent variable changes, the number
of operator types and dependence remain unchanged, but only the number of
instances of each operator changes. The number of server nodes is fixed at 8.
For each operator Opm, Im is randomly selected within the legal range, which
is expressed by the following equation:

{
Im ≥ 1

Im ≤ IV − ∑
t∈[1,m−1]

It (9)

where IV represents the current value of independent variable, that is, the total
number of operator instances. For the accuracy of the experiment, we also con-
ducted several tests and recorded the average value of each indicator under the
five strategies.

6.2 Metrics

– The average MST. The maximum throughput of the system after the oper-
ator deployment is tested, and the average value is recorded after several
experiments.

– The average proportion of intra-node communication. After the
deployment of the operator, the proportion of intra-node traffic in the sys-
tem to the total traffic is measured, and the average value is recorded after
multiple experiments. It is worth mentioning that intra-node communication
does not need to occupy transmission bandwidth.

– The average number of edge servers used. The number of servers used
by the system after the deployment of operator is completed, where at least
one operator instance is deployed on it. The average value is recorded after
several experiments.

6.3 Results and Analysis

The Average MST. Figure 3 shows the changes of the average MST under
different strategies with the increase of the total number of operator instances
when the number of available edge servers is fixed to 8. Figure 4 shows the
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Fig. 3. Impact of total number of operator instances on average MST.

Fig. 4. Impact of the number of edge servers on average MST.

changes of the average MST under different strategies as the number of available
edge servers increases when the number of instances of each operator is fixed to 4.
It can be clearly seen from Fig. 3 and Fig. 4 that the algorithm GACP proposed in
this paper can achieve the optimal MST, because the genetic algorithm can find
a more comprehensive solution space and find the optimal deployment scheme.
The average MST of GD-I and GD-II is much lower than that of GACP strategy,
which is close to that of RS strategy. This is because under the greedy strategy, all
operators are concentrated on fewer server nodes, which means that the system
only uses a few links to communicate, resulting in some links easily reaching
their maximum load and severely limiting the growth of MST. The performance
of the GP strategy is second only to the GACP strategy. This is because the GP
strategically selects the maximum number of available servers, which means that
there are more links to undertake the communication, and strives to minimize
the total traffic between edge nodes.

The Average Proportion of Intra-node Communication. In the experi-
ment, the number of servers is fixed and the total number of operator instances
is increased, and then operators are deployed according to different strategies
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Fig. 5. Impact of the total number of operator instances on the average proportion of
intra-node communication to total traffic.

Fig. 6. Impact of the number of edge servers on the average proportion of intra-node
communication to total traffic.

in edge environment. After the deployment, compare the average proportion of
intra-node communication to the total traffic under different strategy, as shown
in Fig. 5. It can be observed that the GACP strategy proposed in this paper is
second only to the GD-II strategy, and the average proportion of intra-node com-
munication of GP strategy is the worst or even lower than that of RS strategy.
In subsequent experiments, we fixed the number of instances of each operator
and successively increased the number of available edge servers. Figure 6 shows
the average proportion of intra-node communication to the total traffic under
different strategies in this experiment. In Fig. 6, we notice that the GACP strat-
egy proposed in this paper has similar performance with GP strategy and RS
strategy. They are lower than the two greedy strategies.

The Average Number of Edge Servers Used. Figure 7 shows the change
of the average number of edge servers used under different strategies with the
increase of the total number of operator instances when the fixed number of
available edge servers is 8. Figure 8 shows the change of the average number of
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Fig. 7. Impact of the total number of operator instances on the average number of
edge servers used.

Fig. 8. Impact of the number of edge servers on the average number of edge servers
used.

servers used under different strategies as the number of available edge servers
increases when the number of instances of each operator is fixed to 4. We observe
that the GACP strategy is second only to the GP strategy, which always selects
the largest number of edge servers. The two greedy strategies selected the least
number of servers or even lower than the random strategy, which severely limited
the growth of MST. That’s why the number of servers used by the optimal
strategy GACP tends to grow as the number of available servers increases and
is always at the forefront, as shown in Fig. 8.

At the same time, we note that the GACP strategy proposed in this paper
performs best in the average MST metric, but is not always optimal in the other
two metrics. The reasons are stated below. In the experiment with the number
of available servers as the independent variable, we found that although GD-
II significantly improved the proportion of intra-node communication compared
with GD-I, the MST under the GD-II strategy still had little difference with
that under the GD-I strategy, as shown in Fig. 6 and Fig. 4. That is to say, if
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the operator deployment strategy only increases the communication within the
node but the number of servers used is still low, MST will almost never be
promoted. Similarly, GP strategy adopts the maximum number of edge server
nodes which is at the cost of sacrificing the communication ratio within the node,
and MST under this strategy is also limited. Therefore, these two metrics, the
ratio of communication within nodes and the number of edge servers used, are
only of reference value. This is why the optimal operator deployment strategy
GACP keeps them within reasonable limits rather than achieving extreme values.
Furthermore, according to Eq. (2), we note that MST depends on the edge of the
server topology with the smallest maximum load value which is closely related
to the standard bandwidth of this edge. Therefore, we believe that an excellent
operator deployment strategy aimed at maximizing MST must have excellent
bandwidth awareness. Obviously, neither greedy algorithm nor graph partition
algorithm has bandwidth awareness, while the algorithm in this paper, GACP,
has strong bandwidth awareness because bandwidth is one of the constraints.
This is why the algorithm GACP in this paper can achieve the optimal MST.

7 Conclusion

In an edge environment where network bandwidth and data stream are highly
dynamic, we believe that MST should be used as an optimization target when
deploying stream processing applications. This paper proposes a model to cal-
culate and predict the maximum sustainable throughput of stream processing
applications in an edge environment and model the stream application deploy-
ment as a constraint programming problem. By evaluating the MST, the number
of servers used and the proportion of intra-node communication under different
operator deployment strategies of system in edge environment, we believe that
an excellent operator deployment strategy should have good bandwidth resource
awareness. More importantly, the genetic algorithm strategy based on constraint
programming proposed can achieve the optimal MST, which is 2–5 times higher
than the baseline strategies.

However, we do not consider the influence of other network factors on the
operator topology, that is, we assume that the dependencies between operators
are static, which is different from the real application. In future work, we can
obtain relevant data for practical application and implement our GACP strategy
at Storm. In addition, we can also extend our model to consider other optimiza-
tion goals, such as communication costs and latency.
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Abstract. As efficient commercial information technology, cloud com-
puting has attracted more and more users to submit their requests to
the cloud platform and pay for them based on the amount and quality of
services. One of the most important concerns of cloud service providers
is to minimize the monetary cost for completing users’ requests while
meeting constraints on the quality of services such as makespan and
security. To solve this concern, this paper proposes a makespan and
security-aware workflow scheduling method based on an improved firefly
optimizer that consists of a new solution initialization scheme, a firefly
position updating scheme, a firefly-to-solution mapping operator, and
two task-to-virtual machine assignment schemes. We carry out extensive
simulation experiments on real-world workflows to validate our proposed
workflow scheduling method. The results reveal that the monetary cost
reduction achieved by our method can be up to 54.0% compared to a
baseline and two state-of-the-art approaches.

Keywords: Cloud computing · Workflow scheduling · Cost
minimization · Makespan and security · Firefly algorithm

1 Introduction

Cloud computing is an interactive business mode that is developed based on
virtualization technology as well as parallel processing and distributed comput-
ing technologies [1,2]. It provides large-scale hardware, software, storage, and
network resources as various services to cloud users in a “pay as you go” man-
ner. Cloud users can purchase the services according to the characteristics and
requirements of their requests. Infrastructure-as-a-Service (IaaS) is a very popu-
lar service mode provided by many cloud platforms such as Amazon EC2, IBM
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Blue Cloud and Sun Grid. It allows cloud providers to rent cloud computing
resources to remote users in the form of various virtual machines (VMs) with
different hardware configurations, quality of service (QoS), and price models.

Workflow has been widely used in describing data-intensive applications
deployed on IaaS clouds, which contain a group of parallel tasks with
data/control dependencies [3,4]. Such a workflow application can be represented
as a directed acyclic graph (DAG) where nodes represent tasks and edges repre-
sent data/control dependencies. Cloud users purchase cloud services from IaaS
service providers to execute the requests they submit, typically with a certain
requirement on deadline and QoS. However, since users need to upload their
applications (i.e., requests) to the cloud for processing, the applications may
face various security threats such as sensitive data divulgence, eventually caus-
ing huge financial loss. More importantly, with the rapid development of com-
puting technology, the amount of data uploaded to cloud has increased signif-
icantly, posing fundamental challenges to the construction of security-critical
cloud computing systems [5]. Therefore, cloud servers must provide security ser-
vices to protect sensitive data and maintain a high level of security. From the
perspective of cloud providers, if multiple workflows are executed with deadline
and security requirements specified by users, reducing the execution cost of tasks
and shortening the completion time of tasks are the primary goals to maximize
their profit. However, the two goals are contradictory since shortening task com-
pletion time often requires better computing capacity that in turn increases the
execution cost.

To solve this conflict, we need to obtain the best trade-off between cost and
makespan. To this end, this paper studies the workflow scheduling problem to
minimize cost while meeting timing and security constraints. Considering that
the firefly algorithm (FA) [6] is a classic meta-heuristic algorithm widely used in
solving complex optimization problems and has the advantages of simple struc-
ture and fewer parameters, we propose an improved firefly algorithm (IFA) to
solve the cost minimization problem without violating all the design constraints.
Specifically, given a workflow application, the proposed IFA judiciously deter-
mines the sequence of tasks to be executed, the selection of security services for
tasks, and the assignment of tasks to VMs. Extensive simulation experiments
are carried out to validate the efficacy of IFA.

The remainder of this paper is organized as follows. Section 2 reviews related
work and Sect. 3 describes system models. Section 4 defines the studied prob-
lem and gives an overview of the proposed methodology. The proposed IFA is
detailedly introduced in Sect. 5. Section 6 presents the experimental results and
Sect. 7 concludes the paper.

2 Related Work

Minimizing cost is a key concern in executing workflow applications in the cloud
and it has attracted wide attention recently. Wen et al. [7] presented a new
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workflow management framework that dynamically partitions scientific work-
flows across federated cloud servers for minimizing financial cost and grace-
fully solving run-time failures. To minimize the cost and makespan of executing
precedence-constrained tasks in workflow applications, Zhou et al. [8] designed a
new heterogeneous earliest-finish-time algorithm that utilizes fuzzy dominance
sort to find the optimal scheduling solution. Wu et al. [9] proposed an ant
colony optimization based heuristic algorithm and a list scheduling based heuris-
tic algorithm to schedule workflow applications in the cloud with the target of
optimizing cost under the deadline constraint. To cope with the dynamics of
multiple deadline-constrained workflows arriving randomly on the cloud, Arab-
nejad et al. [10] developed a dynamic workload scheduler. Based on the delay-
aware Lyapunov optimization technique and greedy strategy, a dynamic cloud-
edge heterogeneity-aware resource provisioning framework is proposed in [11] to
achieve the best trade-off between timing performance and cost. All the afore-
mentioned approaches are effective in reducing the cost of executing workflow
applications, however, they do not consider the security issues.

Due to the connection to the Internet, running workflow applications on
clouds may suffer various data privacy and security issues. Using cryptographic
algorithm based security services provided by the cloud is an effective counter-
measure to defend against attacks. Such security services are typically manufac-
tured in advance and sold to users for protecting sensitive data and users need
to pay for the use of security services depending on the efficacy. Xie et al. [12]
firstly introduced the concept of quality of security to quantify the security level
of tasks using security services and designed a task scheduling algorithm for inde-
pendent tasks with security and deadline constraints. Jiang et al. [13] designed
a genetic algorithm to address the security optimization of security-critical dis-
tributed real-time applications. Zhou et al. [14] presented an analysis-based two-
stage scheme that decides the allocation of tasks to processors, the operating
frequency of tasks, and the selection of security services for tasks, to solve the
energy-constrained security optimization problem. However, these methods [12–
14] are designed for either embedded systems or the Internet of Things. Unlike
them, Nawrocki et al. [15] proposed security-aware task scheduling algorithms
for cloud computing to improve cloud resource and service utilization. A new
model checking based approach is introduced in [16] to analyze the security
requirements of workflow applications. Although the security issues can be well
solved by the above-mentioned methods, none of them considers the cost of task
execution and data encryption.

3 System Model

This section presents system models used in this paper, including the application
model, the cloud resource model, and the security model.
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3.1 Application Model

Consider a workflow application which consists of numerous parallel tasks with
dependencies. The workflow application can be modeled as a DAG, i.e., G(Γ,E)
where Γ is a group of tasks and E is a set of edges representing the dependencies
between the tasks. Specifically, τi ∈ Γ = {τ1, τ2, · · · , τN} denotes the i-th task
(i.e., the i-th node in the DAG). E is an N × N 0–1 matrix where E(i, j) =
1 indicates the precedence constraint between tasks τi and τj . The constraint
requires that task τj can start its execution only after task τi has been finished.
In other words, τi is an immediate predecessor of τj and τj is an immediate
successor of τi. If E(i, j) = 0, indicating no dependency between τi and τj .
Let Predτi

= {τg|E(g, i) = 1} and Succτi
= {τj |E(i, j) = 1} represent the

set of predecessors and successors of task τi, respectively. If a task has no any
predecessors (or successors), the task is called an entry task and defined as
τentry (or an exit task and defined as τexit), which satisfies Predτentry = φ (or
Succτexit = φ). As an example, Fig. 1 shows the DAG of a workflow application
that is composed of six dependent tasks.

Fig. 1. Example of a DAG application.

3.2 Cloud Resource Model

IaaS providers offer a set of pre-configured VMs based on infrastructure resources
for users to deploy workflow applications. Users are charged according to the
usage or occupancy of resources. The charges to different VMs are not the
same due to their different computing capacities and communication bandwidths,
which also impact execution and communication time.

Denote the IaaS platform as a triple, i.e., IaaS = {V,R, PC}, where V =
{V1, V2, · · · , VM} is a set of VMs and used to execute/encrypt tasks. Vm (m =
1, 2, · · · ,M) ∈ V is the VM created for task τi. R = {R1, R2, · · · , RQ} is a
set of the VM type, where Rq (q = 1, 2, · · · , Q) ∈ R is the type of Vm. PC =
{PC1, PC2, · · · , PCQ} is a set of the charge price for different VM types, where
PCq (q = 1, 2, · · · , Q) ∈ PC is the price of the VM of type Rq. Note that different
VMs could be the same type, but each VM can only belong to one type. We use
Z to represent the relationship of VMs and their types, which is an M × Q
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matrix. Taking Vm for an example, zm,q = 1 indicates that Vm is the type Rq

and zm,q = 0 otherwise. Clearly,
∑Q

q=1 zm,q ≤ 1 holds. The tasks are assigned
and executed onto proper VMs. We use X to represent the task assignment
strategy, which can be formulated as an N ×M matrix. In this matrix, xi,m = 1
means that τi is assigned to Vm and xi,m = 0 otherwise. Tasks are all indivisible
such that they can only be assigned to one VM at a time, i.e.,

∑M
m=1 xi,m = 1.

The concept of computing unit (CU) is used to describe the computing capacity
of VMs. The larger the CU, the higher the computing performance of the VM.
CU determines the execution time of tasks. For simplicity, we define the reference
execution time of a task as the execution time served on the VM whose CU is
1. Let T ref be a task’s reference execution time, then the actual execution time
T act of task τi running on the VM of type Rq can be formulated as

T act
τi

=
T ref

τi

CURq

, (1)

where T ref
τi

is the reference execution time of τi and CURq
is the computing

capacity of the VM of type Rq.
Due to the dependence between tasks, the communication overhead is non-

negligible. The communication time between two tasks depends on the commu-
nication bandwidth of the VM and the size of the transferred data. It can be
ignored only when two dependent tasks are served on the same VM. In general,
the communication bandwidth of different types of VMs are different. Let BW
be the communication bandwidth of a VM and DATA be the size of trans-
ferred data of a task. Assume tasks τi and τj are assigned to VMs Vα and Vβ ,
respectively. The communication time needed to transfer data from τi to τj is

T com
τi,τj

=

{
DATAτi

min(BWRα ,BWRβ
) , if Vα �= Vβ ,

0, if Vα = Vβ ,
(2)

where Rα and Rβ (Rα, Rβ ∈ R) are the VM types of Vα and Vβ respectively and
DATAτi

is the size of the transferred data of τi.

3.3 Security Model

To ensure security during data transmission, it is necessary to use security ser-
vices to defend against threats. We assume that the system has provided multiple
security services for VMs since various security protection mechanisms have been
studied and developed in the literature. Users can readily adopt the security ser-
vices to improve system quality of security under the cost constraint.

Let S = {S1, S2, · · · , SK} be a security service set containing K different
security services. Each security service is associated with an encryption algo-
rithm, the time overhead, and the corresponding security level achieved by using
the encryption algorithm. The encryption time overhead and the monetary cost
are usually linearly and positively correlated with the achieved security level. Let
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SCk (1 ≤ k ≤ K) be the charge price for encrypting each unit of data by using
security service Sk. Assume task τi adopts Sk as its security service. After using
Sk, the achieved security level of task τi is denoted by si. Let T enc

τi,si
be the time

overhead by using service Sk to encrypt each unit of data. The data encryption
starts after the task execution. The time overhead of encrypting unit data can
be formulated as T uni

si
= Ai × si, where Ai is a positive coefficient depending on

the encryption algorithm adopted by task τi. The encryption time overhead is
positively correlated with the size of data to be encrypted. It is expressed as

T enc
τi,si

= T uni
si

× ρi = Ai × si × ρi, (3)

where ρi is the size of data segment that needs to be encrypted in task τi.
The system quality of security is defined as the sum of security levels of all

tasks in the workflow application. It is derived as

SecuLevelsys(Γ ) =
N∑

i=1

si, (4)

where si is the security level achieved by task τi.

4 Problem Formulation and Methodology Overview

This section formulates the problem to be solved in this paper and introduces
our solution to the problem in brief.

4.1 Problem Definition

Our goal is to minimize the cost of scheduling workflows at the premise of meeting
makespan and security constraints. The makespan and cost are calculated as
follows. Let T sta

τi
and T fin

τi
represent the start time and finish time of task τi,

respectively. The time required to complete a task consists of two parts: i) the
time required to run on the VM and ii) the time demanded to use the security
service for data protection. Hence, the task finish time T fin

τi
is calculated as

Tfin
τi

= T sta
τi

+ T act
τi

+ T enc
τi,si

= max{T ava
Vm

, max
τj∈Pred(τi)

(Tfin
τj

+ T com
τi,τj

)}+ T act
τi

+ T enc
τi,si

, (5)

where T ava
Vm

is the available time of VM Vm that would be dynamically changed
during the task allocation process. Clearly, the start time of entry task T sta

τentry is
0. The makespan, defined as the latest finish time of all tasks, is expressed as

Makespan = max
τi∈Γ

T fin
τi

, (6)

where T fin
τi

is derived by Eq. (5).
Let CostVM(Vm, Rq, PCq) denote the monetary cost of using VM Vm whose

type is Rq and price is PCq. Let Costser(τi, si, SCk) denote the monetary cost of
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task τi when using security service Sk with price SCk. Thus the total monetary
cost is derived as

Costtot =
∑

Vm∈Ψ

CostVM (Vm, Rq, PCq) +
N∑

i=1

Costser(τi, si, SCk), (7)

where Ψ is a VM set including the VMs that are selected to run tasks and si is
the security level of task τi.

We define our optimization problem as follows. Given a workflow application,
an IaaS platform and a group of security services, we aim at obtaining a task
sequence and a task scheduling scheme for minimizing the cost of scheduling
workflow tasks at the premise of meeting makespan and security constraints.
The problem can be mathematically formulated as

Minimize: Costtot

subject to: Makespan ≤ D

SecuLevelsys(Γ ) ≥ L
(8)

where Costtot given in Eq. (7) is the total monetary cost spending for VMs and
security services, Makespan given in Eq. (6) is the latest finish time of all tasks,
SecuLevelsys given in Eq. (4) is the system quality of security. The 1st constraint
requires that all tasks should be finished before a common deadline D and the
2nd constraint ensures that system security level is no lower than a threshold L.

4.2 Methodology Overview

The studied problem involves the decisions on i) the execution order of tasks,
and ii) the assignment of tasks to VMs and the selection of security services.
Considering the combinatorial nature of this problem, we propose IFA to solve
it. IFA follows the rationale of traditional FA [6], which exploits the luminous
characteristics of fireflies to attract other fireflies. Specifically, for any two fire-
flies, the attraction between them is determined by their brightness, also called
light intensity. When two fireflies attract each other, the firefly with less bright-
ness will move towards the firefly with more brightness. Inspired by this social
behavior of fireflies, we define fireflies as the solutions to the studied problem
and define the brightness of a firefly as the objective of a solution. According
to the luminous characteristics, the firefly with a low objective value will move
towards the firefly with a high objective value, such that all fireflies will eventu-
ally surround the firefly with the best objective value (i.e., the optimal solution).
Unlike the traditional FA used in solving continuous optimization problems, our
IFA uses a distance-based mapping operator that considers not only the dis-
tance between each firefly and the brightest one but also the current optimal
solution. Figure 2 gives an overview of IFA, including solution representation
and initialization, firefly updating, firefly mapping, and solution evaluation.
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Fig. 2. The overview of the proposed IFA.

5 Proposed Improved Firefly Algorithm

Distinct from the traditional FA [6], our IFA improves the way of firefly updating
by enabling each firefly to move towards the brightest one according to their
distance. Specifically, we propose a new distance-based mapping operator to
ensure that the corresponding solution of each firefly is inherited from the current
optimal solution. To speed up the convergence process, we also design an initial
heuristic algorithm to provide a good initial solution for IFA.

5.1 Solution Representation and Initialization

Representation: The solution of IFA is the rank of all tasks (i.e., the task
sequence and denoted by ζ). As mentioned earlier, data dependency between
tasks is considered in this paper. The dependency is broken if a task is prior
to its predecessor in the sequence. Thus, a valid task sequence must follow data
dependencies. For example, given three tasks τ1, τ2, τ3, τ1 is the predecessor of τ2
and τ3. Among the three permutations of these tasks, i.e., ζ1 = (τ1, τ2, τ3), ζ2 =
(τ2, τ1, τ3), ζ3 = (τ3, τ2, τ1), only ζ1 is a valid task sequence. Let ζ�[i] denote the
i-th task in the �-th solution, we have ζ1[2] = τ2. Supposing Ω is the population
of fireflies, the position vector of the �-th (� = 1, 2, · · · , |Ω|) firefly is denoted
by Y� = {Y�,1, Y�,2, · · · , Y�,N} where Y�,n ∈ [DL,UL] (n = 1, 2, · · · , N). DL and
UL are the lower limit and the upper limit of the firefly domain, respectively.
The position vector of a firefly can be mapped to a valid task sequence (i.e.,
solution), and the firefly’s brightness is associated with the objective (i.e., cost)
of this solution. Considering this, we define the intensity of the �-th firefly I� as
the reciprocal of its fitness function. That is, I� = 1/f(ζ�) where ζ� is the solution
and f is the fitness function (i.e., the total monetary cost, f(ζ) = Costtot).
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Initialization: it consists of three parts: firefly population initialization, initial
solution generation, and sub-deadline calculation.

Firefly Population Initialization: this process is realized by randomly setting
the fireflies’ position vectors in Ω within a certain range.

Initial Solution Generation: the initial solution directly affects the efficacy
of IFA. To let IFA start with a good initial solution, we propose a composite
heuristic based generator to provide a high-quality initial solution. The proce-
dures of the initial solution generator are described in Algorithm 1. Line 1 creates
three empty solutions ζISG, ζESM , ζTemp, and an empty set R. Lines 2–7 gener-
ate random sequences without violating the dependencies of tasks in the DAG.
Note that when all the predecessors of a task have been included in the initial
sequence, the task is deemed as a ready task and can be added to the set R.
Specifically, line 2 adds the entry tasks into R. Lines 3–4 randomly select a task
from set R and add it to the end of the initial sequence ζISG in each iteration
until R is empty. In each iteration, lines 5–7 traverse the whole DAG graph to
check whether there are ready tasks that are neither in the initial sequence nor
in R. If so, line 7 adds these ready tasks into set R.

Lines 8–15 use an exchange-based search method to improve ζISG. Specifi-
cally, line 8 sets solutions ζESM and ζTemp to ζISG. Line 11 exchanges the i-th
task in ζTemp with its subsequent task τj to obtain a candidate solution. Lines
12–15 check the validity of this candidate solution and judge whether the solu-
tion is improved. If so, line 13 updates ζESM to ζTemp. Otherwise, line 15 resets
ζTemp to ζESM . The algorithm repeats the above process until all tasks have
been tried, and obtains ζESM as the best candidate solution. Line 16 sets ζ∗ to
ζESM . The generator finally outputs ζ∗ as the initial solution.
Sub-deadline Calculation: We need to pre-set a sub-deadline for each task,
to ensure that all the tasks can be completed before the common deadline while
being assigned to the appropriate VM. To this end, we first sort the communi-
cation bandwidth and computing unit of Q different types of VMs in ascending
order. To make full use of the given deadline and make the time left for each
task as loose as possible, we consider allocating VMs with small BWRq

and
CURq

to tasks. Suppose the average execution time of tasks on different types
of VMs is AT act

τi
and the average communication time is AT com

τi,τj
. The communi-

cation time here only considers the case that τi and τj are assigned to different
VMs since the communication time between two tasks on the same VM is neg-
ligible. Let β and α (1 ≤ α ≤ β ≤ Q) be the upper and lower bounds of
the range of selected VM types. To ensure the sub-deadline assigned to each
task is only related to itself, we assume that each task is allocated to the same
security service when meeting the security level requirement L, i.e., si = � L

N �.
Therefore, the encryption time of each task can be calculated using Eq. (3). The
procedure of calculating the sub-deadline of tasks is given in Algorithm 2.
SubD = {SubD1, SubD2, · · · , SubDN} is the set of tasks’ sub-deadlines. The
algorithm starts assignment from the VM type with the lowest bandwidth and
computing capacity in line 1. Line 2 calculates si according to the security quality
requirement L. Lines 4–6 calculate the average execution time and the encryp-
tion time of tasks. Lines 7–12 iteratively derive the sub-deadline of tasks, starting
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Algorithm 1: Initial Solution Generator
Input: Task set Γ ;
Output: Initial solution ζ∗;

1 Create empty solutions ζISG, ζESM , ζTemp, and a set R = φ;
2 Add τentry into R;
3 while R �= φ do
4 Randomly select a task from set R and add it to the end of ζISG;
5 for i = 1 to N do
6 if τi is a ready task and not in R or ζISG then
7 Add τi into set R;

8 Set ζESM = ζISG and ζTemp = ζISG;
9 for i = 1 to N − 1 do

10 for j = i + 1 to N do
11 Exchange task τi with τj in ζTemp;
12 if ζTemp is valid and improved then
13 ζESM = ζTemp;

14 else
15 ζTemp = ζESM ;

16 ζ∗ = ζESM ;

from the exit task. Afterward, lines 13–16 reset α and β since bandwidth and
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Algorithm 2: Sub-deadline Calculation
Input: Task set Γ ; VM type Set R; security services set S; deadline D; security

quality constraint L;
Output: Set of tasks’ sub-deadlines, SubD = {SubD1, · · · , SubDN};

1 Initialize α = 1, β = 1;
2 Calculate si = � L

N
�;

3 while SubD ≤ 0 do
4 for i = 1 to N do

5 AT act
τi

=
∑β

q=α Tact
τi,Rq

β−α+1 where T act
τi,Rq

is derived by Eq. (1);
6 Calculate T enc

τi,si
by Eq. (3);

7 for i = N to 1 do
8 if τi has no successors then
9 SubDi = D;

10 else

11 AT com
τi,τj

=
∑β

q=α T com
τi,τj,Rq

β−α+1 where τj ∈ Succ(τi) and T com
τi,τj ,Rq

is derived
by Eq. (2) ;

12 SubDi = min(SubDj − (AT com
τi,τj

+ AT act
τi

+ T enc
τi,si

));

13 if β = Q then
14 α = α + 1;

15 else
16 β = β + 1;

computing capacity may be too small to finish all tasks before deadline. If the
sub-deadlines of all tasks are valid (i.e., positive), the algorithm outputs SubD.

5.2 The Improved Updating Scheme

The proposed updating scheme is an improved version of that in traditional
FA [6]. In traditional FA [6], the �-th firefly updates its position by the following
equation when it is attracted by another brighter firefly.

Y� = Y� + β0e
−γr2

�,�(Y� − Y�) + α(ε − 1
2
), (9)

where Y� is the �-th firefly’s current position. β0e
−γr2

�,� is the degree of attraction
of the �-th firefly to the �-th firefly. α(ε − 1

2 ) is a random search. β0 is the
maximum attraction of the light source, varying in the range of [0, 1]. γ is the
light intensity absorption coefficient and it usually takes a value from [0.01, 100].
α is a random step factor whose value is in the range of [0, 1]. ε is a random
factor obeying uniform distribution on the interval [0, 1]. r�,� is the Euclidean
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distance between the �-th firefly and the �-th firefly, which can be derived by

r�,� =

√
√
√
√

N∑

n=1

(Y�,n − Y�,n)2. (10)

It can be observed from Eq. (9) that the random moving range of fireflies is
[− 1

2α, 1
2α] in the traditional FA. It means that once α is determined, the random

moving range will be fixed and is independent of the distance between the firefly
and the brightest one. However, we hope the firefly moves in a wider range when
it is far from the brightest one. On the basis of this idea, we propose a new
updating method that improves the position calculation by

Y� = Y� + β0e
−γr2

�,�(Y� − Y�) +
r∗
�

N
(ε − 1

2
), (11)

where r∗
� is the distance between the �-th firefly and the brightest one. N is

the dimension of the firefly’s position. In our improved updating scheme, the
range of the random moving range is related to the distance r∗

� , which is in
interval [− 1

2
r∗

�

N , 1
2

r∗
�

N ]. In other words, with the increase of r∗
� , the random moving

range increases and vice versa. To prevent the firefly from frequently hitting
the boundary during its movement, we divide its Euclidean distance by the
dimension N to control its search range.

5.3 The Distance-Based Mapping Operator

To map the firefly to the corresponding solution, we propose a distance-based
mapping operator considering both the distance r∗ and the current optimal
solution. The principle of mapping inherits the idea of the traditional FA, that
is, each firefly approaches the brightest one in each iteration. In other words,
the fireflies nearer to the brightest one have larger possibilities to be mapped
onto a better solution. The process of the distance-based mapping operator is
summarized in Algorithm3.

Let ζ∗ denote the current optimal solution and r∗
� denote the distance between

the �-th firefly and the brightest one. Firstly, line 1 generates an empty solution
ζ� and a set G. ζ� is used to store the resultant solution while G is used to store
tasks that are not directly inherited. Lines 2–7 describe the inheritance step.
It is assumed that the probability of each task directly being inherited into ζ�

is p = e−r∗
� . Since r∗

� must be a non-negative number, the value of p is in the
interval (0, 1]. Clearly, the smaller r∗

� , the larger p. It indicates that the closer
the �-th firefly is to the brightest one, the larger possibility the corresponding
solution will inherit tasks directly in the same position from the current optimal
solution. Specifically, line 3 randomly generates a number δ in (0, 1). Lines 4–7
determine whether tasks can be inherited to ζ�. If δ is smaller than p, line 5 adds
ζ∗
[i] to ζ� in the same position. Otherwise, line 7 adds the ζ∗

[i] into G.
Lines 8–13 describe the random insertion step. Specifically, line 8 randomly

sorts the remaining tasks in G. Lines 9–13 select the first task in G and insert it
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into the first empty position in ζ�. If all the predecessors of the task have been
inserted before this position, line 12 inserts this task into ζ� and line 13 removes
the task from G. Otherwise, it selects the second task in G, inserts the task into
the first empty position in ζ�, and continues to judge in the same way until the
insertion is successful. After successful insertion, the operator continues to insert
the first task in G after updating, and repeats the above process until there is
no task left in G. Finally, the operator outputs the solution ζ� and terminates.

However, since each solution originates from the current optimal solution ζ∗,
we cannot get rid of the possibility that the solutions obtained are the same as
ζ∗. If so, IFA will fall into the local optimum and stop looking for the global
optimal solution. Thus, we propose a theorem and prove it below to discuss the
possibility that the solution ζ� is the same as ζ∗.

Theorem 1. For the �-th firefly that is not the brightest, its corresponding solu-
tion ζ� generated by the mapping operator satisfies lim

N→∞
P (ζ� = ζ∗) = 0.

Proof. Two situations may cause ζ� = ζ∗. The first is that in the inheritance step,
ζ� inherits tasks directly in the same position from ζ∗. The second is that in the
inheritance step, ζ� inherits some tasks directly in the same position from ζ∗, but
in the random insertion step, the remaining tasks are accidentally inserted into
the same positions as before. Supposing the possibilities of the two situations
are Pa and Pb respectively, we have P (ζi = ζ∗) = Pa + Pb.

– In situation 1, since ζ� inherits all the tasks in the same position from ζ∗, Pa

can be expressed as Pa = pN .
– In situation 2, supposing R represents the number of the remaining tasks that

have not been inserted into ζ�, and μ denotes the probability of the remaining
tasks accidentally being inserted into ζ� at the same position, 0 < μ < 1 holds.
Thus, Pb can be expressed as Pb = μpN−R(1 − p)R.

Considering the two situations, P (ζ� = ζ∗) can be expressed as

P (ζ� = ζ∗) = Pa + Pb = pN + μpN−R(1 − p)R. (12)

Since the number N of tasks is assumed to be large enough, meaning that the
number of the remaining tasks R is approximately equal to the mathematical
expectation N−N ·p, we can derive lim

N→∞
P (ζi = ζ∗) = lim

N→∞
pN+ lim

N→∞
μpN ·p(1−

p)N(1−p). Since r∗
� �= 0, we have 0 < p < 1, 0 < pp < 1, and 0 < (1 − p)1−p < 1.

Thus, lim
N→∞

pN = 0, lim
N→∞

pN ·p = lim
N→∞

(pp)N = 0, and lim
N→∞

(1 − p)N(1−p) =

lim
N→∞

(1− p)(1−p)N

= 0. As each term in the formula tends to zero, we can draw

the conclusion that lim
N→∞

P (ζ� = ζ∗) = 0. �

From Theorem1 we can conclude that for large-scale applications, the pos-
sibility of obtaining the same solution as ζ∗ is approximately equal to 0 and it
is independent of the probability p of each task directly being inherited into ζ�.
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Algorithm 3: Distance-based Mapping Operator
Input: Current optimal solution ζ∗; distance between the �-th firefly and the

brightest one r∗
� .

Output: Solution ζ�.
1 Generate an empty solution ζ� and a set G = φ;
2 for i = 1 to N do
3 Randomly generate a number δ ∈ (0, 1);
4 if δ ≤ e−r∗

� then
5 ζ�[i] = ζ∗

[i];

6 else
7 Add ζ∗

[i] into G;

8 Rank G randomly;
9 while G �= φ do

10 for i = 1 to |G| do
11 if G[i]’s predecessors have been added into ζ� then
12 Add G[i] into ζ� at the first empty position;
13 Remove the task G[i] from G;

5.4 Task Assignment Scheme

Given the corresponding task sequence of each firefly, we use a heuristic algorithm
to schedule the tasks to VMs. Through the task-to-VM scheme, we can calculate
the total cost and the corresponding light intensity to evaluate fireflies.

After obtaining the task sub-deadline set SubD, we first randomly allocate
security services to tasks under the security constraint and then assign appro-
priate VMs to each task. The assignment problem is actually a packing problem.
In this case, the VM is identical to the receiving box and its capacity is deter-
mined by the deadline while the task is identical to the item and it is loaded into
the box. We need to find a way to load N items into as few boxes as possible,
and make the items in each box not exceed its capacity. Therefore, we adopt two
classic heuristic algorithms to solve the task assignment problem: First-Fit (FF)
algorithm and Best-Fit (BF) algorithm.

– FF based assignment: its principle is that each time it assigns a new item to
the box with the smallest index and increases the index successively until the
item can be loaded. Otherwise, it assigns the item to an empty box. Thus, the
FF based assignment algorithm assigns tasks to VMs in turn according to the
input task sequence ζ∗, and gives priority to the VM with the smallest index.

– BF based assignment: its principle is that it assigns the item to the box
with the smallest available space that can load the item. If the item cannot
be loaded into any non-empty box, it will assign it to an empty box. Thus,
the BF based task assignment algorithm will give priority to the VM whose
available time is closest to the common deadline.
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After task-to-VM assignment, the total cost Costtot can be calculated as the
sum of CostVM required for the assignment and Costser required for the random
security service selection. Costtot is also used as the fitness function in IFA,
which means I = 1/f(ζ) = 1/Costtot.

5.5 The Detailed Procedures of IFA

The procedure of IFA can be divided into four steps. i) IFA initializes the popula-
tion of fireflies, and employs the initial heuristic to obtain a current optimal solu-
tion. ii) IFA uses the distance-based mapping operator to map the fireflies onto
their corresponding solutions and calculates the fitness of each firefly through the
task assignment algorithm. After the assignment and evaluation, IFA can seek
out the real brightest firefly. iii) The fireflies begin the movement towards the
brightest one through the improved updating scheme in IFA. iv) IFA re-assigns
all the fireflies obtained in the third step, calculates their fitnesses, and resets the
brightest firefly and the optimal solution if a new optimal solution is discovered,
then starts the next round until the number of iterations reaches the maximum.

The detailed procedures of IFA are described in Algorithm 4. Lines 1–2 set
up the values of parameters in IFA, and initializes the firefly population. Line
3 calculates the brightness of fireflies. Algorithm 4 calls Algorithm1 to obtain
a current optimal solution in line 4, and calls Algorithm2 to preset the sub-
deadlines of all the tasks in line 5. Line 6 randomly selects a firefly from the
initial population as the brightest firefly. The process of fireflies’ evaluation is
described in lines 7–13, aiming to find the real brightest firefly. If a new optimal
solution is discovered, then both the brightest firefly and the optimal solution
will be reset. Lines 14–25 give the procedures of firefly population updating. The
�-th firefly will move towards the �-th firefly and updates its position by Eq. (10),
if the brightness of the �-th firefly is larger (lines 17–19). After the �-th firefly’s
position updating, it will be mapped onto a new solution. If the objective of this
solution is better than the current optimal solution, the brightest firefly and the
optimal solution will be updated (lines 20–25). When the number of iterations
reaches the upper bound, IFA stops and outputs the best solution’s fitness f(ζ∗).

6 Simulation

This section validates our scheme through extensive simulation experiments.
Four real-world workflows provided by Pegasus workflow management system,
i.e., Inspiral, Montage, Sipht, and CyberShake [17] are adopted in the simulation.
They are widely used in evaluating algorithm performance. All four workflows
can be represented by DAGs, as shown in Fig. 3. Table 1 lists the characteristics
of the four workflows. We adopt the pricing model of Amazon EC2 [18] and select
the General Purpose VM group in the US East region. Table 2 presents the type,
computing unit, bandwidth, and price of the selected VMs. A commonly accepted
security service set [13] is used to enhance the security of tasks. The security
services are developed based on RC4, RC5, BLOWFISH, IDEA, SKIPJACK,
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Algorithm 4: Improved Firefly Algorithm (IFA)
Input: Task set Γ ;
Output: Fitness of the best solution f(ζ∗);

1 Set the maximum iteration number M and the parameters β0 and γ;
2 Initialize the population of fireflies Ω = {Y1, Y2, . . . , Y|Ω|} randomly;
3 Calculate the brightness as I� = 1/f(ζ�);
4 Call Algorithm 1 to obtain a current best solution ζ∗;
5 Call Algorithm 2 to calculate the sub-deadline of each task.
6 Randomly set a firefly b from the initial population as the brightest one;
7 for � = 1 to |Ω| do
8 Calculate the distance r∗

� ;
9 Call Algorithm 3 to obtain the solution ζ� using r∗

� and ζ∗;
10 Derive the fitness f(ζ�) using FF/BF-based task assignment;
11 Update I�;
12 if f(ζ�) ≤ f(ζ∗) then
13 b = �, ζ∗ = ζ�, f(ζ∗) = f(ζ�);

14 while t < M do
15 for � = 1 to |Ω| do
16 for � = 1 to |Ω| do
17 if I� < I� then
18 Calculate the distance r�� by Eq. (10);
19 Move the �-th firefly towards the �-th firefly and obtain its new

position by Eq. (11);

20 Calculate the distance r∗
� ;

21 Call Algorithm 3 to obtain the solution ζ� using r∗
� and ζ∗;

22 Derive the fitness f(ζ�) using FF/BF-based task assignment;
23 Update I�;
24 if f(ζ�) ≤ f(ζ∗) then
25 b = �, ζ∗ = ζ�, f(ζ∗) = f(ζ�);

Fig. 3. The structure of four real-world workflows.

and 3DES encryption algorithms. Their execution time, cost consumption, and
security level are given in Table 3. The size of data to be encrypted for each task
is varied from 1000 to 4000KB.
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Table 1. The characteristics of real-world workflow applications.

