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Abstract This paper covers the determination of time-spatial varyingmold heat flux
using mold temperatures measured by fast response thermocouples at a frequency up
to 60 Hz. A two-dimensional transient inverse heat conduction problem (2DIHCP)
is established, where 2DIHCP is developed based on the sequential function spec-
ification method implemented with the spatial regularization terms to reduce the
fluctuations in the estimated heat flux in both time and spatial domain. Then, the
inverse problem was validated using a designed numeric test-problem. Finally, the
inverse problem is applied to calculating the heat flux across the mold hot surface
for a continuous casting trial using the mold simulator.

Keywords Modeling and simulation · Iron and steel · Process technology ·
Continuous casting

Nomenclature

c Heat capacity (J/kg K)
f (∂�4, t) Temperature of the boundary ∂�4 (K)
H Spatial regularization matrix
X Sensitivity matrix
M Numbers of the thermocouple in the calculated domain �

nj Number of heat flux components at the boundary ∂�j, j =
1, 2, 3.

N N = n1 + n2 + n3
q Heat flux (W/m2)
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r Future time step (−)
s Objective function
t, tj Time (s)
T Vector of estimated temperature (K)
Tm Estimated temperatures at themeasurement location (xm, ym)

(K)
T ini Initial temperature (K)
x, y Cartesian spatial coordinates (m)
Y Vector of the measured temperature (K)
Ym Measured temperature at the measurement location (xm, ym)

(K)

Greek Symbols

α Regularization parameters (K2 m4 W4)
λ Thermal conductivity (W m−1 K−1)
ρ Density (kg m−3)
σ Standard deviation of the measurements
ω Random variable
� Calculated domain
∂�1, ∂�2, ∂�3, ∂�4 Boundary of the calculated domain �

Introduction

Many surface defects in final rolled steel products originate from the initial solidi-
fication of molten steel inside continuous casting molds. This has been found to be
associated with the heat transfer behaviors of the mold itself [1–3]. The mold heat
flux, especially at the mold meniscus area, is extremely complex due to the tran-
sient nature of the infiltration of lubricant liquid mold flux, intensive fluid flow, and
mold oscillation, such that it would be very difficult to get a clear comprehensive
understanding of all dynamics within the system [4–8].

The heat flux of the mold is a space–time varying variable [9]. Usually, the mold
heat transfer is monitored by temperature sensors [10]. Hundreds of thermocou-
ples/sensors are employed to monitor the mold temperature during the continuous
casting process, with a temperature sampling rate of 1–65 Hz. The mold heat flux
cannot be calculated directly from the measured temperatures because of the lack of
information on the boundary conditions. Mathematically, the determination of the
mold heat flux from measured temperatures is an inverse problem that means the
solution is usually unstable, not unique or does not exist, and a small measured error
in the temperatures will result in a large error of heat flux [11, 12].
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The inverse problem method has a broad application prospect in determining
the heat flux from measured temperatures. The principle of inverse problems for
restructuring the heat flux is to find out a heat flux with the maximum probability
making the sum of squared deviations between the calculated temperatures T and
the measured temperatures Y to be minimum [13].

The development of the use of inverse problem methods to calculate continuous
casting mold heat flux from temperature measurements can be traced back to the
works by Brimacomb et al. [14], followed by Thomas et al. [15], Wang et al. [16–
18], Griffiths [19], Rajaraman [20], and Talukdar et al. [21]. Those inverse problem
methods could be classified as the gradient-based type methods, such as the func-
tion specification method [9], the Tikhonov regularization [22] and the conjugate
gradient method [23, 24], and the stochastic-based type methods, such as the genetic
algorithm and the neural network algorithm [25]. However, the major weakness of
the inverse problem persists in that it is extremely sensitive to temperature measure-
ment errors, particularly as the time step is made smaller [12, 26]. As continuous
casting technology progresses, fastmold thermalmonitoring systems are adopted that
could provide amore accurate detection precision supervising the fluctuation ofmold
temperature [5, 6]. However, the faster temperature sampling rate of mold thermal
monitoring systems is inevitably accompanied by a higher intensity of the error/noise
in the measured temperatures [12]. As a result of the increase of the temperature
sampling rate, the use of small-time step frequently introduces instabilities in the
solution of the inverse heat conduction problem.

