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Rapidly changing demographics worldwide towards increased proportion of the 
elderly in the population and increased life-expectancy have brought the issues, such 
as “why we grow old”, “how we grow old”, “how long can we live”, “how to maintain 
health”, “how to prevent and treat diseases in old age”, “what are the future perspec-
tives for healthy ageing and longevity” and so on, in the centre stage of scientific, 
social, political, and economic arena. Although the descriptive aspects of ageing are 
now well established at the level of species, populations, individuals, and within an 
individual at the tissue, cell and molecular levels, the implications of such detailed 
understanding with respect to the aim of achieving healthy ageing and longevity are 
ever-changing and challenging issues. This continuing success of gerontology, and 
especially of biogerontology, is attracting the attention of both the well established 
academicians and the younger generation of students and researchers in biology, 
medicine, bioinformatics, bioeconomy, sports science, and nutritional sciences, along 
with sociologists, psychologists, politicians, public health experts, and health-care 
industry including cosmeceutical-, food-, and lifestyle-industry. Books in this series 
will cover the topics related to the issues of healthy ageing and longevity. This 
series will provide not only the exhaustive reviews of the established body of knowl-
edge, but also will give a critical evaluation of the ongoing research and develop-
ment with respect to theoretical and evidence-based practical and ethical aspects of 
interventions towards maintaining, recovering and enhancing health and longevity.
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Preface 

Sleep is organized through intricate interactions between various brain regions 
responsible for normal neural functions, such as cognition, attention, memory and 
emotions influencing appetite, libido, mood and behavior. The circadian timing 
system (CTS) regulates the timing and duration of sleep keeping an approximately 
24-h internal rhythm that entrains to environmental stimuli and the sleep homeo-
stat guiding sleep drive. Aging is linked with the progressive deterioration of the 
behavioral, biochemical, physiological, morphological and anatomical aspects of 
an organism. Both sleep and circadian rhythms show robust perturbances with age 
affecting sleep and wakefulness “flip-flop” switch. 

Modern lifestyle, however, poses a paradox: on the one hand, there is an increase 
in lifespan, and on the other, demanding social pressures result in insufficient sleep. 
While sleep is essential for human health and longevity, changing sleep patterns 
with age significantly affect the daily functioning and quality of life by altering key 
homeostatic processes, resulting in neurodegeneration and a variety of diseases. 

This book is a compendium of 25 chapters contributed by leading researchers 
from across the globe. Each chapter is designed to offer a comprehensive and critical 
review of the topic. The book is divided into seven parts: Part I: Understanding Sleep 
and Clock Interlink in Health and Longevity, deals with basic understanding of sleep 
homeostasis and circadian timing system and how these interactions change with 
aging; Part II: Sleep, Aging and Longevity, deals with changing sleep physiology 
influencing aging and longevity; Part III: Clock, Aging and Longevity, deals with 
alterations in the circadian clock and pineal gland physiology with aging and role 
of nonphotic cues in healthy aging; Part IV: Melatonin, Sleep and Clock, deals with 
multitasking hormone melatonin changes with aging and its role in restoring such 
changes toward healthy aging and longevity; Part V: Genetic Regulation of Sleep 
and Clock, deals with chronotypes, epigenetic regulation and role of CNS insults in 
restoration of behavior with aging; Part VI: Therapeutic Interventions in Sleep Disor-
ders and Clock Misalignment, deals with restoring age-induced misaligned clocks 
with physical exercises, specific chrononutrition methods, achieving healthy aging 
in light polluted modern world, neurodegeneration linked with circadian rhythm 
disruptions and sleep cycles as well insomnia in elderly and treatment; and Part VII:

v



vi Preface

Experimental Models to Study Sleep and Clocks in Aging and Longevity, deals with 
various experimental systems used in research for circadian dysfunction and sleep 
disorders, and possible interventions. 

It is my hope that these expert insights into the changing harmony of the inter-
play between sleep and circadian rhythms with aging, responsible for a variety 
of diseases and associated therapeutic interventions, will make an important step 
toward driving and underpinning novel advances in treatments for sleep disorders and 
clock misalignment. The target readership is advanced undergraduate and graduate 
students, postgraduate researchers and medical practitioners. 

I wish to extend my deep gratitude to Prof. Suresh Rattan, editor of the book series 
Healthy Ageing and Longevity, for his constant support and encouragement, and also 
my heartfelt thanks to my family for their affection and support. 

Hyderabad, India Anita Jagota
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Part I 
Understanding Sleep and Clock Interlink 

in Health and Longevity



Chapter 1 
Sleep and Circadian Clock: Novel 
Players in Health Impacts and Aging 

Anita Jagota 

1.1 Introduction 

Sleep is thought to be a homeostatically regulated process. This homeostatic process 
tracks the buildup of sleep need as a function of time spent awake. Sleep is essential 
for proper brain function in mammals. During sleep, animals are disconnected from 
the external world; they show high arousal thresholds and changed brain activity. 
Thus, sleep (fascinating behavioral state) despite these risks to organisms must 
have evolved with vital benefits to the organism whose function still needs to be 
completely understood. Sleep deprivation results in a sleep rebound (Siegel 2005; 
Deboer 2018). The primary function of sleep appears to be the downscaling of 
synapses that have been built up during wakefulness. Thus, brain homeostasis is 
maintained, and learning and memory are assured through sleep. Wakefulness and 
sleep are regulated by multiple brain regions such as the ventrolateral preoptic area 
(VLPO) of the anterior hypothalamus, the locus coeruleus (LC) of pons and the lateral 
hypothalamus (LH). Of these, VLPO plays most prominent role. Genes involved 
in sleep control code for ion channels, factors influencing neurotransmission and 
neuromodulation, and proteins involved in the circadian clock. The neurotransmit-
ters/neuromodulators such as GABA, dopamine, acetylcholine, serotonin and several 
neuropeptides involved in sleep control (Crocker and Sehgal 2010). 

The adaptation of organisms to a rhythmic environment is mediated by an internal 
timing system termed as circadian (circa = about and dies = day) clock. Such a 
circadian timing system (CTS) regulates timing and duration of sleep keeping an 
approximately 24 h internal rhythm that entrains to environmental stimuli, and the 
sleep homeostat, which rises as a function of time awake, guides sleep drive (Cirelli 
2009). In mammals, circadian clock network is found in all tissues and organs.

A. Jagota (B) 
Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School 
of Life Sciences, University of Hyderabad, Hyderabad 500046, India 
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Fig. 1.1 Schematic drawing showing various brain centers and the various neurotransmitter and 
molecular components involved in regulation of sleep 

These networks regulate the release of many hormones, which regulate several phys-
iological functions. Extensive physiological and behavioral studies have indicated 
that the circadian pacemaker is localized to discrete sites in central nervous system 
(CNS) and, in mammals, to the bilaterally paired suprachiasmatic nucleus (SCN) in 
hypothalamus just above the optic chiasm (Jagota et al. 2000; Welsh et al. 2010). The 
interplay between sleep homeostasis and the circadian clock regulates sleep. Puta-
tive sleep-wake centers are located in higher-order brain centers that are indirectly 
connected to the circadian clock network (Fig. 1.1). 

Aging is the progressive deterioration in the behavioral, biochemical, physio-
logical, morphological and anatomical aspects of an organism (Jagota 2012; Pana-
giotou et al. 2021). The aging process is linked with profound disruption of an 
individual’s daily sleep-wake cycle with increased daytime napping, advanced sleep 
timing, reduced overall sleep, fragmented sleep and prolonged sleep-onset latency, 
etc. Disruption of sleep and circadian rhythms with aging causes many diseases such 
as Alzheimer’s disease (AD), Parkinson’s disease (PD), cancer, inflammatory bowel 
disease (IBD) etc. Aging and circadian rhythms were linked initially by studies 
on circadian rhythms of release of hormones such as cortisol, thyroid stimulating 
hormone (TSH), melatonin, prolactin, growth hormone (GH) and sleep pattern of 
young and healthy elderly men. Sleep-wake cycles are under strict circadian control 
with strong influence of rhythmic hormones such as melatonin (Koop and Oster 
2021). The mechanisms of sleep homeostasis and the circadian system become less 
robust with normal aging. 

Sleep and circadian rhythms show perturbances with age. The alterations in sleep 
and circadian dysfunction are linked to premature aging and appear as overt hallmark
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for several underlying diseases. It is therefore very important to understand link 
between sleep and circadian rhythms. 

1.2 Sleep 

Sleep appears to be an essential part of animal life. Organisms are disconnected 
from the external world during sleep state due to elevated sensory thresholds, at 
considerable potentially life-threatening risks and costs to the individuals. Further, 
during sleep, animals cannot forage or take care of their young ones. 

1.2.1 What is Sleep? 

Sleep is a fundamental and evolutionarily conserved biological phenomenon. 
Humans spend about one-third of their life sleeping, and many other mammalian 
species such as (o)possums (Didelphis marsupialis, Lutreolina crassicaudata, 
Trichosurus vulpecula), kangaroos (Megaleia rufa) or kangaroo rats (Potorous 
apicalis), tree shrews (Tupaia glis), hedgehogs (Erinaceus europaeus, Paraechinus 
hypomelas), bats (Eptesicus focus, Myotis lucifugus), beavers (Aplodontia rufa), 
chipmunks (Tamias striatus), golden hamsters (Mesocricetus auratus), gerbils (Meri-
ones unguiculatus) and rats (Rattus norvegicus) spend more than half of their life 
sleeping. Some animals such as elephants (Elephas maximus, Loxodonta africano), 
horses (Equus caballus), donkeys (E. asinus), tapirs (Tapirus terrestris), cows (Bos 
taurus) and sheep (Ovis aries) have been reported to be short sleeper with consoli-
dated sleep periods of only 3–5 h per 24 h cycle. Thus, the function of sleep must be 
very important for the organism. There is impaired cognitive performance observed 
after only one day of sleep deprivation, and longer sleep deprivation results in more 
complex brain dysfunction resulting in hallucinations and alalia (speech delay), etc., 
indicating the importance of sleep as reported by several researchers (Helfrich-Forster 
2018; Garbarino et al. 2021). Sleep, though seemingly passive, is actually a criti-
cally active stage of the day. It is a period essential for growth, differentiation and 
renewal of cells, and it plays an important role in immunity (Irwin 2019; Zielinski 
and Gibbons 2022). Adequate sleep is pivotal for human health, and inadequate sleep 
contributes to the development of disease. This is demonstrated by numerous studies 
on the consequences of inefficient sleep, in which impaired sleep is associated with 
infectious disease, increased risk of cardiovascular disease, mental illness and cancer 
(Kecklund and Axelsson 2016). Inadequate sleep not only includes insufficient dura-
tion, poor sleep quality or the presence of sleep disturbances, but may also be due to 
inappropriate sleep timing (Roenneberg and Merrow 2016). 

Sleep is characterized by three main behavioral criteria: first, a period of quies-
cence associated with a species specific posture and/or resting place, which is typi-
cally accompanied by reduced motor activity; second, an elevated response threshold
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(i.e., a stronger threshold is needed to produce a response); third, a homeostatic 
regulatory mechanism which is manifested in a sleep rebound after periods of sleep 
deprivation. Sleep is distinguished from quite wakefulness by the reduction in the 
ability to react to stimuli, while the reversibility to an awake state distinguishes sleep 
from coma (Siegel 2005). 

1.2.2 Physiological Basis of Sleep 

Sleep is ubiquitous and associated with a set of pharmacological, electrophysiolog-
ical and molecular characteristics. Though ubiquitous, the adaptive value of sleep 
function is linked to energy conservation and normal neural function, including neural 
maintenance, neurogenesis, restoration at the cellular and network levels, memory 
consolidation and synaptic homeostasis, including synaptic plasticity and homeo-
static synaptic downscaling, etc. Further, in mammals, sleep is realized as important 
and necessary as it not just clears toxins from the brain, cherishes the body cells, 
helps learn and memorize but also plays vital role in regulating appetite, libido, mood 
and behavior (Vyazovskiy et al. 2008). 

It has been reported by some workers that various types of behavior and memory 
formation/storage involve transcriptional and translational processes that kicks in 
occur within a specific time window following a learning event (Peixoto et al. 2015). 

The measure of the electrical activity of the cerebral cortex called electroen-
cephalogram (EEG) provides the primary electrophysiological characteristics that 
are used to define different stages of sleep as well as to distinguish sleep from wake-
fulness. EEG activity is the product of intrinsic electrical rhythms generated within 
the cortex and a dynamic interplay between the thalamus and the cortex (Steriade 
2006). In contrast, the transitions between, and duration of, different sleep and behav-
ioral states are regulated by subcortical waking and sleep active brain regions. These 
structures include the orexin/hypocretin-containing (Hcrt) neurons in the tuberal 
hypothalamus, histaminergic tuberomammillary nuclei (TMN), noradrenergic LC, 
serotonergic raphe nuclei, cholinergic basal forebrain (BF) and GABAergic VLPO 
(Saper 2013; Schwartz and Kilduff 2015), as well as the circadian pacemaker in 
SCN (Figs. 1.1 and 1.2). The homeostatic mechanism reflects the need for sleep that 
accumulates during prolonged periods of wakefulness (Fig. 1.3).

Sleep is regulated by circadian and homeostatic mechanisms which are partly 
independent. The circadian system plays an important role in the timing and consol-
idation of sleep to an ecologically appropriate period such that diurnal animals sleep 
during the night and nocturnal during the day (Roenneberg and Merrow 2016). The 
chronotype also plays very important role often categorized by the terms early (larks) 
or late (night owls). The larks and night owls interact with the environment differ-
ently and may therefore experience different degrees of circadian rhythm disruption 
during sleep (Harfmann et al. 2020).
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Fig. 1.3 Diagram showing interplay between sleep and circadian clock: interaction of Process S 
and Process C during the 24 h day

1.2.3 Types of Sleep/Different Stages of Sleep 

The sleep is inhomogeneous characterized by two behaviorally and physiologically 
distinct phases. Distinct neural circuits have been involved in the synchronization
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and desynchronization of cortical activity that distinguish non-rapid eye movements 
(NREM) sleep from wakefulness and rapid eye movements (REM) sleep. Input from 
the BF, likely from both cholinergic and non-cholinergic neurons, is critical for the 
desynchronized EEG characteristic of wakefulness and REM. 

EEG activity reflects the aggregate firing of large neuronal ensembles and is 
explained by various bandwidths with the specific frequencies: such as alpha (9– 
12 Hz), beta (12–30 Hz), delta (0.5–4.0 Hz), low (30–60 Hz) and high (60–100 Hz) 
gamma and theta (5–9 Hz) (Schwartz and Kilduff 2015). Sleep occurs as wake, 
NREM and REM. Thus, first phase is characterized by NREM sleep, i.e., deep or 
slow-wave sleep. Within NREM, there are four stages, ranging from Stage 1 (the 
lightest level with low voltage and spindles) to Stages 2 and 3 and 4, i.e., deep or 
slow-wave sleep. After deep sleep, the body moves into a period of REM sleep and 
brain activity is close to the same as when awake stage, but muscles cannot move, 
except for eyes and diaphragm. This is the stage where dreaming occurs (Patel et al. 
2021). 

1.2.4 Sleep Duration/Need 

It is not yet clearly understood how much sleep is actually required. Though, sleep 
duration/need varies across the population and is recommended as 7–9 h (Culnan 
et al. 2019). Interestingly, the sleep EEG is remarkably stable for an individual and is 
like a trait-like pattern (Tucker et al. 2007). Based on the rebound, or compensatory 
sleep, that follows sleep deprivation, sleep is thought to be an essential process whose 
amount is controlled by a homeostatic system (Dauvilliers et al. 2005). 

1.2.4.1 Sleep is Said to Be Cumulative 

To a limited extent, yes. Several workers have reported that after an ordinary night’s 
sleep, subjects taking an extra nap/siesta in the afternoon worked through the night 
with greater alertness (Duval and Haupais 2019). Additionally, extended sleep on 
weekends may be helpful in fighting insufficient sleep syndrome (ISS) (Baugmann-
Vogel et al. 2021). 

1.2.4.2 Sleep Debt 

It is the difference between the amount of sleep required and actually one gets. It 
is a deficit that grows every time one skims some extra minutes off one’s nightly 
slumber. Interestingly, sleep debt can be repaid—though it will not happen in one 
extended snooze session. Tacking on an extra hour or two of sleep a night is the way 
to catch up (Schwartz and Kilduff 2015).
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1.2.4.3 Sleep Bank Theory 

According to Sleep Bank theory, the “banking” of sleep prior to sleep loss may help 
sustain performance and alertness in operational environments and speed recovery. 
After a second consecutive night without sleep, all of the subjects performed equally 
badly, regardless of how much sleep they had initially. It may be that normally 
everyone is slightly sleep-deprived and one really needs good night’s sleep to bring 
one back up to 100%, and that the “tank/bank” is not big enough to buffer us against 
more than one all-nighter (Rupp et al. 2009). 

1.2.5 Regulation of Sleep 

Sleep impacts every aspect of brain functions. It is therefore essential to understand 
sleep and wakefulness “flip-flop” switch at various levels that ensures behavioral-
state stability with a perfect and coordinated equilibrium in the mental, emotional 
and physiological activities. 

1.2.5.1 Sleep Regulation at Neurotransmitter Level 

Several chemical mediators have been identified in driving sleep. However, sleep 
induction is driven by rapid reduction in arousal which has been linked to primarily 
an inhibitory switch controlled by GABA/Galanin-containing neurons in the VLPO 
region in hypothalamus (Fig. 1.1). Various monoamine neurotransmitters such as 
histamine, dopamine, noradrenalin and serotonin as well as cholinergic neurotrans-
mitter acetylcholine promote wakefulness. The awakening process is further activated 
by orexin/hypocretin-producing neurons in LH (Cirelli 2009). Within the preoptic 
hypothalamus, various other neuronal subtypes glutamate/NOS1 induce NREM sleep 
in addition to GABA/Galanin (Ma et al. 2019). Additionally, adenosine has been 
identified as a strong marker candidate regulating sleep. Adenosine increases during 
the waking hours as well as after sleep deprivation (Saper 2013). 

1.2.5.2 Sleep Regulation at Gene Level 

There are multiple genes, including per2 and dec2 clock genes which have been iden-
tified to regulate sleep homeostat and clock pacemaker (Chang et al. 2016). Various 
sleep-regulating molecules have been identified (Table 1.1). Many researchers are 
focusing on genetic screens as well as genetic manipulation of candidate genes so as 
to understand changes in sleep amount as a readout of sleep homeostasis and there-
fore to assess how loss or gain of a specific function affects sleep quantity (Crocker 
and Sehgal 2010).
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Table 1.1 Various genes 
involved in the circadian 
timing system 

Clock genes Function References 

Per1 Negative regulator Takahashi (2017) 

Per2 Negative regulator Takahashi (2017) 

Per3 Negative regulator Cox and 
Takahashi (2019) 

Cry1 Negative regulator Takahashi (2017) 

Cry2 Negative regulator Li et al. (2022) 

Bmal1 (Arnt1) Positive regulator Okamura et al. 
(2002) 

Clock Positive regulator Gul et al. (2022) 

Rorα Positive regulator Sato et al. (2004) 

Rev-erbα Negative regulator Sato et al. (2004) 

Few other players 

CK1 Regulator Zhang et al. 
(2021) 

PP1, PP4 & PP5 Regulator Klemz et al. 
(2021) 

NPAS2 Regulator Mosig et al. 
(2021) 

PK2 and AVP Regulator Samoilova et al. 
(2021) 

Various clock genes involved in sleep dysfunction 

Per2 Sleep deprivation Hou et al. (2019) 

Per3 DSWPD, poor sleep 
quality 

Peng et al. (2022) 

Per Duration of sleep in 
Drosophila 

Fropf et al. (2018) 

Cry2 Sleep latency, sleep 
disturbance 

Lou et al. (2021) 

Bmal1 ↓ REM sleep Niu et al. (2022) 

Clock ↓ Sleep duration upon 
ageing 

Lou et al. (2021) 

Rev-erb α & 
β(Nr1d1 and 
Nr1d2) 

DSWPD Haraguchi et al. 
(2019) 

NPAS2 ↑ Sleep deprivation Bolsius et al. 
(2021) 

DEC2 ↓ Sleep duration Ashbrook et al. 
(2020) 

Ck1 δ ASWPD Xu et al. (2005) 

PK2 ↓ Total sleep time Hu et al. (2007)

(continued)
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Table 1.1 (continued) Clock genes Function References

Hcrtr1 & 
Hcrtr2(OX1 or 
OX2) 

Narcolepsy Schwartz and 
Kilduff (2015) 

1.2.5.3 Sleep Regulation at Epigenetic Level 

Both SCN and peripheral tissues are subject to epigenetic modulations. The “circa-
dian epigenome”, created by the action of the clock, temporally as well as locally 
drives the DNA to become permissive to a rhythmic transcription, thus creating a “cir-
cadian transcriptome”. Several workers have reported that there are highly dynamic 
rhythmic changes in chromatin transitions. The epigenome plays a critical role in 
regulating gene expression in the context of memory storage and long-term potenti-
ation toward formation of memories occurring during sleep. Changes in histones can 
mediate epigenetic gene regulation. Further, there is substantial evidence to suggest 
that DNA methylation is critically affected by sleep (Narwade et al. 2017). There is 
also substantial evidence linking the methylation status of circadian clock genes and 
sleep loss (Tabibzadeh 2021). 

Much of the interindividual variability in the sleep EEG has been reported to 
be driven by genetics (Landolt 2011) and is linked to PER2 variant. Additionally, 
polymorphism at rs4753426 in a melatonin receptor is linked with more time in bed 
on weekends and another variant rs7942988 is linked to impact duration of melatonin 
(Silva et al. 2019). 

1.3 Biological Clock: Circadian Timing System (CTS) 

In mammals, SCN contains the central clock that synchronizes physiology, behavior 
and metabolism to the external environmental cues (zeitgebers). These clocks are 
periodically synchronized to the geophysical time. Photoperiod is the most domi-
nant environmental zeitgeber (time giver) for the phase entrainment of the circadian 
oscillator (Fig. 1.2). There are various review articles giving details of components 
of CTS (Takahashi 2017).
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1.3.1 SCN: Neurotransmitters in Input and Output Pathways 

SCN is a cluster of about 20,000 neurons that receive information of time cues from 
the external surroundings via three major afferent or input pathways: the retino-
hypothalamic tract (RHT), the geniculo-hypothalamic tract (GHT) and the retino-
raphe pathway (RRP). Among these three pathways, RHT mediates photic signals, 
whereas GHT and RRP mediate non-photic signals (Dibner et al. 2010). 

SCN receives light exposure directly from the eyes via melanopsin-containing 
ganglion cells in retina through the retino-hypothalamic tract (RHT) by releasing 
glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) which 
causes entrainment of clock gene expression in the SCN. The communication from 
the SCN is majorly via neurotransmitters such as GABA and glutamate; however, 
there are number of other molecules such as AVP, VIP, prokineticin 2 (PK2), cardi-
olipin like cytokine and transforming growth factor α (TGFα) which are output 
signals of the SCN (Roenneberg and Merrow 2016; Takahashi 2017). 

1.3.2 SCN: Relay Center for Information 

In mammals, the circadian system is comprised of a hierarchy of oscillators, in which 
SCN of the hypothalamus is regarded as the master clock regulating downstream 
oscillators in peripheral tissues called as peripheral clocks such as liver, kidney, 
intestine (Ko and Takahashi 2006). The master pacemaker coupled population of 
neuronal circadian oscillators perceives the external photic cues (light) and in turn 
synchronizes the peripheral clocks. 

Every mammalian cell is autonomous and has its own clock machinery consti-
tuting the peripheral clock system controlled by the SCN through both sympathetic 
and parasympathetic pathways (Schibler et al. 2015). Thus, SCN plays a major role 
in orchestrating cellular and metabolic processes by relaying temporal information to 
the entire body via humoral and neural communication (Hastings et al. 2018; Walker  
et al. 2020). 

1.3.3 Melatonin: Messenger of Darkness 

Melatonin (internal zeitgeber, hormonal message of darkness) biosynthesis and 
secretion from pineal gland are directly regulated via a multi-synaptic pathway by the 
SCN (Majidinia et al. 2018). The electrical information is converted into chemical 
information that alters the phase of clock gene expression in a subset of SCN neurons 
which then regulates both synthesis and release of melatonin (hormonal message for 
darkness) from pineal (Jagota 2012). In this multi-synaptic neural circuit, GABAergic 
axons of SCN neurons project to hypothalamic PVN. Efferents from PVN descend
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via the brain stem to spinal cord and synapse with preganglionic sympathetic neurons 
of the inter-mediolateral cell column (ILCC). Axons of these nerve cells project onto 
a set of cells in superior cervical ganglion (SCG) eventually terminating in pinealo-
cytes. Release of norepinephrine from superior cervical post-ganglionic neurons 
stimulates melatonin’s synthesis and release (Jagota 2012; Majidinia et al. 2018). 

This pathway is actually activated during night without light stimuli. In 
pinealocytes, tryptophan is converted into neurotransmitter serotonin (5-hydroxy 
tryptamine; 5-HT) via 5-hydroxytryptophan. Then N-acetylation of serotonin by 
arylalkylamine N-acetyltransferase (AANAT) followed by methylation of the 5-
hydroxy moiety by hydroxyindole-O-methyl-transferase (HIOMT) results in mela-
tonin synthesis. Melatonin is then secreted into circulation and also to cerebrospinal 
fluid (CSF) of the third ventricle that influences the master clock via melatonin 
membrane receptors (Jagota 2006; Majidinia et al. 2018). Activation of AANAT 
results in a ten-fold increase in melatonin synthesis and secretion, approximately 
5–6 h after the onset of night. Melatonin receptors are G protein-coupled receptors 
with two types of G proteins (Gi (inhibitory—activates K+ channels, inhibits adeny-
late cyclase) and Go (inhibits Ca2+ channels)). G proteins activate AC which in turn 
activates second messenger molecules for regulation of various physiological func-
tions. In mammals, three types of melatonin receptors have been identified: MT1 
(or Mel1A or MTNR1A), MT2 (or Mel1B or MTNR1B) and MT3 (or Mel1C or 
MTNR1C) (Sugden et al. 2004). Further, SCN is rich in CaMKII, and it is known to 
be involved in transmission of photic information and phase resetting of the circa-
dian clock upon light exposure. Phosphorylation of CaMKII is rhythmic both under 
free-running and entrained conditions with peak levels during the subjective day 
(Agostino et al. 2004). 

In addition to pineal gland, extra pineal sites including retina, lacrimal gland, skin, 
Harderian gland, ovary, lymphocytes, bone marrow and most importantly gastroin-
testinal tract are known to synthesize melatonin. Based on the site of its synthesis 
and the organ/tissue of target, melatonin can function as a biological modulator, 
neurotransmitter, hormone or cytokine (Slominski et al. 2012). 

1.3.4 Molecular Components of CTS 

Circadian rhythms impose daily cycles to many behaviors and physiological 
processes in a wide variety of organisms. In mammals, such rhythms are regulated by 
SCN (Hardin 2011). It involves various core clock genes such as CLOCK, BMAL1, 
Periods, Cryptochromes, Rev-erbα, Rorα whose expression is orchestrated by tran-
scriptional and translational feedback loops that eventually result in 24 h periodicity 
(Table 1.1). 

Thus at cellular level, the transcriptional activators such as CLOCK (and its 
paralogue NPAS2) and BMAL1 (also referred as ARNTL) along with several other 
dedicated transcription factors exist at the core of these feedback loops. At the begin-
ning of a subjective day, BMAL1-CLOCK heterodimer binds to the E-box elements
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of Period (Per1, 2, 3), Cryptochrome (Cry1, 2) along with several clock-controlled 
genes (CCGs) initiating their transcription. Upon reaching critical levels toward the 
end of subjective day, PER-CRY proteins interact, hetero-dimerize and translocate 
to the nucleus during the subjective night to block BMAL1-CLOCK activity. This 
leads to the repression of their own transcription and also of other CCGs (Takahashi 
2017). 

Phosphorylation of PER-CRY heterodimer by serine/threonine kinases such as 
casein kinase 1ε (CK1ε) and casein kinase 1δ (CK1δ) plays  key role by governing  
the stability and localization of these clock elements. Phosphatases PP1 and PP5 
are in turn regulated by casein kinases. The E3 ubiquitin ligase complexes regulate 
turnover of PER and CRY proteins by targeted ubiquitylation resulting in proteasome-
mediated degradation. As the repression on CLOCK-BMAL1 gets relieved upon 
degradation of repressor complex, the cycle commences again with a periodicity 
of 24 h. Along with the core CLOCK-BMAL1/PER-CRY loop, auxiliary loops 
involving Retinoic acid receptor-related orphan receptor alpha (Rorα), Rorβ and 
Rev-erbα also known as Nr1d1 (nuclear receptor subfamily 1, group D member 
1), Rev-erbβ (Nr1d2) further function to stabilize the clock mechanism. RORs and 
REV-ERBs are directly under the transcriptional regulation of CLOCK-BMAL1. 
ROR-responsive elements (RREs) present in the BMAL1 promotor region are the 
targets for these factors wherein REV-ERBs suppress and RORs activate BMAL1 
transcription. This leads to the rhythmic expression of BMAL1 in antiphase with 
rhythmic PER expression. In addition to these, RORs and REV-ERBs rhythmically 
regulate the repressor nuclear factor interleukin 3 (Nfil3) contributing to another 
auxiliary loop. NFIL3 in turn represses D-box binding protein (DBP) to modulate 
rhythmic ROR expression. These three interlocked TTFLs together generate robust 
transcriptional rhythms underpinning the 24 h circadian machinery (Takahashi 2017; 
Honma 2018). 

Interestingly, sirtuin 1 (SirT1) has been linked recently to the circadian rhythm 
machinery through direct deacetylation activity as well as through the NAD+ salvage 
pathway (Majidinia et al. 2018). In addition, the post-translational modifications of 
clock proteins are important for ensuring the maintenance of circadian rhythms, as 
they can modulate the activity and turnover of major clock components (Bellet and 
Sassone-Corsi 2010). 

Further, such transcriptional machinery/core circadian clock is present in most 
cells in the body including neurons and astrocytes in SCN and brain. The core 
circadian clock regulates the circadian expression of thousands of genes in tissue-
specific manner and is a major regulator of cellular metabolism, stress response and 
many other functions (Musiek 2015). 

1.4 Sleep and Circadian Rhythms: Interplay 

The sleep–wake cycle, an evolutionary conserved neurobiological phenomenon, is 
a prominent manifestation of the biological clock (Sehgal and Mignot 2011). SCN
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consolidates the sleep–wake cycle by generating a signal of arousal during the active 
period and thus can alter baseline sleep amount. The role of the circadian clock in the 
regulation of sleep has been extensively studied, but the role of sleep in the regulation 
of circadian clock rhythms is not much understood. Sleep and clock dysfunction is 
linked with several disorders (Table 1.2a–c).

Recent data suggests that clock genes outside the SCN are involved in fundamental 
brain processes such as sleep/wakefulness, stress and memory. The role of clock 
genes in these brain processes are complex influencing sleep, stress, memory, etc. 

1.4.1 The Two-Process Model: The Interaction of Circadian 
Forces and Sleep Homeostasis 

The two-process model, first described by Borbely (1982), puts forth a description 
of sleep regulation that relies on both the circadian system (termed Process C) and 
sleep homeostasis (termed Process S) (Fig. 1.3). Process C is dependent on the ~24 h 
rhythmic variation of propensity to sleep, and this is balanced with Process S, which 
increases as a function of time awake. Process S is estimated by EEG slow-wave 
activity and has an exponential decline during sleep. The model posits that it is the 
interaction between Process C and Process S that determines time to wake and time 
to sleep. It explains that circadian factors help stay awake throughout the day as sleep 
pressure, modeled by Process S, builds up and also helps stay asleep in the latter part 
of the night once this sleep pressure has largely declined. Sleep need continuously 
increases during wakefulness and is reset to time zero only after proper sleep. Sleep 
pressure also explains why more time awake can lead to more and deeper sleep 
(Ashbrook et al. 2020). 

1.4.2 Sleep Gate 

The interaction between Process S and Process C has been named as “sleep gate”. 
Sleep pressure within the sleep gate will be highest during the initial phase of night but 
is increasingly reduced as homeostatic drive for sleep is dissipated. The melatonin-
concentrating hormone/GABAergic cells in LH “gate” REM sleep. The temporal 
distribution of sleep and wakefulness is due to interaction between the circadian 
system and the sleep homeostatic system (Schwartz and Kilduff 2015; Wang et al. 
2021).
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Table 1.2 a Various disorders linked to sleep dysfunction. b Age induced disorders linked to 
circadian dysfunction. c Age related disorders showing both sleep and circadian dysfunctions 

a 

Disorders Sleep dysfunction References 

CRSDs Misaligned endogenous CTS; 
perturbed homeostasis; ASWPD; 
DSWPD; sleep fragmentation irregular 
sleep, SDB, PLMS, RLS, Narcolepsy 
etc. 

Culnan et al. (2019) 

Neurodegenerative diseases 

PD Perturbed sleep architecture; RBDs; 
ESD; insomnia ↑; SBDs; OSA; RLS; 
arousal and orexin system ; sleep 
time ↓, total wake time ↑; sleep 
efficiency↓, awakenings ↑; 
hypersomnia 

Yang et al. (2018) 

AD Nocturnal awakenings ↑ daytime sleep 
bouts ↑; REM sleep; NREM sleep , 
sleep fragmentation, SDBs, insomnia, 
EDS; orexinergic, glutamatergic, 
γ-aminobutyric acid systems and the 
circadian rhythm 

Spinedi and Cardinali (2019) 

HD Insomnia; fragmented sleep; SWS ; 
NREM sleep γ-frequency↑; daytime 
sleepiness ↑; sleep efficiency ↓; sleep 
latency ↑ 

Ogilvie et al. (2021) 

Insomnia Sleepiness ↑; circadian and 
homeostatic sleep ; 
hypothalamic–pituitary–adrenal (HPA) 
axis 

Van Someren (2021) 

Dementia Day nap ↑; night awakenings ↑; sleep 
time ↓; sundowning ↑; insomnia; OSA; 
RBD; EDS; circadian dysregulation of 
sleep 

Shi et al.  (2018) 

Mood disorder and depression SWS ↓; REM sleep distribution , 
REM latency ↓, REM density ↑; total  
REM sleep time ↑; insomnia; OSA; 
circadian rhythms and sleep wake 
architecture and mechanism 

Riemann et al. (2020) 

Other disorders 

Metabolic disorder: IBD Sleep characteristics ; rest-activity 
rhythms ; sleep/wake activity ; 
IBD severity ↑ with insomnia ↑; night 
time awakenings ↑; polysomnographic 
patterns 

Sobolewska-Włodarczyk et al. 
(2021) 

Cancer Latent, moderate and severe insomnia; 
RLS; sleep apnea; PSQI ↑; daytime 
sleepiness ↑ 

Starreveld et al. (2021)

(continued)
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Table 1.2 (continued)

a

Disorders Sleep dysfunction References

Cardiovascular disease Narcolepsy; sleep apnea; cardiac 
arrhytmias during sleep ; RLS;  
inflamation 

Wang et al. (2021) 

Immune dysfunction Fragmented sleep–wake cycles and 
premature REM episodes; REM sleep 
fragmentation; sleep stages ; SWS  

; EDS; RBD; narcolepsy;  
susceptibility to infections ↑ with sleep 
deprivation/reduction 

Irwin (2019) 

Respiratory diseases Sleep efficiency ↓; fragmented sleep; 
REM sleep ↓; NREM sleep episode ↓; 
SWS ; daytime sleepiness ↑; 
restless sleep; OSA; SDB; insomnia; 
sleep latency ↑, total sleep time 

Adir et al. (2021) 

b 

Aging disorders Circadian dysfunction References 

Sleep disorders 

DSWPD Intrinsic circadian period length ↑; nocturnal 
light exposure hypersensitivity; melatonin ↓ 

Auger et al. (2015) 

PLMS Circadian rhythm Duffy et al. (2011) 

RLS Circadian impairment; daytime dysfunction ↑; 
dynamic perturbations in dopamine system 
during circadian cycle; circadian blood pressure 

Romigi et al. (2014) 

SDB Circadian clock ; circadian rhythm of distal 
skin temperature (DST) 

Martinez-Nicolas et al. (2021) 

ASWPD Advanced sleep–wake phase; chrono-disruption Basit et al. (2021) 

Narcolepsy Altered circadian autonomic function; circadian 
rhythm 

Sorensen et al. (2013) 

Neurodegenerative disorders 

PD Nocturnal core-body temperature ↓; diurnal  
activity ↓; nocturnal activity ↑; daytime motor 
deficits; reversed circadian rhythm; sympathetic 
and autonomic system ; circadian and sleep 
regulation ; clock gene expression ↓; 
Bmal-1and Bmal-2 levels ↓; melatonin and 
cortisol 

Yang et al. (2018) 

AD Rest–activity ; oxidative stress ↑; 
inflammation ↑; cerebral blood-flow rhythm 
disorder; circadian metabolic dyshomeostasis ↑; 
glymphatic system ; BMAL1 circadian 
oscillation 

Uddin et al. (2021)

(continued)
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Table 1.2 (continued)

b

Aging disorders Circadian dysfunction References

HD Diurnal and circadian locomotor activity rhythms 
; CRSDs; EDS; circadian clock gene 

expression ; Per2 and Bmal1 expression ↑; 
autonomic dysfunction; core body temperature 

Diago et al. (2018) 

Dementia Circadian amplitude ↓, acrophase ↓, inter-daily 
stability ↓ and intra-daily variability ↑; circadian 
clock genes ; body temperature rhythm 
(advanced); day-night activity and fractal activity 
patterns 

Maiese (2021) 

Insomnia CRSDs; altered circadian sleep; light and dark 
cycle ; feeding-fasting cycle ; rest-activity 
cycle 

Nobre et al. (2021) 

Other disorders 

Metabolic disorder: IBD Rest-activity cycles ; colon tissue core clock 
genes ; circadian associated mitochondrial 
dysfunction; phase shift exacerbated colitis; 
expression of circadian genes ↓; rest-wake  
activity 

Gombert et al. (2019) 

Cancer Daily sleep-activity cycles ; cortisol rhythm 
; circadian clock ; PER2 proteins loss 

alters chemotherapy drug efficacy 

Jensen et al. (2021) 

Cardiovascular disease Circadian clock ; 24-h rhythm repolarization 
variation ↑; heart rate and blood pressure in 
Bmal1-knockout mice; endothelial dysfunction in 
Per2-knockout mice 

Crnko et al. (2019) 

Immune dysfunction Circadian oscillations of the immune genes ; 
systemic circadian control of the immunity 

Zielinski and Gibbons (2022) 

Respiratory diseases Phasic responsiveness to inflammation ; 
circadian rhythms allergic and non-allergic 
asthma; clock gene expression ; free-running 
periodicity of daily activity ↓ 

Nosal et al.  (2020) 

c 

Disorders Sleep and circadian dysfunctions References 

Neurodegenerative disorders 

PD Circadian clock ; peripheral clocks ; sleep 
; REM sleep ↑; insomnia and RBD 

Gros and Videnovic (2020) 

AD Sleep deprivation ↑; circadian clock ; sleep 
cycle ; diurnal activity ↓; nocturnal activity 
↑; sleep duration ↓; wakefulness ↑; 
hypothalamic dysregulation 

Uddin et al. (2021) 

HD Delayed sleep onset; fragmented sleep; sleep 
efficiency ↓, frequent awakening ↑, delayed 
REM sleep onset 

Voysey et al. (2021)

(continued)



1 Sleep and Circadian Clock: Novel Players in Health Impacts and Aging 19

Table 1.2 (continued)

c

Disorders Sleep and circadian dysfunctions References

Other disorders 

Metabolic disorder: IBD Leptin rhythm ; sleep deprivation, sleep 
homeostasis , circadian rhythm 

Gombert et al. (2019) 

Cancer Orexin neurons night activity ; MCH neuron 
day activity ; cortisol ↑; melatonin ↓; daily 
sleep behaviour variations; day levels ↑: IL1β, 
IL6, TNF-α; night levels ↑: IL4, IL10, TGFβ; 
circadian clock genes mutations 

Jensen et al. (2021) 

Immune dysfunction Pro-inflammatory cytokines trafficking rhythms 
; sleep and circadian regulation 

Zielinski and Gibbons (2022) 

Cardiovascular diseases Sleep deprivation; insomnia with hyper-arousals; 
OSA; sleep fragmentation; hypothalamic 
pituitary adrenal axis ; circadian clock and 
sleep cycle 

Nobre et al. (2021) 

Respiratory diseases Insomnia; SDBs; circadian disruption Yang et al. (2020) 

CTS circadian time-keeping system; RLS rest leg syndrome; PLMS periodic limb movements in sleep; PD 
Parkinson’s disease; AD Alzheimer’s disease; HD Huntington’s disease; ASWPP advanced; sleep–wake phase 
disorder; DSWPD delayed sleep–wake phase disorder; REM rapid eye movement; NREM non-rapid eye move-
ment; RBD REM sleep behavior disorder; ESD excessive daytime sleepiness; OSA obstructive sleep apnea; SBD 
sleep related breathing disorders; SWS slow-wave sleep; PSQI Pittsburgh sleep quality index; SDB sleep-related 
breathing disturbances; CRSDs circadian rhythms sleep disorders; CRSWDS circadian rhythm sleep wake disor-
ders; PER period; CRY cryptochrome; BMAL1 muscle ARNT-like protein; MCH Neurons melanin concentrating 
hormone; IL-1β interleukin-1beta; IL-6 interleukin-6; IL-4 interleukin-4; IL-10 interleukin-10; TNF-α tumour 
necrosis factor-alpha; TGFβ transforming growth factor-beta

1.5 Sleep and Clock Misalignment with Aging 

Aging is an inevitable phenomena characterized by progressive decline in physio-
logical functions and cognitive impairments. It is an unidirectional process which 
is associated with decrease in “buffering capacity” or “homeodynamic space” that 
eventually leads to the progressive decline of metabolism, physiology and behavior, 
ultimately leading to death (Rattan 2008; Jagota et al. 2019). Aging process is a 
multifactorial process and modulated by many molecular and cellular events. Various 
hallmarks of aging are reduced genomic stability, telomere attrition, epigenetic alter-
ations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, 
cellular senescence, stem cell exhaustion and altered intercellular communication 
(Lopez-Otin et al. 2013; Majidinia et al. 2018). 

Interestingly, about 80% of subjects in the 50–80 year age group have been 
found to show spontaneous internal desynchronization of rhythms that may affect 
sleep patterns and other aspects of aging (Wu et al. 2007). The phase advance in 
various rhythms with aging in older people such as sleep wake, body tempera-
ture and hormone rhythms has been reported. Sleep disturbance is also a frequent
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symptom in patients with age-associated neurodegenerative diseases such as PD, AD 
and Dementia (Musiek 2015). 

The age-associated decline in physiological functions is linked with malfunc-
tioning of the various autonomic systems in the body, like CNS in which aging 
causes a diminished function accompanied by changes in various neurotransmitter 
levels. Aging also involves neuronal and synaptic loss of function which depends on 
adaptations in cellular responsiveness (Slotkin et al. 2005). The age-related decline 
of pineal melatonin production is due to the degenerative changes of the neural struc-
tures (serotonergic and noradrenergic neuron systems) innervating the pineal gland 
and the SCN rather than to the degeneration of the pineal tissue itself. Decreased and 
perturbed melatonin levels influence the circadian function. 

1.5.1 Alterations in Sleep Structure in Old 

Aging is linked to decreased amount and quality of sleep in about 40% of elderly 
people. Sleep disorders have been considered to be major symptoms and problems 
of aging which in turn may cause disruption in other functions such as digestion, 
mood, fatigue and decrease in alertness. Sleep disturbances in older adults are often 
overlooked but can have a significant negative impact on daily functioning and quality 
of life. These changes may lead to changes in basic homeostatic processes with age. 

Aging is associated with numerous changes, including changes in sleep timing, 
duration and quality. The CTS interacts with a sleep–wake homeostatic system to 
regulate human sleep, including sleep timing and sleep structure. Interestingly, sleep 
is one of the various processes that invariably undergoes change with age (Fig. 1.4). 
The increased sleep and circadian disturbances in the elderly result in various physi-
ological, metabolic and behavioral disorders (Hatori et al. 2017). Such disturbances 
are primarily due to age-related deterioration as well as secondarily due to physical 
illness and as a side effect of medications especially use of sedatives (Schwartz and 
Klerman 2019).

Sleep is one of the many biological processes that invariably undergoes change 
with age. The aging process is linked with profound disruption of an individual’s 
daily sleep–wake cycle. 

Few age-induced changes in sleep architecture have been demonstrated by some 
researchers using sleep tracking/polysomnographic (PSG) studies in full adult life 
span (ages 19–102 years). Interestingly, some researchers have demonstrated that, 
most of the age-related changes in sleep progress steadily across the adult human 
life span actually occur from age adult 19 up to age 60 and individuals over 60 who 
remain healthy can expect their sleep quality to remain relatively stable as they age 
as it becomes asymptote, declining minimally from age 60-age 102 (Ohayon et al. 
2004). 

The most important among age-induced changes in microarchitecture being 
changes in nighttime sleep quality: decrease in total sleep time (TST), decreases 
in sleep efficiency (SE), reductions in slow-wave sleep (SWS), increases in waking
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Fig. 1.4 Age-induced changes in the interaction patterns between sleep oscillator: VLPO (Process 
S) and circadian clock: SCN (Process C) in regulation of sleep drive. /≡∆S↑ unequivalent increase 
in disorder in interaction pattern

after sleep-onset (WASO) in addition to sleep-onset latency SLAT as well as REM 
latency (REMLAT), Stages 1 and 2, and REM (Duffy et al. 2011). 

1.5.2 Desynchronization of Circadian Rhythm Patterns 
in Old 

Several evidences have suggested that aging is associated with dysfunction in 24 h 
circadian rhythms due to loss of synchronization between the master clock and 
peripheral clocks leading to a myriad of complications in cellular, hormonal and 
metabolic processes (Table 1.2b). The circadian clock properties and functioning are 
altered with aging with the desynchronization of rhythms and the efficacy of input 
and output pathways to and from the SCN. The diurnal rhythm of α1 adrenergic 
receptor expression, characteristic of young rats, disappears by middle age (Smith 
et al. 2005). 

Aging results in neuronal deterioration, reduction of dendritic surface, decrease 
in protein levels as well as changes in the glucose rhythms. These changes lead to 
the aperiodic pattern of firing in the SCN neurons. Circadian disruptions associated 
with aging lead to poor health consequences and hastened senescence in elderly 
people. The decline in physiological function with aging may be associated with 
malfunctioning of various autonomic systems in the body. Chronotype gets shifted 
earlier as people grow older (Taillard et al. 2021).
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Such alterations can be related to modification in the kinetics of the activation of 
signaling pathways in the SCN as well as age-related changes within the clock mech-
anism of the SCN itself (Mishima et al. 2001). Aging is linked with the decreased 
robustness in the functioning of the circadian system in humans with reduced sensi-
tivity of the SCN to retinal stimulations, loss of temporal coordination among bodily 
systems, leading to deficits in homeostasis and suboptimal functioning of the physi-
ology. Such alterations accelerate the aging process and contribute to senescence with 
neuronal degeneration of SCN leading to organic deterioration of the circadian oscil-
lator and are characterized by loss of precision, decreased synchronization, a shorter 
period of the endogenous oscillator, reduced exposure to synchronizing stimuli such 
as light or altered responsiveness to zeitgeber (Gibson et al. 2009). Various studies on 
human aging show a decrease in pacemaker output and that the symptomatic expres-
sion of this abnormality is circadian rhythm sleep disorders (CRSD) responsible 
for decrease in daytime alertness with a decline in actual sleep time in addition to 
changes affecting physiology, e.g., digestion, mood and fatigue (Jagota 2005; Gibson  
et al. 2009). 

Reports from our laboratory suggest that there are alterations in daily rhythms of 
serotonin (Jagota and Kalyani 2008, 2010), antioxidant enzymes (Manikonda and 
Jagota 2012), leptin (Reddy and Jagota 2014), clock genes (Mattam and Jagota 2014), 
immune genes, Sirt1 and nuclear factor erythroid 2-related factor 2(Nrf2) (Kukke-
mane and Jagota 2019, 2020; Thummadi and Jagota 2019) serotonin metabolism 
(Reddy and Jagota 2015), NO and Socs expression rhythms (Vinod and Jagota 2016, 
2017), etc. with aging. 

1.5.3 The Circadian and Sleep Perturbances 

Sleep and circadian rhythms patterns show alterations with age. The homeostatic 
and circadian rhythm processes regulating the sleep cycle become more fragile with 
age. Cellular senescence has been reported to impair circadian expression of clock 
genes due to decrease in ability of cells to transmit circadian signals to their clocks. 
Such impairment is associated with decreased responsiveness of CREB-dependent 
signaling (Kunieda et al. 2006). Altered sleep/activity patterns can affect the func-
tion of the central and peripheral oscillators leading to alterations in metabolism. 
Altered sleep patterns can lead to arrhythmic exposure to light and thus constant 
resetting of the central oscillator which in turn may alter normal feeding patterns and 
desynchronize peripheral oscillators in metabolic tissues, such as liver and pancreas 
(Bellet and Sassone-Corsi 2010). The biological rhythms appear compromised by 
the middle age. We have also previously reported age-induced alterations in daily 
rhythms of serotonin in brain as well as SCN starting at middle age (Jagota and 
Kalyani 2008, 2010). 

There is large and important heterogeneity with normal aging even in the absence 
of clinically significant sleep disorders linked to circadian rhythm disruption and
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consequent sleep abnormality with decline in nighttime sleep quality and dura-
tion, decreases in sleep depth, sleep intensity and sleep continuity leading to cogni-
tive decline. These have been identified as common features of the most prevalent 
neurodegenerative diseases, such as AD, PD and Huntington’s disease (HD) (Musiek 
2015). 

Concomitantly, a reduced amplitude of circadian rhythm output signals has been 
shown in older participants, suggesting that age-related changes in sleep may be 
partially due to a weaker circadian regulation of sleep and wakefulness. Interestingly, 
it has been reported that older people may need less sleep (Dijk et al. 2010) suggesting 
that in spite of marked changes in sleep physiology, excessive daytime sleepiness is 
not common during healthy aging (Duffy et al. 2011). 

Further, aging is linked to more disruption in sleep and circadian rhythm outputs 
and increased disease susceptibility (Hastings et al. 2018). However, with increasing 
age, circadian and sleep–wake-related neural areas or the connections within the 
functional neuroanatomical networks may compensate for initial dysfunction (van 
Someran et al. 2021). The age-related decline in absolute levels of SWS represents 
one of the most common reported features in the aging with decline in homeostatic 
sleep pressure (Dijk et al. 2010). 

One major cue, the presence of light, is reported to the cells of the SCN using 
a type of glutamate receptor called an NMDA receptor. This receptor becomes less 
effective with aging. There is loss of some of its ability to adjust circadian rhythm 
according to the presence of light. The loss of effectiveness appears to be related to 
an age-related decline in the expression of a critical subunit in the receptor. 

There is evidence for age-related changes in many aspects of circadian 
rhythmicity, including the TTFLs involved in circadian rhythm generation, the 
neuroanatomical structures, the transmission and responsiveness to light and the 
timing and amplitude of output rhythms (De Nobrega and Lyons 2020). 

1.6 Interventions to Improve Sleep and Clock Function: 
A Step Toward Healthy Aging and Longevity 

The robustness of sleep and circadian rhythms declines with age. Reduced sensi-
tivity toward reception of photic/non-photic cues is linked to aging. Therefore, 
several scientists and researchers are working toward restoring stoichiometric inter-
actions and treatment methodologies for aligning the various internal physiologies at 
molecular, cellular and tissue level so as to synchronize parameters to have healthy 
aging. 

Although sleep quality and circadian rhythms appear to be well preserved in 
healthy older, there are the negative impacts of age-related other comorbidities on 
sleep and circadian rhythms. It has been demonstrated by careful screening of old 
individuals by some researchers that older individuals who have no or minimal
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medical burdens show the changes when compared to young adults thus demon-
strating aging process is independent of any medical or psychiatric illnesses or 
primary sleep disorders and is just age-induced sleep change. 

Adequate sleep assessment is critical in clinical and research settings; however, 
current sleep assessment protocols fail to account for circadian rhythms, despite the 
fact that sleep is a well-recognized circadian process. 

1.6.1 Sleep Hygiene 

Sleep disturbances are common in elderly patients. Attention must be paid to the 
treatment of comorbid disease. Inadequate sleep not only includes insufficient dura-
tion, poor sleep quality or the presence of sleep disturbances, but may also be due to 
inappropriate sleep timing (Erren and Reiter 2015). The circadian rhythm tends to 
advance with age, causing older people to awaken early in the morning. 

Our modern lifestyle and artificial nocturnal light delay our bedtime, make us 
wake up and lead to a greater intraindividual variability in sleep timing. Depending 
on the constraints that social time places, sleep timing may be in or out of phase with 
the internal circadian timing determined by the circadian clock (Wong et al. 2015). 
When a person’s social time is out of phase with their circadian time, they may be 
considered to suffer from circadian disruption or “social jetlag” (Taillard et al. 2021). 

1.6.2 Light Therapy 

Phototherapy is one treatment of circadian sleep–wake disorders which is linked to 
scientific and clinical evidences. The several light characteristics determine treatment 
strategies such as intensity, length of exposure, time of exposure and wavelength. 
Phototherapy is potentially indicated in several age-related circadian dysfunction 
sleep disorders such as ASWPD, DSWPD, non-24-N24SWD as well as in social 
jetlag due to aging (Leger et al. 2018). 

1.6.3 Administration of Exogenous Melatonin 

Melatonin appears to be firstly an effective molecule in helping align misaligned 
clocks and secondly an effective antioxidant, a defense tool against biologically 
damaging free radicals. Melatonin may slow aging process by removing free radi-
cals and enhancing immunity (Majidinia et al. 2018). Melatonin has been identified 
as a prime regulator of human chronobiological and endocrine physiology and is 
highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic 
and endocrine-modulatory molecule. Interestingly, several recent reports support
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melatonin as an anti-aging agent whose multifaceted functions may lessen the 
consequences of aging (Moretti et al. 2020; Gimenez et al. 2022). 

Reports from our laboratory suggested that with exogenous melatonin adminis-
tration, there was differential restoration in various age-altered parameters in animal 
models in daily rhythms of serotonin (Jagota and Kalyani 2008, 2010), antioxidant 
enzymes (Manikonda and Jagota 2012), clock genes (Mattam and Jagota 2014), 
serotonin metabolism (Reddy and Jagota 2015), NO and Socs expression rhythms 
(Vinod and Jagota 2016, 2017). 

1.6.4 Herbal and Other Interventions 

Use of herbal interventions, availability of food or food restriction is one of the 
strongest non-photic stimuli that can entrain the principal oscillator. Hence, various 
strategies to align food consumption with circadian clock system establishing 
achieving restoration of sleep and clock alignment are emerging in recent years. 

Further, we have also reported various herbal therapeutic interventions such as 
curcumin and hydro-alcoholic leaf extract of Withania somnifera toward the restora-
tion of various clock genes, immune genes, Sirt1 and nuclear factor erythroid 2-
related factor 2(Nrf2) upon aging (Kukkemane and Jagota 2019, 2020; Thummadi 
and Jagota 2019). 

Due to complex interactions with circadian clock and metabolism, meal timings 
are considered as critical modulators and approaches to align food consumption with 
endogenous circadian rhythms are emerging in recent years (Queiroz et al. 2021). We 
had reported, time restricted feeding (TRF) as a non-photic potential cue in entraining 
age-induced misalignment in leptin and locomotor rhythms (Reddy and Jagota 2014). 
The challenge still remains to translate such findings from circadian clocks studies 
to be exploited for establishing therapeutic role in restoration of age-related sleep 
disorders. 

1.7 Goals and Conclusions 

Sleep is absolutely important for human health as insufficient sleep has been asso-
ciated with a plethora of diseases. Due to robust increase in life span in twenty-first 
century, there is a pressing need to understand risk factors for age-induced neurode-
generation and age-related human diseases. In humans, however, social time and 
nocturnal artificial light modify sleep timing leading to “social jetlag” due to alter-
ations in internal CTS regulation. It is absolutely essential to understand sleep and 
wakefulness “flip-flop” switch so as to ensure the reduced ability of getting restful 
sleep in elderly can be better addressed, as sleep impacts memory, learning, mood, 
behavior, immunological responses, metabolism, hormone levels, digestive process 
and many more physiological functions. Investigation into core mechanisms may
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provide therapies to reset or amplify circadian signals. A mechanistic understanding 
of the link between the clock and sleep toward healthy aging can be leveraged through 
identification of the appropriate timing of therapies, as well as new treatment targets. 
Healthy aging and wellbeing are common goals in this complex process in the present 
scenario. 
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Chapter 2 
Cells and Circuits of the Suprachiasmatic 
Nucleus and the Control of Circadian 
Behaviour and Sleep 

A. P. Patton, M. H. Hastings, and N. J. Smyllie 

2.1 Introduction: Mammalian Circadian System Overview 

Circadian clocks are self-sustaining biological timing mechanisms with an intrinsic 
period of approximately one day (hence, circadian). They are widely distributed 
across all forms of life (Edgar et al. 2012) because they confer adaptive value by 
facilitating the anticipation of, and thus preparation for, the alternating challenges 
and opportunities presented by daily and seasonal environmental cycles. Conse-
quently, their influence impinges on virtually all aspects of metabolism, physiology 
and behaviour. In humans, the daily cycle of sleep and wakefulness is the most 
obvious output of the circadian system, but it is accompanied by equally dramatic 
cycles of autonomic function and endocrine status that maintain internal temporal 
coherence. In modern societies, this temporal coherence is compromised by factors 
such as rotational shift work, exposure to irregular lighting environments and increas-
ingly prevalent age-related diseases, most notably neurodegenerative conditions. The 
principal organiser of our circadian life is the suprachiasmatic nucleus (SCN) of 
the hypothalamus, a cluster of ca. 20,000 cells sitting immediately above the optic 
chiasm, on either side of the midline third ventricle (Hastings et al. 2018) (Fig. 2.1a). It 
receives direct photic input via the retinal hypothalamic tract (RHT), which consists 
of the axonal projections of retinal ganglion cells (RGC). Many of these RGCs 
express melanopsin and are thus intrinsically photoreceptive (LeGates et al. 2014). 
Under normal circumstances, this input allows the SCN to align its internal repre-
sentation of circadian time to external solar time. Importantly, however, the SCN 
will continue to maintain and generate a coherent representation of circadian time 
in the absence of environmental input, for example, when an animal is placed into 
constant darkness and even when the SCN is removed from a mouse and cultured as
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an explant. The discovery of circadian clock genes (see below) brought a totally unex-
pected level of circadian organisation into view. It is now clear that all major organ 
systems and many cell types, not least fibroblasts, have intrinsic circadian clocks 
(Reppert and Weaver 2002). This means that the role of the SCN is not as a driver 
of rhythms in a passive periphery, but rather that of a synchroniser of these innumer-
able, distributed local clocks (Fig. 2.1b). This dynamic interaction with the periphery 
highlights even further the power and sophistication of the SCN as a central time-
keeper, and underscores the potential fragility of the overall system to genetic, phys-
iological and environmental insults. The purpose of this review is, first, to consider 
the molecular-genetic and cellular basis of circadian timekeeping in mammals. 
Second, we discuss the circadian properties of SCN neurons followed by exam-
ination of the circuit architecture of the SCN as a cellular network. Fourth, we  
review the role of astrocytes in the SCN, before considering SCN output pathways 
and their control over behaviour, including the cycle of sleep and wakefulness. 
Finally, we note potential future directions.

2.2 Molecular-Genetic and Cellular Basis of Circadian 
Timekeeping in Mammals 

2.2.1 The Core Feedback Loop—Genes and Molecules: 
Discoveries Through Mapping and Mutagenesis 
Screens 

The possession of a cell-autonomous circadian clock is not unique to mammals. In 
the genetically tractable Drosophila and Neurospora, forward mutagenesis screens 
uncovered the first genetic components of eukaryotic circadian clocks: period (per) 
and frequency (frq), for each organism, respectively (Dunlap 1999). These were 
soon followed by the discoveries of timeless (tim), clock (clk) and cycle (cyc) in  
Drosophila. In these lower organisms, a common organisational feature emerged: 
transcriptional-translational feedback loops (TTFLs) were central to circadian time-
keeping. Here, positive regulators transactivate transcription of negative regulator 
genes, whose protein products then, in turn, inhibit their own transcription. Impor-
tantly, these self-sustaining oscillations are entrained by light. In Drosophila, this is 
mediated by cryptochrome (CRY) proteins (Emery et al. 1998; Yuan et al. 2007), 
which are related to photolyase DNA repair enzymes, and in Neurospora by photo-
sensitive white-collar complexes (WC-1, 2) (Froehlich et al. 2002). Although the Tau 
mutation, discovered in the Syrian hamster, was the first identified circadian clock 
mutant in mammals (Ralph and Menaker 1988), the turning point for assembling 
the mammalian molecular clock mechanism came with the discovery of the CLOCK 
gene, through a forward mutagenesis screen in mice (King and Takahashi 2000). 
A mutant allele that lengthened circadian period was positionally mapped (a heroic
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Fig. 2.1 The SCN and re-entrant motifs in the core clock and additional TTFLs. a Coronal section 
of mouse brain revealing location of the SCN by high expression level of endogenous PER2::Venus 
fluorescent protein. Scale 1 mm, inset higher power view to show nuclear localisation of PER2. 
3 V: third ventricle, OC: optic chiasm. b Schematic view of the role of the SCN as the dominant, 
light-entrained circadian clock in mammals, orchestrating peripheral clocks in brain regions and 
major organs. c Schematic view of the inter-nested TTFL loops of the cell-autonomous clock. The 
core BMAL1:CLOCK-driven loop (centre) additionally drives rhythmic output from E-boxes in 
clock-controlled genes (CCGs) (orange). Robustness is conferred to this loop by the interwoven 
REV-ERB-driven (blue), DEC1/2-driven (purple) and ZFHX3-driven (magenta) additional loops. 
In addition to modulating the core clock TTFL, ZFHX3 also controls rhythmic transcriptional 
outputs via AT-motifs in CCGs. Finally, DBP-driven targets (green) are important for regulation 
of rhythmic outputs regulated by D-box regulatory elements in CCGs, but do not impinge on core 
clock function
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undertaking in the pre-genome era) and then subsequently a series of rescue exper-
iments showed that the mutation was mapped to exon 19 of the gene. The resulting 
exonal deletion (CLOCKdelta19) compromised the transcriptional activity of CLOCK 
protein as a core clock component. This was complemented by the discovery of 
mammalian homologues to Drosophila per and cry as negative transcriptional regu-
lators (Tei et al. 1997; van der Horst et al. 1999). Interestingly, the mammalian 
TIMELESS gene is not closely related to the Drosophila timeless gene and is not a 
component of the mammalian clock (Gotter et al. 2000). 

With the discovery of MOP3 (also known as BMAL1) (Bunger et al. 2000), the 
final piece was in place identifying the core factors in the mammalian TTFL clock: 
CLOCK and BMAL1 are basic helix-loop-helix (bHLH) transcriptional activators, 
which heterodimerise via PAS domains and activate the transcription of negative 
regulator genes PERIOD (PER1, 2) and CRYPTOCHROME (CRY1, 2). The produc-
tion of PER and CRY proteins increases through the circadian day, during which 
they heterodimerise and translocate into the nucleus to inhibit their own transcrip-
tion. PAS domains in PER likely facilitate interaction with CLOCK:BMAL1. The 
PER and CRY proteins are degraded through the subjective night, until the feedback 
inhibition is finally alleviated, after which the cycle can begin again. The dynamics 
of transcription, translation and protein stability provide a regulated delay within this 
feedback loop, which consequently takes approximately 24 h to complete (Fig. 2.1c). 
Importantly, there is redundancy inherent to the system. First, there are two PER and 
two CRY proteins, which have overlapping functionality and provide resilience to the 
negative limb of the clockwork, and second, NPAS2, a paralog to CLOCK, can also 
heterodimerise with BMAL1. This redundancy is clearly demonstrated by the fact 
that animals only become arrhythmic in their behaviour when both Clock and NPAS2 
are deleted (DeBruyne et al. 2007). Interestingly, BMAL1 is the only component of 
the mammalian molecular clock that is irreplaceable. Global or SCN-restricted loss 
of the Bmal1 gene alone results in arrhythmia in mice. The simple TTFL motif is 
that of a re-entrant loop whereby output becomes input and thus, by incorporating 
a delay, it establishes a self-sustained oscillation. This re-entrant loop motif lies at 
the heart of clock function at multiple levels (Fig. 2.1c). Finally, to be effective, the 
oscillatory TTFL must control cellular functions and the most direct way is for the 
periodic activation and repression of E-boxes across the genome to create circadian 
waves of transcription of “clock-controlled genes” (CCGs) (Akhtar et al. 2002;Koike  
et al. 2012). Surprisingly, across all tissues examined, the circadian clock controls 
the expression of 43% of genes (Zhang et al. 2014) and so any loss of circadian 
competence will inevitably disrupt physiology and thereby aggravate ageing and 
compromise longevity (Lowrey and Takahashi 2004).
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2.2.2 Additional Feedback Loops Support the TTFL 

The discovery of the TTFL provided a range of new approaches, most notably 
real-time recording of circadian gene expression using bioluminescent and fluores-
cent reporters, to understand both cell-autonomous and tissue-based clock functions. 
Remarkably, not only the SCN but also peripheral tissues exhibits cell-autonomous 
TTFL cycles (Stokkan et al. 2001; Yoo et al. 2004). These discoveries revealed 
a completely unanticipated level to the sophistication of circadian co-ordination 
across the organism. This systemic complexity was complemented by the discovery 
at a molecular level of a series of additional feedback loops that stabilise and amplify 
the core TTFL. First, the transcription of nuclear receptors ROR α, REV-ERB α and 
REV-ERB β is activated by CLOCK:BMAL1, and these factors in turn act back on the 
TTFL by regulating the transcription of BMAL1 itself, which carries ROR response 
elements (ROREs) (Preitner et al. 2002) (Fig. 2.1c). The staggerer mutation of Ror 
α results in the reduction of BMAL1 expression in mice and shortened circadian 
period (Akashi and Takumi 2005), whilst loss of both Rev-Erb α and Rev-Erb β is 
accompanied by arrhythmia (Cho et al. 2012). These factors are also important in 
sculpting circadian output because the circadian cycle of activation to ROREs across 
the genome drives further waves of CCG transcription, particularly metabolically 
relevant genes, thereby complementing control by E-boxes. An additional loop incor-
porates the circadian E-box and light-driven DEC1 and DEC2 bHLH transcriptional 
regulators. DEC1 in particular can repress CLOCK:BMAL1-mediated activation at 
E-boxes, including those of PER1 (Honma et al. 2002), again closing a re-entrant 
loop around E-boxes. A third regulatory output of the TTFL pivots around the basic 
leucine zipper transcription factors DBP, TEF and HLF, which are expressed in a 
highly circadian manner in many tissues, including the SCN, where they further 
co-ordinate daily cycles of CCG expression, (Gachon et al. 2006), although their 
influence on the TTFL is minimal. 

Forward mutagenesis screening in mice uncovered an additional loop centred on 
the transcription factor ZFHX3 which acts via “AT-box” regulatory elements to acti-
vate gene expression (Parsons et al. 2015). Mice carrying the dominant Shortcircuit 
autosomal mutation of Zfhx3 (Zfhx3Sci) have a significantly shorter circadian period 
(~ 0.6 h for each mutant allele), which accompanies a reduced transactivational 
potency of the protein at AT-boxes, whilst deletion of ZFHX3 in adult mice short-
ened behavioural period by ~ 1 h and in ~ 30% of mice caused arrhythmia (Wilcox 
et al. 2017). Not only does ZFHX3 therefore feed into the TTFL, but the AT-box 
axis is also under circadian regulation and so constitutes a downstream output of the 
TTFL (Parsons et al. 2015): again, a re-entrant loop motif (Fig. 2.1c). The contri-
butions of cell-autonomous and network-level actions of ZFHX3 remain unclear, 
although the transactivational compromise in the mutant is reflected in lowered levels 
of expression of SCN neuropeptides (see below), several of which carry AT-boxes 
regulatory elements. The shortened period may therefore arise in part from changes 
in the interneuronal neuropeptidergic signalling network. More significantly, ZFHX3 
regulates the expression of numerous genes in the SCN and so, alongside E-boxes,
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and ROREs, it will be able to play a significant part in sculpting the circadian tran-
scriptome that underpins the output signalling by the SCN. Finally, ZFHX3 plays a 
developmental role because SCN specification fails in mice carrying a conditional 
null allele from embryonic stages and so are behaviourally arrhythmic, even though 
circadian competence is retained outside the SCN (Wilcox et al. 2021). This argues 
further that the “re-entrant” actions of ZFHX3 are expressed at the level of the SCN 
circuit, whereas those of RORs and DEC are cell-autonomous (Fig. 2.1). In all cases, 
however, the net effect of these additional loops is to enhance robustness and ampli-
tude of the core TTFL and to broadcast its timing cues via downstream transcriptional 
cascades. 

2.2.3 Control of the Stability of Clock Proteins and Effect 
on Behaviour 

It is implicit in the structure of the TTFL that changes to the rate of expression and/or 
stability of the mRNAs and proteins within it will alter its dynamics and therefore 
the period of overt measurable rhythms. Indeed, this relationship was foundational 
to the success of the forward genetic screens that identified clock genes, not least the 
CLOCKdelta19 mutation that revealed CLOCK as a positive regulator in the TTFL of 
mammals (King and Takahashi 2000). The analysis of period mutants in rodents has 
revealed the post-translational modifications that determine the activity and stability 
of PER and CRY proteins. The Tau mutation provided the first evidence for the single-
allele (as opposed to multigenic) control of circadian period in mammals, as well as 
identifying the SCN as the source of this control (Ralph et al. 1990). This mutation 
was later mapped to the Casein Kinase 1 Epsilon (Ck1 ε) gene (Lowrey et al. 2000) 
and re-engineered in mice to generate a comparable phenotype (Meng et al. 2008). 
Both in hamsters and mice, the mutant allele accelerates wheel-running rhythms by 
2 h per copy. Biochemical studies in tissues and primary cells from Tau mutant mice 
indicated that this was a gain-of-function (GOF) mutation in CK1 ε that destabilised 
PER proteins, thereby accelerating their clearance and, therefore, the speed of the 
clock (Meng et al. 2008). Consistent with the gain-of-function mutation, genetic 
deletion of CK1 ε does not have a pronounced circadian phenotype: rather, CK1 
δ is the principal endogenous regulator of PER stability and circadian period under 
normal conditions (Etchegaray et al. 2010), a conclusion confirmed by the contrasting 
effects of selective pharmacological inhibition of either CK1 δ or CK1 ε (Meng 
et al. 2010). It is now clear, however, that circadian period is tuned by the balance 
between kinase and phosphatase activity on PER proteins (Lee et al. 2011). Indeed, 
multiple CK1-dependent phosphorylation sites on PER can competitively stabilise 
or destabilise the protein (Philpott et al. 2020) by providing or denying access to 
the degron sequences that target it for ubiquitinylation by the ubiquitin ligase beta-
TRCP and thus proteasomal degradation (D’Alessandro et al. 2017). Consequently, 
the Early doors mutation of PER2, which compromises packing of the PAS domain
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and thus provides greater access to the degron sequences, destabilises the protein and 
shortens circadian period. In combination with the CK1ε Tau allele, it can accelerate 
SCN and behavioural rhythms to extremely short periods of below 19 h (Militi et al. 
2016). Remarkably, these ultra-fast clocks remain stable and precise. 

The period of the SCN and thus behavioural rhythms is also influenced by 
the activity of CRY proteins. Loss of CRY1 shortens period whilst loss of CRY2 
lengthens it, and loss of both causes arrhythmia (van der Horst et al. 1999). Mutage-
nesis screens (Godinho et al. 2007; Siepka et al. 2007) revealed that stability of both 
proteins is regulated by the E3-ubiquitin ligase, FBXL3. Loss-of-function mutations 
(Afterhours and Overtime) of  Fbxl3 correspondingly increase the stability of CRY 
proteins and thereby lengthen SCN and behavioural periods in wild-type, Cry1-null 
and Cry2-null mice (Anand et al. 2013). Consequently, when combined with CRY2 
deficiency, the Afterhours mutation lengthens SCN and behavioural periods to over 
29 h (Anand et al. 2013). A second ubiquitin ligase, FBXL21, counterbalances the 
action of FBXL3: it is localised predominantly in the cytoplasm (in contrast to the 
nuclear FBXL3), stabilises CRY proteins (in contrast to the destabilising actions 
of FBXL3), and loss of FBXL21 attenuates the period lengthening caused by the 
absence of FBXL3 (Hirano et al. 2013). AMP kinase (AMPK) is an important 
upstream regulator of the ubiquitinylation of CRY proteins (Lamia et al. 2009), 
with loss of different catalytic isoforms shortening or lengthening TTFL period (Um 
et al. 2011). Given that AMPK is nutrient-responsive and the metabolic state of the 
cell is circadian, this provides an additional example of a cell-autonomous re-entrant 
loop that stabilises and tunes the TTFL. Finally, ubiquitinylation-dependent stability 
of REV-ERB proteins allows this additional loop to tune the levels of BMAL1 and 
therefore modulate the core TTFL (Stojkovic et al. 2014). 

These discoveries in rodent models provide a satisfying confirmation of the elegant 
dynamics of the TTFL. They also offer insight into potential therapy and management 
of circadian disturbances, because the very same mechanisms direct the human TTFL 
and their compromise is at the heart of familial sleep disturbances. For example, 
mutations in human CK1 δ or at the kinase target sites of PER2 are associated 
with advanced sleep phase disorders (Chong et al. 2018). Equally, mutation of the 
human CRY1 that enhances its transcriptional repression leads to familial delayed 
sleep phase disorder (Patke et al. 2017). Agents that modify the molecular inter-
actions within the TTFL therefore hold promise for therapeutic intervention. For 
example, small molecules that target the interaction between CRY and FBXL3 can 
lengthen period in cell assays (Hirota and Kay 2015), whilst RNAi screening in 
human cells has identified many potential circadian-regulatory targets (Zhang et al. 
2009). Chronotherapy directed at the TTFL or at its innumerable outputs remains in 
its infancy, but its promise for therapeutic benefit is now evident (Zhang et al. 2014).
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2.3 Circadian Properties of SCN Neurons 

2.3.1 Observing Clock Proteins at the Cellular Level 

The molecular clockwork does not operate in isolation—it oscillates within its 
cellular setting. Each component of the TTFL and auxiliary loops has its own distinct 
set of intracellular dynamics necessary for progression of the SCN clockwork. This 
is in part imposed by the compartmentalisation of the cell, where translocation from 
cytoplasm to nucleus is essential for PER and CRY proteins to inhibit their own tran-
scription. Early over-expression studies in cell lines and immunostaining in mouse 
tissues made a link between PERs and CRYs and the regulation of their own nuclear 
translocation. More recently, RNAi screening in human cells revealed genes associ-
ated with nucleocytoplasmic translocation, including both canonical (beta importin-
mediated) and novel (Transportin 1 (TNPO1)) pathways, knockdowns of which vari-
ously lengthened or shortened circadian period in line with altered protein localisa-
tion (Korge et al. 2018). Nevertheless, over-expression systems and “snap-shot” type 
single-timepoint imaging approaches carry limitations in terms of deriving quanti-
tative, physiologically relevant measures. The recent creation of knock-in cell lines 
(Gabriel et al.  2021; Koch et al. 2022) and mice (Smyllie et al. 2016b; Yang et al. 2020) 
expressing fluorescently tagged versions of endogenous clock proteins has begun to 
give mechanistic insight and “put numbers” on to these intracellular dynamics. Real-
time imaging of PER2::Venus revealed that although its abundance oscillates, when 
present, it was present in the nucleus throughout the circadian day and this nuclear 
retention is dependent on CRY proteins (Smyllie et al. 2022). Importantly, the mere 
presence of the CRY proteins is not sufficient: they themselves must also be able 
translocate into the nucleus for PER2 to also keep its nuclear localisation. This may 
be because CRY proteins reduce the mobility of PER2 molecules in nucleus and 
cytoplasm by a factor of ~ 2. Equally, PER2 slows down the mobility of CRY1. 

Fluorescence correlation spectroscopy (FCS) measurements in fibroblasts 
revealed that at the peak times of expression, between 3000 and 10,000 molecules 
of either PER2, BMAL1 or CRY1 are present in the nucleus. This relatively low 
molecular abundance may be an important feature of the TTFL because it sustains 
large-amplitude changes in TTFL phase in response to small changes in abundance. 
Importantly, the dynamics of endogenous PER2, BMAL1 and CRY1 proteins are 
very different: PER2::Venus has the highest rhythm amplitude of ~ tenfold over a 
relatively low baseline of fluorescence, whereas BMAL1 has a very low-amplitude 
rhythm of ~ 5%, with a very high baseline. Perhaps related to this, there is a negative 
correlation between rhythm amplitude and the half-lives of these proteins, whereas 
endogenous PER2 has a half-life of a few hours, BMAL1, which had the lowest 
amplitude oscillation, was found to be surprisingly stable and was not fully cleared 
after 3 days of cycloheximide treatment. Between PER2 and BMAL1, endogenous 
CRY1 oscillates with a high (~fivefold) amplitude but even at its nadir, there are 
sufficient molecules to effect nuclear translocation of PER2 (Smyllie et al. 2022). 
Surprisingly, in terms of molecular mobility, there is no evidence of circadian control
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of these proteins: where measured in wild-type cells, the mobility of PER2 and 
BMAL1 did not vary between peak and trough of the cycle. Phases of expression do, 
however, vary markedly. Real-time imaging in SCN slices confirmed that endoge-
nous PER2 peaks at CT12, but surprisingly, CRY1 peaks 6 h later at CT18 (Smyllie 
et al. 2022; Koch et al. 2022), followed by BMAL1 a few hours after that, at CT20 
(Yang et al. 2020). This late expression peak of BMAL1 positions it temporally 
“poised” to be ready to transactivate E-box regulated Per and Cry genes to start a 
new cycle (Koike et al. 2012). The precise composition, and presumably the activity, 
of E-box-bound complexes containing CLOCK, BMAL1, CRY and PER proteins 
will therefore evolve through circadian time as the TTFL progresses. The temporal 
segregation of negative and positive regulators will enhance robustness and will also 
direct distinct, phase-appropriate waves of differential gene expression. 

Finally, quantitative imaging in cells and associated modelling has indicated dual 
modes of action of PER2:CRY1 complexes. First, they conventionally repress trans-
activation via displacement of CLOCK:BMAL1 from target sites, but this in turn 
facilitates mobility of CLOCK:BMAL1 and binding to new target sites (Koch et al. 
2022). Thus, PER2 acts both as part of a transcriptional repressor complex and 
as a facilitator of CLOCK:BMAL1 mobility to explore the genome. Given that 
CLOCK:BMAL1 will epigenetically mark its sites, such brief “visits” by relatively 
few molecules may nevertheless be sufficient to maintain genome-wide circadian 
co-ordination of the many CCGs (Koike et al. 2012). 

2.3.2 SCN Neural Activity and Transcriptional Cycles 

Beyond the TTFL, multi-channel and multi-modal recordings have enabled temporal 
“phase-mapping” to define the cell-autonomous programme of SCN neurons, 
mapping to the TTFL electrical activity and cytosolic signalling (Brancaccio et al. 
2017). All cellular activities can be aligned to the well-characterised peak of PER2 
expression, at circadian time 12 (CT12). Briefly, this programme begins in the subjec-
tive morning, when intracellular calcium levels [Ca2+]i monitored with GCaMP fluo-
rescent reporter, peak at CT7 (Brancaccio et al. 2013; Noguchi et al. 2017). This 
coincides with a circadian peak in levels of cAMP (O’Neill et al. 2008) and precedes 
gene transcription driven through cAMP/calcium response elements (CREs), moni-
tored by lentiviral bioluminescent reporter, which peaks shortly afterwards at CT9 
(Brancaccio et al. 2013). As Per1 and Per2 themselves carry CREs (Travnickova-
Bendova et al. 2002), this provides a further example of rhythmic circadian outputs, 
here calcium and cAMP levels becoming inputs to the TTFL. Indeed, Per1 and Per2 
expression peaks soon afterwards, followed by E-box-driven but CRE-independent 
CRY expression (Maywood et al. 2013). The outcome is a pronounced circadian 
cycle of metabolism and electrical activity in the SCN, with depolarisation and 
peak firing in the middle of circadian day, leading to the peak in [Ca2+]i. Electrical 
activity declines in circadian night as the neurons hyperpolarise and their metabolic 
redox state changes, as evidenced by increased super-oxidation of peroxiredoxin, a
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highly conserved maker of circadian redox state (Edgar et al. 2012). These intracel-
lular changes are accompanied by oscillations within the SCN extracellular milieu, 
including paracrine glutamate ([Glu]e) and synaptic γ-aminobutyric acid (GABA) 
([GABA]e). Surprisingly, both of these neurochemical signals peak in circadian night, 
when neurons are electrically silent (see below). At a cell-autonomous level, a circa-
dian output, in this case neural electrical activity, is again a re-entrant input to the 
TTFL. Consequently, compromise of the electrical state of the neurons, for example 
by pharmacological blockade of the firing of action potentials, in turns weakens the 
TTFL (Colwell 2011). 

2.3.3 The Importance of Coupling Between SCN Neurons 

The importance of electrical activity for stable progression of the TTFL is also 
evident at the level of the SCN circuit. Each SCN consists of ~ 10,000 neurons 
and ~ 3000 glial cells, the latter being principally astrocytes, but with single-cell 
RNA sequencing (scRNA-seq) revealing populations of ependymocytes, radial glia, 
oligodendrocytes and microglia (Wen et al. 2020; Morris et al.  2021). Convention-
ally, the SCN has been sub-divided into the retinorecipient “core”, which is the 
termination zone of the RHT, and the surrounding “shell”. Core and shell also have 
distinct patterns of efferent output and afferent input, as well as distinct neuropeptide 
expression (Abrahamson and Moore 2001). Vasoactive intestinal polypeptide (VIP) 
and gastrin-releasing peptide (GRP) are expressed in the core whilst arginine vaso-
pressin (AVP) is in the shell and Prokineticin 2 (PROK2) and Neuromedin-S (NMS) 
straddle both domains (Lee et al. 2015; Cheng et al. 2002; Masumoto et al. 2006). 
The localised expression of their various cognate receptors sustains both intra- and 
inter-sub-divisional signalling (Wen et al. 2020; Morris et al.  2021). The importance 
of such intra-SCN communication is evident in several ways. First, both in vivo and 
in the SCN slice ex vivo, the expression of Per and Cry genes traces a spatiotemporal 
wave across the nucleus, starting in the dorsomedial lip of the shell, and progressing 
ventrally to the core and then dorsally and laterally before activity is curtailed, to be 
reinitiated on the next cycle (Hastings et al. 2018) (Fig. 2.2a). This spatiotemporal 
wave is additionally reflected in a wave of neuronal activity (represented by [Ca2+]i) 
that passes across the nucleus with the same trajectory as, but phase advanced to, gene 
expression. The spatiotemporal wave is therefore a clear demonstration of the flow 
of information through the circuit, and indicative of regional functionality. Its role is 
less clear, although one possibility is to segregate temporally distinct efferent signals 
in different neuroanatomical pathways, i.e. early and late timing cues to regulate 
appropriate output.

The second demonstration of the importance of coupling comes from the obser-
vation that in dispersed cultures, although SCN neurons can remain individually 
rhythmic in terms of gene expression and neural activity, these oscillations are 
less robust, less frequent and are poorly defined compared to those of intact SCN
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Fig. 2.2 Spatiotemporal dynamics of gene expression across the SCN indicate regional function-
ality and form a network-level re-entrant motif. a Schematic showing the spatiotemporal progression 
of peak PER2 gene expression passing across the coronal surface of the SCN indicated by differ-
ently phase-mapped regions. Arrows indicate the directional progression of the wave emanating 
from the dorsomedial lip of the SCN, adjacent to the 3rd ventricle and progressing sequentially: 
ventrally into the retinorecipient core of the SCN, dorsolaterally into the shell of the SCN, and 
finally into the dorsomedial region for the cycle to begin anew. b Neuropeptidergic topology of 
the SCN determined from scRNA-seq data (redrawn from Morris et al. 2021) and organised to 
represent the flow of information from and across distributor and integrator nodes in circadian day. 
Coloured circles indicate neuropeptide source nodes (cell populations) and coloured lines indicate 
inferred connectivity via that neuropeptide for VIP (blue), PROK2 (magenta), AVP (purple) and 
undetermined (white). Note that the PROK2 node is also a source node for AVP. This network is 
transcriptionally dismantled at night

slices (Noguchi et al. 2017). Moreover, mutations of the TTFL that do not compro-
mise circadian behaviour of the animal nor timekeeping the SCN slice nevertheless 
disrupt further the rhythmicity of dispersed SCN neurons (Liu et al. 2007). Finally, 
compromise of electrical signalling across the circuit with reversible pharmacological 
(Yamaguchi et al. 2003) or genetic (Lee et al. 2015) means not only desynchronises 
the circadian cycles of the cells, but also causes them to lose amplitude and preci-
sion. The SCN circuit therefore creates a mutually reinforcing network, established 
by coupling between individual clock cells. In doing so, they establish additional 
emergent properties, including ensemble phase, ensemble period and phase-spread, 
as evidenced by the stereotypical spatiotemporal wave (Hastings et al. 2018). The 
re-entrant loop motif is therefore seen again, this time at the level of the SCN circuit.
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2.4 Circuit Architecture of the SCN as a Neuronal Network 

2.4.1 Entrainment of the SCN Network: Photic 
and Non-photic Cues 

The powerful role of intercellular coupling within the SCN immediately begs the 
question of how SCN cells communicate within the circuit and how the circuit as a 
whole is entrained by inputs conveying cues regarding external time (i.e. retinal) and 
internal state. Entrainment to solar time is mediated by glutamatergic signals from 
the RHT, which act on the SCN via AMPA- and NMDA-type glutamate receptors 
expressed on retinorecipient neurons, including those that express VIP and GRP 
(Colwell 2011). The NMDA receptors all contain NR1, in combination with NR2A 
or NR2B sub-units that confer specific properties, such as calcium channel kinetics. 
These in turn determine the responses of retinorecipient neurons, including enhanced 
firing rates that ultimately lead to changes in the TTFL and thus entrainment to 
light (Mazuski et al. 2018). This control of the TTFL is achieved principally via 
induction of Per gene expression as it spontaneously declines or increases in early 
and late circadian night, respectively. Although it occurs initially in the core neurons, 
induction of Per expression spreads rapidly to the SCN shell, mediated by non-
glutamatergic signals. Consequently, the spontaneous oscillation of the entire SCN 
is delayed by light after dusk (when induction opposes the spontaneous decline) or 
advanced by light before dawn (when induction accelerates the spontaneous increase) 
(Shigeyoshi et al. 1997). In nature, such shifts are small, of the order of minutes, as 
the SCN tracks solar dusk and dawn. Experimentally, however, the presentation of 
artificial light in the middle of night can shift the SCN and circadian behaviour by 
several hours. This perturbation also transiently uncouples the TTFL oscillations in 
the core, which responds rapidly, and the shell, which lags behind the core because of 
its indirect regulation by the RHT (Nagano et al. 2003). In modern society, nocturnal 
exposure to bright artificial lighting for recreational or work-related reasons is a 
cause of circadian and sleep disruptions that compromise well-being (Chang et al. 
2015). Conversely, progressive decline in these entraining pathways at all and any 
level can lead to poor circadian coherence and sleep disturbance during ageing that 
can be associated with cognitive and other health-related difficulties (Duffy et al. 
2015; Robbins et al. 2021). 

Complementing photic entrainment by the induction of Per gene expression, the 
suppression of Per gene expression during circadian day, when it is high, can also 
reset the TTFL by advancing the spontaneous decline. This is best understood in 
experimental rodents, in which acute behavioural arousal is signalled to the core 
SCN by thalamic, brain stem and basal forebrain centres via cholinergic, neuropep-
tide Y- and serotonin-mediated cues (Mistlberger and Antle 2011; Yamakawa et al. 
2016). Furthermore, photic and arousing cues can interact at the SCN, modulating 
and even cancelling out the entraining effect of the other, depending on the balance 
of Per expression (Maywood et al. 2002). The basic sequence of information flow is 
therefore core to shell and then to targets outside the SCN, with recurrent feedback
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from those targets that reflects activity levels. This is important because it allows 
the stereotypical control of behaviour by the SCN to be over-ridden, and modified 
to match circumstances. A striking example of this is the recent finding that in mice 
fed a high-calorie diet, dopamine receptors expressed in the SCN mediate a decrease 
in neuronal excitability in response to extra-SCN dopamine. This reduction in SCN 
neuronal electrical activity promotes food intake at inappropriate phases, leading to 
severe metabolic dysfunction (Grippo et al. 2020). Similar neurochemical pathways 
exist to the human SCN and so may mediate the entraining effect of altered schedules 
of activity (e.g. shift work, meal timing) on the circadian system. In addition, from a 
therapeutic perspective, non-photic behaviourally mediated cues may sustain circa-
dian entrainment when retinal signalling is compromised, most obviously following 
damage to the eye (Lockley et al. 2007), but also with progressive ageing. 

2.4.2 SCN Network Synchrony: GABA and Neuropeptides 

In the context of within-circuit coupling, SCN neurons constitute a homogeneous 
population that ubiquitously synthesises and utilises the inhibitory neurotransmitter 
GABA, and both ionotropic GABAA receptors and Gi-coupled metabotropic GABAB 

receptors are expressed in the SCN alongside ancillary proteins involved in GABA 
metabolism and transport (Albers et al. 2017). It is therefore reasonable to infer that 
GABA plays a role in determining network synchrony. Indeed, exposure of disso-
ciated SCN neurons to exogenous GABA suppresses their electrical firing, elicits 
phase delays when applied in late circadian day/early circadian night and daily treat-
ment with GABA synchronously entrains their firing rhythms (Evans et al. 2013; Liu  
and Reppert 2000; Rohr et al. 2019). These effects are dependent on the GABAA 

receptors, as the GABAA-specific agonist muscimol recapitulates them, whereas the 
GABAB-specific agonist baclofen cannot (Liu and Reppert 2000). Notwithstanding 
these observations, pharmacological or genetic loss of GABAergic signalling in intact 
SCN explants does not disrupt aggregate SCN circadian timekeeping: a counter-
intuitive observation (Aton et al. 2006; Freeman et al. 2013a, b; Ono et al. 2019; 
Patton et al. 2016). SCN explants from mice deficient in the vesicular GABA trans-
porter (vGAT) do have elevated electrical activity, associated with synchronous burst 
firing across the network, which reveals a reduced GABAergic tone, but ensemble 
PER2::LUC rhythms are unaffected (Ono et al. 2019). Pharmacological GABA 
antagonism does have a subtle network-level effect, increasing the amplitude of 
cellular Per1-LUC oscillations and reducing the period distribution of individual 
SCN neurons (Aton et al. 2006; Freeman et al. 2013a). This indicates that within the 
SCN network, GABAergic transmission appears to “repulsively couple” neurons. A 
consequent decrease of network precision could potentially make the network more 
susceptible to phase-shifting stimuli, and thereby responsive to seasonal changes 
in photoperiod, a response thought to be mediated by GABAergic signals (Meijer 
and Michel 2015). Thus, although implicated in coupling of SCN neurons and 
the encoding of photoperiodic information, the definitive role(s) of GABA within
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the SCN remains unclear (Albers et al. 2017). Indeed, GABA signalling may be 
more important for the time-dependent inhibitory control by SCN neurons of their 
extra-SCN targets (Paul et al. 2020; Ono et al. 2021). 

SCN factors beyond GABA must, therefore, sustain its potent ensemble time-
keeping. Dense core vesicles (DCV) for neuropeptide release are found in the termi-
nals of SCN GABAergic neurons (Albers et al. 2017) and to some extent, there-
fore, GABAergic and neuropeptidergic signalling presumably work in concert in the 
SCN. One model is that the repulsive coupling mediated by GABA is counterbal-
anced by the attractive coupling of neuropeptides such as VIP. Certainly, GABAA 

antagonism can induce synchronous rhythmicity within previously asynchronous 
VIP-null SCN explants (Freeman et al. 2013a). In such a scenario, where neither 
repulsive nor attractive cues are active, other signalling axes are able to sustain circuit 
function. Under normal circumstances, by balancing destabilising GABA against 
neuropeptidergic synchronisation, the network is able to generate correctly timed 
spatiotemporal dynamics. It is likely that GABA and neuropeptides interact together 
at the network level to help SCN neurons (alongside their cell-autonomous electrical 
programme) reach a synchronous happy point of depolarisation that sustains firing 
and quiescence by clamping resting membrane potential within a permissive range. 

Although most attention has focused on VIP, a range of neuropeptides and 
their cognate receptors is expressed in the SCN, including AVP, GRP, PROK2, 
cholecystokinin (CCK), Neuromedin-S (NMS) and –U (NMU), Neurotensin (NT), 
Angiotensin II (AII), methionine enkephalin (mENK), somatostatin (SST) and 
substance P (SP) (Abrahamson and Moore 2001; Karatsoreos and Silver 2007; van  
den Pol and Tsujimoto 1985). Notwithstanding variation between species, in unbi-
ased transcriptomic analysis of single cells from the mouse SCN, these genes have 
been used to define neuronal clusters across the population (Wen et al. 2020; Morris  
et al. 2021) (Fig. 2.2b). Thus, it is important to consider the SCN network organi-
sation on three levels: the active neuropeptide, its cognate receptor and the distinct 
cellular populations expressing these factors. 

2.4.3 VIP Axis: Mediator of SCN Photic Entrainment 
and Neuronal Synchrony 

VIP is the best characterised neuropeptide in the SCN. Expressed in the SCN core in 
~ 10% of SCN neurons, it forms a paracrine signalling axis with VPAC2 receptor-
expressing neurons in the SCN shell (~ 35% of SCN neurons) (Morris et al. 2021; 
Patton et al. 2020). SCN VIP expression is rhythmic, regulated by clock-driven 
upstream E-box elements (Silver et al. 1999), and AT-motifs, driven by ZFHX3 
(Parsons et al. 2015). VPAC2, a Gs-coupled GPCR is also rhythmic, peaking in 
circadian day at ~ CT4 (An et al. 2012; Doi et al. 2016). Consistent with the retinore-
cipient character of VIP cells, VIP is a potent regulator, phase-shifting SCN slices 
ex vivo and animals in vivo, in a phase-dependent mimic of light pulses, with delays
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and advances in early and late circadian night, respectively (An et al. 2011; Hamnett 
et al. 2019; Piggins et al. 1995). It can also accelerate the speed of re-entrainment 
of mice to a new lighting schedule (An et al. 2013). In steady-state oscillation, 
VIP synchronises and maintains SCN neuronal and behavioural rhythms, which are 
disorganised in VIP- or VPAC2-null mice (Harmar et al. 2002; Colwell et al. 2003; 
Hughes et al. 2004; Aton et al. 2005). This is caused by a loss of network synchrony 
and reduced amplitude of SCN neuronal rhythms (Atkinson et al. 2011; Aton et al. 
2005; Maywood et al. 2011, 2006) and can be restored acutely in VIP-null SCN 
by treatment with VIP or a VPAC2 agonist (Atkinson et al. 2011; Aton et al. 2005; 
Maywood et al. 2006) or chronically by co-culture with a VIP-proficient SCN. This 
is effected by paracrine release of VIP (Maywood et al. 2011; Ono et al. 2016). 
Activation of the VPAC2 receptor by VIP stimulates intracellular cAMP- (An et al. 
2011; Hamnett et al. 2019) and kinase-dependent signalling cascades, acting through 
the extracellular-signal regulated kinase 1/2 (ERK1/2) pathway and dual specificity 
phosphatase 4 (DUSP4) (Hamnett et al. 2019) to tune TTFL phase. It also increases 
electrical activity of SCN neurons by activation of a fast-delayed rectifier (FDR) 
current (Kudo et al. 2013). 

VIP cells peak in electrical activity during mid-circadian day at ~ CT6.5 (Enoki 
et al. 2017; Hermanstyne et al. 2016; Mazuski et al. 2018; Patton et al. 2020; Paul 
et al. 2020), while VPAC2 cells peak ~ 1.5 h later (~ CT8) (Patton et al. 2020). This 
serial activation from VIP to VPAC2 cells within the network-level spatiotemporal 
wave is also evident in their TTFL and cytosolic calcium rhythms (Patton et al. 2020). 
Both cell types are electrically quiescent in circadian night, when acute optogenetic 
stimulation of VIP cells (mimicking their activation via the RHT by nocturnal light) 
can shift the phase of circadian behaviour or ensemble molecular rhythms (Jones et al. 
2018; Mazuski et al. 2018; Patton et al. 2020). VPAC2 receptor antagonism blocks 
such optogenetically induced shifts (Jones et al. 2015), whilst sustained chemoge-
netic activation of VIP cells phase-shifts the SCN and irreversibly re-programmes 
the spatiotemporal wave of gene expression in the SCN (Brancaccio et al. 2013). 
In contrast, optogenetic stimulation of VPAC2 cells is not sufficient to shift SCN 
phase (Patton et al. 2020) suggesting that VIP cells entrain the TTFL of VPAC2 
cells by controlling activity-independent signalling pathways (which likely include 
ERK1/2 and DUSP4) (Hamnett et al. 2019). Ablation of VIP cells in adult mice 
has behavioural effects ranging from minor loss of precision and shortening of free-
running period (Mazuski et al. 2020) to behavioural arrhythmia (Todd et al. 2020). 
Ablation of VIP or VPAC2 cells in SCN slices severely attenuated the amplitude 
of molecular rhythms (Mazuski et al. 2020; Patton et al. 2020), with less severe 
effects following VPAC2 cell ablation (Patton et al. 2020). Thus, loss of the cells that 
express the neuropeptide source or receptor is not as detrimental to circadian time-
keeping as the loss of the neuropeptide or receptor itself. This indicates that the VIP 
or VPAC2 cells release other factors, and focussed loss of VIP-VPAC2 signalling 
causes a neurochemical imbalance that desynchronises the SCN network. As noted 
above, unopposed synaptic GABAergic communication may cause this (Fan et al. 
2015; Paul et al. 2020; Freeman et al. 2013a).
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Finally, beyond acute phase-shifting and sustained cellular synchrony, the VIP-
VPAC2 cellular axis acts as pacemaker to the SCN circuit. AAV-mediated genetic 
complementation in CRY-deficient mice to alter the properties of the cell-autonomous 
TTFLs of VIP and/or VPAC2 cells can change the ensemble period of the SCN to 
match that of the VIP-VPAC2 cellular axis. It can also establish robust TTFL rhythms 
across otherwise arrhythmic SCN when only VIP and VPAC2 cells, together, have 
competent TTFLs. The initiation of circadian competence in the VIP-VPAC2 cellular 
axis also initiates behavioural rhythms in previously arrhythmic CRY-null mice 
(Patton et al. 2020). Indeed, the cell-autonomous TTFL of VPAC2 cells, the cellular 
output of this neurochemical axis, determines the period and circadian competence 
of behavioural rhythms in mice (Hamnett et al. 2021). 

2.4.4 GRP Axis: An Accessory Entrainment 
and Synchronisation Pathway 

GRP is expressed in the SCN core, in retinorecipient cells that constitute in ~ 5% 
of SCN neurons, with some overlap in a subset of the VIP cells (Morris et al. 2021; 
Wen et al. 2020). Its expression is circadian (Dardente et al. 2004), driven at least 
in part by AT-motifs activated by ZFHX3 (Parsons et al. 2015). The GRP receptor, 
GRPR (also known as BB2) is a Gq-coupled GPCR expressed in the SCN shell 
(Karatsoreos et al. 2006). Both in mice in vivo and in SCN slices ex vivo, exogenous 
GRP can trigger phase-shifts and acute gene expression comparable to the effect of 
light pulses (Piggins et al. 1995; Gamble et al. 2007). GRP therefore acts in parallel 
to, and converges with, the VIP-VPAC2 axis by activating the TTFL of shell AVP 
neurons. Correspondingly, mice lacking GRPR have reduced responses to photic cues 
(Aida et al. 2002), whilst GRPR antagonists can suppress peak firing rate (Brown 
et al. 2005). Moreover, in the absence of effective VIP-mediated signalling, GRP can 
restore cellular synchrony to SCN (Maywood et al. 2006, 2011). 

2.4.5 AVP Axis: Within-Shell Coupling and Circadian Output 

AVP is enriched in 15–20% of SCN neurons located in the shell. Its transcription 
peaks in circadian day, controlled by TTFL E-box elements (Jin et al. 1999), cAMP-
response elements (CREs) (Arima et al. 2002) and ZFHX3-driven AT-motifs (Parsons 
et al. 2015). AVP receptors (AVPR) V1a and V1b are Gq-coupled GPCRs that are 
expressed rhythmically in the SCN shell (Bedont et al. 2018; Morris et al. 2021) 
(Morris et al. 2021) peaking during circadian night. Consistent with this, V1a/1b 
agonists induce phase delays when administered to SCN explants during circadian 
night (Rohr et al. 2021). Genetic deletion of the V1a and V1b receptors creates a more 
loosely synchronised circuit, which allows both the SCN and animal to entrain more
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rapidly to external perturbation (Yamaguchi et al. 2013), and in the absence of VIP-
signalling, AVP can act as a synchronising factor (Maywood et al. 2011; Ono et al. 
2016). Additionally, treatment with V1a/V1b antagonists lengthened the period of 
SCN explants and decreased spatiotemporal phase dispersion (Bedont et al. 2018). It 
also prevented initiation of de novo SCN oscillation following CRY1 complementa-
tion, suggesting that AVP is required to couple previously desynchronised oscillatory 
cells (Edwards et al. 2016). 

AVP neurons are highly rhythmic, with calcium peaking in advance of voltage 
(Enoki et al. 2017) and both leading PER2::LUC (Shan et al. 2020). Rhythmicity 
requires the BMAL1-dependent cell-autonomous TTFL, although loss of rhythmicity 
in AVP cells does not compromise the rest of the SCN, which remains synchronously 
rhythmic (Mieda et al. 2015). Interestingly, in contrast to the VPAC2 cells (Hamnett 
et al. 2021), which encompass 85% of the AVP cells (Patton et al. 2020), conditional 
ablation of BMAL1 in AVP neurons lengthened the period of locomotor activity, 
but did not induce arrhythmia (Mieda et al. 2015; Shan et al. 2020), indicating that 
AVP neurons only play a role in coordinating some SCN outputs, while additional 
VPAC2-expressing cells also function to sustain network rhythmicity (Hamnett et al. 
2021). AVP cells can, however, act as behavioural pacemakers: conditional deletion 
or over-expression of CK1 δ into AVP cells lengthens or shortens behavioural period, 
respectively, but again without altering intrinsic SCN explant period (Mieda et al. 
2016). Thus, AVP neurons form at least part of the output from the SCN and when 
GABAergic transmission from AVP neurons is compromised, activity time is length-
ened independent of behavioural period (Maejima et al. 2021). This is consistent with 
the phenotype of the AVP BMAL1 knockout where in addition to a lengthening of 
period, circadian activity time also lengthens (Mieda et al. 2015). 

2.4.6 Prokineticin-2 Axis: More Than an SCN Output? 

PROK2 is enriched in ~ 12% of SCN neurons, straddling the core–shell division 
and overlapping to varying degrees other neuropeptidergic populations as well as 
cells that express its cognate receptor, PROKR2 (Cheng et al. 2002; Masumoto et al. 
2006). PROK2 transcription is highly rhythmic, driven by TTFL E-box elements 
(Cheng et al. 2005) and AT-motifs controlled by ZFHX3 (Parsons et al. 2015). It 
peaks during circadian day and is correspondingly low during circadian night, when 
it can be induced by light. PROKR2 is a Gs-coupled GPCR enriched in ~ 16% of SCN 
neurons, 10% of which co-expresses PROK2 (Morris et al. 2021). Within the SCN, 
PROKR2 expression is also rhythmic at the transcript level following the pattern of 
PROK2 expression: peaking during the early circadian day and reaching its lowest 
abundance during the early circadian night. 

Knockout of PROK2 or its receptor disrupts clock-controlled behaviour and physi-
ology (Li et al. 2006; Prosser et al.  2007; Jethwa et al. 2008) without apparent compro-
mise of SCN function and so PROK2 has been ascribed a role in SCN output. It can, 
however, suppress GABAergic signalling in SCN slices (Ren et al. 2011) and through
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this disinhibition increase the baseline of PER2::LUC bioluminescence without 
altering SCN ensemble phase (Morris et al. 2021). Conversely, PROKR2 antago-
nists acutely suppress the amplitude of the subsequent PER2::LUC peak (Morris 
et al. 2021), presumably via a disruption of signalling to CREs in the promoters 
of TTFL components (Colwell 2011). Pharmacological inhibition of PROKR2 also 
reversibly lengthens SCN period (Morris et al. 2021) with a similar small lengthening 
of behavioural period observed in mice lacking PROK2 or PROKR2 (Li et al. 2006; 
Prosser et al. 2007). Furthermore, ectopic expression of PROK2 under the control 
of the PROKR2 promoter disrupts the SCN TTFL and circadian behaviour (Li et al. 
2018). Coherent SCN function therefore depends on where PROK2 is expressed and 
how it is signalling to target cells. Consistent with this, intersectional manipulations 
of the PROK2-PROKR2 cellular axis have revealed a pacemaking function parallel to 
that of the VIP-VPAC2 axis. Both PROK2 and PROKR2 populations express TTFL 
rhythms, with PROK2 cells in advance of the PROKR2 cells by ~ 0.5 h (Morris et al. 
2021). As with VIP-VPAC2 (Patton et al. 2020), this difference between ligand- and 
receptor-expressing populations may contribute to the circuit-wide spatiotemporal 
waves of activity. Moreover, intersectional manipulations of the cell-autonomous 
TTFLs of PROK2 and PROKR2 alter the ensemble period of the SCN and initiate 
rhythms in an otherwise arrhythmic circuit (Morris et al. 2021). In contrast to the VIP-
VPAC2 axis, where ensemble period is only controlled when both cell populations 
are targeted (Patton et al. 2020), both PROK2 cells or PROKR2 cells can individu-
ally control circuit period. To initiate rhythms, however, both PROK2 and PROKR2 
populations need to have activated TTFLs, as is the case for the VIP-VPAC2 axis. 

2.4.7 An Emerging View of the Functional Topology 
of the SCN Network 

The time-base over which the SCN operates, 24 h, is very different from that 
of other neural circuits, which process information over much shorter intervals. 
Various features of the SCN network architecture appear especially well adapted 
to this role. The first is the paracrine nature of neuropeptidergic signalling which 
sustains a slow but progressive flow of information through the circuit. This is 
reflected in the spatiotemporal waves of TTFL and neural activity, which loop across 
the SCN in a stereotypical pattern. The wave may comprise distinct stages, each 
consisting of the serial activation of ligand-releasing and receptor-expressing popu-
lations within distinct neuropeptidergic axes, themselves linked in a chain (Fig. 2.2b). 
Available evidence from the VIP-VPAC2 and PROK2-PROKR2 axes supports this 
view, and future studies may expand the network to include AVP-, GRP- and other 
neuropeptide-mediated signalling. The ability of distinct neuropeptidergic popula-
tions to control ensemble period, driving it at their own cell-autonomous period, 
further supports this view of the network as one built around serial activation through
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a chain of cellular hubs. Indeed, the de novo establishment of network-wide oscilla-
tions by circadian-competent VIP-VPAC2 or PROK2-PROKR2 axes emphasises the 
ability of cell-derived (neuropeptidergic) circadian signals to propagate through and 
organise an otherwise circadian-incompetent circuit. For the purposes of entrainment 
to external time and to internal cues, the VIP and GRP cells are the entry point to the 
network. This may explain why the circadian-competent VIP-VPAC2 axis is able to 
establish spatiotemporal order across the SCN, whereas the PROK2-PROKR2 axis is 
unable to achieve this order, even though it can initiate basic rhythmicity (Patton et al. 
2020; Morris et al. 2021). These results support a model whereby VIP and VPAC2 
cells work together as a distributor node in the SCN network to transfer circadian 
timing information from the retinorecipient cells to the rest of the network, while the 
PROK2 and PROKR2 cells work together to integrate temporal information across 
the network (Fig. 2.2b). 

Orthogonal to the anatomical structure of the SCN circuit, analysis of single-cell 
RNA sequencing data has made it possible to construct formal network topolo-
gies based on the inferred relationships between neuropeptide ligand- and receptor-
expressing populations (Wen et al. 2020; Morris et al.  2021). These support both 
linear, recurrent and circular topologies, the latter two likely facilitating self-sustained 
oscillation as (again) output becomes input. Importantly, all of the neuropeptidergic 
axes are under circadian regulation, and from a transcriptional perspective, they 
are assembled during circadian day when neural electrical activity is maximal and 
dissolved in circadian night, when neural firing rate is minimal. The expression 
of VIP, AVP, GRP and PROK2, as well as their cognate receptors, all exhibit this 
temporal plasticity, with the PROK2-PROKR2 axis being the most dramatic as, tran-
scriptionally speaking, it disappears at night. Assuming this is carried through at the 
levels of ligand release and subsequent receptor activation, it means that neuropep-
tidergic signals are effective during circadian daytime but exert little effect on the 
network at night. This implies that other, non-neuropeptidergic cues are important 
for nocturnal advancement and co-ordination of cell-autonomous and network-level 
oscillations. 

2.5 The Role of Astrocytes in the SCN 

Alongside the neurons in the SCN network sit the glial cells, of which astrocytes 
are the most numerous (Guldner 1983; Morris et al.  2021; Wen et al. 2020). In 
common with most mammalian cell types, astrocytes display clear circadian TTFL 
rhythms (Prolo et al. 2005; Marpegan et al. 2011; Brancaccio et al. 2017; Tso et al. 
2017) alongside cytosolic circadian cycles of [Ca2+]i (Brancaccio et al. 2017; Patton 
et al. 2022). Strikingly, however, these rhythms in the intact SCN network sit in 
antiphase to neuronal rhythms, i.e. they peak in circadian night when neurons are 
inactive (Fig. 2.3a). The overriding question, therefore, has been whether, despite 
being outnumbered by neurons by a factor of 3–1, astrocytes actively participate in 
network timekeeping?
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Fig. 2.3 Neurons and astrocytes communicate within the SCN network and form a network-level 
re-entrant motif. a Astrocytes and neurons communicate with one another to correctly phase their 
respective TTFLs. Importantly, neurons are active during circadian day, consistent with the timing of 
the transcriptional presence of neuropeptidergic signalling hubs, while astrocytes are active during 
the night, consistent with the timing of astrocyte-derived glutamate signals. Thus, while neurons 
direct daytime network functions, astrocytes appear to direct night-time functions. b A network  
schematic for astrocytic control of the SCN neuronal network via nocturnal release of glutamate. 
This signal is sensed by a subset of SCN neurons expressing NR2C-containing NMDA receptors, 
which in turn utilise synaptic GABA to suppress the activity of the rest of the neuronal network 

2.5.1 Astrocytic Control of Circadian Rhythms 

Astrocytic metabolism can be disrupted by treatment with the glial-specific metabolic 
toxin fluorocitrate, a suicide inhibitor of aconitase, which arrests carbon flux through 
the astrocytic citric acid cycle (Fonnum et al. 1997). Treatment of acute SCN explants 
from rats with fluorocitrate at CT6 disrupts ensemble neuronal electrical activity 
rhythms on the following cycles, indicating that on some level SCN astrocytes 
are able to direct activity within the SCN network (Prosser et al. 1994). Similarly, 
chronic treatment of free-running SCN explants with fluorocitrate disrupts astrocytic 
[Ca2+]i oscillation, supresses the amplitude of PER2::LUC oscillations and compro-
mises network synchrony (Patton et al. 2022). Furthermore, disruption of astrocytic 
communication through pharmacological or genetic manipulation of gap junctions 
or hemichannels (Shinohara et al. 2000; Brancaccio et al. 2019) and disruption of 
glial proliferation through antimitotic treatments (Shinohara et al. 1995) also disrupts 
SCN neuronal rhythms. Astrocytic competence is necessary, therefore, to maintain 
network-level SCN rhythmicity (Fig. 2.3a).
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The sufficiency of astrocytic clocks to control the SCN circuit is demonstrated in 
two ways. First, if the period of the cell-autonomous TTFL specifically of astrocytes 
is lengthened by intersectional genetic means, then the ensemble period of the SCN is 
also lengthened (Brancaccio et al. 2017; Tso et al. 2017; Patton et al. 2022). In addi-
tion, deletion of BMAL1 from astrocytes lengthens ensemble period, which suggests 
that a BMAL1-dependent signal from astrocytes is required for timely progression of 
the network cycle. In contrast, shortening of the cell-autonomous period of astrocytes 
does not shorten ensemble period to the degree seen when the period of neurons is 
shortened, indicative of some differential potency between astrocytic and neuronal 
pacemaking (Patton et al. 2022). Second, if astrocytes are the only cells in the SCN 
with a functional clock, they are nevertheless able to impose rhythmicity, monitored 
as both TTFL and neuronal [Ca2+]i oscillations, on the rest of a previously arrhythmic 
circuit (Brancaccio et al. 2019; Patton et al. 2022). Albeit the time-course is slower 
than that of neuronal initiation. SCN astrocytes are therefore not passive components 
within the SCN network: rather, they are effective pacemakers, and this competence 
is emphasised further by in vivo studies. In mice where only the cell-autonomous 
period of SCN astrocytes is lengthened, locomotor activity rhythms are also length-
ened (Tso et al. 2017; Brancaccio et al. 2017). Furthermore, disruption of the TTFL 
by conditional deletion of BMAL1 only in astrocytes results in a lengthening of 
behavioural period (Barca-Mayo et al. 2017). Finally, CRY1-complementation into 
SCN astrocytes of CRY-null mice initiates behavioural rhythmicity, indicating that 
astrocytes are able to adequately organise neurons within the SCN network to coher-
ently control their output (Brancaccio et al. 2019). These results therefore elevate 
astrocytes to active participants in SCN network timekeeping. 

2.5.2 Astrocyte-To-Neuron-To-Astrocyte Communication 
Within the SCN Network 

How, then, are SCN astrocytes able to control circadian rhythmicity? The first clue 
to this emerged from imaging approaches that revealed rhythmic release of gluta-
mate within isolated free-running SCN explants. This rhythmic release is striking on 
two fronts: first, SCN neurons are exclusively GABAergic and, second, glutamate 
rhythms within the SCN peak during the night, in antiphase to neuronal activity 
(Brancaccio et al. 2017). Glutamate release in the extracellular space is therefore 
co-phasic with astrocytic metabolic activity rhythms, suggesting that they are the 
source of this transmitter and, indeed, blockade of astrocytic glutamine synthetase, 
which synthesises glutamine from glutamate, increased extracellular glutamate in 
SCN slices. Astrocytic control was confirmed by a significant disruption in extracel-
lular glutamate rhythms following either caspase-3 driven ablation of SCN astrocytes 
(but not neurons) (Brancaccio et al. 2017) or pharmacological blockade of astrocytic 
connexin-43 (Cx-43) hemichannels (Brancaccio et al. 2019). These manipulations 
in turn disrupted SCN TTFL rhythms, confirming the relevance of astrocytic control
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of glutamate for clock function. So how might glutamate act on the SCN neural 
circuitry? Whereas NMDA receptors with NR2A and NR2B sub-units mediate 
retinal entrainment in the core SCN (Colwell 2011), the dorsal SCN expresses 
NR2C sub-units which confer different dynamics and agonist-sensitive properties 
to the oligomeric NMDA receptor (Fig. 2.3b). Pharmacological blockade of NR2C-
containing NMDARs reduced the amplitude of SCN molecular oscillations and depo-
larised cells during the night (Brancaccio et al. 2017). Importantly, it also eliminated 
astrocyte-initiated rhythms (Brancaccio et al. 2019), indicating that signalling via the 
NR2C subunit is vital for linking astrocytic and neuronal clock function (Fig. 2.3b). 
Curiously, however, glutamate release from astrocytes appears to be inhibitory to the 
neuronal network, i.e. blockade of NR2C depolarised neurons, even though gluta-
mate is conventionally an excitatory neurotransmitter. This can be reconciled by 
the observation that the subset of neurons that express NR2C display pre-synaptic 
calcium elevations during the night, and this nocturnal rise presumably facilitates 
the synaptic release of GABA. This will in turn suppress neuronal activity across the 
network, even though the action potential firing of GABAergic cells is not altered 
(Brancaccio et al. 2017). The effect seen in the SCN may be more general, in so 
far as astrocytes can manipulate extracellular levels of several neurotransmitters to 
mediate astrocyte-to-neuron function. The first is active release of glutamate from 
astrocytes, which is sensed by neuronal NR2C-containing NMDARs to control SCN 
GABAergic transmission (as described above) (Brancaccio et al. 2017). Second, 
the uptake of GABA may rebalance VIP/GABAergic signalling (Barca-Mayo et al. 
2017) (and see Sect. 4.2), and, third, the active release of adenosine from astrocytes 
may alter neuronal GABAergic signalling (Hablitz et al. 2020). While these mecha-
nisms are qualitatively different, they converge on a common theme: the control of 
GABAergic signalling. 

If astrocytes are signalling to neurons to control neural activity, the neurons 
must also be signalling back to modulate astrocytic function. Consistent with this, 
endocannabinoids released by neurons induce calcium activity in SCN astrocytes 
following activation of astrocytic cannabinoid 1 receptors (CB1R) and thereby facil-
itate adenosine release (Hablitz et al. 2020). In addition, cultured cortical astrocytes 
can be entrained to daily VIP exposure (Marpegan et al. 2009). To understand the 
contributions of astrocytes to circadian timekeeping, we therefore need to under-
stand how SCN astrocytes and neurons communicate time of day information to 
one another (Fig. 2.3). Such signalling adds to the emerging network model, being 
consistent with a necessarily slow and progressive information flow on a long time-
base. This further level of paracrine cues (paracrine glutamate controlling synaptic 
GABA) and its nocturnally specific cellular activity will allow SCN timekeeping to 
“bridge” the gap when the diurnally active neuropeptidergic network is dismantled. 
Moreover, this adds yet another re-entrant loop motif to the SCN timekeeper.
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2.6 SCN Outputs and Control of Circadian Behaviour 
and Sleep 

2.6.1 SCN Outputs and Control of Circadian Behaviour 

The neural pathways that mediate SCN-dependent control over circadian behaviour 
including sleep are not well defined. This may in part reflect the diverse and highly 
distributed nature of circadian control. Neuropeptidergic axons from both core (VIP, 
GRP) and shell (AVP, PROK2) SCN neurons project out of the nucleus to the 
surrounding hypothalamus, where direct inputs to neuroendocrine nuclei such as 
the paraventricular nucleus and arcuate nucleus will mediate circadian regulation of 
hormonal and metabolic status (Paul et al. 2020; Mendez-Hernandez et al. 2020). 
SCN projections to the dorsolateral hypothalamus will impinge on wake-regulatory 
centres containing orexinergic and MCH-expressing neurons. A broader distribu-
tion of circadian signals arises from the sub-paraventricular zone (SPZ), which is 
adjacent to, and receives input from, the SCN. It projects to the medial forebrain, 
thalamus, hypothalamus and brainstem to provide several parallel and pathways for 
segregated circadian regulation of behaviour and physiology (Vujovic et al. 2015). 
This includes GABAergic efferents from the SPZ to the ventromedial hypothalamus 
that confer circadian control of aggression (Todd et al. 2018), as well as extensive 
input to the periaqueductal central grey, an area strongly associated with behavioural 
arousal. The midline paraventricular nucleus (PVT) is also interconnected, recipro-
cally, with the SCN and SPZ. It receives direct and indirect photic input and is densely 
innervated by orexinergic neurons which direct arousal-state transitions. It is, there-
fore, a likely route for circadian modification of affective behaviours, such as mood 
and motivation (Colavito et al. 2015). Notwithstanding this growing neuroanatom-
ical knowledge, the means by which specific SCN neuronal populations control 
behaviour by specific pathways remains to be determined. AAV-mediated delivery of 
Cre-recombinase in vivo into the SCN of floxed VGAT mice decreased the quality and 
amplitude of circadian locomotor activity rhythms without altering period (Ono et al. 
2019). Furthermore, this loss of GABAergic signalling did not disrupt timekeeping 
within SCN explants, suggesting that synaptically released GABA is potentially 
more important in the regulation of SCN outputs rather than SCN timekeeping itself 
(see above). Consistent with this, the same manipulation within just the AVP cells, 
similarly disrupted circadian behaviour without altering SCN rhythmicity (Maejima 
et al. 2021). 

2.6.2 SCN in the Circadian Regulation of Sleep 

The principal overriding output of the circadian system is the control of the sleep– 
wake cycle. Although the exact function of sleep is not yet fully understood, its 
importance in relation to health is evident. Even acute sleep deprivation has known
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effects on cognition and alertness (Lo et al. 2012). This is particularly relevant to 
the large numbers of shift workers in the population, where night shift work is 
associated with loss of concentration and increased workplace accidents (Budnick 
et al. 1994; Ryu et al. 2017). Furthermore, a breakdown of daily sleep–wake patterns 
is associated with many neurological and psychiatric illnesses (Leng et al. 2019; Sato 
and Sassone-Corsi 2021), although the extent to which these reflect cause or effect 
awaits clarification. 

The current accepted model for sleep control involves two processes: a sleep 
homeostat, or Process “S” that measures sleep pressure as a function of length of 
time spent awake and a circadian Process “C” that allows sleep to be timed relative 
to the light–dark cycle (Borbely et al. 2016). In this model, the circadian clock could 
either behave as a passive gate on the homeostatic process, or it could actively promote 
sleep and/or wake at the appropriate circadian time. It is only by separating process 
S and C that this can be tested, and forced desynchrony protocols, which uncouple 
rest/activity rhythms from the internal circadian clock, have enabled this to some 
degree in human subjects. This has revealed that the circadian clock can modulate 
sleep propensity and structure and that ageing affects sleep regulation (Dijk et al. 
1999). Equally, there is evidence that sleep pressure can influence circadian control 
of sleep [reviewed in (Deboer 2018)]. 

The identity of the sleep homeostat is unknown but through advanced tech-
niques including opto- and pharmaco-genetics, viral tracing, fluorescent reporters 
of neuronal activity and human brain imaging, it has been possible to map individual 
sleep- and wake-promoting neuronal circuits within and between known sleep/wake-
controlling regions in forebrain, hypothalamus and brain stem (Weber and Dan 2016; 
Boes et al. 2018). Within these networks, neural hubs control sleep state (REM and 
NREM), transitions between sleep and wakefulness and also presumably are sensitive 
to time spent awake. Whether homeostat(s) and wake- and sleep-promoting centres 
are co-located is not clear. 