Workflow Number of nodes Number of edges Average data size (MB) Average task runtime (s)

Inspiral 30/50/100 30/50/100 95/160/319 9.00/9.16/8.93 206.78/226.19/206.12
Montage 25/50/100 25/50/100 95/206/433 3.43/3.36/3.23 8.44/9.78/10.58
Sipht 30/60/100 30/60/100 91/198/335 7.73/6.95/6.27 178.92/194.48/175.55
CyberShake 30/50/100 30/50/100 112/188/390 747.48/864.74/849.60 23.77/29.32/31.53

Table 2. Parameters of VMs in Amazon EC2.

VM type Compute unit Bandwidth (MB/s) Price ($)

m3.medium 3 56.25 0.067
m3.large 6.5 56.25 0.133
m3.xlarge 13 62.5 0.266
m3.2xlarge 26 125 0.532
m4.large 6.5 56.25 0.120
m4.xlarge 13 93.75 0.239
m4.2xlarge 26 125 0.479
m4.4xlarge 53.5 250 0.958
m4.10xlarge 124.5 500 2.394

Table 3. Parameters of the security service set.

Security Cryptographic Execution Price Security

serverce algorithm time (ms/KB) ($/KB) level

S1 RC4 0.0063 1.2682 ∗ 10−5 1

S2 RC5 0.0140 2.2828 ∗ 10−5 2

S3 BLOWFISH 0.0231 3.1129 ∗ 10−5 3

S4 IDEA 0.0336 3.8046 ∗ 10−5 4

S5 SKIPJACK 0.0459 4.3517 ∗ 10−5 5

S6 3DES 0.0591 4.8698 ∗ 10−5 6
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Fig. 4. Average cost on 10 experiments with varying timing constraint of 12 workflows.

IFA needs to decide two key parameters β0 and γ. As aforementioned, β0 is
generally set varied in the range [0, 1]. When β0 is set to 1, the brightest firefly
uses its maximum brightness to attract other fireflies to move towards it, which
means it will have a significant impact on the position of other fireflies. Since the
mapping operator maps the firefly onto the solution according to the distance
from the brightest firefly. The smaller the distance, the greater the probability
of the firefly inheriting the optimal solution. Therefore, we hope the distance
between the firefly and the brightest one can become smaller after movement
every time, so we set β0 to 1. The value of γ also has a great influence on the
movement of fireflies. Generally, γ is set from 0.01 to 10. Based on simulation
results, we empirically set γ to 4. As for α in traditional FA, we take the most
common value of 0.5. We set the population size |Ω| as 30, the range of each
dimension of each firefly as [4, 4], and the maximum number of iterations in each
round as 200. When the number of iterations exceeds 200, the algorithm termi-
nates. For each test case, we conduct 10 experiments and record the cost/fitness.
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Table 4. Average cost of 12 workflows using six algorithms.

Workflow IFA-FF IFA-BF FA-FF FA-BF CETSS [19] IC-PCPD2 [20]

Inspiral 30 6.5507 7.0210 7.1690 7.2269 7.3048 8.0870

Inspiral 50 10.0183 10.1969 10.9808 11.1597 10.7075 13.0077

Inspiral 100 16.2627 16.5899 17.0623 17.1490 16.7378 19.0938

Montage 25 6.8922 7.0313 7.6682 7.8002 7.7861 8.8675

Montage 50 11.0693 10.9403 11.6396 11.6003 11.8933 13.6203

Montage 100 17.4187 18.2111 18.6620 18.7245 19.1460 20.2915

Sipht 30 6.3218 6.3606 6.6162 6.7582 9.7345 7.6428

Sipht 60 10.0968 10.3795 10.8949 11.2612 13.5478 11.2272

Sipht 100 16.8466 17.3236 17.5809 17.9727 19.9092 18.1385

CyberShake30 4.3151 4.3138 4.5997 4.5569 4.5917 5.8885

CyberShake50 7.1566 7.2059 7.7517 7.7595 8.3179 10.0320

CyberShake100 12.0061 11.9388 12.7021 12.5593 12.8675 15.0782

Total Average 10.3874 10.6261 11.1106 11.2107 11.8787 12.5813

We compare our IFA with the baseline FA and two benchmarking approaches
CETSS [19] and IC-PCPD2 [20] that are all applied to solve our problem.

– IFA-FF and IFA-BF are the combination of the proposed Improved Firefly
Algorithm with First-Fit and Best-Fit task assignment, respectively.

– FA-FF and FA-BF are the combination of the baseline Firefly Algorithm with
First-Fit and Best-Fit task assignment, respectively.

– CETSS [19] is a Cost-Efficient Task Scheduling Strategy that efficiently sched-
ules all tasks to achieve optimal financial cost and system performance.

– IC-PCPD2 [20] is an IaaS Cloud-Partial Critical Path based on Deadline
Distribution. It modifies the deadline distribution and the planning phases to
adapt to the Cloud environment, and creates a schedule that minimizes the
total execution cost based on their sub-deadlines.

Figure 4 compares the average costs of running 12 different workflows when
using the proposed IFA-FF, IFA-BF, and benchmarking schemes FA-FF, FA-
BF, CETSS [19], and IC-PCPD2 [20] under varying timing constraints (i.e.,
makespan) and the same security constraint. The results clearly show that the
proposed IFA always outperforms FA, CETSS, and IC-PCPD2 in decreasing cost
regardless of makespan and application scale. In most cases, the mean costs of
IFA-FF are lower than those of IFA-BF. The reason is described as follows. As
in sub-deadline calculation, given a task sequence, the sub-deadline of previous
tasks will be relatively loose while the sub-deadline of subsequent tasks will be
relatively tight. Thus, the computing capacities of VMs with small indexes are
usually poor, and vice versa. In other words, in most cases, when assigning tasks,
IFA-FF would give priority to VMs with poor computing capacity and leave the
VMs with strong computing capacity to the subsequent tasks. In this way, the
idle time of each VM can be fully utilized. However, in IFA-BF, some tasks may
not be able to be assigned to the previous VMs with weak computing capacity
due to the tight latest completion time, resulting in low utilization of these VMs.
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Fig. 5. Average cost on 10 experiments with varying security constraint of 12 workflows.

The results also indicate that the mean cost of IC-PCPD2 is always the worst
and the mean cost of CETSS is close to those of FA-FF and FA-BF.

For better illustration, we also list the average cost of scheduling 12 workflows
using IFA-FF, IFA-BF, FA-FF, FA-BF, CETSS [19], and IC-PCPD2 [20] in
Table 4. We can find that in most cases, the mean costs of IFA-FF are about
0.5%–4% better than those of IFA-BF. Only in few workflows such as Montage50,
CyberShake30, and CyberShake100, the mean costs of IFA-BF are slightly better
than those of IFA-FF. Compared to IFA-BF, FA-FF, FA-BF, CETSS, and IC-
PCPD2, the average reductions on mean costs realized by IFA-FF are 2.3%,
7.0%, 7.9%, 14.5%, and 21.7%, respectively. The maximum reduction achieved
by IFA-FF can be up to 54.0% when compared to CETSS in the Sipht30 case.

We also compare the average costs of running 12 different workflows when
using the proposed IFA-FF, IFA-BF, and benchmarking schemes FA-FF, FA-
BF, CETSS [19], and IC-PCPD2 [20] under varying security constraints and the
same makespan constraint. As shown in Fig. 5(a)–(l), the proposed IFA always



640 C. Zhou et al.

outperforms FA, CETSS, and IC-PCPD2 in decreasing cost, indicating IFA also
performs well in reducing cost using a random security service selection scheme.

7 Conclusion

To minimize the cost of executing precedence-constrained tasks of a workflow
application under the deadline and security constraints, this paper proposes an
improved firefly algorithm (IFA) that minimizes the total monetary cost spend-
ing for renting VMs and using security services. IFA consists of an initial solu-
tion generator to obtain the first current optimal solution, an improved updating
scheme to update fireflies’ positions, a distance-based mapping operator to map
fireflies onto corresponding solutions, as well as a random security service selec-
tion scheme and two task assignment schemes to meet system security and dead-
line constraints. We evaluate our proposed IFA by comparing it with a baseline
and two state-of-the-art approaches on scheduling tasks of 12 different real-world
workflows. Experimental results show that the cost reduction achieved by our
IFA can be up to 54.0%.
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Abstract. In this paper, a multiple-precision and mixed-precision
floating-point fused multiply-accumulate (FMA) unit is proposed base
on the practical requirements of high performance computing (HPC)
and artificial intelligence (AI) applications. In addition to the double-
precision and single-precision formats used in high performance com-
puting, three types of low-precision formats, TensorFloat-32, BFloat16,
and half-precision, dedicated to deep learning tasks are also supported
by this FMA unit. The proposed FMA architecture can execute one
double-precision operation, or two parallel single-precision operations,
or four half-precision operations at each clock cycle. Moreover, the
mixed-precision FMA operations are also supported by this proposed
FMA, the products of two lower precision multiplications can be accu-
mulated to a higher precision addend. One mixed-precision operation
using single-precision multiplication and double-precision addition, or
two parallel mixed-precision operations using low-precision (TensorFloat-
32, BFloat16, or half-precision) multiplication and single-precision addi-
tion is performed every clock cycle. The presented FMA design uses
both segmentation and reusing methods to trade off performance, such
as throughput and latency, against area and power. The proposed FMA
unit has only 17.0% larger area than a standard double-precision FMA
implementation, but can support multiple-precision and mixed-precision
operations. Compared to the state-of-the-art multiple-precision FMA
design, the proposed FMA supports more types of precisions such as
TensorFloat-32 and BFloat16 with less hardware overhead.

Keywords: High performance computing · Deep learning ·
Floating-point fused multiply-add · Multiple-precision ·
Mixed-precision

1 Introduction

Artificial intelligence(AI) has achieved great success in speech recognition [25],
computer vision [10,15] and natural language processing [5], and trends to be
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 642–659, 2023.
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integrated with multi-disciplinary in recent years. The application of deep learn-
ing in high performance computing (HPC) tasks has been done in many research
works, for example the climate prediction [16], drug screening [23], cosmology
analysis [21] and so on. However, the data precisions is varied in the imple-
mentation of HPC and AI applications (HPC and AI) due to the dynamic range
requirement in data processing, which caused extra cost and complexity in hard-
ware design. In this paper, we will focus on the design of a novel arithmetic unit
to make the HPC and AI hardware platform more efficient.

The fused multiply-add (FMA) unit is the basic component of the arithmetic
unit, and various FMA architecture have been proposed for accelerating the
HPC [11,20,26] and AI [27,28] applications in previous works. The FMA archi-
tectures support double-precision floating-point operations or single-precision
floating-point operations are commonly used in HPC applications, while reduc-
ing precision operations during the training and inference of deep learning is
proposed to lower the cost of hardware. In addition to single-precision, three
types of low-precision formats, the TensorFloat-32, the BFloat16, and the half-
precision float-point are proposed for deep learning tasks. In the deep learning
training and inference, the single-precision operations offer sufficient data range
and precision but at the cost of complexity and expensive overhead in architec-
ture design. The half-precision operations can provide higher throughput with
less resource cost but may result in error gradients during back propagation
of deep learning training. The TensorFloat-32/BFloat16 directly truncates the
mantissa of single-precision numbers from 23-bit to 10-bit/7-bit while reserves
an 8-bit exponent, which can provide the same data range as that of single-
precision. However if the mantissa bandwidth is not enough, the accuracy of the
deep learning training will have a significant degradation by using TensorFloat-
32 or BFloat16 format. In general, these above datatypes are suitable for differ-
ent specific scenarios and achieved a good performance in deep learning training
and inference. However, the arithmetic units proposed by these previous research
works are aimed at HPC or AI workloads respectively, which can not meet the
practical requirement of HPC-enabled AI scenarios.

In addition to normal FMA operations, mixed-precision FMA operations
are also getting more popular recently. Mixed-precision FMA operation refers to
using lower precision multiplication to improve the throughput while accumulat-
ing products in higher precision to maintain the large dynamic range. Both in the
field of scientific calculation and deep learning, the mixed-precision methods are
widely applied [2,8,18]. Compared to using high-precision operations to imple-
ment these tasks, hardware overhead can be saved by using mixed-precision.

In this paper, an efficient multiple-precision floating-point FMA architec-
ture supports normal and mixed-precision operations is proposed, in which both
segmentation and reusing methods are applied to trade off performance, such as
throughput and latency, against area and power. In normal FMA operations, one
double-precision operation, or two parallel single-precision operations, or four
parallel half-precision operations are performed at each clock cycle. In mixed-
precision FMA operations, one mixed-precision operation using single-precision
multiplication and double-precision addition, or two parallel mixed-precision
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operations using low-precision (TensorFloat-32, BFloat16, or half-precision)
multiplication and single-precision addition is performed every clock cycle. The
presented FMA design uses both segmentation and reusing methods to trade off
performance, such as throughput and latency, against area and power.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the related works. Section 2.1 introduces the supported data formats
and a conventional implementation of FMA architecture. In Sect. 3, the architec-
ture of the proposed multiple-precision and mixed-precision floating-point FMA
unit is presented. Then the synthesis results, the analysis, and the comparison
with baseline design are presented in Sect. 4. Finally, Sect. 5 gives the conclusion
of the whole work.

2 Related Works

In recent years, the design of FMA architecture to reduce latency, area, and
power consumption has aroused great interest from researchers, and various pre-
cisions FMA operations are supported in these works respectively [4,17,22]. In
order to efficiently support multiple-precision and mixed-precision operations
for different applications in a single architecture, some dual-mode FMA units
[11,12,26] are proposed in the literature. The [12] proposed an FMA architecture
that can support one double-precision or two parallel single-precision float-point
FMA operations, and then extends the work to a low-cost SIMD binary128
[11] FMA design. In addition to one double-precision or two single-precision
operations, the binary128 (quadruple-precision) FMA operation is supported by
using two binary64 FMA units based on the iteration and combination methods
with the cost of an extra clock cycle. The [26] design a multiple-precision and
mixed-precision floating-point FMA architecture, which not only can support
normal FMA operations that one quadruple-precision operation, or two parallel
double-precision operations, or four parallel single-precision operations, or eight
parallel half-precision operations at each clock cycle, but also supports mixed-
precision FMA operation and mixed-precision 2-term dot-product operation for
these precisions. Half-precision and double-precision mixed-precision operations
are proposed in the work [8], which utilizes the half-precision Tensor Cores in
GPUs to speed up iterative refinement solvers for HPC applications. Moreover,
some specific datatypes for artificial intelligence neural network applications are
proposed, for example, the study [13] introduces BFloat16 for deep learning
training and achieves the same state-of-the-art (SOTA) results as FP32 do. The
TensorFloat-32 format is applied in tensor core [7] of NVIDIA GPU A100 and
H100 to accelerate the deep learning training.

The main contribution of this paper is proposing and evaluating a novel
architecture for floating-point FMA unit which supports both multiple-precision
and mixed-precision operations. The FMA architecture is achieved by modify-
ing several basic modules of the conventional double-precision FMA unit, then
multiple-precision and mixed-precision FMA operations are supported with no
significant area and power overhead.
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2.1 Basic FMA Architecture

The conventional FMA operation refers to A × B + C, and the operands are of
the same precision. Figure 1 illustrates the basic architecture of FMA implemen-
tation, which serves as the baseline for the proposed FMA unit. The datapath
of the basic FMA architecture as follows:

– Firstly, the mantissa, ManA and ManB, are multiplied by an unsigned mul-
tiplier, and then generating the carry-save format product.

– At the same time, the exponent difference between product A×B and C, the
sign processing, the exponent prediction, and alignment for addend C based
on the value of exponent difference are performed.

– Then, the aligned addend C and the mantissa product are added together
through a carry save adder (CSA), and the normalization shifting amount is
also predicted by a leading zero anticipator and counting (LZAC) unit at the
same time.

– Lastly, normalization shifting and exponent adjustment are performed accord-
ing to the leading zero amount, and then rounding to generate the mantissa.
The FMA result is obtained after the combination of the processed sign, the
adjusted exponent, and the rounded mantissa.

Sign, Exponent and Mantissa extraction

A B C

Multiplier Array Align Shifter Exponent 
Difference

ManC ExpA/B/C

Exp_Diff

ManA ManBManA ManB

Carry Sum AlignC

 3-2 CSA

CPA LZAC

ComplementerMSB

Sign

Normalization Shifter

Rounder

Exponent 
Adjuster

Sticky bit

Combination

Result

Mantissa Exponent

Carry Sum

Shift_amount

Sticky bit Predict_exp

Pipeline register1

Pipeline register2

Pipeline register3

Man_result

Sign

Add_result

Shift_result

Fig. 1. Basic architecture of FMA unit.
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In this paper, multiple-precision and mixed-precision operations are sup-
ported in the proposed FMA unit by modifying the basic FMA architecture.
In order to evaluate the resource overhead introduced by the support of extra
precisions and mixed-precision operations in the proposed FMA unit, the imple-
mentation of DP, SP, HP, TF32, and BF16 FMA units are designed based on
the basic FMA architecture. The total resource consumption of these FMA units
can be compared and evaluated for the proposed FMA architecture.

3 The Proposed FMA Architecture

A block diagram of the proposed FMA architecture, illustrating the details of the
FMA datapath, is shown in Fig. 2. The proposed architecture is fully-pipelined,
and multiple-precision and mixed-precision operations are implemented with the
latency of three clock cycles. In the proposed FMA unit, the supported five pre-
cisions (DP, SP, HP, TF32 and BF16) are controlled by a 3-bit signal prec, and a
1-bit signal mode is applied to determine the selection of normal FMA operation
or mixed FMA operation. Because of the requirement of parallel calculation for
low-precision operations and low-power purposes, the 64-bit input and output
operands are split into four 16-bit sections and enabled by a 4-bit signal valid.

In the proposed FMA unit, the multi-precision and mixed-precision opera-
tions are classified into three modes according to the addend precision. Specifi-
cally, the HP mode refers to the normal FMA operation in HP precision, while
the SP mode includes the normal FMA operation in SP precision and the mixed
FMA operation adopts HP, TF32, or BF16 as the low-precision formats. In DP
mode, the DP and SP formats are employed in normal and mixed FMA opera-
tion, respectively, as same to SP mode.

The whole FMA datapath is split into three pipeline stages, and the grey
thick lines represent the position of pipeline registers. In the first stage, the
initial signs, exponents, and mantissa of three operands are extracted accord-
ing to the value of the signals prec and mode at the input operand processing
module, and then sent into the mantissa multiplier, alignment shifter, sign and
exponent processing modules. The mantissa multiplier works parallelly with the
alignment shifter which controlled by the exponent difference value. The second
stage performs the mergence of the aligned C and product of A × B by a carry
save adder, then sending the merged vectors to the LZAC unit to generate the
leading zero amount. Together the merged vectors with the cin produced by the
alignment shifter, the result is obtained through a carry select adder. Finally, the
normalization, exponent adjustment and rounding of the result are performed,
and then combined to output in the last pipeline stage. In the following sections,
the main components of the proposed FMA architecture are discussed in more
detail.

3.1 Input Operands Processing

In the proposed FMA architecture, the input operand can accommodate one
DP number, two SP or TF32 numbers, or four HP or BF16 numbers according
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to the precision signal prec, and the sign, the exponent, and the mantissa of
these numbers are extracted into unified formats in this module. Because of the
support of parallel operation for low-precision formats, all the unified vectors
are consist of four parts (part0 ∼ part3).

Sign, Exponent and Mantissa extraction
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Fig. 2. Datapath of the proposed FMA unit.

The part0 and part2 are only used for HP mode, the part1 can be used for
both HP mode and SP mode, while the part3 can be applied for all modes.
These four parts are enabled by a 4-bit signal valid, if one bit in valid is zero,
the corresponding part will be set to zeros, which can avoid invalid toggles of
flip-flops to reduce power consumption. For the sign processing, the signs of
each input operand are organized into a 4-bit signal S corresponding to the four
numbers in HP mode. The exponents are also extracted and organized into a
unified vector, but the wordlength of each parts of the unified vector is different.
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Moreover, two extra bits added in all modes are used for indicators of negative
result and overflow, so the wordlength of part3 ∼ part0 is 13-bit, 7bit,10-bit and
7bit, respectively. The mantissa is also processed into a unified format before
sent to the multiple-precision multiplier, as shown in Fig. 3. The total bitwidth
of the unified mantissa is set to 56-bit. For lower precisions, each of the mantissa
is prefixed with zeros to fill the 56-bit bitwidth, as shown in the white region of
Fig. 3.

DP

SP

TF32

HP

BF16

016324863

Fig. 3. Unified mantissa format for different precisions.

3.2 Multiple-Precision Multiplier

As mentioned in Fig. 3, the mantissa of the operand A and B has been organized
into unified vectors, and then inputted into the mantissa multiplier. The 56-
bit mantissa is split into four sections, so the mantissa multiplication can be
represented as:

DPmode : {a3, a2, a1, a0} × {b3, b2, b1, b0}
SPmode : {a3, a2} × {b3, b2} + {a1, a0} × {b1, b0}
HPmode : {a3, a2, a1, a0} • {b3, b2, b1, b0}

(1)

where the ai and bi refer to one 14-bit section in the unified vectors, and “•”
means element-wise operation.

In order to meet the requirement of all supported precision operations, four
parallel multiplications for HP mode, or two parallel multiplications for SP mode,
or one multiplication for DP mode are implemented at each clock cycle. As
shown in Eq. (1), the operations for mantissa vectors are differed in different
precisions. So, we adopt a 14×14 multiplier as the basic unit for lower-precision
(HP, TF32, and BF16) multiplication, and combined multiple units together for
the implementation of higher precision multiplication in a recursive method.

In the proposed design, the radix-4 modified Booth multiplier [3] is applied
to reduce the cost of the basic 14-bit multiplier. The 14-bit multiplier operand is
padded with 1-bit zero after the least significant bit (LSB) and 2-bit zero before
the most significant bit (MSB), then the resulting 17-bit vector is divided into
eight 3-bit encode groups to generate eight partial products. These eight partial
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products are merged by two levels of 4-to-2 carry save adders, then generating
the product Ai × Bi.

In the proposed multiplier, sixteen products Ai×Bi have been generated and
placed in specific locations, as shown in Fig. 4. For the implementation of low-
precision multiplication, because of the bitwidth of their mantissa are less than
14-bit, only four 14 × 14 multipliers are enabled to perform the multiplication.
The locations of these four multipliers are shown in Fig. 4, the A0 ∗B0, A1 ∗B1,
A2 ∗ B2, and A3 ∗ B3. As for HP mode, the effective mantissa is 11-bit or 8-bit.
Therefore, the product cannot be larger than 22-bit. As a result, the products
can be found in the least significant 22-bit of every 28-bit.

In SP mode, results of four of the 14×14 multipliers need to be combined to
generate one SP result, as shown in Eq. (1). These four products are accumulated
using (4, 2)-compressors and two results are generated at the least significant
48-bit of each 56-bit. In DP mode, all products are merged through two levels
(4, 2)-compressors, and the result can be extracted from the least significant
106-bit of the result.

A0*B0+A0*B0+A1*B0+A1*B1
DPmode

SPmode

HPmode

0111 1498 56

SP1/TF321/BF161

HP0HP0HP1HP1HP2HP2HP3HP3

A0*B0A1*B1A2*B2A3*B3

A2*B2+A2*B3+A3*B2+A3*B3
DP0

A0*B1

A0*B0

A0*B3

A0*B2

A1*B1

A1*B0

A1*B3

A1*B2

A2*B1

A2*B0

A2*B3

A3*B1

A3*B0

A3*B2

A2*B2

A3*B3

SP0/TF320/BF160

Fig. 4. The struct of multiple-precision multiplier.

3.3 Alignment Shifter

The alignment shifter works parallelly with the mantissa multiplier to reduce
the latency of the FMA datapath. The alignment shifting method applied in the
proposed design is similar to the previous FMA design [17]. The initial position
and maximum alignment position of the processed mantissa of C operand and
product A×B are shown in Fig. 5. The mantissa of C is placed 2-bit to the left of
the carry save format product in the initial position, and the maximum alignment
amount is reached when the MSB of C is placed 2-bit to the right of the LSB
of the product. The bitwidth of mantissa C and mantissa A/B is Mq-bit and
Mp-bit, respectively. In normal FMA operation, all operands in same precision,
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Mq = Mp, so the bitwidth of alignment shifter is (3 × Mp + 4)-bit. Specifically
for DP, SP, and HP operations, a 163-bit, 76-bit, and 37-bit alignment shifter
is required, respectively. For mixed-precision FMA operation, the precision of
addend C is higher than multiplier operand A/B, the Mq > 2 × Mp, so a (2 ×
Mq + 5)-bit alignment shifter is required with the consideration of the heading
one of product A × B located in the 1-bit to the right of MSB.

Mq-bit
ManC

ManA×ManB

ManC
(a) Initial position of  ManC

Max(2Mp+4, Mq+5)-bit

ManC

(b) Maximum alignment of ManC

Sticky

Sticky

ManC+1ManC+1

Norm_mode

Mixed_mode
g rg r g rg rg r

Max

ManA×ManB

ManC+1ManC+1
g rg rg r g rg rg r

Max

Fig. 5. Alignment of C operand in the proposed FMA unit.

The mantissa of addend C is rearranged into the unified format to enable
resource sharing among all precisions operations, as shown in Fig. 6. The man-
tissa of each precision is extended with zeros to fill the required shifting bitwidth.
The unified vectors are right aligned, so that the bit shifted out of the shifter
can be used to generate the partial sticky bit.

The implementation of the proposed alignment shifter is shown in Fig. 7,
which is composed of eight levels of shifter cells. The shifter cell is a selector that
received the input signals for the left and up cells, and generated the shifting
results to the right and down cells. The shifting operations are controlled by
the alignment shifting count (ASC) which calculated by the exponent difference
module. If the corresponding bit of ASCs is one, the right shifting performed,
otherwise select the input as the aligned result directly. According to the bitwidth
of maximum alignment amount, the 8-bit, 7-bit, 6-bit shifting control signals are

DPmode

0

ManC 110'b0

52'b0ManC0

162

6'b052'b0ManC15'b0

41

26'b026'b026'b026'b0ManC226'b0ManC3 ManC0

82122

ManC1

53-bit53-bit

24-bit24-bit 24-bit24-bit

11-bit11-bit 11-bit11-bit 11-bit11-bit 11-bit11-bit

SPmode

HPmode

Fig. 6. Unified format of addend C in the proposed FMA unit.
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generated for all supported precisions, respectively. The ASCs are divided into
four parts as shown in Fig. 7 corresponding to the four small alignment shifters.
In the level0 ∼ level5, four smaller alignment shifters run independently and
generated four aligned results for HP mode. Then, the generated four aligned
results are divided into two groups in the level6, and two aligned results for SP
mode are generated by two larger shifter cells. Finally, one 163-bit shifter cell
is placed which controlled by the 8-th bit of the ASC for DP mode in the last
level.

Moreover, the shifted out bits in right of each shifter cell are used to generate
the sticky bit. In the first five levels, partial sticky bits are generated by each
shifter, and then generated a 4-bit sticky bit in level5, a 2-bit sticky bit in
level6, and a 1-bit sticky bit in level7 for HP mode, SP mode, and DP mode,
respectively.

Level 0 
i=0 Shift0_3

N=40
Shift0_2

N=41
Shift0_1

N=41
Shift0_0

N=411'b0

Asc3[0]

Level 1 ~Level 5

Shift6_1
N=81

Shift6_0
N=8264'b0

Level 6 
i=6

Shift7_0
N=163128'b0

Level 7 
i=7

Unified C 41-bit41-bit41-bit40-bit

Asc[i] 01 01

In[N-1:2i]
R_out[2i-1:0]

In[N-1:0]

Out[N-1:0]

L_in[2i-1:0]

Shifter cell

Asc[i] 01

In[N-1:2i]
R_out[2i-1:0]
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Shifter cell

OUT
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26 061319
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Asc2[0] Asc1[0] Asc0[0]

Asc3[6] Asc1[6]

Asc3[7]

Fig. 7. The architecture of the proposed alignment shifter.

3.4 Adder

The alignment of addend C has been performed, and the generated 163-bit
vectors need to be added with the products of mantissa multiplication A×B. In
order to reduce the cost of the adder, the addition is split into four parts. In DP
mode, the 163-bit input vector is processed as a whole. For the most significant
55-bit, an incrementer is applied since only one of the two vectors contains useful
data. For the less significant 108-bit, the input vectors need to be added using a
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carry propagate adder (CPA). The generated result of the incrementer and the
initial input vector at the higher 55-bit are selected by the carry of the lower
108-bit CPA, and combined with the CPA result to generate the addition results.

In practical terms, the 163-bit adder is divided into four narrower width
adders to support parallel operations for low-precision formats. These four nar-
rower width adders run independently when implemented the HP mode, and
generated carry of each adders will not be propagated. In SP mode, every two
narrower width adders are combined and run parallelly to generated SP format
results. In DP mode, all the narrower width adders are performed together, the
carries in lower adders are propagated to generate the higher precision results.

The sign of the FMA result is determined by the sign of addition. Specifically,
if the addition result is positive, the sign of product A× B is selected to be the
sign of FMA result, otherwise the sign of addend C is selected.

3.5 Leading Zero Anticipator

In order to reduce the latency of FMA datapath, the leading zero anticipation is
implemented in parallel with the addition. As both positive results and negative
results can be generated by addition, both leading zeros and leading ones need
to be anticipated. In this paper, the general case indicator presented in [24] is
used.

The overall architecture of the leading zero anticipator and counting (LZAC)
is shown in Fig. 8. The organization of the 163-bit input operands are same as
the unified addend C, as shown in Fig. 6. In the DP mode, the higher or lower
108-bit of input operands are selected by the control signal Bdry generated
by the exponent difference module, and generated the input vector for LZACs.
The 108-bit LZAC also consists of four 27-bit smaller LZAC units for parallel
operation of low-precision, each LZAC unit consists of the encoding module and
leading zero count (LZC) module. In HP mode, these four 27-bit LZAC units run
independently, each of them generating a 5-bit normalization shifting amount
and outputted directly. In SP mode, every two LZACs are grouped together
to generate a 6-bit normalization shifting amount for the 54-bit addition. In a
similar way, the leading zero prediction result of the 108-bit addition can also
be obtained in DP mode.

3.6 Normalization

The normalization shifter is applied to remove the leading zeros of addition. The
architecture of the proposed normalization shifter is similar to the alignment
shifter, but simpler. Compared to alignment shifter, the normalization shifting
is a left shifting, and the left shifted out bits can be discarded directly. In the
proposed design, before sent to the normalization shifter, the 163-bit input vector
generated by addition need be processed, a 108-bit processed vector is obtained
after the selection controlled by the signal Bdry. In DP mode, the normalization
shifting result is generated after seven levels left shifting, which is controlled
by a 7-bit shifting amount signal generated by the LZA. One more final level



Efficient Multiple-Precision and Mixed-Precision FMA for HPC-AI Apps 653

LZA
shift amout

Encoding 0

LZC 0

Encoding 1

LZC 1

Encoding 2

LZC 2

Encoding 3

LZC 3

01 01

5

6

61

55
+27

01 01

5

6

61

55
+27

+54

bit-or bit-or

bit-or

01 01
7

7+5+6+5

27-bit27-bit27-bit27-bit

Addition Result

01 01bdry

162 55 0107

LZAC3 LZAC2 LZAC1 LZAC0

Fig. 8. The architecture of the leading zero anticipator and counting.

shifting is added to correct the error generated by the LZAC. If the leading bit
is detected and when it is not one after seven levels shifting, 1-bit more left
shifting is performed. In SP and HP modes, the shifting operation is split into
multiple sections and runs independently similar to the alignment shifter, two or
four normalized results are generated by these sections of normalization shifter.

3.7 Rounding and Exponent Adjustment

In the proposed design, roundTiesToEven, which is the default rounding mode
in IEEE 754-2008 [6], is implemented. The rounding module also consists of
four rounding cells, and the input vector generated by normalization shifter is
rounded base on the FMA precisions. Except for the difference in bitwidth, the
logics in each cell are similar, and the correlation between these four cells and
FMA operations is mentioned in Sect. 3. In DP mode, the 163-bit input vector
is rounded to a 53 bit mantissa, while split into two parts and rounded to two
24-bit mantissa in SP mode, or rounded to four 11-bit mantissa in HP mode.
The Cin is also generated by rounding which means the FMA exponent needs
to add one.

The exponent of FMA result is predicted by the comparison result between
addend C and product A × B, and the larger one will be selected as the expo-
nent of FMA result in pipeline stage 1. However, the leading zeros caused by
subtraction and the Cin generated by rounding need be considered, so the pre-
dicted exponent must be adjusted before output. Specifically, the leading zeros
amount calculated by LZA need be subtracted and the Cin generated by man-
tissa rounding need be added by the predicted exponent.
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After rounding and exponent adjustment, the rounded mantissa, the adjusted
exponent, and the processed sign are combined together, and then the FMA
results are generated.

4 Synthesis and Evaluation

In this paper, the model of the proposed FMA architecture is implemented using
Verilog HDL. For the verification of standard floating-point format (DP, SP, and
HP), extensive testing vectors are generated with the help of TestFloat [9]. The
TF32 and BF16 formats are verified by a customized software model written in C
language. In addition to the proposed FMA unit, single-mode FMA units based
on the conventional FMA architecture corresponding to all supported precisions
are designed for comparison purposes.

All these designs are synthesized in 28 nm CMOS technology with typical
case parameters (1.00 V and 25 ◦C), and the dynamic power is measured by
synthesis tools.

Firstly, each pipeline stage of the proposed FMA architecture is synthesized,
and the area of pipeline stages and pipeline registers are shown in Table 1. The
synthesis results are obtained under time constraint of 0.64 ns, which can make
a tradeoff between area and performance. As shown in Table 1, the first pipeline
stage consumes the most area (62%) due to the large mantissa multiplier and
alignment shifter. Except the combinational logics designed for pipeline stages,
the pipeline registers of these three stages consume 12% area.

Table 1. Synthesis results of each pipeline stage of the proposed FMA

Stage Delay(ns) Area (µm2) Percent

Multiplication and alignment 0.64 16429 62

Addition and LZAC 0.64 4050 18

Rounding and normalization 0.64 1855 7

Pipeline registers 0.64 3180 12

As the baseline design of this paper, the normal double-precision FMA unit
(N-DP-FMA) is designed based on the conventional FMA architecture. By con-
trasting the overhead between the N-DP-FMA unit and the proposed FMA
architecture, a straight forward evaluation for the cost of added functions in
the proposed FMA unit is implemented. The parallel FMA operations for SP,
HP, TF32, and BF16 precisions are also supported in the proposed design, so
the normal single-precision FMA unit (N-SP-FMA) and normal half-precision
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FMA unit (N-HP-FMA), the mixed-precision FMA unit, M-SP-FMA for SP and
DB mixed-precision operations, M-TF-FMA for TF32 and SP mixed-precision
operations, M-BF-FMA for BF16 and SP mixed-precision operations, and M-
HP-FMA for HP and SP mixed-precision operations are also designed for com-
parison purposes.

Table 2. Area and energy comparison of the proposed FMA with baseline FMA design

Mode Delay (ns) Cycles Area (µm2) Power (mW )

N-DP-FMA 0.60 3 22644 78.5

N-SP-FMA 0.41 3 9212 54.8

N-HP-FMA 0.25 3 2718 30.8

M-SP-FMA 0.45 3 13005 67.5

M-TF-FMA 0.35 3 4469 30.8

M-HP-FMA 0.35 3 4340 27.1

M-BF-FMA 0.35 3 3735 26.6

Proposed (Multi-mode) 0.64 3 26499 79.8

As shown in Table 2, the proposed FMA consumes only 17.0% more area
and 1.7% more power compared to a conventional double-precision FMA unit.
However, as discussed in previous sections, in addition to the double-precision
FMA operation, parallel FMAs for both normal and mixed-precision operations
are performed by the proposed design. The area overhead comes mainly from the
multiplexers used to support multiple-precision data selection and the logic to
support mixed-precision operations. On the other hand, in terms of functionality,
we need 4 HP FMAs, 2 SP FMAs, 1 DP FMAs, and several other mixed-precision
FMAs to realize the same functionality as the proposed FMA provides. For ease
of comparison, the synthesis results of area and power are also graphed in Fig. 9.
The proposed FMA is compared with the combination of single-mode FMA units
for implementing same functionality by replicated methods. We can see that the
proposed multiple-precision and mixed-precision FMA can save roughly 70.3%
area than the combination of FMA units.

The comparison of the functionality, performance and overhead of the pro-
posed FMAwith previous works are shown in Table 3. Compared to other multiple-
precision FMAs, the proposed FMA is specific for HPC and AI applications. Both
normal and mixed-precision FMA operations for DP/SP/TF32/BF16/HP for-
mats are supported. Since these previous designs are synthesized using different
semiconductor technologies, in order to make a fair comparison, the equivalent
area (NAND2 gate count) and equivalent delay (FO4 delay) for each design are
calculated, and the throughput is compared in a unified method where op/FO4 is
used.
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Fig. 9. Area comparison for different FMA configurations.

The comparison of the dual-mode FMA architecture [1,12,19] using the same
bitwidth of operands as the proposed FMA is shown in the Table 3. Compared
to the works [12,19], both of them support one DP FMA operations or two par-
allel SP FMA operations. The proposed design can support multiple-precision
and mixed-precision operations, and increase the throughput by 1.3/2.1x but
has 5/2% smaller area than [12,19], respectively. The design in [1] uses Karat-
suba algorithm [14] to reduce the number of required multiplier. In addition,
the design in [1]uses six pipeline stages for the mantissa multiplier. The timing
constraints for each pipeline stage will be loose, which further helps to reduce
the area during synthesis. Therefore, it has the smallest area among the three
compared dual-mode designs. The critical path of the FMA is usually located
in the mantissa multiplier. In the proposed design, the radix-4 Booth multiplier
that has smaller critical path delay than the array multiplier is utilized which
effectively reduces the critical path delay. Therefore, the proposed design requires
five fewer pipeline stages than the design of [1].

The works [11,20,26] have wider bitwidth of operands, in which QP oper-
ation is supported. However, for the implementation of aimed applications in
this paper, QP operation is not required. For example, SP and lower precisions
operations can meet the requirements of DNN’s training and inference in AI
applications, and DP operation can provide enough accuracy in most of HPC
applications.

The proposed FMA can provide high throughput and consume less area than
[11,20,26], which has a smaller critical path delay (68–81% reduced) than these
three FMA designs. The less delay comes from two aspects, on one hand, the
radix-4 Booth multiplier used in the proposed design caused a reduction of crit-
ical path delay. On the other hand, the narrower bitwidth mantissa multiplexer
has a shorter logic path.
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Table 3. Comparison of the proposed FMA with previous works

Design Function Delay(ns) C Area Throughput

ns FO4 µm2 NAND2 MOPS op/FO4

[12]-180 nm 1DP/2SP FMA 3.4 34.3 3 708,590 58,081 294 29

[19]-130 nm 1DP/2SP FMA 3.43 52.7 3 286,766 56,228 291 18

[1]-130 nm 1DP/2SP FMA 3.24 49.8 8 149,000 29,215 308 20

[20]-65 nm 1QP/2DP/4SP FMA 3.41 110 3 672,046 420,028 293 9

[11]-90 nm 2DP/4SP FMA/MUL 2.15 47.7 3 718,725 163,346 465 21

1QP ADD 2.15 47.7 3 718,725 163,346 465 21

1QP FMA/MUL 2.15 47.7 4 718,725 163,346 232 10

[26]-90nm 1QP/2DP/4SP/8HP FMA 2 44.5 3 794,790 180,634 500 22

1DP/2SP/4HP MIX-FMA 2 44.5 4 794,790 180,634 500 22

1DP/2SP/4HP MIX Dot-Product 2 44.5 4 794,790 180,634 500 22

Prop-28 nm 1DP/2SP/4HP FMA 0.64 26.7 3 26,499 55,206 1,563 38

1SP/2TF/2BF/2HP MIX-FMA 0.64 26.7 3 26,499 55,206 1,563 38

1 FO4 ≈ 24 ps, 1 NAND2 ≈ 0.48µm2@28 nm; 1 FO4 ≈ 31 ps, 1 NAND2 ≈
1.44µm2@65 nm;
1 FO4 ≈ 45 ps, 1 NAND2 ≈ 4.4µm2@90 nm; 1 FO4 ≈ 65 ps, 1 NAND2 ≈
5.1µm2@130 nm;
1 FO4 ≈ 99 ps, 1 NAND2 ≈ 12.2µm2@180 nm;
C: the cycles of FMA operation; op/FO4: (MOPS/FO4) × 10−3;

For the implementation of HPC applications, in which DP operations are
most widely used. Two parallel DP operations are performed with a latency
of three cycles by [20] and [11]. The proposed design can increase throughput
by 2.1 with 87% less area than [20]. The [11] has a 1.1x throughput than the
proposed design with the cost of 66% area overhead. Moreover, [20] and [11] can
not support low-precision operations, so the AI applications, such as DNNs, are
performed inefficiently by using high-precision operations.