In the engineering community, the inverse problem of Beck’s sequential function
specification method is well-known and very successfully used in solving inverse
heat conduction problems for over 50 years [27–31]. For Beck’s sequential function
specification method, the heat flux form is assumed to be a constant function or a
linear function over several future time steps due to the fact that the temperature
response is lagging with respect to the boundary heat flux [23], then the stabilization
of the solution in the time domain can be improved by choosing an appropriate
number of future time steps [24, 32]. However, a common issue raised is how to
improve the stabilization of the solution in the time and spatial domain for extending
the sequential function specification method to the two-dimensional heat transfer
problem [33, 34].

Therefore, the purpose of this work is to establish a two-dimensional transient
inverse heat conduction problem (2DIHCP) for the estimation of the mold heat flux
from fast-sampled temperature data. The inverse problem is developed where the
function specification method with a spatial Tikhonov regularization [6, 35, 36] was
used to improve the stabilization of the solution in time and spatial domains, respec-
tively. Then, a numeric test-problem was designed to validate the inverse problem.
Finally, the inverse problem is applied to calculating the mold heat flux during liquid
steel casting.
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The Experimental and Direct Problem Description

The continuous casting trial was conducted using a mold simulator. As Fig. 1 shows,
the mold simulator applied to this study is an inverse type water-cooled copper mold
(30 mm × 50 mm × 350 mm) with oscillation capability. A U-shaped type water-
cooling groove with a diameter of 10 mm is manufactured along the center line
of mold plate, 12.5 mm away from both ends and gets connected 20 mm above
the bottom, where the water flows from one end to the other. The copper mold is
equipped with an extractor that makes only one face of the mold exposed to the
liquid melt. The temperatures in the mold are measured by T-type thermocouples
at a frequency up to 60 Hz through a data acquisition system. The two columns of
thermocouples are spaced 3 and 8 mm away from the mold surface, respectively, as
shown in Fig. 1, the dots represent the locations of thermocouples. The arrangement
allows the first column of thermocouples to catch the temperature history of the
mold that will be used in the minimization of the objective function of the inverse
problem. The second column of thermocouple inside the mold wall on ∂�4 (CD)
is to provide the temperature boundary condition f (t), where the temperature is
interpolated linearly from two near measured temperatures for the nodes in between
the two thermocouples at ∂�4. This arrangement of those thermocouples in the mold
wall was chosen based on the study of Badri et al. [37] so as to improve the signal-
to-noise ratio for the temperature measurements during the experiment. Then, the
rectangular area ABCD with the height (AB) of H (= 21 mm) and the width (BC)
ofW (8 mm) is set as the heat transfer computational domain, which consists of four
boundary conditions ∂�1 (DA), ∂�2 (AB), ∂�3 (BC), and ∂�4 (CD).

The experiment runs as follows: Step I The oscillating water-cooling copper mold
and the extractor are dipped into the hot melt of liquid steel. After the mold and
extractor reached the target depth, the mold flux level and the liquid steel level would
be located in the mold thermocouple-measuring zone. Step II Themold and extractor
were held for several seconds to form an initial shell on thewater-cooled coppermold
to ensure the initial shell is strong enough to prevent tearing during extraction. Step III
The extractorwithdrew the solidifying shell downward at a constant speed to simulate
continuous casting. The mold moved upward at a certain speed to compensate for
the rise of the mold level, so that the liquid level could be kept in the same position
with respect to the mold. Step IV When the casting was completed for the desired
length, the mold and extractor were withdrawn out of the furnace and then cooled in
air.

By assuming the mold heat transfer is two-dimensional in the vertical section
ABCD perpendicular to the mold hot surface. The heat transfer within the mold
vertical section ABCD is assumed to be governed by Fourier partial differential
equations. The direct problem, namely the problem of 2D heat transfer within the
rectangular area ABCD, as shown in Fig. 1, is governed by the following equations.

cρ
∂T

∂t
= ∂

∂x

(
λ

∂T

∂x

)
+ ∂

∂y

(
λ

∂T

∂y

)
, in domain � = [0,W ] × [0, H ] (1a)
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Fig. 1 Computational area of the mold and locations of thermocouples for the casting experiment

−λ
∂T (∂�1 ∪ ∂�2 ∪ ∂�3, t)

∂n
= q to be estimated. (1b)

T (∂�4, t) = f (t) (1c)

T (x, y, 0) = Tini (1d)

where the symbol c represents the specific heat in J kg−1, ρ is the density in kg m−3,
T is the temperature in K, t is the time in second, and λ is thermal conductivity in
W m−1 K−1, q (W m−2) is the heat flux of boundary conditions ∂�1, ∂�2, and ∂�3,
n is the outer normal of boundary.