For Process C, early ablation studies across nocturnal and diurnal mammals 
demonstrated the necessity of the SCN for circadian timing of sleep, and most suggest 
that there is little or no effect on sleep homeostasis [reviewed in (Mistlberger 2005)]. 
However, SCN-ablated mice are reported to have reduced NREM compared to control 
animals during recovery from sleep deprivation (Easton et al. 2004), which suggests 
that the SCN may play a greater role in the control of sleep, beyond sleep timing. An 
additional level of complexity to the localisation of Process C came with the discovery 
of local TTFL-based clocks in various brain regions, including hippocampus, cere-
bellum and cerebral cortex, which can maintain autonomous rhythms in ex vivo 
culture for several cycles (Abe et al. 2002). These local clocks may confer circa-
dian modulation of local functions, such as cognition (Kyriacou and Hastings 2010; 
Wright et al. 2012) that “chime” with central SCN-determined phases of sleep and 
wakefulness. As noted above, projections via the SPZ will mediate internal synchrony 
between SCN and local brain clocks. But what are their relative contributions to 
circadian control of sleep? 

Genetic approaches confirm a role for the TTFL in Process C. Double deletions 
of either Cry1, 2 or Per1, 2, or single deletion of Bmal1 in mice abolish sleep/wake



2 Cells and Circuits of the Suprachiasmatic Nucleus and the Control … 57

rhythms under constant darkness (Wisor et al. 2002; Shiromani et al. 2004; Laposky 
et al. 2005). In contrast to the SCN neural ablations, genetic ablations variously 
affected total sleep time, sleep fragmentation and NREM recovery after sleep depri-
vation. These may arise from loss of local TTFL competence and/or the non-circadian 
pleiotropic effects of disrupted transcriptional programmes. Moreover, such universal 
genetic deletions cannot discriminate between effects originating from the SCN and 
those from other brain clocks. More specific conditional deletion can be achieved by 
intersectional means. For example, deletion of Bmal1 in the histaminergic cells of the 
tuberomammillary nucleus (TMN) disrupted sleep architecture and recovery from 
sleep deprivation, without affecting overall circadian timing of sleep–wake cycles 
of mice (Yu et al. 2014). This suggests that the TTFL within local brain clocks 
can contribute to circadian sleep control, in this case, likely through appropriate 
circadian control of histamine synthesis. An alternative to such loss-of-function is 
genetic complementation to achieve gain-of-function. In CRY-null mice, local AAV-
mediated expression of CRY1 in the SCN not only restored circadian behavioural 
rhythms but it also organised the previously arrhythmic sleep/wake cycle (Maywood 
et al. 2021a) (Fig. 2.4a–c). Moreover, deficits in NREM recovery sleep and sleep-
dependent memory were reversed, as was novel object memory, a measure of sleep-
dependent cognition. Thus, molecular circadian competence solely in the SCN is 
sufficient to effect Process C function in an otherwise “clockless” mouse. Clock 
competence in other brain regions is, therefore, not necessary. This does not mean, 
however that local clocks have no auxiliary role to play in circadian control of sleep 
and wakefulness. In the CRY-null mouse, local clocks are disabled, but what if time-
keeping in SCN and local clocks is mismatched? Temporally chimeric mice can 
be created by intersectional means, such that SCN (and other) cells expressing the 
dopamine 1a receptor (Drd1a) have a cell-autonomous period of ~ 24 h, whilst all 
other cells and tissues have a period of ~ 20 h. This provides a suitable system 
where the brain has its own internal forced desynchrony, or misalignment: mutant 
local brain clocks running at a 20 h period, whereas the SCN provides a circadian 
output at ~ 24 h. The dominant pacemaking effect of the SCN Drd1a cells imposes 
a stable ~ 24 h rhythm to the SCN TTFL and also to rest/activity cycles (Smyllie 
et al. 2016a). In such mice, the sleep-wakefulness cycle also has a ~ 24 h period, but 
sleep is more fragmented compared to 24 h and 20 h, non-chimeric, control groups. 
Moreover, sleep-dependent novel object recognition memory is severely impaired 
in the temporally chimeric mice, but not in the controls, indicative of compromised 
sleep function (Maywood et al. 2021b) (Fig. 2.4d). This indicates that extra-SCN 
local brain clocks do likely play a role in circadian regulation of sleep, insofar as 
sleep and sleep-dependent memory are optimal when local clocks are “in tune” with 
the dominant circadian signal of the SCN.
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Fig. 2.4 Circadian disruption of sleep leads to cognitive deficits. a Novel object recognition is a 
task to study sleep-dependent cognition. b In a wild-type mouse where all of the cell-autonomous 
clocks in the animal are coherent, sleep is well organised and the mouse is cognitively competent. 
c In a CRY-null mouse (left, SCNCon) where all cell-autonomous clocks are arrhythmic, sleep is 
fragmented and the mouse displays cognitive deficits. If CRY1 is expressed via AAV into just the 
SCN of a CRY-null mouse (right, SCNCry1), sleep becomes organised and the mouse is cognitively 
competent. d In a short period (20 h), CK1εTau mouse (left, Tau) where all cell-autonomous clocks 
share a common, coherent period (left), sleep is well organised and the mouse is cognitively compe-
tent. In a mouse where excision of the short period CK1εTau allele is excised specifically in the SCN 
(right, Temporal Chimera), the SCN expresses a long period cell-autonomous oscillation (24 h) 
which is mismatched relative to the (20 h) cell-autonomous clocks in the rest of the mouse. This 
results in fragmented sleep and cognitive deficits in these mice
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2.7 Conclusion and Future Perspectives 

At all levels of organisation, the mammalian circadian timing system, focussed on 
the SCN, features re-entrant feedback loops that confer high-amplitude oscillation, 
precision and robustness (Fig. 2.5). The delineation of the cell-autonomous TTFL 
of mammals is a major achievement in chronobiology and neuroscience. Never-
theless, the current model is very qualitative and we have limited understanding 
of the exact and quantitative functions of the TTFL. This is an unmet opportunity 
because the operations of the SCN are ideal for formal analysis, more so than any 
other behaviourally relevant circuits, because its outputs are so “crystalline” and 
precise and the system spans seamlessly from molecules through cells and circuits 
to behaviour (Fig. 2.5). It is vital, therefore, to understand molecular abundances of 
the TTFL components through circadian time, and their affinities in the formation of 
complexes and how this directs their intracellular behaviour: mobility, stability and 
localisation. The smooth transitions between states of neural activity and quiescence 
reflect progressive changes in the expression of genes controlling excitability and 
metabolism, but how this is orchestrated at the level of the genome remains unclear.

The emerging model of the SCN circuit, based around slow and progressive 
paracrine signalling of time, looping around the network, highlights several crit-
ical features, such as the inter-dependence of the TTFL and neural activity, the serial 
activation of ligand- and receptor-expressing cell groups, and the capacity of some of 
these groups to impose their cell-autonomous properties on other SCN circuits. The 
requirement now is to understand how the assembly of these elements creates a greater 
whole, conferring emergent properties that are lacking from the individual cells. We 
also lack a clear understanding of both the topography (beyond core and shell) and 
topology of the circuit that could delineate the exact contribution of individual nodes 
(pacemaker, distributor and integrator nodes) and how they are related. Furthermore, 
what circuit elements actually close the loop of the spatiotemporal wave to take it 
full circle, and what does that wave represent for SCN output? The discovery of the 
central role of astrocytes in maintaining SCN timekeeping has raised a series of ques-
tions regarding neuron-to-astrocyte-to-neuron signalling, another circular motif that 
confers amplitude and stability. Clearly, SCN output cues are delivered by neurons 
but the cell-autonomous clocks of their astrocytic partners work through that neural 
circuitry. The transfer of information from astrocytes to neurons by paracrine means 
(possibly by astrocytic regulation of extracellular glutamate and thereby GABAergic 
tone) may be more general across the brain, and influence local changes in neural 
activity, such as during sleep stages and vigilance states that similarly occur over a 
longer time-base. The SCN is so powerful a pacemaker that if it is the only competent 
circadian clock in the animal, it can nevertheless impose appropriate cycles of sleep 
and wakefulness and in doing so maintain sleep-dependent cognitive function. The 
neural and neurochemical pathways by which the SCN achieves this regulation are 
unclear, and so we do not understand how the SCN affects the sleep–wake cycle. Is 
it primarily a promoter of wakefulness, and if so, does it activate wake-promoting 
centres and inhibit the complementary sleep-promoting circuits?
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Fig. 2.5 Different levels of circadian organisation form a re-entrant motif. Circadian organisation 
of physiology and behaviour extends with exquisite precision from the molecular level to the SCN 
neuronal and network level, to bidirectionally coupled SCN neurons and astrocytes and ultimately 
to SCN outputs that control behaviour and physiology on a daily timescale. Remarkably, temporal 
information flows seamlessly from one level to the next, with feedback between molecular and 
cellular elements increasing the overall precision, amplitude and robustness of the various rhythmic 
processes. Thus, at every level of circadian timekeeping, a re-entrant motif can be observed

Although the cell-autonomous TTFL clock is active across tissues and brain 
regions, the SCN is primus inter pares. Nevertheless, the deleterious effects of circa-
dian chimerism, in which SCN and local brain clocks are mismatched, show that they 
operate in concert. Cognitive decline during ageing may therefore have some circa-
dian origin, arising from progressive dysfunction in the SCN, in local brain clocks, 
and/or in their abilities to interact. This may arise in neurons and/or astrocytes in SCN 
and brain regions, either within their cell-autonomous clock or in cellular pathways 
regulated by the clock. In the context of neurodegeneration, this trajectory of decline 
is accelerated, particularly in diseases associated with the accumulation of toxic 
aggregates of misfolded proteins. Given the central role of the TTFL and its outputs 
in cellular homeostasis, age- or disease-dependent compromise of local TTFLs may
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facilitate disease progression by reducing the capacity of the cell to prevent, process 
and neutralise such aggregates. These physiological defences are present in both 
neurons and astrocytes, the capacities of which are both compromised in neurode-
generative conditions. At the level of the whole brain, it is also clear that sleep, a 
dominant output of the circadian system, favours restorative functions, including 
cellular metabolism and brain-wide clearance of metabolites via the extracellular 
space and cerebrospinal fluid. Consequently, perturbed cell-autonomous clocks and 
sleep/wake cycles may well exacerbate the progression of aggregate-based neurode-
generation. Even though clock dysfunction may not be the primary cause of such 
diseases, by identifying the casual links in these processes, it should be possible 
to develop novel avenues to management, and possibly therapy. These translational 
applications of newly found circadian knowledge are in their infancy, but the perva-
sive roles of circadian clocks to cellular and brain health highlight the enormous 
range and scope of opportunities in this area. 
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Chapter 3 
Circadian Regulation of Sleep 

Zhaomin Zhong, Adeel Ahmed, and Han Wang 

3.1 Introduction 

Sleep is a physiological and behavioral phenomenon existing in almost all animals, 
including humans, which is the basis of life activities (Weber and Dan 2016). 
Adequate sleep is fundamental to maintaining healthy physiology and bodily func-
tions (Banks and Dinges 2007). Sleep disturbances adversely impact development, 
cognition, and longevity (Borges et al. 2019; Song and Zhu 2021). Approximately, 
one-third of a person’s life is spent on sleep. The quality of sleep is one of the foun-
dations of life quality. Numerous studies have identified the relationship between 
sleep and anatomical, physiological, and environmental characteristics (Trost Bobic 
et al. 2016; Troynikov et al. 2018; Eban-Rothschild et al. 2017). In mammals, for 
example, factors such as diet, social status, and BMI (body mass index) all impact 
the total sleep time (Binks et al. 2020; Garfield 2019). 

However, the occurrence and regulation of the sleep–wake cycle are complex, 
involving different brain circuits, cells, and molecules (Wang et al. 2021). On the one 
hand, numerous neuroanatomical and neurotransmitter interactions, including acetyl-
choline (Ach), dopamine (DA), norepinephrine (NE), serotonin (5-HT), histamine 
(HA), and hypocretin (HCRT), have been shown to control wakefulness (Vanini 
and Torterolo 2021). On the other hand, the onset of sleep is controlled by the 
activity of sleep-promoting neurons located in the anterior hypothalamus, which use 
gamma-aminobutyric acid (GABA) to inhibit wake-promoting regions (Weber and 
Dan 2016), and by sleep-promoting hormone melatonin (Fatemeh et al. 2022) and 
substances, such as adenosine (Lazarus et al. 2019). In addition, the brainstem regions 
that were inhibited during wakefulness and non-rapid eye movement (NREM) sleep
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became active during rapid eye movement (REM) sleep. The accumulation of sleep-
promoting molecules in the brain during prolonged wakefulness and the physiolog-
ical role of gene expression during sleep add to the complexity of sleep regulation. 
In recent years, many groups have focused on the study of the sleep–wake cycle 
and have made great strides to advance the recognition of new paradigms in sleep 
regulation, brain-related circuits, and sleep function. 

The molecular mechanisms underpinning circadian regulation of sleep have been 
investigated, and mutations in core circadian clock genes have been shown to lead 
to circadian clock sleep–wake disorders, and hormones or neuropeptides regulated 
by the circadian clock can also affect sleep (Gandhi et al. 2015; Ashbrook et al. 
2020), while studies on homeostatic regulation investigate different brain regions 
or the effects of neural hormones. With the rapid development of transcriptome, 
metabolome, single-cell sequencing, optogenetics, chemical genetics, and other 
technologies, sleep-regulating genes/neurons/neurotransmitters, and neural networks 
underlying sleep and wake have gradually been deciphered (Weber and Dan 2016). 

3.2 The Circadian Clock System 

The circadian clock refers to the endogenous timekeeping mechanism that gener-
ates, regulates and maintains approximately 24-h rhythms, including not only the 
sleep–wake cycle, but also behavioral and physiological activities such as hormone 
secretion, body temperature, and urine production (Takahashi 2017). Almost all 
living things on the Earth have evolved circadian clocks. A basic feature of the circa-
dian clock is that it can free-run without external cues such as light, indicating its 
endogenous nature (Sack et al. 2000). However, the circadian clock can be reset or 
entrained by periodic environmental factors such as light, thereby synchronizing with 
the external environment. In doing so, the circadian clock allows for anticipating envi-
ronmental changes and better coordinating the internal machinery in advance (West 
et al. 2017). 

In 2017, three American chronobiologists, Jeffrey Hall, Michael Rosbash and 
Michael Young won the Nobel Prize in Physiology and Medicine for their significant 
contributions to unravel the molecular mechanism of circadian rhythm regulation, 
which has energized the circadian field, inspired more circadian studies, and facili-
tated more discoveries and circadian applications in daily life and medical practices 
(Wang 2018). The circadian clock is characteristic of individual cells and is based 
on transcription-translation feedback loops. Rhythmic coordination between organ 
systems is achieved through signals from the suprachiasmatic nuclei (SCN), the 
master pacemaker in the hypothalamus (Nassan and Videnovic 2022). The SCN 
not only coordinates the rhythmic activity of cells and organs in the body, but also 
synchronizes the body’s approximately 24-h rhythmic activity with the 24-h cycle 
of the external environment, a process known as entrainment (Stoynev et al. 1982). 
Functional circadian timing systems allow for organisms to anticipate and prepare for
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regular changes in the environment, such as sunlight, food availability, the presence 
of predators, and thus provide an adaptive advantage (Abraham et al. 2013). 

Most types of cells in the human body, including the nervous system, rhythmi-
cally express canonical circadian clock genes and circadian clock-controlled genes 
(ccgs). Circadian patterns of gene expression are driven by core clock genes that are 
present in SCN neurons, the nervous system, and other cell types (Takahashi 2017). 
In mammals, core clock genes include Clock and Bmal1, and their protein products 
activate transcription of Per and Cry, which are then translated into proteins that 
form a heterodimer and enter the nucleus, and repress the transcriptional activities of 
CLOCK and BMAL, thereby inhibiting their own gene transcription in the negative 
feedback loop (Fig. 3.1) (Takahashi 2017; Blum et al. 2018). The paralogous genes 
of Per (Per1 and Per2) and Cry (Cry1 and Cry2) have evolved non-redundant func-
tions. Deletion of Per1 in mice leads a free-running period 0.5–1 h shorter than wild 
types, whereas deletion of Per2 results in a shortened period of 1.5 h (Zheng et al. 
2001). Per2 knockout mice are only able to maintain a circadian rhythm for nearly 
seven days, after which they became completely arrhythmic (Bae et al. 2001). Cry1 
knockout mice have a free-running circadian period that is one hour shorter than 
wild type, but Cry2 knockout mice develop a free-running period that is one hour 
longer (van der Horst et al. 1999). At the molecular level, when the function of one 
gene in a family is lost or reduced, the expression of other paralogous genes will be 
up-regulated, thereby exhibiting a compensatory effect. Reduced expression of Per1 
and Cry1 results in up-regulated expression of Per2 and Cry2, respectively (Baggs 
et al. 2009); however, decreased or lost expression of Per2 and Cry2 do not lead to 
compensatory up-regulated expression of their paralogous genes (Baggs et al. 2009). 
In addition, Per1−/−, Per2−/− double-knockout mice and Cry1−/−, Cry2−/− double-
knockout mice completely lose their intrinsic circadian rhythms (Bae et al. 2001; 
van der  Horst et al.  1999), implicating that at least one member from each mouse 
Per and Cry family plays critical roles in maintaining circadian rhythm stability at 
the molecular and behavioral levels.

An additional negative feedback loop of nuclear receptors, such as the Nr1d1 and 
Ror genes, is thought to further stabilize transcription-translation feedback oscilla-
tions (Guillaumond et al. 2005). Thus, disrupting the function of these core circadian 
genes can lead to dramatic changes in mammalian circadian rhythms. The oscilla-
tory activity of these clock genes controls rhythmic expression of a large network of 
genes known as clock-controlled genes. The large-scale RNA-sequencing analyses 
have revealed that approximately 43% genes are rhythmically expressed in mice 
(Zhang et al. 2014), and more than 80% protein-coding genes display transcrip-
tion rhythmicity in baboon (Mure et al. 2018), highlighting extensive roles of the 
circadian regulation in the body. Molecular clocks, found in nearly every cell in our 
body, coordinate the rhythmic expression of genes at the local level (Brown and Azzi 
2013). In addition to being regulated by a transcription-translation feedback loop, 
the circadian clock is also regulated by post-translational modifications (Mehra et al. 
2009; Rijo-Ferreira and Takahashi 2019).
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Fig. 3.1 A mammalian circadian clock model of negative and positive transcriptional feedback 
loops. While the BMAL1-CLOCK heterodimer drives oscillating expression of clock-controlled 
genes (ccgs) with E-box containing promoters, RORs and REV-ERBs regulate Bmal1 transcription. 
The clock output, including those involved in sleep, is achieved through many genes with E-
box containing promoters collectively shown as ccgs (gray). See main text for further details and 
abbreviations

3.3 Regulation of Sleep—Two-Process Model 

In 1982, the Hungarian-Swiss scientist Alexander Borbély proposed the “two-process 
model of sleep regulation” (Borbely 1982), providing a conceptual framework for 
dissecting the sleep–wake cycle with a better understanding of the temporality and 
structural properties of the sleep–wake behavior. It was postulated that a homeo-
static process (S) is functionally up-regulated during sustained wakefulness and a 
circadian process (C) determines the 24-h temporal distribution of sleep and wake-
fulness (Fig. 3.2) (Borbely 1982). In humans, the phase relationship between the two 
processes allows arousal to be merged into a single bout, and homeostasis drives a 
progressively increased desire to sleep with wakefulness throughout the day (Dijk 
and Czeisler 1995). The interaction of the two mechanisms, one promoting sleep 
and the other promoting sleep and wakefulness in a time-specific manner, allows 
for people to stay awake at a fixed time during the day and fall asleep at a fixed 
time during the night, displaying an overt rhythm. Although great progress has been 
made in deciphering circadian rhythms, the molecular genetic and cellular mecha-
nisms underlying sleep homeostatic regulation and its interaction with the circadian 
clock system are still poorly understood.

While homeostasis and the circadian clock each play an important role in sleep 
regulation, the two processes are also interconnected (Borbely 1982). Homeostatic 
regulation of sleep is discussed below.
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Fig. 3.2 Borbely’s 
two-process model of sleep 
regulation. Process S 
indicates the homeostatic 
built-up of sleep pressure, 
and Process C represents the 
circadian rhythm

3.4 Homeostatic Regulation of Sleep 

Body homeostasis regulates sleep propensity, which increases exponentially at the 
onset of wakefulness and then tapers off during sleep (Borbely 1982). The home-
ostatic process is functionally distinct from the circadian clock system, as rodents 
with suprachiasmatic nucleus (SCN) lesions display a strong sleep compensation 
after complete sleep deprivation (Mistlberger et al. 1983). The correlation between 
sleep homeostasis and sleep intensity can be shown by the NREM EEG (Electroen-
cephalogram) changes (delta power, 0.5–4 Hz) during NREM. In sleep homeostatic 
regulation, the sleep preference index increased with wake time and decreased rapidly 
after a typical sleep bout (Lancel et al. 1991). Furthermore, the regulation of NREM 
and sleep homeostasis has been shown to be associated with specific brain regions. 

Sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO) and 
median preoptic nucleus (MnOP) underlie the neuroanatomical basis of sleep home-
ostatic regulation (Gong et al. 2004). These neurons are a subset of GABAergic 
neurons that project long distances throughout the cerebral cortex, and the number 
of neurons activated during sleep is proportional to NREM intensity (Gerashchenko 
et al. 2008). The VLPO lesions were shown to reduce sleep and alter the normal 
sleep architecture (Lu et al. 2000). The VLPO and MnOP neurons discharge during 
NREM sleep, and turn almost inactive during wake (Gompf and Anaclet 2020). In 
addition, some regions of the basal forebrain (BF) and lateral hypothalamus (LH) also 
act through GABAergic neuromodulation to generate NREM sleep (Falup-Pecurariu 
et al. 2021). During NREM sleep, both GABA and galanin as inhibitory signals are 
sent from the VLPO to the monoaminergic arousal systems including histaminergic 
neurons of TNM (tuberomammillary nucleus), cholinergic neurons of pedunculopon-
tine tegmental nucleus, monoaminergic connections of LC (locus coeruleus) and DnR 
(dorsal nucleus of raphe), and the orexinergic neurons of the lateral hypothalamus; 
and these regions in turn inhibit the VLPO (Scammell et al. 2017; Gompf and Anaclet 
2020; Saper et al. 2005). On the other hand, neural circuits in the pons are required 
for REM sleep regulation. The laterodorsal tegmental nucleus and the pedunculo-
pontine tegmental nucleus (LDT/PPT) promote REM sleep through cholinergic exci-
tatory projections to the pontine reticular formation (PRF), and most glutamatergic 
neurons and GABAergic neurons in the LDT/PPT region also contribute to REM
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sleep (Fig. 3.3) (Scammell et al. 2017). The muscular atonia during REM sleep 
is generated by neurons in the sublaterodorsal nucleus (SLD) by suppressing the 
muscular tone (Scammell et al. 2017; Falup-Pecurariu et al. 2021). However, the 
neural circuit pathways and molecular mechanisms involved in the regulation of 
sleep homeostasis by these neurons have not fully been elucidated. 

Neural compounds also play an important role in the regulation of sleep home-
ostasis, accumulating after prolonged wakefulness or sleep deprivation and gradually 
decreasing during sleep. For example, within 6 h of sleep  deprivation, adenosine is 
selectively increased in the basal forebrain (Porkka-Heiskanen et al. 1997). Infusion 
of adenosine into the freely moving cat basal forebrain reduced both arousal and 
cortical excitability (Portas et al. 1997), with neuronal activation in the ventrolateral 
preoptic area. In an 11-h sleep deprivation experiment, nitric oxide initially accu-
mulated in the basal forebrain, followed by adenosine accumulation, and levels of 
both compounds increased in the frontal cortex hours later (Kalinchuk et al. 2011). 
A genetically encoded adenosine sensor (GRABAdo) was employed to reveal that

Fig. 3.3 Sleep-promoting center in the central nervous system. VLPO promotes sleep, which 
is achieved by inhibiting the wake-promoting regions. VLPO projects to the LH, TMN, raphe 
nucleus, PPT/LDT, and LC. VLPO: ventrolateral preoptic nucleus; LH: lateral hypothalamus: TMN: 
tuberomammillary nucleus; PPT: pedunculopontine tegmental nucleus; LDT: laterodorsal tegmental 
nucleus; and LC: locus coeruleus 
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optogenetic activation of glutamatergic neurons, rather than cholinergic neurons, 
triggers adenosine release in the basal forebrain, thereby suggesting that the cell 
type-specific neuronal activity during wakefulness contributes to sleep propensity 
via releasing sleep-inducing factors such as adenosine (Peng et al. 2020). Conversely, 
caffeine is a potent stimulant that acts as an antagonist of adenosine by acting on 
the A1 and A2 receptors. Studies with adenosine receptor knockout mice found that 
caffeine can promote arousal in wild-type and A1 receptor knockout mice, but not 
in A2A receptor knockout mice (Huang et al. 2005), supporting the notion that the 
A2 receptor mediates the wake-promoting effects of caffeine. In addition, caffeine 
administration in young male subjects during sleep deprivation reduced subjective 
sleepiness and EEG theta frequency activity and reduced NREM activity during 
subsequent restorative sleep (Landolt et al. 2004). Caffeine reduces sleep-prone accu-
mulation after prolonged wakefulness, further suggesting a critical role for adenosine 
in sleep homeostasis. Prostaglandin D2 is also thought to be an endogenous sleep-
promoting substance (Huang et al. 2007), and studies suggest that it may also trigger 
the sleep-promoting process through the A2A receptor (Satoh et al. 1996). 

3.5 Circadian Regulation of Sleep 

The sleep–wake cycle is controlled by both the circadian clock and homeostasis 
(Borbely 2022). However, how the circadian clock and homeostasis interact to regu-
late the sleep–wake behavior is far from certain. In mammals, negative feedback 
loops composed of a set of transcription activators and inhibitors generate a cell-
autonomous oscillation of transcriptional activity (Reppert and Weaver 2002; Young 
and Kay 2001). The mammalian master circadian clock is located in the suprachi-
asmatic nucleus (SCN) of the ventral hypothalamus (Moore and Eichler 1972; 
Stephan and Zucker 1972), having approximately 20,000 neurons in mice (Cassone 
et al. 1988). Melanopsin-expressing intrinsically photosensitive retinal ganglion cells 
(ipRGCs) transmit light signals to the SCN (Berson et al. 2002; Hattar et al. 2002) 
via the retinohypothalamic tract (RHT) (Moore and Lenn 1972), synchronizing 
the SCN clock with the external light/dark cycle. Neurochemically heterogeneous 
neurons in the SCN have been subdivided into two regions: the dorsomedial “shell” 
region expressing high levels of arginine vasopressin (AVP), and the ventrolateral 
“core” region expressing high levels of vasoactive intestinal peptide (VIP) (Dier-
ickx and Vandesande 1977; Morin  2007). In addition to these two neuropeptides, the 
mouse SCN also produces gastrin-releasing peptide (GRP), enkephalin, neurotensin, 
angiotensin II, prokineticin-2, neuromedin S (Nms), and calbindin (Abrahamson and 
Moore 2001; Lee et al. 2015). The SCN is able to form a coupled intercellular network 
for generating self-sustained circadian oscillations in both neuronal activity and gene 
expression (Colwell 2011; Welsh et al. 2010). VIP neurons in the core region have 
been shown to act as a prime coupling/synchronizing signal for the generation of SCN 
network synchrony (Aton et al. 2005; Maywood et al. 2006). Here, we first discuss
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SCN roles in sleep regulation and then review the effects of specific circadian clock 
genes and clock-controlled genes on sleep. 

3.5.1 Role of the SCN in Sleep Regulation 

The SCN is known to project to other nuclei in the hypothalamus, including the 
subparaventricular zone (SPZ), the paraventricular nucleus (PVN), dorsomedial 
nucleus (DMH), ventromedial nucleus (VMH), LH, and medial preoptic area (Morin 
2013; Scammell et al. 2017). Among them, the subparaventricular zone (SPZ) relays 
most SCN output signals, whereas the dorsomedial nucleus of the hypothalamus 
(DMH) regulates the timing of wakefulness via excitatory projections to the orexin 
neurons and locus coeruleus (LC) as well as inhibitory projections to the preoptic 
area (Morin 2013; Scammell et al. 2017). 

In nocturnal rodents, SCN firing rates peak in the light phase, whereas SPZ firing 
rates peak in the dark phase when firing rates of wake-promoting neurons also peak 
(Kubota et al. 1981; Miyamoto et al. 2012). The rhythmicity of wake, NREM, and 
REM sleep was severely damaged in ventral SPZ-lesioned rats (Lu et al. 2001), impli-
cating that the SPZ is a critical circadian relay that not only promotes arousal during 
the active phase but also facilitates sleep during the rest phase (Scammell et al. 2017), 
elegantly fulfilling the dual role of promoting wake at some times and sleep at others. 
While GABAergic DMH neurons innervate sleep-promoting regions including the 
VLPO and MnPO, glutamatergic DMH neurons strongly innervate wake-promoting 
brain regions, including orexin neurons, TMN, LC, ventral tegmental area (VTA), 
Dorsal nucleus of raphe (DNR), and LDT (Vujovic et al. 2015). Like the SPZ, the 
DMH is also able to act through circadian signals to promote wake at some times 
and facilitate sleep at others (Scammell et al. 2017). 

3.5.2 Regulation of Sleep by Canonical Circadian Clock 
Genes 

Identification of circadian clock genes has allowed for studying the molecular bases 
for temporal physiological circadian behaviors such as hormonal secretion as well 
as their roles in sleep regulation. Here, we review the effects of specific circadian 
clock genes and clock-controlled genes on the sleep duration, sleep structure and the 
EEG (Table 3.1).
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Table 3.1 Summary of the sleep phenotypes of circadian clock gene mutant/knockout mice 

Gene Total sleep (24 h) REM/NREM Sleep 
deprivation 

References 

LD DD 

Clock−/− mutant 1.8 h ↓ in 
NREM 

1–2 h ↓ 
in NREM 

NREM sleep in 
L ↓ 

Compensatory 
response to 
sleep loss 
REM sleep 
rebound ↓ 

Naylor et al. 
(2000) 

Npas2−/− ~ 40 min  ↓ 
in NREM 

Wake time in D 
phase ↑ 
NREM/REM in 
D phase ↓ 

Compensatory 
response to 
sleep loss ↓ 
(male mice 
only) 

Dudley et al. 
(2003), 
Franken 
et al. (2006) 

Bmal1−/− 1.5 h ↑ in 
total sleep 

6.2% ↑ in 
NREM 

Arrhythmic 
sleep/wake 
states in DD 

REM sleep 
rebound ↓ 

Laposky 
et al. (2005) 

Per1−/−,Per2−/− No effect No effect Wake time in L 
↑ 

Compensatory 
response to 
sleep loss 

Shiromani 
et al. (2004) 

Per3−/− No effect No effect NREM/REM 
after D–L 
transition ↑ 

Accumulation 
of EEG delta 
power ↑ in 
recovery sleep 
number of 
NREM sleep 
bouts ↑ 

Shiromani 
et al. (2004), 
Hasan et al. 
(2011) 

Cry1−/−,Cry2−/− 1.8 h ↑ in 
NREM 

1.5 h ↑ in 
NREM 

Attenuated 
sleep/wake 
rhythm across 
LD cycle 

Compensatory 
response to 
sleep loss ↓ 

Wisor et al. 
(2002) 

Dec2P385R NREM/REM in 
L phase ↓ 

Compensatory 
response to 
sleep loss ↓ 

He et al. 
(2009) 

Dbp−/− No effect No effect Sleep during L 
↓ 
Sleep during D 
↑ 
Circadian 
amplitude of the 
sleep 
distribution ↓ 

Compensatory 
response to 
sleep loss 
REM sleep 
rebound absent 

Franken 
et al. (2000) 

Prok2−/− 1.3 h ↓ 
total sleep 

1.3 h ↓ 
total sleep 

REM sleep 
duration ↑ 

Compensatory 
response to 
sleep loss ↓ 

Hu et al. 
(2007) 

Vpac2−/− 50 min ↑ in 
NREM 

No effect Less defined 
sleep and wake 
phases in D and 

Sheward 
et al. (2010)
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3.5.2.1 Regulation of Sleep by Clock, Npas2, and Bmal1 

As the positive factors in the negative feedback loop, both CLOCK and BMAL1 not 
only play critical roles in circadian regulation, but also contribute to sleep regulation. 
Clock was the first mammalian circadian clock gene identified via a forward muta-
genesis screen (Vitaterna et al. 1994). The Clock mutant mice, harboring an A → T 
nucleotide transversion in a splice donor site that results in skipping the 19th exon 
and deletion of 51 amino acids in the CLOCK protein (King et al. 1997), display a 
significantly lengthened period in the heterozygote (WT, 23.3–23.8 h; Clock+/Δ19, 
24.8 h) and become arrhythmic after exhibiting an extremely lengthened period 
(ClockΔ19/Δ19, 26–29 h) first in the homozygote under constant dark (Vitaterna et al. 
1994). Interestingly, the total sleep time of heterozygous (Clock+/Δ19) and homozy-
gous (Clock Δ19/Δ19) mice was reduced by 1 and 2 h, respectively, in comparison 
to wild-type animals, and in particular, NREM sleep bout duration was also signifi-
cantly reduced in ClockΔ19/Δ19 homozygous mice, even though EEG delta power in 
NREM sleep was not affected (Naylor et al. 2000). In addition, ClockΔ19/Δ19mutant 
mice display a normal sleep following 6-h sleep deprivation, implicating that the 
Clock gene plays an important role in regulating sleep duration and timing but not 
in homeostatic sleep regulation. 

NPAS2, an analog of Clock, also forms a heterodimeric complex with BMAL1, 
in the forebrain nuclei, basal ganglia, limbic system and numerous peripheral 
organs, regulating the transcription of Cry and Per (Garcia et al. 2000). Intriguingly, 
NPAS2 has been shown to substitute CLOCK in the SCN, likely responsible for the 
different phenotypes observed in the dominant-negative ClockΔ19/Δ19 mutant mice 
and Clock−/− knockout mice (Debruyne et al. 2006, 2007), i.e., Clock−/− knockout 
mice display robust circadian rhythms of locomotor activity instead (Debruyne et al. 
2006). Npas2−/− mice display a shortened period but keep awake for a greater propor-
tion of the dark period with reduced NREM and REM sleep (Dudley et al. 2003). 
Npas2−/− mice also show EEG changes during NREM sleep, characteristic of the 
reduced spindle frequency and the delta activity shifted toward faster frequencies 
(Franken et al. 2006). However, the roles of Clock−/− knockout or Clock/Npas2 
double knockout in sleep have not been reported to date. 

On the other hand, loss of BMAL1 led to behavioral arrhythmicity with reduced 
locomotor activities under light/dark and constant conditions (Bunger et al. 2000). 
Bmal1−/− mice display 1.5-h increase of sleep, largely with increased NREM and 
REM sleep (Laposky et al. 2005). However, the number of sleep bouts in Bmal1−/− 

mice was increased during the light period, indicative of high fragmentated sleep. 
Bmal1−/− mice show the flattened distribution of EEG delta power during NREM 
sleep, and thus lose sleep propensity rhythm. Further, Bmal1−/− mice display atten-
uated REM sleep rebound after sleep deprivation. In other words, BMAL1 regulates 
both sleep amount and intensity, thereby implicating its role in the homeostatic 
regulation of sleep.
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3.5.2.2 Regulation of Sleep by Period, Cryptochrome, and Dec Genes 

The CLOCK/NPAS2 and BMAL1 heterodimers regulate expression of Cry and Per 
genes. Similar to Clock, Npas2 and Bmal1, studies with genetic mutations of these 
Cry and Per genes, show that some of them not only play roles in circadian regulation 
but also contribute to sleep regulation. Per1−/−,Per2−/− double mutant mice display 
robust diurnal rhythms under the LD condition, but no alteration in sleep duration 
across a 24-h period under a regular LD cycle (Kopp et al. 2002) or under constant 
darkness (Shiromani et al. 2004), consistent with unaltered EEG recordings in single 
Per1−/− and Per2−/− mutant mice (Kopp et al. 2002). After sleep deprivation, these 
Per1−/− and Per2−/− mice display increased EEG SWA (slow-wave activity, 0.5– 
4 Hz) during NREM sleep, implicating their unaltered homeostatic regulation of 
sleep. In contrast, Per3−/− knockout mice display increased NREM and REM sleep 
immediately after the dark/light transition as well as enhanced accumulation of EEG 
delta power across the active period (Hasan et al. 2011). In addition, human studies 
have shown that PER3 functional polymorphisms are associated with sleep home-
ostasis in terms of EEG SWA in NREM sleep and theta and alpha frequencies during 
wakefulness and REM sleep (Viola et al. 2007). Interestingly, a polymorphism in the 
PER3 promoter region has been recently shown to be associated with delayed sleep 
phase syndrome (Archer et al. 2010). These studies suggest that mouse PER3, rather 
than PER1 and PER2, likely plays a role in homeostatic sleep regulation. 

In contrast to Per1−/−, Per2−/− double mutant mice that display unaltered sleep 
homeostasis, Cry1−/−,Cry2−/− double-knockout mice show a 1.8-h increase in 
NREM sleep with increased NREM sleep bout duration. After sleep deprivation, 
Cry1−/−,Cry2−/− double-knockout mice show compensatory rebound in NREM 
sleep as well as elevated EEG SWA during baseline recordings (Wisor et al. 2002). 
Even though these sleep phenotypes cannot be observed in single Cry1−/− or Cry2−/− 

knockout mice (Wisor et al. 2008), Cry genes appear to act together to contribute to 
homeostatic sleep regulation. 

Mouse Dec1 (Sharp2)/Bhlhe40 (Basic helix-loop-helix family member e40) and 
Dec2 (Sharp1/Bhlhe41) are rhythmically expressed in the SCN and repress the tran-
scription activity of the CLOCK-BMALl heterodimer (Honma et al. 2002). Loss of 
DEC1 or DEC2 disrupted the period length, phase resetting and circadian entrainment 
(Rossner et al. 2008). Intriguingly, a point mutation in human DEC2 was revealed 
to be associated with a short sleep phenotype as the natural short sleeper (NSS), 
which was recapitulated in the DEC2 P385R-expressiong mice that display reduced 
NREM and REM sleep in the light phase and elevated sleep fragmentation (He et al. 
2009). Further, the DEC2 mutation resulted in reduced NREM sleep after sleep depri-
vation and reduced EEG delta power, whereby implicating its role in homeostatic 
sleep regulation. Conversely, only minimal changes in sleep were observed in Dec2 
knockout mice (He et al. 2009).
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3.5.2.3 Regulation of Sleep by Circadian Clock-Related Genes 

In addition to the canonical circadian clock genes, a number of clock-controlled 
genes have been shown to contribute to sleep regulation. Dbp as a PAR leucine 
zipper transcription factor is controlled by the circadian clock via E-box (Ripperger 
et al. 2000). Dbp−/− mice display a shortened period with reduced locomotor activity 
but maintain rhythmicity (Lopez-Molina et al. 1997). Even though Dbp−/− mice have 
the normal sleep duration, they display reduced circadian amplitudes of sleep time 
and sleep consolidation, and in particular, reduced REM sleep during the light period, 
and an elevated EEG theta frequency during exploratory behavior and REM sleep 
(Franken et al. 2000). These observations suggest that the direct involvement of Dpb 
in homeostatic sleep regulation. 

Prokineticin 2 (Prok2), a humoral factor secreted by the SCN to regulate motor 
activity, is likely controlled by the circadian clock (Zhou and Cheng 2005). Prok2−/− 

mice display reduced amplitudes of activity, core body temperature and the sleep– 
wake cycle (Li et al. 2006). Prok2−/− mice display ~ 1.5 h reduced sleep duration 
compared with wild-type mice. Intriguingly, Prok2−/− mice display reduced NREM 
sleep during the light period but increased REM sleep occurred during both light and 
dark phases (Hu et al. 2007). These studies implicated that PROK2 plays roles in 
both in circadian regulation and sleep homeostasis. 

VIP is another clock-controlled and SCN-secreted transmitter. VIP acts via its 
receptor VPAC2 play a critical role in sustaining circadian rhythmicity of indi-
vidual SCN cells (Brown et al. 2007). Vpac2−/− mice display an altered sleep– 
wake rhythm, while maintaining robust activity rhythms. In addition, Vpac2−/− mice 
exhibit approximately 50 min longer NREM sleep time, with more sleep/wake tran-
sitions (Sheward et al. 2010). Intriguingly, the nighttime nap of mice, similar to 
humans’ afternoon siesta, is regulated by a group of VIPergic neurons in the SCN 
(Collins et al. 2020). 

3.5.2.4 Role of Human Circadian Clock Genes in Sleep 

As discussed above, dissection of knockouts and mutants for mouse circadian clock 
genes and circadian clock-related genes clearly showed that these genes contribute 
to sleep regulation, in either the circadian or homeostatic processes, or in both. In 
addition to DEC2 P385R displaying the NSS phenotype (He et al. 2009), another 
DEC2/BHLHE41 variant (Y362H) has also been associated with the reduced sleep 
duration phenotype, likely by reducing its ability to inhibit CLOCK/BMAL1 and 
NPAS2/BMAL1 transactivation (Pellegrino et al. 2014). Further, mutations of several 
human circadian clock genes have been identified to be responsible for advanced 
sleep phase (ASP) or familial advanced sleep phase (FASP) displaying an extreme 
early-bird preference (Gentry et al. 2021). While hypophosphorylation caused by 
a PER2 missense mutation (S662G) within its CKIE-binding region results in 
~ 4–6 h advanced sleep phase (Toh et al. 2001), a missense mutation (T44A) in 
CKIδ-encoding CSNK1D also leads to FASP (Xu et al. 2005). Two PER3 mutations
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(P415A and H417R) both reduce its protein stability, which destabilizes PER1 and 
PER2 proteins and in turn cause FASP (Zhang et al. 2016), whereas a mutation 
(A260T) in CRY2 results in ASP, likely due to its elevated degradation via increasing 
its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase) (Hirano et al. 2016). 
Intriguingly, even though the circadian role of TIMELESS (TIM) in humans has 
not yet been ascertained, one TIM variant (R1081X) causes FASP, likely due to 
destabilizing the PER-CRY complex by its failure to enter the nucleus and altered 
affinity for CRY2 (Kurien et al. 2019). In most cases, the transgenic mice expressing 
the variants of these human circadian clock genes recapitulate their human variant 
phenotypes (Hirano et al. 2016; Kurien et al. 2019; Xu et al.  2005, 2007; Zhang et al. 
2016), highlighting their conserved roles in sleep regulation. 

In contrast to ASP, delayed sleep phase (DSP) exhibits an extremely late chrono-
type as night owls. A CRY1 mutation was determined in a DSP proband family, which 
occurs in a splice donor site, resulting in skipping Exon 11 and in-frame deletion of 24 
residues; this gain-of-function CRY1 variant acts as a strong transcriptional inhibitor 
by increasing its binding to the CLOCK–BMAL1 heterodimer, and is responsible 
for the DSP phenotype (Patke et al. 2017). The prevalence of FASP and ASP was 
estimated to be 0.21% and 0.31% in a sleep clinic population, respectively (Curtis 
et al. 2019), and the frequency of CRY1 DSP allele was estimated to be 0.1–0.6% 
(Patke et al. 2017), implicating that these genetic variants impact a sizeable portion 
of the human population. Even though these studies did not yet determine the neural 
and genetic links between circadian input signals to the sleep output, they indeed 
shed light on how the circadian clock affects human well-being. 

3.6 Effects of Circadian Misalignment on Aging 

3.6.1 Attenuation of Circadian Rhythms with Aging 

Aging is a multifactorial process characterized by a gradual failure of physiological 
functions (Harman 1981; Liochev 2015). Circadian rhythms generally weaken with 
aging (Hood and Amir 2017; Manoogian and Panda 2017). In rodents, while the 
total number of SCN neurons does not decrease significantly in aged rats and indi-
vidual SCN neurons are able to maintain robust rhythmicity of canonical clock gene 
oscillations in aged mice (Welsh et al. 1995; Wyse and Coogan 2010), intercellular 
coupling and synchronization within the SCN neurons are disrupted, largely due 
to the reduced SCN neurons that produce coupling factors vasopressin and GABA 
(Mieda et al. 2015; Nygard and Palomba 2006; Roozendaal et al. 1987). This reduced 
intercellular SCN coupling results in their neuronal desynchronization, and in turn 
leads to the reduced electrical activity of the whole SCN network and a dampened 
SCN output (Farajnia et al. 2012; Nakamura et al. 2011; Nygard et al. 2005). Subse-
quently, the attenuated neuronal and humoral outputs cause malfunction of periph-
eral oscillators displaying weakening amplitudes of canonical clock gene oscillations
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with aging, and the weakened circadian rhythms further exacerbate numerous age-
related diseases. In addition, the effect of aging on the rhythmic expression of clock 
genes is plausible, with contradictory reports of shortening or lengthening of the 
SCN clock or unchanged peripheral clocks (Sato et al. 2017). 

3.6.2 Acceleration of Aging by Circadian 
Misalignment/Disruption 

In modern society, irregular eating and sleep patterns, inappropriate light exposure 
(light at night, LAN), jet-lag, and shift work all contribute to circadian misalignment 
(Bass 2017; Manoogian and Panda 2017). For instance, evening use of blue light-
emitting electronic readers, suppresses melatonin release, shifts the circadian clock 
phase, delays sleep onset and enhances morning sleepiness (Chang et al. 2015). In 
model organism studies, genetic knockout or mutation of canonical circadian clock 
genes disrupts circadian rhythms. Bmal1−/− mice also display symptoms of early 
onset aging, characteristic of a decrease in muscle and subcutaneous fat, cataracts, 
and organ shrinkage, possibly due to increased levels of reactive oxygen species 
(ROS) in some tissues as well as defects in stress response and impaired glucose 
tolerance and insulin sensitivity of these animals (Kondratov et al. 2006). Jetlag-
and shiftwork-induced circadian misalignment in humans has been reported to be 
associated with cardiovascular diseases, metabolic disorders, and cancer (Kamdar 
et al. 2013; Proper et al. 2016; Vyas et al. 2012), and likely accelerates aging. In a 
remarkable experiment, transplantation of the SCN from a young hamster into an 
old hamster with dampened behavioral rhythms was able to restore robust behavioral 
rhythms in the older hamster and increase lifespan by 4 months (Hurd and Ralph 
1998; Viswanathan and Davis 1995). 

3.7 Effects of Sleep Disorders on Aging 

Aging has been known to lead to sleep deficiency (Kondratova and Kondratov 
2012), although the mechanisms are not well understood. Numerous mechanisms 
have been proposed from molecular, cellular, to organ levels, including deregu-
lated autophagy, mitochondrial dysfunction, telomere shortening, oxidative stress, 
systemic inflammation, and metabolism dysfunction (Riera et al. 2016).
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3.7.1 Age-Related Sleep Changes 

Approximately, 40% of the elderly population have been reported to have sleep 
problems. In humans, the most obvious consequence of circadian disruption is an 
altered sleep–wake cycle (Dijk et al. 1999; Farajnia et al. 2012; Huang et al. 2002), 
with sleep quality and consolidation being also disrupted (Dijk et al. 2001; Farajnia 
et al. 2012). Many sleep-related disorders occur with increasing frequency among 
elderly adults (Wolkove et al. 2007). Depression and anxiety complaints, common 
among people over 65 years of age, frequently contribute to insomnia. Risk factors 
for depression in elderly people include loss of a spouse, retirement, social isolation, 
comorbid disease, and the onset of dementia (Tractenberg et al. 2005). It is important 
to know how sleep patterns change with aging and to recognize that sleep disorders 
are common among elderly people (Tractenberg et al. 2005). 

With aging, important changes in sleep structure occur, and the most characteristic 
change is sleep phase advance, i.e., elderly people often go to bed and get up early. 
With aging, the total amount of sleep time shortens: infants and young children sleep 
an average of 14–20 h per day; adults, 6–8 h; and people over 60 years of age, 
6.5 h daily (Rajput and Bromley 1999). Further, the elderly people display reduced 
slow-wave sleep, reduced rapid eye movement (REM) sleep, reduced threshold for 
arousal from sleep, fragmented sleep with multiple arousals and daytime napping 
(Wolkove et al. 2007). In a recent study, hyperexcitability of arousal-promoting 
hypocretin/orexin (Hcrt/OX) neurons and down-regulation of KCNQ2 was shown to 
be associated with fragmented sleep in aged mice, and the KCNQ-selective agonist 
flupirtine was able to hyperpolarize Hcrt/OX neurons and rejuvenate sleep quality in 
aged mice (Li et al. 2022). 

3.7.2 Acceleration of Aging by Sleep Disorders 

An around-the-clock lifestyle causes sleep deprivation (SD) Many people sacrifice 
their sleep to work due to psychosocial stress. Because sleep plays a crucial role in 
neuronal regaining and decreases the burden of plasticity, SD may have significant 
repercussions on the brain function (Meerlo et al. 2015). Moreover, SD has caused 
a community health epidemic with substantial health, economic and social impact 
(Hafner et al. 2017). Therefore, it is essential to investigate the neural processes of 
SD in order to develop effective targeted therapies. One of the pervasive sleep disor-
ders in the elderly population is insomnia (Shochat et al. 2001; Chan et al. 2022). 
Further, other sleep disorders such as obstructive sleep apnea, restless leg syndrome 
and periodic limb movement disorder have been reported to be more prevalent in 
older persons (Gulia and Kumar 2018). Sleep deficiency/sleep disorders speed up 
aging (Carroll and Prather 2021). Indeed, chronic poor quality sleep is associated with 
accelerated intrinsic skin aging because lack of sleep prevents the body from properly 
restoring skin itself (Oyetakin-White et al. 2015). However, the accelerated aging
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associated with sleep deficiency goes beyond cosmetic changes. Early postpartum 
sleep loss accelerates epigenetic and cellular aging, as evidenced by quicker Intrinsic 
Epigenetic Age Acceleration (IEAA) and Phenotypic Epigenetic Age Acceleration 
(PEAA) and shortened leukocyte telomere length (Carroll et al. 2021). Overall, 
sleep deficiency/sleep disorders are hypothesized to contribute to increasing damage 
accumulation, enhancing cellular senescence, shortening telomere length, disrupting 
telomerase activity, and accelerating epigenetic aging (Carroll and Prather 2021). 

3.8 Concluding Remarks 

It has become increasingly clear that the circadian clock plays modulatory roles in 
almost all the life processes and activities (Bass 2017; Rijo-Ferreira and Takahashi 
2019). Sleep is hypothesized to be regulated by two processes: the homeostatic 
process and the circadian system (Borbely 1982). The circadian clock represents a 
special class of biochemical oscillators with an intrinsic period of approximately 
24 h, which is regulated by negative feedback loops of the transcription-translation 
of circadian clock genes and proteins (Takahashi 2017). The sleep–wake cycle is the 
most overt rhythm controlled by the circadian clock. 

Studies of knockout or mutant mice of circadian clock genes provide invaluable 
insights into their roles in sleep regulation. Since these canonical circadian clock 
genes are essential for generating and maintaining circadian rhythmicity, knocking 
out or mutating these genes are expected to disrupt central timekeeping mecha-
nisms and in turn to impact sleep timing (circadian process). Surprisingly, some of 
the canonical circadian clock genes also contribute to homeostatic sleep regulation. 
For instance, BMAL1 plays a role in the homeostatic regulation of sleep by regu-
lating both sleep amount and intensity. It appears that both the circadian process and 
homeostatic process of sleep are strongly coupled. One of the future efforts ought 
to investigate the coupling mechanisms of the circadian process and homeostatic 
process of sleep, and particularly, to elucidate the neural and genetic pathways that 
link circadian signals to the sleep output. 

Aging and the circadian system are intertwined. Aging is known to affect the 
circadian rhythms; i.e., the amplitudes of the circadian clock are generally attenu-
ated along with aging (Hood and Amir 2017; Manoogian and Panda 2017). On the 
other hand, circadian disruption and misalignment would accelerate aging. Sleep defi-
ciency/sleep disorders represent typical circadian disruption causing a community 
health epidemic with substantial health impact, including accelerated aging. 
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Chapter 4 
Age-Related Decline in the Central 
Circadian Clock 

Shota Miyazaki, Wataru Nakamura, and Takahiro J. Nakamura 

4.1 Introduction 

Circadian systems do not escape aging as well as other physiological functions. In 
humans, the sleep/wake rhythm of a newborn baby appears indistinguishable and 
then becomes entrained to external cues such as maternal behavior and light (Brooks 
and Canal 2013). In adults, the sleep/wake rhythm becomes stable, and humoral 
secretion rhythms also exhibit a robust circadian rhythm. However, older adults tend 
to have sleep disorders, such as early morning awakening and nocturnal awakening, 
and the amplitudes of rhythms in physiological functions also decline (Hood and 
Amir 2017). Age-related declines in circadian rhythms are mainly due to functional 
declines in the suprachiasmatic nucleus (SCN) of the hypothalamus, which is known 
to be the central circadian clock that regulates circadian rhythms for the whole body. 
This chapter addresses the regulatory mechanisms underlying the circadian rhythms 
in mammals and summarizes the recent literature describing the effects of aging on 
the circadian system, with a focus on the SCN.
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Fig. 4.1 Effects of aging on the circadian locomotor activity rhythms in mice. Double-plotted 
actograms showing wheel-running activity in young (left) and aged (right) C57BL/6J mice. The 
vertical axis indicates the day and the horizontal axis indicates the time course (48 h). The mice were 
maintained under light/dark (LD = 12 h: 12 h) cycles for 2 weeks and then transferred to constant 
darkness (DD). In aged mice, the levels of locomotor activity are decreased, fragmented locomotor 
activity appears, and free-running periods are lengthened in DD. Adopted from Nakamura et al. 
(2016) 

4.2 Effects of Aging on Circadian Rhythms 

The effects of aging on circadian rhythms have been reported in numerous species. 
In aplysia, a mollusk that is commonly used as in neuroscience research, long-
term recordings of neural firing activities in the retina, which has the function as 
a biological clock, revealed that circadian amplitudes drastically decreased in the 
12-month-old organisms compared with the 3-month-old organisms (Sloan et al. 
1999). Behavioral rhythms in rodents, represented by rats and mice, are also altered 
with age (Pittendrigh and Daan 1974). In aged mice, the levels of locomotor activity 
were decreased, fragmented locomotor activity appeared, and free-running periods 
were lengthened during constant darkness (Fig. 4.1). In particular, the balance of 
the activity/rest phase in aged animals is “ambiguous” (Valentinuzzi et al. 1997). 
Although mice used in the laboratory are nocturnal and their results cannot be applied 
to humans, the cause of early morning awakening in humans is interpreted as a change 
in the endogenous period, and a shortened/lengthened period has been verified in aged 
rodents. Thus, rodents can be useful models for studying neural circuits associated 
with aging. 

4.3 The Central Circadian Clock in the SCN 

The central circadian clock, which regulates circadian behavioral/physiological 
rhythms, is located in the SCN. The SCN is located above the optic chiasm where 
each optic nerve crosses, and the one-paired nuclei are proximal to either side of the
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third ventricle. The SCN is a distinctive structure in which each nucleus, containing 
approximately 10,000 neurons, is densely packed with small cell bodies. Thus, we 
can easily identify the SCN even though it is the size of a “poppy seed” in mice 
(Fig. 4.2). The SCN is directly connected to the retina and is entrained to an envi-
ronmental light/dark cycle. Since the 1990s, clock genes have been identified in 
mammals, and more recent research has revealed that the system called “cellular 
clock” was in each SCN cell. Several clock genes form a cellular clock that oscil-
lates for approximately 24 h driven by a transcriptional-translational negative feed-
back loop. In brief, the heterodimers of clock gene products BMAL1 and CLOCK 
drive transcription of circadian responsive genes, including Period (Per) and Cryp-
tochrome (Cry) via E-box elements found in their promoters. The gene products of 
Per and Cry, in turn, suppress the transactivation of BMAL1/CLOCK (Reviewed in 
Takahashi 2017). Although an individual SCN cell generates rhythmicity, the SCN 
generates a more robust rhythm as a nucleus by interacting with individual SCN cells 
(Nakamura et al. 2012). In addition, cellular clocks exist in almost all organs of the 
entire body (Honma 2018), and each organ can autonomously oscillate (Yoo et al. 
2004). If this whole-body clock system is compared to an orchestra, the SCN plays 
the role of the conductor, and the clocks existing in each tissue/organ (peripheral 
clock) play the role of each musical instrument. Similar to a conductor, the SCN 
conducts and integrates each peripheral clock to adjust the time for the physiological 
function of the organ. Just as an incompetent conductor who misleads the harmony 
of music, functional decline and dysfunction of the SCN disrupt the cellular clocks 
in the whole body. 

Fig. 4.2 Central clock: 
suprachiasmatic nucleus 
(SCN) of the hypothalamus. 
The coronal section of the 
mouse brain is stained with 
neutral red. Many cells are 
highly packed within the 
SCN. The scale bar 
represents 0.5 mm. 3 V: the 
third ventricle

SCN 

OC 
0.5 mm 

3V 
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4.4 Age-Related Decline in Circadian Rhythms Caused 
by SCN Disorganization 

Many studies have reported that the decline in behavioral/physiological functions 
is in line with dysfunction of the SCN due to aging (Reviewed in Nakamura et al. 
2016). A fetal SCN transplant into the third ventricle in an aged rat with reduced 
circadian rhythms improved circadian rhythms in locomotor activity, body temper-
ature, and drinking behavior (Li and Satinoff 1998). In addition, there are many 
reports on circadian rhythms in the SCN of aged rodents. For instance, multi-unit 
neural activity (MUA) recordings of extracellular potentials in SCN slices revealed 
that the aged SCN showed significantly smaller amplitudes than the young SCN in 
hamsters (Watanabe et al. 1995). In dispersal cell cultures, individual cells of the aged 
SCN showed neural activity rhythms with decreased amplitudes and fluctuating peak 
phases (Aujard et al. 2001). These results suggest that the amplitudes of the neural 
activity rhythm in the whole SCN are decreased due to the desynchronization of 
individual cells in aged animals. However, quantitative examination of Per2 rhythms 
in the SCN revealed that these rhythms were not significantly influenced by aging 
(Asai et al.  2001). Per1 rhythms in SCN slice cultures with a luciferase reporter 
also revealed that the rhythms were not significantly influenced, even though the 
period was slightly shortened (Yamazaki et al. 2002). These results suggest that 
aging does not have a large impact on the cellular clocks composed of clock genes 
in the SCN. Thus, there is a discrepancy in the effects of aging between the results 
of MUA rhythms reflecting neural outputs and clock gene expressions reflecting 
cellular clock generation. 

4.5 Age-Related Dysfunction of SCN Outputs 

Gene expression analyses and MUA recordings in aged mice were performed to 
clarify the discrepancies described in the previous section (Nakamura et al. 2011). 
First, experimental mice were dissected at certain intervals and examined the PER2 
expressions in the SCN by immunohistochemistry. There was no difference in the 
rhythms of PER2 expressions between young and aged mice. Second, PER2 rhythms 
were recorded in SCN slice cultures using the PER2::LUCIFERASE (PER2::LUC) 
reporting system. The amplitude of PER2::LUC in aged SCN declined with each 
cycle, whereas the free-running period was indistinguishable from that of young 
SCN. Finally, an in vivo MUA recording system that can record neural firing subpop-
ulations in the SCN of freely moving mice using bipolar electrodes was constructed 
(Nakamura et al. 2008). The method revealed that the MUA rhythms in aged wild-
type SCN were essentially maintained and the counts of MUA were high during 
the day and low during the night, whereas the variance per recording unit (1 min) 
significantly increased, and the robustness of day/night activities was lost relative to
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Fig. 4.3 Effects of aging on multi-unit neural activity (MUA) rhythms in the suprachiasmatic 
nucleus (SCN). In vivo MUA rhythms in the SCN of mice: the MUA rhythms in the SCN were 
recorded by chronically inserting electrodes into the SCN of the freely moving mice. The vertical 
axis indicates neural activity counts per min and the horizontal axis indicates the time course. The 
gray square indicates the dark phase. The MUA in the SCN is high during the day and low during the 
night. The MUA in aged SCN shows ambiguous rhythms, even though the difference in day/night 
activities was maintained. Adopted from Nakamura et al. (2011) 

the young wild-type SCN. The amplitudes of the MUA rhythms in aged mice were 
significantly lower than those in young mice (Fig. 4.3). 

It is considered that the SCN projects to the dorsomedial nucleus of the hypotha-
lamus (DMH) via the subparaventricular zone (SPZ) located just above the SCN, and 
that the timing signals for behavioral/physiological functions are transmitted from 
the DMH to some functional centers (Saper 2013). Thus, the pathway of SCN-SPZ 
reflects the SCN outputs. The amplitudes of the MUA rhythms in aged mice were 
found to decline, even in the SPZ (Nakamura et al. 2011). These results indicated 
that the decline in circadian rhythms at the individual level in aged mice was due 
to the dysfunction of SCN outputs. The age-related decline of behavioral rhythms 
was not observed in mice with artificial degeneration of dopaminergic neurons in 
the substantia nigra of the midbrain, mimicking an aged brain (Tanaka et al. 2012). 
This result also supports the relationship between age-related decline in behavioral 
rhythms and dysfunction of SCN outputs. If these results were likened to an orchestra, 
the conductor (SCN) became hazy and lazy.
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Fig. 4.4 Constant darkness uncovers effects of aging on the cellular clock. The luminescence 
rhythms in the suprachiasmatic nucleus (SCN) of PER2::luciferase (PER2::LUC) mice, a luciferase 
is linked to PER2, were recorded in SCN slice cultures using a photomultiplier tube (PMT). 
PER2::LUC rhythms of mice housed in a normal light/dark (LD) cycle (upper) and constant dark-
ness (DD) for 10 days (lower) are shown. The vertical axis indicates luminescent counts and the 
horizontal axis indicates the time course (days). There were no differences between the young and 
aged SCN during the periods and amplitudes in the LD cycle. In DD conditions, however, the aged 
SCN showed decreased amplitudes and fluctuated peak phases compared with the young SCN. 
Adopted from Nakamura et al. (2015) 

4.6 Mechanisms Underlying SCN Output Dysfunction 

Because several reports using rodents revealed that the cellular clock was almost 
normal even in aged SCN, and the discrepancy in the effects of aging between 
the neural rhythm and the cellular clock in the SCN was unsolved. In our own 
work, we hypothesized that rhythms in the SCN were also influenced by aging 
and examined the rhythms of clock gene expressions in the SCN in a non-external 
cues environment (constant darkness condition) (Nakamura et al. 2015). Although 
PER2::LUC mice have been exposed to the light/dark cycle in many experiments, 
in the study we cultured SCN slices from PER2::LUC mice housed in constant 
darkness conditions for 10 days. There were no differences in circadian periods 
and amplitudes between the young and aged SCN of mice housed in the light/dark 
environment. In contrast, the period was lengthened and the amplitude was decreased 
in the aged SCN of mice housed in constant darkness conditions. In brief, the effects
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Fig. 4.5 Effects of aging on individual suprachiasmatic nucleus (SCN) cellular clock. (Upper 
panel): PER2::LUC imaging of the SCN with a high-sensitivity camera. OC: optic chiasm, 3 V: 
the third ventricle. (Lower panel): serial plots of each PER2 rhythm picked up from individual 50 
cells in the SCN for 5 days. The rhythms in the aged SCN are gradually desynchronized in culture 
conditions. Adopted from Nakamura et al. (2015) 

of aging on the cellular clock in the SCN were remarkable under the constant darkness 
condition (Fig. 4.4). These results suggest that a light/dark environment masks the 
dysfunction of the cellular clock in aged SCN. Moreover, we performed PER2::LUC 
imaging of aged SCN with a high-sensitivity charge-coupled device camera under 
the same experimental conditions. Fifty cells were picked from each SCN, and the 
luminescence rhythms of each cell were recorded for 5 days. The rhythms in aged 
SCN were gradually desynchronized under culture conditions. Statistical analysis 
revealed that the variance of the peak phases significantly increased, although the 
amplitudes of individual cells were maintained (Fig. 4.5). These results suggest that 
aging disturbs the synchronization of individual SCN cells, rather than influencing 
individual cellular clocks. 

4.7 Conclusion 

Taken together, many experiments using rodents reveal that aging: (1) disrupts SCN 
internal-synchronization and (2) induces SCN output dysfunction. Therefore, the 
SCN cannot transmit correct timing signals to each behavioral/physiological function 
(Fig. 4.6). Aging does not influence the scale or number of SCN neurons. However,
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Fig. 4.6 Summary of aging effects on the clock system. Circadian rhythm disorders of sleep arousal 
and physiological functions appear with age. The main cause is dysfunction of the timing signal 
outputs from the SCN, which is the central circadian clock. It is considered that the decline in 
synchronization of individual SCN cells results in the decline of functional rhythm outputs from 
the whole SCN in aged animals 

there are more reports of a decrease in neurotransmitters in the SCN, such as gamma 
aminobutyric acid, with age (Hood and Amir 2017). Thus, it is considered that 
a functional decline in circadian rhythm due to aging is mainly due to a decline 
in SCN synchronization (a dysfunction of the SCN neural circuit), which may be 
supported by the reduction in SCN outputs caused by age-dependent alterations 
in specific neurotransmitter signaling (Farajnia et al. 2014). In addition, circadian 
rhythm disorders in neurodegenerative diseases, such as Alzheimer’s disease, are 
considered to be a result of SCN dysfunction (Musiek and Holtzman 2016). Therapy 
and medicine to improve SCN neural circuits in these diseases, including aging, are 
expected in the future. 
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Chapter 5 
Impact of Cellular Senescence 
on Cellular Clocks 

Yasukazu Nakahata 

5.1 Introduction 

Cellular senescence is a permanent cell cycle arrest caused by a variety of stres-
sors, including genotoxic reagents, oncogene activation, mitochondrial dysfunction, 
and nutrient depletion, but interestingly, senescent cells are metabolically active and 
resistant to apoptosis (Kumari and Jat 2021). Senescent cells are also known to 
secrete a plethora of factors collectively referred to as senescence-associated secre-
tory phenotype (SASP) (Kumari and Jat 2021). Cellular senescence was first observed 
by Hayflick and Moorhead in 1961 (Hayflick and Moorhead 1961) and was initially 
assumed to be simply an artifact of cell culture. It is now widely accepted that 
almost all cells, even post-mitotic cells such as neurons, can undergo cellular senes-
cence and that senescent cells play both beneficial and detrimental roles in vivo in a 
context-dependent and temporal manner. Cellular senescence exhibits antagonistic 
pleiotropy, i.e., it plays beneficial roles in early life but detrimental roles in later life 
(Nacarelli and Sell 2017). Senescent cells in early life are associated with embry-
onic development (Storer et al. 2013), wound healing (Demaria et al. 2014), tissue 
remodeling (Munoz-Espin and Serrano 2014), and tumor suppression (Munoz-Espin 
and Serrano 2014). Interestingly, SASP factors secreted by senescent cells enhance 
immunosurveillance to eliminate themselves. On the other hand, due to immune 
aging in late life, the senescent cells have been accumulated at the sites of many 
age-related diseases and shown to contribute, at least partially, to the development 
of many such diseases, including contribution to tumorigenesis (He and Sharpless 
2017; Herranz and Gil 2018).
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These findings have led researchers to explore how and why senescent cells accu-
mulate and to what extent these cells have a positive or negative impact on physiolog-
ical function. Given the myriad of effects of senescent cells, one system whose effects 
of cellular senescence are relatively unexplored is the circadian clock system, a 24-h 
timekeeping system found in the cells of almost every living body on earth. In this 
chapter, I first summarize the characteristics of cellular senescence, then describe 
the features of the circadian clock, and discuss the possible link between cellular 
senescence and the circadian clock. Finally, I discuss that senescent cells could be 
the underlying cause of circadian clock malfunction, which may ultimately lead to 
circadian rhythm dysfunction at the tissue and organism level. 

5.2 Evidence that Cellular Senescence Is a Causative 
Factor for the Different Age-Related Diseases 

Aging is a progressive loss of tissue and organ function over time that occurs in 
all multicellular organisms (Calcinotto et al. 2019). Aging is one of the greatest 
risk factors for non-communicable diseases such as atherosclerosis, osteoporosis, 
osteoarthritis, type 2 diabetes, kidney disease, neurodegenerative diseases, and cancer 
(Kirkland 2016). These diseases generally begin to develop in the middle of an 
organism’s lifespan and progress with aging. Therefore, the field of aging postulates 
that some fundamental process must be the driving force that causes these age-
related diseases to develop almost simultaneously (Lopez-Otin et al. 2013). Cellular 
senescence is one of the most plausible candidates that would fulfill this criterion, 
as the chronic presence of these cells in late life would seem to bring disarray in 
a tissue-specific manner. Studies to determine whether cellular senescence is a key 
driver of aging-related diseases have yielded compelling results for several diseases 
in animal models (Baker et al. 2016; Baker et al. 2011). Senescent cells have been 
found at the site of many aging-related pathologies and clearance of these cells using 
transgenic techniques can alleviate the severity of symptoms. For example, senescent 
cells are present in osteoarthritic joints (McCulloch et al. 2017), and transplanting 
senescent cells into the knee joints of mice improved osteoarthritis symptoms (Xu 
et al. 2017). Similarly, evidence suggests that senescent cells contribute to several 
chronic lung diseases (Birch et al. 2018), and the removal of these cells improved 
lung parameters in aging mice (Hashimoto et al. 2016). 

While transgenic suicide genes that kill senescent cells have been demonstrated 
to ameliorate aging-related diseases and extend a healthy life span in mice, senolytic 
pharmacological agents that selectively kill senescent cells have also been developed 
for innovative therapeutic applications in aging. The first senolytics, a combination 
of dasatinib and quercetin, was reported to alleviate frailty symptoms and extend a 
healthy life span in mice (Zhu et al. 2015b). Recent studies have also highlighted the 
therapeutic value of senolytics-induced senescent cell elimination in natural aging 
and many age-related diseases (Zhu et al. 2020). Collectively, these findings indicate
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that the chronic presence of senescent cells brings about havoc in many physiological 
systems of the body. 

5.3 Characteristics of Senescent Cells 

Irreversible growth arrest is a notable characteristic of senescent cells; however, it is 
not the only feature of senescent cells. To confirm the presence of senescent cells, 
several features are investigated (Fig. 5.1), since there is no single universal marker 
to confirm it (Gorgoulis et al. 2019; Sharpless and Sherr 2015). Senescent cells can 
be detected by an assay that stains senescent cells at suboptimal pH 6 in the presence 
of the substrate X-gal senescence-associated β-galactosidase (SA-β gal) (Debacq-
Chainiaux et al. 2009). Senescent cells also have a greatly flattened morphology 
compared to proliferating cells, increased lipofuscin accumulation (Sharpless and 
Sherr 2015), increased expression of cyclin-dependent kinase inhibitor (CDKi) 
p16INK4a and p21CIP1 (Hernandez-Segura et al. 2018), extensive chromatin folding 
called senescence-associated heterochromatic foci (SAHF) (Gorgoulis et al. 2019), 
and secretion of SASP as described above (Hernandez-Segura et al. 2018). 

Fig. 5.1 Characteristics of senescent cells. (Left panel) Molecular hallmarks of senescent cells. 
(Right panel) Molecular mechanisms modulating cell cycle arrest: DNA-damage dependent and 
independent mechanisms regulate the p53/p21Cip1- and pRb/p16INK4a-mediated mechanisms to 
initiate and maintain cellular senescence



108 Y. Nakahata

5.4 Permanent Cell Cycle Arrest in Senescent Cells 

As mentioned above, senescent cells are growth-arrested cells that do not respond to 
appropriate growth conditions or mitogenic stimuli. The senescent state is a cellular 
response to various forms of intrinsic or extrinsic stress, and the type of stressor deter-
mines whether the resulting senescent cell is replicative, oncogene-induced, stress-
induced, or mitochondrial DNA damage-induced. Regardless of the type of initial 
stressor, cell cycle arrest is mediated primarily by two tumor suppressor pathways: 
the p53/p21CIP1 and p16INK4a/pRb pathways (Gorgoulis et al. 2019). In response 
to stresses such as telomere exhaustion, oxidative damage, oncogenic activation, 
and chemotherapeutic agents, cells initiate the DNA damage response (DDR). This 
involves activation of a kinase cascade that includes the serine-threonine kinases 
ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related), followed by 
checkpoint serine-threonine kinase CHK1 and CHK 2, ultimately leading to activa-
tion of the p53/p21CIP1 axis. Once activated, p53 governs a complex anti-proliferative 
transcriptional program, inducing transcription of p21CIP1, a CDKi, inhibiting CDK2 
activity, and ultimately causing hypophosphorylation of pRB. The hypophosphory-
lated pRB then sequesters away the E2F transcription factor, thereby preventing 
the activation of genes required for DNA replication (Sharpless and Sherr 2015). 
However, activation of p53 and/or p21CIP1 during senescence can also occur in a 
DDR-independent manner in certain situations (Storer et al. 2013). Additional or 
persistent stress can activate the CDKi p16INK4a, which inhibits CDK4 and CDK6, 
causing hypophosphorylation of pRB and leading to a long-lasting arrest. p21CIP1 is 
required for the initiation of senescence, while p16INK4a contributes to the mainte-
nance of senescence (van Deursen 2014). Furthermore, an alternative reading frame 
protein at the p16INK4a locus, ARF (called p14ARF in humans and p19ARF in mice), is 
involved in the induction of aging. It inhibits the MDM2 E3 ubiquitin ligase, thereby 
preventing p53 degradation (Gorgoulis et al. 2019; Sharpless and Sherr 2015). 

5.5 Altered Signaling Pathways in Cellular Senescence 

In addition to the DDR-induced p53/p21CIP1 and p16INK4a/pRb pathways, various 
signaling pathways are altered in senescent cells. Here, I discuss signaling pathways 
that may be involved in the molecular clocks. 

5.5.1 AMPK Signaling 

AMP-activated protein kinase (AMPK) functions as a bioenergetic sensor that regu-
lates cellular responses to energy stress; AMPK is activated under conditions of 
increased AMP:ATP and ADP:ATP ratios (see below). To drive senescence, the
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activated AMPK signaling pathway inhibits Hu antigen R (HuR)-dependent degra-
dation of mRNAs encoding p21CIP1 and p16INK4a (Wiley and Campisi 2016), or 
telomerase activity by phosphorylating p38 MAPK (Lanna et al. 2014). By contrast, 
AMPK activation has also been reported to protect cells from oxidative stress-induced 
senescence via autophagic flux restoration and NAD+ elevation (Han et al. 2016). 

5.5.2 P38 MAPK Signaling 

p38 MAPK signaling activation following oncogenic stress, oxidative stress, or 
AMPK activation has been reported to induce senescence in human fibroblast (Iwasa 
et al. 2003), endothelial cells (Shen et al. 2013), and T cells (Lanna et al. 2014). 
Activated p38 MAPK represses hTERT mRNA expression (Lanna et al. 2014) or  
phosphorylates p53 directly or indirectly to induce senescence (Xu et al. 2014). 

5.5.3 NF-κB Signaling Pathway 

A remarkable diversity of stimuli, both endogenous and exogenous ligands as well 
as a plethora of physical and chemical stresses, leads to the activation of NF-κB 
signaling (Hayden and Ghosh 2008). It is composed of five different subunits, RELA 
(p65), RELB, c-REL, p105/p50 (NF-κB1), and p100/p52 (NF-κB2) that can homo-
or hetero-dimerize to form a variety of transcriptionally active isoforms with widely 
different roles in the transcriptional activation or repression of genes. The major 
trigger for cellular senescence by NF-κB signaling activation is the DDR. Microarray 
analysis revealed that 65 NF-κB downstream genes are upregulated upon senes-
cence arrest in p53/p21CIP1 and p16INK4a/pRb pathways-inactivated human fibrob-
lasts (Rovillain et al. 2011). Inhibition of the NF-κB pathway by the gene abla-
tion/silencing or pharmacological inhibition reduces senescent cells (Rovillain et al. 
2011; Tilstra et al. 2012). 

5.5.4 mTOR Signaling Pathway 

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intra-
cellular and extracellular signals and serves as a central regulator of cell metabolism, 
growth, proliferation, and survival. The mTOR pathway is activated during various 
cellular processes, from protein synthesis to autophagy, and is deregulated in human 
diseases such as type 2 diabetes, cancer, and neurodegenerative diseases (Saxton 
and Sabatini 2017). mTOR is a serine/threonine protein kinase that forms the 
catalytic subunit of two distinct protein complexes, known as mTOR Complex 1
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(mTORC1) and 2 (mTORC2) (Laplante and Sabatini 2009). mTOR pathway acti-
vation is necessary for the enlargement of the cell body of senescent cells, a key 
feature of cellular senescence (Bent et al. 2016). Activation of mTORC1 signaling is 
exhibited in senescent cells (Nacarelli and Sell 2017). mTORC1 elevation has been 
suggested to promote SASP by facilitating the translation of interleukin (IL) − 1α 
and MAPKAPK2, both of which promote the secretion of the SASP components. 
Furthermore, mTORC1 localizes to autolysosomes and forms a TOR-autophagy 
space coupling compartment that maintains the synthesis of SASP components 
(Narita et al. 2011). Elevated mTORC1 activity is thought to be due to defective 
sensing of amino acids and growth factors, as mTORC1 is constitutively activated 
and insensitive to serum and amino acid starvation in senescent cells (Carroll et al. 
2017). 

5.5.5 Unfolding Protein Response (UPR) Pathway 

Various factors such as oxidative stress, infections, and mutations can cause endo-
plasmic reticulum (ER) stress, leading to the accumulation and aggregation of 
unfolded and/or misfolded proteins. To eliminate these proteins and maintain ER 
protein homeostasis, PERK, IRE1α, and ATF6 pathways of the unfolding protein 
response (UPR) system in the ER are activated (Read and Schroder 2021). Interest-
ingly, ER stressors, such as tunicamycin and thapsigargin, can induce senescence, 
indicating that dysfunctions of ER protein homeostasis can be a trigger for senes-
cence. Genetic ablation of UPR genes also alters senescence levels (Pluquet et al. 
2015). Notably, under non-stress conditions, PERK and IRE1α form complexes with 
binding immunoglobulin protein (BiP) and chaperone proteins, mainly HPS90 to 
inactivate and stabilize them (Wang and Kaufman 2014). 

5.5.6 Cyto- and Nucleo-Skeletons 

One of the key features of cellular senescence is the dramatic change in cell 
morphology, i.e., the enlarged and flattened cell shape. The enlarged cell shape is 
attributed to the continued stimulation of the cell growth pathways, MAPK and 
mTOR (Blagosklonny 2014). Senescent cells also have an increase in the inter-
mediate filament vimentin and a decrease in actin, tubulin, and the focal adhe-
sion proteins, paxillin and c-Src (Nishio and Inoue 2005), resulting in decreased 
cytoskeletal stiffness (Dulinska-Molak et al. 2014; Ferrari and Pesce 2021; Lieber 
et al. 2004). Intriguingly, senescent cells also change in the shapes of the nucleus, 
due to the decrease in proteins composed of nuclear membranes and nuclear lamina, 
such as LINC (linker of nucleoskeleton and cytoskeleton) protein complex, lamin 
B1, and lamin B1 receptor (Pathak et al. 2021).
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5.6 Metabolic Changes in Cellular Senescence 

Levels of metabolites, such as ATP and NAD+, change with aging at the cellular 
and organismal levels. Among them, NAD+ levels which are known to decrease 
with aging (Khaidizar et al. 2017; Madeo et al. 2018; Yoshino et al. 2018), are 
one of the key metabolites that regulate the circadian clocks. Calorie restriction that 
increases NAD+ levels restores the circadian genomic signatures of aging in the liver, 
epidermal, and muscle stem cells of aged mice (Sato et al. 2017; Solanas et al. 2017). 
Reportedly, NAD+ levels are also regulated by the circadian clock (Nakahata et al. 
2009; Ramsey et al.  2009). 

5.6.1 Adenosine Triphosphate (ATP) 

Senescent cells exhibit changes in mitochondrial mass, membrane permeability, 
and morphology (Chapman et al. 2019). In addition, senescent cells show an 
increased mitochondrial accumulation (Hernandez-Segura et al. 2018), primarily due 
to reduced mitophagy (Korolchuk et al. 2017). A key step in triggering mitophagy is 
the recruitment and translocation of the E3 ubiquitin ligase, Parkin, to damaged mito-
chondria, ultimately leading to autophagosome-mediated degradation (Chapman 
et al. 2019). p53 interacts with Parkin and prevents its translocation to damaged 
mitochondria, thus inhibiting mitophagy. Senescent cells possess a compromised 
ability to generate adenosine triphosphate (ATP), although senescent cells have a 
higher number of mitochondria (Korolchuk et al. 2017). The membrane potential of 
these mitochondria is decreased, leading to the release of mitochondrial enzymes, 
such as endonuclease G, and intensified ROS production (Hernandez-Segura et al. 
2018). Dysfunctional mitochondria may contribute to the establishment and intensi-
fication of the senescence state through excessive ROS generation (Chapman et al. 
2019; Nacarelli and Sell 2017) and altered levels of other key metabolites. 

Senescent cells shift to a highly glycolytic state (James et al. 2015), with elevated 
adenosine monophosphate (AMP) and adenosine diphosphate (ADP) levels, relative 
to cellular ATP levels (Wiley and Campisi 2016). Investigations have suggested that 
glycolysis is elevated by the upregulation of key glycolytic enzymes (James et al. 
2015). Although the reason for adapting to a more glycolytic state is unclear, it 
is speculated that glycolysis may help provide precursors for the high demand for 
proteins, lipids, and other cellular macromolecules for the components of the SASP 
and enlarged senescent cells (Wiley and Campisi 2016).
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5.6.2 Nicotinamide Adenine Dinucleotide (NAD+) 

Senescent cells have low NAD+ levels (Khaidizar et al. 2017) with low NAD+/NADH 
ratios. One of the major reasons for this is that nicotinamide phosphoribosyltrans-
ferase (NAMPT) levels, the rate-limiting enzyme in the mammalian NAD+ salvage 
pathway, decrease in senescent cells (Khaidizar et al. 2017). Reportedly, NAMPT 
decreases with aging in several tissues (Lee et al. 2012). In addition, decreased 
levels of cytosolic malate dehydrogenase, an enzyme that mediates the conversion 
of oxaloacetate to malate by using NADH, in senescent cells have been suggested 
to contribute to the low ratio of NAD+/NADH. NAD+ serves as an electron carrier 
during oxidative phosphorylation and as an electron acceptor in the electron transport 
system, where it is reduced to NADH. NAD+ is also important for the regulation of 
DNA repair signaling. Poly (ADP-ribose) polymerases (PARPs) utilize NAD+ for 
their activation to repair genotoxic stress-induced DNA damage. The sirtuin family 
also utilizes NAD+ for their deacetylase activity for the regulatory roles in DNA 
repair and metabolism (Khaidizar et al. 2017). PARP inhibition can accelerate the 
induction of senescence due to the accumulation of damaged DNA (Efimova et al. 
2010), and low levels of NAD+ can decrease the activity of sirtuins, which can aid 
in the senescence state (Grabowska et al. 2017). 

5.6.3 Polyamines 

Polyamines (putrescine, spermidine, and spermine) are ubiquitous polycations 
present in all living organisms. Polyamine concentrations in mammals are deter-
mined by their nutritional supply, synthesis by the intestinal microbiota, uptake, 
and cellular biosynthesis. Polyamines regulate various cellular processes such as 
gene regulation, protein synthesis, cell growth, and chromatin structure organization 
(Miller-Fleming et al. 2015; Minois 2014). Therefore, it is important to maintain 
optimum polyamine concentrations for the smooth functioning of various organs. 
Hence, reduced polyamine concentrations in organs are involved in age-related 
diseases and aging (Nishimura et al. 2006). Although polyamine levels in senes-
cent cells have not been analyzed, it has been reported that reduced polyamines in 
human melanoma cells result in a senescent-like phenotype (Kramer et al. 2001). 

5.7 The Circadian Clock 

Circadian clocks generate 24-h rhythms in a growing body of biological, physio-
logical, and behavioral events, ranging from bacteria to humans, and are established 
by cell-autonomous oscillators called cellular clocks (Takahashi 2017). Mammalian 
cellular clocks are part of the hierarchical multi-oscillatory network. The master
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clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. On the other 
hand, peripheral clocks are localized in almost all other tissues of the body (Honma 
2018; Takahashi 2017). The core molecular mechanisms of cellular clocks are the 
same, irrespective of whether they are the master or peripheral clocks. 

The mammalian cellular clocks consist of positive and negative limbs that form 
transcription/translation-based feedback loops (TTFLs) (Fig. 5.2). The positive limb 
of the clock consists of two transcriptional factors, CLOCK and BMAL1, the basic 
helix-loop-helix Per-Arnt-Sim (bHLH-PAS) type transcriptional activators. These 
two transcriptional activators form a heterodimer to bind to the E-box elements 
(CACGTG) present in the promoter region of the genes that form the negative limb 
of the clock, namely Period genes (Per1, Per2, and Per3) and Cryptochrome genes 
(Cry1 and Cry2). After induction of Per and Cry genes, PER and CRY proteins form 
a multimeric protein complex and give feedback to repress their own transcription 
by binding to the activator, CLOCK-BMAL1 heterodimer (Honma 2018; Takahashi 
2017). This core feedback loop is coupled with an interlocked loop, in which nuclear 
receptors, RORs and REV-ERBs, form an additional TTFL to the core loop. RORs 
and REV-ERBs recognize and compete for binding to an element, RORE (ROR/REV-
ERB-response element), to serve as activators and repressors, respectively, at their 
target sites to form an additional TTFL that impinges on the core clock TTFL (Honma 
2018; Takahashi 2017).

One of the most notable aspects of this intrinsic cellular clock is its ability to 
synchronize with external environmental cues, such as light–dark cycles, food, and 
exercise (Chaudhari et al. 2017); the components of the system can also synchronize 
with each other. Consequently, the circadian clock system maintains an optimal 
timing for nearly all physiological and behavioral activities of the organisms, such as 
metabolism, feeding, reproduction, and cognitive performance, thereby determining 
the overall health and survival of the organism. However, like other systems in the 
body, the circadian clock system is disrupted with aging (Davidson et al. 2008; Mattis 
and Sehgal 2016; Sellix et al. 2012; Valentinuzzi et al. 1997), and this has been 
demonstrated in the organism, tissue tissues, and at the cellular level, as evidenced. 
As a result, disruption of the circadian clock is associated with many age-related 
diseases, such as cancer, metabolic syndrome, cardiac diseases, and sleep disorders, 
as well as susceptibility to infectious diseases (Rijo-Ferreira and Takahashi 2019). 

At the organismal level, manifestations of circadian clock disruptions with aging 
have been observed in both humans and other animals. For example, changes in sleep– 
wake cycles were observed in humans, including changes in timing, duration, and 
consolidation of sleep (Mattis and Sehgal 2016). Aged rodents displayed changes in 
activity rhythms, with an altered period, delayed phase, more days for re-entrainment 
to phase changes, and greater variability in activity onset time than younger animals 
(Davidson et al. 2008; Sellix et al. 2012; Valentinuzzi et al. 1997; Zhao et al. 2019). 
Although these lines of evidence suggest that circadian rhythms are affected by aging, 
these pieces of evidence are not sufficient to deduce that the circadian clock system 
is inherently affected, as the tissues or organs themselves may exhibit a functional 
decline independent of circadian clock changes (Zhao et al. 2019).
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Fig. 5.2 Molecular regulations for circadian clock. (Left panel) Proper regulations by enzymes and 
metabolites in proliferative cells make the 24 h rhythmicity. (Right panel) Improper regulations by 
altered levels of enzymes, metabolites, and signaling pathways in senescent cells lead to attenuated 
and prolonged rhythmicity

5.8 Aging of the Circadian Clock 

The SCN, mammary tissues, and intervertebral disk from aged mice had longer 
periods, delayed phases, and attenuated amplitudes than those of young mice (Dudek 
et al. 2017; Nakamura et al. 2015; Yang et al. 2017). However, in other studies, 
changes in circadian clock properties in aged animals were tissue-specific (Davidson 
et al. 2008; Sellix et al. 2012; Yamazaki et al. 2002). One possibility for discrepancies 
between studies could be the differences in the accumulation of senescent cells. Some 
tissues accumulate a higher burden of senescent cells than others. Our group has 
recently reported that senescent cells in vitro show alterations of the cellular clocks 
irrespective of replicative senescent cells or stress-induced premature senescent cells 
(Ahmed et al. 2019, 2021). Senescent cells were found to have a prolonged period 
and delayed phase than proliferative cells. In the case of stress-induced premature 
senescent cells, these parameters intensified as senescent cells became more mature 
(Ahmed et al. 2021). This suggests that the dynamic nature of senescent cells may 
influence on the severity of clock dysfunction. Studies conducted by some groups, 
including ours, have elucidated that senescent cells exhibit attenuated amplitudes in 
several of the core circadian clock genes (Kunieda et al. 2006; Liang et al. 2021).
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5.9 Possible Molecular Regulators of Cellular Clocks 
in Senescent Cells 

The molecular mechanisms by which senescence affects the cellular clock remain 
to be elucidated, however, plenty of the pathways and factors disrupted in senescent 
cells are known to affect the cellular clocks (Fig. 5.2). 

5.9.1 P53 Signaling Pathway 

Stabilization of p53 through post-translational modifications, such as phosphoryla-
tion and acetylation, is important for cell cycle arrest during senescence (Gorgoulis 
et al. 2019). Pharmacological stabilization of p53 suppresses Per2 expression by 
which p53 directly binds to a response element that overlaps with the E-box element 
of the Per2 promoter, whereas p53−/− mice have a shorter period of locomotor activity 
(Miki et al. 2013). 

5.9.2 AMPK Signaling 

AMPK is a rhythmically expressed kinase that phosphorylates and activates CK1ε to 
phosphorylate PER and CRY1 for degradation (Um et al. 2007; Lamia et al. 2009). 
Chronic AMPK activation by AMPK agonist AICAR or by glucose deprivation 
prolonged the circadian period and attenuated the amplitude (Lamia et al. 2009) 
although another AMPK agonist, metformin, shortened the circadian period (Um 
et al. 2007). The involvement of AMPK in cellular clocks remains controversial, 
however, due to an increase in the AMP/ATP ratio AMPK alters cellular clocks in 
senescent cells. 

5.9.3 P38 MAPK Signaling 

p38 MAPK pathway has been shown to play a crucial role in the response to light 
in the SCN of rodents, the chick pineal gland, and the cultured Xenopus retina 
(Hasegawa and Cahill 2004; Hayashi et al. 2003; Pizzio et al. 2003). It has been 
reported that selective inhibitors of p38 MAPK prolong the circadian rhythm in the 
cultured pineal and human cells (Hayashi et al. 2003; Hirota et al. 2008) and that p38 
MAPK phosphorylates CREB by TNFα stimulation, resulting in the induction of 
Per1 mRNA (Petrzilka et al. 2009). However, the molecular mechanisms of how p38 
MAPK signaling regulates the molecular clock remain unclear. Even if the cellular 
clocks are disrupted by hyperactivation of the p38 MAPK signaling pathway in
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senescent cells, further studies are needed to clarify the link between the cellular 
clock and cellular senescence via the p38 MAPK signaling pathway. 

5.9.4 NF-κB Signaling Pathway 

Macrophages can produce proinflammatory cytokines such as IL-1β, IL-6, and TNFα 
in response to pathogens. Cytokine secretion by macrophages has been reported to 
show a circadian manner both in mice and isolated cells (Bellet et al. 2013; Curtis 
et al. 2015; Gibbs et al. 2012; Keller et al. 2009; Nguyen et al. 2013). NF-κB signaling 
is activated in response to pathogens and induces microRNA miR-155, which binds 
to 3’-UTR of Bmal1 mRNA to suppress Bmal1 mRNA and protein (Curtis et al. 
2015). Interestingly, genetic ablation of miR-155 perturbs circadian function and 
demonstrates a shorter period (Curtis et al. 2015). RELB, one of the NF-κB compo-
nents, acts as a repressor of circadian transcription. RELB forms a complex with 
CLOCK-BMAL1 to repress their transcriptions, while Relb−/− fibroblasts strengthen 
the amplitude of circadian oscillations regulated by CLOCK-BMAL1 (Bellet et al. 
2012). It is noteworthy that the senescent cells in which NF-κB signaling is activated 
possess a prolonged period (Ahmed et al. 2019, 2021). 

5.9.5 mTOR Signaling Pathway 

mTOR is upregulated during senescence, and elevated mTOR activity is a character-
istic of aging (Nacarelli and Sell 2017). mTOR perturbation by RNAi knockdown 
or mTOR inhibitors results in the prolonged circadian period in fibroblasts, SCN, 
and animal behaviors (Ramanathan et al. 2018; Zhang et al. 2009). However, molec-
ular mechanisms of how the upregulated mTOR signaling pathway perturbs cellular 
clocks remain to be elucidated. 

5.9.6 Unfolding Protein Response Pathway 

ER stress inducers such as tunicamycin and thapsigargin, which can give rise to 
cellular senescence, reduce the amplitude of circadian oscillations with delayed phase 
(Bu et al. 2018; Gao et al. 2019; Pickard et al. 2019). miR-211 induced by the PERK-
ATF4 pathway suppresses Bmal1 and Clock mRNA and protein amounts (Bu et al. 
2018; Gao et al. 2019). Overexpression of BiP or treatment of chemical chaperones, 
both of which inactivate the UPR pathway, strengthens the amplitude of circadian 
oscillations (Pickard et al. 2019).
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5.9.7 Cyto- and Nucleo-Skeletons 

Little is known about how cellular clocks sense and respond to their microenviron-
ment. Recent studies have demonstrated the stiffness of the cellular microenviron-
ment regulates the circadian clocks; epithelial cells have stronger circadian oscilla-
tions in soft microenvironments (Yang et al. 2017). Cell-extracellular matrix interac-
tions transduce mechanical stress to the cellular clocks directly via integrin signaling 
components such as vinculin, RhoA, and ROCK (Yang et al. 2017). It is noteworthy 
that fibroblasts show the opposite response, exhibiting stronger oscillations in stiff 
microenvironments (Williams et al. 2018). Tissue stiffness alters with aging, therefore 
microenvironments might modify cellular clocks, although molecular mechanisms 
linking to the cellular clocks remain largely unclear. 

5.9.8 NAD+ and NAD+/NADH Ratio 

NAD+ levels in cells and tissues have been demonstrated to oscillate with 24-h rhyth-
micity (Nakahata et al. 2009; Ramsey et al.  2009), which makes NAD+-dependent 
deacetylase, SIRT1 and SIRT6, activity rhythmic. Thus, the acetylated histone H3 
on circadian clock gene promoters exhibits circadian rhythm to fine-tune rhythmic 
gene expressions (Masri et al. 2014; Nakahata et al. 2008). SIRT1 also rhythmi-
cally deacetylates BMAL1 and PER2. Rhythmic acetylated BMAL1 modulates CRY 
recruitment to the CLOCK-BMAL1 complex (Hirayama et al. 2007; Nakahata et al. 
2008). Rhythmic acetylation of PER2 regulates its protein stability and subcellular 
localization (Asher et al. 2008; Ashimori et al.  2021; Levine et al. 2020). PARP1, 
another NAD+-dependent enzyme, binds and poly(ADP-ribosyl)ates CLOCK rhyth-
mically to modulate CLOCK-BMAL1 binding affinity with PER-CRY repressors 
(Asher et al. 2010). Thus, low NAD+ levels in senescent cells could be a possible 
cause of the impaired cellular clocks in senescent cells. 

NADH levels also alter with aging. In contrast to the decline in NAD+ levels with 
aging, NADH levels increase with aging, indicating a decrease in NAD+/NADH ratio 
and the redox state of total NAD (Zhu et al. 2015a). Intriguingly, the redox state of 
total NAD affects the DNA-binding potential of NPAS2:BMAL1 in vitro (Rutter 
et al. 2001). 

5.9.9 Polyamines 

Mammals obtain polyamines by de novo synthesis and through dietary uptake. 
Among several enzymes in the de novo polyamine biosynthesis pathway, the rate-
limiting enzyme, ornithine decarboxylase (ODC), shows circadian oscillation and
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polyamines modulate the affinity of PER2 with CRY1 (Zwighaft et al. 2015). Inhi-
bition of ODC enzymatic activity prolongs the circadian period in NIH3T3 cells, 
while either putrescine or spermidine treatment rescues the phenotype induced by 
the ODC inhibitor. Importantly, the decline in polyamines with aging in mice is asso-
ciated with a longer locomotor activity period, which can be reversed by polyamine 
supplementation (Zwighaft et al. 2015). 

5.9.9.1 SASP Factors 

In a variety of tissues from aging animals, senescent cells form a small fraction 
of the tissue, with approximately 2–13% of the tissue being senescent cells (Biran 
et al. 2017). However, how such a small fraction of these cells might disrupt the 
circadian functioning of tissues remains largely unknown. As already mentioned, 
senescent cells secrete SASP, a collection of cytokines, chemokines, growth factors, 
and proteases that exert potent biological activities on the surrounding cells and 
tissues (Sharpless and Sherr 2015). A plausible possibility is that senescent cells, via 
their SASPs, affect the cellular clocks of surrounding cells; over 300 SASP factors, 
some components such as IL-1β and INF-γ have been found to alter the cellular clock 
(Andersen et al. 2020; Dudek et al. 2017; Guo et al. 2015; Wiley et al. 2019). Thus, 
besides being intrinsically affected by their circadian clock mechanisms, senescent 
cells have the potential to spread this dysfunction to surrounding cells. Although the 
molecular mechanisms underlying clock dysfunction in senescent cells are not fully 
understood, these lines of evidence strongly suggest that senescent cells could be 
the underlying cause of circadian clock dysfunction, ultimately leading to circadian 
rhythm dysfunction at the tissue and organism level. 

5.10 Conclusions 

The above discussion highlights the need for further investigation to determine the 
molecular basis of cellular clock disturbances in senescent cells and to determine 
whether and how senescent cells can affect cellular clock function at the tissue 
and organismal levels. High-throughput pharmacological studies using cell-based 
luciferase real-time monitoring assays (Chen et al. 2012; Hirota et al. 2010; Kon et al. 
2015) could be a powerful tool to address the molecular basis of the cellular clocks 
in senescent cells. In addition, studies of NAD+ and/or polyamine supplementation 
could help to elucidate the molecular mechanisms of the cellular clock in senescent 
cells. Conditioned media from senescent cells could be used to determine whether 
SASP factors affect the cellular clocks in proliferating cells or vice versa. In addition, 
it would be worthwhile to determine whether all types of senescent cells exhibit 
prolonged periods and delayed phases, as seen in replicative senescent cells and 
stress-induced premature senescent cells, or whether there are tissue differences 
in these circadian characteristics of senescent cells. Ultimately, clarifying whether
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different types of senescent cells have altered cellular clocks may explain the tissue-
specific circadian changes observed previously (Yamazaki et al. 2002). Finally, it is 
possible to evaluate the effects of the removal of senescent cells on the circadian 
physiology of aging animals using transgenic mouse models and pharmacological 
compounds called senolytics, which specifically kill senescent cells. These studies 
will provide more insight into the relationship between senescent cells, circadian 
clocks, and age-related diseases, which in turn will lead to the development of new 
treatments to alleviate suffering in the elderly. 
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Part II 
Sleep, Ageing and Longevity



Chapter 6 
Optimum Sleep for Healthy Ageing 

Birendra Nath Mallick and Rachna Mehta 

6.1 Sleep and Wakefulness 

Living systems go through apparently quiescent and non-quiescent conditions in 
a cyclic manner. By and large, the former is associated with increased anabolic or 
decreased catabolic processes, while the latter, with opposite processes. These condi-
tions may be identified grossly by the physical movement, a quantifiable parameter, of 
the living system. Such alternating states have been best described as the basic rest and 
activity cycle (BRAC), which is one of the fundamental characteristics of the living 
organisms. It has been proposed that the BRAC has evolved into sleep and wakeful-
ness in higher species in evolution. In species higher in evolution, particularly where 
the brain has evolved, the concept of consciousness, mind, and thought processes 
have appeared. Without going into the philosophical or metaphysical aspects whether 
non-living objects and living beings without brain possess consciousness, it may be 
said that by and large, it is accepted that consciousness is associated with brain and its 
functions. To elaborate, wakefulness is associated with alertness and physical move-
ment, rest is usually related with reduced or lack of muscle activity, while sleep, is 
associated with rest of the brain in addition to the voluntary muscles. Additionally, 
there are other phenomena, e.g. active and quiet wakefulness and rest, with or without 
sleep. Notwithstanding, in the absence of objectively defined characteristic parame-
ters, although it was difficult to critically define these sleep-waking states, based on 
contemporary research finding it was clear that sleep serves specific purpose for the 
brain and is regulated by the brain. 

The sleep and wakefulness are instinct behaviours. As mentioned above, although 
the wakefulness could be apparently identified by the expression of conscious phys-
ical activity or movement, it was difficult to objectively identify sleep. Subsequently,
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when it was possible to record the electrical activities from the brain, the electroen-
cephalogram (EEG), the muscles, the electromyogram (EMG) and the eyes, the elec-
trooculogram (EOG), sleep and waking could be objectively defined and character-
ized. Such recordings showed that sleep is not a homogenous, passive phenomenon, 
i.e. sleep is not merely an absence of wakefulness. It was discovered that within 
sleep, intermittently a stage appears when electrophysiologically the brain appar-
ently behaves as it behaves during waking. As this stage of sleep is associated with 
rapid eye movement (REM), it was termed as REM sleep (REMS) (Aserinsky and 
Kleitman 1953). Subsequently, it was observed that this stage was associated with 
most of the dreams during sleep. This discovery had put death nail to the passive 
theory of sleep, and in other words, it was proposed that sleep is an active process. 
In fact, it was also confirmed that stimulation of certain brain regions may induce 
sleep or sleep like state (Moruzzi and Magoun 1949). 

Sleep is regulated by the brain, expressed for the brain; it has been proposed 
that sleep serves housekeeping function of the brain. It follows a biological rhythm, 
which may get modulated by the circadian rhythm. Although sleep is an instinct 
and involuntary behaviour, it may get modulated by the voluntary and cognitive 
processes. It is an essential physiological process as its loss is faced with rebound 
recovery, while its prolonged loss may become fatal (Thakkar and McCarley 2005; 
Mehta et al. 2020). By and large, sleep rejuvenates the brain, as the latter directly 
or indirectly controls and integrates most of the other physiological processes of 
the body and vice versa, it is understandable that its disturbance affects most of the 
physiological processes. In fact, hardly any physiological process is immune to sleep 
disturbance, while sleep disturbance has been reported in almost all acute as well 
chronic diseases. Thus, sleep disturbances could be an early indicator for disturbed 
health. Below, we review the changes in sleep (sleep disorders) in association with 
dysfunctions in other systems in the body. 

6.2 Cardiovascular and Respiratory Dysfunctions 
Associated with Sleep Loss 

The heart rate and respiration slow down during non-REMS, while they become 
irregular during REMS (Lavie et al. 2000). Disturbed sleep has been reported in 
subjects suffering from hypertension and other heart ailments (Calhoun and Harding 
2010). Cessation of respiration during sleep (sleep apnoea) is a leading cause of death 
(Marshall et al. 2014). Often snoring is also a symptom of disturbed respiration, 
when the sleep is significantly disturbed (Memon and Manganaro 2022). Depriva-
tion of REMS alters blood parameters linked with cardiovascular disorders and thus, 
contributes to arthrosclerosis and arterial hypertension (Andersen et al. 2004; Martin 
et al. 2007). On the other hand, hypertensive patients show significantly reduced 
REMS (Friedman et al. 2010). Impaired noradrenaline (NA) reuptake transporter 
activity has been reported in hypertension and postural tachycardia syndrome (Esler
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et al. 2006). Rate of respiration has been reported to be regular during NREMS, 
while it becomes irregular during REMS. Also, hypoxic and hypercapnic ventila-
tory responses fall during transition from wakefulness to NREMS, which is further 
reduced during REMS (Choudhary and Choudhary 2009). REMS reduces the tidal 
volume and ventilation efficiency, and these effects are further enhanced in patients 
with obstructive sleep apnoea and respiratory diseases (Millman et al. 1988; White 
et al. 1995). Sleep quality is impaired in patients with chronic respiratory disease; 
also, decreased sleep efficiency with a reduction in REMS has been reported in 
patients with chronic obstructive pulmonary disease (Valipour et al. 2011; McNi-
cholas et al. 2019). Therefore, disciplined and quality sleep is essential to maintain 
optimum physiological processes including cardiovascular and respiratory functions. 

6.3 Endocrine Dysfunctions Associated with Sleep Loss 

Disturbed or fragmented sleep has been reported to be associated with altered levels of 
many hormones, e.g. thyroxine (Green et al. 2021; Gary et al.  1996), gonadotrophins 
(Lateef and Akintubosun 2020), corticotrophins (Hirotsu et al. 2015; Machado et al. 
2010), melatonin (Davis et al. 2014), orexin (Mehta et al. 2015), etc. Elevated levels 
of thyroid hormones were seen to be associated with excessive daytime sleepiness 
and prolonged sleep latency (Sridhar et al. 2011). Hormonal imbalance caused due 
to sleep disturbances is also associated with metabolic dysfunctions like obesity, 
insulin insensitivity, diabetes and appetite dysregulation (Kim et al. 2015). Sleep 
deprivation is reported to be one of the important causes of infertility, which has 
been proposed to be due to associated changes in synthesis, release and metabolism 
of reproductive hormones (Lateef and Akintubosun 2020). Thus, poor sleep quality 
in female shift-workers or middle-aged people contributes to early pregnancy loss 
and decreased testosterone concentration, respectively, along with suppression of 
melatonin levels (Lateef and Akintubosun 2020; Alizadeh et al. 2021). 

6.4 Metabolic Dysfunctions and Sleep Loss 

Sleep is state of energy conservation in the sense that the metabolism is reduced 
(Schmidt et al. 2017). Accordingly, the release of metabolic enzymes, e.g. amylases, 
peptidases, gastric juices (Stacher et al. 1975; Pajcin et al. 2017) and hormones, e.g. 
insulin, gastrin (Donga et al. 2010) are affected during sleep loss. Salivary alpha-
amylase has been proposed to be a peripheral measure of noradrenergic activity. 
Higher salivary amylases were linked with better performance while performance 
deficits were seen during decrease in amylases level. Sleep, particularly, REMS was 
found to be associated with significantly lower levels of acid secretion. Decreased 
sleep duration in healthy individuals has also been linked to impaired glucose home-
ostasis which may lead to obesity. Sleep apnoea is also linked to impaired glucose
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tolerance and obesity is one of the major risk factors for the development of sleep 
apnoea (Mesarwi et al. 2013). Thus, the patients suffering from diabetes often 
complain of sleep disturbances. 

6.5 Thermoregulatory Changes in Association with Sleep 
and Sleep Loss 

Maintenance of body temperature is a key determinant as well as function of sleep 
(Okamoto-Mizuno and Mizuno 2012). The body temperature is reduced during the 
non-REMS and it increases during the REMS. Due to this, it has been proposed that 
one of the functions of REMS is “warming the CNS” (Wehr 1992). REMS appears to 
be more sensitive to changes in ambient temperature and thus, decreased sensitivity 
to hot and cold stimuli is seen during REMS as compared to other sleep stages 
and wakefulness (Muzet et al. 1983). NA stimulates metabolic activity elevating 
body temperature and triggering heat dissipation for thermoregulation (Ratheiser 
et al. 1998). Also, abnormalities in the body temperature rhythm are associated 
with insomnia and associated symptoms (Lack et al. 2008). Thus, REMS and NA 
(independently and dependently) play crucial roles to maintain thermoregulation and 
normal physiological functions. 

6.6 Altered Immune Function in Relation to Sleep 
Disturbances 

The immune system functions closely with the nervous system. Several studies have 
shown the production of immune factors by the brain and neuroendocrine mediators 
by the immune system (Blalock 1989; Madden and Felten 1995). Sleep is an impor-
tant modulator of the immune response, and loss of sleep increases the susceptibility 
of an organism to infections (Krueger and Karnovsky 1987; Opp  2009). NA is also 
known to modulate the immune system (Kohm and Sanders 2000; Rommelfanger 
and Weinshenker 2007); also, it plays a significant role in controlling the suscep-
tibility to different types of infections (Kohm and Sanders 2000). Inflammatory 
cytokines are known to interact with serotonin, melatonin and NA (Imeri and Opp 
2009) and such interactions hint at the possible candidates linked to inflammation and 
sleep. REMS loss has been reported to affect several hormones (including melatonin, 
growth hormone and cortisol), interleukins (e.g. IL-6), several enzymes including 
those associated with glycolytic pathway and apoptotic markers (cytochrome C, 
Caspases, etc.) in the brain (Redwine et al. 2000; Somarajan et al. 2016). Several 
cytokines affect sleep which includes IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-
13, IL-15, IL-18, TNF-α, TNF-β, IFN-α, IFN-β, IFN-γ and macrophage inhibitory 
protein (Imeri and Opp 2009). Out of these, IL-1α, IL-1β and TNF-α have been
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studied more to identify their role in sleep regulation. These immune signalling 
molecules are present in the healthy brain, where they interact with serotoninergic, 
cholinergic and glutamatergic systems to regulate sleep and its loss (Imeri and Opp 
2009; Grazia de Simoni et al. 1995). Receptors for IL-1α, IL-1β and TNF-α are 
present in the brain areas involved in sleep regulation including brain stem, hypotha-
lamus and cerebral cortex (Imeri and Opp 2009). Some of these changes might be 
seen in non-neuronal tissues, however, how much they are directly associated with 
REMS loss, need further studies. 

Sleep loss advances the onset and worsens the prognosis of many diseases. Sleep 
disorders like insomnia, narcolepsy, sleep-disordered breathing, etc., exacerbate 
existing ailments by damaging the immune system (Okun et al. 2004; Kheirandish-
Gozal and Gozal 2019). Also, the role of cytokines has been strongly suggested in 
the development of narcolepsy. A recent meta-analysis shows that serum levels of 
IL-6 and TNF-α were higher in all narcoleptic patients than in control patients (Irwin 
and Opp 2017; Okun et al. 2004). Thus, there are enough convincing evidence that 
sleep and immunity have interdependencies, however, the mechanisms by which they 
influence each other are not completely understood. 

6.7 Cognitive Dysfunction in Association with Sleep 
Disturbances 

Learning and memory are among the cognitive functions that confer upon us the 
ability to accumulate knowledge from our experiences (Liu et al. 2009). Several 
studies have suggested that the quantity and quality of sleep has a profound impact 
on learning and memory (Stickgold and Walker 2005). REMS serves several crucial 
functions, and its loss affects various pathophysiological states and processes (Stick-
gold and Walker 2005) including loss of concentration, impairment of memory 
processing and memory consolidation (Stickgold 2005; Mehta et al. 2016, 2020). 
REMS is necessary for memory consolidation and loss of REMS has an adverse 
effect on memory. Indications that sleep participates in the consolidation of fresh 
memory traces come from a wide range of experimental observations (Maquet 2001). 
The cAMP signalling pathway, which regulates CREB activity, is also crucial for 
hippocampal synaptic plasticity and memory storage (Abel et al. 1997). It has been 
observed that hippocampal cAMP levels are elevated during REMS, while its levels 
are impaired during sleep loss (Luo et al. 2013; Vecsey et al. 2009). Although many 
studies have found association between changes in REMS or its loss and gene regu-
lation, their cause-and-effect relationship cannot be correlated with reasonable confi-
dence. Notwithstanding, analysing those studies certainly can form part of another 
review; however, it may be emphasized without hesitation that undertaking such 
studies in detail is the need of the hour. 

Sleep loss and poor quality of sleep among individuals are priority issues in 
our society. Sleep disorders such as obstructive sleep apnoea and untreated sleep
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disturbances might also lead to cognitive impairment. This may also act as an impor-
tant risk factor for the development of dementia. Considering the prevalence and 
socioeconomic burden of several sleep loss-associated neurological disorders such 
as Alzheimer’s and Parkinson’s diseases, the age-dependent sleep loss accompanied 
by cognitive dysfunctions and dementia (Gagnon et al. 2008; Garcia-Alberca et al. 
2013), should receive increased attention for awareness and investigations into the 
underlying associated causes. In support, we would like to mention that the NA from 
LC neurons is known to modulate the consolidation and retrieval of hippocampus-
based memory (Hansen 2017). Recently, we have shown that NA level increases 
and GABA levels decrease in the brain during REMS loss (Mehta et al. 2017) and 
many of the neurodegenerative changes in the brain induced during REMS loss are 
mediated by increased levels of NA (Giri et al. 2021). 

6.8 Sleep Disturbances Associated with Changes in Social 
Factors 

Sleep is one of the most important instinct behaviours, which is indispensable for 
carrying out our daily activities and maintain healthy living. A quality sleep is 
essential for physical, cognitive and psychological well-being (Altun et al. 2012). 
Sleep as a universal phenomenon is represented in the sociocultural structure. The 
sociologist, Simon Williams, writes, “Where we sleep, when we sleep, and with 
whom we sleep are important markers or indicators of social status, privilege, and 
prevailing power relations”. A person’s genetic make-up, knowledge, beliefs, atti-
tudes about sleep, race/ethnicity, finances, employment, overall health, etc., are few of 
the factors that may influence individual’s sleep directly or indirectly. However, this 
individualistic approach is also affected at a social level which includes the home 
(family, bedroom, etc.), neighbourhood/environment, work, socioeconomics, reli-
gion, culture, social media, etc. These factors in turn are embedded within the social 
milieu, which includes factors like globalization, geography, technology, public 
policy, etc., affecting sleep (Grandner 2017). In a survey conducted on university 
students, it was found that most of the students have complained about difficulty 
falling asleep, sleep disturbances and excessive day time sleepiness (Wolfson 2010). 
The important factors that were found to affect sleep were stress, sadness, family 
problems, depression, anxiety and lower life satisfaction (Suen et al. 2010). Lifestyle 
changes have further introduced several social factors that are negatively influencing 
sleeping patterns. Thus, sleep hygiene affects the foundation of physical, mental and 
social well-being.
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6.9 Ageing and Sleep Disturbances 

Disturbed sleep is one of the symptoms common to ageing. Most of the aged people 
complain about reduced sleep duration, sleep fragmentation, increased sleep latency, 
etc. (Moraes et al. 2014; Carskadon et al. 1982). Thus, ageing impacts the ability of 
the brain to initiate and maintain sleep. Both sleep and ageing are natural, instinct 
behaviours and both, quality and quantity of sleep have been linked with ageing. Sleep 
duration gradually decreases from infancy to childhood and significantly decreases 
with old age. REMS is expressed maximum in the babies and reduces with ageing 
(Ohayon et al. 2004); however, it is never absent in life. Many of the REMS loss-
associated symptoms have been reported upon ageing, for example, reduction in 
brain excitability (Oh et al. 2010), memory loss (Luszcz and Bryan 1999), loss of 
concentration (Park and Festini 2017) and neurodegeneration (Harada et al. 2013), 
while REMS is reduced in ageing-associated diseases, e.g. Alzheimer’s (Gagnon 
et al. 2006) and Parkinson’s diseases. Alterations in NA levels were also observed 
in different brain regions of aged rats as compared to young rats (Arivazhagan and 
Panneerselvam 2002). Thus, NA could be central for ageing-related sleep disturbance 
and pathological conditions. 

6.10 Sleep Disturbances and Brain Maturity 

Sleep is one of the fundamental and instinct behaviour expressed by the brain during 
early development. REMS dominates in the prenatal and neonatal periods and its 
quantity reduces with ageing; however, it is never absent in life (Frank and Heller 
2003; Roffwarg et al. 1966). Its role in brain development has been proposed by the 
fact that the period spent in REMS is higher in new-born and in babies than in the 
adults (Dumoulin Bridi et al. 2015). REMS expression is more in babies who are born 
immature. Its expression decreases with maturity of the brain as well as with ageing 
(Roffwarg et al. 1966). It has been shown that at the end of postnatal second week in 
rats, a few neurons in the ventro-lateral part of the brain stem, which in adult brain 
corresponds to around area pontine oralis and LDT/PPT, the sites where cholinergic 
REM-ON neurons are located, start firing significantly faster in association with 
expression of REMS signs (Corner and Bour 1984). Around the same time (end of 
postnatal second week), the neuron in LC intermittently decreases firing. Thus, brain 
development and maturation correlate well with REMS quantity (Frank and Heller 
2003). 

Sleep disturbances during development were seen to be associated with several 
childhood disorders including autism spectrum disorders, attention deficit hyperac-
tivity disorders, emotional and behavioural difficulties. In healthy children, undiag-
nosed sleep disturbances have also been found to significantly impact brain develop-
ment (Na et al. 2021). Effects of sleep disturbances on brain maturation were obvious 
by the observation that children with sleep disturbances were associated with thinner
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cortex in the dorsolateral prefrontal area (Kocevska et al. 2017). Also, it was observed 
that children with mild to severe obstructive sleep apnoea had a significant deficit in 
grey matter volume in the prefrontal and temporal regions (Chan et al. 2014). Thus, 
sleep deficiency in childhood has a profound role to play in early brain development 
and expression of cognitive behaviour in adult life. 

6.11 Sleep Disorders in Association with Acute Diseases 

Insomnia is one of the causes/symptoms of common cold or pneumonia while 
influenza has been shown to be associated with narcolepsy (Gomi 2019). A bidi-
rectional link exists between sleep loss and obesity as obesity increases the risk 
for sleep disorders and reduced sleep causes fatigue reducing the ability to exercise 
(Cooper et al. 2018). Sleep disturbances are commonly associated with respiratory 
disorders like asthma (Choudhary and Choudhary 2009; Cukic et al. 2011). Also, 
sleep loss or poor sleep quality results into exacerbation of gastrointestinal symptoms 
and vice versa (Khanijow et al. 2015). 

6.12 Sleep Disorders in Association with Chronic Diseases 

Disturbed sleep or its loss is a common symptom in many of the chronic diseases 
like cancer, diabetes, hypertension, heart attack, stroke, lung disease, osteoporosis, 
arthritis, neurological diseases like Parkinson’s disease, Alzheimer’s disease, psychi-
atric ailments like schizophrenia, depression, anxiety, etc. (Fiorentino and Ancoli-
Israel 2007; Cooper et al. 2018; Koo et al. 2018; Parish  2009; Gagnon et al. 2008). 
Therefore, we propose that accumulation of loss of sleep could be underlying cause 
and mother of many acute and chronic psycho-somatic disorders (Fig. 6.1).

6.13 Summary and Conclusion 

6.13.1 Sleep Disruptions as Basis of Many Disorders 

Sleep is an instinct behaviour expressed by all living species, specially, higher in 
evolution. It has been broadly divided into NREMS and REMS. Both the stages 
of sleep are necessary to maintain optimum physiological processes and to lead a 
normal life. However, normally, as some duration of NREMS is necessary for gener-
ation of REMS, most of the experimental studies have been conducted by depriving 
the subjects of REMS, or total sleep. We have discussed above that sleep plays a 
significant role in maintaining normal physiological processes. As disturbed sleep,
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Fig. 6.1 REMS is an instinct behaviour. An optimal level of REMS maintains the physiological 
processes at an optimal level leading to healthy living. On the other hand, loss of REMS affects most 
physiological processes. Effects of REMS loss are mediated by shift in equilibrium in the levels of 
several biomolecules in the body and the brain; one such molecule being NA. The effective level of 
NA depends on its synthesis, release and degradation. By and large, low level of NA is beneficial, 
while its high level is destructive to brain cells. REMS loss causes sustained release of NA and 
its rise in the brain at least. This elevated level of NA adversely affects the brain and directly or 
indirectly affects other physiological processes leading to compromised health and diseases

including REMS, affects most physiological processes, we propose that accumulation 
of factor(s) due to disturbed sleep could be responsible for many diseases. Thus, sleep 
loss could be the underlying cause of many dysregulations of physiological processes, 
which may lead to pathological conditions, disorders and diseases. However, expres-
sion of a disorder depends on many factors including intensity (chronicity) of sleep 
loss, recovery from sleep loss, associated comorbidities and pre-dispositions. As 
ageing is a normal physiological process, one need not necessarily become sick or 
diseased with ageing. However, in practice, we find most aged persons suffer from 
many disorders. We propose that due to lifestyle changes through childhood and 
adulthood living, an instinct behaviour, the sleep is affected, resulting in accumula-
tion of one or more biomolecules, which affect(s) physiological process(es) leading 
to disorder(s).
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6.13.2 NA, a Common Factor Responsible for Sleep 
Loss-Associated Pathophysiology 

Loss of sleep includes REMS loss as well, which is associated with elevated level of 
NA. Isolated studies have shown that low level of NA exerts protection to neurons 
and thus, is beneficial to neurons, while elevated level of NA is damaging. As the 
brain controls most physiological processes directly or indirectly, the sleep loss-
associated modulation in NA affects physiological processes. It is also a reality that 
through ageing, sleep is often compromised due to various psycho-patho-physio-
socio-economic related issues and lifestyle changes. We propose that through ageing, 
sleep loss-associated elevated NA affects neurons in the brain affecting one or more 
systems and physiological processes, which results in expressions of some common 
and some not so common symptoms. The complexity of the expression of symptoms 
depends on one or more of the system(s) being affected, which again depends on the 
vulnerability of the systems affected. However, with passage of time under chronic 
sleep (including REMS) loss condition, cascading effects involving many systems 
get affected to various degrees (Fig. 6.1). Under such condition, it becomes difficult to 
establish the cause-and-effect relationship of the altered state(s) or disease(s). Finally, 
to summarize, we propose that growing from child-to-adult-to-old is a normal physi-
ological process, practicing healthy sleep hygiene through life (childhood and adult-
hood) is likely to allow one ageing gracefully with lesser health related complexities. 
Therefore, we propose that while diagnosing and recommending treatment for aged 
people, the caregivers must pay attention more closely to the present and past sleep 
profile of the patient and accordingly, take remedial action. Therefore, we reiterate the 
age-old saying in most civilizations that healthy sleep habit and hygiene throughout 
life is necessary for leading relatively better health and disease-free ageing. 