In [26], normal FMA operations and mixed-precision FMA operations are
performed with a latency of three and four cycles, respectively. In the pro-
posed design, both normal and mixed-precision operations are performed with
the latency of three cycles. The [26] has 1.1x throughput in performing normal
operations than the proposed design. However, the cost of the larger throughput
is more hardware overhead, the area of [26] is 3.3x than the proposed design.
Moreover, more types of formats, TensorFloat-32 and BFloat16 specific for deep
learning workloads are supported in the proposed work, which makes the imple-
mentation of DNN more efficient.

5 Conclusion

In this paper, a multiple-precision and mixed-precision floating-point FMA unit
is designed for HPC and AI applications. The precisions and functions supported
by the proposed FMA unit are based on the practical requirements of HPC and
AI workloads. For normal FMA operations, the proposed FMA unit is capable of
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performing one SP, or two SP, or four HP standard FMA operations in parallel.
For mixed-precision FMA operations, one mixed-precision FMA using SP mul-
tiplication and DP addition, or two mixed-precision FMA using low-precision
(HP/TF32/BF16) multiplication and SP addition are performed. This design
consumes significantly less area and power while achieving more functionalities
than a conventional DP FMA unit. The proposed FMA architecture can be used
in efficient processor designs or specialized hardware accelerators. The support
of parallel low-precision and the mixed-precision operations makes the proposed
design suitable for scientific computing and deep learning workloads.
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Abstract. One highly discussed research topic is user privacy protection
and the usability of models in data mining tasks. Currently, the most k-
means clustering approach using differential privacy is based on trusted
third-party servers. However, malicious servers exist in many applica-
tions and cause privacy leakages of user data. The Personalized Local
Differential Privacy k-means algorithm (PLDP k-means) is proposed in
this paper. To satisfy the PLDP mechanism, a perturbation mechanism
is used to perturb the user data at the local side. Then clustering is com-
pleted by iteration between the local and server sides. The third-party
server remains inaccessible to the real user data and considers the users’
personalized privacy demands in the proposed algorithm. In addition,
the iterative centroid perturbation algorithm is proposed in this paper
for resisting inference attacks and improving the utility of clustering via
a privacy budget allocation sequence. Theoretical analysis demonstrates
the privacy of the proposed algorithm. Experimental results indicate that
the proposed algorithm effectively preserves the utility of clustering while
satisfying the PLDP mechanism.

Keywords: Cluster · k-means · Privacy protection · Personalized
Local Differential Privacy

1 Introduction

The popularisation of smart devices and the development of big data analytics
has led to tremendous growth in the generation, collection, and analysis of per-
sonal digital information. The useful information extracted from massive data
can bring immeasurable value [1,2]. As a classical data analysis method, clus-
tering is a type of unsupervised learning method. k-means is one of the most
popular clustering methods due to its efficiency and simplicity [3]. Although the
data analysis has great potential, it also has a risk of leakage of user privacy.
Sensitive information such as medical, location, and financial data can directly
lead to users’ private information leakage. Traditional anonymization methods
wipe out identifiers that cannot resist both differential and background knowl-
edge attacks. An attacker can correlate or identify users’ private information.
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Therefore, ensuring there is no leakage of users’ private information and main-
taining a high level of utility in clustering becomes a problem that needs to be
solved.

The Differential Privacy (DP) model is currently considered as a reliable
model with rigorous and falsifiable privacy guarantees [4]. Compared with tra-
ditional protection models such as anonymity and random perturbation, dif-
ferential privacy has significant advantages in privacy preservation in cluster
analysis [5,6]. A differential privacy-based model for cluster analysis, which is
referred to as Differential Privacy k-means Algorithm (DP k-means), has been
widely applied for its efficiency and privacy preservation [7,8]. DPLloyd-Impr
made an improvement on DPLloyd by introducing the concept of sphere pack-
ing [9]. DP-KCCM, as a novel algorithm, is effective when cluster merging and
adaptive noise mechanisms are adopted to improve clustering utility [10]. The
above work improves DP k-means from data pre-processing, cluster delineation,
etc., and is based on trusted third-party servers. The servers can collect real user
data, perform clustering and uniformly add noise. However, with the develop-
ment of cloud computing and the diversification of data analysis demands, the
assumption that all third-party servers are trustworthy is not valid, as malicious
servers may steal and take advantage of users’ private information.

Local Differential Privacy (LDP) [11] was proposed because third-party
servers cannot be trusted. LDP has more stringent privacy requirements than
DP. It requires users to perturb their data at the local side and sends it to an
untrusted server. LDP has also been applied to practical cases to create feasible
solutions [12,13]. A k-means algorithm based on LDP was proposed in [14] to
protect location data through feature transformation and privacy budget allo-
cation. Although LDP can effectively address the problem of privacy leakage
on third-party servers, it still faces the challenge of reduced clustering utility
due to excessive noise [15]. Owing to the perturbation of user data at the local
side, the noise of LDP is larger compared to that of DP. The influence of noise
is further amplified in the clustering iterations. Also, most research on LDP
implicit assumption is that there is uniform protection of the private informa-
tion of all users. However, different users and data often have different privacy
requirements. To address the above issue, Personalized Local Differential Privacy
(PLDP) was proposed in [16], which allows each user to set the privacy level of
their data independently.

Based on the above discussions, the main issue that needs to be addressed
is how to take into account the protection of users’ private information and the
utility of clustering in k-means clustering. A clustering framework based on the
PLDP k-means algorithm is proposed in this paper. Firstly, the user can perturb
sensitive data at the local side by the PLDP k-means algorithm and send it to the
server, which performs high-quality k-means clustering on the perturbed data.
Thus, the threat of malicious servers is eliminated while the users’ personalized
privacy demands are met. In addition, an iterative centroid perturbation algo-
rithm is proposed, which prevents privacy leakage caused by inference attacks
by perturbing the centroids in the iterative process. The proposed algorithm
also reduces the impact of perturbation on the clustering utility by designing a
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privacy budget allocation sequence. The main contributions of this paper are as
follows.

1) A clustering framework based on the PLDP k-means algorithm is proposed.
In the framework, the server does not access users’ private information while
ensuring quality clustering and users’ personalized privacy demands.

2) Iterative centroid perturbation algorithms are proposed to address the poten-
tial leakage of private information during iteration. They help prevent infer-
ence attacks and further protect users’ private information.

3) Theoretical analysis demonstrates the privacy protection capability of the
proposed mechanism, and extensive experiments show that the proposed algo-
rithm has better or similar performance than existing DP k-means algorithms.
To the best of our knowledge, this paper is the first attempt at adopting PLDP
in k-means clustering.

The rest of this paper is organized as follows. The basic concepts required for
this framework and the related technical foundation are introduced in Sect. 2.
The proposed approach is present in Sect. 3. The experimental results and anal-
ysis are illustrated in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Preliminaries

In this paper, the concept of personalized local differential privacy is adopted. To
make the paper more self-contained, some basics of LDP and PLDP are briefly
introduced in this section.

Differential privacy is a privacy-preserving model widely used in data anal-
ysis, in which the real data of all users is protected by a trusted data collector.
However, the prerequisite of a trusted data collector usually does not hold in
real-world applications. LDP is an extension of DP that extends to the local
settings. LDP implements data sanitization locally by designing random pertur-
bation algorithms that comply with differential privacy requirements. This way,
sensitive data information is protected without relying on trusted third-party
collectors. The following is the formal definition of LDP.

Definition 1. (ε-LDP). A randomized mechanism F : D → R satisfies ε-LDP
iff for any possible output result t∗ (t∗ ⊆ R) on any two records t and t′ (t, t′ ⊆ D)
that satisfies Eq. 1.

Pr [F (t) = t∗] ≤ eε × Pr [F (t′) = t∗] . (1)

The parameter ε is the privacy budget, which is public and usually set in
[0,2]. The value of ε determines the probability of outputting the same result t∗

for any two input values t and t′ of the algorithm F . Thus, stronger (weaker)
privacy guarantees are provided by smaller (larger) values of ε.

The LDP provides a way to protect private data on the local side of the
user, but different privacy protection requirements may exist for different users
and data. Therefore, PLDP is adopted to satisfy different privacy requirements
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in this paper. Each user in PLDP has a set of optional parameters (Gi, εu), εu

representing the desired strength of privacy protection for that user, i.e., the
privacy budget. Gi represents a security range specified by the user containing
his real data, where the user data is indistinguishable from other data.

Definition 2 ((Gi, εu)-PLDP). Given a set of privacy requirements (Gi, εu) to
one user n, a randomized mechanism F : D → R satisfies (Gi, εu)-PLDP iff for
any possible output result t∗ (t∗ ⊆ R) on any two records t and t′ (t, t′ ⊆ Gi) that
satisfies Eq. 2.

Pr [F (t) = t∗] ≤ eεu × Pr [F (t′) = t∗] . (2)

when Gi is set to the domain D, and all users are unified ε, PLDP is equivalent
to LDP.

Differential privacy has two important combinatorial properties: the sequen-
tial and parallel combinatorial properties, which are formally defined as follows.

Property 1 (sequence combinability). Given a dataset D and privacy algorithms
F = {F1, F2, . . . , Fn} , Fi(1 ≤ i ≤ n) satisfies the εi-DP. Then the sequence
combination of {F1, F2, . . . , Fn} on D satisfies ε-DP, where ε =

∑n
i−1 εi.

Property 2 (parallel combinability). Given a dataset D, divide it into n disjoint
subsets, D = {D1, . . . , Dn}, let F be any privacy algorithm that satisfies εi-DP,
then the algorithm F satisfies εmax-DP on D.

3 Proposed Approach

In this section, the PLDP k-means clustering algorithm is proposed, and its
privacy is demonstrated. Existing privacy issues in clustering analysis are first
analyzed. The overall flow of the proposed framework is then described, and the
corresponding design of the perturbation mechanism based on PLDP theory is
given. Finally, the privacy of the proposed overall system is proved theoretically.

3.1 Overview

The privacy issues faced by DP and LDP k-means clustering model and the
solutions are analyzed in this subsection. A third-party data collector collects
sensitive data (e.g., location, income, cases, etc.) from many users, processes it
using the k-means algorithm, and shares or publishes the model results to part-
ners or public platforms. When users are faced with third-party collectors (e.g.,
service providers, etc.) asking for their data, protecting their privacy becomes
an issue that must be addressed. DP is considered an effective solution to this
problem by perturbing the user’s data on a third-party server so that neither
the attacker nor the subsequent release can cause a leakage of the user’s privacy.
However, the attacker may be external, or the data collector may be malicious,
knowing all the user’s real data. LDP protects user data assuming that third-
party servers are not trusted. The way solves the problem of malicious data
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collectors is that the data is perturbed by the LDP at the local side and then
uploaded to the server. The new problem is that due to LDP properties, there
are limitations in protecting user data, and the availability of perturbed data
is generally considered inferior to that of DP. At the same time, the risk of
privacy leakage cannot be completely avoided by simply perturbing the data in
clustering. So the problem is to design a model that achieves a better utility of
clustering while avoiding the influence of malicious collectors.

A clustering framework based on the PLDP k-means algorithm is proposed
in this paper to address the issues mentioned above. A randomized perturbation
algorithm satisfying PLDP is used to perturb the user’s local data, eliminating
the risk of malicious collectors while satisfying personalized privacy requirements
and enhancing the utility of clustering. Meanwhile, an iterative clustering cen-
troid perturbation algorithm perturbs the real clustering information locally to
prevent privacy leakage due to inference attacks.

3.2 Proposed Framework

A framework based on PLDP k-means that can solve the above problem is
proposed, and its overall framework is shown in Fig. 1. The clustering model has
a user set U = {u0, u1, . . . , un−1}, an attribute set A = {a0, a1, . . . , ad−1}. Each
user has a d-dimensional data vector Si = {s0, s1, . . . , sd−1}. where 0 < i < n,
0 < j < d and d = |Si| is the number of attributes. sj corresponds to a numerical
value of aj . The target of k-means is to classify the user data into k clusters
C = {c0, c1, . . . , ck−1}.

Get new 

clustering

centroids

Local side Collector server

Send to server

Perturbation

centroid by 

Algorithm 2

Perturbs user 

data by

Algorithm 1 Send to user

Update

centroids by
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on real data

User Server
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Fig. 1. Cluster privacy-preserving framework based on PLDP k-means.

As shown in Fig. 1, a clustering privacy-preserving framework based on PLDP
is proposed. The proposed framework consists of two parts: the local side and
the collector server. The local side describes how the user data is perturbed by
the PLDP perturbation algorithm. The collector server describes how k-means is
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performed based on the perturbed data. The user data Si is perturbed to get S∗
i

by Algorithm 1 at the local side and then sent to the server. The server generates
k initial centroids by the initial centroid selection algorithm and attribute set A,
then sends them to the local side. The next clustering iteration is performed. The
local side calculates the distance between the real user data Si and each centroid
received from the server to find the nearest centroid ci and the corresponding
clusters. The found centroid ci is then perturbed to get c∗

i by Algorithm 2 and
sent to the server. The server updates a new set of centroids based on the received
C∗ and the perturbed data S∗

i by Algorithm 3, then sends them to the local side.
The iterative process is repeated until the results converge.

Local Side Method. As shown in Fig. 1, the local side consists of two core
components, user data perturbation, and centroid perturbation.

User Data Perturbation. In contrast to the usual LDP k-means approach of
converting the data into binary strings and then perturbing each dimension to
obtain the perturbed results before aggregation, this paper normalizes the user
data vector Si to [−1,1] through data pre-processing for the next perturbation
process. Because each bit of the binary string has to be equally assigned privacy
budget ε, which may cause excessive noise problems when the budget is small,
or the number of bits in the string is large.

The Duchi solution [17] is a multidimensional data perturbation scheme based
on LDP. Since Si has already completed data pre-processing to obtain S′

i ={
s′
0, s

′
1, . . . , s

′
d−1

}
, the Duchi-based PLDP mechanism can be used to perturb

user data. In the clustering model of this paper, a set of privacy parameters
(Gi, εu) can be self-selected by each user. εu represents the user’s selected privacy
budget, i.e., the user’s requirement for the strength of data protection. Averaging
εu by user data dimension d to obtain εd = εu

d . Gi = {g0, g1, . . . , gd−1} represents
the user’s acceptable security range, and gj(0 < j < d) represents the security
range of the j-th dimensional data. e.g., a set of age data distributed between
[1,100]. A user data is 25 years old, and after LDP perturbation, the perturbed
data range is between [1,100], representing the user’s expectation that their
age data is indistinguishable in the range [1,100], a wide privacy requirement
that is generally unnecessary. In PLDP, the user needs to choose a security
range gj . The range and size of gj is user-defined, and the user’s real data
values must be included within the security range. For example, gj=[10,40] means
that the age is indistinguishable within the range [10,40] to satisfy the user’s
privacy demands. wj and mj are defined as the size and midpoint of gj . Since
a secure region symmetric about 0 needs to be obtained, each user moves the
secure range, and the user data points within the range move to s′′

j = s′
j − mj .

After processing the S′′
i =

{
s′′
0 , s′′

1 , . . . , s′′
d−1

}
representing Si is obtained. The

perturbation mechanism is defined by
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Pr
(
s∗

j = x | s′′
j

)

=

⎧
⎨

⎩

2·s′′
j ·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1) , if x = wj

2 · eεd+1
eεu −1 + mj ,

− 2·s′′
j ·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1) , if x = −wj

2 · eεd+1
eεd−1 + mj .

(3)

Since a range move was performed on S′
i before the perturbation, mj is added

to the perturbation result x in Eq. 3 to restore the data. After completing the
perturbation, send S∗

j to the server, which gets all the perturbation data and
calculates the mean value of each dimension of the data.

The overall process of user data perturbation is shown in Algorithm 1, where
S∗

i is obtained according to Eq. 3 perturbation and then sent to the collector
server. The privacy proof of the Algorithm 1 is described in Sect. 3.3.

Algorithm 1. User data perturbation.
Require: privacy budget εu, security range Gi = {g0, g1, . . . , gd−1}, user ui data vec-

tor Si = {s0, s1, . . . , sd−1} , 0 < i < n, 0 < j < d
Ensure: user ui data vector after perturbation S∗

i = {s∗
0, s

∗
1, . . . , s

∗
d−1}

1: Si is normalized to obtain S′
i = {s′

0, s
′
1, . . . , s

′
d−1}

2: S′
i range moves to obtain S′′

i = {s′′
0 , s′′

1 , . . . , s′′
d−1}

3: for j ← 0 . . . d − 1 do
4: wj = |gj |
5: mj is the centroid of gj

6: p ← Bernoulli
(

2·s′′
j ·(eεd −1)+wj ·(eεd+1)

2·wj ·(eεd+1)

)

7: if p = 1 then
8: s∗

j = wj

2
· eεd+1
eεd+1

+ mj

9: else
10: s∗

j = −wj

2
· eεd+1
eεd+1

+ mj

11: return S∗
i

Centroid Perturbation. As shown in Fig. 1, the local side enters the iterative
process after the user data perturbation is completed. The centroids from the
server are first accepted, then iteration centroids are calculated based on the real
user data. Although the server cannot infer privacy information from the user
data, the clustering information of the user belonging to that cluster, i.e., the
iteration centroids sent to the server in each iteration, may reveal user privacy.
Because the clusters to which users belong are calculated from real data, over
multiple iterations, the server can infer the approximate distribution or exact
value of the user data as the clusters to which users belong change, and the
iteration centroids are updated. For example, assuming the user data is two-
dimensional location data, the user can be positioned in a circular region in each
iteration. In multiple iterations, overlapping these circular regions will help the
server locate the user’s exact location or exact location range.

To address the problem that iterative centroids may cause user privacy leak-
age, the iterative centroid perturbation algorithm is proposed in this paper to
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generate perturbed iterative centroids using a random perturbation mechanism.
Also, The centroids in the first few iterations of the clustering change greatly,
while the centroids in the last few iterations change only a little. Suppose the
privacy budget is distributed equally, i.e., given the same amount of noise in
each round. In that case, it will cause the problem of poor clustering utility or
failure to converge. A privacy budget allocation mechanism in which the privacy
budget for each round is incremented with the number of iterations is proposed
in this paper. i.e., a smaller privacy budget is used for the first few rounds to add
a larger noise. As the number of iterations increases, the privacy budget is incre-
mented, and the noise is gradually reduced. The iterative centroid perturbation
algorithm is described in Algorithm 2.

Algorithm 2. Iterative centroid perturbation algorithm.
Require: privacy budget εu, user’s clustering centroid ci, cluster centroid set C, the

maximum number of iterations L, number of current iterations lc, number of cen-
troids k

Ensure: centroid after perturbation c∗
i

1: Generate a privacy budget allocation sequence by P (n) = 2 · P (n −
1)

(
2 < n < L, P (0) = P (1) = 1

2L−1 · εu
)

2: εn = P (lc)
3: p ← Bernoulli

(
eεn

eεn+k−1

)

4: if p = 1 then
5: c∗

i = ci
6: else
7: c∗

i ← random sample from {C/ci}
8: return c∗

i

As shown in Algorithm 2, the K-Randomized Response (K-RR) is used to per-
turb the user clustering information. Since K-RR can be applied to multivariate
perturbations, there is no need to encode the centroids. The privacy budget allo-
cation algorithm is inspired by the Fibonacci sequence. Since the goal of budget
allocation is to construct an allocation scheme that increase by degrees and sums
to ε, a privacy budget allocation sequence is constructed in this paper. Assuming
that there are L iterations and the recursive formula for the sequence is as follows,
P (n) = 2·P (n−1)

(
2 < n < L,P (0) = P (1) = 1

2L−1 · εu

)
, e.g. L=5, then we have

a privacy budget allocation sequence P =
{

1
16 · εu, 1

16 · εu, 1
8 · εu, 1

4 · εu, 1
2 · εu

}
,

the privacy budget for the third iteration is ε3 = 1
8 · εu and the sum is εu. The

iteration centroid perturbation is shown in the following Eq. 4.

Pr [c∗
i = ci] =

{
p = eεn

eεn+k−1 if c∗
i = ci

q = 1
eεn+k−1 if c∗

i �= ci

. (4)

where εn represents the privacy budget for the current number of iterative
rounds, L is the maximum number of iterative rounds, k is the number of cen-
troids and c∗

i represents the iteration centroid after perturbation. The detailed
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procedure for the iterative centroid perturbation algorithm is described in
Algorithm 2.

Collector Server Method

Initial Centroid Selection. The server randomly generates k d-dimensional initial
centroids C based on the S∗

i and sent them to the user.

Aggregation and Centroid Computation. The server groups the user perturbation
data S∗

i according to the perturbation centroid C∗ =
{
c∗
0, c

∗
0, . . . , c

∗
K−1

}
sent

from the local side. In each cluster, the mean of each dimension of S∗
i is calculated

separately, and the centroid C is updated in this way.

ci =
1

|c∗
i |

·
⎧
⎨

⎩

∑

S∗
i ∈c∗

i

s∗
0,

∑

S∗
i ∈c∗

i

s∗
1, . . . ,

∑

S∗
i ∈c∗

i

s∗
d−1

⎫
⎬

⎭
(5)

where ci is the new centroid updated by the calculation, |c∗
i | is the number of user

data belonging to c∗
i , and

∑
S∗

i ∈c∗
i
s∗

j is the intra-class sum of the j-th dimensional
data. Send the new centroid to the local side after the calculation is completed.
Clustering iterations are performed as described above until the clustering is
complete. The main steps of the centroid update are shown in Algorithm 3.

Algorithm 3. Centroid update algorithm.
Require: centroid after perturbation C∗, user ui data vector after perturbation S∗

i ,
number of centroids k

Ensure: centroid after update C
1: for i ← 0 . . . k − 1 do
2: ci = 1

|c∗
i | ·

{∑
S∗

i ∈c∗
i

s∗
0,

∑
S∗

i ∈c∗
i

s∗
1, . . . ,

∑
S∗

i ∈c∗
i

s∗
d−1

}

3: return C = {c0, c1, . . . , ck−1}

3.3 Privacy Analysis

This section proves that Algorithms 1 and 2 satisfy the definition of differential
privacy and further proves that the overall framework satisfies the definition of
differential privacy.

Theorem 1. Algorithm 1 provides (Gi, εu)-PLDP for each uesr ui with (Gi, εu).

Proof. For any two values s′
j1, s

′
j2 ∈ gj and s∗

j ∈ {wj

2 · eεu+1
eεu −1 + mj ,−wj

2 ·
eεu+1
eεu −1 + mj

}
, there is s′′

j1 = s′
j1 − mj , s′′

j2 = s′
j2 − mj . Then there is

Pr
(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) =
Pr

(
s∗

j | s′′
j1

)

Pr
(
s∗

j | s′′
j2

)

=

2·s′′
j1·(eεd −1)+wj ·(eεd+1)

2·wj ·(eεd+1)

2·s′′
j2·(eεd −1)+wj ·(eεd+1)

2·wj ·(eεd+1)

.

(6)
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or
Pr

(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) =
− 2·s′′

j1·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1)

− 2·s′′
j2·(eεd−1)+wj ·(eεd+1)

2·wj ·(eεd+1)

. (7)

Using Eq. 6 as an example,

Pr
(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) =
2 · s′′

j1 · (eεd − 1) + wj · (eεd + 1)
2 · s′′

j2 · (eεd − 1) + wj · (eεd + 1)
. (8)

It can be seen from Eq. 8 that when s′′
j1 = wj

2 , s′′
j2 = −wj

2

(
s′′

j1 = −wj

2 , s′′
j2 = wj

2

)
,

Eqs. 6 and 7 to obtain the maximum value,

Pr
(
s∗

j | s′
j1

)

Pr
(
s∗

j | s′
j2

) ≤ eεd . (9)

Algorithm 1 satisfies (gj , εd)-PLDP by Eq. 9. Since S′
i =

{
s′
0, s

′
1, . . . , s

′
d−1

}
,

Gi = {g0, g1, . . . , gd−1}, and εd = εu

d ,
∑d−1

j=0 εd = εu. According to Property 1 of
Sect. 2, differential privacy has the sequence combinability property. So for user
ui with (Gi, εu), Algorithm 1 satisfies (Gi, εu)-PLDP.

Theorem 2. Algorithm 2 provides εu-LDP for each uesr ui throughout the clus-
tering process.

Proof. For any two values ci1, ci2, c
∗
i ∈ C there is

Pr [ci1 = c∗
i ]

Pr [ci2 = c∗
i ]

=
eεn

eεn+k−1
1

eεn+k−1

= eεn .

(10)

Algorithm 2 satisfies εn-LDP. For all iterations, the Property 1 sequence com-
binability property of Sect. 2 is applied. Since

∑L
lc=1 εn = εu, for the whole

clustering process, Algorithm 2 satisfies εu-LDP.

4 Experimental Evaluation

In this section, experiments are designed to investigate the improvements in the
proposed framework compared to the existing DP k-means algorithm and how
the relevant parameters influence the utility of the proposed framework.

4.1 Experimental Environment and Datasets

The hardware platform for this experiment uses Intel Core i7-11700 CPU @
2.50GHz, and 32.00GB RAM. The experimental platform uses python 3.7.
Two databases from the UCI dataset were used for the experiments. The Blood
dataset records 748 individual blood donations from the Blood Transfusion Ser-
vice Centre in Hsinchu city. Each record has five attributes. The Adult dataset
is a dataset extracted from the 1994 census database. There are 488,42 records
with 14 attributes per record. In this paper, six numerical attributes are retained
for each record.
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4.2 Experimental Setup and Evaluation Metrics

This paper focuses on three aspects of experimenting with the proposed frame-
work.

1) Compare the utility of clustering with existing algorithms [9,10] for uniform k
values under different ε. To the best of our knowledge, this paper is the first
attempt at adopting PLDP in k-means clustering, so the extant advanced
DP k-means algorithm was selected for comparison with the algorithm pro-
posed in this paper. The PLDP k-means algorithm proposed in this paper
is compared with the DPLloyd-Impr algorithm [9], and the DP-KCCM algo-
rithm [10]. The DPLloyd-Impr algorithm completes the initial centroid selec-
tion by an initial centroid selection algorithm and then adds the Laplace
noise to each round on average. In the DP-KCCM algorithm, the privacy
budget allocation algorithm and the cluster merging algorithm are combined
to enhance the clustering utility, and noise is injected through the Laplace
mechanism. It is worth noting that both of these algorithms are based on dif-
ferential privacy mechanisms and do not prevent attacks by malicious servers.

2) Compare the effects of different setting on the utility of clustering. Two sets
of experiments are set up to understand the impact of key mechanisms on the
utility of clustering. Firstly, the effect of privacy budget allocation methods
on clustering utility was explored. Secondly, experiments were conducted on
the effect of the iterative centroid perturbation algorithm on the clustering
model.

3) Comparing the effect of different parameter distributions on clustering util-
ity. Users can set their privacy budget εu and the size of the security range
wj according to their privacy needs in PLDP. All users’ privacy parameters
cannot be the same in practical applications. To understand the effect of
key parameters on clustering utility, three sets of experiments were set up
to investigate the effect of different parameters and different distributions on
clustering utility.

In this paper, the utility of clustering is assessed using the Normalised Intra-
Cluster Variance (NICV) [9]. The essential goal of the k-means algorithm is
to divide the data into k clusters based on minimizing the error function, with
distance as the evaluation metric. Therefore NICV can directly reflect the utility
of clustering, while the NICV value can also reasonably reflect the impact of
privacy protection mechanisms on the utility of clustering. The smaller NICV
value means the better utility of clustering. NICV is defined as follows,

NICV =
1
N

k∑

i=1

∑

S′
i∈ci

‖S′
i − ci‖2 (11)

where N represents the total number of users, k represents the number of cen-
troids, S′

i represents the user data Si normalized to [−1,1], and S′
i ∈ ci represents

the centroid ci is the closest centroid to S′
i.
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4.3 Experimental Analysis

The results of the experiments are shown below. The first experiment explores
the performance of two existing algorithms [9,10] and the PLDP k-means pro-
posed in this paper under different privacy budgets ε. The data were normalized
to [−1,1], wj was set to 0.1, and the maximum number of iterations was set
to 12. For comparison purposes, this experiment will unify the privacy budget
εu and wj for users. As seen in Fig. 2, PLDP k-means performs better than
DPLloyd-Impr [9] and performs similarly to DP-KCCM [10]. However, the algo-
rithm proposed in this paper does not require a trusted third-party server, which
means that the PLDP k-means algorithm can obtain a similar or better cluster-
ing utility while eliminating the risk of malicious servers.

Fig. 2. Performance with respect to ε.

The second experiment explored the effect of different privacy budget alloca-
tion methods on the utility of clustering. A privacy budget allocation sequence is
designed in this paper. Such that the allocation of privacy budgets in iterations
presents a increase by degrees tendency. As shown in Fig. 3, the average privacy
budget allocation method and the proposed allocation method were compared.
It can be seen that the proposed method in this paper is significantly better
than the average method. This demonstrates that the proposed privacy budget
allocation algorithm in this paper can further improve the utility of clustering.

Fig. 3. Performance with respect to privacy budget allocation methods.
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Iterative centroid perturbation algorithms are proposed to prevent privacy
leakage caused by inference attacks. To evaluate the impact of this algorithm on
the utility of clustering, a comparison experiment was conducted between using
the iterative centroid perturbation algorithm and using real centroids directly.
As shown in Fig. 4, the use of true centroids performed better than the use of the
iterative centroid perturbation algorithm. This illustrates that some usability is
sacrificed to improve privacy protection.

Fig. 4. Performance with respect to iterative centroid perturbation algorithm.

Fig. 5. Performance under the different W and the same E.

Fig. 6. Performance under the different E and the same W .
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Fig. 7. Performance with respect to wj and ε under the W1,E1.

The effect of the parameters is next explored. A fixed range is specified,
wj ∈[0.1,0.5], εu ∈[0.1,2]. Each user can take their parameters from the range.
Suppose the distributions of wj , εu are uniform (W1, E1) or normal (W2, E2)
respectively. W1 and W2, E1 and E2 have equal means. E2 and W2 have standard
deviations of 0.3 and 0.1, respectively. PLDP k-means algorithm and the two
variants of the algorithm based on this section discussed above, average, real
centroid, were used for testing. Figure 5 (Fig. 6) shows the results of the three
algorithms at different W (E) and the same E(W ) on the two datasets. The
control variables method shows that the results for W2 and E2 are better than
those for W1 and E1, respectively. Although the means of the two distributions
are equal, the normally distributed data are distributed with a high probability
around the mean and a lower probability for smaller εu and larger wj , which
leads to better NICV values.

The effects of wj and εu were further explored. The influence of varying wj ,
εu on the utility of clustering was explored for the W1,E1 cases, respectively.
As illustrated in Fig. 7, a larger wj (εu) results in the poorer (better) utility of
clustering.

Based on the experimental analysis above, the proposed algorithm in this
paper improves the utility of clustering while ensuring the strength of privacy
protection, and the experiments illustrate that the desired effect is achieved.

5 Conclusion

A clustering framework based on the PLDP k-means and an iterative centroid
perturbation algorithms is proposed in this paper. This framework not required
trusted third-party servers, and users are allowed to personalize their privacy
requirements by the proposed PLDP k-means algorithm. An iterative cen-
troid perturbation algorithm is also proposed that refines the privacy-preserving
scheme by perturbing the centroids in the iterative process. Experimental results
show that the proposed algorithm in this paper has better or similar performance
than the extant DP k-means algorithm. Besides, the PLDP k-means algorithm
requires only one upload of perturbation data, unlike the DP k-means algo-
rithm, but the computational and communication costs during the iteration are
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still nonnegligible. Future work is to analyze and reduce the computational and
communication costs of the PLDP k-means algorithm.
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Abstract. K-Means algorithm is one of the most common clustering
algorithms widely applied in various data analysis applications. Yinyang
K-Means algorithm is a popular enhanced K-Means algorithm that
avoids most unnecessary calculations using triangle inequality. How-
ever, Yinyang K-Means algorithm is time-consuming when the problem
size is large. Due to the influence of performance and energy-efficiency,
ARM CPUs have appeared in high performance computing. Therefore,
it is very interesting to accelerate Yinyang K-Means algorithm on ARM
CPUs. In this paper, we propose an efficient parallel implementation of
Yinyang K-Means algorithm on ARMv8 many-core CPUs by means of
vectorization, NUMA affinity memory optimization and data layout opti-
mization. The experiment on two ARMv8 many-core CPUs has shown
that our implementation can achieve up to 5.6 times faster than the
open-source multi-threaded one of Yinyang K-Means algorithm. To the
best of our knowledge, this is the first work that studies the optimization
of Yinyang K-Means algorithms on ARMv8 CPUs.

Keywords: K-Means · NUMA · Vectorization · ARMv8 ·
Performance optimization

1 Introduction

The classic K-Means algorithm [16] is one of the most important unsupervised
learning algorithms that can be widely applied to data mining, document clus-
tering, intrusion detection applications, etc. The algorithm consists of two steps:
assignment and rechosen. The assignment step takes N points and K centroids
as input, finds the closest centroid for each point and divides all points into K
clusters. The rechosen step updates the centroid of each cluster by calculating
the mean of all data points assigned to the cluster. These two steps are repeated
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until each centroid’s location does not change, or the iteration reaches several
times.

When the number of points or centroids is large, the classic K-Means algo-
rithm often runs slowly. Many optimizations are proposed to accelerate the algo-
rithm itself, such as initial location optimization of centroids [1], structural opti-
mization [12,19], and triangle inequality optimization [5,7]. One of the most
popular implementations based on triangle inequality optimization is Yinyang
K-Means [4], an enhanced K-Means that can effectively avoid most unnecessary
distance calculations using triangle inequality. The Yinyang K-Means algorithm
introduces several distance bounds to form a three-level filter. The global filter
screen out points whose cluster remains unchanged in the current iteration. The
group filter identifies groups whose centroids in this group cannot be the closest
centroid of point in the current iteration. The local filter excludes some centroids
in the group, and these centroids cannot be the closest centroid for a point.

At the same time, many efforts have been made in the parallel optimiza-
tion of K-Means algorithms to reduce their execution time. For instance, Wu et
al. [25] achieved fine-grained SIMD parallelism by taking each dimension of all
data points as a long vector and parallelizing the vectorized K-Means algorithm
on Intel MIC architecture. Kwedlo et al. [14] proposed a hybrid MPI/OpenMP
parallelization of four approaches: Drake’s, Elkan’s, Annulu’s, and Yinyang algo-
rithm. Zhao et al. [28] proposed a parallel K-Means clustering algorithm based on
MapReduce, and the experimental results show that the MapReduce K-Means
has good scalability and can efficiently process large datasets. Kumar et al. [13]
parallel the K-Means clustering for quantitative ecoregion delineation using large
data sets on a many-core supercomputer. Besides, existing research also tries to
parallelize the K-Means algorithm using GPU [2,27], FPGA [3], and so forth. For
example, Taylor et al. [22] optimized the implementation of Yinyang K-Means
algorithm on GPU and achieved a speedup over the multi-core CPU of up to
8x on real-world datasets. However, there is little work on the optimization of
K-Means algorithms on ARMv8 many-core CPUs.

In order to achieve a better balance between performance and energy-
efficiency, ARM-based processors have been adopted in high performance com-
puting field, such as A64FX in Fugaku supercomputer [17], ARM Cortex-A15
CPUs in Mont-Blanc prototype [20], and Phytium FT-2000+ in Tianhe-3 pro-
totype [26]. Many algorithms and applications also have been parallelized and
evaluated on ARM architectures, such as fast Fourier transform [15], deep learn-
ing [8,9,23,24], and Monte Carlo simulation [10]. Therefore, optimizing and eval-
uating K-Means algorithms on ARM CPUs is also enjoyable.

Although existing multi-threaded implementations of classical and optimized
K-Means algorithms can directly work on ARM multi/many-core CPUs, they
often perform sub-optimally because they do not utilize the vector processing units
in ARM CPUs. Moreover, they also do not consider non-uniform memory access
(NUMA) characteristics that are often found in many-core CPUs and may bring
loss in performance. This paper mainly focuses on optimizing Yinyang K-Means
algorithms on ARMv8 many-core processors. Leading optimization includes
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vectorization and NUMA affinity memory optimization. A new memory data lay-
out is proposed to support the optimization above. We design sets of experi-
ments to compare the performance of our accelerated implementation with the
open sourcemulti-threaded implementation [21] ofYinyangK-Means algorithmon
two ARMv8 many-core processors. The experiments show that the vectorization
achieved a maximum speedup of 4.6x, and the NUMA optimization achieved up to
1.5x speedup on real-world datasets. Our accelerated Yinyang K-Means with all
optimization techniques achieves a speedup of up to 5.6x over the native Yinyang
K-Means. We also carried out a set of experiments to demonstrate the parallel effi-
ciency of our accelerated implementation. To the best of our knowledge, this is the
first work which optimizes and evaluates Yinyang K-Means algorithms on ARMv8
CPUs.

The structure of this paper is as follows. Section 2 introduces the Yinyang
K-Means algorithm, ARMv8 architecture and NUMA affinity. Section 3 analysis
the optimization opportunity on ARMv8 many-core CPUs. Section 4 describes
the optimization techniques in detail. The experimental results are presented in
Sect. 5. Section 6 gives the conclusion and future work.

2 Background

2.1 Yinyang Algorithm

Yinyang K-Means [4] is an enhanced K-Means that can generate the same result
as standard K-Means and produce significant speedup. The pseudocode of the
native Yinyang K-Means algorithm is described as Algorithm 1. The algorithm
randomly chooses K points as centroids, groups them into T groups, and ini-
tializes all of the N data point’s assignment and distance bounds (lines 1–3). In
each iteration, the algorithm updates centroids first (line 5), then iterate over all
data points. The global filter in line 9 checks whether a point needs to change its
cluster with a single comparison, part of the points will be filtered and will not
be passed to the next filter. Lines 10–11 tighten the upper bound and recheck
the global filter condition to filter more points. For a point that goes through
the global filter, Lines 12–13 access all groups of centroids and labels each group
using the group filter. All centroids from groups that do not meet the group filter
condition will be filtered. If a group of centroids passes through the group filter,
the local filter further removes centroids in this group through another lemma,
as these centroids could not be the closest centroid. Finally, in lines 16–17, the
remaining points will compute the distance with the remaining centroids and find
the closest centroid for each point. The Yinyang K-Means algorithm computes
the Euclidean distance between points and centroids, which can be denoted as:

d(pdi , c
d
i ) =

√
√
√
√

d∑

j=1

(pij − cij)2 (1)

where d(pdi , c
d
i ) is the distance between point pi and centroid ci, both pi and ci

have d dimensions. We can also briefly summarize the whole filtering process of
the Yinyang K-Means algorithm in Fig. 1.
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In this paper we removed the local filter as Newling and Fleuret [18] have
shown that the local filter degrades performance.