Inverse Problem Description

In this section, the inverse problem is developed based on the function specification
method implemented by a spatial Tikhonov regularization [6, 35, 36]. The sequential
function specification procedure is: (1) the heat fluxes are assumed to remain constant
over the r future time steps, qj = qj+1 = · · · = qj+r , owing to the temperature response
is lagging with respect to the boundary heat flux, and (2) By knowing the heat fluxes
for t < tj, namely q̃1, q̃2,…, q̃ j−1 are known, estimate q j so that makes the sum of the
squares of the deviations between the calculated temperatures T and the measured
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temperatures Y in the time interval [tj, tj+r−1] to be minimized. Then, the inverse
heat conduction problem could be converted into a problem that is to estimate q j by
making the following objective function to be minimum. Therefore, the definition of
the inverse heat conduction problem is made as follows

s(q j ) =
r−1∑
k=0

M∑
m=1

[
Y j+k
m − T j+k

m (q j )
]2 + αR(q j ) (2)

where r is the number of future time steps. Y j
m and T j

m are the measured tempera-
tures and the calculated temperatures at the time of tj and the measured position m,
respectively. M is the number of sensors. α is the spatial regularization parameter.

The finite difference method is used to solve the above direct problem, where the
rectangular area ABCD (�) will be divided into grids, and the boundaries of ∂�1,
∂�2, and ∂�3 will be split into n1, n2, and n3 divisions, respectively. Then, q has N
components, N = n1 + n2 + n3, and q

j
k represents the kth component of heat flux q

at the time of tj.

q j = [q j
1, q

j
2, q

j
3]T, q j

1 =
[
q j
1 , q

j
2 , . . . , q

j
n1

]T
,

q j
2 =

[
q j
n1+1, q

j
n1+2, . . . , q

j
n1+n2

]T
and

q j
3 =

[
q j
n1+n2+1, q

j
n1+n2+2, . . . , q

j
N

]T
.

Besides, a first-order of spatial Tikhonov regularization term is added to the objec-
tive function Eq. (2) so as to improve the spatial stabilization of the solution. It should
be mentioned that heat flux q might be subjected to discontinuity at the intersection
points between two adjacent boundaries of ∂�1 and ∂�2 (∂�2 and ∂�3). Thus, the
spatial Tikhonov regularizations for the heat flux of the boundaries ∂�1, ∂�2, and
∂�3 are described separately. That is

R(q j ) =
n1−1∑
n=1

(q j
n − q j

n+1)
2 +

n1+n2−1∑
n=n1+1

(q j
n − q j

n+1)
2 +

N−1∑
n=n1+n2+1

(q j
n − q j

n+1)
2 (3)

The estimated temperature T j could be evaluated using a Taylor series expansion
around the current solution q̃ j .

T j = T̃(q̃ j ) + X j (q j − q̃ j ). (4)

T̃(q̃ j ) is the temperature calculated using the current solution q̃ j . X j is called as the
M × N sensitivity coefficient matrix at time tj and is defined as follows.
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X j =
[
∂T(q j )

∂q j

]T

=

⎛
⎜⎜⎜⎜⎝

X j
1,1 X j

1,2 · · · X j
1,N

X j
2,1 X j

2,2 · · · X j
2,N

...
...

. . .
...

X j
M,1 X j

M,2 · · · X j
M,N

⎞
⎟⎟⎟⎟⎠,where

X j
m,n = ∂T j

m

∂q j
n

. (5)

The least squares equation s(qj) is minimized by differentiating it with respect to
each component of unknown heat flux and setting the resulting expressions equal to
zero, then a set of N equations is obtained for the estimation of heat flux.

∂s(q j )

∂q j
1

= 0,
∂s(q j )

∂q j
2

= 0, . . . ,
∂s(q j )

∂q j
N

= 0 (6)

The above equations yield to a matrix system to estimate the increment for a new
heat flux.

	q j =
(

r∑
i=1

XT
i Xi + αH

)−1( r∑
i=1

XT
i (Y j+i−1 − T̃ j+i−1)

)
(7)

where H is the N × N block diagonal regularization matrix. Both Yj and Tj are M
× 1 vector, and M is the number of measurements.

