
Industrial Warehouse Robot Simulation
Using ROS

Pratik Padalkar, Pawan Kadam, Shantanu Mirajgave(B), and Aniket Mohite

Pimpri Chinchwad College of Engineering, Pune, India

shantanu1058@gmail.com

Abstract. This paper presents the simulation of an industrial ware-
house robot using ROS (Robot Operating System). In this paper indus-
trial warehouse robot is successfully simulated. This robot can be used to
carry the warehouse products from one point to another both manually
as well as autonomously. To achieve the real-time autonomous feature
SLAM (Simultaneous Localization and Mapping) is used to generate
real-time environment maps so that robots can easily get localized in
any kind of complex environment. Adaptive Monte Carlo Localization
(AMCL) is used for the localization of the robot. Navigation stack is
applied to the robot due to which the robot moves autonomously from
one point to another.

Keywords: SLAM · TF · Gazebo · URDF · Navigation stack ·
AMCL · Odometry · Gmapping · RViz

1 Introduction

Robotics and Automation is the branch of science that deals with the process
of building intelligent machines called robots to perform repetitive tasks. Ear-
lier lots of research has been done to make robots autonomous. But in today’s
world as the robot demands are increasing exponentially to perform their daily
tasks without any human interruption. So SLAM algorithms can be used to
easily localize in any kind of environment so that robots can freely move with-
out any kind of human interference. Industries need robots that can do work
more efficiently, accurately, and without any human interaction. In industries,
autonomous robots are the most demanding of all the robots.

The main objective of the robot is to self-explore around in the present envi-
ronment and make smart decisions so that it can localize easily without any
interface. The challenges faced in making robots autonomous are the environ-
mental factors that contain numerous complex obstacles and unknown geograph-
ical landmarks. Another challenge is robot making, capable of navigating on its
own without having any prior knowledge of the environment, trying to generate
its own map, making smart decisions based on collected data. The motivation
behind this paper is to explore Robot Operating System and use of the tools
provided to develop complex robots easily.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. A. Sk et al. (Eds.): ISAI 2022, CCIS 1695, pp. 87–95, 2022.
https://doi.org/10.1007/978-3-031-22485-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22485-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-22485-0_9


88 P. Padalkar et al.

2 ROS - Robot Operating System

ROS is an abbreviation of Robot Operating System. It is an open-source robotics
framework. It is a meta operating system, which works on almost all the operat-
ing systems like Linux, Windows, etc. [1]. The most commonly used ROS1 dis-
tributions are ROS-Indigo, ROS-Kinetic, ROS-Melodic, and ROS-Noetic. ROS
has a wide range of community support across the world through its official com-
munity support and many other community groups are active in making ROS
much stronger and more efficient.

ROS consists of nodes, topics, clients, services, packages, etc. through which
it communicates with robots and its environment. ROS nodes are the basic
working factors in ROS that perform computation [2]. ROS topic acts as a barrier
that carries nodes and communicates between them. ROS services are a pair
of messages, one for request and the other for replies, which can be sent over
to different ROS topics. ROS client is a collection of code that makes writing
different publishers and subscribers to the different ROS topics over which data
can be passed. ROS package is the directory that contains all the necessary files
like launch file, urdf file, params file, etc.

ROS can control multiple robots at the same time. ROS master can be con-
nected to multiple robots at the same time due to which it is possible to control
the robot simultaneously.

2.1 Gazebo

A gazebo is an open-source robotics simulation software. Gazebo simulates mul-
tiple robots in a 3D virtual environment. The gazebo is officially supported by
ROS and is installed by default with certain ROS installations. It can be used
for creating a virtual environment with obstacles in Gazebo which can be used
with ROS for robot interface and configuration. Gazebo operates in two parts:
the server which computes all the physics and the world and the client which is
the graphical frontend for the gazebo.

To launch Gazebo, enter the following commands

$ roscore
$ rosrun gazebo_ros gazebo

2.2 RViz

RViz is an open-source visualization software. It gives us a convenient GUI to
visualize our robot’s exact position as well as surrounding environment maps. It
allows us to view log sensor information from the robot’s sensor. With the help
of RViz, we can visualize different types of sensor data such as camera, laser,
etc. We can give a destination point to the robot through RViz.

To launch RViz enter the following commands on terminal

$ roscore
$ rosrun rviz rviz



Industrial Warehouse Robot Simulation Using ROS 89

2.3 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping(SLAM) is a technique used in complex
robots to generate a map around their present environment. There are various
SLAM algorithms available. We can choose them according to our requirements.
The map generated using this algorithm is then used by the navigation stack
to move from one point to another autonomously [3]. The process of generating
maps and localizing the robot is done concurrently where the maps are created
dynamically by moving the robot in the present environment.