Algorithm 1: Native multi-threaded implementation of Yinyang K-Means
algorithms
input : points{x1, x2, x3,. . . ,xn}
output: centroids{c1, c2, c3,. . . ,ck}

1 Randomly choose K centroids
2 Group centroids into T groups
3 Initialize N points
4 while Not converged do
5 Update K centroids
6 #omp parallel for schedule(static)
7 for i = 1 : 1 : N do in parallel
8 Update upper bound and group lower bounds for xi

9 if Global filter condition of xi then
10 Tighen the upper bound of xi

11 Check the global filter condition for xi again
12 for l = 1 to T do // Iterate over all groups
13 if Group filter condition of Gl then

/* Iterate over all centroids in a group */
14 for m = 1 to K/T do
15 if Local filter condition of Cm then
16 Compute distance from xi to cm
17 Assign point xi to its closest cm

2.2 ARMv8 Architecture

ARMv8 is an ARM instruction set architecture that first introduced the 64-bit
operating capabilities called AArch64. It maintains full compatibility with older
ISA and introduces many enhancements, including cryptography extensions,
enhanced barrier types, etc. ARMv8 incorporates 128-bit VFPs (vector process-
ing units) and the Advanced SIMD (Single Instruction Multiple Data) architec-
ture extension called Neon technology. With VFPs and additional instructions
Neon provides, ARMv8 processor can parallel process two double-precision float-
ing numbers or four single-precision floating numbers, thus obtaining better per-
formance.

2.3 Non Uniform Memory Access

Figure 2 is a generic NUMA architecture. As the figure described, NUMA is a
kind of memory architecture that consists of multiple nodes. Each node incor-
porates one or more cores and has its memory called local memory. In a NUMA
architecture, any processor can access its local memory much faster than remote
memory(memory of other processors). The memory access time depends on the
memory location relative to the processor. Therefore reducing access to remote
memory can significantly improve performance.
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Fig. 1. A brief description of the Yinyang K-Means algorithm. YYG implies Yinyang
K-Means with the global filter only, and YYGG implies Yinyang K-Means with the
global and group filter.

Fig. 2. A generic NUMA architecture
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3 Analysis

The assignment step occupies most of the running time of Yinyang K-Means as
it contains vast amounts of distance calculations. Existing paralleled implemen-
tations mainly focus on accelerating distance-computing using multi-threading,
and it performs sub-optimal because it does not use the vector processing units
to improve performance further. For vectorization of the Yinyang K-Means algo-
rithm, we need to determine whether to vectorize points data or centroids data.
In the first case, we treat all points data as a long vector and compute the dis-
tance between multiple points to a centroid simutaneously. Vectorize centroids
data means we treat all centroids data as a long vector and compute the dis-
tance between multiple centroids to a point at once. Wu et al. [25] has shown
that the vector must be sufficiently long if we want to gain good performance.
Therefore, it is better to do vectorization on points data as points data size is
much larger to generate a much longer vector for SIMD (Single Instruction Mul-
tiple Data) instructions. Second, we do vectorization in the distance calculation
process and wherever it can be vectorized. For instance, we can check multiple
points at once when checking the global filter condition. However, we must adjust
the data memory layout to make it more suitable for vectorization and to obtain
better data locality.

NUMA architecture is typical for supercomputers or servers as it can increase
the bandwidth and bring more scalability. However, NUMA architecture has
its natural drawbacks: high remote memory access costs. No researchers try to
optimize Yinyang K-Means for NUMA architecture, so existing implementations
may perform poorly when running on NUMA architecture processors, especially
when there are many nodes in the NUMA architecture. So reducing the amount
of remote memory access is an important issue. This problem can be solved
through thread binding, data distribution, and work distribution.

4 Optimization Technique

4.1 Vectorization

Vectorization relies on the on-chip vector processing units of the core. ARMv8
architecture incorporates 32 128-bit registers per core and provides additional
vector instructions so that can process two double-precision floating point num-
bers at once. So compared with the native Yinyang K-Means algorithm, which
processes one point in a single for loop, the vectorized Yinyang K-Means algo-
rithm can process two points simultaneously. So the algorithm can theoretically
achieve a maximum speedup of 2x. As aforementioned in Analysis, we vectorize
point data to compute the distance from multiple points to one centroid at once.
As shown in Algorithm 2, we first do vectorization on the points initialization
phase(line 5). Specifically, we put the exact dimension of two adjacent points
into a vector and broadcast one dimension of a single centroid to another vector.
Then we compute the euclidean distance of the two vectors using SIMD instruc-
tions. Then in a single iteration, we update the upper and lower bound for two
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points at once and check the global filter condition for two points simultaneously
(lines 10–11). We can skip these two points if their centroid does not change
in the current iteration. If any of the two meet the global filter condition, we
must move on to tighten the upper bound of two points and recheck the global
filter condition simultaneously. After that, from lines 15 to 17, we also do group
and local filtering for two points. From lines 18 to 21, we do vectorization for
distance computing as illustrated in the points initialization phase. Compared
to the native Yinyang K-Means algorithm, our algorithm process two points
in a single for loop; therefore, the number of iterations is halved. All of these
vectorizations are implemented by ARM Neon intrinsic instructions.

4.2 NUMA-Aware Optimization

The executing characteristic of the Yinyang K-Means Algorithm indicates that
points data can be processed independently by each core of NUMA nodes. In
contrast, centroid data must be shared between each node, so if we put all of the
point data in the memory of one single node. All of the memory access from the
other nodes’ cores are remote, bringing much more overhead, thus decreasing
the performance. The ideal circumstance is that all the point data needed by
the node are placed in its local memory in advance; therefore, all the memory
access from each node to point data are fast and efficient [9].

According to the analysis of NUMA-Aware optimization, we implement the
NUMA-Aware Yinyang K-Means algorithm in the following three steps:

(1) Threads Binding: in this step, we specify how threads are bound to pro-
cessors. Fortunately, OpenMP 4.0 or above provides two environment
variables called OMP_PLACES and OMP_PROC_BIND. These two environment
variables are often used in conjunction with each other. OMP_PLACES specifies
the places on the machine to which the threads are bound. OMP_PROC_BIND
specifies the binding policy (thread affinity policy), which prescribes how the
threads are assigned to places. In our implementation, we use the same num-
ber of OpenMP threads as cores of the processor and distribute OpenMP
threads to all of the cores one by one. Each thread is bound to one single
core (line 1 in Algorithm 2) so that the parallelism capability of the CPU is
fully utilized.

(2) Data Distribution: after the Threads Binding process, we already know
which threads are bound to the current node; thus, the points data needed
by the node is explicit. OpenMP provides a data distribution approach
among NUMA nodes: First Touch Policy. The First Touch Placement
Policy allocates the data page in the memory closest to the thread accessing
this page for the first time. So we need to parallelize access to all points data
(line 2 in Algorithm 2) before the start of the Yinyang K-Means algorithm.

(3) Workload Distribution: we divide all the point data processing work into
m parts and then distribute it to m OpenMP threads statically (line 8 in
Algorithm 2). For now, every thread is bound to a core, and the point data
needed by each thread are placed in the node’s local memory to which the
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core belongs. So that remote memory access to point data for each node will
not occur.

Algorithm 2: Our accelerated implementation of Yinyang K-Means algo-
rithms
input : points{x1, x2, x3,. . . ,xn}
output: centroids{c1, c2, c3,. . . ,ck}

1 Bind each thread to a different core
2 Parallelized accessing all of the points to distribute points data needed by each

node
3 Randomly choose K centroids
4 Group centroids into T groups
5 Initialize N points using SIMD instructions
6 while Not converged do
7 Update K centroids
8 #omp parallel for schedule(static)
9 for i = 1 : 2 : N do in parallel

10 Update upper bound and group lower bounds for xi and xi+1

11 if Global filter condition of xi and xi+1 then
12 Tighen the upper bound of xi and xi+1

13 Check the global filter condition for xi and xi+1 again
14 for l = 1 to T do // Iterate over all groups
15 if Group filter condition of Gl then

/* Iterate over all centroids in a group */
16 for m = 1 to K/T do
17 if Local filter condition of Cm then
18 Put the same dimension of xi,xi+1 in a vector
19 Broadcast one dimension of cm to a vector
20 Compute vector distance from xi,xi+1 to cm
21 Assign point xi and xi+1 to its closest cm

4.3 Memory Layout Optimization

We assume there are n points, and each point has d dimensions. The most
common memory data layout of these points can be presented in Fig. 3. Every
point and every dimension of each point is stored sequentially. However, this
memory layout has a significant drawback when doing vectorizations on points
data. To compute the Euclidean distance of the two adjacent points to one
centroid using the algorithm mentioned in Eq. 1, we need to access the exact
dimension of two points to construct a vector. However, the span between two
memory accesses is too large, which may cause plenty of cache misses, and the
performance will degrade dramatically.

To make the memory access continuous when accessing the same dimension
of two points, we can intuitively aggregate the same dimension of all points
together, as we describe in Fig. 4. However, aggregated memory data layout
brings the same problem as classic memory data layout when we access the
next dimension of n points, and is not suitable for distributing points data to
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Fig. 3. Classic memory data layout of
N points

Fig. 4. Aggregated memory data lay-
out of N points

each node when doing NUMA-Aware optimization. We still need to adjust the
memory data layout to improve the data locality.

We proposed a group aggregated memory data layout to solve the data local-
ity problem, as shown in Fig. 5. Considering the 128-bit vector processing unit,
we group the data of two points and use aggregated memory layout within the
group. In this case, the memory access is entirely continuous, whether accessing
the adjacent dimension of two points or the adjacent group of points. So the data
locality is improved, and it is also more suitable for distributing points data to
each NUMA node.

Fig. 5. Group aggregated memory data layout of N points

5 Experimental Result

5.1 Setup

To demonstrate the efficacy of our optimizing technique on the Yinyang K-
Means algorithm. We use four large, real-world datasets, two are taken from the
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UCI machine learning database [6] and the other two are from Kaggle [11]. The
metrics of four datasets are described in Table 1.

we use the following two main implementations of Yinyang K-Means:

➤ YYG: Yinyang K-Means algorithm with global filter only.
➤ YYGG: Yinyang K-Means algorithm with global and group filter.

Table 1. Properties of the real-world datasets used in the experiments

Dataset n(number of points) d(dimension) Ref

YearPrediction (YP) 515345 90 [6]
BotnetAttackDetection(BAD) 555932 115 [6]
WifiWithPCA (WWP) 258125 252 [11]
OGBNProducts (OP) 2449029 100 [11]

Besides, we also use three symbols to represent YYG(G) algorithm with different
optimization technique.

➤ YYG(G)-SV: Open source multi-threaded CPU implementation [21] of
scalar Yinyang K-Means algorithm.

➤ YYG(G)-VV: Multi-threaded Yinyang K-Means algorithm with vectoriza-
tion.

➤ YYG(G)-NUMA: Multi-threaded Yinyang K-Means algorithm with vec-
torization and NUMA-Aware optimization.

All host code is written in C/C++ and compiled using GCC with the -O3
optimization flag as we use Neon Intrinsic to implement vectorization. The con-
vergence condition of the Yinyang algorithm is that the centroid of each cluster
does not change or iteration number up to 1000. We performed experiments on
four datasets for k ∈ {64, 128, 256, 512}. Each time measurements are averaged
over three times trials. All data are stored as double-precision floating point
values. All experiments are carried out on two kinds of ARM-based processors:

➤ Phytium FT-2000+: 8 NUMA nodes in a single processor. The processor
has 64 cores and the working frequency of these cores is 2.2GHz. Each core
has one hardware thread.

➤ Marvell ThunderX: two processors constitute a NUMA system, each pro-
cessor incorporates 48 2.0GHz cores and each core has one hardware thread.

In order to prove the effect of vectorization, we perform several exper-
iments for YYG(G)-SV and YYG(G)-VV. Both YYG(G)-SV and YYG(G)-
VV are executed with the Linux command numactl -interleave = all to dis-
tribute all the data evenly to each node to obtain stable performance. Besides,
we further optimized the YYG(G)-VV algorithm target NUMA architecture
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and compared it with YYG(G)-VV to demonstrate the performance improve-
ments brought by NUMA-Aware optimization. Finally, we contrast YYG(G)-
NUMA with YYG(G)-SV to get all the optimization techniques’ overall speedup.
Besides, we also performed some experiments on a single dataset to demonstrate
our accelerated algorithm’s scalability.

5.2 Comparison

Table 2 present the speedup of the YYG(G) vectorised version over the scalar
version on Phytium FT-2000+. We only list the experimental results of vector-
ization on FT-2000+ for brevity, as the experimental results on the two plat-
forms are similar. We describe the experimental results of vectorization on two
platforms in words and list the key points as follows:

Table 2. The speedup of vectorized version of YYG(G) over scalar version on FT-
2000+

k Algorithm YP BAD WWP OP

64 YYG-VV vs YYG-SV 2.65 3.68 2.95 3.70
YYGG-VV vs YYGG-SV 0.60 1.04 1.04 1

128 YYG-VV vs YYG-SV 2.67 4.22 3.24 3.66
YYGG-VV vs YYGG-SV 0.57 1.21 1.20 0.89

256 YYG-VV vs YYG-SV 3.34 4.54 3.65 4.50
YYGG-VV vs YYGG-SV 0.60 1.31 1.25 1.14

512 YYG-VV vs YYG-SV 3.47 4.61 3.90 3.93
YYGG-VV vs YYGG-SV 0.63 1.33 1.35 1

1. On FT-2000+ and ThunderX, the Vectorized algorithm outperforms the
scalar algorithm in most cases, yielding speedup up to 4.6x on FT-2000+
and 1.9x on ThunderX. A interesting result is that vectorized YYG has a
more significant speedup than vectorized YYGG. We can explain it from two
aspects: algorithm YYG has only one filter, thus bringing fewer logical state-
ments; on the other hand, algorithm YYGG screens out more points data,
thus distance calculations decrease. So vectorization is more efficient for YYG.

2. We observed that vectorized algorithm performs worse than the scalar algo-
rithm on dataset YearPrediction. The main reason vectorization does not
work in some cases is that the dimension of YearPrediction is relatively low,
so the instruction pipeline emptying and loading accounted for too much
of the total time. Therefore, vectorization is more suitable for datasets with
greater dimensionality. From our experimental results, datasets whose dimen-
sions more than 100 can achieve good performance after vectorization.

3. Vectorization theoretical speedup is 2x as we use the 128-bit vector processing
unit. However, the experimental result shows that the speedup of vectoriza-
tion on FT-2000+ is up to 4.6x, which is beyond our expectations. After
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that, we performed experiments on a single node, and the speedup dropped
to 1.x. Therefore, this indicates that the scalar algorithm is more influenced
by NUMA architecture than the vectorized algorithm.

Table 3 shows the speedup of the YYG(G)-NUMA algorithm over the
YYG(G)-VV algorithm on FT-2000+. The results show that the YYG(G)-
NUMA algorithm consistently outperforms the YYG(G)-VV algorithm, the
speedup spanning 1.1–1.5x; this demonstrates that remote memory access is
effectively avoided through our NUMA-Aware optimization strategy. NUMA-
Aware optimization on ThunderX is not as effective as FT-2000+ as ThunderX
only has 2 NUMA nodes, so it benefits less from the optimization.

Table 3. The speedup of NUMA-Aware vectorized version of YYG(G) over vectorized
version on FT-2000+

k Algorithm YP BAD WWP OP

64 YYG-NUMA vs YYG-VV 1.51 1.42 1.44 1.29
YYGG-NUMA vs YYGG-VV 1.38 1.44 1.47 1.24

128 YYG-NUMA vs YYG-VV 1.51 1.28 1.38 1.20
YYGG-NUMA vs YYGG-VV 1.34 1.30 1.36 1.24

256 YYG-NUMA vs YYG-VV 1.32 1.20 1.29 1.11
YYGG-NUMA vs YYGG-VV 1.34 1.20 1.29 1.14

512 YYG-NUMA vs YYG-VV 1.27 1.21 1.22 1.13
YYGG-NUMA vs YYGG-VV 1.12 1.19 1.22 1.12

Combining NUMA-Aware optimization and vectorization, the YYG(G)-
NUMA algorithm is much faster than the YYG(G)-SV algorithm. Tables 4 and
5 list the speedup on FT-2000+ and ThunderX. From these two tables, either
FT-2000+ or ThunderX, we achieved practical performance improvements for
the Yinyang K-Means algorithm on four high-dimension datasets in most cases.

Table 4. The overall speedup of NUMA-Aware vectorized version of YYG(G) over
scalar version on FT-2000+

k Algorithm YP BAD WWP OP

64 YYG-NUMA vs YYG-SV 3.99 5.23 4.24 4.78
YYGG-NUMA vs YYGG-SV 0.82 1.50 1.53 1.24

128 YYG-NUMA vs YYG-SV 4.02 5.38 4.49 4.41
YYGG-NUMA vs YYGG-SV 0.76 1.56 1.63 1.11

256 YYG-NUMA vs YYG-SV 4.42 5.43 4.72 5.00
YYGG-NUMA vs YYGG-SV 0.81 1.58 1.62 1.17

512 YYG-NUMA vs YYG-SV 4.38 5.59 4.75 4.46
YYGG-NUMA vs YYGG-SV 0.71 1.58 1.64 1.11
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Table 5. The overall speedup of NUMA-Aware vectorized version of YYG(G) over
scalar version on ThunderX

k Algorithm YP BAD WWP OP

64 YYG-NUMA vs YYG-SV 1.20 1.88 1.50 1.33
YYGG-NUMA vs YYGG-SV 1.00 1.79 1.45 1.24

128 YYG-NUMA vs YYG-SV 1.08 1.94 1.52 1.20
YYGG-NUMA vs YYGG-SV 1.00 1.86 1.50 1.14

256 YYG-NUMA vs YYG-SV 1.19 1.97 1.55 1.36
YYGG-NUMA vs YYGG-SV 0.96 1.88 1.50 1.20

512 YYG-NUMA vs YYG-SV 1.17 2.00 1.54 1.18
YYGG-NUMA vs YYGG-SV 0.95 1.87 1.51 1.14

In addition, we also designed a set of experiments using the dataset Wifi-
WithPCA on FT-2000+ to study the strong scaling of our accelerated Yinyang
K-Means algorithm. We ran our accelerated Yinyang K-Means algorithm and
native Yinyang K-Means algorithm on a single NUMA node and 8 NUMA
nodes, respectively. The experimental results are described in Fig. 6 and Fig. 7.
Figure 6 shows that both vectorization and NUMA-Aware optimization improve
the parallel efficiency of YYG. The parallel efficiency of YYG-VV has increased
from 30%+ to 60%+ after being vectorized and further increased to 85%+
after NUMA-Aware optimization. The parallel efficiency of YYGG-VV has
reached 90%+. Vectorization reduces its efficiency, but NUMA-Aware optimiza-
tion increases parallel efficiency to the same level it started. So we can briefly
conclude that our optimization techniques can effectively increase the parallel
efficiency for YYG and maintain the same parallel efficiency level as the original
Yinyang K-Means for YYGG.

Fig. 6. Efficiency of YYG on dataset
WifiWithPCA

Fig. 7. Efficiency of YYGG on dataset
WifiWithPCA
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6 Conclusion and Future Work

This paper optimized the Yinyang K-Means algorithm on ARMv8 many-core
CPU using several optimization techniques, including vectorization and NUMA-
Aware optimization. We also proposed a new memory data layout to gain better
data locality to be more suitable for vectorization. Experiments on FT-2000+
and ThunderX have shown that both vectorization and NUMA-Aware optimiza-
tion can significantly boost performance in most cases. Besides, the scalabil-
ity of our algorithm is at the same level as the native Yinyang K-Means algo-
rithm. Therefore, we can conclude that we achieved comprehensive performance
improvement for Yinyang K-Means on ARMv8 many-core CPUs.

In the future, we will utilize multiple ARMv8 nodes to further accelerate
Yinyang K-Means algorithms.
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Abstract. A patent is an inventor’s way of protecting its intellectual
property. In recent years, the trend of patent filings has become more
prevalent than ever as commercial competition among firms has inten-
sified. While patents have promoted our society forward, only a few
patents have made significant contributions, and they are often referred
to as high-value patents. However, there is no clear definition of high-
value patents, so traditional mining methods often rely on expert reviews
in related fields, which is usually labor-intensive and time-consuming.
Although existing literatures have resorted to human-designed statisti-
cal features to identify high-value patents, they ignore potentially valu-
able text and images in patents. In this work, we propose a two-phase
framework to effectively extract heterogeneous features from the multi-
modal text and image to mine high-value patents among the massive
patents. In feature extraction phase, features are divided into three cat-
egories: statistical features, visual features, and textual features. Among
them, statistical features are obtained according to a pretrained graph,
textual features are extracted by a BERT-like language model, and a
DenseNet-based network is used to extract visual features. In the multi-
view learning phase, we use heterogeneous features to train views, then
concatenate their features to the final several layers to evaluate the value
of a patent. The evaluation result shows that our method outperforms
the baseline methods.

Keywords: Massive patent mining · Multi-view learning ·
Heterogeneous feature fusion

1 Introduction

Patents, dating back to the Middle Ages, are an important tool for protecting
inventors’ ideas. Nowadays, more and more organizations anticipate in competi-
tion for patent applications to protect individual intellectual property. Accord-
ing to World Intellectual Property Indicators 20201, the Chinese government
1 https://www.wipo.int/publications/en/details.jsp?id=4526.
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has adopted various measures to promote inventions, and the number of patent
applications has grown rapidly over the past decade, reaching 1.4 million in 2019.

Have you ever thought every patent has great practical value? The truth is
no. While all patents contribute to the development of our society, that doesn’t
mean they are all so important that they change our daily lives in a particular
field. Therefore, when we want to understand the development of a field, it is
necessary for us to figure out the patents that have a significant impact on our
life from the vast number of patents, which are often called high-value patents.

How to evaluate whether a patent has high value? So far, there is no clear
standard for the specific judgment method. Traditionally, this work is usually
assigned to experts who have conducted extensive experiments in the field [8].
The biggest disadvantage of this method is that it is too subjective and cannot
rely on a certain standard, because experts have their own standards. A method
of collecting results from numerous experts has been proposed, and while the
results may be more accurate, but requires more money and takes longer time.

Therefore, how to figure out high-value patents from large number of patents
in a low cost? In tradition, it only depends on cited number, which means the
high-cited patent is more important and high-value [2]. At present, more statis-
tical indexes have been considered into criterion such as the number of inven-
tors. Though the major standard is constructed, details are still decided by
experts [13]. Therefore, Many companies have launched products about high-
value patents mining. However, they haven’t published how their system eval-
uates patents. Lots of researchers also devote themselves to mining patents in
a specific field, but few researchers focus their attention on high-value patent
mining. The common method in high-value patent mining only uses statistical
features, which ignores the textual information and visual information of patents
[2,4,13].

In order to better utilize patent meta-information and reduce time consump-
tion, we build a model to fuse heterogeneous features, which includes statistics,
text descriptions and design drawings. However, in order to establish a high-value
patent mining model, the following issues have to be solved:

1. A Large Amount of statistical Features. Patents have many statistical fea-
tures to describe content. However, not all statistical features are effective
in determining whether a patent is of high value. Therefore, in order to save
computational resources and computation time, it is necessary to estimate
whether features are helpful for evaluation, and select the effective ones as
statistical features.

2. Multi-source Description about Patents. Patents have a wide variety of text,
such as title abstracts, claims, etc., that vary in length and subject. Therefore,
it is important to select the appropriate patent text content for patent mining.

3. Multi-angle Visualization about Patents. When inventing a patent, inven-
tors show the appearance of patents from multiple angles. Due to differences
among ideas, some patents have numerous pictures, and some have a small
number. Therefore, how to choose a picture to represent a patent is a confus-
ing question.
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4. Fuse Heterogeneous Features. Heterogeneous features present patents in com-
prehensive aspects. Therefore, we need to consider how to fuse them.

In order to solve above-mentioned problems, we proposed a two-phase frame-
work incorporating a wide range of heterogeneous data for high-value patent
mining. In the first phase, we extract heterogeneous features from patents mate-
rials. According to authoritative patent databases, we have established a patent-
related graph, in which nodes include inventors, applicants, patents, and agents,
and edges are composed of patent agents, patent applications, patented inven-
tions, united applications, united inventions, and simple groups. Next, for each
patent, we extract its internal attributes and edge features, such as the number
of citations, the number of applicants, etc. Next, for the textual information
of each patent, we select its abstract and use a Bert-like language model to
extract its textual features. Finally, for each patent’s image information, we use
a DenseNet-based model to extract its image features. In the second stage, we
adopt a multi-view learning approach, each view has its own features, and clas-
sify high-value patents by concatenating features in different views.

In summary, the main contributions of this paper include:

1. To reduce the cost of manpower and material source and improve accuracy,
we propose a framework on fusing visual data, semantic data and structured
data to figure out high-value patents in massive patent data.

2. We propose a collaborative classification based on heterogeneous features.
First, we use various methods to select the valuable information relevant
to high-value patents. then we use Bert to extract the deep semantics from
patents’ abstracts. Finally, we use multi-view learning to concatenate hetero-
geneous features to mine high-value patents in massive dataset.

3. We evaluate our framework using real-world patents. The result shows that
the proposed framework can not only accurately figure out high-value patents,
but also evaluate whether a patent is high-value. We have deployed our system
on a company devoted to knowledge property, it performs well in reality.

The rest of this paper is illustrated as follows. We firstly review the related
work in Sect. 2. Then we present an overview of the proposed framework in
Sect. 3. In next two sections, we detail two phases of the framework: Feature
Extraction in Sect. 4, Multi-view Learning in Sect. 5. Evaluation is reported in
Sect. 6 to show effectiveness of the proposed framework. Finally, we conclude the
paper and chart the future directions in Sect. 7.

2 Related Work

In this section, we review the related work in three parts. The first part is
about high-value patent mining, the second part concentrates on heterogeneous
features in various fields, and the third part states multi-view Learning.
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2.1 Patent Mining

Patents bring benefits for organizations. It’s an interesting question for
researchers to mine the patents they need. Researchers made surveys about
patent mining. Zhang et al. [26] introduced patent mining could be divided into
many subtasks such as patent retrieval, patent visualization, patent valuation.

Patent Retrieval, searching highly correlative patent documents, is a brunch
of Information Retrieval. Although the rapid development of techniques, various
challenges still exist, which leads to low recall and accuracy. Walid et al. [20]
proposed an interactive relevance feedback mechanism to query reformulation
and term weighting. Zhang et al. [27] proposed a new integrated framework,
which transforms patent application into an effective search query automatically.

Patent Visualization is an essential part when facing a bulk of patents. In ori-
gin, analysts use structured data such as citation to build a patent graph. Huang
et al. [12] create a patent citation graph to analyze distinction and similarity on
groups of companies. but it ignores text in analysis. Kim et al. [14] proposed a
visualized method to combine structured and unstructured data, which clusters
patent documents and form a semantic network of keywords.

Patent Valuation is an imperative section in practice. In recent years, Hsu
et al. [10] test various natural language processing (NLP) methods to evaluate
methods’ predictive power. Liu et al. [19] proposed a Bayesian network-based
model to predict the paths toward the realization of patent valuation.

2.2 Heterogeneous Feature Fusion

Information has various ways to be presented, such as image, voice. If evaluating
objects in only one aspect, it would ignore useful heterogeneous features. There-
fore, researchers propose methods to fuse heterogeneous features. In structured
features, Yang et al. [25] proposed an incremental feature selection method to
handle heterogeneous data with symbolic and real-valued features. In unstruc-
tured features. Cao et al. [5] proposed a machinery called Heterogeneous Feature
Machine (HFM) to solve visual recognition tasks.

2.3 Multi-view Learning

Multi-view learning algorithms aim to fuse heterogeneous information, it has two
types: consensus principle and complementary principle [15]. In complementary
principle, Zheng et al. [1] proposed a new multi-view subspace clustering app-
roach called Feature Concatenation Multi-view Subspace Clustering (FCMSC).
Liu et al. [18] proposed Feature Concatenation for adversarial Domain Adapta-
tion (FCDA) method to improve the discriminability. In complementary princi-
ple, Song et al. [21] presented a distance-to-model and adaptive clustering-based
multi-view ensemble (DM-ACME) learning method for predicting default risk in
P2P lending. Carissimi et al. [6] applied a approach to combine face-based deep
features to avoid the weakness of feature concatenation.
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Fig. 1. Overview of high-value patent mining framework.

3 Framework

In this section, we provide preliminary knowledge of high-value patent mining
and multi-view, then we illustrate framework of our method.

3.1 Preliminaries of High-value Patent Mining

Patents have kinds of metadata such as abstract and figures, and they presents
as number, text, image and so on. The experts commonly divide them into two
categories: structured data and unstructured data.

Structured data, such as patent ID, has a fixable form, which can be parsed
into statistical features. Some can be directly considered as features, which are
usually represented in statistical form. the others have to be parsed and restruc-
tured in an appropriate way. In order to realize patent mining, structured data
is used as attributes to build a patent graph.

Unstructured data, including abstracts, figures, etc., have non-fixable forms.
Some data are presented in multimedia form, and features can be extracted using
computer vision models. The remaining unstructured data is text, we can try to
extract textual features using a natural language processing model.

3.2 Preliminaries of Multi-view Learning

Multi-view learning is a method of combining heterogeneous features to output
the most likely prediction. Multi-view learning has two types: consensus principle
and complementary principle. Consensus principle requires many classifiers train
their own views and vote for predictions. Complementary principle trains only
one model by feature fusion.

3.3 Overview of Framework

In this subsection, we present the overview of framework. Shown in Fig. 1, the
framework consists of two phases: Feature Extraction and Multi-view Learning.
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Fig. 2. Knowledge Graph of Patents. We build a patent graph to extract hidden struc-
tured features conveniently. It includes five-class nodes and six-class relationship. Five-
class nodes are Agency, Applicant, Examiner, Inventor, and Patent. Six-class relation-
ships includes Citation (between patents), United Inventor (between inventors), United
Applicant (between applicants), Invention(between inventors and patents), Application
(between applicants and patents), Examination (between examiner and patents).

Feature Extraction. Before fusing heterogeneous features, features need to
be extracted from multi-source data. Therefore, we first divide data into two
categories: structured data and unstructured data. Unstructured data can be
divided into textual data and visual data. In order to process structured data,
we build a knowledge graph based on massive patents, and then we extract
structured features from the graph. Next, when it comes to text data, we use
the pretrained BERT to extract text features. Finally, in the processing of visual
data, we utilize DenseNet to extract visual features.

Multi-view Learning. In order to fuse heterogeneous features, we build a
multi-view model to mine high-value patents. In this step, we provide each view
with their own features and concatenate features in final several layers to evaluate
high-value patents, so as to realize mining of high-value patents (Fig. 2).

4 Feature Extraction

In this section, our goal is to extract heterogeneous features from metadata
of patents. However, there remains several challenges in practice: (1) Some
structured data is a containment relationship, and some latent data requires
researchers to mine from hidden relationships among patents. (2) Descriptions
about patents are so rich that we have to select part of them as textual data for
extracting semantic features. (3) The images of a patent shows different appear-
ance details, but the number of images has a huge difference, so we have to
consider how to select images to extract the visual features for massive patents.

To address above challenges, We first build a patent graph to figure out hid-
den relationships to determine structured features. Then we use the pretrained
BERT to extract semantic features from textual data. Finally, in terms of visual
data, we use DenseNet to extract visual features.
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4.1 Structured Features Extraction Based on Patent Knowledge
Graph

Structured features consist of part of metadata in a patent and the relationships
hidden among patents. In order to mine hidden relationships among patents and
figure out all structured features quickly, we build up a graph for patents.

Before we build up a patent graph, we filter out useless metadata in patents
to keep the efficiency of the graph. Useless metadata consists of three-kind items:
1) blank information 2) duplicate information 3) irrelevant information. To elim-
inate blank information, we observe metadata of massive patents and find that
the presentation of blank items is obvious: these items in almost patents are
blank such as litigation date, expired date. Therefore, we filter out blank items
manually. Filtering out duplicate information is a challenging task, since some
items have an inclusive relationship, such as 5-year citation and 3-year citation.
We consult experts and select most effective ones as the representative. Finally,
in order to filter out irrelevant items, we use the chi-square test in the hypothesis
test. We set P-Value to 0.05, and filter out irrelevant ones such as public year,
application year, to ensure the relevance of features.

In a patent graph, there exists many roles such as inventor, applicant. There-
fore, we perform roles splitting on the filtered metadata to obtain five entities:
patent, applicant, inventor, examiner, and agency, and each entity has its own
attributes, which are nodes in the graph. What’s more, we discover six rela-
tionships among nodes, including Citation, United Inventor, United Applicant,
Invention, Application, Examination, which are edges in our knowledge graph.

After building the graph, we consider to extract statistical features. For each
patent, besides structured metadata, we extract other features from relationships
and roles. Some features could be extracted from the number of edges such as
citations, the number of inventors. The others could be extracted from relevant
roles, such as the number of patents held by the applicant, the number of patents
held by the inventors, and the number of patents held by the agencies. Finally,
as shown in Table 1, we extract a 20-dimensional structured features (Fig. 3).

Table 1. Structured Data of Nodes. Each type of node has its own unique meta
information, and some structured data have to be obtained by establishing edges.

Node Structured Data

Agency Patents, Agency Level

Applicant Patents, Citations

Examiner Patents

Inventor Patents, Citations

Patent Length of Abstract, Length of Title
Family Members in PatSnap, Citations in PatSnap,
Applicants, Inventors, References, Number of Figures,
Citation by Others, Citation from Others, Simple Family Members
Family Members in INPADOC, Simple Family Members in INPADOC



698 R. Luo et al.

Fig. 3. Semantic Feature Extraction Framework. We concatenate the title and abstract
of each patent and feed them into a BERT model to extract semantic features.

4.2 Semantic Features Extraction Based on BERT

Text is a way to convey individual minds. In order to introduce patents com-
prehensively, inventors tend to write lots of textual materials. Therefore, various
texts exist in a patent. However, it is impossible to read all text carefully to
evaluate a patent. Therefore, we leverage expert knowledge to select the text
that contains rich semantics. Our scope of consideration is narrowed to three
parts: title and abstract, independent claims, and claims. Independent claims
and claims are relative items. When observing metadata, we discover that quite
a few patents lack relevant descriptions in claims and independent claims, so we
leverage title and abstract as textual data to extract semantic features.

In recent years, Natural Language Processing (NLP) has made a rapid devel-
opment so that its application can be discovered everywhere. Among excellent
models, BERT [7], proposed by Google, is a pre-training technique for Natural
Language Processing and performs well on various text tasks. Therefore, we use
BERT to extract semantic features from text of massive patents.

In this work, when text is sent to BERT, it is encoded as an input vector of
fixed length 512, and if the length is longer than 512, we would truncate the head
and tail parts to keep the effectiveness of semantic features [24]. In a input vector,
it consists of three embedding features: 1) WordPiece [23], 2) Position embedding,
3) Segment embedding. It contains a token called CLS, indicating that the feature
is used to implement classification. More importantly, its framework consists of a
multi-layer transformer proposed in [22], which implements a series of encoding
and decoding to transform the input text into possible predictions.

Due to the difficulty and resource consumption of training BERT, we use
the pre-trained BERT to extract semantic features. Finally, we extract a 768-
dimensional semantic features for each patent (Fig. 4).

4.3 Visual Features Extraction Based on DenseNet

Drawing is an essential part of patents, illustrating structure, so inventors draw
relevant figures when submitting application materials to official departments.
Due to differences between patents, the number of drawings among patents is in
a wide range, which means we need to select a fixed number of figures.
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Fig. 4. Visual Features Extraction. We select schematic figures to represent patents
and send them into DenseNet. DenseNet outputs visual features.

Each patent consists of a schematic figure and many detailed figures, and the
number of detailed figures is in a wide range. If we select the number greater than
one for each patent, we have to consider how to fuse them efficiently. However, no
matter which way we use, it undoubtedly requires us to manually select detailed
figures, which is a time-consuming and impractical work in reality. Therefore,
we only select the schematic figure of each patent to extract visual features.

When it comes to computer vision, nobody can avoid mentioning Convolu-
tional Neural Networks (CNN) [16,17]. In the network, the most crucial struc-
ture is convolutional kernels, which imitate animals’ visual system, extracting
features from each picture. With time goes by, the accuracy of object recognition
models has been better than that of humans in some situations. DenseNet [11]
is an outstanding representative in the field of object recognition.

In DenseNet, the crucial part is a feedforward structure called dense block,
it views the outputs of all previous layers as the input of the current layer,
which not only preserves the feature information, but also reduces the number
of parameters. Furthermore, it also adds the residual block [9] to improve perfor-
mance. We use the pretrained DenseNet121 to extract a 1024-dimensional visual
features for each patent.

5 Multi-view Learning

In this section, our goal is to utilize heterogeneous features to evaluate value
of a patent. In most studies, features of patents tend to be isomorphic because
patents are described in the same view [2,4,8], though patents are composed of
various meta-information. In our framework, we implement an algorithm called
multi-view learning to fuse heterogeneous features. In multi-view learning, each
view has its own contribution to final predictions, and each view can contribute
under two principles: consensus principle and complementarity principle.

In the consensus principle, each view trains its own classifier to reach a con-
sensus to output the final label. Co-training [3], a classic representative of the
consensus principle, is a multi-learner semi-supervised learning algorithm. In co-
training, two views train their own classifiers and make fake labels on unlabeled
data. Then each classifier selects samples with high confidence and sends them
to the other classifier to train. Although co-training is an efficient algorithm,
creating views in practical applications is a challenging task.
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Fig. 5. Framework of Multi-view Learning. Heterogeneous features are from meta-
information, we regard each of them as independent views. We train each view sepa-
rately and concatenate them in final several fully connected layers to predict.

In the complementarity principle, each view extracts its own features and
concatenate before being input to last layers. Therefore, it is inevitable to con-
sider which type of layers could be chosen as last few layers. A obvious way is to
use several fully connected layers directly. Like multi-layer perception, fully con-
nected layers is concise and easy to understand. Traditionally, fully connected
layers are frequently used to aggregate features and make predictions.

In our framework, we adopt complementarity principle to realize high-value
patent mining. Specifically, we build a multi-view learning neural network to
fuse heterogeneous features. For each view, we use two fully connected layers to
produce the predicted vector in same size. Then, we concatenate the predicted
vectors, and use a fully connected layer to predict value of patents. In addition,
we add a dropout layer after each fully connected layer, which uses to avoid
over-fitting. Meanwhile, we use ReLU as the activation function in each fully
connected layer, and exploit Adam optimizer to train our model (Fig. 5).

6 Evaluation

In this section, we evaluate our framework on a real-world dataset. We introduce
experiment settings including dataset description, metrics, and baselines, then
present the mining result. Finally, we would conduct a series of case studies to
demonstrate the effectiveness and deficiency of our method.

6.1 Dataset Description

In our dataset, it includes about 20,000 patents, each of which contains as
detailed information as possible. We guarantee that each patent contains the
meta-information required in our experiment. The dataset contains 1,988 high-
value patents, and each patent is labeled by experts in the field of intellectual
property.

Considering that the number of low-value patents is relatively large and
low-value patents should be better classified, we also invite experts to classify
low-value patents. Therefore, based on our dataset, three datasets, including
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three-class dataset, four-class dataset, and five-class dataset, are builded. In each
dataset, each class contains 1,500 training samples and 500 testing samples.

6.2 Metrics on High-Value Patent Mining

In this work, we do not directly define the task of high-value patent mining as a
binary classification task, we divide patents into multi-classes, so as to further
realize patent classification in massive patent data. We compare predicted labels
with the real-world data to evaluate our framework.

Detection Accuracy: A patent is predicted as a high-value patent and its
label is high-value, we call it a true positive(TP). And if its label and predicted
label are not high-value, we call it a true negative(TN). If its predicted label is a
low-value but ground-truth is high-value, we call it a false negative(FP). If it is
predicted as a high-value but ground-truth label is low-value, we call it a false
negative(FN). Based on definition, precision and recall are calculated as follows:

Precision(P ) =
TP

TP + FP
(1)

Recall(R) =
TP

TP + FN
(2)

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

In order to observe comprehensive effectiveness of our model, F1-score
is a great criteria to present. In addition, we would first implement multi-
classifications, and then classify the class except the high-value patents into
one class, to realize the mining of high-value patents.

6.3 Baselines

In order to present the effectiveness of our method, we compare our method with
some representative baseline methods in high-value patent mining.

XGBoost. This method is essentially a tree model that uses gradient descent to
update itself in time, and it supports distributed computing for faster training.

Random Forest (RF). This method consists of decision trees, each of which
is different. Each tree uses different samples to train and vote for results.

Naive Bayes (NB). This method calculates the probability among different
categories of samples, which assume that all feature conditions are independent.