Y j = [Y j
1 ,Y j

2 , . . . ,Y j
M ]T (8a)

T j = [T j
1 , T j

2 , . . . , T j
M ]T (8b)

H = blkdiag(Hn1 , Hn2 , Hn3) (8c)

Hni =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦

ni×ni

. (8d)
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Sensitivity Coefficient Matrix

X j
m,n represents the temperature rise at the sensor location (xm, ym) for a unit step

change in the surface heat flux at the point (xn, yn) of boundaries ∂�1, ∂�2, and
∂�3 and the time tj. According to the definition of sensitivity coefficient [Eq. (5)],
the sensitivity coefficient problem for calculating sensitivity coefficient matrix is
obtained by taking the derivative of Eqs. [1a through 1d] with respect to a heat flux
component q j

n at the point (xn, yn) of boundaries ∂�1, ∂�2, and ∂�3, and n is 1, 2,
…, N. The sensitivity coefficient problem governing the sensitivity coefficients X j

m,n
is

cρ
∂X ,n

∂t
= ∂

∂x

(
λ

∂X ,n

∂x

)
+ ∂

∂y

(
λ

∂X ,n

∂y

)
, 0 < t ≤ tr

in domain � = [0,W ] × [0, H ] (9a)

−λ
∂X ,n(∂�1 ∪ ∂�2 ∪ ∂�3, t)

∂n
=

{
1, (x, y) = (xn, yn)
0, others

(9b)

X ,n(∂�4, t) = 0 (9c)

X ,n(x, y, 0) = 0 (9d)

The Determination of Regularization Parameter

The choice of the regularization parameter is required to balance the computational
cost and the stability of the inverse problem solution algorithm. The L-curve method
is adopted to optimize the regularization parameters α. L-curve criterion that plotted
the curve of {log(||Y–T||), log(R(qj))} often takes on a characteristic L shape, and
the optimal regularization parameter was corresponding to the corner of maximum
curvature in L-curve [38, 39]. However, many tests should be executed for the plot
L-curve, which is very computationally expensive. Alternatively, we consider the
use of Arcangeli’s discrepancy principle to significantly speed up the selection of the
optimal regularization parameter [40], that is

‖Y − T‖ ≈ σ√
α

(10)
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Stopping Criterion for the Iterative Procedure of Inverse
Problem

The stopping criterion for Eq. (2) is given by

s ≤ ε (11)

As temperatures contain measurement error, the temperature residual could be
approximated by

ε = (Y − T)T(Y − T) ∼= Mσ 2 (12)

where σ is the standard deviation of temperature measurement error.

Algorithm of Inverse Problem

As shown in Fig. 2, specify the number of future time steps r. Step 1, 2DIHCP is
running with an initial guess heat flux qj and a guess regularization parameter α. Step
2, solve the direct problem given by Eq. (1) with the estimated heat flux qj for T
during the time from tj to tj+r . Step 3, solve the sensitivity coefficient problem given
by Eq. (9a–d) for the sensitivity coefficient matrixX in the time interval from 0 to tr .
Step 4, check the stopping criterion given by Eq. (11). If the stopping criterion Eq.
(11) is satisfied, let αold = α and renew α using Eq. (10). Otherwise, the heat flux
is updated using qj = qj + �q and Eq. (7), and return to Step 2. Step 5, when |α −
αold|/αold < 0.05 is satisfied, qj could be regarded as the estimated heat flux at time
tj, then set j = j + l and return to Step 1 for the next time step calculation till the end
of the time steps. Otherwise, the heat flux is updated using qj = qj + �q and Eq. (7),
and return to Step 2. The algorithm is achieved and programed using MATLABTM.
All the partial differential equations are solved using the finite difference method.

Model Verification

Validation for Solving Partial Differential Equations
by Numeric Solution

Partial differential equations of heat conduction problems Eqs. [1a through 1d] and
the sensitivity coefficient problem given by Eqs. [9a through 9d] are solved using
the f inite difference method (FDM) with the classical Crank-Nicolson (CN) semi-
implicit scheme. The FDM code must be validated to be effective for solving partial
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Fig. 2 Algorithm of the
two-dimensional inverse heat
conduction problem
(2DIHCP)

differential equations before the run of the inverse calculation. Herein, the FDM
code was also verified through comparison with the analytical solutions of the heat
transfer in the solid from a classical textbook [41]. It was observed that the results
of the FDM method were consistent with those analytic solutions, suggesting the
FDM method can solve the heat conduction partial differential equation.