Compliance with Ethical Standards: All ethical standards were followed while preparing this 
chapter. 
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Chapter 7 
Healthy Brain Ageing and Longevity; 
the Harmony of Natural Products, APOE 
Polymorphism, and Melatonin 

Printha Wijesinghe, Gayathri Wijeweera, and K. Ranil D. De Silva 

7.1 Apolipoprotein E (APOE) Polymorphism and Human 
Longevity 

Life expectancy is an outcome of complicated processes that might involve thousands 
of genes and non-genetic factors (Christensen et al. 2006). To understand the vari-
ations in human ageing and lifespan, including exceptionally long lifespan, which 
is known as longevity, individual genetic differences and the role of specific genetic 
factors in these differences are central. Human genetic studies have shown consis-
tently that polymorphisms in gene encoding for APOE influence lifespan, probably 
mainly thorough their association with disease (Corder et al. 1996). Several indepen-
dent genome-wide association scans (GWAS) have further confirmed that APOE is 
the only gene accounted as “longevity determinant” (Garagnani et al. 2014). APOEε 
allele variants have been extensively analyzed, and the frequency of ε4 allele has 
been found decreased in long-lived subjects (McKay et al. 2011; Soerensen et al. 
2013) but it varies amongst different populations (Lee et al. 2001). APOEε2 carriers 
have an estimated average mortality risk in adulthood that is only 4–12% less than 
APOE ε3 carriers, and APOE ε4 carriers have a risk that is only 10–14% more than 
for APOE ε3 carriers throughout adulthood (Gerdes et al. 2000). Globally, APOE 
locus shows substantial allelic variation with ranges 0–20% for ε2, 60–90% for ε3,
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and 10–20% for ε4 alleles (Corbo and Scacchi 1999; Gerdes et al. 1996) with some 
exceptions. At the continental level and amongst Asians, Indian populations showed 
the highest average value of APOE ε3, whilst Oceanic populations showed the lowest 
values. 

Various clinical and epidemiological studies have highlighted the functional 
consequences of the phenotype–genotype relationship of APOE and its affiliation 
with diverse pathological conditions and cognitive traits (Schachter et al. 1994; 
Corder et al. 1993). Apolipoprotein E (ApoE) is necessary to help remove cholesterol-
rich lipoprotein from the circulation. This protein not only plays an important role 
in lipid metabolism but also participates in other important biological functions, 
such as immune regulation and neurological pathway regulation (neuron repair and 
remodelling) (Cao et al. 2020). A search for genetic and molecular basis of ageing 
has directed to the identification of genes related with the maintenance of cell and 
of its basic metabolism as the main genetic factors affecting the individual varia-
tion of the ageing phenotype (Passarino et al. 2016). Moreover, studies on calorie 
restriction and on the variability of genes associated with nutrient-sensing signalling 
have shown that ipocaloric diet and/or a genetically efficient metabolism of nutrients 
can modulate lifespan by promoting an efficient maintenance of the cell and of the 
organism (Passarino et al. 2016). 

In addition to APOE, understanding the contribution of human angiotensin 
converting enzyme (ACE) which is another most studied candidate genes for cardio-
vascular diseases (CVDs) in longevity is unclear. ACED-allele which predisposes to 
coronary artery disease (CAD) (Zintzaras et al. 2008) has been reported to be more 
frequent in centenarians and in nonagenarians (Seripa et al. 2006; Wufuer et al. 2004; 
Rahmutula et al. 2002) compared to younger ethically matched referents. However, 
controversies are still existed in ethically similar as well as in other population-based 
studies (Nacmias et al. 2007; Yang et al. 2009). 

Healthy ageing is considered as one of the most complex but desirable phenotypes 
studied to date. Healthy ageing can be defined in various ways, generally with regard 
to reaching an at least moderately old age in the absence of certain diseases or 
disabilities, and or in the presence of desirable traits such as intact cognition or 
mobility (Brooks-Wilson 2013). Mounting evidence indicated that nutritional factors 
could have an impact on healthy ageing as diets that are rich in natural products 
that contain high amounts of plant bioactive including polyphenols and antioxidant 
vitamins which are promising dietary strategies in preventing chronic diseases and 
ensuring healthy ageing. 

7.1.1 Population Ageing on Healthy Ageing 

Ageing population is a growing challenge in twenty-first century. Population ageing 
increases the costs in healthcare services, due to an increase in the utilization of age-
related procedures and treatments that ramp-up costs for long-term care, which are 
expected to grow at faster pace than other healthcare needs (Cristea et al. 2020). The
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global population of people aged 60 years and over was 962 million in 2017 equating 
to 13% of the total population, and this number is projected to 2.1 billion in 2050 and 
3.1 billion in 2100 (World Population Prospects 2017). For this age range, 65% of 
the global increase between 2017 and 2050 will occur in Asia, 14% in Africa, 11% in 
Latin America and the Caribbean, and the remaining 10% in other areas. South Asia 
represented 24.7% of the world total population in 2015, and the people aged over 60 
years was 154 million. Ageing population is often accompanied by increase in occur-
rence of diseases, of which dementia is the most prominent, which provide major 
challenges to family members, society and to the healthcare systems. Alzheimer’s 
disease (AD) is the most common form of dementia and possibly contributes 60–70% 
(World Health Organization 2012). However, clinical prevalence of dementia is often 
underestimated in developing countries or it has not been studied extensively. Clin-
ical prevalence of dementia was 3.98% in elderly Sri Lankans (De Silva et al. 2003), 
ranged from 0 to 10.6% in elderly Indians (Ravindranath and Sundarakumar 2021) 
and 3·6% in elderly Bangladeshians (Palmer et al. 2014), whereas it has not been 
reported in other South Asian countries. In our previous post-mortem brain study, we 
screened a total of 79 elderly brains with incomplete clinical histories obtained from 
two genetically and culturally related South Asian sample populations and reported 
that the neuropathologic changes for AD are comparable between Colombo, Sri 
Lanka (4.25%), and Bangalore, India (3.12%) elderly samples (Wijesinghe et al. 
2016a), whereas the pathologies associated with Parkinsonism (8.5%) were found 
only in Colombo samples. Here, we suggested that documentation of substantial 
heterogeneity in dementia prevalence amongst different countries/ethnics needs to 
be investigated on the basis of genetic, environmental, cultural factors, and preventive 
approaches in reducing the burden of dementia. 

7.1.2 APOE Polymorphism and AD 

Genetic risk factors for AD have been studied extensively for both basic types, 
familial and sporadic/late onset. APOE is the strongest genetic risk factor associated 
with late onset AD, but it is far from explaining all occurrences of the disease. In late 
onset families, risk of AD has been increased from 20 to 90%, and the mean age of 
onset has been decreased with an increasing number of APOE ε4 alleles (Corder et al. 
1993). A single copy of the APOEε4 allele triples the AD risk, whilst homozygotes 
have 15 times higher risk of developing AD in comparison with non-carriers (Farrer 
et al. 1997). 

Observational studies have shown that APOE genotype modifies the associations 
between vascular risk factors and AD, so that the associations of risk factors are 
stronger amongst the APOE ε4 carriers (Rönnemaa et al. 2011; Mielke et al. 2011). 
In general, amyloid beta (Aβ) associates with lipoproteins specifically ApoE to enable 
their transport and clearance (LaDu et al. 1994). LaDu and colleagues (1994) demon-
strated in their study that lipoproteins ApoE2 and ApoE3 form stable complexes with 
Aβ (at levels 20-fold greater than that occurring with ApoE4), and so they prevent the
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neurotoxic effects of Aβ by the uptake of these complexes via ApoE receptors. More-
over, Roses et al. (1996) reported that APOE ε3 alleles (and ε2) prevent paired helical 
filaments (PHFs) formation by interacting with the microtubule binding domain of 
tau. However, associations reported between APOE ε4 allele and NFTs pathologies 
are inconsistent (Morris et al. 2010; Kok et al. 2009). In our previous post-mortem 
brain study (Wijesinghe et al. 2016b), decedents with 1 or 2 APOE ε4 allele demon-
strated a significant positive association with Aβ stages and in contrast, a significant 
negative association with NFT stages controlling for age and sex. This observation 
could be related to APOE ε4 allele frequency amongst the decedents, as it showed an 
age associated APOE ε4 allelic variation that is presumed to be due to survival effect 
of APOE ε4 allele carriers (Jicha et al. 2008). Frequency of the APOE ε4 allele is an 
important genetic risk factor for explaining ethnic differences (Verghese et al. 2011). 
We recommended that APOE genotypes and their survival probabilities in different 
ethnic populations could possibly be a one of reasons for the differences observed in 
AD prevalence and needs to be confirmed through large-scale pathogenetic studies, 
across a large range of ethnicities. 

Other than AD, APOE ε4 allele is a well-known risk factor in the pathogenesis 
of atherosclerosis (Corder et al. 1993; Roher et al. 2003). APOE ε4 allele has been 
associated repeatedly with increased risk of both cardiovascular disease and AD, 
whereas APOE ε2 allele is protective (Panza et al. 2004; Bathum et al. 2006). In 
our previous work (Wijesinghe et al. 2020), we reported the association between 
posterior and anterior circulation of circle of Willis, atherosclerosis and the frequency 
of APOE ε3/ε4 and ε3/ε2 genotypes in an elderly Sri Lankan population. There we 
suggested that a population with predominant posterior circulation atherosclerotic 
stroke might be a result of increased frequency of APOE ε3/ε4 genotypes amongst 
them. Similarly, a population with fewer anterior circulation atherosclerotic strokes 
might reflect more frequent APOE ε3/ε2 genotypes amongst them. Although the 
mechanism is not clear, it provides some directions for the differences in prevalence 
of posterior and anterior circulation atherosclerotic stroke which have been discussed 
in population-based studies (Lee et al. 2006). 

7.2 Melatonin in Circadian Rhythms and Healthy Ageing 

Circadian rhythm is a natural process that occurs in approximate 24-h patterns in each 
day. The sleep-wake cycle is one of the most widely recognized circadian rhythms. 
Proper sleep allows the body to engage in circadian rhythms in the body, which 
initiates the build-up of energy stores for metabolic processes, neuronal remodelling 
for synaptic function, memory consolidation, and the assimilation of complex motor 
systems (Reddy et al. 2022). Studies have shown that one-third of the general popu-
lation is suffering from sleep disorder (named insomnia), and there is an increasing 
trend because of the more stressful working conditions and the progressive ageing 
(Miyamoto 2009). Insomnia, characterized by poor sleep quality and in sufficient
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quantity of sleep, is linked with impaired daytime functioning, physical health prob-
lems, anxiety, depression and fatigue, higher cardiovascular risk, and poor quality of 
life (Zeitlhofer et al. 2000; Hoevenaar-Blom et al. 2011). 

Melatonin (N-acetyl-5-methoxy-tryptamine) is a neurohormone, and signalling 
molecule identified in plants in 1995 (Dubbels et al. 1995; Hattori et al. 1995). Mela-
tonin is mainly secreted by the pineal gland in mammals, but it may also be produced 
by non-pineal cells like retina, bone marrow, and gut. In humans, melatonin secre-
tion is generally decreased with increasing age. Melatonin synthesis and secretion are 
controlled by light/dark cycles where the production decreases during daytime and 
increases at night. Melatonin is an important physiological sleep regulator in diurnal 
species including humans where circadian melatonin rhythm is closely associated 
with the sleep rhythm in both normal and blind subjects (Zisapel 2001). Considering 
the role of sleep in memory consolidation, it is not surprising that insufficient sleep 
can reduce cognitive ability including attention and memory (Zisapel 2018). Mecha-
nisms linking circadian clocks, sleep, and neurodegeneration have been demonstrated 
(Musiek and Holtzman 2016). Sleep disruption and or increased wakefulness may 
supress the function of glymphatic system that could result in decreased clearance 
of pathogenic proteins such as Aβ, which may lead to Aβ accumulation and the 
development of the symptoms of AD (Musiek and Holtzman 2016). 

7.2.1 Melatonin in AD 

Melatonin has various physiological functions in the brain, including regulating 
circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and 
suppressing neuroinflammation and has a wide range of neuroprotective roles by 
regulating pathophysiological mechanisms and signalling pathways (Chen et al. 
2020). Melatonin levels in the serum and cerebrospinal fluid (CSF) are lower in 
AD patients than those in age-matched control subjects (Wu and Swaab 2005) which 
could be resulted via the defects in melatonin receptor expressions in AD patients 
(Savaskan et al. 2007). Intracellularly, melatonin is targeted to mitochondria where 
it provides potent antioxidant protection, and its deficiency may result in reduced 
antioxidant protection in elderly individuals in which mitochondrial dysfunction may 
contribute to the incidence or severity of neurodegenerative diseases, such as AD 
(Paradies et al. 2017; Wongprayoon and Govitrapong 2017). Increased brain mela-
tonin concentrations could lead to a reduction in Aβ, which may retard neurogener-
ative changes in AD (Lahiri et al. 2004a, b). Melatonin has been reported to inhibit 
Aβ production and aggregation both in vivo and in vitro (Wang et al. 2008; Chincha-
longporn et al. 2018). In addition, combinations of Aβ and ApoE4 synergistically 
aggravate Aβ neurotoxicity, which can be prevented by melatonin through interac-
tions with ApoE4 (Poeggeler et al. 2001). Melatonin supplementation is suggested 
to reverse the synaptic dysfunction and cognitive impairment via epigenetic regu-
lations (Lahiri et al. 2004a, b; Wang et al. 2013). In the Aβ1-42-treated mouse 
model of AD, melatonin treatment ameliorated the Aβ1-42-induced neurotoxicity,
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attenuated memory impairment and tau hyperphosphorylation, reversed synaptic 
disorder, and reduced the apoptosis and neurodegeneration via PI3K/Akt/GSK3β 
signalling pathway (Ali and Kim 2015). Above studies highlight that melatonin could 
be an effective, promising, and safe neuroprotective candidate for the treatment of 
progressive neurodegenerative disorders, such as AD. 

7.2.2 Melatonin Via Plant-Based Diet 

Melatonin is now well recognized as a universal amphiphilic antioxidant molecule 
that, due to its small size and strong solubility in both water and lipids, can infiltrate 
all compartments of a cell. In lieu of synthetic melatonin, which may contain various 
by-products, the idea of extracting this bioactive chemical from natural plants for 
use in dietary supplements is intriguing (Arnao et al. 2018). Melatonin was found in 
concentrations ranging from a few to several thousand nanograms per gram of tissue 
in 108 herbs species typically used in Chinese medicine (Chen et al. 2003), indi-
cating that they are good natural sources of this molecule. Melatonin has been found 
in roots, shoots, leaves, flowers, fruits, and seeds, but the highest concentrations 
have been found particularly in seeds. This abundance is likely due to the impor-
tance of reproductive organs in plant life, as well as their requirement to adequately 
defend them against numerous environmental challenges, such as secondary oxida-
tive stress (Kołodziejczyk et al. 2015). Moreover, the melatonin concentration in 
the plant food products is also related with the environment, in which the plants 
are cultivated, including the temperature, duration of sunlight exposure, ripening 
process, agrochemical treatment, etc. (Wang et al. 2016). 

Exogenous melatonin is well absorbed, broadly distributed, and nearly totally 
metabolized in humans after oral treatment. Melatonin receptors are abundant in the 
brain, and easily crosses the blood–brain barrier. Melatonin is easily absorbed into 
circulation when ingested as a drink or as a galenic tablet (Lee et al. 1996). Meng 
et al. (2017) suggest that the intake of melatonin containing foods could significantly 
increase the melatonin concentration in human serum, indicating melatonin could 
provide beneficial effects on health through foods. In addition, Meng et al. (2017) 
recommend more clinical trials that are necessary to clarify the effects of food-based 
melatonin on human beings. 

7.3 Antioxidant Properties of Tea 

Black tea represents approximately 72% of total consumed tea in the world, whereas 
green tea accounts for approximately 26% (Katiyar and Mukhtar 1996). Black tea 
mostly comes from plantations in Africa, India, Sri Lanka, and Indonesia, whilst 
green tea comes from countries in the far East such as China and Japan. The nutrition
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Table 7.1 Mean nutrient 
composition in percentage in 
green and black tea (Belitz 
and Grosh 1997) 

Compound Green tea Black tea 

Proteins 15 15 

Amino acids 4 4 

Fibre 26 26 

Other carbohydrates 7 7 

Lipids 7 7 

Pigments 2 2 

Minerals 5 5 

Phenolic compounds 30 5 

Oxidized phenolic compounds 0 25 

composition between green and black tea is same, except phenolic compounds (Table 
7.1), which depend on the processing methods. 

The production of green tea is characterized by an initial heating process, which 
kills the enzyme polyphenol oxidase, which is responsible for the conversion of 
flavonoids in the leaf into the dark polyphenolic compounds found in black tea. The 
polyphenols constitute the most interesting group of green tea leaf components, and in 
consequence, green tea can be considered as an important dietary source of polyphe-
nols, particularly flavonoids. It includes the four major catechins (flavan-3-ols) are 
epigallocatechin-3-gallate (EGCG) 59%, epigallocatechin (EGC) 19%, epicatechin-
3-gallate (ECG) 13.6%, and epicatechin (EC) 6.4% (McKay and Blumberg 2002). 
In black tea, the polymerized catechins such as theaflavins and thearubigins predom-
inate. Black and green teas both contain similar amount of flavonoids, however, 
they differ in their chemical structure; green tea contains more catechins (simple 
flavonoids), whilst the oxidation undergone by the leaves in order to make black tea 
converts these simple flavonoids into the aflavins and thearubigins (Fig. 7.1) (McKay  
and Blumberg 2002). 

A graphical representation of the total catechins between green and black teas 
estimated from commercially available teas of different geographical regions; China, 
Japan, Kenya, Sri Lanka, and India are given in Fig. 7.2 (Cabrera et al. 2003).

Green tea is considered as a major dietary source of antioxidants; rich in polyphe-
nols (catechins particularly) but it also contains carotenoids, tocopherols, ascorbic 
acid (vitamin C), minerals such as Cr, Mn, Se, or Zn, and certain phytochemical 
compounds. These compounds could increase the green tea polyphenol’s antiox-
idant potential. It is antioxidant activity exhibited by scavenging reactive oxygen 
and nitrogen species and chelating redox active transition metal ions (McKay and 
Blumberg 2002; Kim et al. 2003 and Skrzydlewska et al. 2002). 

The majority of the research demonstrating the antioxidant activity of tea 
flavonoids was either on animal models or laboratory cellular studies (Warden et al. 
2001; Shahrzad et al. 2001; Leenen et al. 2000; Yang et al. 1999; van het Hof et al. 
1998). Increasing numbers of human studies are now concluding that the body does 
in fact absorb some of these antioxidants. As well as being absorbed these flavonoids
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Fig. 7.1 Major flavonoids in tea 

Fig. 7.2 Mean content of total catechins and gallic acid of green and black teas (dry weight data; 
Cabrera et al. 2003)

demonstrate antioxidative potential in vivo. A number of studies have shown that 
plasma antioxidant activity peaks 30–60 min after moderate tea consumption (1–6 
cups). There is some controversy about which tea has higher antioxidant potential. 
Although the oxidization process modifies the type of flavonoids present, the total 
level and their overall antioxidant activity are similar in both teas. It was proved 
in some studies where they found that whilst green tea was 6 times more potent in 
inhibiting lipid peroxidation in vitro, when healthy human subjects ingested the same 
amount of either black or green tea, the plasma antioxidant capacity (expressed as 
TRAP, or total radical-trapping antioxidant parameter) was similar in both groups
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(Łuczaj and Skrzydlewska 2005; Leung et al. 2001). This finding has led to the 
suggestion that the theaflavins and thearubigens in black tea also have antioxida-
tive potential (Stewart et al. 2005). The addition of milk to tea, as enjoyed by the 
majority, does not appear to affect the bioavailability or antioxidant activity of the 
tea flavonoids (Reddy et al. 2005; Hollman et al. 2001; Leenen et al. 2000; van het 
Hof et al. 1998). 

7.4 Protective Effect of Tea in AD Leading Towards 
Healthy Ageing 

Accumulating evidence suggests that oxidative stress resulting from reactive oxygen 
species generation and inflammation play a pivotal role in neurodegenerative 
diseases, supporting the implementation of radical scavengers, chelators, and nonvi-
tamin natural antioxidant polyphenols in the clinics. Oxidative damage is a hallmark 
of the aged brain and is especially elevated in the brains of AD patients. Oxidative 
stress and/or metabolic problems adversely affect neuronal function in AD patients. 
Some studies also found that people who develop AD consume fewer fruits and 
vegetables and fewer antioxidant nutrients (Singh et al. 2008). As a consequence, 
tea and tea polyphenols (which include catechins and their derivatives) particularly 
those from green tea are now being considered as therapeutic agents in well controlled 
epidemiological studies, aimed to alter brain ageing processes and to serve as possible 
neuroprotective agents that can help to ameliorate neurodegenerative diseases such 
as AD and Parkinson’s disease (PD) (Avramovich-Tirosh et al. 2007; Weinreb et al. 
2004; Mandel and Youdim 2004). Green tea catechins, formerly thought to be simple 
radical scavengers, are now considered to invoke a spectrum of cellular mechanisms 
related to neuroprotective as well as neurorescue activities (Reznichenko et al. 2005). 
As the secondary and tertiary structure determined the function of the protein, a 
misfolding caused by metabolic glycation, amination following oxidative stress and 
release of free radicals, phytochemicals in the beverages and food can modulate this 
detrimental biochemical event. Amyloid plaque containing misfolded Aβ protein is 
commonly seen in the brains of AD and appears to disrupt the function of cells. 
Some of the fragments of Aβ protein is found to be cytotoxic. Strategies to prevent 
the development of amyloid plaque are one of the avenues being explored in the 
prevention and treatment of AD (Ringman et al. 2005; Yang et al. 2005). Further-
more, Rezai-Zadeh et al. (2008) demonstrated that the tea antioxidant EGCG has 
potent anti-plaque ability and seems to change potentially harmful proteins into 
proteins that are not detrimental to brain cells. Both green tea and black tea have 
potent antioxidant properties and play a pivotal role in retarding age-related changes 
(Okello et al. 2004). Okello et al. (2004) observed in their study that both green 
and black tea inhibited the activity of enzymes associated with the development of 
AD, but coffee had no significant effect. Both teas retard the activity of the enzyme
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acetylcholinesterase, which breaks down the neurotransmitter, acetylcholine, essen-
tial for cognition and memory. AD is characterized by cholinergic depletion in the 
critical areas in the brain, leading to clinical manifestation. Green tea and black tea 
also hinder the activity of the enzyme butyrylcholinesterase, which has been found 
in protein deposits in the brain of patients with AD. Furthermore, green tea has been 
shown to counter the activity of β-secretase, which also plays a role in the production 
of amyloid protein in AD pathogenesis. The major caveat is the very poor absorption 
and delivery of EGCG seen in some studies (Cabrera et al. 2003). 

Countries like India and Sri Lanka tend to retain traditional herbal medical prac-
tices in their daily life and thus offer a valuable resource for new anti-dementia 
therapies (Perry 2007). Several species of medicinal plants have activities in vitro or 
in vivo those are relevant to dementia, e.g.: anticholinesterase, anti-amyloid, antiox-
idant, anti-inflammatory, neuroprotective, and memory enhancing (Burgener et al. 
2008; Ramassamy 2006; Martin et al. 2002a, b). However, the usefulness of such a 
resource relies on documented evidence of the effects. 

7.5 Therapeutic Potential of Cinnamon on AD 

Cinnamon (Cinnamomum zeylanicum and Cinnamon cassia) is well-known for 
its nutritional and pharmacological benefits, which are mostly attributable to the 
polyphenolic content and volatile essential oils extracted from various portions of 
the plant (bark, leaves, flowers, or buds) (Ooi et al. 2006). Cinnamon is made up 
primarily of essential oils and compounds including cinnamaldehyde, cinnamic acid, 
and cinnamate (Rao and Gan 2014). Cinnamon, in addition to its anti-inflammatory, 
anti-diabetic, and anti-cancer characteristics, has considerable brain protective and 
pro-cognitive effects in multiple neurodegenerative models including Alzheimer’s 
disease (Rao and Gan 2014). In vitro research suggests that the essential oils 
of Cinnamomum species, particularly cinnamaldehyde and sodium benzoate, may 
protect against oxidative stress-induced cell death, reactive oxygen species produc-
tion, and autophagy dysregulation, implying that they may have neuroprotective 
properties (Rao and Gan 2014). In AD, oxidative impairment is generally derived 
from mitochondrial dysfunction and microglial activation (the formation of ROS 
and NOS), thereby provoking calcium overload and excitotoxicity and eventually 
leading to neuronal apoptosis (Cenini et al. 2019). Cinnamon exerts its neuropro-
tective effects by interfering with oxidative stress, calcium overload, proinflamma-
tory pathways, and tau aggregation and has been shown to ameliorate Alzheimer’s 
disease progression in in vitro and in vivo models (Momtaz et al. 2018). Cinnamon 
inhibited the formation, accumulation, and toxic effects of Aβ plaques in PC12 
neuronal cells. PC12 cell viability was reported about 100% after administration of 
cinnamon extract. Cinnamon has shown to improve those factors which are associated 
with AD and cognitive impairment through blocking tau formation and inhibiting 
aggregation of amyloid precursor protein (Frydman-Marom et al. 2011). extract 
of C. zeylanicum inhibited human tau accumulation induced dissociation of tau
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tangles and unravelled paired helical filaments in the AD mouse brain. Aβ-type 
doubly linked procyanidin oligomers and cinnamaldehyde were responsible for such 
inhibitory activity (Peterson et al. 2009). 

7.6 APOE and ACE Polymorphism in Human Longevity 
and the Protective Effect of Black Tea on AD-Related 
Neuropathologic Changes: A Proof of Concept 

Total content of antioxidants in Ceylon green and black teas was 190.0 mg/g and 
186.6 mg/g, respectively (Yashin et al. 2010). Notably, tea catechins showed potent 
anti-plaque activity and altered potentially harmful proteins into proteins that are 
not detrimental to brain cells (Yashin et al. 2011). Interestingly, Yashin et al. (2011) 
reported that Ceylon black tea demonstrates greatest antioxidant activity compared 
with other world black tea products. As tea is main beverage in Sri Lanka, it is worthy 
investigating the association between AD-related neuropathologic changes and black 
tea consumption pattern in elderly Sri Lankan brains as a proof of concept. 

7.6.1 Sample Collection 

Consecutive human brain samples were obtained from 76 elders (age range = 50– 
89 yrs, mean age ±S.D. = 67 · 3 yrs ±0 · 0, median age = 65 · 5 yrs, male: female = 
52:24, mean post-mortem interval ±S.D. = 17 · 3 h ±14 · 2) between May 2009 and 
March 2010, in the Department of Judicial Medical Office, Colombo South Teaching 
Hospital following approval by the Institutional Scientific Ethics Committee to carry 
out the study and informed consent from the kin to utilize the material for research. An 
ante-mortem questionnaire was given to kin who were familiar with intellectual and 
motor functional status of the subjects before death. The purpose of this questionnaire 
was to obtain information on demographic data, past medical history, family history, 
health habits, and consumption pattern of the deceased. This information was held 
strictly confidential. All the recruited cases had incomplete clinical history except 
three cases which were clinically diagnosed of Parkinson’s disease. 

In addition, cadaver blood/clotted blood was collected at autopsy from all the 
recruited cases. Cadaver blood clots were then sliced into small pieces and washed 
in 1ml of saline (9g/L NaCl) and suspended. The mixture was subjected to series of 
centrifugations and digestions of nucleated leukocytes with lysis buffers. Finally, 
genomic DNA was extracted and purified using phenol/chiasm method. Genes 
encoding for APOE and ACE was genotyped using standard protocols with poly-
merase chain reaction (PCR)-based restriction fragment length polymorphisms 
(RFLP).
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7.6.2 Screening of AD-Related Neuropathologic Changes 
Using Histopathological and Immunohistochemical 
Techniques 

For this purpose, brain samples from 50 out of 76 elderly decedents (≥ 60 years; mean 
age 72 · 1 years ±7 · 8, mean ±S.D., male: female = 29:21) from both hemispheres 
including hippocampus along with parahippocampal gyrus, superior frontal gyrus, 
middle temporal gyrus, superior parietal lobule, and midbrain at superior colliculus 
level were used for paraffin embedding and sectioning. Following routine histolog-
ical evaluation [Haematoxylin and Eosin (H&E) staining], brain sections (4 μm 
thick) were immunostained blindly to the case histories by standard immunoper-
oxidase technique following antigen retrieval by heat and DAB/H2O2 as the chro-
mogen to visualize the immunolabelling (DAKO Envision Detection System). For 
this screening, the following three antibodies were used. 

(a) Beta amyloid–monoclonal antibody (1:200 dilution) from Novacastra™ 
(b) Ubiquitin–monoclonal antibody (1:150 dilution) from Novacastra™ 
(c) Phosphorylated tau–PHF−1 monoclonal antibody (1:50 dilution) (Gift) 

The diagnostic criteria for AD neuropathologic changes and Lewy body diseases 
were based on National Institute on Ageing-Alzheimer’s Association guidelines—a 
practical approach (NIA-AA) (Montine et al. 2012). Actual burden of AD related-
changes [neurofibrillary tangles (NFTs), NPs, and SPs] was counted in specific 
brain regions such as hippocampus and parahippocampus, superior frontal gyrus, 
and midbrain based on the methods described by Purohit and colleagues (2011). For 
this purpose, a medium high power (20×) objective lens producing a visual field of 
0.785 mm2 (field diameter = 2.0 mm) were used. Lesions were counted in medium 
high (200×magnification, Olympus U-CTR30-2 Trinocular objective tubes and 10× 
eye piece) power fields and then converted into average per 200× as follows: for 
superior frontal gyrus, areas with high NFTs/NPs/SPs were selected, and the visual 
counts were carried out in five non overlapping fields. For other regions, areas with 
high NFTs/ NPs/ SPs were identified in each sub fields, and then, visual counts were 
carried out in non-overlapping fields (wherever possible five non-overlapping fields 
were selected). In addition, β-amyloid positive extent of cerebral amyloid angiopathy 
(CAA) in leptomeningeal and cortical arteries of the specific neuroanatomical regions 
was also assessed based on Greenberg and Vonsattel (1997) specifications, and the 
average CAA grade was recorded for each case. 

7.6.3 Statistical Analysis 

All the analyzes were carried out using statistical software SPSS version 25.0 (IBM 
Corp. Armonk, New York). Fisher’s exact test (2 × 2 contingency table) was used 
to determine the degree of association between APOE and ACE allelic frequency
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and life expectancy. Relationship between black tea consumption pattern (≤ 2–3 
cups/day and > 2–3 cups/day) and AD-related pathologies was assessed for square 
root value of NFTs, SPs, and CAA scores using two sample independent t-test. 

7.6.4 Major Findings 

Our study consisted of 76 elderly decedents aged between 50 and 89 years (mean 
age 67 · 3 years ± 10 · 0, mean ± S.D., male: female = 52:24). Polymorphisms 
in genes encoding for APOE and ACE are summarized in Table 7.2. Frequency of 
APOE ε4 allele was high in young decedents who died between 50 and 69 years 
(57.9%) compared with old decedents who died at the age of 70 and above (42.1%), 
however, it was not statistically significant (p = 0.792). Whereas frequency of ACE 
DD genotype was high in old decedents (65.2%) compared with young decedents 
(34.8%), and it was statistically significant with Fisher’s exact test (p = 0.041). 
Notably, frequency of ACE ID genotype was significantly low (p = 0.004) in old 
decedents (24.1%) compared with young decedents (75.9%). Figure 7.3 illustrates 
the frequency of APOE ε4 allele, ACE ID, and DD genotypes amongst the elderly 
decedents representing a semi urban Sri Lanka population. In this study, gender 
differences did not show significant associations with life expectancy (p = 0.623). 

Table 7.3 summarizes the association between AD-related neuropathologic 
changes and black tea consumption pattern (≤ 2–3 cups/day referred as “light tea 
drinkers” and > 2–3 cups/day referred as “frequent tea drinkers”). Mean counts 
of both NFTs and SPs were relatively high in light tea drinkers compared with 
frequent tea drinkers. Particularly, mean SPs counts were significantly low in the 
brain regions of entorhinal cortex (p = 0.009) and superior frontal gyrus (p = 0.041)

Table 7.2 Polymorphisms of longevity associated genes APOE and ACE in an elderly Sri Lankan 
population 

Gene Genotype Number of individuals Allele frequency 

APOE ε3/ε3 47 ε3−0.799 
ε4−0.146 
ε2−0.055 

ε3/ε4 16 

ε3/ε2 05 

ε2/ε2 01 

ε2/ε4 01 

ε4/ε4 02 

ACE Insertion (II) 20 I−0.479 
D−0.521Insertion/deletion (ID) 29 

Deletion (DD) 23 

(Missing data n = 4) 
APOE apolipoprotein E; ACE angiotensin converting enzyme
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Fig. 7.3 Frequency of a APOE ε4 allele, b ACE ID, and  c DD genotypes amongst the decedents who 
died at the age ranges of 50–69 years and 70–89 years. APOE, apolipoprotein E; ACE, angiotensin 
converting enzyme; n, sample size

in frequent tea drinkers. In addition, the average CAA grade obtained for cortical 
and leptomeningeal arteries was also significantly low in frequent tea drinkers (p = 
0.037) compared with light tea drinkers. As these pathologies are age dependent, 
mean age at death between light and frequent tea drinkers was also analyzed, and it 
was statistically nonsignificant (p = 0.173) between the groups.

7.7 Future Perspectives 

Population ageing is having a profound impact on the emergence of the dementia 
epidemic. Recent reviews estimate that globally nearly 9.9 million people develop 
dementia each year; this figure translates into one new cases every three seconds. 
About 60% of people with dementia currently live in low- and middle-income coun-
tries, and most new cases (71%) are expected to occur in those countries (Prince 
et al. 2013). The estimated worldwide annual cost for the society of dementia was 
US$818 billion in 2015, an increase of 35% since 2010, and the 86% of the total cost, 
incurred in high income countries and the rest in low- and middle-income countries 
(Wimo et al. 2017). 

Frequency of APOE ε4 allele is high in Sri Lankans compared to the general 
frequency in Asians (14.6 vs. 9.0%) (Wijesinghe et al. 2016b; Singh et al. 2006). A 
recent meta-analysis study (Sebastiani et al. 2019) shows that ε4 is associated with a 
substantially decreased odds for extreme longevity and increased risk for death that 
persists even beyond ages reached by less than 1% of the population. Sebastiani et al. 
(2019) also show that carrying ε2ε2 or ε2ε3 genotype is associated with significantly 
increased odds to reach extreme longevity, with decreased risk for death compared 
with carrying the genotype ε3ε3 but with only a modest reduction in risk for death 
beyond an age reached by less than 1% of the population. Though it is statistically not 
sought, in our study, 42% of the old decedents aged 70 years and above had at least 
one APOE ε4 allele which shows the general tendency that decreased frequency
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Table 7.3 Relationship between Alzheimer’s disease-related neuropathologic changes and black 
tea consumption pattern 

Regions Lesion Light tea drinkers 
(≤ 2–3 cups/day) 
mean counts/mm2 

(S.E.) 

Frequent tea 
drinkers (> 2–3 
cups/day) mean 
counts/mm2 (S.E.) 

Two sample 
independent t-test 
(P value) 

Hippocampus NFTs 4.69 (0.85) 3.22 (0.75) 0.279 

SPs 0.44 (0.18) 0.10 (0.10) 0.119 

Entorhinal 
cortex 

NFTs 2.78 (0.45) 2.66 (0.81) 0.887 

SPs 0.64 (0.21) 0.04 (0.04) 0.009** 

Superior frontal 
gyrus 

NFTs 0.24 (0.08) 0.10 (0.07) 0.303 

SPs 0.60 (0.20) 0.11 (0.11) 0.041* 

Midbrain NFTs 1.71 (0.31) 1.30 (0.36) 0.431 

SPs 0.14 (0.12) 0.05 (0.05) 0.588 

All regions NFTs 6.27 (0.88) 5.02 (0.92) 0.383 

SPs 1.17 (0.35) 0.16 (0.16) 0.014* 

Cortical and 
leptomeningeal 
arteries 

CAA score 0.45 (0.15) 0.08 (0.08) 0.037* 

Both NFTs and SPs counts and CAA score were converted into square root values and then analyzed 
using two sample independent t-test. Significant levels were set at **P ≤ 0.01 and *P ≤ 0.05 (≤ 
2−3 cups/day referred as light tea drinkers and > 2−3 cups/day referred as frequent tea drinkers) 
SE, standard error; NFTs, neurofibrillary tangles; SPs, senile plaques; CAA, cerebral amyloid 
angiopathy

of APOE ε4 allele in long-lived elderly Sri Lankans. Whereas 58% of the young 
decedents aged below 70 years had at least one APOE ε4 allele which might confer 
their short life expectancy. On the other hand, a meta-analysis study of Garatachea 
et al. (2013) reported that the ACE D-allele and the DD genotype might confer 
a modest, albeit significant advantage to reach exceptional longevity. CVD is the 
leading cause of morbidity and mortality amongst the Asian populations. ACE has 
received much attention in the recent years as a candidate gene for hypertension, 
CVD, and type 2 diabetes. Bhatti et al. (2017) recently investigated the association 
of ACE I/D polymorphism with CVD in north Indian population, and no significant 
difference was observed in the distribution of ID genotypes between CAD patients 
and control subjects, whereas DD genotypes were significantly distributed in CAD 
patients. As of most literatures, in our study, ACE polymorphism showed a consistent 
association with longevity where 65% of ACE DD genotypes were identified in old 
decedents aged 70 years and above, and 76% of ACE ID genotypes was found in 
young decedents aged below 70 years where most of the death causes were associated 
with CVD. Thus, ACE ID polymorphism shows discrepancy between the South Asian 
study populations with respect to incidence of CAD. Therefore, we recommend 
investigating the association between ACE polymorphism and the incidence of CVD 
via a large-scale Sri Lankan population-based studies.
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Observational studies have suggested that lower risk of dementia in some devel-
oping countries can be attributed to their type of diet (Luchsinger et al. 2007). There 
have been several studies highlighted that oxidative stress via generating free radicals 
plays a pivotal role in neurodegenerative diseases and that can be reduced by diets 
that are rich in antioxidants such as fruits, vegetables, and tea (Martin et al. 2002a, 
b; Mandel and Youdim 2004; Rezai-Zadeh et al. 2008; Okello et al. 2004). Studies 
confirming the high antioxidant potential of tea beverages claim that it originates 
from the considerable content of catechins, a type of phenolic compound with bene-
ficial effects on human health (Kochman et al. 2020). Its health-promoting properties 
are attributed to the high content of antioxidant and anti-inflammatory substances. 
Although polyphenol content profiles vary between tea types due to the extent of 
oxidation, similar potential antioxidant activity is observed. For example, green tea 
is minimally oxidized and contains high levels of catechins (flavanols and flavanol 
gallates). In comparison, black tea is fully oxidized, and through enzymatic processes, 
catechin content declines and complex flavanols such as theaflavins and thearubgins 
are formed. Catechins and theaflavins have been shown to have similar antioxidant 
potential (Łuczaj and Skrzydlewska 2005; Cleverdon et al. 2018). Moreover, India 
and Sri Lanka are the two largest black tea exporters in the world, and their annual 
per capita tea consumption, respectively, is 0.64–0.66 kg and 0.9–1.29 kg (Pandy and 
Chadha 1993), respectively. In this proof of concept, a significant reduction in Aβ 
accumulations in the regions of entorhinal cortex, frontal gyrus, and in the cortical 
and leptomeningeal arteries was noted in decedents who had consumed black tea 
frequently (> 2–3 cups/day) compared to the decedents who had consumed lightly 
(≤ 2−3 cups/day). This observation supports our concept that protective effect of 
black tea consumption against neuropathologic change associated with AD. In sum, 
our findings open a new biologic mean to investigate in-depth scientific and large-
scale observational studies in relation to neuroprotective role of Ceylon black tea in 
the future. 
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Chapter 8 
Role of Sleep in Imprinting Healthy 
Aging 

Kamalesh K. Gulia and Velayudhan Mohan Kumar 

8.1 Introduction 

In this article, the role of sleep in imprinting the healthy aging is discussed, based on 
the recent evidences both from the pre-clinical studies and well as the epidemiological 
data. The literal dictionary meaning of imprinting is a rapid learning that occurs 
during a brief receptive period, typically soon after birth, and establishes a long-
lasting behavioral response. But in the animal kingdom where gestation window is 
fairly long like in humans, the prenatal imprinting is important. Recent studies have 
shown that in the current lifestyle of 24 × 7, sleep during conception is emerging 
as a robust prenatal factor affecting the pregnancy outcomes (Okun et al. 2009; 
Chang et al. 2010; Palagini et al. 2014; Gulia et al. 2014, 2015; Zhao et al. 2014; 
Radhakrishnan et al. 2015; Peng et al. 2016; Gulia and Kumar 2018a, b; Aswathy  
et al. 2018a, b; Gulia et al. 2021; Pires et al. 2021). Prenatal stress was documented 
as one of the reasons for altered sexual orientation, based on the studies of births that 
occurred during World War II (Ellis et al. 1988; Ellis and Cole-Harding 2001; Gulia 
and Mallick 2010). Extreme stresses during the war would have also contributed 
to sleep loss during pregnancy, but this aspect was not studied in these reports. 
Recent reports that LGBT community experience longer sleep latency and shorter 
sleep (Galinsky et al. 2018; Caceres et al. 2019; Butler et al. 2020) also need further 
investigation. It is essential to understand the process of sleep, in order to focus the 
studies on healthy aging (Gulia 2012; Gulia and Kumar 2018c). 

The altered physiology of the cardiovascular, respiratory, and gastrointestinal 
systems during the various components of sleep–wake cycle forms the basis of good
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health (Douglas et al. 1982; Nagai et al. 2010; Xie  2012; Buchanan 2013; Khanijow 
et al. 2015; Grandner et al. 2016; Makarem et al. 2019; Taillard et al. 2021; Singh et al. 
2022). Several functions are performed during sleep like adaptive immobilization, 
brain maturation (early development), synaptic plasticity, memory consolidation, 
discharge of emotions, cognition, learning, restoration of glymphatic system, energy 
balance, etc., (Stickgold 2005; Tononi and Cirelli 2006; Alhola and Polo-Kantola 
2007; Rasch and Born 2013; St-Onge 2013; Hauglund et al. 2020; Gulia et al. 2021; 
Vanek et al. 2020). Chronic sleep disturbances impair brain-body functioning and 
overall health due to failure in the above-mentioned functions (Lack et al. 2008; 
Leproult and Van Cauter 2009; Besedovsky et al. 2012, 2019; Kim et al. 2015). 
Moreover, sleep is disturbed in almost every neurological disorder including Autism 
spectral disorder, Parkinson disease, Alzheimer disease, ADHD, headache, anxiety, 
depression, and infection (Blau 1990; Tsuno et al. 2005; Nutt et al.  2008; Menza 
et al. 2010; Konofal et al. 2010; Devnani and Hegde 2015; Bubu et al.  2017; Gulia 
and Kumar 2020). This article highlights the effects of prenatal sleep loss on the 
health outcomes in the offspring. 

8.2 Maternal Sleep Loss During Pregnancy and Poor 
Health Consequences in F1 Generation 

In the twenty-first century, there are growing concerns on poor sleep quality 
during pregnancy and adverse pregnancy outcomes. Even though several factors 
including malnutrition, substance abuse (cocaine, marijuana, etc.), alcohol consump-
tion, HIV/AIDS, infection, stress, and smoking during pregnancy were identified as 
risks for the development of the fetus (Garcia-Rill et al. 2007; Richardson et al. 2009; 
Hunt et al. 2008; Schetter and Tanner 2012; Hambleton et al. 2013; Zeskind et al. 
2014; Forray 2016; Stephan-Blanchard et al. 2016; O’Donnell and Meaney 2017; 
Stringer et al. 2018; Haugland et al. 2020), sleep loss during pregnancy still remains as 
an under-investigated factor. World Health Organization had reported that about 10% 
of women during pregnancy, and 13% of women who have just given birth to babies 
have experienced mental disorders including anxiety and depression (WHO, mental 
health action plan 2013–2020). In developing nations, this percentage escalates by 
another 5–6%. This has to be viewed with the fact that globally 10–20% of chil-
dren and adolescents also had experienced mental disorders. These neuropsychiatric 
conditions were the leading causes of disabilities in youngsters, and they severely 
influenced their development, educational attainments, and abilities to live fulfilling 
and productive lives. It is always a difficult task to conduct controlled sleep depri-
vation experimental studies during pregnancy in human subjects due to ethical and 
practical reasons. However, controlled studies in the rodent model provided evidences 
of the effects of sleep deprivation during pregnancy on the cognitive development of 
the offspring (Fig. 8.1).
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Fig. 8.1 Effects of sleep disorders during pregnancy on adverse outcomes in offspring 

Rodents are also altricial in nature similar to humans. So, it is easy to simulate 
human pregnancy states with three trimesters of 3 weeks of the total gestation period 
in this species. The developmental profile of sleep-wakefulness in normal rat dams 
was assessed by recording EEG and EMG for 24 h, starting from pre-pregnancy days, 
during pregnancy, post-partum (lactation), and post-weaning days, along with the 
monitoring of their anxiety (Sivadas et al. 2017). Sleep fragmentation was observed 
during the third trimester of pregnancy and post-partum days with a concomitant 
rise in the NREM sleep delta power (Fig. 8.2). Delta power in the NREM sleep, a 
measure of the homeostatic drive for sleep, was calculated from EEG traces, using fast 
Fourier transformation. Increased NREM sleep delta power during late pregnancy— 
lactation continuum was evident as shown in Fig. 8.2. During normal pregnancy, the 
post-partum sleep and anxiety decreased compared to the ante-partum levels (Sivadas 
et al. 2017).

Poor sleep quality in dams due to reduced REM sleep and sleep fragmentation is 
common observations during the last trimester even in a normal pregnancy (Hertz 
et al. 1992; Bourjeily 2009; Wilson et al. 2013; Mindell et al. 2015). However, 
further sleep loss during late pregnancy is a growing concern. The effects of REM 
sleep restriction (REMSR) and total sleep restriction (TSR) during last trimester 
(gestational days 15 to 20), on the pregnancy outcomes, were studied in separate 
groups of rats. REMSR involved restriction of REM sleep of 22 h per day during 
9 am to 11 am (next day) using classical platform method, whereas in TSR, restriction 
of total sleep of 5 h per day during 9 am to 2 pm was carried out by gentle handling 
procedure. 

Pups born to the TSR dams showed low birth weight in spite of having a longer 
gestational period (one day longer) than the control dams (Aswathy et al. 2018b; 
Gulia et al. 2021). Similarly, pups born to the REMSR dams during the last trimester 
showed lower birth weight compared to the control dams, but no change in the 
gestational period was observed (Aswathy et al. 2018a; Gulia et al. 2021). There 
were no cases of preterm births. The pups in TSR group gained their body weights



168 K. K. Gulia and V. M. Kumar

Fig. 8.2 Changes in delta power during NREM sleep during pregnancy, post-partum and post-
weaning during normal rats. a NREM sleep (%) in 3 hourly bins across day and night for control 
(C), gestational day 8 (P8), 19 (P19), post-delivery days 2 (L2), 6 (L6), 18 (L18), and post-weaning 
day 7 (W7). In horizontal axis, the dark bar denotes dark period beginning at 6 pm, and light 
bar shows light period beginning at 6 am. b Normalized delta power is shown for respective bins 
(n = 4)

within 2–3 days of birth, compared to the growth of the control group; however, the 
pups in the REMSR group had lower weights throughout the study period compared 
to the control group. This probably indicated fetal growth restriction that continued 
post birth also in this condition of sleep restriction. 

Sleep loss during pregnancy is reflected in a complex way in sleep-wakefulness 
and the cognitive development of the offspring (Aswathy et al. 2018a, b; Gulia et al.
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2021). Distinct differences were observed between TSR and REMSR group pups 
in the neonatal calls, i.e., ultrasonic vocalizations (USVs), recorded using isolation 
paradigm to measure their affective state. The pups in the TSR group displayed 
higher rate of USVs after birth until peak calling range, i.e., postnatal day 9, while 
the REMSR group pups made fewer calls on postnatal days 1–9 and also showed 
delay in calling pattern (Gulia et al. 2014, 2015; Gulia and Kumar 2018a, b, c). Recent 
studies in human have also shown that the maternal sleep quality influences neonatal 
auditory event-related potentials (ERP) as happy and angry stimuli induced different 
ERPs (Lavonius et al. 2020). Observation of altered sleep-wakefulness patterns with 
higher percentage of active sleep (AS) is the precursor of adult REM sleep, post birth 
in pups from both the groups of maternal sleep restriction during pregnancy (TSR 
and REMSR). These indicated that they had immature brain in spite of having born 
at term or a day later than the control pups (Aswathy et al. 2018a, b; Gulia et al. 
2021). Furthermore, sleep restriction produced distinctly different phenotypes in the 
two groups, as TSR group pups showed symptoms of hyperactivity, and increased 
risk-taking behavior during peri-adolescence, while the pups in the REMSR group 
showed signs of depression-like traits in neonates, which persisted until middle age 
(Radhakrishnan et al. 2015; Gulia et al. 2021). These outcomes indicated the risk 
in the emotional development, in the offspring, if the mothers had chronic sleep 
restriction during late pregnancy. These are also evidences to support the relationship 
between early development of sleep and brain functional connectivity in the preterm 
and term born babies (Uchitel et al. 2022). Moreover, children born to mothers having 
anxiety disorders during pregnancy and had more sleep problems (Harskamp-van 
Ginkel et al. 2020). A thorough understanding of sleep in relation to age and state 
(pregnancy) is essential for preventing the above-mentioned conditions of prenatal 
origin. Though sleep is essential for all the wake time behaviors, it still remains as a 
poorly recognized health concern. 

8.3 Dynamic Role of Sleep and Healthy Aging 

There are escalating evidences of prenatal origin of many heart and brain malfunc-
tions (Barker et al. 2002; O’Donnell et al. 2009; Calkins and Devaskar 2011; Radhakr-
ishnan et al. 2015; Haugland et al. 2020; Porges and Furman 2011; Fyfe et al. 2015; 
Faa et al. 2016; Nijland et al. 2008; O’Donnell and Meaney 2017; Aris et al.  2018; 
Aswathy et al. 2018a; Monk et al. 2019; Amgalan et al. 2021; Jia et al. 2021; Su  
et al. 2021). A few systematic reviews and meta-analysis in human cohorts identi-
fied sleep during pregnancy as a significant risk factor for gestational diabetes and 
insulin resistance. Though the trends are evident, it cannot be confirmed due to the 
subjective nature of sleep and outcomes of several other parameters that cannot be 
normalized (Du et al. 2021; Wang et al. 2022). In humans, factors like maternal 
malnutrition, alcohol or substance abuse, smoking during pregnancy are compar-
atively well worked out for their outcomes. But the chronic sleep loss, hypoxia,
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restless leg syndrome, sleep disordered breathing, preterm birth, etc., during the crit-
ical period of both pre and postnatal window, are emerging as novel factors that are 
detrimental for the overall growth and neurocognitive development of the offspring 
(Badran et al. 2019; Morrakotkhiew et al. 2021; Visser et al. 2021). The role of sleep 
in developmental programming requires attention to understand the mechanism of 
neurocognitive disorders. It will help to reduce the disease burden and in meeting 
the healthy longevity challenge. 

8.4 Conclusion 

As sleep is the foundation of health even during the fetal life, if given due care, one can 
achieve healthy aging and prevent disease burden. It is emphasized that the UN decade 
of Healthy Aging 2021–2030 is a timely global collaborative goal amidst the fast-
changing proportion of world’s population over 60 years, which will rise up from 12 to 
22% within 35 years, counting from 2015 to 2050 (WHO estimation). Sleep is for the 
whole body including brain. If due importance is given to sleep during the fetal life, 
it can help in optimizing the functional abilities during later life. If one can achieve 
healthy aging, he/she can continue to learn and make decisions, to be mobile, to build 
and maintain relationships, and to contribute to society. Moreover, considering that 
high percentage of older people (80%) will belong to the low- and middle-income 
countries in 2050, it is time to seriously look for simple viable strategies for sleep 
management, which is one of the pillars of health (Gulia et al. 2017). This will also 
help in achieving the good health and well-being, the Sustainable Developmental 
Goal 3 (SDG3). To prevent early aging and disease burden, awareness of sleep is 
required in the general population, along with nutrition and exercise regimen. 
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Chapter 9 
Sleep, Ageing, and Cognitive Decline 

Krishna Melnattur 

9.1 Introduction 

This chapter focuses on changes in sleep architecture, physiology, and function in 
healthy ageing. We begin with a description of the phenomenology of age-dependent 
changes in sleep distribution and oscillations and discussion of potential under-
lying neurobiological mechanisms. We next consider two candidate consequences of 
sleep—glymphatic brain clearance and learning and memory. This chapter focuses 
largely on work on humans and rodents. However, in each section, we will also briefly 
consider parallels with invertebrate models. Specifically, we will draw comparisons 
with sleep in the fly Drosophila as a canonical example of an invertebrate. In the last 
20 years, Drosophila has emerged as powerful model to study sleep regulation and 
function and is certainly the best studied invertebrate sleep model. 

9.2 Age-Dependent Changes in Sleep Distribution 
and Oscillations 

Sleep in humans undergoes characteristic ontogenic changes, with the prototypical 
young adult pattern of sleep distribution and oscillatory activity only emerging by 
late adolescence. 

Newborn infants spend a large proportion of their day asleep (16–18 h). Infant 
sleep is, however, not consolidated into a single sleep bout. Instead, bouts of sleep 
alternate with bouts of feeding. Further, each sleep cycle lasts ~ 50 min and consists 
of equal amounts of rapid eye movement (REM) sleep and non-rapid eye movement
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(NREM) sleep. Sleep onset is also frequently into REM sleep (Daftary et al. 2019; 
Grigg-Damberger et al. 2007; Grigg-Damberger 2016; Ohayon et al. 2004). Sleep 
stages in newborns and infants do not exhibit all of the characteristics seen in young 
adults. Muscle atonia is thus incomplete in infant REM sleep, and the slow waves 
that are an important characteristic of NREM sleep in adults (see below) are not 
present in every cycle (Grigg-Damberger 2016; Bes et al. 1991). REM and NREM 
sleep in infants are classified as active sleep and quiet sleep to reflect this fact (Grigg-
Damberger 2016). 

By one to four years of age, total sleep time decreases to about 11–12 h a day. 
Sleep is also more consolidated, consisting of one primary sleep bout at night, and 
one to two naps during the day (Ohayon et al. 2004). Important differences remain 
in characteristics of different sleep stages in young children versus young adults. 
NREM is typically much deeper in young children versus young adults (Busby and 
Pivik 1983). 

As children get older sleep duration further decreases. Teenage sleep shares many 
traits with sleep in young adults discussed below, with the important exception that 
the timing of sleep is delayed. 

In young adults, sleep is characterised by a single consolidated bout at night and 
a regular cyclical pattern of alternation between sleep stages. Each sleep cycle lasts 
~ 90 min, with a regular alternation between NREM and REM sleep (Fig. 9.1a). The 
sleep stages are defined by characteristic signatures in the electro encephalogram 
(Carskadon and Dement 2016).

9.2.1 Age-Dependent Changes in Sleep 

Healthy normal ageing is associated with characteristic changes in sleep duration, 
quality, and timing. Overall sleep duration decreases in older adults. Sleep is more 
fragmented and associated with more awakenings and arousals. Further, the timing 
of sleep onset and offset is advanced, and sleep latency is increased. In addition, 
ageing is also associated with changes in sleep stage architecture. Thus, ageing is 
associated with lower amounts of deep slow wave sleep, more time in lighter NREM 
stages 1 and 2, and fewer NREM-REM cycles (Fig. 9.1) (Landolt et al. 1996; Zepelin 
et al. 1984; Feinberg and Carlson 1968; Kales et al. 1967; Klerman and Dijk 2008; 
Van Cauter et al. 2000). 

Further, it is not just sleep at night that is altered with age. Daytime sleep is 
also altered with age. Older adults report increased frequency of daytime naps, and 
daytime sleepiness severe enough to impair normal functioning (Foley et al. 2007). 

9.2.1.1 Anatomical Basis of Age-Dependent Sleep Changes 

What might be the neurobiological basis for these phenomena? We begin our 
discussion of this question, with a little historical background.
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Fig. 9.1 a Sleep hypnogram of a young adult. Sleep consists of a single consolidated bout at night 
and is characterised by a ~ 90 min cycle of NREM and REM sleep (orange). The relative time spent 
in REM sleep increases through the night, concomitant with a decrease in time spent in deeper 
NREM stages. b Sleep hypnogram of an older adult. Sleep of older adults is characterised by longer 
sleep latency, more fragmented sleep with greater awakenings from sleep, and less time in deeper 
slow wave sleep stages. Figure adapted from Mander et al. (2017)

The study of the anatomical basis of sleep and wakefulness in mammals owes 
a lot to an unfortunate epidemic of encephalitis lethargica almost a 100 years ago. 
Upon examining encephalitis patients who presented with insomnia, von Economo 
observed inflammatory lesions in the preoptic area (POA). Patients with hypersomnia 
presented with lesions in the posterior hypothalamus (PH) (von Economo 1930). 
Based on these results, von Economo postulated a sleep-promoting area in the POA 
and a wake promoting region in the PH. Subsequent lesion studies in animal models 
supported this idea and suggested a model, whereby sleep-promoting POA neurons 
inhibit arousal promoting PH neurons (Nauta 1946). Around the same time, electrical 
stimulation of the reticular formation was shown to induce a wake like state in 
anaesthetised cats (Moruzzi and Magoun 1949). 

Since these classic studies, application of more modern circuit dissection tech-
niques has led to a more nuanced understanding of the circuitry for sleep and 
wakefulness (Scammell et al. 2017; Szymusiak and McGinty 2016) (Fig. 9.2). The 
sleep-promoting area in the POA was shown to comprise of GABA and galanin-
ergic neurons in the ventrolateral preoptic area (VLPO) (Kroeger et al. 2018; Sherin 
et al. 1996). The idea of an undifferentiated reticular formation has been replaced 
by the identification of multiple arousal promoting systems distributed along the 
neuraxis. These include serotonergic neurons from the Dorsal Raphae, noradrenergic 
neurons in the Locus Coeruleus, dopaminergic neurons from Ventro Tegmental Area,
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histaminergic neurons from the Tubero Mammillary Nucleus, orexinergic neurons 
in the hypothalamus, and cholinergic neurons in the basal forebrain. These arousal 
promoting systems innervate broadly in the cortex enabling the brain to transition 
to a wake state. Interestingly, wake and sleep-promoting systems inhibit each other, 
resulting in what has been termed a flip-flop switch, that enables rapid transitions 
between sleep and wake with little time spent in an in-between state (Saper et al. 
2010). 

Perhaps unsurprisingly, ageing affects both sleep and arousal promoting centres. 
The number of galanin expressing neurons in the POA was shown to decline with 
age in humans, with the severity of loss correlating with extent of sleep fragmen-
tation (Lim et al. 2014). Further, the number of orexinergic neurons in the lateral 
hypothalamus was also reduced in both aged rodents and older humans (Kessler et al. 
2011; Hunt et al. 2015). A recent study in rodents found that neuronal excitability 
of orexinergic neurons was causally linked to age-dependent sleep disruptions (Li 
et al. 2022). Oxerinergic neurons in aged mice were found to have a lower resting 
membrane potential. They were also found to express lower levels of the voltage 
gated potassium channel subfamily Q member 2 subunit (KCNQ2) and a lower basal 
M current (Im). Disrupting KCNQ2 in young mice fragmented sleep, conversely 
increasing KCNQ2 activity increased sleep stability in aged mice (Li et al. 2022). 
These results provide an interesting and detailed mechanistic explanation for sleep

Fig. 9.2 Schematic highlighting select sleep and arousal promoting nuclei in the mouse brain. 
Green is arousal promoting monoaminergic nuclei, including norepinephrine secreting nuclei in the 
Locus Coeruleus, serotonergic neurons in the Dorsal Raphae, dopaminergic neurons in the Ventro 
Tegmental Area, and histaminergic neurons in the TuberoMammalary Nucleus. Pink is arousal 
promoting orexinergic neurons of the Lateral Hypothalamus. Blue is the sleep-promoting GABA 
and galanin positive neurons of the ventrolateral preoptic area. Sleep and arousal promoting neurons 
have mutually inhibitory connections that result in a sleep–wake ‘flip-flop’ switch that enables rapid 
transitions between sleep and wake. Figure adapted from Scammell et al. (2017) 
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deficits in ageing and suggest potential therapeutic avenues for improving sleep in 
older human subjects. 

Another, non-exclusive possibility to explain some of the age related sleep deficits 
is changes in neurogenesis. Neurogenesis has been reported in the hypothalamus of 
rodents (Lee and Blackshaw 2012; Haan et al. 2013; Robins et al. 2013). Ageing 
affects hypothalamic neurogenesis (Zhang et al. 2017; Matsuzaki et al. 2015). 
Chronic suppression of neurogenesis and gliogenesis by administration of an antim-
itotic agent disrupted sleep in young animals (Kostin et al. 2019). These animals 
exhibited reduced NREM and REM sleep amount, sleep fragmentation, and altered 
sleep homeostasis—all sleep deficits also associated with ageing (Kostin et al. 2019). 
The molecular processes that underlie the effects of ageing on neurogenesis are not 
very well understood. However, there are some hints that changes in neuroinflamma-
tory products might explain some of these effects (Rosano et al. 2012; Ekdahl et al. 
2003, 2009; Vallières et al. 2002). Further, systemic changes, such as in exercise and 
calorie restriction, that reduce inflammation, can improve neurogenesis and mitigate 
sleep deficits (Varrasse et al. 2015; Stangl and Thuret 2009; Blanco-Centurion and 
Shiromani 2006; Salin-Pascual et al. 2002). These manipulations, however, can affect 
multiple systems. The field will likely thus benefit from a more targeted means of 
enhancing neurogenesis, which would be expected to help better establish a causal 
link between neurogenesis and ageing-related deficits. 

9.2.2 Age-Dependent Changes in Sleep Oscillations 

In addition to changes in overall sleep amounts, substantial changes are observed in 
the electrical oscillations of sleep–slow wave activity and sleep spindles. 

9.2.2.1 Changes in Slow Waves with Age 

One important measure of slow waves is the spectral power in the slow and delta 
frequency range (0.5–4 Hz) that has been termed slow wave activity (SWA). SWA 
is most associated with drive to sleep and the phenomenon of homeostatic rebound 
sleep. Sleep pressure or the drive to sleep is classically modelled as increasing in 
proportion to time spent awake and dissipating during subsequent sleep (Borbély 
1982; Borbely and Tobler 2011). SWA is highest in the early part of the sleep period 
and reduces over the length of the sleep period as sleep pressure dissipates. 

Substantial SWA reductions are seen in baseline sleep of older adults. Further, 
the process of homeostatic SWA increase and decrease is also altered in older adults. 
Specifically, homeostatic increases in SWA in response to time awake are blunted 
(Landolt and Borbély 2001; Münch et al. 2004), and the slope of SWA dissipation 
across the night is also shallower (Landolt and Borbély 2001; Landolt et al. 1996). 

SWA changes are accompanied by changes in slow wave amplitude and density. 
Both amplitude and density of slow waves are reduced in older adults (Carrier et al.
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2011; Dubé et al. 2015). These changes suggest that ageing might diminish synchro-
nised firing—the switching between a depolarised up state and a hyperpolarised 
down state that might underlie slow wave changes. 

9.2.2.2 Neurobiological Basis of Slow Wave Impairments 

In mammals, adenosine in the basal forebrain plays an important role in sleep home-
ostasis (Porkka-Heiskanen et al. 1997). Prolonged wakefulness increases adeno-
sine levels in the basal forebrain. Adenosine levels in the basal forebrain, however, 
appeared higher in older rodents versus younger siblings (Mackiewicz et al. 2006; 
Murillo-Rodriguez et al. 2004). This finding is surprising given the age-dependent 
impairments in homeostasis discussed above. However, there is also age-dependent 
loss of adenosine A1 receptors and A1 receptor gene expression (Ekonomou et al. 
2000; Pagonopoulou and Angelatou 1992; Cheng et al. 2000). This receptor loss may 
decrease sensitivity to adenosine and thus may form the basis for the observed age-
dependent defects in homeostasis. Interestingly, age-dependent impairments in slow 
wave features correlated with structural atrophy in prefrontal cortex (PFC) areas in 
older adult humans (Mander et al. 2013; Varga et al. 2016). These structural changes 
thus might also at least partially explain the observed defects in slow wave features 
discussed above. 

9.2.2.3 Changes in Sleep Spindles with Age 

Sleep spindles are oscillatory activity in the 12–15 Hz range, thought to be gener-
ated by thalamocortical activity (Huguenard and McCormick 2007; De Gennaro and 
Ferrara 2003). Power in this 12–15 Hz range is decreased in older versus younger 
adults (Dijk et al. 1989; Landolt et al. 1996). This power reduction could be explained 
in part by a reduction in the number of generated spindles (Mander et al. 2014; Martin 
et al. 2013). Other features of the spindle waveform, e.g. duration and peak amplitude 
are also decreased in older versus younger adults (Mander et al. 2014; Martin et al. 
2013). 

9.2.2.4 Neurobiological Basis of Spindle Impairments 

What might be the neurobiological basis for age-dependent spindle defects? This is 
less clear. Reductions in hippocampal grey matter predict spindle defects in older 
adult humans (Fogel et al. 2017). Although spindles are classically thought to result 
from thalamocortical activity, they are also linked to burst firing of sharp wave 
ripples in hippocampus so these structural defects in the hippocampus could plausibly 
underlie the observed defects in spindles (Fell et al. 2001).
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9.2.3 Connection to Invertebrates 

Drosophila was also shown to exhibit age-dependent changes in sleep amount, 
quality, and homeostasis (Shaw et al. 2000; Vienne et al. 2016; Melnattur et al. 
2021). The anatomical basis of these age-dependent sleep changes in the fly has not 
been systematically investigated. The extrinsic fan-shaped lateral (ExFl2) neurons 
of the dorsal fan shaped body are a particularly interesting candidate in this regard 
(Donlea et al. 2011). These sleep-promoting neurons secrete GABA and allatostatin 
(Ni et al.  2019; Donlea et al. 2018). Allatostatin is the invertebrate analogue of 
mammalian galanin. Further, they have been proposed to form the output arm of the 
fly homeostat and are thought to be analogous to mammalian VLPO neurons (Liu 
et al. 2012, 2016; Donlea et al. 2011, 2014, 2018; Pimentel et al. 2016). It would 
thus be interesting to investigate whether there is age-dependent loss of these ExFl2 
neurons in flies as has been reported for VLPO neurons in mammals. 

9.3 Consequences of Age-Dependent Sleep Loss 

The previous sections clearly demonstrate that ageing leads to sleep deficits. But are 
these defects of any consequence? To get at this question, we need to examine some 
functional outcome of sleep (Dissel et al. 2015). 

9.3.1 Glymphatic Clearance 

One interesting idea about the function of sleep comes from a flurry of papers over the 
last 10 years that describe a system for fluid flow in the brain that has been termed the 
glymphatic system (Nedergaard and Goldman 2020). To appreciate the significance 
of these discoveries, we first have to take a brief detour into anatomy. Brain neuropil 
lacks lymphatic capillaries that enable fluid flow as is common in other organ systems. 
Directional flow is instead achieved by means of astrocytic processes that constitute 
a glia—lymphatic or ‘glymphatic’ conduit for cerebrospinal fluid (CSF) flow (Iliff 
et al. 2012; Xie et al. 2013). CSF flows into periarterial spaces in the brain driven by 
arterial pulsations that result from pulse waves along arteries driven by heart beats 
(Mestre et al. 2018; Iliff et al. 2013). Perivascular spaces are channels that run along 
the vasculature enclosed by endfeet of astrocytes (Wardlaw et al. 2020). Astrocytic 
endfeet expresses the water channel Aquaporin 4 (AQP4) (Hasegawa et al. 1994; 
Jung et al. 1994; Nielsen et al. 1997; Rash et al.  1998). Glymphatic flow consists of 
CSF entering periarterial space, mixing with interstitial fluid (ISF), carrying solutes 
and exiting the brain via perivenous spaces, cranial nerves, etc. Importantly, for 
the purposes of this review, glymphatic flow was dramatically higher (up to a fold 
higher) in sleep versus wake (Xie et al. 2013). This increase in flow also correlated
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with increased AQP4 at astrocytic endfeet. Further, the flow was AQP4 dependent 
as deletion of AQP4 dramatically reduced flow (Iliff et al. 2012). 

In parallel, recent studies reported the discovery of lymphatic vessels in the 
meningeal dura and clearance of injected tracers via lymphatic vessels (Aspelund 
et al. 2015; Louveau et al. 2015). Glymphatic clearance along perivenous spaces 
could drain into sinus lymphatics as veins merge (Fig. 9.3a) (Wardlaw et al. 2020;Ma  
et al. 2017), suggesting an anatomical connection between glymphatic and lymphatic 
systems.

9.3.1.1 Impairment of Glymphatic Flow with Age 

Glymphatic flow is reduced with sleep deprivation (Plog et al. 2015; Eide et al. 2021) 
and with ageing (Da Mesquita et al. 2018; Kress et al. 2014; Zhou et al. 2020). Ageing 
was also associated with mislocalisation of AQP4 away from endfeet towards soma 
and perisynaptic processes (Kress et al. 2014). Tortuosity of the vasculature was 
also increased in aged animals, providing another mechanism by which CSF flow 
could be reduced with age (Fig. 9.3e). Further, brain lymphatic vessels also degen-
erate with age (Ma et al. 2017; Ahn et al. 2019), thereby possibly providing another 
mechanism for reduction of flow. These age-dependent reductions in flow could 
have important consequences as glymphatic clearance has been implicated in clear-
ance of toxic metabolites such Amyloidβ (Aβ)—the toxic fragment associated with 
Alzheimer’s disease (Iliff et al. 2012; Xie et al. 2013). Decreased glymphatic flow 
increased Aβ (Iliff et al. 2012; Xie et al. 2013), conversely increased Aβ decreased 
flow (Da Mesquita et al. 2018; Peng et al. 2016), suggesting a vicious cycle. Indeed, 
polymorphisms in AQP4 are also linked to Alzheimer’s disease (Zeppenfeld et al. 
2017; Burfeind et al. 2017). 

9.3.1.2 Connection to Invertebrates 

A sleep stage associated with brain clearance was recently reported in Drosophila 
(van Alphen et al. 2021). This sleep stage was defined by characteristic proboscis 
extension and retraction movements and elevated arousal thresholds. The proboscis 
extensions appear to causally drive haemolymph flow facilitating clearance and 
supported recovery from brain injury, suggesting parallels with mammalian glym-
phatic clearance (van Alphen et al. 2021). 

9.3.2 Learning and Memory 

Brain clearance is clearly one important function of sleep. Another very influential 
theory of sleep function is that sleep is critical for learning and memory (Diekelmann 
and Born 2010; Walker and Stickgold 2004).
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Fig. 9.3 a Anatomy of glymphatic and meningeal lymphatic systems. Arrows depict direction of 
CSF flow. Arteries are in red, veins in dark blue, and lymph vessels in light blue. Figure adapted 
from (Iliff et al. 2015). b–e Insets highlighting the glymphatic system that facilitates fluid flow in 
the neuropil. Astrocytic endfeet tile the vasculature, astrocytic processes create a conduit for CSF 
+ ISF flow across the neuropil. Increased AQP4 at astrocytic endfeet during sleep (b) versus wake 
(c) facilitates increased fluid flow. AQP4 is mislocalised away from endfeet towards the soma in old 
(e) versus young (d) animals. AQP4 mislocalisation combined with arterial tortuosity decreases fluid 
flow in old versus young animals. b–e Artery—red, Veins—Blue, astrocytes—green, AQP4—gold. 
Figure adapted from Nedergaard and Goldman (2020)
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9.3.2.1 Learning 

In humans, although sleep supports many kinds of memories, hippocampus-
dependent declarative memories appear to particularly benefit from sleep (Diekel-
mann and Born 2010). Thus, sleep loss in young adults was shown to impair learning 
of new episodic memories and verbal memories (Yoo et al. 2007; Drummond et al. 
2000). Ageing also similarly disrupted encoding of hippocampus-dependent declar-
ative memories and spatial memories (Jennings and Jacoby 1997; Toth and Parks 
2006; Newman and Kaszniak 2000). 

9.3.2.2 Age-Dependent Learning Defects 

In older adults, the extent of overnight sleep impairments correlated with the extent of 
next day encoding impairments (Lo et al. 2016; Cavuoto et al. 2016). Consistent with 
these findings, in rodents, ageing disrupted hippocampus-dependent spatial learning 
but not hippocampus independent non-spatial learning (Rapp et al. 1987; Barnes 
1979; Bach et al. 1999). 

9.3.2.3 Memory Consolidation 

Sleep is clearly important for learning new information, but the idea that sleep is 
critical for memory and plasticity perhaps only really took flight after the discovery 
of hippocampal place cell replay in rodents by Wilson, McNaughton, and colleagues 
(Wilson and McNaughton 1993, 1994). In these classic experiments, rats were trained 
to run along a linear track. The trajectory of the rat along the track was shown to 
be represented as a sequence of activation of place cells in the rat’s hippocampus 
(Wilson and McNaughton 1993). This sequence was shown to be replayed during 
subsequent sleep in a kind of ‘fast-forward’ replay (Wilson and McNaughton 1994; 
Lee and Wilson 2002; Nadasdy et al. 1999). Hippocampal replay was accompanied 
by sequence reactivations in the cortex, and this dialogue between hippocampus and 
cortex consolidated the experience into a memory (Siapas and Wilson 1998; Sirota  
et al. 2003; Ji and Wilson 2007; Rothschild et al. 2017). Further, disrupting sleep-
dependent replay impaired memory, thus establishing causality (Girardeau et al. 
2009; Ego-Stengel and Wilson 2010). 

9.3.2.4 Age-Dependent Memory Consolidation Defects 

Ageing impaired sleep-dependent sequence reactivation in rodents and resulted in 
lower memory scores (Gerrard et al. 2008). Ageing was also shown to impair long-
term potentiation and Ca2+ signalling in hippocampal neurons (Barnes 1988; de  
Souza et al. 2012). Further, in older adult humans, impairment in SWA was associated
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with a continued reliance on hippocampal storage rather than cortical representations 
(Mander et al. 2013) indicating that ageing might disrupt replay in humans as well. 

9.3.2.5 Age-Dependent Declines in Hippocampal Neurogenesis 

In small mammal systems, adult neurogenesis has been reported in the dentate gyrus 
(DG) of the hippocampus (Altman and Das 1965, 1967; Caviness 1973, Guéneau 
et al. 1982). Neurogenesis in the DG has been associated with context encoding 
and memory, including REM sleep-dependent memory consolidation (Shors et al. 
2001; Danielson et al. 2016; Kumar et al. 2020). Neurogenesis in rodents is impaired 
with sleep deprivation and fragmentation (Guzman-Marin et al. 2007; 2003). Ageing 
also impairs rate of neurogenesis in the DG at least in rodents (Seki and Arai 1995; 
Kuhn et al. 1996). Impairments in neurogenesis might thus explain some of the age-
related cognitive deficits. That said, clearly not all hippocampal-dependent memories 
require neurogenesis (Shors et al. 2002). Further, the extent of neurogenesis in the 
adult human hippocampus remains somewhat unclear (Sorrells et al. 2018; Boldrini 
et al. 2018). Additional experiments might help clarify the roles of neurogenesis in 
age-related impairments in cognition and sleep-dependent processes. 

9.3.2.6 Enhancing Sleep to Restore Learning 

Ageing clearly impairs sleep, learning, and sleep-dependent memories. This suggests 
that enhancing sleep could potentially be a viable strategy to restore functioning to 
aged brains. Indeed enhancing sleep of older adults was shown to improve memory 
(Papalambros et al. 2017; Westerberg et al. 2015). 

9.3.2.7 Connection to Invertebrates 

Sleep is critical for learning and memory in Drosophila as well (Dissel et al. 2015). 
Flies also exhibit age-dependent declines in learning, including spatial learning 
(Tamura et al. 2003; Rieche et al. 2018; Melnattur et al. 2021). Interestingly, 
enhancing sleep of aged flies was sufficient to ameliorate age-dependent spatial 
learning defects (Melnattur et al. 2021), indicating that in flies as in mammals, sleep 
can restore functioning to impaired brains. Enhancing sleep might thus be widely 
applicable as a viable therapeutic strategy in a range of different contexts. 

9.4 Conclusions 

Age-dependent changes in sleep architecture and physiology are fairly well charac-
terised. The precise neurobiological mechanisms underlying these changes in sleep
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and sleep outcomes are still being worked out. The emergence of powerful inverte-
brate models of sleep such as the fly Drosophila holds promise as vehicles to solve 
some of these problems. 
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Part III 
Clock, Ageing and Longevity



Chapter 10 
How Non-photic Cues for the Circadian 
Time System Matter in Healthy Aging 

Maristela Oliveira Poletini, Paola Fernandes, 
and Nayara Abreu Coelho Horta 

10.1 Introduction 

Cannon could not have been more precise when he coined the term homeostasis to 
define the equilibrium of the internal milieu, because while stasis means a condition, 
homeo indicates similar (but not same), i.e., the internal milieu is in constant variation 
within a range (Cannon 1929). Homeostasis is achieved by the action of several 
integrative mechanisms, which operate autonomously or in a reactive manner. In 
anticipation of periodic changes into the environment as the light and dark (LD) 
cycle, the autonomous mechanisms are a consequence of the circadian time system. 
This system is composed of a set of endogenous oscillators named circadian clocks 
that determine circadian rhythms (Fig. 10.1). The circa-Diem (from Latin: about a 
day) nature of the temporal system is most likely because it has evolved under LD 
cycle imposed by the earth’s rotation, which has made windows of opportunities 
and challenges for all living things, which lead to compartmentalization to optimize 
physiology and behaviors (Pittendrigh 1993).

In mammals, for example, the rest/activity cycle compartmentalizes the other 
meaningful inputs to the system. In diurnal species, activity occurs in the light (from 
the sun or artificial) phase, whereas resting in the dark phase. While in activity 
(awake), feeding behavior, and social interactions take place: while resting, these 
behaviors are not observed (Fig. 10.1). Hence, there is an organization of these 
temporal cues according to the external light input.
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Fig. 10.1 Panel A, Circadian time system organization is presented. The zeitgebers are compart-
mentalized according to the light and dark (LD) cycle that is illustrated by the white and black 
rectangles. Sunlight or artificial light determines the photoperiod. Circadian rhythms in behavior 
and physiology are represented by the blue, red, and brown lines. These rhythms are a consequence 
of the endogenous oscillators or circadian clocks that are illustrated by colored clocks. Each clock 
represents peripheral oscillation in the clock molecular machinery expressed throughout the body. 
LD cycles, time of feeding, social interactions, and activity are all zeitgebers (or temporal cues) 
that entrain the circadian rhythms through circadian clocks. These rhythms also function as internal 
zeitgebers to the circadian clocks. Panel B, Changes in lifestyle such as alterations in eating pattern, 
locomotion issues, and impairment in social interactions are observed in the elderly. These changes 
weaken the input to the circadian clocks, which may be the consequence of reduced circadian 
rhythm amplitude observed in aging

Remarkably, feeding and social interaction are clock-driven temporal cues, which 
means they occur also in the absence of LD cycles in synchrony with the rest/activity 
phase. In nocturnal species, the phase relationship between LD cycles and circadian 
behaviors is opposite to what was shown in Fig. 10.1. Temporal cues that can entrain 
circadian clocks are commonly named Zeitgebers, a German word that means time 
givers (Fig. 10.1). To fulfill the mission of homeostasis predicting changes in the 
environment, the circadian clock can respond to these changes, which entrains the 
endogenous rhythms to them. Therefore, circadian rhythms such as in glucocor-
ticoid and melatonin secretion, in the core body temperature, among others are all 
entrained to the external temporal cues following the compartmentalization described 
above. Importantly, these rhythms may also be considered internal zeitgebers that 
maintain phase and amplitude of the multiple endogenous oscillators throughout the 
body (Fig. 10.1). These internal zeitgebers act by means of reinforcing the internal 
synchrony at the systemic level (West and Bechtold 2015). 

Aging is correlated with gradual changes in internal physiological parameters as 
well as in the lifestyle. For example, there is an age-related reduction in the core body 
temperature (Hernandes Júnior and Sardeli 2021), and alterations in the pattern of 
feeding, activity, and in social interactions (Manoogian and Panda 2017). Thus, age-
related decline in organism fitness may also be a consequence of a desynchronization 
and/or decline of the circadian time system by weakening zeitgebers. Given this
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proposition, what are the impacts of aging in the circadian clocks when there is a 
reduction and/or misalignment of zeitgebers? (Fig. 10.1). To answer this question, the 
chapter gives an overview of the function of the circadian time system. Firstly, there 
will be a characterization of central and peripheral clocks, followed by a definition 
of entrainment and pathways currently described that is used by the light and by the 
main non-photic zeitgebers (mealtime and social interaction) in the entraining of the 
system, and, then by possible impacts of aging in this process. Lastly, some remarks 
on how re-alignment of the circadian time system matters for healthy aging. 

10.1.1 Central and Peripheral Clocks: Categories 
of a Hierarchical System Model 

Circadian clocks are codified in the DNA. This statement is based on the first observa-
tions made by Konopka and Benzer (1971) in their groundbreaking paper at the time 
showing that Drosophila melanogaster mutants can display cycles of activity and 
rest spread randomly across 24 h, or a shorter daily cycle of around 19 h, or a longer 
daily cycle of around 28 h (Konopka and Benzer 1971). From then on, the molecular 
chronobiology field has advanced a great deal, so much that in 2017 Jeffrey C. Hall 
(contemporary of Konopka in Dr. Benzer’s lab), Michael Rosbach, and Michael W. 
Young received the Nobel Prize in Physiology or Medicine for their discoveries of 
the molecular mechanism controlling the circadian time system (https://www.nob 
elprize.org/prizes/medicine/2017/press-release/). 

The circadian molecular mechanism operates at the cellular level through a set 
of transcription factors regulated by a self-sustained feedback loop consisting of 
positive and negative elements, generally named clock proteins. Several well-written 
reviews describe the functioning of circadian molecular clocks [see Takahashi 2016]. 
Briefly, in mammals, the positive elements are the proteins Circadian Locomotor 
Output Cycles Kaput (CLOCK) and BMAL1 (aryl hydrocarbon receptor nuclear 
translocator-like protein 1, also known as ARNTL), they form a heterodimer that 
binds to the E-box enhancer of specific genes, driving transcription. The negative 
elements are Period (isoforms: Per1, Per2 and Per3) and Cryptochrome (isoforms 
Cry1 and Cry2). In the cytoplasm PER and CRY proteins form heterodimers 
(PER/CRY) and are subsequently phosphorylated by casein kinase δ or ε, which 
results in PER/CRY migration to the nucleus. At the nucleus, these heterodimers exert 
negative feedback on the activity of CLOCK/BMAL1. In another loop of regulation, 
CLOCK/BMAL1 stimulates the transcription of the nuclear receptor subfamily 1, 
group D, member 1/2 (Rev-Erbα/β also known as Nr1d1/2) and RAR-related orphan 
receptor alpha/beta (RORα/β also known as Nr1f1/2) genes: Rev-Erbα/β stimulates 
while RORα/β inhibits Bmal1 transcription. The interlocked feedback loops of activa-
tors and repressors described above form the canonical positive- negative- feedback 
loop. CLOCK/BMAL1 heterodimer also modulates other genes known as clock-
controlled genes (CCGs). In a very simplistic view, the expression of the positive

https://www.nobelprize.org/prizes/medicine/2017/press-release/
https://www.nobelprize.org/prizes/medicine/2017/press-release/


198 M. O. Poletini et al.

elements (for example, Bmal1) is an anti-phase of the negative element (for example, 
Per) in each tissue/organ of the body. This is important to keep in mind for the under-
standing of how different zeitgebers entrain circadian clocks. Mostly, they alter the 
phase of clock gene expression but keep the phase-relationship among them, as will 
be explained later in this chapter in the section on the effects of time-restricted feeding 
(TRF) on peripheral clocks. An interplay between this molecular loop with transcrip-
tional programs within different cell types is responsible to keep the physiology of 
these cells time-coordinated and aligned with the geophysical time. 

Circadian clocks are categorized as central clock located in the suprachiasmatic 
nucleus of the hypothalamus (SCN) and in peripheral clocks located in tissue/organ 
in the periphery or in non-SCN areas of the brain (Mohawk et al. 2012). Cells from 
both the central and peripheral clocks can generate an autonomous circadian rhythm 
of clock gene expression. However, there are important properties that make the SCN 
necessary and sufficient for regulating circadian physiology and behavior. The first 
property is that SCN neurons receive direct photic input from the retina allowing 
direct synchronization to the LD cycles (Morin et al. 2006). Secondly, SCN neurons 
display circadian rhythm of a spontaneous firing rate (meaning in the membrane 
excitability or action potential) (Herzog et al.1998; Honma et al. 1998; Welsh et al. 
1995). Third, SCN neurons act as a network, which is responsible for the synchro-
nization among them in constant conditions, such as in darkness (Aton and Herzog 
2005). This network favors the strength of cellular rhythmicity (Webb et al. 2009) by  
communicating SCN neurons via synapses, diffuse messengers, and gap junctions 
(Colwell 2000; Maywood et al. 2011; Yamaguchi et al. 2003). In addition, the SCN 
network modulates the intracellular calcium concentration [Ca2+] in dispersed SCN 
cells (Noguchi et al. 2017). Importantly, these dispersed SCN cells have the intrinsic 
property of displaying circadian rhythm in spontaneous electrical activity (Welsh 
et al. 1995). As a result of these proprieties, SCN synchronizes peripheral clocks via 
several direct and indirect output pathways, either by regulating hormone secretion, 
as glucocorticoids and melatonin, or by regulating autonomic nervous system-driven 
physiological parameters, as changes in core body temperature, and behaviors. As 
previously discussed in this chapter, these parameters work as second-order or rein-
forcing zeitgebers, which ensure synchronization of all peripheral clocks with each 
other and with the external environment. 

Central and peripheral clocks function through a hierarchical system or an 
“orchestra model”, where the SCN-instructs all subordinate peripheral clocks 
regarding the time of the day. This working model arose from classical experiments 
in which several biological rhythms were lost when the SCN was lesioned (Stephan 
and Zucker 1972). In addition, based on the experiments where SCN-lesioned mice 
and hamsters assume the circadian period of the donor animal SCN transplants, it is 
attributed to the central clock the ability to generate rhythms (Lehman et al. 1995; 
Ralph et al. 1990; Sujino et al. 2003).
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10.1.1.1 The Central Clock 

The central clock is in the SCN. SCN neurons are heterogeneous in terms of neuro-
transmitter/neuropeptide synthesis. Two distinct portions are identified in the medial 
region of the nucleus: the ventral portion (v-SCN), characterized by neurons that 
synthesize vaso-intestinal polypeptide (VIP), and the dorsal portion (d-SCN) char-
acterized by neurons that synthesize arginine-vasopressin (AVP). These regions are 
also named, respectively, core and shell (Fig. 10.2). They communicate with each 
other through neurochemical signals and gap junctions that maintain the SCN neurons 
synchronized and working as a pacemaker (Fig. 10.2). VIP is necessary to synchro-
nize the pace among individual neurons, as inhibition of VIP-mediated coupling 
leads to loss of synchrony in clock expression throughout the SCN tissue (Aton 
et al. 2005; Hastings et al. 2019). VIP actions on SCN networks modulate GABA. 
In most SCN neurons, neuropeptides are colocalized with GABA (Moore and Speh 
1993). In addition to AVP and VIP, SCN expresses other peptides such as calbindin, 
calretinin, gastrin-releasing peptide, neurotensin, and prokinectin 2 (Abrahamson 
and Moore 2001; Schwartz 2002). The v-SCN receives light information from the 
retinal-hypothalamic tract, while the main projections from the SCN depart from the 
d-SCN to other brain areas in the hypothalamus and brainstem (Abrahamson and 
Moore 2001) that regulates circadian rhythms (Fig. 10.2).

10.1.1.2 Peripheral Clocks 

Peripheral clocks are endogenous oscillators, which can be found in virtually all 
mammalian cells. Their importance for homeostasis can be appreciated by the 
growing body of evidence linking them with the circadian rhythms in physiology. 
Interestingly, human and mouse adipose tissue display circadian oscillation in several 
physiological parameters, including lipogenesis, lipolysis, adipokine expression, and 
thermogenesis, which is due to the presence of local clock components that are in 
line with the central clock. Metabolic tissues/organs such as white adipose tissue 
(WAT), brown adipose tissue (BAT), and liver show rhythmic expression of several 
transcripts, many of which encode important lipid metabolic regulators and clock 
genes. In addition, it was demonstrated that the molecular clock in the pancreatic 
beta cells regulates circadian insulin secretion (Marcheva et al. 2011; Dibner and 
Schibler 2015; Suter and Schibler 2009). 

The communication between the SCN with peripheral clocks regulates the phase 
coherence and the period of the peripheral clock at a systemic level. This was demon-
strated by recording the transcriptional activity of the Per2 promoter. As shown in 
Fig. 10.3, both the acrophase and the period of Per2 circadian rhythm are altered in 
explants of several peripheral tissues from SCN-lesioned mice (Yoo et al. 2004).

More recently, it has been proposed that under LD, SCN clock is dispensable for 
the synchronization of peripheral clocks, while in the absence of zeitgebers, SCN  
clock is required to sustain the circadian organization and integration of the whole 
system. This claim was based on studies with mice bearing SCN clock disruption;
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Fig. 10.2 The suprachiasmatic nucleus of the hypothalamus (SCN) is anatomically and morpho-
logically divided in ventral (v) and dorsal (d) portions. A diagram of these portions is presented 
showing the third ventricle (3 V), and a drawing of the SCN located bilateral to the 3 V above the 
optic chiasm (oc). The vSCN and dSCN communicate with each other by means of gap junctions 
(green arrow) and neurotransmitters (orange arrow) which form the SCN network. Fibers depart 
mainly from the dSCN to brain areas that regulate several circadian rhythms, such as glucocorticoid 
blood levels (blue line), melatonin blood levels (orange line), and core body temperature (red line). 
In this illustration a phase-relationship between these rhythms expressed in a nocturnal animal was 
used. Light from the LD cycles entrain the SCN through vSCN, which is also named core and is 
rich in vasointestinal polypeptide (VIP), this light signal is communicated to the dSCN, also named 
shell, that mainly contains neurons expressing arginine-vasopressin (AVP). A coronal section of a 
mouse SCN showing dSCN and vSCN delimited by the expression of tdTomate fluorescent protein 
in AVP neurons (red) and the core region containing VIP neurons labeled (Mieda 2019)

Fig. 10.3 Panel A shows results from Yoo et al. (2004) demonstrating the acrophase of the circadian 
rhythm in the Per2 transcriptional activity that were measured from bioluminescence recording from 
explants of cornea, liver, pituitary, kidney, and lung of control PER2: LUC mice under light–dark 
(LD) cycles or darkness (DD). The third graph in this panel shows results obtained from DD mice 
bearing lesion of the suprachiasmatic nucleus (SCN lesion). Panel B shows a graph from the same 
study showing a phase-map of those organs regarding Per2 expression circadian rhythm. From these 
results, the main function of the central clock is shown, i.e. it determines the phase-relationship 
among oscillators or peripheral clocks (colored clocks)
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these animals still display oscillatory profiles under LD cycles but not under darkness 
(Husse et al. 2015). 

10.1.2 Are Age-Altering Circadian Rhythms Consequences 
of Impaired Oscillators? 

The functionality of the circadian time system blunts with aging. This decline is 
characterized by a reduced amplitude and increased scatter in circadian acrophase 
of circadian rhythms, and an increased tendency toward internal desynchronization. 
The endogenous circadian period of locomotor activity shortens in old hamsters 
(Pittendrigh and Daan 1974), in primates (Aujard et al. 2006), and in rats (van Gool 
et al. 1987). However the period lengthens with age in inbred mice (Farajnia et al. 
2012). In humans, there is not a significant change in the intrinsic period of circa-
dian rhythm of activity, which averages 24.18 h in young and old subjects (Duffy 
and Czeisler 2002). However, the daily decrease in core body temperature and the 
onset of sleep occurs approximately 2 h earlier in old compared to younger subjects 
(Dijk et al. 2000). Also, there is a gradual increase of early chronotype with age, 
which may predict phase-advancement of circadian rhythms, since chronotypes and 
phase are correlated (Roenneberg and Merrow 2007). Because similar features are 
observed in experimental animals after SCN lesion, this nucleus has been impli-
cated in aging. Indeed, all SCN properties recognized as fundamental in regulating 
circadian rhythms are altered by aging. 

As such, studies in aging rodents have shown that there is a reduction in the 
amplitude of neuronal SCN electrical activity rhythm (Satinoff et al. 1993; Watanabe 
et al. 1995). Although the total number of neurons within the SCN remains the same 
in aged rats, the number of neurons expressing AVP is decreased within the SCN 
(Mieda et al. 2016). Similarly, VIP mRNA and content are decreased in older male 
rodents (Harper et al. 2008; Duncan et al. 1995). On the other hand, in female rats, 
AVP mRNA in SCN neurons increases in the dark phase (Nicola et al. 2021). In 
addition, there are alterations in the density of GABAergic axon terminals and in the 
alpha-3 subunit of the GABA receptor in aging mice (Palomba et al. 2008), which 
may impair the SCN network. Farajnia et al. (2012) thoroughly compares alterations 
at all levels of the circadian time system (organismal, electrical, neuronal network, 
single cellular, and molecular) between young and old mice. This complete study 
shows that old mice display fragmentation in the sleep/wake cycle, reduction in the 
amount of activity, reduced amplitude of the electrical activity rhythm within SCN 
neurons, larger distribution of the neuronal activity in dispersed SCN, and reduction in 
Bmal1 SCN expression whereas there is an increase in Per2 SCN expression (Farajnia 
et al. 2015, 2012). Despite these alterations, analysis of Per2:Luc bioluminescence 
imaging in female mice show no changes in the amplitude of SCN Per2 rhythm 
comparing old and young mice (Polidarová et al. 2016). The definitive proof that 
links the central clock with aging comes from transplantation studies. Implantation
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Fig. 10.4 Aging promotes alterations in the central clocks that might be responsible for the decline 
in the amplitude of circadian rhythms as consequence of aging 

of fetal SCN tissue in old animals rescues circadian rhythms, such as daily activity 
in hamsters (Viswanathan and Davis 1995) and the diurnal rhythm of corticotropin-
releasing hormone in rats (Cai et al. 1997). Of note, animals with restored-clock 
increased longevity (Hurd and Ralph 1998). The main alterations observed in the 
central clock during aging are illustrated in Fig. 10.4. 

Regarding peripheral clocks, several studies have shown that there are no changes 
in clock gene profiles within different tissues. Per1, Per2, or  Cry1 expression is 
similar when comparing young and aged rats in the paraventricular nucleus of the 
hypothalamus and pineal gland (Asai et al. 2001). Likewise, the expression of Per2 
and Bmal1 does not differ between young and aged brain, heart, liver, and kidney 
submandibular gland mice (Oishi et al. 2011; Takahashi et al. 2017). Also, no differ-
ences were found in the in vitro transcriptional activity of clock genes measured in 
different tissues (Yamazaki et al. 2002; Novosadová et al. 2018; Yang et al. 2016; 
Yamaguchi et al. 2018). 

Although there is no clear evidence that associates aging with alteration in periph-
eral clocks, it is not possible thus far to exclude age-associated changes in transcrip-
tional cellular programming. Supporting this idea, analyzing the whole transcrip-
tome in aged mice revealed epidermal and muscle stem cells though still showing 
rhythmicity in clock genes, the downstream oscillating transcriptome is pronounced 
reprogrammed, switching from genes related to homeostasis to those involved in 
stress, inflammation, DNA damage, and cellular autophagy (Solanas et al. 2017). In 
addition, comparison of tissue-specific transcriptional profiles of mature, aged, and 
old-age Mus musculus, Danio rerio, and Nothobranchius furzeri show conserved 
aging-related expression patterns. This emphasizes how the circadian system and 
aging might influence each other over a long lifespan (Barth et al. 2021). This opens 
a new avenue to correlate aging with circadian oscillations.
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10.2 Light Versus Non-photic Zeitgebers 

Zeitgebers possess the ability to alter the period (τ , the amount of time it takes for 
a full cycle in constant conditions) and the phase (ϕ, the relative timing of a given 
circadian event within the external 24-h day) of the circadian rhythms (Roenneberg 
et al. 2003). Light is the most powerful zeitgeber for the circadian time system. Colin 
Pittendrigh was a pioneer in exploring the effect of short discrete pulses of light on 
the free-running rhythms of animals kept in constant darkness. His classical study 
shows that light-pulse delivered at different times of the circadian cycle have different 
phase-shifting effects on the observed free-running rhythm activity (Pittendrigh and 
Daan 1976). As such, a light-pulse delivered on the subjective day has little effect 
on the rhythm, whereas a light-pulse delivered during the first half of the subjective 
night causes a delay in the animal’s activity during the following day. Light exposure 
during the second half of the subjective night advances the clock, as observed in the 
activity rhythm (Fig. 10.5). The effect of the light of advancing an animal’s activity 
earlier the next day meets the animal’s necessity to finish its activity before dawn 
arrives. This brought an advantage for the animal in nature which illustrates the main 
function of the circadian time system which is to predict cyclical changes in the 
environment.

The phase response curve shown in Fig. 10.5 is remarkably similar among different 
organisms. Differences in the shape of the curve, as well as species-specific inter-
actions between light intensity, the phase of light exposure, the length of the free-
running period, and the size of the delay, and advanced portions of the phase response 
curve may occur. Light activates the intrinsic photosensitive retinal ganglionar cells 
(ipRGCs) that possesses the photopigment melanopsin. Melanopsin is a G-protein 
coupled receptor covalently attached to a chromophore. In mammals, the chro-
mophore is 11-cis-retinal that absorb light resulting in its isomerization to all-trans-
retinal and activation of the phototransduction cascade. This eventually depolar-
izing ipRGCs, and, as consequence, the retinal-hypothalamic tract is activated. This 
leads to a release of glutamate and/or adenil-cyclic activator peptide (PACAP) into 
the retino-recipient portion of the SCN, stimulating its neurons. Through this path, 
higher SCN neuronal activity is found in the light phase or in response to a light-
pulse in the dark phase. This route activates early immediate-factor AP-1 c-Fos, and 
cAMPC, increasing the expression of Per1 within SCN neurons. Therefore, resetting 
the central clock occurs, leading to the photoentrainment (Do 2019). 

It is well-known that non-photic cues provide meaningful information to track 
time. Like what has been described in the photoentrainment, non-photic zeitgebers 
produce a curve-phase response in the circadian rhythms. But their shape is different 
because it is based on the premise that the increased arousal state induced by an 
external stimulus will delay or advance the oscillation, as shown in Fig. 10.5. There-
fore, higher phase-shift will happen in the resting phase, i.e., and in the dark phase 
for nocturnal animals (Golombek and Rosenstein 2010). The best-known non-photic 
zeitgebers are feeding time, activity, and social interactions. Different from light,
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Fig. 10.5 Representation of photic and non-photic phase response curves. In the upper panels, 
actograms of nocturnal rodents that received a pulse on the subjective day (1), at the beginning of 
the subjective night (2) and at the end of the subjective night (3) are represented. In the lower panels, 
actograms of nocturnal rodents that were exposed to the activity wheel on the subjective day (4) 
and on the subjective night (5) are represented. The response to light pulse exposure or the activity 
wheel is represented on the phase-response curve (middle panel) where the solid line represents the 
photic phase-response curve, and the dotted line represents the non-photic phase-response curve. 
This illustration was modified from Golombek and Rosenstein (2010)
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they seem not to depend on the central clock to entrain the circadian time system 
(Moran-Ramos et al. 2016). 

10.2.1 Photoentrainment and Aging 

Aging is associated with yellowing and thickened lenses in humans. This may impair 
light transmission from the eyes to the SCN (Brainard and Maloney 2004; Kessel 
et al. 2010; Najjar et al. 2014) and rodents (Zhang et al. 1998). Also, the retinal 
function is declined in humans (Freund et al. 2011; Gerth et al. 2002), as well as in 
rodents, the number of ipRGCs is reduced as aging progresses (Semo et al. 2003). 
In addition, aging reduces light responsiveness of the SCN, but it does not affect the 
retinal hypothalamic tract (Lupi et al. 2012; Zhang et al. 1998). Therefore, uncou-
pling among oscillators within the SCN may be a consequence of the aging-related 
decline of light entrainment resulting in impairment of the central clock maintaining 
amplitude of the circadian rhythms (Fig. 10.4). 

10.2.2 Feeding Time Entrains the Circadian Time Systems: 
Impact on Aging 

Food is largely recognized as a temporal clue to the circadian time system. A misalign-
ment between feeding time and the active phase can be as dangerous as a high-fat 
diet to impairing health. Thus, misalignment of feeding time within the circadian 
activity rhythm contributes to several metabolic disorders, such as hepatic steatosis, 
hyperglycemia, insulin resistance, dyslipidemia, and metabolic syndrome (Bass and 
Takahashi 2010; Huang et al. 2011; Turek et al. 2005). 

Nocturnal rodents show feeding behavior in the dark phase when they are active. 
Hence, the fasting period of nocturnal animals is through the light phase, when food 
consumption is very low (Santoso et al. 2018). Notably, clock-mutant mice lack the 
circadian variation of food consumption; they eat similar amounts of food in the light 
and dark phase, although they still show circadian rhythm in the locomotor activity. 
These results imply that feeding behavior and locomotor activity are two independent 
circadian rhythms (Turek et al. 2005), although they are compartmentalized in the 
same phase of circadian cycle. Also, regardless of a higher-fat diet, clock-mutant 
mice display higher body weight gain compared to wild-type mice, indicating that 
the alignment of feeding and activity rhythms may contribute to energetic balance 
(Turek et al. 2005). 

Feeding time is the dominant zeitgeber for peripheral clocks (Pickel and Sung 
2020). This is largely demonstrated in animal studies showing the effect of time-
restricted feeding (TRF) on circadian clock gene expression (Fig. 10.6). Rodents with 
food access exclusively at the light phase for several days show a complete inversion
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Fig. 10.6 Time-restricted feeding (TRF) effects on locomotor activity circadian rhythm are repre-
sented by actograms obtained from rats (results from the Dr Poletini’ lab, author of this chapter). 
Rats were fed ad libitum (Panel A) or at the light phase (Panel B) for 21 days. Lines in panel D 
and E illustrates the expression of Per genes (solid line) and Clock or Bmal1 (dashed line), note 
that TRF inverts the phase of the circadian expression of those genes, mainly in the liver (see text 
for details). In addition, note that TRF reduces the locomotor activity at the end of the dark phase 
(panel B). Panel C duplicates the actogram of panel A to illustrate the design experiment that has 
shown to improve metabolic function and association with increased longevity in rodents 

of the acrophase of the circadian rhythm in clock gene expression, when compared 
to those with food access at the night phase or ad libitium (Fig. 10.6). This has been 
demonstrated in various tissues, such as the liver, heart, and kidney, (Damiola et al. 
2000; Schibler et al. 2003; Stokkan et al. 2001; Vollmers et al. 2009). Amazingly, the 
alignment of feeding schedule to active period has been associated with ameliorating 
of metabolic function and increased longevity in animals (Fig. 10.6). 

It is recognized that each tissue differently responds to cycles of nutrients, 
hormonal secretion, and other demands imposed by the fast/feeding cycles. Accord-
ingly, it is conceivable that their responses to feeding time were different. Indeed, 
TRF at the light phase strongly phase-shifts clock genes expression in the liver and 
white adipose tissue, while it partially affects the kidney, and it has no effects on the 
lung (Manella et al. 2021). Thus, feeding at the resting phase in nocturnal animals 
not only entrains peripheral clocks but also promotes an uncoupling among them. 

The liver is entrained earlier by food when compared to other organs (Damiola 
et al. 2000). In addition, it is known that the liver exerts a crucial role in processing 
nutrients. This largely accepted view relies on studies showing that the liver partici-
pates in the maintaining of glycemia by increasing glucose production in the fasting 
(kalsbeek et al. 2014). And it regulates lipid flow throughout fast-feeding cycles 
through the molecular clock (Doi et al. 2010; Han et al. 2016, Jones 2016). Given 
that, the liver plays a critical role in the entrainment promoted by food, aligning 
glucose and lipid metabolism to the fast-feeding cycles (Chaix et al. 2019; Mukherji
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et al. 2015). Nevertheless, it seems that the liver clock does not regulate the clock 
itself in other tissues, but rather it modulates peripheral tissue transcriptional rhyth-
micity, mainly upon feeding at the light phase schedule (Manella et al. 2021). This, 
once more, emphasizes the importance of the liver to metabolic homeostasis under 
conditions of nutrient challenges. 

Aside from phase-shifts in the clock gene expression, TRF increases the locomotor 
activity in anticipation of food availability, leading to a bimodal rhythm of activity 
(Fig. 10.6). This is known as food anticipatory behavior, which causes alterations in 
the activity depending on the time of food exposure (Kessler and Pivovarova-Ramich 
2019). For example, chow or high-fat diet offered for 8 h in the dark phase to a 
nocturnal rodent does not alter the locomotor activity circadian rhythm, although 
the animals display an increase in activity at the end of dark phase (Hatori et al. 
2012). Whereas chow or high-fat diet offered throughout the light phase reduces 
activity at the end of the dark phase (Reznick et al. 2013; Yasumoto et al. 2016). 
The food anticipatory behavior is accompanied by an increased neuronal activity and 
Per1 expression in the dorso-medial hypothalamus and has no effects on the SCN, 
showing that it is a behavioral output separated from the known light-entrained 
oscillator located in the SCN (Carneiro and Araujo 2012). 

There are many theories about aging that will not be the scope of this chapter. 
However, the aspects of two long-standing hypotheses will be provided to recognize 
of the significance of calorie restriction time (not only the calorie restriction per 
se) in improving health throughout aging. Briefly, the theories of aging are based 
on the rate of living and oxidative damage. The former proposed by Pearl (1928) 
stated that mammalian longevity is inversely related to their metabolic rate per unit of 
tissue mass (= rate of living). The latter was proposed by Harman (1956) and stated 
that reactive oxygen species (ROS)—by-products of oxidative phosphorylation in 
mitochondria—impair DNA, lipids, and proteins, leading to accelerated biological 
aging (Redman et al. 2018). The combination of these theories brings us to the general 
idea that calorie restriction reduces body weight and ameliorates aging hallmarks, 
which leads to longevity. As such, calorie restriction beginning early or in mid-
life and sustained for a substantial portion of the lifespan, increases longevity in 
a wide variety of species (Speakman and Mitchell 2011; Balasubramanian et al. 
2017). On the other hand, calorie restriction imposed chronic cycles of feeding— 
fasting which raises the question of whether calories, fasting, or time of day are 
the contributors to increase lifespan. Remarkably, mice submitted to daily fasting 
intervals and circadian alignment of feeding show extended lifespan, independent of 
reducing body weight gain. Calorie restriction at night (active phase in mice) also 
ameliorates aging-related gene expression encoding components of metabolic genes 
in mice liver (Acosta-Rodríguez et al. 2022). 

This striking animal study linking TRF protocols and longevity provides strong 
evidence in favor of using circadian-aligned calorie restriction or TRF as a strategy 
for a healthier metabolic life in aging. Several studies in humans have shown clinical 
benefits of TRF, such as a reduction in insulin levels; improved insulin signaling; 
a reduction in oxidative stress; an increase in antioxidant defenses and autophagy; 
and a reprogramming of aging-related pathways (Manoogian and Panda 2017). A
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randomized crossover study in humans showed that early TRF (eating between 8 am 
and 2 pm) reduces the 24-h glucose levels, the fasting glucose, and the insulin levels 
in overweight individuals compared to feeding time between 8 am and 8 pm (control 
schedule). In the morning, before the eating time, early-TRF increases the ketone 
beta-hydroxybutyrate, cholesterol, and the expression of the stress response and aging 
gene coding the SIRT1 (silencing information regulator 2 related enzyme - sirtuin 
1) and the autophagy gene LC3A, while in the evening, it increases the expression 
of mTOR (mammalian/mechanistic target of rapamycin), a major nutrient-sensing 
protein that regulates cell growth (Jamshed et al. 2019). Furthermore, a trial pilot 
study with sedentary older adults (≥ 65 years) reported improvements in quality of 
life and meaningful changes in walking speed with few reported adverse events after 
TRF (Anton et al. 2019). 

The whole picture of the clinical effects of TRF or calorie restriction in humans is 
still not known, therefore applying TRF or calorie restriction as therapeutic tools to 
overcome aging-related deleterious effects on health should be carefully considered. 

10.2.3 Social Interactions Entrain the Circadian Time 
Systems: Impacts on Aging 

Social interaction either entrains or masks the circadian time system. In nature, indi-
viduals need to adapt to the rhythms of activity and rest of their sexual partners, 
prey, predators, and family members, allowing the formation of groups, success in 
the search for food and reproduction, which may have contributed to the evolution of 
the species (Mistlberger et al. 2011). Therefore, the maintenance of social bonds is 
extremely important for the survival of social species. This also applies to humans, 
since maintaining social contact is of utmost importance for physical and mental 
health. Proof of this is that social interactions and positive social stimuli are consid-
ered social reward stimuli, since they can activate circuits and brain regions involved 
in reward processing, both in humans and rodents (Gunaydin et al. 2014; Rademacher 
et al. 2015). On the other hand, social isolation (or social rejection) which leads to 
the feeling of loneliness, can be an aversive emotional state in humans and rodents, 
being considered a challenge for physiological homeostasis like hunger and thirst 
(Lee et al. 2021a, b; Tomova et al.  2020). 

The role of social interaction as a zeitgeber has already been investigated by 
evaluating its phase response curve in several rodents (Fig. 10.5). For example, 
isolated nocturnal hamsters (Mesocricetus auratus) exposed to 30 min of social 
interaction with a conspecific of the same sex or changing housing-cages at different 
times over 24 h show a typical response curve (Mrosovsky 1988). Cohabitation 
of an arrhythmic rat (showing unstable rhythm) with a rhythmic rat (more stable 
rhythm) under constant light leads to stability in the locomotor activity and core body 
temperature rhythms. This might be explained by the social interactions among the 
arrhythmic and rhythmic rats (Cambras et al. 2012).
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More recently, it has been shown that social interactions with conspecifics of the 
opposite-sex increase c-Fos (a marker of neuronal activity) in the olfactory bulb, as 
well as the PER1/Per1 in the SCN, and the c-Fos and PER-1 in the piriform cortex of 
both male and female, pointing to participation of odor-related neuronal structures 
in the resetting of the central clock by social stimulus (Sonker and Singaravel 2021). 
The social interaction as well as other non-photic zeitgebers have their occurrence 
in the active phase leading to an increase in locomotor activity and the wake/arousal 
state. On the other hand, the circadian time system is prone to respond to them in the 
resting phase. This implies that social interactions may affect circuits regulating the 
sleep/wake cycle (Mrosovsky 1988; Mistlberger and Antle 2011). 

Studies using dual tract-tracing have shown that the medial preoptic area (MPA), 
the subparaventricular zone (SPVZ), and the dorsomedial hypothalamic nucleus 
(DMH) are SCN relaying output to two key sleep-promoting nuclei, namely, the 
ventrolateral and median preoptic nuclei. The MPA, SPVZ, and DMH are believed 
to link the SCN with wake-regulatory neuronal groups, such as the tuberomam-
millary nucleus, the locus coeruleus (LC), the ventral tegmental area (VTA), the 
dorsal raphe nucleus (DRN), and the substantia innominata (Deurveilher and Semba 
2005). Vipergic and vasopressinergic fibers from the SCN reach LC via SPVZ and 
DMH. The neuronal circuit SCN—DMH—noradrenergic LC controls the sleep/wake 
cycle (Aston-Jones et al. 2001; González and Aston-Jones 2006). Noradrenergic LC 
neurons display higher activity in the wake phase compared to the resting phase 
in mice and rats (Aston-Jones and Bloom 1981; Poletini et al. 2007). Inhibition of 
noradrenergic LC neurons reduces the alertness and enhances the sleep state during 
the active phase, and the opposite occurs when these neurons are stimulated (Carter 
et al. 2010; González and Aston-Jones 2006). In addition, LC participates in the 
stress-regulated circuits that includes paraventricular nucleus of the hypothalamus 
(PVN) projections (Valentino and Van Bockstaele 2008). 

On the other hand, lack of social interaction is considered mild stress. There 
have been reported mixed results measuring the effect of social isolation on the 
hypothalamus–pituitary–adrenal (HPA) axis activity (Greco et al. 1992; Ieraci et al. 
2016; Lopez and Laber 2015; Perelló et al. 2006). This is mainly because the mild 
stress effect of social isolation varies according to species, age, and time of isolation. 
Aside from the classical physiological functions of PVN regulating HPA activity, 
this nucleus plays a role in regulating the waking state in mice (Liu et al. 2020; Ono  
et al. 2020) and it is a target of SCN projections (Abrahamson et al. 2001). PVN 
can be part of the social interaction entrainment of the circadian time system. Social 
stimulus inactivates GABAergic neurons of the SCN in the subjective night leading 
to an increase in the neuronal activity of corticotropin-releasing factor (CRF) neurons 
in the PVN, which in turn activates orexinergic neurons in the lateral hypothalamus. 
The activation of these neurons increases the alertness state (Ono et al. 2020). In 
addition, social stimulus increases the oxytocin-producing PVN neurons (Resendez 
et al. 2020). 

Social interaction is also a reward stimulus to social species (Krach 2010; 
Rademacher et al. 2015). It is well established that the mesolimbic pathway composed 
by dopaminergic VTA projections to the nucleus accumbens (NAc) participates in the
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control of motivational behavior of searching for reward (Rademacher et al. 2015). 
In addition, optogenetic activation of the dopaminergic VTA-NAc pathway, as well 
as from the serotonergic pathway from the NDR to the NAc increases the search for 
social interaction with a conspecific (Gunaydin et al. 2014; Walsh et al. 2018). 

Serotonin (5-hydroxytryptophan, 5-HT) from medial raphe nucleus (MRN) and 
DRN plays a role in the non-photic entrainment of the circadian time system. Stimulus 
inducing alertness applied during the rest phase increases the 5-HT levels in the SCN. 
In addition, both electrical stimulation of MRN/DRN and the serotonergic-receptor 
agonist treatment cause phase-shift in the circadian rhythm of activity (Mistlberger 
and Antle 2011). The retino-recipient portion of the SCN receives direct projec-
tions from MRN and indirect projections from DRN (Abrahamson et al. 2001; Bang 
et al. 2011; Muzerelle et al. 2014). The increase in the number of c-Fos positive 
SCN neurons induced by a light pulse is drastically reduced after previous electrical 
stimulation of the MRN or DRN (Meyer-Bernstein and Morin 1999). 

Dopamine signaling also modulates light responses of the SCN. Dopamine-
positive-β-hydroxylase and tyrosine-hydroxylase (TH) fibers are found in the d-SCN 
portion of mice (Abrahamson et al. 2001). Chemogenetic activation of the dopamine 
receptor type 1 (D1) in the SCN causes a phase-shift like those induced by light-
pulse (Grippo et al. 2017). And D1 receptor knockout mice (Drd1-KO) subjected to 
a jet-lag protocol show a slower entrainment rate compared to wild-type mice, while 
the restoration of this receptor in the SCN normalizes this behavior. On the other 
hand, the activation of dopaminergic neurons in VTA accelerates the entrainment 
rate (Grippo et al. 2017). Finally, dopaminergic signaling via the D1 receptor also 
seems to be important for appropriate activity of SCN neurons, since incubation of 
brain slices with D1 receptor agonist reduces the firing rate of SCN neurons (Grippo 
et al. 2020). Therefore, 5-HT and dopamine neurotransmitter systems can modulate 
SCN light responses. 

Importantly, social isolation significantly changes the circadian rhythm of 5-HT 
in the rat hypothalamus (Greco et al. 1992), as well as reducing and increasing the 
activity of serotonergic DRN neurons and VTA dopaminergic neurons, respectively 
(Fabricius et al. 2010; Sargin et al. 2016). In addition, social isolation leads to a 
reduction in the activity of the SCN neurons at the beginning of the light phase. This 
is associated with a reduced amplitude of the daily rhythm of core temperature and 
uncoupling between this rhythm the locomotor activity (Fernandes et al. 2021). On 
the other hand, both serotonergic and dopaminergic pathways are associated with 
the reward caused by social interaction (Dölen et al. 2013; Eban-Rothschild et al. 
2016). Therefore, social interaction ensures proper activation of SCN neurons in the 
light phase and maintains the proper phase relationship between the daily rhythms 
of activity and core body temperature, as well as 5-HT and dopamine signaling to 
the central clock. 

Aging is associated with decreased circadian rhythmicity of sleep, as well as sleep 
timing, duration, and consolidation (Wei et al. 1999). Accordingly, in the elderly, 
sleep tends to be more fragmented with poorer quality, which is correlated with 
worsened cognitive performance (Miyata et al. 2013). In addition, aging induces
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significant changes in social relationships for reasons that include a decline in phys-
ical or cognitive abilities and decreased interactions with friends and relatives (Cudjoe 
et al. 2018). Subjective social isolation from both family and friends is associated 
with depressive symptoms, and psychological distress (Taylor et al. 2016). There-
fore, the circuits regulating sleep–wake cycle, rewarding, and social stimulus can be 
diminished as age progresses leading to an impairment of circadian time system. 

Indeed, in older rats, the PVN activity in response to acute and chronic stress 
reduces during aging (Kovács et al. 2019). Also, decreasing PVN inputs to hypotha-
lamus–pituitary–adrenal axis results in the age-related circulating cortisol fall in non-
human primates (Yang et al. 2017). Age-related decline in the LC neuron number 
by ~ 20–40% was reported in humans, although in this study individuals presenting 
neurodegenerative diseases were not excluded (Mather and Harley 2016). 

The dopaminergic function declines with normal aging resulting in impairment 
of cognition, reward processing, and motor function, which is proposed to influence 
the development of a depressive phenotype in the elderly (Taylor et al. 2021). A 
decrease in the circadian amplitude of dopamine, noradrenaline, and 5-HT occurs as 
age progresses (Cornelissen and Otsuka 2016). The 5-HT SCN levels in 24-month 
rats are low, and a disruption in the daily 5-HT rhythm is observed at this age (Jagota 
et al. 2010). In general, 5-HT signaling impairment has been implicated in changes in 
mood behavior, such as depression and anxiety and neurological diseases across the 
lifespan, including age-related diseases like Alzheimer’s disease (Daut and Fonken 
2019). 

Figure 10.7 summarizes the brain areas affected by social interaction and how 
they are connected to the central clock in rodents. As described, there are strong 
intersections between these circuits with the regulation of sleep/wake cycles, reward, 
and arousal state. There are growing evidence showing aging affecting brain areas 
and neurotransmitter systems, which, in turn might be involved in the social stimulus 
entrainment.

Importantly, depressive symptoms and cognitive problems are all social-isolation 
health issues that lead to increased risk of mortality in the elderly (Domènech-abella 
et al. 2017). Currently, due to the isolation and social distancing as an alternative to 
containing the spread of the new coronavirus (SARS-Cov2), it has become evident 
how important and vital the establishment of social bonds are. Recent studies show 
that, in addition to social isolation per se, the lockdown has the consequence of 
limiting and disorganizing exposure to temporal cues of entrainment in the circadian 
system, such as exposure to sunlight and social routines, resulting in an increase of 
reports of depressive symptoms and feelings of loneliness, increased use of electronic 
devices at night, changes in the sleep–wake cycle, and reduced sleep quality (Cellini 
et al. 2020; Leone et al. 2020; Majumdar et al. 2020). Therefore, keeping social 
interactions as aging progress may delay symptoms of mental health impairment 
because it provides a reinforcing stimulus to track time.
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Fig. 10.7 Proposal of neural pathways involved in the social interaction entrainment of the circadian 
time system based on rodent studies. Suprachiasmatic nucleus (SCN), paraventricular nucleus of 
the hypothalamus (PVN), ventral tegmental area (VTA), dorsal raphe nucleus (DRN), medial raphe 
nucleus (MRN), locus coeruleus (LC), nucleus accumbens (NAc), serotonin (5-HT), dopamine 
(DA), norepinephrine (NE)

10.3 Conclusion 

In conclusion, given that aging is associated with a decline of the circadian time 
system and changes in lifestyle, increasing the quality of social activities and moni-
toring feeding time in elderly may contribute to improve health and/or decrease the 
hallmarks of aging. Remarkably, adopting modifiable healthy lifestyles was associ-
ated with lifetime gain, even in individuals aged 80 years or more (Sakaniwa et al. 
2022). In other words, it is never too late to adopt habits that improve the quality 
of aging. Attentions to mealtime and social interactions may help getting healthier 
along the way because they function as reinforcing zeitgebers in the circadian time 
system. 

Acknowledgments This study was funded by grants from Fundação de Amparo à Pesquisa do 
Estado de Minas Gerais (FAPEMIG, APQ-01173-17). Coautor NAC-H and P-F were fellows of 
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. 

Compliance with Ethical Standards: This article does not contain any studies with human partic-
ipants performed by any of the authors. An animal study performed by the authors is displayed in 
Figure 6. This study was approved by the Ethics Committee for Animal Use (CEUA ICB/UFMG, 
protocol number 289/2016). 