K-Nearest Neighbors (KNN). In this method, if most k-nearest samples in
feature space belong to a certain class, the sample also belongs to this category.
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Linear Discriminant Analysis (LDA). This method projects high-
dimensional pattern samples into optimal discriminant vector space to achieve
the effect of extracting classification information and compressing dimension of
feature space.

Mine-SV. This method concatenates structured features and visual features to
build a patent mining model.

Mine-ST. This method concatenates structured features and textual features
to build a patent mining model.

Mine-VT. This method concatenates visual features and textual features to
build a patent mining model.

Mine-S. This method only uses structured features to build a mining model.

Mine-T. This method only uses textual features to build a mining model.

Mine-V. This method only uses visual features to build a mining model.

6.4 Results

In this subsection, we show a series of test results. Specifically, we first evaluate
the performance of our framework on three datasets. Then we analyze high-value
patents mining results. Finally, we show runtime performance of our model.

Multi-class Patent Classification Results. We present multi-class patent
classification results in Table 2. It shows that the proposed method achieves
the best performance in most situations. The Mine-V performs worst, since it
merely consider visual features. Mine-V performs good in a way, which shows
how traditional machine learning-based patent classification method performs.
With regard to heterogeneous features, Mine-VT performs worse than Mine-ST
and Mine-SV, since textual features and visual features could not fit well. Based
on structure data, Mine-ST and Mine-SV perform well, which illustrates that
heterogeneous features could describe a patent better. In traditional machine
learning algorithms, XGBoost performs best since it enumerates several candi-
dates that may become segmentation points according to the percentile method,
and then calculates the best segmentation point from the candidates. Random
Forest and Naive Bayes perform worst since they could not fit heterogeneous fea-
tures and find which feature is crucial. In general, our method realize multi-class
classification and achieves relatively high results.
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Table 2. Patent evaluation results in three datasets

DatasetMethods Three-class Dataset Four-class Dataset Five-class Dataset

P(%) R(%) F1-Score P(%) R(%) F1-Score P(%) R(%) F1-Score

XGBoost 91.23 89.00 0.901 86.91 88.40 0.876 86.32 83.80 0.850

RF 79.50 79.33 0.794 68.94 69.20 0.691 57.33 57.70 0.575

NB 65.96 64.73 0.654 54.86 54.90 0.549 45.35 46.00 0.457

KNN 84.49 85.53 0,856 80.13 79.90 0.800 79.33 79.10 0.792

LDA 86.35 86.33 0.863 72.64 72.10 0.724 69.18 69.20 0.692

Mine-SV 87.25 85.33 0.863 85.12 84.80 0.850 82.79 81.20 0.820

Mine-ST 86.92 88.16 0.875 84.90 84.33 0.846 83.01 82.66 0.828

Mine-VT 69.84 67.60 0.687 57.26 57.00 0.571 53.13 52.30 0.527

Mine-S 87.75 87.67 0.877 82.17 64.10 0.720 69.34 57.40 0.628

Mine-T 66.06 65.47 0.758 57.43 55.50 0.565 48.51 43.70 0.460

Mine-V 39.71 47.87 0.434 38.82 38.70 0.388 33.75 32.80 0.333

Ours 90.57 89.80 0.902 87.09 87.20 0.871 85.74 84.40 0.851

High-Value Patent Mining Result. We regard the highest value class of
patents as high-value patents in the multi-classification task, and the remaining
classes of patents as low-value patents, and the task becomes binary classifica-
tion. At this point, we get high-value patent mining results in Table 3.

It shows that high-value patents are well mined on each dataset, which illus-
trates the effectiveness of our model. Among metrics, we pay more attention to
recall, which indicates how well our model can mine all potentially high-value
patents. We find that our model has a good recall on each dataset, which demon-
strates our model is able to mine potentially high-value patents well.

Runtime Performance on High-Value Patent Mining. We implement
our methods using Tensorflow. We deploy our framework on a server with an
NVIDIA GeForce GTX 2080 graphic card and 11 GB RAM, and it takes an
average of 20 s to estimate the value of a patent.

To speed up the processing of our method, we use parallel computing to
deploy our model on a server with 4 NVIDIA GeForce GTX 2080 graphic cards
with 64 GB RAM. Heterogeneous metadata in a patent is processed by their
own GPUs at the same time, it shows that average time to evaluate a model is
11 s, which improved the efficiency of our model in a way.

6.5 Case Study

In this subsection, we would conduct case studies to evaluate the value of patents.
We would compare high-value patents and low-value patents published in the
same year, analyzing hidden factors of the case.
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Structured Data Comparison. We compare structured data of two patents,
we find that a high number of citations can represent high-value, which is the
most intuitive evaluation method. The Higher number of cited other patents
indicates richer knowledge in high-value patents. The greater number of figures
shows higher importance attached to high-value patents. What’s more, the longer
length of abstract, the more detailed the description of high-value patents.

Textual Data Comparison. We compared titles and abstracts of two patents,
and found that the description of the high-value patent is comprehensive and
detailed, which appears a series of technical terms. Compared with high-value
patents, the low-value one has short description and only uses common words
to describe the patent.

Table 3. High-Value patent mining results

Dataset Precision(%) Recall(%) F1-Score

Three-class 93.40 94.00 0.937

Four-class 86.00 93.00 0.894

Five-class 83.60 92.50 0.878

Fig. 6. Comparison between a High-value patent and a Low-value patent.

Visual Data Comparison. Comparing the schematic figure of two patents,
we find that figures of the high-value patent have more details, and its design
is more complicated, which is a time-consuming work. Compared to high-value
patents, the low-value one has simple lines depicting the appearance, and its
complexity is hard to discover from the image (Fig. 6).

7 Conclusion and Future Work

In this paper, we propose a two-phase framework to utilize metadata in patents to
evaluate patents and mine high-value ones. First, we select items in patents, and
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divide them into three kinds: structured data, textual data and visual data. In
order to extract features, we build a patent graph to extract structured features,
use pretrained BERT to extract semantic features, and use pretrained DenseNet
to extract visual features. Second, we build a multi-view learning model fusing
heterogeneous features to evaluate patents and figure out high-value ones. We
evaluate our framework on massive real-world patents. The result shows our
framework outperforms than others and efficiently figure out high-value ones.

In the future, we plan to deepen and broaden this work in three direc-
tions. First, we consider to add more possibly relative items as features into
our method. Second, we plan to improve some details in our method, such as
redesigning feature fusion method in our method. Finally, we plan to implement
our method in more fields to validate its effectiveness and efficiency.

References

1. Zheng, Q., Zhu, J., Li, Z., Pang, S., Wang, J., Li, Y.: Feature concatenation multi-
view subspace clustering. Neurocomputing 379, 89–102 (2020)

2. Abrams, D., Akcigit, U., Grennan, J.: Patent value and citations: Creative destruc-
tion or strategic disruption? Social Science Electronic Publishing (2013)

3. Blum: Combining labeled and unlabeled data with co-training. In: Proceedings of
the Annual ACM Conference on Computational Learning Theory (2000)

4. Briinger-Weilandt, S., Geils, D.: Quality-key factor for high value in professional
patent, technical and scientific information. World Patent Information (2011)

5. Cao, L., Luo, J., Liang, F., Huang, T.: Heterogeneous feature machines for visual
recognition, pp. 1095–1102, November 2009

6. Carissimi, N.: A multi-view learning approach to deception detection. In: 2018 13th
IEEE International Conference on Automatic Face Gesture Recognition (2018)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding (2018)

8. Hall, B.H., Jaffe, A., Trajtenberg, M.: Market value and patent citations. Rand J.
Econ. 36(1), 16–38 (2005)

9. He, K., Zhang, X.: Deep residual learning for image recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

10. Hsu, P.H., Lee, D., Tambe, P., Hsu, D.H.: Deep learning, text, and patent valuation.
Social Science Electronic Publishing

11. Huang, G., Liu, Z.: Densely connected convolutional networks (2017)
12. Huang, M.H.: Constructing a patent citation map using bibliographic coupling: a

study of taiwan’s high-tech companies. Scientometrics (2003)
13. Jiayun, H.: Establishment and verification of patent value evaluation system appli-

cable to the examination stage of medical and biological fields (2019)
14. Kim, Y.G., Suh, J.H., Park, S.C.: Visualization of patent analysis for emerging

technology. Expert Syst. Appl. 34(3), 1804–1812 (2008)
15. Kincaid, J., Fishburn, R., Chissom, B.: Derivation of new readability formulas for

navy enlisted personnel, January 1975
16. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-

lutional neural networks, pp. 1097–1105, January 2012
17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2324 (1998)



706 R. Luo et al.
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Abstract. Non-uniform sampling two-dimensional convolution (NUSC
for short) is a practical method in the field of 2D space image process-
ing. NUSC maps sampling data of non-uniform distribution to a regu-
lar output grid through convolution. The growth rate of such data vol-
ume continues to increase, and the computational performance of NUSC
is one of the key issues to be solved. Heterogeneous computing plat-
forms provide advanced computing capabilities for accelerating NUSC
performance. But heterogeneous programming and performance tuning
are complex. A simple and efficient dedicated programming model and
corresponding runtime framework can effectively solve such a problem.

This paper proposes a parallel programming model and framework
for the development of NUSC applications in heterogeneous computing
environments, named EasyNUSC. When developing NUSC applications,
EasyNUSC can automatically parallelize NUSC applications and per-
form tedious work. Developers no longer need to pay attention to the
details of algorithm parallelization and task scheduling. In terms of per-
formance optimization, this paper proposes a series of strategies in vec-
torization, memory access, and data reuse. The experimental data shows
that EasyNUSC achieves up to 339 times the performance of a serial
program within a single node, while providing excellent scalability.

Keywords: Heterogeneous computing · NUSC · Programming
model · Runtime framework

1 Introduction

Non-uniform sampling two-dimensional convolution (NUSC) is a practical tech-
nique for processing real-world 2D space image data in astronomy, remote sens-
ing, medicine, and other fields [2,5,17]. Due to the non-uniform distribution of
sampling data in space, it is hard to process these data by conventional con-
volution, which makes NUSC a key technique for processing such data. NUSC
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resamples and reprojects the collected sampling data, and maps the irregular
data to a regular grid with uniform intervals through convolution [11].

As the growth rate of the NUSC data volume keeps rising, traditional hard-
ware architectures that only rely on multi-core CPUs have struggled to process
data in an acceptable time [3]. Instead, heterogeneous computing platforms are
used to accelerate NUSC applications. However, heterogeneous programming is
complex and error-prone [12]. Programmers have to consider computing devices
with different hardware architectures and storage levels [9,16]. Meanwhile, NUSC
is a class of computing-intensive and memory-intensive application. These fac-
tors make programmers face great challenges when programming. Specifically,
developing NUSC applications in a heterogeneous computing environment has
the following key issues:

– Task mapping. There are a large number of processor cores in heterogeneous
computing platforms and numerous tasks in NUSC applications. Reasonably
mapping tasks to all computing resources is the first consideration.

– Memory access. NUSC applications read large amounts of data from mem-
ory frequently. The reading process is irregular and discontinuous. Proper
handling of memory access is critical to performance improvement.

– Data reuse. In NUSC applications, repeated data access doubles the data
volume that the program actually has to access. Increasing the data reuse
rate can reduce the number of memory accesses and data transmissions.

– Scalability and vectorization. To solve large-scale problems, it is essential to
develop a well-extended program. Additionally, vectorizing the computational
process is an effective way to improve program performance [6].

Existing research on NUSC applications has focused on using GPUs to accel-
erate the convolution [7,13,17]. While program performance can be improved
with the help of accelerators such as GPUs, it requires developers to have a
deep understanding of the underlying devices and parallel programming tech-
niques, and some of the performance issues inherent in NUSC applications have
not been addressed. Also, most of the research is aimed at specific applications
in specific fields, often lacking generality and universality. Therefore, this paper
presents EasyNUSC, which can help users develop concise heterogeneous parallel
programs. Specifically, this paper makes the following key contributions:

1) A programming model is proposed for NUSC applications. The model sepa-
rates the specific application and parallel details for users.

2) Based on the programming model, the runtime framework is designed and
implemented. The framework provides two interfaces for users, findData()
and compute(). By implementing the two interfaces, users can easily develop
NUSC applications in heterogeneous computing environments.

3) This paper analyzes the factors that restrict the NUSC performance. Accord-
ingly, a series of strategies in vectorization, memory access, data reuse are
proposed to improve the data processing efficiency of EasyNUSC.

4) The Gridding algorithm and the Geometric Correction algorithm are used
as typical applications to illustrate the usage of EasyNUSC. Further, the
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experiments are conducted to evaluate EasyNUSC in terms of simplicity,
performance and scalability with the Gridding algorithm.

The rest of the paper is structured as follows. Section 2 introduces the het-
erogeneous programming model and the related research. Section 3 proposes
the programming model. The implementation and optimization of the runtime
framework is discussed in Sect. 4. Section 5 provides demo applications of how to
use the framework. In Sect. 6, the experimental evaluation is reported. Section 7
talks about some conclusions and future work.

2 Related Work

2.1 Heterogeneous Programming Model

Heterogeneous programming model can be used as a bridge between applications
and hardware platforms [15]. The various existing heterogeneous programming
models can be divided into two types [19]:

One is to design a programming model for a specific heterogeneous archi-
tecture, such as the CPU+GPU architecture. Mainstream programming models
include OpenCL and CUDA [14], which take the form of Host/Device. Program-
ming in this model is close to the underlying hardware.

The other is a guided programming model that is extended based on the exist-
ing framework. Representative guided programming models include OpenACC,
OpenMP [1]. This kind of model tells the compiler where parallel code regions
are located by writing guidance statements on the source code. The compiler
parallelizes the program based on the guidance statements.

2.2 Non-uniform Sampling Two-Dimensional Convolution

In order to illustrate NUSC, two forms of two-dimensional convolution are com-
pared and analyzed here, namely conventional two-dimensional convolution and
non-uniform sampling two-dimensional convolution.

Conventional two-dimensional convolution has been widely used in convolu-
tional neural network [4]. The targets of the convolution are often regular matrix
images [20]. For each pixel value of the matrix, the corresponding data can be
found and computed in the input matrix according to a regular convolution
kernel. This kind of convolution often has a strong regularity.

Non-uniform sampling two-dimensional convolution is often used in practi-
cal applications [11]. This kind of convolution usually needs to first establish a
mapping relationship between the input and output data. Then, a convolution
kernel is used to find the input sampling data required by the output pixels.
The input data is often unevenly distributed in space so that the storage of data
in the computer is discontinuous. The computation of this kind of convolution
generally needs to be customized based on specific applications.
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2.3 Parallelization Research of NUSC Applications

There are two typical NUSC applications mentioned in this paper, astronomy
Gridding algorithm and remote sensing Geometric Correction algorithm.

The Gridding algorithm is one of the indispensable steps to process astro-
nomical image data [18]. Gridding deals with sampling points that are unevenly
distributed in a certain sky area. The current research is mainly based on the
heterogeneous architecture of CPU+GPU [10,17]. The CPU sorts the sampling
data and establishes the mapping relationship. The GPU is responsible for the
convolution, which is the most time-consuming part of the program.

The Geometric Correction algorithm processes the original remote sensing
image data collected on the satellite [2]. A related study is based on a cluster
with CPU+GPU architecture. Besides, some work formulates different optimiza-
tion strategies for images with different resolutions. At a finer granularity level,
eliminating rotational error, extracting the control points and correcting geo-
metric distortion for overlapping regions are proposed to further improve the
program performance [8,13].

3 Programming Model

The computing mode of NUSC applications is shown in Fig. 1. The whole figure
represents a complete output grid. Each small square indicates an output pixel
in the grid. The scattered black dots denote the sampling points that are not uni-
formly distributed in space. The relative position of the dots to the output grid
is determined by a predefined mapping relationship. As an example, to compute
the value of the green output pixel, the convolution range is determined by the
convolution kernel centered on the pixel, which is the interior of the dashed circle
in the figure. Then, the value of the green output pixel is obtained by comput-
ing all the sampling point data inside the circle according to certain computing
rules. Similarly, after the values of all the pixels in the grid are computed, the
whole convolution computing is finished.

Fig. 1. An example of NUSC applications computing mode (Color figure online)

According to the computing mode, the programming model of EasyNUSC
is shown in Fig. 2. The model shows a typical NUSC workflow: 1) Input, which
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contains multiple convolution tasks. 2) Tasks assignment, which assigns tasks to
computing resources. 3) Convolution, which performs convolution computing in
an accelerator. For each pixel, a single convolution process can be divided into
two steps, data finding and convolution computing. This phase calls findData()
and compute() to compute the value. 4) Results generation, which organizes
the calculated data and generates the results. 5) Output, which presents the
results to users in the form of file.

Fig. 2. Programming model of EasyNUSC

The programming model separates the parallel phase from the convolution
phase. Users only need to focus on the implementation of the convolution. The
significance of the model lies in that users can simplify programming with the
help of the model. The model can automatically complete tasks in parallel, hiding
the tedious parallelization work. Moreover, the model can be reused in other
similar problems by simply changing the parameters and interfaces.

4 Runtime Framework

4.1 Programming Interfaces for Users

During the convolution computing, users are provided with findData() and
compute(). The specific functions and usage of the two interfaces are as follows.

– findData(). The interface requires a mapping relationship between the input
and output data. Based on the relationship, the program finds the data within
the coverage of the convolution kernel.

– compute(). The interface computes the found data according to certain cal-
culation rules, such as weighted summation.

Users are able to implement the two interfaces in a serial-like programming
manner. This is the main coding task for users. The framework can automatically
call the interfaces at the appropriate location without the user’s involvement.
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4.2 Framework Design and Implementation

There are four main modules in the design of the framework. As shown in Fig. 3,
the input file contains multiple convolution tasks. The framework executes the
following four modules in order to process the input data.

Fig. 3. Modules design for the framework of EasyNUSC

The initialization module. This module configures the parameters required
to run the program, initializes the program and pre-processes the data.

The task assignment module. This module divides the tasks and assigns them
to computing resources by a scheduler. The scheduler can schedule tasks based
on the current available computing resources and ensure load balancing.

The convolution computing module. Within a node, the platform adopts the
architecture of CPU+accelerator. The CPU is responsible for logic control and
preparing for convolution. The accelerator parallelizes the process of convolution.
The calculation of each pixel value depends on the user-implemented findData()
and compute() interfaces. When the values of all output pixels are computed,
the accelerator transfers the results back to the CPU.

The result generation module. After all nodes finish the tasks, the framework
aggregates the results returned from all nodes and generates the output file.

4.3 Performance Optimization

Vectorization and Error-Fixed. Vectorization enables devices to process 2,
4, 8 or more copies of data with a single instruction. For NUSC applications, the
multiple loops for the computation of sampling data can be vectorized. Several
consecutive sampling data in memory is packed into a vector so that these data
can be computed at once.

Vectorization also introduces an additional issue. The data of sampling points
for a pixel is discontinuous in memory. Vectorization directly computes several
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consecutive data, which may lead to the participation of some data that should
not be computed. This situation will lead to bias in the results. To address this
issue, a data filtering method is shown in Fig. 4. The method computes the vector
to be computed with a standard vector. The standard vector can determine
whether a data needs to be computed or not, which can be set according to the
convolution kernel. Thus, the vector can be used to filter out data that does not
need to be computed.

Fig. 4. Vectorized calculation of sampling data

Data Packing and Loading. To reduce data transfer frequency and increase
bandwidth utilization, for one output pixel, the continuous sampling data are
packed into a set. In this way, all the data the pixel requires is composed of
discontinuous multiple sets of data in memory. The green, red and yellow parts
in Fig. 5 represent different sets of data. An area in the on-chip memory (or a
storage area closer to the chip such as shared memory) is used as a cache area.

Fig. 5. Load packaged data into on-chip memory (Color figure online)

Once the program finds a set of contiguous sampling data, it loads the entire
set of data from memory into the cache area. The method can load a chunk of
data at one time via DMA. Moreover, with the vectorization, such a method is
more convenient to the fast construction of vectors.
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Intermediate Results Caching. For an output pixel, the sampling data usu-
ally cannot be found at one time. It is necessary to go through the cycle of “find
part of the data - compute - update the intermediate results” several times. The
situation may take hundreds of rounds of the above cycle to derive the value of
a pixel. It is not wise to write the intermediate results back to memory for each
round. Our approach is to create a buffer in on-chip memory, where the inter-
mediate results computed in each round are recorded and updated. When the
computing is completed, the final result is written back to memory only once.

Overlap of Computation and Load. The whole convolution process can be
divided into four steps from the perspective of the computer: find, load, compute,
and write back. There are dependencies between these four steps, making it
difficult to parallelize them.

Fig. 6. The pipeline approach for convolution computing

Since the convolution process requires multiple rounds of the above four steps,
the stages between rounds are relatively independent. The pipeline approach in
Fig. 6 can hide a portion of time. For an output pixel, there are N sets of sampling
data, which need to be computed in N rounds. First, the program finds and loads
the first round of data from memory. Then, while the data of the first round is
computed and written back, the data of the second round is found and loaded.
While the data of the second round is being computed and written back, the
data of the third round is found and loaded. And so on, until the last round of
data is computed and written back.

Tiling Method for Data Reuse. There is an extremely high frequency of
repeated data access in NUSC. Figure 7 serves as an example. The green and
blue squares are the two pixels that are close to each other. The red dots are
the sampling data that need to be computed for both pixels. Without any inter-
ference, these data are loaded and computed separately for each pixel. This
situation leads to an exponential increase in the amount of data actually loaded.

The key to the problem is to make the sampling data loaded at one time
available to multiple pixels. For this purpose, the tiling method divides the entire
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Fig. 7. An example of repeated data access (Color figure online)

output grid into many small tiles of fixed size blocks or lines. The left part of
Fig. 8 shows an example of the two tiling methods.

Accordingly, the convolution range of a tile is determined by the range of
individual pixels and the number of pixels in the tile. As shown in the right part
of Fig. 8, inside the black circle is the convolution range of a pixel. The interior
of the red circle or rectangle is the new convolution range of the tile. The new
range covers the ranges of all pixels in the tile. By loading the data covered by
the new range, the value of each pixel in the tile can then be computed from
part of the data therein, data loaded once can be shared by all pixels in the tile.

Fig. 8. The tiling method for data reuse (Color figure online)

5 Application Examples

5.1 Astronomy Gridding Algorithm

The Gridding algorithm transforms the observed raw data from an irregular
sampling space to a regular grid space. Most of the implementations of the
Gridding algorithm are based on the gather method. The key steps are as follows.
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1) Divide the spatial plane into a regular output grid. Establish a spatial corre-
spondence between the input sampling data and the output grid.

2) For each output pixel in the grid, centering on the coordinates of the pixel,
find the input sampling points within the convolution range.

3) Weighted summation of all the data of sampling points in the range, resulting
in the value of the output pixel.

4) Repeat steps 2),3) until all output pixels in the grid have been computed.

Algorithm 1. findData() and compute() for Gridding Algorithm
1: procedure findData
2: Get current pixel coordinates lc, bc;
3: Get kernel size ks;
4: up, down ← getUpDown(lc, bc, ks);
5: while up ≤ down do
6: left, right ← getLeftRight(up);
7: datal, datar ← getData(left, right);
8: Load data into cache from datal to datar;
9: up = up + 1;

10: end while
11: end procedure
12:
13: procedure compute
14: for each data in cache do
15: Get current pixel coordinates lp, bp;
16: Get current sampling point coordinates ls, bs;
17: weight ← getWeight(dist);
18: pixelv+ = data × weight;
19: end for
20: end procedure

In this case, the key pseudo-code of interfaces findData() and compute()
that users need to implement is shown in Algorithm 1.

5.2 Geometric Correction Algorithm for Remote Sensing Images

The Geometric Correction algorithm consists of two main parts, geometric posi-
tion transformation and gray value computing. The geometric position trans-
formation is to establish a mapping relationship between the input and output
image space. The gray value computing is the calculation of pixel values using
interpolation. In general, the key steps of the algorithm are as follows.

1) Establish the input and output image spaces, and the functional mapping
relationships between them.



EasyNUSC 717

2) For each pixel, the coordinates of its mapping point in the input image are
calculated according to the inverse mapping function. Then find the input
data within a certain neighborhood of that mapping point.

3) An interpolation method is selected to compute the input data to obtain the
gray values of the output pixel.

4) Repeat steps 2),3) until all output pixels in the output image are computed.

In this case, the key pseudo-code of interfaces findData() and compute()
that users need to implement is shown in Algorithm 2.

Algorithm 2. findData() and compute() for Geometric Correction Algo-
rithm
1: procedure findData
2: Create forward mapping of input to output (u, v) = f(x, y);
3: Create inverse mapping of output to input (x, y) = g(u, v);
4: Get current pixel coordinates uc, vc;
5: xc, yc ← g(uc, vc);
6: nearList ← getNear(xc, yc);
7: Load nearList into cache;
8: end procedure
9:

10: procedure compute
11: pixelv ← interpolation(nearList);
12: end procedure

6 Experiments and Evaluation

This section evaluates EasyNUSC framework in terms of simplicity, performance,
and scalability. The experiments are performed with the Gridding algorithm. The
DSP (Digital Signal Processor) is used as the accelerator in a heterogeneous
computing environment. Also, the GPU is used as a comparison platform.

6.1 Simplification of Programming

One of the goals of EasyNUSC is to provide users with an easier way to develop
efficient NUSC applications. The line of code is used to measure the simplicity.
Table 1 compares the line of code for writing Gridding and Geometric Correction
algorithm with EasyNUSC and writing the two algorithms directly.

The first two columns indicate the line of code for writing the two algorithms
directly in C/C++ within a single node and across multiple nodes. The last
column means the line of code required to write multi-node algorithms with
EasyNUSC. Note that the results only count the line of code in the parallelization
part and the key computation part.
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Table 1. Comparison of line of code of two algorithms

Algorithm Single-node Multi-node EasyNUSC

Gridding 289 368 95

Geometric Correction 138 172 69

6.2 Performance Evaluation Within a Node

Evaluation of Optimization Strategies. Subsection 4.3 proposes five single-
node performance optimization strategies. For illustration, the five versions cor-
responding to the five strategies are named as vec, load, cache, overlap, reuse.
Note that the five strategies are stackable, and the latter version is further opti-
mized from the previous one. The final version reuse has the best performance
because all the strategies are stacked together. The performance of different
versions is shown in Fig. 9.

Fig. 9. Performance of optimized strategies

In this experiment, 106 and 107 denote the number of input sampling points.
The performance of the parallelized version after vectorization vec is used as
a baseline. The experimental data show that the performance is significantly
improved with these strategies for both datasets. The final optimized version
reuse achieves a 4.8 and 7.1 times compared to the base version vec for the two
data sizes, respectively. At 107 data size, the program performance improvement
is higher than at 106 data size. This proves that our proposed optimization
strategies can better cope with the performance bottlenecks caused by data
transfer and memory access.

Comparison of Different Platforms. Table 2 shows three platforms: CPU,
GPU, DSP. The CPU and DSP are specially designed. For comparison, we run
the serial program on CPU, and run the parallel program on GPU and DSP.

Figure 10 shows the results. There are three sizes of input data, 105, 106,
and 107. The output grid size is 90× 90. The figure shows the performance
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Table 2. Computing resources of three platforms

Platform Model name The computing resources of a device

CPU Specially designed 64 processor cores

GPU NVIDIA V100 5120 CUDA units

DSP Specially designed 96 integrated computing units

Fig. 10. Performance comparison of three platforms at three data sizes

improvement of the parallel program over the serial program is dramatic. The
performance gap increases as the data size grows. At 107 data size, the GPU
program achieves 98 times faster compared to CPU program, while the DSP
program achieves a 339x performance boost.

Fig. 11. Scalability within a single node

Scalability. There are 96 integrated computing units within a DSP node for
parallelizing a single task. Figure 11 shows the scalability of the framework within
a node. The sizes of input data are 106 and 107, the output pixels number is
900× 900. The experiment keeps the task unchanged and increases the number
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of integrated computing units within a node. It can be seen that the framework
scales well with both datasets. The performance grows almost linearly as the
number of units increases, and the scaling efficiency remains over 90%.

7 Conclusion

NUSC applications have a stronger need for heterogeneous computing as the
growth rate of data volumes keeps increasing. But heterogeneous programming
and performance tuning are difficult for most programmers.

This paper proposes EasyNUSC. When users develop NUSC applications in
heterogeneous computing environments, EasyNUSC can help them easily write
high-performance parallel programs. The details of parallelization and perfor-
mance optimization are handled by EasyNUSC. Users can write code in a serial-
like manner. In terms of the performance and scalability, EasyNUSC is deployed
in a DSP node. The experimental data show that EasyNUSC achieves up to
339x acceleration, obtaining ideal scalability.

In conclusion, our work is meaningful for theoretical studies and paralleliza-
tion of NUSC applications. The performance optimization strategies can be sim-
ply ported to other similar platforms. Moreover, the experimental environment
of this paper mainly adopts the heterogeneous architecture of CPU+DSP, which
is valuable for the promotion of DSP-based heterogeneous computing platforms.
In the future, we will extend EasyNUSC to larger scale heterogeneous computing
platforms to solve real-world problems with more data volume.
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Abstract. Distributed deep learning system usually leverages large-
scale GPU clusters to speed up training. Therefore, for organizations
lacking GPU resources temporarily, it is difficult to evaluate distributed
communication optimization. Specifically, due to the complex interac-
tion between computation and communication, accurately predicting the
performance of distributed training is an almost impossible task. In this
paper, we propose DNNEmu, a lightweight performance emulator for dis-
tributed DNN training to help ML developers design and optimize the
communication strategies before target machines are available. Based on
our key observation that the computation overhead could be predicted
by input features and replaced by simulation programs, we use CPUs
to emulate the communication and computation of distributed training.
DNNEmu makes layer-wise predictions based on profiling traces collected
by the layer-wise profiler, and emulates DNN training by simulating com-
putation. DNNEmu contains three integrated modules: (i) the layer-wise
profiler profiling operators with layer names; (ii) the performance predic-
tor predicting the layer-wise operator runtime; and (iii) the computation
simulator simulating the actual computation with the predicted runtime.
DNNEmu is implemented over MXNet and requires no changes to the
developers’ models or inputs. We show that DNNEmu can emulate dis-
tributed training with an average estimation error of 7.2%.

Keywords: Distributed training · Communication optimization ·
Performance emulator · Layer-wise profiler

1 Introduction

Today, large-scale distributed training has increased the speed and efficiency of
deep neural network (DNN) training. Popular deep learning frameworks, includ-
ing MXNet [3], PyTorch [15] and TensorFlow [1], support distributed training
using data parallelism or model parallelism techniques. Under the data paral-
lelism, which is more common, the dataset is partitioned into each worker node.
Each worker will have a local copy of the neural network. The results, such as
gradients and updated weights, are communicated across these workers. It is
a common belief that the communication cost limits the scalability of the dis-
tributed training and causes inefficient utilization of the computation resources
since the communication involves significant amounts of data transfer.
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To alleviate the above problem, there has been a surge of research from
machine learning systems on addressing the communication challenges in recent
years. These works are mainly focused on increasing communication efficiency
and better overlap of computation and communication [23].

However, large-scale distributed training demands multiple machines, typ-
ically equipped with powerful GPUs. For developers studying communication
optimizations, they are more interested in how much the performance has been
improved with the communication optimizations. As a result, it is common for
developers to ask this question:

What is the performance of communication strategy X in a large
cluster of GPU Y ?

Accurately answering the above question enables machine learning (ML)
developers to evaluate communication optimization alternatives under various
assumptions and ensure that the communication optimization can meet per-
formance objectives. Besides, it can help ML developers optimize and evaluate
communication strategies even when the target GPU cluster is unavailable.

However, since the execution time of DNN training is determined by the
sequential computation time of each layer in the neural network, it is difficult
to predict the performance of DNN training accurately. Due to the complex
interaction between computation and communication in distributed training,
the prediction accuracy may be severely affected if there is a significant error
in the estimation of the computation or communication time. A lot of stud-
ies [16,24] have made efforts in this area, but the effect is still not satisfactory.
Paleo [16] models the communication among multiple workers based on an ana-
lytical performance model, while it cannot predict the communication time of
complex distributed optimizations. Daydream [24] simulates the DNN execution
based on the dependency graph to predict the overall runtime, and can effec-
tively model the most common DNN optimizations. However, with the rising of
DNN models and optimization algorithm complexity, the accuracy of the above
model-based approaches is becoming increasingly compromised. In addition, the
existing works are not completely convincing since they do not run on actual
machines and just simulate or predict.

To conclude, current approaches cannot accurately predict the performance
of various communication-efficient optimizations for large-scale distributed train-
ing, especially for complex and new emerging hardware architecture and com-
munication strategies.

To fill this gap, this paper presents a lightweight emulator for distributed
DNN training named DNNEmu. It provides a desired feature for developers
and cloud service providers when they have no available powerful GPUs for
distributed training. DNNEmu can emulate distributed training across multiple
powerful GPUs using CPUs. When implementing communication optimizations,
developers can evaluate the efficacy of their work initially. DNNEmu contains
three integrated modules. The core part of DNNEmu is the computation simula-
tor module, modeling the actual computation with a performance predictor. The
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performance predictor module estimates DNN runtime based on DNN configura-
tion using offline profiling or online gradient boosting decision tree (GBDT) [5].
We also implement layer-wise profiler based on MXNet profiler, which can pro-
file operators with layer names. The layer-wise profiler can provide a real-world
dataset for our performance predictor and help to compare experimental results
more accurately. DNNEmu can be applied to not only a single device training
but also distributed DNN training.

We implement DNNEmu based on the MXNet framework and evaluate
it on five real-world representative models (GooglNet [20], MobileNetV2 [17],
ResNet18 [7], ResNet50 [7], and VGG16 [18]) with two different distributed
optimizations. We use DNNEmu to emulate DNN training under various config-
urations and find that it makes accurate predictions with an average estimation
error of 7.2%, confirming the effectiveness of our proposed approach. The results
also show that DNNEmu is robust to the choices of neural network architectures,
communication optimization strategies, and hardware architectures.

In summary, we make the following key contributions:

– We systematically explore how the performance of DNN models is influenced.
– We present a performance predictor using pre-trained GBDT model.
– We propose and implement DNNEmu, a lightweight performance emulator,

to predict the performance of distributed training on large-scale GPU clusters
using CPUs.

– We perform comprehensive evaluations on a variety of DNN models and com-
munication optimizations. The results show the effectiveness and robustness
of DNNEmu.

The context of this paper is structured as follows: Sect. 2 describes the back-
ground and related work. Section 3 presents the design and implementation
of DNNEmu. Our experimental results are presented and analyzed in Sect. 4.
Finally, we conclude in Sect. 5.

2 Background and Related Work

2.1 Performance Measurement

Due to the complexity of DNN models, ML developers usually need additional
profiling tools to analyze the performance. Popular deep learning frameworks
have their own built-in profiling tools. In addition, hardware vendors provide
profiling tools that enable detailed performance information. The profiling tools
could be divided into kernel level profiling tools and operator level profiling tools.

Kernel Level Profiling Tools. On the kernel level, the profiling tools measure
the information of low-level GPU kernels. For example, the NVProf [14] enables
ML developers to understand and optimize the performance with information for
each GPU kernel. It also provides a timeline that shows CPU and GPU activity
that occurred at the kernel level. Using the Nsight [13] profiler, ML developers
can capture detailed performance metrics, such as kernel name, latency, memory
usage, etc.
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Operator Level Profiling Tools. The operator level profiling tools are usu-
ally built-in to the deep learning frameworks. The operator name, time usage,
total count, and memory allocation are captured by the framework profiler when
it is executing in the training or inference. However, mainstream frameworks
(e.g., MXNet, PyTorch, and TensorFlow) cannot extract per-layer runtime of
operators. Although the PyTorch community provides TochProf [22], which is a
layer-by-layer profiling tool. TorchProf only works well in forward propagation,
and it does not work in backward propagation.

We do not favor kernel level profiling tools because they require precise knowl-
edge of how each operator is implemented in frameworks using different kernels.
Profiling is performed at the operator level, which could be more accurate in our
simulation module without more processing. We implement a layer-wise profiler
based on the MXNet profiler since the MXNet profiler cannot extract per-layer
runtime of operators.

2.2 Performance Prediction

Prior works have shown that DNN training is a highly time-consuming pro-
cess. Therefore, knowing the accurate runtime consumption of DNN models in
advance is very important for ML developers. A runtime usage estimation tool
is handy in this regard.

The architecture of the DNN models and the configuration of the hyper-
parameters would severely affect the accuracy of performance prediction. Mean-
while, the resulted elapsed time and throughput may depend heavily on the
frameworks and platforms. A few AI component benchmarks like MLPerf [12]
and AIBench [21] adopt real-world benchmarks to cover the feature space that
impacts the performance. However, they do not consider each layer’s runtime.

The DNN model consists of multiple neuron layers. It transforms the input
data from the input layer through all connected layers into the output layer. To
this end, prior works [2,6,8,16] build performance prediction models by collecting
the profiling traces of the primary layers that are commonly used in DNN models.
Then, they use machine learning models trained on profiling traces to predict
the performance and runtime of DNN models.

However, these works cannot be directly applied to deep learning frame-
works. So, we present a lightweight emulator for distributed DNN training named
DNNEmu to help ML developers design and optimize distributed training even
when the target GPU cluster is unavailable. Our key observation is that the
computation overhead of distributed DNN training could be simulated by com-
putation simulation programs. Such computation simulation is a performance
predictor of DNN models, predicting performance based on input features. Then
the computation simulation will replace the actual computation with the pre-
dicted overhead.
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Fig. 1. DNNEmu architecture. Components of DNNEmu are in blue sharp-edged rect-
angles. We use an environment variable MXNET_EMULATOR_TYPE to control emulation on
different GPUs. (Color figure online)

3 System Design

In this paper, we propose an emulator for distributed training called DNNEmu.
It predicts the performance of distributed training on large-scale GPU clusters
without using any GPUs. In this section, we present the design overview about
DNNEmu.

3.1 Overview of DNNEmu

Figure 1 shows the overview of the system design and implementation of
DNNEmu, which has three main components: the layer-wise profiler module,
the performance predictor module, and the computation simulator module.

The layer-wise profiler collects runtime traces from training execution with
layer names, which are later fed to the performance predictor. We outline the
details behind our layer-wise profiler and how it is implemented in Sect. 3.2.

The performance predictor predicts the runtime of DNN models via machine
learning model trained on historical DNN profiling traces. As more types of GPU
or DNN models are involved, the performance predictor could be adapted and
incrementally improved. To make our performance predictor flexible enough to
retrain the prediction model, we have made the layer-wise profiler and prediction
trainer independent. Developers can add new types of GPU or DNN model
features to improve our existing performance predictor constantly.

The computation simulation is the imitation of the operators of a real-world
process in deep learning frameworks. In the emulation environment, the actual
computation would be replaced by the simulation program. The simulated DNN
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training process will be similar to actual DNN training, except that the com-
putation is simulated. With this computation simulator, developers can study
communication optimizations without using any GPUs.

3.2 Layer-Wise Profiler

It is often helpful to check the execution time of each layer’s operator in a neural
network. We can then determine where to focus our effort to speed up model
training or inference. In particular, it is difficult to use the MXNet profiler or
the CUDA profiler because the profiling information of operators is not layer-
wised (MXNet profiler), or it requires precise knowledge of how each kernel is
implemented in operation (CUDA profiler). We implement our layer-wise pro-
filer based on the MXNet profiler, a profiling tool compatible with Chrome’s
about:tracing trace event profiling viewer.

In order to compare the two methods, we use the MXNet profiler and
our layer-wise profiler to profile each operator runtime of training MNIST [10]
dataset on LeNet [11] model. Figure 2 presents the difference between MXNet
profiler and our layer-wise profiler. We select the following operators as exam-
ples: convolution (conv), activation (act), pooling (pool), and fully-connected
(fc). For MXNet profiler, it does not consider layer names when classifying oper-
ators. For example, the conv in Fig. 2a consists of con0 and con1 in Fig. 2b.
To solve this problem, we provide our layer-wise profiler, which enables pro-
filing operators with layer names. Layer-wise profiler helps to collect datasets
and compare experimental results more accurately. The code of our layer-wise
profiler is publicly available on GitHub1.
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Fig. 2. The profiling traces collected by MXNet profiler (Fig. 2a) and our layer-wise
profiler (Fig. 2b). Experiments are performed on MNIST [10] dataset using LeNet [11]
model.