Validation for Algorithm of the Inverse Problem

The numeric test-problem is designed to verify the 2DIHCP. The direct problem is
also a the rectangular area ABCD (made of copper, height H is 0.021 m and width
W is 0.008 m, see Fig. 1) with the initial temperature of 273.15 K. The boundaries
of ∂�1, ∂�3, and ∂�4 are insulated boundaries, and the heat flux f(y, t) is applied to
the ∂�2. The f(y, t) is

f (y, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 × 106, 0 ≤ t < 5
1 × 106

(
1 − 1000

21 y
)
t
5 + 1 × 106, 5 ≤ t < 10

1 × 106
(
1 − 1000

21 y
) + 1 × 106, 10 ≤ t < 15

1 × 106
(
1 − 1000

21 y
)
15−t
5 + 1 × 106, 15 ≤ t ≤ 20

1 × 106, 20 ≤ t < 25

. (13)

The first column of eight virtual thermocouples was set 3 mm apart vertically
from each other and 3 mm away from the mold hot surface; while the second column



Inverse Calculation of Time-Spatial Varying Mold Heat Flux During … 57

of other eight virtual thermocouples was spaced 3 mm apart vertically and 8 mm
horizontally away from the hot face of the mold. The temperature measurement is
taken every 0.1 s during the test-problem runs. The Gaussian noise signals σω (T
= T ture + σω, σ is the standard deviation of noise and ω is a random variable and
will be within −2.576 to 2.576 for the 99% confidence bounds) are added to the
temperatures to mimic the thermocouple measurement error. Then, the measured
temperatures are delivered to the 2DIHCP for the reconstruction of the heat flux in
�2. For the parameters used here, the number of future time steps is set as 15, the α

is 1.71 × 10–6, respectively. The estimation results of heat flux in �2 with/without
noise (Gaussian noise signals, σ = 0.1, to simulate the temperature measurement
errors) and the exact value f(y, t) are shown in Fig. 3, where the heat fluxes at the
locations of y at 0mm, 3, 6, 9, 15, and 21mmare listed, respectively. It was found that
the heat fluxes calculated by 2DIHCP match well with the exact values, even for the
situation that the measured temperature was contaminated by noise. This suggests
that the 2DIHCP could reconstruct the boundary heat flux precisely and show the
ability to resist measurement noises.

The results are comparedwith those values calculated by a robust one-dimensional
inverse heat conduction problem (1D-IHCP) developed byBeck et al. [12], where the
future time step is 4.As shown inFig. 3, although the heat fluxes obtained through 1D-
IHCP show the same variation tendency with the exact value, the difference between
the above two methods is obvious, especially when the measured temperature is
contaminated with noise.

Application to Continuous Casting Mold

A continuous casting experiment of liquid steel ([C]: 0.200 wt%, [Si]: 0.230 wt%,
[Mn]: 0.490 wt%, [P]: 0.012 wt%, and [S]: 0.03 wt%) was conducted, where the
mold was oscillated with a frequency of 2.17 Hz that helps to separate the metal
from the mold. With the progressive filling of the liquid steel (shown in Fig. 1),
the responding copper mold wall temperatures were measured by thermocouples
with a 60 Hz sampling rate, and the pouring temperature of steel was 1833 K. The
calculation domain size and the distribution of the thermocouples are the same as
the installation of the thermocouples in the numeric test-problem.

Figure 4 shows the measured in-mold temperature history of the first column
thermocouples at different positions in the vertical. The responding temperature can
be divided into two stages according to the process of the casting. In stage I (51.4–
52.5 s), the responding temperatures increase quickly as the progressive filling of
the liquid steel from the bottom to the top of the mold. After filling of the melt is
completed, the liquid level corresponds to the location S9 with y is 9 mm, where
the mold is exposed to air above this location (y > 9 mm). As it steps into stage II
(52.5–58 s), the liquid steel is solidified against the surface of the water-cooled mold,
the responding temperatures continue to increase and then keep relatively constant.
It was found that the steady state temperature values for Ytc16 (y is 0 mm) and Ytc14
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Fig. 3 Heat fluxes calculated by 2DIHCP and 1D-IHCP for the test-problem: a heat flux at y =
21 mm. b heat flux at y = 15 mm. c heat flux at y = 9 mm. d heat flux at y = 6 mm. e heat flux at y
= 3 mm. f heat flux at y = 0 mm

(y is 3 mm) are the highest, followed by Ytc12 (y is 6 mm), Ytc10 (y is 9 mm), Ytc8 (y
is 12 mm), Ytc6 (y is 15 mm), Ytc4 (y is 18 mm), and Ytc2 (y is 21 mm). It is suggested
that the thermocouples corresponding to mold surface exposed to the air are cooler
than those of thermocouples below the melt level.