References 

Abrahamson EE, Leak RK, Moore RY (2001) The suprachiasmatic nucleus projects to posterior 
hypothalamic arousal systems. NeuroReport 12:435–440. https://doi.org/10.1097/00001756-200 
102120-00048

https://doi.org/10.1097/00001756-200102120-00048
https://doi.org/10.1097/00001756-200102120-00048


10 HowNon-photic Cues for the Circadian Time SystemMatter in Healthy… 213

Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, Xu P, Wight-Carter M, Green CB, Takahashi 
JS (2022) Circadian alignment of early onset caloric restriction promotes longevity in male 
C57BL/6J mice. Science. https://doi.org/10.1126/science.abk0297 

Anton SD, Lee SA, Donahoo WT, McLaren C, Manini T, Leeuwenburgh C, Pahor M (2019) The 
effects of time restricted feeding on overweight, older adults: a pilot study. Nutrients 11:1500. 
https://doi.org/10.3390/nu11071500 

Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T, Akiyama M, Shibata S (2001) 
Circadian profile ofPer gene mRNA expression in the suprachiasmatic nucleus, paraventricular 
nucleus, and pineal body of aged rats. J Neurosci Res 66:1133–1139. https://doi.org/10.1002/jnr. 
10010 

Aston-Jones G, Bloom F (1981) Activity of norepinephrine-containing locus coeruleus neurons in 
behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886. https:// 
doi.org/10.1523/jneurosci.01-08-00876.1981 

Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of 
arousal. Nat Neurosci 4:732–738. https://doi.org/10.1038/89522 

Aton SJ, Herzog ED (2005) Come together, right…now: synchronization of rhythms in a mammalian 
circadian clock. Neuron 48:531–534. https://doi.org/10.1016/j.neuron.2005.11.001 

Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide 
mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476– 
483. https://doi.org/10.1038/nn1419 

Aujard F, Cayetanot F, Bentivoglio M, Perret M (2006) Age-related effects on the biological clock 
and its behavioral output in a primate. Chronobiol Int 23:451–460. https://doi.org/10.1080/074 
20520500482090 

Balasubramanian P, Mattison JA, Anderson RM (2017) Nutrition, metabolism, and targeting aging 
in nonhuman primates. Ageing Res Rev 39:29–35. https://doi.org/10.1016/j.arr.2017.02.002 

Bang SJ, Jensen P, Dymecki SM, Commons KG (2011) Projections and interconnections of geneti-
cally defined serotonin neurons in mice. Eur J Neurosci 35:85–96. https://doi.org/10.1111/j.1460-
9568.2011.07936.x 

Barth E, Srivastava A, Wengerodt D, Stojiljkovic M, Axer H, Witte OW, Kretz A, Marz M (2021 Age-
dependent expression changes of circadian system-related genes reveal a potentially conserved 
link to aging. Aging 13:25694–25716. https://doi.org/10.18632/aging.203788 

Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349– 
1354. https://doi.org/10.1126/science.1195027 

Brainard DH, Maloney LT (2004) Perception of color and material properties in complex scenes. J 
Vis 4:i. https://doi.org/10.1167/4.9.i 

Cai A, Lehman MN, Lloyd JM, Wise PM (1997) Transplantation of fetal suprachiasmatic nuclei 
into middle-aged rats restores diurnal Fos expression in host. Am J Physiol Regul Integr Comp 
Physiol 272:R422–R428. https://doi.org/10.1152/ajpregu.1997.272.1.r422 

Cambras T, Castejón L, Díez-Noguera A (2012) Social interaction with a rhythmic rat enhances the 
circadian pattern of the motor activity and temperature of LL-induced arrhythmic rats. Physiol 
Behav 105:835–840. https://doi.org/10.1016/j.physbeh.2011.10.027 

Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431. https:// 
doi.org/10.1152/physrev.1929.9.3.399 

Carneiro BTS, Araujo JF (2012) Food entrainment: major and recent findings. Front Behav Neurosci 
6:83. https://doi.org/10.3389/fnbeh.2012.00083 

Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea 
L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 
13:1526–1533. https://doi.org/10.1038/nn.2682 

Cellini N, Canale N, Mioni G, Costa S (2020) Changes in sleep pattern, sense of time and digital 
media use during COVID-19 lockdown in Italy. J Sleep Res 29:e13074. https://doi.org/10.1111/ 
jsr.13074

https://doi.org/10.1126/science.abk0297
https://doi.org/10.3390/nu11071500
https://doi.org/10.1002/jnr.10010
https://doi.org/10.1002/jnr.10010
https://doi.org/10.1523/jneurosci.01-08-00876.1981
https://doi.org/10.1523/jneurosci.01-08-00876.1981
https://doi.org/10.1038/89522
https://doi.org/10.1016/j.neuron.2005.11.001
https://doi.org/10.1038/nn1419
https://doi.org/10.1080/07420520500482090
https://doi.org/10.1080/07420520500482090
https://doi.org/10.1016/j.arr.2017.02.002
https://doi.org/10.1111/j.1460-9568.2011.07936.x
https://doi.org/10.1111/j.1460-9568.2011.07936.x
https://doi.org/10.18632/aging.203788
https://doi.org/10.1126/science.1195027
https://doi.org/10.1167/4.9.i
https://doi.org/10.1152/ajpregu.1997.272.1.r422
https://doi.org/10.1016/j.physbeh.2011.10.027
https://doi.org/10.1152/physrev.1929.9.3.399
https://doi.org/10.1152/physrev.1929.9.3.399
https://doi.org/10.3389/fnbeh.2012.00083
https://doi.org/10.1038/nn.2682
https://doi.org/10.1111/jsr.13074
https://doi.org/10.1111/jsr.13074


214 M. O. Poletini et al.

Chaix A, Manoogian ENC, Melkani GC, Panda S (2019) Time-restricted eating to prevent and 
manage chronic metabolic diseases. Annu Rev Nutr 39:291–315. https://doi.org/10.1146/ann 
urev-nutr-082018-124320 

Colwell CS (2000) Rhythmic coupling among cells in the suprachiasmatic nucleus. J Neuro-
biol 43:379–388. https://doi.org/10.1002/1097-4695(20000615)43:4%3c379:aid-neu6%3e3.0. 
co;2-0 

Cornelissen G, Otsuka K (2016) Chronobiology of aging: a mini-review. Gerontology 63:118–128. 
https://doi.org/10.1159/000450945 

Cudjoe TKM, Roth DL, Szanton SL, Wolff JL, Boyd CM, Thorpe RJ Jr (2018) The Epidemiology of 
social isolation: national health and aging trends study. J Gerontol Series B 75:107–113. https:// 
doi.org/10.1093/geronb/gby037 

Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted 
feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the 
suprachiasmatic nucleus. Genes Dev 14:2950–2961. https://doi.org/10.1101/gad.183500 

Daut RA, Fonken LK (2019) Circadian regulation of depression: a role for serotonin. Front 
Neuroendocrinol 54:100746. https://doi.org/10.1016/j.yfrne.2019.04.003 

Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major 
arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state. 
Neuroscience 130:165–183. https://doi.org/10.1016/j.neuroscience.2004.08.030 

Dibner C, Schibler U (2015) A pancreatic clock times insulin release. Science 350:628–629. https:// 
doi.org/10.1126/science.aad5412 

Dijk D-J, Duffy JF, Czeisler CA (2000) Contribution of circadian physiology and sleep homeostasis 
to age-related changes in human sleep. Chronobiol Int 17:285–311. https://doi.org/10.1081/cbi-
100101049 

Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics 
to behavior. Neuron 104:205–226. https://doi.org/10.1016/j.neuron.2019.07.016 

Doi R, Oishi K, Ishida N (2010) CLOCK regulates circadian rhythms of hepatic glycogen synthesis 
through transcriptional activation of Gys2. J Biol Chem 285:22114–22121. https://doi.org/10. 
1074/jbc.m110.110361 

Dölen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated 
activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184. https://doi.org/10. 
1038/nature12518 

Domènech-Abella J, Lara E, Rubio-Valera M, Olaya B, Moneta MV, Rico-Uribe LA, Ayuso-Mateos 
JL, Mundó J, Haro JM (2017) Loneliness and depression in the elderly: the role of social network. 
Soc Psychiatr Psychiatr Epidemiol 52:381–390. https://doi.org/10.1007/s00127-017-1339-3 

Duffy JF, Czeisler CA (2002) Age-related change in the relationship between circadian period, 
circadian phase, and diurnal preference in humans. Neurosci Lett 318:117–120. https://doi.org/ 
10.1016/s0304-3940(01)02427-2 

Duncan MJ, Cheng X, Heller KS (1995) Photoperiodic exposure and time of day modulate 
the expression of arginine vasopressin mRNA and vasoactive intestinal peptide mRNA in the 
suprachiasmatic nuclei of Siberian hamsters. Mol Brain Res 32:181–186. https://doi.org/10.1016/ 
0169-328x(95)00072-z 

Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopamin-
ergic neurons regulate ethologically relevant sleep–wake behaviors. Nat Neurosci 19:1356–1366. 
https://doi.org/10.1038/nn.4377 

Fabricius K, Helboe L, Fink-Jensen A, Wörtwein G, Steiniger-Brach B, Sotty F (2010) Increased 
dopaminergic activity in socially isolated rats: an electrophysiological study. Neurosci Lett 
482:117–122. https://doi.org/10.1016/j.neulet.2010.07.014 

Farajnia S, Michel S, Deboer T, vanderLeest, H.T., Houben, T., Rohling, J.H.T., Ramkisoensing, A., 
Yasenkov, R., Meijer, J.H., (2012) Evidence for neuronal desynchrony in the aged suprachiasmatic 
nucleus clock. J Neurosci 32:5891–5899. https://doi.org/10.1523/jneurosci.0469-12.2012

https://doi.org/10.1146/annurev-nutr-082018-124320
https://doi.org/10.1146/annurev-nutr-082018-124320
https://doi.org/10.1002/1097-4695(20000615)43:4%3c379:aid-neu6%3e3.0.co;2-0
https://doi.org/10.1002/1097-4695(20000615)43:4%3c379:aid-neu6%3e3.0.co;2-0
https://doi.org/10.1159/000450945
https://doi.org/10.1093/geronb/gby037
https://doi.org/10.1093/geronb/gby037
https://doi.org/10.1101/gad.183500
https://doi.org/10.1016/j.yfrne.2019.04.003
https://doi.org/10.1016/j.neuroscience.2004.08.030
https://doi.org/10.1126/science.aad5412
https://doi.org/10.1126/science.aad5412
https://doi.org/10.1081/cbi-100101049
https://doi.org/10.1081/cbi-100101049
https://doi.org/10.1016/j.neuron.2019.07.016
https://doi.org/10.1074/jbc.m110.110361
https://doi.org/10.1074/jbc.m110.110361
https://doi.org/10.1038/nature12518
https://doi.org/10.1038/nature12518
https://doi.org/10.1007/s00127-017-1339-3
https://doi.org/10.1016/s0304-3940(01)02427-2
https://doi.org/10.1016/s0304-3940(01)02427-2
https://doi.org/10.1016/0169-328x(95)00072-z
https://doi.org/10.1016/0169-328x(95)00072-z
https://doi.org/10.1038/nn.4377
https://doi.org/10.1016/j.neulet.2010.07.014
https://doi.org/10.1523/jneurosci.0469-12.2012


10 HowNon-photic Cues for the Circadian Time SystemMatter in Healthy… 215

Farajnia S, Meijer JH, Michel S (2015) Age-related changes in large-conductance calcium-activated 
potassium channels in mammalian circadian clock neurons. Neurobiol Aging 36:2176–2183. 
https://doi.org/10.1016/j.neurobiolaging.2014.12.040 

Fernandes P, Pereira L de M, Horta NAC, Cardoso TSR, Coimbra CC, Szawka RE, Pereira GS, 
Poletini MO (2021) Social interaction masking contributes to changes in the activity of the 
suprachiasmatic nucleus and impacts on circadian rhythms. Physiol Behav 237:113420. https:// 
doi.org/10.1016/j.physbeh.2021.113420 

Freund PR, Watson J, Gilmour GS, Gaillard F, Sauvé Y (2011) Differential changes in retina 
function with normal aging in humans. Doc Ophthalmol 122:177–190. https://doi.org/10.1007/ 
s10633-011-9273-2 

Gerth C, Garcia SM, Ma L, Keltner JL, Werner JS (2002) Multifocal electroretinogram: age-related 
changes for different luminance levels. Graefe’s Arch Clin Exp Ophthalmol 240:202–208. https:// 
doi.org/10.1007/s00417-002-0442-6 

Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063– 
1102. https://doi.org/10.1152/physrev.00009.2009 

González MMC, Aston-Jones G (2006) Circadian regulation of arousal: role of the noradrenergic 
locus coeruleus system and light exposure. Sleep 29:1327–1336. https://doi.org/10.1093/sleep/ 
29.10.1327 

Greco AM, Gambardella P, Sticchi R, D’Aponte D, de Franciscis P (1992) Circadian rhythms of 
hypothalamic norepinephrine and of some circulating substances in individually housed adult 
rats. Physiol Behav 52:1167–1172. https://doi.org/10.1016/0031-9384(92)90477-j 

Grippo RM, Purohit AM, Zhang Q, Zweifel LS, Güler AD (2017) Direct midbrain dopamine input 
to the suprachiasmatic nucleus accelerates circadian entrainment. Curr Biol 27:2465-2475.e3. 
https://doi.org/10.1016/j.cub.2017.06.084 

Grippo RM, Tang Q, Zhang Q, Chadwick SR, Gao Y, Altherr EB, Sipe L, Purohit AM, Purohit NM, 
Sunkara MD, Cios KJ, Sidikpramana M, Spano AJ, Campbell JN, Steele AD, Hirsh J, Deppmann 
CD, Wu M, Scott MM, Güler AD (2020) Dopamine signaling in the suprachiasmatic nucleus 
enables weight gain associated with hedonic feeding. Curr Biol 30:196-208.e8. https://doi.org/ 
10.1016/j.cub.2019.11.029 

Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirz-
abekov JJ, Airan RD, Zalocusky KA, Tye KM, Anikeeva P, Malenka RC, Deisseroth K (2014) 
Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551. https://doi. 
org/10.1016/j.cell.2014.05.017 

Han H-S, Kang G, Kim JS, Choi BH, Koo S-H (2016) Regulation of glucose metabolism from a 
liver-centric perspective. Exp Mol Med 48:e218–e218. https://doi.org/10.1038/emm.2015.122 

Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, Kowall N, Satlin 
A (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human 
dementia. Brain 131:1609–1617. https://doi.org/10.1093/brain/awn049 

Hastings M, Maywood E, Brancaccio M (2019) The mammalian circadian timing system and the 
suprachiasmatic nucleus as its pacemaker. Biology 8:13. https://doi.org/10.3390/biology8010013 

Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, 
Fitzpatrick JAJ, Ellisman MH, Panda S (2012) Time-restricted feeding without reducing caloric 
intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860. https:// 
doi.org/10.1016/j.cmet.2012.04.019 

Hernandes Júnior PR, Sardeli AV (2021) The effect of aging on body temperature: a systematic 
review and meta-analysis. Curr Aging Sci 14:191–200. https://doi.org/10.2174/187460981466 
6210624121603 

Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachi-
asmatic nucleus neurons. Nat Neurosci 1:708–713. https://doi.org/10.1038/3708 

Honma S, Katsuno Y, Tanahashi Y, Abe H, Honma K (1998) Circadian rhythms of arginine vaso-
pressin and vasoactive intestinal polypeptide do not depend on cytoarchitecture of dispersed cell 
culture of rat suprachiasmatic nucleus. Neuroscience 86:967–976. https://doi.org/10.1016/s0306-
4522(98)00078-5

https://doi.org/10.1016/j.neurobiolaging.2014.12.040
https://doi.org/10.1016/j.physbeh.2021.113420
https://doi.org/10.1016/j.physbeh.2021.113420
https://doi.org/10.1007/s10633-011-9273-2
https://doi.org/10.1007/s10633-011-9273-2
https://doi.org/10.1007/s00417-002-0442-6
https://doi.org/10.1007/s00417-002-0442-6
https://doi.org/10.1152/physrev.00009.2009
https://doi.org/10.1093/sleep/29.10.1327
https://doi.org/10.1093/sleep/29.10.1327
https://doi.org/10.1016/0031-9384(92)90477-j
https://doi.org/10.1016/j.cub.2017.06.084
https://doi.org/10.1016/j.cub.2019.11.029
https://doi.org/10.1016/j.cub.2019.11.029
https://doi.org/10.1016/j.cell.2014.05.017
https://doi.org/10.1016/j.cell.2014.05.017
https://doi.org/10.1038/emm.2015.122
https://doi.org/10.1093/brain/awn049
https://doi.org/10.3390/biology8010013
https://doi.org/10.1016/j.cmet.2012.04.019
https://doi.org/10.1016/j.cmet.2012.04.019
https://doi.org/10.2174/1874609814666210624121603
https://doi.org/10.2174/1874609814666210624121603
https://doi.org/10.1038/3708
https://doi.org/10.1016/s0306-4522(98)00078-5
https://doi.org/10.1016/s0306-4522(98)00078-5


216 M. O. Poletini et al.

Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J 
Clin Investig 121:2133–2141. https://doi.org/10.1172/jci46043 

Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden 
hamster. J Biol Rhythms 13:430–436. https://doi.org/10.1177/074873098129000255 

Husse J, Eichele G, Oster H (2015) Synchronization of the mammalian circadian timing system: 
light can control peripheral clocks independently of the SCN clock. BioEssays 37:1119–1128. 
https://doi.org/10.1002/bies.201500026 

Ieraci A, Mallei A, Popoli M (2016) Social isolation stress induces anxious-depressive-like behavior 
and alterations of neuroplasticity-related genes in adult male mice. Neural Plast 2016:1–13. 
https://doi.org/10.1155/2016/6212983 

Jagota A, Kalyani D (2009) Effect of melatonin on age induced changes in daily serotonin rhythms 
in suprachiasmatic nucleus of male Wistar rat. Biogerontology 11:299–308. https://doi.org/10. 
1007/s10522-009-9248-9 

Jamshed H, Beyl R, Della Manna D, Yang E, Ravussin E, Peterson C (2019) Early time-restricted 
feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and 
autophagy in humans. Nutrients 11:1234. https://doi.org/10.3390/nu11061234 

Jones JG (2016) Hepatic glucose and lipid metabolism. Diabetologia 59:1098–1103. https://doi. 
org/10.1007/s00125-016-3940-5 

Kalsbeek A, la Fleur S, Fliers E (2014) Circadian control of glucose metabolism. Molecular 
Metabolism 3:372–383. https://doi.org/10.1016/j.molmet.2014.03.002 

Kessler K, Pivovarova-Ramich O (2019) Meal timing, aging, and metabolic health. Int J Mol Sci 
20:1911. https://doi.org/10.3390/ijms20081911 

Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M (2010) Age-related changes in the 
transmission properties of the human lens and their relevance to circadian entrainment. J Cataract 
Refract Surg 36:308–312. https://doi.org/10.1016/j.jcrs.2009.08.035 

Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci 
68:2112–2116. https://doi.org/10.1073/pnas.68.9.2112 

Kovács LÁ, Berta G, Csernus V, Ujvári B, Füredi N, Gaszner B (2019) Corticotropin-releasing 
factor-producing cells in the paraventricular nucleus of the hypothalamus and extended amygdala 
show age-dependent FOS and FOSB/DeltaFOSB immunoreactivity in acute and chronic stress 
models in the rat. Front Aging Neurosci 11:274. https://doi.org/10.3389/fnagi.2019.00274 

Krach S (2010) The rewarding nature of social interactions. Front Behav Neurosci. https://doi.org/ 
10.3389/fnbeh.2010.00022 

Lee CR, Chen A, Tye KM (2021a) The neural circuitry of social homeostasis: consequences of 
acute versus chronic social isolation. Cell 184:1500–1516. https://doi.org/10.1016/j.cell.2021. 
02.028 

Lee MB, Hill CM, Bitto A, Kaeberlein M (2021b) Antiaging diets: separating fact from fiction. 
Science 374:eabe7365. https://doi.org/10.1126/science.abe7365 

Lehman MN, Lesauter J, Kim C, Berriman SJ, Tresco PA, Silver R (1995) How do fetal grafts of 
the suprachiasmatic nucleus communicate with the host brain? Cell Transplant 4:75–81. https:// 
doi.org/10.1177/096368979500400111 

Leone MJ, Sigman M, Golombek DA (2020) Effects of lockdown on human sleep and chronotype 
during the COVID-19 pandemic. Curr Biol 30:R930–R931. https://doi.org/10.1016/j.cub.2020. 
07.015 

Liu Y, Li Y, Yang B, Yu M, Zhang X, Bi L, Xu H (2020) Glutamatergic neurons of the paraventricular 
nucleus are critical for the control of wakefulness. Neuroscience 446:137–144. https://doi.org/ 
10.1016/j.neuroscience.2020.08.024 

Lopez MF, Laber K (2015) Impact of social isolation and enriched environment during adolescence 
on voluntary ethanol intake and anxiety in C57BL/6J mice. Physiol Behav 148:151–156. https:// 
doi.org/10.1016/j.physbeh.2014.11.012 

Lupi D, Semo M, Foster RG (2012) Impact of age and retinal degeneration on the light input 
to circadian brain structures. Neurobiol Aging 33:383–392. https://doi.org/10.1016/j.neurobiol 
aging.2010.03.006

https://doi.org/10.1172/jci46043
https://doi.org/10.1177/074873098129000255
https://doi.org/10.1002/bies.201500026
https://doi.org/10.1155/2016/6212983
https://doi.org/10.1007/s10522-009-9248-9
https://doi.org/10.1007/s10522-009-9248-9
https://doi.org/10.3390/nu11061234
https://doi.org/10.1007/s00125-016-3940-5
https://doi.org/10.1007/s00125-016-3940-5
https://doi.org/10.1016/j.molmet.2014.03.002
https://doi.org/10.3390/ijms20081911
https://doi.org/10.1016/j.jcrs.2009.08.035
https://doi.org/10.1073/pnas.68.9.2112
https://doi.org/10.3389/fnagi.2019.00274
https://doi.org/10.3389/fnbeh.2010.00022
https://doi.org/10.3389/fnbeh.2010.00022
https://doi.org/10.1016/j.cell.2021.02.028
https://doi.org/10.1016/j.cell.2021.02.028
https://doi.org/10.1126/science.abe7365
https://doi.org/10.1177/096368979500400111
https://doi.org/10.1177/096368979500400111
https://doi.org/10.1016/j.cub.2020.07.015
https://doi.org/10.1016/j.cub.2020.07.015
https://doi.org/10.1016/j.neuroscience.2020.08.024
https://doi.org/10.1016/j.neuroscience.2020.08.024
https://doi.org/10.1016/j.physbeh.2014.11.012
https://doi.org/10.1016/j.physbeh.2014.11.012
https://doi.org/10.1016/j.neurobiolaging.2010.03.006
https://doi.org/10.1016/j.neurobiolaging.2010.03.006


10 HowNon-photic Cues for the Circadian Time SystemMatter in Healthy… 217

Majumdar P, Biswas A, Sahu S (2020) COVID-19 pandemic and lockdown: cause of sleep disrup-
tion, depression, somatic pain, and increased screen exposure of office workers and students of 
India. Chronobiol Int 37:1191–1200. https://doi.org/10.1080/07420528.2020.1786107 

Manella G, Sabath E, Aviram R, Dandavate V, Ezagouri S, Golik M, Adamovich Y, Asher G (2021) 
The liver-clock coordinates rhythmicity of peripheral tissues in response to feeding. Nat Metab 
3:829–842. https://doi.org/10.1038/s42255-021-00395-7 

Manoogian ENC, Panda S (2017) Circadian rhythms, time-restricted feeding, and healthy aging. 
Ageing Res Rev 39:59–67. https://doi.org/10.1016/j.arr.2016.12.006 

Marcheva B, Ramsey KM, Bass J (2011) Circadian genes and insulin exocytosis. Cell Logist 
1:32–36. https://doi.org/10.4161/cl.1.1.14426 

Mather M, Harley CW (2016) The locus coeruleus: essential for maintaining cognitive function and 
the aging brain. Trends Cogn Sci 20:214–226. https://doi.org/10.1016/j.tics.2016.01.001 

Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011) A diversity of paracrine signals 
sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci 
108:14306–14311. https://doi.org/10.1073/pnas.1101767108 

Meyer-Bernstein EL, Morin LP (1999) Electrical stimulation of the median or dorsal raphe nuclei 
reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity 
rhythm phase shifts. Neuroscience 92:267–279. https://doi.org/10.1016/s0306-4522(98)00733-7 

Mieda M (2019) The network mechanism of the central circadian pacemaker of the SCN: Do AVP 
neurons play a more critical role than expected? Front Neurosci 13:139. https://doi.org/10.3389/ 
fnins.2019.00139 

Mieda M, Okamoto H, Sakurai T (2016) Manipulating the cellular circadian period of arginine 
vasopressin neurons alters the behavioral circadian period. Curr Biol 26:2535–2542. https://doi. 
org/10.1016/j.cub.2016.07.022 

Mistlberger RE, Antle MC (2011) Entrainment of circadian clocks in mammals by arousal and 
food. Essays Biochem 49:119–136. https://doi.org/10.1042/bse0490119 

Miyata S, Noda A, Iwamoto K, Kawano N, Okuda M, Ozaki N (2013) Poor sleep quality impairs 
cognitive performance in older adults. J Sleep Res 22:535–541. https://doi.org/10.1111/jsr.12054 

Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. 
Annu Rev Neurosci 35:445–462. https://doi.org/10.1146/annurev-neuro-060909-153128 

Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci 
Lett 150:112–116. https://doi.org/10.1016/0304-3940(93)90120-a 

Moran-Ramos S, Baez-Ruiz A, Buijs RM, Escobar C (2016) When to eat? The influence of circadian 
rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev 29:180– 
193. https://doi.org/10.1017/s095442241600010x 

Morin LP, Shivers K-Y, Blanchard JH, Muscat L (2006) Complex organization of mouse and rat 
suprachiasmatic nucleus. Neuroscience 137:1285–1297. https://doi.org/10.1016/j.neuroscience. 
2005.10.030 

Mrosovsky N (1988) Phase response curves for social entrainment. J Comp Physiol A 162:35–46. 
https://doi.org/10.1007/bf01342701 

Mukherji A, Kobiita A, Chambon P (2015) Shifting the feeding of mice to the rest phase creates 
metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc 
Natl Acad Sci 112:E6683. https://doi.org/10.1073/pnas.1519735112 

Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2014) Conditional antero-
grade tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain 
and brainstem. Brain Struct Funct 221:535–561. https://doi.org/10.1007/s00429-014-0924-4 

Najjar RP, Chiquet C, Teikari P, Cornut P-L, Claustrat B, Denis P, Cooper HM, Gronfier C (2014) 
Aging of non-visual spectral sensitivity to light in humans: compensatory mechanisms? PLoS 
ONE 9:e85837. https://doi.org/10.1371/journal.pone.0085837 

Nicola AC, Ferreira LB, Mata MM, Vilhena-Franco T, Leite CM, Martins AB, Antunes-Rodrigues 
J, Poletini MO, Dornelles RCM (2021) Vasopressinergic activity of the suprachiasmatic nucleus 
and mRNA expression of clock genes in the hypothalamus-pituitary-gonadal axis in female aging. 
Front Endocrinol 12:652733. https://doi.org/10.3389/fendo.2021.652733

https://doi.org/10.1080/07420528.2020.1786107
https://doi.org/10.1038/s42255-021-00395-7
https://doi.org/10.1016/j.arr.2016.12.006
https://doi.org/10.4161/cl.1.1.14426
https://doi.org/10.1016/j.tics.2016.01.001
https://doi.org/10.1073/pnas.1101767108
https://doi.org/10.1016/s0306-4522(98)00733-7
https://doi.org/10.3389/fnins.2019.00139
https://doi.org/10.3389/fnins.2019.00139
https://doi.org/10.1016/j.cub.2016.07.022
https://doi.org/10.1016/j.cub.2016.07.022
https://doi.org/10.1042/bse0490119
https://doi.org/10.1111/jsr.12054
https://doi.org/10.1146/annurev-neuro-060909-153128
https://doi.org/10.1016/0304-3940(93)90120-a
https://doi.org/10.1017/s095442241600010x
https://doi.org/10.1016/j.neuroscience.2005.10.030
https://doi.org/10.1016/j.neuroscience.2005.10.030
https://doi.org/10.1007/bf01342701
https://doi.org/10.1073/pnas.1519735112
https://doi.org/10.1007/s00429-014-0924-4
https://doi.org/10.1371/journal.pone.0085837
https://doi.org/10.3389/fendo.2021.652733


218 M. O. Poletini et al.

Noguchi T, Leise TL, Kingsbury NJ, Diemer T, Wang LL, Henson MA, Welsh DK (2017) Calcium 
circadian rhythmicity in the suprachiasmatic nucleus: cell autonomy and network modulation. 
eneuro 4, ENEURO.0160–17.2017. https://doi.org/10.1523/eneuro.0160-17.2017 

Novosadová Z, Polidarová L, Sládek M, Sumová A (2018) Alteration in glucose homeostasis and 
persistence of the pancreatic clock in aged mPer2Luc mice. Sci Rep 8:1. https://doi.org/10.1038/ 
s41598-018-30225-y 

Oishi K, Koyanagi S, Ohkura N (2011) Circadian mRNA expression of coagulation and fibrinolytic 
factors is organ-dependently disrupted in aged mice. Exp Gerontol 46:994–999. https://doi.org/ 
10.1016/j.exger.2011.09.003 

Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A (2020) The mammalian 
circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of 
the hypothalamus. Sci Adv 6:eabd0384. https://doi.org/10.1126/sciadv.abd0384 

Palomba M, Nygård M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M (2008) Decline of 
the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus 
of the mouse. J Biol Rhythms 23:220–231. https://doi.org/10.1177/0748730408316998 

Perelló M, Chacon F, Cardinali DP, Esquifino AI, Spinedi E (2006) Effect of social isolation on 24-h 
pattern of stress hormones and leptin in rats. Life Sci 78:1857–1862. https://doi.org/10.1016/j. 
lfs.2005.08.029 

Pickel L, Sung H-K (2020) Feeding rhythms and the circadian regulation of metabolism. Front Nutr 
7:39. https://doi.org/10.3389/fnut.2020.00039 

Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev 
Physiol 55:17–54. https://doi.org/10.1146/annurev.ph.55.030193.000313 

Pittendrigh CS, Daan S (1974) Circadian oscillations in rodents: a systematic increase of their 
frequency with age. Science 186:548–550. https://doi.org/10.1126/science.186.4163.548 

Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. 
J Comp Physiol? A 106:223–252. https://doi.org/10.1007/bf01417856 

Poletini MO, McKee DT, Kennett JE, Doster J, Freeman ME (2007) Knockdown of clock genes 
in the suprachiasmatic nucleus blocks prolactin surges and alters FRA expression in the locus 
coeruleus of female rats. Am J Physiol-Endocrinol Metab 293:E1325–E1334. https://doi.org/10. 
1152/ajpendo.00341.2007 

Polidarová L, Sládek M, Novosadová Z, Sumová A (2016) Aging does not compromise in vitro oscil-
lation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Chronobiol 
Int 34:105–117. https://doi.org/10.1080/07420528.2016.1242491 

Rademacher L, Schulte-Rüther M, Hanewald B, Lammertz S (2015) Reward: from basic reinforcers 
to anticipation of social cues. Social behavior from rodents to humans. Springer International 
Publishing, Cham, pp 207–221 

Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus 
determines circadian period. Science 247:975–978. https://doi.org/10.1126/science.2305266 

Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova, D., Ravussin, E., (2018) Metabolic 
slowing and reduced oxidative damage with sustained caloric restriction support the rate of living 
and oxidative damage theories of aging. Cell Metab 27:805-815.e4. https://doi.org/10.1016/j. 
cmet.2018.02.019 

Resendez SL, Namboodiri VMK, Otis JM, Eckman LEH, Rodriguez-Romaguera J, Ung RL, 
Basiri ML, Kosyk O, Rossi MA, Dichter GS, Stuber GD (2020) Social stimuli induce acti-
vation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote 
social behavior in male mice. J Neurosci 40(11):2282–2295. https://doi.org/10.1523/JNEURO 
SCI.1515-18.2020. Epub 2020 Feb 5 

Reznick J, Preston E, Wilks DL, Beale SM, Turner N, Cooney GJ (2013) Altered feeding differen-
tially regulates circadian rhythms and energy metabolism in liver and muscle of rats. Biochimica 
et Biophysica Acta (BBA) Mol Basis Dis 1832:228–238. https://doi.org/10.1016/j.bbadis.2012. 
08.010 

Roenneberg T, Merrow M (2007) Entrainment of the human circadian clock. Cold Spring Harb 
Symp Quant Biol 72:293–299. https://doi.org/10.1101/sqb.2007.72.043

https://doi.org/10.1523/eneuro.0160-17.2017
https://doi.org/10.1038/s41598-018-30225-y
https://doi.org/10.1038/s41598-018-30225-y
https://doi.org/10.1016/j.exger.2011.09.003
https://doi.org/10.1016/j.exger.2011.09.003
https://doi.org/10.1126/sciadv.abd0384
https://doi.org/10.1177/0748730408316998
https://doi.org/10.1016/j.lfs.2005.08.029
https://doi.org/10.1016/j.lfs.2005.08.029
https://doi.org/10.3389/fnut.2020.00039
https://doi.org/10.1146/annurev.ph.55.030193.000313
https://doi.org/10.1126/science.186.4163.548
https://doi.org/10.1007/bf01417856
https://doi.org/10.1152/ajpendo.00341.2007
https://doi.org/10.1152/ajpendo.00341.2007
https://doi.org/10.1080/07420528.2016.1242491
https://doi.org/10.1126/science.2305266
https://doi.org/10.1016/j.cmet.2018.02.019
https://doi.org/10.1016/j.cmet.2018.02.019
https://doi.org/10.1523/JNEUROSCI.1515-18.2020
https://doi.org/10.1523/JNEUROSCI.1515-18.2020
https://doi.org/10.1016/j.bbadis.2012.08.010
https://doi.org/10.1016/j.bbadis.2012.08.010
https://doi.org/10.1101/sqb.2007.72.043


10 HowNon-photic Cues for the Circadian Time SystemMatter in Healthy… 219

Roenneberg T, Daan S, Merrow M (2003) The art of entrainment. J Biol Rhythms 18:183–194. 
https://doi.org/10.1177/0748730403018003001 

Sakaniwa R, Noguchi M, Imano H, Shirai K, Tamakoshi A, Iso H (2022) Impact of modifiable 
healthy lifestyle adoption on lifetime gain from middle to older age. Age Ageing 51:afac080. 
https://doi.org/10.1093/ageing/afac080 

Santoso P, Nakata M, Ueta Y, Yada T (2018) Suprachiasmatic vasopressin to paraventricular 
oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior. 
Am J Physiol Endocrinol Metab 315:E478–E488. https://doi.org/10.1152/ajpendo.00338.2016 

Sargin D, Oliver DK, Lambe EK (2016) Chronic social isolation reduces 5-HT neuronal activity 
via upregulated SK3 calcium-activated potassium channels. eLife 5. https://doi.org/10.7554/elife. 
21416 

Satinoff E, Li H, Tcheng TK, Liu C, McArthur AJ, Medanic M, Gillette MU (1993) Do the suprachi-
asmatic nuclei oscillate in old rats as they do in young ones? Am J Physiol Regul Integr Comp 
Physiol 265:R1216–R1222. https://doi.org/10.1152/ajpregu.1993.265.5.r1216 

Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and 
food. J Biol Rhythms 18:250–260. https://doi.org/10.1177/0748730403018003007 

Schwartz WJ (2002) Suprachiasmatic nucleus. Curr Biol 12:R644. https://doi.org/10.1016/s0960-
9822(02)01155-7 

Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G, Foster RG (2003) Melanopsin retinal ganglion 
cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless 
(rd/rd cl) mice. Eur J Neurosci 17:1793–1801. https://doi.org/10.1046/j.1460-9568.2003.02616.x 

Solanas G, Peixoto FO, Perdiguero E, Jardí M, Ruiz-Bonilla V, Datta D, Symeonidi A, Castellanos 
A, Welz P-S, Caballero JM, Sassone-Corsi P, Muñoz-Cánoves P, Benitah SA (2017) Aged stem 
cells reprogram their daily rhythmic functions to adapt to stress. Cell 170:678-692.e20. https:// 
doi.org/10.1016/j.cell.2017.07.035 

Sonker P, Singaravel M (2021) Gender difference in circadian clock responses for social interaction 
with conspecific of the opposite-sex. Chronobiol Int 38:212–223. https://doi.org/10.1080/074 
20528.2020.1844724 

Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32:159–221. https://doi. 
org/10.1016/j.mam.2011.07.001 

Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats 
are eliminated by hypothalamic lesions. Proc Natl Acad Sci 69:1583–1586. https://doi.org/10. 
1073/pnas.69.6.1583 

Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock 
in the liver by feeding. Science 291:490–493. https://doi.org/10.1126/science.291.5503.490 

Sujino M, Masumoto K, Yamaguchi S, van der Horst GTJ, Okamura H, Inouye S-IT (2003) Suprachi-
asmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr 
Biol 13:664–668. https://doi.org/10.1016/s0960-9822(03)00222-7 

Suter DM, Schibler U (2009) Feeding the clock. Science 326:378–379. https://doi.org/10.1126/sci 
ence.1181278 

Takahashi JS (2016) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 
18:164–179. https://doi.org/10.1038/nrg.2016.150 

Takahashi M, Haraguchi A, Tahara Y, Aoki N, Fukazawa M, Tanisawa K, Ito T, Nakaoka T, Higuchi 
M, Shibata S (2017) Positive association between physical activity and PER3 expression in older 
adults. Sci Rep 7:1. https://doi.org/10.1038/srep39771 

Taylor HO, Taylor RJ, Nguyen AW, Chatters L (2016) Social isolation, depression, and psycholog-
ical distress among older adults. J Aging Health 30:229–246. https://doi.org/10.1177/089826431 
6673511 

Taylor WD, Zald DH, Felger JC, Christman S, Claassen DO, Horga G, Miller JM, Gifford K, Rogers 
B, Szymkowicz SM, Rutherford BR (2021) Influences of dopaminergic system dysfunction on 
late-life depression. Mol Psychiatry 27:180–191. https://doi.org/10.1038/s41380-021-01265-0

https://doi.org/10.1177/0748730403018003001
https://doi.org/10.1093/ageing/afac080
https://doi.org/10.1152/ajpendo.00338.2016
https://doi.org/10.7554/elife.21416
https://doi.org/10.7554/elife.21416
https://doi.org/10.1152/ajpregu.1993.265.5.r1216
https://doi.org/10.1177/0748730403018003007
https://doi.org/10.1016/s0960-9822(02)01155-7
https://doi.org/10.1016/s0960-9822(02)01155-7
https://doi.org/10.1046/j.1460-9568.2003.02616.x
https://doi.org/10.1016/j.cell.2017.07.035
https://doi.org/10.1016/j.cell.2017.07.035
https://doi.org/10.1080/07420528.2020.1844724
https://doi.org/10.1080/07420528.2020.1844724
https://doi.org/10.1016/j.mam.2011.07.001
https://doi.org/10.1016/j.mam.2011.07.001
https://doi.org/10.1073/pnas.69.6.1583
https://doi.org/10.1073/pnas.69.6.1583
https://doi.org/10.1126/science.291.5503.490
https://doi.org/10.1016/s0960-9822(03)00222-7
https://doi.org/10.1126/science.1181278
https://doi.org/10.1126/science.1181278
https://doi.org/10.1038/nrg.2016.150
https://doi.org/10.1038/srep39771
https://doi.org/10.1177/0898264316673511
https://doi.org/10.1177/0898264316673511
https://doi.org/10.1038/s41380-021-01265-0


220 M. O. Poletini et al.

Tomova L, Wang KL, Thompson T, Matthews GA, Takahashi A, Tye KM, Saxe R (2020) Acute 
social isolation evokes midbrain craving responses similar to hunger. Nat Neurosci 23:1597–1605. 
https://doi.org/10.1038/s41593-020-00742-z 

Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, 
Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in 
circadian clock mutant mice. Science 308:1043–1045. https://doi.org/10.1126/science.1108750 

Valentino RJ, Van Bockstaele E (2008) Convergent regulation of locus coeruleus activity as an 
adaptive response to stress. Eur J Pharmacol 583:194–203. https://doi.org/10.1016/j.ejphar.2007. 
11.062 

van Gool WA, Witting W, Mirmiran M (1987) Age-related changes in circadian sleep-wakefulness 
rhythms in male rats isolated from time cues. Brain Res 413:384–387. https://doi.org/10.1016/ 
0006-8993(87)91034-1 

Viswanathan N, Davis FC (1995) Suprachiasmatic nucleus grafts restore circadian function in aged 
hamsters. Brain Res 686:10–16. https://doi.org/10.1016/0006-8993(95)00423-n 

Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the 
intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci 106:21453– 
21458. https://doi.org/10.1073/pnas.0909591106 

Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A, Hung LW, Deisseroth K, 
Malenka RC (2018) 5-HT release in nucleus accumbens rescues social deficits in mouse autism 
model. Nature 560:589–594. https://doi.org/10.1038/s41586-018-0416-4 

Watanabe A, Shibata S, Watanabe S (1995) Circadian rhythm of spontaneous neuronal activity in 
the suprachiasmatic nucleus of old hamster in vitro. Brain Res 695:237–239. https://doi.org/10. 
1016/0006-8993(95)00713-z 

Webb AB, Angelo N, Huettner JE, Herzog ED (2009) Intrinsic, nondeterministic circadian rhythm 
generation in identified mammalian neurons. Proc Natl Acad Sci 106:16493–16498. https://doi. 
org/10.1073/pnas.0902768106 

Wei HG, Riel E, Czeisler CA, Dijk D-J (1999) Attenuated amplitude of circadian and sleep-
dependent modulation of electroencephalographic sleep spindle characteristics in elderly human 
subjects. Neurosci Lett 260:29–32. https://doi.org/10.1016/s0304-3940(98)00851-9 

Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat 
suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697– 
706. https://doi.org/10.1016/0896-6273(95)90214-7 

West AC, Bechtold DA (2015) The cost of circadian desynchrony: evidence, insights and open 
questions. BioEssays 37:777–788. https://doi.org/10.1002/bies.201400173 

Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchro-
nization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412. https://doi. 
org/10.1126/science.1089287 

Yamaguchi A, Tatsumoto M, Matsumura R, Endo T, Hirata K, Tokuda I, Akashi M (2018) Normal 
peripheral circadian phase in the old-old with abnormal circadian behavior. Genes Cells 23:849– 
859. https://doi.org/10.1111/gtc.12633 

Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central 
and peripheral mammalian clocks. Proc Natl Acad Sci 99:10801–10806. https://doi.org/10.1073/ 
pnas.152318499 

Yang G, Chen L, Grant GR, Paschos G, Song W-L, Musiek ES, Lee V, McLoughlin SC, Grosser T, 
Cotsarelis G, FitzGerald GA (2016) Timing of expression of the core clock gene Bmal1 influences 
its effects on aging and survival. Sci Transl Med 8:324ra16. https://doi.org/10.1126/scitranslmed. 
aad3305 

Yang S, Gerow KG, Huber HF, Considine MM, Li C, Mattern V, Comuzzie AG, Ford SP, Nathanielsz 
PW (2017) A decline in female baboon hypothalamo-pituitary-adrenal axis activity anticipates 
aging. Aging 9:1375–1385. https://doi.org/10.18632/aging.101235 

Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, Yamamoto S, Sakurai 
M, Oike H, Wada N, Yoshida-Noro C, Oishi K (2016) Short-term feeding at the wrong time 
is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical

https://doi.org/10.1038/s41593-020-00742-z
https://doi.org/10.1126/science.1108750
https://doi.org/10.1016/j.ejphar.2007.11.062
https://doi.org/10.1016/j.ejphar.2007.11.062
https://doi.org/10.1016/0006-8993(87)91034-1
https://doi.org/10.1016/0006-8993(87)91034-1
https://doi.org/10.1016/0006-8993(95)00423-n
https://doi.org/10.1073/pnas.0909591106
https://doi.org/10.1038/s41586-018-0416-4
https://doi.org/10.1016/0006-8993(95)00713-z
https://doi.org/10.1016/0006-8993(95)00713-z
https://doi.org/10.1073/pnas.0902768106
https://doi.org/10.1073/pnas.0902768106
https://doi.org/10.1016/s0304-3940(98)00851-9
https://doi.org/10.1016/0896-6273(95)90214-7
https://doi.org/10.1002/bies.201400173
https://doi.org/10.1126/science.1089287
https://doi.org/10.1126/science.1089287
https://doi.org/10.1111/gtc.12633
https://doi.org/10.1073/pnas.152318499
https://doi.org/10.1073/pnas.152318499
https://doi.org/10.1126/scitranslmed.aad3305
https://doi.org/10.1126/scitranslmed.aad3305
https://doi.org/10.18632/aging.101235


10 HowNon-photic Cues for the Circadian Time SystemMatter in Healthy… 221

inactivity and metabolic disorders in mice. Metabolism 65:714–727. https://doi.org/10.1016/j. 
metabol.2016.02.003 

Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh 
WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting 
of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc 
Natl Acad Sci 101:5339–5346. https://doi.org/10.1073/pnas.0308709101 

Zhang Y, Brainard GC, Zee PC, Pinto LH, Takahashi JS, Turek FW (1998) Effects of aging on lens 
transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. Neurosci Lett 
258:167–170. https://doi.org/10.1016/s0304-3940(98)00887-8

https://doi.org/10.1016/j.metabol.2016.02.003
https://doi.org/10.1016/j.metabol.2016.02.003
https://doi.org/10.1073/pnas.0308709101
https://doi.org/10.1016/s0304-3940(98)00887-8


Chapter 11 
Pineal Gland Physiology 
and Aging-Related Alterations 
in the Circadian Timing System 

Vijay K. Bharti , Seithikurippu R. Pandi-Perumal , 
and Perumal Subramanian 

11.1 Introduction 

The pineal gland (PG) is part of the epithalamus and is situated in the midline of the 
3rd ventricle (i.e., the geometric center, hence “Seat of the Soul” by René Descartes) 
of the human brain. The circadian timing system (CTS), sleep/wake control, immu-
nity, reproduction, cell protection, and neuroprotection are some of the examples of 
important functions of the pineal gland. The physiologically active proteins, peptides, 
and enzymes produced by the mammalian pineal body have several physiological 
activities in the pineal gland and help maintain the biological clock and circadian 
timing (Blask et al. 1983; Benson 1989; Bharti et al. 2009; Jagota and Mattam 2017). 
It constitutes active peptides, serotonin (5-HT), melatonin (MLT), and several other 
pineal indoles, which have recently been discovered to be strong regulators of a 
variety of physiological functions, including aging and longevity. Many researchers 
revealed that the blood concentrations of melatonin turn down with increasing age 
and are documented to be negatively associated with quite a lot of diseases together 
with neurodegenerative diseases (Cheng et al. 2021). As melatonin is implicated 
in autophagic flux, quenching of free radicals, suppressing the discharge of pro-
inflammatory protein factors, and jamming apoptotic pathways, the amplitude of 
its rhythm during aging is crucial. Melatonin rhythm, in general, deteriorates in 
aged mammals and humans, the above-mentioned processes are weakened causing
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them more vulnerable to numerous disorders and diseases. The pineal gland exhibits 
clear age-associated deteriorations (Cheng et al. 2021). The pineal gland in humans 
frequently becomes calcified with age, making it a suitable imaging marker. Several 
studies have linked pineal calcification to a disrupted 24 h rhythm of sleep control 
and a reduction of melatonin synthesis during the aging process (Yoon et al. 2003). 

The deficiency of melatonin is linked not just to age but also to the severity of 
the deficiency’s impact on mental health. Extensive investigations document that 
nocturnal melatonin concentrations are diminished explicitly in Alzheimer’s disease 
(AD) and that diurnal melatonin concentrations are elevated in AD patients, repre-
senting that the neurodegenerative development influences the circadian-pineal orga-
nization. Patients often report distressing sleep patterns. The absence of a daily 
melatonin rhythm in AD patients is inextricably linked to clinical circadian rhythm 
disease. These patients exhibit agitation, agitation, insomnia, and sleep dysregulation 
(Wu et al. 2003). 

Melatonin is available without a prescription in practically every country on the 
planet and is available in the form of tablets, capsules, syrup, and transdermal patches 
(Wu et al. 2003). Nonetheless, despite its modest side effects profile and stumpy 
potential for misuse, there are concerns associated with the continuous usage of 
melatonin in the elderly. These concerns also emerge from improper administration 
and use in specific therapeutic situations, such as an adjuvant in benzodiazepine dose-
decreasing protocols, where clinical studies are insufficient to maintain the drug’s 
efficacy. 

11.2 Neuroendocrine Perspective of Circadian Rhythm 
and Aging 

There are various metabolic activity and cellular secretions of the hypothalamus, 
pituitary, pineal (SCN), adrenal, thyroid, thymus, and gonads which are associated 
with circadian rhythm and aging and controlled through neuroendocrine secretions. 
Among others, aging progressions in mammalian systems lead to major changes 
in the circadian clock’s output rhythms, neuroendocrine disruption, compromised 
immunity, and loss of collagen fiber and tissue elasticity. The changes include phase 
shifts (usually a phase advance) and amplitude reduction. In rodents, aging causes a 
change in the circadian timing system and several other parameters such as regulation 
of body temperature, locomotor rhythm, sleep/wakefulness, drinking, and feeding 
rhythms (Weinert 2000). A shift in melatonin synthesis and changes in body tempera-
ture rhythms are also noted. Unlike young adults, elderly people have an earlier usual 
time of sleeping and awakening and sleep disturbances (Yoon et al. 2003). This has 
been linked to inadequate pineal secretion rhythmicities in the aged pineal gland in 
older adults. In older animals, this is also linked to a reduction in thyroxin, thyroxin-
releasing hormone (TRH), and thymus secretion (Rezzani et al. 2020). There is a 
shred of evidence that pineal calcification with aging inhibits melatonin secretion
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affecting immunomodulation and metabolic balance (Tan et al. 2018). Hence, it 
is imperative to rejuvenate the pineal gland for its normal endocrine function to 
control the aging process initiated due to poor melatonin and pineal secretion in the 
calcified gland. Melatonin regulates other cellular functions that control cell death, 
thereby aging, viz., mitochondrial function, free radical generation, apoptosis, anti-
inflammatory function, etc. (Mattam and Jagota 2014; Hardeland 2017; Subramanian 
et al. 2021; Xie et al. 2021). Pineal secretions up-regulate aging suppressor sirtuin-1, 
which resulting better mitochondrial metabolic function and circadian rhythm. 

Hence, re-normalizing the circadian clock may improve health and longevity, 
while disrupting the clock may cause associated medical and mental dysfunctions. So, 
resetting circadian clocks would help synchronization in physiology and metabolism 
and then increase longevity and overall health. Some studies reported resetting 
of circadian clocks through changing feeding regimes (Froy 2011). As a result, 
maintaining pineal endocrine secretions is beneficial to homeostasis and longevity. 

Recently, it is stated that the pineal gland secretes neurosteroids, e.g., 7α-
hydroxypregnenolone, estradiol-17β, testosterone, etc., in circadian rhythm and 
controls age related physiological activities (Tsutsui et al. 2018). 

11.3 Changes in Sleep Pattern with Aging 

Sleep is a vital physiological process that contains important curative activities neces-
sary for optimal daytime functioning. Inadequate or poor-quality sleep has also been 
linked to chronic health problems and end-organ dysfunction, including an increase 
in mortality rates and aging (Verstraeten 2007; Punjabi et al. 2009; BaHammam and 
Pandi-Perumal 2010). Several physiological changes occur during normal aging. This 
includes sleep quality (subjective as per self reports and objective, as per polysomno-
graphic or other diagnostic devices findings), sleep quantity, and sleep intensity. 
Age-associated alterations in sleep include, but are not limited to, duration of sleep 
and waking, the timing of sleep onset, the overall efficiency of sleep maintenance, 
alteration in sleep staging (a polysomnographic finding), and daytime sleep behav-
iors (Pandi-Perumal et al., 2010). Aging is associated with increased light (NREM 
Stage N1 and N2 sleep) and decreased deep (NREM Stage N3 sleep) (refer, Table 
11.1). Increased frequency of unprompted arousals is also reported (Edwards et al. 
2010).

The process of aging is often associated with qualitative and quantitative changes 
in terms of sleep/wake patterns and their robustness. The sleep period in infancy, for 
example, is at an all-time high, with newborn children napping for about 16 h almost 
every day. This need for sleep decreases throughout development eventually resulting 
in 7–8 h in adults. Though less widely studied, there is evidence that sleep duration 
decreases from young adulthood through the later years of life in humans. Other 
studies, however, show that sleep quantity does not change with age; rather, sleep 
in aging is highly fragmented and is frequently consolidated during daytime naps. 
Various factors, vision-related issues, including inadequate natural light exposure,



226 V. K. Bharti et al.

Table 11.1 Sleep changes that occur during normal aging 

Sleep-related changes that occur as a result of normal aging 

i Circadian changes, e.g., amplitude reduction, acrophase becomes labile 

ii Advanced sleep timing, i.e., early bedtime, early morning awakening 

iii Circadian dysregulation, e.g., Advanced sleep phase syndrome (ASPS) 

iv Decrease in the ability to sleep: 
a. Sleep fragmentation, i.e., increased a number of nocturnal awakenings 
b. Prolonged nocturnal awakenings (lack of consolidation) 

v Increased sleep onset latency (SOL) 

vi Increased sleep fragmentation, i.e., less consolidation, more awakening, increased 
arousals, and increased transition to lighter sleep stages N1 and N2 

vii Increased time spent in lighter and fragile sleep (NREM sleep stage R1 and stage 
R2; easily woken by external stimuli) 

viii Decreased slow-wave sleep (SWS; deep sleep or NREM Stage N3) 
Advanced sleep timing (going to bed too early) 

ix Reduction in overnight sleep 

x Increased daytime nap frequency 

xi Increased wake after sleep onset (time spent awake throughout the night) 

xii Decreased overall nocturnal sleep duration 

xiii Reduced and fewer NREM-REM sleep cycles and other related changes

rising health concerns, and an alteration in circadian zeitgebers, have been proposed 
as processes causing poor sleep quality in the aged individuals (Pandi-Perumal et al. 
2010; Kun et al. 2018). Additionally, the incidence of sleep-related problems, which 
are becoming more common among the aged society, is a significant contributor to 
poor sleep quality (Figs. 11.1 and 11.2).

11.4 The Relationship Between Aging Physiology 
and Circadian Rhythm 

Aging is typically linked with dwindling or disorganization of the circadian system. 
The circadian acrophase becomes highly displaced, tending to happen in advance 
with progressing age. The participation of clock genes in the aging physiology as they 
are involved in an assortment of disease processes is also noted. Current work has 
been giving insights into the underlying molecular pathways associated with aging 
physiology, with the assurance of involvement(s) to augment healthy life spans. 
Caloric constraint, which is constantly and recurrently connected with lengthening 
life in diverse animal models, is linked with amplified circadian amplitude. These data 
suggest the decisive significance of circadian biology in comprehending aging prob-
lems, from the circadian clock machinery coordinating metabolism to the progress up 
to geroprotectors (Arul and Subramanian 2014; Duffy et al. 2015). The quantitative
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Fig. 11.1 Neuroendocrine mechanism of aging in mammals 

Increased Sleep Complaints 

Increased time in Bed 

Changes in sleep pattern with 
aging 

Increased difficulty maintaining 
sleep 

Dysregulation of circadian 
rhythm 

Decreased Sleep Efficiency Increased number of awakening 

Decreased Slow Wave Sleep 

Fig. 11.2 Incidents of sleep-related problems with aging

inference of circadian rhythm hallmarks construed in light of time-dependent refer-
ence values aids in (i) distinguishing influences of normal healthy aging from those 
associated with disease, disorder, and disease/disorder prognosis; (ii) in identifying 
changes in rhythm characteristics as indicators of increased risk before the appear-
ance of disease; and (iii) in optimizing prophylactic and/or curative intercessions
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aimed at disease/disorder separately. Comprehending the alterations in amplitude 
and/or acrophase that may outshine any modification in normal value also shuns 
away depicting counterfeit interpretations resultant from data collected at a fixed 
clock hour. Appropriate risk recognition, along with the management optimization of 
the disease by timing (chronotherapy), is the objective of several ongoing widespread 
population-based investigations focusing on the health of the aged people, with the 
intention that long life is not accomplished at the outlay of an abridged quality of 
healthy life (Cornelissen and Otsuka 2017; Martín Giménez et al. 2022). 

11.5 Aging and Circadian Rhythms 

Aging has been shown to disrupt circadian rhythmicity at multiple levels of biolog-
ical organization (Tabibzadeh 2021; Nathan et al. 2021; Kim et al. 2022). There 
is a substantial body of literature on age-related changes in the 24 h periodicity 
in animals. These studies documented age-associated variations in the circadian 
behavioral rhythms (e.g. amplitude of numerous neuronal, endocrine, and metabolic 
rhythms) have been documented in the literature, and discuss how the circadian clock 
drives these rhythms (Acosta-Rodríguez et al. 2021). However, there are still some 
inconsistencies (Pohl 1993). Age-associated alterations in circadian pacemakers have 
been investigated in both humans and other animals. Such studies include, but are not 
limited to morphological, behavioral, as well as electrophysiological investigations. 
This points to the fact that older individuals may be due to a lack of zeitgebers (time 
clues or time givers), especially if they are housebound or institutionalized. 

As outlined above, the circadian clocks become weaker and often damped or phase 
advanced during aging. This is further evident with regular or routine adjustments in 
routine bedtimes and arousing times in the older individuals. These changes denote, 
the phase progression of the sleep–wake cycle, and these alterations could be either 
by a slowing or a quickening of the circadian pacemaker (suprachiasmatic nucleus, 
SCN). This phase moves forward phase could be linked to amplitude attenuation and 
phase advance in the core body temperature (cBT) rhythm. Furthermore, a reduction 
in endogenous period length for waking and paradoxical sleep (PS) is one of the 
most significant age-related changes in a temporal structure, and phase advancement 
or dampening of hormonal and other overt rhythms may lead to a disease state or 
altered physiology (Morris et al. 2016). 

The phase-reversal mechanism in older animals also varies. For example, aged 
animals respond to a phase-reversal of the LD cycle slower than younger animals. 
During the day, there is a common tendency for sleep loss. Because older animals 
sleep less during the light phase of the LD cycle, the majority of the age-related 
decrease in total sleep time (TST) is due to selective sleep loss).
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11.6 Modifications in Circadian Rhythms with Age 

As organisms age, rhythmic processes also undergo a variety of systematic changes. 
While these changes may be regarded as generic representations of normal aging, it 
is clear that within a species, individual variations in the way aging occurs exist. As a 
result, many natural, distinct progressions toward disorder within circadian systems 
manifest themselves as increases in the standard deviations (SD) of their measured 
values. Several changes in overt rhythmicity appear to be linked to aging. Some of 
these have been linked to a loss of SCN function, while others may be the result of 
a decline in either entrainment mechanisms or clock-controlled systemic activities. 

(a) Changes in overt circadian patterns include amplitude reduction, rhythm 
fragmentation, and temporal order disruption 

(b) Loss of entrainment stability and sensitivity to zeitgebers. Besides, the clock-
controlled process itself is likely to change. For example, changes in the 
volume or intensity of specific activities, the distribution of different behav-
iors, the amounts of circulating hormones, and the density of specific peptides, 
neurotransmitters, and receptors; and. 

(c) Changes in period or period stability. 

11.7 Amplitude and Circadian Organization 

Losses in “stability” and level of rhythmic function are reflected in amplitude reduc-
tions. Numerous studies have looked at the link between rhythm abnormalities and 
aging. Earlier research has discovered changes in circadian hormonal rhythms. As 
rodents get older, many studies have found that their wheel-running activity deteri-
orates. Humans have also been reported to have age-related changes in locomotor 
activity. A decline in the amplitude of other behavioral rhythms such as feeding, 
drinking, and sleep/wake is also connected with aging (Hennion and Etain 2022). 
Aging has an impact on other physiologic rhythms in a similar way, e.g., body temper-
ature rhythms (mice and rats), audiogenic convulsions (mice), oxygen consump-
tion (mice), potassium excretion (humans), growth hormone (GH), testosterone, and 
luteinizing hormone (LH) (humans). There is a report on altered diurnal rhythms 
of blood cortisol, aldosterone, prolactin, and GH in older humans. The sex differ-
ence was also noted. The circadian amplitude and mesor of epinephrine and nore-
pinephrine are decreased with age while the acrophase remained constant (Halberg 
1982). There has been a decrease in the rhythm of pineal N-acetyl transferase in 
hamsters (Reiter et al. 1980). One of the difficult questions to answer is whether 
the decline in the amplitude of overt rhythms reflects a shift in circadian pacemaker 
activity or an age-related loss of peripheral function. When compared to young rats, 
Satinoff and co-workers (1993) found that the pacemaker of older rats had disrupted 
patterns and lower amplitude of neuronal activity, without disturbing behavioral 
rhythms. In response to LD transitions, Wise et al. (1987, 1988) found a reduc-
tion in glucose utilization in suprachiasmatic nucleus (SCN) tissues in aging rats.
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Furthermore, there have been numerous reports of age-associated morphological 
and neurochemical alterations in the SCN, including alterations in cells producing 
vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) (Roozendaal et al. 
1987). Although these changes do not always correspond to explicit changes in 
behavior and physiology. There are adequate variations in the SCN of younger and 
older animals which advocate an association between dysregulation of SCN and 
changes in circadian patterns. Furthermore, the re-consolidation of host-driven loco-
motor rhythmicity in aged hamsters following transplantation of SCN demonstrates 
its vital role in maintaining organization and rhythmicity during the aging process 
(Murd and Ralph 1998). 

A lack of synchronization or incorrect phase connections among rhythms is a 
predictable result of reduced rhythm amplitude. The major purposes of biological 
clocks, according to popular belief, are to elicit a time-oriented structure within 
rhythmic processes and to synchronize them to the geophysical environment. As a 
result, it’s safe to assume that this organization will be jeopardized if the clock or 
its control mechanisms fail. Alteration in time-oriented structure (e.g., biochemical, 
physiology, and behavior) is a common sign of disorganization. Rhythms remain 
in sync with one another, yet they may have incongruent or changeable phase 
relationships. In humans, such a form of the disorder has been thoroughly established. 

In summary, several rhythms have shown age-related changes in amplitude, 
including the rest/activity cycle, core body temperature (cBT), feeding, drinking, 
eating, and response to zeitgeber (e.g., LD cycle non-photic zeitgeber) (Mohawk 
et al. 2019). However, differences in the amplitude of circadian cycles could not be 
explained only by age-related changes in visual sensitivity. Similar to the diminished 
LD disparities in sleep/wake rhythms, behavioral rhythms have lower amplitudes. 

11.8 Entrainment and Responsiveness to Zeitgebers: 
Influence of Aging 

When compared to young adults, old persons’ sleep/wake patterns become disor-
dered and varied. A lack of organization in a light cycle could be caused by either 
a malfunctioning clock or a drop in sensitivity or response to zeitgebers. For  most  
organisms, the environmental LD cycle serves as a pervasive and prominent zeit-
geber. Other rhythmic features of the geophysical environment may also serve in 
this capacity (Amir and Stewart 1998). Additionally, non-photic zeitgebers will indi-
rectly alter rhythms and serve as a potential zeitgeber (Mrosovsky and Biello 1994; 
Mrosovsky 1996). 

Entrainment to light cycles, which is the ultimate measure of overall circadian 
activity, is affected by changes in the period, photoreceptor sensitivity, and circa-
dian function. Entrainment, on the other hand, is regulated by the organism’s acute 
light reactions, which may mask circadian gating. The most basic experiments that 
look at circadian reactions to external stimuli are re-entrainment and phase-shifting
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paradigms. Unfortunately, while these reactions change with age, they are not consis-
tent among species or even within experiments. Peng et al. (1980) and Peng and Kang 
(1984) showed no difference in the rate of re-entrainment between young and old 
rats. Rosenberg et al. (1979) found that older rats took longer to respond to a phase-
reversal of the LD cycle than younger rats. In 1992, Zee and co-workers observed 
that young hamsters take longer to re-entrain to a phase advanced light cycle but take 
less time when the cycle is delayed, whereas Valentinuzzi et al. (1997) reported that 
in old mice, re-entrainment is accelerated when the cycle is advanced but unchanged 
when the cycle is delayed. Finally, light-induced phase delays rise in old rats but 
decrease in mice, and light-induced phase shifts decrease in old hamsters, but this 
change can be reversed by powerful light pulses (Zhang et al. 1996). The reasons for 
these inconsistencies are unknown, given the variety of species used and the fact that 
experimental conditions differ from lab to lab, this mismatch may not be surprising. 
Variations are more than likely related to individual differences in how animals age. 
Some hamsters lose their highly consolidated pattern of wheel-running activity as 
they get older, while others keep it (Antoniadis et al. 2000). Because activity influ-
ences circadian responsiveness to light, as well as the phase and duration of rhythms, 
aging may have varying effects on rhythmicity as a result of changes in wheel-running 
patterns. Age has an impact on non-photic cue reactions as well. Phase shifts induced 
by a serotonin (5-HT) agonist or the benzodiazepine (BZD), triazolam, are reduced 
in aged hamsters, and a prenatal SCN transplant and a melatonin agonist can restore 
the latter effect. Further, melatonin can also assist you in readjusting to a new light 
cycle (Weibel et al. 2000). 

11.9 Age-Associated Changes in Circadian Dysregulation 

There are numerous differences in age-related pineal secretions and physiological 
changes in period length to be noticed (Reiter et al. 1981). The most significant 
age-related changes in circadian behavioral rhythms are seen in the free-running 
and entrained rhythms. The amplitude of many intrinsic rhythms of metabolic and 
physiological indices decreases as people get older, with an apparent decrease in 
the rhythm’s maxima, viz., body temperature cycles (mouse and rat), audiogenic 
convulsions (mouse), cellular oxygen utilization (mouse), excretion of potassium 
(humans), and secretion of growth hormone (human), testosterone (human), and 
luteinizing hormone (human) (Davis 1981; Sehirli et al. 2021). 

Age-related defects in the circadian organization are linked to changes in the 
association between endogenous and ambient rhythms. Circadian rhythms are “free-
run” in permanent darkness, with an intrinsic period (Tau) slightly longer or shorter 
than 24 h, and in humans, it is between 24.2 and 24.4 h. As the age advances, 
Tau gets shorter slightly. Similarly, the free-running duration in rats decreases from 
adolescence to old age. There are a variety of viewpoints on these changes. Several 
investigations found shorter periods, while others found more extended periods. On
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the other hand, other researchers have claimed that no alterations have occurred 
(Sharma and Chandrashekaran 1998). 

However, experimental, technical, and methodological variations such as age 
differences, exposure to earlier entrainment, and potential feedback response could 
skew the results. Further, experimental setup, time of the experiment, or observa-
tion time (e.g. LL vs DD) can also influence the results. Therefore, due to such a 
wide range of confounding factors, making any clear judgments about age-related 
alterations in circadian systems is not that easy. Proper caution should be exercised 
during the interpretation of the findings. 

11.10 Conclusions 

Throughout animals’ and humans’ lives, the pineal gland plays a critical part in the 
circadian timing system and maintaining homeostasis and biological clock. Mela-
tonin levels decline with age, and in neurodegeneration, there is a marked reduction in 
this hormone. Melatonin has both chronobiotic and cytoprotective (antioxidant and 
neuroprotector) effects (Cardinali 2019). Melatonin, as a chronobiotic, can alter the 
phase and amplitude of biological cycles. Melatonin, as a cytoprotective molecule, 
prevents the low-level inflammatory damage found in aging and neurodegenera-
tion. Administration of melatonin reset the circadian dysregulation, promotes sleep, 
reduces sundowning, and delays the course of cognitive deterioration in neurode-
generative disorders. Recent evidence suggests that melatonin effectively protects 
neuronal cells against Aβ-mediated toxicity through antioxidative defense and anti-
amyloid properties. Melatonin not only suppresses Aβ production, but also stops the 
development of amyloid fibrils through a structure-dependent interaction with Aβ. 
More research on the use of melatonin in the treatment of various disorders is needed, 
particularly at an early stage of neurodegenerative diseases. 

This chapter provides and overview of some of the aspects of circadian rhythms, 
and its relevance to aging and neurodegeneration (Fig. 11.2. Interaction between 
pineal gland, aging, and sleep). 

Over the years, several theories have been proposed, and recent research on pineal 
secretions revealed that they slow aging by reducing mitochondrial processes and 
physiological body defense mechanisms. For clear understanding, readers are encour-
aged to refer the accompanying chapters in this volume and related publications. In 
summary, a significant need for the study on the disruptors of the physiology of 
pineal, its immunomodulatory functions, and aging in variety of species should be 
conducted to determine their translational potential in gerontology and enhancing 
longevity.
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Chapter 12 
Circadian Rhythmicity in Aging 
and Parkinson’s Disease 

H. J. Jyothi, Bidisha Bhaduri, Maithily Hingmire, Priyansha Verma, 
T. C. Yasha, and Phalguni Anand Alladi 

12.1 Basal Ganglia 

The group of nuclei that are encased within or considered a part of the basal 
ganglia (BG) extend from the forebrain to midbrain and comprise of striatum, globus 
pallidus (GP), subthalamic nuclei (STN), and substantia nigra (SN). The striatum is 
the neuroanatomical cooperative of the sub-cortical regions known as caudate and 
putamen, and they harbor 90–95% of medium spiny neurons (MSN), which are 
their functional principal neurons. SN on the other hand is the hub for the dopamin-
ergic neurons, wherein the soma is localized primarily in the pars compacta (SNpc) 
region, while the pars reticulata is the output nucleus. The age-related neurobiolog-
ical changes in the substantia nigra pars compacta have been studied (Alladi et al. 
2009; Alladi et al. 2010a, b; Jyothi et al. 2015; Naskar et al. 2019) and reviewed 
extensively elsewhere (Reeves et al. 2002; Stark and Pakkenberg 2004). 

Classical studies on post-mortem brains and experimental animal models divulge 
the heterogeneous nature of BG disorders, although the same anatomical loci within 
the BG are involved (Albin et al. 1989). The manifestations can be of either hyper-
kinetic nature, characterized by the excess, rapid, and uncontrollable movements
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seen in Huntington’s disease (HD), tics, ballism (Carpenter et al. 1950), or hypoki-
netic, which involves akinesia, bradykinesia, rigidity, mostly noted in Parkinson’s 
disease (PD), and dystonia (Jankovic and Rohaidy 1987). These hyper or hypoki-
netic movements are incumbent to the alterations in the striatal projection neurons 
and/or destruction of cellular repertoire of the subthalamic nucleus. Most clinical 
therapies available currently for PD, HD, etc., partly alleviate the symptoms and 
offer no cure to prevent or curtail the disease progression. The next section deals 
with PD, a debilitating age-associated disorder. 

12.1.1 Parkinson’s Disease: A Major Basal Ganglia Disorder 

Among the basal ganglia diseases, Parkinson’s disease (PD) is the most common 
disorder. Understanding etiopathology of PD also gains relevance, since it is the 
second most common neurodegenerative disorder, after Alzheimer’s disease (AD) 
with an incidence of 8–18 per 1,00,000 people/year. Its incidence increases manifolds 
after the age of 60, affecting nearly 1% of the population above 60 (Alves et al. 2008; 
Poewe et al. 2017). 

PD is characterized by the loss of dopaminergic neurons in the SNpc. By the time 
of manifestation of initial motor symptoms, nearly 30% of the dopaminergic neurons 
are lost (Fearnley and Lees 1991). A 50–60% loss of SNpc neurons brings about a loss 
of 80–90% of tyrosine hydroxylase (TH) immunoreactive (IR), i.e., dopaminergic 
terminals in the striatum, which dominoes into specific manifestations like shuffling 
gait, tremor, and rigidity—the critical features of the disease. These were described 
in the original “An essay on the shaking palsy”, wherein James Parkinson identified 
the cardinal motor triad of bradykinesia, rigidity, and tremor. Thus, the symptoms of 
PD are classified into motor and non-motor symptoms; the latter involve sleep and 
cognition and often arise during the earlier stages of the disease. Some of these also 
found a mention in the original essay. Recovery in PD is currently improbable and 
unyielding to even sustained treatment for decades. 

12.1.2 The Neuroanatomical Basis of Parkinson’s Disease 

The neuroanatomical aspects of PD are very complex, since they involve several parts 
of the brain and not just the basal ganglia. It is equally pertinent that multiple cellular 
factors contribute to the dopaminergic neuron degeneration, viz. the formation of 
Lewy bodies, oxidative stress, microglial activation, release of pro-inflammatory 
cytokines, mitochondrial dysfunction, etc. Braak and colleagues developed a six-
leveled staging method to propose the origin and spread of the disease by assessing the 
magnitude of α-synuclein (α-syn) containing Lewy neurites and bodies to propose the 
seminal “Braak hypothesis”. As per the hypothesis, Stage 1 was associated with α-syn 
lesions in the dorsal motor nucleus of the vagus (DMV), olfactory bulb, and anterior



12 Circadian Rhythmicity in Aging and Parkinson’s Disease 239

olfactory nucleus, which manifest as loss of olfaction and autonomic dysfunction 
(Braak et al. 2003a, b). As per their evidence, α-syn deposits follow a rostro-caudal 
pattern of accumulation in the digestive tract, exhibiting maximum concentration in 
submandibular gland, and is much less in the colon (Fasano et al. 2015). DMV is the 
crucial junction for the passage of phosphorylated α-syn deposits from the digestive 
tract to the CNS (Braak et al. 2003a, b; Fasano et al. 2015). By stage 2, the disease 
spreads to lower brain stem nuclei including raphe nucleus, locus coeruleus, and 
pedunculopontine nucleus resulting in abnormal sleep-associated patterns and sleep 
disturbances. Thus, the stages 1 and 2 are mainly related to non-motor concerns. 

By stage 3, the basal ganglia and other midbrain nuclei are affected; consequently, 
the motor symptoms begin to appear, owing to the dopaminergic deficits that deregu-
late the direct and indirect components of the nigrostriatal pathways. The involvement 
of mesocortex is considered as stage 4, leading to worsening of motor symptoms, and 
the disease becomes “clinically evident”. By the stages 5 and 6, the higher-function 
areas of the neocortex are involved, causing cognitive deficits (Braak et al. 2003a, b). 

12.2 Circadian Rhythmicity in Aging and PD 

12.2.1 Role of BG and Clock Genes 

Circadian rhythm is facilitated by transcriptional and translational regulation of 
“CLOCK” (circadian locomotor output cycles kaput) genes and their proteins. 
Vitaterna et al. (1994) discovered mutations in “CLOCK” gene that disrupted the 
mammalian circadian rhythm. Those belonging to the molecular CLOCK gene family 
are termed as “circadian locomotor output cycles kaput”, i.e., (Clock), brain and 
muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1, Arntl), 
cryptochrome 1 and 2 (Cry1, Cry2) and period 1, 2, 3 (Per1, Per2, Per3), rev-erbα 
(Reppert and Weaver 2002), etc., and their proteins encode time via interlocked 
transcriptional-translational feedback loops (TTFLs). The biological clock is not 
controlled exclusively by the suprachiasmatic nucleus (SCN). Complex neuronal and 
non-neuronal extra-SCN oscillators exist in hippocampus, amygdala, paraventricular 
thalamus, arcuate, and dorsomedial nuclei of the hypothalamus that contribute to the 
clock control (Guilding and Piggins 2007, a review). The extra-SCN oscillators are 
also known as “slave oscillators”. 

Age-associated sleep changes support the possibility of a link between behavior 
and circadian disruption (Hood and Amir 2017). Aged individuals exhibit difficulty 
falling and staying asleep (Foley et al. 1995) in addition to increased sleep fragmen-
tation (Yoon et al. 2003; Duffy et al. 2002), resulting in increased daytime drowsiness 
and napping (Carskadon et al. 1982). This circadian rhythm misalignment in older 
people affects the “homeostatic drive for sleep” and disrupts sleep promoting signals 
like melatonin and body temperature (Dijk et al. 1999). A 37% loss of melatonin in
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elderly men during sleep shows a significant effect of age and melatonin on circadian 
homeostasis (Zeitzer et al. 2007). 

Using an aging mice model, Wyse and Coogan (2010) performed 4 hourly gene 
expression studies for clock and Bmal1 for a period of 24 h in non-SCN brain areas. 
In their observation, age affected the amplitude and patterns of expression of Bmal1 
and clock significantly in the non-SCN regions, but spared the CA3. On the other 
hand, the “clock expression pattern” turned rhythmic in older animals, as opposed 
to being constitutively expressed in the young. The acrophase, i.e., the phase of 
peak expression, also shifted toward the late evening (Wyse and Coogan 2010). 
Interestingly, the slave oscillators showed diurnal pattern, and with the onset of 
aging, these areas lost their ability to receive signals from the SCN. The most serious 
consequence of circadian dysfunction was gathered in view of increased mortality 
of aged animals (Davidson et al. 2008). It is independent of stress and explains why 
aged population adapts poorly to sudden time zone shifts. Potentially with age, the 
“slave oscillators”, controlling the circadian rhythm in peripheral tissues, lose their 
ability to receive entrainment from SCN. 

Wynchank et al. (2019) reported that a dysfunctional biological clock caused age 
reminiscing effects and preceded neurodegenerative states. They earmarked reduc-
tion in telomere length in aged individuals afflicted by delayed sleep phase syndrome, 
as deterioration of cellular health. Earlier findings equated aligned circadian rhythm 
with the quality of life (Hurd and Ralph 1998). Implantation of SCN cells of young 
animals improved the lifespan and behavioral patterns of the aged recipient (Li and 
Satinoff 1998). 

Zhang and colleagues studied the age-related changes in DNA methylation 
frequency. They reported that Bmal1 promoter in the stomach was methylated in 
the majority of animals, while its expression was suppressed in the aged rodent 
striatum (Zhang et al. 2013). Deletion of Bmal1 was also responsible for age-related 
astrogliosis in the cortex and hippocampus. Synaptic terminals were damaged with 
loss of cortical connectivity and oxidative damage to cells. Upon treatment with 
a mitochondrial complex 3 inhibitor, Bmal1-deficient hemizygous mice developed 
striatal degeneration (Musiek et al. 2013). Thus, Bmal1 dysfunction leads to circadian 
arrhythmicity (Kondratov et al. 2006; Duncan et al. 2013), and DNA methylation 
disrupts the clock gene expression (Taniguchi et al. 2009). Rev-erbα is circadian 
modulator having a direct role in the transcription of both cyclic Bmal1 and CLOCK 
(Crumbley and Burris 2011). The clock gene rev-erbα loses its daily fluctuations in 
MPTP mice model of PD. The diurnal variations in microglial immunoreactivity are 
also affected. This signifies the contribution of rev-erbα toward microglial activation 
and elevated neuroinflammation. Use of a rev-erbα agonist small molecule improved 
the dopaminergic terminals in the striatum of MPTP mice (Kou et al. 2022). These 
observations are very similar to those by Griffin et al. (2019) and Kim et al. (2018). 

Esquifino et al. (2002) employed multiple time points and demonstrated a fall in 
dopaminergic activity, DA turnover, and GABA expression at middle age, in aged 
rodents. They suggested that age-related changes in striatal function are dependent on 
an intact internal clock, incongruence with earlier reports on serotonergic sprouting 
during damage to the dopaminergic system (Bédard et al. 2011). They also showed an
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increase in serotonin turnover with age. Detailed investigations showed a reduction 
in the duration of slow-wave sleep, which is otherwise crucial for memory consolida-
tion, emphasizing the role of circadian clock in dementia (Dijk et al. 2010). Studies 
thus far suggest a close involvement of basal ganglia in sleep. 

12.2.2 Sleep and PD: The Intriguing Prelude 

The rodent striatum is divisible into the caudate-putamen and ventral striatum. The 
latter also comprises the NAc. Ibotenic acid-induced lesioning of the striatum indi-
cated a significant association of the dorsal striatum in controlling wakefulness (Qiu 
et al. 2010). Further studies using modafinil showed that NAc participated in inducing 
and sustaining sleep (Qiu et al. 2012). In view of the prominent association of BG 
in sleep induction and sustenance, deficits in this region may well be seen in PD, 
as well as other BG disorders. Relevantly so, sleep-associated non-motor deficits, 
like insomnia, frequent nighttime awakening and sleep fragmentation, nocturia, rest-
less legs syndrome, sleep breathing disorders, drug-induced symptoms, parasomnias 
associated with REM sleep, sleep attacks, and excessive daytime sleepiness (Raggi 
et al. 2013), and even vocalizations, (Chaudhuri et al. 2006) are common in the 
patients. 

12.2.3 Rapid Eye Movement (REM) Sleep Behavior Disorder 
(RBD) 

RBD is denoted by abnormal behaviors and loss of muscle atonia during the REM 
phase of sleep (Postuma et al. 2015). It is commonly observed in synucleinopathy 
patients such as PD, dementia with Lewy bodies (DLB), and multiple system atrophy 
(MSA). Although a tight association was earlier proposed with synucleinopathies, 
emerging evidence points at occurrence of RBD, even in the non-synucleinopathic 
cluster of neurodegenerative diseases such as AD, HD, and amyotrophic lateral scle-
rosis (ALS). Experimental evidence suggested the presence of a reciprocal connec-
tivity between SNpc, VTA (ventral tegmental area), pedunculopontine nucleus, 
and reticular formation which influence the REM sleep behavior (Lima 2013). 
Polysomnography-based findings suggest that oculomotor abnormalities seen in 
RBD including insomnia, movements during sleep, and daytime sleepiness (Arnulf 
et al. 2008) were common, but poorly studied aspects of HD (Annapureddy et al. 
2021). 

In PD, the RBD symptoms do precede the onset of motor symptoms by years. RBD 
patients show reduced DAT density and reduced dopamine uptake in the striatum, 
suggestive of early stages of PD pathology (Eisensehr et al. 2000). In an earlier study, 
almost all PD patients were plagued by sleep disturbances, which reflected in the



242 H. J. Jyothi et al.

involvement of dopaminergic system in REM sleep-related structures (Steinfels et al. 
1983). In a 10-year follow-up study on 89 patients, 30% of the subjects developed 
PD and other neuropathologies after 3 years, up to 66% after 7.5 years, whereby 
the authors proposed it to be a potential biomarker for preclinical diagnosis of PD 
(Postuma et al. 2006). 

It is theorized that Lewy body deposition in certain areas of the lower brainstem, 
possibly pedunculopontine nucleus and sub-coeruleus nucleus, is the underlying 
pathology in RBD (Braak et al. 2003a, b). In a study on PD patients with and without 
RBD, a significant reduction in gray matter volume was observed in thalamus of 
PD-RBD patients indicating thalamic involvement. A positive correlation between 
RBD, cognitive impairment in PD, and greater α-syn load has also been established 
(Vendette et al. 2007; Postuma et al. 2015; Gong et al. 2014). These patients also 
show greater incidence of hallucinations (Vibha et al. 2011; Gong et al. 2014). 

Optogenetics and fiber-photometry-based studies in animal models revealed that 
orexin-enhanced sublaterodorsal tegmental nucleus (SLD) output prolongs REM 
sleep episodes by consolidating brain state activation or muscle tone inhibition. This 
is disrupted upon chemogenetic silencing of SLD orexin signaling. Thus, orexin is 
a stabilizer in REM sleep (Feng et al. 2020). Studies on MPTP-treated marmoset 
opened up new avenues for quantitative research involving mechanisms and treat-
ment strategies for RBD and the premotor phase of Parkinson’s disease. Unlike 
mice and rats, which have nocturnal preferences and fragmented sleep patterns, 
marmosets are diurnal and their night sleep architecture matches well with humans. 
It comprises a cyclical pattern of light, deep, and REM sleep (Verhave et al. 2011). 
Mizrahi-Kliger et al. (2020) suggested that the synchronous cortico-BG β oscillations 
modulate destabilization of slow oscillation and insomnia during sleep, analogous to 
the creation of hypokinesia during wakefulness, thereby governing two apparently 
separate manifestations of PD. 

In humans, positron emission tomography (PET) and magnetic resonance imaging 
(MRI) studies have shown reductions in cerebral blood flow in the striatum, while 
transiting to NREM sleep, as well as an increase in REM compared to NREM sleep, 
especially in the posterior part of putamen and caudate (Kaufmann et al. 2006; 
Braun et al. 1997). Electroencephalogram (EEG) and functional MRI (fMRI) studies 
in young and older individuals reported decrease in network connectivity during. 
Though in the older age group, a lower decrease in connectivity was observed while 
in some cases, increase was also noted in thalamo/basal ganglia connectivity. This 
could indicate a suppression in the older ages to disconnect causing lighter and 
more fragmented sleep, and leading to deleterious effects of age on brain plasticity 
(Daneault et al. 2021). 

12.2.4 Stress 

One of the several ways that the neurons respond to cellular stress is by induction 
of heat shock protein (HSP) expression. These are chaperons that help degrade or
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re-fold misfolded proteins as also help in apoptosis. In aging female rats, striatal 
heme oxygenase 1 (HO1) and Hsp40 were higher at middle age than at the oldest 
age studied, whereas Hsp60 was higher in the older animals. Hsp25 was elevated 
with advancing age in both nigra and striatum. Hsp25 also co-localized with tyrosine 
hydroxylase in nigral neurons. Age-related increase in Hsp25 may well indicate 
an endogenous adaptation to combat cellular stress (Gleixner et al. 2014). Their 
functional role toward cellular stress was reinforced in a finding of significant positive 
correlation between decrease in glutathione and an increase in Hsp72, during aging 
(Calabrese et al. 2004). HSP72 was significantly reduced with age in a rodent model 
(Gupte et al. 2010). 

One of the most debilitating manifestations of stress is that of perinatal stress 
(PRS). PRS mice demonstrated a longer LTP during postnatal day (PND) 12– 
60 unlike in control which lasted from PND 12 to 14. Recovery of LTD was 
noted with dopamine 2 receptor (D2R) agonist quinpirole. In adult PRS mice, it 
also improved the behavior. Untreated adult PRS mice show downregulation of 
D2R, excess DNA methyltransferase 1 (DNMT1), increased binding of DNMT1 to 
D2R promoter, and hypermethylation at D2R promoter in the striatum. A DNMT1 
inhibitor could successfully restore striatal synaptic plasticity via D2R-mediated 
dopamine signaling. This study clearly suggests that the effects of early stressors on 
striatal health run well into adulthood and senescence (Li et al. 2021). 

Reduced dopamine release, along with loss of TH-positive neurons and DAT, was 
noted at adulthood, when rats were exposed to stress during perinatal period. Further, 
a reduction in the D2R signaling indicates that the indirect pathway is affected, mani-
festing in poor motor function. “Perinatal stress” rats had poor striatal and synaptic 
vesicle function. This study highlights the effect stress has on increasing the vulnera-
bility of the striatum to age effects (Marrocco et al. 2020). Early life stress as modeled 
by maternal separation rats shows behavioral, olfactory, motor, and gait disturbances 
(Ren et al. 2022). Enriched environment retarded and eliminated the depletion of 3,4-
dihydroxyphenylacetic acid (DOPAC) and HVA, respectively. Enriched environment 
(EE) also restored D1R and choline acetyltransferase expression to baseline in the 
nigrostriatal pathway in MPTP model of PD, thus providing direct evidence of the 
positive outcomes of EE in BG diseases (Hilario et al. 2016). 

12.3 Factors Ascribing Longevity and Symptom Alleviation 
in PD 

Both aging and PD often affect several aspects of the lives of the subjects and the 
patients (Fig. 12.1). Realizing the need for addressing these deficits, many studies 
thus far have applied different modalities to decrease or alleviate specific symptoms 
or deficits (Fig. 12.2).
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Fig. 12.1 Pictorial representation of factors responsible for alleviating symptoms and ascribing 
longevity in Parkinson’s disease. Recent researches have shown social enrichment, yoga, virtual 
reality, genes, exercise training, and food habits to be beneficial in improving PD symptoms (picture 
created on BioRender.com; concept and creation Bidisha Bhaduri and PA Alladi)

12.3.1 Relevance of Social Enrichment 

Social enrichment popularly termed as EE is a common neuroprotective strategy 
both during development and in the mature nervous system. 6-OHDA brought about 
a significant loss of the rat dopaminergic neurons; however, postnatal enrichment 
restricted the cell loss and hypokinesia. In a first of its kind study, postnatally enriched 
environment prevented PD later in life (Jungling et al. 2017). The aged rats exposed 
to EE during childhood were better protected against 6-OHDA injections. In mice 
overexpressing human SNCA gene, EE reduced the pro-inflammatory cytokines in 
the feces and inflammation inducing genes in the colon indicating a positive effect 
on intestine by gut microbiota (Singh et al. 2019). EE accelerated motor recovery, 
prevented short-term memory impairment, and avoided a decrease in striatal brain-
derived neurotrophic factor (BDNF) levels in mice (Campêlo et al. 2017). In combi-
nation with exercise, EE altered the behavior and cellular morphology in normal and 
injured CNS (Döbrössy and Dunnett 2006). 

MPTP-injected young and old mice exhibited locomotor recovery upon expo-
sure to EE (Goldberg et al. 2011). Despite rapid disease progression, even limited 
EE improved the rotarod performance of R6/2 mice, whereas maximal enrichment 
was required to induce any improvement in the behavior of normal littermates. In 
R6/2 brains, enrichment also delayed the loss of peristriatal cerebral volume, which
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Fig. 12.2 Proposed interventional modalities for Parkinson’s disease and the different aspects that 
they target: environmental/social enrichment reduced neurotoxin-induced neuronal death in mice 
model, thus promising prevention. Exercises improved gait and other factors contributing to healthy 
living. Yoga and intermittent fasting reduced other geriatric co-morbidities like diabetes, hyper-
tension, etc., and increased longevity. Virtual reality improves co-ordination between different 
somatosensory systems. A holistic approach may need to be tailored for each patient (concept and 
creation PA Alladi)

suggests that EE ameliorates the effects of HD (Hockly et al. 2002). Few animal 
studies demonstrated that exposing transgenic HD mice to EE prevented cerebral 
volume loss and delayed the onset of motor disorders. Similarly, a more stimulating 
environment or remotivation improved physical, mental, and social functioning in 
people with HD (Sullivan et al. 2001). 

12.3.2 Yoga 

This is an ancient Indian practice applying mental and physical faculties along with 
spirituality. It includes mindfulness protocols applying breathing maneuvers as also 
physical activities. Yoga involves stretching exercises which activate stretch recep-
tors in muscles, ligaments, and joints thus helping with flexibility and posture (Tran 
et al. 2001). Many studies demonstrated the usefulness of yoga in maintaining or 
restoring balance, posture, flexibility, relaxation, agility, physical alignment, strength, 
and overall physical and mental well-being (Schmid et al. 2010). Although not 
many studies have applied Yoga in PD, it is held to be therapeutic (Kwok et al. 
2017). Tolahunase et al. (2017) studied the effect of yoga and meditation-based
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lifestyle intervention (YMLI) on cellular aging in healthy individuals by assessing 
the biomarkers of cellular aging in blood from baseline to week 12, which isncluded 
DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OH2dG), oxidative stress 
markers reactive oxygen species (ROS), and total antioxidant capacity (TAC), as 
well as telomere attrition markers like telomere length and telomerase activity, and 
metabotropic markers cortisol, endorphin, IL-6, BDNF, and sirtuin-1. After 12 weeks 
of YMLI, significant improvements were noted in both the markers of cellular aging 
compared to baseline values. Intervention with yoga significantly reduced the rate of 
cellular aging in the healthy. The effect of age on fluid intelligence and resting state 
brain functional network architecture in middle-aged yoga and meditation practi-
tioners, and matched controls was studied by Gard and colleagues (Gard et al. 2014). 
In yoga, practitioners and meditators’ fluid intelligence depleted at a slower rate than 
in controls. Resting state functional networks in practitioners and meditators were 
more integrated and resistant to damage. Therefore, mindfulness positively corre-
lates with fluid intelligence, resilience, and global network efficiency. In a landmark 
preliminary study on meditation, mindfulness, and cellular aging, Epel et al. (2009), 
proposed “that some forms of meditation may have salutary effects on telomere 
length by reducing cognitive stress and stress arousal and increasing positive states 
of mind and hormonal factors that may promote telomere maintenance”. 

12.3.3 Healthy Living and Exercise 

Collective evidences suggest that exercise reduces the risk of PD by inhibiting oxida-
tive stress, repairing mitochondrial damage, and promoting the production of growth 
factors as well as controlling other geriatric co-morbidities such as diabetes, hyper-
tension, and cardiovascular disease. It positively influences both motor and non-
motor symptoms in PD. It is proposed that gait velocity decreases during forward 
and backward walking, and that otherwise persists even with the best medications. 
Furthermore, in the early phase of the disease, reduced gait, balance, and mobility 
can be identified, and a further deterioration in gait signals the start of impairment. 
These considerations emphasize the need for combining medications with modalities 
like exercise, in PD (Rawson et al. 2019). 

Exercise training is feasible in HD patients, specifically in the early-to-middle 
stages of disease, although one study proposed its practicability even in the late stages 
(Quinn et al. 2016). A subsequent case series in late-stage HD supports the feasi-
bility and benefits of exercise training as well (Fritz et al. 2017). The depressive-like 
behaviors, in premotor symptomatic female HD mice, were due to a serotonin (5-
HT1A) autoreceptor dysfunction (Héry et al. 2000), which was corrected with chronic 
sertraline treatment and physical activity. Other findings suggest that running wields 
an antidepressant effect on HD mice, independent of hippocampal cell prolifera-
tion (Renoir et al. 2012). In a rodent model of HD, improvements in mitochondrial
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function were linked to better motor performance on the rotarod test, thus infer-
ring that exercise improves motor behavior by reversing deficits pertaining to the 
mitochondrial functions (Caldwell et al. 2020). 

Contrarily and surprisingly, a rare study on a mouse model of HD suggested that 
physical activity had no beneficial effects on weight, lifespan, hyperglycemia, Morris 
water maze learning deficits, hippocampal neurogenesis, neuronal morphology, 
intranuclear inclusions, or dentate gyrus volume—concluding that exercise is not 
only “not beneficial” but may even harm the vulnerable nervous system (Potter et al. 
2010). 

Aquatherapy or hydrotherapy or pool exercise is suitable for rehabilitation and 
exercise as water provides a challenging, yet safe exercise environment for PD, 
multiple sclerosis, ALS, and HD patients; however, further evidence is required 
to make specific recommendations (Plecash and Leavitt 2014). The sweat output 
(SSwR; sympathetic sweat response) and the cutaneous blood flow (SVR; skin vaso-
motor reflex) in the hand are various parameters to evaluate the autonomic dysfunc-
tion in MSA patients. SSwR results correlated with the cardiovascular autonomic 
dysfunctions and were absent in about half of the MSA patients. However, the SVR 
was relatively preserved (Asahina et al. 2003). In patients with MSA, a short duration 
of physiotherapy was reported feasible and safe and assisted the improvement of the 
gait performance, vis-à-vis the often ineffective pharmacotherapy (Raccagni et al. 
2019). 

Tang et al. (2020) compared older adults with 10 years of mindfulness meditation 
(integrative body-mind training, IBMT) with those who had physical exercise (PE) 
experience. IBMT group fared significantly higher on dimensions of life quality. 
They also show better parasympathetic activity, as indicated by skin conductance 
response and high-frequency heart rate variability. Interestingly, the PE group had 
lower basal heart rate and greater chest respiratory amplitude. Cortisol concentration, 
an indicator for stress, was lower in the meditation group. They also have a stronger 
connection between the dorsal anterior cingulate cortex (dACC) and the striatum 
at resting state, as well as greater volume of gray matter in the striatum. This study 
emphasizes on combining exercise and meditation to achieve better health and quality 
of life in an aging population. 

12.3.4 External Stimuli and the Imaginary World 

Adaptation to different environments necessitates postural control, in addition to 
visual, somatosensory, and vestibular responses. The invention of virtual reality 
(VR) opened up new vistas in the treatment of PD by integrating these aspects. VR 
prescribes execution of precise goal-oriented tasks, while being used in a completely 
immersive environment via simple simulations. It primarily builds an image real-
istic model on the computer, which results in the formation of a simulation environ-
ment, and can immerse the patients in this environment via sensing devices (Badarny 
et al. 2014). This modality is an extension of the external stimuli, provided using
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different visual means. External stimuli improve gait in PD patients, without a need 
to modify their medication regimens. The patients registered an additional increase in 
speed when supplemented with visual cues, i.e., VR (Suteerawattananon et al. 2004; 
Nieuwboer et al. 2007), while also providing auditory and somatosensory stimuli. 
PD patients’ brains habitually lag in interactions between the vestibular, visual, and 
proprioceptive systems, resulting in changes in body biomechanics, which is rebooted 
and boosted by VR. 

When compared to the traditional rehabilitation methods, VR-assisted rehabil-
itation technology improved the BBS, TUGT, UPDRS3, and FGA scores of PD 
patients, an important aspect for future research. Furthermore, it is a highly sophis-
ticated intelligent treatment modality, but needs more maneuverability, and easier 
application in community settings, although it adds fun and enjoyment to patients’ 
recovery. 

12.3.5 Intermittent Fasting 

Intermittent fasting (IF) is a popular type of dietary pattern, based upon timed periods 
of fasting with two different regimens, i.e., alternative day fasting (ADF) and time-
restricted fasting (TRF; Dong et al. 2020). This dietary pattern is beneficial in slowing 
down the progression of neurodegenerative diseases like AD and PD (Martin et al. 
2006) and also is likely to improve cardiovascular health. A number of hypotheses 
are proposed to explain the basis for the efficacy of intermittent fasting. For example, 
calorie restriction increased the dopamine levels in the striatum in aged rats (Portero-
Tresserra et al. 2020). 

The first one relates to oxidative stress theory (Merry 2004) proposing that IF 
reduces the energy consumption causing mitochondria to produce lesser free radi-
cals, and this helped obese patients with asthma. IF reduced the levels of inflammatory 
factors like tumor necrosis factor-alpha as well as oxidative stress including nitroty-
rosine, 8-isoprostane, protein carbonyls, and 4-hydroxynoneal adducts. However, 
ADR raised the levels of the antioxidant uric acid (Johnson et al. 2007). 

The second one, i.e., the circadian rhythm hypothesis, proposes that IF, when 
timed properly, may synchronize with the circadian rhythm to improve cardiac health. 
Among different TRF regimens, subjects allowed to eat in the middle of the day lost 
more weight and had better glucose control, lipid levels, and inflammatory responses 
(Moro et al. 2016), compared to those allowed to have late afternoon or evening 
intake. They suggested that “beyond 16:00” had no improvement, rather worsening 
of glucose control, blood pressure, and lipid levels (Carlson et al. 2007; Stote et al. 
2007). 

The third suggests that a ketogenic state is induced by IF, as evidenced by the rise 
in β-hydroxybutyrate levels after 6–8 h of fasting in overweight individuals. When 
ketone levels were detectable, it indicates a switch from fat storage to fat utilization
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with decrease in low-density lipoproteins (LDL) and increase in high-density lipopro-
teins (HDL) levels (Dashti et al. 2006). PD is strongly linked to lifestyle, particu-
larly dietary habits, which have gained attention as disease modifiers. In a study 
on a Parkinsonian mice model, MPTP depleted propionic acid and isobutyric acid, 
while it increased butyric acid, valeric acid, and other metabolites. Insulin-sensitizing 
hormone glucagon-like peptide 1 GLP1 (glucagon-like peptide 1) and metformin, 
a small molecule drug, are neuroprotective in animal models of PD (Athauda et al. 
2017). GLP-1 receptors are involved in the production of cyclic AMP and the acti-
vation of the cAMP response element-binding protein (CREB); therefore, GLP-1 
receptor agonists improve insulin sensitivity. The amount and frequency of energy 
intake can impact brain health and vulnerability to diseases like, AD, PD, and stroke. 
Only a few studies reported the role of the ketogenic diet in the prevention of PD and 
AD as it reduces appetite and is also unappealing from an organoleptic standpoint, 
which may further be associated with gastrointestinal side effects and reduction in 
food intake by elderly people with neurodegenerative diseases, resulting in reduc-
tion in the supply of nutrients provided by the diet (Włodarek 2019). Contrary to the 
above studies, a dramatic quantitative reduction in dopaminergic neurons along with 
an increase in α-syn accumulation was reported in intermittent fasting in a rotenone 
model of PD (Tatulli et al. 2018). This was accompanied by elevated excitatory 
amino acids, inflammatory lysophospholipids, and sphingolipids, indicating more 
pronounced neuronal damage. 

12.4 Conclusion 

PD being the second most common neurodegenerative disease is a major cause 
for economic burden on the exchequers of several countries. The disease shows 
a complex involvement of the basal ganglia and several other cortical and non-
cortical structures, leading to motor symptoms. Nevertheless, it also has a long 
prodromal phase where several non-motor symptoms manifest. In-depth studies 
reveal that although normal aging and PD share some common pathogenic path-
ways, the PD pathology is quite unique. The age-related alterations in the striatal 
medium spiny neurons result in several biochemical and morphological deficits, viz. 
the loss of spines, neurotransmitter dopamine, dopamine receptors and transporters, 
post-synaptic density protein 95, and pre-synaptic dopamine markers as well as 
leading to loss of neurons. It is often noticed that PD patients show loss of circadian 
rhythmicity affecting their sleep pattern. Sleep disturbance, e.g., the REM behavioral 
sleep disorder, is the commonest and longest prodrome in the PD patients. Certain 
modalities for symptom alleviation have been established in recent times through 
engagements like social enrichment, healthy living, and exercise as well as by use of 
external stimuli like virtual reality. Despite rapid strides in the research in the field, 
several aspects still remain elusive.
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Chapter 13 
Sleep Hormone Melatonin, Inflammation 
and Aging 

Yaoyao Xia, Xiaoyan Wu, Zhangzheng Yin, Yikun Li, and Fang He 

13.1 Introduction 

Aging is a progressive irreversible degenerative change in the structure and function 
of various tissues and organs with the growth of age, under the influences of many 
factors such as heredity, mental stress, and environmental pollution (Soto-Gamez 
and Demaria 2017; Bektas et al. 2018). Aging can be divided into physiological 
aging and pathological aging. The former refers to the state of natural aging of 
body function and metabolism over time, for example, protein degradation, tissue 
atrophy, decreased metabolic rate, and abnormal calcium metabolism (López-Otín 
et al. 2013; Verkhratsky 2019). The latter refers to the aging state caused by various 
diseases with the passage of age, like Alzheimer’s disease (AD), Parkinson’s disease 
(PD), cardiovascular and cerebrovascular diseases, infection-related diseases, and 
even cancers (Correa et al. 2018).
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It should be noted that aging is mainly characterized by a weakened immune 
system accompanied by persistent inflammation, oxidative damage, and accumula-
tion of advanced glycation end products (AGEs) (Basta 2008; Lian et al.  2020). Mela-
tonin is primary secreted by the pineal gland in vertebrates, which is also destined to 
have a rhythmic secretion that can coordinate adaptive physiology (Cipolla-Neto and 
Amaral 2018). Moreover, melatonin has anti-inflammatory, antioxidant, and other 
activities (He et al. 2021, 2022; Bocheva et al. 2022; Xia et al. 2022), thus melatonin 
is thought to be a potential anti-aging substance. This chapter will mainly describe the 
roles of melatonin in inflammation and aging, as well as the involved mechanisms. 

13.2 Aging and Inflammation 

Actually, after birth, the body constantly carries out life activities such as nutrient 
metabolism, resists the threat of exogenous pathogens, removes own damaged 
components, and keeps the body in a state of balance (Cullum et al. 2020; Helman  
et al. 2020). The “free radical theory of aging” proposed in the mid-twentieth century 
(Harman 1956), that is, intracellular metabolism produces oxygen free radicals and 
leads to accumulated cell damage, which accelerates cell aging and supports the 
longevity hypothesis (Balaban et al. 2005). In addition to intracellular metabolism, 
chemical stimuli, heat sources, and ultraviolet radiation in the environment cause 
oxidative stress in cells (Finkel and Holbrook 2000). However, with the deepening 
of research, the telomere hypothesis that was proposed later causing aging has gradu-
ally been recognized by the public (Aubert and Lansdorp 2008), which links cellular 
aging with genomic changes and provides new research ideas for human aging and 
cancer (Aubert and Lansdorp 2008). Of not, as described in earlier, aging is formed 
by a variety of complex factors, and there are differences in various organisms; thus, 
it is hard to explain all aging phenomena with one theory currently. 

The trend of global aging and the associated diseases during aging have become a 
challenge that cannot be ignored in the current human society (Partridge et al. 2018). 
Indeed, as the body becoming aging, the immune system undergoes a corresponding 
remodeling known as immunosenescence, resulting in long-standing chronic inflam-
mation and weakened immune responses (Lian et al. 2020). Immunosenescence 
makes the elderly more vulnerable and more susceptible to various diseases. For 
instance, the coronavirus disease 2019 (COVID-19) pandemic predisposes the 
elderly, especially those older than 40 s, prone to adverse outcomes such as intensive 
care unit (ICU) admission or death (Chen et al. 2021a). Specifically, by assessing 
epigenetic aging in the blood of healthy people, non-severe and severe COVID-19 
patients, researchers found that infection with COVID-19 might accelerate epigenetic 
clock and telomere attrition, promote epigenetic aging, and lead to post-COVID-19 
syndrome (Cao et al. 2022). 

In addition to changes in the immune status, metabolic disorders in the elderly also 
drive the progression of inflammation. For example, glycemic disorders in the elderly 
are prone to type 2 diabetes (T2D), and the imbalance of fat metabolism predisposes
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the elderly to obesity and hyperlipidemia (Barbé-Tuana et al. 2020). With altered 
metabolism, aging organisms are accompanied by accumulation of AGEs, which 
bind to receptors and exacerbate tissue damage through the nuclear factor kappa-B 
(NF-κB) signaling pathway (Basta 2008). 

Furthermore, aging causes an imbalance in the gut microbiota, which is interest-
ingly gender specific, for example, decreased Bifidobacterium and increased Blautia 
and Roseburia in aged males, but the opposite was detected in aged females (Ma et al. 
2020). The gut microbiome may act through inflammatory signaling, for instance, 
inhibition of caspase-1 shapes the fecal microbiome, with the increased relative abun-
dances of Akkermansia spp. and Blautia spp., thereby favoring to lessen inflammation 
and rebalance the gut microbiota to protect the host (Wong et al. 2016). Studies also 
found that intestinal Bifidobacterium and Roseburia were negatively correlated with 
T2D, and Blautia was positively correlated with T2D (Gurung et al. 2020). These 
similar changes in gut microbiota provide us with interesting speculations about 
whether the imbalances in gut microbiome of the elderly interact with inflammatory 
diseases and metabolic disorders associated with immunosenescence. Of course, the 
relevant conclusions need to be experimentally confirmed. 

On the other side, the persistent inflammatory responses in the aging population 
also exacerbate the aging of the body, and this process involves complex changes 
in a variety of immune cells. For example, CD8+ T cells play an important role 
in controlling chronic infections, but studies have shown that persistent antigenic 
stimulation of inflammation leads to T cell exhaustion and that overexpression of 
programmed cell death (PD)-1 reduces the proliferative capacity of CD8+ T cells 
(Hashimoto et al. 2018). In chronic persistent infection caused by Hepatitis B Virus 
(HBV), monocytes express high levels of PD-L1 and interleukin (IL)-10, and the 
suppressive monocytes induce natural killer (NK) cells to produce IL-10 and suppress 
T cell activation, including CD4+ and CD8+ T cells (Li et al. 2018). As mentioned 
earlier, senescence increases susceptibility to viruses, CD4+ T cells are essential for 
antiviral infection, and enhance the lethality of CD8+ T cells in the context of chronic 
infection by secreting IL-12 (Zander et al. 2019). Therefore, immunosenescence is 
further promoted by multiple cellular immune blunting due to chronic inflammation. 
The presence of leukocytes in the chronic inflammatory microenvironment continues 
to stimulate the body, locally induces fibrosis, and eventually leads to irreversible 
tissue damage and organ failure (Sebastiani et al. 2014; Eming et al. 2017; George 
et al. 2020). 

More importantly, the immunosenescence of the elderly is accompanied by an 
impaired immune response to vaccination (Pawelec 2018), that is, due to changes in 
the degeneration of the thymus and the lack of naive T cells in the older adults, vacci-
nation may not have the desired effect when the elderly disease occurs. However, 
persistent inflammation is not harmful absolutely in the aging population, and 
research suggests that a new balance of pro- and anti-inflammatory responses in 
some older adults, especially centenarians, contributes to longevity (Santoro et al. 
2021). Considering that aging is a systemic event involving changes in the immunity, 
nutrient metabolism, and intestinal microecology, and also is related to the accumula-
tion of aging markers in non-invasive biological fluids such as plasma and urine (Adav
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and Wang 2021); therefore, the treatment of senile diseases requires consideration of 
multiple factors. Actually, the suboptimal responses of older people to vaccines have 
prompted scientists to develop more comprehensive treatments and interventions, for 
example, the use of autophagy enhancers, stem cell therapy, Chinese herbal medicine 
treatment, enhanced exercise, and other multi-faceted means (Shetty et al. 2018). 

13.3 Melatonin and Aging 

Melatonin is an indole hormone mainly secreted by the pineal gland in mammals 
with the multiple functions, including anti-oxidation, regulating sleep, modulating 
circadian rhythm, enhancing immunity, and suppressing tumor progression (Xia et al. 
2019). Indeed, melatonin also plays an important role in the complex aging process 
of mammals (Boga et al. 2019). Interestingly, aging is accompanied by metabolic 
and physiological decline and has the characteristics of circadian rhythm disorder 
(Roenneberg et al. 2013; Nohara et al. 2019). Moreover, in most vertebrates, the link 
between aging and melatonin is that melatonin level decreases with age (Bubenik and 
Konturek 2011; Hardeland et al. 2012). There are two possible reasons for this: 1) 
The decreased density of β-adrenergic receptors leads to the weakening of melatonin 
synthesis in pineal gland during aging through downregulating the gene expression 
or phosphorylation of aralkylamine N-acetyltransferase (AANAT) (Suwazono et al. 
2000; Jiang et al. 2017; Hohl et al. 2018); 2) the depletion of melatonin increases 
due to the metabolic events, resulting in changes in the overall content (Obayashi 
et al. 2014). 

Importantly, it has been demonstrated that when the pineal gland of rats was 
excised to lower the production of melatonin, the accumulation of oxidative damage 
products accelerated their aging process (Kumazaki and Yoshida 1984). In contrast, 
when young pineal glands were transplanted into older animals or supplemented 
with exogenous melatonin, both significantly increased the life span of experimental 
animals (Kumazaki and Yoshida 1984; Doron et al. 2019). The study by Jauhari et al. 
also pointed out that AANAT knockout mice are an accelerated aging model (Jauhari 
et al. 2020), which further suggests that melatonin has an anti-aging effect. More-
over, age differences in the infection rate and severity of COVID-19 have been shown 
higher in the elder than in youth, and studies have linked this difference to mela-
tonin (Zimmermann and Curtis 2020). Also, experiments have shown that children 
have higher levels of melatonin, which may be related to lower rates of COVID-19 
infection. Therefore, these aforementioned findings suggest that low melatonin level 
could be considered as a biomarker of aging (Huffnagle and Noverr 2013; Obayashi 
et al. 2014; Brazao et al. 2017); and more importantly, melatonin might modulate 
aging process.



13 Sleep Hormone Melatonin, Inflammation and Aging 263

13.4 Regulatory Effects of Melatonin on Aging 

13.4.1 Melatonin Slows Aging Through Antioxidant 
Function 

The oxidative damage of aging originates from the “aging free radical theory.” The 
vast majority of intracellular ROS comes from nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases (NOXs) and mitochondrial oxidative phosphorylation 
(OXPHOS) (Balaban et al. 2005; Dan Dunn et al. 2015). Nicotinamide adenine 
dinucleotide (NADH) and flavin adenine dinucleotide (FADH) generate superoxide 
anion (O2·−) in the process of passing through the I and III sites of the mitochondrial 
electron transport chain (ETC) (Balaban et al. 2005). When the OXPHOS is disturbed 
by excessive cell inflammation, autophagy, and/or apoptosis, the balance is inclined 
to the production of ROS, which also called mitochondrial ROS (mtROS) (Dan 
Dunn et al. 2015). Likewise, oxidative damage causes changes in the morphology 
and physicochemical properties of senescent cells (Muñoz-Espín and Serrano 2014). 
Mitochondrial metabolism is also implicated in aging, for example, alterations in 
mitochondrial pyruvate dehydrogenase (PDH) activity lead to increased pyruvate, 
which in turn leads to mtROS production and promotes mitochondrial aging (Kaplon 
et al. 2013; Sun et al. 2016). In conclusion, mitochondria may play an important role 
in aging-induced oxidative damage. 

Melatonin has anti-oxidative activity and its anti-oxidation efficacy dependently 
of direct and/or indirect means. As for the direct action, melatonin and its metabo-
lites directly scavenge free radicals and ROS. For example, melatonin scavenges 
hydroxyl radicals (·OH) by tautomerization (Purushothaman et al. 2020). There-
fore, melatonin has the potential to inhibit cancer by regulating angiogenesis 
by inhibiting the hypoxia-inducible factor 1α (HIF-1α)/ROS/vascular endothelial 
growth factor (VEGF) pathway (Cheng et al. 2019). The melatonin metabolite N(1)-
acetyl-5-methoxykynuramine (AMK) also exhibits excellent scavenging efficiency 
for ·OH and ·OOCCl3 (Galano et al. 2013). And for the indirect effects: (i) Mela-
tonin upregulates glutathione (GSH) synthesis by stimulating antioxidant enzymes 
[e.g., glutathione reductase (GR)], which in turn carry out antioxidant activities 
(NaveenKumar et al. 2020). (ii) Melatonin restores immune cell functions, such 
as enhancing neutrophil phagocytosis and NETosis function and defending against 
infections (NaveenKumar et al. 2020). (iii) Melatonin neutralizes nitrogen-based 
poisons such as nitric oxide (NO) and chelates transition metals to resist oxidation 
(Reiter et al. 2016).

In view of the aforementioned role of mitochondria in oxidative damage, mela-
tonin exerts an antioxidant effect through the melatonin–mitochondrial axis in the 
process of resisting infection, reducing tissue damage, thereby inhibiting or delaying 
tissue aging (Reiter et al. 2018). Actually, the oligopeptide transporter peptide trans-
porter 1 and 2 (PEPT1/2) promotes the transport of melatonin to mitochondria 
(Fig. 13.1) (Huo et al.  2017). In addition, mitochondria express AANAT and N-
acetylserotonin-O-methyltransferase (ASMT), which are involved in the production
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Fig. 13.1 Melatonin reduces oxidative damage and delays aging by inhibiting mtROS. Melatonin in 
mitochondria may rely on oligopeptide transporter PEPT1/2 transport or AANAT/ASMT-mediated 
synthesis. Melatonin and its metabolites C3-OHM and AFMK can reduce mtROS generated by mito-
chondrial RC, thereby reducing mitochondrial oxidative damage and inhibiting aging. *(“↓” arrows  
represent decreases.) mtROS: mitochondrial ROS; AANAT: aralkylamine N-acetyltransferase; 
ASMT: N-acetylserotonin-O-methyltransferase; C3-OHM: Cyclic 3-hydroxymelatonin; AFMK: 
N1-acetyl-N2-formyl-5-methoxykynuramine; and RC: respiratory chain

of melatonin (Fig. 13.1) (Tan et al.  2013; Reiter et al. 2018). Melatonin reduces 
mtROS after entering mitochondria (Chen et al. 2020); its metabolite prevents 
mitochondrial permeability transition (MPT) and limits mitochondria-related apop-
tosis (Fig. 13.1) (Jou et al.  2019). Moreover, melatonin activates adenosine 5'-
monophosphate-activated protein kinase α (AMPKα), attenuates dynamin-related 
protein 1 (Drp1)-dependent mitochondrial fission, restores the interaction of voltage-
dependent anion channel 1 (VDAC1) and hexokinase 2 (HK2), prevents MPT pore 
(MPTP) opening and activation of PINK1/Parkin pathway, and ultimately blocks 
mitophagy-mediated cell death (Fig. 13.2) (Zhou et al. 2017). In addition, mito-
chondrial DNA (mtDNA) released into the cytoplasm activates the cyclic guanosine 
monophosphate–adenosine monophosphate synthase (cGAS)/stimulator of inter-
feron genes (STING)/interferonregulatory factor 3 (IRF3) pathway, which mediates 
the inflammatory response in aging, and melatonin could reduce mtDNA to delay 
aging (Fig. 13.3) (Jauhari et al. 2020). Sirtuin 3 (Sirt3) is a mitochondrial nicotinic 
adenine dinucleotide (NAD) dependent deacetylase (Wang et al. 2019b), and mela-
tonin reduces the acetylation of superoxide dismutase 2 (SOD2) through Sirt3–SOD2 
signal and inhibits the generation of mitochondrial O2·− (Fig. 13.3) (Pi et al. 2015).
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Excessive oxidative stress will damage oocytes and thus affect reproductive func-
tion, which is also called ovarian aging (Tamura et al. 2020). Melatonin reduces the 
ROS level of oocytes through melatonin receptor 1 (MT1)/AMPK pathway, main-
tains mitochondrial membrane potential, and ultimately delays ovarian aging and 
improves fertility (Zhang et al. 2019a). 

In conclusion, melatonin signaling, such as melatonin receptor MT1, mela-
tonin transporter PEPT1/2, melatonin synthases AANAT and ASMT, and mela-
tonin metabolite AMK, acts as the target of mitochondrial antioxidant through 
AMPK/Drp1, HIF-1α/ROS, cGAS/STING, SIRT3-SOD2, and other signals to 
reduce cellular and/or tissue senescence in the process of alleviating oxidative 
damage.

Fig. 13.2 Activation of AMPKα by melatonin inhibits mitochondrial fission and autophagy-
induced cell death. Melatonin inhibits Drp1-induced mitochondrial fission by activating AMPKα, 
reverses VDAC1 oligomerization, promotes VDAC1-HK2 interaction, prevents mPTP opening 
and PINK1/Parkin activation, and ultimately prevents mitophagy-induced cell death. *(“↓” arrows  
represent decreases.) Drp1: dynamin-related protein 1; VDAC1: voltage-dependent anion channel 
1; HK2: hexokinase 2; and mPTP: mitochondrial permeability transition pore
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Fig. 13.3 Melatonin reduces mtDNA to suppress inflammation or promotes Sirt3 to reduce oxida-
tive damage. The mtDNA released into the cytoplasm activates the cGAS/STING/IRF3 pathway 
and promotes Ifnα/β expression to mediate inflammatory responses during aging. Melatonin can 
reduce mtDNA, thereby inhibiting its cascade reaction and delaying aging. Melatonin promotes the 
deacetylation of SOD2 by enhancing the activity of Sirt3, thereby reducing mitochondria-derived 
O2·−, reducing cellular oxidative damage, and delaying aging. *(“↓” arrows represent decreases.) 
mtDNA: mitochondrial DNA; Sirt3: sirtuin 3; cGAS: cyclic guanosine monophosphate–adenosine 
monophosphate synthase; and SOD2: superoxide dismutase 2

13.4.2 Melatonin Delays Aging by Repairing DNA Damage 

Another theory about aging is the “telomere theory.” As cells becoming aging, 
the telomeres at the ends of eukaryotic chromosomes shorten or change struc-
turally, leading to replication aging and chromosome instability, and consequently, 
universal cell aging causes qualitative changes in body aging (Aguado et al. 2020). 
Melatonin may target human cytochrome P450 1A1 (CYP1A1) gene-mediated 15-
hydroxyeicosatetraenoic acid (15-HETE)/telomerase reverse transcriptase (TERT) 
pathway to regulate telomerase activity, improve telomerase activity, reduce DNA 
damage, and inhibit cell senescence (Xie et al. 2021). Melatonin also participates in 
epigenetic modification of genes, inhibiting gene silencing such as DNA methylation 
and lysine 9 trimethylation of histone H3 (H3K9me3), promoting transcription of 
activation genes such as acetylation of histone H3, promoting gene reprogramming,
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further facilitating gene rejuvenation, and inhibiting cell aging (Yang et al. 2019). 
The prolongation of telomere and the stimulation of ribosome function by melatonin 
save the aging of endothelial tissue (Xie et al. 2021), retinal pigment epithelium 
(RPE) (Blasiak et al. 2016), ovary, and other tissues (Tamura et al. 2017). Therefore, 
the ability of melatonin in repairing DNA damage gives it the potential of delaying 
aging. 

13.4.3 Melatonin Promotes Autophagy and Reduces 
the Accumulation of Harmful Substances During 
Aging 

Autophagy is induced by the internal environment or external stress, which can 
guide the degradation of various substances and avoid the accumulation of damaged 
substances in the aging process (Glick et al. 2010). Therefore, impairing autophagy 
would promote the aging. In addition, lysosomal function declines with age, and 
the accumulation of damaged proteins or organelles induces senescence (Levine 
and Kroemer 2008; Lawrence and Zoncu 2019). Wong et al. concluded that 
autophagy defects, involving changes such as impaired nucleocytoplasmic trans-
port and abnormal phase separation, are major risk factors for aging and some 
neurodegenerative diseases (NDDs) (Wong et al. 2020). 

Melatonin prevents aging by regulating autophagy through inflammation-related 
signal pathways (Fig. 13.4). Melatonin blocks toll-like receptor 4 (TLR4)/protein 
kinase B (PKB or AKT)/mammalian target of rapamycin (mTOR) pathway to acti-
vate autophagy, thereby inhibiting neuro-inflammation and microglial apoptosis 
in T2D mice (Cui et al. 2021), or to promote mitophagy, reducing tumor cell 
viability and inhibiting tumors’ growth (Shen et al. 2018). Melatonin also promotes 
mitophagy through SIRT3-SOD2 or AMPK/optic atrophy 1 (OPA1) signaling, which 
blocks caspase-9-induced mitochondrial apoptosis and maintains cellular home-
ostasis against cardiac injury (Pi et al. 2015; Zhang et al. 2019b). Melatonin can also 
activate the AMPK/Forkhead box O 3 (Foxo3) pathway to maintain mitochondrial 
redox homeostasis or inhibit NF-κB to promote autophagy, respectively, protecting 
chondrocytes and alleviating intervertebral disk degeneration (IVDD) (Chen et al. 
2020, 2021b). Besides, melatonin attenuates AD, PD, Huntington’s disease (HD), 
organophosphate-induced delayed neuropathy (OPIDN), amyotrophic lateral scle-
rosis (ALS), and other age-related NDDs. Luo and colleagues summarized the asso-
ciation between melatonin and aging-related NDDs via autophagy (Luo et al. 2020), 
which we would not discuss here again.



268 Y. Xia et al.

Fig. 13.4 Melatonin delays aging by promoting autophagy through inflammatory signaling. ➀ 
Activation of the AMPK/Foxo3 pathway by melatonin increases the expression of autophagy genes 
and promotes the expression of LC3, which promotes autophagy. ➁ Melatonin also promotes 
mitophagy by increasing the levels of LC3II and mito-LC3II through AMPK/OPA1 signaling. ➂ IL-
1β/NF-κB/NLRP3 activates a positive feedback loop to promote mtROS production, and melatonin 
mediates the disruption of the IL-1β positive feedback loop and inhibits mtROS production. ➃ 
Melatonin inhibits the TLR4/AKT/mTOR pathway and promotes autophagosome generation to 
activate autophagy. *(“↑” arrows represent increases, and “↓” arrows represent decreases.) Foxo3: 
Forkhead box O 3; LC3: microtubule-associated protein 1 light chain 3; OPA1: optic atrophy 1; 
and mtROS: mitochondrial ROS 

13.4.4 Melatonin May Rescue Aging by Inhibiting 
Hyperactive Sympathetic Nerve Activity 

In addition to facing changes in cellular aging and tissue dysfunction, both healthy 
aging and disease aging are accompanied by autonomic dysfunction, especially the 
overactive sympathetic nerve activity (SNA), which is innervated by projections from 
the paraventricular nucleus (PVN) of the hypothalamus and the rostral ventrolateral 
medulla (RVLM) of the brainstem (Balasubramanian et al. 2019). 