3.3 Performance Predictor

Architecture of Performance Predictor. Figure 3 illustrates the architec-
ture of our performance predictor. For an individual operator, we use either
1 https://github.com/Adnios/DNNEmu.

https://github.com/Adnios/DNNEmu
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Fig. 3. Architecture of performance predictor.

offline profiling or pre-trained GBDT to make predictions. It accepts the com-
putation graph, the operator specification, and the execution specification as the
inputs and then reports the estimated execution time. The computation graph
provides network structure. The operator specification includes operator names
and hyper-parameter values (e.g., input image size and kernel size). The execu-
tion specification contains runtime information such as GPU type and memory
capacity. Each of these inputs can contain an almost endless list of features. For
convenience to establish a performance prediction model, we define a core sub-
set of these features. However, other features could easily be added. We present
input features in Table 1.

To handle various operators, DNNEmu makes predictions using either (i)
offline profiling or (ii) pre-trained gradient boosting decision trees (GBDT). The
choice of two different techniques will depend on whether the operator has vari-
ous hyper-parameters. Offline profiling assumes that the runtime of a given DNN
operator is the same on a given GPU (e.g., sgd_mom_update, sum_grad). How-
ever, some DNN operators are implemented using different hyper-parameters
(e.g., convolution). We refer to these operators as parameter-varying. DNNEmu
utilizes offline profiling for the rest of the operators, which we call parameter-
alike.

We implement offline profiling for parameter-alike operators using our layer-
wise profiler. In this paper, we assume that the runtime of parameter-alike oper-
ators is constant on a given GPU. The parameter-alike operators in DNNEmu
include (i) sgd_mom_update, (ii) sum_grad, (iii) batchnorm, (iv) concat, (v)
elemwise_add, and (vi) argmax.

For parameter-varying operators, DNNEmu makes predictions using pre-
trained GBDT. We treat this process as a regression problem: using the input
features of DNN models, layer specification, and the execution specification to
predict the execution time of each operator. GBDT is widely used and works
incredibly well for many real-world problems. In this paper, we leverage GBDT
as the performance predictor for parameter-varying operators. As we learn a
GBDT for all parameter-varying operators, DNNEmu supports: (i) convolution,
(ii) pooling, (iii) fully-connected, and (iv) activation.
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Table 1. Input features of our prediction model.

Name Range Operator

Batch Size 1–128 All
Image Size 1–512 Convolution, Pooling
Kernel Size 1–11 Convolution
Channel In 3–2048 Convolution, Pooling
Channel Out 16–2048 Convolution
Strides 1–4 Convolution, Pooling
Padding 0–3 Convolution, Pooling
Bias 0–1 Convolution, FullyConnect
Activation Type ReLU/Sigmoid/Tanh

Softmax/Softplus
Activation

Input vector 1–4096 FullyConnect
Output vector 1–4096 FullyConnect
Pooling Size 1–7 Pooling
GPU Type K80/V100 All
Memory 24 GB/32GB All

GBDT: Data and Training. In the following section, we describe the details
behind DNNEmu’s performance predictor: how we (i) collect training data, and
(ii) train the performance prediction model based on GBDT.

For convenience to establish a performance prediction model, we define a
core subset of input features. However, other features could be added easily. We
present all input features in Table 1. We gather training data by measuring the
forward and backward pass execution time of parameter-varying operators at
randomly sampled input configurations. We use the predefined ranges for each
feature to collect training data. During sampling, we ignore any configurations
that result in invalid arguments (e.g., the kernel size larger than the image size).
Profiling traces are collected on two GPU clusters listed in Sect. 4.1. We gather
training data by measuring the execution time of each layer’s operator, including
forward and backward execution times using our layer-wise profiler.

We implement our gradient boosting decision tree (GBDT) using Light-
GBM [9]. The training of GBDT aims to minimize the root-mean-square error
(RMSE) between predicted runtime and target runtime:

RMSE =

√
1
n

Σn
i=1

(
Predictedi − Targeti

)2

Smaller error indicates better estimation accuracy.
GBDT is an effective machine learning algorithm and has quite a few popu-

lar implementations, such as LightGBM [9]. The performance of GBDT depends
on hyper-parameters. An optimal set of hyper-parameters can help to achieve
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higher accuracy. Finding hyper-parameters manually is tedious and computa-
tionally expensive. Therefore, we use bayesian optimization [19] to automate
hyper-parameters tuning.

The hyper-parameters optimization follows three steps: (i) define an objective
function which takes hyper-parameters as inputs and gives a score as output,
(ii) define a search space and narrow the parameter range in the optimization
process, and (iii) run the bayesian optimization function and get the hyper-
parameters that get the best score.

After we get the best optimization parameters found by bayesian optimiza-
tion, we train the GBDT using LightGBM on our collected dataset until the
training scores do not improve for 200 rounds. Finally, the model with the high-
est accuracy is selected as the final result. We assign 80% of our dataset to the
training set and the rest to the test set. None of the configurations that we test
in Sect. 4 appear in our training set.

3.4 Computation Simulator

The computation simulator module is the key part of DNNEmu, simulating the
actual computation overhead predicted by our performance predictor for a given
operator. In this paper, we only focus on operators used in computer vision (CV).
In addition, our simulator supports various operators using offline profiler or pre-
trained GBDT. We note that these operators are the most time-consuming in
DNN models. Other operators are running in normal mode, as they are almost
running on CPU, or the elapsed time could be ignored compared with those time-
consuming operators. It would make the runtime of the computation simulation
close to that of the actual computation environment.

In order to implement computation simulation, we add a computation sim-
ulator module before the operator module in MXNet (as shown in Fig. 1). The
simulator module receives predicted execution time of each operator from perfor-
mance predictor module and replaces the actual computation with computation
simulation. We use the sleep function in C++ to implement the computation
simulation.

We have added an environment variable named MXNET_EMULATOR_TYPE to
help developers specify a different powerful GPU for emulation. Assuming we
want to emulate the DNN training on the V100 GPU cluster, we only need to
set the environment variable (MXNET_EMULATOR_TYPE) to the V100. With the
environment variable, developers can control the emulation on different GPUs.

4 Experimental Results

DNNEmu is implemented based on MXNet v1.4.1. We also implement a layer-
wise profiler based on MXNet profiler. Earlier sections of this paper introduce the
motivation and design of DNNEmu. We now focus on an end-to-end evaluation
that aims to answer the following questions:

– Can DNNEmu predict each layer’s operator execution time accurately?
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– How does the emulation of DNNEmu compare to the actual DNN training?
– Can DNNEmu emulate the efficacy of complex and new emerging communi-

cation optimizations on distributed training?

In this section, we will introduce our experimental settings and the perfor-
mance of DNNEmu for different models and optimizations. At first, we show our
performance predictor in DNN models. Secondly, we perform DNNEmu on dis-
tributed training. Besides, we evaluate the influence of different communication
optimizations on DNNEmu.

4.1 Experimental Setup

Hardware. In our experiments, we use two different clusters connected with a
56Gbps InfiniBand network. One installs four K80 Tesla GPUs and Xeon E5-
2660 v3 (2.60GHz) on each node, and the other is equipped with four V100
Tesla GPUs and Xeon Gold 6132 (2.60GHz) on each node.

Runtime Environment. We use MXNet v1.4.1 for all experiments. The K80
GPU cluster provides Red Hat 4.8.3, CUDA v8.0, and cuDNN v6.0. The V100
GPU cluster is installed with Centos 7.6, CUDA v10.0, and cuDNN v7.4.1.

Models and Dataset. In this paper, we use existing common DNN models,
such as GoogLeNet, MobileNetV2, ResNet18, ResNet50, and VGG16. All the
experiments are based on ImageNet [4].

4.2 Runtime Prediction

To evaluate DNNEmu’s prediction accuracy, we apply it to predict the training
time, including forward and backward pass for five DNN models on two GPU
clusters. In this subsection, we evaluate the layer-wise prediction. Unlike prior
works, which make the network-level runtime prediction by summing up each
layer time, we use DNNEmu to emulate the DNN training process on a single
node.

Layer-Wise Prediction. We compare our predicted runtime with actual run-
time using our layer-wise profiler in VGG16 and ResNet18. Experiments run on
the K80 and V100 clusters using a single node with a 32 batch size.

Figure 4 shows layer-by-layer compassion of forward and backward prop-
agation with all layers included. Our performance predictor makes accurate
layer-wise predictions since the average prediction error across all GPUs and
DNN models is 3.25%. The average layer-wise prediction errors of VGG16 and
ResNet18 are 3.86% and 3.69%, respectively.

When comparing Fig. 4a and Fig. 4c (or Fig. 4b and Fig. 4d), we can conclude
that the V100 offers almost 10× faster training speedups than the K80. As a
result, DNNEmu can accurately predict the layer-wise operator execution time.
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Fig. 4. Layer-wise runtime predictions for VGG16 and ResNet18 on V100 and K80.
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Fig. 5. DNN training emulation on a single node.

Network-Level Prediction. Having demonstrated the accuracy of our per-
formance predictor at the layer-wise prediction, we try to get the runtime of
the entire network. Prior works predict the network-level runtime by summing
up each layer runtime. This method ignores many operators, which may lead to
inaccuracy.

We use DNNEmu to emulate the DNN models training using a single node on
two GPU clusters. Figure 5 shows the comparisons between runtime emulated by
DNNEmu and the measured ground truth runtime. We use DNNEmu for three
kinds of system configuration (1 GPU per machine, 2 GPUs per machine, and 4
GPUs per machine) on K80 and V100 GPU clusters and plot the emulated and
measured iteration execution times. In our experiments, we apply DNNEmu to
emulate the DNN training without using any GPUs.

DNNEmu makes accurate training emulation of DNN models since the aver-
age prediction error across all DNN models is 5.6%. The average emulation errors
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across all GoogLeNet, MobileNetV2, ResNet18, ResNet50, and VGG16 are 6.8%,
4.6%, 5.0%, 6.5%, and 5.0%, respectively.

We observe that DNNEmu is slower than the baseline in most cases. Since
DNNEmu runs entirely on the CPU and there are significant architecture differ-
ences between CPU and GPU. Some operators on the GPU cannot be simulated
by CPU. For instance, the copy operators (e.g., CopyCPU2CPU) on the CPU
are usually more time-consuming than that on the GPU (e.g., CopyGPU2GPU).
Even though, DNNEmu can emulate the DNN training in single machine train-
ing accurately.

4.3 Distributed Training

Next, we use DNNEmu to emulate distributed training using data parallelism.
We train each DNN model using different number of nodes in a 56Gbps Infini-
Band network. In Fig. 6, we show the comparisons between the measured ground
truth runtime and runtime emulated by DNNEmu, for each DNN model under
different system configurations. In all of the configurations, DNNEmu emulates
the distributed training with at most 10.9% error.
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Fig. 6. Iteration execution time emulations for distributed training across five models.

When the model has more parameters, the speedups by distributed train-
ing, as compared to the training on a single node, may become more obvious.
The communication-to-computation ratio of ResNet18, ResNet50, and VGG16
is much higher than that of GoogLeNet and MobileNetV2. Distributed train-
ing benefits more when the communication-to-computation ratio of the model is
higher. Our prediction also fits this phenomenon, as described in Fig. 6.

We see that DNNEmu predicts the performance of distributed training accu-
rately across all models. The training speed of DNNEmu in distributed training
is much higher than the baseline in the distributed training. This is because
the training of DNNEmu has fewer actual computation overhead and uses less
memory, leaving more room for improvement with communication scheduling.
In addition, we note that the error in GoogLeNet is much higher than the oth-
ers. This is because the inception block in GoogleNet consists of four parallel
convolutional layers, leading to a higher probability of prediction errors.
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4.4 Communication Optimization

We further examine the distributed training with different communication opti-
mizations. We apply priority-based parameter propagation (P3) and 2-bit quan-
tification to DNNEmu.

Priority-Based Parameter Propagation. We evaluate DNNEmu’s emula-
tion accuracy for the optimization of P3 based on the MXNet in order to show
how well DNNEmu can predict the performance of various optimizations. We
train VGG16 with a 16 batch size and ResNet50 with a 32 batch size and each
node uses one GPU card. We conduct this experiment by using the V100 cluster
with four different node counts (2, 3, 4, and 5 nodes) over a 56Gbps InfiniBand
network.

Figure 7 shows the training speed of multi-node training. P3 enables the
training to be faster in multi-node training. The emulation of DNNEmu can
represent the trend of P3 speedups when the number of training nodes increases.
The average prediction errors on VGG16 and ResNet50 are 8.5% and 7.2%,
respectively. DNNEmu can emulate the efficacy of communication optimizations
well.
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Fig. 7. Priority-based parameter propa-
gation – DNNEmu’s prediction of P3 in
multi-node training.
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2-Bit Quantification. We apply the 2-bit quantification to the five models
with three different batch size values (16, 32, and 64). In this experiment, we
use one GPU card per node on two V100 nodes. In order to compare the speedup
rate, we take the speed of conventional training (without 2-bit quantification)
as the baseline. Figure 8 shows the performance of 2-bit quantification and the
corresponding DNNEmu’s emulations. Our predictions have errors below 12.7%
for all the models.

2-bit quantification achieves a much higher speed than baseline on the models
except MobileNetV2. This phenomenon is caused by the powerful computation
of V100 GPU and MobileNetV2 has fewer parameters, leading to performance
degradation. However, even considering this expectation, 2-bit quantification still
significantly reduces the network communication time, as implied in Fig. 8. From
the compassion of each model in Fig. 8, 2-bit quantification benefits even more,
when the communication-to-computation ratio of DNN models is higher.
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5 Conclusion

When implementing communication optimizations on distributed training sys-
tem, developers often run into the situation where the powerful GPUs are
unavailable because the cloud computing provider has an insufficient supply.
Prior works have proposed DNN simulators to estimate the final runtime based
on existing tracing information. However, they lack credibility for new optimiza-
tion methods and cannot handle complex situations.

We have presented DNNEmu, a distributed training emulator that helps
developers to evaluate the efficacy of the proposed communication optimizations.
DNNEmu executes the emulation of distributed training accurately by embed-
ding performance predictor and layer-wise profiler as part of the system modules.
Our experiments show that DNNEmu can emulate the distributed training accu-
rately with an average estimation error of 7.2%. DNNEmu is also effective and
robust to the choices of communication optimizations, neural architectures, and
system configurations.

Although we implement DNNEmu based on MXNet, the ideas of DNNEmu
are also available in other frameworks (e.g., TensorFlow and PyTorch). For the
future work, we aim to extend our current system to more frameworks and eval-
uate DNNEmu on larger computer clusters with various training configurations.
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Abstract. Online ridesourcing framework is often designed with a goal
to achieve optimized matching between driver and passenger for not only
minimizing passenger’s travel time but also maximizing driver’s revenue
incomes. However, traditional order dispatching that materializes this
matching is typically conducted on per pair of passenger and driver basis
in a relatively small area, which often lead to suboptimal global matching
rate. In this paper, we model the order dispatching as a distributed
matching problem for a wide area based on a developed multi-queue
model, each queue in charge of a region service. Based on this model, we
propose a dispatching algorithm, called Ordis, by applying the network-
flow theory to the multi-queues with an attempt to maximize the overall
service revenue while improving the service efficiency and user experience
for both ridehailing and ridesharing across multiple regions. To validate
the effectiveness of the proposed approach, we developed an online taxi-
hailing simulation system and compared it with some commonly used
dispatch algorithms based on real trace data. We found that the proposed
method is superior to those compared methods.

Keywords: Order dispatching · Ridehailing and ridesharing ·
Multi-queues model · Networkflow-based matching · Distributed
algorithm

1 Introduction

With the rapid development of global positioning system (GPS), wireless com-
munication and mobile device, all kinds of ridesourcing platforms and online
applications have gradually substituted for traditional taxi services and become
a novel way to transportation services on demand via mobile devices [1–3]. For
example, Didi [4], Uber [5], Lyft [6] and other mobile e-hailing services are widely
popular across the world, and greatly changing the way people daily travel.
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Order dispatching is a critical component to the online ridesourcing applica-
tion, which typically serves the function to match drivers and passengers in forms
of one-to-one ridehailing and one-to-many ridesharing services. As such, it not
only affects the transportation capacity but also determines the customer satis-
faction and the service income. In reality order dispatching often seeks the most
suitable driver for each request made by passenger so that the match between
them with the best pre-defined metrics can be achieved. With these in mind,
the current order dispatching algorithms mostly either exploit some heuristic
ideas to find the best driver to serve requesting passenger, such as greedy in
distance [7–9], queuing in service order [10,11] or adopt some data-driven strat-
egy, such as those machine learning-based algorithms [12,13], to optimize the
dynamic matching.

Although these methods are effective in some cases, they are largely myopic
to achieve good results only for each individual order in a relatively small area,
lacking the notion of global optimality in real time for all the orders across
different regions in a wide area since in these algorithms, it is highly likely that
the local optimal match in a region may lead to sub-optimality in global match
across multiple regions or even no match at all for either some driver or some
passengers.

The goal of this paper is to desgin optimal order dispatching strategies for
both ridehailing and ridesharing services in real time for all the drivers and
passengers across different regions, here in our study, the ridehailing service is
defined as an one-to-one service where a driver can select an order to pick up
and serve an individual passenger while the ridesharing refers to the service that
connects a driver with his/her multiple passengers, each with a similar destina-
tion and close departure times, but having different origins alone a particular
route to the destination. With this design, the ridesouring system can not only
achieve the best matching results for local region but also optimize dynamic taxi
resource allocation for optimal global matching.

To this end, we partition the wide area into different regions, each being
regulated by a driver-passenger queue where the local matching is conducted.
As such, the order dispatching problem is formulated into a distributed matching
problem across the multiple queues. Then, we propose a dispatching algorithm,
called Ordis (Order dispatch), by applying the network-flow theory to the multi-
queues with an attempt to maximize the overall service revenue while improving
the service efficiency and user experience across multiple regions.

To validate the effectiveness of the proposed approach, we developed an online
taxi-hailing simulation system and compared it with some commonly used dis-
patch algorithms based on real trace data. We found that the proposed method
is superior to those compared methods.

The main contributions of this paper are summarized as follows:

– Propose a distributed multi-queue model to address the order dispatching in
a wide area, where each region of the area is modeled as a queue to regulate
the matching between the co-resident passengers and drivers.
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– Develop a network-flow based dispatching algorithm by exploiting the dis-
tributed multi-queue model to obtain the optimal local match in each region.

– Build an online taxi-hailing simulation system and conduct trace-based stud-
ies to validate the effectiveness of the proposed algorithm by comparing with
some commonly adopted task dispatching algorithms.

The organization of the paper is as follows: We introduce some related work
regarding the order dispatching in Sect. 2, and then describe the formulation and
notation of the order dispatching problem in Sect. 3 and build a distributed multi-
queue model with the proposed algorithm in Sect. 4. We present the simulation
studies to validate our methods in Sect. 5, followed by the conclusion of the paper
in the last section.

2 Related Work

Order dispatching is a typical bilateral market, which matches the demand sent
by passengers with the idle drivers provided by the ridesourcing platform, and as
stated it is mainly designed to serve the ridehailing and ridesharing. The quality
of order dispatching has a great impact on the overall performance and efficiency
of online e-hailing service. A good dispatching method can not only provide
better service for passengers, but also efficiently use fewer taxis to complete
more orders.

In recent years, many experts and scholars have conducted a lot of research
on order dispatching. Lee et al. [8] proposed a scheduling system to determine
taxi scheduling according to real-time traffic conditions, which dispatches the
taxi with the shortest time path to the passengers. Considering the randomness
and dynamics of traffic conditions and future demand, Wong et al. [14] pro-
posed a rolling horizon method for taxi scheduling optimization to find a taxi
for passengers on the rolling horizon with minimum expected total waiting time.
These methods only focus on an individual order. When the request appears,
they immediately find the best match for it. However, for other orders, they may
not be able to match the most suitable driver or no matching driver, resulting
in poor effect of the system in the long term.

Non-immediate batch matching can solve the problem of long-term poor
effect. At this point, the system will be subdivided multiple time windows, accu-
mulate the order requests and idle taxis in each time window, and conduct two-
way matching in batches. Santos et al. [15] studied the ridesharing problem with
time window, and proposed a dispatching system composed of a client applica-
tion and a server, which can maximize the matching rate and the total revenue
of the system receiving orders. Akbarpour et al. [16] discussed the influence of
the information related to batch matching in the dynamic matching market, and
specified the condition that the local algorithm is close to the optimal, under
which it can select the appropriate time for matching but does not use the global
network structure.

However, these methods all use one processor for centralized processing.
When the amount of data is very large, the problem of computing overload will
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occur, resulting in the decrease of dispatching efficiency. To solve this problem,
some methods based on distributed and multi-agent reinforcement learning have
emerged. Seow et al. [17] proposed a multi-agent taxi scheduling system TuCab,
which realized the automatic scheduling of taxis in a distributed way, greatly
reducing passengers’ waiting time and cruising time of empty taxi. Ke et al. [18]
proposed a two-stage framework, in which multi-agent reinforcement learning
was used to determine the delay time of requests, and the combinatorial opti-
mization model was used to perform optimal matching. However, these methods
do not consider the dynamic balance of resources among multiprocessors, and
the reinforcement learning methods require long-term and complex training.

Aiming at these problems, in this paper we comprehensively consider multiple
influencing factors, use decentralized processing to improve the efficiency of the
system, achieve a lightweight long-term optimal matching method, and realize
the dynamic balance of global resources.

3 Problem Formulation

The order dispatching problem considered in this article is as follows. We assume
that the map is subdivided into M regions, each region m is characterized by
its P t

m order requests and Qt
m available vehicle in the t-th time window, then

the p-th order request is expressed as rt
mp, and the order requests appearing

in this region are represented as vector rtm � [rtm1, r
t
m2, . . . , r

t
mP] ∈ R1×P and

the available drivers as vector dtm �
[
dtm1,d

t
m2, . . . ,d

t
mQ

] ∈ R1×Q. Note that
the order request is a 4-tuple containing starting time of the order tst, service
duration tdu, starting coordinate ST ∈ R2 and ending coordinate DT ∈ R2. So
we can get rt

mp = (tst, tdu, ST,DT ), where ST = (xs, ys), DT = (xe, ye). Unlike
the order request, the vehicle information is simply a position PD = (xd, yd).

In this paper, our research goal is to maximize the revenue of the system
across all the drivers by improving the matching rate, and reducing drivers’
cruising cost and passengers’ waiting time. Suppose the position of driver is
(xd, yd), source and destination coordinates of the order are (xs, ys) and (xe, ye)
respectively, the driver’s cost per distance unit (e.g., one kilometer) is α, the
total charge passenger should pay the part of the travel distance less than
two kilometers as ξ, and the charge per distance unit more than two kilo-
meters is β. In order to simplify the study, we use the Euclidean distance

γ =
√
(xe − xs)

2 + (ye − ys)
2 to calculate the driving distance. Thus, the cost

of the driver’s cruising for passenger pickup is

cost1 = α ×
√
(xs − xd)

2 + (ys − yd)
2

1000
, (1)

and the cost of the order service is

cost2 = α ×
√
(xe − xs)

2 + (ye − ys)
2

1000
. (2)
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Thus, we can have the price of the order

price =

{
ξ , γ ≤ 2000
ξ + β × (γ − 2000)

1000 , γ > 2000 (3)

At the same time, in order to prioritize orders that have been waiting for a long
time, we put weight on them, which is set as the income per time unit when
driver serves the order, thus, the drivers can get more rewards for accepting the
orders that have been waiting for a long time (twait). Suppose the travel distance
of a driver in a time window is δ, the reward value can be obtained as

award = β × δ

1000
× twait. (4)

According to the above formula, a driver can obtain the profit when accepting
an order, profit = price − cost1 − cost2 + award. The goal is to maximize the
revenue of all the drivers receiving orders in the system.

4 Order Dispatch Algorithm

Given the problem formulation, in this section, we present our dynamic order-
dispatch algorithm, called Ordis, to achieve our goal. To this end, we introduce
a distributed multi-queue model to abstract the problem whereby a distributed
matching algorithms for ridehailing and ridesharing are developed by exploiting
the minimum-cost maximum-flow in network-flow theory.

4.1 Distributed Multi-queue Model

In our model, a queue is designed for each region to store idle drivers and
unserved order information and a matching pool is employed to maintain the
information of serving drivers and his/her orders. However, in actual scenario, if
all the order requests and drivers in the whole map are put into the same queue
for centralized matching, the performance will be degraded due to the large
amount of computation and other control complexity. Therefore, we consider to
subdivide the whole map into multiple regions according to the request density
and build a distributed multi-queue model, one for each region as shown in Fig. 1,
to share the computational loads for system efficiency as with this design, the
orders and vehicles in each region could be isolated from each other and their
matching can be computed independently. Our distributed multi-queue model
enjoys the following features:

– The whole map is subdivided into multiple regions according to the request
density, and each region has a queue to maintain the incoming requests (pas-
sengers) and ride-hailing vehicles (drivers) and a matching pool to store their
matching pair results.

– The order requests and available drivers in a region will be put into the queue
of this region for matching each other, Then the successfully matched pairs
are put into the matching pool of this region.
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Fig. 1. Distributed multi-queue model

– The order requests in the queue will be removed if no driver picks up the
orders after waiting for a predefined period of time.

– When the available drivers in the queue have no matching order after waiting
for a predefined period of time, the system will prompt the drivers based on
their positions and the request densities across the system to go to the regions
with higher density and join the corresponding queues of those regions.

– After a driver in the matching pool completes his/her order, the matching
pair will be removed from the matching pool. The driver will be re-added to
the queue of this region if he/she is still available to this region; otherwise,
he/she will be added to the queue of another region.

4.2 Order Dispatching Algorithms

Based on the distributed multi-queue model, we transform the order dispatching
problem with respect to ridehailing and ridesharing into a network-flow problem
for maximizing the flow with minimum-cost, and propose the Ordis algorithm
for maximizing the matching rate to improve the overall revenue of the drivers
while reducing the driver’s cruising cost and passengers’ waiting time.

For the problem of ridehailing, we set the driver nodes and order nodes as
the middle layer and add a source node and a sink node when building the
network flow diagram. Among them, there is a directed edge between the source
node and each driver node, whose capacity is defined as 1 and cost as 0; there
is also a directed edge between each driver node and the order node within its
matching radius (the matching mode who’s revenue less than or equal to 0 will
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Fig. 2. Network-flow for ridehailing

not be considered), and the capacity of this edge is 1, and the cost is the opposite
number of the revenue that the driver can get after serving the order; finally, a
directed edge between each order node and the sink node is also defined with
capacity being defined as 1 and cost as 0 as shown in Fig. 2.

Fig. 3. Network-flow for ridesharing

As far as the ridesharing is concerned, the construction of network-flow dia-
gram is similar to that in ridehailing—adding a source node and a sink node,
setting the driver nodes as the second layer, the order nodes as the third layer,
and the shared order nodes as the forth layer. Among them, there is a connected
directed edge between the source node and each driver node, the capacity of
which is defined as 1 and the cost as 0; there is also a connected directed edge
between each driver node and order nodes within its matching radius, and the
capacity of the edge is 1, the cost is the opposite number of the revenue of this
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order; if there is an order that can be served at the same time with an order (i.e.,
a shared order node, which has similar travel information with above orders),
there is a connected directed edge between these nodes that can be served at the
same time, and its capacity is 1, the cost is the opposite number of the revenue of
the shared order; each shared order node has a directed edge connected with the
sink node, whose capacity is 1 and cost is 0; for the order node without shared
order point, it is directly connected with the sink node, and the edge’s capacity
is 1 and its cost is 0, as shown in Fig. 3.

Algorithm 1. Ordis algorithm
Require: orders, drivers
Ensure: tmpPool
1: Initialize tmpPool, profits
2: if It’s a ridehailing problem then
3: build a network flow diagram G for ridehailing
4: else
5: build a network flow diagram G for ridesharing
6: end if
7: build a cost network G

′
with the same structure of G

8: look for a zero flow in graph G
′

9: while True do
10: use SPFA algorithm to find a path with minimum cost in G

′

11: if not find path then
12: break
13: end if
14: calculate maximum of flow that can pass on the found path in G
15: for each edge on path do
16: modify available flow of edge and reverse edge in G
17: modify cost and direction of edge in G

′

18: if edge is between driver and order then
19: if cost of edge < 0 then
20: put match into tmpPool
21: end if
22: delete edge in G and G

′

23: end if
24: if It’s a ridesharing problem then
25: if edge is between order and sharedOrder then
26: if cost of edge < 0 then
27: add sharedOrder to driver’s match in tmpPool
28: end if
29: delete edge in G and G

′

30: end if
31: end if
32: end for
33: end while
34: return tmpPool
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We can see that maximizing the total profit of the system is equivalent to
finding the minimum cost in the network-flow diagram while maximizing the
matching rate is to find the maximum flow in the network-flow diagram, thus
we propose the Ordis algorithm as shown in Algorithm 1 to achieve the best
matching of local resources in each region by finding the minimum cost maximum
flow in the network flow graph.

Algorithm: To this end, the algorithm first judges whether it is a ridehailing
problem or a ridesharing problem (Line1-6), and then build a corresponding
network-flow graph and define the cost network for it (Line7). After that, the
algorithm tries to look for a zero flow in the graph (Line8) whereby the Short-
est Path Faster Algorithm (SPFA) algorithm [19] is exploited to find a path
from source to sink with minimum sum of the weights of all edges on the path.
This procedure is repeatedly performed until it cannot find any path like this
(Line9-13).

Given the case that such a path is found, the graph is incrementally updated
by calculating the maximum of flow that can pass on the found path (Line14).
It first modifies the amount of flow that can pass through each edge on the path
in the network flow (Line16), and then updates the cost network according to
the following rules (Line17):

1. when there is no flow through the edge, the flow direction remains unchanged
and the cost is the original cost;

2. when the flow is equal to the maximum capacity of the edge, change the flow
direction as well as the cost to the negative of the original cost;

3. when the flow is less than the maximum capacity of the edge, increase the
same amount of reverse flow, and change the cost as the negative of the
original cost.

In this process, we should notice that in the ridehailing problem, a driver
can exclusively service one order, so we should delete the directed edge between
the driver node and other order nodes on the path (Line18-23), while in the
ridesharing problem, a driver can serve one order and one shared order at most
at the same time, so we should delete the directed edges of the driver node and
other ordering nodes on the path (Line18-23), as well as the directed edges of
the order node and other shared nodes on the path (Line24-31).

Analysis: As the Ordis algorithm for ridehailing is built on top of the SPFA
algorithm to find the least-cost augmented path. The time complexity of this
process is thus known as O(km). Since finding an augmented path needs to
modify at most O(n) edges, there are at most O(fn) argmented paths where f
is the maximum flow value, so the time complexity of the Ordis algorithm with
respect to ridehailing is O(fkmn2) where m is the number of edges and O(n) is
the number of nodes.

Unlike the case in the ridehailiing, the Ordis algorithm for ridesharing needs
to modify O(m/2) edges when leveraging the SPFA algorithm to find a least-
cost augmented path. As such, given the same number of argmented paths in
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the ridehailing case, its time complexity is increased to O(fknm2/2) where f is
the maximum flow value, m the number of edges and O(n) the number of nodes.

Although compared with some existing algorithms the Ordis algorithm pro-
posed in this paper has a higher time complexity and a relatively larger overhead
in practice, its impact on the system performance is fully controllable as the algo-
rithm is only executed once in each time window whose size can be adjusted as
a reaction to the actual situation.

5 Performance Evaluation

In this section, we first build an online ride-hailing simulation system to verify
the effectiveness of the model and the proposed algorithm proposed. Then we
introduce the data sources used in this experiment and related processing work.
Finally, we compare the performance of the proposed method with some often-
used task processing algorithms to show its superiority in terms of total order
revenue, average order revenue, and average waiting time.

5.1 Simulation System

The online ride-hailing simulation system is composed of four main parts we
describe below:

User Behavior Module: This module simulates the passengers’ behavior in send-
ing order request at a certain time. The order information mainly includes the
time when the order appears, the time required to process the order, the source
and destination of the trip, the waiting time of the passenger, the cost of receiv-
ing the order and the amount of the order, etc.

Driver Status Module: This module simulates the ride-hailing vehicle information
that can be allocated in the system and dynamically updates the available vehicle
status of the system in real time. The driver information mainly includes the
driver’s location, whether it is available, whether it can accept a shared order
and order information it services.

Resource Allocation Module: According to the request densities across the whole
map, this module reasonably subdivides the map into different regions, and build
a distributed multi-queue model, to share the computational loads on among
multiple nodes for high system efficiency.

Task Scheduling Module: This module uses the multi-queue model and the Ordis
algorithm proposed to match the pending orders with the available drivers. The
system completes the matching task between the orders and drivers in consid-
eration of the overall income of drivers, the cost of cruising, the waiting time of
passengers, the matching rate and other factors.
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(a) System receipt revenue (b) Quantity of completed orders

(c) Average waiting time (d) Average revenue

Fig. 4. Comparison between Ordis and other algorithms

5.2 Dataset

The dataset used in this paper comes from Didi Gaia Data Opening Program [4],
which provides the order information processed in Chengdu from November 1,
2016 to November 30, 2016, and the drivers and orders information in it are
encrypted, desensitized and anonymous. This data set has a quantity of 663MB
and a total of 7,065,937 transaction records. Each record contains information
such as order ID, start billing time, end billing time, longitude and latitude of
boarding position and disembarking position.

To simplify the experiments, we removed the data in remote areas, and
restrict the data in latitude and longitude from (103.89325, 30.547255) to
(104.20675, 30.852745). Since the coordinate system in the dataset is GCJ02,
we change the GCJ02 coordinate system to the World Geodetic System 1984
coordinate system (WGS84). At the same time, we divided the time of the day
into 1440 time windows and got rid of the data that lasted more than 60 time
windows.
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5.3 Results

Firstly, we compared the performance of the proposed algorithm with Greedy,
FCFS and Random when the system is subdivided into four regions in terms of
total revenue of the system per day, the quantity of completed orders per day,
the average waiting time of each order and the average revenue of each order, as
shown in Fig. 4.

In terms of total daily revenue, the average daily revenue obtained by the
four algorithms were 16957.98 yuan, 13233.35 yuan, 13270.09 yuan and 13249.62
yuan, and daily revenue of the Ordis algorithm is 28.1%, 27.8% and 27.9% higher
than greedy, FCFS and Random, respectively. Therefore, the Ordis algorithm
proposed in this paper can significantly improve the total revenue of the system.

In terms of order response rate, the number of orders received daily of Ordis is
higher than that of the other three algorithms, and the values of each algorithm
within 30 days is 1653, 1577, 1575 and 1577. Therefore, the Ordis algorithm
improves 4.8%, 5.0% and 4.8% compared with other algorithms.

In terms of average waiting time of passengers for each order, the time
obtained by the four algorithms are 9.00, 19.33, 19.34 and 9.59 time windows
respectively. It can be seen that the average waiting time of orders obtained by
the Ordis algorithm is slightly lower than random, far lower than greedy and
FCFS.

In terms of average revenue, the average revenue of each order obtained by
the four methods were 10.27 yuan, 8.39 yuan, 8.43 yuan and 8.41 yuan, and the
Ordis algorithm is 22.4%, 21.8% and 22.1% higher than the Greedy, FCFS and
Random algorithm, respectively.

Therefore, compared with other algorithms, the comprehensive performance
of Ordis algorithm is better.

In order to verify the superiority of the multi-queue model proposed in this
paper, we compare the system daily revenue, the quantity of completed orders
per day and the average waiting time of passengers when the system was subdi-
vided into single region, two regions and four regions, as shown in Fig. 5.

In terms of daily revenue, compared with one region, the daily revenue is
28.7% higher when system is subdivided into two regions, and 40.1% higher
when system is subdivided into four regions.

In terms of order response rate, compared with one region, the number of
orders completed per day is 20.7% higher when system is subdivided into two
regions, and 27.3% higher when system is subdivided into four regions.

In terms of average waiting time, compared with one region, the average
waiting time for each order is 4.8% lower when system is subdivided into two
regions, and 21.2% lower when system is subdivided into four regions.

In terms of average revenue, compared with one region, the average revenue
is 6.7% higher when system is subdivided into two regions, and 10.1% higher
when system is subdivided into four regions.

It can be seen that the multi-queue model based on regions can increase
the revenue of system, improve the matching rate, reduce the idling cost of
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(a) System receipt revenue (b) Quantity of completed orders

(c) Average waiting time (d) Average revenue

Fig. 5. Comparison of multi-queue and single-queue models

receiving orders and reduce the waiting time of passengers. And in a range,
when subdivided into more partitions, the performance of the system is better.

Then we compared the effects of order response rate every day, average daily
revenue of one day and average waiting time of passengers per order on ride-
hailing and ridesharing, as shown in Fig. 6. It can be seen that, compared with
ridehailing, the response rate of order in ridesharing increases by 41.3%, daily
system revenue increases by 82.1%, average waiting time of passengers decreases
by 61.3%, and average revenue increases by 27.4%. So we can know that conpared
with ridehailing, ridesharing can improve the efficiency of order dispatching and
increase the revenue of the system as well.

According to the foregoing results, we can know that, compared with the ref-
erence algorithms, the proposed algorithm can significantly improve the system’s
order receiving revenue, improve the matching rate of drivers and passengers,
and reduce the waiting time of passengers. The distributed multi-queue model is
better than the centralized single queue model in the above three indicators. At
the same time, the effects on the above three indicators are better for ridesharing
than for ridehailing.
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(a) System receipt revenue (b) Quantity of completed orders

(c) Average waiting time (d) Average revenue

Fig. 6. Comparison of ridehailing and ridesharing

6 Conclusion

In this paper, we comprehensively considered multiple factors affecting the effects
on the matching of drivers and orders in ridehailing and ridesharing. To this end,
we first established a distributed multi-queue model, each for a defined region,
to realize a decentralized processing of the order matching for the overall system
performance. Based on the multi-queue model, we further proposed a dynamic
order dispatching algorithm, called Ordis, to achieve the local optimal matching
between drivers and passengers in each region. Our simulation results validate
the effectiveness of the proposed algorithm by comparing with some commonly
adopted task dispatching algorithms. To further improve the algorithm, we will
find the most appropriate guidance method as a immediately future work to min-
imize the moving cost of idle drivers and maximize the probability of matching
orders.
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Abstract. Federated Learning (FL) has recently attracted high atten-
tion since it allows clients to collaboratively train a model while the
training data remains local. However, due to the inherent heterogeneity
of local data distributions, the trained model usually fails to perform
well on each client. Clustered FL has emerged to tackle this issue by
clustering clients with similar data distributions. However, these model-
dependent clustering methods tend to perform poorly and be costly. In
this work, we propose a distribution similarity-based clustered federated
learning framework FedDSMIC, which clusters clients by detecting the
client-level underlying data distribution based on the model’s memory of
training data. Furthermore, we extend the assumption about data distri-
bution to a more realistic cluster structure. The center models are learned
as good initial points to obtain common data properties in the cluster.
Each client in a cluster gets a more personalized model by performing
one step of gradient descent from the initial point. The empirical evalua-
tion on real-world datasets shows that FedDSMIC outperforms popular
state-of-the-art federated learning algorithms while keeping the lowest
communication overhead.

Keywords: Clustered federated learning · Kullback-Leibler
divergence · Model-Agnostic Meta-Learning · Non-IID data

1 Introduction

Federated learning (FL) is a promising distributed machine learning framework
that can collaboratively train a joint model while keeping the data on the client
side [19]. Classical FL trains a unique global model for all clients [20,22,27,33,
34]. However, such global collaboration always fails to achieve good performance
for individual clients since the data statistical heterogeneity, which is known as
non-i.i.d. data [19,27,38]. In practice, clients usually have varying preferences.
Consider the scenario for mobile device keyboards, certain emojis are used by one
c© Springer Nature Switzerland AG 2023
W. Meng et al. (Eds.): ICA3PP 2022, LNCS 13777, pp. 752–772, 2023.
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demographic but not others. Therefore, it is necessary to provide personalized
models for each client in FL.

A variety of personalized approaches have been proposed to tackle data
heterogeneity, mainly from two perspectives: global model personalization and
personalized models learning. The former first trains a global model and then
fine-tune the global model locally [29,41]. However, the local distribution may
be fairly different from the global distribution in highly personalized scenarios.
Consequently, the relevant global model does not exist, and these approaches
downgrade to each client learning only locally [13,32]. While the latter directly
learns multiple individual personalized models. MOCHA [39] frames FL per-
sonalization as an MTL problem by exploiting penalization terms to capture
relationships among clients. Unfortunately, it is usually tricky to simultaneously
optimize multiple non-convex objectives determined by large neural networks.