2.4 Uniform Robot Description Format (URDF)

URDF stands for Universal Robot Description Format. It is a description of a
robot CAD model in ROS understandable format. It is an XML file describing the
robot’s physical attributes [4]. It is used to represent our robot and its physical
attributes in simulations such as Gazebo and to visualize in RViz. URDF can
be created by converting the CAD model into XML using CAD to the URDF
exporter plugin [14].

2.5 Transforms (tf)

tf is a ROS package that is used to create multiple coordinate frames as well as
track them over time [5]. tf can be viewed in RViz. It helps us to understand
how different links of robots communicate with each other.

There are different frames in the robot which have relative motion between
them. And the data between them is constantly changing as it is relative. So tf
is used to convert the measurements from one frame to another.

Fig. 1. tf diagram



90 P. Padalkar et al.

2.6 Launch Files

Launch files are one of the basic file formats of the ROS. These files are of the
format .launch and use a specific XML language format. These files provide users
with a convenient way to interact with the ROS environment. Users can set up
multiple ROS nodes in a single launch file and can also initialize and alter the
various parameters according to the requirements.

3 Methodology

The industrial warehouse robot is designed and created from scratch and simu-
lated in the ROS environment. To simulate a robot in the environment certain
steps need to be followed. The steps are as follows:

3.1 Creating URDF from CAD Model

Fusion 360 is software that is used for 3D modeling, making CAD, CAM, CAE,
etc. models. The first step for URDF generation is to design a robot model.
There are some standard naming conventions to convert the CAD model into
URDF [6]. The robot’s base model should be given the name base link which
is important for exporting it to URDF. For exporting it to URDF the plugin
URDF EXPORTER is needed. This plugin not only generates urdf files but nec-
essary launch files will be generated for spawning the robot in RViz and Gazebo.
For moving the robot in Gazebo, a differential drive plugin needs to be added
in URDF. After adding the plugin with the help of joint state publisher gui we
can simulate the robot in Gazebo and can visualize the same in RViz.

3.2 Creating a ROS Package

In the ROS package, the robot’s URDF, all python and C++ script launch files,
and also many other files that are required for making our robot autonomous
are kept.

To create ROS package launch the below command

$ catkin_create_pkg iw_robot rospy roscpp amcl move_base

iw robot is the name of our package and rospy, roscpp, amcl, and move base are
the other dependencies that we require for developing the robot.

3.3 Spawn in Gazebo

In order to spawn a robot in a designed environment for simulation purposes, we
are using Gazebo. For spawning the robot first the launch files need to be created.
As these launch files are coded in XML format, first the default programs need
to be added to starting the gazebo, second and the most important thing is to
add URDF files in it [7]. As URDF files are broken into multiple .xacro files so
main files are to be added. Then the controllers need to be added for controlling
the robot. The controllers are usually written in a .yaml file. For spawning the
robot in the gazebo, launch the following command. Refer Fig. 2



Industrial Warehouse Robot Simulation Using ROS 91

Fig. 2. Spawn in Gazebo

3.4 Spawn in RViz

For visualizing the robot in RViz necessary launch files need to be built. In this
display. launch file and URDF file, RViz, and robot state publisher packages are
added. For spawning the robot in RViz, launch the following command. Refer
Fig. 3

$ roslaunch iw_bot display.launch

Fig. 3. Spawn in RViz

3.5 Teleoperating the Robot

To control the robot manually then we need to teleoperate it. Teleoperating means
controlling the robot with the laptop’s keyboard or with a joystick. To teleoper-
ate the robot, first launch the file having the name iw robot teleop. This launch



92 P. Padalkar et al.

file contains a teleop twist package containing a python script that publishes the
robot’s speed and the angle at which the robot has to travel. For teleoperating the
robot there is a differential drive plugin available in iw robot. URDF subscribes to
our cmd vel topic which is published by the teleop twist package [8].

To launch the teleop twist package run the following command:

$ rosrun iw_bot teleop.launch

3.6 Mapping

For creating a map of the environment Gmapping is used. Gmapping is a widely-
used open source SLAM algorithm. It is a highly efficient Rao-Blackwellized
particle filter-based algorithm which provides laser-based SLAM [9]. Gmapping
has its official package to implement Gmapping called slam gmapping. Gmapping
acts as a ROS node and takes data from both laser sensor and robot pose and
creates a 2D grid map of the environment [10]. This map can be visualized in
RViz and retrieved via a ROS topic or service. To save this map we need the
ROS map server package which runs map server and map saver as a ROS node
that reads the map and saves it to the local computer storage respectively. The
map created is stored in a pair of files in the local computer storage. One is a
YAML file (map name.yaml) and the other is a pgm file (map name.pgm). The
YAML file contains the map meta-data and the image file name. Refer Fig. 4

To start the SLAM algorithm launch the following command:

$ roslaunch iw_bot gmapping.launch

In this launch file, all the necessary gmapping packages are added. This
launch file will launch the Gmapping and RViz package and start creating the
map in the present environment.