Figure 5 shows the mold heat fluxes calculated by 2DIHCP from measured mold
temperatures. For the 2DIHCP runs, the future time step is configured as 8, and α is 7
× 10–9, respectively. During stage I of filling, it was found that the local heat fluxes
increase rapidly and then reach their peak values and the highest value is around
1.03 MW/m2, which is similar to industrial and other experimental results [3, 5–8].
During stage II, all the heat fluxes decrease rapidly at first due to the fast formation of
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Fig. 4 Responding in-mold
temperatures
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the shell/mold air-gap, and then they continue to decrease gradually. From the above
results, it could be suggested that during the initial filling of the liquid steel, the heat
fluxes increased dramatically as the hot liquid directly contacted with the cold mold
and the latent heat was released greatly with the increase of heat flux in stage I. Then,
the initial shell is formed against the hot surface of the water-cooling mold; thus,
the air gap in between the mold-metal interface is formed due to the solidification of
liquid steel and consequently the interfacial thermal resistance increases dramatically,
which explains the reason why the heat flux reduces intensively at the initial stage
of stage II. With the further solidification of the liquid steel, the shell continues to
grow and correspondingly the total thermal resistance across the solidified shell and
mold-shell interface continues to increase. That is the reason why the heat fluxes
were reduced gradually throughout the rest of stage II.

In the latter part of stage II, the other interesting phenomenon that was observed
in this study is that the heat fluxes of locations at S3 (y is 3 mm) and S6 (y is 6 mm)
are the highest, followed by S9 (y is 9 mm) and S0 (y is 0 mm), then S12 (y is 12mm),
S15 (y is 15 mm), S18 (y is 18 mm), and S21 (y is 21 mm). It might be explained
that the location of S0 below the liquid steel level S9 (y is 9 mm) has a thicker shell
thickness due to the longer solidification time, which resulted in a larger thermal
resistance than the locations of S3 (y is 3 mm) and S6 (y is 6 mm), which the finding
is consistent with other studies [5–8]. As for the position at the liquid level S9 (y
is 9 mm), there exists significant vertical heat transfer upward to the top part of the
mold, therefore, its heat flux is a little bit smaller than those of S3 and S6. As for the
heat fluxes at S12 (y is 12 mm), S15 (y is 15 mm), S18 (y is 18 mm), and S21 (y is
21 mm), they are decreasing because they are far away from the liquid melt and the
existing vertical heat transfer from the liquid to the upper mold. Therefore, the mold
heat transfer is two-dimensional from the location 3 to 6 mm below the liquid melt
vertically toward the upper part (may be a little downward) and horizontally to the
inside of the mold.
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Fig. 5 Mold heat flux
calculated by 2DIHCP
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The mold wall temperature evolution during the casting process is reconstructed
by 2DIHCP and shown in Fig. 6. The temperatures of the lower part of the mold
wall are increased (turns to red) at first with the initial filling of the liquid steel, and
then the hot red area expands both horizontally and vertically with the progressive
filling of the liquid steel, which indicates the significant 2D heat transfer inside the
mold as suggested above. It was noticed that there was no significant evolution of
the temperature inside the mold after 54 s, which is consistent with Fig. 4, and the
maximum temperature of the mold wall reaches as high as 335 K.

Conclusions

In this work, based on the function specification method with first-order spatial regu-
larization, a two-dimensional transient inverse heat conduction problem (2DIHCP)
is established for the determination of the mold heat flux using mold temperatures
measured by fast response thermocouples at a frequency up to 60 Hz. The specific
conclusions are summarized as:

1. The inverse problem of the function specification method implemented with
the first-order spatial regularization could improve the temporal and spatial
stabilization of recovered mold heat flux.

2. The built two-dimensional transient inverse heat conduction problem (2DIHCP)
could reconstruct the boundary heat flux precisely and is capable of the ability to
resistmeasurement noises. It could also providemore precise heat flux calculation
than the one-dimensional inverse heat conduction problem (1D-IHCP).
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Fig. 6 Temperature evolution of the mold wall during the casting
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