To address the lack of the above studies, clustered FL groups clients into clus-
ters and trains a model for each cluster, providing a trade-off between a purely
global and personalized model. Several methods [3,38,42] clusters clients at the
server-side based on the cosine similarity or l2 distance of local model weights.
Unfortunately, due to the high dimensionality and permutation invariance of
neural network (NN) parameters, these methods often fail to cluster clients cor-
rectly. Other approaches [14,29] performs the cluster identities estimation at the
client sides. In particular, k global models are randomly initialized, representing
k clusters, and each client selects the model with the lowest loss on its local
data. Clients that select the same model are assigned to a cluster. The methods
improve the clustering performance, however, increasing the communication and
computation burden for receiving and running multiple global models.

i.i.d.

i.i.d.

i.i.d.

(a) Traditional clustered FL

…

…

…

(b) Ours

Fig. 1. Comparison of traditional clustered FL and ours.

Moreover, the existing clustered FL methods are limited by the ideal assump-
tion that each client belongs to a cluster with a specific data distribution. How-
ever, data heterogeneity is usually severe in the cross-device scenario with mas-
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sive clients. Clients in a group can share one learning task, e.g., animals or vehi-
cles classification [4], but the data distributions are still different (e.g., covariate
shift, concept drift, and so forth [19]). We regard it as a more realistic cluster
structure that clients in the same cluster are more loosely separated. Figure 1
depicts a comparison between traditional clustered FL and ours. Under the com-
plicated data distribution, the client’s data distribution information is not fully
exploited using traditional clustered FL, which affects the clustering accuracy
more severely.

In this paper, we present a novel clustered multi-task federated learning
framework named FedDSMIC. Under the assumption of a realistic cluster struc-
ture, FedDSMIC reformulates the problem as an alternating minimization (AM)
approach in the distributed setting, which optimizes the cluster assignment and
minimizes the loss functions of the models alternatively. Specifically, FedDSMIC
clusters clients based on Kullback-Leibler divergence between models’ probabil-
ity output distribution with respect to indicator samples on the server, which
accurately detects the similarity of client-level underlying data distributions.
Inspired by Model-Agnostic Meta-Learning (MAML), the goal of FedDSMIC is
to learn the cluster model as a good initial point shared between all clients in the
cluster, which performs well after each client updates it with respect to its loss
function. The current or new clients in the cluster can quickly get their personal-
ized models by performing one or a few steps of gradient descent from the initial
point. This approach keeps all the benefits of the clustered FL architecture and
leads to more personalized models for each client.

We summarise our main contributions as:

– We propose a dynamic clustered federated learning framework, which clus-
ters clients by detecting the client-level underlying distribution based on the
model’s parameter memory for the training data, improving the clustering
accuracy in high data heterogeneity.

– We illustrate the limitation of sharing one model in the cluster and introduce
a two-step learning method, which builds an initial center model to capture
the intra-cluster common information and learns personalized models for each
client to acquire unique features, improving the personalized model perfor-
mance.

– Extensive experiments conducted on five real-world datasets demonstrate
FedDSMIC outperforms other state-of-the-art methods with fewer commu-
nication rounds and computational consumption.

2 Related Work

Here, we mainly review the existing works from two aspects: classic federated
learning and personalized federated learning.

2.1 Classic Federated Learning

The classic federated learning [33,40] trains a single global model to minimize
an empirical risk function over the union of the data across all clients. However,



FedDSMIC 755

various studies have shown that non-i.i.d. decentralized data leads to statisti-
cal challenges such as model weights divergence [44], data distribution biases
[16], and a drifted global model that is slow to converge even unguaranteed con-
vergence [27]. Li et al. [27] proposed FedProx, which adds a proximal term to
the local objective function to reduce the gap between local and global models.
SCAFFOLD [20] introduces control variates to correct the client drift in its local
updates. FedGen [46] sets a generator on the server to ensemble client informa-
tion and regulate local training using the learned knowledge. While the above
work focus on building a robust global model across non-i.i.d. data, they do not
directly address local model performance relevant to individual clients.

2.2 Personalized Federated Learning

Global Model Personalization. A natural approach for personalized FL is
learning a global model and fine-tuning parameters on each client’s local dataset
[1,9,29,30,41]. The global model serves as a starting point for a few-shot adapta-
tion for each client. Therefore, a class of algorithms referred to as meta-learning
has been developed to train a more suitable global model for local customization
[6,11,18,21]. Interpolation of global and local model [15,24,29] build personal-
ized models for clients by combining the global model and the local model. A
good global model is critical, as the personalization performance directly depends
on the generalization performance of the global model. Unfortunately, it is dif-
ficult to obtain a good global model in high data heterogeneity.

Learning Personalized Models. Multi-Task federated learning methods treat
clients as different tasks and train personalized models for each client. Simth et
al. [39] proposed MOCHA that adds a penalization term to capture relationships
between clients. However, it only learns simple models because of the complex
penalization term. Other MTL-based approaches [17,26] are able to train more
general models at the cost of considering simpler penalization terms. Therefore,
it is tricky to optimize the complex objective function, and all of them lack
statistical assumptions about local data distributions.

Clustered FL assumes that the clients can be partitioned into k clusters,
representing k different distributions. CFL [38] recursively separate clients with
incongruent optimization directions by the cosine similarity of the parameter
updates. FedSEM [42] uses a l2 distance-based stochastic expectation maximiza-
tion (EM) algorithm, which ignores l2 distance often suffer in high-dimension,
low-sample-size (HDLSS) situation [37]. Briggs et al. [3] propose an agglomer-
ative hierarchical clustering method named FL+HC, which relies on iterative
calculating the pairwise distance between all clusters. The above parameter-
based similarity measures always fail to cluster clients correctly because of the
permutation invariance of NN parameters, i.e., for any given NN, many vari-
ants of it only differ in the ordering of parameters. To overcome the drawback,
IFCA [14,29] divides the clients into clusters with a center model that can mini-
mize their loss values while requiring each client to train all k global models per
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round. Therefore, the computational and communication efficiency will become
bottlenecks when IFCA is applied to a large-scale FL system.

Our clustering method is similar to IFCA but allows clustering on the server
for less communication. We focus on detecting the client’s underlying data distri-
bution without explicitly using model parameters. Finally, unlike previous work,
we learn a personalization model for each client based on the center model to
cope with more complicated heterogeneous data.

3 Preliminaries

Consider M clients, each client i has a private labeled dataset Z = {z
(n)
i =

(x(n)
i , y

(n)
i )ni

n=1}, where ni is the training dataset size of client i. It is generated
according to the local distribution Di = {Xi ,Yi}, where Xi and Yi denote the
input features and corresponding labels, respectively. Each private dataset Zi

will be used to train a local supervised learning model wi : Xi → Yi. We define
fi : Rd → R as the expected loss over the data distribution with respect to client
i, i.e.,

fi(w) := E(x,y)∼Di
[li(wi;x, y)] (1)

where wi ∈ R
d is the parameter space, li(wi;x, y) is the error of model wi in

predicting the true label y ∈ Yi given the input x ∈ Xi. The goal of vanilla FL
(FedAvg) is to solve the objective function

min
w∈R

d
F (w) :=

M∑

i=1

ni

n
fi(w). (2)

where n =
∑M

i=1 ni is the total training dataset size. FedAvg optimizes (2) by
the local updates of clients and the aggregation of the server alternately. At
each communication round t, the server broadcasts the latest global model wt

to all clients and selects a random subset Mt of M clients to participate in this
round. Client i optimizes the loss function based on the local data by its local
solver (SGD) with several iterations or epochs and gets the updated local model
wt+1

i . Then, the server takes a weighted average of all local resulting model
parameters {wt+1

1 ,wt+1
2 , ...,wt+1

Mt
} into a global one wt+1 and finish the current

round. However, the different distributions of the local data Di lead to different
local model parameters, failing to converge to a stable optimal global solution
w.

The existing clustered FL framework usually assumes that clients can be
clustered into several groups to address the data heterogeneity. Besides, clients
in the cluster share the same data distribution and optimization goal.

4 Framework

4.1 Problem Formulation

We assume a non-i.i.d. data distribution with a clustering structure: the data
distribution of clients in a cluster is similar but still different, which we dis-
cussed in the Introduction. Under this assumption, we aim first to build several
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clusters and learn the initial center models to capture the intra-cluster common
information, then learn personalized models for each client to discover knowl-
edge different from others in the cluster. Specifically, we formulate a clustered
multi-task federated learning problem as follows:

min
{w i},{w̃ c},{uc

i}

C∑

c=1

Lc(w̃c) −
C∑

c=1

M∑

i=1

uc
iS(wi, w̃c) (3)

Lc(w̃c) =
Mc∑

i=1

ni∑

n=1

li(wi;x
(n)
i , y

(n)
i ), i ∈ Gc (4)

where M is the number of total clients, Mc is the number of clients in cluster
Gc, C is the number of clusters. w̃c is the parameters of the center model for
cluster Gc. In addition, S(wi, w̃c) denotes the similarity of local model wi and
the center model w̃c. {uc

i} denotes the cluster assignment, with uc
i = 1 if the

clients Ci belongs to cluster Gc and uc
i = 0 otherwise.

In the above formulation, the first term (4) is the sum of loss functions of all
center models, and the loss of each center model is given by the sum of empirical
errors across all clients in this cluster. The second term is the sum of similar-
ities between local models and center models, which can be seen as K-means
clustering to maximize the intra-cluster similarity. Here we have three variables
{wi}, {w̃c}, {uc

i} to be solved under federated settings. Alternating minimization
[2] is the general approach to solving such a non-convex optimization problem.
Specifically, we minimize the loss functions based on wi and w̃c, and estimate
the cluster assignment uc

i by alternatively fixing one and optimizing another
until convergence.

We elaborate our alternating optimization with a formal shown in Algorithm
1. As shown in Fig. 2, FedDSMIC is a dynamic clustered federated learning
with four main processes. FedDSMIC starts with C randomly initialized center
models and M local models. At each communication round t, each participat-
ing client i updates locally and sends the local model wt+1

i to the server. The
server computes the similarity of clients based on Kullback-Leibler divergence
between the predictions of local models {wt+1

1 ,wt+1
2 , ...,wt+1

Mt
} and center mod-

els {w̃t
1, ..., w̃

t
c} on “indicator samples”. Then the server updates uc

i and clusters
clients to maximize the intra-cluster similarity of the models. Finally, each center
model w̃t

c is updated by the weighted average of local models in this cluster to
w̃t+1

c and sent to the intra-cluster clients. After training T rounds, the personal-
ized models of clients are obtained by performing one or a few gradient descents
from their corresponding center model. FedDSMIC also allows new clients to get
their personalized models easily. In Sect. 4.2 and Sect. 4.3, we present the opti-
mization of cluster structure and the optimization of the models, respectively.
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Fig. 2. An overview of FedDSMIC

4.2 Cluster Structure Optimization

Based on the guideline of FedDSMIC, we aim to first cluster the clients with
similar data distribution into one group without access to the local data. When
wi and w̃c is fixed, problem (3) w.r.t uc

i can be seen as K-means clustering on the
local’s models. The crucial challenge is how to quantify the similarity of models
for accurately clustering clients with similar underlying data distributions.

Similarity of Models. To tackle the challenge, we leverage the memory
(learned parameters) of the model and get the similarity of models from the
underlying data distribution on which it is trained. Knowledge distillation per-
forms knowledge transfer by reducing the distance between the predicted output
probability distribution of the student model and the teacher model on the same
dataset [43]. Inspired by this, we set up some “indicator samples” on the server
and then feed the samples into the model to get predictions to reflect the training
data distribution of the model. The assumption for the distribution of “indica-
tor samples” is independent and identically distributed. In the experiment, the
samples are randomly sampled from the raw dataset (e.g., 10 samples per class)
before partitioning the client data. In practice, these samples can be sampled
from the relevant public datasets or a small sharing of datasets from clients
under the premise of privacy protection. In addition, we will demonstrate the
effect of indicator sample size on describing clients in Sect. 5.
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Algorithm 1. FedDSMIC
1: Input: numbers of clusters C, initialize {w̃c}C

c=1, {wi}M
i=1, number of communica-

tion rounds T
2: Output: {wi}M

i=1, {w̃c}C
c=1

3: for t = 0, ..., T do
4: Mt ← random subset of M clients
5: Clients:
6: for each client i ∈ Mt in parallel do
7: wt+1

i ← ClientUpdate(i,wt
i)

8: end for
9: Server:

10: for each cluster c = 1, ..., C do
11: Calculate Dis(wt+1

i , w̃t
c) as in (6)

12: Update uc
i using Dis(wt+1

i , w̃t
c) as in (7)

13: end for
14: Group devices into Gc using uc

i

15: Update w̃t+1
c by w̃t+1

c =
∑Mc

i=1
ni
nc

wt+1
i , i ∈ Gc

16: for each cluster c = 1, ..., C do
17: for i ∈ cluster Gc do
18: Send w̃t+1

c to client i
19: end for
20: end for
21: end for

Algorithm 2. ClientUpdate
1: Input: the corresponding cluster center model from server w̃t

c → wt,0
i

2: Output: wt+1
i

3: B ← split Di into batches of size B
4: for k: 1 to τ do
5: Set ŵt+1,k+1

i = wt+1,k
i − η ˜∇li

(

wt+1,k
i , Dk

i

)

6: Set wt+1,k+1
i = wt+1,k

i − ε˜∇li
(

ŵt+1,k+1
i , D

′k
i

)

7: end for
8: wt+1

i = wt+1,τ
i

Let pk be the probability belonging to each class k for an input sample x
given by a neural network w, which is computed as:

pk
w (x) =

exp
(
zk
1

)
∑K

k=1 exp
(
zk
1

) (5)

where the logit zk is the output of the pre-softmax layer of model w on the
data x. The final layer of a recognition model is a fully connected layer with
a softmax non-linearity. Each neuron in this layer corresponds to a class k,
and its activation value is treated as the probability that the model predicts
for that class. The weights connecting the previous layer to this neuron wk

can be considered the template of the label k learned by the network [35]. The
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predicted label probability is proportional to the alignment of the pre-final layer’s
output with the template wk. In other words, the value of trained weights wk

increases with the marginal density of label-k training data p(y)k. Furthermore,
the trained model has a higher probability of predicting the label-k sample as
class k.

Therefore, we leverage the output probability distribution of the model to
approximate the data distribution on which it was trained. To quantify the
distance of the local model’s and center model’s predictions, we use the Kullback
Leibler (KL) Divergence. The KL distance from pwi

of the local model wi to
pw̃c

of the center model w̃c is computed as:

DKL[σ(f(wi,xo)), σ(f(w̃c,xo))]

=
No∑

no=1

σ(f(wi,xo))log
σ(f(wi,xo))
σ(f(w̃c,xo))

=
No∑

no=1

K∑

k=1

pk
wi

(xo) log
pk

wi
(xo)

pk
w̃c

(xo)

(6)

where the logits f(w,xo) is the output of the pre-softmax layer of model w on
the indicator samples xo. σ is the non-linear activation (usually the softmax
function for multi-class classification) applied to such logits. No is the number
of indicator samples, and K is the number of classes (labels).

Cluster Identity Estimation. The server computes the KL divergence
between local models and center models by (6), and obtain a KL divergence
matrix Dis ∈ R

M×C , with Disi,j = DKL[σ(f(wi,xo)), σ(f(w̃j ,xo))]. As the
smaller Disi,j corresponds to the greater similarity S(wi, w̃j) in (3), the server
updates the cluster assignment vector uc

i by (7).

uc
i =

{
1, if c = argminj Disi,j

0, otherwise
(7)

The efficiency analysis of our clustering method is as follows. Suppose the
time of model inference is t, the total number of parameters of the model is d.

– Computation. In FedDSMIC, the time to get the probability distributions is
(M+C)∗t. In IFCA, the time to estimate the cluster identities is M∗C∗t (each
client trains C global models locally). The time complexity of FedDSMIC
constantly grows with the number of clients M , while IFCA grows linearly.
Therefore, our method has lower computational complexity, especially when
M is large.

– Communication. In FedDSMIC, the server sends the cluster model to the
corresponding clients in this cluster and receives M local models, so the traffic
per round is (M +M)∗d. In IFCA, the server sends C cluster models to each
client, so the traffic per round is (C∗M+M)∗d, which is (1+C)/2 times more
than ours. As the modern neural network model grows, the communication
consumption of IFCA will increase.
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4.3 Model Weights Optimization

Now {uc
i} is fixed, the optimization of local models {wi} and center models

{w̃c} are as follows. The goal of FedDSMIC is to find a good initial cluster center
model for representing the common information in this cluster. The cluster model
performs well on all the clients in the cluster after each client updates it with
respect to local data. We use one step of gradient descent from the initial model
for computational efficiency. Therefore, the first term (4) in (3) can be rewritten
as

Lc (w) =
Mc∑

i=1

ni∑

n=1

li

(
w − α∇li (w) ;x(n)

i , y
(n)
i

)
(8)

for all c ∈ C. The optimal solution of w of Lc (w) is the learned cluster center
model w̃c. Equation (8) maintains the advantages of clustered FL, and further
captures the difference between the clients in the cluster. To solve (8), we rede-
fined the local function of client Ci as

gi(w) := li (w − η∇li(w)) (9)

where η is the learning rate. The gradient of gi(wi) is computed as

∇gi(w) =
(
I − η∇2li(w)

) ∇li (w − η∇li(w)) (10)

For computationally efficient, we use the first-order approximations of (10),
i.e., the second-order gradient ∇2li(w) is approximated to zero. Then Eq. (10)
can be rewritten as

∇gi(w) = ∇li (w − η∇li(w)) (11)

Similar to Stochastic Gradient Descent (SGD), we take a batch of data Di

to obtain the unbiased estimate ∇̃li(w) of ∇li(w)

∇̃li (w) :=
1

|Di|
∑

(x,y)∈Di

∇li(w;x, y). (12)

At each communication round t, the server sends the cluster center model
w̃t

c to the corresponding clients in this cluster. Each client Ci in the cluster sets
the initial parameters of the local model wt+1,0

i = w̃t
c. Then client Ci performs

τ steps of stochastic gradient descent locally with respect to gi. The number of
local iterations is τ , then the local updates sequence

{
wt+1,k

i

}τ

k=0
are updated

by
wt+1,k+1

i = wt+1,k
i − ε∇̃gi

(
wt+1,k

i

)
(13)

where ε is the local learning rate, ∇̃gi

(
wt+1,k

i

)
is an estimate of ∇gi

(
wt+1,k

i

)

in (11). The stochastic gradient ∇̃gi

(
wt+1,k

i

)
for all local iterates is computed

using independent batches Dk
i ,D

′k
i as follows

∇̃gi

(
wt+1,k

i

)
= ∇̃li

(
wt+1,k

i − η∇̄li

(
wt+1,k

i ,Dk
i

)
,D

′k
i

)
. (14)
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Actually, the updates in (13) can be implemented in two stages: first, we compute
the first-order update value ŵt+1,k+1

i as in (15), and then compute the final
updated value wt+1,k+1

i as in (16)

ŵt+1,k+1
i = wt+1,k

i − η∇̃li

(
wt+1,k

i ,Dk
i

)
(15)

wt+1,k+1
i = wt+1,k

i − ε∇̃li

(
ŵt+1,k+1

i ,D
′k
i

)
(16)

The steps of client local update are depicted in Algorithm 2. Our solution
procedure follows the previous work [10–12] with convergence guarantees. After
the local models are updated, each cluster model is obtained by the weighted
average of the client models in this cluster as:

w̃t+1
c =

Mc∑

i=1

ni

nc
wt+1

i , i ∈ Gc (17)

where nc is the total data size of cluster Gc. Benefit from the properties of
meta-learning [12], FedDSMIC allows an unseen client, i.e., a client Cnew /∈ [M ]
arriving after the distributed training procedure, to easily learn its personalized
model. Each new client simply first train on its local dataset for a few epochs
and choose the most similar cluster center model through (6) and (7). Then the
client obtains its personalized model by performing one or few steps with respect
to its local data.

5 Experiments

5.1 Datasets and Baselines

Datasets and Models. We evaluate our algorithm on five federated bench-
mark datasets: handwritten digits recognition (MNIST [25]), handwritten char-
acters recognition (EMNIST [7] and FEMNIST [5]), and image classification
(CIFAR10 and CIFAR100 [23]). We train a convex multinomial logistic regres-
sion (MCLR) model on MNIST, a CNN in LEAF [5] on EMNIST and FEM-
NIST, and MobileNet-v2 [36] on CIFAR10 and CIFAR100. Table 1 summarizes
datasets, models, and the number of clients. For all datasets, we randomly split
each local dataset into training (80%) and test (20%) sets.

Table 1. Datasets and models setting

Dataset Clients Total samples Model

MNIST [25] 100 70000 MCLR

EMNIST [7] 100 81415 2-layer CNN + 2-layer FFN

FEMNIST [5] 287 61049 2-layer CNN + 2-layer FFN

CIFAR10 [23] 80 30000 MobileNet-v2 [36]

CIFAR100 [23] 125 30000 MobileNet-v2 [36]
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Baselines

– Local: To make the experiment more comprehensive, we report the perfor-
mance of a naive personalized method named Local that trains only on the
local dataset without collaboration.

– FedAvg [33]: the vanilla federated learning framework.
– FedProx [27]: a popular federated learning optimizer which adds a quadratic

penalty term to the local objective.
– IFCA [14]: a hypothesis-based CFL framework that client selects the model

with minimal empirical loss.
– FedSEM [42]: an l2 distance-based CFL framework that minimizes the expec-

tation of discrepancies between local models and center models stochastically.
– PerFedAvg [11]: a personalized method that finds one initial shared model

for all clients.
– FedDS: clustering-only of our method that the clients in a cluster share the

same model.

5.2 Experimental Setting

Client Heteroeneity. For FEMNIST, the raw data is naturally non-i.i.d dis-
tributed since writers who write the same words have different stroke widths.
For MNIST, EMNIST, CIFAR10 and CIFAR100, similar to prior arts [17,31], we
simulate a data distribution with a clustered structure that satisfies our assump-
tion. First we divide all classes (labels) to C clusters, and then simulate a het-
erogeneous partition into M clients by sampling pc ∼ DirI(α) and allocating a
pc,i proportion of the training instances of cluster c to local client i, in which
a smaller α indicates higher data heterogeneity. The clients in the same cluster
have relatively similar data distributions but are different from each other. We
visualize the effects of adopting different α on the statistical heterogeneity for
the MNIST dataset with M = 20 in Fig. 3.

(a) α = 0.05 (b) α = 0.5 (c) α = 1.0 (d) α = 10.0

Fig. 3. Visualization of a realistic cluster structure simulation among clients on MNIST
dataset, where the x-axis indicates client IDs, the y-axis indicates class labels, and the
size of scattered points indicates the number of training samples for a label available
to that client.
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Implementation. Unless otherwise mentioned, the number of clusters is 3 for
all cluster-based methods, and all clients participate in each round, training
occurred over 300 communication rounds for MNIST and FEMNIST, and 200
rounds for all other datasets. We use the learning rate 0.01, the mini-batch size
B = 32, the local updating steps τ = 20 and SGD with momentum = 0.9 for all
algorithms. In addition, we extract a piece of data from each class of the dataset
as indicator samples before assigning the data to the client.

Evaluation Metrics. Like previous research on personalized federated learning
[11,39], we evaluate the performance of each personalized model on the local test
dataset. In FedAvg and FedProx, we evaluate the global model based on the test
set of all clients. In IFCA and FedSEM, we evaluate the cluster center model
based on the test set of the clients in this cluster. Given the multiple accuracies
of clients with different data sizes, we report the average weighted accuracy
with weights proportional to local dataset sizes. Note that the heterogeneity
will affect the convergence, resulting in more significant fluctuations in model
accuracy during the training process. Therefore, we report the average of the
top-5 test accuracy rates.

5.3 Effectiveness of Proposed Framework

Average Performance of Personalized Models. The comparison results
with respect to the average performance of personalized models are shown in
Table 2 and Fig. 4. We have the following findings from the results:

– Overall, FedDSMIC obtains the best performance across all datasets and has
the most rapid learning curves. Notably, FedDSMIC improves test accuracy
by around 3% to 5% on handwritten digit recognition tasks while improv-
ing accuracy more than by +10% on CIFAR10 and CIFAR100, which are
more complex classification tasks. The results demonstrate the effectiveness
of FedDSMIC, especially when the data distribution is highly complicated.

– As one of the most competitive baselines, IFCA can achieve similar per-
formance to FedDS in specific settings, but the convergence is slower than
FedDS. This result implies that our method fully leverages information about
underlying data distribution, whose effect is more explicit.

– FedSEM performs worst in all settings compared with FedDSMIC and IFCA,
which can be interpreted as failing to cluster clients correctly. FeSEM always
clusters all clients into a group. Therefore, it has been downgraded to one
optimization direction and behaves similarly to FedAvg.
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Table 2. Average test accuracy across clients/bottom test accuracy under different
settings. For MNIST and EMNIST, a smaller α indicates higher heterogeneity. For
FEMNIST, r denotes the ratio between active users and total users. For CIFAR10 and
CIFAR100, τ denotes the local training steps, E denotes the local training epochs.

Dataset Setting Local FedAvg FedProx IFCA FedSEM PerFedAvg FedDS FedDSMIC

MNIST α = 0.05 94.0/65.5 89.7/76.7 89.6/76.7 92.8/75.3 90.6/72.1 92.0/77.4 92.5/75.0 94.2/79.0

α = 0.5 88.9/73.5 90.0/83.4 90.7/83.4 90.7/84.8 90.1/82.2 91.5/85.0 91.5/82.9 92.5/86.0

α = 1.0 87.5/68.3 90.4/84.2 90.3/84.0 90.7/83.1 90.4/84.1 91.8/86.6 90.7/84.2 92.0/85.4

EMNIST α = 0.05 90.1/48.4 86.6/76.5 85.7/81.3 92.3/72.7 84.6/77.0 92.0/84.1 92.7/82.1 93.2/84.4

α = 0.5 78.6/31.2 88.0/80.9 87.6/79.3 89.1/80.7 87.7/81.9 88.9/81.9 89.4/80.2 90.7/83.0

α = 1.0 75.2/55.9 87.6/82.5 87.0/81.7 87.1/80.8 87.5/82.5 88.2/84.6 88.9/83.9 89.0/84.1

FEMNIST r = 0.2 69.2/50.8 81.7/64.2 81.5/63.1 87.7/67.2 79.8/63.8 83.8/72.3 87.2/65.7 87.4/67.1

r = 0.5 69.4/47.7 84.0/53.8 82.5/48.1 87.1/67.5 83.4/59.4 86.8/67.4 87.0/62.3 87.1/68.0

r = 1.0 69.5/48.6 83.9/51.0 82.3/45.1 87.0/67.3 84.1/56.0 86.8/67.9 87.0/62.5 87.4/68.2

CIFAR10 τ = 10 36.8/18.0 70.5/44.3 69.1/47.0 73.1/49.7 64.4/38.9 73.4/53.4 75.3/56.4 75.5/55.6

τ = 20 35.7/17.9 72.3/47.5 70.5/45.3 73.5/44.8 66.2/42.4 72.5/52.6 75.6/52.1 76.2/60.5

CIFAR100 E = 3 13.8/3.2 40.9/10.0 39.1/10.9 42.7/9.6 39.9/7.0 41.1/6.2 42.7/7.8 44.9/11.2

E = 6 13.1/4.5 41.8/10.8 36.6/10.5 43.9/10.5 40.5/8.9 40.9/3.4 43.7/9.2 44.8/11.6
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Fig. 4. Average test accuracy vs. communication rounds on MNIST, EMNIST,
CIFAR10, CIFAR100, α = 0.5 for all datasets, C = 3 for FedDSMIC, FedDS, IFCA
and FeSEM.

Fairness Across Clients. This work discusses heterogeneous data scenarios in
horizontal federated learning, so we mainly focus on performance fairness, i.e.,
accuracy is evenly distributed among clients [45]. Unfair performance could result
from learning excellent models for some clients at the expense of poor models for
other clients [31]. Consequently, we show the average of the five worst accuracies
called bottom accuracy in Table 2 (the minimum accuracy is particularly noisy
when some local datasets are too small). FedDSMIC ensures that clients with
the worst personalized model are better than other methods.

Generalization to Unseen Clients. Table 3 shows that FedDSMIC allows
new clients to learn a personalized model and consistently outperforms other
CFL-based methods. As discussed in Sect. 4.3, FedDSMIC allows new clients
arriving after the distributed training to learn their personalized models quickly.
To evaluate the quality of unseen clients’ personalized models, we performed
an experiment where only 80% of the clients participate to the training. The
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remaining 20% join the system after training and get their personalized model
by our method.

Table 3. Average test accuracy across clients unseen at training

Dataset FedAvg IFCA FedSEM FedDMIC

MNIST 90.92 90.62 88.93 91.52

EMNIST 81.89 81.71 82.56 86.18

FEMNIST 73.84 74.76 72.94 75.75

CIFAR10 35.59 36.89 42.45 57.74

CIFAR100 13.8 14.37 10.26 15.43

Communication Consumption. As shown in Fig. 5, FedDSMIC has the low-
est communication consumption and highest accuracy on different network struc-
tures. FedDSMIC and FedSEM perform cluster estimation on the server side
without sending additional models, therefore having the same traffic as FedAvg.
As discussed in Sect. 4.2, IFCA requires the server to send all center models to
each client, thus consuming the most communication.

(a) MLP-MNIST (b) CNN-EMNIST (c) Mobilenet-v2 -CIFAR10

Fig. 5. Communication consumption of FL frameworks on different network structures
for 300 rounds.

5.4 Sensitivity Analysis

Impacts of Data Heterogeneity. As shown in Fig. 6, FedDSMIC performs
better than others under various data heterogeneity settings, and the gain of
FedDSMIC is more notable when the data distributions are highly heteroge-
neous (with a small α). This result verifies our motivations since the advantage
of FedDSMIC is building personalized models for each client based on its corre-
sponding cluster model, which mitigates the data heterogeneity. This advantage
is otherwise not obtained by other baselines. For MNIST, Per-FedAvg has the
best performance at the i.i.d setting (α = 10) because it may utilize infor-
mation from more training data. For the more complex dataset EMNIST, the
performance gain of our approach is consistently significant, which verifies the
robustness of our method to fit complex distributions.
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(a) MNIST (b) EMNIST

Fig. 6. Performance w.r.t data heterogeneity. Fig. 7. Effects of indica-
tor samples on MNIST
with α = 0.5.

Effects of the Indicator Sample Size. We test the effect of FedDSMIC
with different indicator sample sizes on MNIST as in Fig. 7. Nc is the number of
samples per class. The gain of FedDSMIC over FedAvg is consistently remarkable
given different indicator sample sizes, whereas a sufficient number of indicator
samples brings better performance. The model accuracy is high enough when
Nc = 1, proving that it is acceptable to distinguish different customers despite
the small sample size. When Nc reaches 100, the performance tends to stabilize.

Impacts of Straggler Clients. We explore different numbers of total clients
versus active clients on FEMNIST, with active ratios of 0.2, 0.5, and 1.0, respec-
tively. Figure 8 that FedDSMIC consistently outperforms all baselines under var-
ious active client settings. Combined with Fig. 8(a),(b), and (c), we can observe
that our approach requires much fewer communication rounds to reach the same
performance, regardless of the setting of straggler clients.

(a) r = 1.0 (b) r = 0.5 (c) r = 0.2

Fig. 8. Average test accuracy vs. communication rounds on FEMNIST w.r.t different
ratio of straggler clients

Effects of Communication Frequency: We explore local updating steps τ
and local epochs E for CIFAR10 and CIFAR100, respectively. The higher τ or
E means longer communication delays before global communication. As shown
in the last two rows of Table 2, our approach is robust against different levels of
communication delays.
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5.5 Ablation Results

We set up ablation experiments to explore the role of the two points. FedDS
(clustering-only of our method) and FedDSMIC are shown in the last two
columns of Table 2. The results indicate that FedDS is already better than other
cluster FL methods, especially the faster convergence speed (Fig. 4 and Fig. 8),
which demonstrates our similarity calculation method detects the data distri-
bution to cluster accurately. FedDSMIC can further improve performance by
building personalized models for clients, especially under complicated data dis-
tribution.

5.6 Discussion

Finally, we visualize the feature representations of the training data via client-
side models on CIFAR10 obtained by Local, FedAvg, and FedDSMIC, respec-
tively. There are two types of clients. One is shown in Fig. 9, which has enough
local data to train its model. The performance of FedAvg degrades because
the global model does not fit the local data distribution. In contrast, the client
model obtained with FedDSMIC can benefit clients with similar data distribu-
tions. Therefore, the feature representation of the client model is looser than
the local-trained model under the premise of ensuring good classification abil-
ity, i.e., the model’s generalization will be more robust. The other is shown in
Fig. 10, whose local data is insufficient to train a good model. Although FedAvg
performs better than Local, the accuracy is still low due to heterogeneous data
distribution. Whereas FedDSMIC can get an excellent personalized model that
fits the data distribution nearly perfectly, leading to better generalization.

(a) LocalTrain (b) FedAvg (c) Ours

Fig. 9. The visualization of feature representations of 59-th local model with t-SNE
for CIFAR10.
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(a) LocalTrain (b) FedAvg (c) Ours

Fig. 10. The visualization of feature representations of 17-th local model with t-SNE
for CIFAR10.

6 Conclusion

In this paper, we proposed a new clustered multi-task framework based on the
assumption of a realistic cluster structure to address client heterogeneity. Our
algorithm detected the local underlying data distribution by the trained model’s
memory to cluster similar clients. Furthermore, we learned personalized mod-
els for each client based on the initial cluster model to address the limitations
of existing clustered FL. Extensive empirical evaluation has shown that our
approach trained models with higher accuracy, fairness, and lower resource con-
sumption than state-of-the-art FL algorithms, even for clients not present at
training time.
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Abstract. Graph processing has evolved and expanded swiftly with
artificial intelligence and big data technology. High-Bandwidth Memory
(HBM), which delivers terabyte-level memory bandwidth, has opened up
new development possibilities for FPGA-based graph accelerators. How-
ever, despite the tremendous expansion of underlying hardware capabil-
ities, existing graph accelerators have not benefited too much. In this
paper, we observe that the uniformed on-chip memory hierarchy is the
key to the low scalability of existing graph accelerators. We present a
novel graph accelerator with a distributed on-chip memory hierarchy
called GraphS. The on-chip memory of GraphS is divided into numerous
tiny blocks, each of which is assigned to only one Processing Element
(PE). Different PEs are connected through a scalable network-on-chip
(NoC). For realistic graphs with power-law properties, a degree-aware
preprocessing method is designed to balance the workload among dif-
ferent PEs. Our results with various graph algorithms demonstrate that
GraphS can outperform state-of-the-art ForeGraph by up to 21.84×.

Keywords: Graph processing · Field-programmable gate array · High
bandwidth memory

1 Introduction

For a variety of applications about graphs, such as route learning [1], social
network analysis [2], autonomous driving [3], and machine learning [4], graph
has been widely used to represent the connection relationship between different
entities. With the continuous development of the Internet and cloud computing,
the scale and complexity of graph data are expanding, which brings significant
challenges to the performance and energy efficiency of modern graph processing
systems [5].
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At present, many algorithms [6,7] and systems [8,9] for graph computing
have been proposed. However, some characteristics of large-scale graphs bring
challenges. (1) Load Unbalance. The irregularity of the graph will lead to an
extremely unbalanced load among different processing threads. (2) Random
Data Access Pattern. The irregularity of the graph leads to unpredictable
connections between vertices, which leads to a large number of random memory
accesses. (3) Heavy Data Conflicts. When multiple vertices update a vertex
simultaneously, it results in high-latency atomic update operations and heavy
data conflicts. (4) Lack of Scalability. In large-scale graph processing, com-
munication over PEs causes heavy hardware overhead. Thus, it becomes difficult
to design a scalable graph accelerator.

Many approaches have been proposed in the past to address these issues.
Most of them focus on addressing memory inefficiencies using sophisticated on-
chip memory management strategies [10,11]. For example, Graphicionado [12]
stores all data except edge data on-chip to eliminate all off-chip random accesses.
These previous works achieve dozens of times improvement over traditional pro-
cessors but do not consider the scalability of their on-chip memory hierarchy.

HBM has recently emerged, enabling terabytes per second memory band-
width. However, the performance of graph accelerators has not kept pace with
the rapid expansion of underlying hardware capabilities. The fundamental reason
is that existing graph accelerators use an on-chip centralized memory hierarchy
[13,14], which means that all PEs share the on-chip memory. A crossbar-like
switch causes hardware overhead grows exponentially as the number of PEs
grows. ScalaGraph [15] has experimented with existing graph accelerators. When
the number of PEs reaches 128, Scalagraph found existing graph accelerators
with the crossbar will see a severe frequency drop. Even worse, route failure will
occur if the number of PEs surpasses 256.

This paper has made the following contributions:

(1) We build an efficient HBM-based graph accelerator called GraphS, which
adopts the distributed memory design to build a dedicated graph processing
architecture.

(2) We introduce the Omega network to reduce the hardware complexity of NoC
significantly. The scalability of the accelerator is improved.

(3) We present a degree-aware preprocessing method to achieve load balance,
with 1.3%–12.4% speedups against ForeGraph.

2 Background and Motivation

In this section, we first introduce the programming model of graph processing.
Then we discuss the limitation of existing graph accelerators and finally intro-
duce our approach.

2.1 Programming Model

The Vertex-Centric Programming Model (VCM) [16] is classic and most graph
accelerators use it. Since there are extensive dependencies in graph data, it is
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Algorithm 1 Vertex-Centric Programming Model
Input: The current iteration’s active vertex set Vactive, corresponding edges E(v, u)

Output: The next iteration’s active vertex set V
′
active

1: for each vertex v ∈ Vactive do
2: for each edge E(v, u) of active vertex v do
3: Res = Process(Eweight, Vprop[v]);
4: Vtemp[u] = Reduce(Vtemp[u], Res);
5: end for
6: end for
7: for each vertex v do
8: ApplyRes = Apply(Vprop[v], Vtemp[v], Vconst);
9: if ApplyRes! = Vprop[v] then

10: Vprop[v] = ApplyRes;

11: V
′
active.push(u);

12: end if
13: end for

essential to decouple these related dependencies by exploring the data charac-
teristics around vertices or edges and designing a specific and compelling pro-
gramming model.

Algorithm 1 shows a typical procedure using VCM. The whole process is
divided into two stages: the scatter stage and the apply stage. In the scatter
stage, the algorithm traverses all active points and their corresponding edges to
update other vertices. In the apply stage, the algorithm traverses all vertices and
updates their values one by one to generate active vertices.

2.2 Limitation of Existing Architecture

Figure 1(a) shows a typical architectural template of an existing FPGA-based
graph accelerator [17]. The scheduler and the processor are divided into multiple
Scheduler Elements (SEs) and Processor Elements (PEs) according to the num-
ber of pipelines. Due to the irregularity of the graph, the PE needs to transmit
data with all on-chip Memory Partitions (MPs), which leads any two pairs of PE
and MP to be connected. Existing graph accelerators often take on-chip and off-
chip I/O efficiency as the focus of optimization. Thus, a fully connected NoC is
often used as a switching structure, which minimizes the delay of on-chip message
transfer. However, the uniformed memory hierarchy maintains high efficiency in
on-chip memory access but does not consider its scalability.

Emerging 3D stacked memory offers at least an order of magnitude more
memory bandwidth than the traditional DRAM. The significant increase in
memory bandwidth provides an opportunity to develop a high throughput graph
accelerator. However, the HBM subsystem of U280 supports up to 32 pseudo-
channels, implying that at least 32 on-chip pipelines are required to utilize the
HBM fully. Assuming that the PEs in the accelerator can process one edge per
clock cycle, where one edge is represented by 4 bytes. An accelerator running at
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250 MHz would require at least 460 PEs to utilize the aggregated bandwidth of
460 GB/s fully.
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a Overall Architecture b Crossbar Switch

Fig. 1. A typical graph accelerator architecture with uniformed on-chip memory inter-
connection

However, as the number of PEs grows, the hardware overhead of the fully
connected NoC will quickly become the bottleneck of an accelerator. Figure 1(b)
depicts a typical fully connected NoC, with the hardware complexity of O(N2).
ScalaGraph [15] runs a series of comparative experiments on the FPGA-based
accelerator Accugraph [14] to validate the impact of fully connected NoC in
existing graph accelerators on scalability. The test environment is a Xilinx Avleo
U280 FPGA card with a memory bandwidth of 425 GB/s. The test estimates
the accelerator’s performance by running a round of the PageRank algorithm.
In the test, two versions of the accelerator are implemented with and without
the crossbar.
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Fig. 2. Performance of ForeGraph with a fully connected crossbar

The results in Fig. 2(a) show that when the number of PEs increases, the
frequency of the version that implements the crossbar drops sharply until it can-
not be synthesized, while another version can keep running at about 300 MHz.
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Figure 2(b) shows the normalized performance results. The accelerator can
achieve 10×–12× speedups when scaling from 4 to 64 PEs. However, scaling
from 64 to 128 PEs results in a slight improvement or even a decrease in per-
formance. Our observation is that the hardware complexity of the traditional
crossbar is O(N2). Once the number of PE increases, the overhead of hardware
resources increases exponentially, which seriously affects performance.