Oral melatonin (30 mg/kg/day) for 15 days was shown to effectively inhibit sympa-
thetic excitation, reduce baseline mean arterial pressure (MAP) and ROS levels in 
RVLM, and alleviate neurogenic hypertension, but the specific mechanism remains to 
be explored (Nishi et al. 2019). Study indicated that topical application of melatonin 
or its analog N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-yl) ethanamine 
(IIK7) could reduce the intraocular pressure through MT2, and β-adrenergic agonists 
contribute to this effect; however, the co-localization of MT2 with the sympathetic
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nervous system (SNS) was not observed in this article (Alarma-Estrany et al. 2008), 
so there may be other mechanisms involving in the aforementioned progress. At 
the end of the 20th, some studies focused on the effect of melatonin on the SNA 
and found that the SNS directly regulates the synthesis of melatonin in the pineal 
gland (Wurtman et al. 1964), and melatonin can be used as an endogenous mediator 
to participate in short photoperiods to inhibit peripheral SNA (Viswanathan et al. 
1986). However, whether the role of melatonin in regulating the SNS is related to 
aging and the mechanism of how melatonin regulates the SNS remains an open 
question. 

13.4.5 Melatonin Regulates Infection and Delays Aging 
by Modulating Gut Microbiota 

Aging is accompanied by changes in host-microorganism homeostasis. This process 
is affected by factors such as diet, living environment, and lifestyle, as well as 
by the health status of the host. Ghosh et al. concluded that healthy aging and 
disease-related aging have both similar and distinct gut microbial changes (Ghosh 
et al. 2022). Among them, Akkermansia, Butyricimonas, Christensenellaceae, Oscil-
lospira, and Roseburia increased in normal aging, but decreased in disease aging; 
Ruminococcus decreased in normal aging but increased in disease aging; Patho-
bionts, Parabacteroides are elevated in both normal and diseased aging, while short 
chain fat acid (SCFA) producers and Bifidobacterium, Prevotella, and Eubacterium 
are decreased in both normal and diseased aging (Ghosh et al. 2022). In addition, 
butyrate-producing Faecalibacterium and Coprococcus (Valles-Colomer et al. 2019) 
and Lachnospiraceae involved in the conversion of primary bile acids to secondary 
bile acids (Sorbara et al. 2020) are decreased in disease aging; Anaerotruncus associ-
ated with high cholesterol (Zhang et al. 2021) and Coprobacillus associated with the 
severity of COVID-19 (Zuo et al. 2020) are increased in disease aging (Ghosh et al. 
2022). These above findings suggest that alterations in the gut microbiota during 
disease aging might affect host metabolism and make the host susceptible to infec-
tion. And the microbiota intervention with the same change trend in disease aging 
and healthy aging will become a new idea for regulating aging signals. 

Melatonin modulates inflammatory responses in a microbe-dependent manner. 
For example, melatonin increases the abundance of probiotic Bifidobacterium and 
reduces the abundance of harmful bacteria such as Desulfovibrio, and has a relieving 
effect on oxazolone (Oxa)-induced colitis (Zhao et al. 2021). Melatonin blocks 
Prevotella lipopolysaccharide-induced nitric oxide and interleukin-6-induced host 
damage by inhibiting NF-κB and signal transducer and activator of transcription 1 
(STAT1) activity (Choi et al. 2011). Furthermore, the whole metagenomic sequencing 
of gut microbiota in children with autism spectrum disorder (ASD) found decreased 
Parabacteroides in gut microbiota and decreased abundance of genes associated with 
melatonin and SCFAs in the ASD metagenome (Averina et al. 2020). Importantly,
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Table 13.1 Melatonin affects microbiota with the same trends in healthy aging and diseased aging 

Microbiota Changes in 
healthy aging 

Changes in 
disease aging 

Melatonin effects Reference 

Bifidobacterium ↓ ↓ ↑ Zhao et al. 
(2021) 

Prevotella ↓ ↓ Inhibits 
Prevotella-LPS 
induced 
inflammation 

Choi et al. 
(2011) 

SCFA producers ↓ ↓ ↑ Lv et al. (2020) 

Eubacterium ↓ ↓ ▲ Averina et al. 
(2020) 

Faecalibacterium ↓ ↓ ▲ Averina et al. 
(2020) 

Parabacteroides ↑ ↑ ▲ Averina et al. 
(2020) 

Pathobionts ↑ ↑ ↓ Zhao et al. 
(2021) 

*“↓” indicate decrease, “↑” indicate increase, “▲” indicate association 

the metabolite genes of Eubacterium, Faecalibacterium, and Roseburia are mainly 
related to melatonin (Averina et al. 2020). Gut-derived plasma SCFAs showed signif-
icant circadian oscillations, possibly related to plasma melatonin (Swanson et al. 
2020). Gut microbiota that produces SCFAs may promote melatonin receptor expres-
sion (Wang et al. 2019a), and melatonin supplementation can promote the abundance 
of SCFAs production-related flora and increase the production of SCFAs, finally 
alleviating neuro-inflammation (Lv et al. 2020). Therefore, melatonin may improve 
inflammation and ultimately affect the aging process by regulating the microbiota 
that commonly changes in healthy aging and disease aging (Table 13.1). However, 
whether there is a direct link between melatonin-gut microbiota-aging needs to be 
experimentally verified. 

13.5 Conclusion 

In conclusion, melatonin plays an important role in the complex aging process of 
mammals. For example, melatonergic signaling, including melatonin receptor MT1, 
melatonin transporter PEPT1/2, melatonin synthases AANAT and ASMT, and mela-
tonin metabolite AMK might reduce cellular and/or tissue senescence through alle-
viating oxidative damage, promoting autophagy, and reducing the accumulation of 
harmful substances during aging. Notably, melatonin may curtail excessive inflam-
mation and ultimately affect the aging process by regulating the microbiota that 
commonly changes in healthy aging and disease aging. Moreover, numerous reports
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indicate that melatonin possesses anti-infection capability (He et al. 2021, 2022); 
and the susceptibility of pathogens increases during aging which may also be related 
to the decreased secretion of melatonin. Therefore, the melatonin level functions as 
a biomarker of aging and exogenous melatonin could be a potential age regulator. 
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Chapter 14 
Melatonin as a Chronobiotic 
and Cytoprotector in Healthy Aging 

Daniel P. Cardinali , Seithikurippu R. Pandi-Perumal , 
and Gregory M. Brown 

14.1 Introduction 

The impending aging of human population is an undeniably, remarkable event. 
According to the World Health Organization (WHO), the number of individuals 
aged 60 and up will double from 1 billion in 2019 to 2 billion in 2050 (WHO, Aging 
and health), with 80% of all older people living in low- and middle-income countries 
(WHO, Non-communicable diseases). As individuals live longer, they will encounter 
a variety of health and quality-of-life concerns, including an increase in the preva-
lence of non-communicable diseases (NCDs). According to the WHO, NCDs kill 
41 million people each year, accounting for 71% of all deaths worldwide (Khan 
2019). Over 80% of NCD deaths are caused by cardiovascular illnesses, malignan-
cies, respiratory disorders, diabetes, and neurological diseases. NCDs are highly 
associated with impairment, dependency, and the need for long-term care. 

NCDs are characterized by a chronic low-grade pro-inflammatory condition 
termed as “inflammaging” (Barbé-Tuana et al. 2020; Franceschi et al. 2018; Fulop 
et al. 2018). Indeed, as the aging process progresses, the human body’s ability 
to resolve inflammation decreases, resulting in an imbalance of pro- and anti-
inflammatory events. Circadian disturbance, as evidenced by interrupted sleep, is
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another critical process in the aging organism. Sleep cycle disruption, as a comor-
bidity of inflammaging, results in a slew of pathophysiological alterations that hasten 
the aging process. 

Melatonin is a methoxyindole having several features that make it useful for 
dealing with circadian disturbance and inflammation. It functions as a circadian 
synchronizer and amplitude enhancer, a direct and indirect antioxidant, an immuno-
logical modulator, and a protector and modulator of mitochondrial activity. Melatonin 
levels tend to drop as people age, and they are even lower in people with NCDs. 

This chapter examines melatonin’s many functions as a chronobiotic and cytopro-
tector in relation to age-related NCDs (Cardinali 2019a, b, c). Melatonin attenuates 
inflammatory responses and progression of inflammation (Cardinali and Hardeland 
2017). Furthermore, the late afternoon/night surge in melatonin synchronizes both 
the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei 
(SCN) and a slew of peripheral cellular clocks (melatonin’s “chronobiotic action”) 
(Cardinali et al. 2021). The link of melatonin with sirtuins, known by their relevant 
qualities as aging suppressors and accessory components or downstream elements of 
circadian oscillators, will be dealt with in depth (Hardeland 2019). SIRT1 and SIRT3 
appear to be at the heart of melatonin’s chronobiotic and cytoprotective activities in 
healthy aging. 

14.2 Inflammaging 

Claudio Franceschi and colleagues coined the word “inflammaging” to describe 
the imbalance between inflammatory and anti-inflammatory signals that occurs as 
people age (Fulop et al. 2021). This imbalance contributes to the onset of age-related 
diseases such as cardiovascular disease, metabolic syndrome, and diabetes, as well 
as neurodegenerative, renal, lung, and skin diseases. Increased inflammatory indexes 
such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1, IL-6, 
IL-8, IL-12, IL-17 and IL-22, chemokines, and inflammatory factors like monocyte 
chemoattractant protein-1 (MCP-1) and C-reactive protein characterize inflammatory 
aging (Xia et al. 2016). 

Macrophages are important players in the delicate balance of pro- and anti-
inflammatory reactions. They carry out critical innate immunological tasks, including 
the clearing of dying cells through phagocytosis (Lu et al. 2021). Macrophages can be 
divided into two types of polarization states: conventionally activated (M1) and alter-
natively activated (M2). Genes associated to pro-inflammatory cytokines or oxidative 
stress, such as TNF-α, IL-6, MCP-1, and inducible nitric oxide synthase (iNOS), are 
substantially expressed in M1 macrophages, whereas anti-inflammatory cytokine 
IL-10 is highly expressed in M2 macrophages (Lu et al. 2021). 

It is worth noting that, in the absence of acute infection or physiological stress, the 
levels of inflammatory mediators tend to rise with age. When stress occurs, however, 
it causes inflammatory damage to cellular components such as proteins, lipids, and 
DNA, as well as contributing to the age-related decline in physiological functions,
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particularly in cells regulating homeostasis, such as neural, immune, and endocrine 
cells (Bulut et al. 2021). As a result, the functional losses seen with aging include 
a slow-moving, long-lasting type of oxidative stress caused by increased production 
of reactive oxygen and nitrogen species (ROS and RNS), which is exacerbated by 
mitochondrial damage (Bader and Winklhofer 2020; García et al. 2020). 

Because of thymic involution and extended germ exposure, which both lead to the 
depletion of numerous subtypes in developmental stages of leukocytes, an age-related 
pro-inflammatory propensity is almost unavoidable (Hardeland 2019). However, 
considerable interindividual differences exist in the velocity of these changes and 
in the balance between pro-inflammatory and anti-inflammatory cytokines. This 
could be attributable to a genetic predisposition as well as previous viral load histo-
ries, both of which contribute to an immunological risk profile. In centenarians, 
protective phenotypes include an inverted immunological risk profile (Pawelec 2018; 
Wikby et al. 2008). A higher proclivity for inflammatory responses could shorten 
life expectancy. It is likely, then, that a sound immune system is the most reliable 
predictor of human longevity and healthy aging (Bulut et al. 2021; Fulop et al. 2021; 
Santoro et al. 2021). 

As previously stated, inflammaging is a symptom of oxidative stress, which is 
defined as an increase in the generation of ROS and RNS compared to the quantity 
of antioxidants present in the body’s natural defensive systems. Melatonin stands out 
among antioxidants for its anti-inflammatory and antioxidant effects, as well as its 
role as a metabolic regulator (Cardinali 2019a, b, c; García et al. 2020; Hardeland et al. 
2015; Majidinia et al. 2018). Melatonin may have a therapeutic value in promoting 
healthy aging because it controls several inflammaging-related pathways. 

14.3 The Circadian Apparatus 

The daily and seasonal changes caused by the planet’s rotation and orbit around the 
sun have a consistent impact on the organisms that live on it. The light–dark cycle 
is the most visible manifestation of this periodic pattern, which has led to the devel-
opment of endogenous circadian timing systems that synchronize biological func-
tions with the environment (Foster 2020). This is the basis of predictive homeostasis 
evolving as an adaptation to anticipate predictable changes in the environment, such 
as light and darkness, temperature, food availability, or predator activity (Burdakov 
2019). Therefore, the circadian clock is one of the most indispensable biological 
functions for living organisms and acts like a multifunctional timer to adjust the 
homeostatic system, including sleep and wakefulness, hormonal secretions, immune 
function, and most other bodily functions, to the 24-h cycle. 

The circadian system in mammals is made up of numerous distinct tissue-specific 
cellular clocks. The phases of this plethora of cellular clocks are controlled by a 
master circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) 
to generate coherent physiological and behavioral responses (Hastings et al. 2018).
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Among the environmental photic (natural/artificial light) and non-photic (food, 
behavioral arousal, etc.) cues, natural light is the pervasive and prominent synchro-
nizer (“zeitgeber”). The retinohypothalamic tract entrains the SCN via neurotrans-
mitters that act as messengers, controlling the differential expression of clock genes 
and clock-controlled genes inside SCN cells and influencing the observable output 
in the form of physiology and behavior (Hastings et al. 2020). 

Circadian clocks are based on clock genes, some of which encode proteins that 
can feedback and repress their transcription on a molecular level. These cellular 
oscillators are made up of interlocked transcriptional and post-translational feedback 
loops that are controlled by a small number of core clock genes (Welz and Benitah 
2020). Transgenic gene deletion technology was used to characterize the negative and 
positive transcriptional/translational feedback loops that make up the core clockwork 
in rats. The delay in the feedback loops, which is regulated in part by phosphorylation 
of the clock proteins that affect their stability, nuclear re-entry, and transcription 
complex formation, causes clock gene expression to oscillate (Takahashi 2017). 

The circadian clock’s complicated molecular mechanisms are conserved across 
animals. The transcription factors CLOCK and BMAL1, which form dimers through 
basic helix-loop-helix domains, are formed when the genes Clock and Bmal1 are tran-
scribed in mammals. The dimer then promotes transcription of two more genes, Per 
and Cry, resulting in the creation of the proteins PER and CRY, which dimerize and 
are then inhibited by CLOCK and BMAL1 expression. As PER and CRY deteriorate 
with time, the loop must be restarted (Takahashi 2017). 

In both nocturnal and diurnal mammals, the levels of Per and Cry mRNAs in 
the SCN peak in the middle to late afternoon (Hastings et al. 2020). Bmal1 mRNA 
increases around midnight, but Clock is expressed in the SCN throughout the whole 
time (Lee et al. 2001). Through binding to the CLOCK/BMAL1 complex, PER and 
CRY bind to the E-box element of the promoter regions of Bmal1, Clock, Rev-Erb, and 
other clock-controlled genes to limit their production (Takahashi 2017). After casein 
kinase 1 ε/δ phosphorylates PER and CRY, they are translocated to the nucleus (Lee 
et al. 2001). The master oscillation is modulated further by a secondary regulatory 
loop comprised of the nuclear receptors REV-ERB and ROR (retinoid-related orphan 
receptor). REV-ERB inhibits Bmal1 and ROR promotes it through attaching to the 
RORE (response element-binding site) sequence in the promoter region of Bmal1 
(Fontaine and Staels 2007; Preitner et al. 2003). Phosphorylation and ubiquitylation 
via the E3 ligase complex govern the stability of PER and CRY, culminating in their 
proteasomal destruction (Takahashi 2017). 

Physiological and behavioral processes are visibly manifested in the complex 
interaction between the core clock genes and other clock-controlled genes. Interrup-
tions of the circadian rhythm are harmful to one’s health (Welz and Benitah 2020). 
Chronic jet lag and shift work have been linked to heart disease (Crnko et al. 2019), 
memory loss (Snider and Obrietan 2018), disruptions in hormone timing (Maierova 
et al. 2016), diabetes (Oosterman et al. 2020; Stenvers et al. 2019; Tsereteli et al. 
2021), cancer (Asadi et al. 2021; Stangherlin et al. 2021; Wang et al. 2019), impaired 
reproductive health (Caba et al. 2018; Pan et al. 2020), and metabolic disorders (Che
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et al. 2021; Reinke and Asher 2019; Spiegel et al. 1999). The use of chronothera-
pies, such as melatonin, to modulate the molecular elements of circadian rhythms to 
alleviate the ill-effects of circadian rhythm disorders and diseases with a circadian 
correlate is an area receiving growing attention in the scientific literature (Cardinali 
et al. 2021). 

14.4 Melatonin as a Chronobiotic 

Borbély et al. (2016) propose that the physiological regulation of the circadian rhythm 
of sleep/wakefulness (the body’s main circadian rhythm) is divided into two parts: a 
circadian (24-h) component and a homeostatic component. Melatonin is an important 
component of the circadian clock, which controls the timing of sleep. In both normal 
and blind patients, the circadian rhythm in the synthesis and secretion of pineal 
melatonin is intimately linked to the sleep rhythm (Emens and Eastman 2017). The 
initiation of nocturnal melatonin secretion occurs roughly 2 h before a person’s usual 
bedtime and has been linked to the onset of evening tiredness. Endogenous melatonin 
has been implicated in the physiological regulation of the circadian systems that 
govern sleep propensity in several studies (Auld et al. 2017; Gobbi and Comai 2019). 

Aging has been linked to a decrease in sleep efficiency and consistency, as well 
as a decrease in the amplitude of the melatonin cycle and thus many other circa-
dian rhythms in the body (Duffy et al. 2015; Kim and Duffy 2018). Early morning 
awakenings and trouble falling asleep have been noted regularly among the elderly. 
Sleep issues that affect senior insomniacs can be linked to melatonin secretion prob-
lems. Indeed, melatonin insufficiency causes a relative circadian desynchrony, which 
can lead to aging. As a result of its well-known chronobiotic capacity, melatonin 
supplementation can help to improve the quality of life of the aged. 

Melatonin is a key player in circadian rhythmicity’s coordination. Melatonin 
secretion is an “arm” of the biologic clock in the sense that it responds to signals 
from the SCN and that the timing of the melatonin rhythm reveals the status of the 
clock in terms of phase (i.e., internal clock time relative to external clock time) and 
amplitude (Pevet et al. 2021). Melatonin is also a chemical code of night in another 
sense: the longer the night, the longer the length of its secretion. This pattern of 
secretion serves as a temporal cue for seasonal rhythms in most mammalian species 
(Clarke and Caraty 2013; Wahab et al. 2018). 

Pineal melatonin production is controlled by a complex neural system originating 
in the hypothalamic paraventricular nucleus (PVN) and ending in the highest levels of 
the thoracic spinal cord—the superior cervical ganglion sympathetic system (Pevet 
et al. 2021). The superior cervical ganglion’s postganglionic sympathetic nerve termi-
nals release norepinephrine into the pineal gland, which activates melatonin synthesis 
by interacting with β- (primarily) and α-adrenoceptors on pineal cell membranes. 
Melatonin is not kept in the pineal because of its high diffusibility, and it is expelled 
as soon as it is created (Tan et al. 2018). The SCN-melatonin loop is a group of compo-
nents that govern circadian rhythms. Melanopsin-containing retinal ganglion cells,
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the retinohypothalamic tract, SCN, PVN, intermediolateral cell column, sympathetic 
cervical ganglia, pineal gland, and the melatonin rhythm, all of which have feedback 
effects on the SCN, make up this loop (Tan et al. 2018). 

In fact, all mammalian species’ circadian pineal melatonin production is confined 
to the dark phase of the light/dark cycle. Melatonin is always synthesized throughout 
the night, regardless of the species’ daily cycle of activity/rest, demonstrating its 
close link with the external photoperiod. If there is no light in the surroundings, 
melatonin is created at night (Pevet et al. 2021). 

When present at night, blue light activates melanopsin-containing retinal ganglion 
cells, a specific retinal mechanism that suppresses pineal sympathetic norepinephrine 
release, reducing or eliminating melatonin generation. Melatonin can synchronize 
the circadian cycles of various organs and their functions due to the regularity of daily 
melatonin production, which is associated with high and low blood concentrations 
during the night and day, respectively. In vitro studies have revealed that a synthetic 
day and night melatonin profile can act as a pacemaker for most cells’ daily rhythmic 
processes (Hardeland et al. 2011). 

The effects of the internal zeitgeber melatonin on the circadian clock are time-
dependent, just like the effects of the external zeitgeber light. Melatonin given to rats 
daily modifies the phase of the circadian clock, which could explain how melatonin 
affects sleep in humans (Pevet et al. 2021). Clinical trials in blind subjects (who have 
free running of circadian rhythms) treated with melatonin provide indirect support 
for such a physiological involvement (Skene and Arendt 2007). The revelation that 
the phase response curve for melatonin was opposite (i.e., around 180° out of phase) 
to that of light offered more concrete evidence for this notion (Lewy 2010). 

Melatonin receptors have been discovered both in the CNS and in the periphery 
(Dubocovich et al. 2010). The MT1 and MT2 receptors, which belong to the G-
protein coupled receptors (GPCR) families of membrane receptors, have all been 
cloned. GPR50, a new member of the melatonin receptor subfamily, was recently 
added (Cecon et al. 2018). GPR50 has a lot of similarities to MT1 and MT2, but it 
does not bind to melatonin or any other known ligand. The ability of these receptors 
to form homo- and heteromers with each other and with other GPCRs, such as the 
serotonin 5-HT2C receptor, is an intriguing property (Cecon et al. 2018). 

Although melatonin’s major physiological function is to regulate circadian and 
seasonal rhythmicity, the methoxyindole’s activities are not limited to receptor-
rich locations. Melatonin influences mitochondrial electron flux, the mitochon-
drial permeability transition pore, and mitochondrial biogenesis, as well as anti-
excitatory activities, immunomodulation, including pro- and anti-inflammatory qual-
ities, antioxidant actions, and energy metabolism (Tan and Reiter 2019). Many of 
these actions are independent of receptors. 

Melatonin in the blood is loosely linked to albumin, and it is hydroxylated in 
the liver before being conjugated with sulfate or glucuronide (Claustrat and Leston 
2015). The primary metabolite in human urine is 6-sulfatoxymelatonin. Melatonin 
is converted to kynurenine derivatives in the brain. Some of melatonin’s metabolites, 
such as cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine 
(AFMK), and, with the highest efficacy, N1-acetyl-5-methoxykynuramine, share its
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well-documented antioxidant effects (AMK). Melatonin administration to experi-
mental animals and people therefore initiates an “antioxidant cascade” (Reiter et al. 
2017). 

As already stated, circulatory melatonin in mammals is virtually entirely produced 
from the pineal gland. However, melatonin is also generated locally in most cells, 
tissues, and organs, including lymphocytes, bone marrow, thymus, gastrointestinal 
tract, skin, and eyes, where it can have an autocrine or paracrine role (Acuña-
Castroviejo et al. 2014). There is now strong evidence that melatonin is synthesized 
in every animal cell with mitochondria. 

Although it is usually assumed that the endogenous melatonin’s chronobiotic 
impact is mediated by MT receptors, a chronobiotic effect can also be detected when 
pharmaceutical quantities of fast-release melatonin (that saturate receptors) are used. 
Even at a high dose, melatonin employed as a fast-release preparation administered 
at a single time point in the day (bedtime) keeps the chronobiotic effects (Fig. 14.1). 
Hence, the rationale for using melatonin as a preventive medication in NCDs caused 
by aging is based not only on the amelioration of the immunoinflammatory disorder, 
but also on the general improvement and prevention of potential complications caused 
by maintaining optimal circadian rhythmicity. 

Fig. 14.1 Because of its pharmacokinetic properties, i.e., a very short half-life in the blood, when 
melatonin is given orally as a fast release preparation at bedtime, melatonin gives rise to a chrono-
biotic signal regardless of the amounts given (reproduced with permission from Cardinali et al. 
(2020a, b)
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14.5 Use of Melatonin in Aged Sleep 

Melatonin is a potent chronobiotic with a mild hypnotic potential. In sighted people 
who live in environments that are likely to produce a free-running rhythm, daily 
melatonin doses of 2–10 mg, timed to advance the phase of the internal clock in 
the SCN, preserve circadian rhythms synchronized to a 24-h cycle (Lewy 2010). 
After a brief period of free running, melatonin synchronizes the rhythm in people. 
Giving melatonin to blind subjects with free-running rhythms has been shown to 
stabilize, or entrain, the sleep/wake cycle to a 24-h period, resulting in improved 
sleep and mood (Arendt 2019). Melatonin administration helps to minimize the 
variation in the onset time of sleep in normal aged adults and demented patients with 
disrupted sleep/wake cycle synchronization. Melatonin’s phase-shifting properties 
also account for its usefulness as a treatment for circadian-related sleep disorders 
such jet lag and delayed phase sleep syndrome (Burgess and Emens 2018). 

The sleep/wake cycle has a bidirectional association with aging. Inadequate sleep, 
both in terms of duration and quality, can have a negative impact on health and 
consequently hasten the aging process. Sleep/wake cycle problems, on the other 
hand, tend to worsen with age due to the flattening and misalignment of circadian 
rhythms such as melatonin secretion, as well as the sleep-disturbing effects of aging-
related ailments and diseases (Hardeland 2015). The most striking examples are 
immunosenescence, which also affects the brain (Cardinali et al. 2008; Hardeland 
2018), and the nearly exponential increase in hydroxyl radical generation reported 
in the senescent brain (Poeggeler et al. 1993; Reiter 1995). 

There is a considerable literature that suggests that the sleep/wake issues become 
more common as people get older. According to epidemiological studies, more 
than half of all persons over the age of 65 suffer from a persistent sleep-related 
ailment (Foley et al. 1995). Several meta-analyses support the view that the chrono-
biotic/hypnotic properties of melatonin are useful in aged patients with primary sleep 
disorders to decrease sleep onset latency and to increase total sleep time, with fewer 
effects on sleep efficiency (Auld et al. 2017; Ferracioli-Oda et al. 2013; Zhang et al. 
2019). A role for melatonin in adult insomnia is also supported by several expert 
consensus reports (Geoffroy et al. 2019; Palagini et al. 2021; Wilson et al. 2019). 

Sleep/wake disturbance has been linked to a variety of neuropathologies in 
numerous studies. In healthy participants, sleep loss or slow wave sleep disruption 
raised amyloid β (Aβ) levels in the CSF (Olsson et al. 2018; Ooms et al.  2014). A 
single night of total sleep deprivation was said to prevent the normal decline in CSF 
Aβ. The brain “glymphatic” hypothesis states that perivascular astrocytes, which are 
highly enriched in aquaporin-4, and changes in the vascular lumen generate active, 
lymphatic-like motions in the extracellular space of the brain (Boespflug and Iliff 
2018; Braun and Iliff 2020). The exchange of solutes between the CSF and the inter-
stitial fluid takes place mostly during slow wave sleep, when the cortical interstitial 
space expands by more than 60% and provides a low-resistance conduit for CSF and 
interstitial fluid movement in the brain parenchyma. The aging human brain has an 
impact on this. Various neurological disease states, such as stroke, traumatic brain
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injury, and AD, have been understood in terms of glymphatic dysfunction’s impact 
(Boespflug and Iliff 2018). It is worth noting that giving melatonin to AD transgenic 
mice improves their glymphatic clearance of Aβ (Pappolla et al. 2018). 

Primary insomnia affects up to ten percent of the general population and up to 
25–30% of the elderly, for whom insomnia therapy is an obvious medical necessity. 
Insomnia’s direct and indirect costs add up to a significant socioeconomic burden. 
The most recommended medicines for the treatment of insomnia in the elderly are 
benzodiazepines (BZD) and other BZD receptor agonists (Z-drugs such as zolpidem, 
zaleplon, and zopiclone). Several meta-analyses that investigated the risks and advan-
tages of these therapy choices in older patients found statistically significant improve-
ments in sleep, but also a statistically significant risk of life-threatening side events 
(Schroeck et al. 2016; Winkler et al. 2014). Due to safety concerns, regulatory agen-
cies have only approved these medications for treatment of older persons for no more 
than a few weeks. More than 40% of users of both BZD and Z medicines have had 
negative side effects. 

European health authorities are implementing rules and making recommendations 
to decrease the use of BZD and Z-drug medicines. Despite national guidelines and 
recommendations, however, the campaigns have been largely unsuccessful, and the 
usage of these medications has continued to rise (Clay et al. 2013). The more obvious 
method for reducing chronic BZD use is to discontinue the medicine gradually; abrupt 
discontinuation can only be justified if a major side effect arises during therapy. There 
is no clear data about the best way to proceed with BZD withdrawal, and times range 
from four weeks to several months (Edinoff et al. 2021). 

The interaction of melatonin with central BZD receptors was initially reported 
in 1986 (Acuña-Castroviejo et al. 1986) and the first study on the reduction of 
BZD use in melatonin-treated elderly people was published in 1997 (Fainstein 
et al. 1997). Melatonin’s anxiolytic, antihyperalgesic, and antinociceptive actions 
are explained by its facilitation of γ-aminobutyric acid neurotransmission (Cardinali 
et al. 2016). Several clinical investigations have now confirmed melatonin’s useful-
ness in reducing BZD use in chronically treated patients (Morera-Fumero et al. 
2020). The results of a pharmaco-epidemiologic study aimed at assessing the impact 
of anti-BZD/Z-drug campaigns and the availability of alternative pharmacotherapy 
(melatonin) on BZD and Z-drug consumption in several European countries revealed 
that campaigns failed unless they were linked to the availability of melatonin on 
the market (Clay et al. 2013). Melatonin has therefore proven to be an excellent 
medication for maintaining healthy sleep patterns in the elderly. 

14.6 Melatonin and Inflammaging 

The significance of melatonin in reducing inflammation and its progression has gotten 
a lot of attention, especially when it comes to therapy options for people who have low 
endogenous melatonin levels. Melatonin is one of the hormones that is known to drop 
with age and, more importantly, in various age-related NCDs (Hardeland 2012;Vasey
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et al. 2021). In coronary heart disease, metabolic syndrome, and type 2 diabetes, 
melatonin levels were found to be lower (Altun et al. 2002; Girotti et al. 2000; 
Hernández et al. 2007; Nagtegaal et al. 1995; Yaprak et al. 2003). Additional evidence 
from polymorphisms of human melatonin receptor genes indicates that deviations in 
melatonergic signaling may favor the development of prediabetic states, diabetes type 
2, elevated cholesterol, and coronary heart disease. Furthermore, knocking down the 
melatonin receptor MT1 in mice resulted in insulin resistance (Contreras-Alcantara 
et al. 2010). 

Melatonin acts as an anti-inflammatory at different levels. One of these is 
metabolic dysregulation repair, which includes preventing insulin resistance, an 
inflammation-promoting alteration that is a characteristic of the metabolic syndrome 
(Cuesta et al. 2013; Lee et al. 2020). Melatonin was found to be efficient in decreasing 
insulin resistance in a variety of animals, tissues, and induction approaches. Reduced 
serine phosphorylation of insulin receptor substrate 1 (IRS-1) is the key effect at 
which the relevant pathways converge in this regard, which is frequently followed 
by an increase of IRS-1 expression (Du and Wei 2014). Melatonin and the mela-
tonergic agonist piromelatine have been found to reverse insulin signal transduction 
inhibition (She et al. 2009). Insulin resistance has been found to be an early indi-
cator of low-grade neuroinflammation in neurodegenerative illnesses such as AD 
and Parkinson’s disease (Sun et al. 2020a, b; Verdile et al. 2015). 

The avoidance of processes that encourage or lead to inflammation is another 
level of action. Calcium overload, excessive nitric oxide (NO) release, which leads 
to the creation of peroxynitrite, peroxynitrite-derived free radicals, and eventually, 
tyrosine nitration, as well as mitochondrial malfunction because of oxidative stress, 
are all examples of it (Cardinali and Hardeland 2017; Hardeland et al. 2015). All 
these alterations are known to generate low-grade inflammation in numerous organs, 
which is linked to aging. In the central nervous system, this includes microglia 
activation and vicious cycles caused by overexcitation and oxidant damage, which 
result in reduced neuronal and astrocytic activities. Melatonin has been proven in 
animal models to prevent these harmful processes by acting as an anti-excitatory 
agent, protecting mitochondria, reducing peroxynitrite-related damage, and reducing 
microglia activation. 

Melatonin’s immunological effects are a third aspect of inflammaging to consider. 
Melatonin’s many functions as an immunomodulatory drug include both pro-
inflammatory and anti-inflammatory effects, resulting in either pro-oxidant or antiox-
idant equilibrium (Carrillo-Vico et al. 2013; Hardeland 2019; Markus et al. 2021). 
Melatonin is generally pro-inflammatory in immunosuppressive circumstances. The 
exact reasons for when melatonin acts pro- or anti-inflammatory are yet unknown, 
while the severity of inflammation and the chronological sequence of initiation and 
healing processes are certain to play a part. 

Melatonin’s anti-inflammatory properties take precedence as people age. Mela-
tonin reduced pro-inflammatory cytokines including TNF-α, IL-1, and IL-6 in the 
livers of elderly, ovariectomized female rats while increasing the anti-inflammatory 
cytokine IL-10 (Kireev et al. 2008). Corresponding findings were verified in the
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dentate gyrus, along with an increase of sirtuin 1 (SIRT1), a protein with strong anti-
inflammatory characteristics. TNF-α and IL-1 levels were reduced, whereas IL-10 
levels were elevated, in the liver, pancreas, and heart of the senescence-accelerated 
mouse strain SAMP8 (Cuesta et al. 2011, 2010; Forman et al.  2011). 

Other studies have found that melatonin has anti-inflammatory effects in brain 
damage, ischemia/reperfusion (I/R) lesions, hemorrhagic shock, and various forms 
of high-grade inflammation, such as endotoxemia and sepsis. Remarkably, the use 
of melatonin as a countermeasure to a SARS-CoV-2 infection has been advocated 
(Reiter et al. 2020a; Zhang et al. 2020). Melatonin has pan-antiviral effects, and it 
diminishes the severity of viral infections and reduces the death of animals infected 
with numerous different viruses, including three different coronaviruses. Network 
analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted 
that melatonin would be a most effective agent for preventing/treating COVID-19 
(Cardinali et al. 2020a, b). Finally, when badly infected COVID-19 patients were 
treated with melatonin alone or in conjunction with other drugs, the severity of 
infection was reduced, the death rate was lowered, and the length of hospitalization 
was shortened (Farnoosh et al. 2021; ZT et al.  2021). 

From a molecular standpoint, distinguishing between direct and indirect anti-
inflammatory effects of melatonin via changes in phase or amplitude of local circa-
dian oscillators is not always attainable (Boivin et al. 2003; Bollinger et al. 2011; 
Hardeland et al. 2012). Melatonin has been shown to affect metabolic sensing 
factors such as peroxisome proliferator-activated -activated receptor-γ coactivator-
1α (PGC-1α), peroxisome proliferator-activated receptor-γ (PPARγ), phosphoinosi-
tide 3-kinase, protein kinase B, including the accessory oscillator components AMP 
kinase, nicotinamide phosphoribosyl transferase (NAMPT), and SIRT1. 

The induction of antioxidant enzymes in the rat liver and pancreas under inflamma-
tory conditions, where melatonin promotes the expression and nuclear translocation 
of nuclear factor erythroid 2-related factor 2 (Nrf2) that mediates the upregulation of 
the protective enzymes, is an example of a direct melatonin effect not mediated by 
oscillators (Jung et al. 2010). Melatonin suppresses the expression of nuclear factor-
κB (NF-κB) by recruiting a histone deacetylase (HDAC) to its promoter, which 
decreases pro-inflammatory factors like TNF-α, IL-1, and iNOS. 

Various other effects of melatonin on gene expression are mediated by the circa-
dian system. In particular, the role of SIRT1 must be considered, which is not only 
believed to be an aging suppressor, but acts as a protein deacetylase and, moreover, as 
a component of circadian oscillators that interacts with the BMAL1/CLOCK dimer 
and is required for high rhythm amplitudes (Bellet et al. 2011). SIRT1 was activated 
by melatonin in multiple aging scenarios, including senescence-accelerated animals, 
and induced increased deacetylation of various of its substrates, including PGC-
1α, Forkhead box protein O1 (FOXO1), NF-κB, and p53 (Hardeland et al. 2015). 
Notably, these effects strongly contrast with the opposite effects in epigenetically 
dysregulated oscillators of cancer cells (Hardeland 2014). SIRT3 is another sirtuin 
associated with melatonin effects at the mitochondrial level (Mayo et al. 2017).
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14.7 Melatonin, Sirtuins, and the Anti-inflammatory 
Network 

Sirtuins, a family of seven proteins encoded by Silent Information Regulator (Sir) 
genes, play a key role in senescence control and survival under adverse conditions 
(Watroba and Szukiewicz 2021). Sirtuins are nicotinamide adenine dinucleotide 
(NAD)-dependent HDAC type-III enzymes that control a variety of cellular and 
molecular processes through deacetylation (Mayo et al. 2017). According to the 
targeting sequences they include, sirtuins can be cytoplasmic or nuclear (SIRT 
1,6,7) and can even be directed to migrate to the mitochondria (SIRT 3,4,5). While 
nuclear/cytosolic sirtuins regulate cellular processes by deacetylating histone and 
non-histone targets (Yamamoto et al. 2007), mitochondrial sirtuins regulate energy 
metabolism by acting as either NAD+ dependent class III histone deacetylase 
enzymes (e.g., SIRT3), auto-ADP-ribosyltransferases (SIRT6) or as mono-ADP-
ribosyltransferases (particularly SIRT4) to control energy metabolism (Watroba and 
Szukiewicz 2021). They could influence mitochondrial biogenesis, insulin sensi-
tivity, glucose and lipid metabolism (Poulose and Raju 2015), urea cycle, cell cycle, 
DNA repair, and rDNA transcription due to their deacetylating and ADP-ribosylation 
properties (Elkhwanky and Hakkola 2018; Singh et al. 2018). 

SIRT1 and SIRT3 are two sirtuins that are particularly critical for melatonin’s anti-
inflammatory properties (Mayo et al. 2017). SIRT1 is a versatile protein that deacety-
lates both histone and non-histone sites to control gene transcription. P53, FOXO 
transcription factor, PGC1α and NF-κB are examples of non-histone targets that regu-
late stress responses, inflammation, cellular senescence, and apoptosis (Watroba and 
Szukiewicz, 2021) (Fig. 14.2). Because SIRT1’s activity is reliant on the co-factor 
NAD+, it was first thought to be a NAD+-dependent histone deacetylase. Overexpres-
sion of Sirt1 enhances insulin sensitivity by deacetylating PGC-1α, a transcriptional 
coactivator that regulates glucose homeostasis at the transcriptional level, which 
influences glucose tolerance (Milne et al. 2007). Sirt1 overexpression in the progeny 
of mice fed a high-fat diet decreases insulin resistance, improves glucose tolerance, 
avoids hepatic steatosis, and lowers ROS generation (Nguyen et al. 2019). SIRT1 
also plays several functions in signaling pathways involved in development, cogni-
tion impairment, heart disease, aging, cancer, and energy homeostasis, including 
lipid and glucose homeostasis.

SIRT1 has been linked to a longer lifespan and the prevention of neurodegenerative 
diseases. The overexpression of SIRT1 in AD reduces the increase in Aβ deposition 
(Fernando and Wijayasinghe 2021). Overexpression of SIRT1 is also advantageous 
in Parkinson’s disease, as it reduces acetylation of SIRT1 substrate (FOXO3a) and 
inhibits α-synuclein aggregation by preventing misfolding of α-synuclein protein 
(Jęśko et al. 2017). 

SIRT1 has been shown in numerous studies to have antioxidant and anti-
inflammatory properties like melatonin (Mayo et al. 2017). This includes suppressing 
NF-κB activation, upregulating Nrf2, suppressing NLRP3 inflammasome activa-
tion, and inhibiting TLR4 (toll-like receptor 4) signaling. High mobility group



14 Melatonin as a Chronobiotic and Cytoprotector in Healthy Aging 289

Fig. 14.2 SIRT1 it is a multifunctional protein that controls gene transcription by deacetylating 
both histone and non-histone targets. Non-histone targets include P53, forkhead homeobox type O 
(FOXO) transcription factor, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) 
and nuclear factor (NF)-κB, thus regulating stress responses, inflammation, cellular senescence and 
apoptosis. In addition, SIRT1 and the circadian clock interact. SIRT1-deficient mice exhibit alter-
ations in the expression patterns of Per1, Per2, Cry1, and Cry2 circadian genes. Melatonin modu-
lates SIRT1 activity, and this modulation may be in the core of the cytoprotective and chronobiotic 
properties of the methoxyindole

box-1 (HMGB1), an inflammatory signaling protein secreted by monocytes and 
macrophages, is a key role in TLR4 activation (Hardeland 2019). SIRT1 has been 
shown to deacetylate HMGB1, preventing its nucleocytoplasmic transfer and release. 
Importantly, HMGB1 promotes macrophage and microglia polarization toward the 
pro-inflammatory M1 type (Hardeland 2019). Melatonin has also been shown to have 
anti-inflammatory properties via inhibition of HMGB1 (Mayo et al. 2017). Under 
more severe inflammation, several different findings on sirtuin-mediated suppression 
by melatonin were discovered. This was seen in normal and diabetic rats with cardiac 
ischemia/reperfusion, in H9C2 cardiomyocytes with endoplasmic reticulum stress, 
in LPS-treated microglial cell lines, and in mice with brain injury caused by cecal 
ligation/puncture (Hardeland 2019). 

SIRT3 is a key factor in mitochondrial function, as it regulates the pyruvate dehy-
drogenase complex (PDH) and participates in ATP synthesis. Several investigations 
have found that melatonin operates at the mitochondrial level via SIRT3 (Mayo 
et al. 2017) (Fig. 14.3). Higher ATP generation, an elevated ATP production-coupled 
oxygen consumption rate, and reduced lactic acid secretion resulted from a switch 
from cytosolic aerobic glycolysis to oxidative phosphorylation (OXPHOS). Mela-
tonin activated SIRT3 and PDH, which increased the mitochondrial membrane poten-
tial and the activity of complexes I and IV in the electron transport chain. Melatonin
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greatly improved mitochondrial energy metabolism by reversing the Warburg effect 
via raising PDH activity and stimulating SIRT3. 

Melatonin changes pro-inflammatory glycolytic M1 macrophages into anti-
inflammatory OXPHOS-using M2 macrophages (Reiter et al. 2020b). Melatonin 
causes the mitochondrial metabolism of pyruvate, stimulation of the tricarboxylic 
acid cycle, improved OXPHOS, and reduced ROS by down-regulating hypoxia-
inducible factor 1, which leads to PDH disinhibition. Melatonin and its metabolites 
are particularly effective direct scavengers of partially reduced derivatives of oxygen 
under these conditions, in addition to lowering mitochondrial ROS production. 

Because macrophages and associated cells are key participants in inflammation, 
their differentiation into pro-inflammatory M1 or anti-inflammatory M2 phenotypes 
is critical for maintaining the pro-/anti-inflammatory balance (Fujisaka 2021). By 
promoting M2 polarization and disfavoring M1 polarization, melatonin can move 
this balance toward the anti-inflammatory side (Reiter et al. 2020b). One of the 
major anti-inflammatory effects in the inhibition of M1 function consists in the MT1 
receptor-mediated activation of NF-κB degradation. Additionally, suppression of NF-
κB actions has been reported for RORα. Because ROR is unable to bind melatonin,

Fig. 14.3 In resting macrophages (M2), the glucose metabolite pyruvate enters the mitochondria 
where it is enzymatically converted to acetyl-coenzyme A by the enzyme pyruvate dehydroge-
nase complex (PDH). Acetyl-CoA feeds the tricarboxylic acid cycle (TCA) and supports oxida-
tive phosphorylation (OXPHOS). Additionally, acetyl-CoA is an essential co-factor/substrate for 
the rate-limiting enzyme in melatonin synthesis, arylalkylamine N-acetyltransferase. Mitochon-
drial melatonin functions intracellularly and is released into the cellular microenvironment, but not 
into the blood. Melatonin scavenges ROS generated during OXPHOS and improves mitochondrial 
membrane potential and the activities of complexes I and IV in the electron transport chain. Addi-
tionally, melatonin stimulates SIRT3 allowing PDH stimulation and the activation of superoxide 
dismutase 2. As a result of these changes, melatonin significantly enhanced mitochondrial energy 
metabolism to reverse the Warburg effect 
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the methoxyindole’s effect on the transcription factor must be indirect (Hardeland 
2019). A possibility of particular interest concerns the effect of SIRT1 on RORα, 
in its function as a partial mediator of melatonin effects. Upregulation of SIRT1 
deacetylates PGC-1α and facilitates the binding of RORα to its response elements. 

SIRT1 and the circadian clock interact (Fig. 14.2). SIRT1 influences the circadian 
clock in both the brain and in peripheral tissues (Masri, 2015; Soni et al. 2021). 
The expression patterns of Per1, Per2, Cry1, and Cry2 circadian genes are altered 
in Sirt1-deficient mice. Sirt1 and Per2 work together to suppress each other (Wang 
et al. 2016). SIRT1 deacetylates and degrades PER2 in the liver. SIRT1 also regulates 
circadian rhythms by binding to the CLOCK-BMAL1 complex in a rhythmic way. 
As a result, the acetylation and deacetylation of its components affect the molecular 
circadian clock. 

Sirtuins and circadian clock proteins work cooperatively to regulate oxidative 
metabolism via NAD+ and NADH responses (Anderson et al. 2017; Griffiths et al. 
2020). Apart from activating the clock genes Per and Cry and other clock-controlled 
genes, the heterodimer CLOCK-BMAL1 also regulates the activity of the gene 
Nampt, which encodes the rate-limiting enzyme nicotinamide phosphoribosyltrans-
ferase, whose metabolite is NAD+ . Because of oscillations in NAMPT levels, NAD 
+ synthesis has a specific circadian cycle. The cellular redox status is maintained by 
the distribution of NAD+ in the cytosol, nucleus, and mitochondria, which is neces-
sary for the normal functioning of the bioenergetic enzymatic machinery (Anderson 
et al. 2017; Griffiths et al. 2020). These findings suggest that a complex system of 
regulators, of which SIRT1 is a key component, controls the molecular circadian 
clock’s stability via various pathways (Griffiths et al. 2020; Xu et al.  2021). 

Melatonin regulates SIRT1 activity, which may be at the heart of the methoxyin-
dole’s cytoprotective and chronobiotic effects (Bonomini et al. 2018; Emamgholipour 
et al. 2016; Favero et al.  2020; Stacchiotti et al. 2019) (Fig. 14.2). Melatonin’s cardio-
protective action during I/R is mediated by SIRT1 signaling in antioxidative response 
pathways. SIRT1 deacetylation activates FOXO1, which in turn produces the antiox-
idant enzymes manganese superoxide dismutase (MnSOD) and catalase. Apoptosis 
is aided by the presence of acetylated FOXO1 (Ac-FOXO1). SIRT1 and Ac-FOXO1 
expression were dramatically increased and lowered in melatonin-treated myocar-
dial I/R rats, respectively. In I/R plus vehicle group, SIRT1 expression was reduced 
and Ac-FOXO1 expression was significantly boosted (Yu et al. 2014). Melatonin 
therapy boosted the expression of the antiapoptotic gene Bcl-2 via upregulating 
SIRT1 and thereby lowering Ac-FOXO1. Hence, melatonin works with SIRT1 to 
alleviate oxidative stress and to prevent apoptosis (Fig. 14.2). 

SIRT1 is also the effector responsible for melatonin’s protective role in kidney 
function in badly burned rats, since it reduces oxidative stress, regulates inflamma-
tory responses, and inhibits apoptotic pathways (Bai et al. 2016; Owczarek et al. 
2020). In a C57BL/6 J mouse model of sepsis, SIRT1 contributes to the protective 
role of melatonin following cecal ligation and puncture (Zhao et al. 2015). Mela-
tonin reduces the load of neuroinflammatory and oxidative stress caused by septic 
encephalopathy (Hu et al. 2017). This benefit was reduced by a SIRT1 inhibitor,
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implying that melatonin’s beneficial effect was mediated through SIRT1 (Zhao et al. 
2015). 

Activation of the NLRP3 inflammasome in various systems, under different condi-
tions and counteractions by melatonin, has been recently reviewed (Sayed et al. 2021; 
Volt et al. 2016; Zheng et al. 2021). Melatonin’s regulation of NF-κB signaling, which 
is also critical in the prevention of oxidative damage, was linked to these findings. 
In addition, NF-κB has been shown to cause pyroptosis in adipose tissue, which is 
suppressed by melatonin. 

TLR4 activation, for example, via the IFN-γ-adaptor protein, a toll-receptor-
associated activator of interferon (TRIF), is another pro-inflammatory mechanism 
(Feng et al. 2022; Lwin et al.  2021). By inhibiting TRIF and TLR4, melatonin has 
been found to reduce the release of pro-inflammatory cytokines such as TNF-α, 
IL-1, IL-6, and IL-8. Because TLR4 also causes pro-oxidant actions via NF-κB, 
melatonin’s impacts on this pathway are likely to be more widespread. 

14.8 Therapeutic Value of Melatonin in Animal 
and Clinical Models of Age-Related NCDs 

As already mentioned, circulating melatonin levels in humans are consistently 
reduced in age-related NCDs. In a limited number of clinical trials employing mela-
tonin in the 2–5 mg/day range, partial beneficial effects were obtained. However, in 
animal model studies of NCDs, melatonin was highly effective in curtailing symp-
tomatology. Allometric calculations derived from animal studies indicate projected 
cytoprotective melatonin doses for humans in the 40–100 mg/day range, doses that 
are rarely employed clinically. 

Melatonin treatment reduces obesity, type 2 diabetes, and hepatic steatosis in rats 
(Martínez Soriano et al. 2020; Pan et al. 2006) Melatonin injections normalized most 
of the identified changes and corrected the altered biochemical pro-inflammatory 
profile in many animal models of hyperadiposity (Cardinali 2019a, b, c). Melatonin 
treatment of streptozotocin-induced type 1 diabetic mice results in the regeneration 
and proliferation of β-cells in the pancreas, lowering blood glucose levels (Hajam 
et al. 2021; Kanter et al. 2006). The loss of melatonin in the circulation following 
pinealectomy causes hyperinsulinemia and lipid buildup in the rat liver (Nishida et al. 
2003). Melatonin improves lipid metabolism in type 2 diabetic mice by improving 
insulin sensitivity after long-term treatment (Nishida et al. 2003). Melatonin admin-
istration increased glycogen content in the liver of rats, while intraperitoneal injec-
tion of 10 mg/kg melatonin improved glucose consumption, insulin sensitivity, and 
alleviated hepatic steatosis in high-fat diet-induced diabetic mice (Shieh et al. 2009). 

The causes for the drop in body weight after taking melatonin in the absence of 
major changes in food intake should be investigated further. The fact that melatonin 
plays a role in seasonal changes in adiposity by increasing the activity of the sympa-
thetic nervous system, which innervates white and brown fat, is an important piece of
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evidence in this respect (Bartness et al. 2002; Ryu et al. 2018). Melatonin influences 
not only white adipose tissue, but also brown adipocyte recruitment and metabolic 
activity in mammals (de Souza et al. 2019; Fernández Vázquez et al. 2018; Halpern 
et al. 2019, 2020; Tan et al. 2011). Melatonin’s hypertrophic impact and functional 
activation of brown adipose tissue have been suggested as potential treatments for 
obesity in humans. 

The human equivalent dose (HED) of melatonin for a 75 kg adult was estimated 
by normalizing body surface area from the doses of melatonin used in animals (Blan-
chard and Smoliga 2015; Nair et al.  2018; Reagan-Shaw et al. 2008). Body surface 
area has been advocated as a factor to use when converting a dose for translation 
from animals to humans because it correlates well with several biological parame-
ters such as oxygen utilization, caloric expenditure, basal metabolism, blood volume, 
circulating plasma proteins, and renal function across several mammalian species. 
It is worth noting that theoretical HED of melatonin derived from various research 
studies are 2–3 orders of magnitude higher than those used in people. 

For a summary of the effect of melatonin in animal models of age-related NCDs, 
see Cardinali (2019a, b, c). Melatonin reduced 87% of the area of injury and 80% 
of the number of injured myocardium regions in a rat model of myocardial infarc-
tion (caused by closure of the left anterior descending coronary artery 3 h earlier) 
(Castagnino et al. 2002). Several investigations in rats and mice have shown that 
melatonin can lower heart damage signs, boost cardiac antioxidant defenses, and 
normalize lipid profiles (see for ref. Cardinali 2019a, b, c). The same was observed 
in cardiomyopathy induced by streptozotocin (Kandemir et al. 2019) or doxorubicin 
(Kandemir et al. 2019). Melatonin boosts the therapeutic efficacy of cardiac progen-
itor cells for myocardial infarction in a mouse model of myocardial infarction treated 
with cardiac progenitor cells (Ma et al. 2018). A study of the subcellular distribution 
of melatonin in the heart of rats found that at a dose of 40 mg/kg b.w., the nucleus 
and mitochondrion attained their maximum concentration of melatonin. The authors 
calculated a HED of melatonin ≥ 112 mg/day for therapeutic purposes in a 70 kg 
human adult (Acuña-Castroviejo et al. 2018). 

Cell line studies regarding AD and melatonin have delineated important melatonin 
mediated mechanisms in AD prevention. For comprehensive reviews on melatonin 
activity to reverse disrupted signaling mechanisms in neurodegeneration, including 
proteostasis dysfunction, disruption of autophagic integrity, and anomalies in the 
insulin, Notch, and Wnt/β-catenin signaling pathways, see (Melhuish Beaupre et al. 
2021; Shukla et al. 2019). 

The results obtained in transgenic models of AD are consistent with the hypothesis 
that melatonin affects Aß metabolism mostly during the early stages of the pathogenic 
process (Corpas et al. 2018; Jürgenson et al. 2019; Sun et al. 2020a, b). From the 
doses of melatonin used in the different transgenic models employed, the HED of 
melatonin for a 75 kg adult ranged from 2- to 3-orders of magnitude greater than 
those employed in humans. 

The mechanism through which melatonin inhibits the production of Aβ is 
unknown. Melatonin inhibits progressive-sheet and/or amyloid fibrils via interacting 
with Aß40 and Aß42 (Pappolla et al. 1998), an interaction which appears to depend
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on structural melatonin characteristics rather than on its antioxidant properties. Mela-
tonin may help peptide clearance by enhancing proteolytic breakdown by blocking 
the production of secondary sheets. Oxidative stress is involved in Aß-induced neuro-
toxicity and cell death, and melatonin efficiently protects cells in vitro and in vivo. 
Melatonin was found to protect against Aβ toxicity, particularly at the mitochondrial 
level (Cardinali 2019a, b, c). 

Melatonin effectively reduces tau hyperphosphorylation in neuroblastoma cells 
by influencing protein kinases and phosphatases (Solís-Chagoyán et al. 2020). Mela-
tonin increases the clearance of Aß in the glymphatic system in AD transgenic mice 
(Pappolla et al. 2018). As a result, sleep disturbance as a comorbidity in AD may 
contribute to the disease’s development and progression through a failure of Aß 
clearance (Bitar et al. 2021). 

The activation of microglia, which results in increased expression of pro-
inflammatory cytokines, is another element in the pathophysiology of AD. Melatonin 
reduced pro-inflammatory cytokine production in microglia triggered by Aß, NF-kB, 
and NO (Baeeri et al. 2021; Rosales-Corral et al. 2003; Zhang et al. 2021a, b). In 
addition, the DNA binding activity of NF-kB was inhibited by melatonin (Hardeland 
2019). 

As far as clinical studies on melatonin therapeutic value in age-related NCDs, 
type 2 diabetic patients have low circulating levels of melatonin with a simultaneous 
and expected regulation of mRNA expression of the melatonin membrane receptors 
(el Aghoury et al. 2020; Otamas et al. 2020; Tanaka et al. 2021; Tütüncü et al. 2005). 
In addition, allelic variants for melatonin receptors were associated with an increase 
in fasting blood glucose levels and/or an increased risk of type 2 diabetes (Bai et al. 
2020; Bonnefond and Froguel 2017; Bouatia-Naji et al. 2009; Prokopenko et al. 
2009; Tam et al. 2010) and with the polycystic ovarian syndrome (PCOS) (Song 
et al. 2015; Yi et al.  2020). 

Melatonin secretion is reduced in patients with coronary artery disease (Brugger 
et al. 1995; Domínguez-Rodríguez et al. 2002; Girotti et al. 2003, 2000; Misaka et al. 
2019; Sakotnik et al. 1999; Yaprak et al. 2003), and among the elderly hypertensive 
patients, nocturnal urinary melatonin excretion was inversely associated with the 
non-dipper pattern of hypertensive disease (Jonas et al. 2003; Obayashi et al. 2013). 
Melatonin therapy (≤ 5 mg/day) reduced nocturnal blood pressure in hypertensives 
and mitigated age-related cardiovascular rhythm abnormalities (Cagnacci et al. 2005; 
Campos et al. 2020; Gubin et al. 2016; Grossman et al. 2006; Imenshahidi et al. 2020; 
Scheer 2005). 

Melatonin (5 mg/day) treatment improves metabolic syndrome in obese and PCOS 
patients (Alizadeh et al. 2021; Koziróg et al. 2011; Mohammadi et al. 2021; Taglia-
ferri et al. 2018), and in bipolar and schizophrenic patients receiving second gener-
ation antipsychotics (Agahi et al. 2018; Duan et al. 2021; Modabbernia et al. 2014; 
Romo-Nava et al. 2014). Melatonin treatment improves the enzyme profile in alco-
holic hepatic steatosis patients (Abdi et al. 2021; Gonciarz et al. 2010). In several 
studies melatonin therapy improves glycemic control in type 2 diabetes patients 
(Anton et al. 2021; Bazyar et al. 2021; Kadhim et al. 2006; Ostadmohammadi et al. 
2020; Pourhanifeh et al. 2020; Raygan et al. 2019; Satari et al. 2021).
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Distinguishing core symptoms (glucose homeostasis) from diabetes-associated 
pathologies, such as those resulting from increased oxidative stress, such as liver 
steatosis, cardiovascular disease, retinopathy, nephropathy, or osteoporosis, is crucial 
in human investigations (Banerjee et al. 2021). Melatonin has been shown to have 
therapeutic efficacy in the majority of these related diseases. 

CSF melatonin levels fall even in the preclinical phases of AD, when patients 
do not show any cognitive impairment, suggesting that CSF melatonin reduction 
could be an early trigger and marker for the disease (Colwell 2021; Liu et al. 1999). 
Although it is unclear if relative melatonin shortage is a result or cause of neurode-
generation, it is apparent that melatonin deficiency exacerbates AD and that early 
circadian disturbance can be a significant deficit to consider. Melatonin levels were 
found to differ significantly between mild cognitive impairment and AD patients, 
with a negative relationship between neuropsychological examination and mela-
tonin levels (Şirin et al. 2015; Zhang et al. 2021a, b). Melatonin therapy is beneficial 
in improving sleep in dementia patients, according to meta-analyses and consensus 
reports (Xu et al. 2015; Trotti and Karroum 2016; Zhang et al. 2016; Fatemeh et al. 
2021). 

It is unclear whether melatonin can help people with fully developed AD. It should 
be highlighted that heterogeneity of the sample studied is one of the issues with AD 
patients with fully developed illness. Review of published evidence on the use of 
melatonin in the early stages of cognitive decline, on the other hand, consistently 
revealed that taking melatonin every night before retiring improves sleep quality and 
cognitive performance in this stage of the disease (see for ref. Cardinali 2019a, b, c; 
Liu et al. 2021; Sumsuzzman et al. 2021; Wade et al. 2014; Wang et al. 2017). 

14.9 Concluding Remarks 

NCDs linked to aging provide a significant public health challenge. Over 80% 
of NCD deaths are caused by cardiovascular illnesses, malignancies, respiratory 
diseases, diabetes, and neurological diseases, and NCDs are closely associated with 
disability, reliance, and long-term care demands. In this Chapter, we have covered two 
key etiopathogenic processes that contribute to NCDs: inflammaging and circadian 
disturbance, the latter of which is a result of living in a 24/7 society that affects sleep. 
As a result, dysregulation of the sleep/wake cycle causes a slew of pathophysiological 
alterations that hasten the aging process. 

Melatonin emerges as a viable non-toxic chronobiotic/cytoprotective approach in 
this context. It is worth noting that melatonin has a very high level of safety. The 
lethal dose 50 for the intraperitoneal injection of melatonin was determined for rats 
(1168 mg/kg) and mice (1131 mg/kg), but the lethal dose for oral administration 
of melatonin (assessed up to 3200 mg/kg in rats) could not be determined and for 
melatonin subcutaneous injection (tested up to 1600 mg/kg in rats and mice) (Sugden 
1983). Melatonin has an excellent safety profile in humans and is generally well 
tolerated (Schrire et al. 2021).
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Melatonin, as discussed herein, combines two properties that are extremely impor-
tant for the prevention and treatment of age-related NCDs: it is an effective chronobi-
otic that aids in the correction of circadian disruption, and it is a phylogenetically well 
preserved cytoprotective agent that addresses the treatment of inflammaging. Beyond 
melatonin’s well-known antioxidant and anti-inflammatory properties, which have 
demonstrated its efficacy in the treatment of diseases/conditions in which exces-
sive free radical-mediated oxidative damage and hyperinflammation are causative 
factors, the studies summarized herein support its use as a viable preventive agent in 
the low-degree inflammation found in age-related NCDs. 

Numerous interrelated factors found in inflammaging, including the development 
of pro-inflammatory M1 macrophages, conversion to Warburg-type metabolism of 
immune cells, damage to mitochondria, release of cytokines, oxidative stress, etc. are 
counteracted by melatonin. A center piece of this series of cytoprotective processes 
may be the alterations in mitochondrial physiology and the shift of glucose oxidation 
to cytosol mediated via the melatonin effect on sirtuins, particularly SIRT3. This 
change in glucose handling markedly alters the metabolism of the mitochondria, 
which is critical to limiting cellular dysfunction, resisting disease and preventing 
organismal death. Indeed, there are numerous maladies that are specifically classified 
as mitochondria-related diseases (Chaiyarit and Thongboonkerd 2020; Cloonan et al. 
2020; Kłos and Dabravolski 2021; Medala et al. 2021; Vaamonde-García and López-
Armada 2019; Xin et al. 2021) with this category including viral infections such as 
SARS-CoV-2 (Swain et al. 2021). 

When intracellular glucose metabolism is reprogrammed from the mitochon-
dria into the cytosol, the mitochondria can no longer synthesize acetyl-coenzyme 
A (acetyl-CoA). This has high importance, since acetyl-CoA is a required co-
substrate for intramitochondrial melatonin production, which normally occurs in 
these organelles of healthy cells but likely not in the mitochondria of inflamed cells 
(Reiter et al. 2021a, b, 2020c). Thus, in the absence of local melatonin synthesis, 
the loss of this locally produced potent anti-inflammatory and antioxidant agent, the 
mitochondria lose a major portion of their protection against ROS, inflammatory 
cytokines, etc., leading to their dysfunction. The ability of melatonin to reverse the 
Warburg effect in pathological cells in humans was recently documented, presumably 
allowing the mitochondria also to synthesize melatonin (Reiter et al. 2021a, b). 

Melatonin is commonly used as a dietary supplement or dietary product to treat 
sleep disturbances in many countries. Melatonin reduces sleep onset delay, according 
to the European Food Safety Authority (EFSA). This allows for the introduction 
of melatonin as a meal to promote “sleep–wake cycle regulation,” “relaxation,” 
and “sleep patterns” (Agostoni et al. 2011). Melatonin, melatonin-rich foods, and 
bio-extracts of melatonin can now be developed as nutritional supplements, dietary 
products, and pharmaceuticals for the general population, as specified by the EFSA. 

Melatonin is very effective to alleviate oxidative stress in plants (Anderson and 
Kim 2021; Tiwari et al. 2021), as it does in animal tissues. Since its discovery in 
plants two decades ago, researchers have made significant progress in understanding 
the effects of melatonin that contribute to the plant’s ecological success (Back et al. 
2021). Melatonin overexpression in plants promotes seed germination and increases
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root development and maturation, protecting plants from biotic and abiotic stress 
(Anderson and Kim 2021; Tiwari et al. 2021). Melatonin’s presence in plants has 
ramifications not only for plant development and crop productivity, but also for 
human and animal nutrition. Melatonin is easily absorbed and exerts its actions at 
the cellular level when plant products containing it are ingested. Melatonin is a bene-
ficial chemical that neutralizes the physiopathological processes that undermine a 
healthy lifestyle in both animals and plants. Melatonin enrichment in foods is required 
to attain the levels that give efficient cytoprotection. As a result, the creation of func-
tional meals containing high quantities of melatonin is a hot topic. The modest doses 
of melatonin usually utilized are not very advantageous if melatonin is supposed to 
be effective in enhancing health, especially in the elderly. 

The question of whether melatonin has a therapeutic value in the prevention or 
treatment of NCDs deserves further analysis. Multicenter double-blind studies are 
needed to explore and further investigate the potential and utility of melatonin. The 
doses of melatonin used should be re-evaluated in view of the HED of melatonin 
derived from preclinical data. However, the failure of melatonin to attract attention 
as a potential treatment for healthy aging is somewhat disappointing considering the 
number of scientific/medical papers that have recommended its use. This may relate 
to several factors including the lack of promotion of its therapeutic use for this disease 
by any influential group. Since melatonin is non-patentable and is inexpensive, the 
incentive of the pharmaceutical industry to support its use is lost. Melatonin would 
be particularly helpful because it may be self-administered orally, is inexpensive, and 
has low toxicity. This is especially true in disadvantaged areas of the world, where 
people have fewer financial resources to spend on age-related NCD treatment. 

Compliance with Ethical Standards: Writing—original draft preparation, D.P.C.; writing— 
review and editing, G.M.B. and S.R.P.-P. All authors have read and agreed to the published version 
of the manuscript. 
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Chapter 15 
Melatonin: A Saga of Health 
and Longevity 

Sameer Gupta, Amaresh Kumar Singh, Chandana Haldar, and Anirban Roy 

15.1 Introduction 

Melatonin, N-acetyl-5-methoxytryptamine, is a hormone synthesized from trypto-
phan by the neuroendocrine pineal gland originating from the third ventricle of the 
brain. The secretory activity of the pineal gland is under the control of the biological 
clock residing in the hypothalamic suprachiasmatic nucleus (SCN). To maintain the 
diurnal rhythm of melatonin biosynthesis, SCN uses constant stimulatory signals via 
the paraventricular nucleus (PVN) pathway to pineal in the form of glutamate which is 
inhibited during the daytime suppressing the melatonin synthesis (Benarroch 2008). 
The nocturnally elevated levels of melatonin derived from the pineal gland act as an 
endocrine signal that conveys the circadian information and synchronizes the body’s 
physiology to the changing environmental conditions (Reiter et al. 2014). Interven-
tions like exposure to light at night, shift work, or certain drugs and medications, 
have been shown to disrupt the circadian system and the hormonal rhythms being 
governed by light–dark cycles resulting in altered sleep–wake patterns, psycholog-
ical stress, and impaired physiologic and metabolic control leading to comorbidities 
like metabolic syndrome, cancer, and Alzheimer’s disease (Reiter et al. 2020a, b). 

Besides the vertebrate pineal gland, melatonin is ubiquitously expressed in 
bacteria to plants and other animal phyla and is synthesized as extra-pineal melatonin 
from various organs of the body (Acuna-Castroviejo et al. 2014). Unlike pineal mela-
tonin, extra-pineal melatonin lacks rhythmicity and has been suggested to perform
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local cytoprotective functions via autocrine, intracrine, or paracrine signaling mech-
anisms (Acuna-Castroviejo et al. 2014). Melatonin is a versatile molecule and 
can exert multifarious effects via receptor depend or independent mechanisms 
that can be expanded to its anti-tumor, anti-mutagenic, anti-genotoxic, anti-cancer, 
anti-neurodegenerative, anti-apoptotic, and immunomodulatory and cardioprotec-
tive effects. One of the most significant effects of melatonin includes its antioxidant 
role and free radical scavenging capacity which directly or indirectly also regulates 
the anti-inflammatory and immunomodulatory potentials of melatonin (Hardeland 
2018). The high levels of melatonin found in mitochondria, a site where most of the 
reactive oxygen species are formed during metabolism, support its cytoprotective 
merit in terms of preventing molecular damages that otherwise would accumulate 
and manifest into various pathologic conditions. The further sections of the chapter 
highlight the protective role of melatonin in the maintenance of cellular homeostasis 
and survival concerning various aspects of physiology. 

15.2 Stress and Melatonin 

The environmental conditions majorly influence the physiological activity of animals 
that are largely exposed to the environment. Moderate to extreme environmental 
conditions like extreme heat/cold, humidity, rain fall, and pathogenic invasion 
confront animals with an adversative situation that consequently activates the stress 
response. The stress response generally occurs to reduce the impact of stress (Char-
mandari et al. 2005), but under the lack of appropriate responses, this phenomenon 
costs the fitness and survival of an organism. 

Stress is a constellation of actions that acts as a stimulus (stressor) to initiate the 
stress response in the physiological system (Dhabhar and McEwen 2001). Stress 
leads to suppression of immune functions and increases susceptibility to various 
infections (Glaser and Kicolt-Glaser 2005). The stress condition causes homeostatic 
imbalance by affecting the immune functions like reduction of immune cells activ-
ities, the decline in lymphocyte numbers, and proliferative capacity of NK-cells 
parallelly, with declined antioxidant response that leads to an immunocompromised 
state (Webster Marketon and Glaser 2008). 

Stress condition activates hypothalamic-hypophyseal-adrenal (HPA) axis that 
modulates the activity of different target genes via glucocorticoids (GC) and GC 
receptor (GR) mediated actions (Sapolsky et al. 2000). Reports suggest that increased 
GC and its receptor expression activates immune cell apoptosis and declines antiox-
idant enzyme activity (Ashwell et al. 2000). The stress increases apoptosis by 
declining anti-apoptotic protein Bcl-2 and upregulating the level of Bax that ulti-
mately reducing Bcl-2/Bax ratio (Singh and Haldar 2016). GR activation has also 
been reported to suppress antioxidant response (Kratschmar et al. 2012). The nuclear 
translocation of GR is precisely regulated by HSP90-based chaperone machinery 
where HSP90 plays an imperative role in regulating functional activation and 
inactivation of GR (Grad and Picard 2007).
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Melatonin has been suggested to act as a potent anti-stress hormone. It down-
regulates GC and GR-mediated inhibition of immune responses (Gupta and Haldar 
2013; Singh and Haldar 2016). Melatonin seasonal variation influences GR expres-
sion in human mononuclear leucocytes and in vitro melatonin treatment relieves 
the suppressive effect of GR and upregulates antioxidant response via Nrf-2-HO-
1-mediated pathways in peripheral blood mononuclear cells (PBMCs) (Kratschmar 
et al. 2012; Singh and Haldar 2016). Nrf-2-HO-1 pathway upregulates the expression 
and activity of enzymes like superoxide dismutase (SOD), heme oxygenase-1 (HO-
1) and catalase (CAT) to promote antioxidant repertoire (Singh and Haldar 2016). 
The downregulation of Nrf2 signaling has been suggested to increase apoptosis by 
influencing apoptotic proteins (Pan et al. 2013). Melatonin positively influences the 
Bcl-2/Bax ratio that protects the cells from apoptosis and increases the proliferative 
competency of PBMCs (Singh and Haldar 2016). The melatonin treatments also 
influence the secretory pattern of different pro- and anti-inflammatory cytokines 
to modulate the immune responses (Singh and Haldar 2020). Melatonin treatment 
ameliorates cold stress-induced immune suppression and prevents cellular death via 
upregulating HSF-1 and HSP-70 (Rastogi and Haldar 2020). 

Oxidative and nitrosative stress is the major cause of disrupting various physiolog-
ical activities like immune regulation. It has also been observed that declining mela-
tonin levels with aging results in an increased level of oxidative and nitrosative stress 
conditions. The increased stress condition causes a decline in immune responses 
by inducing apoptosis in immunocompetent tissues and cells. Further, the admin-
istration of melatonin ameliorates oxidative and nitrosative stress in aging animals 
(Vishwas et al. 2013). 

Consequences of stress could not be restricted to physiological disturbances rather 
psychological stress also plays a critical role in inducing the stress response. Our 
lifestyle has changed drastically in recent decades like shift-work (day-night) and 
target-oriented tasks that forces the individual to restrain on a chair for a longer 
period, which could be termed as restraint stress. Such conditions are very common 
in corporate culture, for the soldiers in barracks, nurses, doctors, etc. This restraint 
stress leads to psychological stress that adversely affects the health condition. It has 
been observed that night shift workers are more prone to mental and physiolog-
ical stress conditions than day shift workers. The shift work disrupts the circadian 
rhythm resulting in a sleep deficit that compromises the work output and increased 
chances of accidents (Costa 2010). Melatonin being a potent anti-stress molecule 
could be used in clinical settings to regularize the endogenous circadian rhythms 
and its supplementation can be used to counterbalance the psychological and mental 
stress generated due to restrained conditions and shift work. 

15.3 Oxidative Stress and Melatonin 

Oxidative stress refers to the condition when body tissues are unable to adequately 
handle the endogenously generated reactive oxygen and nitrogen-based free radical
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species. Oxidative stress is strongly linked to both local and systemic aging, as well 
as to a variety of health conditions like hyperglycemia, dyslipidemia, age-dependent 
neurodegeneration, inflammatory disorders, cardiovascular conditions, and so on 
(Liguori et al. 2018). Though free radicals are generally damaging, a bare minimum 
quantity of them is essential for the regulation of various cellular signaling mecha-
nisms and maintenance of redox homeostasis. Melatonin is among such endogenous 
molecules that apart from exhibiting a prodigious functional diversity also makes 
oxygen metabolically more tolerable for the biological system (Manchester et al. 
2015). 

Melatonin probably evolved to neutralize the toxic oxygen derivatives in photo-
synthetic bacteria around 3.0–2.5 billion years ago (Tan et al. 2013). During evolu-
tion, the original antioxidant function of melatonin was topped up with a variety of 
other new roles some of which includes immunomodulation, geroprotection, onco-
static, and chronobiotic function (Reiter et al. 2016). Melatonin manifests its antiox-
idant actions either by direct detoxification of reactive oxygen and nitrogen species 
or indirectly by stimulating the antioxidant enzymes while suppressing the activity 
of pro-oxidant enzymes. Accordingly, melatonin could be metabolized in a variety of 
ways, including enzymatic, pseudo-enzymatic, and non-enzymatic free radical inter-
active processes (Reiter et al. 2016; Hardeland 2017). The uniqueness of melatonin 
lies in the fact that generations of metabolites, produced from melatonin also act 
as effective antioxidants thereby establishing a radical scavenging cascade reaction 
(Tan et al. 2000). Melatonin and its metabolite N1-Acetyl-5-methoxykynuramine 
(AMK), scavenges oxidizing free radicals and singlet oxygen, downregulates iNOS 
and nNOS, as well as cyclooxygenase-2(COX-2) (Mayo et al. 2005). Both AMK 
and melatonin are known to prevent the collapse of mitochondrial membrane poten-
tial and reduce electron leakage through the respiratory chain thereby avoiding the 
generation of superoxide anions (Hardeland 2017). The melatonin-mediated avoid-
ance of radical formation seems to be a more significant chronobiological function in 
terms of maintaining low levels of oxidative damage during peak metabolic activity 
(Hardeland 2008). 

Compared to classical antioxidants, melatonin was found to be four times more 
effective in scavenging ABTS [2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic 
acid)] cation radical and unlike other antioxidants, exhibited synergistic actions 
when used in combination with other antioxidant molecules like vitamin C, E, 
and glutathione (Tan et al. 2013). The free radical quenching property of mela-
tonin is superior to that of glutathione against the hydroxyl radical (OH), whereas 
its activity against the peroxyl radical (ROO) involves single electron or hydrogen 
atom transfer for the creation of radical adducts (Galano et al. 2018). Apart from 
scavenging free radicals, melatonin can also interact with non-radical oxidants such 
as hydrogen peroxide (H2O2), singlet oxygen (1O2), and peroxynitrite (ONOO−) 
(Reiter et al. 2016). Melatonin was also found to stimulate antioxidative enzymes 
including CuZnSOD, MnSOD, catalase, glutathione peroxidase, and glutathione 
reductase while down regulating the pro-oxidant enzymes viz. nitric oxide synthases, 
lipoxygenases (LOX), and also regulating the activity of quinone reductase 2 (Boutin 
and Ferry 2019). Melatonin is also known to inhibit the activity and expression of
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myeloperoxidase and eosinophil peroxidase. In addition to its role in alleviating 
oxidative stress directly or indirectly, melatonin is also involved in the chelation of 
transition metal ions involved in Fenton or Haber–Weiss reactions thereby reducing 
the incidence of oxidative stress by preventing the formation of toxic hydroxyl radical 
(Romero et al. 2014). 

Subcellular concentrations of melatonin were found to be the order of magnitude 
higher than the concentration of melatonin present in blood suggesting its cytoprotec-
tive role (Acuña-Castroviejo et al. 2014). Unusually, higher concentrations of mela-
tonin found in mitochondria suggest that these organelles apart from sequestering 
melatonin can also synthesize melatonin, implying that melatonin gains rapid access 
to the source where bulk free radicals are being produced (Suofu et al. 2017). In mito-
chondria, melatonin upregulates the activity of superoxide dismutase-2 (SOD2), by 
inducing sirtuin 3 (SIRT3), which deacetylates SOD2 rendering it active (Reiter et al. 
2018). Forkhead box 03 (FOXO3a) is a direct target of SIRT3 which is also involved 
in melatonin’s action against oxidative damages (Kumar et al. 2021). The antioxi-
dant actions of melatonin on radical detoxification can also be mediated by Keap1-
Nrf2-ARE (antioxidant response element) promoter located upstream of superoxide 
dismutase and glutathione peroxidase (Manchester et al. 2015; Yu et al.  2017) 
reported that melatonin activates AMPK-PGC-1α-SIRT3 signaling and increases 
SOD2, NRF1 and mitochondrial transcription factor A (TFAM) expression to protect 
the heart from the hypoxia and reoxygenation-induced (ischemia/reperfusion) oxida-
tive damages. A recent report has demonstrated that melatonin improves cardiac 
capacity in the myocardial infarction rat model through the Sirt6-dependent antioxi-
dant pathway (Wang et al. 2022). Melatonin also inhibits heamin-induced oxidative 
stress, ferroptosis, and platelet activation reducing the risk of thrombotic complica-
tions (NaveenKumar et al. 2019). Administration of melatonin in preterm neonates 
has been shown to inhibit free radical-mediated tissue destruction and prevent lung 
injury in neonates thereby protecting the high-risk newborns (Marseglia et al. 2021). 
Supplementation of pharmacological levels of melatonin (3 mg) has been reported 
to protect critically ill patients from oxidative injuries (Mistraletti et al. 2017). 

Besides being potent antioxidant melatonin also acts as a conditional pro-oxidant. 
A higher concentration of melatonin (10 μM–1 mM) has been found to increase 
markers of oxidative stress and show moderate cytotoxicity (Büyükavci et al. 
2006; Clapp-Lilly et al. 2001). However, the pro-oxidant effects of melatonin are 
mostly demonstrated in cancer cell lines and tumor cells which are either medi-
ated by calmodulin-dependent PLA2 (phospholipase A2) activation and production 
of free radicals or via electron transport chain mediated free radical generation in 
mitochondria (Zhang and Zhang 2014).
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15.4 Melatonin in Immunomodulation 

Melatonin acts as a primary mediator of diurnal rhythmicity observed in the phys-
iological functions including immunity. Almost every aspect of the innate or adap-
tive immune mechanism including the trafficking of immune cells, inflammatory 
processes, response to infection, chemokine and cytokine expression, and the acti-
vation of immune cell signaling exhibits diurnal variation (Man et al. 2016). This 
inherent rhythmicity in immune cell functions relies on neural and hormonal signals 
generated by the central clock, residing in the hypothalamic suprachiasmatic nucleus, 
in the form of glucocorticoid and melatonin (Córdoba-Moreno et al. 2020). Pineal 
ablation or other experimental approaches that inhibit melatonin synthesis (e.g., 
exposure to constant illumination, pineal denervation) depresses both cellular and 
humoral immunity that can be partly counteracted by exogenous melatonin admin-
istration (Luo et al. 2020). The night shift work in humans has also been shown 
to disrupt the relative phase of the rhythms of cytokine secretion and alter immune 
cell counts (Cuesta et al. 2016) thereby enhancing the risk of infections, exagger-
ated inflammation, and increased incidence of autoimmune disorders, cancer and 
cardiometabolic diseases (Morris et al. 2016). The disrupted sleep–wake pattern has 
been reported to suppress the magnitude of antibody response following vaccina-
tion while adequate sleep and time of vaccination can effectively improve antibody 
generation (Schmitz et al. 2022) suggesting the involvement of rhythmic melatonin 
levels in mechanisms related to an antibody response. Studies suggest that melatonin 
supplementation in a time-dependent manner or otherwise can promote antibody 
response either by enhancing antigen presentation to immunocompetent cells or by 
modulating the production of cytokines that regulate the cellular events critical for 
antibody generation (Cernysiov et al. 2010). 

Melatonin exerts stimulatory effects on the cellular and humoral immune 
responses during immunocompromised states or under basal conditions. An early 
report from Maestroni and colleagues (1986) suggested that the night-time peak of 
plasma melatonin attenuates propranolol-induced cellular and humoral immuno-
suppression in mice. Several other reports from various groups also suggested 
the melatonin-mediated antagonism of steroid and age-dependent immunosup-
pressed conditions (Akbulut et al. 2001; Gupta and Haldar 2013). The functional 
spectrum of immunomodulation by melatonin is highly complex and involves 
various cytokines. Melatonin generally increases B-cell proliferation and the Th1 
cytokines (IL-2 and IFN-γ) and decreased Th2 cytokines such as IL-10 produc-
tion in aged mice. Pinealectomy-induced disruption in nocturnal melatonin rhythm 
was shown to polarize thymic Th1/Th2 cells toward Th2 type response which 
was reversed following melatonin treatment (Kelestimur et al. 2006). Melatonin 
modulates immune response by inhibiting the activation of inflammatory processes 
and regulating the proliferation and activity of immune-competent cells (Carrillo-
Vico et al. 2013; Tarocco et al. 2019). In vitro treatment of melatonin increases 
splenic and thymic lymphocyte proliferation along with CD4+ expression on the 
splenic cells (Kim et al. 2000; Gupta and Haldar 2013). Melatonin supplementation
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increases peripheral levels of Th1, Th2, and Th17-related cytokines in pinealec-
tomized mice and activates T- and B-cell signaling (Luo et al. 2020). Melatonin 
is also involved in T-cell development in the thymus. The T-cell-mediated immune 
responses protect mammals from cancer, infections, and various inflammatory and 
autoimmune diseases (Ren et al. 2017). Melatonin enhances Ki67 and Bcl-2 expres-
sion in antigen-specific T-cells suggesting its involvement in T-cell proliferation 
(Yoo et al. 2016). The most detailed studies have focused on the Th pathway where 
melatonin increases the number of Th (CD4+) lymphocytes (Lissoni et al. 1995) and 
restores impaired Th-cell activity in immunosuppressed mice, and augments humoral 
response (Fraschini et al. 1998; Akbulut et al. 2001). 

15.4.1 Melatonin and Immune Cells 

Melatonin influences the activity of different armaments of the immune system like 
neutrophils (NaveenKumar et al. 2020), macrophages (Xia et al. 2019), T-cells (Ren 
et al. 2017), dendritic cells, and natural killer cells NK-cells (Calvo et al. 2013) 
thus, playing an important role in modulating innate immune responses. A close 
association between night-time melatonin peak and proliferation of granulocyte and 
macrophage progenitor cells has been reported (Haldar et al. 1992; Guerrero and 
Reiter 2002). Melatonin also stimulates bone marrow and spleen-mediated produc-
tion of monocytes (Currier et al. 2000). Monocytes serve two important functions, 
secretion of cytokines and production of reactive oxygen species (ROS) critical 
for monocyte functioning. Melatonin activates human monocytes to secrete IL-1, 
IL-6, and IL-12, thereby activating and inducing cytotoxicity in monocytes. Mela-
tonin prevents ultraviolet irradiation-induced apoptosis by inhibiting the intrinsic 
pathway at the mitochondrial level in monocytic cell line U937 (Luchetti et al. 2009). 
Macrophages are a group of highly diversified and plastic cells derived mainly from 
circulating monocytes, except for the tissue-resident macrophages which are known 
by various names in different tissues. Macrophages express the major histocompat-
ibility complex class I and II by the virtue of which macrophage acts as antigen-
presenting cells (APCs) that display antigens to and activate T lymphocytes. Mela-
tonin supplementation enhances the expression of major histocompatibility complex 
class II (MHC-II) in antigen-presenting cells and peritoneal macrophages (Luo et al. 
2020) and augments the secretion of IL-1, IL-6, TNF-α, and M-CSF (Guerrero and 
Reiter 2002). One of the aspects of macrophage function is related to its phago-
cytic activity. The nocturnal circulatory levels of melatonin enhance the phagocytic 
activity of peritoneal macrophages and testicular macrophages (Pawlak et al. 2005; 
Sanchez et al. 2008). Melatonin influences anti-inflammatory (M2) polarization in 
macrophages by inhibiting nitric oxide (NO) production and inhibiting the expres-
sion of NF-kB and cyclooxygenase-2 (COX-2) and promotes NF-E2-related factor 
2 (Nrf2) and haemoxygenase1 HO-1(Aparicio-Soto et al. 2014; Singh and Haldar 
2016).
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Dendritic cells are specialized APCs that link innate and adaptive immunity and 
are extensively found in the primary and secondary lymphoid organs except for 
bone marrow. A very recent study demonstrates that melatonin exerts a stimulatory 
effect on dendritic cell numbers and its secretory activity which may be correlated 
to increased immunity (Abd-Elhafeez et al. 2021). In vitro treatment of melatonin 
enhanced the intensity of oxidative burst in neutrophils but inhibited metallopro-
tease activity thereby inhibiting L-selectin cleavage (Recchioni et al. 1998). Expo-
sure to constant light has been shown to decrease the phagocytic activity of the 
neutrophils which was regained following melatonin supplementation suggesting 
the involvement of melatonin in the maintenance of neutrophil-mediated phago-
cytosis (Hriscu 2005). Natural killer (NK) cells are the third-largest subset of the 
lymphocytes that possess the ability to kill or eliminate without undergoing clonal 
expansion and differentiation. Different studies suggest that melatonin in conjunction 
with IL-2 increases the number of NK-cells (Currier et al. 2000). Pinealectomized 
mice have been reported to show diminished NK-cell activity which was resumed 
following melatonin administration (Del Gobbo et al. 1989). The melatonin-mediated 
increase in NK-cell number and activity has been attributed to increased T-helper 
cell cytokines IL-2, IL-6, IL-12, and IFN-γ (Lissoni et al. 1998; Currier et al. 2000). 

15.4.2 Immunocompetent Cells and Melatonin Receptors 

Most of the immunoenhancing effects of melatonin on immune cells are either 
mediated by membrane-bound MT1 and MT2 melatonin receptors belonging to 
GPCR super family (Carrillo-Vico et al. 2013; Gupta and Haldar 2013) or through 
nuclear receptors belonging to RZR/ROR subfamily (Lardone et al. 2011;Gupta et al.  
2015). Apart from canonical receptors many of the actions of melatonin are receptor-
independent viz. scavenging of free radicals; interaction with cytosolic proteins and 
enzymes like calmodulin, calreticulin, metalloproteinase-9 (MMP-9), and quinone 
reductase 2 (Liu et al. 2019a, b). Lymphocytes, monocytes, and other immune cells 
widely express melatonin membrane receptors, and their expression depends on the 
maturation, physiological status, and age of the immune cells (Ahmad and Halder 
2012; Carrillo-Vico et al. 2013). Studies by Drazen and colleagues (2001) indicated 
that melatonin receptor subtype MT2 is involved in melatonin-induced enhance-
ment of cell-mediated and humoral function in mice. However, a report from our lab 
suggested the involvement of MT1 receptor in mediating the immunomodulatory 
roles of melatonin in a tropical seasonal breeder, Funambulus pennanti (Ahmad and 
Halder 2012; Gupta and Haldar 2013). Apart from expressing melatonin receptors, 
immunocompetent cells like monocytes, macrophages, neutrophils, mast cells, and 
lymphocytes including B and T-cells have been reported to express the biosynthetic 
machinery for the synthesis of melatonin (Maldonado et al. 2010; Carrillo-Vico et al. 
2013; Calvo et al. 2013; Yoo et al. 2016). The melatonin derived from the immune 
cells through paracrine, autocrine, or intracrine mechanisms plays an important role
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in the maintenance of cellular physiology and serves cytoprotective functions there 
by regulating the immune mechanisms. 

15.4.3 Anti-inflammatory Potential of Melatonin 

Melatonin apart from promoting an effective immune response restrains the persistent 
inflammatory events which can cause tissue damage. However, melatonin does not 
act as a blunt anti-inflammatory agent, it rather modulates the immune response in a 
complex manner such that the body is protected from chronic and deleterious effects 
of inflammatory response. The antioxidant and anti-inflammatory actions of mela-
tonin are of great importance for the maintenance of health and longevity. Melatonin 
has been reported to reduce symptoms of “inflammaging” (low-grade inflammatory 
processes during the progression of aging) in the senescence-accelerated aging mice 
model and counteracts the low-grade brain inflammation (Hardeland et al. 2015). 
The amyloid-beta (Aβ) peptide, a central player in the pathogenesis of Alzheimer’s 
disease, acts synergistically with pro-inflammatory cytokines to promote astrocyte 
and microglia activation (LaRocca et al. 2021). The release of pro-inflammatory 
mediators is not restricted to microglia, even neurons respond to Aβ peptide by upreg-
ulating the expression of cytokines like tumor necrosis factor-α (TNF-α), interleukin-
1β (IL-1β), and T-cell and monocyte chemo attractant factor (CX3CL1) (Hanzel et al. 
2014). Melatonin has been reported to show anti-amyloidgenic effect and promote 
Aβ clearance and suppress pro-inflammatory mediators (Hardeland 2018). Mela-
tonin administration in an experimental model of inflammation has also been shown 
to reduce pro-inflammatory cytokines like TNF-α and IL-1β while enhancing the 
levels of anti-inflammatory cytokines IL-4 (Carrasco et al. 2013). Melatonin supple-
mentation inhibits transcriptional activation of inducible nitric oxide synthase (iNOS) 
and cyclooxygenase (COX) and suppresses the expression of inflammatory mediators 
like leukotrienes, chemokines, and adhesion molecules (Deng et al. 2006; Liu et al. 
2017). Melatonin-mediated reduction of inflammatory reaction involves degradation 
of IκBα thereby retarding the nuclear translocation and transcriptional activation of 
pro-inflammatory factor NF-κB (Li et al. 2005). To exhibit its anti-inflammatory 
actions, melatonin activates SIRT1 leading to upregulation of Nrf2 and downregu-
lation of NF-κB (Negi et al. 2011; El-Bakry et al. 2018). The functional associa-
tion between SIRT1 and melatonin seems to be overlapping as SIRT1 is known to 
enhance the circadian amplitude of SCN that may influence melatonin rhythm and 
SIRT1 and melatonin perform similar actions (Chang and Guarente 2013; Hardeland 
2018). Likewise, inhibiting NF-κB melatonin is also reported to prevent gasdermin 
D (GSDMD) inducing pyroptosis in adipose tissue (Liu et al. 2017). 

NLRP3 inflammasome activation and induction of inflammatory caspases can 
be induced by a variety of signals under different conditions. Melatonin has 
been reported to downregulate NLRP3 and inhibit inflammasome activation via 
a mitophagy-mediated reduction in levels of ROS (Cao et al. 2017; Liu et al. 
2017). Melatonin has been reported to reduce lipopolysaccharide (LPS) induced
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inflammation thereby preventing NLRP inflammasome formation in adipocytes 
by downregulating genes involved in inflammasome assembly, i.e., NLRP3, ASC, 
caspase-1, and IL-1β. Activation of TLR-4 (toll-like receptor4) is another pro-
inflammatory pathway being targeted by melatonin. In lipopolysaccharide (LPS)-
stimulated macrophages RAW264.7, melatonin downregulated interferon (IFN)-
regulated factor-3 (IRF3), which was involved in TLR-4-mediated TRIF-dependent 
signaling thereby suppressing the expression of pro-inflammatory cytokines viz. 
TNF-α, IL-1β, IL-6, and IL-8 (Xia et al. 2012). Modulation of the mTOR (mechanistic 
target of rapamycin) pathway by melatonin has also been shown to manifest its anti-
inflammatory effects. Melatonin inhibits mTOR expression thereby interrupting the 
mTOR signaling and activation of pro-inflammatory cytokines in the hippocampus in 
an experimental model of isoflurane-induced cognitive impairment (Yuan et al. 2019). 
Melatonin prevents ethanol-induced activation of mTOR, AMP-activated protein 
kinases (AMPK), mitogen-activated protein kinase (MAPK), and nuclear factor of 
activated T-cells (NFATc-1) pathway thereby alleviating the senescence-like pheno-
type and osteoclast activity in human periodontal ligament and cementoblasts cells 
via inhibition of PIN1 pathway (Bae et al. 2018). Anti-inflammatory properties of 
melatonin have also been extensively studied in sepsis. In experimental models of 
sepsis, melatonin has been shown to improve survival and prevent multiorgan failure 
through the restoration of redox homeostasis via regulation of ETC function, inhibi-
tion of iNOS expression and nitric oxide synthesis, and reducing cytokine production 
(Colunga Biancatelli et al. 2020). Furthermore, the overproduction of reactive oxygen 
species contributes significantly to the inflammatory process via the activation of pro-
oxidant genes that eventually results in the activation of pro-inflammatory markers. 
Melatonin by its antioxidant properties counteracts inflammatory processes via direct 
or indirect purging of free radicals. 

15.5 Melatonin and Metabolic Health 

The earliest reference regarding the relationship between pineal neurohormone mela-
tonin and energy metabolism was given by a Romanian group describing pineal 
peptide “pinealin” as being similar to insulin in its anabolic, hypoglycemic and anti-
cholesterinemic effects (Milcu and Milcu 1958). Pinealin was reported to improve 
glucose tolerance, while pinealectomy was shown to inhibit insulin secretion and 
impair glucose tolerance (Diaz and Blázquez 1986). However, several contrasting 
reports were also published regarding the role of melatonin in the regulation of 
glucose metabolism (Bailey et al. 1974; Neacşu 1988). In recent decades, various 
experimental studies have recognized the involvement of melatonin in metabolic 
processes and regulation of energy balance in terms of food intake, energy storage, 
and energy expenditure (Cipolla-Neto et al. 2014). Melatonin dictates the daily 
rhythm of metabolic hormones like leptin, ghrelin, resistin, and adiponectin to modu-
late nutrient utilization and storage thereby synchronizing these metabolic rhythms 
to the environmental light–dark cycle to ensure metabolic homeostasis (Chakir et al.
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2015; Challet 2015). Disruption of these functional metabolic rhythms, as in the case 
of shift workers, can lead to the development of obesity and metabolic syndrome. 
Melatonin supplementation has been reported to suppress body weight gain and 
reduce adiposity (She et al. 2009; Nduhirabandi et al. 2011). The reversal of body 
weight gain following melatonin supplementation was independent of food intake 
suggesting an increase in the energy expenditure mechanisms (Wolden-Hanson et al. 
2000) while the rats with ablated pineal gland developed adiposity (Alonso-Vale 
et al. 2004). The development of adiposity was probably due to the induction of 
leptin resistance which was likely to affect the ability of leptin to influence body 
weight, food intake, and hypothalamic centers regulating satiety (Buonfiglio et al. 
2018), suggesting the protective role of melatonin against leptin resistance during 
the obesity (Suriagandhi and Nachiappan 2022). Melatonin administration has also 
been shown to retard the body weight gain and restore insulin sensitivity in animal 
models of diet-induced obesity (DIO) (Sartori et al. 2009). Recent studies carried 
out in melatonin receptor MT1 knock-out (KO) mice suggest that melatonin through 
MT1R signaling exerts its protective effect on metabolic responses in the case of 
DIO. Thus, MT1R can be one of the important therapeutic targets for counteracting 
obesity (Owino et al. 2019). 

Furthermore, melatonin supplementation has been shown to limit hypertrophic 
obesity and decrease the density of crown-like structures in adipose tissues thereby 
improving the inflammatory profile of the adipocytes in high-fat diet-induced model 
of obesity (de Farias et al. 2019a, b). Melatonin supplementation prevents morpholog-
ical alterations in adipocytes, inhibits inflammatory cell infiltration, and attenuates 
the pro-inflammatory adipokines expression (Farias et al. 2019a, b), reducing the 
inflammatory response and improving the sensitivity of peripheral organs to insulin 
and leptin signals for better glycemic control (Favero et al. 2015; Oliveira et al. 
2018). Melatonin promotes lipolysis in adipocytes and upregulates the expression 
of perilipin 1 (PLIN1) and enzymes like hormone-sensitive lipase (HSL), adipocyte 
triglyceride lipase (ATGL) via activation of MT2R signaling (Yang et al. 2017). 
Melatonin-mediated reduction of body weight gain may be associated with role 
in energy expenditure. In Zücker diabetic fatty rats, melatonin treatment induces 
browning of inguinal fat pads and increases brown adipose tissues (BAT) weight 
and expression of uncoupling protein 1 (UCP1), associated with energy expendi-
ture through non-shivering thermogenesis (Fernández Vázquez et al. 2018). Mela-
tonin reduces ectopic deposition of fat in muscles and promotes intramuscular ther-
mogenesis by enhancing mitochondrial biogenesis and mitochondrial respiration 
(Liu et al. 2019a, b). Melatonin was shown to inhibit high-fat diet-induced oxida-
tive damage to the liver and reverse the loss of mitochondrial membrane potential, 
prevented mitochondrial fission, and was shown to restore mitophagy to improve 
hepatocyte function in non-alcoholic fatty liver disease (NAFLD) (Zhou et al. 2018). 
In an experimental model of NAFLD and hyperlipidemia, melatonin decreases the 
activity of the hepatic lipogenic enzymes and enhances the expression of hepatic 
carnitine palmitoyltransferase-1 (Ou et al. 2019). Ablation of the pineal gland 
induces nocturnal hepatic glucose production and increases gluconeogenesis due
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to activation of unfolded protein response (UPR) mediated by activating transcrip-
tion factor 6 (ATF6) (Nogueira et al. 2011). Melatonin reduces the expression of 
fetuin-A (FETUA) and α2-HS-glycoprotein gene (AHSG), hepatokines involved in 
insulin resistance, and alleviates hepatic steatosis (Heo et al. 2018). Recent studies 
suggest that the impact of melatonin on the metabolic outcomes is also mediated 
by alterations in gut microbiota. Melatonin treatment has been shown to change 
the composition of gut microbiota in high-fat-fed mice (Xu et al. 2017). Melatonin 
supplementation decreased Firmicutes to Bacteroidetes ratio and increased Akker-
mansia while normalizing the diversity of gut microbes thereby inhibiting low-grade 
meta-inflammation and body weight gain (Yin et al. 2018). 

15.5.1 Melatonin in the Protection of Cardiovascular Health 

The favorable effect of melatonin on serum cholesterol and lipid profile forms the 
very basis for its cardioprotective role in the metabolic disorders. Several experi-
mental studies have shown that melatonin reduces the number and area of athero-
matous plaques thus being effective in the treatment of atherosclerosis (Rodella 
et al. 2013). Melatonin has been shown to retard the progression of atheroscle-
rosis and stabilize the rupture-prone plaques (Ding et al. 2019). Melatonin has been 
shown to improve the characteristic features of diabetic cardiomyopathy including 
reduced myocardial fibrosis, vascular endothelial cell death, oxidative, and endo-
plasmic reticulum stress and improves microcirculation and mitochondrial function 
(Huang et al. 2022). Melatonin by the virtue of its anti-inflammatory actions protects 
against obesity and ischemic stroke (Yawoot et al. 2021). Diminished levels of 
melatonin and its metabolite, 6-sulphatoxymelatonin, have been reported in various 
cardiovascular conditions like myocardial infarction, coronary heart disease, and 
nocturnal hypertension (Dominguez-Rodriguez et al. 2016; Baker and Kimpinski 
2018). Exogenous melatonin supplementation has been found to exert a protective 
effect against ischemia–reperfusion injury in diabetic rats (Yu et al. 2017), increased 
heart rate (Simko et al. 2016), and postural tachycardia (Green et al. 2014). The 
melatonin-mediated cardioprotective mechanisms mainly includes its antioxidative 
and anti-inflammatory effects with activation of Nrf2, reperfusion injury salvage 
kinase (RISK), and survivor activating factor enhancement (SAFE) mediated path-
ways, and nitric oxide signaling (Song et al. 2020). Melatonin prevents arrhythmo-
genic remodeling of cardiac tissue and reduces fibrosis and apoptosis in rat hearts 
(Prado et al. 2018). Melatonin protects against oxidized low-density lipoprotein-(ox-
LDL-)induced endothelial cell damage and mitochondrial dysfunction and prevents 
endothelial cell pyroptosis (Zhang et al. 2018; Li et al.  2021). Melatonin via acti-
vation of nuclear receptor retinoic acid-related orphan receptor-α prevents endothe-
lial dysfunction in systemic lupus erythematosus (Huang et al. 2022). It has been 
suggested that melatonin, through breast milk during the early days in neonates influ-
ences body weight in the later part of life, limits the development of comorbid obesity
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and promotes optimal conditions for the development of the cardiovascular system 
in infants (Gombert and Codoñer-Franch 2021). 

15.5.2 Melatonin and Diabetic Nephropathy 

Various experimental models of chronic kidney disease suggest positive effects of 
melatonin in lowering blood pressure (BP) and normalization of diurnal rhythms 
in non-dipper to dipper type of BP variations highlighting its reno-protective role 
(Simko et al. 2016). Common features of diabetic nephropathy include enlarged 
nephrons, hypertrophied mesangial cells resulting in glomerulosclerosis, and hyper-
filtration (Bherwani et al. 2016). Apart from ROS, several other factors are involved 
in the progression of chronic kidney disease related to diabetes like dyslipidemia, 
inflammatory cytokine production, pro-fibrotic signaling, and connective tissue 
growth (Pourhanifeh et al. 2020). Melatonin treatment during diabetic nephropathy 
showed beneficial effects on glycemic control, high-density lipoprotein-cholesterol 
(HDL-C), and total antioxidant capacity of the blood serum (Satari et al. 2021). 
Melatonin showed a synergistic effect when used with folic acid and significantly 
decreased the plasma levels of urea, uric acid, creatinine, TNF-α, IL-6, cholesterol, 
triglycerides, and low-density lipoprotein (LDL) along with renal malondialdehyde 
(MDA) and nitric oxide in the kidney of diabetic rats (Ebaid et al. 2020). Melatonin 
reverses the effect of oxidative stress-induced renal tubular damage and reduces 
the level of N-acetyl-β-d-glucosaminidase and albumin in the urine of diabetic rats 
(Oktem et al. 2006). Melatonin when used with rowatinex showed the most potent 
effects against the streptozotocin-induced diabetic nephropathy (Motawi et al. 2019). 
Melatonin activates SIRT1/Nrf2/HO-1 signaling pathway to protect from oxidative 
injury induced by acute kidney ischemia/reperfusion (Shi et al. 2019). Melatonin 
inhibits the accumulation of advanced glycation products (AGEs) and transforming 
growth factor-β (TGF-β) and attenuates the activation of the renin-angiotensin system 
to protect against kidney damage induced by diabetes (Guo et al. 2021). Most of the 
evidence suggests that melatonin can contribute beyond its well-known antioxidant 
and anti-inflammatory activity to reverse the kidney damage induced by diabetes, 
however, further studies are required to get better insights into the reno-protective 
mechanisms of melatonin. 

15.6 Bone Health (Osteoporosis and Osteoarthritis) 
and Melatonin 

Bone is a dynamic organ in which remodeling occurs throughout life. The remodeling 
process involves the initiation of bone resorption by osteoclasts, the transition from
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resorption to new bone formation, and bone formation by osteoblasts (Florencio-
Silva et al. 2015). There exists a fine balance between the osteoclast-mediated bone 
resorption and osteoblast-mediated bone formation throughout life. Bone remodeling 
is crucial for fracture healing, and repair of microscopic cracks as well for regulating 
skeletal calcium homeostasis. Osteoblasts under the influence of bone morphogenetic 
proteins (BMPs), wingless (WNTs), and runt-related transcription factor (RunX2) get 
differentiated from the mesenchymal stem cells. RunX2 upregulates the osteoblast-
specific genes such as collagen type II (ColII), alkaline phosphatase (ALP), bone 
sialoprotein (BSP), bone Gla (gamma carboxy glutamic acid rich) protein (BGLP), 
and osteocalcin (OCN) (Florencio-Silva et al. 2015). Nowadays, a huge population 
beyond the age of 40 years is affected with bone diseases due to lifestyle changes. 
Osteoarthritis and osteoporosis are the two most common diseases that are seen in 
aged people and are the cause of major disabilities worldwide (Cui et al. 2020). 

15.6.1 Osteoporosis and Melatonin 

According to the studies conducted among Indian women beyond the age of 50 years, 
46 million women have osteoporosis (Pal et al. 2016). Osteoporosis is chronic, an 
asymptomatic skeletal disorder that increases the fragility and high risk of frac-
ture specifically hip, spine, and wrist. It is a slow progressing, silent disease that 
does not display any symptoms till bones fracture. Osteoporosis is a condition that 
appears when there is a reduction in bone volume and bone mass. Studies suggest 
that osteoporosis patients have an imbalance between osteoblast differentiation and 
osteoclast production (Hart et al. 2020). Bone modeling is either formation of bone 
by osteoblasts or the resorption of bone by osteoclasts where these activities occur in 
sequentially coupled manner. The primary function of bone modeling is to increase 
bone mass and maintain or alter bone shape (Cui et al. 2020). Osteoclasts cells degrade 
bone by generating free radicals, such as superoxide and hydroxyl anions (Florencio-
Silva et al. 2015) and melatonin inhibits the osteoclast activity by scavenging the free 
radicals (Munmun and Witt-Enderby 2021). Melatonin also inhibits bone resorption 
by inducing osteoprotegerin (OPG). OPG retards the interaction between receptor 
activator NF-κB (RANK) and receptor activator NF-κB ligand (RANKL) by binding 
to RANKL thereby inhibiting the bone loss (Wada et al. 2006). On the other hand, 
it is noted that melatonin stimulates osteoblasts to counterbalance bone loss (Sethi 
et al. 2010). 

Melatonin via binding to its MT2 receptor on mesenchymal cells influences 
the osteogenesis by the formation of osteoblasts (Sethi et al. 2010). It induces 
osteoblast differentiation through ERK1/2-MAPK signaling pathway and expresses 
differentiation markers like alkaline phosphatase (ALP). Melatonin also induces 
osteoblast differentiation by influencing BMP-2 and Runx2, p38, and ERK1/2 
signaling (Sethi et al. 2010). Therefore, melatonin prevents bone degradation and 
promotes bone formation via its receptor-dependent and independent mechanisms. 
As discussed previously, melatonin alleviates the glucocorticoid-mediated stress
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condition. Reports also suggest that for the treatment of a variety of inflammatory 
condition and autoimmune disorders glucocorticoid-based medicines are being used 
that causes a significant decrease in bone mass and increased risk of fracture. Mela-
tonin may impair osteoclast activity by its free radical scavenging and antioxidant 
property. Melatonin also has been suggested to induce osteoblast differentiation and 
proliferation (Li et al. 2019). 

Melatonin could be a potential treatment for osteoporosis. Melatonin resists 
bone loss by eliminating the free radicals required for osteoclast activity. Reports 
also suggested that melatonin and combined fluid shear stress (FSS) enhances 
ERK/Akt/mTOR signaling in preosteoclasts, which activates the anabolic effect 
for the preservation of cell structure and function against osteoporosis (Kim et al. 
2018). Increased bone resorption and low bone mass are accompanied by oxida-
tive stress (Domazetovic et al. 2017). Osteoclast degrade bone by generating free 
radicals like hydrogen peroxide, superoxides, and hydroxyl ions (Florencio-Silva 
et al. 2015). Other experimental evidence suggest that melatonin increases short-
term bone formation and improves the alveolar bone loss and fracture healing in 
a diabetic mouse model by reducing the oxidative load (Kose et al. 2016). Mela-
tonin downregulates the iNOS expression to reverse the changes associated with 
osteoporosis in the ovariectomized rats (Oktem et al. 2006). 

15.6.2 Melatonin and Osteoarthritis 

Osteoarthritis (OA) is a chronic disability characterized by progressive degeneration 
of articular cartilage (AC), which covers the ends of long bones (Xia et al. 2014). 
More than 60% of the population above the age of 65 years suffers from this disease. 
The increasing number of incidences causes a massive loss in workplace productivity. 
This disease is ranked as the 15th major cause of years lived with disability (Bitton 
2009). The most striking and unfortunate part of osteoarthritis is that at present there 
is “no disease-modifying therapy” available to deal with it. Osteoarthritis is consid-
ered a multi-factorial disease of the whole synovial joint. The onset and progression 
of osteoarthritis are being studied for last three decades and observed that there are 
multiple factors involved in this disease like age-associated inflammation, cellular 
senescence, mitochondrial dysfunction, oxidative load, genetic factors, mechanical 
insult, trauma, obesity, and low-grade inflammation (Loeser et al. 2016). With accu-
mulating evidence, it is suggested that at present there is only palliative care being 
provided to intervene in the disease, but unfortunately, these treatments do not stop 
the progression of the disease and ultimately the joint fails, that is being replaced with 
a prosthesis (joint replacement), however, there is a limitation as well, i.e., limited 
shelf-life of the prosthetic joints (Steinhaus et al. 2017). This disease causes a huge 
economic burden to the family as well as the country (Bitton 2009). 

The only cells present in articular cartilage are chondrocytes that secret extra 
cellular matrix containing collagen type II and proteoglycans. The quality of artic-
ular cartilage is maintained by the fine balance between the anabolic and catabolic
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activity of chondrocytes. The declined proliferative capacity of chondrocytes leads 
to a significant reduction in extracellular matrix production that ultimately compro-
mises the quality of articular cartilage (Hou et al. 2018). It is well documented that 
melatonin concentration declines with aging and that disrupts the tuning of oxidant 
and antioxidant balance in the physiological system. This leads to increased inflam-
mation that might be involved in the progression of the declined anabolic function of 
chondrocytes and downregulates matrix synthesis that ultimately leading to reduced 
quality of articular cartilage and onset of osteoarthritis (Karasek and Reiter 2002). 

The cellular death of chondrocytes and loss of ECM leads to compromised quality 
of articular cartilage. The ECM contains collagen type II (ColII) which is a key 
feature of articular cartilage (Taniguchi et al. 2009). During osteoarthritis matrix, 
metalloproteinases (MMPs) are produced by hypertrophic chondrocytes. MMP-13 
is responsible for the degradation of collagen type II, aggrecan and fibronectin. 
Another enzyme a disintegrin and metalloproteinase with thrombospondin motifs, 
ADAMTS4 and ADAMTS5, cleave aggrecan that also promotes articular cartilage 
degradation (Neuhold et al. 2001; Song et al. 2007). Experimentally, it was observed 
that melatonin restores the major component of articular cartilage, collagen type 
II, through the downregulation of MMP-13, pro-inflammatory cytokines such as 
IL-1β, IL-6, TNF-α, ADAMTSs, and catalytic transcription factors such as NF-
κB in case of osteoarthritis (Zhang et al. 2019). Increased inflammatory cytokines 
generate NO by the chondrocytes and catabolic enzymes that cause progressive 
articular degeneration (Loeser et al. 2012). ROS are primary factor involved in the 
development of osteoarthritis. Mitochondrial dysfunction in osteoarthritic chondro-
cytes causes oxidative stress by increasing generation of ROS and RNS that inhibits 
ECM synthesis from chondrocytes (Lepetsos and Papavassiliou 2016). Further, the 
increased oxidative stress accelerates catabolism and initiates chondrocyte death, 
destroying articular cartilage and disturbs chondrocyte homeostasis (Lepetsos and 
Papavassiliou 2016). 

In humans, it was observed that during osteoarthritis, the expression of endo-
plasmic reticulum (ER) stress associated downstream molecular players are posi-
tively correlated with cartilage degeneration (Rellmann et al. 2021). Articular carti-
lage being a hypocellular and avascular tissue is always at a risk of hypoxic and 
catabolic stress that may lead to activation of ER stress that contributes to carti-
lage degeneration via chondrocyte apoptosis. The expressions of phosphorylated 
protein kinase R like endoplasmic reticulum kinase (pPERK), ubiquitin (Ub), C/EBP 
Homologous Protein (CHOP), and phosphorylated c Jun N-terminus kinase (pJNK) 
are positively associated with the number of caspase-3 positive chondrocytes in 
in vivo and in vitro conditions (Takada et al. 2011; Price et al. 2010). ER stress 
induced by tunicamycin increased CHOP expression and reduced X-box binding 
protein 1 (XBP-1) mRNA splicing in high concentrations results in extensive apop-
tosis (Takada et al. 2011). Several studies show the induction of CHOP happens 
earlier than anti-apoptotic BiP, and this rapid upregulation of CHOP contributes to 
chondrocyte death (Price et al. 2010). Advanced glycation products (AGEs) induce 
ER stress in chondrocytes by specific receptors for AGE (RAGE), and activation of 
RAGE engages critical signaling pathways. In human chondrocytes, AGEs induce
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ER stress and stimulate the expression of cyclooxygenase-2 (COX-2) and PGE2 
through eIF2α, p38-MAPK, and NF-κB pathways (Oakes and Papa 2015). Mela-
tonin treatment inhibits ER stress by attenuating ER stress mediators. Melatonin 
also mitigates glucose regulated protein 78 (GRP78) upregulation, phosphorylation 
of pulmonary eIF2a, cleaved activating transcription factor 6 (ATF6) elevation, and 
repressed inositol requiring enzyme 1a (IRE1a) phosphorylation and activation of 
XBP-1 and JNK, two downstream targets of the IRE1 pathway (Zhao et al. 2014). 

Chondrocyte apoptosis and decline in autophagy results in reduced cellularity 
in the superficial zone of articular cartilage (Zhao et al. 2019). Melatonin performs 
its chondroprotective role via SIRT1 signaling and reverses the detrimental effect 
of sirtinol that blocks the activity of SIRT1 (Coryell et al. 2021). In chondrocytes, 
SIRT1 exerts an anti-apoptotic effect by regulating gene expression of the transcrip-
tion factors RelA/p65 and p53 (Yeung et al. 2004). Melatonin via SIRT1 pathway 
protects chondrocytes against ROS-dependent p38 kinase activation and suppression 
of chondrocyte apoptosis (Lu et al. 2021). Melatonin induces autophagy to prevent 
extracellular matrix (ECM) degeneration via NF-κB pathway to ameliorate apoptosis 
and calcification by SIRT1-mediated autophagy. Melatonin increases SOX9 levels 
to promote chondrogenesis under inflammatory conditions induced by IL-1β. It also  
blocks the other mediators of inflammation including iNOS and COX-2, at transcrip-
tional and translational level and also inhibit the secretion of TNF-α, IL-1β, and IL-8 
from chondrocytes in in vitro condition (Hosseinzadeh et al. 2016). 

Under osmotic stress, SIRT1 induces nuclear factor of activated T-cell (NFAT5) 
expression (Johnson et al. 2014), that acts on a specific set of targets, including 
TNF-α, IL-6, nitric oxide synthase 2, and MMP-13 in a spatio-temporal manner 
(Yoon et al. 2011). Melatonin decreases SIRT1-dependent NFAT5 expression in 
chondrocytes treated with IL-1β and its supplementation significantly reduces TNF-
α, IL-1β, prostaglandin E2 (PGE2) in chondrocytes showing its suppressive effect 
on inflammation (Guo et al. 2017). Therefore, it can be suggested that melatonin 
exerts its effects in osteoporosis as well as different stages of osteoarthritis. Moreover, 
melatonin has therapeutic potential for bone regeneration and may also act as a potent 
therapeutic drug in osteoarthritis to prevent the exacerbation of articular cartilage 
damages. 

15.7 Life Span Extending Benefits of Melatonin 

Healthy aging and longevity have been one of the greatest pursuits of mankind. An 
unending search for an agent that could increase health expectancy and decrease 
the burden of age-related degenerative diseases has brought melatonin into focus. 
The declining nocturnal peak of melatonin in elderly associated melatonin to aging 
(Karasek and Reiter 2002; Tozawa et al. 2003) and based on this background mela-
tonin supplementation was hypothesized to promote healthy aging and prolong life 
span (Anisimov et al. 2003). Unlike pineal melatonin, aging promotes the expres-
sion of enzymes related to melatonin biosynthesis in metabolically active tissues like
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liver, intestine, and kidney. This locally produced, extra pineal melatonin activates 
antioxidant repertoire thereby defending these organs against age induced oxida-
tive damages (Popović et al.  2018). Although scientists always remained doubtful 
regarding the clinical utility of melatonin, however, previous studies have reported 
the antioxidant, analgesic, anti-stress, and chronobiotic benefits of melatonin supple-
mentation in counteracting age-related diseases and enhancing life span (Marseglia 
et al. 2015; Anghel et al. 2022). Initial studies demonstrated that pineal gland abla-
tion induced senescence was reversed following melatonin supplementation in rats 
(Dilman et al. 1979; Armstrong and Redman 1991). Pineal of young animals when 
grafted into old animals delayed the development of senescence-like phenotype and 
prolonged the life span of old animals (Pierpaoli and Regelson 1994). Even lower 
dose of melatonin was shown to reduce the tumor incidence, especially the mammary 
carcinomas, thereby influencing the life span of the animal (Anisimov et al. 2003). 

The prolongation of life span by melatonin has mostly been implied in terms 
of its immunomodulatory, antioxidant, and anti-stress properties. A recent study 
suggests that melatonin prolonged the life span of animals independent of the age at 
which the melatonin supplementation was started (Damiani et al. 2020). Melatonin 
supplementation effectively reduces age-dependent DNA damages exhibiting anti-
genotoxic and anti-mutagenic potential thereby maintaining the genomic integrity 
(Damiani et al. 2020). Telomeres are considered as the guardian of genome stability 
and oxidative stress has been shown to negatively impact telomere length and promote 
its attrition, a hallmark of aging (Gavia-García et al. 2021). Reports suggest that 
melatonin facilitates telomere elongation probably through stimulation of telomerase 
activity, thus preventing age-related degenerative conditions in vascular endothelial 
and retinal pigment epithelial cells (Rastmanesh 2011; Xie et al. 2021). Melatonin 
interacts with numerous DNA repair and DNA damage response processes (Liu 
et al. 2013) and induces phosphorylation of p53 (Ser-15), a critical mediator of 
DNA protective effects of melatonin, responsible for regulation of cell survival, 
proliferation, and prevention of cancer (Santoro et al. 2012). Apart from enabling 
molecular defense mechanisms to prevent DNA damages melatonin also offers on-
site protection to DNA through scavenging locally generated free radicals (Galano 
et al. 2018). Evidences indicate that there exists a direct connection between telomere 
attrition and mitochondrial dysfunction (Passos et al. 2007). Moreover, an aging axis 
has been proposed that links compromised genomic integrity to altered mitochondrial 
biogenesis and function via p53-mediated suppression of PGC1α and PGC1β (Sahin 
and DePinho 2012). 

15.7.1 Melatonin and Mitochondrial Health 

Longevity is intimately related to mitochondrial function, while mitochondrial 
malfunction has been associated with a plethora of diseases collectively called 
as “mitochondrial diseases,” e.g., neurodegenerative disorders, cardiomyopathy, 
diabetes mellitus, and cancer. The connection between these diseased states and
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mitochondria lies in the higher rate of accumulation of mutation in mitochondrial 
DNA (mtDNA), expansion of mutated mtDNA and age-related deterioration of the 
organelle-specific quality control mechanisms (Lionaki et al. 2022). In this context, 
the regulation of mitochondrial function by melatonin can be one of the mechanisms 
through which melatonin might promote health and longevity. Mitochondria, in fact, 
happens to be the most prominent target organelle for melatonin’s pleotropic actions 
(Reiter et al. 2017). Mitochondria not only synthesize melatonin but also accumulate 
and metabolize melatonin (Reiter et al. 2021; He et al.  2016). Melatonin preserves 
mitochondrial function by retarding free radical generation at the level of electron 
transport chain, a process known as radical avoidance (Hardeland 2009). Melatonin 
stimulates ATP production without altering ATP synthase activity and ROS genera-
tion which is critical for prevention of various pathophysiological conditions related 
to mitochondrial diseases (Reiter et al. 2020a, b; Jauhari et al. 2020). Melatonin main-
tains mitochondrial membrane potential and prevents opening of the mitochondrial 
permeability transition pore (mPTP) (Petrosillo et al. 2009). Melatonin has also been 
demonstrated to prevent oxidation of cardiolipin, a phospholipid located at the inner 
mitochondrial membrane, thereby preventing cytochrome c release and subsequent 
activation of apoptotic pathway (Petrosillo et al. 2009). Melatonin by modulating 
mitochondrial dynamics (mitochondrial fission and fusion) has been shown to regu-
late redox homeostasis and bioenergetics (Paradies et al. 2010; Tan et al. 2016). Thus, 
melatonin supplementation can prove to be an effective therapeutic strategy against 
oxidative stress and age-induced mitochondrial dysfunction that could jeopardize 
cell survival and health. 

15.7.2 Melatonin, Circadian Rhythm and Health 

Rhythmicity in the biological clock-controlled functions is also related to well-being 
of the organism and is among one of the aspects of melatonin physiology that may 
extend life span (Acosta-Rodríguez et al. 2021). Lack of rhythmicity results in loss of 
the adaptive ability and impairs the capacity of tissue regeneration (Acosta-Rodríguez 
et al. 2021; Paatela et al. 2019). Aging results in diminished amplitude of the circadian 
pacemaker as evident from the decreased melatonin secretion. The loss in circadian 
amplitude can lead to internal temporal disorder which may act as a prelude for 
diseased state that may manifest in the form of temporal crises related to sleep– 
wake cycle, cardiovascular activity, intestinal motility, asthma, and allergic attacks 
(Froy 2011). Exogenous melatonin supplementation feedback on the circadian pace-
maker system to enhance the amplitude of circulatory melatonin thereby retarding the 
symptoms of aging and increase life span (Armstrong and Redman 1991). Evidence 
suggests that disruption of circadian system with advancing age is partly due to 
loss of sensitivity of the suprachiasmatic nucleus (SCN), to the entrainment signals 
(Chang and Guarente 2013). Inability to adapt to the entrainment signals affects 
the endogenous periodicity tau (τ ), by either shortening it or making it longer than 
24 h (h). A positive association between tau close to 24 h and survival have been
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suggested (Wyse et al. 2010). Indeed, it was shown that hamsters carrying 20 h period 
mutation tau, exhibit reduced longevity (Hurd and Ralph 1998). In another study, 
chronic disruption of circadian pacemaker by continuous reversal of light–dark cycle 
reduced the life span of cardiomyopathic hamsters (Penev et al. 1998). In fact, aged 
animals show higher mortality due to phase shifts induced by changing light–dark 
cycle while, fetal SCN implants in aged animals were shown to restore the higher 
amplitude rhythms and promote longevity (Davidson et al. 2006; Hurd and Ralph 
1998). Thus, impaired circadian rhythmicity is associated with increased morbidity 
reduced life span, while melatonin supplementation may reset circadian rhythms and 
restore the pacemaker’s amplitude thereby promoting survival. 