Fig. 4. Map created by Gmapping



Industrial Warehouse Robot Simulation Using ROS 93

3.7 Localization of the Robot

Localization is a process in which a robot tries to locate with respect to its
environment. To locate the robot in the environment it needs the robot’s odom-
etry which is provided by the gazebo itself. Localization transforms map frames
to Odom frames. For localization of the robot, AMCL(Adaptive Monte Carlo
Localization) algorithm is used [11]. The robot model uses a plugin of a laser
sensor that spreads the particles in all possible directions. But for knowing the
probable position of the robot on the map some filtering needs to be done. So it
uses particle filters which filter the particle and determine the probable positions
in the map. For using the AMCL algorithm, necessary launch files need to be
created.

Command to launch the file.

$ roslaunch iw_robot amcl.launch

This launch file contains the various parameters that are required for this
algorithm. These parameter files are configured according to our requirements.

3.8 ROS Navigation Stack

ROS Navigation stack is a ROS package used for navigating a robot
autonomously from one location to another. It takes Odometry data, sensor
data, and goal pose and gives velocity commands to the robot base. Refer Fig. 5
The Navigation Stack comprises of the following steps -

Local Path Planning. Local Path Planning helps the robot to adapt its move-
ment to a dynamic environment when obstacles are detected [12]. Local Path
Planning in ROS is done by a local planner [13]. The local planner helps to move
the robot in the environment. This planner calculates and publishes the robot’s
speed on a certain topic. Although of various local planners, DWA local planner
if considered best as this planner gives more performance than any other plan-
ners. This algorithm performs forward simulation from the current state and
predicts the path where the robot will not collide with the obstacles. This path
planner is included in the move base.launch. After launching this file the dwa
local planner starts working [14].

Global Path Planning. Global Path Planning is used to find the path between
two points. For global path planning, ROS uses a global planner. This planner
is included in the move base.launch. After launching this launch file, the global
planner starts to plan a path to reach its goal [13].

Navigation Goal. As all the necessary path planning algorithms are provided,
it’s time to move the robot to its destination. For moving the robot to any
desired location there is a tool called 2D nav goal in RViz. Just we need to point



94 P. Padalkar et al.

Fig. 5. Navigation stack

at which position and orientation the robot should face on the map from its
current position. Once given, the robot will start determining the best-desired
path from the current position to the desired location with the avoidance of
obstacles.

To start the navigation launch the given command

$ roslaunch iw_robot navigation.launch

All the launch files that we require such as move base,amcl to run the navi-
gation stack are included in this navigation.launch.

4 Conclusion

This paper describes the simulation of a ROS-based autonomous industrial ware-
house robot. This robot can travel manually or autonomously which reduces
human efforts. An industrial warehouse robot is spawned in the gazebo for test-
ing purposes. This autonomous robot finds the shortest path which saves time
and can be used as industrial robot to move any kind of goods autonomously
from one certain place to another, without any human interaction and human
effort. Thus, helping in increasing the automation in industrial areas.

Laser-based SLAM is analyzed and simulated on the robot. It uses the robot’s
Odometry data which is provided by Gazebo itself. By using the gmapping
algorithm an incremental map of the environment is created. At last, the robot
is localized in the map using AMCL, and a ROS navigation stack is used to
implement the robot, due to which the robot moves autonomously from one
point to another.



Industrial Warehouse Robot Simulation Using ROS 95

References

1. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable
SLAM system with full 3D motion estimation. In: 2011 IEEE International Sympo-
sium on Safety, Security, and Rescue Robotics, pp. 155–160. IEEE (2011). https://
doi.org/10.1109/SSRR.2011.6106777

2. Reid, R., Cann, A., Meiklejohn, C., Poli, L., Boeing, A., Braunl, T.: Coopera-
tive multi-robot navigation, exploration, mapping and object detection with ROS.
In: 2013 IEEE Intelligent Vehicles Symposium (IV) 2013 Jun 23, pp. 1083–1088.
IEEE.https://doi.org/10.1109/IVS.2013.6629610

3. Teame, W.G., Yu, Y., Zhongmin, W.: Optimization of SLAM Gmapping based on
simulation. IJERT Int. J. Eng. Res. Technol. 9, 74–81. https://doi.org/10.17577/
IJERTV9IS040107