2.3 Distributed On-Chip Memory Hierarchy

The main bottleneck limiting the performance of massively parallel graph accel-
erators is on-chip memory scalability. Developing a highly scalable graph accel-
erator can avoid the aforementioned issues.

We propose a distributed on-chip memory hierarchy, where memory parti-
tions are distributed and tied directly to the PE. The distributed model [18], is
widely used in multiprocessors and distributed computing.

Challenges. However, it is difficult to implement such a distributed on-chip
cache hierarchy. One challenge is dealing with the routing overhead introduced
by the NoC. Most NoCs, in contrast to the fully connected crossbar, require
multiple cycles to transmit loads, resulting in increased communication overhead.
Furthermore, multiple data streams will compete for the same routing link at
the same time, resulting in routing conflicts. Another challenge is dealing with
the load imbalance problem caused by the irregularity of the graph. As a result,
we must solve these issues through software and hardware co-design.

3 GraphS Architecture

In this section, we show the overall architecture of GraphS and describe the
functions and workflow of each module in detail.

3.1 Hardware Design

As shown in Fig. 3, the overall architecture modularizes different stages of graph
processing on the FPGA and executes operations in various stages of graph
processing, respectively. The connection between other modules is in the form of
the pipeline. The detailed design of each module of the architecture is as follows.

Prefetcher. The Prefetcher module is responsible for interacting with off-chip
memory. The module consists of several sub-modules, the number of which
depends on the number of pseudo-channels used. In each iteration of graph pro-
cessing, the Prefetcher obtains the set of active vertex sent by the dispatcher and
prefetches the attributes of the active vertex and the offset of the corresponding
edge data in the off-chip HBM. After reading the offset data, the Prefetcher will
prefetch the related edge data according to the obtained offset.
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Fig. 3. The architecture of GraphS

Dispatcher. The Dispatcher module is responsible for the delivery of data
and for controlling the start and end of iterations. Each Dispatcher module is
divided into Vertex Dispatcher (VDU) and Edge Dispatcher (EDU). The VDU
accepts the active vertex set from PE and sends it to the Prefetcher. At the
same time, the EDU will receive edge data from Prefetcher and assign it to the
corresponding Processor module.

PE. Each PE is divided into three modules: Computing Unit (CU), Routing
Unit (RU), and Memory Unit (MU). The CU module receives the load from the
EDU and processes it to generate an update request, deciding whether to send
the request to the MU or the RU based on the hash value of the updated vertex.
The RU is in charge of communicating between update requests and the on-chip
interconnect network. The MU is part of the PE and comprises a portion of the
on-chip memory, which is in charge of storing active vertex sets and properties.

NoC. We use an Omega network as a base NoC of GraphS. The Omega net-
work has the following characteristics. First, the Omega network has relatively
low hardware complexity compared to the fully connected network, which is
O(Nlog2N). Second, even though the Omega network is a multi-stage crossbar,
the structure of each Omega stage is the same, so the implementation is relatively
simple. Finally, the routing rules of the Omega network are straightforward and
do not introduce additional control overhead.

3.2 Workflow

Figure 4 depicts a VCM-based on-chip workflow pipeline. The on-chip pipeline is
made up of various modules and small FIFO queues that connect the modules.
The on-chip pipeline divides the stage into two steps: Dispatch and Process, rep-
resenting the process of on-chip data transmission and on-chip logic calculation,
respectively.
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Fig. 4. The workflow of GraphS

Scatter Workflow. In stage P1, DU will read an active vertex and its prop-
erties. In stage P2, the corresponding edge of the active point will be accepted.
Following that, DU will route workloads to the corresponding PEs. The GU
will run the Process function in stage P3 to process the workload and send the
results to the RU. The RU will determine whether to send workloads to the local
SPD or the RU of another neighbor PEs through the NoC based on its destina-
tion vertex. The SPD will update Vtemp in the stages P4–P6 by executing the
Reduce function after receiving the local update request.

Apply Workflow. SPD will first read the Vprop and Vtemp for each vertex
stored locally before executing the Apply function. Second, in stage P3, SPD will
compare the result to the old vertex property and update the vertex’s properties.
Finally, for the next iteration, SPD will update the active set in stage P4. The
Vprop and Vtemp represent the properties of the source vertex and destination
vertex, respectively.

4 GraphS Optimizations

We propose three optimization methods based on the GraphS design in Sect. 3
to reduce the number of data transfers while fully utilizing PE.

4.1 Data Placement

On-chip memory is insufficient to accommodate all graph data when the scale
of graph data grows. As a result, using off-chip memory to store part of the
graph data is unavoidable. Because on-chip memory and off-chip memory have
uneven access latency and bandwidth, how properly layout graph data is critical
in determining accelerator efficiency.

For an input graph, data is mainly divided into vertex data and edge data.
As shown in Algorithm 1, during the algorithm execution, the vertex data is
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frequently changed to track the status of vertices. On the contrary, the edge
data never changes. GraphS employs different strategies to handle them.

Vertex Data. Vertex data mainly includes active vertex set and Vtemp. Most
vertex data will be changed frequently during the execution. Suppose vertex data
is stored in the off-chip memory. It will lead to severe memory access overhead
because the latency of reading and writing data from off-chip memory is very
high. In addition, the size of vertex data in most graph algorithms is smaller
than the width of the off-chip memory bus, which means that the utilization
of off-chip memory is very low, which will seriously waste off-chip bandwidth.
Further, if the currently written vertex data is the same as the next vertex data
that needs to be updated, the long access delay of off-chip memory will cause
the on-chip pipeline to stagnate.

For active vertex sets, GraphS defines two bitmaps, i.e., current active-map
and next active-map, which save the active vertex set of the current iteration and
the active vertex set of the next iteration. These two bitmaps are stored in the
on-chip cache resources. Each node in the graph occupies a bit in the bitmap (and
a vertex consumes 2 bits). The value of each bit in the bitmap represents whether
the vertex is active with 1 for active and 0 for inactive. The bitmap approach
conserves on-chip memory while lowering data access overhead. Furthermore, it
provides excellent prefetching properties for active vertices access.

Edge Data. Edge data is much larger than vertex data in scale. Therefore,
edge data inevitably has to be stored in the off-chip memory. Access to edge
data has become one of the bottlenecks faced by most graph accelerators. How
to store as much graph data as possible in a limited space and efficiently utilize
off-chip bandwidth have become issues that need to be addressed when a graph
accelerator is designed.

GraphS represents edge data with Compressed Sparse Row (CSR). CSR is
derived from the adjacency matrix, which is efficient for sparse matrix storage.
Figure 5 shows an example of CSR, in which Fig. 5(b) is the CSR representation
corresponding to the example graph in Fig. 5(a). The compact layout of CSR
enables better utilization of off-chip bandwidth.
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Fig. 5. An example of CSR-based subgraph representation format
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In GraphS, the number of external pseudo-channels determines the number
of subgraphs. Thus, in the above example, if two PEs are connected to different
pseudo-channels, the two subgraphs will be stored in different pseudo-channels
instead of the same pseudo-channel.

4.2 Omega Network

After the PE generates an update request, it must be sent to other PEs through
NoC. The most straightforward way to achieve this is to use the full N × N
crossbar when there are N PEs. However, such a crossbar will consume N2

FIFO resources, which an FPGA will struggle to satisfy when N scales to a
large number.

GraphS proposes an approach to using Omega network for NoC to improve
scalability. Omega network is a multi-stage crossbar, which means that a switch
fabric of multiple stages connects PEs. Assume that the input of Omega network
and output ports are N , where N must be a power of 2 because the number of
stages is the logarithm of N concerning 2. In the shuffling mechanism, each port
is randomly assigned an address from 0 to N − 1. Omega network connects the
ports between different stages in a cyclic left-shift manner. Since N is a power
of 2, each output port has a unique input port connected to it.

Regarding resource usage and efficiency, we will compare the two ways (full
crossbar vs. Omega). A full N ×N crossbar uses N2 FIFOs, whereas an Omega
equivalent uses log2N × (N/2) × 2 = Nlog2N FIFOs. Omega consumes less
FIFO than its counterpart N × N full crossbar, which is easy to demonstrate.
The full crossbar requires 8× 8 = 64 FIFOs, whereas the Omega only consumes
3× 4× 4 = 48 FIFOs. The disparity in resource use will widen as the number of
ports grows.

In terms of efficiency, the N×N full-crossbar achieves 1-hop message passing
latency, but the equivalent Omega requires log2N -hop message passing latency.
Nevertheless, graph processing is a throughput-critical application. It is reason-
able to exchange latency for the resource.

4.3 Degree-Aware Preprocessing Method

The power-law properties of the graph introduce a significant degree gap between
different vertices. For unprocessed graph data, the degrees of other vertices are
entirely random. Therefore, simply adopting the hash mapping method will likely
cause serious load imbalance problems.

Based on this observation, we present a degree-aware preprocessing method
to achieve load balance. As shown in Algorithm2, the key idea is to sort each
vertex according to the load quantization value. It mainly consists of the follow-
ing three steps. First, the algorithm traverses the edge array of the input graph
and counts the in-degree and out-degree numbers of different vertices. Second,
the algorithm quantifies the workload for each vertex according to the number
of in-degree and out-degree and saves it in the workload array. After sorting,
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Algorithm 2 Degree-aware Preprocessing Method
Input: Eset - Original Edge Set
Output: E

′
set - New Edge Set

1: for each E(v, u) of Eset do
2: Indegree[u]++;
3: Outdegree[v]++;
4: end for
5: for each V ertex v do
6: Workload[v] = Calculate(Indegree[v],Outdegree[v]);
7: end for
8: Sort(Workload);
9: for each E(v, u) of Eset do

10: NewEdge = {sort(v),sort(u)};

11: E
′
set.push(NewEdge);

12: end for

each vertex will get a new index according to its workload. Finally, the algo-
rithm outputs the renumbered edge array according to the new and old index
mapping relationship. Because graphs are mostly power-law and degree-aware
preprocessing works is fit well for power-law graphs.

5 Evaluation

In this section, we will evaluate the performance of GraphS on different graph
algorithms and datasets.

5.1 Experimental Settings

Evaluation Tools: Our accelerator is built on the Xilinx Alveo U280 accelerator
card. The U280 has 9.072 MB BRAM, 34.56 MB URAM, and 1304K LUTs. The
HBM subsystem on the U280 card has 32 pseudo-channels, 8 GB of storage
capacity, and a theoretical aggregated memory bandwidth of up to 460 GB/s.
Using Xilinx Vivado 2019, we verify the correctness of the accelerator and obtain
the clock rate and resource utilization. We use DRAMSim3 [19] to simulate the
cycle-accurate behavior of off-chip accesses.

Graph Algorithms: We implement three representative graph algorithms on
our accelerator, including Breadth First Search (BFS), Weakly Connected Com-
ponents (WCC), and Single Source Shortest Path (SSSP).

Graph Datasets: We choose four realistic graphs taken from [20] and two syn-
thetic RMAT graphs shown in Table 1. The first number in the names of RMAT
graphs represents the scale of the graph, and the second number represents the
average degree.
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Table 1. Graph datasets

Names Vertices Edges Avg. Deg Directed

DBLP 0.32 M 1.05 M 3.28 N

Youtube 1.13 M 2.99 M 2.64 N

Wiki 2.39 M 5.02 M 2.10 Y

LiveJournal 4.85 M 69.0 M 14.22 Y

RMAT20-30 1.0 M 30.0 M 30 Y

RMAT19-40 0.5 M 20.0 M 40 Y

Table 2. Resource utilization

BFS SSSP WCC

LUT 25.5% 26.2% 26.4%

BRAM 38.1% 38.1% 38.1%

URAM 27.1% 54.2% 54.2%

Simulation Clock rate 200MHz 200 MHz 200 MHz

5.2 Experimental Results

Resource Utilization: Table 2 shows the frequencies used by different algo-
rithms and their resource usage when GraphS uses 32 pseudo-channels, and each
pseudo-channel corresponds to 4 PEs. The resource usage is obtained by designing
GraphS in Xilinx Vivado. The resource usage of different algorithms is different
because the actual processing logic and data width corresponding to the three
algorithms are different. Since GraphS stores all vertex data in the algorithm on-
chip, the consumption of on-chip storage resources is relatively high.
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Throughput: Figure 6 shows the throughput performance of GraphS on various
datasets and algorithms. Throughput is called the number of traversed edges per
second (TEPS). Because the first iteration of WCC will traverse all vertices
and their related edges, the throughput of the first iteration of WCC can be
used to measure the graph accelerator’s performance. The results show WCC-1
and WCC-T representing the throughput of the first iteration and the entire
processing, respectively. As shown in Fig. 6, GraphS achieves 212 MTEPS–6757
MTEPS overall graph algorithms and datasets.

The accelerator performs poorly on sparse datasets, such as Youtube, Wiki,
and DBLP. A low average degree results in the poor locality of edge data, making
each access to edge data random. When dealing with relatively dense graph data,
such as LiveJournal, the edge prefetching can fully use the high bandwidth of
HBM. As shown in Fig. 6, the performance increases linearly when the average
degree is less than 16.

Table 3. Performance comparison between GraphS and ForeGraph

Algorithms Datasets ForeGraph GraphS

BFS YT 299 MTEPS 1221 MTEPS

BFS WK 100 MTEPS 888 MTEPS

BFS LJ 153 MTEPS 3343 MTEPS

WCC YT 187 MTEPS 261 MTEPS

WCC WK 96.5 MTEPS 252 MTEPS

WCC LJ 119.3 MTEPS 1080 MTEPS

Table 3 shows the performance comparison results with ForeGraph [10].
Table 3 shows that GraphS achieves 4.08×–21.84× speedups for BFS and 1.39×–
9.05× speedups for WCC compared to ForeGraph. The speedup mainly comes
from the high bandwidth of HBM. We can see that the speedup ratio on dense
graphs is superior. The reason is that the high bandwidth of HBM has a good
effect on edge prefetching of dense graphs.

According to comparison results, we can see that ForeGraph is limited by
its limited off-chip bandwidth. Even though many mechanisms optimize data
access patterns, the throughput is difficult to catch up with graph accelerators
using HBM. It shows that with the rapid development of hardware performance,
the main bottleneck of graph accelerators has changed from random accesses
and data conflicts caused by graph irregularity to efficiently utilize the high
bandwidth of new memory devices.

Normalized Performance: The performance indicator is referred to as TEPS.
The normalized performance of Fig. 8 is similar.



An Efficient Graph Accelerator with Distributed On-Chip Memory Hierarchy 785

0.9

1

1.1

1.2

YT WK LJ DB

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Baseline Preprocessing

Fig. 7. Performance benefit from degree-aware preprocessing method

Benefits from Degree-Aware Preprocessing Method: As shown in Fig. 7,
the degree-aware preprocessing method achieves 1.3%–12.4% speedups compared
to the baseline. Overall, the more uneven the load on the input graph, the better
performance the degree-aware preprocessing method can achieve. Conversely, if
the degree between the vertices of the input graph itself is already averaged, it
is difficult for this method to achieve significant results. So it is appropriate to
trade some overhead for stable performance. Since the preprocessed graph data
can be executed multiple times, the overhead is amortized in each execution.

5.3 Performance Scaling

For GraphS, there are two scaling directions: increasing the numbers of pseudo-
channels and increasing the numbers of PEs.
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Fig. 8. Performance characterization of GraphS by adopting different number of (a)
Pseudo-channels and (b) PEs

Figure 8(a) presents the performance of GraphS configured with 4 PEs for
each pseudo-channel and uses increasing numbers of pseudo-channel. From
Fig. 8(a), we can observe that the performance speedups are almost linear
according to the number of pseudo-channel. It demonstrates that in GraphS
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the decoupled design is effective on performance scaling in the direction of
increasing pseudo-channels. Because the scaling of pseudo-channel means that
the prefetcher can read more edge data from the off-chip memory per cycle. At
constant frequency, the bandwidth between the FPGA and the off-chip mem-
ory will linearly increase as the number of channels increases. Therefore, it can
achieve good performance improvement for both sparse and dense graphs.

Figure 8(b) presents the performance of GraphS that configures with varying
PEs on 16 pseudo-channels. We can observe that the performance of GraphS
rises with more PEs, and such performance gains are higher when the vertices of
the input graph have higher average degrees. However, when the degree of most
vertices is much smaller than the off-chip bus bandwidth, the accelerator wastes
a lot of off-chip memory bandwidth.

Comparing Fig. 8(a) with Fig. 8(b), we can observe that although the number
of PEs on the chip is the same, the speedup ratio of increasing the number of
PEs corresponding to each pseudo-channel is smaller than that of increasing the
number of pseudo-channels. Based on this, we can see that the accelerator should
prioritize scaling the number of pseudo-channels rather than simply increasing
the number of PEs when scaling.

6 Conclusion

We present GraphS, an efficient graph accelerator with distributed on-chip mem-
ory hierarchy. Compared to the fully connected crossbar, GraphS uses the Omega
network for NoC, which improves scalability. To improve load imbalance, we
propose software/hardware co-design. Our evaluation on a variety of graph algo-
rithms shows that GraphS can achieve throughputs of up to 3.342 GTEPS on
realistic graphs, with a speedup of up to 21.84 × compared to ForeGraph.
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61832006, and 61929103).
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Abstract. Mission-oriented opportunistic networks are a new form of network.
Its application background is to complete specific tasks. Its prominent feature is
Mission-oriented mobility. This paper, based on the goal-driven mobility model
of human nodes in the established Mission-oriented opportunistic networks, pro-
poses a routing protocol based on multi-dimensional trust evaluation parameters
(MTEPRP). Firstly, contact intimacy, delivery credibility and location intimacy
are selected by the routing protocol as the direct-trusting multi-dimensional trust
evaluation parameters to calculate the direct trust value of the nodes, and the
weight coefficient of the direct trust value is adjusted by grey relational analysis
algorithm. Then, contact intimacy and delivery credibility are selected to cal-
culate the recommended-trusting multi-dimensional trust evaluation parameters,
which uses the collaborative computing technology and joint multi-nodes to cal-
culate the recommendation trust values. Finally, the total trust values of nodes
are calculated by fusing direct trust values and recommendation trust values. This
paper transforms a routing problem for dynamic moving and unstructured space
is transformed into a routing problem for static and structured multi-dimensional
trust evaluation parameter space by adopting the data forwarding strategy of com-
paring multi-dimensional trust evaluation parameters. Experimental results show
that compared with Epidemic and Prophet routing protocol, the MTEPRP pro-
posed in this paper has better performance in network transmission success rate,
data transmission delay and routing overhead.

Keywords: Mission-oriented opportunistic networks · Routing protocol ·
Multi-dimensional trust evaluation parameters · Grey relational analysis ·
Collaborative computing

1 Introduction

With the rapid development of information technology, the trend of informationization,
digitalization and networking of society is deepened. A large number of low-cost mobile
devices with short-range communication interfaces are greatly changing day by day
[1–3]. For example, smart phones with Wi-Fi and Bluetooth interfaces, Personal Dig-
ital Assistant (PDA) and vehicle-mounted wireless devices share data or collaborate
to access the Internet in the form of ad hoc networks [4]. There are some extreme
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environments in real life, such as typhoon, earthquake, flood and other natural disas-
ters [5], in which there is no basic communication facility or the basic communication
facility is seriously damaged. Therefore, it is necessary to establish a communication
network with mobile nodes, wireless communication and easy self-organization to real-
ize regional data transmission [6]. Therefore, the opportunistic networks have been to
solve the network communication problem under extreme conditions in academic cir-
cles [7]. Opportunistic networks are a kind of self-organizing networks which do not
need a complete path between the source node and the destination node, and realizes
network communication by using the encounter opportunity brought by node move-
ment [8–10]. Unlike traditional networks, the opportunistic networks are suitable for
establishment without any additional infrastructure and can tolerate long delays during
data communication [11]. What’s more, they do not require end-to-end connections, but
to realize inter-node communication in a “store-carry-forward” routing mode, which
is of great significance to future pervasive computing [12, 13]. With the deepening of
researches, it is found that most of the existing opportunistic networks routing protocol
are impractical or mechanical, without considering that mobile communication devices
are carried by human beings in real life [14]. It is easy to ignore that the movement of
nodes is actually human’s movement. And the previous routing protocol cannot reflect
that human movement in the network is Mission-oriented [15]. Therefore, we focus
on the Mission-oriented Opportunistic Networks (MOONs), which is the evolution of
Opportunistic Networks (OPPNET). MOONs, based on the application background of
completing a specific task, requires mobile nodes to use “opportunity” to forward data,
and gradually achieve the goal of completing tasks in a dynamic and cooperative way.

MOONs is a new network form, focusing on its theory, technology and application,
such as Mission-oriented human mobility model, node discovery and communication
mechanism, data forwarding and routing strategy, privacy and security, etc. [16].MOONs
not only have the characteristics of general OPPNET, but also have the following three
basic characteristics:

• Human participation. In MOONs, people who carry wireless communication devices
(such as smart phones, PDA or wireless sensors) act as mobile nodes and become part
of the network, and in a sense act as communication devices and data carriers.”

• The movement of human nodes is purposeful. Because people are intelligent. They
will make mobile decisions guided by task completion, which will play a positive role
in task completion. This is essentially different from many published mobile models
in which nodes move randomly “mechanically” [17].

• Network communication is “opportunistic”. Two or more nodes can communicate
and forward data only when they move to each other’s communication range, and the
data forwarding strategy is also based on whether it is beneficial to complete tasks.
Otherwise, nodes can only save information in their buffers till new communication
opportunities are found [18].

InMOONs, because there is no complete connection path between the twoparties, the
traditional routing strategy is not applicable here. Exploring the data forwarding strategy
with high trust evaluation, designing routing protocol that reduce delay, and improving
transmission success rate are the basis of other applications of MOONs. Therefore,
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studying efficient and credible routing protocol is one of the basic studies of MOONs
applications. This paper proposes a routing protocol based on multi-dimensional trust
evaluation parameters (MTEPRP). In this protocol, the direct trust value is calculated
by grey relational analysis algorithm, and the recommendation trust value is calculated
jointly by multiple nodes by collaborative computing technology. Finally, the total trust
value of nodes is calculated by integrating the direct trust value and the recommendation
trust value.

2 Related Work

In recent years, scholars at home and abroad have conducted extensive research on
opportunistic networks and proposedmany opportunistic networks routing protocol [19],
but finding a high-performance opportunistic network routing protocol is still a huge
challenge.

Boldrini et al. propose a context-based routing protocol (HiBOp). HiBOp provides
a general framework for managing and using context to make forwarding decisions. It
does not pay attention to the predefined context information set. Instead, it can describe
its context with any information that users are willing to provide [20]. Gupta et al. based
on cognitive-based routing protocol (CRPO), make intelligent decisions based on past
experience and perceived input. It defines a neural network at each node, and under-
stands the simulation environment over time in order to successfully deliver messages
[21]. Kiranmayi et al. propose a propagation-based routing protocol (Epidemic), which
is based on paired contact between nodes, in which nodes exchange digest vectors con-
taining message lists stored on each node. Based on the digest vector received, each
node requests a message that is not yet in its buffer. When the destination encounters a
node hosting a message destined for the destination, the message is delivered to the des-
tination [22]. Grasic et al. propose a probability-based routing protocol (Prophet), which
introduces the concept of delivery predictability. Delivery predictability is the probabil-
ity that a node meets a specific destination. Prophet routing protocol requests messages
only when the receiving node delivers to the destination with greater predictability [23].
Magaia et al. propose a privacy-based routing protocol (PRIVO). PRIVO models DTN
as a time-varying adjacency graph, where edges correspond to the adjacency relationship
between pairs of nodes. PRIVO ensures privacy by protecting sensitive information on
each node, even if that information must be processed elsewhere. In addition, nodes use
Paillier homomorphic encryption scheme to compare their routing metrics in a private
way [24]. Zhang et al. propose a replication-based routing protocol (FGAR), which is
a routing protocol designed for mobile opportunistic networks. It utilizes fine-grained
contact characteristics and adaptive message replication. In FGAR, the sliding window
mechanism is used to describe the contact history in a fine-grained way, and the future
contact is predicted based on the fine-grained contact information, so as to improve the
accuracy of contact prediction [25].

Due to the intermittent and unstable connection between source and destination,
message routing and forwarding in opportunistic networks have become a challenging
and thorny problem in recent years [26]. Although some research achievements have
been made on data routing protocol for opportunistic networks applications, it has pro-
moted the implementation of some prototype systems, but the existing research still has
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some shortcomings. For the above MOONs, the corresponding data routing protocol is
quite different from the published results, and the new data forwarding must reflect the
comprehensive indicators such as human behavior orientation and purpose-driven in a
specific environment. In addition, the research work of data routing protocol must fully
consider the tradeoff among link usage “opportunity”, delay tolerance and network load
throughput efficiency.

3 Routing Protocol Based on Multi-dimensional Trust Evaluation
Parameters

In this paper, we try to improve the data forwarding process by using the internal char-
acteristics of each node in the network, and try to transform a frequently changing and
unstructured routing problem into a static and structured routing problem in the trust
evaluation parameter space by using the data forwarding strategy based on trust evalua-
tion parameters. Based on this idea, in MOONs, we construct a multidimensional trust
evaluation parameter set with the goal of completing the task, and calculate the reliability
of node data forwarding to determine the selection of the next hop receiving node. In
this paper, we propose a routing protocol based on multidimensional trust evaluation
parameters routing protocol (MTEPRP). MTEPRP is divided into three modules: Trust
computingmodule, direct trust computingmodule and recommendation trust computing
module. Figure 1 shows the structure diagram of MTEPRP routing protocol.

Fig. 1. MTEPRP routing protocol structure diagram

3.1 Multidimensional Trust Evaluation Parameters

Traditional single direct trust attribute cannot completely reflect the attributes of the
network. The past routing protocol didn’t take the influence of the internal relationship
among trust attributes on trust value into consideration. In order to ensure data transmis-
sion to Sink nodes, on the basis of reducing node energy consumption, we find a method
that can not only improve data transmission rate, but also shorten data transmission delay.
We designmulti-dimensional trust evaluation parameters according to the characteristics
of Mission-oriented opportunistic networks and the mobility characteristics of nodes.
This paper mainly studies data forwarding in opportunistic networks. Data forwarding is
accomplished when nodes meet. We choose three important attributes in the encounter
mode, and design three indexes as the calculation parameters of the routing protocol:
contact intimacy, delivery credibility and position intimacy. They are introduced below:
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• Contact intimacy: VC represents the intimacy of direct contact between the current
node and the Sink node. Sink node is the base station of opportunistic network model,
and its communication range covers the whole area. In the opportunistic networks
model of this paper, the goal of ordinary nodes is to deliver messages to Sink nodes.
The higher the frequency of direct interaction between nodes and Sink nodes (the
higher the contact intimacy), the higher the probability that nodes will send messages
to Sink nodes, whereas the lower the probability that nodes will send messages to
Sink nodes. The calculation formula is as follows:

VC = CS

C
(1)

CS represents the number of contacts between nodes and Sink nodes. And C
represents the number of contacts with all nodes in the network.

• Delivery credibility: VD represents the credibility of nodes when transmitting mes-
sages. The high frequency of packet loss indicates the low delivery credibility, while
the low frequency implies the high delivery credibility. Selfish nodes and malicious
nodesmostly choose not to forward data, while normal nodeswill forward the received
data. Delivery credibility helps to distinguish normal nodes from selfish andmalicious
nodes. Its calculation is as follows:

VD = CP

RP
(2)

CP represents the number of packets forwarded by the node, and RP represents the total
number of packets received by the node.

• Location intimacy: VL represents the location intimacy between the current node and
the Sink node. The smaller the distance between the node and the Sink node, the
greater the tendency of the node to close to the destination node, and the greater
the probability of meeting the Sink node, the greater the probability of transmitting
packets. Its calculation is as follows:

VL = 1 − DS

S
. (3)

DS represents the distance between the node and the Sink node. And S represents the
diameter or diagonal length of the whole communication range.

3.2 MTEPRP Routing Protocol

MTEPRP routing protocol uses direct trust and recommendation trust to calculate the
total trust value of nodes. Its calculation method is to integrate direct trust value and
recommendation trust value. The formula is shown in Eq. (4):

Ti,j = θ1T
direct
i.j + θ2T

recom
i.j (4)
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Assuming that node i is an evaluation node, and that node j is an evaluation node which
i determines whether to forward data or not, Ti,j is the total trust value, Tdirect

i.j represents
the direct trust value of node i to j, and Trecom

i.j represents the recommendation trust
value calculated by node i to j. And θ1 and θ2 are the weight coefficients of direct trust
and recommendation trust respectively, which represents the importance of direct trust
calculation and recommendation trust calculation to the calculation of total trust value.
In the opportunistic networks routing protocol, θ1 = θ2 = 0.5 is generally chosen as the
weight coefficient of direct trust value and recommendation trust value. In this paper, θ1
= θ2 = 0.5.

The direct trust value is fused and calculated according to contact intimacy, delivery
credibility and location intimacy. Multi-dimensional trust attributes are used to con-
struct the basic parameters of direct trust, and multiple trust attributes affecting network
performance are comprehensively considered, which ensures the overall stability and
fairness of the network and exerts the advantages of multi-dimensional trust evaluation
parameters. In a time period, the calculation formula of the direct trust value of node i
to node j is shown in Eq. (5):

Tdirect
i,j = β1VC + β2VD + β3VL (5)

Among them, β1, β2 and β3 are respectively the weight coefficients of contact intimacy,
delivery credibility and position intimacy, β1 + β2 + β3 = 1. In MOONs, the neighbor
nodes contacted during node movement change. In each time period, by calculating
the proportion of each attribute in the direct trust calculation of the routing protocol, the
direct trust value can be accurately calculated to express the trust degree in the process of
direct contact with the evaluated nodes. Gray correlation analysis is a method to analyze
and determine the degree of influence between contact intimacy, delivery credibility,
and location intimacy or the contribution measure of factors to the main behavior of the
system through gray correlation. The steps of grey relational analysis are as follows:

a. First, we should determine the reference sequence, which is the data sequence
reflecting the behavior characteristics of opportunistic network routing protocol.
In this paper, the constant sequence x0 = {V 0

C ,V 0
C ,V 0

C} is selected as the reference
sequence. The selection of reference sequence should reflect the best state of the
model. In the ideal state, when the value of reference sequence tends to x0 = {1, 1,
1}, the data forwarding state of nodes in the network is the best, so x0 = {1, 1, 1} is
selected as the reference sequence.

b. Determine the comparison sequence, which is the data sequence composed of fac-
tors affecting system behavior. And the time series of contact intimacy, delivery
credibility and position intimacy as the reference sequence are selected.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 =
{
V t
C ,V t−1

C ,V t−2
C

}

x2 =
{
V t
D,V t−1

D ,V t−2
D

}

x3 =
{
V t
L,V

t−1
L ,V t−2

L

}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6)
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V t
C , V

t
D and V t

L are contact intimacy, delivery credibility and position intimacy at t
moment. Because the parameters of the reference sequence are all percentages and the
units are uniform, it is not necessary to carry out dimensionless treatment.

c. Calculate ξ(xi), the grey correlation coefficient of reference sequence and com-
parison sequence, and calculate the correlation coefficient of comparison sequence
relative to reference sequence at each point of curve:

ξk = �(min) + ρ�(max)

�oi(k) + ρ�(max)
(7)

ρ is the resolution coefficient generally between 0 and 1. The second-level minimum
difference in the comparison sequence is marked as �(min). �(max) is the two-level
maximum difference. The extreme difference is the difference between the maximum
data and the minimum data in a group of data. The absolute difference between each
point on the curve of the comparison sequence xi (i = 1, 2, 3) and each point on the
curve of the reference sequence X0 is denoted as �oi(k).

d. Find the correlation degree. The correlation coefficient is the correlation degree value
between the comparison sequence and the reference sequence at each time (that is
each point in the curve). The correlation degree is calculated as follows:

rk = 1

N

n∑

i=1

ξk(i) (8)

e. Calculate the weight coefficient, β1, β2 and β3, of each attribute in the direct trust
value according to the correlation degree.

βi = ri
r1 + r2 + r3

(9)

Finally, the direct trust value Tdirect
i,j is calculated according to the calculation formula

(4) of direct trust. The grey relational degree reflects the influence of various factors
in routing protocol on network performance, and improving the accuracy of direct tru.t
value calculation.

For the false recommendations spread by selfish and malicious nodes in opportunis-
tic networks, here designs a recommendation trust based on collaborative computing,
including the collaborative computing of recommendation trust, the design of recommen-
dation features and the introduction of algorithm computing steps. The routing protocol
selects contact intimacy and delivery credibility as recommendation trust parameters,
and proposes a collaborative computing recommendation trust filtering algorithm based
on KNN, which considers the security requirements and efficiency requirements of
opportunistic networks. Recommendation trust based on collaborative computing can
effectively filter the false recommendation of recommendation trust information and
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improve the accuracy of recommendation trust calculation. The recommendation trust
calculation formula based on collaborative computing is as follows:

Trecom
i,j =

∑
m∈R

{
Ti,m(t) × Tm,j(t)

}

∑
m∈R Ti,m(t)

(10)

R is the set of recommend node, m is the set of random recommend node. Node m and
i make collaborative decisions. Ti,m(t) is a trust value evaluation node m of node i and
Tm,j(t) is a trust value evaluation node j of node m.

4 Experimental Evaluation

4.1 Simulation Environment Settings

In order to verify the effectiveness of MTEPRP routing protocol in improving network
performance, we use ONE simulator to simulate the routing protocol. We compare
MTEPRP routing protocol with Epidemic and Prophet routing protocol. It’s found that
the Epidemic routing protocol can maximize the success rate of packet transmission
and reduce transmission delay, which can be used as a standard comparison between
transmission rate and delay. Prophet routing protocol is an algorithmbased on scheduling
strategy, which can be used as a benchmark for predictive forwarding decision. This
experiment simulates an opportunistic network consisting of a base station (Sink) and
various mobile nodes within the communication range of the base station. The simulated
area is 5 km\times 3 km, the node moving speed is general 1–5 m/s, and a new data is
generated every 30–45 s. The total number of nodes set in the experiment is 400, 100
selfish nodes and malicious nodes are set, and 300 normal nodes verify the performance
of MTEPRP in the network. The simulation parameters are set as shown in Table 1.

Table 1. Network simulation parameters

Parameters Value

Number of normal nodes 400

Number of Sink Nodes 1

Scope of simulated area 5 km\times 3 km

Node moving speed 1 ~ 5 m/s

Transmission rate 250 KB/s

Cache size 5 MB

Message size 400 ~ 800 KB

Frequency of data generation 30 ~ 45 s

Communication radius of normal nodes 15 m

Communication radius of Sink The communication covers the whole area
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4.2 Analysis of Simulation Result

In order to verify the network performance of MTEPRP routing protocol in opportunis-
tic networks, under the condition of different ratio between selfish, malicious node and
normal node, through three aspects of data transmission success rate, transmission delay,
routing overhead, the experiment makes a comparison between MTEPRP routing pro-
tocol and Epidemic, Prophet routing protocol to verify the effectiveness of the routing
protocol.

There are totally 400 nodes in the experiment. Because the different density of self-
ish and malicious nodes have a great difference on the impact of the network, firstly,
50 selfish and malicious nodes and 350 normal nodes are set in the network to ver-
ify the performance of the routing protocol. As it shown in Fig. 2, with the running
time progresses, resources are gradually consumed, and the transmission success rate
of each routing protocol decreases overall. At the beginning, Epidemic has the highest
transmission success rate, but the simulation time increases gradually, and the trans-
mission success rate of Epidemic, which consumes the most resources, drops sharply.
This is because Epidemic is at the expense of network resources to improve the trans-
mission success rate. MTEPRP adopts multi-dimensional trust evaluation parameters,
comprehensively considers all factors affecting node transmission in the network, real-
izes collaborative computing among nodes, and effectively resists attacks from selfish
and malicious nodes. The transmission success rate of MTEPRP is higher than that of
Prophet in the figure, andwith the increase of time, the consumption of network resources
and the decline rate of transmission success rate are relatively stable.

Fig. 2. Comparison chart of network transmission success rate (number of selfish and malicious
nodes 50)

In Fig. 3, the average transmission delay of Epidemic is the smallest at the beginning
of the experiment. But the average delay time increases obviously with the increase
of simulation time. The average transmission delay of MTEPRP is smaller than that
of Prophet. MTEPRP routing protocol combines the current routing table to calculate
the trust value, which simplifies the decision-making process and has relatively small
transmission delay.
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Fig. 3. Comparison chart of average delay time (number of selfish and malicious nodes 50)

Figure 4 shows the routing overhead of nodes. MTEPRP routing protocol eliminates
most selfish nodes and malicious nodes in the selection of next hop nodes, and selects a
small number of nodes with higher trust values as the next hop, which greatly reduces the
routing overhead of the network. Epidemic uses a flooding algorithm. In the process of
data transmission, nodes transmit data to all nodes in contact with them, and the routing
overhead is the highest till the data is transmitted to the target node.

Fig. 4. Comparison chart of network routing overhead ratio (number of selfish and malicious
nodes 50)

Next, consider the increase in the proportion of selfish nodes and malicious nodes.
In the experiment, the number of selfish and malicious nodes is 100, and the number of
normal nodes is 300. At this time, the threat to the opportunistic network will increase,
and the overall performance will decline. As shown in Fig. 5, with the gradual progress
of simulation time and the gradual consumption of network resources, the transmission
success rate of all models or algorithms generally decreases. Among them, Epidemic has
the highest transmission success rate and the fastest downward trend when the network
starts to run. As can be seen from the figure, under the condition that the number of
selfish and malicious nodes increases, the data transmission success rate of MTEPRP is
high and stable.
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Fig. 5. Comparison chart of network transmission success rate (number of selfish and malicious
nodes 100)

In Fig. 6, the average delay time of MTEPRP model at the beginning of simulation
is only longer than that of Epidemic routing algorithm at each time, and smaller than
that of Epidemic and Prophet in the later stage of simulation experiment.

Fig. 6. Comparison chart of average delay time (number of selfish and malicious nodes 100)

Figure 7 shows the routing overhead ratio of each routing protocol, It can be seen that
when the number of selfish nodes and malicious nodes increases, the routing overhead
ratio of each routing mechanism increases, but relatively speaking, the routing overhead
of MTEPRP is also the smallest, because MTEPRP routing protocol eliminates most
selfish nodes and malicious nodes in design and greatly reduces the routing overhead of
the network.

To sum up, compared with Epidemic and Prophet routing protocol, MTEPRP per-
forms well in all aspects. It can achieve good performance in the harsh Mission-oriented
opportunistic networks environment. After many times of the comparison of the exper-
iments, MTEPRP routing protocol not only has good performance in improving the
success rate of data transmission, but also controls the transmission delay and network
overhead, so it is a routing protocol with strong comprehensive performance. Compared
with other routing protocol, it can effectively defend against the bad influence of selfish
and malicious nodes on the network performance.
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Fig. 7. Comparison chart of network routing overhead ratio (number of selfish and malicious
nodes 100)

5 Conclusion

This paper proposes a routing protocol based on multidimensional trust evaluation
parameters. Contact intimacy, delivery credibility and location intimacy are selected
as multi-dimensional trust evaluation parameters of the routing protocol. By comparing
the data forwarding strategy of multi-dimensional trust evaluation parameters, a routing
problem for dynamic moving and unstructured space is transformed into a routing prob-
lem for static and structured multi-dimensional trust evaluation parameter space. The
MTEPRP routing protocol combines the direct trust value and the recommendation trust
value to calculate the total trust value of nodes. Simulation results show that compared
with Epidemic and Prophet, MTEPRP has better performance in network transmission
success rate, data transmission delay and routing overhead.
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