15.8 Phytomelatonin: A Natural Nutraceutical for Health 

D. van Tassel and O’Neill (1993) for the first time identified the endogenous mela-
tonin in higher plants. The presence of melatonin in the Convolvulaceae ivy (morning 
glory: Pharbitis nil, syn. Ipomoea nil) and in tomato fruits (Solanum lycopersicum) 
was detected by radioimmunoassay (RIA) and gas chromatography-mass spectrom-
etry (GC–MS), although the results were unpublished until 1995 (D. van Tassel 
et al. 1995). This melatonin identified in plants was named “phytomelatonin.” In due 
course of time presence of melatonin was identified in coffee beans in 1970, it was 
isolated as a by-product during the processing of coffee beans (Tan et al. 2012). Since 
then, a variety of plant species were analyzed and it has been observed that different 
cereals and medicinal herbs contain a high concentration of melatonin (Hattori et al. 
1995; Hardeland and Pandi-Perumal 2005). Surprisingly, the existence of melatonin 
was also noted in the edible plants and vegetables as well (Hattori et al. 1995; Reiter 
et al. 2007; Manchester et al. 2000). The presence of melatonin in plants modulates 
a range of physiological functions like flowering, fruit ripening, stress responses, 
morphogenesis, and photoprotection and antioxidant response (Arnao 2014). 

The consumption of melatonin-rich plant products has been shown to influence the 
endogenous melatonin concentration (Reiter et al. 2005; Dragsted et al. 1993). Cheap 
and easily available economical cereals like corn (Zea mays) consumption have been 
shown to increase the endogenous melatonin concentration and improve the antioxi-
dant enzymes status and proliferative potency of peripheral blood mononuclear cells 
(PBMCs) (Singh and Haldar 2017). The increase in endogenous melatonin concen-
tration could be due to the high tryptophan content (32 mg/100 g of corn seeds) 
in corn seeds (www.ogtr.gov.au). The pineal gland has a high affinity for uptake of 
circulatory tryptophan for the synthesis of serotonin and melatonin (Paredes et al. 
2009). Epidemiologic evidence suggests that the intake of vegetable has beneficial 
effects in protecting against cancer and cardiovascular diseases (Riboli and Norat 
2003; Bazzano et al. 2003). Multiple studies have identified the beneficial effect 
of consuming vegetables which might be related to the presence of melatonin with 
other phytochemicals (Dragsted et al. 1993; Bazzano et al. 2003). The consumption 
of phytomelatonin-containing nuts like walnut (Reiter et al. 2005) and fermented

http://www.ogtr.gov.au
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products like beer (Maldonado et al. 2009) has also been reported to increase the 
endogenous melatonin concentration and antioxidant capacity of the serum. 

Although the content of melatonin in plant-based supplements is lower compared 
to exogenous sources containing chemically synthesized melatonin. However, 
phytomelatonin supplementation even at a low dose could improve circulatory mela-
tonin levels up to 40 times within 5 min (Van Der Helm Vam Mil et al. 2003). 
Consumption of phytomelatonin-rich Japanese vegetables like sweet corn, bitter 
gourd, Japanese radish sprout, shimeji mushroom, and shiitake mushroom increases 
the endogenous melatonin concentration that has been suggested to protect from 
cancer and cardiovascular diseases (Oba et al. 2008). 

Melatonin has a huge number of beneficial effects like antioxidant, anti-stress, 
oncostatic, and immunomodulatory impact but its supplementation is either subcu-
taneous or oral in the form of tables available over the counter. However, the general 
psychology of taking any medicine should be discouraged, and the general practice 
of preferring some dietary remedies be considered. Accounting for these concerns it 
is advocated to add phytomelatonin-rich plant products in our daily diet that may help 
to maintain the endogenous melatonin concentration in healthy and aged populations 
as well as in immunosuppressed individuals undergoing various treatment regimens. 

The addition of phytomelatonin as a nutraceutical might be a promising non-
invasive approach to improve health. Phytomelatonin supplementation might help 
protect against different bacterial and viral infections and can reduce low-grade 
inflammation thereby protecting against various age-associated cardiovascular 
diseases and skeletal complications. Therefore, it is suggested that naturally available 
resources rich in melatonin and other antioxidants should be included in our diet. 
This warrants further investigation that whether the consumption of phytomelatonin-
rich food products could counterbalance the side effects of different drugs like 
glucocorticoid-based therapy, chemotherapy, etc., being used routinely in various 
clinical settings. 
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Circadian Rhythm Manipulations: 
Implications on Behavioral Restoration 
in Central Nervous System Insults 

Duttagupta Subhadeep , B. N. Srikumar , 
B. S. Shankaranarayana Rao , and Bindu M. Kutty 

16.1 Introduction 

We live in a rapidly evolving 24 h society with hectic work schedules and mismanaged 
lifestyles. With the advent of electricity and blooming technology, humans nowa-
days are exposed to artificial light throughout the day. Night shifts and variation in 
work rotation schedules between day and night have become common across the 
globe. The environment plays a significant role in developing neural functions and 
adaptive flexible behavior in most living organisms. Ambient light is a prominent 
and crucial environmental cue (zeitgeber) that affects brain physiology and behavior. 
Apart from its role in visual image formation, light also has non-image-forming func-
tions as well, such as entraining circadian rhythms, regulating physiological events, 
and influencing mood and cognition in mammals (Fu et al. 2005; Yan et al. 2019). 
The daily light-dark cycle is the major cue that entrains the mammalian circadian 
system (Daan and Aschoff 2001) and coordinates our bodily functions (Hastings 
et al. 2003). Intrinsically photosensitive retinal ganglion cells (ipRGCs) convey light 
information to the suprachiasmatic nucleus (SCN), the central clock in mammals 
(LeGates et al. 2014). Photoperiodism is the biological capability of an organism 
to measure and entrain to the environmental day-length, perceive the time of the 
year, and adapt physiologically and behaviorally to the seasonal change (Walton 
et al. 2012a, b). Prolonged exposure to either light or darkness desynchronizes the 
body’s biological and behavioral clock, leading to negative consequences for health 
including mood and cognitive disruption.
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Depending on the activity patterns, mammals have been divided into two chrono-
types: diurnal and nocturnal. Diurnal animals, including humans, orchestrate their 
physiological variables, metabolism, cognitive and behavioral functions during the 
daytime, whereas energy conservation, repair and consolidation occur in the inactive 
phase of rest at night. On the other hand, activities such as foraging, hunting, and 
mating by the nocturnal animals (like rodents and most mammals) peak during the 
night. Light synchronizes the diurnal and nocturnal circadian systems in the same 
manner. However, the circadian-independent direct influence of light on the brain 
(such as hypothalamus and brainstem regulatory structures- locus coeruleus and 
dorsal raphe nucleus) and behavior is different in both chronotypes (Challet 2007; 
Yan et al. 2018; Perrin et al. 2004). Interestingly, melatonin secretion peaks during 
the dark phase in both diurnal and nocturnal animals, but the nocturnal animals are 
active when the melatonin levels are high, whereas low levels of melatonin promote 
activity in diurnal animals (Challet 2007). Recent advancement in medical research 
has highlighted the effectiveness of bright light therapy and chronotherapy (e.g., 
time-restricted feeding and chrono-exercise) in combination with drugs for treating 
psychiatric and neurological disorders like depression, seasonal affective disorders, 
bipolar disorder, Alzheimer’s, and Parkinson’s diseases (AD and PD) (Avery et al. 
1990; Terman and Terman 2005; Johnstone et al. 2016, Lee et al. 2021). In this 
chapter, we discuss the role of several circadian manipulation strategies in facil-
itating cognitive restoration in both clinical and pre-clinical conditions. We then 
consider some of the central hypotheses of the underlying changes and summarize 
the evidence for putative physiological and molecular mechanisms of action. 

16.2 Circadian Rhythm Manipulation in Human 
Neurodegenerative Conditions 

Researchers have extensively investigated the efficacy of bright light therapy (BLT) in 
neurodegenerative and neuropsychiatric conditions for the last two decades. A meta-
analysis by Golden et al. (2005) reported a significant decrease in depressive symptom 
severity following BLT in both seasonal affective disorder (SAD) and non-seasonal 
depression. Longitudinal studies reported that almost two-thirds of the SAD patients 
respond positively following BLT (Loving et al. 2005). Numerous clinical studies 
have reported that BLT can consolidate rest and activity patterns in people suffering 
from AD (Fetveit et al. 2003; Dowling et al. 2005; Sloane et al. 2007). BLT during the 
morning (around > 1000 lux) has been shown to improve cognitive functions, increase 
night-time sleep, decrease daytime sleepiness, and reduce sundowning behavior in 
patients suffering from AD and related dementia (Lyketsos et al. 1999; Yamadera 
et al. 2000; Ancoli-Israel et al. 2003; Alessi et al. 2005; Sloane et al. 2007). In 
addition, PD patients showed noticeable improvement in sleep onset and continuity, 
mood and motor functions following 2–5 weeks of BLT (Willis and Turner 2007). In 
an RCT study, BLT (7500 lux for 30 mins in the morning for two weeks) significantly
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improved the PD-related motor symptoms and moderately improved the mood (Paus 
et al. 2007) in PD patients. Furthermore, increased sunlight exposure reduces the rate 
and severity of symptoms in other psychiatric ailments, including bipolar disorder 
(Benedetti et al. 2001). Kent et al. (2009) reported that a low level of sunlight exposure 
is correlated with a higher chance of cognitive impairment. Light affects cerebral 
blood flow which further increases alertness and heuristic processing (Sinclair et al. 
1994; Vandewalle et al. 2006) and shows a dose-response relationship with cognitive 
functions in depressed individuals (Kent et al. 2009). 

Sleep deprivation therapy is another important circadian rhythm manipulation 
strategy reported to be used commonly for mood disorders for more than three 
decades. Studies have suggested that 45–70% of the depressed subjects had a 50% 
reduction in Hamilton Rating Scale for depressive symptoms following a combina-
torial light and repeated total sleep deprivation therapy for a week (Giedke and 
Schwärzler 2002; Benedetti et al. 2005). A low level of adenosine is typically 
reported in depression [reviewed by Gomes et al. (2021)]. Sleep deprivation is 
known to regulate adenosine signaling by increasing vesicle-associated membrane 
protein (VAMP)-dependent ATP exocytosis from astrocytes (Hines et al. 2013; 
Dallaspezia and Benedetti 2015). In addition, sleep deprivation is associated with 
rapidly increasing serum brain-derived neurotrophic factor (BDNF) and normal-
ization of decreased IL-6 levels in subjects with depression, which leads to rapid 
improvement in their depressive symptoms (Gorgulu and Caliyurt 2009; Voderholzer 
et al. 2012). However, the clinical value of sleep deprivation therapy is limited by the 
fragility of its response. Scant literature exists in understanding the antidepressant 
action of sleep deprivation in animals. Lopez-Rodriguez et al. (2004) showed that 
total sleep deprivation for 24 h decreased the immobility time in the forced swim 
test in adult rats which might be associated with increased extracellular serotonergic 
levels in the hippocampus (Lopez-Rodriguez et al. 2003, 2004). Taken altogether, 
circadian manipulation therapies have emerged as efficacious non-pharmacological 
biologically oriented treatment approaches in psychiatry today. 

16.3 Evidence of Circadian Rhythm Manipulation 
to Restore Behavior and Cognition in Animal Models 

To understand its fundamental mechanisms of action, circadian manipulation studies 
have been extensively investigated in both diurnal and nocturnal animal models. 
Photoperiod alteration triggers structural changes in the brain and influences the 
functional connectivity of regions regulating affective behavior (Salgado-Delgado 
et al. 2011). Exposure to bright light (3000 lux) for daily 1 h for  3 weeks resulted in 
anxiolytic and antidepressant effects in diurnal Sand rats (Ashkenazy et al. 2009a, 
b). These rats significantly spent more time in the open arms of the EPM and took 
more time to sink in the forced swim test. Short photoperiod (8:16 h light-dark cycle)
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for 10 weeks increased associative fear memory in a fear conditioning task in white-
footed mice (Walton et al. 2012a, b). These behavioral effects were associated with 
an increased dendritic spine density of the basolateral amygdala neurons. Reports 
suggest that rodents display increased social affiliation and reduced aggression during 
short days (Beery et al. 2008; Ashkenazy et al. 2009a, b). In wild conditions, rodents 
huddle up together in their nests to reduce thermoregulatory demand during winter 
or short-day conditions (Andrews and Belknap 1993). Increased oxytocin binding is 
related to increased affiliative behavior, whereas increased levels of vasopressin lead 
to aggression (Ferris 2005; Lee et al. 2009). The levels of oxytocin and vasopressin are 
modulated by pineal melatonin which gets affected due to photoperiod manipulation. 
Hence, the photoperiodic response of oxytocin receptors to short photoperiod needs 
to be studied to understand its effects on social behavior. 

Exposure to a short photoperiod (5:19 h light-dark cycle) for one week resulted 
in decreased anxiety and depressive-like behavior in adult Wistar rats (Dulcis et al. 
2013). Rats exposed to short photoperiod spent more time exploring the open arms 
of the elevated plus maze (EPM). They also spent a long time swimming before 
becoming immobile in the forced swim test. C57BL/6J mice with reduced dopamine 
transporter expression exhibit increased reward-responsiveness following two weeks 
of short photoperiod exposure (5:19 h light-dark cycle) in a probabilistic learning test 
(Young et al. 2018). These mice show decreased reward collection latency (milkshake 
vs. timeout) in a win-stay task suggestive of increased motivation and reward sensi-
tivity following short photoperiod. Additionally, higher open arm percent entries 
in the EPM were also observed in these mice suggesting an increased risk-taking 
behavior (Young et al. 2018). In our laboratory, we have utilized this phenomenon 
of photoperiod-induced plasticity and studied its effects on the ventral subicular 
lesioned (VSL) rat model of neurodegeneration and cognitive impairment. Exposure 
to short photoperiod (6:18 h light-dark cycle) regime for three weeks reversed the 
VSL-induced anxiety-like behavior assessed using open field test, EPM and light-
dark test (Subhadeep et al. 2017, 2020). The short photoperiod exposed VSL rats 
also showed an improvement in motivational and hedonic behavior (Subhadeep et al. 
2020). The photoperiod manipulation with short photoperiod also restored the cogni-
tive functions of the VSL rats as they performed significantly better than the normal 
photoperiod exposed counterparts in the Morris water maze (Subhadeep et al. 2021). 
Another study from our laboratory demonstrated that a combinatorial paradigm of 
wheel running and casein wheat diet in an enriched environment reverses spatial 
memory deficits and restores hippocampal neurogenesis in VSL rats (Kapgal et al. 
2016). Wheel running is reported to have synchronizing effects on the entrainment 
of circadian systems (Tal-Krivisky et al. 2015). Recently, wheel running has shown 
to be beneficial in lowering anxiety-, and depressive-like behavior and improving 
recognition memory in diurnal Sand rats (Bilu et al. 2022). 

Cuesta et al. (2014) studied the effect of photoperiod manipulation in a transgenic 
mouse model of Huntington’s disease (HD). A combination of exposure to 10,000 
lux for daily 1 h before lights-off and voluntary wheel running exercise resulted in 
delayed disintegration of the rest-activity rhythm and restored behavioral synchro-
nization to the light-dark cycle in the R6/2 mice (Cuesta et al. 2014). In a similar
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model, 14 weeks of chronic long photoperiod exposure (16:8 h light-dark cycle) 
significantly improved the survival and nocturnality of R6/2 Huntington’s mice (Ouk 
et al. 2017). Similarly, six hours of daily exposure to blue light during the first half 
of the light phase for three months significantly improved the locomotor activity 
rhythm in transgenic HD mice models (Wang et al. 2017). 

16.4 Possible Underlying Mechanisms for the Potential 
Role of Circadian Manipulation on Behavior 
and Cognition 

The phenomenon of adult neuroplasticity is a boon as the adult brain can synthesize 
and reorganize its synaptic connections as a result of an experience in response to 
intrinsic and extrinsic factors. Photoperiod manipulation alters the balance between 
dopamine and somatostatin (SST) expression in the hypothalamic paraventricular 
nucleus (PVN). Exposure to short photoperiod for a week, increase the tyrosine 
hydroxylase (TH)-immunoreactive cells and decreased the SST-immunoreactive 
cells in the PVN of the hypothalamus, a phenomenon also referred to as ‘neurotrans-
mitter switching’ (Dulcis et al. 2013). At the receptor level, there was an abundant 
increase in the D2R expression and a proportional decrease in the SST2/4R of the 
PVN. The SST and dopaminergic neurons of the PVN synapses on the corticotrophin-
releasing factor (CRF) neurons which are located along the third ventricle (Kumar 
2007). Interestingly, short photoperiod decreased the plasma corticosterone levels 
and CRF levels in the cerebrospinal fluid. In line with these findings, our study also 
reported that three weeks of short photoperiod housing optimized the levels of plasma 
corticosterone levels and hippocampal CA1 glucocorticoid receptors expression in 
the VSL rats (Subhadeep et al. 2020, 2021). Further, short photoperiod increased 
the expression of doublecortin (DCX, a marker for adult neurogenesis) and Arc (an 
immediate-early gene) protein in the dentate gyrus of the VSL rats, which might be 
possibly associated with the restored learning and memory functions observed in the 
VSL rats in Morris water maze (Subhadeep et al. 2021). Short day exposure is also 
reported to increase BrdU+ and NeuN+ cells in the olfactory bulb in the white-footed 
mice, which in turn facilitates the olfactory-mediated behavior (Walton et al. 2012a, 
b). Further, 10 weeks of short-day exposure enhanced cell survival in Syrian hamsters 
(Huang et al. 1998) and increased adult hippocampal neurogenesis in white-footed 
mice (Walton et al. 2014). 

Sunlight exposure affects mood, learning and cognition (Kent et al. 2009; Beecher 
et al. 2016). However, the underlying molecular mechanisms are not well understood. 
An interesting study by Zhu et al. (2018) reported that moderate ultraviolet light B 
(280–315 nM; 50 mJ/cm2) exposure for 120 mins enhances motor learning and 
object recognition memory in mice. This improvement in cognition is associated 
with elevated blood levels of urocanic acid which crosses the blood-brain barrier 
and facilitates glutamate signaling in the hippocampus, prefrontal cortex, and other
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brain regions in a positive manner. Similarly, the precise mechanism of action of 
BLT remains unclear. However, it is speculated to act by increasing the availability 
of synaptic serotonin in the midbrain. BLT (2500–10,000 lux) treatment during the 
short days of winter lowers the binding potential of serotonin transporter, resulting 
in less uptake, and higher availability of serotonin in the synaptic cleft (Campbell 
et al. 2017). In addition, violet light exposure from 8 am to 8 pm for seven weeks 
significantly improved contextual fear memory, spatial memory, and social behavior 
in C57B6/J mice (Sasaki et al. 2021). 

At the synaptic level, our study showed that short photoperiod (6:18 h light-dark 
cycle) exposure impacts the hippocampal Schaffer collateral-CA1 pathway in the 
VSL rats. Three weeks of short photoperiod improved the basal synaptic transmission 
but did not restore the long-term potentiation in the acute hippocampal slices obtained 
from the VSL rats (Subhadeep et al. 2021). Presumably, SPR might be modulating 
the postsynaptic mechanisms and thereby affecting the AMPAR-mediated synaptic 
component, which is responsible for input-output synaptic functions. Furthermore, 
photoperiod manipulation affects cellular properties. GABA is highly expressed in 
the SCN, and its receptors are known to control photic signals by presynaptically 
regulating glutamatergic signaling. Short days decrease the spontaneous postsynaptic 
GABA- evoked currents and affect its equilibrium potential in the SCN neurons, thus 
overall affecting GABA functioning (Evans et al. 2013). Overall, short days led to 
more inhibitory responses and lesser excitatory responses. 

Melatonin is a neurohormone secreted by the pineal gland at night, whose circa-
dian secretion is controlled by the hypothalamic SCN. It is a chronobiotic and 
an important zeitgeber that enables the transmission of photoperiodic information 
throughout the body. Manipulating the timing of melatonin secretion by exogenous 
administration or using melatonin receptor agonists are well-established potential 
strategies for synchronizing the circadian rhythm in neuropsychiatric conditions. For 
example, agomelatine has melatonergic agonist properties and is known to reverse 
behavioral deficits related to anxiety and depression in several animal models (Tuma 
et al. 2005; Fuchs et al. 2006). At the cellular level, chronic administration of agome-
latine restored the adult hippocampal neurogenesis in mice (Rainer et al. 2012). 
Agomelatine has also demonstrated its efficacy in clinical trials in individuals with 
depression (Lemoine et al. 2007; Hale et al.  2010). It is now considered one of 
the strong candidates for circadian manipulation strategy to treat mood disorders. 
Another crucial neuropeptide that predominantly regulates the sleep-wake cycle, 
feeding behavior, arousal and metabolism is orexin (Tsujino and Sakurai 2009). The 
orexinergic neurons are heavily located in the lateral hypothalamus in vertebrates 
(Hurley and Johnson 2014) and are proposed to be involved in narcolepsy and mood 
disorders such as SAD (Scammell 2015; Bowrey et al.  2017). Exposure to short 
photoperiod (8:16 h light-dark cycle) increased the orexin gene expression in the 
lateral hypothalamus in sheep (Archer et al. 2002). Orexin influences mood and 
circadian rhythm by affecting the serotonin, norepinephrine, and melatonin systems 
(Liu et al. 2002; Bowrey et al.  2017; Sharma et al. 2018).
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Age plays a crucial role in enabling the nervous system to adapt to photoperi-
odic changes. Photoperiod-induced neuroplasticity extinguishes with age and the 12 
months old rats become less responsive to positive stimuli while still being suscep-
tible to stressors. In these aged rats, the ability to increase the numbers of TH+ 
neurons in response to one week of short photoperiod (5:19 h light-dark cycle) expo-
sure is lost (Pritchard et al. 2020). Due to the shift in the dopaminergic activity, these 
aged animals are less responsive to positive stimuli and more susceptible to stress. 
Aging also affects the calcium homeostasis in the SCN by reversing the rhythm of 
its intracellular levels (Farajnia et al. 2015). Future studies are needed to understand 
in detail how aging weakens the SCN network and how circadian manipulation can 
reverse these changes. 

16.5 Conclusion 

The field of chronobiology is rapidly evolving, and its advancements can result 
in substantial implications for human health and disease. Translational research 
in chronotherapy can offer insights into the diagnostic and therapeutic avenues of 
affective and neurodegenerative disorders. Although extensive literature exists on 
circadian manipulation strategies, we cannot make generalizations or overarching 
conclusions about the role of photoperiod across species. More studies are needed to 
investigate circadian manipulation effects in the longitudinal, species-specific, sex-
specific, and chronotype-specific manner. It is also important to note that nocturnal 
physiology is not a phase-reversed version of diurnal physiology, and hence their 
responsiveness to light is different. Developing appropriate animal models is critical 
in understanding the effects of circadian manipulation. Therefore, a direct correlation 
of these results should not be directly extrapolated to develop therapeutic strategies 
in humans. Future studies are warranted to address how light affects mood, the 
neurotransmitter system, neuroplasticity, and the microbiota-gut-brain axis, which 
is gaining much attention recently (Fig. 16.1).
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Fig. 16.1 Different circadian rhythm manipulation strategies used in human and animal models. 
Exposure to sunlight, bright light or sleep deprivation therapy has proven to be beneficial in several 
mood disorders in humans. In addition, pre-clinical studies using different rodent models (rats, mice 
and hamsters) have used bright light therapy, wheel-running, photoperiod manipulation and sleep 
deprivation protocols to study the underlying mechanisms associated with circadian rhythm manip-
ulation. These strategies are reported to cause hypothalamic neurotransmitter switching (between 
dopamine and somatostatin), affect neurotransmitter levels, olfactory and hippocampal neuro-
genesis and alter cellular properties in the suprachiasmatic nucleus. The figure is created with 
BioRender.com 
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Chapter 17 
Epigenetics of Altered Circadian 
and Sleep Cycle Induced Effects 
on Aging and Longevity 

Shashikant Patel, Vincy Vijay, Arvind Kumar, and Sumana Chakravarty 

17.1 Introduction 

Aging is an inexorable process marked by pulmonary, renal, cardiovascular, 
endocrine, immune, gastrointestinal, and neurological alterations, eventually leading 
to the dissolution of consciousness and sentience of the living body. The electrifi-
cation of the planet has attenuated the frontier between day and night, significantly 
impacting the circadian rhythms (Parameswaran and Ray 2022). Contributions from 
various environmental and biological aspects have pushed toward a society with 
desynchronized circadian rhythm leading to aging-related health and physiological 
disorders (Fig. 17.1). The age-associated disorders are often incurable, either medi-
cally or due to the frivolous physiology of the aged body. The physiological aging 
of an organism is synonymous to cellular or replicative senescence wherein cells 
subsequent to a limited maximal growth egress from the growth phase and exhibit 
decline in metabolic and functional activity (Ahmed et al. 2019). Genomic instability 
results in the accelerated aging process (Fig. 17.2). Higher order chromatin confor-
mations are critical in maintaining the genomic stability by facilitating the packaging 
of nuclear DNA into a compact structure and stabilizing complex biomolecular inter-
actions. Chromatin dynamics regulates the fundamental processes such as replica-
tion, transcription, repair, and recombination, thereby maintaining genomic stability. 
However, the compactness delineated through the chromatin condensation restrains 
the accessibility of regulatory enzymes to the genomic DNA, impeding the regulation 
of fundamental processes, yet more importantly chromatin dynamics is imperative in
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Fig. 17.1 Diverse effects on physiology, cognition, and metabolism of the body, induced by altered 
circadian rhythms

preventing undesired gene activation. ATP-dependent chromatin remodeling mecha-
nisms have been evolved across organisms to facilitate the accessibility of regulatory 
molecules to the chromosomal structure. These mechanisms were first propounded by 
Vincent Allfrey, who studied the acetylation and methylation patterns and associated 
them with the regulation of RNA synthesis (Struhl 1998). 

Variations in the modulation pattern of chromatin organization have been asso-
ciated with the aging genome. The epigenetic changes during aging are stochastic 
processes that are also influenced by environmental perturbations. Investigations 
underlying the role of epigenetic modifications in aging and longevity have rapidly 
evolved in the last few decades. Efficient transcription of a gene requires the acces-
sibility of enhancer and transcription start sites that requires the transition from 
heterochromatin to euchromatin, mediated via chromatin remodeling and modi-
fying enzymes (Klemm et al. 2019). The heritable and reversible effects mediated 
through an array of chromatin remodeling events comprise what is termed as epige-
netics (Zhang et al. 2020). The term epigenetics was pioneered in 1942 by Conrad 
Waddington to define the biological changes during development that give rise to 
phenotypes based on the genetic programming. Further, the term was redefined by 
Arthur Riggs to formulate a more valid notion as the investigations pertaining to 
heritable mitotic and meiotic changes in gene expression without altering the DNA 
and protein sequences (Nicoglou and Merlin 2017). 

Presently, the epigenetic regulation encompasses and is not limited to reduced 
levels of histone proteins, alterations in the pattern of DNA methylation (DNAm) and
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Fig. 17.2 Altered circadian and sleep cycle negatively effects aging and longevity mediated via 
epigenetic dysregulation. Suprachiasmatic nucleus (SCN) is the master clock regulator in the body. 
It regulates multitude of physiological and biochemical processes of the body. The SCN output regu-
lates the peripheral molecular clock activity present in the organs. Disruption of sleep and circadian 
cycle downregulates the SCN output and results in epigenetic alterations (global hypomethylation, 
CpG hypermethylation, altered histone modifications, and heterochromatin loss) accelerating the 
normal aging process

hydroxymethylation, variations in the expression of non-coding RNA, posttransla-
tional modifications of histones, replacement of canonical histones with histone vari-
ants, and the chromosomal position effects (Zhang et al. 2020). Epigenetic dysregu-
lation is one of the nine hallmarks of aging, and the discovery of DNA methylation 
opened windows to investigate this phenomenon in the process of aging. In one of 
the pioneering studies associating aging and epigenetics, it was discovered that 5-
methylcytosine levels depreciate with age in spawning humpbacked salmon. Subse-
quent investigations implicated a global decline in the levels of cytosine methylation 
during aging in brain and heart. Lopez-Otin et al. had described the nine “hall-
marks of aging,” that includes telomere shortening, epigenomic alterations, genomic 
instability, loss of proteostasis, dysregulation of nutrient sensing, cellular senes-
cence, mitochondrial dysfunction, alteration in the intercellular communication, and 
exhaustion of stem cells (López-Otín et al. 2013). 

One of the major factors leading to circadian clock disruption and related 
epigenetic alterations is the prolonged sleep cycle disturbances. Sleep disruption 
is also an important criterion for major depressive disorder, post-traumatic stress 
disorder, bipolar disorder, and other mood disorders. Regulators of sleep–wake
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cycle include ionic concentrations of potassium (K+) and calcium (Ca2+) chan-
nels (Yoshida et al. 2018), excitatory neurotransmitters such as serotonin, acetyl-
choline, norepinephrine, dopamine, histamine, orexin, neuropeptide S, glutamate, 
and humoral factors including cytokines and hormones. Recent studies have uncov-
ered the substantial roles of microglia, astrocytes, and oligodendrocytes in sleep 
regulation (Steardo Jr et al. 2019). Sleep-modulating neurotransmitters including 
GABA and glutamate are produced by the glial cells, and these neurotransmitters 
play pivotal role in regulating the sleep–wake cycle. In the sleep regulation pathways, 
action potentials generated by astrocytes and oligodendrocytes are mediated by K+ 

channels. In addition, humoral factors regulating sleep cycle including cytokines and 
energy regulating molecules like adenosine tri-phosphate (ATP) and adenosine are 
also produced by both neurons and glial cells. Sleep deprivation results in increased 
glycogen synthesis and dysregulated metabolic pathways. Increasing evidences indi-
cate a close association between sleep deprivation, aging, and the related epigenetic 
mechanisms. Further, the rhythmicity in the expression of melatonin and glucocor-
ticoids manifests the circadian rhythm (Falcón et al. 2007). Melatonin biosynthesis 
eventuates from serotonin via a two-step enzymatic process in the retina and pineal 
gland. The circadian clock machinery modulates the secretion of glucocorticoids 
from the adrenal glands. The glucocorticoid concentration is elevated during the 
active period, while the levels are low during sleep period. Exposure to dysregulated 
light intensities have tendency to negatively modulate the HPA axis, resulting in 
cortisol-associated mood disorders (Walker et al. 2020). 

17.2 Circadian Rhythm: Regulation and Implications 
in Aging 

Circadian rhythm (circa = about; dies = day) is an evolutionary conserved mech-
anism for autonomous regulation of periodic oscillation in behavioral and physio-
logical activity of an organism. The rhythmic regulation of 24-h day/night cycle is 
observed in almost all organisms that enables them to harmonize biological functions 
with environmental stimuli. The endogenously regulated activities comprise sleep– 
wake cycle, glucose homeostasis maintenance, hormone release, oscillating body 
temperature, and others. Interestingly, circadian clock system parallels with the cell 
cycle as both depend on sequential events of transcriptional–translational regulation 
and posttranslational modifications followed by degradation. Further, both involve 
mechanistically autoregulatory loops. Cyclin D1, wee-1, c-myc, and few other cell 
cycle genes are also regulated rhythmically (Fagiani et al. 2022). Membrane bound 
cells more or less show periodicity in cell division roughly every 24 h. 

Behavioral and physiological rhythms in a 24-h periodic cycle are regulated by 
autonomous system referred to as circadian clock. CLOCK–BMAL1-mediated tran-
scription of the circadian genes climax during the day time while the feedback 
circadian repressor system pinnacles at night and is dependent on Period (PER)
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and Cryptochrome (CRY). Furthermore, the circadian regulation is also susceptible 
to rhythmic epigenetic modifications. The core molecular circadian clock system 
consists of self-sustaining mechanisms comprising up of several gene networks 
which are operated by transcriptional and translational feedback loops (TTFLs). 
The positive regulation is mediated by two transcription factors (TFs) Circadian 
Locomotor Output Cycles Kaput (CLOCK) and Brain and Muscle ARNT-Like 
1 (BMAL1). The heterodimerization of CLOCK: BMAL1 complex increases its 
affinity to the E-box promoter on target genes having a consensus and canonical 
sequence of CANNTG and CACGTG, respectively (Wang et al. 2013). E-box drives 
the transcription of several oscillatory clock-controlled genes (CCGs). The late 
resting phase of CLOCK: BMAL1 transactivates the circadian repressors PERIODs 
(PER 1/2/3) and CRYPTOCHROMEs (CRY1/2). Further, the subsequent accumula-
tion of PER and CRY leads to nuclear translocation where they interact with CLOCK: 
BMAL1 and repress CLOCK: BMAL1 mediated transcription (Kwon et al. 2006). 
E3 ubiquitin ligase acts upon PER and CRY and are then degraded by the protea-
some, and a new transactivation cycle begins. Secondary feedback loop facilitates 
the activity of circadian gene network that comprises cis-regulatory transcriptional 
activator ROR (retinoid-related orphan receptor) response elements (ROREs) and 
the transcriptional repressor REV-ERBα which are responsible for modulating the 
rhythmic transcription of BMAL1 (Chatterjee and Ma 2016). 

Epigenetic mechanisms are crucial in regulating the process of circadian transcrip-
tion and maintenance of oscillating gene expression. The histone acetyl transferase 
(HAT) p300 acetylates the histone H3 at CRY and PER promoters. The intrinsic HAT 
activity of CLOCK acetylates BMAL1 which facilitates the recruitment of CRY1 to 
the CLOCK:BMAL1 complex and represses transcription (Feng and Lazar 2012). 
Further, the rhythmicity in the acetylation pattern of histone H3 in the core CLOCK 
gene promoters have been observed during the active phase. Histone deacetylase 
3 has been associated with the repression of BMAL1, thus modulating circadian 
rhythms. HDAC inhibitors decrease the H3 lysine deacetylation and alter the expres-
sion of PER2 gene. Age-associated attenuation of the circadian system is known 
to contribute to the cognitive decline and aging-associated neurodegenerative disor-
ders. In a recent study, mass spectroscopic-based approach was used to investigate 
circadian regulation at the proteomic level in hippocampal tissues collected from 
young and middle-aged mice. Middle-aged mice manifested reduced capability of 
learning and cognition (Shoji et al. 2016). There is a profound reduction in the 
functionality of the immune system with aging that significantly contributes to age-
associated morbidities. With aging there is a decline in homeostatic polarization of 
macrophages and thus reduced phagocytic capacity. In a recent study (Blacher et al. 
2022), it was shown that there is extensive decline in the circadian gene expression 
profiling of aged macrophages. Further, the loss of diurnal phagocytosis with aging 
was also demonstrated. Interestingly, they couldn’t observe significant differences 
in the core clock genes in aged and young macrophages. They demonstrated that 
KLF4 was associated with distinctive binding to rhythmic genes and the oscillatory 
expression observed in young macrophages gradually declined with age.
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Light is detected principally by photoreceptors (rods and cones in mammals). 
Rodent experiments have revealed that mice lacking rods and cones are still able to 
regulate the circadian rhythms; however, obliterating the eye significantly restrained 
circadian regulation (Foster 2020). Further, investigations discovered the presence 
of a population of intrinsically photosensitive retinal ganglion cells (ipRGCs) which 
possess a photopigment called “melanopsin” or OPN4. ipRGCs function through 
promulgation of neural stimuli through the retinohypothalmic tract to the mammalian 
suprachiasmatic nucleus (SCN) of hypothalamus (Fig. 17.2). SCN discharges func-
tionality as the master regulator in mammals; however, subcellular regulators (Periph-
eral clock) are present in the liver, heart, adipose tissue, and certainly in every organ 
and tissue of the body. SCN is a bilateral structure located in the anterior region 
of hypothalamus. Despite comprising only about 20,000 neurons, the SCN is the 
principal pacemaker of circadian system regulation. The functionality of SCN has 
been reported to decline with age in a number of studies (Zhao et al. 2019). The SCN 
projects to several brain areas within the hypothalamus and regulates the hormonal 
release that play crucial role in maintaining molecular and physiological rhythmicity 
(Fig. 17.2). The pituitary hormones are also under tight circadian control. 

17.3 Circadian Control of Sleep 

Sleep is a universal behavioral phenomenon conserved among higher order living 
organisms. Humans dedicate one third of their lifespan to sleep. Albeit, our scientific 
knowledge of sleep is in the preliminary phase, several models have been developed 
to investigate physiological effects of sleep deprivation, and the results indicate that 
sleep deprivation crucially impacts the epigenome. However, it is often difficult to 
analogize and compare the results from these models with humans. Thus, human 
models of acute sleep deprivation have been largely investigated upon owing to 
the feasibility of these models. Sleep conditions have consequential impact on the 
brain epigenome. Some of the notable biological functions of sleep so far discovered 
include energy conservation, immune response modulation, memory consolidation, 
detoxification, repair, and regeneration. In animals, sleep states are determined by 
the complex amalgam of physiological and behavioral processes. Behavioral char-
acteristics shown include reduced mobility, eye movements, sleep postures, reduced 
response to external stimuli, cognitive impairment, and reversible unconscious state. 
Even though sleep initiation and maintenance considerably changes as we grow, the 
sleep architecture at physiological level shows two alternating phases (REM and 
NREM) in a cyclic manner with independent functions and controls. In adults, the 
sleep cycle ranges from 4 to 6 alternating cycles, each series lasting about 90–110 min 
(Bah et al. 2019).
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17.3.1 Sleep Physiology 

Sleep induces a temporary shutdown of responsiveness toward external environ-
ment; however, it is necessary for the organism’s ability to survive and propagate. 
Behaviorally, sleep disruption is the most characteristic consequence of altered in 
circadian rhythms eventually triggering neurodegeneration. Recently, plunging of 
rhythms in cortical excitability has been shown to be correlated with aging which 
potently contributes to age-associated cognitive decline. It is believed that these 
changes are necessary to compensate the energy spent while the individual was 
awake. As the sleep progresses, blood pressure and heart rate keep on changing. 
These fluctuations also depend upon the different stages of sleep cycle. These changes 
are governed by the autonomic nervous system. Similarly, ventilation and respiratory 
responses like cough reflex are maintained at minimum activity. A reduced urine flow 
is also maintained during the sleep cycle through reduced excretion of certain ions 
such as sodium, potassium, chloride, and calcium. Sleep also regulates the secretion 
of certain hormones typically melatonin, growth hormones, and thyroid hormones 
(Chokroverty 2010). 

17.3.2 Sleep Architecture 

Sleep is categorized into different stages based on the brain wave pattern as visualized 
through electroencephalogram (EEC) and muscle activity measured through elec-
tromyogram (EMG). Brainwaves are defined as the synchronized electrical impulses 
of particular frequencies produced by a cluster of neurons for the purpose of commu-
nication with other neurons. Sleep cycle is broadly classified into non-rapid eye 
movement (NREM) and rapid eye movement (REM) sleep. Of the total sleep dura-
tion, NREM accounts for the max duration (75–80%) which is further subdivided 
into four more stages: N1, N2, N3, and N4, respectively. The entire sleep cycle during 
night follows the cyclic order as: N1–N2–N3–N4–REM. This whole process lasts for 
approximately 90 min and alternates 4–5 times throughout the sleep duration. The 
characteristics of NREM sleep include slow wave activity associated with spindles 
and K-complexes. It is now well understood that NREM plays significant role in 
conservation of brain energy and memory consolidation. Further, research has iden-
tified that NREM has the ability to modulate synaptic weights in order to perform 
the above mentioned functions. A slow rolling eye movement is also recorded during 
this phase accompanied by other physiological changes like decreased muscle tone, 
reduced blood pressure, and decreased breathing and heart rate. 

The hallmark of REM sleep is the rapid eye movement in all direction and 
highly diminished muscle activity. The EEG records measured during REM sleep 
revealed fast rhythms, slow alpha activity, and theta waves with saw-tooth appear-
ances. In addition, phasic swings in the blood pressure and heart rate along with
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irregular breathing pattern are also observed. Another notable characteristic associ-
ated with REM sleep is the process of dreaming. Scientifically, the complex inter-
actions between the cholinergic, aminergic, and GABAergic neurons in the brain 
stem attributes to the process of rapid-eye-movement (REM). Since, REM sleep 
activates the limbic regions, it has been hypothesized that it may play significant role 
in the regulation of moods and emotions. Questions like why sleep cycle alternates 
between these two phases still remains to be deciphered. Irregular sleep cycle stages 
have been reported in several sleep disorders such as narcolepsy characterized by 
excessive sleepiness (Altevogt and Colten 2006). 

17.3.3 Sleep Cycle Regulation 

Two internal biological mechanisms are associated with the regulation of sleep cycle 
in humans: the human body’s homeostatic drive toward sleep and the internal circa-
dian rhythm regulating the biological clock. Circadian rhythms regulate a wide 
variety of daily functions including time-dependent hormonal release, variations 
in the body temperature, and numerous metabolic pathways involved in maintaining 
an overall homeostasis during the 24-h cycle. This is achieved through the synchro-
nization of many endogenous and exogenous factors known as zeitgebers such as 
temperature and light. However, all these activities can take place even in the absence 
of significant cues or signals. Usually, the drive for sleep gets accumulated throughout 
the day when the individual is awake. Accumulation of adenosine occurs in different 
brain regions throughout the day, which promotes sleepiness. Pineal gland plays 
an essential role in regulation of sleep cycle by releasing melatonin specifically 
at night. The hormone is known for its ability to stabilize and reinforce circadian 
rhythms by synchronizing with the day night cycle. Recent research has led to the 
discovery of sleep regulating brain regions and specific neuronal networks control-
ling the sleep–wake cycle in human. Similarly, neurons of the pons regulate the 
switching between NREM and REM sleep stages. These neurons facilitate the inter-
action between lower brainstem and spinal cord which further establishes physiolog-
ical characteristics related to REM sleep. At the same time, they send outputs to the 
forebrain which activate the cholinergic signaling pathways to the thalamus. Cholin-
ergic neurons present in the upper pons region, mediate the relaying of sensory infor-
mation between thalamus, and cerebral cortex, while monoamine neurotransmitters 
in the upper brainstem enter the hypothalamus, traverses to the basal forebrain and 
perceives inputs from cells containing acetylcholine and GABA and eventually enters 
the cerebral cortex to activate the neuronal cells preparing them for interpretation as 
well as analysis of incoming sensory information (Zielinski et al. 2016).
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17.4 Sleep Dysregulation: Aging and Epigenetics 

Sleep dysregulation hinders the daily functioning and performance of individuals. 
This dysregulation significantly reduces the output of SCN and extends profound 
effect on the functionality of peripheral clocks and the normal metabolism of the 
body. Metabolic disturbance thus causes nutrient imbalance aiding a multitude of 
health disorders. If left untreated sleep loss leads to a wide range of detrimental 
health consequences. One of the principal contributors of sleep loss and related 
sleep disorders is the persistent stress. Sleep loss or sleep dysregulation is often 
seen followed by the disturbing life events, e.g., death, divorce, job loss, financial 
crisis, etc., and as one of the prominent symptoms of stress-related disorders such as 
depression or PTSD. Mutations in circadian clock dysregulate the rhythmic control of 
sleep and lead to sleep disorders. Familial advanced sleep phase disorder (FASPD) 
characterized by early onset of sleepiness around 7–9 pm and early awakening is 
caused due to a missense mutation (S662G) in the PER2 gene (Rijo-Ferreira and 
Takahashi 2019). Normal levels of PER2 is regulated by circadian pathway genes, 
casein kinases Iδ and Iε (CKIδ/ε), and the S662G mutation at CKIε binding site results 
in inadequate phosphorylation of PER2 leading to its nuclear accumulation (Toh 
et al. 2001). Missense mutation in the CKIδ gene (T44A) and CRY2 gene (A260T) is 
associated with FASPD. Another highly prevalent disorder is the delayed sleep phase 
disorder (DSPD) caused as a result of polymorphism in the CLOCK or PER3 genes. 

The relationship between disruption of sleep and the underlying alteration of 
epigenome has recently emerged as a hot topic of interest among investigators. Shift 
workers tend to have lower levels of CLOCK gene methylation while elevated levels 
of CRY2 as observed from genome-wide studies (White et al. 2019). There is enough 
evidence to support that epigenetic modulations occur following sleep disruption. 
It has been observed that DNAm is significantly altered post the events of sleep 
disruption. It has been elucidated from experiments in mice that the expression levels 
of DNMT3A1 and DNMT3A2 (DNA methyltransferases) get upregulated after sleep 
deprivation and thus subsequent increase in DNAm (Gaine et al. 2018). Reduced sleep 
has been associated with accelerated epigenetic aging and increased disease risk in a 
number of studies. In a recent study with 6 month postpartum mothers, that reported 
reduced sleep (less than 7 h), exhibited older epigenetic age at 12 month post birth 
(Carroll et al. 2021). DNAm-based estimation revealed shortened leukocyte telomere 
length. The study imparted that sleep disruption of mothers in early postpartum period 
may have long lasting effect on the epigenome. However, sleep duration measured 
at 12 month postpartum did not had significant association with epigenetic aging. 
In another study through parallel sampling of human adipose tissue and skeletal 
muscle, investigations were done to delineate the tissue-specific mechanisms by 
which acute sleep loss affects metabolic tissues. Downregulation of the glycolytic 
pathway was observed in the skeletal muscle, while its upregulation was observed 
in subcutaneous adipose tissue. These changes were attributed to dysregulation of 
circadian system as a result of acute sleep loss that may have reprogrammed DNAm 
in adipose tissue resulting in increased adiposity (Cedernaes et al. 2018). In one of the
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first systematic investigations deciphering the effect of total sleep disruption (TSD) on 
the genome-wide DNAm profile in blood and associated epigenetic marks, 269 gene 
probes and 184 CpG sites were found to exhibit altered methylation pattern post TSD 
(Nilsson et al. 2016). Studies have suggested of distinctive gene patterns exhibiting 
epigenetic modifications associated with sleep insufficiency in males below the age 
of 50. Impaired neuroplasticity and neurodegeneration were found to be triggered 
by insufficient sleep (Lahtinen et al. 2019). 

In a study focusing on the effect of chronic sleep deprivation on the physiological 
state and accelerated aging processes of female mice of varying age groups, through 
long-term sleep deprivation modeling, it was observed that the food intake capacity 
of the adult mice were significantly increased during simulated stress. The result 
was attributed to the malfunctioned melatonin metabolism (Novozhilova et al. 2021) 
and elevated levels of cortisol, phenylalanine, and aspartic acid that impaired the 
homeostatic levels of neurotransmitters in the brain. On the contrary, the young mice 
despite the background of increased food intake showed reduced weight. This could 
be due to the variations in the levels of appetite-stimulating hormone. No alteration 
was observed in the expression of aging biomarker Perilipin 2 (PLIN2) and DNAm 
in young female mice suggesting resistance to accelerated aging. However in adult 
mice, increase in PLIN2 levels and decreased DNAm was observed (Novozhilova 
et al. 2021). Hypomethylation of DNA in adult mice indicated acceleration in aging 
processes and neurodegeneration (Mateus Brandão et al. 2022). Acute sleep disrup-
tion experiments with human contexts showed modest elevation in the levels of 
circulating FGF21 and altered DNAm levels in FGF21 promoter of adipose tissue 
(Mateus Brandão et al. 2022). 

There are increasing evidences from studies that night shift work schedules 
result in impaired sleep–wake cycle followed by increased risk of serious disor-
ders. In a recent study, CSNK1E (Casein Kinase 1 isoform epsilon) hypermethy-
lation was observed in working shift workers while hypomethylation of NR1D1 
(Nuclear receptor subfamily 1 group D member 1) in long-term night shift workers 
was observed. Further, hypermethylation of ARNTL (Aryl hydrocarbon receptor 
nuclear translocator like protein 1) was observed in the workers who worked ≥ 3 
consecutive night shifts within a week. The study implicated differential methylation 
of circadian genes depending on the exposure. Studies show that sleep deprivation 
leads to decrease in the acetylation of H3K9 and H4K12 in the hippocampus while 
HDAC2 is elevated. Specifically, sleep disruption impairs late-LTP and associative 
plasticity (Wong et al. 2020). The numbers of studies linking sleep, depression, 
and aging epigenetics have increased rapidly in recent years. A study to investi-
gate the combined effects of disordered sleep and depression on DNAm pattern in 
blood leukocytes revealed of altered DNAm pattern in genes related to synaptic plas-
ticity in adolescents (Ämmälä et al. 2019). Pediatric obstructive sleep apnea (OSA) 
patients experience episodic upper airway obstruction causing frequent sleep disrup-
tion, blood-gas alteration, and dysregulation in carbon dioxide levels. Adult patients 
with OSA show reduced levels of SIRT1 in peripheral blood cells (Gaspar et al. 
2017). The subsequent alteration in histone chemistry causes damage to DNA and
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contributes to accelerated aging. Indeed there are substantial evidences to proclaim 
that OSA is associated with shortened telomere length. 

17.5 Epigentic Clock Theory and DNA Methylation 

Aging inevitably impairs functional rhythmicity of body and leads to death. Aging 
researchers have since long focused on deducing biomolecular markers of aging, 
hoping that interventions on such biomarkers presumably may halt or slowdown 
the aging process. Present understanding culminates that among other plausible 
biomarkers, epigenetic clock leads the criteria of molecular estimator of biolog-
ical age. Progressing age advances variance from normal epigenetic patterns, and 
the accumulation of these epimutations results in epigenetic drift convulsing home-
ostatic functionality of the body. Epigenetic drift essentially transcends as a result of 
the errors in DNA replication cycle that modulates epigenetic patterns. Early investi-
gations in monozygotic twins deciphered that the divergences in epigenetic patterns 
are also mediated through varying environmental cues (Cunliffe 2015). Investiga-
tions to delineate genetic and epigenetic signatures of aging often used monozygotic 
twins as the subject of study. Young monozygotic twins were found to possess similar 
methylation signatures while twins of 50 years of age exhibited distinct methylation 
marks. 

Genome wide methylation studies have indicated that chronological age is asso-
ciated with modulation in DNAm. In DNAm, methyl group(s) is covalently added 
to the 5th position of a pyrimidine ring of cytosine usually in CpG dinucleotides. 
Typically, cluster of these CpG dinucleotides are profoundly located at the 5' end of 
the DNA referred to as CpG islands. DNAm patterns are often described as epige-
netic clocks. A general overview states that with age the number of CpG islands 
increase, that at younger age are unmethylated while an overall methylation level 
decreases (Maegawa et al. 2017). Studies by Maegawa et al. have shown that methy-
lation patterns change with age in a number of species, including mice, human, and 
rhesus monkey. They showed that methylation drift is an evolutionary conserved 
phenomenon across different species, and this age-related epigenetic drift is delayed 
by caloric restriction (Maegawa et al. 2017). A summarized purview indicates an 
inverse relation between methylation drift and longevity. Expression pattern of DNA 
methyltransferases are also associated with aging. 

Both prokaryotic and eukaryotic organisms display an evolutionary conserved 
mechanism of transcriptional repression through DNAm. DNA hypomethylation and 
hypermethylation of DNA are the key events driven in parallel with age. However, it 
is evident that global hypomethylation of mammalian DNA transpires with the aging 
genome. The paramount levels of methylation are observed in the DNA of embryonic 
tissues and newborn organisms. Gradually with chronological aging the levels tend to 
decline. The class of enzymes facilitating methylation is referred to as DNA methyl-
trasferases (DNMT). Embryonic DNAm is mediated by DNMT3A and DNMT3B 
(Okano et al. 1999). Rodent experiments have shown that inhibiting the function of
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DNMT1, DNMT3A, or DNMT3B result in premature embryonic lethality (Johnson 
et al. 2012). Additionally, selective repression of DNMT3A results in neuromuscular 
deformities in mice with reduced lifespan. Studies involving administration of the 
demethylating agent 5-aza-2-deoxycytidine (5-aza-dC) showed decline in lifespan 
of human fibroblasts cells (Holliday 1986). Methyl-CpG binding domain protein 
(MBD) family mediates chromatin silencing through the recruitment of histone 
deacetylases. MBD proteins result in the suppression of transcription; however, 
mechanism of MeCP2 mediated silencing has been extensively investigated. MeCP2 
was first identified by Lewis et al. in 1992 (Meehan et al. 1992). The MECP2 gene is 
localized at Xq28 and is exposed to X inactivation (Del Gaudio et al. 2006). MECP2 
gene codes for multiple isoforms: MeCP2-e1 and MeCP2-e2 which differ at their 
N-terminal regions yet containing both MBD and transcriptional repression domain 
(TRD) (Rastegar et al. 2009). Expression levels of both isoforms are elevated in 
the brain. Frequently, documented mechanism of transcriptional silencing mediated 
by MeCP2 involves the recruitment of TRD of HDACs/Sin3A repressor complex 
resulting in the deacetylation. MeCP2 and CoREST (co-repressor for element-1-
silencing transcription factor) complex function to repress the intended genes in the 
brain through the recruitment of SUV39H1 (suppressor of variegation 3–9 homolog 
1) which is responsible for methylation of histones. 

The age-associated modulations in DNAm to correlate them to epigenetic clocks 
are determined through either supervised machine learning or epigenome-wide asso-
ciation studies. Weidner and co-workers utilized only 3 CpG sites located in the 
genes Aspartoacylase (ASPA), Integrin alpha-IIb (ITGA2B), and Phosphodiesterase 
4C (PDE4C) to develop an epigenetic clock, not as accurate yet reliable (Weidner 
et al. 2014). This clock was by far more accurate when compared with predictions 
based on telomere length. Hannum’s epigenetic clock was developed by employing 
elastic net regression, evaluating 71 CpG methylation sites to decipher the chrono-
logical age with significant accuracy (Hannum et al. 2013). However, this clock was 
supervised specifically for whole blood samples. A multi-tissue chronological age 
predictor was developed by Steve Horvath and colleagues utilizing 353 age-related 
CpG probes (Horvath 2013). The correlation between chronological and DNAm age 
through this clock was impressively 96% despite considering multiple tissue types. 
However, some tissue types showed decreased correlation like tissues from breast, 
heart and uterine endometrium. 

17.6 Heterochromatin Loss Model of Aging 

Histones play an essential role in the packaging of genomic DNA in the nuclei; 
furthermore, they have a cardinal role in regulation of gene expression. N terminus 
of the histone tails readily undergo chemical changes leading to posttranslational 
modifications. These modifications alter the binding affinity of the histones to the 
DNA ultimately altering expression patterns and levels. A highly condensed form of
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chromatin is referred to as heterochromatin and is transcriptionally inactive. Further-
more, the centromeric and telomeric region encompasses transposable elements and 
satellite sequences and is referred to as constitutive heterochromatin. This type of 
heterochromatin has more permanent heterochromatin domains. Contrary to consti-
tutive heterochromatin, regions of DNA accounting to facultative heterochromatin 
can vary among different cell types and even within a species. A region packed as 
facultative heterochromatin may be packed as a euchromatin in a different subset of 
cells depending on the morphogenetic and differentiation signals. 

Heterochromatin loss model is among the firsts to establish a link between epige-
netics and aging (Lee et al. 2020). It proposes that the heterochromatin domains 
organized early in embryogenesis are disrupted during the aging process leading 
to altered gene expression patterns. Several model organisms have demonstrated of 
either decreased heterochromatin markers or reduction in molecular factors medi-
ating maintenance and regulation of heterochromatin. H3K9me3 is known to promote 
stronger association between DNA and histones, thus mediating heterochromatin 
formation. With age the trimethylation at H3K9 is substantially diminished. Hete-
rochromatin loss is also a major marker of cellular senescence. Facultative hete-
rochromatins encompass a domain called senescence-associated heterochromatin 
foci, which gets increased in the senescent cells; however, an overall loss in hete-
rochromatin is predominant, thus validating the heterochromatin loss model of aging 
(Aird and Zhang 2013). 

17.7 Role of Non-coding RNA (NcRNA) in Aging 

Among the three broad classes of epigenetic regulations, (Histone modifications, 
DNA methylation, and non-coding RNA) non-coding RNA-based epigenetic regu-
lation is relatively recently identified and has been found to regulate aging in human 
beings. They represent a diverse class of structural and regulatory RNA species that 
doesn’t encode proteins. Interestingly, the protein coding genes constitutes roughly 
1.5–1.8% of the entire human genome. Non-coding RNAs play important roles 
in processes like chromatin regulation, splicing, translation of proteins, and gene 
expression regulation (Esteller 2011). Interestingly, only 1.5–1.8% of the mammalian 
genome is transcribed to proteins. Regulatory RNAs (e.g., miRNAs, lncRNAs) func-
tion at both transcriptional and post-transcriptional levels. Wide range of studies 
have reported significant roles of many ncRNAs notably microRNAs and lncRNAs 
in pathways regulating aging and longevity. 

As the name suggests, miRNA’s are short, ncRNA’s which bind to the 3'UTR 
region of mRNAs, thus resulting in their degradation or translation inhibition 
(Hammond 2015). These miRNAs regulate different cellular pathways involved in 
cell differentiation and survivability, stress response, cellular death, and inflammatory 
pathways. As the age progresses, a progressive change in miRNAs regulating inflam-
matory responses, cell cycle regulation and cancer pathways are observed in several 
reports. Aging pathways regulated by miRNAs include insulin/insulin-like growth
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factor (IGF-1) signaling, reactive oxygen species (ROS) signaling, sirtuin signaling, 
Target of Rapamycin (TOR) signaling and caloric restriction pathways (Smith-Vikos 
and Slack 2012). Also, it has to be noted that these differentially expressed miRNAs 
during aging appears to be generally tissue-specific. Various studies carried out in 
context of normal rodent liver aging have identified numerous miRNAs directly 
regulating aging pathways, including oxidative stress responses. Similarly, another 
study of miRNA expression profiling in aging brain identified about 70 miRNAs 
upregulated, most of which targeted components of the mitochondrial electron trans-
port chain and F1Fo-ATPase (Li et al. 2011). Region-specific miRNA profiling of 
mammalian brain have also identified various differentially expressed miRNAs which 
actively regulated aging pathways like neuronal atrophy. A gradual loss of muscle 
function has been observed during aging. Various researches have focused on the 
role of miRNA in muscle wasting during aging and discovered abundant miRNAs 
regulating cell cycle pathways, muscle cell proliferation, and myogenic precursor 
differentiation. Moreover, aging of mammalian reproductive system is at higher rate 
than other organ systems. Investigations have acknowledged miRNA-mediated regu-
latory mechanisms in mammalian reproductive systems and reproductive disorders 
(Gebremedhn et al. 2021). 

RNA polymerase II transcribes lncRNAs from the intergenic and intronic regions 
of the mammalian genome. These ncRNAs undergo polyadenylation and 5'-capping 
similar to mRNAs. Most of the characterized lncRNAs are localized in the nucleus 
and perform regulatory functions in various cellular pathways related to aging 
including stress and immune response and quiescence and senescence pathway. 
Moreover, it also plays pivotal role in cell proliferation and differentiation signaling 
pathways. Senescence, a long-term irreversible growth-arrest of cells is one of the 
notable characteristics of aging. Present understanding of lncRNAs strongly impli-
cates its association with senescence during aging. Functional analysis of aging-
related lncRNAs revealed that these ncRNAs are also crucial in regulating immune 
system, protein synthesis machinery, and mRNA processing. 

17.8 Histone Modifications in Aging Process 

Genetic factors contribute around 25% to the disparity in lifespan. However, a greater 
proportion is accounted by non-genetic factors (70%). Epigenetic modifications lead 
to changes in expression levels without altering the DNA sequence. Histone modifi-
cations include acetylation, methylation, ubiquitylation, phosphorylation, sumoyla-
tion, deimination, and ADP ribosylation. Histone modifications essentially undergo 
modulations during the process of aging. However, it is still questionable whether 
these modifications are due to the aging process or the modifications intrinsically 
mediate aging to progress.
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17.8.1 Histone Methylation in Aging 

The trimethylated lysine 4 on Histone H3 (H3k4me3) is known to be involved in 
activation of transcriptional process while trimethylation at lysine 27 of Histone 3 
(H3K27me3) has been implicated in transcriptional repression of gene expression 
associated with aging. Although H3K36me3 is known to mediate activation as well 
as repression yet the activation function is more pronounced in normal expressing 
cells. Age-dependent decrease in activation marks (H3K4me3 and H3K36me3) and 
increase in repressive marks (H3K9me3) were indicated by experiments with fly 
heads. In mammals, increase in mark of constitutive heterochromatin, H4K20me3 
was observed in cells that were derived from human patients of Hutchinson–Gilford 
Progeria, a premature aging syndrome; however, either reduction or complete loss of 
the heterochromatin mark H3K9me3 was observed in the same cells (Han and Brunet 
2012). Thus, further investigations are required to decipher whether repressive and 
activating marks cause or are a consequence of aging. 

Investigations in Saccharomyces cerevisiae and Caenorhabditis elegans have 
implicated the association of H3K4me3 with expression of aging-related genes. In 
yeast, the downregulation of aging-linked genes as a result of H3K4me3-defective 
cells lead to reduction in the lifespan. Additionally, H3K4me has been observed to be 
involved in the initiation of DNA replication and maintaining the genomic stability 
(Chong et al. 2020). Mouse models of Alzheimer’s Disease (AD) have evidenced 
that H3K4me3 and related catalyzing enzymes are upregulated in prefrontal cortex 
(PFC), and subsequent treatment with inhibitor of H3K4 methyltransferases (KMTs) 
resulted in significant recovery of PFC functions (Cao et al. 2020). RNAi medi-
ated knockdown or mutations in ASH-2, SET-2, and WDR-5 resulted in H3K4me3 
deficiency and eventually extended the lifespan in C. elegans (Yi and Kim 2020). 
However, RBR-2, a C. elegans lysine demethylase 5 (KDM5) restrained the lifespan 
extension resulted through ASH-2 knockdown. Studies involving the suppression 
of RBR-2 function have varying effect on lifespan and needs to be investigated 
further. In another study on C. elegans, it was shown that reduction in the function of 
LSD1/KDM1A which is a H3K4 KDM results in the increment of lifespan (Maures 
et al. 2011; McColl et al. 2008). 

Suppression of LID, the homolog of RBR-2 in fruit flies, decreased the lifespan 
of male flies; however, similar effects were not observed in female flies (Li et al. 
2010a). It is to be noted that modulation of H3K4me regulators do not always have 
an effect on lifespan as deciphered from experiments in D. melanogaster where 
TRR inactivation, a member of H3K4 KMT complex did not influence the lifespan 
of male flies (Siebold et al. 2010). Reduction in the levels of H3K27me3 through 
mutation of the Polycomb repressive complex 2 (PRC2) components E(z) and Ese 
lead to extension of lifespan (Karnani et al. 2007). Histone methylation studies in 
muscle and mesenchymal stem cells of rodents revealed that aging cognates with 
increased levels of H3K27me3 and transcriptional repression. It was interesting to 
observe that depletion or inactivation of the SET2-ortholog MET-1 which is respon-
sible for functioning of the TOR pathway, shortened the lifespan in C. elegans, while



378 S. Patel et al.

inactivation of the demethylase JMJD-2/ KDM4 enhanced longevity (Pu et al. 2015) 
(Ni et al. 2012). Further the deletion of the H3K36 dimethyltransferase SET-18 
in C. elegans lead to the extension in lifespan. It was essentially mediated through 
alterations in the expression of DAF-16, which maintains the insulin/IGF conserved 
pathway. H3K79me3 level is known to be elevated with age in yeast and substitu-
tion of lysine 79 with glutamic acid (H3K79E) results in the reduction of replicative 
lifespan (Sen et al. 2015). In one of the experiments, the deletion of H3K79 methyl-
transferase DOT 1 also resulted in decreased lifespan (Ryu et al. 2014). Contrary 
to elevation of H3K79me3 in yeast, experiments with aged mouse brain showed 
opposingly decreased levels of H3K79me3 (Gong et al. 2015). 

H3K4 trimethylation (H3K4me3) has been observed to be expressed in parallel 
with the core clock genes. Experiments investigating the clock gene expression in 
seedlings administered with H3K4me3 inhibitor reported longer expression in the 
circadian rhythms of CCA1 and TOC1, thus indicating that H3K4me3 regulates the 
expression peaks of the clock genes. Previous works have established that histone 
methyltransferase MLL1 (Mixed lineage leukemia 1) which methylates H3K4 is 
recruited cyclically to circadian gene promoters. MLL1 and CLOCK interact in 
parallel with the cyclic peaks of transcription. MLL1 is known to facilitate the recruit-
ment of CLOCK–BMAL1 to chromatin and thus engenders a chromatin state that 
is permissive for circadian transcription (Katada and Sassone-Corsi 2010). Down-
regulation of H3K4me3 augments the binding activity of circadian clock inhibitors. 
The histone methyltransferase SET domain group 2/Arabidopsis trithorax-related 3 
(SDG2/ATXR3) have been observed to mediate the oscillatory gene expression and 
H3K4me3 accumulation, while dysregulated expression of SDG2/ATXR3 modulates 
the binding activity of clock repressors (Henriques and Mas 2013). 

17.8.2 Histone Acetylation 

One of the major regulators of circadian rhythms “CLOCK” is a histone acetyl trans-
ferase (HAT) involved in chromatin remodeling functions. CLOCK readily acetylates 
histones and BMAL1. Increasing evidences indicate dysregulation in histone acetyla-
tion patterns of CLOCK genes significantly aids cancer progression. Upregulation of 
TIMELESS in colorectal cancer (CRC) has been recently reported. This upregulation 
was attributed to CBP mediated H3K27 acetylation of TIMELESS promoter. TIME-
LESS was observed to promote the proliferation and invasion of colorectal cancer 
cells (Cao et al. 2021). Furthermore, p300 a histone acetyltransferase is known to 
be highly expressed in hepatocellular carcinoma and significantly aids malignancy 
as observed from the studies of p300 inhibition, which lead to reduced invasion of 
malignant cells. Cancer chronotherapy thus is an emerging field in cancer research. 
Circadian rhythm defects have been implicated in several neurodegenerative disor-
ders. The role of CBP histone acetyltransferase in Huntington’s disease has been 
well studied. This acetyltransferase directly interacts with CLK/CYC transcription
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factors which regulate circadian rhythms. CBP is sequestered into mutant hunt-
ingtin during the pathogenesis of Huntington’s disease. Histone modifications such 
as H4K16 acetylation (H4K16ac) are known to be upregulated with age in yeast and 
human brains (Dang et al. 2009). Neighboring H4K12 acetylation (H4K12ac) was 
observed to be elevated in middle-aged drosophila and experimental reduction in 
H4K12ac increased the lifespan in flies (Peleg et al. 2016). H4K16ac and H4K12ac 
are altered in aged murine and human Peripheral Blood Mononuclear Cells (PBMCs) 
(Bux et al. 2020). Recent investigations revealed that H3K9ac was upregulated with 
age at regulatory regions of the cytochrome P450 2E1 gene while H3K27ac levels 
remained stable (Kronfol et al. 2020). 

17.8.3 Histone Deacetylation: Role of Sirtuins 

Circadian regulations by sirtuins, which are class III Histone decetylases (HDACs), 
have been widely investigated in the last few decades (Fig. 17.2). The abbreviation 
“SIR” stands for silent information regulator. These have a role in both aging and 
regulation of circadian clock. Sirtuins have established roles in the regulation of 
circadian clocks, cell cycle, cellular homeostatsis, aging, stress resistance, and apop-
tosis. Commonly seven subtypes of SIRTs (SIRT1–7) are known to be present in mice 
and humans that differ in their cellular localization and function (Shah et al. 2021). 
SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, and SIRT7 are known to mediate deacetyla-
tion and SIRT4 and SIRT6 regulate the ADP–ribosylation activity (Grootaert and 
Bennett 2022). SIRT1 is known to regulate the central circadian clock by activating 
the two principal regulators BMAL1 and CLOCK. 

It involves a circadian loop comprising SIRT1, PGC–1α, and Nampt (Fig. 17.3). 
An enzyme known as Nampt is the major output target of CLOCK-BMAL1 associ-
ation which is crucial for the biosynthesis of NAD+ that acts as a cofactor for SIRT 
1. Although sirtuins are well known histone modifiers, they have also been char-
acterized to modify several transcriptional regulators such as NF–κB, p53, FOXO, 
PGC–1α, SOD–2, and α–tubulin (Khan et al. 2021) (Fig. 17.3). Sirtuins utilize NAD+ 

to facilitate the removal of acetyl groups. Sirtuins are known to mediate circadian 
rhythmicity in brain as well as in peripheral oscillators (Fig. 17.2). Studies have 
shown that caloric restriction fostered lifespan increment is mediated by SIR 2 and 
its orthologs.

SIRT1 exacerbates the expression levels of CLOCK and BMAL in the SCN of 
the hypothalamus by deacetylating the peroxisome proliferator-activated receptor 
gamma coactivator 1 alpha (PGC1-α) (Duszka and Wahli 2020) (Fig. 17.3). Through 
the deacetylation of H3K9 and acetylation of PER2, SIRT1 confers epigenetic control 
to circadian rhythm (Soni et al. 2021). It has been observed that the function of SIRT 
1 is gradually tarnished with aging (Yuan et al. 2016). A possible explanation for this 
is the fact that levels of NAD+ systemically decline and in turn reduces the efficiency 
of sirtuins (Pardo and Boriek 2020). Furthermore, oxygen consumption rate of mito-
chondria is controlled by the activity of SIRT3. In one of the studies, it was found
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Fig. 17.3 Role of Sirtuins in age-associated dysregulation of circadian rhythms and metabolism. 
Heterodimerization of CLOCK/BMAL1 leads to the activation of E-box motifs and advances the 
transcription-translation feedback loop which comprises PER, CRY, and other CCGs. CCGs and 
other transcripts exhibit circadian oscillations to maintain cellular functionality. Further, the Nampt-
mediated salvage pathway generates NAD+ which is a co-substrate for sirtuin family protein 
deacetylase. Sirtuins maintain circadian rhythms by modulating various biochemical pathways. 
Age-associated decrement in sirt1 results in dampening of circadian oscillations

that the hepatic circadian clock is regulated by the multifunctional enzyme SIRT 6. It 
is well known from rodent and fly studies that overexpression of SIRT6 increase the 
lifespan. SIRT6 essentially deacetylates H3K9 and is involved in the maintenance of 
telomere (Michishita et al. 2008). In one of the breakthrough studies, it was found that 
SIRT1 overexpression in lateral and dorsomedial hypothalamic nuclei delayed aging 
and amplified lifespan in mice (Satoh et al. 2010). Furthermore, investigations on 
Sirtuin knockout mice revealed that depletion of not all sirtuins lead to decrement in 
lifespan (Satoh et al. 2010). Essentially, SIRT3, SIRT7 and SIRT6 depletion reduces 
the lifespan unlike SIRT5. Mitochondrial SIRT 3 is a potent lysine deacetylase which 
is closely associated with the aging process as deciphered from knockout mice studies 
that resulted in progression of age-related disorders such as neurodegenerative disor-
ders, cancer, and cardiac hypertrophy. SIRT3 deficient mice fail to regulate the ROS 
levels and sustain mild endothelial dysfunction. Mitochondrial MnSOD/SOD2 is a 
substrate of SIRT3 required for decomposition of ROS which malfunctions upon 
acetylation (Ansari et al. 2017). One of the most widely studied aspects of aging is 
caloric restriction mediated lifespan enhancement. The expression levels of sirtuins 
are found to be upregulated during caloric restriction.
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17.9 Calorie Restriction: Rhythms and Implications 
in Aging 

The concept of calorie restriction (CR) was introduced in the 1930s by McCay and 
co-workers, defining CR threshold as acquiring 20% lesser calories below ad libitum 
level (Lee et al. 2019). According to McCay, CR was significantly efficacious in 
extending health and longevity (McCay 1989). Our current understanding from years 
of studies ascertains that median and maximum lifespan of organisms is elevated 
through CR. Additionally, CR minimizes the risk of developing age-related disorders. 
One of the principal features of CR is the decreased temperature of the body which 
prevents dispensable energy expenditure and thus increases lifespan. It is widely 
accepted that circadian clocks are influenced by CR-modulated mechanisms. Rodent 
and fly studies reveal the role of CR in regulating the rhythms in expression of clock 
genes in the peripheral organs. Interestingly in mice deficient of BMAL1, CR fails 
to enhance the lifespan thus suggesting the link between circadian clocks, CR and 
aging (Kondratov et al. 2006). Notably, the conducive results through CR, especially 
increment in the lifespan is significantly altered depending on the sex (Astafev et al. 
2017). In one of the studies, it was observed that 20% CR in female mice lead to 
increase in the lifespan significantly to a higher degree than in males, but 40% CR had 
unconvincing effects in females while males showed lifespan increment (Kane et al. 
2018). Transcription factors PHA-4 and SKN-1 are known to regulate the extension 
of lifespan by CR in C.elegans as elucidated from RNAi-based screenings. 

Evidences indicate a close association of modulation in chromatin functions 
during calorie restriction. In general words, CR exercises its age retarding effect 
through mechanisms that lead to increase in the genomic stability. CR is known 
to alleviate the repercussions of aging-induced aberrant DNAm patterns. CR leads 
to elevation in the levels of DNMT1 which functions to suffice the decrement of 
methylation level during aging (Li et al. 2010b). Reports suggest that HDAC activity 
is amplified during caloric restriction, implicating that global deacetylation might 
attenuate nutrition stress and may regulate the aging processes (Li et al. 2010b). 
Altered binding enrichment of HDAC1 on the promoter of p16INK4a and hTERT 
leads to modulations in the expression pattern of these genes resulting in enhanced 
lifespan (Li et al. 2010b). Regulatory role of the HDAC family in aging process 
during CR highlight the potential application of related epigenetic drugs or clinical 
strategies in aging and aging-related diseases. Calorie restriction has been observed 
to activate SIRT1 in various animal organs, while dysregulation of SIRT1 has been 
shown to reduce lifespan extension, thus indicating crucial role of SIRT1 in lifespan 
extension during CR.



382 S. Patel et al.

17.10 Sex Differences in Aging Epigenetics 

Previous experimental studies have established that females have greater suscepti-
bility to sleep–wake cycle disorders. A number of species have demonstrated epige-
nomic instability with increasing age. While it is well accepted that epigenetic noise 
significantly contributes to aging, yet it still remains elusive that how epigenomic 
alterations are associated with the sex of the organisms. Generally among the sexes 
in humans, women have longer lifespan when compared to men as appraised by 
molecular biomarkers. However, it is a fact that women are associated with wors-
ened health conditions at later half of their life, while males demonstrate healthier 
physical functions at equivalent age. It is widely believed that global DNAm levels 
decrease with age; however, this concept is often challenged by some scientists. There 
is a scarcity of research underpinning the sex-associated variability in the dynamics 
of methylation levels. Studies intending lifespan extension in drosophila through 
interventions in histone acetylation mediated through SIR2 overexpression showed 
an average extension of lifespan; however, the percentile extension in females (29%) 
was remarkably more than that of the males (18%) (Rogina and Helfand 2004). The 
sex-associated alterations in epigenetic age are perceptible in juveniles and adults 
(Horvath et al. 2016). Studies on brain DNAm patterns could not link the sex-age 
reciprocity in neurodegeneration in the samples of AD and controls (Pellegrini et al. 
2021). In another study involving SIN3A knockdown, a structural integrant of histone 
deacetylase complex, knockdown through RNAi significantly reduced the lifespan of 
both male and female drosophila (Kadamb et al. 2013). In one of the fly studies, sper-
midine mediated histone acetylation repression led to significantly higher lifespan 
extension in females compared to that of the males (Eisenberg et al. 2009). However 
similar experiments in mice led to spermidine induced, increment equally in both 
the sex (Eisenberg et al. 2016). Studies on juvenile stress in the course of develop-
ment, such as strident parenting, have been shown to be associated with changes in 
methylation (Non et al. 2016). 

Sex differences in longevity, corporality, and aging-associated diseases are well 
documented in the literature. Alzheimer’s disease (AD), one of the commonest 
dementia, affects more often females as compared to males (Laws et al. 2018). Sexual 
dimorphisms in AD pathologies have been investigated in mouse models, indicating 
females asseverate greater pathology (Jiao et al. 2016). Importantly, males are twice 
as susceptible to Parkinson’s disease as are females (Jurado-Coronel et al. 2018). 
The epigenetic clock functions equally among both males and females, and it was 
customarily believed that age-associated epigenetic changes in DNAm are similar 
in the two sexes. However, recent findings in rodents suggest that less than 5% of 
the variations in DNAm with age overlap in males and females (Masser et al. 2017). 
A recent study discovered that gonadal hormones promote epigenetic aging. The 
castrated sheep showed DNAm at the androgen-regulated loci, thus promoting the 
epigenetic delay in aging (Sugrue et al. 2021).
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17.11 Epigenetic Therapeutics 

Aging is an inevitable biological process that encompasses nearly all organisms. 
People have since long endeavored of developing strategies to increase longevity. 
Scientists now believe that aging can be delayed with biological and lifestyle inter-
ventions (Zhang et al. 2020). Genomic instability and related alterations in gene 
expression accompany the aging process. 

Epigenetic drugs refer to the molecules capable of modulating certain enzymes 
associated with inducing epigenetic changes. HDAC superfamily members are 
promising therapeutic targets reckoning their potential to repudiate epigenetic 
dysregulations. Several HDAC inhibitors are under clinical trials for targeting age-
associated disorders (McIntyre et al. 2019). Sirtuin-based therapeutic interventions 
are also being explored owing to wide positive effects. One of the noxious age-related 
disorders is cancer, often lethal and incurable. Vorinostat, an HDAC inhibitor, is 
already in clinics to treat certain cancers. Other HDAC inhibitors are being inves-
tigated for their anticancer properties in many trials. In a study, class 1 HDAC 
inhibitor CI-994 was investigated for its efficacy to ameliorate the age-associated 
sensitivity to HAL-induced motor side effects. CI-994 was found to improve the 
expression and function of D2R mediated through histone acetylation at the DRD2 
promoter (McClarty et al. 2021). HDAC inhibition leads to the acetylation of nuclear 
histones, thereby activating crucial tumor-related genes such as p53, GATA-1, and 
p21WAF1/CIP1, the expression of which impedes the proliferation of cancerous 
cells (Richon et al. 2000). Studies have shown that SIR2 activator resveratrol 
(3,4,5-trihydroxystilbene) enhances lifespan extension and thus modulates the aging 
processes (Lee et al. 2019). Fluorescence and mass spectrometry-based approaches 
revealed that SRT1460, SRT1720, and SRT2183 also exhibited SIRT1 activating 
properties (Milne et al. 2007). Experiments reveal that resveratrol retards cellular 
senescence in human diploid fibroblasts. Administering, mice on high calorie diet 
with resveratrol improved the mitochondrial number, increased sensitivity to insulin, 
decreased the levels of IGF-I, and increased PGC-1α activity, thus improving health 
and lifespan (Baur et al. 2006). 

Depsipeptide, valproic acid, and phenylbutyrate are some of the well-explored 
HDAC inhibitors that have potently demonstrated significant antitumor properties 
along with low cytotoxicity. In recent years, natural bioactive dietary ingredients have 
been shown to possess natural HDAC inhibition properties and thus may be pivotal in 
cancer chemoprevention. Metformin increases insulin sensitivity and is a commonly 
suggested anti-diabetic drug that has also demonstrated to modulate molecular mech-
anisms of aging (Bridgeman et al. 2018). Evaluation of diabetic patients who received 
metformin exhibited enhanced lifespan as compared to non-diabetic individuals. The 
drug is known to obviate the onset of diabetes and ameliorates cardiovascular risk 
factors, thus preventing age-related disorders. Additionally, metformin reduces the 
risk of cancer and neurodegenerative disease (Sunjaya and Sunjaya 2021). 

Metformin is known to interact with SIRT1, the HDAC associated with lifespan 
enhancement, and influences epigenetic aging. In one of the randomized trials,
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metformin demonstrated an increase in the expression of SIRT1 in peripheral blood 
mononuclear cells (de Kreutzenberg et al. 2015). Banerjee and co-workers showed 
decrease in H3K9 and H3K27 methylation and increase in H3K4 methylation upon 
treatment with metformin, in breast cancer cells (Banerjee et al. 2016). The effects 
were both globally and specifically at the promoter of E-cadherin, a tumor suppressor 
gene. Inhibition of HMTs and reductions in the expression of SUV39H1 may be prob-
able mechanism for obtaining these results; however, the molecular mechanism of 
inhibition of HMTs by metformin is not yet understood. 

17.12 Concluding Remarks 

Aging is an inevitable biological process associated with grievous physiological 
and mental health. Despite the evolution of a wide range of defense and repair 
mechanisms over the years, aging significantly alters the normal homeostasis of the 
biological system. Growth in the understanding of aging hallmarks has enabled us 
to delay the aging process through nutritional and biochemical interventions, though 
to a very limited extent. The prevention of age-related disorders necessitates further 
understanding of the mechanisms underlying the regulation and dysregulation of age-
associated molecular alterations. Dysregulated circadian regulation has implications 
on the organism’s systemic functionality including inefficient immune system func-
tioning, cognitive impairment, sleep dysregulation, cardiovascular dysfunction, and 
reduced reproductive potential. At the genomic level, substantial epigenetic regula-
tion is observed in aging and associated molecular pathways. The dysregulation of 
clock machinery has pronounced effect on diverse epigenetic landscape leading to 
accelerated aging and related disorders. The pattern of epigenetic modifications like 
CpG methylation, DNAm, histone acetylation and deacetylation of the clock, and 
associated genes gets altered. Despite the wide acceptance of sirtuins in longevity, 
it is unclear how exactly sirtuins facilitate the retardation of aging process. What 
is even more of primitive understanding is how sirtuins crosstalk the processes of 
aging and circadian rhythm. However, a plethora of studies on rodent and vertebrate 
models has indicated role of sirtuins in mediating the retardation of aging process, 
and the mechanistic purview still needs to be explored, specifically for development 
of therapeutics for aging-associated disorders.. Studies have since long vocalized the 
role of caloric restriction in the regulation of circadian clock genes and retardation 
of age-associated changes. Insight into the mechanistic purview of caloric restriction 
mediated positive health effects will foster the aim of developing delayed aging inter-
ventions. There is an utmost necessity of sex-specific studies of epigenetic basis of 
aging to develop unbiased restorative therapeutics. Several epigenetic therapeutics to 
delay the progression of age-associated diseases have been developed and are being 
tested; however, the efficacy of these is still debatable and compels for extensive 
research in this field.
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Chapter 18 
Chronotype and Its Relation to Healthy 
Aging 

Meenakshi Sinha , Babita Pande , and Ramanjan Sinha 

18.1 Introduction 

The revolution of earth on its own axis around the sun lead to diurnal and seasonal 
variation. Life on earth is synchronized to the periodic change in the environment 
which is apparent through cyclic occurrence of many biological rhythms with varied 
duration. The well-known biological rhythms observed in human are: the ultradian 
(with oscillation of <24 h period, e.g., sleep cycle with approx. 90 min of period of 
occurrence), circadian (∼=24 h of periodicity, e.g., rhythm in adult sleep–wake times, 
melatonin and core body temperature) and infradian rhythms (periodicity >28 h, e.g., 
female menstrual cycle rhythm). Among these, the most prominent and ubiquitous 
biological rhythm in living organisms is Circadian rhythm which is derived from 
two Latin words “Circa” meaning “about/approximately” and “diem” meaning “a 
day/24 h”. Circadian rhythm is the variation of 24 ± 4 h in any biological processes 
from gene to behavior levels. 

The diurnal nature of the light–dark or the sunrise-sunset cycle broadly generates 
two types of activity pattern among the organisms with one having maximum activity 
during day/light like humans; while other being active mostly during night/dark 
(nocturnal) like the rodents. However, several other environmental factors like 
temperature and social behavior like feeding time, work schedule, etc. also have 
strong modulatory effect on the rhythmic behavior of the organisms. Thus, even 
humans who were mostly active in the day/light at ancient time, have altered their 
activity rhythm and thereby, all other functions of the body in the modern times due
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to availability of artificial light, leading to define this propensity in terms of various 
chronotypes. 

18.2 Chronotype and its Distribution among Population 

Chronotype or circadian typology (CT) is the behavioral trait in human about 
scheduling the preference for the sleep–wake time or activities (physical or mental) 
at specific time around 24 h. 

According to morningness-eveningness preferences, three types of chronotypes 
(Fig. 18.1) are seen in human population (Montaruli et al. 2021). These are: 

(i) Morning chronotype, also popularly known as “lark type” or “early chronotype” 
or “early birds” or “morning larks” are the people who prefer early sleep–wake 
time and avoid late night sleeping. These morning chronotype display better 
physical and mental performances during early hours of the day. 

(ii) Evening chronotype, also known as “owl type” or “late chronotype” or “night 
owls” have the preference to sleep late in the night and wake up also late. Their 
ability to execute any physical or mental task in the early hours of the day is 
generally quite poor. 

(iii) Intermediate chronotype (Neither type) are the individuals whose preferences 
lie in between morning and evening chronotypes. These individuals do not 
show any preference for scheduling their sleep–wake times early like morning 
chronotypes and/or also do not like to sleep late like evening chronotypes.

Fig. 18.1 Morningness-eveningness is a continuum with distinct categories reflected as chronotype
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Table 18.1 Chronotypes in human population 
Preference Chronotype Nick name Circadian rhythm 

(acrophase/peak) phase 
Morningness Morning Morning lark Early 
Eveningness Evening Night owl Late 
Neither morning nor 
evening, rather prefer in 
between time 

Neither or 
Intermediate type 

Humming 
bird/Dove 

Neither early nor late, in 
between 

Morningness-eveningness as 
well as intermediate 

Bimodal 
chronotype 

Biomodal 
chronotype 

Different from intermediate 
chronotype, also neither 
early nor late 

These individuals are also nicknamed as humming bird or dove type (Table 
18.1).

A fourth type of chronotype has also been suggested known as “Bimodal chrono-
type”. These individuals are broadly intermediate chronotype but also display pref-
erence of some selective behavior similar to morning or evening chrontypes. Their 
preference pattern has been linked to the influence of social and environmental 
factors (Tempaku et al. 2017). However, bimodality concept needs to be validated 
yet with circadian markers and other questionnaires that are used to quantify the 
morningness-eveningness behavior in human. 

Chronotype is not a stationary/fixed behavioral trait but rather follow a near-
Gaussian distribution during ontogeny/life cycle of an individual as observed in the 
population from Europe and USA (Roenneberg et al. 2007; Fischer et al. 2017). In the 
childhood, morning chronotype prevail, which shows shift to intermediate and then 
towards evening type in adolescent and then, morningness increases with advancing 
age. 

However, individuals from countries with early sunrise, and/or culture of waking 
early in the morning (e.g., Indians) show skewed distribution with more morning pref-
erences. Majority of rural and remote population from India show extreme morning 
orientation compared to urban. A mixed behavior is observed in school going Indian 
adolescent with preponderance of morningness (Pande et al. 2018) or intermediate 
chronotype (Jongte and Trivedi 2022). The difference observed could be attributed 
to the timing of school to which the students get entrained or could be because of 
use of different versions of morningness-eveningness questionnaires. 

18.3 Assessing the Chronotype 

Sleep–wake behavior is the outcome of the interaction between the homeostatic 
process and the circadian mechanism. The body homeostasis decides the amount of 
sleep requirement according to the accumulated sleep pressure or wakefulness while
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the timings of sleep–wake is predominantly decided by the endogenous circadian 
system. Therefore, circadian preference for daily activities or the chronotype can be 
predicted or estimated from the sleep–wake timings. 

While choice for daily physical or mental activities, timings of subjective fatigue, 
alertness, mood or drowsiness status also is able to predict an individual’s chronotype. 
They can be assessed by using batteries (Table 18.2) of inventories/questionnaires 
(Montaruli et al. 2021) or with the help of automated devices worn by the individual. 

Use of devices for ascertaining chronotype: 

The objective assessment of chronotype has been carried out using wearable devices, 
such as Actiwatch, accelometer/band like Fitbit, Xiaomi, Microsoft, and Smartphone.

Table 18.2 Popular and widely used morningness-eveningness questionnaires for chronotype 
assessment in human population 
Inventory Main measures Other variables 
Morningness-eveningness questionnaire 
(MEQ) (Horne and Östberg 1976) 

Three chronotypes (MT, 
IT and ET) 

Higher value reflect 
higher morningnes, 
lower value indicate 
higher eveningness (from 
DMT, MMT, IT, MET to 
DET) 

Diurnal type scale (DTS) (Torsvall and 
Åkerstedt 1980) 

Three chronotypes 
morning active, 
intermediate type and 
evening active 

Higher values reflect 
higher morningness, 
lower depict higher 
eveningness 

Composite scale of morningness 
(CSM) (Smith et al. 1989) 

Three chronotypes (MT, 
IT and ET) 

Higher values reflect 
higher morningness and 
lower value indicate 
higher eveningness 

Reduced morningess-eveningness 
questionnaire (rMEQ) (Adan and 
Almirall 1991) 

Three chronotypes (MT, 
IT and ET) 

Higher values reflect 
higher morningness and 
lower value indicate 
higher eveningness (from 
DMT, MMT, IT, MET to 
DET) 

Munich Chronotype Questionnaire 
(MCTQ) (Roenneberg et al. 2003) 

Chronotype or midpoint 
of sleep (as clock time) 
corrected for 
“oversleep” on free days 
(MSFsc) 

Social jetlag, sleep–wake 
variables, sunlight 
exposure duration 

Morningness-eveningness—stability-scale 
improved (MESSi) (Randler et al. 2016) 

Three distinct 
dimensions viz. morning 
affect, eveningness, 
distinctness 

Higher scores in each 
dimensions indicate 
higher morningness, 
higher eveningness and 
higher amplitude 

MT Morning type; IT Intermediate type; ET Evening type; DMT Definitely morning type; MMT 
Moderately morning type; MET Moderately evening type; DET Definitely evening type 
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These device can be worn on wrist, over chest, waist, etc. and work by recording 
and integrating the occurrence and degree of limb movement activity over time. 
Besides activity, these devices also measure sleep-wake timings, heart rate, blood 
pressure (Smith et al. 2018). Sleep latency, total sleep time, wake after sleep onset 
and sleep efficiency are some of parameters which can also be estimated by actig-
raphy and have implication in assessing the quality of sleep. Actigraphy is the more 
reliable approach to quantify morningness-eveningness behavior, measuring activity 
and sleep–wake variables that are well correlated with the circadian inclination of an 
individual used to classify individuals to different chronotypes. Among the circadian 
parameter of activity rhythm assessed by actigraphy of the extreme chronotypes, 
delayed acrophase in activity of around 2 h in evening type has been documented as 
compared to morning type individuals (Vitale et al. 2015). A positive and negative 
association of actigraphy-based acrophase with Morningness-Eveningness Ques-
tionnaire (MEQ) and the reduced Morningness-Eveningness Questionnaire (rMEQ) 
have also been observed (Montaruli et al. 2021). 

Besides, body temperature or circadian markers like cortisol and melatonin 
rhythms are also reliable to measure the chronotype of an individual. 

18.4 Chronotype and Variability in Biological Variables 

Phase angle of entrainment of the circadian system, being influenced by environ-
mental light- dark cycle, is expressed as chronotype of an individual. The circa-
dian phase of different biological variables varies as function of chronotype. For 
example, the minima of body temperature rhythm appears earlier in morning chrono-
type (03:50 h) compared to evening type (06:01 h) (Baehr et al. 2000). Similarly, 
early DLMO (dim light melatonin onset, a marker of phase of circadian rhythm), 
early sleep patterns and earlier circadian phase is seen in rural inhabitants who have 
earlier light exposure (Ruiz et al. 2020). The evening-types individual have been 
seen to have sluggish parasympathetic reactivation response following exercise in 
the morning hours (Sugawara et al. 2001), while morning chronotype display better 
athlete performance with less perceived efforts in the morning hours (Vitale and 
Weydahl 2017). Also, better neuro-cognitive performance related to attention and 
alertness have been documented by evening chronotype in the evening hours and by 
morning type individuals in the morning hours (Venkat et al. 2020).
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18.5 Determinants of Chronotype 

18.5.1 Endogenous Nature 

Basically, chronotype is the indicator of circadian clock driven biological 
systems. It is a marker of individual’s circadian inclination or the circadian 
phase/preference/behavior. A longitudinal study of one month invoking forced 
dysynchrony in 17 young men reported a significant correlation of individuals’ 
chronotype with their endogenous circadian period and wake time. The morning 
chronotype are reported to have shorter circadian period compared to evening chrono-
type (Duffy et al. 2001). Several other similar studies have therefore, suggested that 
the behavioral trait of morningness-eveningness is correlated with fundamental prop-
erty of the circadian pacemaker and thus, bear an endogenous basis for the origin of 
chronotype rather than any association with the ethnicity, gender and socioeconomic 
status. 

18.5.2 Genetic Basis 

Chronotype also has heritable attributes, with 21–52% of transmission and thus its 
genetic basis has been studied in great detail (Kalmbach et al. 2017). The widely 
studied clock genes that exhibit circadian variation in their expression and regu-
late the circadian rhythm in living processes through transcriptional and transla-
tional autoregulatory feedback loops are period genes (such as PER1, PER2 and 
PER3) and Cryptochrome (CRY1 and CRY2) genes. In addition, Casein Kinase 1δ 
and 1ε (CK1) and transcription factors Circadian Locomotor Output Cycles Kaput 
Protein (CLOCK), Brain and Muscle ARNT-like protein (BMAL1 and BMAL2), 
and Neuronal Pas Domain Protein (NPAS1 and NPAS2) are also involved in the 
generation of circadian rhythm. 

Studies on CLOCK genes polymorphism and its association with morningness-
eveningness behavior have given the evidences for the genetic basis of chronotype 
(Table 18.3). Subjects carrying 3111C polymorphic genes in the 3'-flanking region 
of a human CLOCK gene show evening preferences as assessed by using 19-items 
Horne-Östberg Morning-Evening Questionnaire (MEQ), irrespective of age, gender 
or ethnicity. A differential level of CLOCK gene expression or existence of poly-
morphic genes have been suggested to be linked with circadian phase differences in 
morning or evening type individuals.

Morningness behavior has been significantly linked with the PER2 (rs934945) 
genotype expression and the interaction among the three polymorphic genes namely 
PER2, ARNTL and GNB3 increase the propensity of PER2 polymorphism for the 
diurnal preference. Link between 5-hydroxy-tryptamine, serotonin receptor HTR2A 
rs6311 (−1438C/T) SNP and the morningness behavior has also been reported (Yeom 
et al. 2020).
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Table 18.3 Genetic basis of chronotype distribution 
Genes Polymorphism Chronotype attribution 
CLOCK CLOCK 3111C/T (SNP) 

rs1801260 
Associated with evening 
preferences (Mishima et al. 
2005; Yeom et al.  2020) 

CLOCK CLOCK and GNB (rs5443) 
interaction 

Associated with diurnal 
preference (Yeom et al. 2020) 

PER2 G allele of C111G SNP of PER2 
(rs2304672) 

Extreme morning chronotype 
(Yeom et al. 2020) 

PER2 PER2 G3853A polymorphism 
(rs934945) 

Associated with diurnal 
preference in Korean sample 
(Yeom et al. 2020) 

PER2 PER2 SNP (G2114A) Associated with diurnal 
preference in Japanese (Matsuo 
et al. 2007) 

ARNTL, PER2 and GNB3 G/A SNP in PER2 (rs934945), 
C/T SNP in ARNTL (rs2278749) 
and GNB3 (rs5443) genotype 

PER2 is associated with diurnal 
preference in Korean; Interaction 
of ARNTL and GNB3linked with 
eveningness (Yeom et al. 2020) 

PER3, ARNTL2 PER3 G/T SNP (rs10462020), 
ARNTL2 T/C SNP (rs922270) 

Associated with diurnal 
preference in British Population 
(Parsons et al. 2014; Kalmbach 
et al. 2017) 

PER3 PER3 polymorphism (rs228697) Associated with diurnal 
preference; Higher frequency of 
G allele linked to eveningness 
(Hida et al. 2014) 

Serotonin 2A Receptor HTR2A rs6311 (-1438C/T) 
polymorphism 

C/C + C/T genotype associated 
to; morningness and T/T 
genotype associated with evening 
chronotype (Yeom et al. 2020) 

NR1D2 (Rev-erbβ) 22 SNPs in NR1D2 (Rev-erbβ); 
prominent SNP rs4131403 

Significantly associated with 
chronotype (Maukonen et al. 
2020)

Large-scale genome-wide association studies (GWAS) on large study group (n = 
8433) in Finnish population of age 25–74 years male and female have also helped to 
trace the heritable nature of chronotype as trait inherited in members of family. These 
studies have identified clock gene NR1D2 (Nuclear Receptor Subfamily 1 Group D 
Member 2; (Rev-erbβ)) for the eveningness behavior (Maukonen et al. 2020). 

Per3 polymorphism has been found to be significantly related to extreme diurnal 
preference as potential genetic marker, with association of longer allele to morning-
ness and shorter allele to eveningness with higher frequency of minor allele rs228697 
seen in evening chronotype. It has been suggested that differential PER3 phospho-
rylation might lead to phenotypic difference as morning-evening preferences. This
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signifies the strength of the circadian oscillator in young individuals that decline in 
older people. 

On the basis of above facts, it may be opined that the evolution of different genetic 
traits of chronotype through differential expression of clock genes and emergence of 
its variants (polymorphism) have increased the adaptive power and thus survivability 
and mortality of humans. As studied in ancient tribal community, the Hadza hunter-
gatherers of Tanzania, the different chronotypes help to share the vigilance to increase 
the survival and reduce the risk of mortality during sleep at night in nature sharing 
habitat with wild animals (Samson et al. 2017). Further, different chronotypes differ in 
circadian regulation of sleep–wake timings, sleep pressure and thus neuro-cognitive 
performance like attention, decision making, etc. needed for successful survival and 
social integrity. The diurnal behavior is preferred over nocturnal behavior in case 
of human, because early rising has been considered as ambrosial hours for better 
cognitive functions through hormonal changes like melatonin and cortisol that create 
conductive milieu for a healthy body by increasing the sunlight exposure duration 
(Kumaran et al. 2012; Venkat et al. 2020). Therefore, humans are in great evolutionary 
benefit for adopting morning preference lifestyle, as it gives longer span to remain 
active and awakened to learn, doing creative work, socializing, defend and protect 
from predators (Nunn et al. 2016). Late timings of sleep–wake have been linked 
with an array of health problems such as increased risk of diabetes, cardiovascular 
diseases, psychiatric disorders, that elevate the chance of mortality (Didikoglu et al. 
2019). 

18.6 Moderators of Chronotype 

Generally, the neither/intermediate chronotypes are found in majority among all types 
of chronotypes worldwide. However, age, gender, culture, geographical regions (lati-
tude/rural or urban setup) are the prominent modulators of morningness-eveningness 
preferences leading to extreme chronotype (Table 18.3). 

18.6.1 Age and Gender 

Though chronotype has genetic basis, it is a dynamic characteristic that changes 
from childhood- adulthood and between genders. Majority of studies from different 
parts of the world have shown similar trend of age and gender related variation in 
chronotype. 

Allegedly, the first evidence of chronotype distribution on large a sample ~25,000, 
including German and Swiss population in majority, was conducted by Roenneberg 
et al. (2004). This group first documented the circadian typology changes from 
morning to evening type and then morning type, with the developmental stages 
passing from childhood to young age to elderly group (Fig. 18.2). The adolescent
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showed maximum eveningness at about the age of 20 years (females 19.5 years and 
male 20.9 years). This eveningness inclination has been reported to start from the 
age of 13 years for Italian population. In a study spanning 12 years on morningness-
eveningness behavior from the American Time Use Survey, the chronotype distribu-
tion in US population (n = 53,689) showed prevalence of intermediate chronotype 
in overall population. Majority of US adolescent also showed evening preference 
at around 19 years (Fischer et al. 2017). A Finnish study on a population of 10,503 
adults aged 25–74 years documented that more younger population (25–34 years) are 
evening type, middle age groups (35–44 years) are intermediate chronotype, while 
morningness increases with advancing age (Fischer et al. 2017). Similar findings 
were reported for German, New Zealand population also (Paine et al. 2006; Fischer 
et al. 2017). 

The obvious chronotype changes during adolescent have been linked to the 
changes in hormonal profile during puberty that could interact with the circadian 
system leading to delay in morningness-eveningness. Further, the study pressure 
or work pressure to excel in career forces the adolescent and young to work late 
at night exposing them to artificial light at night for longer duration, the changing

Fig. 18.2 Chronotype depends on age. These changes are highly systematic and are different for 
males and females (filled circles, females; open circles, males; the gray line shows the averages for 
the entire population). The first data points represent the averages for subjects aged 12 or younger. 
Between ages 12 and 60 data were averaged for each year of age while those showing the mean 
chronotype for subjects above 60 years of age are averaged over groups of 5 years. Vertical lines 
represent SEM. MSFsc: Midpoint of sleep (as clock time) corrected for “oversleep” on free days. 
(Reproduced with permission from Prof. Till Roenneberg (Roenneberg et al. 2007)) 
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habits like using mobile and laptops and other blue light emitting gadgets for reading, 
as well as entertainment or social communication, could also be the reasons for late 
sleep–wake pattern through delayed onset of melatonin, the signal for adjusting body 
clock to natural light–dark cycle. Older individuals have narrower preference of sleep 
time compared to other age groups, have less social responsibility or not engaged 
in job specifically night or shift work like young individuals which is responsible 
for less chronotype variability in older age group, thus limiting the variance in their 
chronotype. 

It has also been purported that hormonal change during developmental stages 
could modulate the morning-evening trait. The concentration of testosterone in men 
has been positively associated with evening orientation in men. So, it has been stated 
that the decline in testosterone and estrogen levels in different ratio with aging in 
men and women might be the reason for changing morningness-eveningness behavior 
with age (Randler and Engelke 2019). 

All these studies points toward a similar trend, i.e., after reaching the maximum 
eveningness, morningness increases with aging. This stage has been called as the 
“marker of end of adolescence” by Roenneberg et al. (2004). 

These studies also come with the evidence that gender difference exist in 
morningness-eveningness preference (Fabbian et al. 2016). The gender difference 
discerned that females in reproductive stage show advanced sleep–wake timings 
compared to male which could be the influence of reproductive hormones, giving 
rise to gender difference in chronotype. It has also been reported that the gender 
difference in chronotype disappears after the age 50 years for German population, 
after 55 years in Italian population, 45 years in Brazilian and around 40 years in US 
population (Fischer et al. 2017). In this context, Duarte et al. (2014) stated that “the 
ontogenetic development of the circadian timekeeping system is more plastic in men, 
as represented by the larger amplitude of chronotype changes throughout their aging 
process”. Thus, gender difference is observed till the reproductive age of female and 
disappears after/during menopause with the change in the hormone repertoire which 
varies in between 40–55 years according to studies in different geographical location 
and ethnicity. 

Changing concentration and release time of many hormones, e.g., maximum 
growth hormone release during growing age, adolescent to young age or the stress 
hormone cortisol or melatonin with aging, menopause related alteration in repro-
ductive hormones in female can differentially interact with the circadian system 
(Roenneberg et al. 2004; Fischer et al. 2017). 

The non-hormonal cause for gender difference is added family responsibility for 
female, compelling them to wake up early for doing household. Due to cultural 
believes or less economic privilege, females are not expected/allowed late rising in 
the morning in many parts of the world. It is also interesting to note that within a 
particular age group, all the three types of chronotype from very early type to late type 
are observed; however, the predominance of a particular chronotype varies according 
to the gender, while the variation in chronotype decreases with aging (Fischer et al. 
2017).
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However, as sunrise is the robust environmental time cues entraining the circadian 
pacemaker, the inconsistent findings on interaction between age and gender have 
been attributed to the studies being conducted at different geographical locations, 
with different sunrise and sunset time. 

18.6.2 Entrainment to Environmental Light/Geographical 
Region 

Sunlight is the primary and robust time cue that reset the human circadian clock. 
Blind people with total retina degeneration free run in absence of any light cues 
living in societal condition. Predominance of exposure to social cues only and not 
exposing to daily sunlight progressively causes uncoupling of circadian clock and the 
solar time cues, leading to circadian misalignment and emergence of various types of 
health consequence. The difference in circadian alignment is easily visible between 
urban and rural people. Urban people mostly dwelling under artificial light and less 
in sunlight display evening preference compared to rural inhabitants who are more 
exposed to sunlight and entrained to it and thereby show morning preference in their 
daily activity pattern. 

The effect of geographical location has impact on the morning-evening behavior, 
since the population near equator has been observed to be more morning inclined 
compared to population residing away from equator due to availability of sunlight. 
Moreover, in the same geographical location, people living farther east with early 
sunrise are more morning orientated compared to people inhabiting toward west and 
getting later sunrise (Randler et al. 2015). 

18.6.3 Culture/Ethnicity/Work Schedule 

Work schedules are one of the important determinants of morning-evening pref-
erence. As discussed above, generally women due to cultural/ethnic believes and 
economic factors are found to be morning type. Night shift workers tend to show 
definite evening orientation compared to unemployed, who are mostly moderately 
morning type (Paine et al. 2006) (Table 18.4).

18.7 Chronotype as Determinant of

1. Physical activity and sleep health 
2. Disease and health outcomes 
3. Mental/cognitive performances
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Table 18.4 Chronotype distribution as function of age and gender across world 
Population Chronotype 

distribution in 
population 

Age related 
chronotype 
distribution 

Gender related 
chronotype 
distribution 

References 

Asian (Indian) . Predominance 
of MT 

. More MT in 
remote areas 
followed by 
rural and then 
urban 

. More 
intermediate 
types among 
urban teenagers 

Morningness 
increases with 
aging 

Inconsistency in 
findings; with no 
consistent 
gender 
difference 

Pande et al. 
(2018); Jongte 
and Trivedi 
(2022) 

Asian (Chinese) . Normal 
distribution of 
MSFsc 

. Inconsistency 
in finding 
related to 
prevalence of 
chronotype; 

. IT or early 
types prevailed 
more compared 
to evening type 

Eveningness in 
adolescent age 
that continued till 
28 years; 
Children and 
aged above 
55 years show 
morningness 

Inconsistency in 
findings; females 
more IT 
preference than 
male 

Liu et al. (2020) 

Asian (Korea) Prevalence of IT 
in young and 
middle age 

Prevalence of IT, 
followed by 
MT/ET in young; 
predominance of 
MT in middle age 
and in sixties 

No gender 
difference 

Suh et al. (2018) 

Asian (Japanese) Morning 
preference 
compared to 
European 
population 

Morningness 
increases with 
aging 

Males more 
morning type 
compared to 
females; gender 
difference 
observed in 
sixties with 
males showing 
early chronotype 
compared to 
female 

Komada et al. 
(2019)

(continued)



18 Chronotype and Its Relation to Healthy Aging 403

Table 18.4 (continued)

Population Chronotype
distribution in
population

Age related
chronotype
distribution

Gender related
chronotype
distribution

References

European 
(German, 
Slovakia, Italian; 
Finland) 

Higher 
prevalence of IT 

Evening type 
prevail in 
adolescent and 
young age, 
increasing 
morningness with 
advancing age, 
older adults 
morning type 

Females more 
morning type 
than males; 
specifically 
younger women 
compared to 
older women 

Randler and 
Engelke (2019) 
Roenneberg et al. 
(2004); Randler 
et al. (2015); 
Fischer et al 
(2017) 

Americans 
(USA) 

Prevalence of 
intermediate 
chronotype in 
overall population 

Evening 
chronotype in 
adolescent age; 
Variability in 
chronotype 
declines with 
advancing age 

Females 
morning 
chronotype than 
men before 
40 years; 
decrease of 
variability higher 
in aging males 

Fischer et al. 
(2017) 

New Zealand Prevalence of 
morning type in 
young and middle 
age group 

Young age group 
(30–34 years) 
mostly evening 
type compared to 
middle age 
(45–49 years) 
being morning 
type 

No gender 
difference 
reported 

Paine et al. 
(2006) 

Latin American 
(Brazilian) 

Prevalence of 
morning type 

Evening 
preference among 
adolescent; 
morningness 
increases with 
age 

More morning 
type females 
compared to 
male till 
30 years; 
females more 
evening type 
after 45 years 

Duarte et al. 
(2014) 

MT Morning type; IT Intermediate type; ET Evening type; MSFsc Midpoint of sleep (as clock 
time) corrected for “oversleep” on free days

4. Social jetlag (Circadian Desynchrony) 
5. Chronotype with reference to COVID-19 pandemic 

18.7.1 Chronotype, Physical Activity and Sleep Health 

It has been observed that physically active elderly individuals including male and 
females have better overall sleep quality, less sleep disturbance, less dependence
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on sleep medication, less daytime dysfunctions compared to physically inactive. 
Further the physically active elderly females with morning chronotype have lesser 
sleep related problems than physically inactive intermediate chronotype. Physically 
active morning chronotype males also report less sleep disturbances compared to 
intermediate/neither type physically inactive males. Further, active male with inter-
mediate chronotype also display less complaints compared to inactive intermediate 
chronotype (Montaruli et al. 2021). 

18.7.2 Chronotype, Disease and Health Outcomes 

Increased morbidity encompassing high risk of metabolic disorders and mortality due 
to cardiovascular diseases have been reported in individuals of evening preference 
and delayed sleep onset time. The evening chronotype people also report high rate of 
psychological disorders, diabetes, neurological disorders, gastrointestinal/abdominal 
disorders and respiratory diseases compared to morning chronotype. The tendency 
of eveningness behavior have been observed to be independently associated with 
a significant increased type 2 diabetes, arterial hypertension, faster heart rate and a 
significant decreased rate of systolic blood pressure (SBP) as well serum total choles-
terol and low-density lipoprotein cholesterol compared to morning type people. 
Asthma patients of evening chronotype report increased breathing difficulties (short-
ness of breath, wheezy breathing with dyspnea) and more medication compared to 
morning or intermediate types with frequent awakening from sleep due to coughing 
compared to morning types (Montaruli et al. 2021). 

The underlying cause for the increased risk of mortality in night owls has been 
assigned to the chronic social jetlag which is their inability to adjust their circadian 
timing system to the timing of the social obligation or work schedules (Montaruli et al. 
2021). Chronic circadian misalignment in evening chronotype may be responsible 
for the age related poor health outcomes in middle, as well as in older adults. Night 
owls are associated with unhealthy habits like smoking or tobacco chewing, longer 
screen time and sedentary time with less physical activity, unhealthy diet, making 
them susceptible to high risk of cardiovascular disorders than morning larks. Evening 
types young and middle aged adults of both genders tend to have dyslipidemia, gain 
weight and are at risk of obesity compared with morning/neutral types. 

Besides, due to late night sleep timings, the evening chronotype individuals are 
exposed to artificial light at night (LAN) in addition to blue light emitting from 
gadgets tike mobile, laptop causing suppression of melatonin secretion that desyn-
chronized circadian rhythm (Tähkämö et al. 2019). This is associated with high 
insulin resistance, increased risk of metabolic disorders like diabetes and cancer 
of breast or prostate. Besides, irregular and delayed meal times which reduces the 
resting-energy expenditure, fasting carbohydrate oxidation, glucose tolerance, damp-
ened daily free cortisol levels and thermal effect of food, also could be other reasons 
for the metabolic dysregulation and emergence of metabolic disorders in evening 
chronotype, since meal timing acts as a synchronizer for peripheral oscillators.
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18.7.3 Chronotype and Mental/cognitive Performances 

The evening chronotype have higher daytime sleepiness, poor psychomotor vigi-
lance, executive function and isometric grip strength compared to morning chrono-
type (Facer-Childs et al. 2018). Depression and mood disorders have been frequently 
detected in evening oriented adults ≥50 years. The mental or psychological disor-
ders such as depression, bipolar disorder are also linked with the morningness-
eveningness (Montaruli et al. 2021). Circadian impairment and inclination toward 
eveningness is also noticed in bipolar disorder patients (Tähkämö et al. 2019). 

18.7.4 Chronotype and Social Jetlag (Chronotypes 
and Circadian Desynchrony) 

The night owls are more susceptible for social jetlag (Montaruli et al. 2021) which is 
the discrepancy in the mid sleep time on work days and free days that arises when on 
weekends the sleep–wake times is delayed compared to weekdays. The root cause 
for adverse health consequences faced by evening chronotype is the discrepancy 
between the circadian timing system and timing for work or social activities that 
is known as circadian misalignment. Further, the solar cycle or the natural light– 
dark cycle also cannot be ignored. Evening type people mostly miss the sunrise or 
morning light, the robust entertainer of the circadian clock that in long run delays the 
circadian phase. Evening chronotypes take longer time to recover from social jetlag 
compared to morning type. It has been well-known that social jetlag correlates with 
many health problems such as obesity and metabolic disorders, cardiometabolic risk 
and poor mental health such as emotional well-being and poor relationship. 

18.7.5 Chronotype with Reference to COVID-19 Pandemic 

COVID-19 imposed global shutdowns during its three major waves has opened the 
front gate of simulated lab revealing the impact of social factors, lack of sunlight expo-
sure and irregular life style at population level. An array of observational and cross 
sectional studies during lockdowns reported altered sleep–wake behavior leading to 
many health consequences like sleep problems, psychosocial and emotional distur-
bances in different population across the globe (Sinha et al. 2020a; Blume et al. 
2020). Majority of these studies documented that people under longer COVID-19 
lockdown displayed evening proclivity for activities, e.g., delayed sleep–wake and 
meal timings. Such evening preference was more prominent in younger population 
but less common in elderly (Sinha et al. 2020a). Associated problems with the evening 
preferences of people during lockdown were increased screen time, reduced phys-
ical activity and decreased exposure to sunlight, which is the natural entertainer of
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circadian system of an individual, causing social jetlag and circadian misalignment. 
But the important lesson emerging from the studies during COVID times was that 
individuals who maintained early sleep–wake timings, had more morning preference 
displayed least social jetlag (Sinha et al. 2020b). 

18.8 Summary and Recommendations 

The modern man has the compulsion of adjusting their endogenous circadian time 
preferences to societal timing and work schedule. The lifestyle of modern humans, 
especially in urban areas, varies a lot compared to ancient individuals who were closer 
to environment and followed sun and the moon for their activity and sleep behavior. 
This changed life style and increased exposure to environmental pollutants like light 
at night and noise emitting from modern gadgets cause “evolutionary mismatch”, 
leading to health problems. 

However, high association of eveningness with several pathologies leading to 
poor health and poor quality of life, signifies the impact of extreme morningness or 
eveningness behavior. In this context, it may be added that maintenance of morn-
ingness behavior in sleep–wake pattern could help to minimize circadian misalign-
ment, promote sleep health and improve mental health also. It has been documented 
clearly that there exist positive significant correlation between healthy aging and sleep 
onset—waking times. Evening chronotypes show high vulnerability to delayed sleep 
phase disorder. 

The imperative strategy to heal the circadian derailment is following natural solar 
cycle for waking and advancing the sleep schedule. Sunlight has always been known 
as the strong entertainer of the circadian system. This may be linked to the age 
old concept of early rising, i.e., at “Brahmamuhurtha”, the last quarter of night, as 
described in ancient Indian tradition. Majority of individuals from primitive settle-
ments were early risers, which is still evident in some civilizations and cultures 
like Indians in which awakening at “Brahmamuhurtha” (around 04:30 am) has been 
considered as ambrosial hours for better cognitive functions. Early morning riser 
(Brahmamuhurtha) students have been believed to have best concentration in the 
morning hours. The proposed scientific basis is that body temperature and level of 
melatonin is lowest in the early hours of morning coincides with increasing level 
of cortisol, which has direct bearing to process of attention and improved ability to 
recall (Kumaran et al. 2012). Therefore, man would be in great evolutionary benefit 
by adopting morning preference lifestyle, as it gives longer span to remain active 
and awakened to learn, doing creative work and socialize. 

Exposure to bright sunlight and brisk exercise in the morning hours advances the 
circadian phase of the evening chronotype and helps to advance the later sleep onset 
times and thus the wake times (Fig. 18.3). As a part of chronotherapy, timed bright 
light therapy to advance the circadian phase or ingestion of melatonin at night can 
also help in adjusting the problems associated with chronic eveningness. Adopting 
good habits like reducing or stopping smoking, alcohol, late night eating, screen time,
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Fig. 18.3 Strategies for improving circadian entrainment and healthy aging 

refraining from blue light emitters at night and adopting sleep hygiene could also 
minimize the social jetlag, adverse health consequences and increase the longevity 
of healthy physical and mental health. 

The time-tested therapies for healthy aging professes the principles of harmo-
nious living and being in tune with nature, universal consciousness, environment 
and individual constitution. Healthy aging would therefore require for the individual 
to incorporate healthy lifestyle practices and routines that synchronize an individual 
circadian phase with nature could promote good health and well-being, and encourage 
healthy transformation of the body and mind. 

Compliance with ethical standards: Experiments described in the chapter involving humans or 
animals were conducted by respecting the corresponding ethical guidelines and that informed 
consent was obtained in case humans were involved. 
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Part VI
Therapeutic Interventions in Sleep
Disorders and Clock Misalignment



Chapter 19 
Physical Exercise and Circadian Rhythm 
in Humans 

Yujiro Yamanaka 

19.1 Basic Characteristics of the Circadian System 
in Humans 

Circadian rhythms are defined as those showing approximately 24-h fluctuations in 
physiology and behavior (sleep–wake cycle). In the real world, the plasma melatonin 
and the sleep–wake cycle circadian rhythms show stable rhythmicity within 24 h, 
equal to the same period of the environmental light–dark cycle. Subsequently, these 
24-h rhythms persist and are free run within 25 h on average under constant conditions 
in a temporal isolation facility (Wever 1979). Then, an internal oscillator generates 
free-running rhythm, the central circadian pacemaker in the suprachiasmatic nucleus 
(SCN) of the brain’s hypothalamus (Moore and Eichler 1972). However, since the 
free-running period is longer than 24 h, the phase-advance shift of the circadian 
pacemaker is needed to entrain to the 24-h environmental light cycle daily. There-
fore, although the periodic exposure to 8-h bright light at ca.3000 lx is considered 
entrained during the free-running rhythms of the sleep–wake cycle, body tempera-
ture is maintained in subjects staying at an isolation facility without any time cues 
(Honma et al. 1987). Based on the timed exposure to bright light, this entrainment 
is called photic entrainment. The phase response curve (PRC) to a single pulse of 
bright light can explain the mechanism of photic entrainment. Furthermore, several 
PRCs to light have also been demonstrated in previous studies (Honma and Honma 
1988; Minors et al. 1991) (Fig. 19.1).

The PRC to bright light has an advanced portion during the early subjective day, 
subjective late night (early morning), delayed portion during the subjective early night 
(midnight), and the no-shift portion (dead zone) during the middle of the subjective
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Fig. 19.1 Phase response curve to single light pulses and single bouts of exercise. a Phase response 
curve to a 3-h single bright light pulse under free-running conditions (modified from Honma and 
Honma 1988; Minors et al. 1991). b Phase response curve to a single bout of 1-h high-intensity 
exercise or 3-h low-intensity exercise under a dim light condition (modified from Buxton et al. 
2003)

day. Thus, our circadian pacemaker could be entrained by receiving natural sunlight 
in the morning every day in the real world. However, although the bright light is a 
primary zeitgeber for the circadian pacemaker in mammals, including humans, half 
of the blind persons who do not receive the light information from the eye show 
normal entrained rhythm in the real world (Sack et al. 1992). This normal entrained 
rhythm strongly proposes nonphotic time cues with a period of 24 h in the real 
world (e.g., regular sleep–wake schedule) act as a potent zeitgeber for the circadian 
pacemaker in blind persons. 

The most unique feature of the human circadian system is the so-called “spon-
taneous internal desynchronization” between the sleep–wake cycle and circadian 
rhythms of the core body temperature (Aschoff 1965) and plasma melatonin (Honma 
et al. 1998). When subjects stay in an isolation facility under free-running condi-
tions, even though the free-running period of the sleep–wake cycle and the circadian 
rhythm of the core body temperature have the same period for the first days (of 
approximately 25.0 h), it is occasionally observed that the period of the sleep–wake 
cycle desynchronizes from that of the circadian rhythm of the core body tempera-
ture—a phenomenon known as spontaneous internal desynchronization. Under this 
form of desynchronization, while the free-running period of the circadian rhythm of 
the core body temperature remains at approximately 25.0 h, the sleep–wake cycle 
becomes longer than 30 h or shorter than 20 h (Wever 1979). Therefore, sponta-
neous internal desynchronization supports the idea that the sleep–wake cycle and the 
circadian rhythms of core body temperature and plasma melatonin are regulated by 
two distinct, typically coupled oscillators (Honma et al. 1998). The oscillator site 
for circadian rhythms of core body temperature and plasma melatonin is located in 
the SCN of the brain hypothalamus. Although the oscillator site for the sleep–wake 
cycle is not fully elucidated, some animal studies support the idea that the dopamin-
ergic neurons are candidates for the oscillator for the sleep–wake cycle (Fig. 19.2). 
Besides, based on the effect of exercise on the human circadian system, it is critical
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Fig. 19.2 Two-oscillator human circadian rhythm models. In this model, oscillator I drives the 
circadian rhythms of body temperature and melatonin. It is located in the SCN, and the light–dark 
cycle entrains it. However, oscillator II drives the sleep–wake cycle, probably located in extra-SCN 
brain regions and entrained by nonphotic time cues (modified from Honma et al. 1998) 

to evaluate whether exercise directly affects the circadian pacemaker in the SCN, the 
oscillator for the sleep–wake cycle, or both oscillators. 