4. Johannessen, L.M.G., Arbo, M.H.: Robot Dynamics with URDF & CasADi.
In: 2019 7th International Conference on Control, Mechatronics and Automa-
tion (ICCMA), pp. 1–6 (2019). IEEE. https://doi.org/10.1109/ICCMA46720.2019.
8988702

5. Foote, T.: The transform library. In: 2013 IEEE Conference on Technologies for
Practical Robot Applications (TePRA), pp. 1–6 (2013). IEEE.https://doi.org/10.
1109/TePRA.2013.6556373

6. Kitamura, T.: Fusion2URDF. https://github.com/syuntoku14/fusion2urdf.
Accessed 24 Sept 2021

7. Shimchik, I., Sagitov, A., Afanasyev, I., Matsuno, F., Magid, E.: Golf cart pro-
totype development and navigation simulation using ROS and Gazebo. In: 2016
ResearchGate, p. 09005 (2016)

8. Lee, D., Park, Y.S.: Implementation of augmented teleoperation system based on
robot operating system (ROS). In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5497–5502. IEEE (2018). https://doi.
org/10.1109/IROS.2018.8594482

9. Xuexi, Z., Guokun, L., Genping, F., Dongliang, X., Shiliu, L.: SLAM algorithm
analysis of mobile robot based on lidar. In: 2019 Chinese Control Conference
(CCC), pp. 4739–4745. IEEE. https://doi.org/10.23919/ChiCC.2019.8866200

10. KrinKin, K., Filatov, A., Huletski, A., Kartashov, D.: Evaluation of modern
laser based indoor SLAM algorithms. In: 2018 ResearchGate, pp. 101–106 (2018).
https://doi.org/10.23919/FRUCT.2018.8468263

11. dos Reis, W.P.N., da Silva, G.J., Junior, O.M., Vivaldini, K.C.T.: An extended
analysis on tuning the parameters of adaptive Monte Carlo localization ROS pack-
age in an automated guided vehicle. In: 2021 ResearchGate (2021). https://doi.
org/10.21203/rs.3.rs-225880/v1

12. Kangutkar, R., Lauzon, J., Synesael, A., Jenis, N., Simha, K., Ptucha, R.: ROS
navigation stack for smart indoor agents. In: 2017 IEEE Applied Imagery Pattern
Recognition Workshop (AIPR), pp. 1–10. IEEE (2017). https://doi.org/10.1109/
AIPR.2017.8457966

13. Hussein, A.H., Martin, D.M., Marin-Plaza, P.M., de la Escalera Escalera, A.:
Global and local path planning study in a ROS-based research platform for
autonomous vehicles. In: ResearchGate (2018). https://doi.org/10.1155/2018/
6392697

14. Zhang, X., Lai, J., Xu, D., Li, H., Fu, M.: 2D LiDAR-based SLAM and path plan-
ning for indoor rescue using mobile robotss. In: J. Adv. Transp. Hindawi (2020).
https://doi.org/10.1155/2020/8867937

https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1109/IVS.2013.6629610
https://doi.org/10.17577/IJERTV9IS040107
https://doi.org/10.17577/IJERTV9IS040107
https://doi.org/10.1109/ICCMA46720.2019.8988702
https://doi.org/10.1109/ICCMA46720.2019.8988702
https://doi.org/10.1109/TePRA.2013.6556373
https://doi.org/10.1109/TePRA.2013.6556373
https://github.com/syuntoku14/fusion2urdf
https://doi.org/10.1109/IROS.2018.8594482
https://doi.org/10.1109/IROS.2018.8594482
https://doi.org/10.23919/ChiCC.2019.8866200
https://doi.org/10.23919/FRUCT.2018.8468263
https://doi.org/10.21203/rs.3.rs-225880/v1
https://doi.org/10.21203/rs.3.rs-225880/v1
https://doi.org/10.1109/AIPR.2017.8457966
https://doi.org/10.1109/AIPR.2017.8457966
https://doi.org/10.1155/2018/6392697
https://doi.org/10.1155/2018/6392697
https://doi.org/10.1155/2020/8867937

	Industrial Warehouse Robot Simulation Using ROS
	1 Introduction
	2 ROS - Robot Operating System
	2.1 Gazebo
	2.2 RViz
	2.3 Simultaneous Localization and Mapping (SLAM)
	2.4 Uniform Robot Description Format (URDF)
	2.5 Transforms (tf)
	2.6 Launch Files

	3 Methodology
	3.1 Creating URDF from CAD Model
	3.2 Creating a ROS Package
	3.3 Spawn in Gazebo
	3.4 Spawn in RViz
	3.5 Teleoperating the Robot
	3.6 Mapping
	3.7 Localization of the Robot
	3.8 ROS Navigation Stack

	4 Conclusion
	References