19.2 Effects of Single-Bout Exercise on Circadian Rhythm 
in Humans 

Several previous studies have examined whether a single bout of physical exer-
cise acts on nonphotic zeitgeber to elicit circadian rhythm phase shifts of core body 
temperature and plasma melatonin under dim light conditions (Van Reeth et al. 1994; 
Buxton et al. 1997, 2003). Therefore, the first study (Van Reeth et al. 1994) deter-
mined whether a single bout of exercise for 3 h could induce rapid phase shifts in 
circadian rhythms of plasma melatonin and TSH for three days under constant routine 
conditions. The exercise timing ranged from four hours to five hours around the 
minimum phase of the core body temperature. Furthermore, although the nocturnal 
exercise was associated with phase delay of both the melatonin and thyroid stim-
ulating hormone (TSH) rhythms, the extent of delays in the shift was considered 
smaller when the exercise was presented in the latter part of the nighttime period 
and the early morning. These results propose the hypothesis that the direction of 
phase shift by a single bout of exercise can be similar to the shape of the PRC 
and a single pulse of bright light (Honma and Honma 1988; Minors et al. 1991). 
Therefore, the PRC to a single bout of exercise is valuable information to adjust 
(advance and delay shifts) ones’ circadian rhythm. The reported PRC for a single 
bout of 1-h high-intensity exercise (75% VO2 max) was also established from the 
experiment in an isolation facility for three days under dim light conditions (Buxton 
et al. 2003) (Fig. 19.1). During the exercise, while the circadian phase of melatonin 
onset advanced in the evening exercise group by 30 ± 15 (SE) min and delayed in
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the nocturnal exercise group by −25 ± 14 min, the morning and afternoon exercise 
groups failed to produce a significant phase shift. Crossover points between advanced 
and delayed portions were also observed during melatonin onset. However, it is still 
a concern that the advanced shifts by evening exercise are attenuated by the next day. 
Also, the study did not examine whether the delayed shift by nocturnal exercise was 
still significant the next day. Nevertheless, phase shift by a single bout of exercise is 
proposed to be due to the so-called masking effect of exercise. Additionally, another 
group reported opposite results to the exercise PRC. For example, Miyazaki et al. 
(2001) examined whether a single bout of exercise in the morning, afternoon, and 
midnight under dim light conditions (<10 lx) elicited a significant phase shift of the 
circadian melatonin rhythm. However, the number of phase shifts in the exercise 
groups was not different from that in the no-exercise group. Furthermore, based on 
the effect of a single bout of exercise on circadian rhythm in older adults, one previous 
study examined this question by measuring the number of phase shifts in dim light 
melatonin onset based on nocturnal exercises between young and older adults (Baehr 
et al. 2003). They observed that the nocturnal exercise delayed the melatonin onset 
of both young and older adults on average. However, note that although all young 
subjects delayed the dim light melatonin onset, the direction and magnitude of the 
shift in older subjects showed a sizable inter-individual difference. Still, the effect of 
a single bout of exercise under dim light conditions on the human circadian rhythm is 
being debated on the basis of extant literature. In the real world, most people exercise 
outdoors or indoors at various times. One literature examined the effect of exercise 
for 30 min (70% VO2 max) at different times of the day and night throughout a 24-h 
period (Edwards et al. 2002). The effect on the phase of core temperature rhythm 
was also assessed by comparing the rhythms immediately before and immediately 
after the day of exercise with the participants living normally on these 2 days. As 
a result, while nocturnal exercise between 4 h before and 1 h after the minimum 
temperature phase was delayed by 1.03 ± 0.78 h, morning exercise between 3 and 
8 h after the minimum temperature phase advanced by 1.07 ± 1.23 h. Nonetheless, 
the number of phase shifts did not differ from those in sedentary individuals exposed 
to domestic lighting. The results obtained from the controlled laboratory studies and 
under a normal living condition also showed that a single bout of physical exercise 
as the nonphotic zeitgeber is considered a weak synchronizer for the circadian pace-
maker than bright light (photic zeitgeber). Moreover, unclear points in the effect of 
single-bout exercise on the circadian pacemaker in humans still exist (e.g., physio-
logical, humoral, and neuronal signals associated with the exercise-induced phase 
shift of the circadian rhythm). 

Based on the PRC to a single bout of exercise in rodents, exposure to a novel 
environment with a running wheel and forced treadmill running at various circa-
dian phases under free-running conditions demonstrates the exercise PRC (Reebs 
and Mrosovsky 1989; Marchant and Mistlberger 1996). Results also showed that the 
shape of the reported exercise PRC was approximately 180° different from the PRC 
to light. Based on previous studies using a cultured SCN slice in vivo and in vitro, 
the circadian rhythm in the SCN showed the same nonphotic shift by applying a 
neuropeptide-Y (Biello and Mrosovsky 1996), GABA (Tominaga et al. 1994), and
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Orexin (Belle et al. 2014). These agents and sites of brain nuclei are the candi-
dates for an exercise-induced phase shift and therapeutic target to adjust circadian 
rhythms. Hence, although we should note species differences between the diurnal and 
nocturnal animals, further studies would be needed to demonstrate the steady-state 
PRC for a single-bout exercise in humans. 

19.3 Effects of Repeated Exercise on the Circadian Rhythm 
in Humans 

In nocturnal rodents, the free-running period of circadian behavioral rhythms under 
constant darkness influences the daily wheel-running activity (Yamada et al. 1988). 
Additionally, timed forced exercises with treadmill running or voluntary wheel-
running activity entrain the free-running circadian behavior rhythm (Edgar and 
Dement 1991; Marchant and Mistlberger 1996; Yamanaka et al. 2013). Nevertheless, 
daily exercise’s entrainability (zeitgeber strength) is considered a weak zeitgeber 
compared with the photic zeitgeber. However, based on the effect of daily exer-
cises on the circadian rhythms of the SCN circadian pacemaker, daily wheel-running 
activity strengthens the amplitude of multiunit electrical activity in the SCN (van 
Oosterhout et al. 2012). Moreover, recent studies using the VIP or VPAC2 knockout 
mice revealed that regular voluntary wheel running recovered the disruption of circa-
dian rhythms in behavior (Power et al. 2010) and reorganized clock gene expression 
rhythm in the SCN (Schroeder et al. 2012; Hughes et al. 2021). These findings in 
nocturnal rodents demonstrate that daily exercise acts as a potent zeitgeber for the 
circadian pacemaker in the SCN. 

Compared to the effect of daily exercise on the circadian rhythms in nocturnal 
rodents, the effect of daily (repeated) exercise on circadian rhythms in humans is 
relatively complex due to the unique characteristics of the human circadian system 
(e.g., the two-oscillator model of human circadian rhythms). The role of daily exercise 
as the nonphotic zeitgeber for the circadian rhythms in humans can also be partly 
implicated from the evidence in blind persons (Sack et al. 1992). Interestingly, half of 
the blind people with no conscious light perception show normal 24-h rhythms in the 
real world. Alternatively, it has been expected that some nonphotic zeitgeber could 
entrain their SCN circadian pacemaker within 24 h (e.g., meal, exercise, sleep, etc.). 
Therefore, to argue the expectation of nonphotic entrainment in blind people, good 
evidence that circadian rhythm of core body temperature and plasma melatonin in 
them entrained to a strict 23.8-h sleep–wake schedule in an isolation facility (Klerman 
et al. 1998). It should also be noted that the protocol includes a single daily bout 
of 10-min bicycle exercise, six hours after wake up. Similarly, circadian rhythms 
in normally sighted subjects facilitate entrainment to a 23.6-h sleep–wake cycle 
schedule with 2-h daily exercises under dim light conditions less than 10 lx (Miyazaki 
et al. 2001). The sedentary group failed to entrain (phase delay) circadian rhythms 
to the 23.6-h schedule. Furthermore, these studies using a non-24-h sleep–wake
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schedule address the possibility that daily repeated exercise acts as the nonphotic 
zeitgeber for the SCN circadian pacemaker and strengthens the feedback pathway 
through the oscillator for the sleep–wake cycle to the circadian pacemaker or both. 
Several lines of previous studies in isolation facilities have also been conducted to 
resolve this issue. For example, Yamanaka et al. (2010) examined the effect of a 4-day 
repeated exercise under dim light conditions less than 10 lx on the re-entrainment 
circadian rhythm of plasma melatonin and sleep–wake cycle to the 8-h advanced shift 
of the sleep schedule. In this study, the 8-h sleep period was advanced by eight hours 
from habitual sleep onset, after which the advanced sleep schedule was continued 
for four days. Afterward, the sleep schedule was terminated and free ran for six days. 
During the 4-day progressive sleep schedule, the exercise group subjects performed 
a 2-h bicycle exercise at 65–75% of HRmax twice a day. Then, the nonexercise group 
subjects sat on a chair during the exercise session. Under dim light conditions, timed 
exercise facilitated re-entraining (advancing) of the sleep–wake cycle to the shifted 
sleep schedule (Fig. 19.3). 

In contrast, although circadian plasma melatonin rhythms were delayed in both 
the exercise and nonexercise groups, the number of phase-delay shifts was smaller in 
the exercise group. Moreover, note that while the no-exercise group subjects signif-
icantly delayed (free ran) circadian rhythm of plasma melatonin during the free-run 
session, the exercise group subjects did not further delay. Furthermore, Barger et al.

Fig. 19.3 Physical exercise facilitates the entrainment of the sleep–wake cycle but not the melatonin 
rhythm under dim light conditions. Black horizontal bars indicate the sleep periods. Open circles 
indicate the peaks of the plasma melatonin rhythm measured at baseline, on the last day of shift 
schedule, and the last day of the free-running period, respectively. The rectal temperature rhythm 
is expressed as a raster plot. The shaded area indicates when the temperature was below the mean 
value for all values obtained during the experiment. However, open rectangles in the two right panels 
show the 2-h periods of intermittent exercises (modified from Yamanaka et al. 2010) 
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(2004) reported that daily physical exercises at night accelerated re-entrainment of 
the circadian rhythm of the plasma melatonin to a 9-h phase delay of the sleep– 
wake schedule (Barger et al. 2004). In these two studies, the exercise timing was 
midnight-early morning, when a single-bout exercise had previously been reported 
to elicit a phase delay of the circadian rhythm of plasma melatonin (Buxton et al. 
1997, 2003). Thus, it was expected that the circadian rhythm of plasma melatonin 
would be more phase delayed in the exercise group than in the no-exercise groups. 
Still, the phase-shift results did not support this prediction. The significant differ-
ence in these two previous studies was the direction of the sleep–wake cycle shifts 
(8-h advance vs. 9-h delay). Nevertheless, the findings propose that the direction 
of the melatonin phase shift produced by exercise was different from that produced 
by the shift in sleep–wake schedule. Conversely, it was also reported that repeated 
exercise indirectly affects the circadian pacemaker (the circadian rhythm of plasma 
melatonin) through the oscillator for the sleep–wake cycle (feedback effect). 

As noted above, although daily repeated exercise mainly acts as a nonphotic zeit-
geber for the sleep–wake cycle rather than the circadian pacemaker, bright light acts 
as a primary zeitgeber for circadian rhythms. Therefore, the combined effects of 
bright light (natural sunlight and artificial light) and nonphotic cues (daily exercise) 
on circadian rhythms should be considered in the ordinary living world. Klein and 
Wegman (1974) reported that outdoor activity does not affect the time course of 
circadian rhythm resynchronization in body temperature and performance during 
translongitudinal air travel. However, Shiota et al. (1996) demonstrated that outdoor 
exercise helped to resynchronize to new environments of decreased jet lag on circa-
dian rhythms of 17-hydroxy-corticosteroid (17-OHCS) in urine after an 8-h trans-
meridian flight (between Tokyo and Los Angeles) in airline crewmembers. Never-
theless, although the above studies focusing on the effect of outdoor exercise on 
circadian rhythm provided supporting evidence in practical and clinical fields, other 
time cues, such as artificial light and social contact, should also be considered to 
influence the circadian rhythm. Furthermore, this study investigated the combined 
effect of exercise and bright light on the circadian rhythm in strictly controlled condi-
tions. Yamanaka et al. (2014) previously examined whether a 4-day bicycle exercise 
under bright light (>5000 lx) could accelerate the re-entrainment circadian rhythm 
of plasma melatonin and sleep–wake cycle to an 8-h advanced shift of the sleep 
schedule in an isolation facility. In this study, the sleep schedule was advanced by 
8 h from habitual bedtime, and the advanced schedule was continued for four days. 
Afterward, the subjects were released into free-running conditions for six days. The 
exercise group performed 15 min of exercise/15 min of rest on a bicycle exercise for 
two hours twice a day. As a result, the exercise group showed an advanced circadian 
rhythm shift of the plasma melatonin and sleep–wake cycle. Still, although they also 
showed an advanced sleep–wake cycle shift, the no-exercise group did not show 
a significant phase shift from baseline values in their circadian rhythm of plasma 
melatonin (Fig. 19.4).

Internal desynchronization between the sleep–wake cycle and the circadian 
rhythm of plasma melatonin has been reported in the nonexercise group. Sleep 
polysomnography was also recorded during the baseline and advanced sleep periods
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Fig. 19.4 Physical exercise under bright light accelerates the re-entrainment of human circadian 
rhythms to an 8-h advance in sleep schedule. Representative recording of the sleep–wake cycle, 
plasma melatonin rhythm peak time, lower temperature state (upper), and the circadian profile of 
plasma melatonin measured on days 1 and 6 (lower). All data were taken from the same individual 
who participated, the nonexercise (left) and the exercise (right) groups (modified from Yamanaka 
et al. 2014)

in this study. We discovered that although the nonexercise group significantly 
decreased sleep efficiency with increased wakefulness after sleep onset, the exercise 
group maintained sleep quality during the advanced sleep. One possible explanation 
for the more significant phase advance is that exercise under bright light enhances 
the light perception of the circadian pacemaker, inducing a greater phase advance 
shift in bright light. Notably, exercise also increases sympathetic nervous activity, 
which increases pupil size (Ishigaki et al. 1991; Hayashi et al. 2010). Figure 19.5 
summarizes the effects of repeated exercise under the two lighting conditions.

However, further studies are needed to assess whether timed repeated exercises 
under bright light are beneficial for promoting adjustments of the circadian rhythms 
in humans, especially elderly persons, in normal circumstances.
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Fig. 19.5 Two-oscillator models of the human circadian system and underlying mechanisms 
causing phase adjustment of the two oscillators by photic and daily exercise. Previous studies 
under dim light conditions (Yamanaka et al. 2010) show that strict sleep schedules and physical 
exercise serve as the nonphotic zeitgeber for the sleep–wake cycle. They also indirectly affect the 
circadian pacemaker through the sleep–wake cycle’s oscillator. Besides, exercise under bright light 
conditions (Yamanaka et al. 2014) enhances the phase shift by bright light. Additionally, bright 
light increases alertness and facilitates the entrainment of the sleep–wake cycle to a social schedule
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Chapter 20 
Circadian Rhythms and Time-Restricted 
Eating in Healthy Aging and Longevity 

Payal Bajaj and Gurcharan Kaur 

20.1 Introduction 

Chrono-nutrition is an emerging area developing to elucidate the link between 
temporal eating timings/patterns and circadian rhythms and its impact on metabolic 
health (Queiroz et al. 2021). This concept is based on the idea that, in addition to the 
quality and quantity of food, meal timing is also important for the individual’s well-
being due to the complex interaction between nutrition, metabolism, and circadian 
clock (Asher and Sassone-Corsi 2015; Manoogian et al. 2019). Chrono-nutrition 
deciphers how the mismatch of food intake (meal size, timings, frequency, and 
composition) with biological rhythms of our body negatively impacts the body’s 
internal clock system and impairs metabolic health. Alterations in energy metabolism 
are reported when food consumption is not in sync with the biological clock (Gooley 
2016). Along with the consumption of energy-dense processed foods, the temporal 
patterns of eating over long hours in a day have also been identified as the root cause of 
deterioration of physical and mental health. Therefore, induction of robust catabolic 
circadian rhythms by temporal regulation of feeding and fasting may emerge as an 
innovative interventional strategy for healthy aging and longevity (Froy 2018). 

The early onset and growing prevalence of lifestyle disorders are known to be influ-
enced by modern societal pressures and lifestyle such as unhealthy dietary habits, 
lack of physical activity, excess of screen time, and sleep deprivation. The agricul-
tural revolution, some 10,000 years ago, lead to the constant food availability round 
the year which is typical of modern societies. One major negative aspect of the 
modernization of the food industry over the last about 50 years is the inclusion of 
calorie-dense fast foodstuffs in daily meals. The dynamic changes in the molecular 
and cellular processes with biological aging cannot be considered as a disease (Rattan
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2014) which necessitates to lay more focus on health-oriented and disease-preventive 
strategies in aging research. To promote healthy aging and to reduce the costs on the 
health care of the elderly necessitates that the increase in life span be accompanied 
by biological aging attenuation. Energy restriction by limiting caloric intake to 60– 
70% of the daily consumption and intermittent fasting by restricting meal timings to 
day hours may extend the health span by preventing or slowing down the onset of 
aging-associated lifestyle diseases like T2D, hypertension, and cancers. 

20.2 Circadian Clock and Its Disruption with Aging 

The “circadian” (“Circa Diem” or “about a day”) cycle coordinates a series of behav-
ioral, metabolic, and biological processes that take place throughout the day so as 
to anticipate and acclimatize to changes in daily rhythm (Queiroz et al. 2021). The 
circadian system in mammals consists of a master/central clock which is situated in 
the hypothalamus’s suprachiasmatic nucleus (SCN), and various secondary clocks 
located in extra-SCN regions of the brain and other organs such as adipose tissue, 
skeletal muscle, liver, and pancreas (Queiroz et al. 2021; Stenvers et al. 2019). At 
the molecular level, circadian rhythm consists of a negative feedback loop driven 
by transcriptional factors brain and muscle ARNT-like 1 (BMAL1) and circadian 
locomotor output cycles kaput (CLOCK) (Chaix et al. 2019). BMAL1 and CLOCK 
heterodimerize and bind to circadian E-box elements site (CACGTG) present in the 
promoter region of negative repressors, CRYPTOCHROME (CRY1 and CRY2), and 
PERIOD (PER1 and PER2) to mediate their transcription. PER and CRY proteins in 
turn heterodimerize and inhibit BMAL1-CLOCK activity, thereby generating ~24 h 
rhythm in the transcription of PER and CRY (Chaix et al. 2019; Mattis and Sehgal 
2016). SCN entrains and coordinates circadian oscillations in different peripheral 
organs such as the kidney, lungs, liver, and heart, known as peripheral clocks by 
sending outputs to different peripheral clocks and mediating the release of secondary 
messengers, glucocorticoids, nitric oxide, neuropeptides, and neurohormones. This 
results in an internal synchronization between different metabolic, physiological, 
and behavioral systems (Dibner and Schibler 2015). 

Peripheral clocks are not just entrained by the master biological clock but also 
by non-photic cues such as different types of diets and dietary patterns, temperature, 
sound, and humidity (Jagota et al. 2019). Loss of neuronal and synaptic functions 
with aging alters SCN electrophysiology, reduces circadian amplitude, and lengthens 
the circadian period in mice (Barnard and Nolan 2008; Slotkin et al. 2005). Non-
invasive disruption of circadian rhythmicity was found to reduce the lifespan of 
hamsters which was enhanced by implantation of neonatal SCN into older animals 
thus suggesting a link between aging and circadian rhythm (Hurd and Ralph 1998). 
Serotonin which is a precursor of melatonin is known to play an important role in 
the regulation of both photic and non-photic circadian rhythms. (Jagota and Kalyani 
2010) reported that serotonin levels and rhythmicity were reduced with age but were 
restored after melatonin administration. Similarly, exogenous melatonin restored
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the age-associated decline in antioxidant enzymes activity (Manikonda and Jagota 
2012). Aging was also observed to cause desynchronization between clock gene 
expression and immunity regulating genes in the kidney which was restored by 
curcumin administration (Thummadi and Jagota 2019). 

Molecular clock disruption, throughout the body or in specific metabolic tissue, 
results in lipid dysregulation and abnormal energy balance. Loss of Bmal1 func-
tion in mice has been shown to reduce fat-storing capacity in the adipose tissue 
thus increasing levels of triglycerides (TGs), cholesterol, and free fatty acids 
in circulation which resulted in ectopic fat in the skeletal muscle and liver of Bmal1 
−/− mice (Shimba et al. 2011). Further, obesity, hyperlipidemia, hyperleptinemia, 
hyperglycemia, and hepatic steatosis were also observed in homozygous Clock 
and Bmal1 mutant mice (Marcheva et al. 2010; Turek et al. 2005). Mice lacking 
Per1 and Per2 function were observed to exhibit impaired glucose tolerance (Lamia 
et al. 2008). Furthermore, loss of Cry1 and Cry2 function has also been reported 
to cause glucose intolerance along with high corticosterone levels (Lamia et al. 
2011). Together these studies provide evidence for the role of the circadian clock in 
regulating lipid metabolism and energy homeostasis. 

Aging is associated with disrupted circadian rhythm due to multiple factors. Indi-
vidual SCN neurons were observed to display rhythmic clock gene expression in 
older animals which were otherwise expressed constitutively in younger animals. 
Similarly, rhythmic expression of the Clock and Bmal1 gene in extra-SCN sites 
such as the hippocampus, hypothalamus, and amygdala was observed in young 
animals which were altered in older animals (Wyse and Coogan 2010). Although 
the total number of neurons remained unchanged in SCN of older animals, the 
percentage of neurons containing vasopressin, a coupling factor regulating circa-
dian oscillations within SCN was reduced significantly by 31% (Mieda et al. 2015; 
Roozendaal et al. 1987). Another coupling factor within SCN, gamma-aminobutyric 
acid (GABA) was dysregulated suggesting age-related circadian disruption (Nygård 
and Palomba 2006). In response to GABA, a reduction in inhibitory postsynaptic 
potential (IPSP) was detected in aged SCN as compared to young SCN neurons. 
In addition to a decrease in electrical activity, aged neurons were found to have 
reduced peptidergic function, gastrin-releasing peptide, vasopressin, neurotensin, 
and vasoactive intestinal peptide (Farajnia et al. 2012). In humans, arginine vaso-
pressin (AVP) neurons in SCN were found to exhibit diurnal oscillation showing 
peak value during early morning and lowest during the night in young subjects which 
was disrupted in older people (Hofman and Swaab 2006). Similarly, the number of 
vasoactive intestinal peptide (VIP) neurons were observed to be highest in the SCN of 
young healthy subjects (10–40 years), which were reduced by 60% in older subjects 
(Hofman et al. 1996). Altogether these studies suggest that the circadian clock is 
disrupted with aging therefore further misalignment of meal timings with circadian 
rhythms due to long eating hours of energy-dense food may be highly deleterious 
for maintaining good health in older adults.
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20.3 Time-Restricted Eating as a Novel Dietary 
Intervention 

Almost all cells of our body have inherent molecular clocks which help to anticipate 
and sense the predictable recurring changes occurring every day such as rhythmic 
nutrient availability and accordingly facilitate cellular functions adaptation. On the 
contrary, nutrient-sensing pathways judge acute imbalances in nutrient and modulate 
metabolism so that cells are able to optimally adapt to nutrients availability. Chrono-
nutrition, which is developing at the interface of circadian rhythms and nutrient-
sensing pathways, brings in a new and novel concept of meal timings alignment with 
biological clocks to maintain metabolic health (Chaix et al. 2019). The concept of 
time-restricted feeding (TRF) in animals or time-restricted eating (TRE) in humans 
came from studies investigating the impact of food intake timing on the circadian 
rhythm. It is a variant of intermittent fasting (IF) regimen which recommends to 
limit the eating period to 4–12 h while increasing the fasting window to 12–20 h. 
However, it differs from IF in two aspects: (1) It does not restrict the amount of 
calories intake during the eating window (2) it requires a consistent maintenance of 
eating window over time (Adafer et al. 2020). Current data in support of TRF are 
primarily based on animal experimentation although few recent pilot-scale human 
studies provide evidence for the possibility of translational benefit of TRE. (Jefcoate 
et al. 2021) reported their observations of a pilot study and identified some key factors 
such as cost, time availability, wake time, bedtime, and perceived health benefits 
(on workdays) which may motivate individuals to undertake time-restricted eating. 
Similarly, TRE was shown to improve glucose tolerance and also reduce body weight 
and blood pressure in obese adults and humans at risk of type 2 diabetes (Gabel et al. 
2018; Hutchison et al. 2019). 5 weeks of early TRE (eTRE) were observed to improve 
insulin levels, blood pressure, β-cell responsiveness, oxidative stress, and insulin 
sensitivity in pre-diabetic men without affecting body weight (Sutton et al. 2018). 
Further, 11 overweight adults, in a randomized crossover trial, underwent eTRE 
(8:00–14:00) for 4 days resulting in reduced fasting glucose and insulin resistance in 
the morning and elevated fasting insulin levels in the evening with respect to control 
group who ate from 8:00 to 20:00 h. Before breakfast, levels of cholesterol, ketone 
bodies, and expression of stress gene were elevated in the eTRE group, while in 
the evening elevated levels of brain-derived growth factors (BDNF) and cell growth 
regulatory protein, mTOR was observed. Though the intervention lasted only 4 days, 
eTRE increased fasting levels of high-density lipoprotein (HDL), total cholesterol 
(TC), and β-hydroxybutyrate and reduced glucose levels in the morning as compared 
to the control group (Jamshed et al. 2019). Collectively, these studies suggest that 
limiting the eating window to the early hours of the day so as to align with circadian 
rhythms may prove beneficial for metabolic health. 

A recent study investigated the effects of TRE on subjects suffering from metabolic 
syndrome. 10 h of self-selected TRE for 12 weeks reduced fat mass, body weight, 
TC, low-density lipoprotein (LDL), and blood pressure. However, no significant 
change in the levels of insulin, hemoglobin, glucose, HDL, TG, and sleep quality
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was observed (Wilkinson et al. 2020). A similar pilot study found that 3 months of 
TRE resulted in a significant decrease in waist circumference, body weight and body 
mass index, waist-to-height ratio, and glycosylated hemoglobin levels in participants 
with abdominal obesity but no change in the lipid profile (Kesztyüs et al. 2019). Since 
both these studies lacked control groups, further studies are required to investigate 
the effects of TRE in people with cardiometabolic disorders. Another pilot study 
conducted in older people with mobility impairments although reported the loss of 
weight after 4 weeks of TRE, but there was no positive or negative effect of TRE on 
cognitive and physical functions, metabolic parameters, and quality of life (Anton 
et al. 2019). More such human studies are required to evaluate the impact of TRE on 
the metabolic health of elderly people because this dietary regime reduces the daily 
consumption of proteins and calories which can also aggravate age-related loss of 
muscle strength. Different studies investigating the effects of TRE on cardiometabolic 
health and related outcomes in humans are summarized in Table 20.1.

A recent study compared the efficacy of TRE and intermittent fasting regimen 
of alternate-day feeding (ADF) in rats and reported that TRE was equally effective 
in terms of redox homeostasis in rats (Bhoumik et al. 2020). Therefore, keeping in 
view the ease of compliance with TRE as compared to ADF regimen in our day-to-
day life, TRE may be more viable strategy of dietary interventions for maintaining 
health in older adults. As mealtime is important to synchronize the biological clock 
to the central clock, so restricting the duration and timing of eating might reduce 
desynchronization between both and help maintain metabolic functions. Initially, 
some preclinical studies with TRF were performed by restricting food availability 
in rodents to a few hours (generally 4–8 h) during the day when rodents are asleep 
and resting and then analyzing their activity-rest cycle with respect to the new eating 
regimen (Escobar et al. 1998; Mistlberger 1994). Caloric intake is often reduced when 
the access to food is restricted to fewer hours. These studies suggested that rodents 
would get up several hours before the food arrived and begin ambulatory activities 
as if expecting food. Such meal anticipatory activities were also observed when the 
calories were limited and offered at night, and the intensity of ambulatory activity 
increased with calorie restriction (Mitchell et al. 2016). Based on these observations, 
it was suggested that CR did not reduce physical activity but rather improved food-
seeking behavior which is essential for survival (Chaix and Panda 2016). Some 
landmark studies investigating the effects of TRF in rodents are summarized in Table 
20.2.

20.3.1 Circadian Rhythms, TRE, and Energy Metabolism 

Recent studies on the integration of circadian rhythms with nutrient-sensing pathways 
have provided encouraging results and recommend that restricting the meal timings 
for 8–10 h during the day is beneficial not just for controlling body weight but also 
helps in glucose regulation, lipid homeostasis, maintaining healthy gut microbiome, 
cardiovascular functions, anti-inflammatory activity, sound sleep, and overall health
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(Panda 2016). Hepatic lipid metabolism is associated with both nutrient-sensing 
pathways and components of the circadian clock (Asher and Sassone-Corsi 2015; 
Neufeld-Cohen et al. 2016). AMPK as the master regulator of lipid metabolism senses 
the decline in energy consumption during fasting and reduces the cellular ratio of 
adenosine triphosphate (ATP) to adenosine monophosphate (AMP) (Bhoumik et al.

Table 20.1 Effects of TRE on cardiometabolic health and related outcomes in humans 

Study Participants Duration Intervention Findings 

Carlson et al. 
(2007), Stote 
et al. (2007) 

n = 15 (10 
women, 5 Men) 
Age: 40–50 year 
BMI: 
18–25 kg/m2 

Two 8-weeks 
treatment with 
11-weeks 
washout between 
two diet periods 

TRE: One 
meal/day 
(16:00–20:00 h) 
Control: 3 
meals/day 

↓ Body weight, 
blood pressure, 
fat mass, glucose 
tolerance, 
cortisol 
↑ Fasting plasma 
glucose 
↔ Leptin, 
insulin, and 
glucagon 

LeCheminant 
et al. (2013) 

n = 29 (men) 
Age: 18–26 years 
BMI: 24.4 kg/m2 

2 weeks TRE: 13 h 
(06:00–19:00 h) 
Control: Ad 
libitum 

↓ Body weight 

Gill and Panda 
(2015) 

n = 8 (3 women,  
5 men)  
Age: 34–37 years 
BMI: > 25 kg/m2 

16 weeks TRE: 10 h 
(self-selected) 
Control: Ad 
libitum 

↓ Body weight 

Moro et al. 
(2016) 

n = 34 (Men) 
Age: 29.21 ± 3.8 
Weight: 84.6 ± 
6.2 kg 

8 weeks TRE: 8 h 
(13:00–20:00) 
Control: 12 h 
(8:00–20:00) 

↓Fat mass, 
testosterone, 
Insulin-like 
growth factor-1, 
blood glucose, 
insulin, leptin, 
TG, TNF-α, 
IL-1β 
↑ Adiponectin 
↔ TC, HDL, 
LDL 

Antoni et al. 
(2018) 

n = 13 (12 
women, 1 men) 
Age: 45–47 years 
BMI: 
28–30 kg/m2 

10 weeks TRE: Breakfast 
delayed and 
dinner advanced 
by 1.5 h 
Control: Ad 
libitum 

↓Low body fat, 
adiposity 
↔ Body weight 

Gabel et al. 
(2018) 

n = 23 
Age = 25–65 
BMI: 
30–45 kg/m2 

12 weeks TRE: 8 h 
(10:00–18:00) 
Control: Ad 
libitum 

↓ Body weight 
↔ Resting 
metabolic rate

(continued)



20 Circadian Rhythms and Time-Restricted Eating in Healthy Aging … 431

Table 20.1 (continued)

Study Participants Duration Intervention Findings

Sutton et al. 
(2018) 

n = 8 (Men) 
Age: 35–70 
BMI: 
25–50 kg/m2 

5 weeks TRE: 6 h 
(Breakfast: 
6:30–8:30 h, 
lunch and dinner: 
10:00–13:00) 
Control: 12 h 

↓ Blood 
pressure, 
oxidative stress, 
appetite 
↑ Insulin 
sensitivity, β-cell 
responsiveness 
↔ HDL, LDL 

Anton et al. 
(2019) 

n = 10 (6 women, 
4 men)  
Age ≥ 65 
BMI: 
25–40 kg/m2 

4 weeks TRE: 16 h 
(Self-selected) 
Control: Ad 
libitum 

↓ Body weight 
↑ Walking speed, 
cognitive 
functions 

Jamshed et al. 
(2019), Ravussin 
et al. (2019) 

n = 11 
Age: 20–45 
BMI: 
25–35 kg/m2 

4 days TRE: 6 h 
(8:00–14:00) 
Control: 12 h 
(8:00–20:00) 

↓ Body weight, 
Alters diurnal 
pattern of 
cholesterol, 
cortisol, ketones, 
circadian clock 
genes, BDNF, 
and SIRT1 

McAllister et al. 
(2020) 

n = 22 (men) 
Age: 22 ± 
2.5 years 
BMI: 28.5 ± 
8.3 kg/m2 

28 days Isocaloric TRE: 
8 h  
(Self-selected) up 
to 300 kcal 
Ad libitum TRE: 
8 h (No calorie 
restriction) 

↓ Body fat, 
blood pressure, 
↑ Adiponectin, 
HDL 
↔ plasma 
insulin, blood 
glucose 

Wilkinson et al. 
(2020) 

n = 19 (6 women, 
13 men) 
Age ≥ 59 
BMI: 
33.06 kg/m2 

12 weeks TRE: 10 h 
(Self-selected) 
Control: 14 h 

↓ Body weight, 
waist 
circumference, 
TC, HDL, LDL, 
blood pressure 
↔ TG, fasting 
glucose 

Hutchison et al. 
(2019) 

n = 15 (Men) 
Age ~ 55 years 
BMI: 33.9 kg/m2 

1 week eTRE: 
8:00–17:00 
dTRE: 
12:00–21:00 

↓ Body weight, 
fasting TG, 
glucose tolerance 

Chow et al. 
(2020) 

n = 20 (17 
women, 3 men) 
BMI: 34.1 kg/m2 

12 weeks TRE: 8 h 
(Self-selected) 
Control: Ad 
libitum 

↓ Body weight, 
visceral fat mass, 
and lean mass 

Parr et al. (2020) n = 11 (men 
Age: 30–45 years 
BMI: 
27–35 kg/m2 

5 days TRE: 8 h 
(10:00–18:00) 
Control: 15 h 
(7:00–22:00) 

↓ Glucose and 
insulin 
↑TG, NEFA

(continued)
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Table 20.1 (continued)

Study Participants Duration Intervention Findings

Zeb et al. (2020) n = 80 25 days TRE: 8 h 
(19:30–3:30) 
Control: Ad 
libitum 

↓ TC, TAG, 
TNF-α, IL-1β 
↑ HDL, BMAL1, 
CLOCK 
↔ LDL 

n: number, BMI: Body mass index, TRE: time-restricted eating, TNF-α: tumor necrosis factor 
alpha, IL-1β: interleukin-1 beta, HDL: high-density lipoprotein, LDL: low-density lipoprotein, 
TG: triglycerides, TC: total cholesterol, BDNF: brain-derived neurotrophic factor, SIRT1: sirtuin1, 
eTRE: early TRE, NEFA: non-esterified fatty acids, TAG: triacylglycerides, BMAL1: brain and 
muscle ARNT-like 1, CLOCK: circadian locomotor output cycles protein kaput, ↓: reduced, ↑: 
increased, ↔ : no change

2020). AMPK activation tends to promote catabolic pathways by inhibiting triglyc-
erides and cholesterol synthesis on one hand, and simultaneously increasing glucose 
uptake, energy expenditure, and rates of glycolysis and lipolysis (Waldman et al. 
2020). One of the downstream targets of activated AMPK is acetyl-CoA carboxy-
lase (ACC) which catalyzes the rate-limiting step of fatty acid synthesis by converting 
acetyl-CoA to malonyl-CoA. However, phosphorylated ACC is enzymatically inac-
tive and cannot mediate lipid biosynthesis. TRF has been reported to increase AMP 
levels and activate AMPK which in turn, phosphorylates ACC, therefore, reducing de 
novo lipogenesis (Manoogian and Panda 2017). Further, TRF is also associated with 
the SIRT1 mode of energy regulation. During fasting, AMPK and SIRT3-mediated 
activation of ketogenesis and fatty acid oxidation in the liver may be a strategy to 
prepare the brain for reduced energy supply since ketones are the preferred source 
of energy for brain during fasting (Anton et al. 2018). 

Further, TRF is found to increase the expression of circadian clock repressor, 
Rev-erb which represses genes implicated in lipogenesis (Cho et al. 2012). Increased 
Rev-erb expression is corroborated with reduced expression of lipid synthesis gene, 
fatty acid synthase (FAS) (Chen et al. 2019). Liver tissue produces approximately 
20% of the total body cholesterol and regulates the breakdown of cholesterol for the 
synthesis of bile acids and many other sterols (Maxfield and Tabas 2005). Rev-erbα 
regulates the circadian cycle of hepatic bile acid and cholesterol biosynthesis by 
modulating rhythmic SREBP-1 and Cyp7a1 expression (Le Martelot et al. 2009). 
The expression of enzymes regulating committing steps of both classical and acidic 
pathways of bile acid synthesis, Cyp7a1, and Cyp7b1 was elevated in the liver of TRF 
mice as compared to ad libitum-fed mice (ALF). Further, expression of a transcription 
factor regulating cholesterol biosynthesis, SREBP-1, was also found to increase in 
TRF mice in comparison to ALF mice (Chaix et al. 2014). Change in the expression 
of Cyp7a1 and Cyp7b1 together with an increase in cholesterol breakdown suggests 
that TRE paradigm has the potential to counteract obesity and related co-morbid 
metabolic disorders.
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Table 20.2 Effects of TRF in rodents 

Study Rodent strain Duration Intervention Findings 

Salgado-Delgado 
et al. (2010) 

Male Wistar rats 
(5–6 weeks old) 

4 weeks FD: food access 
from ZT0-ZT12 
FN: food access 
from ZT12-ZT0 
AL: ad libitum 
group 

↓ Body weight, 
abdominal fat 
Restored TAG 
rhythm 

Jang et al. (2012) Male C57BL/6N 
mice (4 weeks old) 

4 weeks RF: Food access 
(Normal chow diet 
+ 60% HFD) from 
ZT0-ZT12 
PF: Food access 
(Diet same as RF 
group) from 
ZT12-ZT0 
AL: ad libitum 
group (Chow feed) 

↔ Body weight 
Altered expression 
of BMAL1, PER2, 
CLOCK, SREBP1c, 
and FAS 

Morris et al. 
(2012) 

Male C57BL/6N 
mice 

6 weeks FL: 10% fructose 
during day and 
water at night 
FD: 10% fructose at 
night and water 
during the day 
AL: ad libitum 
group (Normal 
water) 

↑ Plasma leptin and 
insulin in FL as 
compared to FD 
group 
↔ cholesterol, TG, 
adiponectin, and 
glucose 

Reznick et al. 
(2013) 

Adult male Wistar 
rats 

3 weeks HFD-ad libitum 
HFD-day 
Chow-ad libitum 
Chow-day 

Altered expression 
of genes BMAL1, 
DBP, TEF, PEPCK, 
and FAS 

Gil-Lozano et al. 
(2014) 

Male Wistar rats 3 weeks RF for 12 h ↑ Plasma insulin, 
GLP-1, and glucose 

Salgado-Delgado 
et al. (2013) 

Male Wistar rats 
(4–5 weeks old) 

5 weeks FRP: food access 
from ZT0-ZT12 
FAP: food access 
from ZT12-ZT0 
AL: ad libitum 
group 

↓ Body weight, 
glucose intolerance 
Maintained 
expression of Per1, 
Per2, Bmal1, and 
Clock 

FD: food restricted during the day, FN: food restricted food during night, AL: ad libitum, TAG: tria-
cylglycerides, TG: triglycerides, RF: restriction feeding in daytime, PF: pair-feeding in nighttime, 
BMAL1: brain and muscle ARNT-like 1, PER1: period circadian regulator 1, PER2: period circadian 
regulator 2, CLOCK: circadian locomotor output cycles protein kaput, SREBP-1: sterol regulatory 
element-binding protein 1, FAS: fatty acid synthase, FL: fructose light, FD: fructose dark, HFD: 
high-fat diet, DBP: (albumin D-box) binding protein, TEF: thyrotroph embryonic factor, PEPCK: 
phosphoenolpyruvate carboxykinase, FRP: food intake in the rest period, FAP: food intake in the 
active period, ↓: reduced, ↑: increased, ↔ : no change
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20.3.2 Time-Restricted Eating to Align with Circadian 
Rhythms for Healthy Aging 

Dietary patterns and their therapeutic implications have taken pivotal place in the 
field of aging research over the recent years. Moreover, dietary restriction has been 
identified as a key strategy to maintain and improve mental as well as physical health 
of older adults (Currenti et al. 2021). Diet is a non-photic cue which is a vital aspect 
of maintaining good health. Therefore, both the nutrient composition and dietary 
pattern play important role in regulating metabolism by entraining as well as rein-
stating peripheral biological clocks. One of the most severe implications of chronic 
circadian disruption, like the one experienced by shift workers, is a higher risk for 
cardiovascular diseases (CVDs) (Lunn et al. 2017; Puttonen et al. 2010). In fact, 
it is the leading cause of mortality and disability among active firefighters at work 
(Donovan et al. 2009; Soteriades et al. 2011). At the same time, CVDs remain the 
major cause of death among the general population. Therefore, the circadian regula-
tion of heart health is of utmost importance. Bmal1 knockout mice were found to be 
more susceptible to atherosclerosis, which was a result of metabolic perturbations 
(Chaix et al. 2019). Over-expression of dominant-negative Clock∆19 mutant protein 
in mouse cardiomyocytes disrupted cardiac gene expression and function as mutant 
mice exhibited increased lactate release, fatty acid oxidation, longer R-R interval, 
and bradycardia (Bray et al. 2008). 

A substantial amount of experimental evidence generated from animals and 
few human studies clearly demonstrates link between circadian rhythms, nutrition, 
metabolism, and their impact on metabolic health. In a recent review article, Flanagan 
et al. (2021) compiled the available evidence from literature on chrono-nutrition and 
its underlying molecular and neuronal mechanisms. The modern lifestyle factors such 
as 24 h artificial light, shift-work professional demands, screen time, and excessive 
food availability put the individuals at risk of circadian and metabolic dysregulation. 
Based on the available literature reports from rodents and human pilot studies, it may 
be suggested that maintaining a regular temporal eating pattern may be helpful to 
restore circadian rhythm and reduce disease risk and promote healthy aging. TRE 
was conceptualized in view of its relevance to circadian rhythms, which influences 
daily 24 h rhythms of body’s physiology, metabolism, and behavior (Xie et al. 2019). 
Several human pilot studies have highlighted the potential benefits of TRF regimen 
on metabolic health indicators (Jamshed et al. 2019; Sutton et al. 2018; Tinsley et al. 
2017). In a recent study, Jamshed et al. (2019) reported the effects of early TRF, i.e., 
skipping dinner on 11 overweight adults and just 4 days of early TRF was observed 
to alter 6 circadian clock genes expression and also upregulated SIRT1 and LC3A 
expression which play key role in autophagy. These subjects showed improvement 
in 24 h glucose levels, lipid metabolism, and circadian clock as well as autophagy-
related genes expression, and based on these observations, it was suggested that TRF 
regimen may have anti-aging effects. 

Circadian rhythms help to optimize physiological functions to maintain health 
by temporal coordination between cellular and tissue function and behavior. The
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endogenous circadian rhythms are dampened with age and thus compromise this 
temporal coordination. TRE strategy recommends to follow regular feeding-fasting 
pattern as an external cue that helps to maintain the robustness of daily biological 
rhythms (Manoogian and Panda 2017). Erratic eating timings derange the temporal 
coordination of physiology and metabolism with endogenous biological clock thus 
increasing risk and early onset of many chronic diseases and accelerate aging. In 
humans, epidemiological studies have reported that erratic eating behavior increases 
the risk of chronic lifestyle diseases, whereas consistent daily feeding-fasting cycles 
and overnight 12–14 h fasting provides protection. Possible interactions between 
circadian clock components with nutrient-sensing pathways and their health impli-
cations have recently been very appropriately elaborated by Chaix et al. (2019). It 
is suggested that these interactions may serve 3 major functions: (1) When food 
is ingested at an anticipated time of daily rhythm, then the integrated anticipatory 
response operated by the circadian clock, and the nutrient-sensing pathway’s acute 
response, both act in a synergistic manner to maintain nutrient homeostasis; (2) On 
the other hand, when feeding is at an unanticipated time, the nutrient-sensing path-
ways tend to re-adjust the phase of the clocks in such a way that on the subsequent 
days; food availability is anticipated at the new feeding re-adjusted time slot; (3) 
Circadian regulation initially ensures that pathways involved in nutrients assimila-
tion get activated in anticipation of food intake, so that the excess of nutrients can 
be handled by the organism. The activation of nutrient assimilation pathways lasts 
for few hours defined as limited time window for optimal metabolism of nutrients, 
and subsequently, there is misalignment of circadian rhythms and nutrient-sensing 
pathways. Based on this information about interactions between circadian clocks 
and nutrient-sensing pathways, it is suggested that TRF or TRE (when referring to 
humans) regimens to restrict food consumption within a consistent 8–12 h period 
during the day allow optimal utilization of nutrients and promote overall health 
(Panda 2016). This novel concept of TRF/TRE and the underlying molecular basis 
are being researched extensively using appropriate animal models, but currently, 
there are limited data available from TRE regimen-based human studies. 

Several landmark studies using animal models have elucidated the adverse effects 
of feeding by defying the circadian rhythms. Nocturnal mice fed with a high-fat diet 
(HFD) during the light phase were found to gain weight more rapidly as compared to 
the mice fed only during the dark phase (Arble et al. 2009). However, time-restricted 
HFD fed mice showed improved circadian oscillations, elevated bile acids, low levels 
of serum cholesterol, and metabolites involved in fatty acid metabolism, implicating 
that consuming meals at an incorrect circadian time can have a detrimental effect 
on the metabolic health (Hatori et al. 2012). Consuming meals at odd hours on the 
postprandial lipemia response were found to increase plasma triacylglycerol (TAG) 
levels at night (20:00–4:00) as compared to day time (7:00–16:00). These findings 
suggested that the nocturnal impairment in lipid metabolism is a potential risk factor 
for cardiovascular diseases (Bonham et al. 2019). Another cross-sectional study 
found that high intake of energy in the form of fat at night (17:30–20:29) increased 
plasma levels of total cholesterol (TC) and low-density lipoproteins (LDL) which was 
reduced significantly by shifting 100 kcal of meal from night to morning, therefore,
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indicating that lipid metabolism reduces at the end of biological active phase (Chen 
et al. 2019). 

In the mouse heart, knockout or over-expression of Kruppel-like factor 15, a clock-
dependent oscillator, resulted in abnormal repolarization, loss of rhythmic interval 
of QT, and increased susceptibility to arrhythmogenesis (Jeyaraj et al. 2012). These 
studies, therefore, suggest that the maintenance of circadian rhythm may reduce the 
risk of CVDs. The effect of TRF on the cardiometabolic functions and the underlying 
molecular mechanism by which TRF mitigates cardiac aging dysfunction in rodents 
have not been explored, but it has been well established in Drosophila (Melkani 
and Panda 2017). A study by Gill et al. (2015) found out that subjecting 2-week-
old wild Drosophila melanogaster to TRF for 12 h every day was observed to show 
improved sleep–wake cycle, deceleration of cardiac aging as compared to Ad libitum-
fed flies. Further, in the Drosophila heart, TRF resulted in the downregulation of a 
group of genes that encode for electron transport chain in mitochondria resulting in 
a decline in reactive oxygen species and in turn protecting the heart. Additionally, 
TRF also induced the expression of different subunits of ATP-dependent chaperonin 
complex, CCT. Upregulation of CCT expression was coupled with reduced expres-
sion of cytoskeletal monomers which in turn reduced the fraction of misfolded or 
unfolded cytoskeletal proteins, thereby, improving cardiac functions (Chaix et al. 
2019; Melkani and Panda 2017). Overall. TRF studies in Drosophila indicated that the 
improvement in proteostasis and changes in mitochondrial functions may underpin 
the benefits of TRF. 

Along with the physical health, mental health is also a major public health concern 
in the modern age due to its deleterious effects on quality of life. The circadian 
system is found to affect mood and reward-based circuitry, both of which are funda-
mental components of mental health (Siemann et al. 2021). Photoperiod exposure 
is found to promote plasticity and imprint circadian clock perinatally along with 
long-term impact on dopamine and serotonin systems which are known to regulate 
mood (Ciarleglio et al. 2011; Siemann et al. 2021). Circadian disruption has been 
associated with different psychiatric disorders such as depression, bipolar disorder, 
schizophrenia, anxiety, cognitive performance and increase negative emotions, atten-
tion deficit hyperactivity disorder, and autism (Finan et al. 2015; Hou et al. 2020). 
A 4 days-in-laboratory study conducted on young healthy adults showed that sleep 
deprivation that impaired circadian rhythmicity impacted cognitive flexibility and 
dynamic attention (Honn et al. 2019). Delayed sleep/wake and circadian timing was 
also correlated with poor academic performance in undergraduate students (Phillips 
et al. 2017). Functional MRI studies in humans have observed that light inhibits 
amygdala activity and strengthens functional connectivity with the prefrontal cortex 
(McGlashan et al. 2021), indicating the mood-elevating effect of light. Circadian 
disruption was also observed in genes such as BMAL1, REV-ERBa, PER-1, 2, 3, 
and DBP in different brain regions of patients with major depressive disorder (MDD) 
(Li et al. 2013). 

Further, circadian rhythm has been found to play an important role in neurogen-
esis (Borgs et al. 2009; Tamai et al. 2008), and any disruption in circadian rhythm 
with age has been associated with neurodegenerative disorders such as Parkinson’s
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disease (PD) and Alzheimer’s disease (AD) (Manoogian and Panda 2017). The 
amyloid hypothesis of AD suggests that the synthesis and deposition of amyloid 
β peptide initiates a cascade of events that destroys the neurites and synapses leading 
to the formation of neurofibrillary tangles comprising tau protein (Hardy and Selkoe 
2002). Daily fluctuations in Aβ soluble interstitial fluid which were observed before 
aggregation were diminished after Aβ aggregation. Further, Aβ aggregation also 
affected molecules such as melatonin, orexin, and associated brain regions (Fron-
czek et al. 2012; Wu and Swaab 2007). Exposing AD patients to bright light has 
been observed to restore some behavioral modifications such as dementia and poor 
sleep (Ancoli-Israel et al. 2003; van Someren et al. 1996). Although many studies 
have reported the beneficial effects of TRE in non-neuronal tissues, but very few 
studies have been reported with mental health. Two recent studies have reported that 
TRF improved motor coordination, heart rate variability, activity/rest rhythm, and 
autonomic nervous system function in mouse models of Huntington’s disease (Wang 
et al. 2018; Whittaker et al. 2018). A recent cross-sectional study on elderly Italian 
adults reported the association between time-restricted eating and their mental health 
and observed that individuals >70 years old following 8 h feeding time window were 
less prone to mental health distress (Currenti et al. 2021). These preliminary findings 
raise the hope that TRE could help delay the onset or reduce the severity of various 
neurodegenerative and psychiatric disorders in older adults. 

20.4 Conclusion 

Although dietary patterns and active lifestyle are very well known to influence 
metabolic status and disease trajectory of aging populations, but emerging data 
suggest that the beneficial effects of aligning meal timings with circadian clock 
may be much more effective to promote healthy aging. Figure 20.1 depicts the 
possible beneficial effects of TRE on metabolic indicators. Circadian rhythms consti-
tute an integral part of our physiology and therefore essential for the maintenance 
of good health. Modern lifestyle comprising shift works, unhealthy, and untimely 
eating habits, aberrant sleeping patterns, jet lag, and inappropriate light exposure 
are associated with disrupted circadian rhythms which has made people more prone 
to different lifestyle diseases. Moreover, circadian rhythms naturally dampen with 
age, which further exacerbates the risk of age-related lifestyle diseases. Although 
more research is required to determine the optimal eating window and effective-
ness of time-restricted eating in humans, but the available evidence from animal and 
human interventional studies indicates that chrono-nutrition may prove to be a novel 
approach to curb human epidemiology of obesity and co-morbidities and improve 
aging population’s health.
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Fig. 20.1 Impact of TRE on metabolic indicators 
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Chapter 21 
Achieving Healthy Aging 
in the Light-Polluted World 

Krystyna Skwarło-Sońta 

21.1 Introduction 

Human civilization has developed under natural lighting conditions generated by 
Earth rotations. Beyond doubt, the consequences of this fact are described in the 
previous chapters dedicated to the endogenous circadian clock(s). Now, it is time to 
recall that our master clock must be synchronized day by day with the environment 
by the most potent Zeitgeber, i.e., by light. Circadian organization of human phys-
iology and behavior is mainly related to the length of day (photoperiod), and only 
occasionally we are interested in the intensity of light, both during the day and at 
night. Most probably, only, few people are aware of the intensity of natural light, 
which, during a clear day can reach (outdoor) even 120,000 lx while at clear full 
moon, the maximal value of light does not exceed 0.3 lx, decreasing to near 0.001 lx 
on a moonless clear night (Grubisic et al. 2019). On the other hand, people living in 
cities are usually exposed in their offices/houses to the typical indoor lighting near 
200 lx (seldom up to 500 lx), and only, occasionally, a citizen can see a bright blue 
sky with > 100,000 lx at midday (Wright et al. 2013). It means that most citizens in 
the developed countries (2/3 of EU population) live their everyday life under condi-
tions where the days are not bright enough while the nights are much brighter than 
at full moon (Navara and Nelson 2007). Reduced exposure to sunlight during the
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available in an unsuitable time and place acts as a potent circadian disruptor, it can have an impact 
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day, along with electrical city light, creates the environmental time cues not powerful 
enough to perfectly synchronize our circadian clock (Wright et al. 2013). Moreover, 
electrical lighting is present at times and places where the natural light does not 
normally occur and increases at 6% per year (Dominoni and Nelson 2018). This 
anthropogenic factor will be defined in subsequent sections as light pollution, and 
the consequences of this phenomenon will be discussed in the context of threats to 
human health and well-being with particular attention to aging individuals. 

21.2 Light Pollution—What Does It Mean? 

From a technical point of view, light pollution means an excessive and inappropriate 
use of light sources usually related to city life and resulting in any adverse effects. 
As global urbanization increases continuously, light pollution accompanying our 
everyday life in the developed countries is increasing too. Moreover, it has become a 
global problem. Light radiated from improperly installed city luminaires is directed 
toward the sky, and it is scattered in the atmosphere, creating a sky glow having a 
detrimental effect during dark nights, especially on night sky visibility. Other aspects 
of light pollution encompass glare, light trespass, light clutter, and a decreased visi-
bility at night (Elsahragty and Kim 2015). The presence of an excessive number 
of luminaires, often being improperly managed, may extend the light to the areas 
where it is neither intended to be used nor needed, and for urban lighting profes-
sionals, it creates a relatively new problem, which should be resolved urgently at the 
interdisciplinary level (Perez Vega et al. 2022). 

In other words, when artificial light is present at a wrong time, wrong place, and in 
excessive quantity, it creates light pollution. There are numerous definitions of this 
phenomenon, depending on the scientific interest of respective authors, pointing, on 
the other hand, to the complexity of this problem. Therefore, it seems worthwhile to 
present selected quotes from some recent papers, just to draw the readers’ attention 
to the complex aspect of light sources and the effects of light pollution: 

• Astronomical light pollution, i.e., degradation of human views of the night sky 
(where stars and other celestial bodies are washed out by light, either directed or 
reflected upwards) vs ecological light pollution, i.e., artificial light that alters the 
natural patterns of light and dark in ecosystems (Longcore and Rich 2004); 

• Interruptions in normal circadian light cycles and the resulting disruption 
of normal melatonin rhythms cause widespread disruptive effects involving 
multiple body systems (Navara and Nelson 2007); 

• The circadian oscillator system and melatonin levels are both affected by 
perturbing light signals at night (Hardeland 2014). 

• On an evolutionary scale (…) light pollution presents a novel stressor, and it 
is unclear how organisms that evolved in stable cycles of light and darkness are 
affected by such changes (Grubisic et al. 2019);
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• (Melatonin) can counter the debilitating effects of modern lifestyle: insufficient 
circadian time cues, especially natural bright light, and exposure to artificial 
light at unsuitable times—the 24-h society (Arendt 2019). 

From above quotes seems to be particularly important to emphasize relative 
novelty of light pollution in the evolutionary dimension (Grubisic et al. 2019) what 
could be a new problem for the next generations as well. We should also be aware 
of the danger resulting from the omnipresence of electricity and ease of using it. 
However, it is worth noticing that excessive/disturbing lighting should be very easily 
switched out, needing neither any special effort nor additional costs, and virtually 
depends only on us and on our awareness of the problem. 

Another aspect of the presence of light at unsuitable time is related with the 
modernity of our life, expressed by the activity 24/7/365. It means that people are 
active—professionally or just for fun—all round the 24 h, without stops for nights, 
weekends, holidays, etc. (“24 society,” mentioned by Josephine Arendt, 2019). It is 
true in the case of shift work, work online, long distance travels and additionally— 
last but not least—unlimited usage of electronic devices: TV sets, computers, video 
games, smartphones, and e-books. In any circumstances, this means using artificial 
light at night (e.g., during night shift work) or the screens usually emitting the blue 
light, which is the strongest disruptor of the circadian system, mainly by the inhibi-
tion of melatonin synthesis (Hardeland 2014). Obviously, this light does not come 
from the external sources (considered to be classic light pollution), but for our circa-
dian system, it makes no difference. What matters is the effect: light present at the 
unsuitable time always acts as environmental pollutant. 

21.3 Effects of Light Pollution on Human Circadian 
Organization 

As our circadian organization has evolved under the conditions set by the regular 
sequence of day (light) and night (darkness), it is obvious that the presence of addi-
tional light at the unsuitable time should certainly be profoundly detrimental to 
human physiology and behavior. When the light, a main Zeitgeber for human master 
clock, comes on additionally as artificial light at night (ALAN), it can exert two 
effects which are not mutually exclusive. The first is responsible for desynchroniza-
tion of the circadian clock while the second one evokes a direct inhibitory action on 
melatonin synthesis. These effects will be briefly discussed in the following sections. 

21.3.1 Desynchronization of the Circadian Rhythm by ALAN 

Desynchronization of the rhythm (circadian misalignment) describes a disorder of 
the clock and circadian system (Touitou and Point 2020). It results from the lack of
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compatibility between the environmental light–dark cycle and the rhythms of such 
physiological processes as the sleep–wake cycle, i.e., external desynchrony (Skwarło-
Sońta and Zużewicz 2021). If the situation continues, there is a disruption of the 
temporal organization of the body functions, i.e., internal desynchrony, resulting in 
negative health outcomes including sleep disorders, depression, metabolic syndrome 
and diabetes, obesity, and other civilization-related illnesses (Wyse et al. 2011). 

In a healthy person, the diurnal rhythm of sleep propensity, body temperature, and 
melatonin synthesis are reciprocally synchronized in a way allowing to fall asleep 
easily. Namely, when the body temperature reaches its nadir being in antiphase with 
a peak of melatonin blood level (i.e., its maximum synthesis in the pineal gland), the 
metabolism level is low, and all these factors together are promoting falling asleep 
(Wichniak et al. 2017a). However, additional presence of light at night, i.e., at the 
dark part of the 24-h period, influences the diurnal rhythm by moving the phase of 
the rhythm differently, depending on the time of exposure (Lack and Wright 2007), 
what has been named phase-response curve (PRC). The presence of light pulses 
before the nadir of the body temperature (the first part of night period) delays the 
phase, while the light applied in the second part of night evokes an advance of the 
circadian cycle (Wichniak et al. 2017b). These light effects exerted on the circadian 
rhythms occur independently of the inhibition of melatonin synthesis. Moreover, 
the light effects on the magnitude of phase shift are dependent on the dose and 
time expressed by the number of nights with the light exposure and duration of 
each exposition (Lack and Wright 2007), while every light intensity can shift the 
phase and stop melatonin synthesis (Touitou and Point 2020). In everyday life, these 
desynchronizing conditions take place during the transmeridian travels or the night 
shiftwork and, unfortunately, also when the electronic devices are used with excessive 
frequency and/or in wrong time. 

Unintentional penetration of the streetlights to the areas where they are not needed, 
quite recently taken into consideration by the architectural lighting designers (Perez 
Vega et al. 2022), has been already found to exert an adverse effect on human 
metabolism (McFadden et al. 2014). A cohort study conducted over several years and 
including more than 100,000 women in an age range from teenagers to centenarians 
revealed a very significant positive correlation between the obesity and the intensity 
of ALAN present in the bedroom. Even if some of the participants used the light 
at night because they wanted to, and some others were involuntarily exposed to the 
external lighting—it always indicates that the awareness of the harmful effects of 
light pollution is low among the population. However, the experiments conducted 
on laboratory rodents clearly demonstrated a stimulatory effect of ALAN on their 
weight gain along with the weakness of clock-controlled gene expression rhythmicity 
in the liver and the adipose tissue (Fonken et al. 2013) indicating an adverse effect 
of light pollution on metabolism regulation controlled by the circadian clock.
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21.3.2 ALAN Affects Pineal Gland Function 

Considering that the previous few chapters are devoted to the pineal gland and mela-
tonin, it is worth emphasizing here only an elevated level of nocturnal melatonin 
synthesis noted in all vertebrate species (Falcón et al. 2009), including humans 
(Pääkkönen et al. 2006), nocturnal rodents (Illnerova et al. 2000), and the diurnal 
species like birds (Piesiewicz et al. 2010). Thus, melatonin is a message of darkness 
and not of the rest or sleep period (Illnerova et al. 2000; Arendt 2019). Moreover, the 
magnitude and duration of the elevated melatonin synthesis depends upon the length 
of dark phase (Collin et al. 1989); therefore, melatonin is considered as “clock and 
calendar” for the entrainment of other biological activities (Reiter 1993). It will also 
be useful to remind that pineal melatonin synthesis in humans is strictly age depen-
dent: in newborns, the diurnal rhythm of blood melatonin level establishes within the 
first three months, and thereafter, nocturnal peak increases until the end of childhood. 
After reaching maturity, it starts to decline and decreases continuously in the adult 
and advanced age (Stehle et al. 2011). Therefore, in the elderly, the diurnal rhythm 
of melatonin synthesis is not very well expressed leading to the desynchrony of the 
circadian organization of the body functions including the timing of sleep, meals, 
and other activities. 

To become a transducer of the information about the external lighting conditions, 
the pineal gland must receive this message from eyes. This function is performed 
by the special non-vision-related photoreceptors located in the retina, i.e., the 
melanopsin containing intrinsically photosensitive retinal ganglion cells (ipRGCs), 
which convey information on light directly to the master clock (SCN) via the retino-
hypothalamic tract (RHT) (Berson et al. 2002). It is worth recalling here that ipRGCs 
are particularly sensitive to the short-wave (blue) light (440–480 nm) that exerts an 
inhibitory effect on the pineal melatonin synthesis. As this wavelength corresponds 
to the color of the clear morning sky, it seems essential to pinpoint the meaning of this 
sensitivity from the evolutionary point of view: nocturnal melatonin synthesis should 
be turned off because the day just starts, and a subject has to undertake a different type 
of activity. Thus, the nocturnal rest/sleep must be stopped, and metabolism should 
be directed at the pathway of energy production and expenditure (Stevens and Zhu 
2015). However, when this blue light appears at an inappropriate time, i.e., other than 
early morning and particularly in the evening or night hours, it also inhibits melatonin 
synthesis being therefore an important component of circadian desynchrony. 

In mammals, melatonin synthesis remains under the stimulatory control of the 
adrenergic innervation from postganglionic sympathetic fibers, active during the dark 
phase of the diurnal cycle. The neurotransmitter noradrenaline, released in darkness 
from these adrenergic endings, binds to the β- and α1-adrenergic receptors present 
on pinealocytes and activates molecular events leading to the increased melatonin 
biosynthesis (Zawilska et al. 2009). The knowledge of this regulation is particularly 
important for health of elderly people who frequently use medications acting as 
the β-adrenergic receptor blockers, additionally decreasing the nocturnal melatonin 
synthesis already weakened in the advanced age. It is essential to be aware that these
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medications should not be taken in the evening so as not to counteract the adrenergic 
stimulation of nocturnal melatonin synthesis in the pineal gland. 

21.3.3 Misalignment of the Circadian System by Light 
Pollution 

One of the best-known effects of circadian misalignment, very often due to the 
presence of ALAN, is the sleep–wake desynchrony. Again, it could result both from 
the streetlights penetrating to the houses, from the night shift work or even due to 
the use of electronic devices like e-books, TV sets, computers, and/or smartphones 
in the bedroom. 

As has already been mentioned, for the circadian regulation, there is no matter 
where the light comes from—when the blue light is emitted by a computer screen 
while we are working at night, it also stops melatonin synthesis in our pineal gland. 
This finding has been confirmed in a study involving two groups of volunteers, using 
computers at night (from midnight to 1 am and from 1 to 2 a.m.) and submitted to 
the evaluation of melatonin levels in their saliva. When the volunteers sat in front 
of the blue light-emitting computer screen, melatonin concentration in their saliva 
was reduced during the 1st and the 2nd hour by approx. 40 and 70%, respectively. 
In the saliva of persons using the screens without the blue light emission, inhibition 
of melatonin synthesis was much weaker, indicating that for our circadian system 
pollution with the blue light is particularly dangerous (Wood et al. 2012). It seems 
unnecessary to remind the readers that very often we generate this light pollution 
ourselves, as people’s awareness about this new pollutant is still very poor. 

An important question arises how to avoid this new type of light pollution when 
the evening/nocturnal use of computers has become a daily habit of most of the popu-
lation. Obviously, no one is willing to stop using computers, smartphones, and/or 
other electronic devices or even to minimize the exposure by spending less time 
using them, especially in the evening. Therefore, other user-friendly issues have 
to be proposed. The first, and probably the easiest issue, is to follow the recom-
mendation of American Academy of Pediatrics that bedrooms must be “screen-
free zones for children” https://www.healthychildren.org/English/family-life/Media/ 
Pages/How-to-Make-a-Family-Media-Use-Plan.aspx), which should be extended to 
the adults as well. Another interesting option is using a screen filter reducing the 
effect of blue light or the blue light filtering glasses. 

It is important to mention that blue light also influences the alertness of our 
brain, evoking a strong stimulation of brain structures which are responsible for 
the interactions between alertness and cognitive functions (Vandewalle et al. 2007, 
2010). This is the reason why we do not feel drowsy when using electronic devices 
in the evening. When the effect of spending several hours reading a light-emitting 
(LE) e-book before going to sleep was compared with that exerted by reading a 
printed book, a profound and adverse effect of LE e-book on falling asleep was

https://www.healthychildren.org/English/family-life/Media/Pages/How-to-Make-a-Family-Media-Use-Plan.aspx
https://www.healthychildren.org/English/family-life/Media/Pages/How-to-Make-a-Family-Media-Use-Plan.aspx
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noted, expressed especially by melatonin secretion (delayed DLMO1 and decreased 
nocturnal peak of blood melatonin level), combined with a reduced next-morning 
alertness (Chang et al. 2015). These results strongly support the notion that reading 
paper books in evenings is much healthier, especially for people in advanced age. 

Another aspect of light pollution results from the modern lifestyle related with 
the unlimited access to artificial light. It relies on the unrestricted timing of work 
(including night shift work), transmeridian travels including crossing time zones 
(very often several ones), various social activities, etc., all of them being related 
with irregular timing of sleep. Sleeping in an inadequate part of the 24-h period 
(e.g., during the day after the night shift) results in an impaired sleep quality or 
too short sleep length as well as poor level of alertness and performance at night 
(Arendt 2010). Additionally, very often it is related with the so-called “social jet 
lag,” resulting from desynchrony between the individual clock and the social clock, 
and consisting in the difference between sleep on workdays and on days off, leading 
to circadian misalignment (Roenneberg et al. 2019). The workers most often affected 
by this type of circadian desynchrony include nurses (more generally—medical 
staff), flight crew, and workers of large industrial plants, personnel in intercity and 
international transport, security services and many others, all of them being the 
active participants of the modern 24/7 society. This lifestyle modifies not only the 
timing and quality of sleep, but also changes the hours of mealtimes, limits phys-
ical and social activity, and affects extra-occupational life, leading to measurable 
health consequences (Skwarło-Sońta and Zużewicz 2021). Epidemiological studies, 
mainly carried out on nurses, have revealed an association between sustained night 
work and a significantly higher incidence of breast cancer, and led the International 
Agency for Research on Cancer (IARC) to classification shift work into A2 group of 
“probable carcinogens to humans” since “they involve a circadian disorganization” 
(IARC 2010; Costa  2010; Touitou et al. 2017). Unfortunately, the surveys conducted 
in 15 European countries have demonstrated that the number of workers who do not 
work in shift system or at night, or on weekends, constitute only 24% of working 
population (IARC 2010). Therefore, it is not surprising that the incidence of the 
so-called “civilization-related illnesses” (including cancer, depression, obesity, type 
2 diabetes, metabolic syndrome) increases progressively. 

Extension of the working hours beyond the standard timing has currently become 
a common practice and is performed both by women and men in different age groups. 
On the other hand, the International Labor Organization (ILO 1990) recommends the 
upper age limit for shift workers not exceeding 50 and 55 years for women and men, 
respectively. Moreover, it is suggested that the number of years spent as a night shift 
worker beyond more than 10 years should not be extended as it makes a cognitive 
function of a person doing that job like a 6.5 year older (Rouch et al. 2005).

1 DLMO – Dim Light Melatonin Onset – timing of the evening start of melatonin synthesis. 



452 K. Skwarło-Sońta

21.4 Light Pollution and Aging 

21.4.1 Examples of Studies Involving Humans 

It is experimentally well proven that aging of an individual is related with a weakening 
of the circadian rhythmicity generated by the central pacemaker and peripheral oscil-
lators. This seems to result from both the desynchronization of spontaneous activity of 
the clock neurons across the 24-h period and a progressive yellowing and thickening 
of the lens reducing sensitivity to light, what makes master clock less exposed to this 
most important Zietgeber (Hood and Amir 2017). All these changes lead to many 
age-related downstream functional modifications, such as a decreased amplitude of 
circadian rhythms of the core body temperature and hormone secretion (including 
those of melatonin, adrenal steroids, or growth hormone), altered phase relation-
ships between wake-sleep cycle resulting frequent insomnia and daytime napping, 
metabolic alterations frequently resulting in negative health outcomes. The above 
brief reminder is a starting point for considering how the omnipresent light pollution 
further complicates the functioning of elderly people. The different sources of light 
pollution and the observed effects are summarized in Table 21.1 and briefly presented 
below. Among the available published data, the sample studies were selected to 
present various experimental approaches allowing to better understand the above-
mentioned complex problems. Usually, the test of light pollution comprises a study 
of the cohort either submitted to the experimental exposure to ALAN of known 
intensity and duration (Duffy et al. 2007; Kripke et al.  2007; Obayashi et al. 2014), 
or the groups of people living in special environmental conditions (Park et al. 2019; 
Benedito-Silva et al. 2020), or finally—night shift workers (Suwazono et al. 2011). 
Various parameters were measured, and different effects were noted as well (see 
Table 21.1).

The curve of sensitivity to the light of increasing intensity presented in the paper of 
Duffy et al. (2007) was compared with that previously obtained in young subjects, and 
it indicated that the healthy older subjects were less responsive to low-to-moderate 
levels of light (50–1000 lx). Taking into consideration age-related changes in the pupil 
dynamics and lens opacity, effective retinal light exposure in older subject could be 
quite different from that noted in young adult ones, and the observed differences most 
probably do not result from an age-related reduction in the sensitivity to circadian 
light exposure (Duffy et al. 2007). 

In other experimental approach (Kripke et al. 2007), additional light of 3000 lx 
imposed at various time over a 24-h period resulted in a maximal phase shift of 
about 3 h, not differing in amplitude among older and young women and men, while 
inflection from delays to advances were earlier 1.8 h among older participants as 
compared with the young ones. However, at baseline, in older adults, a significant 
phase advance in sleep, cortisol, and aMT6s onset was observed. An interesting 
observation is a dead zone of approx. 6 h duration surrounding the core temperature 
acrophase, when any light exposure at intensity employed would have minimal or 
any phase-shifting effect during much of the daytime (from approx. 1:40 pm until
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Table 21.1 Effects of ALAN: examples of circadian and metabolic alterations in humans at 
advanced age 

Age (y)/gender Number of 
participants 

ALAN 
intensity/duration 

Parameter—effect References 

68.3 ± 3.7 2 women  
8 men  

1.35 to 8000 lx 6.5 h 
stimulus 

– plasma MEL ↓ 
– MEL and CBT 
circadian phase 
delayed 

Duffy et al. 
(2007) 

18–30 versus 
59–75, both 
sexes 

50 young 
versus 56 old 

3,000 lx/3 h/3 days – amplitude and 
sleep quality = 

– aMT6s onset and 
cortisol 
acrophase 
advanced 

Kripke et al. 
(2007) 

av. 37 ± 10 at 
entry, male 
shift workers 

4,328 day 
versus 2,926 
shift workers 

14 years – excessive BMI 
value— 
alternating shift 
work as an 
independent risk 
factor for weight 
gain 

Suwazono et al. 
(2008) 

av. 72.5, both 
sexes 

145 ALAN 
versus 383 
darker 

≥ 5 lx during in-bed 
period 

– nighttime blood 
pressure ↑ 

– urinary  aMT6s  
excretion = 

Obayashi et al. 
(2014) 

55.4 ± 8.9 
women 

43,722 ALAN exposure 
while sleeping, over 
6 years 

– BMI  ↑ by 10% or 
more, incident 
overweight and 
obesity 

Park et al. 
(2019) 

50–70 both 
sexes 

52 non MetS 
51 MetS 

Approx. 3000 lx at 
day, 
Approx., 300 lx at 
night 

– motor activity 
and sleep 
characteristics = 

– MetS significant 
in ALAN 
exposed 

Benedito-Silva 
et al. (2020) 

Explanations: ↓ parameter decreased; ↑ parameter increased; = parameter unchanged; MEL— 
blood melatonin content; CBT—core body temperature; aMT6s—sulphatoxymelatonin; PRC— 
phase-response curve; MetS—metabolic syndrome

7:40 pm for a person getting up at 7 a.m.). This effect was neither related with age 
nor gender (Kripke et al. 2007). 

Circadian misalignment between internal and environmental rhythms dysregu-
lates blood pressure (BP) variability resulting in an increased nighttime BP, and 
this situation is frequently related with night shift work. Elderly persons exposed 
to ALAN ≥ 5 lx on two consecutive nights showed significantly higher nighttime 
systolic BP independently of overnight urinary melatonin excretion. As the increase 
in nighttime systolic BP is associated with an increase in total mortality, it corre-
sponds to the excessive deaths in Japanese elderly population (Obayashi et al. 2014).
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It seems important to emphasize that these measurements were performed on the 
subjects staying at home, and should constitute a serious warning to the public. 

Literature review (17 studies) on shift work revealed a 40% increase in the risk 
of morbidity and mortality from cardiovascular disease observed in shift workers 
(Bøggild and Knutsson 1999). Most probably it is a multifactorial effect, but most 
studies have focused on the behavior and life style of shift workers and neglected 
other possible factors—this interpretation comes from 1999. Some years later, this 
unhealthy life style was also considered as a main cause of the weight gain in 
longitudinal (14 years) study in male Japanese shift workers (Suwazono et al. 2008). 

Among a cohort of 43,722 women (mean age 55.4 ± 8.9 years), ALAN expo-
sure while sleeping was positively associated with a higher prevalence of obesity. 
Compared with no ALAN, sleeping with a TV or a various intensity of light on in the 
room was related with an increase in BMI by 10% or more, incident overweight and 
obesity, not associated with a sleep duration and quality (Park et al. 2019). It should 
be worthwhile to elucidate this association and clarify whether lowering exposure 
to ALAN while sleeping can promote prevention of the obesity. These observa-
tions corroborate previously described association between the light at bedroom and 
obesity of the women in the larger age range, without, however, evaluation of the 
duration of the exposure (McFadden et al. 2014). 

The last study presented in Table 21.1 seems to be the most interesting one 
because it concerns the natural (light polluted?) environmental conditions in which 
the surveyed people live and work permanently. Several parameters of the metabolic 
syndrome (MetS) were elevated in old persons exposed to the lower diurnal and 
higher light intensity; however, significant negative correlations were found only 
between the number of MetS components and diurnal light exposure. Moreover, 
increased daytime light exposure and a larger normalized difference between diurnal 
and nocturnal light exposure were significantly correlated with a reduced MetS risk. 
However, the direct association between light exposure and MetS does not appear 
to be attributed to disruption in circadian rhythm expressed by activity and sleep 
parameters (Benedito-Silva et al. 2020). These results agree with several previously 
published data, but the novelty is that the decreased diurnal light exposure correlated 
with the development of MetS. As a possible explanation of this effect, the authors 
take into consideration the effect of lighting conditions present in the participants’ 
everyday life on vitamin D synthesis and melatonin level (supposedly, melatonin 
will be measured as a continuation of the study). 

Indeed, another published study (Schmitt et al. 2018) describes a relationship 
between MetS and the serum vitamin D [25(OH)] level in the 463 postmenopausal 
women aged 45—75 years (therefore at comparable age), meeting at least 3 criteria 
of MetS. Serum Vit D was evaluated as sufficient in 32% of the examined women, 
insufficient in 32.6% and deficient in 35.4%. MetS was detected in 57.8% women 
with hypovitaminosis (insufficient and deficient) and in 39.8% of those with sufficient 
levels of Vit D. It has been concluded that Vit D deficiency in postmenopausal women 
creates a high risk of MetS and dysregulated lipid metabolism. This finding has not 
been observed in the participants with adequate levels of Vit D (Schmitt et al. 2018).
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Anyway, MetS diagnosis was associated with exposure to less bright days and 
lighter nights without any difference in circadian parameters. It raises a question 
whether a small lifestyle modification, i.e., more light during the day and less at 
night should be effective in reducing MetS prevalence. Moreover—as these results 
come from the semi-rural environment in Brazil, it should be reasonable to suppose 
that such effects might be more pronounced in the big cities and might be more 
undesirable with increasing global urbanization (Benedito-Silva et al. 2020). 

21.4.2 Examples of Model Studies on Animals 

As far as the experiments related with the effect of light pollution on the animal 
models are concerned, they are usually short lasting, while the human health issues 
are rather related with the long-lasting exposure to inappropriate presence of light. 
Therefore, only, two examples of this type of research will be presented below. 

The short report of Davidson et al. 2006, presents the results of a study carried 
out on young (8–12-month-old) and old (27–31 month) male mice submitted to the 
standard LD conditions and to the changed lighting schedule (advanced or delayed by 
6 h) once every 7 days. These rotating schedules were designed to mimic the changes 
to time zones while traveling or working in the shift cycles. It appeared that aged 
mice were significantly sensitive to the changes in light schedule, and after 8 weeks 
of light schedule rotations, only, 47% of animals survived the advanced cycle while 
68% were delayed cycle survivors, and 83% of the sample were unshifted survivors. 
None of young mice subjected to rotating light schedule died. This phenomenon was 
not stress mediated as the fecal corticosterone level did not increase in aged mice. It 
is suggested that in such conditions either the immune system is perturbed, or, rather, 
that the internal desynchrony among functional oscillators may have an impact on 
the health consequences exacerbated in the advanced age (Davidson et al. 2006). 

Another, rather fascinating recent experimental approach (Delorme et al. 2022), 
was performed for 1 year on mice kept in various lighting conditions. The light inten-
sity of control lighting was 200 lx (L:D 12:12), while light pollution was caused by 
the low level of light, i.e., 20 lx during the dark phase of circadian cycle (dLAN). 
The idea was to imitate the circadian disruption period corresponding to the years 
of human shift work or an exposure to environmental ALAN lasting frequently for 
many years. Several circadian activities, motor functions, and the clinical chemistry 
were evaluated, also after some weeks of re-adaptation to the control LD conditions. 
Brain histochemistry was performed as well. The obtained results suggest that the 
long-lasting presence of dLAN conditions did not evoke any molecular or cellular 
changes within SCN, but it modified the anatomy of the dendrites in other brain 
regions. This creates a possibility that the observed changes in some aspects of the 
circadian function are resulting from the modified neuronal coordination outside of 
the clock. Moreover, long-lasting chronic, mild circadian disruption caused by expo-
sure to dLAN can be corrected after a subsequent re-acclimatization to the standard 
LD conditions. However, some changes are still observed, especially those in the
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dendritic spines. This previously unknown long-term impact of circadian disrupting 
dLAN exposure may influence the process of healthy aging (Delorme et al. 2022) 
and encourages more research to elucidate similar effects in humans. 

21.5 Summary and Conclusion 

To summarize the presented examples of the adverse effects of light pollution on 
human health and well-being, two levels of the problem should be pointed out. 

1—limitation of the external light pollution resulting from the excessive urban 
illumination depends on the lighting professionals’ awareness of possible measures 
to be applied in order to protect city nightscape simultaneously with that of naturally 
dark skies and ecosystems, and 2—limitation of the misalignment of circadian orga-
nization of human physiology and behavior by raising everyday users’ awareness of 
the effect of electronic devices on the dangers resulting from using them late in the 
evening, just before going to sleep. 

The first level needs reciprocal understanding and exchange of the knowledge and 
experience between the light designer professionals and ecologists (human physiolo-
gists should be included as well); this issue has been analyzed in depth in the recently 
published paper (Perez Vega et al. 2022). Moreover, we also should apply the appro-
priate protective measures, and to make it easier, Table 21.2 has been constructed. 

Table 21.2 Recommended measures to mitigate the adverse effects of light pollution on human 
health and well-being 

Number Recommendation 

1 Take care while maintaining high levels of the diurnal light (D) and low level of the 
nocturnal (N) light—the ratio of D/N is essential for the synchronization of the 
circadian clock 

2 Control the level of vitamin D—its supplementation is recommended, especially for 
the elderly people living in the nursing houses or hospitalized, only occasionally 
exposed to the natural light during the day 

3 Avoid unnecessary lighting of the garden, house walls and front door—in preference 
use the motion sensors to turn on the light when needed 

4 Avoid the entrance of the external lighting to your bedroom—use dark curtains or 
window shutters 

5 Do not sleep in the lit bedroom—for kids who fear the darkness use bedside lamps 
with weak orange or red light

(continued)
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Table 21.2 (continued)

Number Recommendation

6 Do not use electronic devices in the bedroom (including TV sets, PC, smartphones, 
LE e-books) 

7 Do not use electronic devices later than 1 h before going to sleep 

8 If it is necessary to use a computer in the evening/at night, equip your PC with the 
screen filter eliminating the blue light or use the blue light blocking glasses 

9 Finish your shift work after a few years of a such employment (if possible—do not 
work longer than 10 years) 
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Chapter 22 
Disruptions of Circadian Rhythms 
and Sleep/Wake Cycles in Neurologic 
Disorders 

William H. Walker II, Jennifer A. Liu, and Randy J. Nelson 

22.1 Introduction 

Circadian rhythms are internal cycles generated by biological clocks with a period 
of approximately 24 h; these clocks regulate physiological and behavioral processes 
of virtually all organisms. Biological clocks function to (1) coordinate individuals’ 
interactions with the external environment (i.e., an internal temporal reference allows 
animals to avoid predation or find mates) and (2) synchronize individuals’ internal 
physiological and biochemical processes (i.e., sleep and rhythmic hormone secretion 
in anticipation of food intake). Circadian rhythms are entrained to precisely 24 h by 
daily exposure to light during the solar day. Of the many circadian rhythms displayed 
by individuals, the sleep–wake cycle is perhaps the most salient of these temporal 
rhythms. Many studies have reported a relationship among disrupted circadian 
rhythms, especially sleep, and neurological disorders (e.g., Musiek 2015; Malhotra 
2018; Fifel and Videnovic 2021). Importantly, the extent to which disrupted sleep is 
the primary outcome (or cause) of neurological disorders or whether disrupted circa-
dian clock function is the primary outcome (or cause) of neurodegenerative disorders 
also remains unspecified (Colwell 2021). This chapter will review the relationship 
between disrupted circadian rhythms/sleep and neurological disorders. 

Circadian clocks throughout the body (1) coordinate individuals’ interactions with 
the external environment (e.g., internal temporal frame of reference allows animals 
to avoid predation or engage in mating) and (2) synchronize individuals’ internal 
physiological and biochemical processes (e.g., sleep and hormone secretion in antic-
ipation of food intake). The suprachiasmatic nuclei (SCN) of the hypothalamus is 
the master circadian clock in mammals (Zee et al. 2013) and functions at the top 
of a hierarchy of independent self-sustaining oscillators throughout the body. Light
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is the most potent entraining agent for circadian rhythms. In mammals, the SCN 
receives photic information from the retina via the retinohypothalamic tract, which 
projects from activated intrinsically photosensitive retinal ganglion cells (ipRGCs). 
Melanopsin is the photopigment in the ipRGCs; melanopsin is maximally sensitive 
to short wavelength (~460–480 nm; blue) light (reviewed in Blume et al. 2019). 

In response to light activation of the SCN, the transcription factor cAMP response 
element binding protein (CREB) is activated which in turn binds and modulates tran-
scription of the core clock genes Per1 and Per2 (Ashton et al. 2022). A signaling 
cascade induces the transcription of the core clock proteins including circadian loco-
motor outputs kaput (CLOCK), cryptochrome (CRY), period (PER), and brain and 
muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) which 
are expressed in a rhythmic pattern over 24 h, driven by a transcriptional transla-
tional feedback loop (TTFL) (Takahashi 2017; Cox et al. 2019). Briefly, CLOCK 
and BMAL1 form heterodimers in the nucleus that promote expression of period 
(Per1, Per2, and Per3) and cryptochrome (Cry1 and Cry2) via E-box enhancers 
(Takahashi 2017). PER and CRY proteins accumulate in the cytoplasm throughout 
the day. These proteins form a complex with a kinase, and after a certain threshold, 
these complexes translocate back into the nucleus to associate with CLOCK and 
BMAL1 and repress their own transcription (Takahashi 2017). One cycle of this 
process takes ~24 h to complete. In addition to the primary feedback loop, other 
regulatory loops influence the circadian clockwork (Cox et al. 2019). A number of 
extrinsic and intrinsic factors, associated with neurological disorders, can disrupt 
typical circadian rhythms. 

22.2 Alzheimer’s Disease 

The World Health Organization estimates that worldwide over 55 million people live 
with dementia. The most common form of dementia is Alzheimer’s Disease (AD) 
which accounts for ~60–70% of cases. AD is characterized by two hallmark patholo-
gies: extracellular amyloid plaque deposition and intracellular neurofibrillary tangles 
of hyperphosphorylated tau (Weller and Budson 2018). Amyloid-β (Aβ) plaque depo-
sitions can be detected up to 15 years prior to symptom onset and initiate in the 
precuneus, medial orbitofrontal, and posterior cingulate cortices before spreading 
throughout the brain affecting regions such as the hippocampus, amygdala, and dien-
cephalon (Bateman et al. 2012; Palmqvist et al. 2017). Notably, altered levels of Aβ 
in cerebrospinal fluid can be detected prior to abnormal amyloid-β within the brain 
in preclinical AD patients (Palmqvist et al. 2017). Abnormal Aβ plaque deposits 
induce phosphorylation of microtubule-associated tau protein, which leads to poly-
merization into insoluble neurofibrillary tangles (Tiwari et al. 2019). Consequently, 
this precipitates neuronal death, brain atrophy, and cognitive decline. 

AD patients commonly display disruptions to circadian rhythms and experi-
ence altered sleep/wake states (Milán-Tomás and Shapiro 2018). Not surprisingly, 
studies demonstrate that the relationships among AD, circadian rhythm disruptions,
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and altered sleep/wake states are bidirectional (Phan and Malkani 2019; Wang and 
Holtzman 2019). Approximately 30–60% of AD patients exhibit altered sleep/wake 
states (Bianchetti et al. 1995; Tractenberg et al. 2003; Guarnieri et al. 2012), which are 
manifested as increased sleep fragmentation, excessive daytime sleepiness, and pres-
ence of sundowning (increased confusion, anxiety, and agitation at dusk) (Phan and 
Malkani 2019; Wang and Holtzman 2019). Sleep architecture is also altered. Specifi-
cally, AD patients displayed decreased non-rapid eye movement (NREM) slow-wave 
sleep, alterations in K complexes and sleep spindles, decreased rapid eye movement 
(REM) sleep, and decreased total sleep time (Peter-Derex et al. 2015). Changes in 
sleep can proceed a diagnosis of AD by years (MacEdo et al. 2017). Studies demon-
strate a clear association between altered sleep and AD pathology/onset. Indeed, 
increased sleep fragmentation is a risk factor for developing AD (Lim et al. 2013; 
Hahn et al. 2014). A recent meta-analysis concluded that sleep problems or disorders 
(defined by International Classification of Sleep Disorders version 2) were associ-
ated with an increased risk of preclinical AD (RR: 3.78, 95% CI: 2.27–6.30) and AD 
diagnoses (RR: 1.55, 95% CI: 1.25–1.93) (Bubu et al. 2017). Furthermore, a second 
meta-analysis concluded that subjects who reported sleep disturbances had a 1.49-
fold higher risk of developing AD relative to subjects without sleep disturbances (Shi 
et al. 2018). In a cognitively normal population of older adults, Spira and colleagues 
(Spira et al. 2013) demonstrated that self-reported shorter sleep duration was associ-
ated with greater cortical and precuneus Aβ burden and reports of lower sleep quality 
were associated with greater precuneus Aβ burden measured via positron emission 
tomography (PET) imaging. In a subsequent study of cognitively normal older adults, 
Spira and colleagues (Spira et al. 2018) demonstrated that excessive daytime sleepi-
ness was associated with more than 2.5 times the odds of Aβ deposition at follow-up 
15.7 years later. A similar association between poor sleep and elevated total tau and 
phosphorylated tau within the CSF of cognitively normal subjects has been reported 
(Sprecher et al. 2017). 

Notably, sleep deprivation significantly alters Aβ burden within the CNS. Aβ 
levels within the CNS display time-of-day oscillations in humans and rodents (Kang 
et al. 2009; Huang et al. 2012; Kress et al. 2018). Aβ peaks during the active phase 
in rodents and in human CSF, peaks 6 h after the zenith of wakefulness (Kang et al. 
2009; Huang et al. 2012; Kress et al. 2018). The authors suggest that the delayed 
6 h peak in humans is likely due to the lag from the time of labeling to the time 
of detection of labeled Aβ in the CSF (Huang et al. 2012). In a study of healthy 
middle-aged men, Ooms et al. (2014) replicated the time-of-day oscillations in Aβ 
concentrations within the CSF, demonstrating that Aβ concentrations are reduced 
in the morning following unrestricted sleep. However, sleep deprivation prevents 
this decrease (Ooms et al. 2014; Lucey et al. 2018). Similar increases in Aβ burden 
within the brain have been reported in human studies following sleep deprivation 
(Shokri-Kojori et al. 2018). Foundational science has further demonstrated the detri-
mental effects of sleep deprivation on Aβ accumulation (Kang et al. 2009; Qiu et al. 
2016). Indeed, Kang et al. (2009) demonstrated that both acute sleep deprivation 
and chronic sleep deprivation significantly increase Aβ burden within the interstitial 
fluid and Aβ plaque deposition within the brain, respectively. Notably, administration
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of αCRF9–41 (an antagonist of CRF receptors) did not reduce the increase of Aβ 
within the brain, demonstrating that the effect of sleep deprivation on Aβ is likely 
corticosterone independent (Kang et al. 2009). The effects of sleep deprivation are 
not specific to Aβ. Sleep deprivation increases unphosphorylated tau and alters site-
specific phosphorylation in human CSF and alters tau phosphorylation with the brain 
in rodents (Di Meco et al. 2014; Qiu et al. 2016; Barthélemy et al. 2020). 

The mechanisms underlying the relationship between sleep and Aβ are multifold 
(Lucey and Bateman 2014; Minakawa et al. 2019; Phan and Malkani 2019). First, the 
daily oscillations in Aβ concentrations within the brain are hypothesized to occur due 
to time-of-day alterations in neuronal activity and glymphatic clearance (Cirrito et al. 
2005; Brody et al. 2008; Xie et al. 2013). Specifically, neural activity, which is highest 
during wakefulness, increases synaptic release of Aβ into the interstitial fluid (Cirrito 
et al. 2005; Brody et al. 2008). However, glymphatic clearance reduces Aβ burden 
within the brain during sleep (Xie et al. 2013). The net change of the two results in 
increased Aβ during wakefulness and reduced Aβ during sleep. Due to the decreased 
sleep time in AD patients, it is not surprising that Aβ accumulates at high rates. 
Additional mechanisms by which sleep distribution may promote and propagate AD 
include blood–brain barrier breakdown and neuroinflammation (Erickson and Banks 
2013; Minakawa et al. 2019; Pak et al. 2020). 

The disruptions to circadian rhythms in AD patients are not specific to sleep. 
Indeed, AD patients also display damped and altered melatonin rhythms, phase 
delays in body temperature rhythms, and altered activity rhythms (Harper et al. 2001; 
Hatfield et al. 2004; Wu and Swaab 2005; Weissová et al. 2016; Duncan 2020). In 
addition, studies have demonstrated differences in the phase of clock gene rhythms 
and phase relationships between genes and brain regions of AD patients relative to 
controls (Cermakian et al. 2011). Similar alterations in clock gene expression have 
been observed in rodent models of AD (Duncan et al. 2012; Song et al. 2015; Furtado 
et al. 2020). Notably, studies have demonstrated Aβ-induced degradation of BMAL1 
and CBP, which may underlie the disrupted circadian rhythms in AD patients (Song 
et al. 2015). Circadian rhythm disruption may also enhance the risk of developing 
AD. Indeed, in a population of healthy community-dwelling older women phase 
delayed and decreased activity rhythms increased the odds of developing dementia 
(Tranah et al. 2011). Additionally, some studies have reported associations between 
single-nucleotide polymorphisms in BMAL and CLOCK and an increased risk of 
developing AD (Chen et al. 2013, 2015). Furthermore, rodent studies demonstrate 
that loss of central circadian rhythms accelerates amyloid plaque accumulation and 
disrupts daily interstitial fluid Aβ oscillations (Kress et al. 2018). Similar to the 
mechanisms underlying the relationship between sleep and AD, the mechanisms 
underlying alterations in circadian rhythms and AD are likely multiple. AD patients 
demonstrate neuronal loss within the suprachiasmatic nucleus (Swaab et al. 1985; 
Ferini-Strambi et al. 2020). In addition, Aβ deposits have been observed within the 
retina and melanopsin containing retinal ganglion cells, or ipRGCs, which is partic-
ularly important for circadian rhythms given the role of ipRGCs in regulating SCN 
entrainment (Koronyo-Hamaoui et al. 2011). Furthermore, post-mortem studies have
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demonstrated reduced number of ipRGCs within the retina and depletion of axons 
within the optic tract (Hinton et al. 1986; La Morgia et al. 2016). 

22.3 Parkinson’s Disease 

Parkinson’s Disease (PD) is a neurodegenerative disorder first characterized by James 
Parkinson as “shaking palsy” over 200 years ago (Parkinson 2002). In the most recent 
global survey of neurological diseases, in 2016, it was estimated that 6.1 million 
people are living with PD (Feigin et al. 2019). However, this number today is likely 
much higher as updated numbers from the Parkinson’s Disease Foundation estimated 
that more than 10 million people currently live with PD. Notably, PD incidence 
rates have risen dramatically over the past two decades for reasons not currently 
fully understood (Bloem et al. 2021). PD is characterized by hallmark pathology: 
intracellular α-synuclein aggregation into Lewy bodies or Lewy neurites, and loss 
of dopaminergic neurons of the substantia nigra (Mantovani et al. 2018). Several 
other dysfunctional processes have been described in PD, including mitochondrial 
dysfunction, altered protein clearance, and neuroinflammation (Kouli et al. 2018). 
Clinical PD patients present with bradykinesia, tremor, rigidity, and as the disease 
progresses postural instability (Kouli et al. 2018). 

Altered sleep is one of the primary nonmotor deficits experienced by PD patients 
and was recognized in James Parkinson’s seminal paper in 1817 (Parkinson 2002; 
Stefani and Högl 2019). Sleep disorders effect upwards of 60% of PD patients 
(Barone et al. 2009). Frequently, altered sleep is reported during the prodromal phase 
of PD prior to the onset of motor and cognitive dysfunction (Iranzo 2013; Tekriwal 
et al. 2017). PD patients commonly experience insomnia, excessive daytime sleepi-
ness, sleep-related movement disorders (i.e., restless leg syndrome), and parasomnias 
(i.e., REM sleep behavior disorder (RBD)) (Stefani and Högl 2019). RBD is charac-
terized as loss of muscle atonia during REM sleep and dream enactment (Fleetham 
and Fleming 2014). Notably, over 70% of patients presenting RBD will eventually 
develop α-synuclein neurodegenerative disease (i.e., PD, Multiple System Atrophy, 
or Dementia with Lewy Bodies) (Roguski et al. 2020). Less common parasomnias 
experienced by PD patients include NREM parasomnias (i.e., sleepwalking, confu-
sional arousals, sleep terrors) and parasomnia overlap disorder (clinical features of 
both NREM parasomnias and RBD) (Fleetham and Fleming 2014; Stefani and Högl 
2019). Insomnia, defined as difficulty falling asleep or maintaining sleep, early awak-
ening or non-restorative sleep, is the most common sleep disturbance reported in PD 
patients and has been associated with disease duration, higher depression rating 
scale scores (Montgomery and Aasberg and Becks’ Depression Inventory), female 
sex, fatigue, and age (Gjerstad et al. 2007; Chung et al. 2013). However, exces-
sive daytime sleepiness in PD patients has been associated with male sex, disease 
duration, and anti-Parkinsonian medications (Mantovani et al. 2018). 

Sleep architecture is also altered in PD patients (Zhang et al. 2020; Zahed et al. 
2021). Consistency between studies, primarily studies examining NREM sleep, is
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less than desired. Studies have demonstrated increased NREM sleep during stage 
N1, or the lightest stage of sleep, in PD patients ((Yong et al. 2011; Zhang et al. 
2020); for a detailed review of NREM sleep see (Léger et al. 2018)). Increased N1 
has been associated with the initiation of dopaminergic medications in PD patients 
(Brunner et al. 2002). N2 has been reported to be unaffected by PD (Brunner et al. 
2002; Yong et al. 2011). However, a recent meta-analysis has concluded that the N2 
stage of NREM sleep is moderately reduced (Zhang et al. 2020). Sleep spindles and 
K complexes, characteristics of the N2 stage of NREM sleep, are also altered in PD 
patients (Zahed et al. 2021). Studies have primarily reported reduced number of sleep 
spindles and K complexes (Emser et al. 1988; Comella et al. 1993; Latreille et al. 
2015). Sleep spindles are further altered in patients with dementia. Indeed, Latreille 
et al. (2015) demonstrate that PD patients with dementia displayed reduced sleep 
spindles relative to PD patients without dementia and controls. The final stage of 
NREM sleep, N3, is reduced in PD patients (Zhang et al. 2020). The depletion in N3 
is likely associated with disease progression as the reduction of N3 advances with 
disease duration (Diederich et al. 2005). Given the previously described RBD in PD 
patients, it is not surprising that REM sleep is reduced (Zhang et al. 2020). Indeed, 
studies demonstrate reduced total percentage of REM sleep, REM sleep time, and 
density of REM sleep (Diederich et al. 2005; Zhang et al. 2020). Similar to N3, 
reduced REM sleep is associated with disease duration (Diederich et al. 2005). In 
sum, PD patients demonstrated reduced total sleep time, reduced NREM sleep (note 
not all stages of NREM), and reduced REM sleep. 

The effect of sleep dysfunction on PD is an area of ongoing research. Broadly, sleep 
dysfunction is thought to be detrimental to disease progression. Indeed, reduction in 
SWS is inversely correlated with motor dysfunction in PD (Zahed et al. 2021). Poor 
sleep efficiency and greater sleep fragmentation are associated with enhanced motor 
gait dysfunction (O’Dowd et al. 2017). In mouse models of PD, sleep deprivation 
increased α-synuclein deposition within the brain (Morawska et al. 2021). However, 
increasing SWS reduces α-synuclein burden (Morawska et al. 2021). Furthermore, 
there has been a reported “sleep benefit” defined as a period of lessened disability in 
PD patients (Currie et al. 1997). The underlying mechanism linking sleep dysfunction 
and PD progression is still being investigated. However, similar to AD, hypotheses 
include impaired glymphatic clearance and as a consequence increased α-synuclein 
burden within the brain due to reduced sleep in PD patients (Xie et al. 2013; Bishir  
et al. 2020; Zahed et al. 2021). Currently, mouse models support this idea (Morawska 
et al. 2021). 

The effects of PD are not specific to sleep as PD patients also display alterations 
to other circadian processes. Notably, the clinical presentation of PD is influenced by 
circadian rhythms. Despite dopaminergic medications, symptoms of PD demonstrate 
time-of-day differences with patients displaying worsening of motor symptoms in 
the afternoon and evening (Bonuccelli et al. 2000; Van Wamelen et al. 2021). PD 
patients display altered melatonin secretion, disrupted activity rhythms, and altered
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peripheral clock gene expression. Indeed, in a study of 20 PD patients and 15 aged-
matched controls, PD patients exhibited blunted circulating melatonin rhythms rela-
tive to controls (Videnovic et al. 2014). Furthermore, PD patients reporting exces-
sive daytime sleepiness had significantly lower amplitude melatonin rhythms rela-
tive to PD patients without excessive daytime sleepiness (Videnovic et al. 2014). 
Studies have also reported a phase advance in melatonin secretion (Fertl et al. 1991; 
Bordet et al. 2003). PD patients display reduced gray matter within the hypotha-
lamus which is significantly correlated with melatonin concentrations. Additionally, 
melatonin levels were significantly associated with disease severity in PD patients 
(i.e., melatonin levels negatively correlated with disease severity) (Breen et al. 2016). 
Dopaminergic treatment of PD can also significantly affect melatonin levels. Bolitho 
et al. (2014) reported significantly enhanced secretion of melatonin in the medi-
cated PD group relative to the unmedicated PD group. Furthermore, dopaminergic 
therapy delayed sleep onset relative to melatonin onset, suggesting possible uncou-
pling of circadian and sleep regulation (Bolitho et al. 2014). Patients demonstrate 
altered activity rhythms (Whitehead et al. 2008; Niwa et al. 2011). Specifically, PD 
patients have reduced activity during the day and higher activity at night (White-
head et al. 2008; Niwa et al. 2011). Circadian rest-activity rhythms can predict 
cognitive dysfunction in PD patients independent of sleep (Wu et al. 2018). Altered 
circadian rest-activity rhythms are associated with worsening of the disease (Niwa 
et al. 2011). Clock genes alterations have been reported in PD patients, and single-
nucleotide polymorphisms in clock genes have been associated with increased risk 
of developing PD (Gu et al. 2015; Lou et al. 2017).  Cai et al.  (2010) reported reduced 
BMAL1 expression in total leukocytes of PD patients. The expression of BMAL1 
correlated positively with PD severity (Cai et al. 2010). Notably, treatment with mela-
tonin increases BMAL1 expression in peripheral blood of PD patients (Delgado-Lara 
et al. 2020). BMAL2 is also significantly reduced in total leukocytes of PD patients 
(Ding et al. 2011). Similar alterations in clock gene expression have been reported 
in mouse models of PD (Shkodina et al. 2022). The mechanisms underlying alter-
ations in circadian rhythms and PD are uncertain. However, a common hypoth-
esis to explain these changes is altered SCN output (Willison et al. 2013). There 
is evidence to support this hypothesis as mice overexpressing α-synuclein display 
normal Per2 oscillation in the SCN, but have damped electrical output from the SCN 
(Kudo et al. 2011a). Notably, the damped electrical output from the SCN is already 
present at the onset of motor symptoms (Willison et al. 2013). 

22.4 Huntington’s Disease 

Huntington’s Disease (HD) is a progressive autosomal-dominant neurodegenerative 
disease that affects approximately 10 people per 100,000 (Barnat et al. 2020; Crowell  
et al. 2021). HD is identified by CAG trinucleotide repeat expansion in huntingtin 
gene (HTT), resulting in a mutant huntingtin protein (Tabrizi et al. 2019). The disease
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presents typically in the 3rd to 5th decade of life (Bates et al. 2015). HD is character-
ized by movement dysfunction, cognitive deficits, and psychiatric symptoms (Wilton 
and Stevens 2020). Clinically, patients display abnormal eye movement, involuntary 
muscle movement, and rigidity or dystonia (Jamwal and Kumar 2018). The hallmark 
pathology which underlies HD is the loss of GABAergic medium spiny neurons in 
striatum nuclei of basal ganglia (Jamwal and Kumar 2018). 

Relative to AD and PD, the effects of HD on circadian rhythms and sleep/wake 
states are understudied. However, it is clear that HD patients suffer from altered 
sleep/wake states (Zhang et al. 2019). It is estimated that as much as 90% of 
HD patients display altered sleep/wake states (Fifel and Videnovic 2021). Patients 
can display sleep abnormalities during the premanifest stage of HD (Lazar et al. 
2015). Additionally, there is evidence that sleep disorders progress as HD proceeds 
(Hansotia et al. 1985; Arnulf et al. 2008). Sleep abnormalities do not correlate 
with CAG repeat length (Arnulf et al. 2008). Similar to PD, the effects of HD 
on sleep are not homogenous in the literature (Herzog-Krzywoszanska and Krzy-
woszanski, 2019). Studies in HD patients report insomnia, frequent nocturnal awak-
enings, increased latency to sleep onset, reduced total sleep time, altered REM sleep, 
decreased sleep efficiency, and excessive daytime sleepiness (Wiegand et al. 1991; 
Arnulf et al. 2008; Videnovic et al. 2009; Moser et al. 2017). Similar to PD, RBD has 
been reported in HD patients (Videnovic et al. 2009). In a recent meta-analysis of 
polysomnography studies in HD patients, Zhang et al. (2019) reported significantly 
reduced sleep efficiency, increased wake time after sleep onset, and no significant 
change in total sleep time. Sleep macrostructure is also altered; HD patients displayed 
an increase in the N1 stage of NREM, no change in N2, and significantly reduced 
amount of slow-wave sleep (Zhang et al. 2019). Patients also demonstrated signifi-
cantly reduced REM sleep and increased latency to REM sleep (Zhang et al. 2019). In 
addition, increased sleep spindle density has been observed in HD patients (Wiegand 
et al. 1991). Poor sleep is associated with depression, duration of illness, and severity 
of clinical symptoms in HD patients (Wiegand et al. 1991; Videnovic et al. 2009). 
Further, patients with sleep disturbances have significantly poorer neuropsychiatric 
outcomes and accelerated thalamic degeneration (Baker et al. 2016). The precise 
mechanisms underlying altered sleep in HD are unknown. However, it is likely due to 
the accumulation of the mutant form of huntingtin and neuronal loss in sleep regions. 
Indeed, cell death has been reported in the locus coeruleus and the hypothalamus 
(Zweig et al. 1992; Petersén and Gabery 2012). 

Patients with HD display global circadian desynchrony. Indeed, HD patients 
have reduced melatonin rhythms, delayed onset of melatonin rise, increased cortisol 
rhythms, altered activity rhythms, and altered blood pressure rhythms (Aziz et al. 
2009a, b; Goodman et al. 2011; Kalliolia et al. 2014; Bellosta Diago et al. 2017). 
Studies have demonstrated an association between altered melatonin and cortisol 
rhythms and motor and functional impairment (Aziz et al. 2009a, b). Studies exam-
ining alterations in clock genes in HD patients are not existent and represent an area of 
needed research. However, foundational science has demonstrated significant alter-
ations to clock genes in mouse models of HD. Indeed, the R6/2 mouse model of 
Huntington’s exhibits altered expression of BMAL1, PER1, and PER2 within the
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SCN and CRY1, DBP, and PER2 in the liver (Morton et al. 2005; Pallier et al. 2007; 
Maywood et al. 2010). Activity rhythms worsen in this mouse model as the disease 
progresses leading eventually to arrhythmia. In the BACHD mouse model of HD, no 
change was seen in PER2 expression within the SCN. However, reduced electrical 
output from the SCN was reported (Kudo et al. 2011b). The mechanism underlying 
altered circadian rhythms is still inconclusive. However, changes in SCN structure 
likely play a role. Indeed, HD patients demonstrate significant neuronal loss within 
the hypothalamus (Petersén and Gabery 2012), and these effects can be detectable 
before clinical diagnosis (Soneson et al. 2010). In addition, significant D2 receptor 
loss and microglia activation within the hypothalamus have been reported (Politis 
et al. 2008). Two major regulatory neuropeptides of the SCN, vasoactive intestinal 
polypeptide (VIP) and arginine vasopressin (AVP), are significantly reduced, demon-
strating an SCN-specific change in HD patients (Van Wamelen et al. 2013; Ono et al. 
2021). These effects are further supported by foundational science. Indeed, decreased 
expression of VIP and the VIP receptor (VPAC2) was also observed in the R6/2 mouse 
model of HD (Fahrenkrug et al. 2007). 

22.5 Stroke 

Stroke is a disease that impacts blood flow to arteries in the brain resulting in reduc-
tions or interruptions of brain tissue receiving oxygen and essential nutrients leading 
to neuronal injury and death. Worldwide, this disease affects over 12 million indi-
viduals annually and situates itself as the second leading cause of death, and third 
leading cause of combined disability and death (Feigin et al. 2019). Stroke can be 
further characterized into two types: ischemic (accounts for 87% of all strokes) which 
develops due to alterations in blood circulation that result from lack of blood flow 
from the formation of an embolism in the vessel, or hemorrhagic, defined as the 
rupturing of vessels and bleeding into the surrounding brain (Donnan et al. 2008). 
Strokes are characterized by a sudden onset or display of neurological symptoms, 
including confusion, dysarthria, disrupted coordination or loss of balance, and numb-
ness or weakness of the limbs and/or face. Hypoxia initiates the ischemic cascade, 
which consists of first reductions of ATP and lactic acid production that increases 
calcium and consequently glutamate, to over excite neurons and produce free radi-
cals such as reactive oxidative species (ROS) and calcium-dependent enzymes. This 
excitotoxicity within neurons cause mitochondrial release of apoptotic factors and 
ultimately initiate the apoptotic cascade and/or necrosis pathway, initiating inflamma-
tory response and damaging the blood–brain barrier to increase cerebral edema (Xing 
et al. 2014). Consequently, brain atrophy from this disease can result in both imme-
diate and long-term progressive cognitive impairment and stroke-induced secondary 
neurodegeneration resulting in functional decline (Zhang et al. 2012; Brodtmann 
et al. 2021). 

Sleep is critical during post-stroke recovery. Sleep and circadian rhythm disruption 
are often unrecognized modifiable risk factors and consequences of stroke (Bassetti
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et al. 2006; Wallace et al. 2012; Gottlieb et al. 2019). Clinical studies investigating 
the relationship between stroke and sleep have predominantly focused on obstructive 
sleep apnea evaluating risk and outcome, but few studies have correlatively associated 
with circadian disruption and stroke. Greater than 50% of stroke patients display 
sleep disorders, consisting of sleep-disordered breathing (SDB) most commonly 
manifesting in the form of obstructive sleep apnea (OSA). OSA can be represented 
as both a risk factor for infarction and immediate consequence from brain damage 
(Bassetti 2005). Studies demonstrate that stroke patients with OSA have increased 
risk and greater predispositions for recurring stroke (Martínez-García et al. 2012) 
and increased mortality (Sahlin et al. 2008). Other sleep disorders reported in stroke 
patients include excessive daytime sleepiness, insomnia, restless legs syndrome, and 
REM sleep behavior disorder (RBD). However, the prevalence varies depending on 
the type of stroke that occurred (Hermann and Bassetti 2016). Insomnia is the most 
common sleep disorder in stroke patients. It exists in approximately half of stroke 
patients (Palomäki et al. 2003) and has been shown to extend up to 12 months after 
stroke. Notably, post-stroke insomnia is associated with higher incidence of stroke 
(Huang et al. 2018). Additionally, RBD has been correlated with poor functional 
long-term outcome and increased mortality (Wallace et al. 2012). 

Sleep architecture is also impaired after ischemic stroke. In a meta-analysis of 
polysomnographic studies, post-stroke patients exhibited reduced sleep efficiency, 
total sleep time, and increased frequency of waking (Baglioni et al. 2016). Further, 
this study demonstrates that stroke patients have prolonged stage N1 sleep with 
reduction in stage N2 and slow-wave sleep compared to controls (Baglioni et al. 
2016). Another polysomnographic study investigating sleep architecture in stroke 
patients with SDB found that in addition to the characteristic deficits listed above, 
they also observed reductions in REM sleep, suggesting that introducing sleep distur-
bances can further alter aspects of sleep architecture (Terzoudi et al. 2009). A pilot 
study analyzing sleep quality in patients after hyperacute ischemic stroke reported 
severe disturbances in sleep cycles; post-stroke patients had 30% sleep efficiency 
with frequent waking during the sleep/wake cycle within the first 48 h post-stroke. 
Six patients did not reach deep sleep and 10 patients did not reach REM sleep 
(Hofmeijer et al. 2019). Clinical evidence supports the positive relationship between 
sleep and rehabilitation, highlighting the importance of this biological function in 
this disease. Sleep can enhance memory consolidation and facilitates motor learning 
during recovery and rehabilitation post-stroke in humans (Siengsukon and Boyd 
2009), and studies reported improvements in sleep slow-wave activity, important in 
synaptic plasticity and reorganization, in patients receiving targeted aphasia rehabil-
itation through language therapy and imitation-based speech (Sarasso et al. 2014). 
Notably, more clinical studies are needed to further characterize the long-term sleep 
consequences associated with stroke. 

Chronic sleep and circadian rhythm disruption result in dysregulation of physio-
logical function and mechanisms including inflammation (Zielinski and Gibbons 
2022), hypothalamic–pituitary–adrenal axis activation (Buckley and Schatzberg 
2005), and autonomic nervous system activation (Riganello et al. 2019), all of which 
can contribute to the pathogenesis and outcome of ischemic stroke. However, very
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few studies have directly examined the relationship between circadian processes and 
stroke outcome. First evaluations into this relationship investigated the role of biolog-
ical timing and periodicity on stroke onset in clinical settings, and first determined 
that the greatest incidence of stroke occurred during the morning time point, between 
10:00 a.m. to noon, compared to any other time interval across the day (Marler 
et al. 1989). Several follow-up and meta-analyses have been conducted since then, 
compiling 31 publications to further support the presence of circadian influences on 
stroke onset. Notably, morning time points between 6:00 a.m. and noon have a 79% 
increased risk of occurrence compared to the normalized risk (Elliott 1998) along 
with greater risk of mortality during that time point (Turin et al. 2012). Clinical 
studies investigating melatonin in ischemic stroke patients demonstrate decreased 
urinary melatonin at night following acute (3 day) and chronic (2 weeks) time points 
in patients with extensive cerebral injury (Fiorina et al. 1999). However, this study 
only included one time point per light/dark phase. Therefore, this was followed up 
measuring urinary 6-SMT every 4 h, and the authors reported that in extensive cortical 
(and deep/lacunar) strokes, melatonin secretion is delayed during the acute injury 
phase, that normalizes after 10 days, while melatonin rhythms remain intact in less 
severe stroke patients (Beloosesky et al. 2002). Due to limited precision in timing for 
the method of analysis, further studies were conducted with animal models. Preclin-
ical data identified that rats have immediate changes to pineal melatonin secretion 
post-transient middle cerebral artery occlusion (MCAO), with prolonged dysregula-
tion to rhythms denoted through day-to-day alternating phase advances and delays in 
melatonin timing, which was determined through pineal microdialysis of melatonin 
timing profiles (Meng et al. 2008). Other preclinical studies investigating the mecha-
nism underlying circadian rhythmicity for time-of-day and neuronal susceptibility to 
damage have been conducted in animal models of global ischemia, where rats were 
subjected to cardiac arrest at three different time points across a 24-h period (Zeit-
geber time, ZT, 6, 14, and 20), and observed that hippocampal neurons exhibit varia-
tions in Caspase, a marker of cell death activation, with the greatest expression during 
the early night (ZT 14) compared to other time points. This coincides with human 
clinical data where the onset of the active period has the greatest extent of damage 
and injury. The authors further observed a coinciding 6-h shift in Per1 following 
global ischemia, suggesting the potential role of the circadian clock (Tischkau et al. 
2007). Notably, clinical and animal studies are limited in the context of research 
investigating the relationship between circadian rhythms and stroke. Further studies 
are necessary to investigate the contributing mechanism behind this neurological 
disease. 

22.6 Conclusion 

It is apparent that neurological diseases alter circadian rhythms and sleep–wake 
states. However, there is also a bidirectional relationship in which disruptions of 
circadian rhythms and sleep/wake cycles are detrimental and lead to the progression
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of neurologic disorders. Importantly, as stated in the introduction, the extent to which 
disrupted sleep is the primary outcome (or cause) of neurological disorders or whether 
disrupted circadian clock function is the primary outcome (or cause) of neurological 
disorders remains unspecified. This is due to the inability to separate disruptions to 
circadian rhythms and sleep/wake cycles in diurnal species such as humans. However, 
these processes can be uncoupled in nocturnal species and provide further reasoning 
for studying circadian disruption and sleep/wake states in nocturnal rodents. Despite 
our understanding of the basic mechanisms governing sleep and the circadian clock, 
our knowledge of these systems during aging and neurological disease is still in its 
infancy. Future research should work to more fully understand these mechanisms 
in aging and neurological diseases to allow for the potential development of clock-
specific neurotherapeutics. 
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Chapter 23 
Insomnia in the Elderly and Its 
Treatment 

Murat Özgören and Adile Öniz 

23.1 Definitions 

The definition of insomnia is described in various dictionaries and encyclopedias as 
well as medical textbooks. The reasons can be attached to the fact that the word is at 
least 400 years old, not mentioning the concept being recorded in the ancient texts. 
Furthermore, it is interwoven into daily life, and hence, it has been acknowledged 
not only in health-related groups but also literature, art, and economics. 

Commonly insomnia has been labeled as a noun relating to the condition with 
long-term inability to sleep. This prolonged incapacity results in difficulty in 
commencing or preserving a restorative sleep, which in return brings in fatigue. 
Proportional to the severity or persistence of the condition, it produces distress (at 
clinical levels) or loss in proper functioning. The condition arises from physical and 
psychological disturbances. 

Various other terms have been also found to be addressing a similar broader area 
such as agrypnia, ahypnia, ahypnosia, and anhypnia. Lastly, the person suffering 
from the condition is referred as insomniac (n) (APA Dictionary of Psychology 
2022).
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23.2 Setting the Scene 

23.2.1 Historical 

The Pergamon Hospital Complex, Asclepios (Turkey), is a curious health-seeking 
center where body-mind and social interactions were interwoven. The common prac-
tices were brought to daylight from the eyes of a patient (acknowledged to be a 
hypochondriac himself) named Aristides (Steger et al. 2016). In light of some vague 
texts, the incubation facility was central to healing processes. To note, the herbal 
hypnotics were believed to be utilized by medical personnel one of whom is a well-
known physician named Galen (Claudius Galenus). His role in careful experimen-
tation of chemicals and herbal extracts later paves the way to Galenic medicine as 
a basis for modern medicine and historic Galenic Corpus). Galen is also believed to 
have prescribed valerian for insomnia (Blumenthal et al. 2000; Gärtner 2012). 

When our scope of time frame reaches eleventh century, we observe that Avicenna 
(Ibn Sina, 980–1037) associates symptoms like pain, sleep environment conditions 
such as too much light, worries, and poor digestion (Feyzabadi et al. 2014). These 
parameters noted by Avicenna are not far from modern criteria for insomnia hinting 
at multidimensional therapeutical approaches. 

For the nineteenth century, J. C. A. Heinroth is believed to be the person, 
addressing insomnia and sleep deprivation in 1818 (Steinberg and Hegerl 2014). 

The rest follows the footsteps of foundations of sleep medicine, sleep laboratories, 
and sleep clinics. Surely, the availability of optimally controlled pharmaceuticals 
helped the way to the current date. Yet there is still the debate whether the biological 
models or cognitive behavioral approach or combinations would be the gift to next 
decades from current practices. 

23.2.2 Demographics 

The aging population in the world has been recently marked by news from global 
markets indicating that there are more adult diapers sold than baby diapers (For 
Japan, the number is reported to be 2.5 times).1 

From the source of European Statistics, Europe has witnessed a significant 
increase of aging population. It is reported that from 2021 to 2100, the working 
population is anticipated to decline, while elderly segment will display an increasing 
part of the overall population. 65 + will comprise 31.3% by 2100 with significant 
jump from current levels (20.8% in 2021). 80 + will increase by 2.5-fold in the same 
time frame (from 6.0% to 14.6%, respectively) (Fig. 23.1).

1 https://9newsng.com/why-more-adult-diapers-are-sold-in-japan-than-baby-diapers/. 

https://9newsng.com/why-more-adult-diapers-are-sold-in-japan-than-baby-diapers/
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(a) (b) 

Fig. 23.1 a Global centenarian (those who are 100 years and older) population by 2015 on the left 
and the projected numbers by 2100 on the right.2 K indicates thousand. b Upper chart shows the 
elderly numbers (65 +) by 2021, and the lower one indicates the projection for 2100 

Amid progressing countries, less developed countries discounting the least devel-
oped countries will host more than two-thirds of the global elderly (1.1 billion by 
2050). Here, the least developed countries will face significant jump (225%) from 
37 million in 2019 to 120 million in 2050 for 65 +. UN estimates the largest increase 
(312 M) to occur in Eastern and South-Eastern Asia (261–573 M). The same esti-
mation addresses Northern Africa and Western Asia for fast growth of the elderly 
proportion. The current trends will provide further stress to the elderly group as they 
faced more isolation during the pandemic.3 

Elderly population (65 +) face the serious issue of insomnia, and the ratio 
is multiplied with the centenarians. Interestingly, there will be approximately 
45 times more 100 + toward 2100. Therefore, it is not false to focus on this 
problem as a major health disruptive factor.

2 Modified from the projections (EUROPOP2019). Source: Eurostat (online data codes: 
demo_pjanind and proj_19ndbi). 
3 https://www.aa.com.tr/en/life/elderly-to-make-up-22-of-world-population-by-2050/2379462), 
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_age 
ing&oldid=549185#The_share_of_elderly_people_continues_to_increase). 

https://www.aa.com.tr/en/life/elderly-to-make-up-22-of-world-population-by-2050/2379462
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing&amp;oldid=549185#The_share_of_elderly_people_continues_to_increase
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing&amp;oldid=549185#The_share_of_elderly_people_continues_to_increase
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23.2.2.1 Centenarians 

While in 2015 there were less than 0.5 M (app 417,000) centenarians globally, this 
number is projected to reach about 19 M by 2100. Unlike gradually increasing the 
elderly (65+) population in general, the 100+will increase by almost an exponential 
factor. 

Globally, there were nearly half a million centenarians in 2015, more than four 
times as many as in 1990 (UN estimates). This change is expected to accelerate. 
Projections point to 3.7 million centenarians worldwide in 2050. The new consensus 
report from Canada points to a similar pattern to the US with an increase in very old 
population. Accordingly, the number of Canadian centenarians touched a new zenith 
in 2021. The number of these people, who are 100 years and older, has increased 
from just 1065 in 1971 to 9545 (Canadian 2021 census) while majority being females 
(N = 7715). Ratio-wise, the increase is also significant; in 1971, 4.9 people out of 
every 100,000 Canadians were 100 or older; in 2021, it was 25.8 per 100,000. 

While centenarians contribute to a trivial portion of the world’s older population, 
their percentage is rising. In 1990, there were 2.9 centenarians for every 10,000 adults 
ages 65 and older across the globe. That segment flourished to 7.4 by 2015 and is 
projected to escalate to 23.6 by 2050. Since 1990, the population of those ages 80 and 
older—the oldest segments of the 65-plus population—has increased more swiftly 
than that of the younger subdivisions, those ages 65–79. This faster growth is pushed 
by enhanced life expectancies among those 65 and older4 (Fig. 23.1). 

23.2.3 Socioeconomic Impact of Insomnia 

The social inclusion dynamics have influences on demographic developments. 
Hence, increased access to health care and basic services have contributed to mortality 
declines worldwide. 

The aging population is a worldwide tendency with major social and economic 
effects that are portrayed by an ascending swing in age distribution. Worldwide, there 
were 728 million 65 + by 2020 or about 9% of the total population. This percentage 
is projected to stretch to 12% by 2030 and 16% by 2050; it could be nearly 23% by 
2100, while women comprised 55% of 65 + globally (2020) and 62% of 80 +.5 

In the scope of the elderly society, the sleep disorders including insomnia have 
many psychosocial etiologies like lifestyle, night shift, sporadic daily stressors, or 
environmental stress. On broad terms, insomnia is defined as a disorder manifested 
by difficulty in staying asleep, or going back to sleep after morning awakenings,

4 https://www.pewresearch.org/fact-tank/2016/04/21/worlds-centenarian-population-projected-to-
grow-eightfold-by-2050/, https://www.statista.com/statistics/996597/number-centenarians-wor 
ldwide/. 
5 https://documents-dds-ny.un.org/doc/UNDOC/GEN/N09/212/29/PDF/N0921229.pdf?OpenEl 
ement. 

https://www.pewresearch.org/fact-tank/2016/04/21/worlds-centenarian-population-projected-to-grow-eightfold-by-2050/
https://www.pewresearch.org/fact-tank/2016/04/21/worlds-centenarian-population-projected-to-grow-eightfold-by-2050/
https://www.statista.com/statistics/996597/number-centenarians-worldwide/
https://www.statista.com/statistics/996597/number-centenarians-worldwide/
https://documents-dds-ny.un.org/doc/UNDOC/GEN/N09/212/29/PDF/N0921229.pdf?OpenElement
https://documents-dds-ny.un.org/doc/UNDOC/GEN/N09/212/29/PDF/N0921229.pdf?OpenElement
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even when optimal environmental conditions are present. The overall occurrence of 
insomnia symptoms ranges from 30 to 48% in the elderly and occurrence of insomnia 
disorder has a smaller range of 12–20%, while up to 75% of older adults acknowledge 
symptoms of insomnia (Patel et al. 2018; Nguyen et al. 2019). 

The sleep maintenance symptoms are most frequent among insomniacs (50–70%), 
trailed by difficulty in initiating sleep (35–60%) and nonrestorative sleep (20–25%). 
A study with the elderly population (65 +) detected an occurrence rate for insomnia 
symptoms of 5% per year, with a yearly incidence of 7.97% at 1-year follow-up. 
Nearly 50% of the patients with symptoms of insomnia will have a remission through 
the follow-up stage, with higher remission percentages among older males relative 
to females. 

According to a study (Silva et al. 2017), elders who depended on others to perform 
regular and instrumental activities of daily life were frail and carried the risk of falls, 
and had insomnia, (strongest predictor) displayed inferior self-perceived health. All 
these parameters including the loss of old/young proper ratio as workforce will have 
an increasing socioeconomic impact on the societies. It is not hard to estimate that as 
the world population ages and environmental factors spiral, we should expect more 
elderly insomnia patients. 

23.3 Clinical Parameters 

The clinical parameters to diagnose insomnia are very similar across medical world. 
Luckily among the sleep societies, there is a tendency to use common classifications. 
Therefore, International Classification of Sleep Disorders (ICSD) has a central role in 
bringing the criteria toward other societies. Likewise, ICD-10 (International Statis-
tical Classification of Diseases and Related Health Problems) addresses the issue 
as common denominator of sleep disorder. As the comorbidity plane of insomnia 
is commonly interwoven with other mental disorders, also comes the Diagnostic 
and Statistical Manual for Mental Disorders (DSM) classification. All these class 
criteria focus on the identification, differential diagnosis, comorbidity evaluation, 
and severity assessments. Table 23.1 is modified from review by Paul et al. (2022). 
DSM identifies episodic, persistent, and recurrent, and ICSD describes chronic, acute, 
and other categories.

23.3.1 Diagnostic Tools 

The reviewbyAli  et  al.  2020 systematically analyzed the instruments on Insomnia for 
diagnostic purposes (Ali et al. 2020). Accordingly, 38 tests were listed as the instru-
ments for assessing consequences of poor sleep, screening for insomnia symptoms, 
assessing the cognitive aspect of insomnia, and measuring sleep hygiene.
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The authors highlighted the increasing number of tests and pointed to the varying 
basis of insomnia pathophysiology as a possible culprit. Furthermore, the cultural, 
social, and different perspectives (i.e., non-Western perspective or socioeconomic 
evaluation of risk factors, etc.) would have been the reason behind the development 
of so many different tests. Lastly, from the comorbidity prospects to psychometric 
properties of insomnia tools across diverse populations is a possible research topic. 
Table 23.2 is the summary of the current diagnosis test and questionaries in relation 
to insomnia. 

Besides the scales and questionnaires, there is number of tools as well (Schutte-
Rodin et al. 2008). These include

Table 23.2 The diagnostic 
tests and questionnaires 

AIS, Arabic scale of insomnia 
AIS, Athens insomnia scale 
APSQ, Anxiety and preoccupation about sleep questionnaire 
ASBQ, Athlete sleep behavior questionnaire 
BIS, Bergen insomnia scale 
CTIS, Catastrophic thoughts about insomnia scale 
DSPS-4, Daytime sleepiness perception scale-4 
DBAS, Dysfunctional beliefs and attitudes about sleep scale 
DCCASP, Daily cognitive-communication and sleep profile 
ESS, Epworth sleepiness scale 
FOSQ, Functional outcomes of sleep questionnaire 
GSDS General sleep disturbance scale 
H-Scale, Hyperarousal scale 
IDWS, Insomnia daytime worry scale 
InSS, Indian sleepiness scale 
ICS, Insomnia catastrophizing scale 
ISI, Insomnia severity index 
JISS, The insomnia screening Scale 
KSS, Karolinska sleepiness scale 
LIS-18, Lebanese insomnia scale 
MaSQuDI-17, Maugeri sleep quality and distress inventory 
MISS, Minimal insomnia symptom scale 
NRS, Non-restorative sleep scale 
OISQ, Occupational impact of sleep questionnaire 
PSQI, Pittsburgh sleep quality index 
RSQ, Restorative sleep questionnaire 
SCI, Sleep condition indicator 
SDQ, Sleep disturbance questionnaire 
SFIS, The sleep functional impact scale 
SHAPS, Sleep hygiene awareness and practice scale 
SHI, Sleep hygiene index 
SHS, Sleep hygiene self-test 
SQS, Single-item sleep quality scale 
SPAQ, Sleep practices and attitudes Q 
SPS, Sleep preoccupation scale 
SQQ, Sleep quality questionnaire 
SS, Jenkins sleep scale 
WHIIRS, Women’s health initiative insomnia rating scale
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· Physical and mental status examination (for comorbid conditions and differential 
diagnosis) 

· Polysomnography (sleep apnea, movement disorders, etc.) and daytime multiple 
sleep latency testing (MSLT) 

· Actigraphy (circadian rhythm patterns, sleep disturbances) 
· Laboratory testing (e.g., blood, radiology) for comorbidity 
· Sleep diary data 
· Additional assessment for 

– Fatigue and sleepiness 
– Mood disturbances and cognitive difficulties 
– Quality of life. 

23.3.2 Comorbidities 

Insomnia disorder commonly is also associated with psychiatric, neurological, or 
physical conditions. Historically pain has been a strong denominator for such comor-
bidity sign. Depression, apnea and other breathing problems, cardiovascular symp-
toms, hypertension, diabetes, hyperlipidemia, rheumatologic conditions, nausea, 
restless leg, and other sleep-disturbing conditions are among the many symptoms 
that accompany insomnia (Riemann et al. 2017; Ng and Ng 2021). 

23.3.3 Neurobiophysical and Cognitive Background 
of Insomnia 

1980S insomnia diagnosis and treatment were not any inferior to today. Borkovec 
(1982) describes the physiological as well as psychological background for insomnia 
(Borkovec 1982). Hence, therapies from biofeedback and cognitive therapies to 
hypnotic medication were all listed in detail. 

Kales and Kales (1987) reported that the insomniacs displayed a common pattern: 
Bedtime tense state, ruminations about unresolved issues, anxiety, worries, fixation, 
and elevated vigilance during the day were among the complaints (Kales and Kales 
1987). 

Edinger et al. (1988) investigated the personality types of insomniacs. The study 
also included the behavioral therapies in line with these subtypes (i.e., tendency to 
contain, minimize, and internalize stress and emotional conflicts, etc.) (Edinger et al. 
1988). 

The findings of research during this period revealed cognitive models for 
insomnia. Harvey, one of the leading researchers presenting the cognitive model, 
noted that loading in insomniacs with negative thoughts and concerns leads to both 
autonomic arousal and emotional dissection. The hyperarousal state with which
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cognitive models are connected is a complex phenomenon. Inevitably, physiological 
processes also participate in the discussion. Therefore, when discussing insomnia 
etiopathogenesis, it is necessary to cover behavioral, cognitive, neurocognitive, and 
physiological models. 

Physiological processes for arousal are evaluated such as basic psychophysio-
logical measures, whole-body metabolic rate, heart rate variability, neuroendocrine 
measures, and functional neuroimaging. In fact, the first physiological measurements 
in insomnia began in earlier research (1960s). Heart rate variability, heart and respi-
ration frequency, skin and core body temperature, muscle tone, skin conductance 
and resistance, and peripheral blood flow or vasoconstriction are among the param-
eters that have been utilized as biophysical factors. In these antecedent studies, it 
was stated that these biophysical and physiological markers were affected by arousal 
height. However, due to some methodological limitations, the results of these studies 
were not sufficient to define a single physiological model for insomnia. 

One of the physiological measurements used in recent research is the whole-
body metabolic rate utilizing oxygen uptake (VO2) as a marker. Bonnet and Arand 
(1995) reported a high metabolic rate in insomniac patients (Bonnet and Arand 1995). 
Another finding that may be indicative of metabolic changes in insomnia may be the 
differentiation of body temperature. In insomnia, both 24-h core body temperature 
and body temperature in the application phases were reported to be higher (Lack et al. 
2008). An easy method of evaluating arousal status is heart rate variability, which is 
controlled by the autonomic nervous system. Besides, Bonnet and Arand reported 
in their 1998 heart rate variability analysis in insomniac patients that the heart rate 
decreased especially in sleep and that the heart rate was better than that of those who 
slept well (Bonnet and Arand 1998). They reported that this was associated with 
reduced parasympathetic activity and increased sympathetic activity. 

Likewise, the neuroendocrine responses to stress vary, especially in connection 
with hypothalamic–pituitary–adrenal (HPA) axis (Balbo et al. 2010). In addition, 
norepinephrine and melatonin are also important in insomnia as physiological param-
eters (Riemann et al. 2002; Takaesu et al. 2015; Dopheide 2020). Takaesu et al. 
conducted a study in 2015 on the relationships between diurnal melatonin secretion 
and sleep variables in patients at coronary care unit and pointed to the lower mela-
tonin levels causing insomnia (Takaesu et al. 2015). The cortisol and norepinephrine 
levels in urine were found to be high in insomnia. Likewise, plasma levels have 
also shown that ACTH and cortisol levels in sleep and before sleep were elevated 
in insomnia patients (Johns et al. 1971; Vgontzas et al. 1998, 2001; Riemann et al. 
2002). These findings demonstrate the relationship between HPA axis and sympa-
thetic nervous system activation levels and sleep problems. One issue that is to 
clarify whether increased HPA activity leads to insomnia or whether insomnia leads 
to increased HPA activity. Stress-induced HPA axis activation can cause sleep distur-
bances, while chronic sleep disorders in turn display a persistent activation of the 
HPA axis. 

Furthermore, various functional imaging methods were utilized in recent years 
(Spiegelhalder et al. 2013). In particular, PET and SPECT methods can show 
metabolic changes in the brain regionally. Much more commonly used fMRI can
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address different tasks, to define the functioning of different brain regions, and 
changes in the brain can be examined in different phases of sleep. 

The findings of these studies showed that bioenergetic processes in the brain 
of insomniacs at different periods of sleep were different from those of normal 
sleepers. Another remarkable finding is that morphometric features were in line with 
metabolic activity changes in limbic system connections such as hippocampus and 
anterior cingulate cortex, especially amygdala (O’Byrne et al. 2014; Bagherzadeh-
Azbari et al. 2019; Schiel et al. 2020). Although the findings of neuroimaging studies 
include partial inconsistencies due to technical and methodological differences, they 
are promising in understanding the pathophysiology of insomnia, clinical evaluation, 
discrimination, and driving treatment. Additionally, a decrease in the hippocampal 
gray matter, the parietal and cingulate cortex, and the medial frontal lobes was 
noted (Riemann et al. 2015). Likewise, the review by Schiel et al. (2020) reported 
several neuroimaging studies focusing on amygdala, default mode network, salience 
network, etc. (Schiel et al. 2020). The outcomes indicated amygdala reactivity, 
and morphometry and adaptation to be altered. Furthermore, insomniacs displayed 
aberrant connectivity associated with individual sleep disturbances, hyperarousal, 
maladaptive emotion regulation, and disturbed integration of emotional states. The 
culprit was addressed to the limbic circuit besides the former. 

In another domain, electrophysiology studies (i.e., electroencephalography-EEG) 
displayed a similar pattern to neuroimaging studies. EEG findings matched the 
worries and attentional emphasis of insomniacs (Harvey and Tang 2012). Addi-
tionally, other studies have described oscillation changes (delta, alpha, beta, gamma) 
during REM (rapid eye movement) sleep (Freedman and Sattler 1982; Merica and 
Gaillard 1992; Krystal et al. 2002). Whereas NREM (non-rapid eye movement) elec-
trophysiologic frequency indices were thought to be physiologic correlates of sleep 
complaints. 

Consequently, certain cognitive and behavioral factors need to be addressed such 
as attention, memory, problem-solving, and similar which are part of the processes 
involved in higher executive functions (Fortier-Brochu et al. 2012; Mukku et al. 2018; 
Wardle-Pinkston et al. 2019; Edinger et al. 2021). 

Physiological, cognitive, behavioral, and cortical predominant hyperarousal 
mechanisms are moderated by age, gender, race, interpersonal relation, socioeco-
nomic status, comorbidity, education status, self-rated health condition, physical 
incapacity, and sleep-disruptive medication. They are also related to environmental 
stimuli (temperature, light, noise), misbehaviors (alcohol use, nighttime caffein, 
substance abuse, smoking, reading, digital use, being active in bed, etc.), neurocogni-
tive impairment (disrupted sleep-related rumination, life stress-related worries, etc.), 
and genetic factors (Perlis et al. 2005).
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23.3.4 Nutrition and Insomnia 

Diet quality and certain nutrients can change the quantity and quality of sleep by 
affecting hormonal pathways. In addition, sleep can change total energy intake by 
affecting the intake of certain foods and nutrients through biological and behavioral 
mechanisms (Frank et al. 2017). Older individuals have less quality and quantity of 
sleep compared to adults. Diet, one of the modifiable lifestyle factors, may affect 
sleep-related outcomes in the elderly (Gupta et al. 2021). It was stated that food 
diversity comprising eggs, meat, fish, milk products, fruits, and vegetables may affect 
sleep efficiency (Yamamoto et al. 2021). It has also been noted that quality sleep in 
the elderly individuals is associated with adherence to the Mediterranean Diet, which 
is based on dietary diversity (Mamalaki et al. 2018). 

In fact, among other sleep disturbances, insomnia is a common sleep disorder in the 
elderly. With certain health consequences, insomnia symptoms are more common 
in women. When the causes of insomnia are investigated, it has been shown that 
anorexia is one of the important factors (Peng et al. 2021). In the study conducted 
by Kushkestani et al. older individuals with poor eating habits (malnourished) had 
lower sleep quality scores (Kushkestani et al. 2021). The prevalence of obesity is 
also increasing due to excessive food intake in the elderly individuals who have 
poor sleep quality, except for low food intake due to anorexia (Türkbeyler et al. 
2021). For this reason, it is extremely important to determine the nutritional status 
of the elderly individuals and to properly regulate their appetite (Peng et al. 2021). 
As metabolic processes are also incorporated to sleep hormonal homeostasis, the 
connection between sleep quality and body composition exhibits a two-way street. 

In the assessment of nutritional status in the elderly, Mini Nutritional Assessment 
(MNA) screening tool, anthropometric measurements (such as body weight, height, 
body mass index, waist, hip, calf, and upper middle arm circumferences), and food 
consumption should be evaluated together (Poda et al. 2019; Kushkestani et al. 2020, 
2021; Türkbeyler et al. 2021). In addition, the Pittsburgh Sleep Quality Index (PSQI) 
should be used to evaluate sleep quality (Kushkestani et al. 2020, 2021; Türkbeyler 
et al. 2021). It should be aimed to establish the necessary policies to improve the 
quality of life by evaluating the nutrition and sleep quality of the elderly individuals. 

23.3.5 Thermoregulation and Insomnia 

There are several epidemiological studies reporting lower core body temperature 
of healthy men and women over 60–65 years of age than that of their younger 
adult counterparts. The current condition of the cardiovascular system, heat and cold 
exposure and responses, sweating, heat production, thermosensitivity, and behavioral 
thermoregulation are among the physiological parameters in the background. While 
there are few studies on the age-related changes in behavioral thermoregulation in
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humans, the wide-ranging impression is that the elderly are less proficient in the 
thermoregulation respect than adults (Blatteis 2012). 

Along with other factors for sleep disturbance, temperature has also been studied. 
In an experimental study, temperature manipulations were effective for promoting 
better sleep (Raymann et al. 2008). The authors postulated that skin warming would 
increase neuronal activity in brain areas that are critically involved in sleep regulation. 
Similarly, the temperature regulation of sleep environment (i.e., bed heating) was 
associated with improved sleep quality (Xia et al. 2020). 

23.3.6 Behavioral and Physiological Conditions 
at Crosshairs 

The modern human life is getting more oriented with electronic devices, gadgets, 
and media devices.6 In fact, The United Nations International Day of Older Persons 
2021 theme “Digital Equity for All Ages” is a good example of this issue. The 2021 
Pew Research Center survey found that 96% of the younger population (18 to 29 y) 
own a smartphone compared with 61% of the elderly (65 +). Regarding Internet use, 
younger ages extensively use, while the number is at 75 for the elderly (65 +). 

A European study displayed the outcomes of this type of behavior in 
relationship to insomnia. Accordingly, they reported that computer usage for 
playing/surfing/reading was positively connected with insomnia and negatively asso-
ciated with morningness. On the other hand, mobile phone usage was positively asso-
ciated with insomnia and chronotype and negatively associated with morningness 
(Fossum et al. 2014). 

In the background of this type of results, there are few facts that need to be 
discussed. Not only cognitive emotional factors but also physiological mechanisms 
might be responsible. To note, the modern electronic devices might expose no less 
than 500 cd/m2 light even in the blue light spectrum. Accordingly, there have been 
some initiatives to counterbalance this factor by means of dimming the screen light, 
color shifting, etc. Yet the cognitive behavioral background is more complex and 
further interventions need to be planned. 

23.3.7 COVID-19 Pandemic and Insomnia 

The pandemic has lasted approximately 3 years and approximately 15 million died 
worldwide. The initial stage brought extreme lockdown conditions, where mostly 
the elderly have been drastically affected. If not physically incapacitated during 
this period, the elderly population has complained about loneliness, worries, and

6 https://pewrsr.ch/3HZd2ao. 

https://pewrsr.ch/3HZd2ao
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depression. In an Italian study, for the elderly population during COVID lock-
down, shorter sleep duration, lower habitual sleep efficiency, and increased sleep 
medication intake were reported (Amicucci et al. 2021). Similarly, a Turkish study 
emphasized the condition of the elderly with sleep problems as well as loneliness 
feeling during pandemic (Gezgin Yazici and Ökten 2022). It has been apparent 
that the pandemic conditions have presented immense stress on the populations and 
evidently displayed symptoms like insomnia in the elderly. Among the comorbidi-
ties are balance problems in the elderly, which have increased significantly during 
pandemic. Telemedicine was utilized to enable elderly engagement without bringing 
them out of their safe environments against the pandemic conditions (Bagkur et al. 
2021; Yerlikaya et al. 2021). 

23.4 Therapy: A Broadband of Different Disciplines 

As indicated in the above sections, the etiology of the insomnia is depicting a 
rather complex landscape. The factors leading to insomnia are affected by life prac-
tices, sleep hygiene, biological and psychological comorbidities, and numerous other 
aspects that are inseparable. As such, any treatment approach would need to address 
these determinants. From 1960s, the insomnia treatment has been targeted at hypnotic 
medication as well as cognitive behavioral interventions. Currently, the debate of 
superiority of these methods is not concluded, accordingly in common practice 
combination of the therapy methods is applied. Naturally having insomnia brings 
further problems biologically, cognitively, and behaviorally, limiting the quality of 
life. Thus, the interventions target at correcting the person as-a-whole with the life 
parameters rather than only a particular symptom. Cognitive behavioral therapy for 
insomnia (CBT-I) is a common method before the administration of pharmacological 
agents. 

The common therapy approaches are listed in Table 23.3. A number of prominent 
researchers as well as the clinical societies have published international guidelines to 
assist their health professionals treating insomnia (Riemann et al. 2017; Sateia et al. 
2017; Hollsten et al. 2020; Scharner et al. 2022).

23.4.1 The Light Therapy for Insomnia 

Chronobiologically, intense light at evening time suppresses the production of mela-
tonin. In the electromagnetic spectrum, short-wavelength section (blue light, 446– 
477 nm) has the highest biological response (Gooley et al. 2011; West et al.  2011). 
The optimal light spectra must be approximately 400–500 nm (blue-green) while 
this may compensate the need for higher lumens of light. Still, providing sufficient 
light intensity is critical particularly for patients with cataracts, which worsens light



494 M. Özgören and A. Öniz

Table 23.3 The non-pharmacological Treatment and Intervention Protocols. Left column indicates 
the intervention, and on the right column, the description for the intervention is provided 

Intervention Description 

Biofeedback Biofeedback is also known as neurofeedback. Commonly, a 
physiological parameter is monitored by the participant via an 
electrophysiological setup (such as EEG and EMG). The auditory 
cues or visual cues are provided to assist the patients with 
self-adjusting muscle tone, etc. Recently, a trial has found a solid 
effect of biofeedback falling short of CBT-I (Kwan et al. 2022) 

Cognitive therapy and BTIs BTIs include CBT-I and Brief Behavioral Therapy for Insomnia. 
emphasizing the behavioral components. CBT-I therapy pursues 
to readapt deceptive cognitive views and attitudes toward sleep. 
Recently, computerized cognitive training (CCT) is emerging in 
this field as well as digital self-assisting CBT and telemedicine 

Exercise Physical exercise as well as Tai-chi. Aerobic exercise improves 
self-reported sleep and quality of life in older adults with 
insomnia 

Intensive sleep retraining A rather intense and complicated intervention in a laboratory 
environment. Every half an hour if the patient falls asleep, the 
subject is awakened after three minutes while being instructed to 
stay awake for half an hour. The method is believed to regulate 
sleep drive and misperceptions 

Light therapy Adjustment and overall delivery of bright light to enhance 
sleep-related hormones and achieve better chronobiology cycles 

Mindfulness Mindfulness-Based Stress Reduction Program (MBSR) and the 
Mindfulness-Based Cognitive Therapy (MBCT) are among the 
protocols. The intervention focuses on (commonly in a group 
fashion) structuring emotions, awareness, and reactivity 

Paradoxical intention Rather than fixating at the sleep pressure to be produced, this 
intervention intends to approach from the opposite angle. The 
participant is coached to remain awake if conceivable after 
getting into bed. The patient is commanded to decisively involve 
in the feared task (staying awake) to reduce performance anxiety 
and intention to sleep (confounding associated goal-directed 
behavior). There is the presence of excessive focus to help 
decreasing anxiety 

Relaxation therapy Abdominal breathing, progressive muscle relaxation, autogenic 
training, guided imagery training, meditation, yoga, and hypnosis 
are among the techniques 

Sleep hygiene As environmental factors within the sleep quarters (bedroom) and 
prior to sleep are critical for a good quality sleep, this 
intervention aims at regulating them for a better standard. Thus, 
recommendations about lifestyle including dietary, activity, drug 
or alcohol use, and environmental factors such as optimal noise 
level, ambient temperature, and light are given

(continued)
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Table 23.3 (continued)

Intervention Description

Sleep restriction therapy Escalate the sleep drive and consolidate sleep by adjusting and 
limiting time in bed to meet sleep efficiency thresholds. Sleep 
compression is a similar but more gentle approach gradually 
reducing time in bed 

Stimulus control The intervention focuses on the elimination of (Pavlovian) 
conditions that are limiting the sleep, organizing and readjusting 
the internal and external cues associated with sleep, and 
consequently reducing the stress related to sleep 

Thermoregulation Intervention to achieve optimal temperature in bed and sleep 
environment directly or indirectly

transduction. Generally, a prolonged light exposure would offer a greater circadian 
stimulus (Dewan et al. 2011; Cahan and Abbott 2020). 

There is no single agreement on the optimum Bright Light Therapy (BLT) 
protocol. Most reports point to a light intensity of 2000–10,000 lx, for half an hour 
to two hours, for one to four weeks. Majority of the studies make use of an industrial 
lightbox, contrasting to natural light. There are potential side effects such as dry eye 
and skin, headache, nausea, anxiety, and agitation (Genhart et al. 1993; Gammack 
2008). Besides the light source intervention, another study focused on blue light 
blockage (Shechter et al. 2018). They showed that wearing amber-tinted (blocking 
blue spectrum) lenses before bedtime advances better sleep quality in insomniacs. 

23.4.2 Insomnia Pharmacology 

23.4.2.1 OTC Drugs and Supplements for Insomnia or Sleep Disorders 

Over-the-counter (OTC) drugs are various drugs that can be taken without the need 
for a prescription. Although these drugs have a safer profile than prescription drugs, 
contrary to popular perception, they cannot be considered completely harmless. As 
with many diseases, these drugs should be used under the supervision of a health 
professional, which can also give effective results in sleep problems in the right 
person, at the right dose, and in short-term use. This section includes some examples 
of OTC drugs and food supplements used in sleep disturbances. 

Chemical Agents: 

Doxylamine is a first-generation Histamine (H1) receptor blocker. It has anti-
cholinergic and sedative effects. Anti-cholinergic effects can be listed as dry mouth, 
hazy vision, hardening of mucus secretions, or dry skin. The recommended dose 
and administration of use are in the form of a dose of 25 mg, to be taken 30 min
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before bedtime, indicated for the treatment of short-term sleep disorders or insomnia 
(Culpepper and Wingertzahn 2015). 

Diphenhydramine. Just like doxylamine, diphenhydramine is a first-generation 
Histamine (H1) receptor blocker. It has anti-cholinergic and sedative effects. Anti-
cholinergic side effects can occur in the form of dry mouth, blurred vision, hardening 
of mucus secretions, or coordination disorders, as in doxylamine. Diphenhydramine 
is used 30 min before sleep in doses of 25 mg or 50 mg (Culpepper and Wingertzahn 
2015). 

Melatonin is the neurotransmitter most familiar to sleep researchers, which is found 
naturally in our body and regulates the wakefulness-sleep cycle. Melatonin, which 
can be found in doses of 1, 3, 5, or 10 mg in the form of food supplements, creates 
an agonist effect on melatonin receptors found in many tissues of our body. Among 
the most common side effects are headache, excessive sleepiness during the day, and 
depression. Although the method and dose may vary, melatonin food supplements 
are used in the form of doses of 1, 3, 5, or 10 mg 3–4 h before bedtime (Culpepper 
and Wingertzahn 2015). It should also be noted that Melatonin is one of the most 
commonly used substances in cases where sleep–wake biorhythms are impaired due 
to shift work and jetlag. 

GABA is the main suppressor neurotransmitter found in the human brain. When 
used as a food supplement, it has a sedative and stress-suppressing effect. There 
are also doubts that this effect may be placebo effect. There are differing opinions 
on whether GABA can cross the blood–brain barrier and have a central effect when 
taken externally. The use of GABA as a food supplement is very popular. The method 
and dose of use are in the form of doses between 100 and 300 mg per day in a period 
of at least 1–8 weeks. Long-term use is recommended for the treatment of short-term 
sleep disorders with its sedative effect (Hepsomali et al. 2020). 

Phytotherapy Agents. This group of drugs is of natural and plant origin and has 
gained increasing popularity in recent years. There are many approaches where 
the sleeping environment is supported by using aromatic plants in beds with 
microcapsule. Here are some examples from this group. 

Valerian. Although its pharmacology is not fully understood, it is known to influence 
central GABA, serotonin, and adenosine receptors. Many studies on Valerian’s use 
in the treatment of insomnia have found that the mechanism of action of this plant is 
very similar to that of benzodiazepine group drugs. Instead of gamma sub-units on 
GABA-a receptors, the agonistic effect it shows in the beta subdivision is the main 
pharmacological difference between it and benzodiazepines. Dizziness, headaches, 
or stomach problems seen during the day are among the common side effects. The 
method and dose of use is an average of 600 mg of plant extract taken 1–2 h before 
sleep (Culpepper and Wingertzahn 2015). 

Passiflora. Side effects of benzodiazepine group drugs or chemical alternatives, 
which are frequently prescribed in short-term sleep disorders, lead to the frequent 
preference of Passiflora Incarnata as a phytotherapy agent. The agonistic effect of
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flavonoids, which are considered active substances in Passiflora plant extract, on 
various GABA receptor units leads to the emergence of sedative and anxiolytic 
results. The fact that it has much fewer side effects than its chemical alternatives 
paves the way for its frequent preference as OTC. It is used in various doses as 
different preparations such as capsules or syrup (Elsas et al. 2010; Guerrero and 
Medina 2017). 

Aromatherapy 

Essential oils obtained from plants can be used with three main methods in the 
phytotherapy framework: (a) inhalation, (b) massage, and (c) oral use. 

In sleep disorders, anxiety, and depressive diseases, the role of aromatherapy as 
well as pharmacological agents is promising. The high side effect profile of pharma-
cological agents, especially used in intensive care units, increases the importance of 
aromatherapy methods and paves the way for its use in the form of a therapy method 
that promotes sleep. Lavender oil is undoubtedly one of the essential oils used when 
it comes to sleep. 

Lavender Oil 

Lavender oil improves sleep quality by having a sedative effect in addition to its 
relaxing, carminative effects. Linalool and Linalyl Acetate, contained in it, are 
responsible for the parasympathetic effect of lavender oil. The narcotic effect of 
Linalyl Acetate and the sedative effect of Linalool are well known. Lavender oil is 
the oil with the lowest toxic and allergenic effect profile compared to other essential 
oils. In addition to its sedative effect, it also has antiseptic properties and posi-
tively affects cardiological functions. It is recommended to use 4–5 drops of oil with 
different methods such as inhalation or massage (Karadag et al. 2017). 

23.4.2.2 Pharmacological Treatment Methods Used in the Treatment 
of Insomnia 

The main pharmacotherapy agents used in the treatment of insomnia can be summa-
rized by breaking down into 5 main groups. These are the ones that are categorized 
as Benzodiazepine Group Sedative Agents, Non-Benzodiazepine Sedative Agents, 
Antidepressants Orexin Receptor Antagonists, and Melatonin Receptor Agonists. 
Table 23.4 below summarizes the pharmacological properties of some of the drugs 
belonging to these groups and different OTC agents.

23.5 Final Note 

Currently, our awareness of the scope of our biophysical being is broadened 
by the inclusion of microbiota, and environmental factors such as microplastics 
(unfortunately in our blood circulation), and digital era expanding into virtual
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Table 23.4 Pharmacological agents for insomnia treatment 

Drug name Class Studies and pharmacological features 

Zolpidem Non-benzodiazepine receptor 
agonists 

Zolpidem is a pharmacological agent 
used to treat insomnia by connecting to 
GABA receptors with rapid onset of 
action and short-term hypnotic effect. 
This drug can be prescribed in normal 
or long/controlled release forms with 
doses of 5–10 mg. It is a chemical that 
should take into account side effects 
and addiction risks in long-term 
treatments (Patel et al. 2018) 

Zopiclone Non-benzodiazepine receptor 
Agonists 

Zopiclone is a hypnotic agent that acts 
by connecting GABA-A receptors to 
sub-units α1 and  α2. This agent, which 
does not fall into the benzodiazepine 
class, is indicated in the short-term 
treatment of sleep disorders in geriatric 
patients. Studies show that this 
pharmacological agent is well tolerated 
in short-term treatments at doses of 
3.75–7.5 mg. In long-term treatments, 
the risk of side effects increases 
significantly (Pinto et al. 2016) 

Doxepin Tricyclic antidepressant With FDA approval, doctrine is used to 
treat insomnia in doses of 3–6 mg. It is 
affected by selectively attaching to 
histamine 1 (H1) receptors. Studies 
have reported that doctrine at doses of 
1–3 mg bristled for 12 weeks provides 
significant improvements in sleep 
quality and sleep duration in sleep start 
measurements (Patel et al. 2018) 

Mirtazapine Serotonergic antidepressant This antidepressant agent, which 
provides strong 5-HT2 receptor 
antagonism, is another example of 
antidepressant drugs used to treat 
insomnia. In a study involving 
participants aged 18–75 with an 
average age of 40.9 years, the 
mirtazapine group was only present 
after 2 weeks of treatment; significant 
improvements were detected in 
indicators of sleep duration, sleep 
quality, and frequency of awakening 
after the onset of sleep (Winokur et al. 
2003)

(continued)
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Table 23.4 (continued)

Drug name Class Studies and pharmacological features

Lorazepam Benzodiazepin Lorazepam binds to benzodiazepine 
receptors in the postsynaptic GABA-A 
ligand-gated chloride channel neuron 
in various regions within the central 
nervous system (CNS). Drugs 
belonging to this group reduce sleep 
delay and reduce nighttime awakening, 
but also reduce rapid eye movement 
sleep (Pagel and Parnes 2001). They 
increase the risk of memory 
impairment, falls, fractures and motor 
vehicle accidents, and preventable 
emergency room visits and 
hospitalizations in older adults; 
therefore, their use should be avoided 
in older adults (Tannenbaum 2015). 
Prolonged use of benzodiazepines can 
promote psychological addiction, and 
over time, there is an increased risk of 
addiction and abuse. Tolerance may 
also develop, so higher doses are 
required to maintain effectiveness 
(Kamel and Gammack 2006) 

Diphenhydramine Antihistamine Although diphenhydramine is 
traditionally known as an antagonist, it 
primarily acts as an inverted agonist of 
the histamine H1 receptor (Khilnani 
and Khilnani 2011). Antihistamines 
reduce sleep delay; however, these 
over-the-counter sleeping drugs such as 
diphenhydramine cause rapid tolerance 
and are highly anti-cholinergic. 
Anti-cholinergic effects include blurred 
vision, dizziness, difficulty urinating, 
dry mouth, and constipation. 
Anti-cholinergic drugs can also 
increase the risk of cognitive 
impairment and decline; therefore, 
drugs with high anti-cholinergic 
profile, such as antihistamines, should 
be avoided in older adults (Fick et al. 
2015)

(continued)
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Table 23.4 (continued)

Drug name Class Studies and pharmacological features

Ramelteon Melatonin receptor agonist Melatonin agony, a drug used to treat 
Ramelteon insomnia, is a drug. It is 
indicated for the treatment of insomnia, 
which is characterized by difficulties 
especially related to the onset/fall 
asleep of sleep. It is the only approved 
sleep-promoting drug (Neubauer 2008) 
that improves sleep with its effects on 
sleep-regulating mechanisms within 
the suprachiasmatic nucleus, with no 
direct soothing effect. In a study of 
older adults (ages 65 and older), 
ramelteon therapy significantly 
reduced patients’ sleep duration during 
5 weeks of treatment and showed no 
significant side effects or withdrawal 
symptoms (Roth et al. 2006) 

Valerian Herbal extract Valerian lacks FDA approval and 
monitoring as a nutritional supplement. 
The mechanism of action is believed to 
occur through interaction with the 
neurotransmitter gamma amino-butyric 
acid and its receptors. There are a 
limited number of studies on valerian 
in older individuals, and data on its 
effectiveness in the treatment of 
insomnia are missing (Patel et al. 2018) 

The drug names, group classification, and the pharmacological features are provided in the respective 
columns

reality amid global immigration crisis (political and climate change among many 
factors) disrupting social structures. Therefore, “symptom hunting” will need to be 
replaced by a broader mind–body-environment approach within a socioeconomic 
and dynamic context. Interestingly, our not-so-favorable global facts (international 
political tensions, heat waves, floods, droughts, food security, etc.) are challenged by 
the prominent authors (Harari 2017) as humans would seek the “immortal life,” thus 
pushing the centenarian concept to the limits. While these mind-boggling conditions, 
our task remains to find a suitable set of “insomnia diagnosis and therapy” tools with 
a challenge for fitting different socioeconomic status, race, gender, age, and living 
conditions. 
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Part VII 
Experimental Models to Study Sleep 
and Clocks in Aging and Longevity



Chapter 24 
Invertebrate and Vertebrate Models 
in Sleep and Circadian Aging 

J. M. Hafycz and N. N. Naidoo 

24.1 Introduction 

Sleep and circadian timekeeping are intrinsic to cellular and organismal function. 
While sleep has been shown to play a role in cellular health, consolidating memory, 
immune function, and restoring energy metabolism (Benington and Heller 1995; 
Buzsaki 1998; Diekelmann and Born 2010; Naidoo 2009; Toda et al. 2019), the 
explicit function of sleep remains largely unclear. Research has indicated that sleep 
is essential and that continuous sleep deprivation can even be fatal (Everson et al. 
1989; Vaccaro et al. 2020). The current standing hypothesis for sleep regulation is 
the two process model (Borbely 1982). This model states that there is a circadian 
component to regulate the timing of sleep across the 24-h day, as well as a homeostatic 
process that regulates sleep based on the homeostatic regulatory processes of the cell 
(Borbely 1982). The circadian process is regulated by light across the 24-h day as 
well as the cycling of several genes, namely Period, Clock, and Bmal (Bae et al. 2001; 
Hastings 1998; Hendricks et al. 2003). This internal clock timing and regulation of 
circadian rhythms is intrinsic to the function of all organisms. 

In humans, sleep and wake are regulated by groups of neurons in several key 
brain regions that can be thought of as switches, for example when wake-promoting 
pathways are active, sleep-promoting pathways are inhibited, and vice versa (Horner 
and Peever 2017; Scammell et al. 2017). Some of the key wake-promoting regions in 
humans are the locus coeruleus (LC) located in the brainstem, the tuberomammillary 
nucleus (TMN), and the lateral hypothalamus (LH) (Alexandre et al. 2013; Horner 
and Peever 2017), while the key NREM sleep-promoting region includes the GABA 
and galanin-containing cells of the ventrolateral preoptic area (VLPO) (Horner and 
Peever 2017; Scammell et al. 2017). Further, the neurons of the orexin neural circuit
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in the LH are activated during wake and inhibited during sleep (Sakurai 2007). 
Interestingly, the processes that regulate sleep as organisms age deteriorate, such 
that timing of sleep and quality of sleep are disrupted across aging in various species 
(Duffy et al. 2015; Koh et al. 2006; Kondratov 2007; Mander et al. 2017; Naidoo 
et al. 2008; Pandi-Perumal et al. 2002). The consequences of this disrupted sleep 
with age in humans are associated with cognitive decline (Helfrich et al. 2018; Nebes 
et al. 2009; Schmutte et al. 2007), and are even though to precede neurodegenerative 
disease progression, such as Alzheimer’s disease (Malhotra 2018; Musiek et al. 
2015). 

Given the vital nature of sleep and the consequences of sleep loss, much ongoing 
research is dedicated to determining what mechanisms underlie these age-related 
changes in sleep and circadian rhythms and if these mechanisms can be modulated 
to restore sleep quality and circadian timing. Much of this research involves the use 
of diverse experimental models. In this chapter, we will discuss the different animal 
models used to study sleep, some of the experimental techniques for how that research 
is conducted, a few of the benefits and downsides to using each model system, and 
how this research has shed light on sleep and aging and potential therapies to improve 
age-related sleep and circadian disruptions. 

24.2 Changes in Sleep Quality and Circadian Rhythms 
Across Aging 

Sleep is a conserved biological process and has been found in all living creatures 
studied to date (Cirelli and Tononi 2008; Hafycz et al. 2021; Joiner 2016; Ly et al.  
2018; Zimmerman et al. 2008a). The quality of sleep and proper timing of sleep– 
wake behaviors change across the healthy aging process in humans and animal 
model systems. There are several key alterations in sleep and circadian architecture, 
including increased sleep onset latency, shorter sleep duration, impaired sleep consol-
idation by increased awakening, increased daytime sleepiness, decreased melatonin 
levels, and reduced amount of deep slow wave sleep (Helfrich et al. 2018; Mander 
et al. 2017; Pandi-Perumal et al. 2002; Welsh et al. 1986; Wolkove et al. 2007). 
Importantly, these age-related changes in sleep characteristics are observable in many 
animal species studied (Brown et al. 2014; Koh et al. 2006; Mendelson and Bergmann 
1999; Naidoo et al. 2008;Wimmer et al.  2013). Due to the prevalence and consistency 
of age-related changes in sleep and circadian behavior, research aims to understand 
the underlying mechanisms at play and how these can serve as targets for therapeutic 
intervention. Given the prevalence of sleep and circadian disruptions that occur with 
age and disease, using animal models to study sleep and circadian behaviors is vital 
to provide insight into how these disorders arise and potential therapies that could 
be used to treat them. While there are many animal models used to study sleep and 
chronobiology, in this chapter we will focus on well-established model organisms,
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namely mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio), and the 
roundworm (Caenorhabditis elegans). 

24.3 Mice as a Model for Probing Sleep and Circadian 
Behaviors Across Aging 

Measuring sleep in humans and mammalian animal models, like the mouse, is mainly 
conducted by using electroencephalogram (EEG) and electromyogram (EMG) 
recordings. In mice, this method requires surgical implantation of several electrodes 
into the skull and muscles, followed by a recovery period before the start of record-
ings. The EEG data files are scored in short 4-s to 10-s epochs, which requires 
intense effort to analyze and stringent quality control (Hafycz et al. 2021; McShane 
et al. 2012). Thus, while this method gives the most detailed information about brain 
activity during sleep and wake, it is impractical to use this method to conduct high-
throughput assessments of sleep and circadian behaviors (Chuluun et al. 2020; Hafycz 
et al. 2021; McShane et al. 2012). In addition to EEG recordings, sleep behavior can 
be estimated in mice via beam break recordings. This method assesses mouse move-
ments by tracking how often the mouse passes across infrared beams, and provides 
an approximation for sleep based on locomotor activity. Video recordings can also 
be used to capture behaving mice and provides another way to observe locomotion. 
Coupled with beam break recordings, video data can offer useful insight in distin-
guishing between inactive and sleep states, as video recordings allow researchers 
to examine and correlate behaviors and postures (Fisher et al. 2012; McShane et al. 
2012). Both beam break and video recordings are appealing as they are not as invasive 
as EEG implantation, but neither provides as much information as EEG recordings. 
Another alternate system for examining sleep behaviors in mice is through the use 
of piezoelectric motion sensing (Yaghouby et al. 2016). This system uses piezoelec-
tric mechanical sensors and transforms that mechanical information into electrical 
signals that are scored by relevant software programs as a measure of sleep and wake 
(Yaghouby et al. 2016). This system is appealing as it is non-invasive compared to 
EEG recordings, and has been validated to report accurate sleep and wake behavior 
compared with EEG data, as opposed to an estimate of the amount of sleep and wake 
obtained from beam break systems or video recordings alone. 

Beyond measuring sleep, there are several techniques used in mouse models to 
manipulate sleep by altering neural activation or circuitry. These techniques include 
optogenetics and the use of chemogenetics, namely designer receptors exclusively 
activated by designer drugs, known as DREADDs (Hafycz et al. 2021; Roth  2016). 
Optogenetics allows sleep researchers to activate or inhibit neurons and neuron popu-
lations thought the use of light-sensitive ion channels that are artificially expressed in 
cells following a viral injection (Hausser 2014). Similarly, chemogenetics involves 
the use or virally-expressed artificial receptors that can manipulate neuronal activa-
tion when exposed to an exogenous ligand, namely clozapine-N-oxide (CNO) (Roth
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2016). Another technique involves the injection of viruses containing genetic mate-
rial that can cause cells to either silence or overexpress certain genes. These allow 
researchers to examine the role of specific genes in behavior, and can be precisely 
targeted to certain neuron populations (Dana et al. 2017; Kimura et al. 2019). Alter-
natively, mice themselves can be manipulated with transgenes that allow researchers 
to either knock out or overexpress different genes, leading to studies that probe 
what those genes are responsible for and how manipulating them can affect behavior 
(Haruyama et al. 2009). These techniques have been used to modulate and elucidate 
circuits involved in sleep–wake and circadian regulation. 

The use of mouse models for studying sleep and circadian research is appealing in 
that they have similar analogous brain regions, circuits, structures, and neurotransmit-
ters compared to humans. Indeed, mouse models have allowed researchers to uncover 
some of the mechanisms that coordinate sleep and circadian behaviors (Diniz Behn 
et al. 2010; Kroeger et al. 2017; Saper 2013). For example, some work has been dedi-
cated to examining the homoeostatic response to sleep loss, which generally involves 
methods of sleep deprivation and subsequent examination of physiology (Franken 
et al. 2001; Mackiewicz et al. 2008; Nelson et al.  2013). Mouse studies have helped 
uncover some of the circuits underlying this homeostatic response, with some studies 
indicating that the preoptic area of the hypothalamus, specifically galanin neurons, 
are in part responsible for sleep homeostasis (Ma et al. 2019). In addition, mouse 
models are used to study an array of sleep and circadian disorders (Toth and Bhargava 
2013). For instance, orexin knock-out mice displayed an inability to maintain state, 
suggesting that the orexin circuit is critical for behavioral state maintenance and 
could be involved in such disorders as narcolepsy (Chemelli et al. 1999; Mochizuki 
et al. 2004). It is clear that mice provide a vital model system to study sleep and 
circadian neurobiology. 

In mice, much work has been dedicated to specifically examine age-related 
changes in sleep quality. Several studies show that aged mice have fragmented sleep 
(Hasan et al. 2012; Naidoo et al. 2008, 2011; Wimmer et al. 2013), one study showing 
that aged mice were less able to sustain longer bouts of wake or NREM sleep using a 
novel spike-and-slab analysis (Wimmer et al. 2013). More work has shown that aged 
mice have an impaired homeostatic response to sleep loss (Hasan et al. 2012), and 
an increased homeostatic sleep need (McKillop et al. 2018). Another study found 
that aged mice slept more than young mice during the dark phase (the normal active 
period for a mouse) and had more sleep fragmentation during the dark phase, akin to 
naps (Soltani et al. 2019). This work emphasizes that age-related changes in sleep are 
conserved across mammals and validates the mouse as a model to study age-related 
changes in sleep. 

Beyond sleep and wake architecture, EEG recordings in mice allow researchers 
to examine spectral data. Spectral information from EEG recordings is divided into 
several ranges of frequency that are correlated with behavioral state. Deep slow wave 
sleep (SWS) is associated with delta brain waves, measuring roughly at 0–4 Hz, while 
wakefulness and REM sleep are associated with theta waves, ranging from 4 to 10 Hz 
(Carley and Farabi 2016; Jones 2020). Some work has shown that aging in mice 
reduces peak theta frequency, a marker for arousal intensity (Wimmer et al. 2013).
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Interestingly, while mouse models allow researchers to obtain information about 
brain wave intensity, the genetic background of those mouse models can impact aged-
related changes (Hasan et al. 2012). For example, one study showed that changes 
in delta power with age, a measure of sleep intensity, depends on the genotype of 
the mouse (Hasan et al.  2012). Further, while mice may have more homologous 
sleep–wake regulating brain circuits to humans than other models, there is still a 
limitation in using mice to study age-related changes in sleep and circadian behavior, 
for example, some research suggests mouse sleep increases with age, and research on 
consolidation and sleep intensity with age is inconsistent (McKillop and Vyazovskiy 
2020). It is important to consider potential discrepancies between humans and model 
systems to help better address results and design experiments. 

In addition to measuring behavioral changes, mouse models offer the potential to 
examine molecular mechanisms that underlie age-related changes in sleep quality. 
Interestingly, some work has linked protein homeostasis, or proteostasis, to sleep 
quality in aging (Naidoo et al. 2008, 2018, 2011). Specifically, it is now known that 
sleep loss or fragmentation that is seen in aged mice is coupled with an increase in 
cellular stress and the activation of the unfolded protein response (UPR) (Hafycz 
and Naidoo 2019; Naidoo et al. 2008, 2011). The UPR in part regulates protein 
translation under cellular stress conditions, and as protein synthesis is necessary 
for memory formation, could provide a link between age-related changes in sleep 
quality and age-related cognitive impairment (Brown and Naidoo 2012; Hafycz and 
Naidoo 2019; Havekes et al. 2012). Ongoing work is dedicated to further uncovering 
mechanisms underlying age-related changes in sleep as well as potential therapeutic 
interventions that could ameliorate these changes. 

Mice are also used to probe age-related changes in circadian rhythms and 
longevity. Work examining genes involved in circadian regulation have shown that 
aged mice have reduced Per2 expression in the superchiasmatic nucleus (SCN) 
(Weinert et al. 2001). Age-related changes in the expression of Bmal1, Rev-erbα, 
and other clock genes has been observed in the SCN of aged mice (Bonaconsa et al. 
2014; Duffy et al. 2015). Another study using BMAL1 knock-out mice observed 
that these mice displayed premature aging (Kondratov et al. 2006). This premature 
aging has also been observed in mice deficient in PER1 and PER2 (Bae et al. 2001; 
Kondratov 2007; Zheng et al. 2001). Aged mice have been shown to have a delayed 
activity onset and slower entrainment following a phase advance of the light dark 
cycle compared to young adult mice (Valentinuzzi et al. 1997). Another study that 
recorded from the SCN of young and aged mice found that there was reduced neural 
activity in the aged mice, indicating that there are age-related changes in neural 
activity in key sleep–wake regulating brain regions (Nakamura et al. 2011). Another 
key aged-related change that is involved in sleep regulation is that melatonin secre-
tion decreases across aging, and this is thought to contribute to age-related changes 
in sleep and circadian rhythm quality (Bubenik and Konturek 2011; Karasek 2004). 
However, the main mouse strain used for sleep and circadian studies, the C57/BL6 
mouse, does not produce melatonin (Kennaway 2019; Pfeffer et al. 2022; Roseboom 
et al. 1998). It is important to consider this confound when choosing which mouse 
strain used to study sleep and aging (Pfeffer et al. 2022). Interestingly, a group of
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researchers developed congenic mouse lines with the C57/Bl6 background that do 
produce melatonin, and could provide a more comprehensive model system for the 
study of sleep and aging (Zhang et al. 2021, 2018). 

24.4 Non-mammalian Models of Sleep 

While it could be argued that mice, as mammals, are more analogous to humans 
and therefore more meaningful to study, there are several important advantages to 
using small animal models to probe the mechanisms of sleep and circadian behav-
iors, particularly across aging. Namely, the life cycle for drosophila, zebrafish, and 
C. elegans is shorter than mice, and high-throughput analyses with these models are 
possible (Hendricks et al. 2000). Breeding in these models is also easier, as they have 
shorter reproductive cycles than mice. In addition, they have a simpler neural architec-
ture than mice, allowing for more precise study of specific circuits that regulate sleep 
and circadian behaviors. For these model systems, non-EEG criteria for sleep are used 
to identify sleep behaviors. These are as follows: a period of quiescence associated 
with a specific posture, an increased arousal threshold, rapid reversibility to wake-
fulness, homeostasis, and interactions with the circadian clock (Hafycz et al. 2021; 
Ly et al. 2018). Using these criteria for sleep has allowed researchers to probe small 
model organism sleep–wake behavior and the mechanisms underlying sleep–wake 
regulation. 

24.5 Studying Sleep and Circadian Rhythms Across Aging 
in Zebrafish 

Zebrafish are another vertebrate model for sleep and they express genes that cycle, 
including analogs to Bmal1, Period1, and Clock (Rihel et al. 2010b). Further, 
zebrafish satisfy the non-EEG criteria for sleep (Yokogawa et al. 2007). Interest-
ingly, zebrafish larvae are often studied due to larval transparency, short time to 
hatching, and ease of handling (Eisen 1996). Both adult and larval zebrafish exhibit 
the standard non-EEG criteria for sleep (Prober et al. 2006; Yokogawa et al. 2007; 
Zhdanova et al. 2001). Zebrafish sleep is measured mainly using video recordings 
and subsequent analyses of locomotor activity, similar to drosophila or C. elegans 
(Rihel et al. 2010b). While zebrafish lack completely analogous brain regions, such 
as a layered cortex, Zebrafish are also known to express the neurotransmitters that 
are important for sleep and wake, and respond similarly to mammals when exposed 
to sleep-promoting or wake-promoting agents (Panula et al. 2010; Rihel et al. 2010a, 
b; Sorribes et al. 2013). One study demonstrated that zebrafish sleep changes across 
development, as sleep does in mammals, suggesting that sleep and wake cycles in 
zebrafish develop in a way that can be meaningfully compared to mammals (Sorribes
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et al. 2013). Zebrafish also exhibit a sleep–wake cycle across the 24 h day, observ-
able through changes in locomotor activity (Prober et al. 2006; Rihel et al. 2010b). 
Zebrafish are diurnal and exhibit peak activity during the light phase, similar to 
humans, but unlike mice, which are nocturnal. Together, this evidence supports the 
relevance of a zebrafish model used to study sleep and circadian rhythms. 

Importantly, zebrafish also display changes in sleep and circadian rhythms as they 
age. Some work has shown that zebrafish have increased fragmentation of circadian 
rhythms, a reduction in the duration of nighttime sleep, as well as a higher arousal 
threshold during the day (Zhdanova et al. 2008). Further, melatonin production, a 
key circadian hormone, declines across aging and aged zebrafish display alterations 
in the expression of circadian genes, Bmal1 and Per1 (Zhdanova et al. 2008). Thus, 
the zebrafish model provides another model system with which to study changes in 
sleep and circadian behaviors across aging. 

24.6 Invertebrate Models for Sleep and Circadian Research 
Across Aging 

Sleep in drosophila is typically measured with a combination of video recordings 
and beam break behavioral assays. The most common system for measuring for 
this is a single IR beam break system called the Drosophila Activity Monitoring 
System (DAMS), though it is important to note that using a single IR beam tends 
to overestimate sleep (Zimmerman et al. 2008b). The use of more infrared beams is 
preferred, and coupled with video recording, researchers are able to estimate sleep 
behavior in drosophila more accurately (Zimmerman et al. 2008b). 

Invertebrate sleep circuits are analogous to humans, but are generally simplified, 
consisting of fewer regions and a smaller number of individual neurons. For example, 
in drosophila, there are about 150 neurons that express clock genes (Mezan et al. 
2016). In drosophila, sleep is mainly regulated by a region known as the mushroom 
body, as well as a few neural groups including the dorsal fan-shaped body (dFSB) 
which is known to promote sleep (Artiushin and Sehgal 2017; Ly et al.  2018). Circa-
dian regulatory neurons in drosophila consist of the ventral lateral neurons and the 
dorsal lateral neurons (Artiushin and Sehgal 2017; Ly et al.  2018). Some work has 
shown that sleep in drosophila is regulated in part by cyclin A (Rogulja and Young 
2012). In this work, reducing cyclin A delayed the transition from wake-sleep, leading 
to increased arousals during sleep and a reduced homeostatic response to sleep depri-
vation (Rogulja and Young 2012). Further, the neurons in the drosophila brain that 
expressed cyclin A were intermingled with circadian clock neurons, indicating that 
there could be a functional relationship between sleep and circadian neurons in the 
drosophila brain (Rogulja and Young 2012). Interestingly, drosophila sleep is thought 
to be controlled by GABAergic signaling, suggesting that features of the drosophila 
sleep circuit are similar to mammalian sleep circuits (Agosto et al. 2008). A key 
regulator of sleep and circadian behavior in drosophila is the neuropeptide PDF (Ly
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et al. 2018; Mezan et al. 2016). PDF is thought to be a wake-promoting aspect of 
drosophila circadian circuitry, as mutating the PDF gene or the PDF receptors results 
in flies that are hypersomnolent (Parisky et al. 2008). Together, this data suggests 
that not only are drosophila a useful model system for examining the basic circuitry 
of sleep and circadian regulation, but that these systems do, to some extent, mimic 
the circuitry and mechanisms of mammalian sleep. 

With age, the strength of Drosophila circadian rhythm decreases (Koh et al. 2006), 
and Drosophila sleep is more fragmented (Brown et al. 2014; Koh et al. 2006). Further 
confirming that drosophila undergo similar age-related changes in sleep as humans, 
aged drosophila have reduced total sleep time, decreased arousal threshold, and 
less recovery sleep following sleep deprivation (Vienne et al. 2016). Interestingly, 
these age-related changes in sleep are linked to similar mechanisms seen in mice, 
specifically the UPR (Brown et al. 2014) and that intervening to reduce ER stress 
with a chemical chaperone serves to consolidate sleep in drosophila (Brown et al. 
2014). This together indicates that drosophila are a validated and useful model to 
probe age-related changes in sleep and circadian behaviors. 

The nematode, C. elegans, provides another small invertebrate model system that 
is useful for studying sleep behaviors. C. elegans have a connectome comprising 
302 neurons that are fully mapped (Hobert 2003), allowing for precise examination 
of neurons and neural circuits. Measuring sleep in C. elegans consists mainly of 
video recordings and software to quantify locomotion and posture as a proxy for 
measuring sleep (Trojanowski and Raizen 2016). C. elegans has been reported to 
demonstrate periods of quiescence analogous to sleep between larval stages, stress, 
satiety, starvation and hypoxia (Hill et al. 2014; Lawler et al. 2021; McCloskey et al. 
2017; Nichols et al. 2017; Raizen et al. 2008; You et al. 2008). One study probed the 
neural communication between sensory neurons and interneurons during sleep, and 
showed that sleep alters the link between sensory stimuli and motor neurons, further 
validating the C. elegans model as an effective one for the study of neural circuits 
involved in sleep behaviors (Lawler et al. 2021). 

Interestingly, small invertebrate animal models serve an opportunity to study 
longevity, given their quick reproductive cycles and shorter lifespans. In drosophila, 
studies have focused on pathways that change with age and if intervening can affect 
duration of life (Vermeulen and Loeschcke 2007). One study showed that sleep 
and circadian changes are linked to lifespan, in that drosophila mutants for Bmal1 
had a reduced lifespan (Hendricks et al. 2003). More work in drosophila demon-
strated that functional loss of the interaction between synaptic Homer proteins and 
the DmGluRA receptor, analogous to mammalian mGluR, resulted in reduced sleep 
and a shortened lifespan (Ly et al. 2020). Several studies have shown that a chem-
ical chaperone and histone deacetylase (HDAC) inhibitor, 4-phenyl butyrate (PBA), 
reduced ER stress and extended lifespan in drosophila (Brown et al. 2014; Kang 
et al. 2002). More work supports this idea that proteostasis plays a role in survival 
and longevity, as another study demonstrated that overexpression XBP1s, part of 
the pro-survival UPR pathway, increased lifespan by 30% in C. elegans (Taylor and 
Dillin 2013). C. elegans provides another appealing model to study lifespan and 
several studies have linked C. elegans lifespan to food and metabolism (Tevy et al.
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2013). A study demonstrated lifespan extension in C. elegans by reducing food intake 
(Kaeberlein et al. 2006). Another study showed that the Sir2 gene, upstream of the 
insulin-like signaling pathway in C. elegans, also extends lifespan (Tissenbaum and 
Guarente 2001). Together, invertebrate models provide a unique opportunity to study 
how changes in sleep with age are linked to longevity. 

24.7 Concluding Remarks 

Animal models are a valuable tool with which to study sleep and circadian behaviors. 
Given the range of techniques and experimental models available, further research 
using these model systems is likely to elucidate a great deal of information about how 
sleep and circadian behaviors are regulated and how these change as organisms age. 
Use of these models in experimental research will provide insight into the age-related 
changes in sleep and circadian rhythms that occur in humans and inform potential 
targets for therapeutic intervention. 
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Chapter 25 
Melatonin, Circadian Rhythms, 
and Sleep: An Opportunity 
to Understand Mechanisms 
for Protecting Against 
Neurodegenerative Disease in Drosophila 

Hannah K. Dollish, Kathryn E. R. Kennedy, Michael A. Grandner, 
and Fabian-Xosé Fernandez 

25.1 Brief Introduction to Melatonin 

Melatonin (5-methoxy-N-acetyltryptamine; MW: 232.2 Da) was first isolated from 
bovine pineal gland and structurally defined in 1958 (Lerner et al. 1959). The 
tryptophan-derived indolamine is synthesized through a common series of enzymatic 
steps in mammalian pinealocytes starting with the hydroxylation of its amino acid 
precursor to 5-hydroxytryptophan and subsequent decarboxylation of this product 
to serotonin. Melatonin is ultimately derived from serotonin by way of catalytic
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conversion with the enzymes arylalkylamine N-acetyltransferase (AANAT) and N-
acetylserotonin O-methyltransferase (ASMT; formerly known as hydroxyindole-
O-methyltransferase) using one of two possible intermediate pathways in which 
N-acetylserotonin (NAS) and 5-methoxytrypamine (5-MT) are substrates (Tan and 
Reiter 2020; Tan et al. 2015). The availability of tryptophan and the activity of these 
latter two enzymes serve as rate-limiting steps in melatonin production (Tan et al. 
2014b; Klein and Moore 1979). 

The identification of melatonin and characterization of its synthesis pathways 
soon led to corollary observations suggesting that melatonin is secreted from the 
pineal gland according to a circadian rhythm (Arendt and Broadway 1987; Lynch 
et al. 1975; Weitzman et al. 1978), most likely stemming from variation in AANAT 
expression, which changes 30- to 70-fold from day to night (Roseboom et al. 1996; 
Klein and Weller 1970). Findings that established the dramatic dark-phase rise in 
AANAT, pineal melatonin content, and the resulting circulation of plasma mela-
tonin—along with their regulation by photohistory, acute light exposure, and the 
prevailing photoperiod—prompted an explosion of study from the 1960s onwards 
concerning melatonin’s involvement in sleep, circadian timekeeping, and season-
ality (Reiter 1985). This universal interest overshadowed a circumscribed niche of 
work that started small in the 1990s but has silently grown to become today’s fore-
most area of melatonin research: melatonin’s evolutionarily conserved function as 
a chemical antioxidant (Tan et al. 2010). In the current chapter, we review some of 
the canonical roles that have been assigned to melatonin and then describe the elab-
orate antioxidant ecosystem that it underpins. We end the chapter by suggesting that 
melatonin’s antioxidant functions (1) may provide a treatment opening for several 
age-related neurodegenerative diseases and (2) might be best studied in Drosophila, 
a time and cost-efficient animal model for which there is currently very little known 
about melatonin biology. 

25.2 Melatonin: Phase Marker and Chronobiotic 

Circadian rhythms optimize life-sustaining processes such as metabolism and energy 
utilization. Cells throughout the body house molecular oscillators that time their 
intracellular activities to nearly 24 h, but their activities across tissues are organized 
according to a collective physiology that runs on an exact 24 h schedule imposed 
by the brain’s master circadian pacemaker residing in the hypothalamic suprachias-
matic nucleus (SCN) (Golombek and Rosenstein 2010; Stephan and Zucker 1972). 
To achieve 24 h precision that is phase-aligned with the solar light–dark cycle, the 
SCN consults a number of zeitgebers (cues from the environment). However, it 
uses information about ambient light exposure routed directly from the retinohy-
pothalamic tract as its primary means of calibrating humoral and hardwired output 
signals (Sadun et al. 1984; Moore and Lenn 1972). Among output signals, infor-
mation about light exposure is relayed from the SCN to the pineal gland through a



25 Melatonin, Circadian Rhythms, and Sleep: An Opportunity … 523

well-defined (albeit sprawling) circuit that pivots through the hypothalamic paraven-
tricular nucleus before rising among the superior cervical ganglia (Moore 1996; 
Teclemariam-Mesbah et al. 1999; Klein et al. 1983a). Using the neurotransmitter 
noradrenaline, the superior cervical ganglia stimulate melatonin production from the 
pineal gland while light remains undetected (Klein et al. 1970, 1983b; Sugden et al. 
1985). Upon sensing light, this circuit shuts down melatonin synthesis at the level 
of individual pinealocytes by G protein-coupled noradrenaline-receptor signaling 
networks that either: (1) interfere with the transcription factors driving AANAT 
expression or (2) prevent AANAT phosphorylation, thus destabilizing the enzyme 
and leading to its rapid degradation (Klein and Weller 1972; Klein et al. 1978, 2002; 
Gastel et al. 1998). It is important to note that light can influence long-term rhythms 
of melatonin secretion when it is part of a stable photoperiod (where peak duration 
of circulating hormone will inversely scale with day length) (Kennaway et al. 1983; 
Rollag and Niswender 1976; Rollag et al. 1978; Wehr 1991, 1996), as well as short-
term melatonin patterns when shown acutely during the night phase (Bojkowski 
et al. 1987; Brainard et al. 2001; Hoban et al. 1990; Kennaway and Rowe 1994; 
Lewy et al. 1980). In the case of acute nighttime light exposure, the recovery rate of 
melatonin post-pulse—that is, the time it takes to resume levels consistent with its 
circadian trajectory—will be species dependent, with rodents being suppressed for 
longer periods post-pulse than sheep or humans, for instance. 

The pineal gland’s secretion of melatonin represents a bona fide circadian process. 
Under free-running environmental or biological conditions that unmask the circa-
dian pacemaker’s rhythm (e.g., constant darkness in rodents or blindness in humans), 
the SCN and pineal gland will continue to direct alternating cycles of high and low 
melatonin secretion across the subjective day and night according to an endogenous 
schedule set by the animal or person’s circadian period (Perlow et al. 1981; Ralph 
et al. 1971; Takahashi et al. 1980; Skene et al. 1999; Nakagawa et al. 1992a, b; 
Sack and Lewy 1993). Once unmasked, phase shifts in melatonin rhythms caused 
by a probe stimulus, such as light exposure, can be visualized in register with shifts 
that occur in other clock readouts or “phase-markers,” including rhythms of cortisol 
secretion and core body temperature (Maeda and Lincoln 1990; Reppert et al. 1981; 
Broadway et al. 1987; Shanahan and Czeisler 1991; Laakso et al. 1993; Kennaway 
et al. 1987). The melatonin rhythm, in fact, is one of the most resilient indicators 
of the pacemaker’s circadian phase position. Circulating levels of the hormone are 
not significantly influenced by food consumption, unlike other markers, which can 
be distorted by excessive carbohydrate intake (Pandi-Perumal et al. 2007; Krauchi 
et al. 2002). What’s more, while nearly all circadian readouts are influenced by envi-
ronmental illumination, proper dim light conditions (<10 lx) leave melatonin’s daily 
secretion pattern intact. The melatonin rhythm’s robustness is equally evident in 
plasma and saliva (where hormone concentrations are highly correlated (Leibenluft 
et al. 1996)), and in each of these biological fluids, only the onset of melatonin secre-
tion preceding sleep needs to be quantified to assess small differences in circadian 
phase caused by internal or external stimuli; further precision will not be gained 
if one attempts to quantify the entire overnight melatonin profile. Because of these 
properties, measurement of the dim light melatonin onset (or DLMO) represents the
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gold standard assessment many researchers use to infer the pacemaker’s endogenous 
phase position (Lewy and Sack 1989; Lewy et al.  1999). 

The melatonin system exhibits a unique property relative to other biological 
systems that are typically tracked during sleep and circadian experiments. The pineal 
gland’s secretion of melatonin is under circadian control. However, once secreted, 
circulating melatonin can feedback onto the SCN to regulate its own rhythm as well 
as provide a larger entrainment cue for other physiological rhythms (Lewy and Sack 
1997). Melatonin’s properties as an internal zeitgeber are mediated by melatonin 
receptors expressed by SCN neurons (Dubocovich et al. 2005). Both major classes 
of melatonin receptor (MT1 and MT2) have been located to the mammalian SCN— 
including the SCN of humans (Lacoste et al. 2015; Song et al. 2000; Wu et al.  2006; 
Weaver et al. 1989; Rivkees et al. 1989; Reppert et al. 1988; Liu et al. 1997). Their acti-
vation is thought to be tied to a reset of electrophysiological output caused by changes 
in the molecular clock mechanism, in particular inhibition of the stabilizing protea-
some for Bmal1 (i.e., a positive element in the circadian transcription-translation 
feedback loop) (McArthur et al. 1991). Evidence for melatonin being able to entrain 
biological rhythms, or at least entrain the sleep/wake rhythm, was first observed 
in experiments looking at supplemental dosing in rodents. In individually housed, 
free-running rats maintained under constant darkness, Redman and colleagues found 
that daily systemic injections of melatonin (1 mg/kg) entrained locomotor rhythms 
if the injections were timed to the approximate start of the circadian active phase 
(Redman et al. 1983). From these initial observations, additional studies in rats and 
mice confirmed that timed regimens of melatonin as low as 2–5 μg/kg could resyn-
chronize circadian patterns of behavior and physiology (e.g., running wheel activity, 
water drinking, and body temperature) following placement of animals under isolated 
conditions with constant exposure to either darkness or light (Benloucif and Dubo-
covich 1996; Cassone et al. 1986a;Chesworth et al.  1987; Sharma et al. 1999; Thomas 
and Armstrong 1988). Moreover, exogenous melatonin was all that was necessary 
for entrainment to take hold; rodents with lesions of the pineal gland still entrained 
to daily melatonin injections and did so in a dose-dependent manner (Redman and 
Francis 1998; Warren et al. 1993; Schuhler et al. 2002). On the other hand, animals 
without intact SCN could not entrain (Cassone et al. 1986b; Redman and Francis 
1998). Melatonin entrainment by way of the central pacemaker appears to be a fixture 
in metazoan evolution, as melatonin injections have been shown to organize the circa-
dian rhythms of multiple amphibian and reptile species (Foa et al. 2002; Underwood 
and Harless 1985; Underwood 1986; Hyde and Underwood 1995). 

The aforementioned corpus of work in laboratory animal models was soon 
complemented by a parallel line of work suggesting that melatonin also operated 
as a zeitgeber in humans. The first suggestions of this zeitgeber action were alter-
natively provided by Armstrong (Armstrong et al. 1986) and Arendt (Arendt and 
Broadway 1987; Deacon et al. 1994; Middleton et al. 1997), but subsequent investi-
gations by Lewy and Sack defined a now universally acknowledged phase-response 
curve (PRC) that described the direction and magnitude of phase shifts caused by 
melatonin administration at different times of day (Lewy et al. 1992, 1995, 1996, 
1998). The human melatonin PRC evinces a nonresponsive dead zone in the first half
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of the night when endogenous melatonin secretion from the pineal gland is typically 
high. On either side of this dead zone are opposing regions where melatonin exposure 
will cause a phase advance or phase delay. Advances occur when administration is 
timed 2–7 h prior to DLMO in the afternoon, while delays occur after administration 
in the late-night or early-morning hours surrounding usual endogenous melatonin 
offset (Lewy and Sack 1997). Shifts in the pacemaker’s circadian phase prompted 
by exogenous melatonin are reflected not only in the endogenous melatonin rhythm 
but also in the resetting of rhythms associated with cortisol secretion, core body 
temperature, and the sleep/wake cycle (Hashimoto et al. 1998; Dahlitz et al. 1991; 
McArthur et al. 1996; Lockley et al. 2000; Sack and Lewy 1997; Middleton et al. 
1997; Hayakawa et al. 1998). The zeitgeber strength of melatonin in humans is suffi-
ciently strong that it can capture and entrain the free-running circadian rhythms of 
totally blind individuals without access to light cues (Sack et al. 2000; Lewy et al.  
2001). In such protocols, melatonin is given at a dose ranging between 0.5 and 10 mg 
one hour before habitual bedtime for several weeks. Melatonin can also be employed 
as an entrainment tool for individuals with non-24 h sleep–wake disorder (Non-24) 
(McArthur et al. 1996). While supplemental melatonin is recommended to treat Non-
24 in both sighted and blind individuals (Standards of Practice Committee of the 
American Academy of Sleep Medicine), dual melatonin receptor agonists with high 
affinity for MT2 have also been FDA approved for this indication. Animal studies 
suggest that MT2 is the receptor subtype mediating melatonin’s phase-shifting effects 
in the SCN (Hunt et al. 2001; Dubocovich et al. 1998). Most studies of Tasimelteon 
in patients with Non-24 indicate significant variability in the drug’s efficacy, with 
success rates from 20 to 67% (Lockley et al. 2015). An important future question in 
melatonin research concerns identifying the individual-level health factors that might 
contribute to melatonin’s ability or inability to phase-lock the central pacemaker’s 
rhythm. 

25.3 Melatonin’s Role in Sleep 

Many biological roles for melatonin have been highlighted since its discovery but 
none have been more widely discussed than its putative action as a hypnagogic 
hormone. Shortly after its characterization, melatonin was shown to be produced 
and secreted exclusively during the dark phase of the 24 h cycle. Examination of 
this secretion profile yielded a conspicuous relationship between the trajectory of 
circulating hormone and sleep: The nocturnal rise of melatonin preceded habitual 
bedtime, and levels peaked in the middle of the sleep period and then dropped precip-
itously around the time one usually woke up (Lavie 1997). Early studies in animals 
further suggested that melatonin triggered sleep after direct infusion into the preoptic 
regions of the hypothalamus, which function as important centers for sleep initiation 
in the mammalian brain (Marczynski et al. 1964). The narrative association between 
melatonin and sleep was ostensibly sealed in the early 1970s when multiple groups
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reported that intravenous injections shortened sleep latency in neurotypical young 
adults without insomnia (Anton-Tay et al. 1971; Cramer et al.  1974). 

The clinical work that has populated the literature since the 1970s has clarified 
a different role for melatonin in sleep—one that does not involve direct hypnotic 
actions (Mendelson 1997a; b). The lack of a direct effect is exemplified by several 
studies using polysomnography (PSG) or subjective self-report in cohorts with and 
without insomnia. Several of these studies used a randomized, double-blind design. 
By and large, oral nighttime administration of melatonin (upwards of 100 mg) before 
bedtime does not statistically change traditional indices of hypnotic efficacy, such 
as the latency to sleep onset (Pires et al. 2001; James et al. 1987, 1990; Ellis et al. 
1996; Zhdanova et al. 2001; Almeida Montes et al. 2003), sleep duration (James 
et al. 1987, 1990; Ellis et al. 1996; Zhdanova et al. 2001; Almeida Montes et al. 
2003), nor the amount of time spent awake after falling asleep (Stone et al. 2000; 
Ellis et al. 1996; Cajochen et al. 1997a; Zhdanova et al. 2001; Almeida Montes et al. 
2003). PSG metrics related to slow-wave sleep (SWS), rapid-eye movement (REM) 
sleep, sleep architecture (time spent or transitions between non-REM and REM), 
and sleep continuity measures also show little change (Ferini-Strambi et al. 1993; 
Zhdanova et al. 1996; James et al. 1987, 1990; Cajochen et al. 1997a; Almeida Montes 
et al. 2003). Subjective assessments of sleep quality may or may not improve (Stone 
et al. 2000), but when they do can be attributed to placebo effects (half of a sample 
may report better sleep quality but might be unable to distinguish the treatment 
arm in which they received melatonin (Ellis et al. 1996)). It is important to note 
that a few of the investigations examining the effects of melatonin administration 
at bedtime are mixed with regard to the hormone’s influence on nighttime sleep. 
Sleep efficiency or wake after sleep onset might be improved, for instance, but not 
measures of sleep latency or total sleep time (Garfinkel et al. 1995; Zhdanova et al. 
2001; Waldhauser et al. 1990). Where available, statistically significant effects of 
melatonin are rarely clinically meaningful. Bedtime administration may change a 
measure of sleep efficiency or continuity but not do so to a degree that would likely 
affect perceptions of sleep quality (Attenburrow et al. 1996). 

Unlike traditional hypnotics, there is no variable of sleep for which melatonin 
consistently demonstrates dose–response characteristics (e.g., the higher the dose, 
the longer the sleep duration or the better its consolidation) (Roth and Richardson 
1997). This makes sense: By physiological standards, base circulating melatonin is 
already high at night. Even at several-gram doses that force blood levels to concentra-
tions over 1000-fold above circulating levels, exogenous melatonin never produces 
an involuntary loss of consciousness. Some individuals may not even feel sleepy at 
these doses (Waldhauser et al. 1990). Consequently, the logic for why elevations in 
nighttime melatonin from exogenous sources might enhance sleep quality or quan-
tity remains elusive beyond the circumstantial relationship between nighttime mela-
tonin secretion and the timing of human sleep. From a broader ecological/biological 
perspective, the concept of melatonin as a sleep hormone ignores its association with 
wake and activity in nocturnal species (Sack et al. 1997).
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An alternative perspective vis-à-vis melatonin and sleep begins to emerge when 
one considers human experiments that have timed melatonin administration specif-
ically to the late afternoon or early evening several hours before habitual bedtime 
(Arendt 2000; Luboshizsky and Lavie 1998). When taken during this time block— 
one where circulating endogenous melatonin is low or absent—exogenous mela-
tonin (1) triggers fairly consistent reductions in arousal (moderate sedation, feelings 
of tiredness) (Cajochen et al. 1996; Dollins et al. 1994; Mishima et al. 1997), (2) 
shortens sleep latency when a nap opportunity is provided (Reid et al. 1996; Dollins 
et al. 1994; Nave et al.  1995; Hughes and Badia 1997), and (3) produces hypnotic-like 
daytime cognitive impairments (Lieberman et al. 1984; Dollins et al. 1994). These 
effects have been associated with reductions in core body temperature as well as 
spectral power changes in the delta, theta, and spindle bands (Cajochen et al. 1996, 
1997b, 2003; Reid et al.  1996; Dollins et al. 1994; Mishima et al. 1997; Hughes 
and Badia 1997). Oral melatonin at doses that place plasma levels at the range of 
endogenous melatonin or just several levels above (so-called low pharmacological 
doses; 0.3–5 mg) likely increases sleep by virtue of its daytime chronobiotic prop-
erties, which has the net effect of phase-advancing sleep propensity (Shochat et al. 
1997). In that way, administration during the advance zone of the melatonin PRC 
enables the hormone to function as both chronobiotic and soporific (Wirz-Justice 
and Armstrong 1996). 

The soporific and temperature effects of daytime melatonin administration open 
the door to a valuable perspective on what the hormone’s role might be during 
the nighttime hours that contextualize human sleep. Normally, melatonin secre-
tion steadily rises an hour or two before habitual sleep onset. Once synthesized, 
the hormone’s high water and lipid solubility allow it to pass easily across cell 
membranes, gaining access to various biological fluids and tissues, including the 
cerebrospinal fluid, plasma, saliva, and tissue compartments across the periphery 
and brain (Shida et al. 1994; Costa et al. 1995; Reiter et al. 2013; Menendez-Pelaez 
and Reiter 1993; Venegas et al. 2012; Reiter 1991). Melatonin effectively permeates 
the body throughout the pre-sleep period and the first several hours of slumber. In 
doing so, the function of melatonin in sleep reveals itself: Elevations in circulating 
hormone signal a wholesale biological shift toward quiescence, integrating energy 
conservation strategies, and restorative processes that are best optimized when a 
diurnal organism is at rest (Saarela and Reiter 1994; Zisapel 2007). 

Melatonin accumulation impacts a number of activities linked to digestion, 
including within the gut, where the hormone binds to MT1 receptors to augment 
contractility (Ahmed et al. 2013). Across the periphery, it also instructs metabolism. 
Insulin sensitivity is ordinarily high during the daytime when melatonin levels are 
low, corresponding with wakefulness, vigorous energy demand, and food intake. 
Upon reaching peaks in physiological concentration, circulating melatonin increases 
insulin resistance at night while the body enters a period of fasting and slowing 
metabolism (Kampmann et al. 2021), thus optimizing energy balance at a time 
when endogenous stores are mobilized in lieu of calorie consumption. In that way, 
melatonin functions as a linchpin in maintaining the internal circadian synchroniza-
tion/alternation that occurs between states of (1) activity/feeding and (2) rest/fasting
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(Green et al. 2008). These states fall perfectly in line during entrainment with the 
solar light–dark cycle, which imposes a daily rhythm of energy harvesting and energy 
storage exemplified by cycles of photosynthesis in plants that create corresponding 
cycles of chemical energy transfer across food webs in animals. Decades of exper-
imental evidence substantiate melatonin’s role in metabolism. From the very first 
studies in animal models, it was clear that infusion of pineal extracts (and later 
melatonin itself) led to hypoglycemia, increased glucose tolerance, and hepatic and 
muscular glycogenesis after glucose loading (Vinogradova and Anisimov 2013; 
Wolden-Hanson et al. 2000; McMullan et al. 2013; Milcu et al. 1963; Csaba and 
Barath 1971; Diaz and Blazquez 1986). On the other hand, removal of circulating 
melatonin via pinealectomy flips these metabolic processes and causes a diabeto-
genic syndrome (Cipolla-Neto et al. 2014; la Fleur et al. 2001; Rodriguez et al. 1989; 
Mellado et al. 1989; Lima et al. 1998; Nogueira et al. 2011). Melatonin receptors 
are notably expressed within the vasculature (Viswanathan et al. 1990). Binding of 
melatonin to these sites at night causes vasodilation and lowers blood pressure (Zhao 
et al. 2017; Baker and Kimpinski 2018; Simko et al. 2013), thus providing a puta-
tive thermoregulatory valve that offsets heat production from increased breakdown 
of sugars and fats. Against this backdrop, quiescence is facilitated by melatonin’s 
promotion of smooth muscle contraction in the airways at night (Sasaki et al. 2021). 

Stepping back to look at the bigger picture, it comes as no surprise that many of the 
neural circuits involved in sleep, metabolism, and thermoregulation in the hypotha-
lamus (Rothhaas and Chung 2021) are affected by melatonin and collaborate to shape 
the brain’s sleep architecture (Cagnacci et al. 1997). During sleep, thermosensitive 
neurons within the hypothalamus signal to wake-promoting regions of the brain to 
coordinate cycles of non-REM sleep, REM sleep, and wake (Krilowicz et al. 1994). 
Non-REM tends to occur during the first half of the night when body temperature 
is lowest, synchronized with maximal melatonin secretion. As morning approaches, 
sleep becomes richer in REM, corresponding with spikes in sympathetic modula-
tion and a gradual elevation in body temperature as melatonin declines (Boudreau 
et al. 2013). Far from the “darkness” or “tranquilizing” hormone it was originally 
envisioned to be, melatonin appears to be more of an organizing agent helping to tie 
together the elaborate physiologies that connect circadian changes in sleep/wake to 
those in metabolism and thermoregulation, thereby providing a clearing—a recurring 
biological context—set aside for recovery processes such as those described below. 

25.4 A Primer on Reactive Oxygen Species 

To appreciate melatonin’s extraordinary reach as an antioxidant, one must first under-
stand why and how oxygen byproducts are generated and neutralized in healthy 
cells. Aerobic organisms assimilate dioxygen (O2) from the atmosphere to drive 
adenosine triphosphate (ATP) energy production from the mitochondrial respira-
tory chain (Tan et al. 2000b; Nathan and Singer 1999). While the vast majority of 
O2 is consumed efficiently during this process (i.e., safely converted to water via
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four sequential reductions), approximately 5% is only partially reduced, creating a 
series of reactive oxygen species (ROS) among which are free radicals containing 
an unpaired valence electron (Reiter 1998b; Kehrer 1993; Reiter et al. 2002b). O2 

is reduced one step at a time in a biological setting (Malmstrom 1982). Ergo, there 
are 3 possible ROS intermediates that can be generated during respiration: super-
oxide anion radical (O2 

•−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) 
(Reiter 1998b; Manchester et al. 2015). These intermediates are disruptive to the 
intracellular milieu to varying degrees but can trigger chain reactions that propagate 
molecular damage when they contact deoxyribonucleic acid (DNA), proteins, or 
lipids (Reiter et al. 2001c; Reiter 1998a). The interaction renders these biomolecules 
into secondary radicals that behave identically to their precursors. 

Because ROS production became invariably connected to life-sustaining ATP 
production, organisms evolved enzymatic and non-enzymatic strategies to neutralize 
them by speeding their conversion toward water. Mitochondrial O2 

•− is the most 
significant source of intracellularly generated ROS (McCord and Omar 1993; Ames 
et al. 1993). The acceptance of a single electron by O2 generates O2 

•− (Liochev and 
Fridovich 1994), which is metabolized to H2O2 by an enzymatic family of superoxide 
dismutases (SODs) (Fridovich 1983; McCord and Fridovich 1969; Fridovich 1975). 
Catalytic conversion of O2 

•− is especially critical under pathological conditions that 
cause acidosis like ischemia. O2 

•− is a base that readily accepts protons. In doing 
so, it forms the hydroperoxyl radical HO2 

•, a much more lipid-soluble and powerful 
oxidizing agent that can damage the integrity of cellular membranes (Larosa and 
Remacle 2018). Other enzymes besides SOD also produce H2O2 as a byproduct of 
their activity, including monoamine oxidase (Simonson et al. 1993), L-amino acid 
oxidase (Izidoro et al. 2014), and glycolate oxidase (Li et al. 2021). The pool of H2O2 

thus extends not just from mitochondrial respiration but also other processes linked 
to neurotransmitter recycling and detoxification. As H2O2 accumulates (half-life 
>4 s), it is not particularly reactive in vivo relative to other ROS, but readily crosses 
cell membranes, migrates to sites distant from where it was originally generated, and 
provides a reservoir for more damaging ROS (Reiter 1995; Reiter et al. 2002b). In the 
presence of cellular transition metals Fe2+ and Cu1+ (Floyd and Carney 1993), H2O2 

is reduced to the dangerous hydroxyl radical (•OH) via the Haber–Weiss and Fenton 
reactions (Wang et al. 2021; Zeng et al. 2019; Reiter et al. 1995). These reactions 
are usually side-stepped by first converting H2O2 to water with two antioxidative 
enzymes, catalase (Dai et al. 2017) and glutathione peroxidase (GPx), which hold 
steady-state H2O2 levels in check at approximately 10–9–10–7 M (Chance et al. 1979; 
Tan et al. 2000b). Glutathione is required for GPx to detoxify H2O2, resulting in the 
molecule’s oxidation to glutathione disulfide (GSSG) (Brigelius-Flohe and Maiorino 
2013). Another enzyme, glutathione reductase, recycles GSSG back to glutathione 
(Wu et al. 2004). 

High cytotoxicity is observed in cases where •OH is converted from H2O2. The  
redox potential of •OH is more positive than any substance in a living cell (+2.31 V) 
(Allegra et al. 2003). Hence, •OH reacts rapidly with every macromolecule in the 
vicinity of its production, readily damaging nucleic acids in its wake when H2O2 → 
•OH conversion is primed by (1) transition metals bound to molecules situated close
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to mitochondrial or nuclear DNA or (2) intracellular Ca2+ spikes from patholog-
ical neural firing that activate nuclease enzymes (e.g., observed during seizures and 
stroke) (Pappolla et al. 1999; Halliwell et al. 2021). Besides its destructive actions on 
DNA, which involve electron transfers from guanosine nucleosides (Chatgilialoglu 
et al. 2021), •OH can also warp proteins and membrane lipids. When the radical 
attacks the amino acid residues of protein molecules, it induces extensive protein– 
protein cross-linking (Stadtman 1992). Within membrane lipids, it initiates lipid 
peroxidation, a self-propagating “branching” reaction started when •OH removes an 
H+ from the side chain of the first membrane polyunsaturated fatty acid it contacts 
(i.e., the first peroxyl radical formed then snatches a hydrogen atom from the next 
fatty acid side chain, forming a second peroxyl radical and so on) (Niki et al. 1993; 
Cheeseman 1993; Pisoschi and Pop 2015). Once snowballing, this reaction chain 
may leave neurons especially vulnerable because their membrane phospholipids are 
enriched with easily oxidized polyunsaturated fatty acids such as linoleic and arachi-
donic acid (Rice-Evans and Burdon 1993). While there are no intracellular or extra-
cellular enzymes of which we are aware that detoxify •OH (more than likely because 
the free radical would destroy them), mitigation strategies that directly scavenge •OH 
are available via dietary consumption of low molecular-weight chemical antioxidants 
such as vitamin C and vitamin E, a fat-soluble compound that concentrates within the 
hydrophobic interior of membranes. During cytotoxic events, vitamin E (in the form 
of α-tocopherol) is thought to be one of the major chain-breaking scavenger antiox-
idants maintaining regulated ion transport across cellular membranes and oxidative 
phosphorylation through the mitochondria (Miyazawa et al. 2019). Upon donating 
an electron, the vitamin E radical is inert and is eventually recycled to its non-radical 
form by ascorbate (McCay 1985). 

Not all free radicals are oxygen-based or byproducts of mitochondrial respiration. 
For instance, nitric oxide (NO•) is a gaseous messenger used to convey retrograde 
and anterograde signals between cells. The molecule is synthesized endogenously 
from L-arginine with specific isoforms of nitric oxide synthase expressed in either 
neurons (neuronal NOS) or the vascular inner lining (endothelial NOS) (Gantner 
et al. 2020). Owing to its gaseous/hydrophobic nature, NO• easily passes through 
cellular membranes and interacts with other radical species (Hardeland 2021). When 
it builds to unusually high concentrations, the gaseous molecule reacts quickly at 
diffusion-controlled limits with superoxide anion radical (O2 

•−) to form peroxynitrite 
(ONOO−), a toxic nitrogen intermediate functioning as both a nitrating agent and 
strong oxidant (Pryor and Squadrito 1995). The reaction of NO• with O2 

•− is three-
fold faster than the dismutation rate of O2 

•− clearance by superoxide dismutase 
(Crow and Beckman 1995). Moreover, the toxicity of the ensuing product, ONOO−, 
rivals that of •OH, presenting a danger to all major classes of biomolecule and 
overall cellular physiology through its irreversible inhibition of the mitochondrial 
electron transport chain (Pacher et al. 2007). Once propagating, the deleterious effects 
stemming from ONOO− can be long-lived. ONOO− is a relatively stable molecule 
and in the presence of iron- and copper-containing metalloproteins it eventually 
decomposes to •OH through homolytic cleavage of peroxynitrous acid (Radi 2018).
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25.5 Melatonin: Innerworkings of a Powerful Antioxidant 
System 

Oxidative phosphorylation is a highly efficient process worth protecting: Mitochon-
dria can generate up to 30 molecules of ATP from each molecule of glucose oxidized 
into pyruvate. Owing to incomplete O2 consumption, ROS are leaked during energy 
production, presenting a necessary cost balance to these efficiency benefits (Reiter 
et al. 1994). Working in the background, melatonin is one of the oldest countermea-
sures used in biological systems to neutralize ROS (Tan et al. 2010; Hardeland et al. 
1995). It does so through a cascading series of actions as a direct free radical scav-
enger, preventative antioxidant, transition metal chelator, and lever arm for enzymatic 
antioxidative pathways (Galano and Reiter 2018). 

The electron-rich parent structure of melatonin serves as a powerful broad-
spectrum chemical scavenger, neutralizing (1) all three major oxygen side products 
(O2 

•−, H2O2, and •OH) (Pahkla et al. 1998; Horstman et al.  2002; Stasica et al. 2000; 
Li et al. 2002; Matuszak et al. 1997; Tan et al. 2000a; Carampin et al. 2003; Zang 
et al. 1998; Sewerynek et al. 1995b), (2) radical nitrogen intermediates such as NO• 

and ONOO− (Mahal et al. 1999; Noda et al. 1999; Escames et al. 1997; Guerrero 
et al. 1997; Gilad et al. 1997; Blanchard et al. 2000; Zhang et al. 1999a), and (3) the 
peroxyl radicals that form during lipid peroxidation (Antunes et al. 1999; Marshall 
et al. 1996; Pieri et al. 1994, 1995; Mayo et al. 2003a; Melchiorri et al. 1996; Daniels 
et al. 1995; Sewerynek et al. 1995a). For the more aggressive radicals, like •OH, 
each molecule of melatonin can detoxify two radicals (Seegar et al. 1997) with a 
rate constant ranging from 1.2 × 1010 to 0.6 × 1011 M−1 s−1 (i.e., with the same 
or, in some cases, greater rapidity than other scavengers, including N-acetylcysteine, 
β-carotene, and glutathione; (Reiter et al. 2001c)). Melatonin’s scavenging activ-
ities are demonstrable in many subcellular compartments, protecting the nucleus 
from DNA oxidation and strand breaks (Tan et al. 1993, 1994; Davanipour et al. 
2009; Fischer et al. 2008; Sliwinski et al. 2007; Romero et al. 1999; Cabrer et al. 
2001; Yamamoto and Mohanan 2001a; Qi et al.  2000; Sewerynek et al. 1996; Perez-
Gonzalez et al. 2019; Lai and Singh 1997; Morioka et al. 1999; Shaikh et al. 1997; 
Karbownik et al. 2000; Susa et al. 1997), the mitochondria from disturbances in the 
respiratory chain (Mohanan and Yamamoto 2002; Yamamoto and Mohanan 2002; 
Reiter et al. 2018a, b; Hardeland 2017), and the primary cell membrane from reduc-
tions in fluidity brought about by branching reactions (Pieri et al. 1994; Garcia et al. 
1997, 2014). 

Several products are formed when melatonin scavenges ROS (Reiter et al. 2002a; 
Tan et al. 2007). Cyclic 3-hydroxymelatonin (c3OHM) results from melatonin’s 
neutralization of •OH (Tan et al. 1998a, 1999). N1-acetyl-N2-formyl-5-methoxy-
kynuramine (AFMK) is yielded after further oxidation of c3OHM or after mela-
tonin’s neutralization of the early oxygen reactants, O2 

•− or H2O2 (The equilibrium 
between c3OHM and AFMK thus depends on the ratio of oxidants to melatonin.) 
(Tan et al. 2001; Rozov et al. 2003; Silva et al. 2005). Upon production, AFMK can be 
oxidized or enzymatically transformed by catalase to a third-generation metabolite,
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N2-acetyl-5-methoxykynuramine (AMK) (Hirata et al. 1974; Zang et al. 1998). In the 
case of radical nitrogen intermediate reactions, 6-hydroxymelatonin is one of several 
compounds yielded from melatonin’s quenching of ONOO−. Others include 2-
hydroxymelatonin, c3OHM, 1-nitromelatonin, and 1-nitrosomelatonin (Reiter et al. 
2002a). 

Remarkably, metabolites of scavenging melatonin also function as antioxidants 
themselves, including c3OHM, AFMK, and AMK (Hardeland et al. 2009; Reiter 
et al. 2007; Galano et al. 2013). These primary, secondary, and tertiary metabolites 
are referred to as melatonin’s “antioxidant cascade,” enabling one 232.28 Da parent 
molecule of melatonin to neutralize up to 10 radical products. Such a ratio has little 
precedence (if any) in biological systems. By comparison, classic free radical scav-
engers typically neutralize a single ROS per circulating molecule invested. c3OHM 
has been shown to act through hydrogen atom and single electron transfer reaction 
mechanisms, which are important for preventing damage from oxidative stress as well 
as repairing damage to other antioxidants (Hardeland 2005). This versatility allows 
c3OHM to effectively scavenge •OH and hydroperoxyl radical at diffusion-limited 
rates, as well as to inhibit/reverse ROS modifications of DNA (Tan et al. 2014a). 
AFMK quenches O2 

•−, •OH, and radical nitrogen species with a potency similar to 
melatonin, while also mitigating the effects of a variety of oxidative conditions on 
DNA and lipids (Tan et al. 2001; Burkhardt et al. 2001; Manda et al. 2007; Onuki 
et al. 2005). Data suggest that AMK, the last element of melatonin’s antioxidant 
cascade, has an even greater capacity to neutralize and reduce the deleterious effects 
of ROS (Maharaj et al. 2002; Ressmeyer et al. 2003; Galano et al. 2013). It is 1.6-fold 
better than melatonin at scavenging singlet oxygen, for example, and a staggering 
150-fold better than AFMK (Schaefer and Hardeland 2009). Adding to these multi-
generation metabolites are melatonin’s direct precursors, NAS and 5-MT, which are 
lesser known but equally important members of melatonin’s antioxidant ecosystem 
(Garcia et al. 2001; Longoni et al. 1997; Ng et al.  2000; Wolfler et al. 1999). 

Members of the melatonin antioxidant network bind heavy metals in addition to 
ROS, providing a complementary protective mechanism that prevents •OH formation 
via sequestration or removal of both metal and H2O2 precursors (Gulcin et al. 2003; 
Mayo et al. 2003b). The chelating action of melatonin is likely mediated through 
a coupled-deprotonation-chelation mechanism and is seen not only with prevalent 
transition metals (i.e., Fe2+ and Cu1+) but with many metals that may have natural 
origins in the body or act as environmentally derived toxins (so-called xenobiotics) 
(Galano et al. 2015; Esparza et al. 2003, 2005; Gomez et al. 2005; Said et al. 2021; 
Limson et al. 1998; Parmar et al.  2002; Lin and Ho 2000; Kim et al. 2000). For 
example, computational studies suggest that melatonin, c3OHM, and AMK form 
spontaneous complexes with lead (Pb), with the latter two metabolites possessing 
sufficient electronic and thermodynamic properties to act as clinically relevant lead-
trapping agents (Diaz-Cervantes et al. 2019). Quantum mechanical modeling further 
suggests that the pool of melatonin and its metabolites might represent the body’s 
most significant natural source of metal-chelating potential (Galano et al. 2015), a 
proposition strengthened by the fact that other metal-binding redox balance proteins, 
such as metallothioneins (Babula et al. 2012), are damaged by free radicals under
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conditions of oxidative stress. The melatonin family’s chelating abilities have been 
confirmed in basic molecular protection studies (e.g., reduction of iron and copper-
induced lipid peroxidation and neurodegeneration), preclinical studies establishing 
that melatonin can buffer against the formation of toxic β-amyloid-metal aggregates 
(Zatta et al. 2003), and clinical studies in humans showing that melatonin supple-
mentation can ameliorate the oxidative stress that occurs when anemic patients are 
treated with intravenous iron (Herrera et al. 2001). 

Melatonin provides one last layer of defense against ROS by modifying the activity 
of enzymes that metabolize reactive oxygen and nitrogen species to inactive products 
(Rodriguez et al. 2004; Mayo et al. 2002). Under baseline physiological conditions, 
the nocturnal rise in circulating melatonin produced by the pineal gland is associated 
with a concurrent nighttime increase in the activities of SOD (dismutation of O2 

•− to 
H2O2), GPx (H2O2 conversion to water), and glutathione reductase (GRd; replenish-
ment of glutathione) (Albarran et al. 2001; Pablos et al. 1998). The marked nighttime 
increase in GPx is prevented when animals are exposed to constant light, suggesting 
that increased antioxidant signaling does not occur without melatonin secretion 
(Pablos et al. 1998). In keeping with these trends, administration of exogenous mela-
tonin enhances the mRNA expression of SOD and GPx, potentiates their activity, 
and promotes the de novo synthesis of glutathione by stimulating its rate-limiting 
enzyme, gamma-glutamylcysteine synthase (Pablos et al. 1995; Barlow-Walden et al. 
1995; Ozturk et al. 2000; Fischer et al. 2013; Okatani et al. 2000; Kotler et al. 1998; 
Esparza et al. 2005; Ding et al. 2014; Antolin et al. 1996; Gomez et al. 2005; Baydas 
et al. 2002; Liu and Ng 2000; Martin et al. 2000; Urata et al. 1999). The co-factor 
for GRd, nicotinamide adenine dinucleotide phosphate (NADPH), might also be 
replenished via the reported stimulatory action of melatonin on glucose-6-phosphate 
dehydrogenase (G6PDH) (Hajam and Rai 2019). An extended literature documents 
melatonin’s broad influence over antioxidant and prooxidant enzyme systems under 
constitutive and pathological conditions, including processes related to brain injury 
(Baydas et al. 2006; Tunez et al. 2003), cortical-hippocampal excitotoxicity (Floreani 
et al. 1997), heavy metal poisoning (Esparza et al. 2005), ultraviolet radiation damage 
(Fischer et al. 2013), and diabetes (Vural et al. 2001). Alongside the upregulation of 
antioxidative defense systems is down-regulation of pathways promoting free radical 
generation. Melatonin and its metabolites are significant inhibitors of NOS activity 
and NO• production outside their roles as direct NO• scavengers (Pozo et al. 1994, 
1997, 1998; Bettahi et al. 1996; Leon et al. 1998), with such inhibition being shown 
to curtail the inflammatory challenges associated with carrageenan and lipopolysac-
charide exposure (Cuzzocrea et al. 1997; Crespo et al.  1999). Suppression of NOS 
activity might be mediated through melatonin’s binding and sequestration of calmod-
ulin (Pozo et al. 1997; Tomas-Zapico and Coto-Montes 2005), a key factor regulating 
NOS function. The mechanisms behind melatonin’s control over other antioxidative 
enzymatic pathways are not currently understood but may involve inhibition of Nrf2 
degradation (Ding et al. 2014). Nrf2 (Nuclear factor-erythroid factor 2-related factor 
2) is a transcription factor controlling the expression of an array of antioxidants, 
detoxifying proteins, and xenobiotic transporters in response to oxidative stress. It 
does so by binding antioxidant response elements (abbreviated ARE), which are
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enhancer sequences embedded within the promoter regions of many cytoprotective 
proteins (Raghunath et al. 2018). 

25.6 Melatonin: A Functionally Relevant Antioxidant 

Melatonin is an amphiphilic molecule, allowing it to freely traverse the body, cross 
many macro-physiological barriers and cellular membranes, and to concentrate in 
subcellular compartments. Within minutes of its intraperitoneal or subcutaneous 
injection, melatonin is already detectable at high concentrations in the brain (Paterniti 
et al. 2016). These properties make the melatonin molecule—outside the contribu-
tion of a signal transduction agent like a receptor—a powerful tool for maintaining 
the homeostatic environment needed around the production and neutralization of 
free radicals. Melatonin likely contributes to ROS homeostasis in an opportunistic 
fashion. It is rhythmically secreted into the bloodstream at night. However, levels 
appear to be consistently higher in the cerebrospinal fluid relative to plasma (Hedlund 
et al. 1977), in lock-step with the increased metabolic demand (and ROS output) of 
the brain’s neurons, glia, and vasculature, which use 20% of the body’s collective O2 

supply (Halliwell 1992). Within individual cells, mitochondria are the primary sites 
of energy and ROS production (Cardinali et al. 2013). Not surprisingly, it is here that 
melatonin is most densely concentrated (Venegas et al. 2012), though appreciable 
levels of the indolamine are also detectable in many cellular nuclei (Menendez-Pelaez 
and Reiter 1993; Acuna-Castroviejo et al. 1994; Mennenga et al. 1991; Coto-Montes 
et al. 2003; Menendez-Pelaez et al. 1993), where melatonin’s antioxidant properties 
might safeguard the genome’s stability and cell cycle control (Finocchiaro and Glikin 
1998). 

Complementing this widespread biological distribution is the evolutionary conser-
vation of melatonin between plants and animals. Melatonin survived evolution 
without any chemical structural modifications, is highly concentrated in edible 
plants (e.g., in the μg/g range of some fruits, vegetables, seeds, nuts, and medic-
inal herbs; (Hattori et al. 1995; Dubbels et al. 1995; Murch et al. 1997; Manch-
ester et al. 2000)), and is readily available from plant foodstuffs (Tan and Reiter 
2020). When plants containing melatonin are ingested, it materially affects plasma 
melatonin levels (Reiter et al. 2001b, 2005; Garrido et al. 2010; Sae-Teaw et al. 
2013), whose circulation correlates with the total antioxidant capacity of the blood 
(Benot et al. 1998, 1999). Melatonin is biosynthesized within plant mitochondria 
and chloroplasts, enabling them to combat abiotic and biotic stressors (Arnao and 
Hernandez-Ruiz 2015; Zhao et al. 2019; Tan et al. 2013). In the larger scheme of the 
feeding/fasting cycle, the antioxidative actions of melatonin thus appear to be passed 
from one organism to the next in an environment with commonly shared challenges, 
including heat, drought, and soil contamination (e.g., with heavy metal). At the top 
of the food chain, humans unduly benefit from their brain’s endogenous production 
of melatonin as well as the aggregate synthesis of melatonin across the ecosystems 
in which they inhabit.
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Widespread neuroprotective effects are conferred by melatonin’s potent and 
biologically accessible antioxidant properties. For example, systemic dosing 
of melatonin mitigates the fallout ensuing from cerebral models of focal 
ischemia/reperfusion injury. When administered near the onset of ischemia or before 
reperfusion in carotid artery and middle cerebral artery occlusion stroke models, 
exogenous melatonin reduces: (1) oxidative stress markers associated with depletion 
of glutathione, elevated malondialdehyde, and elevated myeloperoxidase (El-Abhar 
et al. 2002; Sinha et al. 2001; Cuzzocrea et al. 2000); (2) the resulting infarct volume 
measured by histochemical methods or early phase visualization techniques such as 
diffusion-weighted and magnetic resonance imaging (Pei et al. 2002a, b, 2003; Sinha 
et al. 2001; Kondoh et al. 2002); (3) immunohistochemical indices of cell survival in 
the ischemic penumbra as well as the core (Borlongan et al. 2000; Cho et al. 1997); 
and (4) neurological scores reflecting an animal’s ability to walk, right themselves, 
and extend their limbs (Cuzzocrea et al. 2000; Wang et al. 2009; Sinha et al. 2001). 
Pinealectomized animals, by contrast, show aggravated stroke outcomes, developing 
more signs of oxidative stress, larger infarcts, and more memory problems than sham-
pinealectomized animals (Joo et al. 1998; Kilic et al. 1999). Stroke outcomes can 
be improved or normalized if pinealectomized animals are first injected with mela-
tonin (Kilic et al. 1999; Joo et al. 1998). Melatonin’s neuroprotective effects are 
equally visible in other brain injury contexts like cortical impact injury and percus-
sion trauma, where treated animals: (1) exhibit reductions in contusion volume that 
are optimized when exogenous melatonin is delivered along the nighttime peak of 
endogenous secretion (Sarrafzadeh et al. 2000) and (2) improved post-trauma grip 
strength and spatial memory (Ozdemir et al. 2005; Mesenge et al. 1998). What’s 
more, melatonin-mediated neuroprotection is not developmentally regulated. Fetal or 
neonatal rats recovering from ischemia/reperfusion also evince fewer signs of oxida-
tive damage and better cognitive function after exogenous melatonin administration 
(Berger et al. 2017; Wakatsuki et al. 1999, 2001; Carloni et al. 2008). The utility of 
melatonin in addressing post-stroke injury has been summarized in several reviews 
(Reiter et al. 2003; Cervantes et al. 2008; Paterniti et al. 2016; Maldonado et al. 
2007; Cheung 2003). Meta-analyses covering the entire experimental stroke liter-
ature suggest that melatonin improves outcomes by approximately 43% (Macleod 
et al. 2005). 

In vitro models have been consulted as well to study the functional implications of 
melatonin’s neuroprotective-antioxidant properties. In primary neuron culture, where 
finer cellular changes pursuant to oxygen/glucose deprivation can be measured, 
melatonin incubation decreases cell death caused by H2O2 or NMDA, preserves 
the dendritic morphology of these cells, and inhibits the release of cytochrome 
c and apoptosis-inducing factor (AIF) from mitochondria, signals that otherwise 
trigger apoptosis (Wang et al. 2009). Results are observed in cerebrocortical cultures 
and in hippocampal slices maintained under hypoxic or excitotoxic conditions. 
In hippocampal preparations, melatonin prevents cell death and rescues failures 
in electrophysiologically measured synaptic transmission (Vlkolinsky et al. 1999; 
Vlkolinsky and Stolc 1999; Lezoualc’h et al. 1996; Skaper et al. 1998).
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Some research suggests that melatonin might be naturally secreted in response to 
neural insults as a compensatory neuroprotective maneuver. Transient increases in 
plasma melatonin levels are seen after hemorrhagic shock in animal models (Wich-
mann et al. 1996) and in the cerebrospinal fluid (CSF) of human patients experi-
encing severe traumatic brain injury (Seifman et al. 2008). The rise in human CSF 
levels post-injury scales with molecular indices of lipid peroxidation. Other studies 
in patients suffering from acute ischemic stroke suggest, likewise, that melatonin’s 
catabolism into active antioxidant metabolites might be accelerated during trauma 
(Ritzenthaler et al. 2009, 2013). An interesting parallel to this series of investiga-
tions is an alternative one that has examined changes in circulating plasma melatonin 
produced from demanding exercise. Plasma melatonin concentrations are signifi-
cantly increased in long-distance runners after a daytime 10 km race (Ronkainen et al. 
1986) or a 28.5 mile mountain race (Strassman et al. 1989), with levels doubling or 
in some cases growing fourfold between the start and end of the event. People partic-
ipating in a several-week aerobic exercise training program (e.g., eliciting 85% of 
maximum heart rate) also saw increasingly larger plasma surges in melatonin during 
repeated intervals of treadmill running or high-intensity pedaling on a stationary 
bicycle (Skrinar et al. 1989; Carr et al.  1981). Elevations are observed during the 
day when light would otherwise be expected to suppress melatonin secretion. During 
the nighttime period, when endogenous melatonin levels are already elevated, high-
intensity exercise will result in further acute spikes of melatonin secretion by 50% 
that are superimposed on the nighttime elevation (Buxton et al. 1997). Among several 
interpretations (Escames et al. 2012), it is thought that strenuous physical activity 
induces oxidative stress, cuing the secretion or release of melatonin from peripheral 
stores to combat the excess ROS. 

25.7 Melatonin: A Functionally Relevant 
Antioxidant, Part II 

The functional relevance of melatonin’s antioxidant properties is in evidence in many 
brain pathologies extending beyond stroke. Vis-à-vis epilepsy, supplemental dosing 
has been repeatedly shown to improve neural survival and impede the develop-
ment of epileptic discharges and behavioral clonic-tonic seizures caused by epilep-
togenic agents such as kainic acid (Yamamoto and Mohanan 2003; Giusti  1996, 
1997; Tan et al. 1998b; Espinar et al. 2000; Mohanan and Yamamoto 2002; Uz  
et al. 1996; Chen and Chuang 1999), quinolinic acid (Maharaj et al. 2005; Southgate 
et al. 1998; Cabrera et al. 2000; Behan et al. 1999), pentylenetetrazole (Moham-
madi et al. 2020; Peterson et al. 1981; Yahyavi-Firouz-Abadi et al. 2006; Champney 
and Champney 1992; Lapin et al. 1998), pilocarpine (Costa-Lotufo et al. 2002), 
cyanide (Maharaj et al. 2003; Yamamoto and Tang 1996; Yamamoto and Mohanan 
2001b), and 3-mercaptopropionic acid (Golombek et al. 1992). Outcomes are simi-
larly improved in rodent models of hyperthermic febrile seizures (Aydin et al. 2015)
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and kindling models of epilepsy that simulate the limbic circuit changes that develop 
after repeated seizure episodes (Mevissen and Ebert 1998; Albertson et al. 1981). 
In a mirror image to these therapeutic benefits, pinealectomized gerbils, rabbits, 
and rats without circulating melatonin exhibit more spontaneous and drug-induced 
convulsions (Manev et al. 1996; Rudeen et al. 1980; Philo and Reiter 1978; Bindoni 
and Rizzo 1965; Reiter and Morgan 1972). Melatonin’s anticonvulsant actions have 
been primarily studied in animal models but improvements in epilepsy symptoms 
have also been reported in human patients (Anton-Tay et al. 1971), including pedi-
atric patients with lissencephaly, infantile spasm, Lennox–Gastaut syndrome, and 
myoclonic epilepsy (Peled et al. 2001; Jan et al. 1999). In some cases, use of mela-
tonin as an adjunctive anticonvulsant therapy has been longitudinally documented 
over 2 years (Molina-Carballo et al. 1997). 

Melatonin’s general medical safety and efficacy are exemplified by its treat-
ment effects in inflammatory conditions like sepsis (Acuna-Fernandez et al. 2020; 
Galley et al. 2014), where the body’s exaggerated immune response to an infection— 
including explosions in free radical production—causes life-threatening changes to 
organ function. In one clinical study, septic newborns orally administrated melatonin 
(20 mg) showed decreased blood measures of lipid peroxidation and a better survival 
rate compared to untreated children. While all of the children in the melatonin treat-
ment group survived, three out of ten newborns in the control wing of the study 
died within 72 h of diagnosis (Gitto et al. 2001). A systematic review of placebo-
controlled clinical trials testing melatonin’s anti-inflammatory properties suggests 
that exogenous dosing reduces several immune/neuroinflammatory markers. Across 
an aggregate sample of 1517 participants, reductions are observed in interleukin-
1 and tumor necrosis factor, two quintessential cytokines that are elevated during 
immune challenge (Cho et al. 2021). Predictable anti-inflammatory effects in the 
brain and elsewhere are also seen in animal models after exogenous melatonin 
administration. Data have been collected under myriad experimental conditions asso-
ciated with osteoarthritis (Hosseinzadeh et al. 2016), Aβ vaccination (Jesudason et al. 
2007), liposaccharide exposure (Mayo et al. 2005), and biotic stressors (e.g., Schis-
tosoma mansoni and Leishmania parasites, Venezuelan equine encephalomyelitis 
virus, Semliki Forest virus, West Nile virus, and Aleutian disease parvovirus) (Bonilla 
et al. 1997, 2001, 2004; Elmahallawy et al. 2014; Ellis 1996; El-Sokkary et al. 2002; 
Zhang et al. 1999b; Ben-Nathan et al. 1995). Melatonin’s enhancement of biotic 
stress resistance appears to be a motif that is conserved between plants and animals 
(Hardeland 2016). 

Germane to the present review is the possibility that melatonin can improve treat-
ment outcomes for neurodegenerative disorders. There is no shortage of data to 
suggest this is the case. Melatonin studies related to Alzheimer disease (AD) have 
been done using neurotoxic drugs or transgenic mouse models in which animals 
have been genetically programmed to reproduce important hallmarks of AD neuro-
histopathology. In these contexts, administration of melatonin or its metabolites 
restricts the accumulation of amyloid-beta peptides into pathological aggregates 
(Matsubara et al. 2003), limits neural cell death (Shen et al. 2002b; Bachurin et al. 
1999), increases behavioral indices connected to contextual or spatial navigation
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memory (Bachurin et al. 1999; Shen et al. 2002a), and prolongs the lifespan of animals 
living with some facet of AD neurobiology (Matsubara et al. 2003). These effects 
are accompanied by reductions in proinflammatory cytokines and oxidative stress 
and might be mediated exclusively through melatonin’s chemical structure without 
the added contribution of MT1 or MT2 receptors (Pappolla et al. 2002). Melatonin 
has been additionally explored as a drug candidate for treating neurodegeneration 
in amyotrophic lateral sclerosis (ALS). Animal models of this condition suggest 
that supplementing with melatonin can inhibit motor-neuron loss, reduce general 
spinal cord atrophy, delay neurological deterioration connected to muscle wasting 
(e.g., muscle strength, coordination deficits), and extend survival (Zhang et al. 2013). 
In a 2-year clinical safety study of patients with sporadic ALS, high daily dosing 
with melatonin (300 mg/day) was well tolerated and effective in normalizing serum 
protein carbonyls (Jacob et al. 2002; Weishaupt et al. 2006), which is a surrogate 
marker of oxidative stress (Reiter et al. 1999). A recent retrospective analysis of the 
Pooled Resource Open-Access Clinical Trials (PRO-ACT) database indicates that 
people with ALS who use melatonin regularly have a slower rate of decline in their 
ALS Functional Rating Scale scores and a decreased annualized hazard death rate 
compared with non-melatonin users (Bald et al. 2021). The upper and lower motor 
neurons that degenerate in ALS are resource-intensive cells and would logically 
benefit from largescale dosing regimens of melatonin. 

25.8 Do Discoveries Await in Drosophila? 

The sleep, circadian, and seasonal biology surrounding melatonin secretion have 
been studied in mammals for over half a century. Surprisingly, these phenomena 
have received scant attention in Drosophila, one of the most pervasively used animal 
models in biomedical research. The fly melatonin literature is largely restricted to 
two studies that have documented day-night variations in whole-body expression 
(Callebert et al. 1991; Hintermann et al. 1996). Unfortunately, these studies failed 
to address two important questions about the nature of the expression: (1) Did it 
occur under the direction of an endogenous circadian oscillator?; and (2) Could it be 
phase-shifted by zeitgebers such as light? The establishment of melatonin rhythms 
in Drosophila that are analogous to those found in vertebrates would be invaluable to 
the scientific community. Drosophila are ideal animal models for investigations that 
tie together research on sleep, circadian timekeeping, and neurodegeneration because 
the animals evince low genetic redundancy, short reproductive times, circumscribed 
lifespans (60–80 days), functional simplicity, and affordability (De Nobrega and 
Lyons 2020). Many sophisticated genetic tools are available in flies, where spatially 
and temporally restricted changes in specific genes can be examined in conjunction 
with circuit and system-level analysis. Biological manipulations can be studied in 
virtually any context related to oxidative stress or inflammation. Importantly, flies and 
humans share homologous genes for over 60% of their genome (Reiter et al. 2001a; 
Harrison et al. 2002; Pandey and Nichols 2011). Similarities are even tighter when
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one considers genes implicated in human disease. Approximately 75% of human 
disease genes have homologs in the fly genome (Chien et al. 2002; Lessing and 
Bonini 2009). 

Already, flies have provided important insights into how sleep deprivation worsens 
AD-related phenotypes in brain circuits (Tabuchi et al. 2015) and molecular insights 
into how specific signaling pathways influence the progression of ALS. The RNA-
binding protein TDP-43 has been linked to ALS both at the level of pathology and as 
a causative factor. Ninety-seven percent of ALS patients exhibit cytosolic aggregates 
containing TDP-43, and 4–5% of them harbor specific mutations within TARDBP, 
the gene encoding TDP-43 (Bjork et al. 2022). Flies expressing human TDP-43, or 
an ALS-associated mutant variant, show alterations in multiple metabolic pathways 
(Bjork et al. 2022). However, particular upregulations are seen in intermediates from 
the tricarboxylic acid (TCA) cycle, a fundamental metabolic process that occurs in 
the mitochondrial matrix to produce NADH (i.e., the electron donor powering oxida-
tive phosphorylation) (Loganathan et al. 2022). Data suggest that this upregulation 
operates as a compensatory mechanism in the mitochondria of motor neurons and 
accordingly that mitochondrial function might be an important treatment target in 
ALS. 

Given that melatonin functions as a broad-spectrum chemical antioxidant and 
concentrates in mitochondria, it is a reasonable intervention to study in ALS 
fly models. Such investigations could tackle complex experimental questions that 
address the intersecting roles of sleep and melatonin in ALS neurodegeneration 
across the circadian day and night. Sleep fragmentation and mistimed sleep induce 
oxidative stress in Drosophila. In middle-aged flies, oxygen radicals remain elevated 
following recovery sleep (Williams et al. 2016). These observations suggest that 
recurrent sleep fragmentation can be a dangerous potentiator of pathological brain 
processes in ALS. Studies in Drosophila have the potential to quickly uncover 
important translatable findings regarding the therapeutic application of timed mela-
tonin dosing and behavioral interventions to (1) restore sleep consolidation and (2) 
neutralize the ROS buildup. On the behavioral medicine side, cognitive behavioral 
therapy for insomnia (CBT-I) is the preferred non-medication approach for treating 
sleep fragmentation (Muench et al. 2022). CBT-I interventions that were first devel-
oped in humans have been successfully tested in Drosophila, where they have been 
shown to increase sleep efficiency in short-sleeping mutants (Belfer et al. 2021). Work 
in flies can provide multiple simulations of how melatonin can be integrated with 
CBT-I to improve outcomes in ALS patients with astounding mechanistic biological 
insights that might identify yet other treatment targets. The case study of melatonin 
in fly ALS research is just one example of the many opportunities that are available 
to researchers hoping to elucidate mechanisms for protecting against neurodegen-
erative disease. Undoubtedly, other case studies could be made for AD, Huntingtin 
disease, or Parkinson’s disease.
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25.9 Conclusion 

The origin of melatonin’s antioxidant properties likely dates back billions of years 
to the Great Oxygen Event (GOE). The GOE was a massive extinction event that 
occurred during the Paleoproterozoic era. Owing to uncontrolled aerobic respiration, 
toxic levels of oxygen accumulated in Earth’s atmosphere (Manchester et al. 2015). 
Those organisms that survived, namely cyanobacteria, did so by evolving a means of 
sequestering and neutralizing ROS. Over time, more complex organisms evolved and 
absorbed cyanobacteria, retaining the prokaryote’s O2-adapted cellular processes as 
they did so. Assimilated alongside these properties was the ability to synthesize mela-
tonin (just as it appears today) and use it as a primary antioxidant to maintain balance 
between energy production and ROS clearance. Melatonin has played a timeless role 
in living organisms but it has been only in the past 20 years or so that its antiox-
idant properties have received significant attention. Studies are now examining its 
therapeutic potential in a wide variety of medical conditions, including as an adjunct 
intervention with chemotherapy to treat cancer. What makes melatonin an attractive 
therapeutic option is the frequent comorbidity of sleep/circadian disruptions with 
oxidative stress. With a single molecule, both these issues can be addressed at once. 
While melatonin has been studied for decades in one context or another, very few 
investigations have been done in Drosophila, arguably the most prolific and efficient 
animal model available to biomedical researchers. Any watershed movement in the 
direction of fly melatonin research is sure to accelerate the development of effective 
neuroprotective strategies to improve neurodegenerative disease outcomes. 
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